Sample records for measuring spatial correlations

  1. Analyses and assessments of span wise gust gradient data from NASA B-57B aircraft

    NASA Technical Reports Server (NTRS)

    Frost, Walter; Chang, Ho-Pen; Ringnes, Erik A.

    1987-01-01

    Analysis of turbulence measured across the airfoil of a Cambera B-57 aircraft is reported. The aircraft is instrumented with probes for measuring wind at both wing tips and at the nose. Statistical properties of the turbulence are reported. These consist of the standard deviations of turbulence measured by each individual probe, standard deviations and probability distribution of differences in turbulence measured between probes and auto- and two-point spatial correlations and spectra. Procedures associated with calculations of two-point spatial correlations and spectra utilizing data were addressed. Methods and correction procedures for assuring the accuracy of aircraft measured winds are also described. Results are found, in general, to agree with correlations existing in the literature. The velocity spatial differences fit a Gaussian/Bessel type probability distribution. The turbulence agrees with the von Karman turbulence correlation and with two-point spatial correlations developed from the von Karman correlation.

  2. Developing a bivariate spatial association measure: An integration of Pearson's r and Moran's I

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Il

    This research is concerned with developing a bivariate spatial association measure or spatial correlation coefficient, which is intended to capture spatial association among observations in terms of their point-to-point relationships across two spatial patterns. The need for parameterization of the bivariate spatial dependence is precipitated by the realization that aspatial bivariate association measures, such as Pearson's correlation coefficient, do not recognize spatial distributional aspects of data sets. This study devises an L statistic by integrating Pearson's r as an aspatial bivariate association measure and Moran's I as a univariate spatial association measure. The concept of a spatial smoothing scalar (SSS) plays a pivotal role in this task.

  3. Correlation of Spatially Filtered Dynamic Speckles in Distance Measurement Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semenov, Dmitry V.; Nippolainen, Ervin; Kamshilin, Alexei A.

    2008-04-15

    In this paper statistical properties of spatially filtered dynamic speckles are considered. This phenomenon was not sufficiently studied yet while spatial filtering is an important instrument for speckles velocity measurements. In case of spatial filtering speckle velocity information is derived from the modulation frequency of filtered light power which is measured by photodetector. Typical photodetector output is represented by a narrow-band random noise signal which includes non-informative intervals. Therefore more or less precious frequency measurement requires averaging. In its turn averaging implies uncorrelated samples. However, conducting research we found that correlation is typical property not only of dynamic speckle patternsmore » but also of spatially filtered speckles. Using spatial filtering the correlation is observed as a response of measurements provided to the same part of the object surface or in case of simultaneously using several adjacent photodetectors. Found correlations can not be explained using just properties of unfiltered dynamic speckles. As we demonstrate the subject of this paper is important not only from pure theoretical point but also from the point of applied speckle metrology. E.g. using single spatial filter and an array of photodetector can greatly improve accuracy of speckle velocity measurements.« less

  4. Hierarchical clustering using correlation metric and spatial continuity constraint

    DOEpatents

    Stork, Christopher L.; Brewer, Luke N.

    2012-10-02

    Large data sets are analyzed by hierarchical clustering using correlation as a similarity measure. This provides results that are superior to those obtained using a Euclidean distance similarity measure. A spatial continuity constraint may be applied in hierarchical clustering analysis of images.

  5. Spatial versus sequential correlations for random access coding

    NASA Astrophysics Data System (ADS)

    Tavakoli, Armin; Marques, Breno; Pawłowski, Marcin; Bourennane, Mohamed

    2016-03-01

    Random access codes are important for a wide range of applications in quantum information. However, their implementation with quantum theory can be made in two very different ways: (i) by distributing data with strong spatial correlations violating a Bell inequality or (ii) using quantum communication channels to create stronger-than-classical sequential correlations between state preparation and measurement outcome. Here we study this duality of the quantum realization. We present a family of Bell inequalities tailored to the task at hand and study their quantum violations. Remarkably, we show that the use of spatial and sequential quantum correlations imposes different limitations on the performance of quantum random access codes: Sequential correlations can outperform spatial correlations. We discuss the physics behind the observed discrepancy between spatial and sequential quantum correlations.

  6. Teacher spatial skills are linked to differences in geometry instruction.

    PubMed

    Otumfuor, Beryl Ann; Carr, Martha

    2017-12-01

    Spatial skills have been linked to better performance in mathematics. The purpose of this study was to examine the relationship between teacher spatial skills and their instruction, including teacher content and pedagogical knowledge, use of pictorial representations, and use of gestures during geometry instruction. Fifty-six middle school teachers participated in the study. The teachers were administered spatial measures of mental rotations and spatial visualization. Next, a single geometry class was videotaped. Correlational analyses revealed that spatial skills significantly correlate with teacher's use of representational gestures and content and pedagogical knowledge during instruction of geometry. Spatial skills did not independently correlate with the use of pointing gestures or the use of pictorial representations. However, an interaction term between spatial skills and content and pedagogical knowledge did correlate significantly with the use of pictorial representations. Teacher experience as measured by the number of years of teaching and highest degree did not appear to affect the relationships among the variables with the exception of the relationship between spatial skills and teacher content and pedagogical knowledge. Teachers with better spatial skills are also likely to use representational gestures and to show better content and pedagogical knowledge during instruction. Spatial skills predict pictorial representation use only as a function of content and pedagogical knowledge. © 2017 The British Psychological Society.

  7. Spatio-temporal representativeness of ground-based downward solar radiation measurements

    NASA Astrophysics Data System (ADS)

    Schwarz, Matthias; Wild, Martin; Folini, Doris

    2017-04-01

    Surface solar radiation (SSR) is most directly observed with ground based pyranometer measurements. Besides measurement uncertainties, which arise from the pyranometer instrument itself, also errors attributed to the limited spatial representativeness of observations from single sites for their large-scale surrounding have to be taken into account when using such measurements for energy balance studies. In this study the spatial representativeness of 157 homogeneous European downward surface solar radiation time series from the Global Energy Balance Archive (GEBA) and the Baseline Surface Radiation Network (BSRN) were examined for the period 1983-2015 by using the high resolution (0.05°) surface solar radiation data set from the Satellite Application Facility on Climate Monitoring (CM-SAF SARAH) as a proxy for the spatiotemporal variability of SSR. By correlating deseasonalized monthly SSR time series form surface observations against single collocated satellite derived SSR time series, a mean spatial correlation pattern was calculated and validated against purely observational based patterns. Generally decreasing correlations with increasing distance from station, with high correlations (R2 = 0.7) in proximity to the observational sites (±0.5°), was found. When correlating surface observations against time series from spatially averaged satellite derived SSR data (and thereby simulating coarser and coarser grids), very high correspondence between sites and the collocated pixels has been found for pixel sizes up to several degrees. Moreover, special focus was put on the quantification of errors which arise in conjunction to spatial sampling when estimating the temporal variability and trends for a larger region from a single surface observation site. For 15-year trends on a 1° grid, errors due to spatial sampling in the order of half of the measurement uncertainty for monthly mean values were found.

  8. Assessing the resolution-dependent utility of tomograms for geostatistics

    USGS Publications Warehouse

    Day-Lewis, F. D.; Lane, J.W.

    2004-01-01

    Geophysical tomograms are used increasingly as auxiliary data for geostatistical modeling of aquifer and reservoir properties. The correlation between tomographic estimates and hydrogeologic properties is commonly based on laboratory measurements, co-located measurements at boreholes, or petrophysical models. The inferred correlation is assumed uniform throughout the interwell region; however, tomographic resolution varies spatially due to acquisition geometry, regularization, data error, and the physics underlying the geophysical measurements. Blurring and inversion artifacts are expected in regions traversed by few or only low-angle raypaths. In the context of radar traveltime tomography, we derive analytical models for (1) the variance of tomographic estimates, (2) the spatially variable correlation with a hydrologic parameter of interest, and (3) the spatial covariance of tomographic estimates. Synthetic examples demonstrate that tomograms of qualitative value may have limited utility for geostatistics; moreover, the imprint of regularization may preclude inference of meaningful spatial statistics from tomograms.

  9. Keyword extraction by nonextensivity measure.

    PubMed

    Mehri, Ali; Darooneh, Amir H

    2011-05-01

    The presence of a long-range correlation in the spatial distribution of a relevant word type, in spite of random occurrences of an irrelevant word type, is an important feature of human-written texts. We classify the correlation between the occurrences of words by nonextensive statistical mechanics for the word-ranking process. In particular, we look at the nonextensivity parameter as an alternative metric to measure the spatial correlation in the text, from which the words may be ranked in terms of this measure. Finally, we compare different methods for keyword extraction. © 2011 American Physical Society

  10. Spatial Characteristics of F/A-18 Vertical Tail Buffet Pressures Measured in Flight

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Shah, Gautam H.

    1998-01-01

    Buffeting is an aeroelastic phenomenon which plagues high performance aircraft, especially those with twin vertical tails, at high angles of attack. Previous wind-tunnel and flight tests were conducted to characterize the buffet loads on the vertical tails by measuring surface pressures, bending moments, and accelerations. Following these tests, buffeting estimates were computed using the measured buffet pressures and compared to the measured responses. The estimates did not match the measured data because the assumed spatial correlation of the buffet pressures was not correct. A better understanding of the partial (spatial) correlation of the differential buffet pressures on the tail was necessary to improve the buffeting estimates. Several wind-tunnel investigations were conducted for this purpose. When combined and compared, the results of these tests show that the partial correlation depends on and scales with flight conditions. One of the remaining questions is whether the windtunnel data is consistent with flight data. Presented herein, cross-spectra and coherence functions calculated from pressures that were measured on the high alpha research vehicle (HARV) indicate that the partial correlation of the buffet pressures in flight agrees with the partial correlation observed in the wind tunnel.

  11. Space, race, and poverty: Spatial inequalities in walkable neighborhood amenities?

    PubMed Central

    Aldstadt, Jared; Whalen, John; White, Kellee; Castro, Marcia C.; Williams, David R.

    2017-01-01

    BACKGROUND Multiple and varied benefits have been suggested for increased neighborhood walkability. However, spatial inequalities in neighborhood walkability likely exist and may be attributable, in part, to residential segregation. OBJECTIVE Utilizing a spatial demographic perspective, we evaluated potential spatial inequalities in walkable neighborhood amenities across census tracts in Boston, MA (US). METHODS The independent variables included minority racial/ethnic population percentages and percent of families in poverty. Walkable neighborhood amenities were assessed with a composite measure. Spatial autocorrelation in key study variables were first calculated with the Global Moran’s I statistic. Then, Spearman correlations between neighborhood socio-demographic characteristics and walkable neighborhood amenities were calculated as well as Spearman correlations accounting for spatial autocorrelation. We fit ordinary least squares (OLS) regression and spatial autoregressive models, when appropriate, as a final step. RESULTS Significant positive spatial autocorrelation was found in neighborhood socio-demographic characteristics (e.g. census tract percent Black), but not walkable neighborhood amenities or in the OLS regression residuals. Spearman correlations between neighborhood socio-demographic characteristics and walkable neighborhood amenities were not statistically significant, nor were neighborhood socio-demographic characteristics significantly associated with walkable neighborhood amenities in OLS regression models. CONCLUSIONS Our results suggest that there is residential segregation in Boston and that spatial inequalities do not necessarily show up using a composite measure. COMMENTS Future research in other geographic areas (including international contexts) and using different definitions of neighborhoods (including small-area definitions) should evaluate if spatial inequalities are found using composite measures but also should use measures of specific neighborhood amenities. PMID:29046612

  12. Correlation of gravestone decay and air quality 1960-2010

    NASA Astrophysics Data System (ADS)

    Mooers, H. D.; Carlson, M. J.; Harrison, R. M.; Inkpen, R. J.; Loeffler, S.

    2017-03-01

    Evaluation of spatial and temporal variability in surface recession of lead-lettered Carrara marble gravestones provides a quantitative measure of acid flux to the stone surfaces and is closely related to local land use and air quality. Correlation of stone decay, land use, and air quality for the period after 1960 when reliable estimates of atmospheric pollution are available is evaluated. Gravestone decay and SO2 measurements are interpolated spatially using deterministic and geostatistical techniques. A general lack of spatial correlation was identified and therefore a land-use-based technique for correlation of stone decay and air quality is employed. Decadally averaged stone decay is highly correlated with land use averaged spatially over an optimum radius of ≈7 km even though air quality, determined by records from the UK monitoring network, is not highly correlated with gravestone decay. The relationships among stone decay, air-quality, and land use is complicated by the relatively low spatial density of both gravestone decay and air quality data and the fact that air quality data is available only as annual averages and therefore seasonal dependence cannot be evaluated. However, acid deposition calculated from gravestone decay suggests that the deposition efficiency of SO2 has increased appreciably since 1980 indicating an increase in the SO2 oxidation process possibly related to reactions with ammonia.

  13. Chaotic Brillouin optical correlation-domain analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Jianzhong; Zhang, Mingtao; Zhang, Mingjiang; Liu, Yi; Feng, Changkun; Wang, Yahui; Wang, Yuncai

    2018-04-01

    We propose and experimentally demonstrate a chaotic Brillouin optical correlation-domain analysis (BOCDA) system for distributed fiber sensing. The utilization of the chaotic laser with low coherent state ensures high spatial resolution. The experimental results demonstrate a 3.92-cm spatial resolution over a 906-m measurement range. The uncertainty in the measurement of the local Brillouin frequency shift is 1.2MHz. The measurement signal-to-noise ratio is given, which is agreement with the theoretical value.

  14. Removing the Impact of Correlated PSF Uncertainties in Weak Lensing

    NASA Astrophysics Data System (ADS)

    Lu, Tianhuan; Zhang, Jun; Dong, Fuyu; Li, Yingke; Liu, Dezi; Fu, Liping; Li, Guoliang; Fan, Zuhui

    2018-05-01

    Accurate reconstruction of the spatial distributions of the point-spread function (PSF) is crucial for high precision cosmic shear measurements. Nevertheless, current methods are not good at recovering the PSF fluctuations of high spatial frequencies. In general, the residual PSF fluctuations are spatially correlated, and therefore can significantly contaminate the correlation functions of the weak lensing signals. We propose a method to correct for this contamination statistically, without any assumptions on the PSF and galaxy morphologies or their spatial distribution. We demonstrate our idea with the data from the W2 field of CFHTLenS.

  15. Toward real-time quantum imaging with a single pixel camera

    DOE PAGES

    Lawrie, B. J.; Pooser, R. C.

    2013-03-19

    In this paper, we present a workbench for the study of real-time quantum imaging by measuring the frame-by-frame quantum noise reduction of multi-spatial-mode twin beams generated by four wave mixing in Rb vapor. Exploiting the multiple spatial modes of this squeezed light source, we utilize spatial light modulators to selectively pass macropixels of quantum correlated modes from each of the twin beams to a high quantum efficiency balanced detector. Finally, in low-light-level imaging applications, the ability to measure the quantum correlations between individual spatial modes and macropixels of spatial modes with a single pixel camera will facilitate compressive quantum imagingmore » with sensitivity below the photon shot noise limit.« less

  16. In vivo measurements of cutaneous melanin across spatial scales: using multiphoton microscopy and spatial frequency domain spectroscopy.

    PubMed

    Saager, Rolf B; Balu, Mihaela; Crosignani, Viera; Sharif, Ata; Durkin, Anthony J; Kelly, Kristen M; Tromberg, Bruce J

    2015-06-01

    The combined use of nonlinear optical microscopy and broadband reflectance techniques to assess melanin concentration and distribution thickness in vivo over the full range of Fitzpatrick skin types is presented. Twelve patients were measured using multiphoton microscopy (MPM) and spatial frequency domain spectroscopy (SFDS) on both dorsal forearm and volar arm, which are generally sun-exposed and non-sun-exposed areas, respectively. Both MPM and SFDS measured melanin volume fractions between (skin type I non-sun-exposed) and 20% (skin type VI sun exposed). MPM measured epidermal (anatomical) thickness values ~30-65 μm, while SFDS measured melanin distribution thickness based on diffuse optical path length. There was a strong correlation between melanin concentration and melanin distribution (epidermal) thickness measurements obtained using the two techniques. While SFDS does not have the ability to match the spatial resolution of MPM, this study demonstrates that melanin content as quantified using SFDS is linearly correlated with epidermal melanin as measured using MPM (R² = 0.8895). SFDS melanin distribution thickness is correlated to MPM values (R² = 0.8131). These techniques can be used individually and/or in combination to advance our understanding and guide therapies for pigmentation-related conditions as well as light-based treatments across a full range of skin types.

  17. Towards the evidence of a purely spatial Einstein-Podolsky-Rosen paradox in images: measurement scheme and first experimental results

    NASA Astrophysics Data System (ADS)

    Devaux, F.; Mougin-Sisini, J.; Moreau, P. A.; Lantz, E.

    2012-07-01

    We propose a scheme to evidence the Einstein-Podolsky-Rosen (EPR) paradox for photons produced by spontaneous down conversion, from measurement of purely spatial correlations of photon positions both in the near- and in the far-field. Experimentally, quantum correlations have been measured in the far-field of parametric fluorescence created in a type II BBO crystal. Imaging is performed in the photon counting regime with an electron-multiplying CCD (EMCCD) camera.

  18. Comparing spatial tuning curves, spectral ripple resolution, and speech perception in cochlear implant users.

    PubMed

    Anderson, Elizabeth S; Nelson, David A; Kreft, Heather; Nelson, Peggy B; Oxenham, Andrew J

    2011-07-01

    Spectral ripple discrimination thresholds were measured in 15 cochlear-implant users with broadband (350-5600 Hz) and octave-band noise stimuli. The results were compared with spatial tuning curve (STC) bandwidths previously obtained from the same subjects. Spatial tuning curve bandwidths did not correlate significantly with broadband spectral ripple discrimination thresholds but did correlate significantly with ripple discrimination thresholds when the rippled noise was confined to an octave-wide passband, centered on the STC's probe electrode frequency allocation. Ripple discrimination thresholds were also measured for octave-band stimuli in four contiguous octaves, with center frequencies from 500 Hz to 4000 Hz. Substantial variations in thresholds with center frequency were found in individuals, but no general trends of increasing or decreasing resolution from apex to base were observed in the pooled data. Neither ripple nor STC measures correlated consistently with speech measures in noise and quiet in the sample of subjects in this study. Overall, the results suggest that spectral ripple discrimination measures provide a reasonable measure of spectral resolution that correlates well with more direct, but more time-consuming, measures of spectral resolution, but that such measures do not always provide a clear and robust predictor of performance in speech perception tasks. © 2011 Acoustical Society of America

  19. Comparing spatial tuning curves, spectral ripple resolution, and speech perception in cochlear implant users

    PubMed Central

    Anderson, Elizabeth S.; Nelson, David A.; Kreft, Heather; Nelson, Peggy B.; Oxenham, Andrew J.

    2011-01-01

    Spectral ripple discrimination thresholds were measured in 15 cochlear-implant users with broadband (350–5600 Hz) and octave-band noise stimuli. The results were compared with spatial tuning curve (STC) bandwidths previously obtained from the same subjects. Spatial tuning curve bandwidths did not correlate significantly with broadband spectral ripple discrimination thresholds but did correlate significantly with ripple discrimination thresholds when the rippled noise was confined to an octave-wide passband, centered on the STC’s probe electrode frequency allocation. Ripple discrimination thresholds were also measured for octave-band stimuli in four contiguous octaves, with center frequencies from 500 Hz to 4000 Hz. Substantial variations in thresholds with center frequency were found in individuals, but no general trends of increasing or decreasing resolution from apex to base were observed in the pooled data. Neither ripple nor STC measures correlated consistently with speech measures in noise and quiet in the sample of subjects in this study. Overall, the results suggest that spectral ripple discrimination measures provide a reasonable measure of spectral resolution that correlates well with more direct, but more time-consuming, measures of spectral resolution, but that such measures do not always provide a clear and robust predictor of performance in speech perception tasks. PMID:21786905

  20. Spatial Correlation in the Ambient Core Noise Field of a Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    2012-01-01

    An acoustic transfer function relating combustion noise and turbine exit noise in the presence of enclosed ambient core noise is investigated using a dynamic system model and an acoustic system model for the particular turbofan engine studied and for a range of operating conditions. Measurements of cross-spectra magnitude and phase between the combustor and turbine exit and auto-spectra at the turbine exit and combustor are used to show the presence of indirect and direct combustion noise over the frequency range of 0 400 Hz. The procedure used evaluates the ratio of direct to indirect combustion noise. The procedure used also evaluates the post-combustion residence time in the combustor which is a factor in the formation of thermal NOx and soot in this region. These measurements are masked by the ambient core noise sound field in this frequency range which is observable since the transducers are situated within an acoustic wavelength of one another. An ambient core noise field model based on one and two dimensional spatial correlation functions is used to replicate the spatially correlated response of the pair of transducers. The spatial correlation function increases measured attenuation due to destructive interference and masks the true attenuation of the turbine.

  1. EIT image reconstruction with four dimensional regularization.

    PubMed

    Dai, Tao; Soleimani, Manuchehr; Adler, Andy

    2008-09-01

    Electrical impedance tomography (EIT) reconstructs internal impedance images of the body from electrical measurements on body surface. The temporal resolution of EIT data can be very high, although the spatial resolution of the images is relatively low. Most EIT reconstruction algorithms calculate images from data frames independently, although data are actually highly correlated especially in high speed EIT systems. This paper proposes a 4-D EIT image reconstruction for functional EIT. The new approach is developed to directly use prior models of the temporal correlations among images and 3-D spatial correlations among image elements. A fast algorithm is also developed to reconstruct the regularized images. Image reconstruction is posed in terms of an augmented image and measurement vector which are concatenated from a specific number of previous and future frames. The reconstruction is then based on an augmented regularization matrix which reflects the a priori constraints on temporal and 3-D spatial correlations of image elements. A temporal factor reflecting the relative strength of the image correlation is objectively calculated from measurement data. Results show that image reconstruction models which account for inter-element correlations, in both space and time, show improved resolution and noise performance, in comparison to simpler image models.

  2. Four-Photon Imaging with Thermal Light

    NASA Astrophysics Data System (ADS)

    Wen, Feng; Xue, Xinxin; Zhang, Xun; Yuan, Chenzhi; Sun, Jia; Song, Jianping; Zhang, Yanpeng

    2014-10-01

    In a near-field four-photon correlation measurement, ghost imaging with classical incoherent light is investigated. By applying the Klyshko advanced-wave picture, we consider the properties of four-photon spatial correlation and find that the fourth-order spatial correlation function can be decomposed into multiple lower-order correlation functions. On the basis of the spatial correlation properties, a proof-of-principle four-photon ghost imaging is proposed, and the effect of each part in a fourth-order correlation function on imaging is also analyzed. In addition, the similarities and differences among ghost imaging by fourth-, second-, and third-order correlations are also discussed. It is shown that the contrast and visibility of fourth-order correlated imaging are improved significantly, while the resolution is unchanged. Such studies can be very useful in better understanding multi photon interference and multi-channel correlation imaging.

  3. Experimental determination of the correlation properties of plasma turbulence using 2D BES systems

    NASA Astrophysics Data System (ADS)

    Fox, M. F. J.; Field, A. R.; van Wyk, F.; Ghim, Y.-c.; Schekochihin, A. A.; the MAST Team

    2017-04-01

    A procedure is presented to map from the spatial correlation parameters of a turbulent density field (the radial and binormal correlation lengths and wavenumbers, and the fluctuation amplitude) to correlation parameters that would be measured by a beam emission spectroscopy (BES) diagnostic. The inverse mapping is also derived, which results in resolution criteria for recovering correct correlation parameters, depending on the spatial response of the instrument quantified in terms of point-spread functions (PSFs). Thus, a procedure is presented that allows for a systematic comparison between theoretical predictions and experimental observations. This procedure is illustrated using the Mega-Ampere Spherical Tokamak BES system and the validity of the underlying assumptions is tested on fluctuating density fields generated by direct numerical simulations using the gyrokinetic code GS2. The measurement of the correlation time, by means of the cross-correlation time-delay method, is also investigated and is shown to be sensitive to the fluctuating radial component of velocity, as well as to small variations in the spatial properties of the PSFs.

  4. Using temporal detrending to observe the spatial correlation of traffic.

    PubMed

    Ermagun, Alireza; Chatterjee, Snigdhansu; Levinson, David

    2017-01-01

    This empirical study sheds light on the spatial correlation of traffic links under different traffic regimes. We mimic the behavior of real traffic by pinpointing the spatial correlation between 140 freeway traffic links in a major sub-network of the Minneapolis-St. Paul freeway system with a grid-like network topology. This topology enables us to juxtapose the positive and negative correlation between links, which has been overlooked in short-term traffic forecasting models. To accurately and reliably measure the correlation between traffic links, we develop an algorithm that eliminates temporal trends in three dimensions: (1) hourly dimension, (2) weekly dimension, and (3) system dimension for each link. The spatial correlation of traffic links exhibits a stronger negative correlation in rush hours, when congestion affects route choice. Although this correlation occurs mostly in parallel links, it is also observed upstream, where travelers receive information and are able to switch to substitute paths. Irrespective of the time-of-day and day-of-week, a strong positive correlation is witnessed between upstream and downstream links. This correlation is stronger in uncongested regimes, as traffic flow passes through consecutive links more quickly and there is no congestion effect to shift or stall traffic. The extracted spatial correlation structure can augment the accuracy of short-term traffic forecasting models.

  5. Using temporal detrending to observe the spatial correlation of traffic

    PubMed Central

    2017-01-01

    This empirical study sheds light on the spatial correlation of traffic links under different traffic regimes. We mimic the behavior of real traffic by pinpointing the spatial correlation between 140 freeway traffic links in a major sub-network of the Minneapolis—St. Paul freeway system with a grid-like network topology. This topology enables us to juxtapose the positive and negative correlation between links, which has been overlooked in short-term traffic forecasting models. To accurately and reliably measure the correlation between traffic links, we develop an algorithm that eliminates temporal trends in three dimensions: (1) hourly dimension, (2) weekly dimension, and (3) system dimension for each link. The spatial correlation of traffic links exhibits a stronger negative correlation in rush hours, when congestion affects route choice. Although this correlation occurs mostly in parallel links, it is also observed upstream, where travelers receive information and are able to switch to substitute paths. Irrespective of the time-of-day and day-of-week, a strong positive correlation is witnessed between upstream and downstream links. This correlation is stronger in uncongested regimes, as traffic flow passes through consecutive links more quickly and there is no congestion effect to shift or stall traffic. The extracted spatial correlation structure can augment the accuracy of short-term traffic forecasting models. PMID:28472093

  6. Spatial entanglement patterns and Einstein-Podolsky-Rosen steering in Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Fadel, Matteo; Zibold, Tilman; Décamps, Boris; Treutlein, Philipp

    2018-04-01

    Many-particle entanglement is a fundamental concept of quantum physics that still presents conceptual challenges. Although nonclassical states of atomic ensembles were used to enhance measurement precision in quantum metrology, the notion of entanglement in these systems was debated because the correlations among the indistinguishable atoms were witnessed by collective measurements only. Here, we use high-resolution imaging to directly measure the spin correlations between spatially separated parts of a spin-squeezed Bose-Einstein condensate. We observe entanglement that is strong enough for Einstein-Podolsky-Rosen steering: We can predict measurement outcomes for noncommuting observables in one spatial region on the basis of corresponding measurements in another region with an inferred uncertainty product below the Heisenberg uncertainty bound. This method could be exploited for entanglement-enhanced imaging of electromagnetic field distributions and quantum information tasks.

  7. In vivo measurements of cutaneous melanin across spatial scales: using multiphoton microscopy and spatial frequency domain spectroscopy

    PubMed Central

    Saager, Rolf B.; Balu, Mihaela; Crosignani, Viera; Sharif, Ata; Durkin, Anthony J.; Kelly, Kristen M.; Tromberg, Bruce J.

    2015-01-01

    Abstract. The combined use of nonlinear optical microscopy and broadband reflectance techniques to assess melanin concentration and distribution thickness in vivo over the full range of Fitzpatrick skin types is presented. Twelve patients were measured using multiphoton microscopy (MPM) and spatial frequency domain spectroscopy (SFDS) on both dorsal forearm and volar arm, which are generally sun-exposed and non-sun-exposed areas, respectively. Both MPM and SFDS measured melanin volume fractions between ∼5% (skin type I non-sun-exposed) and 20% (skin type VI sun exposed). MPM measured epidermal (anatomical) thickness values ∼30–65  μm, while SFDS measured melanin distribution thickness based on diffuse optical path length. There was a strong correlation between melanin concentration and melanin distribution (epidermal) thickness measurements obtained using the two techniques. While SFDS does not have the ability to match the spatial resolution of MPM, this study demonstrates that melanin content as quantified using SFDS is linearly correlated with epidermal melanin as measured using MPM (R2=0.8895). SFDS melanin distribution thickness is correlated to MPM values (R2=0.8131). These techniques can be used individually and/or in combination to advance our understanding and guide therapies for pigmentation-related conditions as well as light-based treatments across a full range of skin types. PMID:26065839

  8. Executive and memory correlates of age-related differences in wayfinding performances using a virtual reality application.

    PubMed

    Taillade, Mathieu; Sauzéon, Hélène; Dejos, Marie; Pala, Prashant Arvind; Larrue, Florian; Wallet, Grégory; Gross, Christian; N'Kaoua, Bernard

    2013-01-01

    The aim of this study was to evaluate in large-scale spaces wayfinding and spatial learning difficulties for older adults in relation to the executive and memory decline associated with aging. We compared virtual reality (VR)-based wayfinding and spatial memory performances between young and older adults. Wayfinding and spatial memory performances were correlated with classical measures of executive and visuo-spatial memory functions, but also with self-reported estimates of wayfinding difficulties. We obtained a significant effect of age on wayfinding performances but not on spatial memory performances. The overall correlations showed significant correlations between the wayfinding performances and the classical measures of both executive and visuo-spatial memory, but only when the age factor was not partialled out. Also, older adults underestimated their wayfinding difficulties. A significant relationship between the wayfinding performances and self-reported wayfinding difficulty estimates is found, but only when the age effect was partialled out. These results show that, even when older adults have an equivalent spatial knowledge to young adults, they had greater difficulties with the wayfinding task, supporting an executive decline view in age-related wayfinding difficulties. However, the correlation results are in favor of both the memory and executive decline views as mediators of age-related differences in wayfinding performances. This is discussed in terms of the relationships between memory and executive functioning in wayfinding task orchestration. Our results also favor the use of objective assessments of everyday navigation difficulties in virtual applications, instead of self-reported questionnaires, since older adults showed difficulties in estimating their everyday wayfinding problems.

  9. Comparison of cosmology and seabed acoustics measurements using statistical inference from maximum entropy

    NASA Astrophysics Data System (ADS)

    Knobles, David; Stotts, Steven; Sagers, Jason

    2012-03-01

    Why can one obtain from similar measurements a greater amount of information about cosmological parameters than seabed parameters in ocean waveguides? The cosmological measurements are in the form of a power spectrum constructed from spatial correlations of temperature fluctuations within the microwave background radiation. The seabed acoustic measurements are in the form of spatial correlations along the length of a spatial aperture. This study explores the above question from the perspective of posterior probability distributions obtained from maximizing a relative entropy functional. An answer is in part that the seabed in shallow ocean environments generally has large temporal and spatial inhomogeneities, whereas the early universe was a nearly homogeneous cosmological soup with small but important fluctuations. Acoustic propagation models used in shallow water acoustics generally do not capture spatial and temporal variability sufficiently well, which leads to model error dominating the statistical inference problem. This is not the case in cosmology. Further, the physics of the acoustic modes in cosmology is that of a standing wave with simple initial conditions, whereas for underwater acoustics it is a traveling wave in a strongly inhomogeneous bounded medium.

  10. Three dimensional simulation of spatial and temporal variability of stratospheric hydrogen chloride

    NASA Technical Reports Server (NTRS)

    Kaye, Jack A.; Rood, Richard B.; Jackman, Charles H.; Allen, Dale J.; Larson, Edmund M.

    1989-01-01

    Spatial and temporal variability of atmospheric HCl columns are calculated for January 1979 using a three-dimensional chemistry-transport model designed to provide the best possible representation of stratospheric transport. Large spatial and temporal variability of the HCl columns is shown to be correlated with lower stratospheric potential vorticity and thus to be of dynamical origin. Systematic longitudinal structure is correlated with planetary wave structure. These results can help place spatially and temporally isolated column and profile measurements in a regional and/or global perspective.

  11. Spatial correlation in the ambient core noise field of a turbofan engine.

    PubMed

    Miles, Jeffrey Hilton

    2012-06-01

    An acoustic transfer function relating combustion noise and turbine exit noise in the presence of enclosed ambient core noise is investigated using a dynamic system model and an acoustic system model for the particular turbofan engine studied and for a range of operating conditions. Measurements of cross-spectra magnitude and phase between the combustor and turbine exit and auto-spectra at the turbine exit and combustor are used to show the presence of indirect and direct combustion noise over the frequency range of 0-400 Hz. The procedure used evaluates the ratio of direct to indirect combustion noise. The procedure used also evaluates the post-combustion residence time in the combustor which is a factor in the formation of thermal NO(x) and soot in this region. These measurements are masked by the ambient core noise sound field in this frequency range which is observable since the transducers are situated within an acoustic wavelength of one another. An ambient core noise field model based on one and two dimensional spatial correlation functions is used to replicate the spatially correlated response of the pair of transducers. The spatial correlation function increases measured attenuation due to destructive interference and masks the true attenuation of the turbine.

  12. Correlation of Fin Buffet Pressures on an F/A-18 with Scaled Wind-Tunnel Measurements

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Shah, Gautam H.

    1999-01-01

    Buffeting is an aeroelastic phenomenon occurring at high angles of attack that plagues high performance aircraft, especially those with twin vertical tails. Previous wind-tunnel and flight tests were conducted to characterize the buffet loads on the vertical tails by measuring surface pressures, bending moments, and accelerations. Following these tests, buffeting responses were computed using the measured buffet pressures and compared to the measured buffeting responses. The calculated results did not match the measured data because the assumed spatial correlation of the buffet pressures was not correct. A better understanding of the partial (spatial) correlation of the differential buffet pressures on the tail was necessary to improve the buffeting predictions. Several wind-tunnel investigations were conducted for this purpose. When compared, the results of these tests show that the partial correlation scales with flight conditions. One of the remaining questions is whether the wind-tunnel data is consistent with flight data. Presented herein, cross-spectra and coherence functions calculated from pressures that were measured on the High Alpha Research Vehicle indicate that the partial correlation of the buffet pressures in flight agrees with the partial correlation observed in the wind tunnel.

  13. Image Quality Assessment Using the Joint Spatial/Spatial-Frequency Representation

    NASA Astrophysics Data System (ADS)

    Beghdadi, Azeddine; Iordache, Răzvan

    2006-12-01

    This paper demonstrates the usefulness of spatial/spatial-frequency representations in image quality assessment by introducing a new image dissimilarity measure based on 2D Wigner-Ville distribution (WVD). The properties of 2D WVD are shortly reviewed, and the important issue of choosing the analytic image is emphasized. The WVD-based measure is shown to be correlated with subjective human evaluation, which is the premise towards an image quality assessor developed on this principle.

  14. Relationships Among Peripheral and Central Electrophysiological Measures of Spatial and Spectral Selectivity and Speech Perception in Cochlear Implant Users.

    PubMed

    Scheperle, Rachel A; Abbas, Paul J

    2015-01-01

    The ability to perceive speech is related to the listener's ability to differentiate among frequencies (i.e., spectral resolution). Cochlear implant (CI) users exhibit variable speech-perception and spectral-resolution abilities, which can be attributed in part to the extent of electrode interactions at the periphery (i.e., spatial selectivity). However, electrophysiological measures of peripheral spatial selectivity have not been found to correlate with speech perception. The purpose of this study was to evaluate auditory processing at the periphery and cortex using both simple and spectrally complex stimuli to better understand the stages of neural processing underlying speech perception. The hypotheses were that (1) by more completely characterizing peripheral excitation patterns than in previous studies, significant correlations with measures of spectral selectivity and speech perception would be observed, (2) adding information about processing at a level central to the auditory nerve would account for additional variability in speech perception, and (3) responses elicited with spectrally complex stimuli would be more strongly correlated with speech perception than responses elicited with spectrally simple stimuli. Eleven adult CI users participated. Three experimental processor programs (MAPs) were created to vary the likelihood of electrode interactions within each participant. For each MAP, a subset of 7 of 22 intracochlear electrodes was activated: adjacent (MAP 1), every other (MAP 2), or every third (MAP 3). Peripheral spatial selectivity was assessed using the electrically evoked compound action potential (ECAP) to obtain channel-interaction functions for all activated electrodes (13 functions total). Central processing was assessed by eliciting the auditory change complex with both spatial (electrode pairs) and spectral (rippled noise) stimulus changes. Speech-perception measures included vowel discrimination and the Bamford-Kowal-Bench Speech-in-Noise test. Spatial and spectral selectivity and speech perception were expected to be poorest with MAP 1 (closest electrode spacing) and best with MAP 3 (widest electrode spacing). Relationships among the electrophysiological and speech-perception measures were evaluated using mixed-model and simple linear regression analyses. All electrophysiological measures were significantly correlated with each other and with speech scores for the mixed-model analysis, which takes into account multiple measures per person (i.e., experimental MAPs). The ECAP measures were the best predictor. In the simple linear regression analysis on MAP 3 data, only the cortical measures were significantly correlated with speech scores; spectral auditory change complex amplitude was the strongest predictor. The results suggest that both peripheral and central electrophysiological measures of spatial and spectral selectivity provide valuable information about speech perception. Clinically, it is often desirable to optimize performance for individual CI users. These results suggest that ECAP measures may be most useful for within-subject applications when multiple measures are performed to make decisions about processor options. They also suggest that if the goal is to compare performance across individuals based on a single measure, then processing central to the auditory nerve (specifically, cortical measures of discriminability) should be considered.

  15. Spatial variations in a.c. susceptibility and microstructure for the YBa2Cu3O(7-x) superconductor and their correlation with room-temperature ultrasonic measurements

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Hepp, Aloysius F.; Deguire, Mark R.; Dolhert, Leonard E.

    1991-01-01

    The spatial (within-sample) uniformity of superconducting behavior and microstructure in YBa2Cu30(7-x) specimens over the pore fraction range of 0.10 to 0.25 was examined. The viability of using a room-temperature, nondestructive characterization method (ultrasonic velocity imaging) to predict spatial variability was determined. Spatial variations in superconductor properties were observed for specimens containing 0.10 pore fraction. An ultrasonic velocity image constructed from measurements at 1 mm increments across one such specimen revealed microstructural variation between edge and center locations that correlated with variations in alternating-current shielding and loss behavior. Optical quantitative image analysis on sample cross-sections revealed pore fraction to be the varying microstructural feature.

  16. Spatial variations in ac susceptibility and microstructure for the YBa2Cu3O(7-x) superconductor and their correlation with room-temperature ultrasonic measurements

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Deguire, Mark R.; Dolhert, Leonard E.; Hepp, Aloysius F.

    1991-01-01

    The spatial (within-sample) uniformity of superconducting behavior and microstructure in YBa2Cu3O(7-x) specimens over the pore fraction range of 0.10 to 0.25 was examined. The viability of using a room-temperature, nondestructive characterization method (ultrasonic velocity imaging) to predict spatial variability was determined. Spatial variations in superconductor properties were observed for specimens containing 0.10 pore fraction. An ultrasonic velocity image constructed from measurements at 1 mm increments across one such specimen revealed microstructural variation between edge and center locations that correlated with variations in alternating-current shielding and loss behavior. Optical quantitative image analysis on sample cross-sections revealed pore fraction to be the varying microstructural feature.

  17. Spatio-temporal correlations in the Manna model in one, three and five dimensions

    NASA Astrophysics Data System (ADS)

    Willis, Gary; Pruessner, Gunnar

    2018-02-01

    Although the paradigm of criticality is centered around spatial correlations and their anomalous scaling, not many studies of self-organized criticality (SOC) focus on spatial correlations. Often, integrated observables, such as avalanche size and duration, are used, not least as to avoid complications due to the unavoidable lack of translational invariance. The present work is a survey of spatio-temporal correlation functions in the Manna Model of SOC, measured numerically in detail in d = 1,3 and 5 dimensions and compared to theoretical results, in particular relating them to “integrated” observables such as avalanche size and duration scaling, that measure them indirectly. Contrary to the notion held by some of SOC models organizing into a critical state by re-arranging their spatial structure avalanche by avalanche, which may be expected to result in large, nontrivial, system-spanning spatial correlations in the quiescent state (between avalanches), correlations of inactive particles in the quiescent state have a small amplitude that does not and cannot increase with the system size, although they display (noisy) power law scaling over a range linear in the system size. Self-organization, however, does take place as the (one-point) density of inactive particles organizes into a particular profile that is asymptotically independent of the driving location, also demonstrated analytically in one dimension. Activity and its correlations, on the other hand, display nontrivial long-ranged spatio-temporal scaling with exponents that can be related to established results, in particular avalanche size and duration exponents. The correlation length and amplitude are set by the system size (confirmed analytically for some observables), as expected in systems displaying finite size scaling. In one dimension, we find some surprising inconsistencies of the dynamical exponent. A (spatially extended) mean field theory (MFT) is recovered, with some corrections, in five dimensions.

  18. Macular pigment spatial distribution effects on glare disability.

    PubMed

    Putnam, Christopher M; Bassi, Carl J

    2015-01-01

    This project explored the relationship of the macular pigment optical density (MPOD) spatial profile with measures of glare disability (GD) across the macula. A novel device was used to measure MPOD across the central 16° of retina along four radii using customized heterochromatic flicker photometry (cHFP)at eccentricities of 0°, 2°, 4°, 6° and 8°. MPOD was measured as discrete and integrated values at all measured retinal loci. GD was calculated as a difference in contrast sensitivity (CS) between no glare and glare conditions using identical stimuli presented at the same eccentricities. GD was defined as [(CSNo Glare-CSGlare)/CSNo Glare] in order to isolate the glare attenuation effects of MPOD by controlling for CS variability among the subject sample. Correlations of the discrete and integrated MPOD with GD were compared. The cHFP identified reliable MPOD spatial distribution maps demonstrating a 1st-order exponential decay as a function of increasing eccentricity. There was a significant negative correlation between both measures of foveal MPOD and GD using 6 cycles per degree (cpd) and 9 cpd stimuli. Significant correlations were found between corresponding parafoveal MPOD measures and GD at 2 and 4° of eccentricity using 9 cpd stimuli with greater MPOD associated with less glare disability. These results are consistent with the glare attenuation effects of MP at higher spatial frequencies and support the hypothesis that discrete and integrated measures of MPOD have similar correlations with glare attenuation effects across the macula. Additionally, peak foveal MPOD appears to influence GD across the macula. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  19. Microchannel plate cross-talk mitigation for spatial autocorrelation measurements

    NASA Astrophysics Data System (ADS)

    Lipka, Michał; Parniak, Michał; Wasilewski, Wojciech

    2018-05-01

    Microchannel plates (MCP) are the basis for many spatially resolved single-particle detectors such as ICCD or I-sCMOS cameras employing image intensifiers (II), MCPs with delay-line anodes for the detection of cold gas particles or Cherenkov radiation detectors. However, the spatial characterization provided by an MCP is severely limited by cross-talk between its microchannels, rendering MCP and II ill-suited for autocorrelation measurements. Here, we present a cross-talk subtraction method experimentally exemplified for an I-sCMOS based measurement of pseudo-thermal light second-order intensity autocorrelation function at the single-photon level. The method merely requires a dark counts measurement for calibration. A reference cross-correlation measurement certifies the cross-talk subtraction. While remaining universal for MCP applications, the presented cross-talk subtraction, in particular, simplifies quantum optical setups. With the possibility of autocorrelation measurements, the signal needs no longer to be divided into two camera regions for a cross-correlation measurement, reducing the experimental setup complexity and increasing at least twofold the simultaneously employable camera sensor region.

  20. Fourth-Order Spatial Correlation of Thermal Light

    NASA Astrophysics Data System (ADS)

    Wen, Feng; Zhang, Xun; Xue, Xin-Xin; Sun, Jia; Song, Jian-Ping; Zhang, Yan-Peng

    2014-11-01

    We investigate the fourth-order spatial correlation properties of pseudo-thermal light in the photon counting regime, and apply the Klyshko advanced-wave picture to describe the process of four-photon coincidence counting measurement. We deduce the theory of a proof-of-principle four-photon coincidence counting configuration, and find that if the four randomly radiated photons come from the same radiation area and are indistinguishable in principle, the fourth-order correlation of them is 24 times larger than that when four photons come from different radiation areas. In addition, we also show that the higher-order spatial correlation function can be decomposed into multiple lower-order correlation functions, and the contrast and visibility of low-order correlation peaks are less than those of higher orders, while the resolutions all are identical. This study may be useful for better understanding the four-photon interference and multi-channel correlation imaging.

  1. [Correlativity study of the distribution of soil magnetic susceptibility and the heavy metal contents in Xi'an City].

    PubMed

    Chen, Xiu-Duan; Lu, Xin-Wei; Yang, Guang

    2013-03-01

    The magnetic susceptibility and the concentrations of Co, Cr, Cu, Pb, Sn, Sr and Ba in topsoil samples from Xi'an City were measured to study their spatial distribution and their correlation in this study. The results show that the concentrations of all measured heavy metals are higher than their background values in Cinnamon topsoil, which is the main soil type of Xi'an City. The heavy metals concentrations and the magnetic susceptibility of the studied samples display moderate variance. Co, Cr, Cu, Pb, Sn, Sr and Ba are significantly positively correlated with low-frequency magnetic susceptibility, while are significantly negatively correlated with frequency susceptibility. The spatial distribution of low-frequency magnetic susceptibility is identical with the concentrations of Pb and Cu. However, the spatial variation of frequency magnetic susceptibility is different from the concentrations of Co, Cr and Ba. The pollution assessment results show that the heavy metal pollution in topsoil of Xi'an City is moderate. The spatial contribution of the pollution load index was significantly correlated with the magnetic susceptibility of topsoil in Xi'an City. Therefore, soil magnetic susceptibility can be used as an effective monitoring means for heavy metal pollution in urban soil.

  2. Evaluating Multipollutant Exposure and Urban Air Quality: Pollutant Interrelationships, Neighborhood Variability, and Nitrogen Dioxide as a Proxy Pollutant

    PubMed Central

    Levy, Ilan; Mihele, Cristian; Lu, Gang; Narayan, Julie; Brook, Jeffrey R.

    2013-01-01

    Background: Although urban air pollution is a complex mix containing multiple constituents, studies of the health effects of long-term exposure often focus on a single pollutant as a proxy for the entire mixture. A better understanding of the component pollutant concentrations and interrelationships would be useful in epidemiological studies that exploit spatial differences in exposure by clarifying the extent to which measures of individual pollutants, particularly nitrogen dioxide (NO2), represent spatial patterns in the multipollutant mixture. Objectives: We examined air pollutant concentrations and interrelationships at the intraurban scale to obtain insight into the nature of the urban mixture of air pollutants. Methods: Mobile measurements of 23 air pollutants were taken systematically at high resolution in Montreal, Quebec, Canada, over 34 days in the winter, summer, and autumn of 2009. Results: We observed variability in pollution levels and in the statistical correlations between different pollutants according to season and neighborhood. Nitrogen oxide species (nitric oxide, NO2, nitrogen oxides, and total oxidized nitrogen species) had the highest overall spatial correlations with the suite of pollutants measured. Ultrafine particles and hydrocarbon-like organic aerosol concentration, a derived measure used as a specific indicator of traffic particles, also had very high correlations. Conclusions: Our findings indicate that the multipollutant mix varies considerably throughout the city, both in time and in space, and thus, no single pollutant would be a perfect proxy measure for the entire mix under all circumstances. However, based on overall average spatial correlations with the suite of pollutants measured, nitrogen oxide species appeared to be the best available indicators of spatial variation in exposure to the outdoor urban air pollutant mixture. Citation: Levy I, Mihele C, Lu G, Narayan J, Brook JR. 2014. Evaluating multipollutant exposure and urban air quality: pollutant interrelationships, neighborhood variability, and nitrogen dioxide as a proxy pollutant. Environ Health Perspect 122:65–72; http://dx.doi.org/10.1289/ehp.1306518 PMID:24225648

  3. Relations between productivity, climate, and normalized difference vegetation index in the central Great Plains

    NASA Astrophysics Data System (ADS)

    Wang, Jue

    Understanding the influences of climate on productivity remains a major challenge in landscape ecology. Satellite remote sensing of normalized difference vegetation index (NDVI) provides a useful tool to study landscape patterns, based on generalization of local measurements, and to examine relations between climate and variation in productivity. This dissertation examines temporal and spatial relations between NDVI, productivity, and climatic factors over the course of nine years in the central Great Plains. Two general findings emerge: (1) integrated NDVI is a reliable measure of production, as validated with ground-based productivity measurements; and (2) precipitation is the primary factor that determines spatial and temporal patterns of NDVI. NDVI, integrated over appropriate time intervals, is strongly correlated with ground productivity measurements in forests, grasslands, and croplands. Most tree productivity measurements (tree ring size, tree diameter growth, and seed production) are strongly correlated with NDVI integrated for a period during the early growing season; foliage production is most strongly correlated with NDVI integrated over the entire growing season; and tree height growth corresponds with NDVI integrate during the previous growing season. Similarly, productivity measurements for herbaceous plants (grassland biomass and crop yield) are strongly correlated with NDVI. Within the growing season, the temporal pattern of grassland biomass production covaries with NDVI, with a four-week lag time. Across years, grassland biomass production covaries with NDVI integrated from part to all of the current growing season. Corn and wheat yield are most strongly related to NDVI integrated from late June to early August and from late April to mid-May, respectively. Precipitation strongly influences both temporal and spatial patterns of NDVI, while temperature influences NDVI only during the early and late growing season. In terms of temporal patterns, NDVI integrated over the growing season is strongly correlated with precipitation received during the current growing season plus the seven preceding months (fifteen month period); NDVI within the growing season responds to changes in precipitation with a four to eight week lag time; and major precipitation events lead to changes in NDVI with a two to four week lag time. Temperature has a positive correlation with NDVI during the early and late growing season, and a weak negative correlation during the middle of the growing season. In terms of spatial patterns, average precipitation is a strong predictor of the major east-west gradient of NDVI. Deviation from average precipitation explains most of the year-to-year variation in spatial patterns. NDVI and precipitation deviations from average covary (both positive or both negative) for 60--95% of the total land area in Kansas. Minimum and average temperatures are positively correlated with NDVI, but temperature deviation from average is generally not correlated with NDVI deviation from average. The strong relationships between NDVI and productivity, and between precipitation and NDVI, along with detailed analysis of the temporal and spatial patterns for our study region, provides the basis for prediction of productivity at landscape scales under different climate regimes.

  4. Frequency-Based Spatial Correlation Assessments of the Ares I Subscale Acoustic Model Test Firings

    NASA Technical Reports Server (NTRS)

    Kenny, R. Jeremy; Houston, J.

    2012-01-01

    The Marshall Space Flight Center has performed a series of test firings to simulate and understand the acoustic environments generated for the Ares I liftoff profiles. Part of the instrumentation package had special sensor groups to assess the acoustic field spatial correlation features for the various test configurations. The spatial correlation characteristics were evaluated for all of the test firings, inclusive of understanding the diffuse to propagating wave amplitude ratios, the acoustic wave decays, and the incident angle of propagating waves across the sensor groups. These parameters were evaluated across the measured frequency spectra and the associated uncertainties for each parameter were estimated.

  5. Statistical analysis of atmospheric turbulence about a simulated block building

    NASA Technical Reports Server (NTRS)

    Steely, S. L., Jr.

    1981-01-01

    An array of towers instrumented to measure the three components of wind speed was used to study atmospheric flow about a simulated block building. Two-point spacetime correlations of the longitudinal velocity component were computed along with two-point spatial correlations. These correlations are in good agreement with fundamental concepts of fluid mechanics. The two-point spatial correlations computed directly were compared with correlations predicted by Taylor's hypothesis and excellent agreement was obtained at the higher levels which were out of the building influence. The correlations fall off significantly in the building wake but recover beyond the wake to essentially the same values in the undisturbed, higher regions.

  6. A Twin Study of Spatial and Non-Spatial Delayed Response Performance in Middle Age

    ERIC Educational Resources Information Center

    Kremen, William S.; Mai, Tuan; Panizzon, Matthew S.; Franz, Carol E.; Blankfeld, Howard M.; Xian, Hong; Eisen, Seth A.; Tsuang, Ming T.; Lyons, Michael J.

    2011-01-01

    Delayed alternation and object alternation are classic spatial and non-spatial delayed response tasks. We tested 632 middle-aged male veteran twins on variants of these tasks in order to compare test difficulty, measure their inter-correlation, test order effects, and estimate heritabilities (proportion of observed variance due to genetic…

  7. Spatial Reasoning Influences Students' Performance on Mathematics Tasks

    ERIC Educational Resources Information Center

    Lowrie, Tom; Logan, Tracy; Ramful, Ajay

    2016-01-01

    Although the psychological literature has demonstrated that spatial reasoning and mathematics performance are correlated, there is scant research on these relationships in the middle years. The current study examined the commonalities and differences in students' performance on instruments that measured three spatial reasoning constructs and two…

  8. Do hospitals respond to rivals' quality and efficiency? A spatial panel econometric analysis.

    PubMed

    Longo, Francesco; Siciliani, Luigi; Gravelle, Hugh; Santos, Rita

    2017-09-01

    We investigate whether hospitals in the English National Health Service change their quality or efficiency in response to changes in quality or efficiency of neighbouring hospitals. We first provide a theoretical model that predicts that a hospital will not respond to changes in the efficiency of its rivals but may change its quality or efficiency in response to changes in the quality of rivals, though the direction of the response is ambiguous. We use data on eight quality measures (including mortality, emergency readmissions, patient reported outcome, and patient satisfaction) and six efficiency measures (including bed occupancy, cancelled operations, and costs) for public hospitals between 2010/11 and 2013/14 to estimate both spatial cross-sectional and spatial fixed- and random-effects panel data models. We find that although quality and efficiency measures are unconditionally spatially correlated, the spatial regression models suggest that a hospital's quality or efficiency does not respond to its rivals' quality or efficiency, except for a hospital's overall mortality that is positively associated with that of its rivals. The results are robust to allowing for spatially correlated covariates and errors and to instrumenting rivals' quality and efficiency. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Experimental realization of spatially separated entanglement with continuous variables using laser pulse trains

    PubMed Central

    Zhang, Yun; Okubo, Ryuhi; Hirano, Mayumi; Eto, Yujiro; Hirano, Takuya

    2015-01-01

    Spatially separated entanglement is demonstrated by interfering two high-repetition squeezed pulse trains. The entanglement correlation of the quadrature amplitudes between individual pulses is interrogated. It is characterized in terms of the sufficient inseparability criterion with an optimum result of in the frequency domain and in the time domain. The quantum correlation is also observed when the two measurement stations are separated by a physical distance of 4.5 m, which is sufficiently large to demonstrate the space-like separation, after accounting for the measurement time. PMID:26278478

  10. High-speed limnology: using advanced sensors to investigate spatial variability in biogeochemistry and hydrology.

    PubMed

    Crawford, John T; Loken, Luke C; Casson, Nora J; Smith, Colin; Stone, Amanda G; Winslow, Luke A

    2015-01-06

    Advanced sensor technology is widely used in aquatic monitoring and research. Most applications focus on temporal variability, whereas spatial variability has been challenging to document. We assess the capability of water chemistry sensors embedded in a high-speed water intake system to document spatial variability. This new sensor platform continuously samples surface water at a range of speeds (0 to >45 km h(-1)) resulting in high-density, mesoscale spatial data. These novel observations reveal previously unknown variability in physical, chemical, and biological factors in streams, rivers, and lakes. By combining multiple sensors into one platform, we were able to detect terrestrial-aquatic hydrologic connections in a small dystrophic lake, to infer the role of main-channel vs backwater nutrient processing in a large river and to detect sharp chemical changes across aquatic ecosystem boundaries in a stream/lake complex. Spatial sensor data were verified in our examples by comparing with standard lab-based measurements of selected variables. Spatial fDOM data showed strong correlation with wet chemistry measurements of DOC, and optical NO3 concentrations were highly correlated with lab-based measurements. High-frequency spatial data similar to our examples could be used to further understand aquatic biogeochemical fluxes, ecological patterns, and ecosystem processes, and will both inform and benefit from fixed-site data.

  11. High-speed limnology: Using advanced sensors to investigate spatial variability in biogeochemistry and hydrology

    USGS Publications Warehouse

    Crawford, John T.; Loken, Luke C.; Casson, Nora J.; Smith, Collin; Stone, Amanda G.; Winslow, Luke A.

    2015-01-01

    Advanced sensor technology is widely used in aquatic monitoring and research. Most applications focus on temporal variability, whereas spatial variability has been challenging to document. We assess the capability of water chemistry sensors embedded in a high-speed water intake system to document spatial variability. This new sensor platform continuously samples surface water at a range of speeds (0 to >45 km h–1) resulting in high-density, mesoscale spatial data. These novel observations reveal previously unknown variability in physical, chemical, and biological factors in streams, rivers, and lakes. By combining multiple sensors into one platform, we were able to detect terrestrial–aquatic hydrologic connections in a small dystrophic lake, to infer the role of main-channel vs backwater nutrient processing in a large river and to detect sharp chemical changes across aquatic ecosystem boundaries in a stream/lake complex. Spatial sensor data were verified in our examples by comparing with standard lab-based measurements of selected variables. Spatial fDOM data showed strong correlation with wet chemistry measurements of DOC, and optical NO3 concentrations were highly correlated with lab-based measurements. High-frequency spatial data similar to our examples could be used to further understand aquatic biogeochemical fluxes, ecological patterns, and ecosystem processes, and will both inform and benefit from fixed-site data.

  12. Think3d!: Training Spatial Thinking Fundamental to STEM Education

    ERIC Educational Resources Information Center

    Taylor, Holly A.; Hutton, Allyson

    2013-01-01

    This article describes the initial implementation of an innovative program for elementary-age children involving origami and pop-up paper engineering to promote visuospatial thinking. While spatial ability measures correlate with science, technology, engineering, and math (STEM) success, a focus on spatial thinking is all but missing in elementary…

  13. Relationships Among Peripheral and Central Electrophysiological Measures of Spatial and Spectral Selectivity and Speech Perception in Cochlear Implant Users

    PubMed Central

    Scheperle, Rachel A.; Abbas, Paul J.

    2014-01-01

    Objectives The ability to perceive speech is related to the listener’s ability to differentiate among frequencies (i.e., spectral resolution). Cochlear implant (CI) users exhibit variable speech-perception and spectral-resolution abilities, which can be attributed in part to the extent of electrode interactions at the periphery (i.e., spatial selectivity). However, electrophysiological measures of peripheral spatial selectivity have not been found to correlate with speech perception. The purpose of this study was to evaluate auditory processing at the periphery and cortex using both simple and spectrally complex stimuli to better understand the stages of neural processing underlying speech perception. The hypotheses were that (1) by more completely characterizing peripheral excitation patterns than in previous studies, significant correlations with measures of spectral selectivity and speech perception would be observed, (2) adding information about processing at a level central to the auditory nerve would account for additional variability in speech perception, and (3) responses elicited with spectrally complex stimuli would be more strongly correlated with speech perception than responses elicited with spectrally simple stimuli. Design Eleven adult CI users participated. Three experimental processor programs (MAPs) were created to vary the likelihood of electrode interactions within each participant. For each MAP, a subset of 7 of 22 intracochlear electrodes was activated: adjacent (MAP 1), every-other (MAP 2), or every third (MAP 3). Peripheral spatial selectivity was assessed using the electrically evoked compound action potential (ECAP) to obtain channel-interaction functions for all activated electrodes (13 functions total). Central processing was assessed by eliciting the auditory change complex (ACC) with both spatial (electrode pairs) and spectral (rippled noise) stimulus changes. Speech-perception measures included vowel-discrimination and the Bamford-Kowal-Bench Sentence-in-Noise (BKB-SIN) test. Spatial and spectral selectivity and speech perception were expected to be poorest with MAP 1 (closest electrode spacing) and best with MAP 3 (widest electrode spacing). Relationships among the electrophysiological and speech-perception measures were evaluated using mixed-model and simple linear regression analyses. Results All electrophysiological measures were significantly correlated with each other and with speech perception for the mixed-model analysis, which takes into account multiple measures per person (i.e. experimental MAPs). The ECAP measures were the best predictor of speech perception. In the simple linear regression analysis on MAP 3 data, only the cortical measures were significantly correlated with speech; spectral ACC amplitude was the strongest predictor. Conclusions The results suggest that both peripheral and central electrophysiological measures of spatial and spectral selectivity provide valuable information about speech perception. Clinically, it is often desirable to optimize performance for individual CI users. These results suggest that ECAP measures may be the most useful for within-subject applications, when multiple measures are performed to make decisions about processor options. They also suggest that if the goal is to compare performance across individuals based on single measure, then processing central to the auditory nerve (specifically, cortical measures of discriminability) should be considered. PMID:25658746

  14. Spatial correlation in matter-wave interference as a measure of decoherence, dephasing, and entropy

    NASA Astrophysics Data System (ADS)

    Chen, Zilin; Beierle, Peter; Batelaan, Herman

    2018-04-01

    The loss of contrast in double-slit electron diffraction due to dephasing and decoherence processes is studied. It is shown that the spatial intensity correlation function of diffraction patterns can be used to distinguish between dephasing and decoherence. This establishes a measure of time reversibility that does not require the determination of coherence terms of the density matrix, while von Neumann entropy, another measure of time reversibility, does require coherence terms. This technique is exciting in view of the need to understand and control the detrimental experimental effect of contrast loss and for fundamental studies on the transition from the classical to the quantum regime.

  15. The robustness of T2 value as a trabecular structural index at multiple spatial resolutions of 7 Tesla MRI.

    PubMed

    Lee, D K; Song, Y K; Park, B W; Cho, H P; Yeom, J S; Cho, G; Cho, H

    2018-04-15

    To evaluate the robustness of MR transverse relaxation times of trabecular bone from spin-echo and gradient-echo acquisitions at multiple spatial resolutions of 7 T. The effects of MRI resolutions to T 2 and T2* of trabecular bone were numerically evaluated by Monte Carlo simulations. T 2 , T2*, and trabecular structural indices from multislice multi-echo and UTE acquisitions were measured in defatted human distal femoral condyles on a 7 T scanner. Reference structural indices were extracted from high-resolution microcomputed tomography images. For bovine knee trabecular samples with intact bone marrow, T 2 and T2* were measured by degrading spatial resolutions on a 7 T system. In the defatted trabecular experiment, both T 2 and T2* values showed strong ( |r| > 0.80) correlations with trabecular spacing and number, at a high spatial resolution of 125 µm 3 . The correlations for MR image-segmentation-derived structural indices were significantly degraded ( |r| < 0.50) at spatial resolutions of 250 and 500 µm 3 . The correlations for T2* rapidly dropped ( |r| < 0.50) at a spatial resolution of 500 µm 3 , whereas those for T 2 remained consistently high ( |r| > 0.85). In the bovine trabecular experiments with intact marrow, low-resolution (approximately 1 mm 3 , 2 minutes) T 2 values did not shorten ( |r| > 0.95 with respect to approximately 0.4 mm 3 , 11 minutes) and maintained consistent correlations ( |r| > 0.70) with respect to trabecular spacing (turbo spin echo, 22.5 minutes). T 2 measurements of trabeculae at 7 T are robust with degrading spatial resolution and may be preferable in assessing trabecular spacing index with reduced scan time, when high-resolution 3D micro-MRI is difficult to obtain. © 2018 International Society for Magnetic Resonance in Medicine.

  16. Spatial entanglement patterns and Einstein-Podolsky-Rosen steering in Bose-Einstein condensates.

    PubMed

    Fadel, Matteo; Zibold, Tilman; Décamps, Boris; Treutlein, Philipp

    2018-04-27

    Many-particle entanglement is a fundamental concept of quantum physics that still presents conceptual challenges. Although nonclassical states of atomic ensembles were used to enhance measurement precision in quantum metrology, the notion of entanglement in these systems was debated because the correlations among the indistinguishable atoms were witnessed by collective measurements only. Here, we use high-resolution imaging to directly measure the spin correlations between spatially separated parts of a spin-squeezed Bose-Einstein condensate. We observe entanglement that is strong enough for Einstein-Podolsky-Rosen steering: We can predict measurement outcomes for noncommuting observables in one spatial region on the basis of corresponding measurements in another region with an inferred uncertainty product below the Heisenberg uncertainty bound. This method could be exploited for entanglement-enhanced imaging of electromagnetic field distributions and quantum information tasks. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. On the relationship between thermal emissivity and the Normalized Difference Vegetation Index for natural surfaces

    NASA Technical Reports Server (NTRS)

    Van De Griend, A. A.; Owe, M.

    1993-01-01

    The spatial variation of both the thermal emissivity (8-14 microns) and Normalized Difference Vegetation Index (NDVI) was measured for a series of natural surfaces within a savanna environment in Botswana. The measurements were performed with an emissivity-box and with a combined red and near-IR radiometer, with spectral bands corresponding to NOAA/AVHRR. It was found that thermal emissivity was highly correlated with NDVI after logarithmic transformation, with a correlation coefficient of R = 0.94. This empirical relationship is of potential use for energy balance studies using thermal IR remote sensing. The relationship was used in combination with AVHRR (GAC), AVHRR (LAC), and Landsat (TM) data to demonstrate and compare the spatial variability of various spatial scales.

  18. Complexity metric based on fraction of penumbra dose - initial study

    NASA Astrophysics Data System (ADS)

    Bäck, A.; Nordström, F.; Gustafsson, M.; Götstedt, J.; Karlsson Hauer, A.

    2017-05-01

    Volumetric modulated arc therapy improve radiotherapy outcome for many patients compared to conventional three dimensional conformal radiotherapy but require a more extensive, most often measurement based, quality assurance. Multi leaf collimator (MLC) aperture-based complexity metrics have been suggested to be used to distinguish complex treatment plans unsuitable for treatment without time consuming measurements. This study introduce a spatially resolved complexity score that correlate to the fraction of penumbra dose and will give information on the spatial distribution and the clinical relevance of the calculated complexity. The complexity metric is described and an initial study on the correlation between the complexity score and the difference between measured and calculated dose for 30 MLC openings is presented. The result of an analysis of the complexity scores were found to correlate to differences between measurements and calculations with a Pearson’s r-value of 0.97.

  19. A variance-decomposition approach to investigating multiscale habitat associations

    USGS Publications Warehouse

    Lawler, J.J.; Edwards, T.C.

    2006-01-01

    The recognition of the importance of spatial scale in ecology has led many researchers to take multiscale approaches to studying habitat associations. However, few of the studies that investigate habitat associations at multiple spatial scales have considered the potential effects of cross-scale correlations in measured habitat variables. When cross-scale correlations in such studies are strong, conclusions drawn about the relative strength of habitat associations at different spatial scales may be inaccurate. Here we adapt and demonstrate an analytical technique based on variance decomposition for quantifying the influence of cross-scale correlations on multiscale habitat associations. We used the technique to quantify the variation in nest-site locations of Red-naped Sapsuckers (Sphyrapicus nuchalis) and Northern Flickers (Colaptes auratus) associated with habitat descriptors at three spatial scales. We demonstrate how the method can be used to identify components of variation that are associated only with factors at a single spatial scale as well as shared components of variation that represent cross-scale correlations. Despite the fact that no explanatory variables in our models were highly correlated (r < 0.60), we found that shared components of variation reflecting cross-scale correlations accounted for roughly half of the deviance explained by the models. These results highlight the importance of both conducting habitat analyses at multiple spatial scales and of quantifying the effects of cross-scale correlations in such analyses. Given the limits of conventional analytical techniques, we recommend alternative methods, such as the variance-decomposition technique demonstrated here, for analyzing habitat associations at multiple spatial scales. ?? The Cooper Ornithological Society 2006.

  20. China's Air Quality and Respiratory Disease Mortality Based on the Spatial Panel Model.

    PubMed

    Cao, Qilong; Liang, Ying; Niu, Xueting

    2017-09-18

    Background : Air pollution has become an important factor restricting China's economic development and has subsequently brought a series of social problems, including the impact of air pollution on the health of residents, which is a topical issue in China. Methods : Taking into account this spatial imbalance, the paper is based on the spatial panel data model PM 2.5 . Respiratory disease mortality in 31 Chinese provinces from 2004 to 2008 is taken as the main variable to study the spatial effect and impact of air quality and respiratory disease mortality on a large scale. Results : It was found that there is a spatial correlation between the mortality of respiratory diseases in Chinese provinces. The spatial correlation can be explained by the spatial effect of PM 2.5 pollutions in the control of other variables. Conclusions : Compared with the traditional non-spatial model, the spatial model is better for describing the spatial relationship between variables, ensuring the conclusions are scientific and can measure the spatial effect between variables.

  1. Reverse Correlation in Neurophysiology

    ERIC Educational Resources Information Center

    Ringach, Dario; Shapley, Robert

    2004-01-01

    This article presents a review of reverse correlation in neurophysiology. We discuss the basis of reverse correlation in linear transducers and in spiking neurons. The application of reverse correlation to measure the receptive fields of visual neurons using white noise and m-sequences, and classical findings about spatial and color processing in…

  2. A New Methodology of Spatial Cross-Correlation Analysis

    PubMed Central

    Chen, Yanguang

    2015-01-01

    Spatial correlation modeling comprises both spatial autocorrelation and spatial cross-correlation processes. The spatial autocorrelation theory has been well-developed. It is necessary to advance the method of spatial cross-correlation analysis to supplement the autocorrelation analysis. This paper presents a set of models and analytical procedures for spatial cross-correlation analysis. By analogy with Moran’s index newly expressed in a spatial quadratic form, a theoretical framework is derived for geographical cross-correlation modeling. First, two sets of spatial cross-correlation coefficients are defined, including a global spatial cross-correlation coefficient and local spatial cross-correlation coefficients. Second, a pair of scatterplots of spatial cross-correlation is proposed, and the plots can be used to visually reveal the causality behind spatial systems. Based on the global cross-correlation coefficient, Pearson’s correlation coefficient can be decomposed into two parts: direct correlation (partial correlation) and indirect correlation (spatial cross-correlation). As an example, the methodology is applied to the relationships between China’s urbanization and economic development to illustrate how to model spatial cross-correlation phenomena. This study is an introduction to developing the theory of spatial cross-correlation, and future geographical spatial analysis might benefit from these models and indexes. PMID:25993120

  3. A new methodology of spatial cross-correlation analysis.

    PubMed

    Chen, Yanguang

    2015-01-01

    Spatial correlation modeling comprises both spatial autocorrelation and spatial cross-correlation processes. The spatial autocorrelation theory has been well-developed. It is necessary to advance the method of spatial cross-correlation analysis to supplement the autocorrelation analysis. This paper presents a set of models and analytical procedures for spatial cross-correlation analysis. By analogy with Moran's index newly expressed in a spatial quadratic form, a theoretical framework is derived for geographical cross-correlation modeling. First, two sets of spatial cross-correlation coefficients are defined, including a global spatial cross-correlation coefficient and local spatial cross-correlation coefficients. Second, a pair of scatterplots of spatial cross-correlation is proposed, and the plots can be used to visually reveal the causality behind spatial systems. Based on the global cross-correlation coefficient, Pearson's correlation coefficient can be decomposed into two parts: direct correlation (partial correlation) and indirect correlation (spatial cross-correlation). As an example, the methodology is applied to the relationships between China's urbanization and economic development to illustrate how to model spatial cross-correlation phenomena. This study is an introduction to developing the theory of spatial cross-correlation, and future geographical spatial analysis might benefit from these models and indexes.

  4. Spatial variations of storm runoff pollution and their correlation with land-use in a rapidly urbanizing catchment in China.

    PubMed

    Qin, Hua-Peng; Khu, Soon-Thiam; Yu, Xiang-Ying

    2010-09-15

    The composition of land use for a rapidly urbanizing catchment is usually heterogeneous, and this may result in significant spatial variations of storm runoff pollution and increase the difficulties of water quality management. The Shiyan Reservoir catchment, a typical rapidly urbanizing area in China, is chosen as a study area, and temporary monitoring sites were set at the downstream of its 6 sub-catchments to synchronously measure rainfall, runoff and water quality during 4 storm events in 2007 and 2009. Due to relatively low frequency monitoring, the IHACRES and exponential pollutant wash-off simulation models are used to interpolate the measured data to compensate for data insufficiency. Three indicators, event pollutant loads per unit area (EPL), event mean concentration (EMC) and pollutant loads transported by the first 50% of runoff volume (FF50), were used to describe the runoff pollution for different pollutants in each sub-catchment during the storm events, and the correlations between runoff pollution spatial variations and land-use patterns were tested by Spearman's rank correlation analysis. The results indicated that similar spatial variation trends were found for different pollutants (EPL or EMC) in light storm events, which strongly correlate with the proportion of residential land use; however, they have different trends in heavy storm events, which correlate with not only the residential land use, but also agricultural and bare land use. And some pairs of pollutants (such as COD/BOD, NH(3)-N/TN) might have the similar source because they have strong or moderate positive spatial correlation. Moreover, the first flush intensity (FF50) varies with impervious land areas and different interception ratio of initial storm runoff volume should be adopted in different sub-catchments. Copyright 2010 Elsevier B.V. All rights reserved.

  5. How Spatial Reasoning and Numerical Reasoning Are Related in Geometric Measurement

    ERIC Educational Resources Information Center

    Battista, Michael T.; Winer, Michael L.; Frazee, Leah M.

    2017-01-01

    The positive correlation between spatial ability and mathematical ability has been well-documented, but not well-understood. Examining student work in spatial situations that require numerical operations provides us with insight into this elusive connection. Drawing on student work with angle, length, volume, and area, we examine the ways in which…

  6. Correlations of particle number concentrations and metals with nitrogen oxides and other traffic-related air pollutants in Glasgow and London

    NASA Astrophysics Data System (ADS)

    Sánchez Jiménez, Araceli; Heal, Mathew R.; Beverland, Iain J.

    2012-07-01

    Particle number concentration (PNC) and transition metal content are implicated in the health effects of airborne particulate matter (PM) but they are difficult to measure so consequently their temporal and spatial variations are not well characterized. Daily concentrations of PNC and particle-bound water-soluble metals (V, Cr, Mn, Fe, Ni, Cu, As, Cd and Pb) were measured at background and kerbside sites in Glasgow and London to examine if other metrics of air pollution such as optical darkness (absorbance) of collected filter samples of PM, gravimetric PM, and NO, NO2 and CO gas concentrations, can be used as surrogates for the temporal and spatial variations of the former. NO2 and NOx exhibited a high degree of within-site correlation and with PNC and water-soluble metals (Fe, Cu, As, Cd, Pb) at background sites in both cities. There is therefore potential to use NO2 and NOx as surrogates for PNC and water-soluble metal at background sites. However, correlation was weaker in complex street canyon environments where pollutant concentrations are strongly affected by local sources and the small-scale variations in pollutant dispersion induced by the wind regimes within street canyons. The corollary of the high correlation between NO2 and PNC and water-soluble metals at the background sites is that the latter pollutants may act as confounders for health effects attributed to NO2 from such sites. Concentrations of CO cannot be used as a surrogate for PNC. Increments in daily NOx and NO2 concentrations between trafficked and background sites were shown to be a simple and novel surrogate for daily spatial variation of PNC; for example, increments in NOx explained 78-79% of the variance in PNC at the paired sites in both Glasgow and London, but relationships were city specific. The increments in NOx also explained 70% of the spatial variation in Cu and Ni in Glasgow but not in London. Weekly NO2 measurements derived from passive diffusion tubes were also shown to correlate well with increments in PNC. A high temporal correlation between PNC and 1,3-butadiene and benzene (which can also be measured by passive sampler) implies that passive sampler measurements may be a straightforward tool for deriving long-term spatial patterns in PNC.

  7. Probing quantum correlation functions through energy-absorption interferometry

    NASA Astrophysics Data System (ADS)

    Withington, S.; Thomas, C. N.; Goldie, D. J.

    2017-08-01

    An interferometric technique is described for determining the spatial forms of the individual degrees of freedom through which a many-body system can absorb energy from its environment. The method separates out the spatial forms of the coherent excitations present at any single frequency; it is not necessary to sweep the frequency and then infer the spatial forms of possible excitations from resonant absorption features. The system under test is excited with two external sources, which create generalized forces, and the fringe in the total power dissipated is measured as the relative phase between the sources is varied. If the complex fringe visibility is measured for different pairs of source locations, the anti-Hermitian part of the complex-valued nonlocal correlation tensor can be determined, which can then be decomposed to give the natural dynamical modes of the system and their relative responsivities. If each source in the interferometer creates a different kind of force, the spatial forms of the individual excitations that are responsible for cross-correlated response can be found. The technique is related to holography, but measures the state of coherence to which the system is maximally sensitive. It can be applied across a wide range of wavelengths, in a variety of ways, to homogeneous media, thin films, patterned structures, and components such as sensors, detectors, and energy-harvesting absorbers.

  8. Spatial correlation and irradiance statistics in a multiple-beam terrestrial free-space optical communication link.

    PubMed

    Anguita, Jaime A; Neifeld, Mark A; Vasic, Bane V

    2007-09-10

    By means of numerical simulations we analyze the statistical properties of the power fluctuations induced by the incoherent superposition of multiple transmitted laser beams in a terrestrial free-space optical communication link. The measured signals arising from different transmitted optical beams are found to be statistically correlated. This channel correlation increases with receiver aperture and propagation distance. We find a simple scaling rule for the spatial correlation coefficient in terms of the propagation distance and we are able to predict the scintillation reduction in previously reported experiments with good accuracy. We propose an approximation to the probability density function of the received power of a spatially correlated multiple-beam system in terms of the parameters of the single-channel gamma-gamma function. A bit-error-rate evaluation is also presented to demonstrate the improvement of a multibeam system over its single-beam counterpart.

  9. Spatial and temporal variation of sources contributing to quasi-ultrafine particulate matter PM0.36 in Augsburg, Germany.

    PubMed

    Li, Fengxia; Schnelle-Kreis, Jürgen; Cyrys, Josef; Wolf, Kathrin; Karg, Erwin; Gu, Jianwei; Orasche, Jürgen; Abbaszade, Gülcin; Peters, Annette; Zimmermann, Ralf

    2018-08-01

    to study the sources contributing to quasi-ultrafine particle (UFP) organic carbon and the spatial temporal variability of the sources. 24h quasi-UFP (particulate matter <0.36μm in this study) was sampled at a reference site continuously and at one of 5 other sites (T1, T2, T3, T4 and B1) in parallel in Augsburg, Germany from April 11th, 2014 to February 22nd, 2015, attempting to conduct 2-week campaigns at each site in 3 different seasons. Positive matrix factorization (PMF) was applied to measured organic tracers for source apportionment analyses. Pearson correlation coefficient r and coefficient of divergence (COD) were calculated to investigate spatial temporal variation of source contributions. 5 sources were identified comprising biomass burning (BB), traffic emissions (Traffic), biogenic secondary organic aerosol (bioSOA), isoprene originated secondary organic aerosol (isoSOA) and biomass burning related secondary organic aerosol (bbSOA). In general, good temporal correlation and uniform distribution within the study area are found for bioSOA and bbSOA, probably resulting from regional formation/transport. Lower temporal correlation and spatial heterogeneity of isoSOA were found at the city background site with local influence from green space and less traffic impact. BB demonstrated very good temporal correlation, but higher contributions at sites influenced by local residential heating emissions were observed. Traffic showed the least seasonality and lower correlation over time among the sources. However, it demonstrated low spatial heterogeneity of absolute contribution, and only a few days of elevated contribution was found at T3 when wind came directly from the street nearby. temporal correlation and spatial variability of sources contributing to the organic fraction of quasi-UFP vary among sites and source types and show source-specific characteristics. Therefore, caution should be taken when using one monitor site measurement to assess human exposure in health effect studies of quasi-UFP. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Effects of Spatial Variability of Soil Properties on the Triggering of Rainfall-Induced Shallow Landslides

    NASA Astrophysics Data System (ADS)

    Fan, Linfeng; Lehmann, Peter; Or, Dani

    2015-04-01

    Naturally-occurring spatial variations in soil properties (e.g., soil depth, moisture, and texture) affect key hydrological processes and potentially the mechanical response of soil to hydromechanical loading (relative to the commonly-assumed uniform soil mantle). We quantified the effects of soil spatial variability on the triggering of rainfall-induced shallow landslides at the hillslope- and catchment-scales, using a physically-based landslide triggering model that considers interacting soil columns with mechanical strength thresholds (represented by the Fiber Bundle Model). The spatial variations in soil properties are represented as Gaussian random distributions and the level of variation is characterized by the coefficient of variation and correlation lengths of soil properties (i.e., soil depth, soil texture and initial water content in this study). The impacts of these spatial variations on landslide triggering characteristics were measured by comparing the times to triggering and landslide volumes for heterogeneous soil properties and homogeneous cases. Results at hillslope scale indicate that for spatial variations of an individual property (without cross correlation), the increasing of coefficient of variation introduces weak spots where mechanical damage is accelerated and leads to earlier onset of landslide triggering and smaller volumes. Increasing spatial correlation length of soil texture and initial water content also induces early landslide triggering and small released volumes due to the transition of failure mode from brittle to ductile failure. In contrast, increasing spatial correlation length of soil depth "reduces" local steepness and postpones landslide triggering. Cross-correlated soil properties generally promote landslide initiation, but depending on the internal structure of spatial distribution of each soil property, landslide triggering may be reduced. The effects of cross-correlation between initial water content and soil texture were investigated in detail at the catchment scale by incorporating correlations of both variables with topography. Results indicate that the internal structure of the spatial distribution of each soil property together with their interplays determine the overall performance of the coupled spatial variability. This study emphasizes the importance of both the randomness and spatial structure of soil properties on landslide triggering and characteristics.

  11. Spatial correlation of the dynamic propensity of a glass-forming liquid

    NASA Astrophysics Data System (ADS)

    Razul, M. Shajahan G.; Matharoo, Gurpreet S.; Poole, Peter H.

    2011-06-01

    We present computer simulation results on the dynamic propensity (as defined by Widmer-Cooper et al 2004 Phys. Rev. Lett. 93 135701) in a Kob-Andersen binary Lennard-Jones liquid system consisting of 8788 particles. We compute the spatial correlation function for the dynamic propensity as a function of both the reduced temperature T, and the time scale on which the particle displacements are measured. For T <= 0.6, we find that non-zero correlations occur at the largest length scale accessible in our system. We also show that a cluster-size analysis of particles with extremal values of the dynamic propensity, as well as 3D visualizations, reveal spatially correlated regions that approach the size of our system as T decreases, consistently with the behavior of the spatial correlation function. Next, we define and examine the 'coordination propensity', the isoconfigurational average of the coordination number of the minority B particles around the majority A particles. We show that a significant correlation exists between the spatial fluctuations of the dynamic and coordination propensities. In addition, we find non-zero correlations of the coordination propensity occurring at the largest length scale accessible in our system for all T in the range 0.466 < T < 1.0. We discuss the implications of these results for understanding the length scales of dynamical heterogeneity in glass-forming liquids.

  12. Imaging Spatial Correlations of Rydberg Excitations in Cold Atom Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarzkopf, A.; Sapiro, R. E.; Raithel, G.

    2011-09-02

    We use direct spatial imaging of cold {sup 85}Rb Rydberg atom clouds to measure the Rydberg-Rydberg correlation function. The results are in qualitative agreement with theoretical predictions [F. Robicheaux and J. V. Hernandez, Phys. Rev. A 72, 063403 (2005)]. We determine the blockade radius for states 44D{sub 5/2}, 60D{sub 5/2}, and 70D{sub 5/2} and investigate the dependence of the correlation behavior on excitation conditions and detection delay. Experimental data hint at the existence of long-range order.

  13. Thermal modifications of charmonia and bottomonia from spatial correlation functions

    NASA Astrophysics Data System (ADS)

    Ding, Heng-Tong; Kaczmarek, Olaf; Kruse, Anna-lena; Mukherjee, Swagato; Ohno, Hiroshi; Sandmeyer, Hauke; Shu, Hai-Tao

    2018-03-01

    We present our study on the thermal modifications of charmonia and bottomonia from spatial correlation functions at zero and nonzero momenta in quenched QCD. To accommodate the heavy quarks on the lattice we performed simulations on very fine lattices at a fixed beta value corresponding to a lattice spacing a-1 = 22:8 GeV on 1923×32, 1923 × 48, 1923 × 56, 1923 × 64 and 1923 × 96 lattices using clover-improved Wilson fermions. These lattices correspond to temperatures of 2.25Tc, 1.50Tc, 1.25Tc, 1.10Tc and 0.75Tc. To increase the signal to noise ratio in the axial-vector and scalar channels we used multi-sources for the measurement of spatial correlation functions. By investigating on the differences between spatial and temporal correlators as well as the temperature dependence of screening masses we will discuss the thermal effects in different channels of quarkonium states. Besides this the dispersion relation of the screening mass at different momenta is also discussed.

  14. Structure identification within a transitioning swept-wing boundary layer

    NASA Astrophysics Data System (ADS)

    Chapman, Keith Lance

    1997-08-01

    Extensive measurements are made in a transitioning swept-wing boundary layer using hot-film, hot-wire and cross-wire anemometry. The crossflow-dominated flow contains stationary vortices that breakdown near mid-chord. The most amplified vortex wavelength is forced by the use of artificial roughness elements near the leading edge. Two-component velocity and spanwise surface shear-stress correlation measurements are made at two constant chord locations, before and after transition. Streamwise surface shear stresses are also measured through the entire transition region. Correlation techniques are used to identify stationary structures in the laminar regime and coherent structures in the turbulent regime. Basic techniques include observation of the spatial correlations and the spatially distributed auto-spectra. The primary and secondary instability mechanisms are identified in the spectra in all measured fields. The primary mechanism is seen to grow, cause transition and produce large-scale turbulence. The secondary mechanism grows through the entire transition region and produces the small-scale turbulence. Advanced techniques use linear stochastic estimation (LSE) and proper orthogonal decomposition (POD) to identify the spatio-temporal evolutions of structures in the boundary layer. LSE is used to estimate the instantaneous velocity fields using temporal data from just two spatial locations and the spatial correlations. Reference locations are selected using maximum RMS values to provide the best available estimates. POD is used to objectively determine modes characteristic of the measured flow based on energy. The stationary vortices are identified in the first laminar modes of each velocity component and shear component. Experimental evidence suggests that neighboring vortices interact and produce large coherent structures with spanwise periodicity at double the stationary vortex wavelength. An objective transition region detection method is developed using streamwise spatial POD solutions which isolate the growth of the primary and secondary instability mechanisms in the first and second modes, respectively. Temporal evolutions of dominant POD modes in all measured fields are calculated. These scalar POD coefficients contain the integrated characteristics of the entire field, greatly reducing the amount of data to characterize the instantaneous field. These modes may then be used to train future flow control algorithms based on neural networks.

  15. Structure Identification Within a Transitioning Swept-Wing Boundary Layer

    NASA Technical Reports Server (NTRS)

    Chapman, Keith; Glauser, Mark

    1996-01-01

    Extensive measurements are made in a transitioning swept-wing boundary layer using hot-film, hot-wire and cross-wire anemometry. The crossflow-dominated flow contains stationary vortices that breakdown near mid-chord. The most amplified vortex wavelength is forced by the use of artificial roughness elements near the leading edge. Two-component velocity and spanwise surface shear-stress correlation measurements are made at two constant chord locations, before and after transition. Streamwise surface shear stresses are also measured through the entire transition region. Correlation techniques are used to identify stationary structures in the laminar regime and coherent structures in the turbulent regime. Basic techniques include observation of the spatial correlations and the spatially distributed auto-spectra. The primary and secondary instability mechanisms are identified in the spectra in all measured fields. The primary mechanism is seen to grow, cause transition and produce large-scale turbulence. The secondary mechanism grows through the entire transition region and produces the small-scale turbulence. Advanced techniques use Linear Stochastic Estimation (LSE) and Proper Orthogonal Decomposition (POD) to identify the spatio-temporal evolutions of structures in the boundary layer. LSE is used to estimate the instantaneous velocity fields using temporal data from just two spatial locations and the spatial correlations. Reference locations are selected using maximum RMS values to provide the best available estimates. POD is used to objectively determine modes characteristic of the measured flow based on energy. The stationary vortices are identified in the first laminar modes of each velocity component and shear component. Experimental evidence suggests that neighboring vortices interact and produce large coherent structures with spanwise periodicity at double the stationary vortex wavelength. An objective transition region detection method is developed using streamwise spatial POD solutions which isolate the growth of the primary and secondary instability mechanisms in the first and second modes, respectively. Temporal evolutions of dominant POD modes in all measured fields are calculated. These scalar POD coefficients contain the integrated characteristics of the entire field, greatly reducing the amount of data to characterize the instantaneous field. These modes may then be used to train future flow control algorithms based on neural networks.

  16. Degeneracy of vector-channel spatial correlators in high temperature QCD

    NASA Astrophysics Data System (ADS)

    Rohrhofer, Christian; Aoki, Yasumichi; Cossu, Guido; Fukaya, Hidenori; Glozman, Leonid; Hashimoto, Shoji; Lang, Christian B.; Prelovsek, Sasa

    2018-03-01

    We study spatial isovector meson correlators in Nf = 2 QCD with dynamical domain-wall fermions on 323 × 8 lattices at temperatures up to 380 MeV with various quark masses. We measure the correlators of spin-one isovector operators including vector, axial-vector, tensor and axial-tensor. At temperatures above Tc we observe an approximate degeneracy of the correlators in these channels, which is unexpected because some of them are not related under SU(2)L×SU(2)R nor U(1)A symmetries. The observed approximate degeneracy suggests emergent SU(2)CS (chiral-spin) and SU(4) symmetries at high T.

  17. Rainfall Observed Over Bangladesh 2000-2008: A Comparison of Spatial Interpolation Methods

    NASA Astrophysics Data System (ADS)

    Pervez, M.; Henebry, G. M.

    2010-12-01

    In preparation for a hydrometeorological study of freshwater resources in the greater Ganges-Brahmaputra region, we compared the results of four methods of spatial interpolation applied to point measurements of daily rainfall over Bangladesh during a seven year period (2000-2008). Two univariate (inverse distance weighted and spline-regularized and tension) and two multivariate geostatistical (ordinary kriging and kriging with external drift) methods were used to interpolate daily observations from a network of 221 rain gauges across Bangladesh spanning an area of 143,000 sq km. Elevation and topographic index were used as the covariates in the geostatistical methods. The validity of the interpolated maps was analyzed through cross-validation. The quality of the methods was assessed through the Pearson and Spearman correlations and root mean square error measurements of accuracy in cross-validation. Preliminary results indicated that the univariate methods performed better than the geostatistical methods at daily scales, likely due to the relatively dense sampled point measurements and a weak correlation between the rainfall and covariates at daily scales in this region. Inverse distance weighted produced the better results than the spline. For the days with extreme or high rainfall—spatially and quantitatively—the correlation between observed and interpolated estimates appeared to be high (r2 ~ 0.6 RMSE ~ 10mm), although for low rainfall days the correlations were poor (r2 ~ 0.1 RMSE ~ 3mm). The performance quality of these methods was influenced by the density of the sample point measurements, the quantity of the observed rainfall along with spatial extent, and an appropriate search radius defining the neighboring points. Results indicated that interpolated rainfall estimates at daily scales may introduce uncertainties in the successive hydrometeorological analysis. Interpolations at 5-day, 10-day, 15-day, and monthly time scales are currently under investigation.

  18. Stand-level variation in evapotranspiration in non-water-limited eucalypt forests

    NASA Astrophysics Data System (ADS)

    Benyon, Richard G.; Nolan, Rachael H.; Hawthorn, Sandra N. D.; Lane, Patrick N. J.

    2017-08-01

    To better understand water and energy cycles in forests over years to decades, measurements of spatial and long-term temporal variability in evapotranspiration (Ea) are needed. In mountainous terrain, plot-level measurements are important to achieving this. Forest inventory data including tree density and size measurements, often collected repeatedly over decades, sample the variability occurring within the geographic and topographic range of specific forest types. Using simple allometric relationships, tree stocking and size data can be used to estimate variables including sapwood area index (SAI), which may be strongly correlated with annual Ea. This study analysed plot-level variability in SAI and its relationship with overstorey and understorey transpiration, interception and evaporation over a 670 m elevation gradient, in non-water-limited, even-aged stands of Eucalyptus regnans F. Muell. to determine how well spatial variation in annual Ea from forests can be mapped using SAI. Over the 3 year study, mean sap velocity in five E. regnans stands was uncorrelated with overstorey sapwood area index (SAI) or elevation: annual transpiration was predicted well by SAI (R2 0.98). Overstorey and total annual interception were positively correlated with SAI (R2 0.90 and 0.75). Ea from the understorey was strongly correlated with vapour pressure deficit (VPD) and net radiation (Rn) measured just above the understorey, but relationships between understorey Ea and VPD and Rn differed between understorey types and understorey annual Ea was not correlated with SAI. Annual total Ea was also strongly correlated with SAI: the relationship being similar to two previous studies in the same region, despite differences in stand age and species. Thus, spatial variation in annual Ea can be reliably mapped using measurements of SAI.

  19. China’s Air Quality and Respiratory Disease Mortality Based on the Spatial Panel Model

    PubMed Central

    Cao, Qilong; Liang, Ying; Niu, Xueting

    2017-01-01

    Background: Air pollution has become an important factor restricting China’s economic development and has subsequently brought a series of social problems, including the impact of air pollution on the health of residents, which is a topical issue in China. Methods: Taking into account this spatial imbalance, the paper is based on the spatial panel data model PM2.5. Respiratory disease mortality in 31 Chinese provinces from 2004 to 2008 is taken as the main variable to study the spatial effect and impact of air quality and respiratory disease mortality on a large scale. Results: It was found that there is a spatial correlation between the mortality of respiratory diseases in Chinese provinces. The spatial correlation can be explained by the spatial effect of PM2.5 pollutions in the control of other variables. Conclusions: Compared with the traditional non-spatial model, the spatial model is better for describing the spatial relationship between variables, ensuring the conclusions are scientific and can measure the spatial effect between variables. PMID:28927016

  20. Application of Spectral Analysis Techniques in the Intercomparison of Aerosol Data. Part II: Using Maximum Covariance Analysis to Effectively Compare Spatiotemporal Variability of Satellite and AERONET Measured Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.

    2014-01-01

    Moderate Resolution Imaging SpectroRadiometer (MODIS) and Multi-angle Imaging Spectroradiomater (MISR) provide regular aerosol observations with global coverage. It is essential to examine the coherency between space- and ground-measured aerosol parameters in representing aerosol spatial and temporal variability, especially in the climate forcing and model validation context. In this paper, we introduce Maximum Covariance Analysis (MCA), also known as Singular Value Decomposition analysis as an effective way to compare correlated aerosol spatial and temporal patterns between satellite measurements and AERONET data. This technique not only successfully extracts the variability of major aerosol regimes but also allows the simultaneous examination of the aerosol variability both spatially and temporally. More importantly, it well accommodates the sparsely distributed AERONET data, for which other spectral decomposition methods, such as Principal Component Analysis, do not yield satisfactory results. The comparison shows overall good agreement between MODIS/MISR and AERONET AOD variability. The correlations between the first three modes of MCA results for both MODIS/AERONET and MISR/ AERONET are above 0.8 for the full data set and above 0.75 for the AOD anomaly data. The correlations between MODIS and MISR modes are also quite high (greater than 0.9). We also examine the extent of spatial agreement between satellite and AERONET AOD data at the selected stations. Some sites with disagreements in the MCA results, such as Kanpur, also have low spatial coherency. This should be associated partly with high AOD spatial variability and partly with uncertainties in satellite retrievals due to the seasonally varying aerosol types and surface properties.

  1. Progress towards the use of publicly available data networks to conduct cross-scale historical reconstructions of carbon dynamics in US Drylands

    NASA Astrophysics Data System (ADS)

    Washington-Allen, R. A.; Landolt, K.; Emanuel, R. E.; Therrell, M. D.; Nagle, N.; Grissino-Mayer, H. D.; Poulter, B.

    2016-12-01

    Emergent scale properties of water-limited or Dryland ecosystem's carbon flux are unknown at spatial scales from local to global and time scales of 10 - 1000 years or greater. The width of a tree ring is a metric of production that has been correlated with the amount of precipitation. This relationship has been used to reconstruct rainfall and fire histories in the Drylands of the southwestern US. The normalized difference vegetation index (NDVI) is globally measured by selected satellite sensors and is highly correlated with the fraction of solar radiation which is absorbed for photosynthesis by plants (FPAR), as well as with vegetation biomass, net primary productivity (NPP), and tree ring width. Publicly available web-based archives of free NDVI and tree ring data exist and have allowed historical temporal reconstructions of carbon dynamics for the past 300 to 500 years. Climate and tree ring databases have been used to spatially reconstruct drought dynamics for the last 500 years in the western US. In 2007, we hypothesized that NDVI and tree ring width could be used to spatially reconstruct carbon dynamics in US Drylands. In 2015, we succeeded with a 300-year historical spatial reconstruction of NPP in California using a Blue Oak tree ring chronology. Online eddy covariance flux tower measures of NPP are well correlated with satellite measures of NPP. This suggests that net ecosystem exchange (NEE = NPP - soil Respiration) could be historically reconstructed across Drylands. Ongoing research includes 1) scaling historical spatial reconstruction to US Drylands, 2) comparing the use of single versus multiple tree ring species (r2 = 68) and 3) use of the eddy flux tower network, remote sensing, and tree ring data to historically spatially reconstruct Dryland NEE.

  2. Spatial and visuospatial working memory tests predict performance in classic multiple-object tracking in young adults, but nonspatial measures of the executive do not.

    PubMed

    Trick, Lana M; Mutreja, Rachna; Hunt, Kelly

    2012-02-01

    An individual-differences approach was used to investigate the roles of visuospatial working memory and the executive in multiple-object tracking. The Corsi Blocks and Visual Patterns Tests were used to assess visuospatial working memory. Two relatively nonspatial measures of the executive were used: operation span (OSPAN) and reading span (RSPAN). For purposes of comparison, the digit span test was also included (a measure not expected to correlate with tracking). The tests predicted substantial amounts of variance (R (2) = .33), and the visuospatial measures accounted for the majority (R (2) = .30), with each making a significant contribution. Although the executive measures correlated with each other, the RSPAN did not correlate with tracking. The correlation between OSPAN and tracking was similar in magnitude to that between digit span and tracking (p < .05 for both), and when regression was used to partial out shared variance between the two tests, the remaining variance predicted by the OSPAN was minimal (sr ( 2 ) = .029). When measures of spatial memory were included in the regression, the unique variance predicted by the OSPAN became negligible (sr ( 2 ) = .000004). This suggests that the executive, as measured by tests such as the OSPAN, plays little role in explaining individual differences in multiple-object tracking.

  3. What Do They Have in Common? Physical Drivers of Streamflow Spatial Correlation and Prediction of Flow Regimes at Ungauged Locations in the Contiguous United States

    NASA Astrophysics Data System (ADS)

    Betterle, A.; Schirmer, M.; Botter, G.

    2017-12-01

    Streamflow dynamics strongly influence anthropogenic activities and the ecological functions of riverine and riparian habitats. However, the widespread lack of direct discharge measurements often challenges the set-up of conscious and effective decision-making processes, including droughts and floods protection, water resources management and river restoration practices. By characterizing the spatial correlation of daily streamflow timeseries at two arbitrary locations, this study provides a method to evaluate how spatially variable catchment-scale hydrological process affects the resulting streamflow dynamics along and across river systems. In particular, streamflow spatial correlation is described analytically as a function of morphological, climatic and vegetation properties in the contributing catchments, building on a joint probabilistic description of flow dynamics at pairs of outlets. The approach enables an explicit linkage between similarities of flow dynamics and spatial patterns of hydrologically relevant features of climate and landscape. Therefore, the method is suited to explore spatial patterns of streamflow dynamics across geomorphoclimatic gradients. In particular, we show how the streamflow correlation can be used at the continental scale to individuate catchment pairs with similar hydrological dynamics, thereby providing a useful tool for the estimate of flow duration curves in poorly gauged areas.

  4. Coincidence detection of spatially correlated photon pairs with a monolithic time-resolving detector array.

    PubMed

    Unternährer, Manuel; Bessire, Bänz; Gasparini, Leonardo; Stoppa, David; Stefanov, André

    2016-12-12

    We demonstrate coincidence measurements of spatially entangled photons by means of a multi-pixel based detection array. The sensor, originally developed for positron emission tomography applications, is a fully digital 8×16 silicon photomultiplier array allowing not only photon counting but also per-pixel time stamping of the arrived photons with an effective resolution of 265 ps. Together with a frame rate of 500 kfps, this property exceeds the capabilities of conventional charge-coupled device cameras which have become of growing interest for the detection of transversely correlated photon pairs. The sensor is used to measure a second-order correlation function for various non-collinear configurations of entangled photons generated by spontaneous parametric down-conversion. The experimental results are compared to theory.

  5. Laboratory demonstration of Stellar Intensity Interferometry using a software correlator

    NASA Astrophysics Data System (ADS)

    Matthews, Nolan; Kieda, David

    2017-06-01

    In this talk I will present measurements of the spatial coherence function of laboratory thermal (black-body) sources using Hanbury-Brown and Twiss interferometry with a digital off-line correlator. Correlations in the intensity fluctuations of a thermal source, such as a star, allow retrieval of the second order coherence function which can be used to perform high resolution imaging and source geometry characterization. We also demonstrate that intensity fluctuations between orthogonal polarization states are uncorrelated but can be used to reduce systematic noise. The work performed here can readily be applied to existing and future Imaging Air-Cherenkov telescopes to measure spatial properties of stellar sources. Some possible candidates for astronomy applications include close binary star systems, fast rotators, Cepheid variables, and potentially even exoplanet characterization.

  6. a Data Field Method for Urban Remotely Sensed Imagery Classification Considering Spatial Correlation

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Qin, K.; Zeng, C.; Zhang, E. B.; Yue, M. X.; Tong, X.

    2016-06-01

    Spatial correlation between pixels is important information for remotely sensed imagery classification. Data field method and spatial autocorrelation statistics have been utilized to describe and model spatial information of local pixels. The original data field method can represent the spatial interactions of neighbourhood pixels effectively. However, its focus on measuring the grey level change between the central pixel and the neighbourhood pixels results in exaggerating the contribution of the central pixel to the whole local window. Besides, Geary's C has also been proven to well characterise and qualify the spatial correlation between each pixel and its neighbourhood pixels. But the extracted object is badly delineated with the distracting salt-and-pepper effect of isolated misclassified pixels. To correct this defect, we introduce the data field method for filtering and noise limitation. Moreover, the original data field method is enhanced by considering each pixel in the window as the central pixel to compute statistical characteristics between it and its neighbourhood pixels. The last step employs a support vector machine (SVM) for the classification of multi-features (e.g. the spectral feature and spatial correlation feature). In order to validate the effectiveness of the developed method, experiments are conducted on different remotely sensed images containing multiple complex object classes inside. The results show that the developed method outperforms the traditional method in terms of classification accuracies.

  7. An Evaluation of Population Density Mapping and Built up Area Estimates in Sri Lanka Using Multiple Methodologies

    NASA Astrophysics Data System (ADS)

    Engstrom, R.; Soundararajan, V.; Newhouse, D.

    2017-12-01

    In this study we examine how well multiple population density and built up estimates that utilize satellite data compare in Sri Lanka. The population relationship is examined at the Gram Niladhari (GN) level, the lowest administrative unit in Sri Lanka from the 2011 census. For this study we have two spatial domains, the whole country and a 3,500km2 sub-sample, for which we have complete high spatial resolution imagery coverage. For both the entire country and the sub-sample we examine how consistent are the existing publicly available measures of population constructed from satellite imagery at predicting population density? For just the sub-sample we examine how well do a suite of values derived from high spatial resolution satellite imagery predict population density and how does our built up area estimate compare to other publicly available estimates. Population measures were obtained from the Sri Lankan census, and were downloaded from Facebook, WorldPoP, GPW, and Landscan. Percentage built-up area at the GN level was calculated from three sources: Facebook, Global Urban Footprint (GUF), and the Global Human Settlement Layer (GHSL). For the sub-sample we have derived a variety of indicators from the high spatial resolution imagery. Using deep learning convolutional neural networks, an object oriented, and a non-overlapping block, spatial feature approach. Variables calculated include: cars, shadows (a proxy for building height), built up area, and buildings, roof types, roads, type of agriculture, NDVI, Pantex, and Histogram of Oriented Gradients (HOG) and others. Results indicate that population estimates are accurate at the higher, DS Division level but not necessarily at the GN level. Estimates from Facebook correlated well with census population (GN correlation of 0.91) but measures from GPW and WorldPop are more weakly correlated (0.64 and 0.34). Estimates of built-up area appear to be reliable. In the 32 DSD-subsample, Facebook's built- up area measure is highly correlated with our built-up measure (correlation of 0.9). Preliminary regression results based on variables selected from Lasso-regressions indicate that satellite indicators have exceptionally strong predictive power in predicting GN level population level and density with an out of sample r-squared of 0.75 and 0.72 respectively.

  8. Violation of a Bell-like inequality in single-neutron interferometry.

    PubMed

    Hasegawa, Yuji; Loidl, Rudolf; Badurek, Gerald; Baron, Matthias; Rauch, Helmut

    2003-09-04

    Non-local correlations between spatially separated systems have been extensively discussed in the context of the Einstein, Podolsky and Rosen (EPR) paradox and Bell's inequalities. Many proposals and experiments designed to test hidden variable theories and the violation of Bell's inequalities have been reported; usually, these involve correlated photons, although recently an experiment was performed with (9)Be(+) ions. Nevertheless, it is of considerable interest to show that such correlations (arising from quantum mechanical entanglement) are not simply a peculiarity of photons. Here we measure correlations between two degrees of freedom (comprising spatial and spin components) of single neutrons; this removes the need for a source of entangled neutron pairs, which would present a considerable technical challenge. A Bell-like inequality is introduced to clarify the correlations that can arise between observables of otherwise independent degrees of freedom. We demonstrate the violation of this Bell-like inequality: our measured value is 2.051 +/- 0.019, clearly above the value of 2 predicted by classical hidden variable theories.

  9. Carrier-phase multipath corrections for GPS-based satellite attitude determination

    NASA Technical Reports Server (NTRS)

    Axelrad, A.; Reichert, P.

    2001-01-01

    This paper demonstrates the high degree of spatial repeatability of these errors for a spacecraft environment and describes a correction technique, termed the sky map method, which exploits the spatial correlation to correct measurements and improve the accuracy of GPS-based attitude solutions.

  10. Spatial and temporal variations in mango colour, acidity, and sweetness in relation to temperature and ethylene gradients within the fruit.

    PubMed

    Nordey, Thibault; Léchaudel, Mathieu; Génard, Michel; Joas, Jacques

    2014-11-01

    Managing fruit quality is complex because many different attributes have to be taken into account, which are themselves subjected to spatial and temporal variations. Heterogeneous fruit quality has been assumed to be partly related to temperature and maturity gradients within the fruit. To test this assumption, we measured the spatial variability of certain mango fruit quality traits: colour of the peel and of the flesh, and sourness and sweetness, at different stages of fruit maturity using destructive methods as well as vis-NIR reflectance. The spatial variability of mango quality traits was compared to internal variations in thermal time, simulated by a physical model, and to internal variations in maturity, using ethylene content as an indicator. All the fruit quality indicators analysed showed significant spatial and temporal variations, regardless of the measurement method used. The heterogeneity of internal fruit quality traits was not correlated with the marked internal temperature gradient we modelled. However, variations in ethylene content revealed a strong internal maturity gradient which was correlated with the spatial variations in measured mango quality traits. Nonetheless, alone, the internal maturity gradient did not explain the variability of fruit quality traits, suggesting that other factors, such as gas, abscisic acid and water gradients, are also involved. Copyright © 2014 Elsevier GmbH. All rights reserved.

  11. Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS.

    PubMed

    Lanzanò, Luca; Scipioni, Lorenzo; Di Bona, Melody; Bianchini, Paolo; Bizzarri, Ranieri; Cardarelli, Francesco; Diaspro, Alberto; Vicidomini, Giuseppe

    2017-07-06

    The observation of molecular diffusion at different spatial scales, and in particular below the optical diffraction limit (<200 nm), can reveal details of the subcellular topology and its functional organization. Stimulated-emission depletion microscopy (STED) has been previously combined with fluorescence correlation spectroscopy (FCS) to investigate nanoscale diffusion (STED-FCS). However, stimulated-emission depletion fluorescence correlation spectroscopy has only been used successfully to reveal functional organization in two-dimensional space, such as the plasma membrane, while, an efficient implementation for measurements in three-dimensional space, such as the cellular interior, is still lacking. Here we integrate the STED-FCS method with two analytical approaches, the recent separation of photons by lifetime tuning and the fluorescence lifetime correlation spectroscopy, to simultaneously probe diffusion in three dimensions at different sub-diffraction scales. We demonstrate that this method efficiently provides measurement of the diffusion of EGFP at spatial scales tunable from the diffraction size down to ∼80 nm in the cytoplasm of living cells.The measurement of molecular diffusion at sub-diffraction scales has been achieved in 2D space using STED-FCS, but an implementation for 3D diffusion is lacking. Here the authors present an analytical approach to probe diffusion in 3D space using STED-FCS and measure the diffusion of EGFP at different spatial scales.

  12. 1/f noise: diffusive systems and music

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voss, R.F.

    1975-11-01

    Measurements of the 1/f voltage noise in continuous metal films are reported. At room temperature, samples of pure metals and bismuth (with a carrier density smaller by 10/sup 5/) of similar volume had comparable noise. The results suggest that the noise arises from equilibrium temperature fluctuations modulating the resistance. Spatial correlation of the noise implied that the fluctuations obey a diffusion equation. The empirical inclusion of an explicit 1/f region and appropriate normalization lead to excellent agreement with the measured noise. If the fluctuations are assumed to be spatially correlated, the diffusion equation can yield an extended 1/f region inmore » the power spectrum. The temperature response of a sample to delta and step function power inputs is shown to have the same shape as the autocorrelation function for uncorrelated and correlated temperature fluctuations, respectively. The spectrum obtained from the cosine transform of the measured step function response is in excellent agreement with the measured 1/f voltage noise spectrum. Spatially correlated equilibrium temperature fluctuations are not the dominant source of 1/f noise in semiconductors and metal films. However, the agreement between the low-frequency spectrum of fluctuations in the mean-square Johnson noise voltage and the resistance fluctuation spectrum measured in the presence of a current demonstrates that in these systems the 1/f noise is also due to equilibrium resistance fluctuations. Loudness fluctuations in music and speech and pitch fluctuations in music also show the 1/f behavior. 1/f noise sources, consequently, are demonstrated to be the natural choice for stochastic composition. 26 figures, 1 table. (auth)« less

  13. Development of a digital astronomical intensity interferometer: laboratory results with thermal light

    NASA Astrophysics Data System (ADS)

    Matthews, Nolan; Kieda, David; LeBohec, Stephan

    2018-06-01

    We present measurements of the second-order spatial coherence function of thermal light sources using Hanbury-Brown and Twiss interferometry with a digital correlator. We demonstrate that intensity fluctuations between orthogonal polarizations, or at detector separations greater than the spatial coherence length of the source, are uncorrelated but can be used to reduce systematic noise. The work performed here can readily be applied to existing and future Imaging Air-Cherenkov Telescopes used as star light collectors for stellar intensity interferometry to measure spatial properties of astronomical objects.

  14. Visual-spatial ability is more important than motivation for novices in surgical simulator training: a preliminary study.

    PubMed

    Schlickum, Marcus; Hedman, Leif; Felländer-Tsai, Li

    2016-02-21

    To investigate whether surgical simulation performance and previous video gaming experience would correlate with higher motivation to further train a specific simulator task and whether visual-spatial ability would rank higher in importance to surgical performance than the above. It was also examined whether or not motivation would correlate with a preference to choose a surgical specialty in the future and if simulator training would increase the interest in choosing that same work field. Motivation and general interest in surgery was measured pre- and post-training in 30 medical students at Karolinska Institutet who were tested in a laparoscopic surgical simulator in parallel with measurement of visual-spatial ability and self-estimated video gaming experience. Correlations between simulator performance metrics, visual-spatial ability and motivation were statistically analyzed using regression analysis. A good result in the first simulator trial correlated with higher self-determination index (r =-0.46, p=0.05) in male students. Visual-spatial ability was the most important underlying factor followed by intrinsic motivation score and finally video gaming experience (p=0.02, p=0.05, p=0.11) regarding simulator performance in male students. Simulator training increased interest in surgery when studying all subjects (p=0.01), male subjects (p=0.02) as well as subjects with low video gaming experience (p=0.02). This preliminary study highlights individual differences regarding the effect of simulator training on motivation that can be taken into account when designing simulator training curricula, although the sample size is quite small and findings should be interpreted carefully.

  15. Spatial Correlation Of Streamflows: An Analytical Approach

    NASA Astrophysics Data System (ADS)

    Betterle, A.; Schirmer, M.; Botter, G.

    2016-12-01

    The interwoven space and time variability of climate and landscape properties results in complex and non-linear hydrological response of streamflow dynamics. Understanding how meteorologic and morphological characteristics of catchments affect similarity/dissimilarity of streamflow timeseries at their outlets represents a scientific challenge with application in water resources management, ecological studies and regionalization approaches aimed to predict streamflows in ungauged areas. In this study, we establish an analytical approach to estimate the spatial correlation of daily streamflows in two arbitrary locations within a given hydrologic district or river basin at seasonal and annual time scales. The method is based on a stochastic description of the coupled streamflow dynamics at the outlet of two catchments. The framework aims to express the correlation of daily streamflows at two locations along a river network as a function of a limited number of physical parameters characterizing the main underlying hydrological drivers, that include climate conditions, precipitation regime and catchment drainage rates. The proposed method portrays how heterogeneity of climate and landscape features affect the spatial variability of flow regimes along river systems. In particular, we show that frequency and intensity of synchronous effective rainfall events in the relevant contributing catchments are the main driver of the spatial correlation of daily discharge, whereas only pronounced differences in the drainage rate of the two basins bear a significant effect on the streamflow correlation. The topological arrangement of the two outlets also influences the underlying streamflow correlation, as we show that nested catchments tend to maximize the spatial correlation of flow regimes. The application of the method to a set of catchments in the South-Eastern US suggests the potential of the proposed tool for the characterization of spatial connections of flow regimes in the absence of discharge measurements.

  16. Retrieving accurate temporal and spatial information about Taylor slug flows from non-invasive NIR photometry measurements

    NASA Astrophysics Data System (ADS)

    Helmers, Thorben; Thöming, Jorg; Mießner, Ulrich

    2017-11-01

    In this article, we introduce a novel approach to retrieve spatial- and time-resolved Taylor slug flow information from a single non-invasive photometric flow sensor. The presented approach uses disperse phase surface properties to retrieve the instantaneous velocity information from a single sensor's time-scaled signal. For this purpose, a photometric sensor system is simulated using a ray-tracing algorithm to calculate spatially resolved near-infrared transmission signals. At the signal position corresponding to the rear droplet cap, a correlation factor of the droplet's geometric properties is retrieved and used to extract the instantaneous droplet velocity from the real sensor's temporal transmission signal. Furthermore, a correlation for the rear cap geometry based on the a priori known total superficial flow velocity is developed, because the cap curvature is velocity sensitive itself. Our model for velocity derivation is validated, and measurements of a first prototype showcase the capability of the device. Long-term measurements visualize systematic fluctuations in droplet lengths, velocities, and frequencies that could otherwise, without the observation on a larger timescale, have been identified as measurement errors and not systematic phenomenas.

  17. Automated measurement and classification of pulmonary blood-flow velocity patterns using phase-contrast MRI and correlation analysis.

    PubMed

    van Amerom, Joshua F P; Kellenberger, Christian J; Yoo, Shi-Joon; Macgowan, Christopher K

    2009-01-01

    An automated method was evaluated to detect blood flow in small pulmonary arteries and classify each as artery or vein, based on a temporal correlation analysis of their blood-flow velocity patterns. The method was evaluated using velocity-sensitive phase-contrast magnetic resonance data collected in vitro with a pulsatile flow phantom and in vivo in 11 human volunteers. The accuracy of the method was validated in vitro, which showed relative velocity errors of 12% at low spatial resolution (four voxels per diameter), but was reduced to 5% at increased spatial resolution (16 voxels per diameter). The performance of the method was evaluated in vivo according to its reproducibility and agreement with manual velocity measurements by an experienced radiologist. In all volunteers, the correlation analysis was able to detect and segment peripheral pulmonary vessels and distinguish arterial from venous velocity patterns. The intrasubject variability of repeated measurements was approximately 10% of peak velocity, or 2.8 cm/s root-mean-variance, demonstrating the high reproducibility of the method. Excellent agreement was obtained between the correlation analysis and radiologist measurements of pulmonary velocities, with a correlation of R2=0.98 (P<.001) and a slope of 0.99+/-0.01.

  18. Spatial analysis of MODIS aerosol optical depth, PM2.5, and chronic coronary heart disease.

    PubMed

    Hu, Zhiyong

    2009-05-12

    Numerous studies have found adverse health effects of acute and chronic exposure to fine particulate matter (PM2.5). Air pollution epidemiological studies relying on ground measurements provided by monitoring networks are often limited by sparse and unbalanced spatial distribution of the monitors. Studies have found correlations between satellite aerosol optical depth (AOD) and PM2.5 in some land regions. Satellite aerosol data may be used to extend the spatial coverage of PM2.5 exposure assessment. This study was to investigate correlation between PM2.5 and AOD in the conterminous USA, to derive a spatially complete PM2.5 surface by merging satellite AOD data and ground measurements based on the potential correlation, and to examine if there is an association of coronary heart disease with PM2.5. Years 2003 and 2004 daily MODIS (Moderate Resolution Imaging Spectrometer) Level 2 AOD images were collated with US EPA PM2.5 data covering the conterminous USA. Pearson's correlation analysis and geographically weighted regression (GWR) found that the relationship between PM2.5 and AOD is not spatially consistent across the conterminous states. The average correlation is 0.67 in the east and 0.22 in the west. GWR predicts well in the east and poorly in the west. The GWR model was used to derive a PM2.5 grid surface using the mean AOD raster calculated using the daily AOD data (RMSE = 1.67 microg/m3). Fitting of a Bayesian hierarchical model linking PM2.5 with age-race standardized mortality rates (SMRs) of chronic coronary heart disease found that areas with higher values of PM2.5 also show high rates of CCHD mortality: = 0.802, posterior 95% Bayesian credible interval (CI) = (0.386, 1.225). There is a spatial variation of the relationship between PM2.5 and AOD in the conterminous USA. In the eastern USA where AOD correlates well with PM2.5, AOD can be merged with ground PM2.5 data to derive a PM2.5 surface for epidemiological study. The study found that chronic coronary heart disease mortality rate increases with exposure to PM2.5.

  19. Comparisons of traffic-related ultrafine particle number concentrations measured in two urban areas by central, residential, and mobile monitoring

    NASA Astrophysics Data System (ADS)

    Simon, Matthew C.; Hudda, Neelakshi; Naumova, Elena N.; Levy, Jonathan I.; Brugge, Doug; Durant, John L.

    2017-11-01

    Traffic-related ultrafine particles (UFP; <100 nm diameter) are ubiquitous in urban air. While studies have shown that UFP are toxic, epidemiological evidence of health effects, which is needed to inform risk assessment at the population scale, is limited due to challenges of accurately estimating UFP exposures. Epidemiologic studies often use empirical models to estimate UFP exposures; however, the monitoring strategies upon which the models are based have varied between studies. Our study compares particle number concentrations (PNC; a proxy for UFP) measured by three different monitoring approaches (central-site, short-term residential-site, and mobile on-road monitoring) in two study areas in metropolitan Boston (MA, USA). Our objectives were to quantify ambient PNC differences between the three monitoring platforms, compare the temporal patterns and the spatial heterogeneity of PNC between the monitoring platforms, and identify factors that affect correlations across the platforms. We collected >12,000 h of measurements at the central sites, 1000 h of measurements at each of 20 residential sites in the two study areas, and >120 h of mobile measurements over the course of ∼1 year in each study area. Our results show differences between the monitoring strategies: mean 1 min PNC on-roads were higher (64,000 and 32,000 particles/cm3 in Boston and Chelsea, respectively) compared to central-site measurements (23,000 and 19,000 particles/cm3) and both were higher than at residences (14,000 and 15,000 particles/cm3). Temporal correlations and spatial heterogeneity also differed between the platforms. Temporal correlations were generally highest between central and residential sites, and lowest between central-site and on-road measurements. We observed the greatest spatial heterogeneity across monitoring platforms during the morning rush hours (06:00-09:00) and the lowest during the overnight hours (18:00-06:00). Longer averaging times (days and hours vs. minutes) increased temporal correlations (Pearson correlations were 0.69 and 0.60 vs. 0.39 in Boston; 0.71 and 0.61 vs. 0.45 in Chelsea) and reduced spatial heterogeneity (coefficients of divergence were 0.24 and 0.29 vs. 0.33 in Boston; 0.20 and 0.27 vs. 0.31 in Chelsea). Our results suggest that combining stationary and mobile monitoring may lead to improved characterization of UFP in urban areas.

  20. Measuring high-density built environment for public health research: Uncertainty with respect to data, indicator design and spatial scale.

    PubMed

    Sun, Guibo; Webster, Chris; Ni, Michael Y; Zhang, Xiaohu

    2018-05-07

    Uncertainty with respect to built environment (BE) data collection, measure conceptualization and spatial scales is evident in urban health research, but most findings are from relatively lowdensity contexts. We selected Hong Kong, an iconic high-density city, as the study area as limited research has been conducted on uncertainty in such areas. We used geocoded home addresses (n=5732) from a large population-based cohort in Hong Kong to extract BE measures for the participants' place of residence based on an internationally recognized BE framework. Variability of the measures was mapped and Spearman's rank correlation calculated to assess how well the relationships among indicators are preserved across variables and spatial scales. We found extreme variations and uncertainties for the 180 measures collected using comprehensive data and advanced geographic information systems modelling techniques. We highlight the implications of methodological selection and spatial scales of the measures. The results suggest that more robust information regarding urban health research in high-density city would emerge if greater consideration were given to BE data, design methods and spatial scales of the BE measures.

  1. Marine Stratocumulus Cloud Fields off the Coast of Southern California Observed Using LANDSAT Imagery. Part II: Textural Analysis.

    NASA Astrophysics Data System (ADS)

    Welch, R. M.; Sengupta, S. K.; Kuo, K. S.

    1988-04-01

    Statistical measures of the spatial distributions of gray levels (cloud reflectivities) are determined for LANDSAT Multispectral Scanner digital data. Textural properties for twelve stratocumulus cloud fields, seven cumulus fields, and two cirrus fields are examined using the Spatial Gray Level Co-Occurrence Matrix method. The co-occurrence statistics are computed for pixel separations ranging from 57 m to 29 km and at angles of 0°, 45°, 90° and 135°. Nine different textual measures are used to define the cloud field spatial relationships. However, the measures of contrast and correlation appear to be most useful in distinguishing cloud structure.Cloud field macrotexture describes general cloud field characteristics at distances greater than the size of typical cloud elements. It is determined from the spatial asymptotic values of the texture measures. The slope of the texture curves at small distances provides a measure of the microtexture of individual cloud cells. Cloud fields composed primarily of small cells have very steep slopes and reach their asymptotic values at short distances from the origin. As the cells composing the cloud field grow larger, the slope becomes more gradual and the asymptotic distance increases accordingly. Low asymptotic values of correlation show that stratocumulus cloud fields have no large scale organized structure.Besides the ability to distinguish cloud field structure, texture appears to be a potentially valuable tool in cloud classification. Stratocumulus clouds are characterized by low values of angular second moment and large values of entropy. Cirrus clouds appear to have extremely low values of contrast, low values of entropy, and very large values of correlation.Finally, we propose that sampled high spatial resolution satellite data be used in conjunction with coarser resolution operational satellite data to detect and identify cloud field structure and directionality and to locate regions of subresolution scale cloud contamination.

  2. Measuring and imaging diffusion with multiple scan speed image correlation spectroscopy.

    PubMed

    Gröner, Nadine; Capoulade, Jérémie; Cremer, Christoph; Wachsmuth, Malte

    2010-09-27

    The intracellular mobility of biomolecules is determined by transport and diffusion as well as molecular interactions and is crucial for many processes in living cells. Methods of fluorescence microscopy like confocal laser scanning microscopy (CLSM) can be used to characterize the intracellular distribution of fluorescently labeled biomolecules. Fluorescence correlation spectroscopy (FCS) is used to describe diffusion, transport and photo-physical processes quantitatively. As an alternative to FCS, spatially resolved measurements of mobilities can be implemented using a CLSM by utilizing the spatio-temporal information inscribed into the image by the scan process, referred to as raster image correlation spectroscopy (RICS). Here we present and discuss an extended approach, multiple scan speed image correlation spectroscopy (msICS), which benefits from the advantages of RICS, i.e. the use of widely available instrumentation and the extraction of spatially resolved mobility information, without the need of a priori knowledge of diffusion properties. In addition, msICS covers a broad dynamic range, generates correlation data comparable to FCS measurements, and allows to derive two-dimensional maps of diffusion coefficients. We show the applicability of msICS to fluorophores in solution and to free EGFP in living cells.

  3. Spatial Correlation of Solar-Wind Turbulence from Two-Point Measurements

    NASA Technical Reports Server (NTRS)

    Matthaeus, W. H.; Milano, L. J.; Dasso, S.; Weygand, J. M.; Smith, C. W.; Kivelson, M. G.

    2005-01-01

    Interplanetary turbulence, the best studied case of low frequency plasma turbulence, is the only directly quantified instance of astrophysical turbulence. Here, magnetic field correlation analysis, using for the first time only proper two-point, single time measurements, provides a key step in unraveling the space-time structure of interplanetary turbulence. Simultaneous magnetic field data from the Wind, ACE, and Cluster spacecraft are analyzed to determine the correlation (outer) scale, and the Taylor microscale near Earth's orbit.

  4. Spatial resolution and measurement uncertainty of strains in bone and bone-cement interface using digital volume correlation.

    PubMed

    Zhu, Ming-Liang; Zhang, Qing-Hang; Lupton, Colin; Tong, Jie

    2016-04-01

    The measurement uncertainty of strains has been assessed in a bone analogue (sawbone), bovine trabecular bone and bone-cement interface specimens under zero load using the Digital Volume Correlation (DVC) method. The effects of sub-volume size, sample constraint and preload on the measured strain uncertainty have been examined. There is generally a trade-off between the measurement uncertainty and the spatial resolution. Suitable sub-volume sizes have been be selected based on a compromise between the measurement uncertainty and the spatial resolution of the cases considered. A ratio of sub-volume size to a microstructure characteristic (Tb.Sp) was introduced to reflect a suitable spatial resolution, and the measurement uncertainty associated was assessed. Specifically, ratios between 1.6 and 4 appear to give rise to standard deviations in the measured strains between 166 and 620 με in all the cases considered, which would seem to suffice for strain analysis in pre as well as post yield loading regimes. A microscale finite element (μFE) model was built from the CT images of the sawbone, and the results from the μFE model and a continuum FE model were compared with those from the DVC. The strain results were found to differ significantly between the two methods at tissue level, consistent in trend with the results found in human bones, indicating mainly a limitation of the current DVC method in mapping strains at this level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Parent ratings of working memory are uniquely related to performance-based measures of secondary memory but not primary memory.

    PubMed

    Ralph, Kathryn J; Gibson, Bradley S; Gondoli, Dawn M

    2018-03-06

    Existing evidence suggests that performance- and rating-based measures of working memory (WM) correlate poorly. Although some researchers have interpreted this evidence as suggesting that these measures may be assessing distinct cognitive constructs, another possibility is that rating-based measures are related to some but not all theoretically motivated performance-based measures. The current study distinguished between performance-based measures of primary memory (PM) and secondary memory (SM), and examined the relation between each of these components of WM and parent-ratings on the WM subscale of the Behavior Rating Inventory of Executive Function (BRIEF-WM). Because SM and BRIEF-WM scores have both been associated with group differences in attention-deficit/hyperactivity disorder (ADHD), it was hypothesized that SM scores would be uniquely related to parent-rated BRIEF-WM scores. Participants were a sample of 77 adolescents with and without an ADHD diagnosis, aged 11 to 15 years, from a midwestern school district. Participant scores on verbal and spatial immediate free recall tasks were used to estimate both PM and SM capacities. Partial correlation analyses were used to evaluate the extent to which estimates of PM and SM were uniquely related parent-rated BRIEF-WM scores. Both verbal and spatial SM scores were significantly related to parent-rated BRIEF-WM scores, when corresponding PM scores were controlled. Higher verbal and spatial SM scores were associated with less frequent parent-report of WM-related failures in their child's everyday life. However, neither verbal nor spatial PM scores significantly related to parent-rated BRIEF-WM scores, when corresponding SM scores were controlled. The current study suggested that previously observed low correlations between performance- and rating-based measures of WM may result from use of performance-based WM measures that do not capture the unique contributions of PM and SM components of WM.

  6. An evaluation of potential sampling locations in a reservoir with emphasis on conserved spatial correlation structure.

    PubMed

    Yenilmez, Firdes; Düzgün, Sebnem; Aksoy, Aysegül

    2015-01-01

    In this study, kernel density estimation (KDE) was coupled with ordinary two-dimensional kriging (OK) to reduce the number of sampling locations in measurement and kriging of dissolved oxygen (DO) concentrations in Porsuk Dam Reservoir (PDR). Conservation of the spatial correlation structure in the DO distribution was a target. KDE was used as a tool to aid in identification of the sampling locations that would be removed from the sampling network in order to decrease the total number of samples. Accordingly, several networks were generated in which sampling locations were reduced from 65 to 10 in increments of 4 or 5 points at a time based on kernel density maps. DO variograms were constructed, and DO values in PDR were kriged. Performance of the networks in DO estimations were evaluated through various error metrics, standard error maps (SEM), and whether the spatial correlation structure was conserved or not. Results indicated that smaller number of sampling points resulted in loss of information in regard to spatial correlation structure in DO. The minimum representative sampling points for PDR was 35. Efficacy of the sampling location selection method was tested against the networks generated by experts. It was shown that the evaluation approach proposed in this study provided a better sampling network design in which the spatial correlation structure of DO was sustained for kriging.

  7. Mode analysis of higher-order transverse-mode correlation beams in a turbulent atmosphere.

    PubMed

    Avetisyan, H; Monken, C H

    2017-01-01

    Due to the transfer of the angular spectrum of the pump beam to the two-photon state in spontaneous parametric downconversion, the generated twin photons are entangled in their spatial degrees of freedom. This spatial entanglement can be observed through correlation measurements in any set of modes in which one may choose to perform measurements. Choosing, e.g., a Hermite-Gaussian (HG) set of spatial modes as a basis, one can observe correlations present in their spatial degrees of freedom. In addition, these modes can be used as alphabets for quantum communication. For global quantum communication purposes, we derive an analytic expression for two-photon detection probability in terms of HG modes, taking into account the effects of the turbulent atmosphere. Our result is more general as it accounts for the propagation of both signal and idler photons through the atmosphere, as opposed to other works considering one photon's propagation in vacuum. We show that while the restrictions on both the parity and order of the downconverted HG fields no longer hold, due to the crosstalk between modes when propagating in the atmosphere, the crosstalk is not uniform: there are more robust modes that tend to keep the photons in them. These modes can be employed in order to increase the fidelity of quantum communication.

  8. Task relevance modulates the behavioural and neural effects of sensory predictions

    PubMed Central

    Friston, Karl J.; Nobre, Anna C.

    2017-01-01

    The brain is thought to generate internal predictions to optimize behaviour. However, it is unclear whether predictions signalling is an automatic brain function or depends on task demands. Here, we manipulated the spatial/temporal predictability of visual targets, and the relevance of spatial/temporal information provided by auditory cues. We used magnetoencephalography (MEG) to measure participants’ brain activity during task performance. Task relevance modulated the influence of predictions on behaviour: spatial/temporal predictability improved spatial/temporal discrimination accuracy, but not vice versa. To explain these effects, we used behavioural responses to estimate subjective predictions under an ideal-observer model. Model-based time-series of predictions and prediction errors (PEs) were associated with dissociable neural responses: predictions correlated with cue-induced beta-band activity in auditory regions and alpha-band activity in visual regions, while stimulus-bound PEs correlated with gamma-band activity in posterior regions. Crucially, task relevance modulated these spectral correlates, suggesting that current goals influence PE and prediction signalling. PMID:29206225

  9. Electromagnetic Compatibility Testing Studies

    NASA Technical Reports Server (NTRS)

    Trost, Thomas F.; Mitra, Atindra K.

    1996-01-01

    This report discusses the results on analytical models and measurement and simulation of statistical properties from a study of microwave reverberation (mode-stirred) chambers performed at Texas Tech University. Two analytical models of power transfer vs. frequency in a chamber, one for antenna-to-antenna transfer and the other for antenna to D-dot sensor, were experimentally validated in our chamber. Two examples are presented of the measurement and calculation of chamber Q, one for each of the models. Measurements of EM power density validate a theoretical probability distribution on and away from the chamber walls and also yield a distribution with larger standard deviation at frequencies below the range of validity of the theory. Measurements of EM power density at pairs of points which validate a theoretical spatial correlation function on the chamber walls and also yield a correlation function with larger correlation length, R(sub corr), at frequencies below the range of validity of the theory. A numerical simulation, employing a rectangular cavity with a moving wall shows agreement with the measurements. The determination that the lowest frequency at which the theoretical spatial correlation function is valid in our chamber is considerably higher than the lowest frequency recommended by current guidelines for utilizing reverberation chambers in EMC testing. Two suggestions have been made for future studies related to EMC testing.

  10. Spatial correlation of shear-wave velocity within San Francisco Bay Sediments

    USGS Publications Warehouse

    Thompson, E.M.; Baise, L.G.; Kayen, R.E.

    2006-01-01

    Sediment properties are spatially variable at all scales, and this variability at smaller scales influences high frequency ground motions. We show that surface shear-wave velocity is highly correlated within San Francisco Bay Area sediments using shear-wave velocity measurements from 210 seismic cone penetration tests. We use this correlation to estimate the surface sediment velocity structure using geostatistics. We find that the variance of the estimated shear-wave velocity is reduced using ordinary kriging, and that including this velocity structure in 2D ground motion simulations of a moderate sized earthquake improves the accuracy of the synthetics. Copyright ASCE 2006.

  11. The limits of local correlation theory: electronic delocalization and chemically smooth potential energy surfaces.

    PubMed

    Subotnik, Joseph E; Sodt, Alex; Head-Gordon, Martin

    2008-01-21

    Local coupled-cluster theory provides an algorithm for measuring electronic correlation quickly, using only the spatial locality of localized electronic orbitals. Previously, we showed [J. Subotnik et al., J. Chem. Phys. 125, 074116 (2006)] that one may construct a local coupled-cluster singles-doubles theory which (i) yields smooth potential energy surfaces and (ii) achieves near linear scaling. That theory selected which orbitals to correlate based only on the distances between the centers of different, localized orbitals, and the approximate potential energy surfaces were characterized as smooth using only visual identification. This paper now extends our previous algorithm in three important ways. First, locality is now based on both the distances between the centers of orbitals as well as the spatial extent of the orbitals. We find that, by accounting for the spatial extent of a delocalized orbital, one can account for electronic correlation in systems with some electronic delocalization using fast correlation methods designed around orbital locality. Second, we now enforce locality on not just the amplitudes (which measure the exact electron-electron correlation), but also on the two-electron integrals themselves (which measure the bare electron-electron interaction). Our conclusion is that we can bump integrals as well as amplitudes, thereby gaining a tremendous increase in speed and paradoxically increasing the accuracy of our LCCSD approach. Third and finally, we now make a rigorous definition of chemical smoothness as requiring that potential energy surfaces not support artificial maxima, minima, or inflection points. By looking at first and second derivatives from finite difference techniques, we demonstrate complete chemical smoothness of our potential energy surfaces (bumping both amplitudes and integrals). These results are significant both from a theoretical and from a computationally practical point of view.

  12. Nonclassicality of Temporal Correlations.

    PubMed

    Brierley, Stephen; Kosowski, Adrian; Markiewicz, Marcin; Paterek, Tomasz; Przysiężna, Anna

    2015-09-18

    The results of spacelike separated measurements are independent of distant measurement settings, a property one might call two-way no-signaling. In contrast, timelike separated measurements are only one-way no-signaling since the past is independent of the future but not vice versa. For this reason some temporal correlations that are formally identical to nonclassical spatial correlations can still be modeled classically. We propose a new formulation of Bell's theorem for temporal correlations; namely, we define nonclassical temporal correlations as the ones which cannot be simulated by propagating in time the classical information content of a quantum system given by the Holevo bound. We first show that temporal correlations between results of any projective quantum measurements on a qubit can be simulated classically. Then we present a sequence of general measurements on a single m-level quantum system that cannot be explained by propagating in time an m-level classical system and using classical computers with unlimited memory.

  13. Coherent manipulation of spin correlations in the Hubbard model

    NASA Astrophysics Data System (ADS)

    Wurz, N.; Chan, C. F.; Gall, M.; Drewes, J. H.; Cocchi, E.; Miller, L. A.; Pertot, D.; Brennecke, F.; Köhl, M.

    2018-05-01

    We coherently manipulate spin correlations in a two-component atomic Fermi gas loaded into an optical lattice using spatially and time-resolved Ramsey spectroscopy combined with high-resolution in situ imaging. This technique allows us not only to imprint spin patterns but also to probe the static magnetic structure factor at an arbitrary wave vector, in particular, the staggered structure factor. From a measurement along the diagonal of the first Brillouin zone of the optical lattice, we determine the magnetic correlation length and the individual spatial spin correlators. At half filling, the staggered magnetic structure factor serves as a sensitive thermometer, which we employ to study the equilibration in the spin and density sector during a slow quench of the lattice depth.

  14. Image scale measurement with correlation filters in a volume holographic optical correlator

    NASA Astrophysics Data System (ADS)

    Zheng, Tianxiang; Cao, Liangcai; He, Qingsheng; Jin, Guofan

    2013-08-01

    A search engine containing various target images or different part of a large scene area is of great use for many applications, including object detection, biometric recognition, and image registration. The input image captured in realtime is compared with all the template images in the search engine. A volume holographic correlator is one type of these search engines. It performs thousands of comparisons among the images at a super high speed, with the correlation task accomplishing mainly in optics. However, the inputted target image always contains scale variation to the filtering template images. At the time, the correlation values cannot properly reflect the similarity of the images. It is essential to estimate and eliminate the scale variation of the inputted target image. There are three domains for performing the scale measurement, as spatial, spectral and time domains. Most methods dealing with the scale factor are based on the spatial or the spectral domains. In this paper, a method with the time domain is proposed to measure the scale factor of the input image. It is called a time-sequential scaled method. The method utilizes the relationship between the scale variation and the correlation value of two images. It sends a few artificially scaled input images to compare with the template images. The correlation value increases and decreases with the increasing of the scale factor at the intervals of 0.8~1 and 1~1.2, respectively. The original scale of the input image can be measured by estimating the largest correlation value through correlating the artificially scaled input image with the template images. The measurement range for the scale can be 0.8~4.8. Scale factor beyond 1.2 is measured by scaling the input image at the factor of 1/2, 1/3 and 1/4, correlating the artificially scaled input image with the template images, and estimating the new corresponding scale factor inside 0.8~1.2.

  15. Canopy-derived fuels drive patterns of in-fire energy release and understory plant mortality in a longleaf pine ( Pinus palustris ) sandhill in northwest Florida, USA

    Treesearch

    Joseph J. O' Brien; E. Louise Loudermilk; J. Kevin Hiers; Scott Pokswinski; Benjamin Hornsby; Andrew Hudak; Dexter Strother; Eric Rowell; Benjamin C. Bright

    2016-01-01

    Wildland fire radiant energy emission is one of the only measurements of combustion that can be made at high temporal and spatial resolutions. Furthermore, spatially and temporally explicit measurements are critical for making inferences about ecological fire effects. Although the correlation between fire frequency and plant biological diversity in frequently burned ...

  16. Quantifying spatial scaling patterns and their local and regional correlates in headwater streams: Implications for resilience

    USGS Publications Warehouse

    Gothe, Emma; Sandin, Leonard; Allen, Craig R.; Angeler, David G.

    2014-01-01

    The distribution of functional traits within and across spatiotemporal scales has been used to quantify and infer the relative resilience across ecosystems. We use explicit spatial modeling to evaluate within- and cross-scale redundancy in headwater streams, an ecosystem type with a hierarchical and dendritic network structure. We assessed the cross-scale distribution of functional feeding groups of benthic invertebrates in Swedish headwater streams during two seasons. We evaluated functional metrics, i.e., Shannon diversity, richness, and evenness, and the degree of redundancy within and across modeled spatial scales for individual feeding groups. We also estimated the correlates of environmental versus spatial factors of both functional composition and the taxonomic composition of functional groups for each spatial scale identified. Measures of functional diversity and within-scale redundancy of functions were similar during both seasons, but both within- and cross-scale redundancy were low. This apparent low redundancy was partly attributable to a few dominant taxa explaining the spatial models. However, rare taxa with stochastic spatial distributions might provide additional information and should therefore be considered explicitly for complementing future resilience assessments. Otherwise, resilience may be underestimated. Finally, both environmental and spatial factors correlated with the scale-specific functional and taxonomic composition. This finding suggests that resilience in stream networks emerges as a function of not only local conditions but also regional factors such as habitat connectivity and invertebrate dispersal.

  17. Parameterizing the Spatial Markov Model from Breakthrough Curve Data Alone

    NASA Astrophysics Data System (ADS)

    Sherman, T.; Bolster, D.; Fakhari, A.; Miller, S.; Singha, K.

    2017-12-01

    The spatial Markov model (SMM) uses a correlated random walk and has been shown to effectively capture anomalous transport in porous media systems; in the SMM, particles' future trajectories are correlated to their current velocity. It is common practice to use a priori Lagrangian velocity statistics obtained from high resolution simulations to determine a distribution of transition probabilities (correlation) between velocity classes that govern predicted transport behavior; however, this approach is computationally cumbersome. Here, we introduce a methodology to quantify velocity correlation from Breakthrough (BTC) curve data alone; discretizing two measured BTCs into a set of arrival times and reverse engineering the rules of the SMM allows for prediction of velocity correlation, thereby enabling parameterization of the SMM in studies where Lagrangian velocity statistics are not available. The introduced methodology is applied to estimate velocity correlation from BTCs measured in high resolution simulations, thus allowing for a comparison of estimated parameters with known simulated values. Results show 1) estimated transition probabilities agree with simulated values and 2) using the SMM with estimated parameterization accurately predicts BTCs downstream. Additionally, we include uncertainty measurements by calculating lower and upper estimates of velocity correlation, which allow for prediction of a range of BTCs. The simulated BTCs fall in the range of predicted BTCs. This research proposes a novel method to parameterize the SMM from BTC data alone, thereby reducing the SMM's computational costs and widening its applicability.

  18. Quantum measurement-induced antiferromagnetic order and density modulations in ultracold Fermi gases in optical lattices

    NASA Astrophysics Data System (ADS)

    Mazzucchi, Gabriel; Caballero-Benitez, Santiago F.; Mekhov, Igor B.

    2016-08-01

    Ultracold atomic systems offer a unique tool for understanding behavior of matter in the quantum degenerate regime, promising studies of a vast range of phenomena covering many disciplines from condensed matter to quantum information and particle physics. Coupling these systems to quantized light fields opens further possibilities of observing delicate effects typical of quantum optics in the context of strongly correlated systems. Measurement backaction is one of the most funda- mental manifestations of quantum mechanics and it is at the core of many famous quantum optics experiments. Here we show that quantum backaction of weak measurement can be used for tailoring long-range correlations of ultracold fermions, realizing quantum states with spatial modulations of the density and magnetization, thus overcoming usual requirement for a strong interatomic interactions. We propose detection schemes for implementing antiferromagnetic states and density waves. We demonstrate that such long-range correlations cannot be realized with local addressing, and they are a consequence of the competition between global but spatially structured backaction of weak quantum measurement and unitary dynamics of fermions.

  19. Cognitive functioning is more closely related to real-life mobility than to laboratory-based mobility parameters.

    PubMed

    Giannouli, Eleftheria; Bock, Otmar; Zijlstra, Wiebren

    2018-03-01

    Increasing evidence indicates that mobility depends on cognitive resources, but the exact relationships between various cognitive functions and different mobility parameters still need to be investigated. This study examines the hypothesis that cognitive functioning is more closely related to real-life mobility performance than to mobility capacity as measured with standardized laboratory tests. The final sample used for analysis consisted of 66 older adults (72.3 ± 5.6 years). Cognition was assessed by measures of planning (HOTAP test), spatial working memory (Grid-Span test) and visuospatial attention (Attention Window test). Mobility capacity was assessed by an instrumented version of the Timed Up-and-Go test (iTUG). Mobility performance was assessed with smartphones which collected accelerometer and GPS data over one week to determine the spatial extent and temporal duration of real-life activities. Data analyses involved an exploratory factor analysis and correlation analyses. Mobility measures were reduced to four orthogonal factors: the factor 'real-life mobility' correlated significantly with most cognitive measures (between r   =  .229 and r   =  .396); factors representing 'sit-to-stand transition' and 'turn' correlated with fewer cognitive measures (between r   =  .271 and r   =  .315 and between r   =  .210 and r   =  .316, respectively), and the factor representing straight gait correlated with only one cognitive measure ( r   =  .237). Among the cognitive functions tested, visuospatial attention was associated with most mobility measures, executive functions with fewer and spatial working memory with only one mobility measure. Capacity and real-life performance represent different aspects of mobility. Real-life mobility is more closely associated with cognition than mobility capacity, and in our data this association is most pronounced for visuospatial attention. The close link between real-life mobility and visuospatial attention should be considered by interventions targeting mobility in old age.

  20. Visual-spatial ability is more important than motivation for novices in surgical simulator training: a preliminary study

    PubMed Central

    Hedman, Leif; Felländer-Tsai, Li

    2016-01-01

    Objectives To investigate whether surgical simulation performance and previous video gaming experience would correlate with higher motivation to further train a specific simulator task and whether visual-spatial ability would rank higher in importance to surgical performance than the above. It was also examined whether or not motivation would correlate with a preference to choose a surgical specialty in the future and if simulator training would increase the interest in choosing that same work field. Methods Motivation and general interest in surgery was measured pre- and post-training in 30 medical students at Karolinska Institutet who were tested in a laparoscopic surgical simulator in parallel with measurement of visual-spatial ability and self-estimated video gaming experience.  Correlations between simulator performance metrics, visual-spatial ability and motivation were statistically analyzed using regression analysis. Results A good result in the first simulator trial correlated with higher self-determination index (r =-0.46, p=0.05) in male students. Visual-spatial ability was the most important underlying factor followed by intrinsic motivation score and finally video gaming experience (p=0.02, p=0.05, p=0.11) regarding simulator performance in male students. Simulator training increased interest in surgery when studying all subjects (p=0.01), male subjects (p=0.02) as well as subjects with low video gaming experience (p=0.02). Conclusions This preliminary study highlights individual differences regarding the effect of simulator training on motivation that can be taken into account when designing simulator training curricula, although the sample size is quite small and findings should be interpreted carefully.  PMID:26897701

  1. The need for psychiatric care in England: a spatial factor methodology

    NASA Astrophysics Data System (ADS)

    Congdon, Peter

    2008-09-01

    To ensure health resources are equitably distributed, composite indices of population morbidity or “health need” are often used. Measures of the dimensions of population morbidity (e.g. socioeconomic deprivation) relevant to health need are typically not directly available but indirectly measured through census or other sources. This paper considers measurement of latent population morbidity constructs using both health outcomes (e.g. hospital admissions, mortality) and observed area social and demographic indicators (e.g. census data). The constructs are allowed to be spatially correlated between areas, as well as correlated with one another within areas. The health outcomes may depend both on the latent constructs and on other relevant covariates (e.g. bed supply), with some covariates possibly measured only at higher (regional) scales. A case study considers variations in psychiatric admissions in 354 English local authority areas in relation to two latent constructs: area deprivation and social fragmentation.

  2. Efficient Strategies for Estimating the Spatial Coherence of Backscatter

    PubMed Central

    Hyun, Dongwoon; Crowley, Anna Lisa C.; Dahl, Jeremy J.

    2017-01-01

    The spatial coherence of ultrasound backscatter has been proposed to reduce clutter in medical imaging, to measure the anisotropy of the scattering source, and to improve the detection of blood flow. These techniques rely on correlation estimates that are obtained using computationally expensive strategies. In this study, we assess existing spatial coherence estimation methods and propose three computationally efficient modifications: a reduced kernel, a downsampled receive aperture, and the use of an ensemble correlation coefficient. The proposed methods are implemented in simulation and in vivo studies. Reducing the kernel to a single sample improved computational throughput and improved axial resolution. Downsampling the receive aperture was found to have negligible effect on estimator variance, and improved computational throughput by an order of magnitude for a downsample factor of 4. The ensemble correlation estimator demonstrated lower variance than the currently used average correlation. Combining the three methods, the throughput was improved 105-fold in simulation with a downsample factor of 4 and 20-fold in vivo with a downsample factor of 2. PMID:27913342

  3. The Spatial Pattern of Intelligence in a Small Town.

    ERIC Educational Resources Information Center

    Bailey, William H.

    The document measures the spatial patterns of mental abilities of 94 seventh-grade students within a small town by correlating and mapping four variables--IQ test scores, achievement test scores, neighborhood quality as seen by town officials, and creativity test scores from the Torrance Tests of Creative Thinking. Objectives were to ascertain the…

  4. Conceptualizing Magnification and Scale: The Roles of Spatial Visualization and Logical Thinking

    ERIC Educational Resources Information Center

    Jones, M. Gail; Gardner, Grant; Taylor, Amy R.; Wiebe, Eric; Forrester, Jennifer

    2011-01-01

    This study explored factors that contribute to students' concepts of magnification and scale. Spatial visualization, logical thinking, and concepts of magnification and scale were measured for 46 middle school students. Scores on the "Zoom Assessment" (an assessment of knowledge of magnification and scale) were correlated with the "Test of Logical…

  5. CA1 cell activity sequences emerge after reorganization of network correlation structure during associative learning

    PubMed Central

    Modi, Mehrab N; Dhawale, Ashesh K; Bhalla, Upinder S

    2014-01-01

    Animals can learn causal relationships between pairs of stimuli separated in time and this ability depends on the hippocampus. Such learning is believed to emerge from alterations in network connectivity, but large-scale connectivity is difficult to measure directly, especially during learning. Here, we show that area CA1 cells converge to time-locked firing sequences that bridge the two stimuli paired during training, and this phenomenon is coupled to a reorganization of network correlations. Using two-photon calcium imaging of mouse hippocampal neurons we find that co-time-tuned neurons exhibit enhanced spontaneous activity correlations that increase just prior to learning. While time-tuned cells are not spatially organized, spontaneously correlated cells do fall into distinct spatial clusters that change as a result of learning. We propose that the spatial re-organization of correlation clusters reflects global network connectivity changes that are responsible for the emergence of the sequentially-timed activity of cell-groups underlying the learned behavior. DOI: http://dx.doi.org/10.7554/eLife.01982.001 PMID:24668171

  6. Theoretical analysis on the measurement errors of local 2D DIC: Part I temporal and spatial uncertainty quantification of displacement measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yueqi; Lava, Pascal; Reu, Phillip

    This study presents a theoretical uncertainty quantification of displacement measurements by subset-based 2D-digital image correlation. A generalized solution to estimate the random error of displacement measurement is presented. The obtained solution suggests that the random error of displacement measurements is determined by the image noise, the summation of the intensity gradient in a subset, the subpixel part of displacement, and the interpolation scheme. The proposed method is validated with virtual digital image correlation tests.

  7. Theoretical analysis on the measurement errors of local 2D DIC: Part I temporal and spatial uncertainty quantification of displacement measurements

    DOE PAGES

    Wang, Yueqi; Lava, Pascal; Reu, Phillip; ...

    2015-12-23

    This study presents a theoretical uncertainty quantification of displacement measurements by subset-based 2D-digital image correlation. A generalized solution to estimate the random error of displacement measurement is presented. The obtained solution suggests that the random error of displacement measurements is determined by the image noise, the summation of the intensity gradient in a subset, the subpixel part of displacement, and the interpolation scheme. The proposed method is validated with virtual digital image correlation tests.

  8. Spatial variability of the Black Sea surface temperature from high resolution modeling and satellite measurements

    NASA Astrophysics Data System (ADS)

    Mizyuk, Artem; Senderov, Maxim; Korotaev, Gennady

    2016-04-01

    Large number of numerical ocean models were implemented for the Black Sea basin during last two decades. They reproduce rather similar structure of synoptical variability of the circulation. Since 00-s numerical studies of the mesoscale structure are carried out using high performance computing (HPC). With the growing capacity of computing resources it is now possible to reconstruct the Black Sea currents with spatial resolution of several hundreds meters. However, how realistic these results can be? In the proposed study an attempt is made to understand which spatial scales are reproduced by ocean model in the Black Sea. Simulations are made using parallel version of NEMO (Nucleus for European Modelling of the Ocean). A two regional configurations with spatial resolutions 5 km and 2.5 km are described. Comparison of the SST from simulations with two spatial resolutions shows rather qualitative difference of the spatial structures. Results of high resolution simulation are compared also with satellite observations and observation-based products from Copernicus using spatial correlation and spectral analysis. Spatial scales of correlations functions for simulated and observed SST are rather close and differs much from satellite SST reanalysis. Evolution of spectral density for modelled SST and reanalysis showed agreed time periods of small scales intensification. Using of the spectral analysis for satellite measurements is complicated due to gaps. The research leading to this results has received funding from Russian Science Foundation (project № 15-17-20020)

  9. Projection correlation based view interpolation for cone beam CT: primary fluence restoration in scatter measurement with a moving beam stop array.

    PubMed

    Yan, Hao; Mou, Xuanqin; Tang, Shaojie; Xu, Qiong; Zankl, Maria

    2010-11-07

    Scatter correction is an open problem in x-ray cone beam (CB) CT. The measurement of scatter intensity with a moving beam stop array (BSA) is a promising technique that offers a low patient dose and accurate scatter measurement. However, when restoring the blocked primary fluence behind the BSA, spatial interpolation cannot well restore the high-frequency part, causing streaks in the reconstructed image. To address this problem, we deduce a projection correlation (PC) to utilize the redundancy (over-determined information) in neighbouring CB views. PC indicates that the main high-frequency information is contained in neighbouring angular projections, instead of the current projection itself, which provides a guiding principle that applies to high-frequency information restoration. On this basis, we present the projection correlation based view interpolation (PC-VI) algorithm; that it outperforms the use of only spatial interpolation is validated. The PC-VI based moving BSA method is developed. In this method, PC-VI is employed instead of spatial interpolation, and new moving modes are designed, which greatly improve the performance of the moving BSA method in terms of reliability and practicability. Evaluation is made on a high-resolution voxel-based human phantom realistically including the entire procedure of scatter measurement with a moving BSA, which is simulated by analytical ray-tracing plus Monte Carlo simulation with EGSnrc. With the proposed method, we get visually artefact-free images approaching the ideal correction. Compared with the spatial interpolation based method, the relative mean square error is reduced by a factor of 6.05-15.94 for different slices. PC-VI does well in CB redundancy mining; therefore, it has further potential in CBCT studies.

  10. Application of portable gas detector in point and scanning method to estimate spatial distribution of methane emission in landfill.

    PubMed

    Lando, Asiyanthi Tabran; Nakayama, Hirofumi; Shimaoka, Takayuki

    2017-01-01

    Methane from landfills contributes to global warming and can pose an explosion hazard. To minimize these effects emissions must be monitored. This study proposed application of portable gas detector (PGD) in point and scanning measurements to estimate spatial distribution of methane emissions in landfills. The aims of this study were to discover the advantages and disadvantages of point and scanning methods in measuring methane concentrations, discover spatial distribution of methane emissions, cognize the correlation between ambient methane concentration and methane flux, and estimate methane flux and emissions in landfills. This study was carried out in Tamangapa landfill, Makassar city-Indonesia. Measurement areas were divided into basic and expanded area. In the point method, PGD was held one meter above the landfill surface, whereas scanning method used a PGD with a data logger mounted on a wire drawn between two poles. Point method was efficient in time, only needed one person and eight minutes in measuring 400m 2 areas, whereas scanning method could capture a lot of hot spots location and needed 20min. The results from basic area showed that ambient methane concentration and flux had a significant (p<0.01) positive correlation with R 2 =0.7109 and y=0.1544 x. This correlation equation was used to describe spatial distribution of methane emissions in the expanded area by using Kriging method. The average of estimated flux from scanning method was 71.2gm -2 d -1 higher than 38.3gm -2 d -1 from point method. Further, scanning method could capture the lower and higher value, which could be useful to evaluate and estimate the possible effects of the uncontrolled emissions in landfill. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Spatial variations of the Sr I 4607 Å scattering polarization peak

    NASA Astrophysics Data System (ADS)

    Bianda, M.; Berdyugina, S.; Gisler, D.; Ramelli, R.; Belluzzi, L.; Carlin, E. S.; Stenflo, J. O.; Berkefeld, T.

    2018-06-01

    Context. The scattering polarization signal observed in the photospheric Sr I 4607 Å line is expected to vary at granular spatial scales. This variation can be due to changes in the magnetic field intensity and orientation (Hanle effect), but also to spatial and temporal variations in the plasma properties. Measuring the spatial variation of such polarization signal would allow us to study the properties of the magnetic fields at subgranular scales, but observations are challenging since both high spatial resolution and high spectropolarimetric sensitivity are required. Aims: We aim to provide observational evidence of the polarization peak spatial variations, and to analyze the correlation they might have with granulation. Methods: Observations conjugating high spatial resolution and high spectropolarimetric precision were performed with the Zurich IMaging POLarimeter, ZIMPOL, at the GREGOR solar telescope, taking advantage of the adaptive optics system and the newly installed image derotator. Results: Spatial variations of the scattering polarization in the Sr I 4607 Å line are clearly observed. The spatial scale of these variations is comparable with the granular size. Small correlations between the polarization signal amplitude and the continuum intensity indicate that the polarization is higher at the center of granules than in the intergranular lanes.

  12. Interarticulator coordination in children with and without cerebral palsy

    PubMed Central

    Nip, Ignatius S. B.

    2017-01-01

    The current study investigates how interarticulator coordination changes across speaking tasks varying in articulatory and linguistic demands for children with CP and their typically-developing peers. Articulatory movements from 12 children with spastic CP (7M, 5F, 4–15 years of age) and 12 typically-developing age- and sex-matched peers were cross-correlated to determine the degree of spatial and temporal coupling between the upper lip and jaw, lower lip and jaw, and upper and lower lips. Spatial and temporal coupling were also correlated with intelligibility. Results indicated that children with CP have reduced spatial coupling between the upper and lower lips and reduced temporal coupling between all articulators as compared to their typically-developing peers. For all participants, sentences were produced with the greatest degree of interarticulator coordination when compared to the diadochokinetic and syllable repetition tasks. Measures of interarticulator coordination were correlated with intelligibility for the speakers with CP. PMID:25905558

  13. Spatial Accessibility and Availability Measures and Statistical Properties in the Food Environment

    PubMed Central

    Van Meter, E.; Lawson, A.B.; Colabianchi, N.; Nichols, M.; Hibbert, J.; Porter, D.; Liese, A.D.

    2010-01-01

    Spatial accessibility is of increasing interest in the health sciences. This paper addresses the statistical use of spatial accessibility and availability indices. These measures are evaluated via an extensive simulation based on cluster models for local food outlet density. We derived Monte Carlo critical values for several statistical tests based on the indices. In particular we are interested in the ability to make inferential comparisons between different study areas where indices of accessibility and availability are to be calculated. We derive tests of mean difference as well as tests for differences in Moran's I for spatial correlation for each of the accessibility and availability indices. We also apply these new statistical tests to a data example based on two counties in South Carolina for various accessibility and availability measures calculated for food outlets, stores, and restaurants. PMID:21499528

  14. Spatial Metrics of Tumour Vascular Organisation Predict Radiation Efficacy in a Computational Model

    PubMed Central

    Scott, Jacob G.

    2016-01-01

    Intratumoural heterogeneity is known to contribute to poor therapeutic response. Variations in oxygen tension in particular have been correlated with changes in radiation response in vitro and at the clinical scale with overall survival. Heterogeneity at the microscopic scale in tumour blood vessel architecture has been described, and is one source of the underlying variations in oxygen tension. We seek to determine whether histologic scale measures of the erratic distribution of blood vessels within a tumour can be used to predict differing radiation response. Using a two-dimensional hybrid cellular automaton model of tumour growth, we evaluate the effect of vessel distribution on cell survival outcomes of simulated radiation therapy. Using the standard equations for the oxygen enhancement ratio for cell survival probability under differing oxygen tensions, we calculate average radiation effect over a range of different vessel densities and organisations. We go on to quantify the vessel distribution heterogeneity and measure spatial organization using Ripley’s L function, a measure designed to detect deviations from complete spatial randomness. We find that under differing regimes of vessel density the correlation coefficient between the measure of spatial organization and radiation effect changes sign. This provides not only a useful way to understand the differences seen in radiation effect for tissues based on vessel architecture, but also an alternate explanation for the vessel normalization hypothesis. PMID:26800503

  15. Spatial electron density and electric field strength measurements in microwave cavity experiments

    NASA Technical Reports Server (NTRS)

    Peters, M.; Rogers, J.; Whitehair, S.; Asmussen, J.; Kerber, R.

    1984-01-01

    Measurements of electron density and electric field strength have been made in an argon plasma contained in a resonant microwave cavity at 2.45 GHz. Spatial measurements of electron density, n sub e, are correlated with fluorescence observations of the discharge. Measurements of n sub e were made with Stark broadening and compared with n sub 3 calculated from measured plasma conductivity. Additional measurements of n sub 3 as a function of pressure and in mixtures of argon and oxygen are presented for pressures from 10 Torr to 1 atm. Measurements in flowing gases and in static systems are presented. In addition, limitations of these measurements are identified.

  16. Identification and Simulation of Subsurface Soil patterns using hidden Markov random fields and remote sensing and geophysical EMI data sets

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Wellmann, Florian; Verweij, Elizabeth; von Hebel, Christian; van der Kruk, Jan

    2017-04-01

    Lateral and vertical spatial heterogeneity of subsurface properties such as soil texture and structure influences the available water and resource supply for crop growth. High-resolution mapping of subsurface structures using non-invasive geo-referenced geophysical measurements, like electromagnetic induction (EMI), enables a characterization of 3D soil structures, which have shown correlations to remote sensing information of the crop states. The benefit of EMI is that it can return 3D subsurface information, however the spatial dimensions are limited due to the labor intensive measurement procedure. Although active and passive sensors mounted on air- or space-borne platforms return 2D images, they have much larger spatial dimensions. Combining both approaches provides us with a potential pathway to extend the detailed 3D geophysical information to a larger area by using remote sensing information. In this study, we aim at extracting and providing insights into the spatial and statistical correlation of the geophysical and remote sensing observations of the soil/vegetation continuum system. To this end, two key points need to be addressed: 1) how to detect and recognize the geometric patterns (i.e., spatial heterogeneity) from multiple data sets, and 2) how to quantitatively describe the statistical correlation between remote sensing information and geophysical measurements. In the current study, the spatial domain is restricted to shallow depths up to 3 meters, and the geostatistical database contains normalized difference vegetation index (NDVI) derived from RapidEye satellite images and apparent electrical conductivities (ECa) measured from multi-receiver EMI sensors for nine depths of exploration ranging from 0-2.7 m. The integrated data sets are mapped into both the physical space (i.e. the spatial domain) and feature space (i.e. a two-dimensional space framed by the NDVI and the ECa data). Hidden Markov Random Fields (HMRF) are employed to model the underlying heterogeneities in spatial domain and finite Gaussian mixture models are adopted to quantitatively describe the statistical patterns in terms of center vectors and covariance matrices in feature space. A recently developed parallel stochastic clustering algorithm is adopted to implement the HMRF models and the Markov chain Monte Carlo based Bayesian inference. Certain spatial patterns such as buried paleo-river channels covered by shallow sediments are investigated as typical examples. The results indicate that the geometric patterns of the subsurface heterogeneity can be represented and quantitatively characterized by HMRF. Furthermore, the statistical patterns of the NDVI and the EMI data from the soil/vegetation-continuum system can be inferred and analyzed in a quantitative manner.

  17. Restoring method for missing data of spatial structural stress monitoring based on correlation

    NASA Astrophysics Data System (ADS)

    Zhang, Zeyu; Luo, Yaozhi

    2017-07-01

    Long-term monitoring of spatial structures is of great importance for the full understanding of their performance and safety. The missing part of the monitoring data link will affect the data analysis and safety assessment of the structure. Based on the long-term monitoring data of the steel structure of the Hangzhou Olympic Center Stadium, the correlation between the stress change of the measuring points is studied, and an interpolation method of the missing stress data is proposed. Stress data of correlated measuring points are selected in the 3 months of the season when missing data is required for fitting correlation. Data of daytime and nighttime are fitted separately for interpolation. For a simple linear regression when single point's correlation coefficient is 0.9 or more, the average error of interpolation is about 5%. For multiple linear regression, the interpolation accuracy is not significantly increased after the number of correlated points is more than 6. Stress baseline value of construction step should be calculated before interpolating missing data in the construction stage, and the average error is within 10%. The interpolation error of continuous missing data is slightly larger than that of the discrete missing data. The data missing rate of this method should better not exceed 30%. Finally, a measuring point's missing monitoring data is restored to verify the validity of the method.

  18. Approximate degeneracy of J =1 spatial correlators in high temperature QCD

    NASA Astrophysics Data System (ADS)

    Rohrhofer, C.; Aoki, Y.; Cossu, G.; Fukaya, H.; Glozman, L. Ya.; Hashimoto, S.; Lang, C. B.; Prelovsek, S.

    2017-11-01

    We study spatial isovector meson correlators in Nf=2 QCD with dynamical domain-wall fermions on 3 23×8 lattices at temperatures T =220 - 380 MeV . We measure the correlators of spin-one (J =1 ) operators including vector, axial-vector, tensor and axial-tensor. Restoration of chiral U (1 )A and S U (2 )L×S U (2 )R symmetries of QCD implies degeneracies in vector-axial-vector (S U (2 )L×S U (2 )R) and tensor-axial-tensor (U (1 )A) pairs, which are indeed observed at temperatures above Tc. Moreover, we observe an approximate degeneracy of all J =1 correlators with increasing temperature. This approximate degeneracy suggests emergent S U (2 )CS and S U (4 ) symmetries at high temperatures, that mix left- and right-handed quarks.

  19. Analysis of parenchymal patterns using conspicuous spatial frequency features in mammograms applied to the BI-RADS density rating scheme

    NASA Astrophysics Data System (ADS)

    Perconti, Philip; Loew, Murray

    2006-03-01

    Automatic classification of the density of breast parenchyma is shown using a measure that is correlated to the human observer performance, and compared against the BI-RADS density rating. Increasingly popular in the United States, the Breast Imaging Reporting and Data System (BI-RADS) is used to draw attention to the increased screening difficulty associated with greater breast density; however, the BI-RADS rating scheme is subjective and is not intended as an objective measure of breast density. So, while popular, BI-RADS does not define density classes using a standardized measure, which leads to increased variability among observers. The adaptive thresholding technique is a more quantitative approach for assessing the percentage breast density, but considerable reader interaction is required. We calculate an objective density rating that is derived using a measure of local feature salience. Previously, this measure was shown to correlate well with radiologists' localization and discrimination of true positive and true negative regions-of-interest. Using conspicuous spatial frequency features, an objective density rating is obtained and correlated with adaptive thresholding, and the subjectively ascertained BI-RADS density ratings. Using 100 cases, obtained from the University of South Florida's DDSM database, we show that an automated breast density measure can be derived that is correlated with the interactive thresholding method for continuous percentage breast density, but not with the BI-RADS density rating categories for the selected cases. Comparison between interactive thresholding and the new salience percentage density resulted in a Pearson correlation of 76.7%. Using a four-category scale equivalent to the BI-RADS density categories, a Spearman correlation coefficient of 79.8% was found.

  20. Comparisons of Traffic-Related Ultrafine Particle Number Concentrations Measured in Two Urban Areas by Central, Residential, and Mobile Monitoring.

    PubMed

    Simon, Matthew C; Hudda, Neelakshi; Naumova, Elena N; Levy, Jonathan I; Brugge, Doug; Durant, John L

    2017-11-01

    Traffic-related ultrafine particles (UFP; <100 nanometers diameter) are ubiquitous in urban air. While studies have shown that UFP are toxic, epidemiological evidence of health effects, which is needed to inform risk assessment at the population scale, is limited due to challenges of accurately estimating UFP exposures. Epidemiologic studies often use empirical models to estimate UFP exposures; however, the monitoring strategies upon which the models are based have varied between studies. Our study compares particle number concentrations (PNC; a proxy for UFP) measured by three different monitoring approaches (central-site, short-term residential-site, and mobile on-road monitoring) in two study areas in metropolitan Boston (MA, USA). Our objectives were to quantify ambient PNC differences between the three monitoring platforms, compare the temporal patterns and the spatial heterogeneity of PNC between the monitoring platforms, and identify factors that affect correlations across the platforms. We collected >12,000 hours of measurements at the central sites, 1,000 hours of measurements at each of 20 residential sites in the two study areas, and >120 hours of mobile measurements over the course of ~1 year in each study area. Our results show differences between the monitoring strategies: mean one-minute PNC on-roads were higher (64,000 and 32,000 particles/cm 3 in Boston and Chelsea, respectively) compared to central-site measurements (23,000 and 19,000 particles/cm 3 ) and both were higher than at residences (14,000 and 15,000 particles/cm 3 ). Temporal correlations and spatial heterogeneity also differed between the platforms. Temporal correlations were generally highest between central and residential sites, and lowest between central-site and on-road measurements. We observed the greatest spatial heterogeneity across monitoring platforms during the morning rush hours (06:00-09:00) and the lowest during the overnight hours (18:00-06:00). Longer averaging times (days and hours vs. minutes) increased temporal correlations (Pearson correlations were 0.69 and 0.60 vs. 0.39 in Boston; 0.71 and 0.61 vs. 0.45 in Chelsea) and reduced spatial heterogeneity (coefficients of divergence were 0.24 and 0.29 vs. 0.33 in Boston; 0.20 and 0.27 vs. 0.31 in Chelsea). Our results suggest that combining stationary and mobile monitoring may lead to improved characterization of UFP in urban areas and thereby lead to improved exposure assignment for epidemiology studies.

  1. Frontiers in Fluctuation Spectroscopy: Measuring protein dynamics and protein spatio-temporal connectivity

    NASA Astrophysics Data System (ADS)

    Digman, Michelle

    Fluorescence fluctuation spectroscopy has evolved from single point detection of molecular diffusion to a family of microscopy imaging correlation tools (i.e. ICS, RICS, STICS, and kICS) useful in deriving spatial-temporal dynamics of proteins in living cells The advantage of the imaging techniques is the simultaneous measurement of all points in an image with a frame rate that is increasingly becoming faster with better sensitivity cameras and new microscopy modalities such as the sheet illumination technique. A new frontier in this area is now emerging towards a high level of mapping diffusion rates and protein dynamics in the 2 and 3 dimensions. In this talk, I will discuss the evolution of fluctuation analysis from the single point source to mapping diffusion in whole cells and the technology behind this technique. In particular, new methods of analysis exploit correlation of molecular fluctuations originating from measurement of fluctuation correlations at distant points (pair correlation analysis) and methods that exploit spatial averaging of fluctuations in small regions (iMSD). For example the pair correlation fluctuation (pCF) analyses done between adjacent pixels in all possible radial directions provide a window into anisotropic molecular diffusion. Similar to the connectivity atlas of neuronal connections from the MRI diffusion tensor imaging these new tools will be used to map the connectome of protein diffusion in living cells. For biological reaction-diffusion systems, live single cell spatial-temporal analysis of protein dynamics provides a mean to observe stochastic biochemical signaling in the context of the intracellular environment which may lead to better understanding of cancer cell invasion, stem cell differentiation and other fundamental biological processes. National Institutes of Health Grant P41-RRO3155.

  2. Actual evapotranspiration and deficit: Biologically meaningful correlates of vegetation distribution across spatial scales

    USGS Publications Warehouse

    Stephenson, N.L.

    1998-01-01

    Correlative approaches to understanding the climatic controls of vegetation distribution have exhibited at least two important weaknesses: they have been conceptually divorced across spatial scales, and their climatic parameters have not necessarily represented aspects of climate of broad physiological importance to plants. Using examples from the literature and from the Sierra Nevada of California, I argue that two water balance parameters-actual evapotranspiration (AET) and deficit (D)-are biologically meaningful, are well correlated with the distribution of vegetation types, and exhibit these qualities over several orders of magnitude of spatial scale (continental to local). I reach four additional conclusions. (1) Some pairs of climatic parameters presently in use are functionally similar to AET and D; however, AET and D may be easier to interpret biologically. (2) Several well-known climatic parameters are biologically less meaningful or less important than AET and D, and consequently are poorer correlates of the distribution of vegetation types. Of particular interest, AET is a much better correlate of the distributions of coniferous and deciduous forests than minimum temperature. (3) The effects of evaporative demand and water availability on a site's water balance are intrinsically different. For example, the 'dry' experienced by plants on sunward slopes (high evaporative demand) is not comparable to the 'dry' experienced by plants on soils with low water-holding capacities (low water availability), and these differences are reflected in vegetation patterns. (4) Many traditional topographic moisture scalars-those that additively combine measures related to evaporative demand and water availability are not necessarily meaningful for describing site conditions as sensed by plants; the same holds for measured soil moisture. However, using AET and D in place of moisture scalars and measured soil moisture can solve these problems.

  3. Finding Food Deserts: A Comparison of Methods Measuring Spatial Access to Food Stores.

    PubMed

    Jaskiewicz, Lara; Block, Daniel; Chavez, Noel

    2016-05-01

    Public health research has increasingly focused on how access to resources affects health behaviors. Mapping environmental factors, such as distance to a supermarket, can identify intervention points toward improving food access in low-income and minority communities. However, the existing literature provides little guidance on choosing the most appropriate measures of spatial access. This study compared the results of different measures of spatial access to large food stores and the locations of high and low access identified by each. The data set included U.S. Census population data and the locations of large food stores in the six-county area around Chicago, Illinois. Six measures of spatial access were calculated at the census block group level and the results compared. The analysis found that there was little agreement in the identified locations of high or low access between measures. This study illustrates the importance of considering the access measure used when conducting research, interpreting results, or comparing studies. Future research should explore the correlation of different measures with health behaviors and health outcomes. © 2015 Society for Public Health Education.

  4. Correlation of spatial climate/weather maps and the advantages of using the Mahalanobis metric in predictions

    NASA Astrophysics Data System (ADS)

    Stephenson, D. B.

    1997-10-01

    The skill in predicting spatially varying weather/climate maps depends on the definition of the measure of similarity between the maps. Under the justifiable approximation that the anomaly maps are distributed multinormally, it is shown analytically that the choice of weighting metric, used in defining the anomaly correlation between spatial maps, can change the resulting probability distribution of the correlation coefficient. The estimate of the numbers of degrees of freedom based on the variance of the correlation distribution can vary from unity up to the number of grid points depending on the choice of weighting metric. The (pseudo-) inverse of the sample covariance matrix acts as a special choice for the metric in that it gives a correlation distribution which has minimal kurtosis and maximum dimension. Minimal kurtosis suggests that the average predictive skill might be improved due to the rarer occurrence of troublesome outlier patterns far from the mean state. Maximum dimension has a disadvantage for analogue prediction schemes in that it gives the minimum number of analogue states. This metric also has an advantage in that it allows one to powerfully test the null hypothesis of multinormality by examining the second and third moments of the correlation coefficient which were introduced by Mardia as invariant measures of multivariate kurtosis and skewness. For these reasons, it is suggested that this metric could be usefully employed in the prediction of weather/climate and in fingerprinting anthropogenic climate change. The ideas are illustrated using the bivariate example of the observed monthly mean sea-level pressures at Darwin and Tahitifrom 1866 1995.

  5. Spatial Characteristics of the Unsteady Differential Pressures on 16 percent F/A-18 Vertical Tails

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Ashley, Holt

    1998-01-01

    Buffeting is an aeroelastic phenomenon which plagues high performance aircraft at high angles of attack. For the F/A-18 at high angles of attack, vortices emanating from wing/fuselage leading edge extensions burst, immersing the vertical tails in their turbulent wake. The resulting buffeting of the vertical tails is a concern from fatigue and inspection points of view. Previous flight and wind-tunnel investigations to determine the buffet loads on the tail did not provide a complete description of the spatial characteristics of the unsteady differential pressures. Consequently, the unsteady differential pressures were considered to be fully correlated in the analyses of buffet and buffeting. The use of fully correlated pressures in estimating the generalized aerodynamic forces for the analysis of buffeting yielded responses that exceeded those measured in flight and in the wind tunnel. To learn more about the spatial characteristics of the unsteady differential pressures, an available 16%, sting-mounted, F-18 wind-tunnel model was modified and tested in the Transonic Dynamics Tunnel (TDT) at the NASA Langley Research Center as part of the ACROBAT (Actively Controlled Response Of Buffet-Affected Tails) program. Surface pressures were measured at high angles of attack on flexible and rigid tails. Cross-correlation and cross-spectral analyses of the pressure time histories indicate that the unsteady differential pressures are not fully correlated. In fact, the unsteady differential pressure resemble a wave that travels along the tail. At constant angle of attack, the pressure correlation varies with flight speed.

  6. A Robust and Multi-Weighted Approach to Estimating Topographically Correlated Tropospheric Delays in Radar Interferograms

    PubMed Central

    Zhu, Bangyan; Li, Jiancheng; Chu, Zhengwei; Tang, Wei; Wang, Bin; Li, Dawei

    2016-01-01

    Spatial and temporal variations in the vertical stratification of the troposphere introduce significant propagation delays in interferometric synthetic aperture radar (InSAR) observations. Observations of small amplitude surface deformations and regional subsidence rates are plagued by tropospheric delays, and strongly correlated with topographic height variations. Phase-based tropospheric correction techniques assuming a linear relationship between interferometric phase and topography have been exploited and developed, with mixed success. Producing robust estimates of tropospheric phase delay however plays a critical role in increasing the accuracy of InSAR measurements. Meanwhile, few phase-based correction methods account for the spatially variable tropospheric delay over lager study regions. Here, we present a robust and multi-weighted approach to estimate the correlation between phase and topography that is relatively insensitive to confounding processes such as regional subsidence over larger regions as well as under varying tropospheric conditions. An expanded form of robust least squares is introduced to estimate the spatially variable correlation between phase and topography by splitting the interferograms into multiple blocks. Within each block, correlation is robustly estimated from the band-filtered phase and topography. Phase-elevation ratios are multiply- weighted and extrapolated to each persistent scatter (PS) pixel. We applied the proposed method to Envisat ASAR images over the Southern California area, USA, and found that our method mitigated the atmospheric noise better than the conventional phase-based method. The corrected ground surface deformation agreed better with those measured from GPS. PMID:27420066

  7. A Robust and Multi-Weighted Approach to Estimating Topographically Correlated Tropospheric Delays in Radar Interferograms.

    PubMed

    Zhu, Bangyan; Li, Jiancheng; Chu, Zhengwei; Tang, Wei; Wang, Bin; Li, Dawei

    2016-07-12

    Spatial and temporal variations in the vertical stratification of the troposphere introduce significant propagation delays in interferometric synthetic aperture radar (InSAR) observations. Observations of small amplitude surface deformations and regional subsidence rates are plagued by tropospheric delays, and strongly correlated with topographic height variations. Phase-based tropospheric correction techniques assuming a linear relationship between interferometric phase and topography have been exploited and developed, with mixed success. Producing robust estimates of tropospheric phase delay however plays a critical role in increasing the accuracy of InSAR measurements. Meanwhile, few phase-based correction methods account for the spatially variable tropospheric delay over lager study regions. Here, we present a robust and multi-weighted approach to estimate the correlation between phase and topography that is relatively insensitive to confounding processes such as regional subsidence over larger regions as well as under varying tropospheric conditions. An expanded form of robust least squares is introduced to estimate the spatially variable correlation between phase and topography by splitting the interferograms into multiple blocks. Within each block, correlation is robustly estimated from the band-filtered phase and topography. Phase-elevation ratios are multiply- weighted and extrapolated to each persistent scatter (PS) pixel. We applied the proposed method to Envisat ASAR images over the Southern California area, USA, and found that our method mitigated the atmospheric noise better than the conventional phase-based method. The corrected ground surface deformation agreed better with those measured from GPS.

  8. Physically motivated correlation formalism in hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Roy, Ankita; Rafert, J. Bruce

    2004-05-01

    Most remote sensing data-sets contain a limiting number of independent spatial and spectral measurements, beyond which no effective increase in information is achieved. This paper presents a Physically Motivated Correlation Formalism (PMCF) ,which places both Spatial and Spectral data on an equivalent mathematical footing in the context of a specific Kernel, such that, optimal combinations of independent data can be selected from the entire Hypercube via the method of "Correlation Moments". We present an experimental and computational analysis of Hyperspectral data sets using the Michigan Tech VFTHSI [Visible Fourier Transform Hyperspectral Imager] based on a Sagnac Interferometer, adjusted to obtain high SNR levels. The captured Signal Interferograms of different targets - aerial snaps of Houghton and lab-based data (white light , He-Ne laser , discharge tube sources) with the provision of customized scan of targets with the same exposures are processed using inverse imaging transformations and filtering techniques to obtain the Spectral profiles and generate Hypercubes to compute Spectral/Spatial/Cross Moments. PMCF answers the question of how optimally the entire hypercube should be sampled and finds how many spatial-spectral pixels are required for a particular target recognition.

  9. Tensor-guided fitting of subduction slab depths

    USGS Publications Warehouse

    Bazargani, Farhad; Hayes, Gavin P.

    2013-01-01

    Geophysical measurements are often acquired at scattered locations in space. Therefore, interpolating or fitting the sparsely sampled data as a uniform function of space (a procedure commonly known as gridding) is a ubiquitous problem in geophysics. Most gridding methods require a model of spatial correlation for data. This spatial correlation model can often be inferred from some sort of secondary information, which may also be sparsely sampled in space. In this paper, we present a new method to model the geometry of a subducting slab in which we use a data‐fitting approach to address the problem. Earthquakes and active‐source seismic surveys provide estimates of depths of subducting slabs but only at scattered locations. In addition to estimates of depths from earthquake locations, focal mechanisms of subduction zone earthquakes also provide estimates of the strikes of the subducting slab on which they occur. We use these spatially sparse strike samples and the Earth’s curved surface geometry to infer a model for spatial correlation that guides a blended neighbor interpolation of slab depths. We then modify the interpolation method to account for the uncertainties associated with the depth estimates.

  10. Uncertainty in Random Forests: What does it mean in a spatial context?

    NASA Astrophysics Data System (ADS)

    Klump, Jens; Fouedjio, Francky

    2017-04-01

    Geochemical surveys are an important part of exploration for mineral resources and in environmental studies. The samples and chemical analyses are often laborious and difficult to obtain and therefore come at a high cost. As a consequence, these surveys are characterised by datasets with large numbers of variables but relatively few data points when compared to conventional big data problems. With more remote sensing platforms and sensor networks being deployed, large volumes of auxiliary data of the surveyed areas are becoming available. The use of these auxiliary data has the potential to improve the prediction of chemical element concentrations over the whole study area. Kriging is a well established geostatistical method for the prediction of spatial data but requires significant pre-processing and makes some basic assumptions about the underlying distribution of the data. Some machine learning algorithms, on the other hand, may require less data pre-processing and are non-parametric. In this study we used a dataset provided by Kirkwood et al. [1] to explore the potential use of Random Forest in geochemical mapping. We chose Random Forest because it is a well understood machine learning method and has the advantage that it provides us with a measure of uncertainty. By comparing Random Forest to Kriging we found that both methods produced comparable maps of estimated values for our variables of interest. Kriging outperformed Random Forest for variables of interest with relatively strong spatial correlation. The measure of uncertainty provided by Random Forest seems to be quite different to the measure of uncertainty provided by Kriging. In particular, the lack of spatial context can give misleading results in areas without ground truth data. In conclusion, our preliminary results show that the model driven approach in geostatistics gives us more reliable estimates for our target variables than Random Forest for variables with relatively strong spatial correlation. However, in cases of weak spatial correlation Random Forest, as a nonparametric method, may give the better results once we have a better understanding of the meaning of its uncertainty measures in a spatial context. References [1] Kirkwood, C., M. Cave, D. Beamish, S. Grebby, and A. Ferreira (2016), A machine learning approach to geochemical mapping, Journal of Geochemical Exploration, 163, 28-40, doi:10.1016/j.gexplo.2016.05.003.

  11. Large-scale changes in network interactions as a physiological signature of spatial neglect

    PubMed Central

    Baldassarre, Antonello; Ramsey, Lenny; Hacker, Carl L.; Callejas, Alicia; Astafiev, Serguei V.; Metcalf, Nicholas V.; Zinn, Kristi; Rengachary, Jennifer; Snyder, Abraham Z.; Carter, Alex R.; Shulman, Gordon L.

    2014-01-01

    The relationship between spontaneous brain activity and behaviour following focal injury is not well understood. Here, we report a large-scale study of resting state functional connectivity MRI and spatial neglect following stroke in a large (n = 84) heterogeneous sample of first-ever stroke patients (within 1–2 weeks). Spatial neglect, which is typically more severe after right than left hemisphere injury, includes deficits of spatial attention and motor actions contralateral to the lesion, and low general attention due to impaired vigilance/arousal. Patients underwent structural and resting state functional MRI scans, and spatial neglect was measured using the Posner spatial cueing task, and Mesulam and Behavioural Inattention Test cancellation tests. A principal component analysis of the behavioural tests revealed a main factor accounting for 34% of variance that captured three correlated behavioural deficits: visual neglect of the contralesional visual field, visuomotor neglect of the contralesional field, and low overall performance. In an independent sample (21 healthy subjects), we defined 10 resting state networks consisting of 169 brain regions: visual-fovea and visual-periphery, sensory-motor, auditory, dorsal attention, ventral attention, language, fronto-parietal control, cingulo-opercular control, and default mode. We correlated the neglect factor score with the strength of resting state functional connectivity within and across the 10 resting state networks. All damaged brain voxels were removed from the functional connectivity:behaviour correlational analysis. We found that the correlated behavioural deficits summarized by the factor score were associated with correlated multi-network patterns of abnormal functional connectivity involving large swaths of cortex. Specifically, dorsal attention and sensory-motor networks showed: (i) reduced interhemispheric functional connectivity; (ii) reduced anti-correlation with fronto-parietal and default mode networks in the right hemisphere; and (iii) increased intrahemispheric connectivity with the basal ganglia. These patterns of functional connectivity:behaviour correlations were stronger in patients with right- as compared to left-hemisphere damage and were independent of lesion volume. Our findings identify large-scale changes in resting state network interactions that are a physiological signature of spatial neglect and may relate to its right hemisphere lateralization. PMID:25367028

  12. A Robust State Estimation Framework Considering Measurement Correlations and Imperfect Synchronization

    DOE PAGES

    Zhao, Junbo; Wang, Shaobu; Mili, Lamine; ...

    2018-01-08

    Here, this paper develops a robust power system state estimation framework with the consideration of measurement correlations and imperfect synchronization. In the framework, correlations of SCADA and Phasor Measurements (PMUs) are calculated separately through unscented transformation and a Vector Auto-Regression (VAR) model. In particular, PMU measurements during the waiting period of two SCADA measurement scans are buffered to develop the VAR model with robustly estimated parameters using projection statistics approach. The latter takes into account the temporal and spatial correlations of PMU measurements and provides redundant measurements to suppress bad data and mitigate imperfect synchronization. In case where the SCADAmore » and PMU measurements are not time synchronized, either the forecasted PMU measurements or the prior SCADA measurements from the last estimation run are leveraged to restore system observability. Then, a robust generalized maximum-likelihood (GM)-estimator is extended to integrate measurement error correlations and to handle the outliers in the SCADA and PMU measurements. Simulation results that stem from a comprehensive comparison with other alternatives under various conditions demonstrate the benefits of the proposed framework.« less

  13. A Robust State Estimation Framework Considering Measurement Correlations and Imperfect Synchronization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Junbo; Wang, Shaobu; Mili, Lamine

    Here, this paper develops a robust power system state estimation framework with the consideration of measurement correlations and imperfect synchronization. In the framework, correlations of SCADA and Phasor Measurements (PMUs) are calculated separately through unscented transformation and a Vector Auto-Regression (VAR) model. In particular, PMU measurements during the waiting period of two SCADA measurement scans are buffered to develop the VAR model with robustly estimated parameters using projection statistics approach. The latter takes into account the temporal and spatial correlations of PMU measurements and provides redundant measurements to suppress bad data and mitigate imperfect synchronization. In case where the SCADAmore » and PMU measurements are not time synchronized, either the forecasted PMU measurements or the prior SCADA measurements from the last estimation run are leveraged to restore system observability. Then, a robust generalized maximum-likelihood (GM)-estimator is extended to integrate measurement error correlations and to handle the outliers in the SCADA and PMU measurements. Simulation results that stem from a comprehensive comparison with other alternatives under various conditions demonstrate the benefits of the proposed framework.« less

  14. Upscaling transport of a reacting solute through a peridocially converging-diverging channel at pre-asymptotic times

    NASA Astrophysics Data System (ADS)

    Sund, Nicole L.; Bolster, Diogo; Dawson, Clint

    2015-11-01

    In this study we extend the Spatial Markov model, which has been successfully used to upscale conservative transport across a diverse range of porous media flows, to test if it can accurately upscale reactive transport, defined by a spatially heterogeneous first order degradation rate. We test the model in a well known highly simplified geometry, commonly considered as an idealized pore or fracture structure, a periodic channel with wavy boundaries. The edges of the flow domain have a layer through which there is no flow, but in which diffusion of a solute still occurs. Reactions are confined to this region. We demonstrate that the Spatial Markov model, an upscaled random walk model that enforces correlation between successive jumps, can reproduce breakthrough curves measured from microscale simulations that explicitly resolve all pertinent processes. We also demonstrate that a similar random walk model that does not enforce successive correlations is unable to reproduce all features of the measured breakthrough curves.

  15. Resolution of the EPR Paradox for Fermion Spin Correlations

    NASA Astrophysics Data System (ADS)

    Close, Robert

    2011-10-01

    The EPR paradox addresses the question of whether a physical system can have a definite state independent of its measurement. Bell's Theorem places limits on correlations between local measurements of particles whose properties are established prior to measurement. Experimental violation of Bell's theorem has been regarded as evidence against the existence of a definite state prior to measurement. We model fermions as having a spatial distribution of spin values, so that a Stern-Gerlach device samples the spin distribution differently at different orientations. The computed correlations agree with quantum mechanical predictions and experimental observations. Bell's Theorem is not applicable because for any sampling of angles, different points on the sphere have different density of states.

  16. Single-shot imaging of trapped Fermi gas

    NASA Astrophysics Data System (ADS)

    Gajda, Mariusz; Mostowski, Jan; Sowiński, Tomasz; Załuska-Kotur, Magdalena

    2016-07-01

    Recently developed techniques allow for simultaneous measurements of the positions of all ultra-cold atoms in a trap with high resolution. Each such single-shot experiment detects one element of the quantum ensemble formed by the cloud of atoms. Repeated single-shot measurements can be used to determine all correlations between particle positions as opposed to standard measurements that determine particle density or two-particle correlations only. In this paper we discuss the possible outcomes of such single-shot measurements in the case of cloud of ultra-cold noninteracting Fermi atoms. We show that the Pauli exclusion principle alone leads to correlations between particle positions that originate from unexpected spatial structures formed by the atoms.

  17. Large-scale cortical correlation structure of spontaneous oscillatory activity

    PubMed Central

    Hipp, Joerg F.; Hawellek, David J.; Corbetta, Maurizio; Siegel, Markus; Engel, Andreas K.

    2013-01-01

    Little is known about the brain-wide correlation of electrophysiological signals. Here we show that spontaneous oscillatory neuronal activity exhibits frequency-specific spatial correlation structure in the human brain. We developed an analysis approach that discounts spurious correlation of signal power caused by the limited spatial resolution of electrophysiological measures. We applied this approach to source estimates of spontaneous neuronal activity reconstructed from magnetoencephalography (MEG). Overall, correlation of power across cortical regions was strongest in the alpha to beta frequency range (8–32 Hz) and correlation patterns depended on the underlying oscillation frequency. Global hubs resided in the medial temporal lobe in the theta frequency range (4–6 Hz), in lateral parietal areas in the alpha to beta frequency range (8–23 Hz), and in sensorimotor areas for higher frequencies (32–45 Hz). Our data suggest that interactions in various large-scale cortical networks may be reflected in frequency specific power-envelope correlations. PMID:22561454

  18. Influence of thermal light correlations on photosynthetic structures

    NASA Astrophysics Data System (ADS)

    de Mendoza, Adriana; Manrique, Pedro; Caycedo-Soler, Felipe; Johnson, Neil F.; Rodríguez, Ferney J.; Quiroga, Luis

    2014-03-01

    The thermal light from the sun is characterized by both classical and quantum mechanical correlations. These correlations have left a fingerprint on the natural harvesting structures developed through five billion years of evolutionary pressure, specially in photosynthetic organisms. In this work, based upon previous extensive studies of spatio-temporal correlations of light fields, we hypothesize that structures involving photosensitive pigments like those present in purple bacteria vesicles emerge as an evolutionary response to the different properties of incident light. By using burstiness and memory as measures that quantify higher moments of the photon arrival statistics, we generate photon-time traces. They are used to simulate absorption on detectors spatially extended over regions comparable to these light fields coherence length. Finally, we provide some insights into the connection between these photo-statistical features with the photosynthetic membrane architecture and the lights' spatial correlation. Facultad de Ciencias Uniandes.

  19. Complex polarization-phase and spatial-frequency selections of laser images of blood-plasma films in diagnostics of changes in their polycrystalline structure

    NASA Astrophysics Data System (ADS)

    Ushenko, Yu. A.; Angelskii, P. O.; Dubolazov, A. V.; Karachevtsev, A. O.; Sidor, M. I.; Mintser, O. P.; Oleinichenko, B. P.; Bizer, L. I.

    2013-10-01

    We present a theoretical formalism of correlation phase analysis of laser images of human blood plasma with spatial-frequency selection of manifestations of mechanisms of linear and circular birefringence of albumin and globulin polycrystalline networks. Comparative results of the measurement of coordinate distributions of the correlation parameter—the modulus of the degree of local correlation of amplitudes—of laser images of blood plasma taken from patients of three groups—healthy patients (donors), rheumatoid-arthritis patients, and breast-cancer patients—are presented. We investigate values and ranges of change of statistical (the first to fourth statistical moments), correlation (excess of autocorrelation functions), and fractal (slopes of approximating curves and dispersion of extrema of logarithmic dependences of power spectra) parameters of coordinate distributions of the degree of local correlation of amplitudes. Objective criteria for diagnostics of occurrence and differentiation of inflammatory and oncological states are determined.

  20. Real three-dimensional objects: effects on mental rotation.

    PubMed

    Felix, Michael C; Parker, Joshua D; Lee, Charles; Gabriel, Kara I

    2011-08-01

    The current experiment investigated real three-dimensional (3D) objects with regard to performance on a mental rotation task and whether the appearance of sex differences may be mediated by experiences with spatially related activities. 40 men and 40 women were presented with alternating timed trials consisting of real-3D objects or two-dimensional illustrations of 3D objects. Sex differences in spatially related activities did not significantly influence the finding that men outperformed women on mental rotation of either stimulus type. However, on measures related to spatial activities, self-reported proficiency using maps correlated positively with performance only on trials with illustrations whereas self-reported proficiency using GPS correlated negatively with performance regardless of stimulus dimensionality. Findings may be interpreted as suggesting that rotating real-3D objects utilizes distinct but overlapping spatial skills compared to rotating two-dimensional representations of 3D objects, and real-3D objects can enhance mental rotation performance.

  1. Vibration Response Models of a Stiffened Aluminum Plate Excited by a Shaker

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph H.

    2008-01-01

    Numerical models of structural-acoustic interactions are of interest to aircraft designers and the space program. This paper describes a comparison between two energy finite element codes, a statistical energy analysis code, a structural finite element code, and the experimentally measured response of a stiffened aluminum plate excited by a shaker. Different methods for modeling the stiffeners and the power input from the shaker are discussed. The results show that the energy codes (energy finite element and statistical energy analysis) accurately predicted the measured mean square velocity of the plate. In addition, predictions from an energy finite element code had the best spatial correlation with measured velocities. However, predictions from a considerably simpler, single subsystem, statistical energy analysis model also correlated well with the spatial velocity distribution. The results highlight a need for further work to understand the relationship between modeling assumptions and the prediction results.

  2. Spatial Variability of Snowpack Properties On Small Slopes

    NASA Astrophysics Data System (ADS)

    Pielmeier, C.; Kronholm, K.; Schneebeli, M.; Schweizer, J.

    The spatial variability of alpine snowpacks is created by a variety of parameters like deposition, wind erosion, sublimation, melting, temperature, radiation and metamor- phism of the snow. Spatial variability is thought to strongly control the avalanche initi- ation and failure propagation processes. Local snowpack measurements are currently the basis for avalanche warning services and there exist contradicting hypotheses about the spatial continuity of avalanche active snow layers and interfaces. Very little about the spatial variability of the snowpack is known so far, therefore we have devel- oped a systematic and objective method to measure the spatial variability of snowpack properties, layering and its relation to stability. For a complete coverage, the analysis of the spatial variability has to entail all scales from mm to km. In this study the small to medium scale spatial variability is investigated, i.e. the range from centimeters to tenths of meters. During the winter 2000/2001 we took systematic measurements in lines and grids on a flat snow test field with grid distances from 5 cm to 0.5 m. Fur- thermore, we measured systematic grids with grid distances between 0.5 m and 2 m in undisturbed flat fields and on small slopes above the tree line at the Choerbschhorn, in the region of Davos, Switzerland. On 13 days we measured the spatial pattern of the snowpack stratigraphy with more than 110 snow micro penetrometer measure- ments at slopes and flat fields. Within this measuring grid we placed 1 rutschblock and 12 stuffblock tests to measure the stability of the snowpack. With the large num- ber of measurements we are able to use geostatistical methods to analyse the spatial variability of the snowpack. Typical correlation lengths are calculated from semivari- ograms. Discerning the systematic trends from random spatial variability is analysed using statistical models. Scale dependencies are shown and recurring scaling patterns are outlined. The importance of the small and medium scale spatial variability for the larger (kilometer) scale spatial variability as well as for the avalanche formation are discussed. Finally, an outlook on spatial models for the snowpack variability is given.

  3. Global spectroscopic survey of cloud thermodynamic phase at high spatial resolution, 2005-2015

    NASA Astrophysics Data System (ADS)

    Thompson, David R.; Kahn, Brian H.; Green, Robert O.; Chien, Steve A.; Middleton, Elizabeth M.; Tran, Daniel Q.

    2018-02-01

    The distribution of ice, liquid, and mixed phase clouds is important for Earth's planetary radiation budget, impacting cloud optical properties, evolution, and solar reflectivity. Most remote orbital thermodynamic phase measurements observe kilometer scales and are insensitive to mixed phases. This under-constrains important processes with outsize radiative forcing impact, such as spatial partitioning in mixed phase clouds. To date, the fine spatial structure of cloud phase has not been measured at global scales. Imaging spectroscopy of reflected solar energy from 1.4 to 1.8 µm can address this gap: it directly measures ice and water absorption, a robust indicator of cloud top thermodynamic phase, with spatial resolution of tens to hundreds of meters. We report the first such global high spatial resolution survey based on data from 2005 to 2015 acquired by the Hyperion imaging spectrometer onboard NASA's Earth Observer 1 (EO-1) spacecraft. Seasonal and latitudinal distributions corroborate observations by the Atmospheric Infrared Sounder (AIRS). For extratropical cloud systems, just 25 % of variance observed at GCM grid scales of 100 km was related to irreducible measurement error, while 75 % was explained by spatial correlations possible at finer resolutions.

  4. Executive Function, Visual Attention and the Cocktail Party Problem in Musicians and Non-Musicians.

    PubMed

    Clayton, Kameron K; Swaminathan, Jayaganesh; Yazdanbakhsh, Arash; Zuk, Jennifer; Patel, Aniruddh D; Kidd, Gerald

    2016-01-01

    The goal of this study was to investigate how cognitive factors influence performance in a multi-talker, "cocktail-party" like environment in musicians and non-musicians. This was achieved by relating performance in a spatial hearing task to cognitive processing abilities assessed using measures of executive function (EF) and visual attention in musicians and non-musicians. For the spatial hearing task, a speech target was presented simultaneously with two intelligible speech maskers that were either colocated with the target (0° azimuth) or were symmetrically separated from the target in azimuth (at ±15°). EF assessment included measures of cognitive flexibility, inhibition control and auditory working memory. Selective attention was assessed in the visual domain using a multiple object tracking task (MOT). For the MOT task, the observers were required to track target dots (n = 1,2,3,4,5) in the presence of interfering distractor dots. Musicians performed significantly better than non-musicians in the spatial hearing task. For the EF measures, musicians showed better performance on measures of auditory working memory compared to non-musicians. Furthermore, across all individuals, a significant correlation was observed between performance on the spatial hearing task and measures of auditory working memory. This result suggests that individual differences in performance in a cocktail party-like environment may depend in part on cognitive factors such as auditory working memory. Performance in the MOT task did not differ between groups. However, across all individuals, a significant correlation was found between performance in the MOT and spatial hearing tasks. A stepwise multiple regression analysis revealed that musicianship and performance on the MOT task significantly predicted performance on the spatial hearing task. Overall, these findings confirm the relationship between musicianship and cognitive factors including domain-general selective attention and working memory in solving the "cocktail party problem".

  5. Executive Function, Visual Attention and the Cocktail Party Problem in Musicians and Non-Musicians

    PubMed Central

    Clayton, Kameron K.; Swaminathan, Jayaganesh; Yazdanbakhsh, Arash; Zuk, Jennifer; Patel, Aniruddh D.; Kidd, Gerald

    2016-01-01

    The goal of this study was to investigate how cognitive factors influence performance in a multi-talker, “cocktail-party” like environment in musicians and non-musicians. This was achieved by relating performance in a spatial hearing task to cognitive processing abilities assessed using measures of executive function (EF) and visual attention in musicians and non-musicians. For the spatial hearing task, a speech target was presented simultaneously with two intelligible speech maskers that were either colocated with the target (0° azimuth) or were symmetrically separated from the target in azimuth (at ±15°). EF assessment included measures of cognitive flexibility, inhibition control and auditory working memory. Selective attention was assessed in the visual domain using a multiple object tracking task (MOT). For the MOT task, the observers were required to track target dots (n = 1,2,3,4,5) in the presence of interfering distractor dots. Musicians performed significantly better than non-musicians in the spatial hearing task. For the EF measures, musicians showed better performance on measures of auditory working memory compared to non-musicians. Furthermore, across all individuals, a significant correlation was observed between performance on the spatial hearing task and measures of auditory working memory. This result suggests that individual differences in performance in a cocktail party-like environment may depend in part on cognitive factors such as auditory working memory. Performance in the MOT task did not differ between groups. However, across all individuals, a significant correlation was found between performance in the MOT and spatial hearing tasks. A stepwise multiple regression analysis revealed that musicianship and performance on the MOT task significantly predicted performance on the spatial hearing task. Overall, these findings confirm the relationship between musicianship and cognitive factors including domain-general selective attention and working memory in solving the “cocktail party problem”. PMID:27384330

  6. Validation of walk score for estimating neighborhood walkability: an analysis of four US metropolitan areas.

    PubMed

    Duncan, Dustin T; Aldstadt, Jared; Whalen, John; Melly, Steven J; Gortmaker, Steven L

    2011-11-01

    Neighborhood walkability can influence physical activity. We evaluated the validity of Walk Score(®) for assessing neighborhood walkability based on GIS (objective) indicators of neighborhood walkability with addresses from four US metropolitan areas with several street network buffer distances (i.e., 400-, 800-, and 1,600-meters). Address data come from the YMCA-Harvard After School Food and Fitness Project, an obesity prevention intervention involving children aged 5-11 years and their families participating in YMCA-administered, after-school programs located in four geographically diverse metropolitan areas in the US (n = 733). GIS data were used to measure multiple objective indicators of neighborhood walkability. Walk Scores were also obtained for the participant's residential addresses. Spearman correlations between Walk Scores and the GIS neighborhood walkability indicators were calculated as well as Spearman correlations accounting for spatial autocorrelation. There were many significant moderate correlations between Walk Scores and the GIS neighborhood walkability indicators such as density of retail destinations and intersection density (p < 0.05). The magnitude varied by the GIS indicator of neighborhood walkability. Correlations generally became stronger with a larger spatial scale, and there were some geographic differences. Walk Score(®) is free and publicly available for public health researchers and practitioners. Results from our study suggest that Walk Score(®) is a valid measure of estimating certain aspects of neighborhood walkability, particularly at the 1600-meter buffer. As such, our study confirms and extends the generalizability of previous findings demonstrating that Walk Score is a valid measure of estimating neighborhood walkability in multiple geographic locations and at multiple spatial scales.

  7. Planar spatial correlations, anisotropy, and specific surface area of stationary random porous media

    NASA Astrophysics Data System (ADS)

    Berryman, James G.

    1998-02-01

    An earlier result of the author showed that an anisotropic spatial correlation function of a random porous medium could be used to compute the specific surface area when it is stationary as well as anisotropic by first performing a three-dimensional radial average and then taking the first derivative with respect to lag at the origin. This result generalized the earlier result for isotropic porous media of Debye et al. [J. Appl. Phys. 28, 679 (1957)]. The present article provides more detailed information about the use of spatial correlation functions for anisotropic porous media and in particular shows that, for stationary anisotropic media, the specific surface area can be related to the derivative of the two-dimensional radial average of the correlation function measured from cross sections taken through the anisotropic medium. The main concept is first illustrated using a simple pedagogical example for an anisotropic distribution of spherical voids. Then, a general derivation of formulas relating the derivative of the planar correlation functions to surface integrals is presented. When the surface normal is uniformly distributed (as is the case for any distribution of spherical voids), our formulas can be used to relate a specific surface area to easily measurable quantities from any single cross section. When the surface normal is not distributed uniformly (as would be the case for an oriented distribution of ellipsoidal voids), our results show how to obtain valid estimates of specific surface area by averaging measurements on three orthogonal cross sections. One important general observation for porous media is that the surface area from nearly flat cracks may be underestimated from measurements on orthogonal cross sections if any of the cross sections happen to lie in the plane of the cracks. This result is illustrated by taking the very small aspect ratio (penny-shaped crack) limit of an oblate spheroid, but holds for other types of flat surfaces as well.

  8. Planar spatial correlations, anisotropy, and specific surface area of stationary random porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berryman, J.G.

    1998-02-01

    An earlier result of the author showed that an anisotropic spatial correlation function of a random porous medium could be used to compute the specific surface area when it is stationary as well as anisotropic by first performing a three-dimensional radial average and then taking the first derivative with respect to lag at the origin. This result generalized the earlier result for isotropic porous media of Debye {ital et al.} [J. Appl. Phys. {bold 28}, 679 (1957)]. The present article provides more detailed information about the use of spatial correlation functions for anisotropic porous media and in particular shows that,more » for stationary anisotropic media, the specific surface area can be related to the derivative of the two-dimensional radial average of the correlation function measured from cross sections taken through the anisotropic medium. The main concept is first illustrated using a simple pedagogical example for an anisotropic distribution of spherical voids. Then, a general derivation of formulas relating the derivative of the planar correlation functions to surface integrals is presented. When the surface normal is uniformly distributed (as is the case for any distribution of spherical voids), our formulas can be used to relate a specific surface area to easily measurable quantities from any single cross section. When the surface normal is not distributed uniformly (as would be the case for an oriented distribution of ellipsoidal voids), our results show how to obtain valid estimates of specific surface area by averaging measurements on three orthogonal cross sections. One important general observation for porous media is that the surface area from nearly flat cracks may be underestimated from measurements on orthogonal cross sections if any of the cross sections happen to lie in the plane of the cracks. This result is illustrated by taking the very small aspect ratio (penny-shaped crack) limit of an oblate spheroid, but holds for other types of flat surfaces as well.« less

  9. Agreement of central site measurements and land use regression modeled oxidative potential of PM{sub 2.5} with personal exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Aileen, E-mail: Yang@uu.nl; Institute for Risk Assessment Sciences, Division Environmental Epidemiology, Utrecht University, P.O. Box 80.178, 3508TD Utrecht; Hoek, Gerard

    Oxidative potential (OP) of ambient particulate matter (PM) has been suggested as a health-relevant exposure metric. In order to use OP for exposure assessment, information is needed about how well central site OP measurements and modeled average OP at the home address reflect temporal and spatial variation of personal OP. We collected 96-hour personal, home outdoor and indoor PM{sub 2.5} samples from 15 volunteers living either at traffic, urban or regional background locations in Utrecht, the Netherlands. OP was also measured at one central reference site to account for temporal variations. OP was assessed using electron spin resonance (OP{sup ESR})more » and dithiothreitol (OP{sup DTT}). Spatial variation of average OP at the home address was modeled using land use regression (LUR) models. For both OP{sup ESR} and OP{sup DTT}, temporal correlations of central site measurements with home outdoor measurements were high (R>0.75), and moderate to high (R=0.49–0.70) with personal measurements. The LUR model predictions for OP correlated significantly with the home outdoor concentrations for OP{sup DTT} and OP{sup ESR} (R=0.65 and 0.62, respectively). LUR model predictions were moderately correlated with personal OP{sup DTT} measurements (R=0.50). Adjustment for indoor sources, such as vacuum cleaning and absence of fume-hood, improved the temporal and spatial agreement with measured personal exposure for OP{sup ESR}. OP{sup DTT} was not associated with any indoor sources. Our study results support the use of central site OP for exposure assessment of epidemiological studies focusing on short-term health effects. - Highlights: • Oxidative potential (OP) of PM was proposed as a health-relevant exposure metric. • We evaluated the relationship between measured and modeled outdoor and personal OP. • Temporal correlations of central site with personal OP are moderate to high. • Adjusting for indoor sources improved the agreement with personal OP. • Our results support the use of central site OP for short-term health effect studies.« less

  10. Correlated Imaging – A Grand Challenge in Chemical Analysis

    PubMed Central

    Masyuko, Rachel; Lanni, Eric; Sweedler, Jonathan V.; Bohn, Paul W.

    2013-01-01

    Correlated chemical imaging is an emerging strategy for acquisition of images by combining information from multiplexed measurement platforms to track, visualize, and interpret in situ changes in the structure, organization, and activities of interesting chemical systems, frequently spanning multiple decades in space and time. Acquiring and correlating information from complementary imaging experiments has the potential to expose complex chemical behavior in ways that are simply not available from single methods applied in isolation, thereby greatly amplifying the information gathering power of imaging experiments. However, in order to correlate image information across platforms, a number of issues must be addressed. First, signals are obtained from disparate experiments with fundamentally different figures of merit, including pixel size, spatial resolution, dynamic range, and acquisition rates. In addition, images are often acquired on different instruments in different locations, so the sample must be registered spatially so that the same area of the sample landscape is addressed. The signals acquired must be correlated in both spatial and temporal domains, and the resulting information has to be presented in a way that is readily understood. These requirements pose special challenges for image cross-correlation that go well beyond those posed in single technique imaging approaches. The special opportunities and challenges that attend correlated imaging are explored by specific reference to correlated mass spectrometric and Raman imaging, a topic of substantial and growing interest. PMID:23431559

  11. Measuring Long-Range 13C– 13C Correlations on a Surface under Natural Abundance Using Dynamic Nuclear Polarization-Enhanced Solid-State Nuclear Magnetic Resonance [Measuring Long Range 13C– 13C Correlations on Surface under Natural Abundance Using DNP-enhanced Solid-state NMR

    DOE PAGES

    Kobayashi, Takeshi; Slowing, Igor I.; Pruski, Marek

    2017-10-13

    Here, we report that spatial (<1 nm) proximity between different molecules in solid bulk materials and, for the first time, different moieties on the surface of a catalyst, can be established without isotope enrichment by means of homonuclear CHHC solid-state nuclear magnetic resonance experiment. This 13C– 13C correlation measurement, which hitherto was not possible for natural-abundance solids, was enabled by the use of dynamic nuclear polarization. Importantly, it allows the study of long-range correlations in a variety of materials with high resolution.

  12. Measuring Long-Range 13C– 13C Correlations on a Surface under Natural Abundance Using Dynamic Nuclear Polarization-Enhanced Solid-State Nuclear Magnetic Resonance [Measuring Long Range 13C– 13C Correlations on Surface under Natural Abundance Using DNP-enhanced Solid-state NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Takeshi; Slowing, Igor I.; Pruski, Marek

    Here, we report that spatial (<1 nm) proximity between different molecules in solid bulk materials and, for the first time, different moieties on the surface of a catalyst, can be established without isotope enrichment by means of homonuclear CHHC solid-state nuclear magnetic resonance experiment. This 13C– 13C correlation measurement, which hitherto was not possible for natural-abundance solids, was enabled by the use of dynamic nuclear polarization. Importantly, it allows the study of long-range correlations in a variety of materials with high resolution.

  13. Smoothing effect for spatially distributed renewable resources and its impact on power grid robustness.

    PubMed

    Nagata, Motoki; Hirata, Yoshito; Fujiwara, Naoya; Tanaka, Gouhei; Suzuki, Hideyuki; Aihara, Kazuyuki

    2017-03-01

    In this paper, we show that spatial correlation of renewable energy outputs greatly influences the robustness of the power grids against large fluctuations of the effective power. First, we evaluate the spatial correlation among renewable energy outputs. We find that the spatial correlation of renewable energy outputs depends on the locations, while the influence of the spatial correlation of renewable energy outputs on power grids is not well known. Thus, second, by employing the topology of the power grid in eastern Japan, we analyze the robustness of the power grid with spatial correlation of renewable energy outputs. The analysis is performed by using a realistic differential-algebraic equations model. The results show that the spatial correlation of the energy resources strongly degrades the robustness of the power grid. Our results suggest that we should consider the spatial correlation of the renewable energy outputs when estimating the stability of power grids.

  14. Diffuse correlation tomography in the transport regime: A theoretical study of the sensitivity to Brownian motion.

    PubMed

    Tricoli, Ugo; Macdonald, Callum M; Durduran, Turgut; Da Silva, Anabela; Markel, Vadim A

    2018-02-01

    Diffuse correlation tomography (DCT) uses the electric-field temporal autocorrelation function to measure the mean-square displacement of light-scattering particles in a turbid medium over a given exposure time. The movement of blood particles is here estimated through a Brownian-motion-like model in contrast to ordered motion as in blood flow. The sensitivity kernel relating the measurable field correlation function to the mean-square displacement of the particles can be derived by applying a perturbative analysis to the correlation transport equation (CTE). We derive an analytical expression for the CTE sensitivity kernel in terms of the Green's function of the radiative transport equation, which describes the propagation of the intensity. We then evaluate the kernel numerically. The simulations demonstrate that, in the transport regime, the sensitivity kernel provides sharper spatial information about the medium as compared with the correlation diffusion approximation. Also, the use of the CTE allows one to explore some additional degrees of freedom in the data such as the collimation direction of sources and detectors. Our results can be used to improve the spatial resolution of DCT, in particular, with applications to blood flow imaging in regions where the Brownian motion is dominant.

  15. Diffuse correlation tomography in the transport regime: A theoretical study of the sensitivity to Brownian motion

    NASA Astrophysics Data System (ADS)

    Tricoli, Ugo; Macdonald, Callum M.; Durduran, Turgut; Da Silva, Anabela; Markel, Vadim A.

    2018-02-01

    Diffuse correlation tomography (DCT) uses the electric-field temporal autocorrelation function to measure the mean-square displacement of light-scattering particles in a turbid medium over a given exposure time. The movement of blood particles is here estimated through a Brownian-motion-like model in contrast to ordered motion as in blood flow. The sensitivity kernel relating the measurable field correlation function to the mean-square displacement of the particles can be derived by applying a perturbative analysis to the correlation transport equation (CTE). We derive an analytical expression for the CTE sensitivity kernel in terms of the Green's function of the radiative transport equation, which describes the propagation of the intensity. We then evaluate the kernel numerically. The simulations demonstrate that, in the transport regime, the sensitivity kernel provides sharper spatial information about the medium as compared with the correlation diffusion approximation. Also, the use of the CTE allows one to explore some additional degrees of freedom in the data such as the collimation direction of sources and detectors. Our results can be used to improve the spatial resolution of DCT, in particular, with applications to blood flow imaging in regions where the Brownian motion is dominant.

  16. Characterization of soil spatial variability for site-specific management using soil electrical conductivity and other remotely sensed data

    NASA Astrophysics Data System (ADS)

    Bang, Jisu

    Field-scale characterization of soil spatial variability using remote sensing technology has potential for achieving the successful implementation of site-specific management (SSM). The objectives of this study were to: (i) examine the spatial relationships between apparent soil electrical conductivity (EC a) and soil chemical and physical properties to determine if EC a could be useful to characterize soil properties related to crop productivity in the Coastal Plain and Piedmont of North Carolina; (ii) evaluate the effects of in-situ soil moisture variation on ECa mapping as a basis for characterization of soil spatial variability and as a data layer in cluster analysis as a means of delineating sampling zones; (iii) evaluate clustering approaches using different variable sets for management zone delineation to characterize spatial variability in soil nutrient levels and crop yields. Studies were conducted in two fields in the Piedmont and three fields in the Coastal Plain of North Carolina. Spatial measurements of ECa via electromagnetic induction (EMI) were compared with soil chemical parameters (extractable P, K, and micronutrients; pH, cation exchange capacity [CEC], humic matter or soil organic matter; and physical parameters (percentage sand, silt, and clay; and plant-available water [PAW] content; bulk density; cone index; saturated hydraulic conductivity [Ksat] in one of the coastal plain fields) using correlation analysis across fields. We also collected ECa measurements in one coastal plain field on four days with significantly different naturally occurring soil moisture conditions measured in five increments to 0.75 m using profiling time-domain reflectometry probes to evaluate the temporal variability of ECa associated with changes in in-situ soil moisture content. Nonhierarchical k-means cluster analysis using sensor-based field attributes including vertical ECa, near-infrared (NIR) radiance of bare-soil from an aerial color infrared (CIR) image, elevation, slope, and their combinations was performed to delineate management zones. The strengths and signs of the correlations between ECa and measured soil properties varied among fields. Few strong direct correlations were found between ECa and the soil chemical and physical properties studied (r2 < 0.50), but correlations improved considerably when zone mean ECa and zone means of selected soil properties among ECa zones were compared. The results suggested that field-scale ECa survey is not able to directly predict soil nutrient levels at any specific location, but could delimit distinct zones of soil condition among which soil nutrient levels differ, providing an effective basis for soil sampling on a zone basis. (Abstract shortened by UMI.)

  17. Method and apparatus for fiber optic multiple scattering suppression

    NASA Technical Reports Server (NTRS)

    Ackerson, Bruce J. (Inventor)

    2000-01-01

    The instant invention provides a method and apparatus for use in laser induced dynamic light scattering which attenuates the multiple scattering component in favor of the single scattering component. The preferred apparatus utilizes two light detectors that are spatially and/or angularly separated and which simultaneously record the speckle pattern from a single sample. The recorded patterns from the two detectors are then cross correlated in time to produce one point on a composite single/multiple scattering function curve. By collecting and analyzing cross correlation measurements that have been taken at a plurality of different spatial/angular positions, the signal representative of single scattering may be differentiated from the signal representative of multiple scattering, and a near optimum detector separation angle for use in taking future measurements may be determined.

  18. Spatial fluorescence cross-correlation spectroscopy between core and ring pinholes

    NASA Astrophysics Data System (ADS)

    Blancquaert, Yoann; Delon, Antoine; Derouard, Jacques; Jaffiol, Rodolphe

    2006-04-01

    Fluorescence Correlation Spectroscopy (FCS) is an attractive method to measure molecular concentration, mobility parameters and chemical kinetics. However its ability to descriminate different diffusing species needs to be improved. Recently, we have proposed a simplified spatial Fluorescence cross Correlation Spectroscopy (sFCCS) method, allowing, with only one focused laser beam to obtain two confocal volumes spatially shifted. Now, we present a new sFCCS optical geometry where the two pinholes, a ring and core, are encapsulated one in the other. In this approach all physical and chemical processes that occur in a single volume, like singlet-triplet dynamics and photobleaching, can be eliminated; moreover, this new optical geometry optimises the collection of fluorescence. The first cross Correlation curves for Rhodamine 6G (Rh6G) in Ethanol are presented, in addition to the effect of the size of fluorescent particules (nano-beads, diameters : 20, 100 and 200 nm). The relative simplicity of the method leads us to propose sFCCS as an appropriate method for the determination of diffusion parameters of fluorophores in solution or cells. Nevertheless, progresses in the ingeniering of the optical Molecular Detection Efficiency volumes are highly desirable, in order to improve the descrimination between the cross correlated volumes.

  19. TU-C-12A-11: Comparisons Between Cu-ATSM PET and DCE-CT Kinetic Parameters in Canine Sinonasal Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Fontaine, M; Bradshaw, T; Kubicek, L

    2014-06-15

    Purpose: Regions of poor perfusion within tumors may be associated with higher hypoxic levels. This study aimed to test this hypothesis by comparing measurements of hypoxia from Cu-ATSM PET to vasculature kinetic parameters from DCE-CT kinetic analysis. Methods: Ten canine patients with sinonasal tumors received one Cu-ATSM PET/CT scan and three DCE-CT scans prior to treatment. Cu-ATSM PET/CT and DCE-CT scans were registered and resampled to matching voxel dimensions. Kinetic analysis was performed on DCE-CT scans and for each patient, the resulting kinetic parameter values from the three DCE-CT scans were averaged together. Cu-ATSM SUVs were spatially correlated (r{sub spatial})more » on a voxel-to-voxel basis against the following DCE-CT kinetic parameters: transit time (t{sub 1}), blood flow (F), vasculature fraction (v{sub 1}), and permeability (PS). In addition, whole-tumor comparisons were performed by correlating (r{sub ROI}) the mean Cu-ATSM SUV (SUV{sub mean}) with median kinetic parameter values. Results: The spatial correlations (r{sub spatial}) were poor and ranged from -0.04 to 0.21 for all kinetic parameters. These low spatial correlations may be due to high variability in the DCE-CT kinetic parameter voxel values between scans. In our hypothesis, t{sub 1} was expected to have a positive correlation, while F was expected to have a negative correlation to hypoxia. However, in wholetumor analysis the opposite was found for both t{sub 1} (r{sub ROI} = -0.25) and F (r{sub ROI} = 0.56). PS and v{sub 1} may depict angiogenic responses to hypoxia and found positive correlations to Cu-ATSM SUV for PS (r{sub ROI} = 0.41), and v{sub 1} (r{sub ROI} = 0.57). Conclusion: Low spatial correlations were found between Cu-ATSM uptake and DCE-CT vasculature parameters, implying that poor perfusion is not associated with higher hypoxic regions. Across patients, the most hypoxic tumors tended to have higher blood flow values, which is contrary to our initial hypothesis. Funding: R01 CA136927.« less

  20. A study on the spatial characteristics and correlation of migrant workers' urban integration and well-being: A case study of Xi’an (China)

    NASA Astrophysics Data System (ADS)

    Wang, D. H.; Yang, X. J.; Hao, F. J.

    2017-07-01

    This paper used SPSS and ARCGIS to measure the urban integration degree and well-being index, spatial features, and their correlation. This results show: (1) The space differentiation of migrant workers’ urban integration degree in Xi’an distinct: The northern great site protection zone area is low, eastern military area is peak and the western electronic district and southwest high-tech zone are second peak areas. (2) Migrant workers’ well-being index has differentiation spatial distribution: eastern military area is significantly higher than other regions, northern economic zone shows low-lying shape, southern cultural and educational area is higher than northern economic development zone, and central business district is higher than the surrounding. (3) As the result of correlation analysis in SPSS 19.0, it is shown that there is certain positive correlation between urban integration degree and well-being index of migrant workers in main urban districts of Xi’an. Economic integration and social integration have positive prediction to well-being.

  1. Measurement of clavicular length and shortening after a midshaft clavicular fracture: Spatial digitization versus planar roentgen photogrammetry.

    PubMed

    Stegeman, Sylvia A; de Witte, Pieter Bas; Boonstra, Sjoerd; de Groot, Jurriaan H; Nagels, Jochem; Krijnen, Pieta; Schipper, Inger B

    2016-08-01

    Clavicular shortening after fracture is deemed prognostic for clinical outcome and is therefore generally assessed on radiographs. It is used for clinical decision making regarding operative or non-operative treatment in the first 2weeks after trauma, although the reliability and accuracy of the measurements are unclear. This study aimed to assess the reliability of roentgen photogrammetry (2D) of clavicular length and shortening, and to compare these with 3D-spatial digitization measurements, obtained with an electromagnetic recording system (Flock of Birds). Thirty-two participants with a consolidated non-operatively treated two or multi-fragmented dislocated midshaft clavicular fracture were analysed. Two observers measured clavicular lengths and absolute and proportional clavicular shortening on radiographs taken before and after fracture consolidation. The clavicular lengths were also measured with spatial digitization. Inter-observer agreement on the radiographic measurements was assessed using the Intraclass Correlation Coefficient (ICC). Agreement between the radiographic and spatial digitization measurements was assessed using a Bland-Altman plot. The inter-observer agreement on clavicular length, and absolute and proportional shortening on trauma radiographs was almost perfect (ICC>0.90), but moderate for absolute shortening after consolidation (ICC=0.45). The Bland-Altman plot compared measurements of length on AP panorama radiographs with spatial digitization and showed that planar roentgen photogrammetry resulted in up to 37mm longer and 34mm shorter measurements than spatial digitization. Measurements of clavicular length on radiographs are highly reliable between observers, but may not reflect the actual length and shortening of the clavicle when compared to length measurements with spatial digitization. We recommend to use proportional shortening when measuring clavicular length or shortening on radiographs for clinical decision making. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Use of Dynamic Visualizations for Engineering Technology, Industrial Technology, and Science Education Students: Implications on Ability to Correctly Create a Sectional View Sketch

    ERIC Educational Resources Information Center

    Katsioloudis, Petros; Dickerson, Daniel; Jovanovic, Vukica; Jones, Mildred V.

    2016-01-01

    Spatial abilities, specifically visualization, play a significant role in the achievement in a wide array of professions including, but not limited to, engineering, technical, mathematical, and scientific professions. However, there is little correlation between the advantages of spatial ability as measured through the creation of a sectional-view…

  3. Coincident Occurrences of Tropical Individual Cirrus Clouds and Deep Convective Systems Derived from TRMM Observations

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Xu, Kuan-Man; Minnis, Patrick; Wielicki, Bruce A.; Hu, Yongxiang; Chambers, Lin; Fan, Alice; Sun, Wenbo

    2007-01-01

    Measurements of cloud properties and atmospheric radiation taken between January and August 1998 by the Tropical Rainfall Measuring Mission (TRMM) satellite were used to investigate the effect of spatial and temporal scales on the coincident occurrences of tropical individual cirrus clouds (ICCs) and deep convective systems (DCSs). It is found that there is little or even negative correlation between instantaneous occurrences of ICC and DCS in small areas, in which both types of clouds cannot grow and expand simultaneously. When spatial and temporal domains are increased, ICCs become more dependent on DCSs due to the origination of many ICCs from DCSs and moisture supply from the DCS in the upper troposphere for the ICCs to grow, resulting in significant positive correlation between the two types of tropical high clouds in large spatial and long temporal scales. This result may suggest that the decrease of tropical high clouds with SST from model simulations is likely caused by restricted spatial domains and limited temporal periods. Finally, the radiative feedback due to the change in tropical high cloud area coverage with sea surface temperature appears small and about -0.14 W/sq m per degree Kelvin.

  4. Parameterizing the Spatial Markov Model From Breakthrough Curve Data Alone

    NASA Astrophysics Data System (ADS)

    Sherman, Thomas; Fakhari, Abbas; Miller, Savannah; Singha, Kamini; Bolster, Diogo

    2017-12-01

    The spatial Markov model (SMM) is an upscaled Lagrangian model that effectively captures anomalous transport across a diverse range of hydrologic systems. The distinct feature of the SMM relative to other random walk models is that successive steps are correlated. To date, with some notable exceptions, the model has primarily been applied to data from high-resolution numerical simulations and correlation effects have been measured from simulated particle trajectories. In real systems such knowledge is practically unattainable and the best one might hope for is breakthrough curves (BTCs) at successive downstream locations. We introduce a novel methodology to quantify velocity correlation from BTC data alone. By discretizing two measured BTCs into a set of arrival times and developing an inverse model, we estimate velocity correlation, thereby enabling parameterization of the SMM in studies where detailed Lagrangian velocity statistics are unavailable. The proposed methodology is applied to two synthetic numerical problems, where we measure all details and thus test the veracity of the approach by comparison of estimated parameters with known simulated values. Our results suggest that our estimated transition probabilities agree with simulated values and using the SMM with this estimated parameterization accurately predicts BTCs downstream. Our methodology naturally allows for estimates of uncertainty by calculating lower and upper bounds of velocity correlation, enabling prediction of a range of BTCs. The measured BTCs fall within the range of predicted BTCs. This novel method to parameterize the SMM from BTC data alone is quite parsimonious, thereby widening the SMM's practical applicability.

  5. Rapid estimation of recharge potential in ephemeral-stream channels using electromagnetic methods, and measurements of channel and vegetation characteristics

    USGS Publications Warehouse

    Callegary, J.B.; Leenhouts, J.M.; Paretti, N.V.; Jones, Christopher A.

    2007-01-01

    To classify recharge potential (RCP) in ephemeral-stream channels, a method was developed that incorporates information about channel geometry, vegetation characteristics, and bed-sediment apparent electrical conductivity (??a). Recharge potential is not independently measurable, but is instead formulated as a site-specific, qualitative parameter. We used data from 259 transects across two ephemeral-stream channels near Sierra Vista, Arizona, a location with a semiarid climate. Seven data types were collected: ??a averaged over two depth intervals (0-3 m, and 0-6 m), channel incision depth and width, diameter-at-breast-height of the largest tree, woody-plant and grass density. A two-tiered system was used to classify a transect's RCP. In the first tier, transects were categorized by estimates of near-surface-sediment hydraulic permeability as low, moderate, or high using measurements of 0-3 m-depth ??a. Each of these categories was subdivided into low, medium, or high RCP classes using the remaining six data types, thus yielding a total of nine RCP designations. Six sites in the study area were used to compare RCP and ??a with previously measured surrogates for hydraulic permeability. Borehole-averaged percent fines showed a moderate correlation with both shallow and deep ??a measurements, however, correlation of point measurements of saturated hydraulic conductivity, percent fines, and cylinder infiltrometer measurements with ??a and RCP was generally poor. The poor correlation was probably caused by the relatively large measurement volume and spatial averaging of ??a compared with the spatially-limited point measurements. Because of the comparatively large spatial extent of measurement transects and variety of data types collected, RCP estimates can give a more complete picture of the major factors affecting recharge at a site than is possible through point or borehole-averaged estimates of hydraulic permeability alone. ?? 2007 Elsevier B.V. All rights reserved.

  6. Two-particle microrheology of quasi-2D viscous systems.

    PubMed

    Prasad, V; Koehler, S A; Weeks, Eric R

    2006-10-27

    We study the spatially correlated motions of colloidal particles in a quasi-2D system (human serum albumin protein molecules at an air-water interface) for different surface viscosities eta s. We observe a transition in the behavior of the correlated motion, from 2D interface dominated at high eta s to bulk fluid dependent at low eta s. The correlated motions can be scaled onto a master curve which captures the features of this transition. This master curve also characterizes the spatial dependence of the flow field of a viscous interface in response to a force. The scale factors used for the master curve allow for the calculation of the surface viscosity eta s that can be compared to one-particle measurements.

  7. Residential Greenness and Birth Outcomes: Evaluating the Influence of Spatially Correlated Built-Environment Factors

    PubMed Central

    Davies, Hugh W.; Frank, Lawrence; Van Loon, Josh; Gehring, Ulrike; Tamburic, Lillian; Brauer, Michael

    2014-01-01

    Background: Half the world’s population lives in urban areas. It is therefore important to identify characteristics of the built environment that are beneficial to human health. Urban greenness has been associated with improvements in a diverse range of health conditions, including birth outcomes; however, few studies have attempted to distinguish potential effects of greenness from those of other spatially correlated exposures related to the built environment. Objectives: We aimed to investigate associations between residential greenness and birth outcomes and evaluate the influence of spatially correlated built environment factors on these associations. Methods: We examined associations between residential greenness [measured using satellite-derived Normalized Difference Vegetation Index (NDVI) within 100 m of study participants’ homes] and birth outcomes in a cohort of 64,705 singleton births (from 1999–2002) in Vancouver, British Columbia, Canada. We also evaluated associations after adjusting for spatially correlated built environmental factors that may influence birth outcomes, including exposure to air pollution and noise, neighborhood walkability, and distance to the nearest park. Results: An interquartile increase in greenness (0.1 in residential NDVI) was associated with higher term birth weight (20.6 g; 95% CI: 16.5, 24.7) and decreases in the likelihood of small for gestational age, very preterm (< 30 weeks), and moderately preterm (30–36 weeks) birth. Associations were robust to adjustment for air pollution and noise exposures, neighborhood walkability, and park proximity. Conclusions: Increased residential greenness was associated with beneficial birth outcomes in this population-based cohort. These associations did not change after adjusting for other spatially correlated built environment factors, suggesting that alternative pathways (e.g., psychosocial and psychological mechanisms) may underlie associations between residential greenness and birth outcomes. Citation: Hystad P, Davies HW, Frank L, Van Loon J, Gehring U, Tamburic L, Brauer M. 2014. Residential greenness and birth outcomes: evaluating the influence of spatially correlated built-environment factors. Environ Health Perspect 122:1095–1102; http://dx.doi.org/10.1289/ehp.1308049 PMID:25014041

  8. Phase-detected Brillouin optical correlation-domain reflectometry

    NASA Astrophysics Data System (ADS)

    Mizuno, Yosuke; Hayashi, Neisei; Fukuda, Hideyuki; Nakamura, Kentaro

    2018-05-01

    Optical fiber sensing techniques based on Brillouin scattering have been extensively studied for structural health monitoring owing to their capability of distributed strain and temperature measurement. Although a higher signal-to-noise ratio (leading to high spatial resolution and high-speed measurement) is generally obtained for two-end-access systems, they reduce the degree of freedom in embedding the sensors into structures, and render the measurement no longer feasible when extremely high loss or breakage occurs at a point of the sensing fiber. To overcome these drawbacks, a one-end-access sensing technique called Brillouin optical correlation-domain reflectometry (BOCDR) has been developed. BOCDR has a high spatial resolution and cost efficiency, but its conventional configuration suffered from relatively low-speed operation. In this paper, we review the recently developed high-speed configurations of BOCDR, including phase-detected BOCDR, with which we demonstrate real-time distributed measurement by tracking a propagating mechanical wave. We also demonstrate breakage detection with a wide strain dynamic range.

  9. Phase-detected Brillouin optical correlation-domain reflectometry

    NASA Astrophysics Data System (ADS)

    Mizuno, Yosuke; Hayashi, Neisei; Fukuda, Hideyuki; Nakamura, Kentaro

    2018-06-01

    Optical fiber sensing techniques based on Brillouin scattering have been extensively studied for structural health monitoring owing to their capability of distributed strain and temperature measurement. Although a higher signal-to-noise ratio (leading to high spatial resolution and high-speed measurement) is generally obtained for two-end-access systems, they reduce the degree of freedom in embedding the sensors into structures, and render the measurement no longer feasible when extremely high loss or breakage occurs at a point of the sensing fiber. To overcome these drawbacks, a one-end-access sensing technique called Brillouin optical correlation-domain reflectometry (BOCDR) has been developed. BOCDR has a high spatial resolution and cost efficiency, but its conventional configuration suffered from relatively low-speed operation. In this paper, we review the recently developed high-speed configurations of BOCDR, including phase-detected BOCDR, with which we demonstrate real-time distributed measurement by tracking a propagating mechanical wave. We also demonstrate breakage detection with a wide strain dynamic range.

  10. Spatial distribution of ammonia-oxidizing bacteria and archaea across a 44-hectare farm related to ecosystem functioning

    PubMed Central

    Wessén, Ella; Söderström, Mats; Stenberg, Maria; Bru, David; Hellman, Maria; Welsh, Allana; Thomsen, Frida; Klemedtson, Leif; Philippot, Laurent; Hallin, Sara

    2011-01-01

    Characterization of spatial patterns of functional microbial communities could facilitate the understanding of the relationships between the ecology of microbial communities, the biogeochemical processes they perform and the corresponding ecosystem functions. Because of the important role the ammonia-oxidizing bacteria (AOB) and archaea (AOA) have in nitrogen cycling and nitrate leaching, we explored the spatial distribution of their activity, abundance and community composition across a 44-ha large farm divided into an organic and an integrated farming system. The spatial patterns were mapped by geostatistical modeling and correlations to soil properties and ecosystem functioning in terms of nitrate leaching were determined. All measured community components for both AOB and AOA exhibited spatial patterns at the hectare scale. The patchy patterns of community structures did not reflect the farming systems, but the AOB community was weakly related to differences in soil pH and moisture, whereas the AOA community to differences in soil pH and clay content. Soil properties related differently to the size of the communities, with soil organic carbon and total nitrogen correlating positively to AOB abundance, while clay content and pH showed a negative correlation to AOA abundance. Contrasting spatial patterns were observed for the abundance distributions of the two groups indicating that the AOB and AOA may occupy different niches in agro-ecosystems. In addition, the two communities correlated differently to community and ecosystem functions. Our results suggest that the AOA, not the AOB, were contributing to nitrate leaching at the site by providing substrate for the nitrite oxidizers. PMID:21228891

  11. Experimental Constraints of the Exotic Shearing of Space-Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, Jonathan William

    2016-08-01

    The Holometer program is a search for rst experimental evidence that space-time has quantum structure. The detector consists of a pair of co-located 40-m power-recycled interferometers whose outputs are read out synchronously at 50 MHz, achieving sensitivity to spatiallycorrelated uctuations in dierential position on time scales shorter than the light-crossing time of the instruments. Unlike gravitational wave interferometers, which time-resolve transient geometrical disturbances in the spatial background, the Holometer is searching for a universal, stationary quantization noise of the background itself. This dissertation presents the nal results of the Holometer Phase I search, an experiment congured for sensitivity to exoticmore » coherent shearing uctuations of space-time. Measurements of high-frequency cross-spectra of the interferometer signals obtain sensitivity to spatially-correlated eects far exceeding any previous measurement, in a broad frequency band extending to 7.6 MHz, twice the inverse light-crossing time of the apparatus. This measurement is the statistical aggregation of 2.1 petabytes of 2-byte dierential position measurements obtained over a month-long exposure time. At 3 signicance, it places an upper limit on the coherence scale of spatial shear two orders of magnitude below the Planck length. The result demonstrates the viability of this novel spatially-correlated interferometric detection technique to reach unprecedented sensitivity to coherent deviations of space-time from classicality, opening the door for direct experimental tests of theories of relational quantum gravity.« less

  12. Urban Obsolescence and Its Educational Implications: A Spatial Perspective

    ERIC Educational Resources Information Center

    Emery, J. S.

    1973-01-01

    In a comparative study of six sample London districts the influence of urban obsolescence, socio-economic class, educational provision, and measured intelligence is correlated with pupil achievement. (JH)

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jiali; Swati, F. N. U.; Stein, Michael L.

    Regional climate models (RCMs) are a standard tool for downscaling climate forecasts to finer spatial scales. The evaluation of RCMs against observational data is an important step in building confidence in the use of RCMs for future prediction. In addition to model performance in climatological means and marginal distributions, a model’s ability to capture spatio-temporal relationships is important. This study develops two approaches: (1) spatial correlation/variogram for a range of spatial lags, with total monthly precipitation and non-seasonal precipitation components used to assess the spatial variations of precipitation; and (2) spatio-temporal correlation for a wide range of distances, directions, andmore » time lags, with daily precipitation occurrence used to detect the dynamic features of precipitation. These measures of spatial and spatio-temporal dependence are applied to a high-resolution RCM run and to the National Center for Environmental Prediction (NCEP)-U.S. Department of Energy (DOE) AMIP II reanalysis data (NCEP-R2), which provides initial and lateral boundary conditions for the RCM. The RCM performs better than NCEP-R2 in capturing both the spatial variations of total and non-seasonal precipitation components and the spatio-temporal correlations of daily precipitation occurrences, which are related to dynamic behaviors of precipitating systems. The improvements are apparent not just at resolutions finer than that of NCEP-R2, but also when the RCM and observational data are aggregated to the resolution of NCEP-R2.« less

  14. Comparison of perceived and modelled geographical access to accident and emergency departments: a cross-sectional analysis from the Caerphilly Health and Social Needs Study.

    PubMed

    Fone, David L; Christie, Stephen; Lester, Nathan

    2006-04-13

    Assessment of the spatial accessibility of hospital accident and emergency departments as perceived by local residents has not previously been investigated. Perceived accessibility may affect where, when, and whether potential patients attend for treatment. Using data on 11,853 respondents to a population survey in Caerphilly county borough, Wales, UK, we present an analysis comparing the accessibility of accident and emergency departments as reported by local residents and drive-time to the nearest accident and emergency department modelled using a geographical information system (GIS). Median drive-times were significantly shorter in the lowest perceived access category and longer in the best perceived access category (p < 0.001). The perceived access and GIS modelled drive-time variables were positively correlated (Spearman's rank correlation coefficient, r = 0.38, p < 0.01). The strongest correlation was found for respondents living in areas in which nearly all households had a car or van (r = 0.47, p < 0.01). Correlations were stronger among respondents reporting good access to public transport and among those reporting a recent accident and emergency attendance for injury treatment compared to other respondents. Correlation coefficients did not vary substantially by levels of household income. Drive-time, road distance and straight-line distance were highly inter-correlated and substituting road distance or straight-line distance as the GIS modelled spatial accessibility measure only marginally decreased the magnitude of the correlations between perceived and GIS modelled access. This study provides evidence that the accessibility of hospital-based health care services as perceived by local residents is related to measures of spatial accessibility modelled using GIS. For studies that aim to model geographical separation in a way that correlates well with the perception of local residents, there may be minimal advantage in using sophisticated measures. Straight-line distance, which can be calculated without GIS, may be as good as GIS-modelled drive-time or distance for this purpose. These findings will be of importance to health policy makers and local planners who seek to obtain local information on access to services through focussed assessments of residents' concerns over accessibility and GIS modelling.

  15. Cochlear-implant spatial selectivity with monopolar, bipolar and tripolar stimulation.

    PubMed

    Zhu, Ziyan; Tang, Qing; Zeng, Fan-Gang; Guan, Tian; Ye, Datian

    2012-01-01

    Sharp spatial selectivity is critical to auditory performance, particularly in pitch-related tasks. Most contemporary cochlear implants have employed monopolar stimulation that produces broad electric fields, which presumably contribute to poor pitch and pitch-related performance by implant users. Bipolar or tripolar stimulation can generate focused electric fields but requires higher current to reach threshold and, more interestingly, has not produced any apparent improvement in cochlear-implant performance. The present study addressed this dilemma by measuring psychophysical and physiological spatial selectivity with both broad and focused stimulations in the same cohort of subjects. Different current levels were adjusted by systematically measuring loudness growth for each stimulus, each stimulation mode, and in each subject. Both psychophysical and physiological measures showed that, although focused stimulation produced significantly sharper spatial tuning than monopolar stimulation, it could shift the tuning position or even split the tuning tips. The altered tuning with focused stimulation is interpreted as a result of poor electrode-to-neuron interface in the cochlea, and is suggested to be mainly responsible for the lack of consistent improvement in implant performance. A linear model could satisfactorily quantify the psychophysical and physiological data and derive the tuning width. Significant correlation was found between the individual physiological and psychophysical tuning widths, and the correlation was improved by log-linearly transforming the physiological data to predict the psychophysical data. Because the physiological measure took only one-tenth of the time of the psychophysical measure, the present model is of high clinical significance in terms of predicting and improving cochlear-implant performance. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Cochlear Implant Spatial Selectivity with Monopolar, Bipolar and Tripolar Stimulation

    PubMed Central

    Zhu, Ziyan; Tang, Qing; Zeng, Fan-Gang; Guan, Tian; Ye, Datian

    2011-01-01

    Sharp spatial selectivity is critical to auditory performance, particularly in pitch related tasks. Most contemporary cochlear implants have employed monopolar stimulation that produces broad electric fields, which presumably contribute to poor pitch and pitch-related performance by implant users. Bipolar or tripolar stimulation can generate focused electric fields but requires higher current to reach threshold and, more interestingly, has not produced any apparent improvement in cochlear implant performance. The present study addressed this dilemma by measuring psychophysical and physiological spatial selectivity with both broad and focused stimulations in the same cohort of subjects. Different current levels were adjusted by systematically measuring loudness growth for each stimulus, each stimulation mode, and in each subject. Both psychophysical and physiological measures showed that, although focused stimulation produced significantly sharper spatial tuning than monopolar stimulation, it could shift the tuning position or even split the tuning tips. The altered tuning with focused stimulation is interpreted as a result of poor electrode-to-neuron interface in the cochlea, and is suggested to be mainly responsible for the lack of consistent improvement in implant performance. A linear model could satisfactorily quantify the psychophysical and physiological data and derive the tuning width. Significant correlation was found between the individual physiological and psychophysical tuning widths, and the correlation was improved by log-linearly transforming the physiological data to predict the psychophysical data. Because the physiological measure took only one-tenth of the time of the psychophysical measure, the present model is of high clinical significance in terms of predicting and improving cochlear implant performance. PMID:22138630

  17. Aperture synthesis for microwave radiometers in space

    NASA Technical Reports Server (NTRS)

    Levine, D. M.; Good, J. C.

    1983-01-01

    A technique is described for obtaining passive microwave measurements from space with high spatial resolution for remote sensing applications. The technique involves measuring the product of the signal from pairs of antennas at many different antenna spacings, thereby mapping the correlation function of antenna voltage. The intensity of radiation at the source can be obtained from the Fourier transform of this correlation function. Theory is presented to show how the technique can be applied to large extended sources such as the Earth when observed from space. Details are presented for a system with uniformly spaced measurements.

  18. First Measurements of High Frequency Cross-Spectra from a Pair of Large Michelson Interferometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Aaron S.; Gustafson, Richard; Hogan, Craig

    Measurements are reported of high frequency cross-spectra of signals from the Fermilab Holometer, a pair of co-located 39 m, high power Michelson interferometers. The instrument obtains differential position sensitivity to cross-correlated signals far exceeding any previous measurement in a broad frequency band extending to the 3.8 MHz inverse light crossing time of the apparatus. A model of universal exotic spatial shear correlations that matches the Planck scale holographic information bound of space-time position states is excluded to 4.6{\\sigma} significance.

  19. Neighborhood Landscape Spatial Patterns and Land Surface Temperature: An Empirical Study on Single-Family Residential Areas in Austin, Texas.

    PubMed

    Kim, Jun-Hyun; Gu, Donghwan; Sohn, Wonmin; Kil, Sung-Ho; Kim, Hwanyong; Lee, Dong-Kun

    2016-09-02

    Rapid urbanization has accelerated land use and land cover changes, and generated the urban heat island effect (UHI). Previous studies have reported positive effects of neighborhood landscapes on mitigating urban surface temperatures. However, the influence of neighborhood landscape spatial patterns on enhancing cooling effects has not yet been fully investigated. The main objective of this study was to assess the relationships between neighborhood landscape spatial patterns and land surface temperatures (LST) by using multi-regression models considering spatial autocorrelation issues. To measure the influence of neighborhood landscape spatial patterns on LST, this study analyzed neighborhood environments of 15,862 single-family houses in Austin, Texas, USA. Using aerial photos, geographic information systems (GIS), and remote sensing, FRAGSTATS was employed to calculate values of several landscape indices used to measure neighborhood landscape spatial patterns. After controlling for the spatial autocorrelation effect, results showed that larger and better-connected landscape spatial patterns were positively correlated with lower LST values in neighborhoods, while more fragmented and isolated neighborhood landscape patterns were negatively related to the reduction of LST.

  20. Neighborhood Landscape Spatial Patterns and Land Surface Temperature: An Empirical Study on Single-Family Residential Areas in Austin, Texas

    PubMed Central

    Kim, Jun-Hyun; Gu, Donghwan; Sohn, Wonmin; Kil, Sung-Ho; Kim, Hwanyong; Lee, Dong-Kun

    2016-01-01

    Rapid urbanization has accelerated land use and land cover changes, and generated the urban heat island effect (UHI). Previous studies have reported positive effects of neighborhood landscapes on mitigating urban surface temperatures. However, the influence of neighborhood landscape spatial patterns on enhancing cooling effects has not yet been fully investigated. The main objective of this study was to assess the relationships between neighborhood landscape spatial patterns and land surface temperatures (LST) by using multi-regression models considering spatial autocorrelation issues. To measure the influence of neighborhood landscape spatial patterns on LST, this study analyzed neighborhood environments of 15,862 single-family houses in Austin, Texas, USA. Using aerial photos, geographic information systems (GIS), and remote sensing, FRAGSTATS was employed to calculate values of several landscape indices used to measure neighborhood landscape spatial patterns. After controlling for the spatial autocorrelation effect, results showed that larger and better-connected landscape spatial patterns were positively correlated with lower LST values in neighborhoods, while more fragmented and isolated neighborhood landscape patterns were negatively related to the reduction of LST. PMID:27598186

  1. Imaging spectroscopy links aspen genotype with below-ground processes at landscape scales

    PubMed Central

    Madritch, Michael D.; Kingdon, Clayton C.; Singh, Aditya; Mock, Karen E.; Lindroth, Richard L.; Townsend, Philip A.

    2014-01-01

    Fine-scale biodiversity is increasingly recognized as important to ecosystem-level processes. Remote sensing technologies have great potential to estimate both biodiversity and ecosystem function over large spatial scales. Here, we demonstrate the capacity of imaging spectroscopy to discriminate among genotypes of Populus tremuloides (trembling aspen), one of the most genetically diverse and widespread forest species in North America. We combine imaging spectroscopy (AVIRIS) data with genetic, phytochemical, microbial and biogeochemical data to determine how intraspecific plant genetic variation influences below-ground processes at landscape scales. We demonstrate that both canopy chemistry and below-ground processes vary over large spatial scales (continental) according to aspen genotype. Imaging spectrometer data distinguish aspen genotypes through variation in canopy spectral signature. In addition, foliar spectral variation correlates well with variation in canopy chemistry, especially condensed tannins. Variation in aspen canopy chemistry, in turn, is correlated with variation in below-ground processes. Variation in spectra also correlates well with variation in soil traits. These findings indicate that forest tree species can create spatial mosaics of ecosystem functioning across large spatial scales and that these patterns can be quantified via remote sensing techniques. Moreover, they demonstrate the utility of using optical properties as proxies for fine-scale measurements of biodiversity over large spatial scales. PMID:24733949

  2. Revisiting Geschwind's hypothesis on brain lateralisation: a functional MRI study of digit ratio (2D:4D) and sex interaction effects on spatial working memory.

    PubMed

    Kalmady, Sunil Vasu; Agarwal, Sri Mahavir; Shivakumar, Venkataram; Jose, Dania; Venkatasubramanian, Ganesan; Reddy, Y C Janardhan

    2013-01-01

    The Geschwind-Behan-Galaburda (GBG) hypothesis links cerebral lateralisation with prenatal testosterone exposure. Digit ratio measures in adults have been established as potential markers of foetal sex hormonal milieu. The aim of the study was to evaluate the sex-dependent interaction of digit ratio measures and cerebral lateralization as well as their neurohemodynamic correlates using functional MRI (fMRI). Digit ratio measures-ratio of index finger (2D) length to ring finger (4D) length (2D:4D) and difference between 2D:4D of two hands, i.e., right minus left (DR-L)-were calculated using high resolution digital images in 70 right-handed participants (42 men) based on reliable and valid method. fMRI was acquired during the performance of a spatial working memory task in a subset of 25 individuals (14 men), and analysed using Statistical Parametric Mapping 8 (SPM8) and the Laterality Index toolbox for SPM8. Men had significantly less bilateral 2D:4D than women. There was a significant negative correlation between right 2D:4D and 2-Back task accuracy (2BACC) in women. A significant sex-by-right 2D:4D interaction was observed in left parahippocampal gyrus activation. Additionally, sex-by-DR-L interaction was observed in left IPL activation. DR-L showed a significant positive correlation with the whole brain Laterality Index (LI), and LI, in turn, demonstrated a significant negative correlation with 2BACC. Our study observations suggest several novel sex-differential relationships between 2D:4D measures and fMRI activation during spatial working memory task performance. Given the pre-existing background data supporting digit ratio measures as putative indicator of prenatal sex hormonal milieu, our study findings add support to the Geschwind-Behan-Galaburda (GBG) hypothesis.

  3. Decay and Spatial Diffusion of Turbulent Kinetic Energy In The Presence of a Linear Kinetic Energy Gradient

    NASA Astrophysics Data System (ADS)

    Meneveau, Charles

    2015-11-01

    A topic that elicited the interest of John Lumley is pressure transport in turbulence. In 1978 (JL, in Advances in Applied Mechanics, pages 123-176) he showed that pressure transport likely acts in the opposite direction to the spatial flux of kinetic energy due to triple velocity correlations. Here we examine a flow in which the interplay of turbulent decay and spatial transport is particularly relevant. Specifically, using a specially designed active grid and screens placed in the Corrsin wind tunnel, such a flow is realized. Data are acquired using X-wire thermal anemometry at different spanwise and downstream locations. In order to resolve the dissipation rate accurately, measurements are also acquired using the NSTAP probe developed and manufactured by Princeton researchers and kindly provided to us (M. Hultmark, Y. Fan, L. Smits). The results show power-law decay with downstream distance, with a decay exponent that becomes larger in the high kinetic energy side of the flow. Measurements of the dissipation enable us to obtain the spanwise gradient of the spatial flux. One possible explanation for the observations is upgrading transport of kinetic energy due to pressure-velocity correlations, although its magnitude required to close the budget appears very large. Absence of simultaneous pressure velocity measurement preclude us to fully elucidate the observed trends. In collaboration with Adrien Thormann, Johns Hopkins University. Financial support: National Science Foundation.

  4. Discriminability measures for predicting readability of text on textured backgrounds

    NASA Technical Reports Server (NTRS)

    Scharff, L. F.; Hill, A. L.; Ahumada, A. J. Jr; Watson, A. B. (Principal Investigator)

    2000-01-01

    Several discriminability measures were examined for their ability to predict reading search times for three levels of text contrast and a range of backgrounds (plain, a periodic texture, and four spatial-frequency-filtered textures created from the periodic texture). Search times indicate that these background variations only affect readability when the text contrast is low, and that spatial frequency content of the background affects readability. These results were not well predicted by the single variables of text contrast (Spearman rank correlation = -0.64) and background RMS contrast (0.08), but a global masking index and a spatial-frequency-selective masking index led to better predictions (-0.84 and -0.81, respectively). c2000 Optical Society of America.

  5. Multi-Timescale Analysis of the Spatial Representativeness of In Situ Soil Moisture Data within Satellite Footprints

    NASA Astrophysics Data System (ADS)

    Molero, B.; Leroux, D. J.; Richaume, P.; Kerr, Y. H.; Merlin, O.; Cosh, M. H.; Bindlish, R.

    2018-01-01

    We conduct a novel comprehensive investigation that seeks to prove the connection between spatial scales and timescales in surface soil moisture (SM) within the satellite footprint ( 50 km). Modeled and measured point series at Yanco and Little Washita in situ networks are first decomposed into anomalies at timescales ranging from 0.5 to 128 days, using wavelet transforms. Then, their degree of spatial representativeness is evaluated on a per-timescale basis by comparison to large spatial scale data sets (the in situ spatial average, SMOS, AMSR2, and ECMWF). Four methods are used for this: temporal stability analysis (TStab), triple collocation (TC), percentage of correlated areas (CArea), and a new proposed approach that uses wavelet-based correlations (WCor). We found that the mean of the spatial representativeness values tends to increase with the timescale but so does their dispersion. Locations exhibit poor spatial representativeness at scales below 4 days, while either very good or poor representativeness at seasonal scales. Regarding the methods, TStab cannot be applied to the anomaly series due to their multiple zero-crossings, and TC is suitable for week and month scales but not for other scales where data set cross-correlations are found low. In contrast, WCor and CArea give consistent results at all timescales. WCor is less sensitive to the spatial sampling density, so it is a robust method that can be applied to sparse networks (one station per footprint). These results are promising to improve the validation and downscaling of satellite SM series and the optimization of SM networks.

  6. Contribution of industrial density and socioeconomic status to the spatial distribution of thyroid cancer risk in Hangzhou, China.

    PubMed

    Fei, Xufeng; Lou, Zhaohan; Christakos, George; Liu, Qingmin; Ren, Yanjun; Wu, Jiaping

    2018-02-01

    The thyroid cancer (TC) incidence in China has increased dramatically during the last three decades. Typical in this respect is the case of Hangzhou city (China), where 7147 new TC cases were diagnosed during the period 2008-2012. Hence, the assessment of the TC incidence risk increase due to environmental exposure is an important public health matter. Correlation analysis, Analysis of Variance (ANOVA) and Poisson regression were first used to evaluate the statistical association between TC and key risk factors (industrial density and socioeconomic status). Then, the Bayesian maximum entropy (BME) theory and the integrative disease predictability (IDP) criterion were combined to quantitatively assess both the overall and the spatially distributed strength of the "exposure-disease" association. Overall, higher socioeconomic status was positively correlated with higher TC risk (Pearson correlation coefficient=0.687, P<0.01). Compared to people of low socioeconomic status, people of median and high socioeconomic status showed higher TC risk: the Relative Risk (RR) and associated 95% confidence interval (CI) were found to be, respectively, RR=2.29 with 95% CI=1.99 to 2.63, and RR=3.67 with 95% CI=3.22 to 4.19. The "industrial density-TC incidence" correlation, however, was non-significant. Spatially, the "socioeconomic status-TC" association measured by the corresponding IDP coefficient was significant throughout the study area: the mean IDP value was -0.12 and the spatial IDP values were consistently negative at the township level. It was found that stronger associations were distributed among residents mainly on a stripe of land from northeast to southwest (consisting mainly of sub-district areas). The "industrial density-TC" association measured by its IDP coefficient was spatially non-consistent. Socioeconomic status is an important indicator of TC risk factor in Hangzhou (China) whose effect varies across space. Hence, socioeconomic status shows the highest TC risk effect in sub-district areas. Copyright © 2017. Published by Elsevier B.V.

  7. Learning to echolocate in sighted people: a correlational study on attention, working memory and spatial abilities.

    PubMed

    Ekkel, M R; van Lier, R; Steenbergen, B

    2017-03-01

    Echolocation can be beneficial for the orientation and mobility of visually impaired people. Research has shown considerable individual differences for acquiring this skill. However, individual characteristics that affect the learning of echolocation are largely unknown. In the present study, we examined individual factors that are likely to affect learning to echolocate: sustained and divided attention, working memory, and spatial abilities. To that aim, sighted participants with normal hearing performed an echolocation task that was adapted from a previously reported size-discrimination task. In line with existing studies, we found large individual differences in echolocation ability. We also found indications that participants were able to improve their echolocation ability. Furthermore, we found a significant positive correlation between improvement in echolocation and sustained and divided attention, as measured in the PASAT. No significant correlations were found with our tests regarding working memory and spatial abilities. These findings may have implications for the development of guidelines for training echolocation that are tailored to the individual with a visual impairment.

  8. Spatial and temporal analysis of Air Pollution Index and its timescale-dependent relationship with meteorological factors in Guangzhou, China, 2001-2011.

    PubMed

    Li, Li; Qian, Jun; Ou, Chun-Quan; Zhou, Ying-Xue; Guo, Cui; Guo, Yuming

    2014-07-01

    There is an increasing interest in spatial and temporal variation of air pollution and its association with weather conditions. We presented the spatial and temporal variation of Air Pollution Index (API) and examined the associations between API and meteorological factors during 2001-2011 in Guangzhou, China. A Seasonal-Trend Decomposition Procedure Based on Loess (STL) was used to decompose API. Wavelet analyses were performed to examine the relationships between API and several meteorological factors. Air quality has improved since 2005. APIs were highly correlated among five monitoring stations, and there were substantial temporal variations. Timescale-dependent relationships were found between API and a variety of meteorological factors. Temperature, relative humidity, precipitation and wind speed were negatively correlated with API, while diurnal temperature range and atmospheric pressure were positively correlated with API in the annual cycle. Our findings should be taken into account when determining air quality forecasts and pollution control measures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Fuzzy inference enhanced information recovery from digital PIV using cross-correlation combined with particle tracking

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1995-01-01

    Particle Image Velocimetry provides a means of measuring the instantaneous 2-component velocity field across a planar region of a seeded flowfield. In this work only two camera, single exposure images are considered where both cameras have the same view of the illumination plane. Two competing techniques which yield unambiguous velocity vector direction information have been widely used for reducing the single exposure, multiple image data: cross-correlation and particle tracking. Correlation techniques yield averaged velocity estimates over subregions of the flow, whereas particle tracking techniques give individual particle velocity estimates. The correlation technique requires identification of the correlation peak on the correlation plane corresponding to the average displacement of particles across the subregion. Noise on the images and particle dropout contribute to spurious peaks on the correlation plane, leading to misidentification of the true correlation peak. The subsequent velocity vector maps contain spurious vectors where the displacement peaks have been improperly identified. Typically these spurious vectors are replaced by a weighted average of the neighboring vectors, thereby decreasing the independence of the measurements. In this work fuzzy logic techniques are used to determine the true correlation displacement peak even when it is not the maximum peak on the correlation plane, hence maximizing the information recovery from the correlation operation, maintaining the number of independent measurements and minimizing the number of spurious velocity vectors. Correlation peaks are correctly identified in both high and low seed density cases. The correlation velocity vector map can then be used as a guide for the particle tracking operation. Again fuzzy logic techniques are used, this time to identify the correct particle image pairings between exposures to determine particle displacements, and thus velocity. The advantage of this technique is the improved spatial resolution which is available from the particle tracking operation. Particle tracking alone may not be possible in the high seed density images typically required for achieving good results from the correlation technique. This two staged approach offers a velocimetric technique capable of measuring particle velocities with high spatial resolution over a broad range of seeding densities.

  10. Comparison of Spatial Correlation Parameters between Full and Model Scale Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Kenny, Jeremy; Giacomoni, Clothilde

    2016-01-01

    The current vibro-acoustic analysis tools require specific spatial correlation parameters as input to define the liftoff acoustic environment experienced by the launch vehicle. Until recently these parameters have not been very well defined. A comprehensive set of spatial correlation data were obtained during a scale model acoustic test conducted in 2014. From these spatial correlation data, several parameters were calculated: the decay coefficient, the diffuse to propagating ratio, and the angle of incidence. Spatial correlation data were also collected on the EFT-1 flight of the Delta IV vehicle which launched on December 5th, 2014. A comparison of the spatial correlation parameters from full scale and model scale data will be presented.

  11. Missile launch detection electric field perturbation experiment. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kane, R.J.; Rynne, T.M.

    1993-04-28

    The Lawrence Livermore National Laboratory and SARA Inc. participated in the ATMD missile launch activities that occurred at WSMR during January 1993. LLNL and SARA deployed sensors for monitoring of basic phenomena. An attempt was made to measure perturbations of the earth geo-potential during the launch of a Lance missile. The occurrence of the perturbation is expected from the conducting body of the missile and the exhaust plume. A set of voltage-probe antennas were used to monitor the local electric field perturbation from the launch at ranges of approximately 1 km. Examination of the data acquired during the launch periodmore » failed to show identifiable correlation of the field variations with the launch event. Three reasons are ascribed to this lack of event data: (1) The electric field potential variations have a limited spatial correlation length - the fields measured in one region have little correlation to measurements made at distances of a kilometer away. The potential variations are related to localized atmospheric disturbances and are generally unpredictable. A value for the spatial correlation length is also not known. (2) The conductivity of the plume and missile body are not adequate to produce a field perturbation of adequate magnitude. Phenomena related to the exhaust plume and missile may exist and be outside of the collection range of the equipment employed for these measurements. (3) The presence of 60 Hz power line noise was of sufficient magnitude to irreversibly contaminate measurements.« less

  12. A computed tomography-based spatial normalization for the analysis of [18F] fluorodeoxyglucose positron emission tomography of the brain.

    PubMed

    Cho, Hanna; Kim, Jin Su; Choi, Jae Yong; Ryu, Young Hoon; Lyoo, Chul Hyoung

    2014-01-01

    We developed a new computed tomography (CT)-based spatial normalization method and CT template to demonstrate its usefulness in spatial normalization of positron emission tomography (PET) images with [(18)F] fluorodeoxyglucose (FDG) PET studies in healthy controls. Seventy healthy controls underwent brain CT scan (120 KeV, 180 mAs, and 3 mm of thickness) and [(18)F] FDG PET scans using a PET/CT scanner. T1-weighted magnetic resonance (MR) images were acquired for all subjects. By averaging skull-stripped and spatially-normalized MR and CT images, we created skull-stripped MR and CT templates for spatial normalization. The skull-stripped MR and CT images were spatially normalized to each structural template. PET images were spatially normalized by applying spatial transformation parameters to normalize skull-stripped MR and CT images. A conventional perfusion PET template was used for PET-based spatial normalization. Regional standardized uptake values (SUV) measured by overlaying the template volume of interest (VOI) were compared to those measured with FreeSurfer-generated VOI (FSVOI). All three spatial normalization methods underestimated regional SUV values by 0.3-20% compared to those measured with FSVOI. The CT-based method showed slightly greater underestimation bias. Regional SUV values derived from all three spatial normalization methods were correlated significantly (p < 0.0001) with those measured with FSVOI. CT-based spatial normalization may be an alternative method for structure-based spatial normalization of [(18)F] FDG PET when MR imaging is unavailable. Therefore, it is useful for PET/CT studies with various radiotracers whose uptake is expected to be limited to specific brain regions or highly variable within study population.

  13. Functional CAR models for large spatially correlated functional datasets.

    PubMed

    Zhang, Lin; Baladandayuthapani, Veerabhadran; Zhu, Hongxiao; Baggerly, Keith A; Majewski, Tadeusz; Czerniak, Bogdan A; Morris, Jeffrey S

    2016-01-01

    We develop a functional conditional autoregressive (CAR) model for spatially correlated data for which functions are collected on areal units of a lattice. Our model performs functional response regression while accounting for spatial correlations with potentially nonseparable and nonstationary covariance structure, in both the space and functional domains. We show theoretically that our construction leads to a CAR model at each functional location, with spatial covariance parameters varying and borrowing strength across the functional domain. Using basis transformation strategies, the nonseparable spatial-functional model is computationally scalable to enormous functional datasets, generalizable to different basis functions, and can be used on functions defined on higher dimensional domains such as images. Through simulation studies, we demonstrate that accounting for the spatial correlation in our modeling leads to improved functional regression performance. Applied to a high-throughput spatially correlated copy number dataset, the model identifies genetic markers not identified by comparable methods that ignore spatial correlations.

  14. Spatial and temporal variability of fine particle composition and source types in five cities of Connecticut and Massachusetts

    PubMed Central

    Lee, Hyung Joo; Gent, Janneane F.; Leaderer, Brian P.; Koutrakis, Petros

    2011-01-01

    To protect public health from PM2.5 air pollution, it is critical to identify the source types of PM2.5 mass and chemical components associated with higher risks of adverse health outcomes. Source apportionment modeling using Positive Matrix Factorization (PMF), was used to identify PM2.5 source types and quantify the source contributions to PM2.5 in five cities of Connecticut and Massachusetts. Spatial and temporal variability of PM2.5 mass, components and source contributions were investigated. PMF analysis identified five source types: regional pollution as traced by sulfur, motor vehicle, road dust, oil combustion and sea salt. The sulfur-related regional pollution and traffic source type were major contributors to PM2.5. Due to sparse ground-level PM2.5 monitoring sites, current epidemiological studies are susceptible to exposure measurement errors. The higher correlations in concentrations and source contributions between different locations suggest less spatial variability, resulting in less exposure measurement errors. When concentrations and/or contributions were compared to regional averages, correlations were generally higher than between-site correlations. This suggests that for assigning exposures for health effects studies, using regional average concentrations or contributions from several PM2.5 monitors is more reliable than using data from the nearest central monitor. PMID:21429560

  15. Diffusion-Weighted PROPELLER MRI for Quantitative Assessment of Liver Tumor Necrotic Fraction and Viable Tumor Volume in VX2 Rabbits

    PubMed Central

    Deng, Jie; Virmani, Sumeet; Young, Joseph; Harris, Kathleen; Yang, Guang-Yu; Rademaker, Alfred; Woloschak, Gayle; Omary, Reed A.; Larson, Andrew C.

    2010-01-01

    Purpose To test the hypothesis that diffusion-weighted (DW)-PROPELLER (periodically rotated overlapping parallel lines with enhanced reconstruction) MRI provides more accurate liver tumor necrotic fraction (NF) and viable tumor volume (VTV) measurements than conventional DW-SE-EPI (spin echo echo-planar imaging) methods. Materials and Methods Our institutional Animal Care and Use Committee approved all experiments. In six rabbits implanted with 10 VX2 liver tumors, DW-PROPELLER and DW-SE-EPI scans were performed at contiguous axial slice positions covering each tumor volume. Apparent diffusion coefficient maps of each tumor were used to generate spatially resolved tumor viability maps for NF and VTV measurements. We compared NF, whole tumor volume (WTV), and VTV measurements to corresponding reference standard histological measurements based on correlation and concordance coefficients and the Bland–Altman analysis. Results DW-PROPELLER generally improved image quality with less distortion compared to DW-SE-EPI. DW-PROPELLER NF, WTV, and VTV measurements were strongly correlated and satisfactorily concordant with histological measurements. DW-SE-EPI NF measurements were weakly correlated and poorly concordant with histological measurements. Bland–Altman analysis demonstrated that DWPROPELLER WTV and VTV measurements were less biased from histological measurements than the corresponding DW-SE-EPI measurements. Conclusion DW-PROPELLER MRI can provide spatially resolved liver tumor viability maps for accurate NF and VTV measurements, superior to DW-SE-EPI approaches. DWPROPELLER measurements may serve as a noninvasive surrogate for pathology, offering the potential for more accurate assessments of therapy response than conventional anatomic size measurements. PMID:18407540

  16. Spatial correlation of atmospheric wind at scales relevant for large scale wind turbines

    NASA Astrophysics Data System (ADS)

    Bardal, L. M.; Sætran, L. R.

    2016-09-01

    Wind measurements a short distance upstream of a wind turbine can provide input for a feedforward wind turbine controller. Since the turbulent wind field will be different at the point/plane of measurement and the rotor plane the degree of correlation between wind speed at two points in space both in the longitudinal and lateral direction should be evaluated. This study uses a 2D array of mast mounted anemometers to evaluate cross-correlation of longitudinal wind speed. The degree of correlation is found to increase with height and decrease with atmospheric stability. The correlation is furthermore considerably larger for longitudinal separation than for lateral separation. The integral length scale of turbulence is also considered.

  17. Correlations and spatial variability of soil physical properties in harvested piedmont forests

    Treesearch

    Emily A. Carter; J.N. Shaw

    2002-01-01

    Soil response to timber harvest trafficking was similar for eroded soils in two locations of the Piedmont of Alabama. Pre-harvest and post-harvest data indicated compaction to be present to a depth of 40 cm as indicated by cone index measurements, with the most significant changes occurring in the upper 20 cm. The degree of spatial dependence differed among soil...

  18. Joint transform correlators with spatially incoherent illumination

    NASA Astrophysics Data System (ADS)

    Bykovsky, Yuri A.; Karpiouk, Andrey B.; Markilov, Anatoly A.; Rodin, Vladislav G.; Starikov, Sergey N.

    1997-03-01

    Two variants of joint transform correlators with monochromatic spatially incoherent illumination are considered. The Fourier-holograms of the reference and recognized images are recorded simultaneously or apart in a time on the same spatial light modulator directly by monochromatic spatially incoherent light. To create the signal of mutual correlation of the images it is necessary to execute nonlinear transformation when the hologram is illuminated by coherent light. In the first scheme of the correlator this aim was achieved by using double pas of a restoring coherent wave through the hologram. In the second variant of the correlator the non-linearity of the characteristic of the spatial light modulator for hologram recording was used. Experimental schemes and results on processing teste images by both variants of joint transform correlators with monochromatic spatially incoherent illumination. The use of spatially incoherent light on the input of joint transform correlators permits to reduce the requirements to optical quality of elements, to reduce accuracy requirements on elements positioning and to expand a number of devices suitable to input images in correlators.

  19. Inversion of multi-frequency electromagnetic induction data for 3D characterization of hydraulic conductivity

    USGS Publications Warehouse

    Brosten, Troy R.; Day-Lewis, Frederick D.; Schultz, Gregory M.; Curtis, Gary P.; Lane, John W.

    2011-01-01

    Electromagnetic induction (EMI) instruments provide rapid, noninvasive, and spatially dense data for characterization of soil and groundwater properties. Data from multi-frequency EMI tools can be inverted to provide quantitative electrical conductivity estimates as a function of depth. In this study, multi-frequency EMI data collected across an abandoned uranium mill site near Naturita, Colorado, USA, are inverted to produce vertical distribution of electrical conductivity (EC) across the site. The relation between measured apparent electrical conductivity (ECa) and hydraulic conductivity (K) is weak (correlation coefficient of 0.20), whereas the correlation between the depth dependent EC obtained from the inversions, and K is sufficiently strong to be used for hydrologic estimation (correlation coefficient of − 0.62). Depth-specific EC values were correlated with co-located K measurements to develop a site-specific ln(EC)–ln(K) relation. This petrophysical relation was applied to produce a spatially detailed map of K across the study area. A synthetic example based on ECa values at the site was used to assess model resolution and correlation loss given variations in depth and/or measurement error. Results from synthetic modeling indicate that optimum correlation with K occurs at ~ 0.5 m followed by a gradual correlation loss of 90% at 2.3 m. These results are consistent with an analysis of depth of investigation (DOI) given the range of frequencies, transmitter–receiver separation, and measurement errors for the field data. DOIs were estimated at 2.0 ± 0.5 m depending on the soil conductivities. A 4-layer model, with varying thicknesses, was used to invert the ECa to maximize available information within the aquifer region for improved correlations with K. Results show improved correlation between K and the corresponding inverted EC at similar depths, underscoring the importance of inversion in using multi-frequency EMI data for hydrologic estimation.

  20. Inversion of multi-frequency electromagnetic induction data for 3D characterization of hydraulic conductivity

    USGS Publications Warehouse

    Brosten, T.R.; Day-Lewis, F. D.; Schultz, G.M.; Curtis, G.P.; Lane, J.W.

    2011-01-01

    Electromagnetic induction (EMI) instruments provide rapid, noninvasive, and spatially dense data for characterization of soil and groundwater properties. Data from multi-frequency EMI tools can be inverted to provide quantitative electrical conductivity estimates as a function of depth. In this study, multi-frequency EMI data collected across an abandoned uranium mill site near Naturita, Colorado, USA, are inverted to produce vertical distribution of electrical conductivity (EC) across the site. The relation between measured apparent electrical conductivity (ECa) and hydraulic conductivity (K) is weak (correlation coefficient of 0.20), whereas the correlation between the depth dependent EC obtained from the inversions, and K is sufficiently strong to be used for hydrologic estimation (correlation coefficient of -0.62). Depth-specific EC values were correlated with co-located K measurements to develop a site-specific ln(EC)-ln(K) relation. This petrophysical relation was applied to produce a spatially detailed map of K across the study area. A synthetic example based on ECa values at the site was used to assess model resolution and correlation loss given variations in depth and/or measurement error. Results from synthetic modeling indicate that optimum correlation with K occurs at ~0.5m followed by a gradual correlation loss of 90% at 2.3m. These results are consistent with an analysis of depth of investigation (DOI) given the range of frequencies, transmitter-receiver separation, and measurement errors for the field data. DOIs were estimated at 2.0??0.5m depending on the soil conductivities. A 4-layer model, with varying thicknesses, was used to invert the ECa to maximize available information within the aquifer region for improved correlations with K. Results show improved correlation between K and the corresponding inverted EC at similar depths, underscoring the importance of inversion in using multi-frequency EMI data for hydrologic estimation. ?? 2011.

  1. Functional Connectivity of Resting Hemodynamic Signals in Submillimeter Orientation Columns of the Visual Cortex.

    PubMed

    Vasireddi, Anil K; Vazquez, Alberto L; Whitney, David E; Fukuda, Mitsuhiro; Kim, Seong-Gi

    2016-09-07

    Resting-state functional magnetic resonance imaging has been increasingly used for examining connectivity across brain regions. The spatial scale by which hemodynamic imaging can resolve functional connections at rest remains unknown. To examine this issue, deoxyhemoglobin-weighted intrinsic optical imaging data were acquired from the visual cortex of lightly anesthetized ferrets. The neural activity of orientation domains, which span a distance of 0.7-0.8 mm, has been shown to be correlated during evoked activity and at rest. We performed separate analyses to assess the degree to which the spatial and temporal characteristics of spontaneous hemodynamic signals depend on the known functional organization of orientation columns. As a control, artificial orientation column maps were generated. Spatially, resting hemodynamic patterns showed a higher spatial resemblance to iso-orientation maps than artificially generated maps. Temporally, a correlation analysis was used to establish whether iso-orientation domains are more correlated than orthogonal orientation domains. After accounting for a significant decrease in correlation as a function of distance, a small but significant temporal correlation between iso-orientation domains was found, which decreased with increasing difference in orientation preference. This dependence was abolished when using artificially synthetized orientation maps. Finally, the temporal correlation coefficient as a function of orientation difference at rest showed a correspondence with that calculated during visual stimulation suggesting that the strength of resting connectivity is related to the strength of the visual stimulation response. Our results suggest that temporal coherence of hemodynamic signals measured by optical imaging of intrinsic signals exists at a submillimeter columnar scale in resting state.

  2. Hippocampal Synaptic Expansion Induced by Spatial Experience in Rats Correlates with Improved Information Processing in the Hippocampus.

    PubMed

    Carasatorre, Mariana; Ochoa-Alvarez, Adrian; Velázquez-Campos, Giovanna; Lozano-Flores, Carlos; Ramírez-Amaya, Víctor; Díaz-Cintra, Sofía Y

    2015-01-01

    Spatial water maze (WM) overtraining induces hippocampal mossy fiber (MF) expansion, and it has been suggested that spatial pattern separation depends on the MF pathway. We hypothesized that WM experience inducing MF expansion in rats would improve spatial pattern separation in the hippocampal network. We first tested this by using the the delayed non-matching to place task (DNMP), in animals that had been previously trained on the water maze (WM) and found that these animals, as well as animals treated as swim controls (SC), performed better than home cage control animals the DNMP task. The "catFISH" imaging method provided neurophysiological evidence that hippocampal pattern separation improved in animals treated as SC, and this improvement was even clearer in animals that experienced the WM training. Moreover, these behavioral treatments also enhance network reliability and improve partial pattern separation in CA1 and pattern completion in CA3. By measuring the area occupied by synaptophysin staining in both the stratum oriens and the stratun lucidum of the distal CA3, we found evidence of structural synaptic plasticity that likely includes MF expansion. Finally, the measures of hippocampal network coding obtained with catFISH correlate significantly with the increased density of synaptophysin staining, strongly suggesting that structural synaptic plasticity in the hippocampus induced by the WM and SC experience is related to the improvement of spatial information processing in the hippocampus.

  3. Image correlation microscopy for uniform illumination.

    PubMed

    Gaborski, T R; Sealander, M N; Ehrenberg, M; Waugh, R E; McGrath, J L

    2010-01-01

    Image cross-correlation microscopy is a technique that quantifies the motion of fluorescent features in an image by measuring the temporal autocorrelation function decay in a time-lapse image sequence. Image cross-correlation microscopy has traditionally employed laser-scanning microscopes because the technique emerged as an extension of laser-based fluorescence correlation spectroscopy. In this work, we show that image correlation can also be used to measure fluorescence dynamics in uniform illumination or wide-field imaging systems and we call our new approach uniform illumination image correlation microscopy. Wide-field microscopy is not only a simpler, less expensive imaging modality, but it offers the capability of greater temporal resolution over laser-scanning systems. In traditional laser-scanning image cross-correlation microscopy, lateral mobility is calculated from the temporal de-correlation of an image, where the characteristic length is the illuminating laser beam width. In wide-field microscopy, the diffusion length is defined by the feature size using the spatial autocorrelation function. Correlation function decay in time occurs as an object diffuses from its original position. We show that theoretical and simulated comparisons between Gaussian and uniform features indicate the temporal autocorrelation function depends strongly on particle size and not particle shape. In this report, we establish the relationships between the spatial autocorrelation function feature size, temporal autocorrelation function characteristic time and the diffusion coefficient for uniform illumination image correlation microscopy using analytical, Monte Carlo and experimental validation with particle tracking algorithms. Additionally, we demonstrate uniform illumination image correlation microscopy analysis of adhesion molecule domain aggregation and diffusion on the surface of human neutrophils.

  4. RSS Fingerprint Based Indoor Localization Using Sparse Representation with Spatio-Temporal Constraint

    PubMed Central

    Piao, Xinglin; Zhang, Yong; Li, Tingshu; Hu, Yongli; Liu, Hao; Zhang, Ke; Ge, Yun

    2016-01-01

    The Received Signal Strength (RSS) fingerprint-based indoor localization is an important research topic in wireless network communications. Most current RSS fingerprint-based indoor localization methods do not explore and utilize the spatial or temporal correlation existing in fingerprint data and measurement data, which is helpful for improving localization accuracy. In this paper, we propose an RSS fingerprint-based indoor localization method by integrating the spatio-temporal constraints into the sparse representation model. The proposed model utilizes the inherent spatial correlation of fingerprint data in the fingerprint matching and uses the temporal continuity of the RSS measurement data in the localization phase. Experiments on the simulated data and the localization tests in the real scenes show that the proposed method improves the localization accuracy and stability effectively compared with state-of-the-art indoor localization methods. PMID:27827882

  5. An Investigation of Calculus Learning Using Factorial Modeling.

    ERIC Educational Resources Information Center

    Dick, Thomas P.; Balomenos, Richard H.

    Structural covariance models that would explain the correlations observed among mathematics achievement and participation measures and related cognitive and affective variables were developed. A sample of college calculus students (N=268; 124 females and 144 males) was administered a battery of cognitive tests (including measures of spatial-visual…

  6. Monopolar Detection Thresholds Predict Spatial Selectivity of Neural Excitation in Cochlear Implants: Implications for Speech Recognition

    PubMed Central

    2016-01-01

    The objectives of the study were to (1) investigate the potential of using monopolar psychophysical detection thresholds for estimating spatial selectivity of neural excitation with cochlear implants and to (2) examine the effect of site removal on speech recognition based on the threshold measure. Detection thresholds were measured in Cochlear Nucleus® device users using monopolar stimulation for pulse trains that were of (a) low rate and long duration, (b) high rate and short duration, and (c) high rate and long duration. Spatial selectivity of neural excitation was estimated by a forward-masking paradigm, where the probe threshold elevation in the presence of a forward masker was measured as a function of masker-probe separation. The strength of the correlation between the monopolar thresholds and the slopes of the masking patterns systematically reduced as neural response of the threshold stimulus involved interpulse interactions (refractoriness and sub-threshold adaptation), and spike-rate adaptation. Detection threshold for the low-rate stimulus most strongly correlated with the spread of forward masking patterns and the correlation reduced for long and high rate pulse trains. The low-rate thresholds were then measured for all electrodes across the array for each subject. Subsequently, speech recognition was tested with experimental maps that deactivated five stimulation sites with the highest thresholds and five randomly chosen ones. Performance with deactivating the high-threshold sites was better than performance with the subjects’ clinical map used every day with all electrodes active, in both quiet and background noise. Performance with random deactivation was on average poorer than that with the clinical map but the difference was not significant. These results suggested that the monopolar low-rate thresholds are related to the spatial neural excitation patterns in cochlear implant users and can be used to select sites for more optimal speech recognition performance. PMID:27798658

  7. A model relating Eulerian spatial and temporal velocity correlations

    NASA Astrophysics Data System (ADS)

    Cholemari, Murali R.; Arakeri, Jaywant H.

    2006-03-01

    In this paper we propose a model to relate Eulerian spatial and temporal velocity autocorrelations in homogeneous, isotropic and stationary turbulence. We model the decorrelation as the eddies of various scales becoming decorrelated. This enables us to connect the spatial and temporal separations required for a certain decorrelation through the ‘eddy scale’. Given either the spatial or the temporal velocity correlation, we obtain the ‘eddy scale’ and the rate at which the decorrelation proceeds. This leads to a spatial separation from the temporal correlation and a temporal separation from the spatial correlation, at any given value of the correlation relating the two correlations. We test the model using experimental data from a stationary axisymmetric turbulent flow with homogeneity along the axis.

  8. Validation of Walk Score® for Estimating Neighborhood Walkability: An Analysis of Four US Metropolitan Areas

    PubMed Central

    Duncan, Dustin T.; Aldstadt, Jared; Whalen, John; Melly, Steven J.; Gortmaker, Steven L.

    2011-01-01

    Neighborhood walkability can influence physical activity. We evaluated the validity of Walk Score® for assessing neighborhood walkability based on GIS (objective) indicators of neighborhood walkability with addresses from four US metropolitan areas with several street network buffer distances (i.e., 400-, 800-, and 1,600-meters). Address data come from the YMCA-Harvard After School Food and Fitness Project, an obesity prevention intervention involving children aged 5–11 years and their families participating in YMCA-administered, after-school programs located in four geographically diverse metropolitan areas in the US (n = 733). GIS data were used to measure multiple objective indicators of neighborhood walkability. Walk Scores were also obtained for the participant’s residential addresses. Spearman correlations between Walk Scores and the GIS neighborhood walkability indicators were calculated as well as Spearman correlations accounting for spatial autocorrelation. There were many significant moderate correlations between Walk Scores and the GIS neighborhood walkability indicators such as density of retail destinations and intersection density (p < 0.05). The magnitude varied by the GIS indicator of neighborhood walkability. Correlations generally became stronger with a larger spatial scale, and there were some geographic differences. Walk Score® is free and publicly available for public health researchers and practitioners. Results from our study suggest that Walk Score® is a valid measure of estimating certain aspects of neighborhood walkability, particularly at the 1600-meter buffer. As such, our study confirms and extends the generalizability of previous findings demonstrating that Walk Score is a valid measure of estimating neighborhood walkability in multiple geographic locations and at multiple spatial scales. PMID:22163200

  9. In vivo flow speed measurement of capillaries by photoacoustic correlation spectroscopy.

    PubMed

    Chen, Sung-Liang; Xie, Zhixing; Carson, Paul L; Wang, Xueding; Guo, L Jay

    2011-10-15

    We recently proposed photoacoustic correlation spectroscopy (PACS) and demonstrated a proof-of-concept experiment. Here we use the technique for in vivo flow speed measurement in capillaries in a chick embryo model. The photoacoustic microscopy system is used to render high spatial resolution and high sensitivity, enabling sufficient signals from single red blood cells. The probe beam size is calibrated by a blood-mimicking phantom. The results indicate the feasibility of using PACS to study flow speeds in capillaries.

  10. Spatial organization and time dependence of Jupiter's tropospheric temperatures, 1980-1993

    NASA Technical Reports Server (NTRS)

    Orton, Glenn S.; Friedson, A. James; Yanamandra-Fisher, Padmavati A.; Caldwell, John; Hammel, Heidi B.; Baines, Kevin H.; Bergstralh, Jay T.; Martin, Terry Z.; West, Robert A.; Veeder, Glenn J., Jr.

    1994-01-01

    The spatial organization and time dependence of Jupiter's temperature near 250-millibar pressure were measured through a jovian year by imaging thermal emission at 18 micrometers. The temperature field is influenced by seasonal radiative forcing, and its banded organization is closely correlated with the visible cloud field. Evidence was found for a quasi-periodic oscillation of temperatures in the Equatorial Zone, a correlation between tropospheric and stratospheric waves in the North Equatorial Belt, and slowly moving thermal features in the North and South Equatorial Belts. There appears to be no common relation between temporal changes of temperature and changes in the visual albedo of the various axisymmetric bands.

  11. A low-dimensional approach to closed-loop control of a Mach 0.6 jet

    NASA Astrophysics Data System (ADS)

    Low, Kerwin R.; Berger, Zachary P.; Kostka, Stanislav; ElHadidi, Basman; Gogineni, Sivaram; Glauser, Mark N.

    2013-04-01

    Simultaneous time-resolved measurements of the near-field hydrodynamic pressure field, 2-component streamwise velocity field, and far-field acoustics are taken for an un-heated, axisymmetric Mach 0.6 jet in co-flow. Synthetic jet actuators placed around the periphery of the nozzle lip provide localized perturbations to the shear layer. The goal of this study was to develop an understanding of how the acoustic nature of the jet responds to unsteady shear layer excitation, and subsequently how this can be used to reduce the far-field noise. Review of the cross-correlations between the most energetic low-order spatial Fourier modes of the pressure and the far-field region reveals that mode 0 has a strong correlation and mode 1 has a weak correlation with the far-field. These modes are emulated with the synthetic jet array and used as drivers of the developing shear layer. In open loop forcing configurations, there is energy transfer among spatial scales, enhanced mixing, a reconfiguration of the low-dimensional spatial structure, and an increase in the overall sound pressure level (OASPL). In the closed loop configuration, changes to these quantities are more subtle but there is a reduction in the overall fluctuating sound pressure level OASPLf by 1.35 dB. It is argued that this reduction is correlated with the closed loop control feeding back the dynamical low-order information measured in the largest noise producing region.

  12. Node Survival in Networks under Correlated Attacks

    PubMed Central

    Hao, Yan; Armbruster, Dieter; Hütt, Marc-Thorsten

    2015-01-01

    We study the interplay between correlations, dynamics, and networks for repeated attacks on a socio-economic network. As a model system we consider an insurance scheme against disasters that randomly hit nodes, where a node in need receives support from its network neighbors. The model is motivated by gift giving among the Maasai called Osotua. Survival of nodes under different disaster scenarios (uncorrelated, spatially, temporally and spatio-temporally correlated) and for different network architectures are studied with agent-based numerical simulations. We find that the survival rate of a node depends dramatically on the type of correlation of the disasters: Spatially and spatio-temporally correlated disasters increase the survival rate; purely temporally correlated disasters decrease it. The type of correlation also leads to strong inequality among the surviving nodes. We introduce the concept of disaster masking to explain some of the results of our simulations. We also analyze the subsets of the networks that were activated to provide support after fifty years of random disasters. They show qualitative differences for the different disaster scenarios measured by path length, degree, clustering coefficient, and number of cycles. PMID:25932635

  13. Residential greenness and birth outcomes: evaluating the influence of spatially correlated built-environment factors.

    PubMed

    Hystad, Perry; Davies, Hugh W; Frank, Lawrence; Van Loon, Josh; Gehring, Ulrike; Tamburic, Lillian; Brauer, Michael

    2014-10-01

    Half the world's population lives in urban areas. It is therefore important to identify characteristics of the built environment that are beneficial to human health. Urban greenness has been associated with improvements in a diverse range of health conditions, including birth outcomes; however, few studies have attempted to distinguish potential effects of greenness from those of other spatially correlated exposures related to the built environment. We aimed to investigate associations between residential greenness and birth outcomes and evaluate the influence of spatially correlated built environment factors on these associations. We examined associations between residential greenness [measured using satellite-derived Normalized Difference Vegetation Index (NDVI) within 100 m of study participants' homes] and birth outcomes in a cohort of 64,705 singleton births (from 1999-2002) in Vancouver, British Columbia, Canada. We also evaluated associations after adjusting for spatially correlated built environmental factors that may influence birth outcomes, including exposure to air pollution and noise, neighborhood walkability, and distance to the nearest park. An interquartile increase in greenness (0.1 in residential NDVI) was associated with higher term birth weight (20.6 g; 95% CI: 16.5, 24.7) and decreases in the likelihood of small for gestational age, very preterm (< 30 weeks), and moderately preterm (30-36 weeks) birth. Associations were robust to adjustment for air pollution and noise exposures, neighborhood walkability, and park proximity. Increased residential greenness was associated with beneficial birth outcomes in this population-based cohort. These associations did not change after adjusting for other spatially correlated built environment factors, suggesting that alternative pathways (e.g., psychosocial and psychological mechanisms) may underlie associations between residential greenness and birth outcomes.

  14. Large-scale changes in network interactions as a physiological signature of spatial neglect.

    PubMed

    Baldassarre, Antonello; Ramsey, Lenny; Hacker, Carl L; Callejas, Alicia; Astafiev, Serguei V; Metcalf, Nicholas V; Zinn, Kristi; Rengachary, Jennifer; Snyder, Abraham Z; Carter, Alex R; Shulman, Gordon L; Corbetta, Maurizio

    2014-12-01

    The relationship between spontaneous brain activity and behaviour following focal injury is not well understood. Here, we report a large-scale study of resting state functional connectivity MRI and spatial neglect following stroke in a large (n=84) heterogeneous sample of first-ever stroke patients (within 1-2 weeks). Spatial neglect, which is typically more severe after right than left hemisphere injury, includes deficits of spatial attention and motor actions contralateral to the lesion, and low general attention due to impaired vigilance/arousal. Patients underwent structural and resting state functional MRI scans, and spatial neglect was measured using the Posner spatial cueing task, and Mesulam and Behavioural Inattention Test cancellation tests. A principal component analysis of the behavioural tests revealed a main factor accounting for 34% of variance that captured three correlated behavioural deficits: visual neglect of the contralesional visual field, visuomotor neglect of the contralesional field, and low overall performance. In an independent sample (21 healthy subjects), we defined 10 resting state networks consisting of 169 brain regions: visual-fovea and visual-periphery, sensory-motor, auditory, dorsal attention, ventral attention, language, fronto-parietal control, cingulo-opercular control, and default mode. We correlated the neglect factor score with the strength of resting state functional connectivity within and across the 10 resting state networks. All damaged brain voxels were removed from the functional connectivity:behaviour correlational analysis. We found that the correlated behavioural deficits summarized by the factor score were associated with correlated multi-network patterns of abnormal functional connectivity involving large swaths of cortex. Specifically, dorsal attention and sensory-motor networks showed: (i) reduced interhemispheric functional connectivity; (ii) reduced anti-correlation with fronto-parietal and default mode networks in the right hemisphere; and (iii) increased intrahemispheric connectivity with the basal ganglia. These patterns of functional connectivity:behaviour correlations were stronger in patients with right- as compared to left-hemisphere damage and were independent of lesion volume. Our findings identify large-scale changes in resting state network interactions that are a physiological signature of spatial neglect and may relate to its right hemisphere lateralization. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Population receptive field (pRF) measurements of chromatic responses in human visual cortex using fMRI.

    PubMed

    Welbourne, Lauren E; Morland, Antony B; Wade, Alex R

    2018-02-15

    The spatial sensitivity of the human visual system depends on stimulus color: achromatic gratings can be resolved at relatively high spatial frequencies while sensitivity to isoluminant color contrast tends to be more low-pass. Models of early spatial vision often assume that the receptive field size of pattern-sensitive neurons is correlated with their spatial frequency sensitivity - larger receptive fields are typically associated with lower optimal spatial frequency. A strong prediction of this model is that neurons coding isoluminant chromatic patterns should have, on average, a larger receptive field size than neurons sensitive to achromatic patterns. Here, we test this assumption using functional magnetic resonance imaging (fMRI). We show that while spatial frequency sensitivity depends on chromaticity in the manner predicted by behavioral measurements, population receptive field (pRF) size measurements show no such dependency. At any given eccentricity, the mean pRF size for neuronal populations driven by luminance, opponent red/green and S-cone isolating contrast, are identical. Changes in pRF size (for example, an increase with eccentricity and visual area hierarchy) are also identical across the three chromatic conditions. These results suggest that fMRI measurements of receptive field size and spatial resolution can be decoupled under some circumstances - potentially reflecting a fundamental dissociation between these parameters at the level of neuronal populations. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Predicting crash frequency for multi-vehicle collision types using multivariate Poisson-lognormal spatial model: A comparative analysis.

    PubMed

    Hosseinpour, Mehdi; Sahebi, Sina; Zamzuri, Zamira Hasanah; Yahaya, Ahmad Shukri; Ismail, Noriszura

    2018-06-01

    According to crash configuration and pre-crash conditions, traffic crashes are classified into different collision types. Based on the literature, multi-vehicle crashes, such as head-on, rear-end, and angle crashes, are more frequent than single-vehicle crashes, and most often result in serious consequences. From a methodological point of view, the majority of prior studies focused on multivehicle collisions have employed univariate count models to estimate crash counts separately by collision type. However, univariate models fail to account for correlations which may exist between different collision types. Among others, multivariate Poisson lognormal (MVPLN) model with spatial correlation is a promising multivariate specification because it not only allows for unobserved heterogeneity (extra-Poisson variation) and dependencies between collision types, but also spatial correlation between adjacent sites. However, the MVPLN spatial model has rarely been applied in previous research for simultaneously modelling crash counts by collision type. Therefore, this study aims at utilizing a MVPLN spatial model to estimate crash counts for four different multi-vehicle collision types, including head-on, rear-end, angle, and sideswipe collisions. To investigate the performance of the MVPLN spatial model, a two-stage model and a univariate Poisson lognormal model (UNPLN) spatial model were also developed in this study. Detailed information on roadway characteristics, traffic volume, and crash history were collected on 407 homogeneous segments from Malaysian federal roads. The results indicate that the MVPLN spatial model outperforms the other comparing models in terms of goodness-of-fit measures. The results also show that the inclusion of spatial heterogeneity in the multivariate model significantly improves the model fit, as indicated by the Deviance Information Criterion (DIC). The correlation between crash types is high and positive, implying that the occurrence of a specific collision type is highly associated with the occurrence of other crash types on the same road segment. These results support the utilization of the MVPLN spatial model when predicting crash counts by collision manner. In terms of contributing factors, the results show that distinct crash types are attributed to different subsets of explanatory variables. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. A comprehensive statistical investigation of schlieren image velocimetry (SIV) using high-velocity helium jet

    NASA Astrophysics Data System (ADS)

    Biswas, Sayan; Qiao, Li

    2017-03-01

    A detailed statistical assessment of seedless velocity measurement using Schlieren Image Velocimetry (SIV) was explored using open source Robust Phase Correlation (RPC) algorithm. A well-known flow field, an axisymmetric turbulent helium jet, was analyzed near and intermediate region (0≤ x/d≤ 20) for two different Reynolds numbers, Re d = 11,000 and Re d = 22,000 using schlieren with horizontal knife-edge, schlieren with vertical knife-edge and shadowgraph technique, and the resulted velocity fields from SIV techniques were compared to traditional Particle Image Velocimetry (PIV) measurements. A novel, inexpensive, easy to setup two-camera SIV technique had been demonstrated to measure high-velocity turbulent jet, with jet exit velocities 304 m/s (Mach = 0.3) and 611 m/s (Mach = 0.6), respectively. Several image restoration and enhancement techniques were tested to improve signal to noise ratio (SNR) in schlieren and shadowgraph images. Processing and post-processing parameters for SIV techniques were examined in detail. A quantitative comparison between self-seeded SIV techniques and traditional PIV had been made using correlation statistics. While the resulted flow field from schlieren with horizontal knife-edge and shadowgraph showed excellent agreement with PIV measurements, schlieren with vertical knife-edge performed poorly. The performance of spatial cross-correlations at different jet locations using SIV techniques and PIV was evaluated. Turbulence quantities like turbulence intensity, mean velocity fields, Reynolds shear stress influenced spatial correlations and correlation plane SNR heavily. Several performance metrics such as primary peak ratio (PPR), peak to correlation energy (PCE), the probability distribution of signal and noise were used to compare capability and potential of different SIV techniques.

  18. A spatial analysis of health-related resources in three diverse metropolitan areas

    PubMed Central

    Smiley, Melissa J.; Diez Roux, Ana V.; Brines, Shannon J.; Brown, Daniel G.; Evenson, Kelly R.; Rodriguez, Daniel A.

    2010-01-01

    Few studies have investigated the spatial clustering of multiple health-related resources. We constructed 0.5-mile kernel densities of resources for census areas in New York City, NY (n=819 block groups), Baltimore, MD (n=737), and Winston-Salem, NC (n=169). Three of the four resource densities (supermarkets/produce stores, retail areas, and recreational facilities) tended to be correlated with each other, whereas park density was less consistently and sometimes negatively correlated with the others. Blacks were more likely to live in block groups with multiple low resource densities. Spatial regression models showed that block groups with higher proportions of black residents tended to have lower supermarket/produce, retail, and recreational facility densities, although these associations did not always achieve statistical significance. A measure that combined local and neighboring block group racial composition was often a stronger predictor of resources than the local measure alone. Overall, our results from three diverse U.S. cities show that health-related resources are not randomly distributed across space and that disadvantage in multiple domains often clusters with residential racial patterning. PMID:20478737

  19. Digital Speckle Photography of Subpixel Displacements of Speckle Structures Based on Analysis of Their Spatial Spectra

    NASA Astrophysics Data System (ADS)

    Maksimova, L. A.; Ryabukho, P. V.; Mysina, N. Yu.; Lyakin, D. V.; Ryabukho, V. P.

    2018-04-01

    We have investigated the capabilities of the method of digital speckle interferometry for determining subpixel displacements of a speckle structure formed by a displaceable or deformable object with a scattering surface. An analysis of spatial spectra of speckle structures makes it possible to perform measurements with a subpixel accuracy and to extend the lower boundary of the range of measurements of displacements of speckle structures to the range of subpixel values. The method is realized on the basis of digital recording of the images of undisplaced and displaced speckle structures, their spatial frequency analysis using numerically specified constant phase shifts, and correlation analysis of spatial spectra of speckle structures. Transformation into the frequency range makes it possible to obtain quantities to be measured with a subpixel accuracy from the shift of the interference-pattern minimum in the diffraction halo by introducing an additional phase shift into the complex spatial spectrum of the speckle structure or from the slope of the linear plot of the function of accumulated phase difference in the field of the complex spatial spectrum of the displaced speckle structure. The capabilities of the method have been investigated in natural experiment.

  20. A method to estimate the effect of deformable image registration uncertainties on daily dose mapping

    PubMed Central

    Murphy, Martin J.; Salguero, Francisco J.; Siebers, Jeffrey V.; Staub, David; Vaman, Constantin

    2012-01-01

    Purpose: To develop a statistical sampling procedure for spatially-correlated uncertainties in deformable image registration and then use it to demonstrate their effect on daily dose mapping. Methods: Sequential daily CT studies are acquired to map anatomical variations prior to fractionated external beam radiotherapy. The CTs are deformably registered to the planning CT to obtain displacement vector fields (DVFs). The DVFs are used to accumulate the dose delivered each day onto the planning CT. Each DVF has spatially-correlated uncertainties associated with it. Principal components analysis (PCA) is applied to measured DVF error maps to produce decorrelated principal component modes of the errors. The modes are sampled independently and reconstructed to produce synthetic registration error maps. The synthetic error maps are convolved with dose mapped via deformable registration to model the resulting uncertainty in the dose mapping. The results are compared to the dose mapping uncertainty that would result from uncorrelated DVF errors that vary randomly from voxel to voxel. Results: The error sampling method is shown to produce synthetic DVF error maps that are statistically indistinguishable from the observed error maps. Spatially-correlated DVF uncertainties modeled by our procedure produce patterns of dose mapping error that are different from that due to randomly distributed uncertainties. Conclusions: Deformable image registration uncertainties have complex spatial distributions. The authors have developed and tested a method to decorrelate the spatial uncertainties and make statistical samples of highly correlated error maps. The sample error maps can be used to investigate the effect of DVF uncertainties on daily dose mapping via deformable image registration. An initial demonstration of this methodology shows that dose mapping uncertainties can be sensitive to spatial patterns in the DVF uncertainties. PMID:22320766

  1. Spatially resolved hazard and exposure assessments: an example of lead in soil at Lavrion, Greece.

    PubMed

    Tristán, E; Demetriades, A; Ramsey, M H; Rosenbaum, M S; Stavrakis, P; Thornton, I; Vassiliades, E; Vergou, K

    2000-01-01

    Spatially resolved hazard assessment (SRHA) and spatially resolved exposure assessment (SREA) are methodologies that have been devised for assessing child exposure to soil containing environmental pollutants. These are based on either a quantitative or a semiquantitative approach. The feasibility of the methodologies has been demonstrated in a study assessing child exposure to Pb accessible in soil at the town of Lavrion in Greece. Using a quantitative approach, both measured and kriged concentrations of Pb in soil are compared with an "established" statutory threshold value. The probabilistic approach gives a refined classification of the contaminated land, since it takes into consideration the uncertainty in both the actual measurement and estimated kriged values. Two exposure assessment models (i.e., IEUBK and HESP) are used as the basis of the quantitative SREA methodologies. The significant correlation between the blood-Pb predictions, using the IEUBK model, and measured concentrations provides a partial validation of the method, because it allows for the uncertainty in the measurements and the lack of some site-specific measurements. The semiquantitative applications of SRHA and SREA incorporate both qualitative information (e.g., land use and dustiness of waste) and quantitative information (e.g., distance from wastes and distance from industry). The significant correlation between the results of these assessments and the measured blood-Pb levels confirms the robust nature of this approach. Successful application of these methodologies could reduce the cost of the assessment and allow areas to be prioritized for further investigation, remediation, or risk management.

  2. Novel measurement of spreading pattern of influenza epidemic by using weighted standard distance method: retrospective spatial statistical study of influenza, Japan, 1999-2009.

    PubMed

    Shobugawa, Yugo; Wiafe, Seth A; Saito, Reiko; Suzuki, Tsubasa; Inaida, Shinako; Taniguchi, Kiyosu; Suzuki, Hiroshi

    2012-06-19

    Annual influenza epidemics occur worldwide resulting in considerable morbidity and mortality. Spreading pattern of influenza is not well understood because it is often hampered by the quality of surveillance data that limits the reliability of analysis. In Japan, influenza is reported on a weekly basis from 5,000 hospitals and clinics nationwide under the scheme of the National Infectious Disease Surveillance. The collected data are available to the public as weekly reports which were summarized into number of patient visits per hospital or clinic in each of the 47 prefectures. From this surveillance data, we analyzed the spatial spreading patterns of influenza epidemics using weekly weighted standard distance (WSD) from the 1999/2000 through 2008/2009 influenza seasons in Japan. WSD is a single numerical value representing the spatial compactness of influenza outbreak, which is small in case of clustered distribution and large in case of dispersed distribution. We demonstrated that the weekly WSD value or the measure of spatial compactness of the distribution of reported influenza cases, decreased to its lowest value before each epidemic peak in nine out of ten seasons analyzed. The duration between the lowest WSD week and the peak week of influenza cases ranged from minus one week to twenty weeks. The duration showed significant negative association with the proportion of influenza A/H3N2 cases in early phase of each outbreak (correlation coefficient was -0.75, P = 0.012) and significant positive association with the proportion of influenza B cases in the early phase (correlation coefficient was 0.64, P = 0.045), but positively correlated with the proportion of influenza A/H1N1 strain cases (statistically not significant). It is assumed that the lowest WSD values just before influenza peaks are due to local outbreak which results in small standard distance values. As influenza cases disperse nationwide and an epidemic reaches its peak, WSD value changed to be a progressively increasing. The spatial distribution of nationwide influenza outbreak was measured by using a novel WSD method. We showed that spreading rate varied by type and subtypes of influenza virus using WSD as a spatial indicator. This study is the first to show a relationship between influenza epidemic trend by type/subtype and spatial distribution of influenza nationwide in Japan.

  3. Spatial distribution of fluorescent light emitted from neon and nitrogen excited by low energy electron beams

    NASA Astrophysics Data System (ADS)

    Morozov, A.; Krücken, R.; Ulrich, A.; Wieser, J.

    2006-11-01

    Side-view intensity profiles of fluorescent light were measured for neon and nitrogen excited with 12keV electron beams at gas pressures from 250to1400hPa. The intensity profiles were compared with theoretical profiles calculated using the CASINO program which performs Monte Carlo simulations of electron scattering. It was assumed that the spatial distribution of fluorescent intensity is directly proportional to the spatial distribution of energy loss by primary electrons. The comparison shows good correlation of experimental data and the results of numeric simulations.

  4. Analysis of spatial correlation in predictive models of forest variables that use LiDAR auxiliary information

    Treesearch

    F. Mauro; Vicente J. Monleon; H. Temesgen; L.A. Ruiz

    2017-01-01

    Accounting for spatial correlation of LiDAR model errors can improve the precision of model-based estimators. To estimate spatial correlation, sample designs that provide close observations are needed, but their implementation might be prohibitively expensive. To quantify the gains obtained by accounting for the spatial correlation of model errors, we examined (

  5. Extension of the spatial autocorrelation (SPAC) method to mixed-component correlations of surface waves

    USGS Publications Warehouse

    Haney, Matthew M.; Mikesell, T. Dylan; van Wijk, Kasper; Nakahara, Hisashi

    2012-01-01

    Using ambient seismic noise for imaging subsurface structure dates back to the development of the spatial autocorrelation (SPAC) method in the 1950s. We present a theoretical analysis of the SPAC method for multicomponent recordings of surface waves to determine the complete 3 × 3 matrix of correlations between all pairs of three-component motions, called the correlation matrix. In the case of isotropic incidence, when either Rayleigh or Love waves arrive from all directions with equal power, the only non-zero off-diagonal terms in the matrix are the vertical–radial (ZR) and radial–vertical (RZ) correlations in the presence of Rayleigh waves. Such combinations were not considered in the development of the SPAC method. The method originally addressed the vertical–vertical (ZZ), RR and TT correlations, hence the name spatial autocorrelation. The theoretical expressions we derive for the ZR and RZ correlations offer additional ways to measure Rayleigh wave dispersion within the SPAC framework. Expanding on the results for isotropic incidence, we derive the complete correlation matrix in the case of generally anisotropic incidence. We show that the ZR and RZ correlations have advantageous properties in the presence of an out-of-plane directional wavefield compared to ZZ and RR correlations. We apply the results for mixed-component correlations to a data set from Akutan Volcano, Alaska and find consistent estimates of Rayleigh wave phase velocity from ZR compared to ZZ correlations. This work together with the recently discovered connections between the SPAC method and time-domain correlations of ambient noise provide further insights into the retrieval of surface wave Green’s functions from seismic noise.

  6. Triple collocation-based estimation of spatially correlated observation error covariance in remote sensing soil moisture data assimilation

    NASA Astrophysics Data System (ADS)

    Wu, Kai; Shu, Hong; Nie, Lei; Jiao, Zhenhang

    2018-01-01

    Spatially correlated errors are typically ignored in data assimilation, thus degenerating the observation error covariance R to a diagonal matrix. We argue that a nondiagonal R carries more observation information making assimilation results more accurate. A method, denoted TC_Cov, was proposed for soil moisture data assimilation to estimate spatially correlated observation error covariance based on triple collocation (TC). Assimilation experiments were carried out to test the performance of TC_Cov. AMSR-E soil moisture was assimilated with a diagonal R matrix computed using the TC and assimilated using a nondiagonal R matrix, as estimated by proposed TC_Cov. The ensemble Kalman filter was considered as the assimilation method. Our assimilation results were validated against climate change initiative data and ground-based soil moisture measurements using the Pearson correlation coefficient and unbiased root mean square difference metrics. These experiments confirmed that deterioration of diagonal R assimilation results occurred when model simulation is more accurate than observation data. Furthermore, nondiagonal R achieved higher correlation coefficient and lower ubRMSD values over diagonal R in experiments and demonstrated the effectiveness of TC_Cov to estimate richly structuralized R in data assimilation. In sum, compared with diagonal R, nondiagonal R may relieve the detrimental effects of assimilation when simulated model results outperform observation data.

  7. Probing GFP-actin diffusion in living cells using fluorescence correlation spectroscopy.

    PubMed

    Engelke, Hanna; Heinrich, Doris; Rädler, Joachim O

    2010-12-22

    The cytoskeleton of eukaryotic cells is continuously remodeled by polymerization and depolymerization of actin. Consequently, the relative content of polymerized filamentous actin (F-actin) and monomeric globular actin (G-actin) is subject to temporal and spatial fluctuations. Since fluorescence correlation spectroscopy (FCS) can measure the diffusion of fluorescently labeled actin it seems likely that FCS allows us to determine the dynamics and hence indirectly the structural properties of the cytoskeleton components with high spatial resolution. To this end we investigate the FCS signal of GFP-actin in living Dictyostelium discoideum cells and explore the inherent spatial and temporal signatures of the actin cytoskeleton. Using the free green fluorescent protein (GFP) as a reference, we find that actin diffusion inside cells is dominated by G-actin and slower than diffusion in diluted cell extract. The FCS signal in the dense cortical F-actin network near the cell membrane is probed using the cytoskeleton protein LIM and is found to be slower than cytosolic G-actin diffusion. Furthermore, we show that polymerization of the cytoskeleton induced by Jasplakinolide leads to a substantial decrease of G-actin diffusion. Pronounced fluctuations in the distribution of the FCS correlation curves can be induced by latrunculin, which is known to induce actin waves. Our work suggests that the FCS signal of GFP-actin in combination with scanning or spatial correlation techniques yield valuable information about the local dynamics and concomitant cytoskeletal properties.

  8. Soil Texture Often Exerts a Stronger Influence Than Precipitation on Mesoscale Soil Moisture Patterns

    NASA Astrophysics Data System (ADS)

    Dong, Jingnuo; Ochsner, Tyson E.

    2018-03-01

    Soil moisture patterns are commonly thought to be dominated by land surface characteristics, such as soil texture, at small scales and by atmospheric processes, such as precipitation, at larger scales. However, a growing body of evidence challenges this conceptual model. We investigated the structural similarity and spatial correlations between mesoscale (˜1-100 km) soil moisture patterns and land surface and atmospheric factors along a 150 km transect using 4 km multisensor precipitation data and a cosmic-ray neutron rover, with a 400 m diameter footprint. The rover was used to measure soil moisture along the transect 18 times over 13 months. Spatial structures of soil moisture, soil texture (sand content), and antecedent precipitation index (API) were characterized using autocorrelation functions and fitted with exponential models. Relative importance of land surface characteristics and atmospheric processes were compared using correlation coefficients (r) between soil moisture and sand content or API. The correlation lengths of soil moisture, sand content, and API ranged from 12-32 km, 13-20 km, and 14-45 km, respectively. Soil moisture was more strongly correlated with sand content (r = -0.536 to -0.704) than with API for all but one date. Thus, land surface characteristics exhibit coherent spatial patterns at scales up to 20 km, and those patterns often exert a stronger influence than do precipitation patterns on mesoscale spatial patterns of soil moisture.

  9. New insights into the endophenotypic status of cognition in bipolar disorder: genetic modelling study of twins and siblings.

    PubMed

    Georgiades, Anna; Rijsdijk, Fruhling; Kane, Fergus; Rebollo-Mesa, Irene; Kalidindi, Sridevi; Schulze, Katja K; Stahl, Daniel; Walshe, Muriel; Sahakian, Barbara J; McDonald, Colm; Hall, Mei-Hua; Murray, Robin M; Kravariti, Eugenia

    2016-06-01

    Twin studies have lacked statistical power to apply advanced genetic modelling techniques to the search for cognitive endophenotypes for bipolar disorder. To quantify the shared genetic variability between bipolar disorder and cognitive measures. Structural equation modelling was performed on cognitive data collected from 331 twins/siblings of varying genetic relatedness, disease status and concordance for bipolar disorder. Using a parsimonious AE model, verbal episodic and spatial working memory showed statistically significant genetic correlations with bipolar disorder (rg = |0.23|-|0.27|), which lost statistical significance after covarying for affective symptoms. Using an ACE model, IQ and visual-spatial learning showed statistically significant genetic correlations with bipolar disorder (rg = |0.51|-|1.00|), which remained significant after covarying for affective symptoms. Verbal episodic and spatial working memory capture a modest fraction of the bipolar diathesis. IQ and visual-spatial learning may tap into genetic substrates of non-affective symptomatology in bipolar disorder. © The Royal College of Psychiatrists 2016.

  10. Distributed phase birefringence measurements based on polarization correlation in phase-sensitive optical time-domain reflectometers.

    PubMed

    Soto, Marcelo A; Lu, Xin; Martins, Hugo F; Gonzalez-Herraez, Miguel; Thévenaz, Luc

    2015-09-21

    In this paper a technique to measure the distributed birefringence profile along optical fibers is proposed and experimentally validated. The method is based on the spectral correlation between two sets of orthogonally-polarized measurements acquired using a phase-sensitive optical time-domain reflectometer (ϕOTDR). The correlation between the two measured spectra gives a resonance (correlation) peak at a frequency detuning that is proportional to the local refractive index difference between the two orthogonal polarization axes of the fiber. In this way the method enables local phase birefringence measurements at any position along optical fibers, so that any longitudinal fluctuation can be precisely evaluated with metric spatial resolution. The method has been experimentally validated by measuring fibers with low and high birefringence, such as standard single-mode fibers as well as conventional polarization-maintaining fibers. The technique has potential applications in the characterization of optical fibers for telecommunications as well as in distributed optical fiber sensing.

  11. Statistical Approaches Used to Assess the Equity of Access to Food Outlets: A Systematic Review

    PubMed Central

    Lamb, Karen E.; Thornton, Lukar E.; Cerin, Ester; Ball, Kylie

    2015-01-01

    Background Inequalities in eating behaviours are often linked to the types of food retailers accessible in neighbourhood environments. Numerous studies have aimed to identify if access to healthy and unhealthy food retailers is socioeconomically patterned across neighbourhoods, and thus a potential risk factor for dietary inequalities. Existing reviews have examined differences between methodologies, particularly focussing on neighbourhood and food outlet access measure definitions. However, no review has informatively discussed the suitability of the statistical methodologies employed; a key issue determining the validity of study findings. Our aim was to examine the suitability of statistical approaches adopted in these analyses. Methods Searches were conducted for articles published from 2000–2014. Eligible studies included objective measures of the neighbourhood food environment and neighbourhood-level socio-economic status, with a statistical analysis of the association between food outlet access and socio-economic status. Results Fifty-four papers were included. Outlet accessibility was typically defined as the distance to the nearest outlet from the neighbourhood centroid, or as the number of food outlets within a neighbourhood (or buffer). To assess if these measures were linked to neighbourhood disadvantage, common statistical methods included ANOVA, correlation, and Poisson or negative binomial regression. Although all studies involved spatial data, few considered spatial analysis techniques or spatial autocorrelation. Conclusions With advances in GIS software, sophisticated measures of neighbourhood outlet accessibility can be considered. However, approaches to statistical analysis often appear less sophisticated. Care should be taken to consider assumptions underlying the analysis and the possibility of spatially correlated residuals which could affect the results. PMID:29546115

  12. L-band HIgh Spatial Resolution Soil Moisture Mapping using SMALL UnManned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Dai, E.; Venkitasubramony, A.; Gasiewski, A. J.; Stachura, M.; Elston, J. S.; Walter, B.; Lankford, D.; Corey, C.

    2017-12-01

    Soil moisture is of fundamental importance to many hydrological, biological and biogeochemical processes, plays an important role in the development and evolution of convective weather and precipitation, water resource management, agriculture, and flood runoff prediction. The launch of NASA's Soil Moisture Active/Passive (SMAP) mission in 2015 provided new passive global measurements of soil moisture and surface freeze/thaw state at fixed crossing times and spatial resolutions of 36 km. However, there exists a need for measurements of soil moisture on much smaller spatial scales and arbitrary diurnal times for SMAP validation, precision agriculture and evaporation and transpiration studies of boundary layer heat transport. The Lobe Differencing Correlation Radiometer (LDCR) provides a means of mapping soil moisture on spatial scales as small as several meters. Compared with other methods of validation based on either in-situ measurements [1,2] or existing airborne sensors suitable for manned aircraft deployment [3], the integrated design of the LDCR on a lightweight small UAS (sUAS) is capable of providing sub-watershed ( km scale) coverage at very high spatial resolution ( 15 m) suitable for scaling studies, and at comparatively low operator cost. To demonstrate the LDCR several flights had been performed during field experiments at the Canton Oklahoma Soilscape site and Yuma Colorado Irrigation Research Foundation (IRF) site in 2015 and 2016, respectively, using LDCR Revision A and Tempest sUAS. The scientific intercomparisons of LDCR retrieved soil moisture and in-situ measurements will be presented. LDCR Revision B has been built and integrated into SuperSwift sUAS and additional field experiments will be performed at IRF in 2017. In Revision B the IF signal is sampled at 80 MS/s to enable digital correlation and RFI mitigation capabilities, in addition to analog correlation. [1] McIntyre, E.M., A.J. Gasiewski, and D. Manda D, "Near Real-Time Passive C-Band Microwave Soil Moisture Retrieval During CLASIC 2007," Proc. IGARSS, 2008. [2] Robock, A., S. Steele-Dunne, J. Basara, W. Crow, and M. Moghaddam M, "In Situ Network and Scaling," SMAP Algorithm and Cal/Val Workshop, 2009. [3] Walker, A., "Airborne Microwave Radiometer Measurements During CanEx-SM10," Second SMAP Cal/Val Workshop, 2011.

  13. Four wave mixing oscillation in a semiconductor microcavity: generation of two correlated polariton populations.

    PubMed

    Romanelli, M; Leyder, C; Karr, J Ph; Giacobino, E; Bramati, A

    2007-03-09

    We demonstrate a novel kind of polariton four wave mixing oscillation. Two pump polaritons scatter towards final states that emit two beams of equal intensity, separated both spatially and in polarization with respect to the pumps. The measurement of the intensity fluctuations of the emitted light demonstrates that the final states are strongly correlated.

  14. A geospatial analysis of soil lead concentrations around regional Oklahoma airports.

    PubMed

    McCumber, Alexander; Strevett, K A

    2017-01-01

    Lead has been banned from automobile gasoline since 1995; however, lead is still used as an additive to aviation gasoline (avgas). Airports are now one of the greatest sources of lead air emission in the US. The objectives of this study were (1) to evaluate soil lead levels radially from three regional airports; (2) collect historical meteorological data; (3) examine the soil organic matter content and (4) develop correlation coefficients to evaluate correlations among variables. Soil samples were collected from 3 different airports in Oklahoma and the soil lead concentration was measured using x-ray fluorescence (XRF). The measured soil lead concentrations were plotted with the corresponding GPS location in ArcGIS and Inverse Distance Weight spatial analysis was used to create modeled isopleths of soil lead concentrations. One of the three airports was found to have soil lead concentrations that correlate with soil organic matter with one other showing correlation between soil lead concentration and distance from the airport. The spatial modeled isopleths showed elevated soil lead concentrations in the direction of prevailing winds with "hot spots" near the avgas fueling stations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Comparison of bottom-track to global positioning system referenced discharges measured using an acoustic Doppler current profiler

    USGS Publications Warehouse

    Wagner, Chad R.; Mueller, David S.

    2011-01-01

    A negative bias in discharge measurements made with an acoustic Doppler current profiler (ADCP) can be caused by the movement of sediment on or near the streambed. The integration of a global positioning system (GPS) to track the movement of the ADCP can be used to avoid the systematic negative bias associated with a moving streambed. More than 500 discharge transects from 63 discharge measurements with GPS data were collected at sites throughout the US, Canada, and New Zealand with no moving bed to compare GPS and bottom-track-referenced discharges. Although the data indicated some statistical bias depending on site conditions and type of GPS data used, these biases were typically about 0.5% or less. An assessment of differential correction sources was limited by a lack of data collected in a range of different correction sources and different GPS receivers at the same sites. Despite this limitation, the data indicate that the use of Wide Area Augmentation System (WAAS) corrected positional data is acceptable for discharge measurements using GGA as the boat-velocity reference. The discharge data based on GPS-referenced boat velocities from the VTG data string, which does not require differential correction, were comparable to the discharges based on GPS-referenced boat velocities from the differentially-corrected GGA data string. Spatial variability of measure discharges referenced to GGA, VTG and bottom-tracking is higher near the channel banks. The spatial variability of VTG-referenced discharges is correlated with the spatial distribution of maximum Horizontal Dilution of Precision (HDOP) values and the spatial variability of GGA-referenced discharges is correlated with proximity to channel banks.

  16. Polarimetric optical imaging of scattering surfaces.

    PubMed

    Barter, J D; Lee, P H

    1996-10-20

    A polarimetric optical specular event detector (OSED) has been developed to provide spatially and temporally resolved polarimetric data of backscattering in the visible from water wave surfaces. The OSED acquires simultaneous, two-dimensionally resolved images of the remote target in two orthogonal planes of polarization. With the use of plane-polarized illumination the OSED presently can measure, in an ensemble of breaking waves, the equivalent four-element polarization matrix common to polarimetric radars. Upgrade to full Stokes parameter state of polarization measurements is straightforward with the use of present single-aperture, multi-imager CCD camera technology. The OSED is used in conjunction with a coherent pulse-chirped radar (PCR), which also measures the four-element polarization matrix, to provide direct time-correlated identification of backscattering mechanisms operative during wave-breaking events which heretofore have not been described theoretically. We describe the instrument and its implementation, and examples of spatially resolved polarimetric data are displayed as correlated with the PCR backscatter cross section and polarization ratio records.

  17. Correlation techniques and measurements of wave-height statistics

    NASA Technical Reports Server (NTRS)

    Guthart, H.; Taylor, W. C.; Graf, K. A.; Douglas, D. G.

    1972-01-01

    Statistical measurements of wave height fluctuations have been made in a wind wave tank. The power spectral density function of temporal wave height fluctuations evidenced second-harmonic components and an f to the minus 5th power law decay beyond the second harmonic. The observations of second harmonic effects agreed very well with a theoretical prediction. From the wave statistics, surface drift currents were inferred and compared to experimental measurements with satisfactory agreement. Measurements were made of the two dimensional correlation coefficient at 15 deg increments in angle with respect to the wind vector. An estimate of the two-dimensional spatial power spectral density function was also made.

  18. Song learning and cognitive ability are not consistently related in a songbird.

    PubMed

    Anderson, Rindy C; Searcy, William A; Peters, Susan; Hughes, Melissa; DuBois, Adrienne L; Nowicki, Stephen

    2017-03-01

    Learned aspects of song have been hypothesized to signal cognitive ability in songbirds. We tested this hypothesis in hand-reared song sparrows (Melospiza melodia) that were tutored with playback of adult songs during the critical period for song learning. The songs developed by the 19 male subjects were compared to the model songs to produce two measures of song learning: the proportion of notes copied from models and the average spectrogram cross-correlation between copied notes and model notes. Song repertoire size, which reflects song complexity, was also measured. At 1 year of age, subjects were given a battery of five cognitive tests that measured speed of learning in the context of a novel foraging task, color association, color reversal, detour-reaching, and spatial learning. Bivariate correlations between the three song measures and the five cognitive measures revealed no significant associations. As in other studies of avian cognition, different cognitive measures were for the most part not correlated with each other, and this result remained true when 22 hand-reared female song sparrows were added to the analysis. General linear mixed models controlling for effects of neophobia and nest of origin indicated that all three song measures were associated with better performance on color reversal and spatial learning but were associated with worse performance on novel foraging and detour-reaching. Overall, the results do not support the hypothesis that learned aspects of song signal cognitive ability.

  19. Intrapersonal, interpersonal, and physical space in anorexia nervosa: a virtual reality and repertory grid investigation.

    PubMed

    Cipolletta, Sabrina; Malighetti, Clelia; Serino, Silvia; Riva, Giuseppe; Winter, David

    2017-06-01

    Anorexia nervosa (AN) is an eating disorder characterized by severe body image disturbances. Recent studies from spatial cognition showed a connection between the experience of body and of space. The objectives of this study were to explore the meanings that characterize AN experience and to deepen the examination of spatiality in relational terms, through the study of how the patient construes herself and her interpersonal world. More specifically this study aimed (1) to verify whether spatial variables and aspects of construing differentiate patients with AN and healthy controls (HCs) and are related to severity of anorexic symptomatology; (2) to explore correlations between impairments in spatial abilities and interpersonal construing. A sample of 12 AN patients and 12 HCs participated in the study. The Eating Disorder Inventory, a virtual reality-based procedure, traditional measures of spatial abilities, and repertory grids were administered. The AN group compared to HCs showed significant impairments in spatial abilities, more unidimensional construing, and more extreme construing of the present self and of the self as seen by others. All these dimensions correlated with the severity of symptomatology. Extreme ways of construing characterized individuals with AN and might represent the interpersonal aspect of impairment in spatial reference frames. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  20. Spatial resolution of pace mapping of idiopathic ventricular tachycardia/ectopy originating in the right ventricular outflow tract.

    PubMed

    Bogun, Frank; Taj, Majid; Ting, Michael; Kim, Hyungjin Myra; Reich, Stephen; Good, Eric; Jongnarangsin, Krit; Chugh, Aman; Pelosi, Frank; Oral, Hakan; Morady, Fred

    2008-03-01

    Pace mapping has been used to identify the site of origin of focal ventricular arrhythmias. The spatial resolution of pace mapping has not been adequately quantified using currently available three-dimensional mapping systems. The purpose of this study was to determine the spatial resolution of pace mapping in patients with idiopathic ventricular tachycardia or premature ventricular contractions originating in the right ventricular outflow tract. In 16 patients with idiopathic ventricular tachycardia/ectopy from the right ventricular outflow tract, comparisons and classifications of pace maps were performed by two observers (good pace map: match >10/12 leads; inadequate pace map: match < or =10/12 leads) and a customized MATLAB 6.0 program (assessing correlation coefficient and normalized root mean square of the difference (nRMSd) between test and template signals). With an electroanatomic mapping system, the correlation coefficient of each pace map was correlated with the distance between the pacing site and the effective ablation site. The endocardial area within the 10-ms activation isochrone was measured. The ablation procedure was effective in all patients. Sites with good pace maps had a higher correlation coefficient and lower nRMSd than sites with inadequate pace maps (correlation coefficient: 0.96 +/- 0.03 vs 0.76 +/- 0.18, P <.0001; nRMSd: 0.41 +/- 0.16 vs 0.89 +/- 0.39, P <.0001). Using receiver operating characteristic curves, appropriate cutoff values were >0.94 for correlation coefficient (sensitivity 81%, specificity 89%) and < or =0.54 for nRMSd (sensitivity 76%, specificity 80%). Good pace maps were located a mean of 7.3 +/- 5.0 mm from the effective ablation site and had a mean activation time of -24 +/- 7 ms. However, in 3 (18%) of 16 patients, the best pace map was inadequate at the effective ablation site, with an endocardial activation time at these sites of -25 +/- 12 ms. Pace maps with correlation coefficient > or =0.94 were confined to an area of 1.8 +/- 0.6 cm2. The 10-ms isochrone measured 1.2 +/- 0.7 cm2. The spatial resolution of a good pace map for targeting ventricular tachycardia/ectopy is 1.8 cm2 in the right ventricular outflow tract and therefore is inferior to the spatial resolution of activation mapping as assessed by isochronal activation. In approximately 20% of patients, pace mapping is unreliable in identifying the site of origin, possibly due a deeper site of origin and preferential conduction via fibers connecting the focus to the endocardial surface.

  1. Spatial Distribution and Relationship of T1ρ and T2 Relaxation Times in Knee Cartilage With Osteoarthritis

    PubMed Central

    Li, Xiaojuan; Pai, Alex; Blumenkrantz, Gabrielle; Carballido-Gamio, Julio; Link, Thomas; Ma, Benjamin; Ries, Michael; Majumdar, Sharmila

    2009-01-01

    T1ρ and T2 relaxation time constants have been proposed to probe biochemical changes in osteoarthritic cartilage. This study aimed to evaluate the spatial correlation and distribution of T1ρ and T2 values in osteoarthritic cartilage. Ten patients with osteoarthritis (OA) and 10 controls were studied at 3T. The spatial correlation of T1ρ and T2 values was investigated using Z-scores. The spatial variation of T1ρ and T2 values in patellar cartilage was studied in different cartilage layers. The distribution of these relaxation time constants was measured using texture analysis parameters based on gray-level co-occurrence matrices (GLCM). The mean Z-scores for T1ρ and T2 values were significantly higher in OA patients vs. controls (P < 0.05). Regional correlation coefficients of T1ρ and T2 Z-scores showed a large range in both controls and OA patients (0.2– 0.7). OA patients had significantly greater GLCM contrast and entropy of T1ρ values than controls (P < 0.05). In summary, T1ρ and T2 values are not only increased but are also more heterogeneous in osteoarthritic cartilage. T1ρ and T2 values show different spatial distributions and may provide complementary information regarding cartilage degeneration in OA. PMID:19319904

  2. Spatial Imaging of Strongly Interacting Rydberg Atoms

    NASA Astrophysics Data System (ADS)

    Thaicharoen, Nithiwadee

    The strong interactions between Rydberg excitations can result in spatial correlations between the excitations. The ability to control the interaction strength and the correlations between Rydberg atoms is applicable in future technological implementations of quantum computation. In this thesis, I investigates how both the character of the Rydberg-Rydberg interactions and the details of the excitation process affect the nature of the spatial correlations and the evolution of those correlations in time. I first describes the experimental apparatus and methods used to perform high-magnification Rydberg-atom imaging, as well as three experiments in which these methods play an important role. The obtained Rydberg-atom positions reveal the correlations in the many-body Rydberg-atom system and their time dependence with sub-micron spatial resolution. In the first experiment, atoms are excited to a Rydberg state that experiences a repulsive van der Waals interaction. The Rydberg excitations are prepared with a well-defined initial separation, and the effect of van der Waals forces is observed by tracking the interatomic distance between the Rydberg atoms. The atom trajectories and thereby the interaction coefficient C6 are extracted from the pair correlation functions of the Rydberg atom positions. In the second experiment, the Rydberg atoms are prepared in a highly dipolar state by using adiabatic state transformation. The atom-pair kinetics that follow from the strong dipole-dipole interactions are observed. The pair correlation results provide the first direct visualization of the electric-dipole interaction and clearly exhibit its anisotropic nature. In both the first and the second experiment, results of semi-classical simulations of the atom-pair trajectories agree well with the experimental data. In the analysis, I use energy conservation and measurements of the initial positions and the terminal velocities of the atom pairs to extract the C6 and C 3 interaction coefficients. The final experiment demonstrates the ability to enhance or suppress the degree of spatial correlation in a system of Rydberg excitations, using a rotary-echo excitation process in concert with particular excitation laser detunings. The work in this thesis demonstrates an ability to control long-range interactions between Rydberg atoms, which paves the way towards preparing and studying increasingly complex many-body systems.

  3. Hippocampal structure and human cognition: key role of spatial processing and evidence supporting the efficiency hypothesis in females

    PubMed Central

    Colom, Roberto; Stein, Jason L.; Rajagopalan, Priya; Martínez, Kenia; Hermel, David; Wang, Yalin; Álvarez-Linera, Juan; Burgaleta, Miguel; Quiroga, MªÁngeles; Shih, Pei Chun; Thompson, Paul M.

    2014-01-01

    Here we apply a method for automated segmentation of the hippocampus in 3D high-resolution structural brain MRI scans. One hundred and four healthy young adults completed twenty one tasks measuring abstract, verbal, and spatial intelligence, along with working memory, executive control, attention, and processing speed. After permutation tests corrected for multiple comparisons across vertices (p < .05) significant relationships were found for spatial intelligence, spatial working memory, and spatial executive control. Interactions with sex revealed significant relationships with the general factor of intelligence (g), along with abstract and spatial intelligence. These correlations were mainly positive for males but negative for females, which might support the efficiency hypothesis in women. Verbal intelligence, attention, and processing speed were not related to hippocampal structural differences. PMID:25632167

  4. Implant positioning in TKA: comparison between conventional and patient-specific instrumentation.

    PubMed

    Ferrara, Ferdinando; Cipriani, Antonio; Magarelli, Nicola; Rapisarda, Santi; De Santis, Vincenzo; Burrofato, Aaron; Leone, Antonio; Bonomo, Lorenzo

    2015-04-01

    The number of total knee arthroplasty (TKA) procedures continuously increases, with good to excellent results. In the last few years, new surgical techniques have been developed to improve prosthesis positioning. In this context, patient-specific instrumentation is included. The goal of this study was to compare the perioperative parameters and the spatial positioning of prosthetic components in TKA procedures performed with patient-specific instrumentation vs traditional TKA. In this prospective comparative randomized study, 15 patients underwent TKA with 3-dimensional magnetic resonance imaging (MRI) preoperative planning (patient-specific instrumentation group) and 15 patients underwent traditional TKA (non-patient-specific instrumentation group). All patients underwent postoperative computed tomography (CT) examination. In the patient-specific instrumentation group, preoperative data planning regarding femoral and tibial bone resection was correlated with intraoperative measurements. Surgical time, length of hospitalization, and intraoperative and postoperative bleeding were compared between the 2 groups. Positioning of implants on postoperative CT was assessed for both groups. Data planned with 3-dimensional MRI regarding the depth of bone cuts showed good to excellent correlation with intraoperative measurements. The patient-specific instrumentation group showed better perioperative outcomes and good correlation between the spatial positioning of prosthetic components planned preoperatively and that seen on postoperative CT. Less variability was found in the patient-specific instrumentation group than in the non-patient-specific instrumentation group in spatial orientation of prosthetic components. Preoperative planning with 3-dimensional MRI in TKA has a better perioperative outcome compared with the traditional method. Use of patient-specific instrumentation can also improve the spatial positioning of both prosthetic components. Copyright 2015, SLACK Incorporated.

  5. Spatial cues serving the tactile directional sensibility of the human forearm.

    PubMed Central

    Norrsell, U; Olausson, H

    1994-01-01

    1. Tactile directional sensibility is considered to rely on the parallel processing of direction-contingent sensory data that depend on skin stretching caused by friction, and spatial cues that vary with time. A temperature-controlled airstream stimulus that prevented the activation of stretch receptors was used to investigate directional sensibility for the skin of the forearm. 2. The dependence on contact load and distance of movement was determined for normal subjects with a two-alternative forced-choice method. Testing was performed under two conditions, elbow bent or straight. Bracing the skin by straightening the arm did not alter the accuracy of the directional sensibility, in contrast to previous findings with stimuli that caused friction. 3. The accuracy of directional sensibility was correlated linearly to the logarithm of the distance of movement of the air jet. No correlation was found between accuracy and contact load, unlike findings with stimuli that cause friction. 4. Measurements were made with different subjects to determine the threshold distance at constant load. On average, subjects were able to distinguish direction with movements of < or = 8 mm. This acuity is sharper than has been reported with static stimuli. There was no correlation between subjects' threshold distances for judging direction and spatial acuity measured with absolute point localization. 5. The ability to distinguish direction was poor for the airstream stimulus compared with stimuli causing frictional contact with hairy skin. Nevertheless, the present findings are consistent with the suggestion that cutaneous spatial acuity is better for dynamic than for static stimuli. Images Figure 1 PMID:7965863

  6. Age-related change in renal corticomedullary differentiation: evaluation with noncontrast-enhanced steady-state free precession (SSFP) MRI with spatially selective inversion pulse using variable inversion time.

    PubMed

    Noda, Yasufumi; Kanki, Akihiko; Yamamoto, Akira; Higashi, Hiroki; Tanimoto, Daigo; Sato, Tomohiro; Higaki, Atsushi; Tamada, Tsutomu; Ito, Katsuyoshi

    2014-07-01

    To evaluate age-related change in renal corticomedullary differentiation and renal cortical thickness by means of noncontrast-enhanced steady-state free precession (SSFP) magnetic resonance imaging (MRI) with spatially selective inversion recovery (IR) pulse. The Institutional Review Board of our hospital approved this retrospective study and patient informed consent was waived. This study included 48 patients without renal diseases who underwent noncontrast-enhanced SSFP MRI with spatially selective IR pulse using variable inversion times (TIs) (700-1500 msec). The signal intensity of renal cortex and medulla were measured to calculate renal corticomedullary contrast ratio. Additionally, renal cortical thickness was measured. The renal corticomedullary junction was clearly depicted in all patients. The mean cortical thickness was 3.9 ± 0.83 mm. The mean corticomedullary contrast ratio was 4.7 ± 1.4. There was a negative correlation between optimal TI for the best visualization of renal corticomedullary differentiation and age (r = -0.378; P = 0.001). However, there was no significant correlation between renal corticomedullary contrast ratio and age (r = 0.187; P = 0.20). Similarly, no significant correlation was observed between renal cortical thickness and age (r = 0.054; P = 0.712). In the normal kidney, noncontrast-enhanced SSFP MRI with spatially selective IR pulse can be used to assess renal corticomedullary differentiation and cortical thickness without the influence of aging, although optimal TI values for the best visualization of renal corticomedullary junction were shortened with aging. © 2013 Wiley Periodicals, Inc.

  7. On the use of variable coherence in inverse scattering problems

    NASA Astrophysics Data System (ADS)

    Baleine, Erwan

    Even though most of the properties of optical fields, such as wavelength, polarization, wavefront curvature or angular spectrum, have been commonly manipulated in a variety of remote sensing procedures, controlling the degree of coherence of light did not find wide applications until recently. Since the emergence of optical coherence tomography, a growing number of scattering techniques have relied on temporal coherence gating which provides efficient target selectivity in a way achieved only by bulky short pulse measurements. The spatial counterpart of temporal coherence, however, has barely been exploited in sensing applications. This dissertation examines, in different scattering regimes, a variety of inverse scattering problems based on variable spatial coherence gating. Within the framework of the radiative transfer theory, this dissertation demonstrates that the short range correlation properties of a medium under test can be recovered by varying the size of the coherence volume of an illuminating beam. Nonetheless, the radiative transfer formalism does not account for long range correlations and current methods for retrieving the correlation function of the complex susceptibility require cumbersome cross-spectral density measurements. Instead, a variable coherence tomographic procedure is proposed where spatial coherence gating is used to probe the structural properties of single scattering media over an extended volume and with a very simple detection system. Enhanced backscattering is a coherent phenomenon that survives strong multiple scattering. The variable coherence tomography approach is extended in this context to diffusive media and it is demonstrated that specific photon trajectories can be selected in order to achieve depth-resolved sensing. Probing the scattering properties of shallow and deeper layers is of considerable interest in biological applications such as diagnosis of skin related diseases. The spatial coherence properties of an illuminating field can be manipulated over dimensions much larger than the wavelength thus providing a large effective sensing area. This is a practical advantage over many near-field microscopic techniques, which offer a spatial resolution beyond the classical diffraction limit but, at the expense of scanning a probe over a large area of a sample which is time consuming, and, sometimes, practically impossible. Taking advantage of the large field of view accessible when using the spatial coherence gating, this dissertation introduces the principle of variable coherence scattering microscopy. In this approach, a subwavelength resolution is achieved from simple far-zone intensity measurements by shaping the degree of spatial coherence of an evanescent field. Furthermore, tomographic techniques based on spatial coherence gating are especially attractive because they rely on simple detection schemes which, in principle, do not require any optical elements such as lenses. To demonstrate this capability, a correlated lensless imaging method is proposed and implemented, where both amplitude and phase information of an object are obtained by varying the degree of spatial coherence of the incident beam. Finally, it should be noted that the idea of using the spatial coherence properties of fields in a tomographic procedure is applicable to any type of electromagnetic radiation. Operating on principles of statistical optics, these sensing procedures can become alternatives for various target detection schemes, cutting-edge microscopies or x-ray imaging methods.

  8. Propagation of Multiwavelength Laser Radiation through Atmospheric Turbulence

    DTIC Science & Technology

    1975-07-01

    eraging time is discussed, including both microthermal and scintillation data and their interrelationship. These considerations are...related to spatial correlation measurements of the turbulence strength ( microthermal envelope) as DO l JAN 73 1473 EDITION OF...strength-of-fluctuation measurements vs. averaging time is discussed, including both microthermal and scintillation data and their inter

  9. Quantitative MRI in hypomyelinating disorders: Correlation with motor handicap.

    PubMed

    Steenweg, Marjan E; Wolf, Nicole I; van Wieringen, Wessel N; Barkhof, Frederik; van der Knaap, Marjo S; Pouwels, Petra J W

    2016-08-23

    To assess the correlation of tissue parameters estimated by quantitative magnetic resonance (MR) techniques and motor handicap in patients with hypomyelination. Twenty-eight patients with different causes of hypomyelination (12 males, 16 females; mean age 10 years) and 61 controls (33 males, 28 females; mean age 8 years) were prospectively investigated. We quantified T2 relaxation time, magnetization transfer ratio, fractional anisotropy, mean, axial, and radial diffusivities, and brain metabolites. We performed measurements in the splenium, parietal deep white matter, and corticospinal tracts in the centrum semiovale. We further analyzed diffusion measures using tract-based spatial statistics. We estimated severity of motor handicap by the gross motor function classification system. We evaluated correlation of handicap with MR measures by linear regression analyses. Fractional anisotropy, magnetization transfer ratio, choline, and N-acetylaspartate/creatine ratio were lower and diffusivities, T2 values, and inositol were higher in patients than in controls. Tract-based spatial statistics showed that these changes were widespread for fractional anisotropy (96% of the white matter skeleton), radial (93%) and mean (84%) diffusivity, and less so for axial diffusivity (20%). Correlation with handicap yielded radial diffusivity and N-acetylaspartate/creatine ratio as strongest independent explanatory variables. Gross motor function classification system grades are in part explained by MR measures. They indicate that mainly lack of myelin and, to a lesser degree, loss of axonal integrity codetermine the degree of motor handicap in patients with hypomyelinating disorders. These MR measures can be used to evaluate strategies that are aimed at promotion of myelination. © 2016 American Academy of Neurology.

  10. Development of a socio-ecological environmental justice model for watershed-based management

    NASA Astrophysics Data System (ADS)

    Sanchez, Georgina M.; Nejadhashemi, A. Pouyan; Zhang, Zhen; Woznicki, Sean A.; Habron, Geoffrey; Marquart-Pyatt, Sandra; Shortridge, Ashton

    2014-10-01

    The dynamics and relationships between society and nature are complex and difficult to predict. Anthropogenic activities affect the ecological integrity of our natural resources, specifically our streams. Further, it is well-established that the costs of these activities are born unequally by different human communities. This study considered the utility of integrating stream health metrics, based on stream health indicators, with socio-economic measures of communities, to better characterize these effects. This study used a spatial multi-factor model and bivariate mapping to produce a novel assessment for watershed management, identification of vulnerable areas, and allocation of resources. The study area is the Saginaw River watershed located in Michigan. In-stream hydrological and water quality data were used to predict fish and macroinvertebrate measures of stream health. These measures include the Index of Biological Integrity (IBI), Hilsenhoff Biotic Index (HBI), Family IBI, and total number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa. Stream health indicators were then compared to spatially coincident socio-economic data, obtained from the United States Census Bureau (2010), including race, income, education, housing, and population size. Statistical analysis including spatial regression and cluster analysis were used to examine the correlation between vulnerable human populations and environmental conditions. Overall, limited correlation was observed between the socio-economic data and ecological measures of stream health, with the highest being a negative correlation of 0.18 between HBI and the social parameter household size. Clustering was observed in the datasets with urban areas representing a second order clustering effect over the watershed. Regions with the worst stream health and most vulnerable social populations were most commonly located nearby or down-stream to highly populated areas and agricultural lands.

  11. Spatial Representativeness of Surface-Measured Variations of Downward Solar Radiation

    NASA Astrophysics Data System (ADS)

    Schwarz, M.; Folini, D.; Hakuba, M. Z.; Wild, M.

    2017-12-01

    When using time series of ground-based surface solar radiation (SSR) measurements in combination with gridded data, the spatial and temporal representativeness of the point observations must be considered. We use SSR data from surface observations and high-resolution (0.05°) satellite-derived data to infer the spatiotemporal representativeness of observations for monthly and longer time scales in Europe. The correlation analysis shows that the squared correlation coefficients (R2) between SSR times series decrease linearly with increasing distance between the surface observations. For deseasonalized monthly mean time series, R2 ranges from 0.85 for distances up to 25 km between the stations to 0.25 at distances of 500 km. A decorrelation length (i.e., the e-folding distance of R2) on the order of 400 km (with spread of 100-600 km) was found. R2 from correlations between point observations and colocated grid box area means determined from satellite data were found to be 0.80 for a 1° grid. To quantify the error which arises when using a point observation as a surrogate for the area mean SSR of larger surroundings, we calculated a spatial sampling error (SSE) for a 1° grid of 8 (3) W/m2 for monthly (annual) time series. The SSE based on a 1° grid, therefore, is of the same magnitude as the measurement uncertainty. The analysis generally reveals that monthly mean (or longer temporally aggregated) point observations of SSR capture the larger-scale variability well. This finding shows that comparing time series of SSR measurements with gridded data is feasible for those time scales.

  12. Analysis of a mesoscale infiltration and water seepage test in unsaturated fractured rock: Spatial variabilities and discrete fracture patterns

    USGS Publications Warehouse

    Zhou, Q.; Salve, R.; Liu, H.-H.; Wang, J.S.Y.; Hudson, D.

    2006-01-01

    A mesoscale (21??m in flow distance) infiltration and seepage test was recently conducted in a deep, unsaturated fractured rock system at the crossover point of two underground tunnels. Water was released from a 3??m ?? 4??m infiltration plot on the floor of an alcove in the upper tunnel, and seepage was collected from the ceiling of a niche in the lower tunnel. Significant temporal and (particularly) spatial variabilities were observed in both measured infiltration and seepage rates. To analyze the test results, a three-dimensional unsaturated flow model was used. A column-based scheme was developed to capture heterogeneous hydraulic properties reflected by these spatial variabilities observed. Fracture permeability and van Genuchten ?? parameter [van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892-898] were calibrated for each rock column in the upper and lower hydrogeologic units in the test bed. The calibrated fracture properties for the infiltration and seepage zone enabled a good match between simulated and measured (spatially varying) seepage rates. The numerical model was also able to capture the general trend of the highly transient seepage processes through a discrete fracture network. The calibrated properties and measured infiltration/seepage rates were further compared with mapped discrete fracture patterns at the top and bottom boundaries. The measured infiltration rates and calibrated fracture permeability of the upper unit were found to be partially controlled by the fracture patterns on the infiltration plot (as indicated by their positive correlations with fracture density). However, no correlation could be established between measured seepage rates and density of fractures mapped on the niche ceiling. This lack of correlation indicates the complexity of (preferential) unsaturated flow within the discrete fracture network. This also indicates that continuum-based modeling of unsaturated flow in fractured rock at mesoscale or a larger scale is not necessarily conditional explicitly on discrete fracture patterns. ?? 2006 Elsevier B.V. All rights reserved.

  13. Evolution of genuine cross-correlation strength of focal onset seizures.

    PubMed

    Müller, Markus F; Baier, Gerold; Jiménez, Yurytzy López; Marín García, Arlex O; Rummel, Christian; Schindler, Kaspar

    2011-10-01

    To quantify the evolution of genuine zero-lag cross-correlations of focal onset seizures, we apply a recently introduced multivariate measure to broad band and to narrow-band EEG data. For frequency components below 12.5 Hz, the strength of genuine cross-correlations decreases significantly during the seizure and the immediate postseizure period, while higher frequency bands show a tendency of elevated cross-correlations during the same period. We conclude that in terms of genuine zero-lag cross-correlations, the electrical brain activity as assessed by scalp electrodes shows a significant spatial fragmentation, which might promote seizure offset.

  14. Empirical spatial econometric modelling of small scale neighbourhood

    NASA Astrophysics Data System (ADS)

    Gerkman, Linda

    2012-07-01

    The aim of the paper is to model small scale neighbourhood in a house price model by implementing the newest methodology in spatial econometrics. A common problem when modelling house prices is that in practice it is seldom possible to obtain all the desired variables. Especially variables capturing the small scale neighbourhood conditions are hard to find. If there are important explanatory variables missing from the model, the omitted variables are spatially autocorrelated and they are correlated with the explanatory variables included in the model, it can be shown that a spatial Durbin model is motivated. In the empirical application on new house price data from Helsinki in Finland, we find the motivation for a spatial Durbin model, we estimate the model and interpret the estimates for the summary measures of impacts. By the analysis we show that the model structure makes it possible to model and find small scale neighbourhood effects, when we know that they exist, but we are lacking proper variables to measure them.

  15. Spatial affect learning restricted in major depression relative to anxiety disorders and healthy controls.

    PubMed

    Gollan, Jackie K; Norris, Catherine J; Hoxha, Denada; Irick, John Stockton; Hawkley, Louise C; Cacioppo, John T

    2014-01-01

    Detecting and learning the location of unpleasant or pleasant scenarios, or spatial affect learning, is an essential skill that safeguards well-being (Crawford & Cacioppo, 2002). Potentially altered by psychiatric illness, this skill has yet to be measured in adults with and without major depressive disorder (MDD) and anxiety disorders (AD). This study enrolled 199 adults diagnosed with MDD and AD (n=53), MDD (n=47), AD (n=54), and no disorders (n=45). Measures included clinical interviews, self-reports, and a validated spatial affect task using affective pictures (IAPS; Lang, Bradley, & Cuthbert, 2005). Participants with MDD showed impaired spatial affect learning of negative stimuli and irrelevant learning of pleasant pictures compared with non-depressed adults. Adults with MDD may use a "GOOD is UP" heuristic reflected by their impaired learning of the opposite correlation (i.e., "BAD is UP") and performance in the pleasant version of the task.

  16. Validation of Vehicle Panel/Equipment Response from Diffuse Acoustic Field Excitation Using Spatially Correlated Transfer Function Approach

    NASA Technical Reports Server (NTRS)

    Smith, Andrew; LaVerde, Bruce; Fulcher, Clay; Hunt, Ron

    2012-01-01

    An approach for predicting the vibration, strain, and force responses of a flight-like vehicle panel assembly to acoustic pressures is presented. Important validation for the approach is provided by comparison to ground test measurements in a reverberant chamber. The test article and the corresponding analytical model were assembled in several configurations to demonstrate the suitability of the approach for response predictions when the vehicle panel is integrated with equipment. Critical choices in the analysis necessary for convergence of the predicted and measured responses are illustrated through sensitivity studies. The methodology includes representation of spatial correlation of the pressure field over the panel surface. Therefore, it is possible to demonstrate the effects of hydrodynamic coincidence in the response. The sensitivity to pressure patch density clearly illustrates the onset of coincidence effects on the panel response predictions.

  17. Cross correlation calculations and neutron scattering analysis for a portable solid state neutron detection system

    NASA Astrophysics Data System (ADS)

    Saltos, Andrea

    In efforts to perform accurate dosimetry, Oakes et al. [Nucl. Intrum. Mehods. (2013)] introduced a new portable solid state neutron rem meter based on an adaptation of the Bonner sphere and the position sensitive long counter. The system utilizes high thermal efficiency neutron detectors to generate a linear combination of measurement signals that are used to estimate the incident neutron spectra. The inversion problem associated to deduce dose from the counts in individual detector elements is addressed by applying a cross-correlation method which allows estimation of dose with average errors less than 15%. In this work, an evaluation of the performance of this system was extended to take into account new correlation techniques and neutron scattering contribution. To test the effectiveness of correlations, the Distance correlation, Pearson Product-Moment correlation, and their weighted versions were performed between measured spatial detector responses obtained from nine different test spectra, and the spatial response of Library functions generated by MCNPX. Results indicate that there is no advantage of using the Distance Correlation over the Pearson Correlation, and that weighted versions of these correlations do not increase their performance in evaluating dose. Both correlations were proven to work well even at low integrated doses measured for short periods of time. To evaluate the contribution produced by room-return neutrons on the dosimeter response, MCNPX was used to simulate dosimeter responses for five isotropic neutron sources placed inside different sizes of rectangular concrete rooms. Results show that the contribution of scattered neutrons to the response of the dosimeter can be significant, so that for most cases the dose is over predicted with errors as large as 500%. A possible method to correct for the contribution of room-return neutrons is also assessed and can be used as a good initial estimate on how to approach the problem.

  18. Spatial Vertical Directionality and Correlation of Low-Frequency Ambient Noise in Deep Ocean Direct-Arrival Zones.

    PubMed

    Yang, Qiulong; Yang, Kunde; Cao, Ran; Duan, Shunli

    2018-01-23

    Wind-driven and distant shipping noise sources contribute to the total noise field in the deep ocean direct-arrival zones. Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent. In this work, a ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment by considering their calculation accuracy and efficiency in near-field wind-driven and far-field distant shipping noise fields. The reanalysis databases of National Center of Environment Prediction (NCEP) and Volunteer Observation System (VOS) were used to model the ambient noise source intensity and distribution. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions. The noise field was dominated by distant shipping noise sources when the wind speed was less than 3 m/s, and then the spatial vertical directionality and vertical correlation of the total noise field were nearly consistent with those of distant shipping noise field. The total noise field was completely dominated by near field wind generated noise sources when the wind speed was greater than 12 m/s at 150 Hz, and then the spatial vertical correlation coefficient and directionality pattern of the total noise field was approximately consistent with that of the wind-driven noise field. The spatial characteristics of the total noise field for wind speeds between 3 m/s and 12 m/s were the weighted results of wind-driven and distant shipping noise fields. Furthermore, the spatial characteristics of low-frequency ambient noise field were compared with the classical Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line array deployed near the bottom in deep ocean direct-arrival zones.

  19. Spatial Vertical Directionality and Correlation of Low-Frequency Ambient Noise in Deep Ocean Direct-Arrival Zones

    PubMed Central

    Yang, Qiulong; Yang, Kunde; Cao, Ran; Duan, Shunli

    2018-01-01

    Wind-driven and distant shipping noise sources contribute to the total noise field in the deep ocean direct-arrival zones. Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent. In this work, a ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment by considering their calculation accuracy and efficiency in near-field wind-driven and far-field distant shipping noise fields. The reanalysis databases of National Center of Environment Prediction (NCEP) and Volunteer Observation System (VOS) were used to model the ambient noise source intensity and distribution. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions. The noise field was dominated by distant shipping noise sources when the wind speed was less than 3 m/s, and then the spatial vertical directionality and vertical correlation of the total noise field were nearly consistent with those of distant shipping noise field. The total noise field was completely dominated by near field wind generated noise sources when the wind speed was greater than 12 m/s at 150 Hz, and then the spatial vertical correlation coefficient and directionality pattern of the total noise field was approximately consistent with that of the wind-driven noise field. The spatial characteristics of the total noise field for wind speeds between 3 m/s and 12 m/s were the weighted results of wind-driven and distant shipping noise fields. Furthermore, the spatial characteristics of low-frequency ambient noise field were compared with the classical Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line array deployed near the bottom in deep ocean direct-arrival zones. PMID:29360793

  20. Quantum critical probing and simulation of colored quantum noise

    NASA Astrophysics Data System (ADS)

    Mascarenhas, Eduardo; de Vega, Inés

    2017-12-01

    We propose a protocol to simulate the evolution of a non-Markovian open quantum system by considering a collisional process with a many-body system, which plays the role of an environment. As a result of our protocol, the environment spatial correlations are mapped into the time correlations of a noise that drives the dynamics of the open system. Considering the weak coupling limit, the open system can also be considered as a probe of the environment properties. In this regard, when preparing the environment in its ground state, a measurement of the dynamics of the open system allows to determine the length of the environment spatial correlations and therefore its critical properties. To illustrate our proposal we simulate the full system dynamics with matrix-product-states and compare this to the reduced dynamics obtained with an approximated variational master equation.

  1. High spatial resolution correlated investigation of Zn segregation to stacking faults in ZnTe/CdSe nanostructures

    NASA Astrophysics Data System (ADS)

    Bonef, Bastien; Grenier, Adeline; Gerard, Lionel; Jouneau, Pierre-Henri; André, Regis; Blavette, Didier; Bougerol, Catherine

    2018-02-01

    The correlative use of atom probe tomography (APT) and energy dispersive x-ray spectroscopy in scanning transmission electron microscopy (STEM) allows us to characterize the structure of ZnTe/CdSe superlattices at the nanometre scale. Both techniques reveal the segregation of zinc along [111] stacking faults in CdSe layers, which is interpreted as a manifestation of the Suzuki effect. Quantitative measurements reveal a zinc enrichment around 9 at. % correlated with a depletion of cadmium in the stacking faults. Raw concentration data were corrected so as to account for the limited spatial resolution of both STEM and APT techniques. A simple calculation reveals that the stacking faults are almost saturated in Zn atoms (˜66 at. % of Zn) at the expense of Cd that is depleted.

  2. Utilization of volume correlation filters for underwater mine identification in LIDAR imagery

    NASA Astrophysics Data System (ADS)

    Walls, Bradley

    2008-04-01

    Underwater mine identification persists as a critical technology pursued aggressively by the Navy for fleet protection. As such, new and improved techniques must continue to be developed in order to provide measurable increases in mine identification performance and noticeable reductions in false alarm rates. In this paper we show how recent advances in the Volume Correlation Filter (VCF) developed for ground based LIDAR systems can be adapted to identify targets in underwater LIDAR imagery. Current automated target recognition (ATR) algorithms for underwater mine identification employ spatial based three-dimensional (3D) shape fitting of models to LIDAR data to identify common mine shapes consisting of the box, cylinder, hemisphere, truncated cone, wedge, and annulus. VCFs provide a promising alternative to these spatial techniques by correlating 3D models against the 3D rendered LIDAR data.

  3. Spatial and spectral interpolation of ground-motion intensity measure observations

    USGS Publications Warehouse

    Worden, Charles; Thompson, Eric M.; Baker, Jack W.; Bradley, Brendon A.; Luco, Nicolas; Wilson, David

    2018-01-01

    Following a significant earthquake, ground‐motion observations are available for a limited set of locations and intensity measures (IMs). Typically, however, it is desirable to know the ground motions for additional IMs and at locations where observations are unavailable. Various interpolation methods are available, but because IMs or their logarithms are normally distributed, spatially correlated, and correlated with each other at a given location, it is possible to apply the conditional multivariate normal (MVN) distribution to the problem of estimating unobserved IMs. In this article, we review the MVN and its application to general estimation problems, and then apply the MVN to the specific problem of ground‐motion IM interpolation. In particular, we present (1) a formulation of the MVN for the simultaneous interpolation of IMs across space and IM type (most commonly, spectral response at different oscillator periods) and (2) the inclusion of uncertain observation data in the MVN formulation. These techniques, in combination with modern empirical ground‐motion models and correlation functions, provide a flexible framework for estimating a variety of IMs at arbitrary locations.

  4. Imaging viscoelastic properties of live cells by AFM: power-law rheology on the nanoscale.

    PubMed

    Hecht, Fabian M; Rheinlaender, Johannes; Schierbaum, Nicolas; Goldmann, Wolfgang H; Fabry, Ben; Schäffer, Tilman E

    2015-06-21

    We developed force clamp force mapping (FCFM), an atomic force microscopy (AFM) technique for measuring the viscoelastic creep behavior of live cells with sub-micrometer spatial resolution. FCFM combines force-distance curves with an added force clamp phase during tip-sample contact. From the creep behavior measured during the force clamp phase, quantitative viscoelastic sample properties are extracted. We validate FCFM on soft polyacrylamide gels. We find that the creep behavior of living cells conforms to a power-law material model. By recording short (50-60 ms) force clamp measurements in rapid succession, we generate, for the first time, two-dimensional maps of power-law exponent and modulus scaling parameter. Although these maps reveal large spatial variations of both parameters across the cell surface, we obtain robust mean values from the several hundreds of measurements performed on each cell. Measurements on mouse embryonic fibroblasts show that the mean power-law exponents and the mean modulus scaling parameters differ greatly among individual cells, but both parameters are highly correlated: stiffer cells consistently show a smaller power-law exponent. This correlation allows us to distinguish between wild-type cells and cells that lack vinculin, a dominant protein of the focal adhesion complex, even though the mean values of viscoelastic properties between wildtype and knockout cells did not differ significantly. Therefore, FCFM spatially resolves viscoelastic sample properties and can uncover subtle mechanical signatures of proteins in living cells.

  5. Spatial and temporal variability of fine particle composition and source types in five cities of Connecticut and Massachusetts.

    PubMed

    Lee, Hyung Joo; Gent, Janneane F; Leaderer, Brian P; Koutrakis, Petros

    2011-05-01

    To protect public health from PM(2.5) air pollution, it is critical to identify the source types of PM(2.5) mass and chemical components associated with higher risks of adverse health outcomes. Source apportionment modeling using Positive Matrix Factorization (PMF), was used to identify PM(2.5) source types and quantify the source contributions to PM(2.5) in five cities of Connecticut and Massachusetts. Spatial and temporal variability of PM(2.5) mass, components and source contributions were investigated. PMF analysis identified five source types: regional pollution as traced by sulfur, motor vehicle, road dust, oil combustion and sea salt. The sulfur-related regional pollution and traffic source type were major contributors to PM(2.5). Due to sparse ground-level PM(2.5) monitoring sites, current epidemiological studies are susceptible to exposure measurement errors. The higher correlations in concentrations and source contributions between different locations suggest less spatial variability, resulting in less exposure measurement errors. When concentrations and/or contributions were compared to regional averages, correlations were generally higher than between-site correlations. This suggests that for assigning exposures for health effects studies, using regional average concentrations or contributions from several PM(2.5) monitors is more reliable than using data from the nearest central monitor. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Improving the Quality of Low-Cost GPS Receiver Data for Monitoring Using Spatial Correlations

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Schwieger, Volker

    2016-06-01

    The investigations on low-cost single frequency GPS receivers at the Institute of Engineering Geodesy (IIGS) show that u-blox LEA-6T GPS receivers combined with Trimble Bullet III GPS antennas containing self-constructed L1-optimized choke rings can already obtain an accuracy in the range of millimeters which meets the requirements of geodetic precise monitoring applications (see [27]). However, the quality (accuracy and reliability) of low-cost GPS receiver data, particularly in shadowing environment, should still be improved, since the multipath effects are the major error for the short baselines. For this purpose, several adjoined stations with low-cost GPS receivers and antennas were set up next to the metal wall on the roof of the IIGS building and measured statically for several days. The time series of three-dimensional coordinates of the GPS receivers were analyzed. Spatial correlations between the adjoined stations, possibly caused by multipath effect, will be taken into account. The coordinates of one station can be corrected using the spatial correlations of the adjoined stations, so that the quality of the GPS measurements is improved. The developed algorithms are based on the coordinates and the results will be delivered in near-real-time (in about 30 minutes), so that they are suitable for structural health monitoring applications.

  7. Spatial Distribution and Air-Water Exchange of Organic Flame Retardants in the Lower Great Lakes.

    PubMed

    McDonough, Carrie A; Puggioni, Gavino; Helm, Paul A; Muir, Derek; Lohmann, Rainer

    2016-09-06

    Organic flame retardants (OFRs) such as polybrominated diphenyl ethers (PBDEs) and novel halogenated flame retardants (NHFRs) are ubiquitous, persistent, and bioaccumulative contaminants that have been used in consumer goods to slow combustion. In this study, polyethylene passive samplers (PEs) were deployed throughout the lower Great Lakes (Lake Erie and Lake Ontario) to measure OFRs in air and water, calculate air-water exchange fluxes, and investigate spatial trends. Dissolved Σ12BDE was greatest in Lake Ontario near Toronto (18 pg/L), whereas gaseous Σ12BDE was greatest on the southern shoreline of Lake Erie (11 pg/m(3)). NHFRs were generally below detection limits. Air-water exchange was dominated by absorption of BDEs 47 and 99, ranging from -964 pg/m(2)/day to -30 pg/m(2)/day. Σ12BDE in air and water was significantly correlated with surrounding population density, suggesting that phased-out PBDEs continued to be emitted from population centers along the Great Lakes shoreline in 2012. Correlation with dissolved Σ12BDE was strongest when considering population within 25 km while correlation with gaseous Σ12BDE was strongest when using population within 3 km to the south of each site. Bayesian kriging was used to predict dissolved Σ12BDE over the lakes, illustrating the utility of relatively highly spatially resolved measurements in identifying potential hot spots for future study.

  8. Ammonia and Methane Dairy Emission Plumes in the San Joaquin Valley of California from Individual Feedlot to Regional Scales

    NASA Technical Reports Server (NTRS)

    Miller, David J.; Sun, Kang; Pan, Da; Zondlo, Mark A.; Nowak, John B.; Liu, Zhen; Diskin, Glenn; Sachse, Glen; Beyersdorf, Andreas; Ferrare, Richard; hide

    2015-01-01

    Agricultural ammonia (NH3) emissions are highly uncertain, with high spatiotemporal variability and a lack of widespread in situ measurements. Regional NH3 emission estimates using mass balance or emission ratio approaches are uncertain due to variable NH3 sources and sinks as well as unknown plume correlations with other dairy source tracers. We characterize the spatial distributions of NH3 and methane (CH4) dairy plumes using in situ surface and airborne measurements in the Tulare dairy feedlot region of the San Joaquin Valley, California, during the NASA Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality 2013 field campaign. Surface NH3 and CH4 mixing ratios exhibit large variability with maxima localized downwind of individual dairy feedlots. The geometric mean NH3:CH4 enhancement ratio derived from surface measurements is 0.15 +/- 0.03 ppmv ppmv-1. Individual dairy feedlots with spatially distinct NH3 and CH4 source pathways led to statistically significant correlations between NH3 and CH4 in 68% of the 69 downwind plumes sampled. At longer sampling distances, the NH3:CH4 enhancement ratio decreases 20-30%, suggesting the potential for NH3 deposition as a loss term for plumes within a few kilometers downwind of feedlots. Aircraft boundary layer transect measurements directly above surface mobile measurements in the dairy region show comparable gradients and geometric mean enhancement ratios within measurement uncertainties, even when including NH3 partitioning to submicron particles. Individual NH3 and CH4 plumes sampled at close proximity where losses are minimal are not necessarily correlated due to lack of mixing and distinct source pathways. Our analyses have important implications for constraining NH3 sink and plume variability influences on regional NH3 emission estimates and for improving NH3 emission inventory spatial allocations.

  9. Ammonia and methane dairy emissions in the San Joaquin Valley of California from individual feedlot to regional scale

    DOE PAGES

    Miller, David J.; Sun, Kang; Tao, Lei; ...

    2015-09-27

    Agricultural ammonia (NH 3) emissions are highly uncertain, with high spatiotemporal variability and a lack of widespread in situ measurements. Regional NH 3 emission estimates using mass balance or emission ratio approaches are uncertain due to variable NH 3 sources and sinks as well as unknown plume correlations with other dairy source tracers. We characterize the spatial distributions of NH 3 and methane (CH 4) dairy plumes using in situ surface and airborne measurements in the Tulare dairy feedlot region of the San Joaquin Valley, California, during the NASA Deriving Information on Surface conditions from Column and Vertically Resolved Observationsmore » Relevant to Air Quality 2013 field campaign. Surface NH 3 and CH 4 mixing ratios exhibit large variability with maxima localized downwind of individual dairy feedlots. The geometric mean NH 3:CH 4 enhancement ratio derived from surface measurements is 0.15 ± 0.03 ppmv ppmv –1. Individual dairy feedlots with spatially distinct NH 3 and CH 4 source pathways led to statistically significant correlations between NH 3 and CH 4 in 68% of the 69 downwind plumes sampled. At longer sampling distances, the NH 3:CH 4 enhancement ratio decreases 20–30%, suggesting the potential for NH 3 deposition as a loss term for plumes within a few kilometers downwind of feedlots. Aircraft boundary layer transect measurements directly above surface mobile measurements in the dairy region show comparable gradients and geometric mean enhancement ratios within measurement uncertainties, even when including NH 3 partitioning to submicron particles. Individual NH 3 and CH 4 plumes sampled at close proximity where losses are minimal are not necessarily correlated due to lack of mixing and distinct source pathways. As a result, our analyses have important implications for constraining NH 3 sink and plume variability influences on regional NH 3 emission estimates and for improving NH 3 emission inventory spatial allocations.« less

  10. Spatially Correlated Gene Expression in Bacterial Groups: The Role of Lineage History, Spatial Gradients, and Cell-Cell Interactions.

    PubMed

    van Vliet, Simon; Dal Co, Alma; Winkler, Annina R; Spriewald, Stefanie; Stecher, Bärbel; Ackermann, Martin

    2018-04-25

    Gene expression levels in clonal bacterial groups have been found to be spatially correlated. These correlations can partly be explained by the shared lineage history of nearby cells, although they could also arise from local cell-cell interactions. Here, we present a quantitative framework that allows us to disentangle the contributions of lineage history, long-range spatial gradients, and local cell-cell interactions to spatial correlations in gene expression. We study pathways involved in toxin production, SOS stress response, and metabolism in Escherichia coli microcolonies and find for all pathways that shared lineage history is the main cause of spatial correlations in gene expression levels. However, long-range spatial gradients and local cell-cell interactions also contributed to spatial correlations in SOS response, amino acid biosynthesis, and overall metabolic activity. Together, our data show that the phenotype of a cell is influenced by its lineage history and population context, raising the question of whether bacteria can arrange their activities in space to perform functions they cannot achieve alone. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. A Discrete Probability Function Method for the Equation of Radiative Transfer

    NASA Technical Reports Server (NTRS)

    Sivathanu, Y. R.; Gore, J. P.

    1993-01-01

    A discrete probability function (DPF) method for the equation of radiative transfer is derived. The DPF is defined as the integral of the probability density function (PDF) over a discrete interval. The derivation allows the evaluation of the PDF of intensities leaving desired radiation paths including turbulence-radiation interactions without the use of computer intensive stochastic methods. The DPF method has a distinct advantage over conventional PDF methods since the creation of a partial differential equation from the equation of transfer is avoided. Further, convergence of all moments of intensity is guaranteed at the basic level of simulation unlike the stochastic method where the number of realizations for convergence of higher order moments increases rapidly. The DPF method is described for a representative path with approximately integral-length scale-sized spatial discretization. The results show good agreement with measurements in a propylene/air flame except for the effects of intermittency resulting from highly correlated realizations. The method can be extended to the treatment of spatial correlations as described in the Appendix. However, information regarding spatial correlations in turbulent flames is needed prior to the execution of this extension.

  12. Power-law decay of the spatial correlation function in exciton-polariton condensates

    PubMed Central

    Roumpos, Georgios; Lohse, Michael; Nitsche, Wolfgang H.; Keeling, Jonathan; Szymańska, Marzena Hanna; Littlewood, Peter B.; Löffler, Andreas; Höfling, Sven; Worschech, Lukas; Forchel, Alfred; Yamamoto, Yoshihisa

    2012-01-01

    We create a large exciton-polariton condensate and employ a Michelson interferometer setup to characterize the short- and long-distance behavior of the first order spatial correlation function. Our experimental results show distinct features of both the two-dimensional and nonequilibrium characters of the condensate. We find that the gaussian short-distance decay is followed by a power-law decay at longer distances, as expected for a two-dimensional condensate. The exponent of the power law is measured in the range 0.9–1.2, larger than is possible in equilibrium. We compare the experimental results to a theoretical model to understand the features required to observe a power law and to clarify the influence of external noise on spatial coherence in nonequilibrium phase transitions. Our results indicate that Berezinskii–Kosterlitz–Thouless-like phase order survives in open-dissipative systems. PMID:22496595

  13. Investigation of the interpolation method to improve the distributed strain measurement accuracy in optical frequency domain reflectometry systems.

    PubMed

    Cui, Jiwen; Zhao, Shiyuan; Yang, Di; Ding, Zhenyang

    2018-02-20

    We use a spectrum interpolation technique to improve the distributed strain measurement accuracy in a Rayleigh-scatter-based optical frequency domain reflectometry sensing system. We demonstrate that strain accuracy is not limited by the "uncertainty principle" that exists in the time-frequency analysis. Different interpolation methods are investigated and used to improve the accuracy of peak position of the cross-correlation and, therefore, improve the accuracy of the strain. Interpolation implemented by padding zeros on one side of the windowed data in the spatial domain, before the inverse fast Fourier transform, is found to have the best accuracy. Using this method, the strain accuracy and resolution are both improved without decreasing the spatial resolution. The strain of 3 μϵ within the spatial resolution of 1 cm at the position of 21.4 m is distinguished, and the measurement uncertainty is 3.3 μϵ.

  14. What Do They Have in Common? Drivers of Streamflow Spatial Correlation and Prediction of Flow Regimes in Ungauged Locations

    NASA Astrophysics Data System (ADS)

    Betterle, A.; Radny, D.; Schirmer, M.; Botter, G.

    2017-12-01

    The spatial correlation of daily streamflows represents a statistical index encapsulating the similarity between hydrographs at two arbitrary catchment outlets. In this work, a process-based analytical framework is utilized to investigate the hydrological drivers of streamflow spatial correlation through an extensive application to 78 pairs of stream gauges belonging to 13 unregulated catchments in the eastern United States. The analysis provides insight on how the observed heterogeneity of the physical processes that control flow dynamics ultimately affect streamflow correlation and spatial patterns of flow regimes. Despite the variability of recession properties across the study catchments, the impact of heterogeneous drainage rates on the streamflow spatial correlation is overwhelmed by the spatial variability of frequency and intensity of effective rainfall events. Overall, model performances are satisfactory, with root mean square errors between modeled and observed streamflow spatial correlation below 10% in most cases. We also propose a method for estimating streamflow correlation in the absence of discharge data, which proves useful to predict streamflow regimes in ungauged areas. The method consists in setting a minimum threshold on the modeled flow correlation to individuate hydrologically similar sites. Catchment outlets that are most correlated (ρ>0.9) are found to be characterized by analogous streamflow distributions across a broad range of flow regimes.

  15. Novel Multidimensional Cross-Correlation Data Comparison Techniques for Spectroscopic Discernment in a Volumetrically Sensitive, Moderating Type Neutron Spectrometer

    NASA Astrophysics Data System (ADS)

    Hoshor, Cory; Young, Stephan; Rogers, Brent; Currie, James; Oakes, Thomas; Scott, Paul; Miller, William; Caruso, Anthony

    2014-03-01

    A novel application of the Pearson Cross-Correlation to neutron spectral discernment in a moderating type neutron spectrometer is introduced. This cross-correlation analysis will be applied to spectral response data collected through both MCNP simulation and empirical measurement by the volumetrically sensitive spectrometer for comparison in 1, 2, and 3 spatial dimensions. The spectroscopic analysis methods discussed will be demonstrated to discern various common spectral and monoenergetic neutron sources.

  16. Spatially resolved heat release rate measurements in turbulent premixed flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayoola, B.O.; Kaminski, C.F.; Balachandran, R.

    Heat release rate is a fundamental property of great importance for the theoretical and experimental elucidation of unsteady flame behaviors such as combustion noise, combustion instabilities, and pulsed combustion. Investigations of such thermoacoustic interactions require a reliable indicator of heat release rate capable of resolving spatial structures in turbulent flames. Traditionally, heat release rate has been estimated via OH or CH radical chemiluminescence; however, chemiluminescence suffers from being a line-of-sight technique with limited capability for resolving small-scale structures. In this paper, we report spatially resolved two-dimensional measurements of a quantity closely related to heat release rate. The diagnostic technique usesmore » simultaneous OH and CH{sub 2}O planar laser-induced fluorescence (PLIF), and the pixel-by-pixel product of the OH and CH{sub 2}O PLIF signals has previously been shown to correlate well with local heat release rates. Results from this diagnostic technique, which we refer to as heat release rate imaging (HR imaging), are compared with traditional OH chemiluminescence measurements in several flames. Studies were performed in lean premixed ethylene flames stabilized between opposed jets and with a bluff body. Correlations between bulk strain rates and local heat release rates were obtained and the effects of curvature on heat release rate were investigated. The results show that the heat release rate tends to increase with increasing negative curvature for the flames investigated for which Lewis numbers are greater than unity. This correlation becomes more pronounced as the flame gets closer to global extinction.« less

  17. Integrative Spatial Data Analytics for Public Health Studies of New York State

    PubMed Central

    Chen, Xin; Wang, Fusheng

    2016-01-01

    Increased accessibility of health data made available by the government provides unique opportunity for spatial analytics with much higher resolution to discover patterns of diseases, and their correlation with spatial impact indicators. This paper demonstrated our vision of integrative spatial analytics for public health by linking the New York Cancer Mapping Dataset with datasets containing potential spatial impact indicators. We performed spatial based discovery of disease patterns and variations across New York State, and identify potential correlations between diseases and demographic, socio-economic and environmental indicators. Our methods were validated by three correlation studies: the correlation between stomach cancer and Asian race, the correlation between breast cancer and high education population, and the correlation between lung cancer and air toxics. Our work will allow public health researchers, government officials or other practitioners to adequately identify, analyze, and monitor health problems at the community or neighborhood level for New York State. PMID:28269834

  18. Spatial variation in environmental noise and air pollution in New York City.

    PubMed

    Kheirbek, Iyad; Ito, Kazuhiko; Neitzel, Richard; Kim, Jung; Johnson, Sarah; Ross, Zev; Eisl, Holger; Matte, Thomas

    2014-06-01

    Exposure to environmental noise from traffic is common in urban areas and has been linked to increased risks of adverse health effects including cardiovascular disease. Because traffic sources also produce air pollutants that increase the risk of cardiovascular morbidity, associations between traffic exposures and health outcomes may involve confounding and/or synergisms between air pollution and noise. While prior studies have characterized intraurban spatial variation in air pollution in New York City (NYC), limited data exists on the levels and spatial variation in noise levels. We measured 1-week equivalent continuous sound pressure levels (Leq) at 56 sites during the fall of 2012 across NYC locations with varying traffic intensity and building density that are routinely monitored for combustion-related air pollutants. We evaluated correlations among several noise metrics used to characterize noise exposures, including Leq during different time periods (night, day, weekday, weekend), Ldn (day-night noise), and measures of intermittent noise defined as the ratio of peak levels to median and background levels. We also examined correlations between sound pressure levels and co-located simultaneous measures of nitric oxide (NO), nitrogen dioxide (NO2), fine particulate matter (PM2.5), and black carbon (BC) as well as estimates of traffic and building density around the monitoring sites. Noise levels varied widely across the 56 monitoring sites; 1-week Leq varied by 21.6 dBA (range 59.1-80.7 dBA) with the highest levels observed during the weekday, daytime hours. Indices of average noise were well correlated with each other (r > 0.83), while indices of intermittent noise were not well correlated with average noise levels (r < 0.41). One-week Leq correlated well with NO, NO2, and EC levels (r = 0.61 to 0.68) and less so with PM2.5 levels (r = 0.45). We observed associations between 1-week noise levels and traffic intensity within 100 m of the monitoring sites (r = 0.58). The high levels of noise observed in NYC often exceed recommended guidelines for outdoor and personal exposures, suggesting unhealthy levels in many locations. Associations between noise, traffic, and combustion air pollutants suggest the possibility for confounding and/or synergism in intraurban epidemiological studies of traffic-related health effects. The different spatial pattern of intermittent noise compared to average noise level may suggest different sources.

  19. A Generalized Spatial Measure for Resilience of Microbial Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renslow, Ryan S.; Lindemann, Stephen R.; Song, Hyun-Seob

    2016-04-07

    The emergent property of resilience is the ability of a system to return to an original state after a disturbance. Resilience may be used as an early warning system for significant or irreversible community transition, i.e., a community with diminishing or low resilience may be close to catastrophic shift in function or an irreversible collapse. Typically, resilience is quantified using recovery time, which may be difficult or impossible to directly measure in microbial systems. A recent study in the literature showed that under certain conditions, a set of spatial-based metrics termed recovery length, can be correlated to recovery time, andmore » thus may be a reasonable alternative measure of resilience. As a limitation, however, this spatial metric of resilience is useful only for step-change perturbations. Building upon the concept of recovery length, we propose a more general form of the spatial metric of resilience that can be applied to any shape of perturbation profiles (i.e., a sharp or smooth gradient). We termed this new spatial measure “perturbation-adjusted spatial metric of resilience” (PASMORE). We demonstrate the applicability of the proposed metric using a mathematical model of a microbial mat. PASMORE can help identify when a system, such as a microbial community, is on the verge of collapse or nearing an irreversible transition across a tipping point.« less

  20. Nonmonotonic spatial structure of interneuronal correlations in prefrontal microcircuits

    PubMed Central

    Safavi, Shervin; Dwarakanath, Abhilash; Kapoor, Vishal; Werner, Joachim; Hatsopoulos, Nicholas G.; Logothetis, Nikos K.; Panagiotaropoulos, Theofanis I.

    2018-01-01

    Correlated fluctuations of single neuron discharges, on a mesoscopic scale, decrease as a function of lateral distance in early sensory cortices, reflecting a rapid spatial decay of lateral connection probability and excitation. However, spatial periodicities in horizontal connectivity and associational input as well as an enhanced probability of lateral excitatory connections in the association cortex could theoretically result in nonmonotonic correlation structures. Here, we show such a spatially nonmonotonic correlation structure, characterized by significantly positive long-range correlations, in the inferior convexity of the macaque prefrontal cortex. This functional connectivity kernel was more pronounced during wakefulness than anesthesia and could be largely attributed to the spatial pattern of correlated variability between functionally similar neurons during structured visual stimulation. These results suggest that the spatial decay of lateral functional connectivity is not a common organizational principle of neocortical microcircuits. A nonmonotonic correlation structure could reflect a critical topological feature of prefrontal microcircuits, facilitating their role in integrative processes. PMID:29588415

  1. Species distribution models predict temporal but not spatial variation in forest growth.

    PubMed

    van der Maaten, Ernst; Hamann, Andreas; van der Maaten-Theunissen, Marieke; Bergsma, Aldo; Hengeveld, Geerten; van Lammeren, Ron; Mohren, Frits; Nabuurs, Gert-Jan; Terhürne, Renske; Sterck, Frank

    2017-04-01

    Bioclimate envelope models have been widely used to illustrate the discrepancy between current species distributions and their potential habitat under climate change. However, the realism and correct interpretation of such projections has been the subject of considerable discussion. Here, we investigate whether climate suitability predictions correlate to tree growth, measured in permanent inventory plots and inferred from tree-ring records. We use the ensemble classifier RandomForest and species occurrence data from ~200,000 inventory plots to build species distribution models for four important European forestry species: Norway spruce, Scots pine, European beech, and pedunculate oak. We then correlate climate-based habitat suitability with volume measurements from ~50-year-old stands, available from ~11,000 inventory plots. Secondly, habitat projections based on annual historical climate are compared with ring width from ~300 tree-ring chronologies. Our working hypothesis is that habitat suitability projections from species distribution models should to some degree be associated with temporal or spatial variation in these growth records. We find that the habitat projections are uncorrelated with spatial growth records (inventory plot data), but they do predict interannual variation in tree-ring width, with an average correlation of .22. Correlation coefficients for individual chronologies range from values as high as .82 or as low as -.31. We conclude that tree responses to projected climate change are highly site-specific and that local suitability of a species for reforestation is difficult to predict. That said, projected increase or decrease in climatic suitability may be interpreted as an average expectation of increased or reduced growth over larger geographic scales.

  2. Normalized Movement Quality Measures for Therapeutic Robots Strongly Correlate With Clinical Motor Impairment Measures

    PubMed Central

    Celik, Ozkan; O’Malley, Marcia K.; Boake, Corwin; Levin, Harvey S.; Yozbatiran, Nuray; Reistetter, Timothy A.

    2016-01-01

    In this paper, we analyze the correlations between four clinical measures (Fugl–Meyer upper extremity scale, Motor Activity Log, Action Research Arm Test, and Jebsen-Taylor Hand Function Test) and four robotic measures (smoothness of movement, trajectory error, average number of target hits per minute, and mean tangential speed), used to assess motor recovery. Data were gathered as part of a hybrid robotic and traditional upper extremity rehabilitation program for nine stroke patients. Smoothness of movement and trajectory error, temporally and spatially normalized measures of movement quality defined for point-to-point movements, were found to have significant moderate to strong correlations with all four of the clinical measures. The strong correlations suggest that smoothness of movement and trajectory error may be used to compare outcomes of different rehabilitation protocols and devices effectively, provide improved resolution for tracking patient progress compared to only pre-and post-treatment measurements, enable accurate adaptation of therapy based on patient progress, and deliver immediate and useful feedback to the patient and therapist. PMID:20388607

  3. Spatiotemporal Stability of Cu-ATSM and FLT Positron Emission Tomography Distributions During Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradshaw, Tyler J.; Yip, Stephen; Jallow, Ngoneh

    2014-06-01

    Purpose: In dose painting, in which functional imaging is used to define biological targets for radiation therapy dose escalation, changes in spatial distributions of biological properties during treatment can compromise the quality of therapy. The goal of this study was to assess the spatiotemporal stability of 2 potential dose painting targets—hypoxia and proliferation—in canine tumors during radiation therapy. Methods and Materials: Twenty-two canine patients with sinonasal tumors (14 carcinoma and 8 sarcoma) were imaged before hypofractionated radiation therapy with copper(II)-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM) positron emission tomography/computed tomography (PET/CT) for hypoxia and 3′-deoxy-3′-{sup 18}F-fluorothymidine (FLT) PET/CT for proliferation. The FLT scans were repeatedmore » after 2 fractions and the Cu-ATSM scans after 3 fractions. Midtreatment PET/CT images were deformably registered to pretreatment PET/CT images. Voxel-based Spearman correlation coefficients quantified the spatial stability of Cu-ATSM and FLT uptake distributions between pretreatment and midtreatment scans. Paired t tests determined significant differences between the patients' respective Cu-ATSM and FLT correlations coefficients. Standardized uptake value measures were also compared between pretreatment and midtreatment scans by use of paired t tests. Results: Spatial distributions of Cu-ATSM and FLT uptake were stable through midtreatment for both sarcomas and carcinomas: the population mean ± standard deviation in Spearman correlation coefficient was 0.88 ± 0.07 for Cu-ATSM and 0.79 ± 0.13 for FLT. The patients' Cu-ATSM correlation coefficients were significantly higher than their respective FLT correlation coefficients (P=.001). Changes in Cu-ATSM SUV measures from pretreatment to midtreatment were histology dependent: carcinomas experienced significant decreases in Cu-ATSM uptake (P<.05), whereas sarcomas did not (P>.20). Both histologies experienced significant decreases in FLT uptake (P<.05). Conclusions: Spatial distributions of Cu-ATSM were very stable after a few fractions of radiation therapy. FLT spatial distributions were generally stable early in therapy, although they were significantly less stable than Cu-ATSM distributions. Canine tumors had significantly lower proliferative activity at midtreatment than at pretreatment, and they experienced histology-dependent changes in Cu-ATSM uptake.« less

  4. Spatial and temporal variability of throughfall and soil moisture in a deciduous forest in the low mountain ranges (Hesse, Germany)

    NASA Astrophysics Data System (ADS)

    Chifflard, Peter; Weishaupt, Philipp; Reiss, Martin

    2017-04-01

    Spatial and temporal patterns of throughfall can affect the heterogeneity of ecological, biogeochemical and hydrological processes at a forest floor and further the underlying soil. Previous research suggests different factors controlling the spatial and temporal patterns of throughfall, but most studies focus on coniferous forest, where the vegetation coverage is more or less constant over time. In deciduous forests the leaf area index varies due to the leaf fall in autumn which implicates a specific spatial and temporal variability of throughfall and furthermore of the soil moisture. Therefore, in the present study, the measurements of throughfall and soil moisture in a deciduous forest in the low mountain ranges focused especially on the period of leaf fall. The aims of this study were: 1) to detect the spatial and temporal variability of both the throughfall and the soil moisture, 2) to examine the temporal stability of the spatial patterns of the throughfall and soil moisture and 3) relate the soil moisture patterns to the throughfall patterns and further to the canopy characteristics. The study was carried out in a small catchment on middle Hesse (Germany) which is covered by beech forest. Annual mean air temperature is 9.4°C (48.9˚F) and annual mean precipitation is 650 mm. Base materials for soil genesis is greywacke and clay shale from Devonian deposits. The soil type at the study plot is a shallow cambisol. The study plot covers an area of about 150 m2 where 77 throughfall samplers where installed. The throughfall and the soil moisture (FDR-method, 20 cm depth) was measured immediately after every rainfall event at the 77 measurement points. During the period of October to December 2015 altogether 7 events were investigated. The geostatistical method kriging was used to interpolate between the measurements points to visualize the spatial patterns of each investigated parameter. Time-stability-plots were applied to examine temporal scatters of each investigated parameter. The spearmen and pearson correlation coefficients were applied to detect the relationship between the different investigated parameters. First results show that the spatial variability of throughfall decreases if the total amount of the throughfall increases. The soil moisture shows a similar behavior. It`s spatial variability decreases if higher soil moisture values were measured. Concerning the temporal stability of throughfall it can be shown that it is very high during the leaf-free period, although the rainfall events have different total througfall amounts. The soil moisture patterns consists of a low temporal stability and additionally only during one event a significant correlations between throughfall and soil moisture patterns exists. This implies that other factors than the throughfall patterns control the spatial patterns of soil moisture.

  5. On the effect of velocity gradients on the depth of correlation in μPIV

    NASA Astrophysics Data System (ADS)

    Mustin, B.; Stoeber, B.

    2016-03-01

    The present work revisits the effect of velocity gradients on the depth of the measurement volume (depth of correlation) in microscopic particle image velocimetry (μPIV). General relations between the μPIV weighting functions and the local correlation function are derived from the original definition of the weighting functions. These relations are used to investigate under which circumstances the weighting functions are related to the curvature of the local correlation function. Furthermore, this work proposes a modified definition of the depth of correlation that leads to more realistic results than previous definitions for the case when flow gradients are taken into account. Dimensionless parameters suitable to describe the effect of velocity gradients on μPIV cross correlation are derived and visual interpretations of these parameters are proposed. We then investigate the effect of the dimensionless parameters on the weighting functions and the depth of correlation for different flow fields with spatially constant flow gradients and with spatially varying gradients. Finally this work demonstrates that the results and dimensionless parameters are not strictly bound to a certain model for particle image intensity distributions but are also meaningful when other models for particle images are used.

  6. Spatial correlation of probabilistic earthquake ground motion and loss

    USGS Publications Warehouse

    Wesson, R.L.; Perkins, D.M.

    2001-01-01

    Spatial correlation of annual earthquake ground motions and losses can be used to estimate the variance of annual losses to a portfolio of properties exposed to earthquakes A direct method is described for the calculations of the spatial correlation of earthquake ground motions and losses. Calculations for the direct method can be carried out using either numerical quadrature or a discrete, matrix-based approach. Numerical results for this method are compared with those calculated from a simple Monte Carlo simulation. Spatial correlation of ground motion and loss is induced by the systematic attenuation of ground motion with distance from the source, by common site conditions, and by the finite length of fault ruptures. Spatial correlation is also strongly dependent on the partitioning of the variability, given an event, into interevent and intraevent components. Intraevent variability reduces the spatial correlation of losses. Interevent variability increases spatial correlation of losses. The higher the spatial correlation, the larger the variance in losses to a port-folio, and the more likely extreme values become. This result underscores the importance of accurately determining the relative magnitudes of intraevent and interevent variability in ground-motion studies, because of the strong impact in estimating earthquake losses to a portfolio. The direct method offers an alternative to simulation for calculating the variance of losses to a portfolio, which may reduce the amount of calculation required.

  7. Breakdown in the temporal and spatial organization of spontaneous brain activity during general anesthesia.

    PubMed

    Zhang, Jianfeng; Huang, Zirui; Chen, Yali; Zhang, Jun; Ghinda, Diana; Nikolova, Yuliya; Wu, Jinsong; Xu, Jianghui; Bai, Wenjie; Mao, Ying; Yang, Zhong; Duncan, Niall; Qin, Pengmin; Wang, Hao; Chen, Bing; Weng, Xuchu; Northoff, Georg

    2018-05-01

    Which temporal features that can characterize different brain states (i.e., consciousness or unconsciousness) is a fundamental question in the neuroscience of consciousness. Using resting-state functional magnetic resonance imaging (rs-fMRI), we investigated the spatial patterns of two temporal features: the long-range temporal correlations (LRTCs), measured by power-law exponent (PLE), and temporal variability, measured by standard deviation (SD) during wakefulness and anesthetic-induced unconsciousness. We found that both PLE and SD showed global reductions across the whole brain during anesthetic state comparing to wakefulness. Importantly, the relationship between PLE and SD was altered in anesthetic state, in terms of a spatial "decoupling." This decoupling was mainly driven by a spatial pattern alteration of the PLE, rather than the SD, in the anesthetic state. Our results suggest differential physiological grounds of PLE and SD and highlight the functional importance of the topographical organization of LRTCs in maintaining an optimal spatiotemporal configuration of the neural dynamics during normal level of consciousness. The central role of the spatial distribution of LRTCs, reflecting temporo-spatial nestedness, may support the recently introduced temporo-spatial theory of consciousness (TTC). © 2018 Wiley Periodicals, Inc.

  8. Quantum Correlations in Nonlocal Boson Sampling.

    PubMed

    Shahandeh, Farid; Lund, Austin P; Ralph, Timothy C

    2017-09-22

    Determination of the quantum nature of correlations between two spatially separated systems plays a crucial role in quantum information science. Of particular interest is the questions of if and how these correlations enable quantum information protocols to be more powerful. Here, we report on a distributed quantum computation protocol in which the input and output quantum states are considered to be classically correlated in quantum informatics. Nevertheless, we show that the correlations between the outcomes of the measurements on the output state cannot be efficiently simulated using classical algorithms. Crucially, at the same time, local measurement outcomes can be efficiently simulated on classical computers. We show that the only known classicality criterion violated by the input and output states in our protocol is the one used in quantum optics, namely, phase-space nonclassicality. As a result, we argue that the global phase-space nonclassicality inherent within the output state of our protocol represents true quantum correlations.

  9. Nanoscale Spatiotemporal Diffusion Modes Measured by Simultaneous Confocal and Stimulated Emission Depletion Nanoscopy Imaging.

    PubMed

    Schneider, Falk; Waithe, Dominic; Galiani, Silvia; Bernardino de la Serna, Jorge; Sezgin, Erdinc; Eggeling, Christian

    2018-06-19

    The diffusion dynamics in the cellular plasma membrane provide crucial insights into molecular interactions, organization, and bioactivity. Beam-scanning fluorescence correlation spectroscopy combined with super-resolution stimulated emission depletion nanoscopy (scanning STED-FCS) measures such dynamics with high spatial and temporal resolution. It reveals nanoscale diffusion characteristics by measuring the molecular diffusion in conventional confocal mode and super-resolved STED mode sequentially for each pixel along the scanned line. However, to directly link the spatial and the temporal information, a method that simultaneously measures the diffusion in confocal and STED modes is needed. Here, to overcome this problem, we establish an advanced STED-FCS measurement method, line interleaved excitation scanning STED-FCS (LIESS-FCS), that discloses the molecular diffusion modes at different spatial positions with a single measurement. It relies on fast beam-scanning along a line with alternating laser illumination that yields, for each pixel, the apparent diffusion coefficients for two different observation spot sizes (conventional confocal and super-resolved STED). We demonstrate the potential of the LIESS-FCS approach with simulations and experiments on lipid diffusion in model and live cell plasma membranes. We also apply LIESS-FCS to investigate the spatiotemporal organization of glycosylphosphatidylinositol-anchored proteins in the plasma membrane of live cells, which, interestingly, show multiple diffusion modes at different spatial positions.

  10. Functional overestimation due to spatial smoothing of fMRI data.

    PubMed

    Liu, Peng; Calhoun, Vince; Chen, Zikuan

    2017-11-01

    Pearson correlation (simply correlation) is a basic technique for neuroimage function analysis. It has been observed that the spatial smoothing may cause functional overestimation, which however remains a lack of complete understanding. Herein, we present a theoretical explanation from the perspective of correlation scale invariance. For a task-evoked spatiotemporal functional dataset, we can extract the functional spatial map by calculating the temporal correlations (tcorr) of voxel timecourses against the task timecourse. From the relationship between image noise level (changed through spatial smoothing) and the tcorr map calculation, we show that the spatial smoothing causes a noise reduction, which in turn smooths the tcorr map and leads to a spatial expansion on neuroactivity blob estimation. Through numerical simulations and subject experiments, we show that the spatial smoothing of fMRI data may overestimate activation spots in the correlation functional map. Our results suggest a small spatial smoothing (with a smoothing kernel with a full width at half maximum (FWHM) of no more than two voxels) on fMRI data processing for correlation-based functional mapping COMPARISON WITH EXISTING METHODS: In extreme noiselessness, the correlation of scale-invariance property defines a meaningless binary tcorr map. In reality, a functional activity blob in a tcorr map is shaped due to the spoilage of image noise on correlative responses. We may reduce data noise level by smoothing processing, which poses a smoothing effect on correlation. This logic allows us to understand the noise dependence and the smoothing effect of correlation-based fMRI data analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Comparison of Urban Human Movements Inferring from Multi-Source Spatial-Temporal Data

    NASA Astrophysics Data System (ADS)

    Cao, Rui; Tu, Wei; Cao, Jinzhou; Li, Qingquan

    2016-06-01

    The quantification of human movements is very hard because of the sparsity of traditional data and the labour intensive of the data collecting process. Recently, much spatial-temporal data give us an opportunity to observe human movement. This research investigates the relationship of city-wide human movements inferring from two types of spatial-temporal data at traffic analysis zone (TAZ) level. The first type of human movement is inferred from long-time smart card transaction data recording the boarding actions. The second type of human movement is extracted from citywide time sequenced mobile phone data with 30 minutes interval. Travel volume, travel distance and travel time are used to measure aggregated human movements in the city. To further examine the relationship between the two types of inferred movements, the linear correlation analysis is conducted on the hourly travel volume. The obtained results show that human movements inferred from smart card data and mobile phone data have a correlation of 0.635. However, there are still some non-ignorable differences in some special areas. This research not only reveals the citywide spatial-temporal human dynamic but also benefits the understanding of the reliability of the inference of human movements with big spatial-temporal data.

  12. Two-Point Orientation Discrimination Versus the Traditional Two-Point Test for Tactile Spatial Acuity Assessment

    PubMed Central

    Tong, Jonathan; Mao, Oliver; Goldreich, Daniel

    2013-01-01

    Two-point discrimination is widely used to measure tactile spatial acuity. The validity of the two-point threshold as a spatial acuity measure rests on the assumption that two points can be distinguished from one only when the two points are sufficiently separated to evoke spatially distinguishable foci of neural activity. However, some previous research has challenged this view, suggesting instead that two-point task performance benefits from an unintended non-spatial cue, allowing spuriously good performance at small tip separations. We compared the traditional two-point task to an equally convenient alternative task in which participants attempt to discern the orientation (vertical or horizontal) of two points of contact. We used precision digital readout calipers to administer two-interval forced-choice versions of both tasks to 24 neurologically healthy adults, on the fingertip, finger base, palm, and forearm. We used Bayesian adaptive testing to estimate the participants’ psychometric functions on the two tasks. Traditional two-point performance remained significantly above chance levels even at zero point separation. In contrast, two-point orientation discrimination approached chance as point separation approached zero, as expected for a valid measure of tactile spatial acuity. Traditional two-point performance was so inflated at small point separations that 75%-correct thresholds could be determined on all tested sites for fewer than half of participants. The 95%-correct thresholds on the two tasks were similar, and correlated with receptive field spacing. In keeping with previous critiques, we conclude that the traditional two-point task provides an unintended non-spatial cue, resulting in spuriously good performance at small spatial separations. Unlike two-point discrimination, two-point orientation discrimination rigorously measures tactile spatial acuity. We recommend the use of two-point orientation discrimination for neurological assessment. PMID:24062677

  13. The spatiotemporal association of non-prescription retail sales with cases during the 2009 influenza pandemic in Great Britain

    PubMed Central

    Todd, Stacy; Diggle, Peter J; White, Peter J; Fearne, Andrew; Read, Jonathan M

    2014-01-01

    Objective To assess whether retail sales of non-prescription products can be used for syndromic surveillance and whether it can detect influenza activity at different spatial scales. A secondary objective was to assess whether changes in purchasing behaviour were related to public health advice or levels of media or public interest. Setting The UK. Participants National and regional influenza case estimates and retail sales from a major British supermarket. Outcome measures Weekly, seasonally adjusted sales of over-the-counter symptom remedies and non-pharmaceutical products; recommended as part of the advice offered by public health agencies; were compared with weekly influenza case estimates. Comparisons were made at national and regional spatial resolutions. We also compared sales to national measures of contemporaneous media output and public interest (Internet search volume) related to the pandemic. Results At a national scale there was no significant correlation between retail sales of symptom remedies and cases for the whole pandemic period in 2009. At the regional scale, a minority of regions showed statistically significant positive correlations between cases and sales of adult ‘cold and flu’ remedies and cough remedies (3.2%, 5/156, 3.8%, 6/156), but a greater number of regions showed a significant positive correlation between cases and symptomatic remedies for children (35.6%, 55/156). Significant positive correlations between cases and sales of thermometers and antiviral hand gels/wash were seen at both spatial scales (Cor 0.477 (95% CI 0.171 to 0.699); 0.711 (95% CI 0.495 to 0.844)). We found no significant association between retail sales and media reporting or Internet search volume. Conclusions This study provides evidence that the British public responded appropriately to health messaging about hygiene. Non-prescription retail sales at a national level are not useful for the detection of cases. However, at finer spatial scales, in particular age-groups, retail sales may help augment existing surveillance and merit further study. PMID:24780494

  14. Accounting for the phase, spatial frequency and orientation demands of the task improves metrics based on the visual Strehl ratio.

    PubMed

    Young, Laura K; Love, Gordon D; Smithson, Hannah E

    2013-09-20

    Advances in ophthalmic instrumentation have allowed high order aberrations to be measured in vivo. These measurements describe the distortions to a plane wavefront entering the eye, but not the effect they have on visual performance. One metric for predicting visual performance from a wavefront measurement uses the visual Strehl ratio, calculated in the optical transfer function (OTF) domain (VSOTF) (Thibos et al., 2004). We considered how well such a metric captures empirical measurements of the effects of defocus, coma and secondary astigmatism on letter identification and on reading. We show that predictions using the visual Strehl ratio can be significantly improved by weighting the OTF by the spatial frequency band that mediates letter identification and further improved by considering the orientation of phase and contrast changes imposed by the aberration. We additionally showed that these altered metrics compare well to a cross-correlation-based metric. We suggest a version of the visual Strehl ratio, VScombined, that incorporates primarily those phase disruptions and contrast changes that have been shown independently to affect object recognition processes. This metric compared well to VSOTF for letter identification and was the best predictor of reading performance, having a higher correlation with the data than either the VSOTF or cross-correlation-based metric. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Probing density and spin correlations in two-dimensional Hubbard model with ultracold fermions

    NASA Astrophysics Data System (ADS)

    Chan, Chun Fai; Drewes, Jan Henning; Gall, Marcell; Wurz, Nicola; Cocchi, Eugenio; Miller, Luke; Pertot, Daniel; Brennecke, Ferdinand; Koehl, Michael

    2017-04-01

    Quantum gases of interacting fermionic atoms in optical lattices is a promising candidate to study strongly correlated quantum phases of the Hubbard model such as the Mott-insulator, spin-ordered phases, or in particular d-wave superconductivity. We experimentally realise the two-dimensional Hubbard model by loading a quantum degenerate Fermi gas of 40 K atoms into a three-dimensional optical lattice geometry. High-resolution absorption imaging in combination with radiofrequency spectroscopy is applied to spatially resolve the atomic distribution in a single 2D layer. We investigate in local measurements of spatial correlations in both the density and spin sector as a function of filling, temperature and interaction strength. In the density sector, we compare the local density fluctuations and the global thermodynamic quantities, and in the spin sector, we observe the onset of non-local spin correlation, signalling the emergence of the anti-ferromagnetic phase. We would report our recent experimental endeavours to investigate further down in temperature in the spin sector.

  16. Perception and psychological evaluation for visual and auditory environment based on the correlation mechanisms

    NASA Astrophysics Data System (ADS)

    Fujii, Kenji

    2002-06-01

    In this dissertation, the correlation mechanism in modeling the process in the visual perception is introduced. It has been well described that the correlation mechanism is effective for describing subjective attributes in auditory perception. The main result is that it is possible to apply the correlation mechanism to the process in temporal vision and spatial vision, as well as in audition. (1) The psychophysical experiment was performed on subjective flicker rates for complex waveforms. A remarkable result is that the phenomenon of missing fundamental is found in temporal vision as analogous to the auditory pitch perception. This implies the existence of correlation mechanism in visual system. (2) For spatial vision, the autocorrelation analysis provides useful measures for describing three primary perceptual properties of visual texture: contrast, coarseness, and regularity. Another experiment showed that the degree of regularity is a salient cue for texture preference judgment. (3) In addition, the autocorrelation function (ACF) and inter-aural cross-correlation function (IACF) were applied for analysis of the temporal and spatial properties of environmental noise. It was confirmed that the acoustical properties of aircraft noise and traffic noise are well described. These analyses provided useful parameters extracted from the ACF and IACF in assessing the subjective annoyance for noise. Thesis advisor: Yoichi Ando Copies of this thesis written in English can be obtained from Junko Atagi, 6813 Mosonou, Saijo-cho, Higashi-Hiroshima 739-0024, Japan. E-mail address: atagi\\@urban.ne.jp.

  17. Nonparametric Bayesian models for a spatial covariance.

    PubMed

    Reich, Brian J; Fuentes, Montserrat

    2012-01-01

    A crucial step in the analysis of spatial data is to estimate the spatial correlation function that determines the relationship between a spatial process at two locations. The standard approach to selecting the appropriate correlation function is to use prior knowledge or exploratory analysis, such as a variogram analysis, to select the correct parametric correlation function. Rather that selecting a particular parametric correlation function, we treat the covariance function as an unknown function to be estimated from the data. We propose a flexible prior for the correlation function to provide robustness to the choice of correlation function. We specify the prior for the correlation function using spectral methods and the Dirichlet process prior, which is a common prior for an unknown distribution function. Our model does not require Gaussian data or spatial locations on a regular grid. The approach is demonstrated using a simulation study as well as an analysis of California air pollution data.

  18. Separating twin images and locating the center of a microparticle in dense suspensions using correlations among reconstructed fields of two parallel holograms.

    PubMed

    Ling, Hangjian; Katz, Joseph

    2014-09-20

    This paper deals with two issues affecting the application of digital holographic microscopy (DHM) for measuring the spatial distribution of particles in a dense suspension, namely discriminating between real and virtual images and accurate detection of the particle center. Previous methods to separate real and virtual fields have involved applications of multiple phase-shifted holograms, combining reconstructed fields of multiple axially displaced holograms, and analysis of intensity distributions of weakly scattering objects. Here, we introduce a simple approach based on simultaneously recording two in-line holograms, whose planes are separated by a short distance from each other. This distance is chosen to be longer than the elongated trace of the particle. During reconstruction, the real images overlap, whereas the virtual images are displaced by twice the distance between hologram planes. Data analysis is based on correlating the spatial intensity distributions of the two reconstructed fields to measure displacement between traces. This method has been implemented for both synthetic particles and a dense suspension of 2 μm particles. The correlation analysis readily discriminates between real and virtual images of a sample containing more than 1300 particles. Consequently, we can now implement DHM for three-dimensional tracking of particles when the hologram plane is located inside the sample volume. Spatial correlations within the same reconstructed field are also used to improve the detection of the axial location of the particle center, extending previously introduced procedures to suspensions of microscopic particles. For each cross section within a particle trace, we sum the correlations among intensity distributions in all planes located symmetrically on both sides of the section. This cumulative correlation has a sharp peak at the particle center. Using both synthetic and recorded particle fields, we show that the uncertainty in localizing the axial location of the center is reduced to about one particle's diameter.

  19. Correlations between Berg balance scale and gait speed in individuals with stroke wearing ankle-foot orthoses - a pilot study.

    PubMed

    Kobayashi, Toshiki; Leung, Aaron K L; Akazawa, Yasushi; Hutchins, Stephen W

    2016-01-01

    The Berg balance scale (BBS) is commonly used to assess balancing ability in patients with stroke. The BBS may be a good candidate for clinical assessment prior to orthotic intervention, if it correlates well with outcome measures such as gait speed. The purpose of this study was to investigate the correlation between the BBS measured prior to walking with an ankle-foot orthosis (AFO) and specific temporal-spatial parameters of gait when walking with an AFO donned. Eight individuals with chronic stroke participated in this study. Balancing ability was assessed using the BBS, while temporal-spatial parameters of gait (gait speed, bilateral step length, stride length and step width) were measured using a three-dimensional motion analysis system. The correlations between the BBS and gait parameters were investigated using a non-parametric Kendall's Tau (τ) correlation analysis. The BBS showed correlations with gait speed (τ = 0.64, p < 0.05), the step length of the affected side (τ = 0.74, p < 0.05), and the stride length (τ = 0.64, p < 0.05). Assessment of the BBS prior to AFO prescription may potentially help clinicians to estimate the gait speed achievable following orthotic intervention in patients with stroke. Implications for Rehabilitation Assessment of the BBS prior to AFO prescription may help orthotists to estimate the gait speed following an orthotic intervention in patients with stroke. Assessment of the BBS prior to AFO prescription may help orthotists to understand overall balance and postural control abilities in patients with stroke. A larger scale multifactorial analysis is warranted to confirm the results of this pilot study.

  20. COSMIC INFRARED BACKGROUND FLUCTUATIONS AND ZODIACAL LIGHT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arendt, Richard G.; Kashlinsky, A.; Moseley, S. H.

    We performed a specific observational test to measure the effect that the zodiacal light can have on measurements of the spatial fluctuations of the near-IR background. Previous estimates of possible fluctuations caused by zodiacal light have often been extrapolated from observations of the thermal emission at longer wavelengths and low angular resolution or from IRAC observations of high-latitude fields where zodiacal light is faint and not strongly varying with time. The new observations analyzed here target the COSMOS field at low ecliptic latitude where the zodiacal light intensity varies by factors of ∼2 over the range of solar elongations atmore » which the field can be observed. We find that the white-noise component of the spatial power spectrum of the background is correlated with the modeled zodiacal light intensity. Roughly half of the measured white noise is correlated with the zodiacal light, but a more detailed interpretation of the white noise is hampered by systematic uncertainties that are evident in the zodiacal light model. At large angular scales (≳100″) where excess power above the white noise is observed, we find no correlation of the power with the modeled intensity of the zodiacal light. This test clearly indicates that the large-scale power in the infrared background is not being caused by the zodiacal light.« less

  1. Characterization of the Spatial Structure of Local Functional Connectivity Using Multidistance Average Correlation Measures.

    PubMed

    Macià, Dídac; Pujol, Jesus; Blanco-Hinojo, Laura; Martínez-Vilavella, Gerard; Martín-Santos, Rocío; Deus, Joan

    2018-06-01

    There is ample evidence from basic research in neuroscience of the importance of local corticocortical networks. Millimetric resolution is achievable with current functional magnetic resonance imaging (fMRI) scanners and sequences, and consequently a number of "local" activity similarity measures have been defined to describe patterns of segregation and integration at this spatial scale. We have introduced the use of IsoDistant Average Correlation (IDAC), easily defined as the average fMRI temporal correlation of a given voxel with other voxels placed at increasingly separated isodistant intervals, to characterize the curve of local fMRI signal similarities. IDAC curves can be statistically compared using parametric multivariate statistics. Furthermore, by using red-green-blue color coding to display jointly IDAC values belonging to three different distance lags, IDAC curves can also be displayed as multidistance IDAC maps. We applied IDAC analysis to a sample of 41 subjects scanned under two different conditions, a resting state and an auditory-visual continuous stimulation. Multidistance IDAC mapping was able to discriminate between gross anatomofunctional cortical areas and, moreover, was sensitive to modulation between the two brain conditions in areas known to activate and deactivate during audiovisual tasks. Unlike previous fMRI local similarity measures already in use, our approach draws special attention to the continuous smooth pattern of local functional connectivity.

  2. Cosmic Infrared Background Fluctuations and Zodiacal Light

    NASA Astrophysics Data System (ADS)

    Arendt, Richard G.; Kashlinsky, A.; Moseley, S. H.; Mather, J.

    2016-06-01

    We performed a specific observational test to measure the effect that the zodiacal light can have on measurements of the spatial fluctuations of the near-IR background. Previous estimates of possible fluctuations caused by zodiacal light have often been extrapolated from observations of the thermal emission at longer wavelengths and low angular resolution or from IRAC observations of high-latitude fields where zodiacal light is faint and not strongly varying with time. The new observations analyzed here target the COSMOS field at low ecliptic latitude where the zodiacal light intensity varies by factors of ˜2 over the range of solar elongations at which the field can be observed. We find that the white-noise component of the spatial power spectrum of the background is correlated with the modeled zodiacal light intensity. Roughly half of the measured white noise is correlated with the zodiacal light, but a more detailed interpretation of the white noise is hampered by systematic uncertainties that are evident in the zodiacal light model. At large angular scales (≳100″) where excess power above the white noise is observed, we find no correlation of the power with the modeled intensity of the zodiacal light. This test clearly indicates that the large-scale power in the infrared background is not being caused by the zodiacal light.

  3. Hydrological networks and associated topographic variation as templates for the spatial organization of tropical forest vegetation.

    PubMed

    Detto, Matteo; Muller-Landau, Helene C; Mascaro, Joseph; Asner, Gregory P

    2013-01-01

    An understanding of the spatial variability in tropical forest structure and biomass, and the mechanisms that underpin this variability, is critical for designing, interpreting, and upscaling field studies for regional carbon inventories. We investigated the spatial structure of tropical forest vegetation and its relationship to the hydrological network and associated topographic structure across spatial scales of 10-1000 m using high-resolution maps of LiDAR-derived mean canopy profile height (MCH) and elevation for 4930 ha of tropical forest in central Panama. MCH was strongly associated with the hydrological network: canopy height was highest in areas of positive convexity (valleys, depressions) close to channels draining 1 ha or more. Average MCH declined strongly with decreasing convexity (transition to ridges, hilltops) and increasing distance from the nearest channel. Spectral analysis, performed with wavelet decomposition, showed that the variance in MCH had fractal similarity at scales of ∼30-600 m, and was strongly associated with variation in elevation, with peak correlations at scales of ∼250 m. Whereas previous studies of topographic correlates of tropical forest structure conducted analyses at just one or a few spatial grains, our study found that correlations were strongly scale-dependent. Multi-scale analyses of correlations of MCH with slope, aspect, curvature, and Laplacian convexity found that MCH was most strongly related to convexity measured at scales of 20-300 m, a topographic variable that is a good proxy for position with respect to the hydrological network. Overall, our results support the idea that, even in these mesic forests, hydrological networks and associated topographical variation serve as templates upon which vegetation is organized over specific ranges of scales. These findings constitute an important step towards a mechanistic understanding of these patterns, and can guide upscaling and downscaling.

  4. Dissociated functional connectivity profiles for motor and attention deficits in acute right-hemisphere stroke

    PubMed Central

    Ramsey, Lenny; Rengachary, Jennifer; Zinn, Kristi; Siegel, Joshua S.; Metcalf, Nicholas V.; Strube, Michael J.; Snyder, Abraham Z.; Corbetta, Maurizio; Shulman, Gordon L.

    2016-01-01

    Strokes often cause multiple behavioural deficits that are correlated at the population level. Here, we show that motor and attention deficits are selectively associated with abnormal patterns of resting state functional connectivity in the dorsal attention and motor networks. We measured attention and motor deficits in 44 right hemisphere-damaged patients with a first-time stroke at 1–2 weeks post-onset. The motor battery included tests that evaluated deficits in both upper and lower extremities. The attention battery assessed both spatial and non-spatial attention deficits. Summary measures for motor and attention deficits were identified through principal component analyses on the raw behavioural scores. Functional connectivity in structurally normal cortex was estimated based on the temporal correlation of blood oxygenation level-dependent signals measured at rest with functional magnetic resonance imaging. Any correlation between motor and attention deficits and between functional connectivity in the dorsal attention network and motor networks that might spuriously affect the relationship between each deficit and functional connectivity was statistically removed. We report a double dissociation between abnormal functional connectivity patterns and attention and motor deficits, respectively. Attention deficits were significantly more correlated with abnormal interhemispheric functional connectivity within the dorsal attention network than motor networks, while motor deficits were significantly more correlated with abnormal interhemispheric functional connectivity patterns within the motor networks than dorsal attention network. These findings indicate that functional connectivity patterns in structurally normal cortex following a stroke link abnormal physiology in brain networks to the corresponding behavioural deficits. PMID:27225794

  5. Populational fluctuation and spatial distribution of Alphitobius diaperinus (Panzer) (Coleoptera; Tenebrionidae) in a poultry house, Cascavel, Parana state, Brazil.

    PubMed

    Chernaki-Leffer, A M; Almeida, L M; Sosa-Gómez, D R; Anjos, A; Vogado, K M

    2007-05-01

    Knowledge of the population fluctuation and spatial distribution of pests is fundamental for establishing an appropriate control method. The population fluctuation and spatial distribution of the Alphitobius diaperinus in a poultry house in Cascavel, in the state of Parana, Brazil, was studied between October, 2001 and October 2002. Larvae and adults of the lesser mealworm were sampled weekly using Arends tube traps (n = 22) for six consecutive flock grow-outs. The temperature of the litter and of the poultry house was measured at the same locations of the tube traps. Beetle numbers increased continuously throughout all the sampling dates (average 5,137 in the first week and 18,494 insects on the sixth week). Significantly greater numbers of larvae were collected than adults (1 to 20 times in 95% of the sampling points). There was no correlation between temperature and the number of larvae and adults collected, therefore no fluctuation was observed during the sampling period. The population growth was correlated to litter re-use. The highest temperatures were observed in deep litter. The spatial distribution of larvae and adults in the poultry house was heterogeneous during the whole period of evaluation. Results suggest that monitoring in poultry houses is necessary prior to adopting and evaluating control measures due to the great variability of the insect distribution in the poultry house.

  6. Time-Resolved Particle Image Velocimetry Measurements with Wall Shear Stress and Uncertainty Quantification for the FDA Nozzle Model.

    PubMed

    Raben, Jaime S; Hariharan, Prasanna; Robinson, Ronald; Malinauskas, Richard; Vlachos, Pavlos P

    2016-03-01

    We present advanced particle image velocimetry (PIV) processing, post-processing, and uncertainty estimation techniques to support the validation of computational fluid dynamics analyses of medical devices. This work is an extension of a previous FDA-sponsored multi-laboratory study, which used a medical device mimicking geometry referred to as the FDA benchmark nozzle model. Experimental measurements were performed using time-resolved PIV at five overlapping regions of the model for Reynolds numbers in the nozzle throat of 500, 2000, 5000, and 8000. Images included a twofold increase in spatial resolution in comparison to the previous study. Data was processed using ensemble correlation, dynamic range enhancement, and phase correlations to increase signal-to-noise ratios and measurement accuracy, and to resolve flow regions with large velocity ranges and gradients, which is typical of many blood-contacting medical devices. Parameters relevant to device safety, including shear stress at the wall and in bulk flow, were computed using radial basis functions. In addition, in-field spatially resolved pressure distributions, Reynolds stresses, and energy dissipation rates were computed from PIV measurements. Velocity measurement uncertainty was estimated directly from the PIV correlation plane, and uncertainty analysis for wall shear stress at each measurement location was performed using a Monte Carlo model. Local velocity uncertainty varied greatly and depended largely on local conditions such as particle seeding, velocity gradients, and particle displacements. Uncertainty in low velocity regions in the sudden expansion section of the nozzle was greatly reduced by over an order of magnitude when dynamic range enhancement was applied. Wall shear stress uncertainty was dominated by uncertainty contributions from velocity estimations, which were shown to account for 90-99% of the total uncertainty. This study provides advancements in the PIV processing methodologies over the previous work through increased PIV image resolution, use of robust image processing algorithms for near-wall velocity measurements and wall shear stress calculations, and uncertainty analyses for both velocity and wall shear stress measurements. The velocity and shear stress analysis, with spatially distributed uncertainty estimates, highlights the challenges of flow quantification in medical devices and provides potential methods to overcome such challenges.

  7. Measuring electrophysiological connectivity by power envelope correlation: a technical review on MEG methods

    NASA Astrophysics Data System (ADS)

    O'Neill, George C.; Barratt, Eleanor L.; Hunt, Benjamin A. E.; Tewarie, Prejaas K.; Brookes, Matthew J.

    2015-11-01

    The human brain can be divided into multiple areas, each responsible for different aspects of behaviour. Healthy brain function relies upon efficient connectivity between these areas and, in recent years, neuroimaging has been revolutionised by an ability to estimate this connectivity. In this paper we discuss measurement of network connectivity using magnetoencephalography (MEG), a technique capable of imaging electrophysiological brain activity with good (~5 mm) spatial resolution and excellent (~1 ms) temporal resolution. The rich information content of MEG facilitates many disparate measures of connectivity between spatially separate regions and in this paper we discuss a single metric known as power envelope correlation. We review in detail the methodology required to measure power envelope correlation including (i) projection of MEG data into source space, (ii) removing confounds introduced by the MEG inverse problem and (iii) estimation of connectivity itself. In this way, we aim to provide researchers with a description of the key steps required to assess envelope based functional networks, which are thought to represent an intrinsic mode of coupling in the human brain. We highlight the principal findings of the techniques discussed, and furthermore, we show evidence that this method can probe how the brain forms and dissolves multiple transient networks on a rapid timescale in order to support current processing demand. Overall, power envelope correlation offers a unique and verifiable means to gain novel insights into network coordination and is proving to be of significant value in elucidating the neural dynamics of the human connectome in health and disease.

  8. DOWN-STREAM SPATIAL DISTRIBUTION OF ANTIBIOTIC RESISTANCE TRAITS ALONG METAL CONTAMINATED STREAM REACHES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuckfield, C; J V Mcarthur

    2007-04-16

    Sediment bacteria samples were collected from three streams in South Carolina, two contaminated with multiple metals (Four Mile Creek and Castor Creek), one uncontaminated (Meyers Branch), and another metal contaminated stream (Lampert Creek) in northern Washington State. Growth plates inoculated with Four Mile Creek sample extracts show bacteria colony growth after incubation on plates containing either one of two aminoglycosides (kanamycin or streptomycin), tetracycline or chloramphenocol. This study analyzes the spatial pattern of antibiotic resistance in culturable sediment bacteria in all four streams that may be due to metal contamination. We summarize the two aminoglycoside resistance measures and the 10more » metals concentrations by Principal Components Analysis. Respectively, 63% and 58% of the variability was explained in the 1st principal component of each variable set. We used the respective multivariate summary metrics (i.e. 1st principal component scores) as input measures for exploring the spatial correlation between antibiotic resistance and metal concentration for each stream reach sampled. Results show a significant and negative correlation between metals scores versus aminoglycoside resistance scores and suggest that selection for metal tolerance among sediment bacteria may influence selection for antibiotic resistance differently than previously supposed.. In addition, we borrow a method from geostatistics (variography) wherein a spatial cross-correlation analysis shows that decreasing metal concentrations scores are associated with increasing aminoglycoside resistance scores as the separation distance between sediment samples decreases, but for contaminated streams only. Since these results were counter to our initial expectation and to other experimental evidence for water column bacteria, we suspect our field results are influenced by metal bioavailability in the sediments and by a contaminant promoted interaction or ''cocktail effect'' from complex combinations of pollution mediated selection agents.« less

  9. Spatial Correlation of Rain Drop Size Distribution from Polarimetric Radar and 2D-Video Disdrometers

    NASA Technical Reports Server (NTRS)

    Thurai, Merhala; Bringi, Viswanathan; Gatlin, Patrick N.; Wingo, Matt; Petersen, Walter Arthur; Carey, Lawrence D.

    2011-01-01

    Spatial correlations of two of the main rain drop-size distribution (DSD) parameters - namely the median-volume diameter (Do) and the normalized intercept parameter (Nw) - as well as rainfall rate (R) are determined from polarimetric radar measurements, with added information from 2D video disdrometer (2DVD) data. Two cases have been considered, (i) a widespread, long-duration rain event in Huntsville, Alabama, and (ii) an event with localized intense rain-cells within a convection line which occurred during the MC3E campaign. For the first case, data from a C-band polarimetric radar (ARMOR) were utilized, with two 2DVDs acting as ground-truth , both being located at the same site 15 km from the radar. The radar was operated in a special near-dwelling mode over the 2DVDs. In the second case, data from an S-band polarimetric radar (NPOL) data were utilized, with at least five 2DVDs located between 20 and 30 km from the radar. In both rain event cases, comparisons of Do, log10(Nw) and R were made between radar derived estimates and 2DVD-based measurements, and were found to be in good agreement, and in both cases, the radar data were subsequently used to determine the spatial correlations For the first case, the spatial decorrelation distance was found to be smallest for R (4.5 km), and largest fo Do (8.2 km). For log10(Nw) it was 7.2 km (Fig. 1). For the second case, the corresponding decorrelation distances were somewhat smaller but had a directional dependence. In Fig. 2, we show an example of Do comparisons between NPOL based estimates and 1-minute DSD based estimates from one of the five 2DVDs.

  10. Continuous Sub-daily Rainfall Simulation for Regional Flood Risk Assessment - Modelling of Spatio-temporal Correlation Structure of Extreme Precipitation in the Austrian Alps

    NASA Astrophysics Data System (ADS)

    Salinas, J. L.; Nester, T.; Komma, J.; Bloeschl, G.

    2017-12-01

    Generation of realistic synthetic spatial rainfall is of pivotal importance for assessing regional hydroclimatic hazard as the input for long term rainfall-runoff simulations. The correct reproduction of observed rainfall characteristics, such as regional intensity-duration-frequency curves, and spatial and temporal correlations is necessary to adequately model the magnitude and frequency of the flood peaks, by reproducing antecedent soil moisture conditions before extreme rainfall events, and joint probability of flood waves at confluences. In this work, a modification of the model presented by Bardossy and Platte (1992), where precipitation is first modeled on a station basis as a multivariate autoregressive model (mAr) in a Normal space. The spatial and temporal correlation structures are imposed in the Normal space, allowing for a different temporal autocorrelation parameter for each station, and simultaneously ensuring the positive-definiteness of the correlation matrix of the mAr errors. The Normal rainfall is then transformed to a Gamma-distributed space, with parameters varying monthly according to a sinusoidal function, in order to adapt to the observed rainfall seasonality. One of the main differences with the original model is the simulation time-step, reduced from 24h to 6h. Due to a larger availability of daily rainfall data, as opposite to sub-daily (e.g. hourly), the parameters of the Gamma distributions are calibrated to reproduce simultaneously a series of daily rainfall characteristics (mean daily rainfall, standard deviations of daily rainfall, and 24h intensity-duration-frequency [IDF] curves), as well as other aggregated rainfall measures (mean annual rainfall, and monthly rainfall). The calibration of the spatial and temporal correlation parameters is performed in a way that the catchment-averaged IDF curves aggregated at different temporal scales fit the measured ones. The rainfall model is used to generate 10.000 years of synthetic precipitation, fed into a rainfall-runoff model to derive the flood frequency in the Tirolean Alps in Austria. Given the number of generated events, the simulation framework is able to generate a large variety of rainfall patterns, as well as reproduce the variograms of relevant extreme rainfall events in the region of interest.

  11. Impact of Spatial Neglect in Stroke Rehabilitation: Evidence from the Setting of an Inpatient Rehabilitation Facility

    PubMed Central

    Chen, Peii; Hreha, Kimberly; Kong, Yekyung; Barrett, A. M.

    2015-01-01

    Objective To examine the impact of spatial neglect on rehabilitation outcome, risk of falls, and discharge disposition in stroke survivors. Design Inception cohort Setting Inpatient rehabilitation facility (IRF) Participants 108 individuals with unilateral brain damage after their first stroke were assessed at the times of IRF admission and discharge. At admission, 74 of them (68.5%) demonstrated symptoms of spatial neglect, as measured with the Kessler Foundation Neglect Assessment Process (KF-NAP™). Interventions Usual and standard IRF care. Main Outcome Measures Functional Independence Measure (FIM™), Conley Scale, number of falls, length of stay (LOS), and discharge disposition. Results The greater severity of spatial neglect (higher KF-NAP scores) at IRF admission, the lower FIM scores at admission as well as at discharge. Higher KF-NAP scores also correlated with greater LOS and slower FIM improvement rate. The presence of spatial neglect (KF-NAP > 0), but not Conley Scale scores, predicted falls such that participants with spatial neglect fell 6.5 times more often than those without symptoms. More severe neglect, by KF-NAP scores at IRF admission, reduced the likelihood of returning home at discharge. A model that took spatial neglect and other demographic, socioeconomic, and clinical factors into account predicted home discharge. Rapid FIM improvement during IRF stay and lower annual income level were significant predictors of home discharge. Conclusions Spatial neglect following a stroke is a prevalent problem, and may negatively affect rehabilitation outcome, risk of falls, and length of hospital stay. PMID:25862254

  12. Strong correlation between early stage atherosclerosis and electromechanical coupling of aorta

    NASA Astrophysics Data System (ADS)

    Liu, X. Y.; Yan, F.; Niu, L. L.; Chen, Q. N.; Zheng, H. R.; Li, J. Y.

    2016-03-01

    Atherosclerosis is the underlying cause of cardiovascular diseases that are responsible for many deaths in the world, and the early diagnosis of atherosclerosis is highly desirable. The existing imaging methods, however, are not capable of detecting the early stage of atherosclerosis development due to their limited spatial resolution. Using piezoresponse force microscopy (PFM), we show that the piezoelectric response of an aortic wall increases as atherosclerosis advances, while the stiffness of the aorta shows a less evident correlation with atherosclerosis. Furthermore, we show that there is strong correlation between the coercive electric field necessary to switch the polarity of the artery and the development of atherosclerosis. Thus by measuring the electromechanical coupling of the aortic wall, it is possible to probe atherosclerosis at the early stage of its development, not only improving the spatial resolution by orders of magnitude, but also providing comprehensive quantitative information on the biomechanical properties of the artery.

  13. Optical calculation of correlation filters for a robotic vision system

    NASA Technical Reports Server (NTRS)

    Knopp, Jerome

    1989-01-01

    A method is presented for designing optical correlation filters based on measuring three intensity patterns: the Fourier transform of a filter object, a reference wave and the interference pattern produced by the sum of the object transform and the reference. The method can produce a filter that is well matched to both the object, its transforming optical system and the spatial light modulator used in the correlator input plane. A computer simulation was presented to demonstrate the approach for the special case of a conventional binary phase-only filter. The simulation produced a workable filter with a sharp correlation peak.

  14. Novel measurement of spreading pattern of influenza epidemic by using weighted standard distance method: retrospective spatial statistical study of influenza, Japan, 1999–2009

    PubMed Central

    2012-01-01

    Background Annual influenza epidemics occur worldwide resulting in considerable morbidity and mortality. Spreading pattern of influenza is not well understood because it is often hampered by the quality of surveillance data that limits the reliability of analysis. In Japan, influenza is reported on a weekly basis from 5,000 hospitals and clinics nationwide under the scheme of the National Infectious Disease Surveillance. The collected data are available to the public as weekly reports which were summarized into number of patient visits per hospital or clinic in each of the 47 prefectures. From this surveillance data, we analyzed the spatial spreading patterns of influenza epidemics using weekly weighted standard distance (WSD) from the 1999/2000 through 2008/2009 influenza seasons in Japan. WSD is a single numerical value representing the spatial compactness of influenza outbreak, which is small in case of clustered distribution and large in case of dispersed distribution. Results We demonstrated that the weekly WSD value or the measure of spatial compactness of the distribution of reported influenza cases, decreased to its lowest value before each epidemic peak in nine out of ten seasons analyzed. The duration between the lowest WSD week and the peak week of influenza cases ranged from minus one week to twenty weeks. The duration showed significant negative association with the proportion of influenza A/H3N2 cases in early phase of each outbreak (correlation coefficient was −0.75, P = 0.012) and significant positive association with the proportion of influenza B cases in the early phase (correlation coefficient was 0.64, P = 0.045), but positively correlated with the proportion of influenza A/H1N1 strain cases (statistically not significant). It is assumed that the lowest WSD values just before influenza peaks are due to local outbreak which results in small standard distance values. As influenza cases disperse nationwide and an epidemic reaches its peak, WSD value changed to be a progressively increasing. Conclusions The spatial distribution of nationwide influenza outbreak was measured by using a novel WSD method. We showed that spreading rate varied by type and subtypes of influenza virus using WSD as a spatial indicator. This study is the first to show a relationship between influenza epidemic trend by type/subtype and spatial distribution of influenza nationwide in Japan. PMID:22713508

  15. Local breast density assessment using reacquired mammographic images.

    PubMed

    García, Eloy; Diaz, Oliver; Martí, Robert; Diez, Yago; Gubern-Mérida, Albert; Sentís, Melcior; Martí, Joan; Oliver, Arnau

    2017-08-01

    The aim of this paper is to evaluate the spatial glandular volumetric tissue distribution as well as the density measures provided by Volpara™ using a dataset composed of repeated pairs of mammograms, where each pair was acquired in a short time frame and in a slightly changed position of the breast. We conducted a retrospective analysis of 99 pairs of repeatedly acquired full-field digital mammograms from 99 different patients. The commercial software Volpara™ Density Maps (Volpara Solutions, Wellington, New Zealand) is used to estimate both the global and the local glandular tissue distribution in each image. The global measures provided by Volpara™, such as breast volume, volume of glandular tissue, and volumetric breast density are compared between the two acquisitions. The evaluation of the local glandular information is performed using histogram similarity metrics, such as intersection and correlation, and local measures, such as statistics from the difference image and local gradient correlation measures. Global measures showed a high correlation (breast volume R=0.99, volume of glandular tissue R=0.94, and volumetric breast density R=0.96) regardless the anode/filter material. Similarly, histogram intersection and correlation metric showed that, for each pair, the images share a high degree of information. Regarding the local distribution of glandular tissue, small changes in the angle of view do not yield significant differences in the glandular pattern, whilst changes in the breast thickness between both acquisition affect the spatial parenchymal distribution. This study indicates that Volpara™ Density Maps is reliable in estimating the local glandular tissue distribution and can be used for its assessment and follow-up. Volpara™ Density Maps is robust to small variations of the acquisition angle and to the beam energy, although divergences arise due to different breast compression conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Coastal fog and low cloud spatial patterns: do they indicate potential biodiversity refugia?

    NASA Astrophysics Data System (ADS)

    Torregrosa, A.

    2016-12-01

    Marine fog and low clouds transfer water and nutrients to coastal ecosystems through advection from the ocean and reduce heat effects by reflecting incoming shortwave radiation. These effects are known to benefit many species, vegetation communities, and habitats such as coastal redwood trees and their understory, maritime chaparral, and coastal streams harboring endangered salmon species. The California floristic region is the highest ranked hotspot in the U.S. and ranked 7th of 35 biodiversity hotspots worldwide in terms of the percent of its plant species that are found nowhere else (endemic). Many environmental drivers have been identified as contributing to California's remarkably high endemism and biodiversity, however, coastal low clouds have not typically been included. This could be due to the lack of data such as high resolution maps of coastal low cloud occurrence or the lack of long term records. Using a recent analysis of hourly National Weather Service satellite data, a stability index (SI) for coastal fog and low cloud cover was derived using two measures of variation and average summertime cloud cover to quantify long term spatial stability trends. Several discrete spatial clumps were identified that had both high temporal stability and high coastal low cloud cover. These areas show a strong correlation with a specific topographic landscape configuration with respect to wind direction. Point occurrence distribution maps of endemic coastal species were overlain with the SI to explore spatial correlation. The federally endangered species that showed very high spatial correlation included Yadon's Rein-orchid (Piperia yadonii), Monterey Spineflower (Chorizanthe pungens var. pungens), and Seaside Bird's-beak (Cordylanthus rigidus ssp. littoralis). Current estimated range maps are not consistent with the SI results suggesting a need to update estimated ranges. Biodiversity measures are being investigated in these areas to explore the hypothesis that they can be considered paleorefugia for species that have persisted over millennia in spite of a general increase in the aridity and temperature of the California climate.

  17. Source-reconstruction of the sensorimotor network from resting-state macaque electrocorticography.

    PubMed

    Hindriks, R; Micheli, C; Bosman, C A; Oostenveld, R; Lewis, C; Mantini, D; Fries, P; Deco, G

    2018-06-07

    The discovery of hemodynamic (BOLD-fMRI) resting-state networks (RSNs) has brought about a fundamental shift in our thinking about the role of intrinsic brain activity. The electrophysiological underpinnings of RSNs remain largely elusive and it has been shown only recently that electric cortical rhythms are organized into the same RSNs as hemodynamic signals. Most electrophysiological studies into RSNs use magnetoencephalography (MEG) or scalp electroencephalography (EEG), which limits the spatial resolution with which electrophysiological RSNs can be observed. Due to their close proximity to the cortical surface, electrocorticographic (ECoG) recordings can potentially provide a more detailed picture of the functional organization of resting-state cortical rhythms, albeit at the expense of spatial coverage. In this study we propose using source-space spatial independent component analysis (spatial ICA) for identifying generators of resting-state cortical rhythms as recorded with ECoG and for reconstructing their functional connectivity. Network structure is assessed by two kinds of connectivity measures: instantaneous correlations between band-limited amplitude envelopes and oscillatory phase-locking. By simulating rhythmic cortical generators, we find that the reconstruction of oscillatory phase-locking is more challenging than that of amplitude correlations, particularly for low signal-to-noise levels. Specifically, phase-lags can both be over- and underestimated, which troubles the interpretation of lag-based connectivity measures. We illustrate the methodology on somatosensory beta rhythms recorded from a macaque monkey using ECoG. The methodology decomposes the resting-state sensorimotor network into three cortical generators, distributed across primary somatosensory and primary and higher-order motor areas. The generators display significant and reproducible amplitude correlations and phase-locking values with non-zero lags. Our findings illustrate the level of spatial detail attainable with source-projected ECoG and motivates wider use of the methodology for studying resting-state as well as event-related cortical dynamics in macaque and human. Copyright © 2018. Published by Elsevier Inc.

  18. Spatial Analysis of Slowly Oscillating Electric Activity in the Gut of Mice Using Low Impedance Arrayed Microelectrodes

    PubMed Central

    Taniguchi, Mizuki; Kajioka, Shunichi; Shozib, Habibul B.; Sawamura, Kenta; Nakayama, Shinsuke

    2013-01-01

    Smooth and elaborate gut motility is based on cellular cooperation, including smooth muscle, enteric neurons and special interstitial cells acting as pacemaker cells. Therefore, spatial characterization of electric activity in tissues containing these electric excitable cells is required for a precise understanding of gut motility. Furthermore, tools to evaluate spatial electric activity in a small area would be useful for the investigation of model animals. We thus employed a microelectrode array (MEA) system to simultaneously measure a set of 8×8 field potentials in a square area of ∼1 mm2. The size of each recording electrode was 50×50 µm2, however the surface area was increased by fixing platinum black particles. The impedance of microelectrode was sufficiently low to apply a high-pass filter of 0.1 Hz. Mapping of spectral power, and auto-correlation and cross-correlation parameters characterized the spatial properties of spontaneous electric activity in the ileum of wild-type (WT) and W/Wv mice, the latter serving as a model of impaired network of pacemaking interstitial cells. Namely, electric activities measured varied in both size and cooperativity in W/Wv mice, despite the small area. In the ileum of WT mice, procedures suppressing the excitability of smooth muscle and neurons altered the propagation of spontaneous electric activity, but had little change in the period of oscillations. In conclusion, MEA with low impedance electrodes enables to measure slowly oscillating electric activity, and is useful to evaluate both histological and functional changes in the spatio-temporal property of gut electric activity. PMID:24124480

  19. Plant δ15 N reflects the high landscape-scale heterogeneity of soil fertility and vegetation productivity in a Mediterranean semiarid ecosystem.

    PubMed

    Ruiz-Navarro, Antonio; Barberá, Gonzalo G; Albaladejo, Juan; Querejeta, José I

    2016-12-01

    We investigated the magnitude and drivers of spatial variability in soil and plant δ 15 N across the landscape in a topographically complex semiarid ecosystem. We hypothesized that large spatial heterogeneity in water availability, soil fertility and vegetation cover would be positively linked to high local-scale variability in δ 15 N. We measured foliar δ 15 N in three dominant plant species representing contrasting plant functional types (tree, shrub, grass) and mycorrhizal association types (ectomycorrhizal or arbuscular mycorrhizal). This allowed us to investigate whether δ 15 N responds to landscape-scale environmental heterogeneity in a consistent way across species. Leaf δ 15 N varied greatly within species across the landscape and was strongly spatially correlated among co-occurring individuals of the three species. Plant δ 15 N correlated tightly with soil δ 15 N and key measures of soil fertility, water availability and vegetation productivity, including soil nitrogen (N), organic carbon (C), plant-available phosphorus (P), water-holding capacity, topographic moisture indices and normalized difference vegetation index. Multiple regression models accounted for 62-83% of within-species variation in δ 15 N across the landscape. The tight spatial coupling and interdependence of the water, N and C cycles in drylands may allow the use of leaf δ 15 N as an integrative measure of variations in moisture availability, biogeochemical activity, soil fertility and vegetation productivity (or 'site quality') across the landscape. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  20. Impact of spatial variability and sampling design on model performance

    NASA Astrophysics Data System (ADS)

    Schrape, Charlotte; Schneider, Anne-Kathrin; Schröder, Boris; van Schaik, Loes

    2017-04-01

    Many environmental physical and chemical parameters as well as species distributions display a spatial variability at different scales. In case measurements are very costly in labour time or money a choice has to be made between a high sampling resolution at small scales and a low spatial cover of the study area or a lower sampling resolution at the small scales resulting in local data uncertainties with a better spatial cover of the whole area. This dilemma is often faced in the design of field sampling campaigns for large scale studies. When the gathered field data are subsequently used for modelling purposes the choice of sampling design and resulting data quality influence the model performance criteria. We studied this influence with a virtual model study based on a large dataset of field information on spatial variation of earthworms at different scales. Therefore we built a virtual map of anecic earthworm distributions over the Weiherbach catchment (Baden-Württemberg in Germany). First of all the field scale abundance of earthworms was estimated using a catchment scale model based on 65 field measurements. Subsequently the high small scale variability was added using semi-variograms, based on five fields with a total of 430 measurements divided in a spatially nested sampling design over these fields, to estimate the nugget, range and standard deviation of measurements within the fields. With the produced maps, we performed virtual samplings of one up to 50 random points per field. We then used these data to rebuild the catchment scale models of anecic earthworm abundance with the same model parameters as in the work by Palm et al. (2013). The results of the models show clearly that a large part of the non-explained deviance of the models is due to the very high small scale variability in earthworm abundance: the models based on single virtual sampling points on average obtain an explained deviance of 0.20 and a correlation coefficient of 0.64. With increasing sampling points per field, we averaged the measured abundance of the sampling within each field to obtain a more representative value of the field average. Doubling the samplings per field strongly improved the model performance criteria (explained deviance 0.38 and correlation coefficient 0.73). With 50 sampling points per field the performance criteria were 0.91 and 0.97 respectively for explained deviance and correlation coefficient. The relationship between number of samplings and performance criteria can be described with a saturation curve. Beyond five samples per field the model improvement becomes rather small. With this contribution we wish to discuss the impact of data variability at sampling scale on model performance and the implications for sampling design and assessment of model results as well as ecological inferences.

  1. Spatial Representativeness of PM2.5 Concentrations Obtained Using Observations From Network Stations

    NASA Astrophysics Data System (ADS)

    Shi, Xiaoqin; Zhao, Chuanfeng; Jiang, Jonathan H.; Wang, Chunying; Yang, Xin; Yung, Yuk L.

    2018-03-01

    Haze has been a focused air pollution phenomenon in China, and its characterization is highly desired. Aerosol properties obtained from a single station are frequently used to represent the haze condition over a large domain, such as tens of kilometers, which could result in high uncertainties due to their spatial variation. Using a high-resolution network observation over an urban city in North China from November 2015 to February 2016, this study examines the spatial representativeness of ground station observations of particulate matter with diameters less than 2.5 μm (PM2.5). We developed a new method to determine the representative area of PM2.5 measurements from limited stations. The key idea is to determine the PM2.5 spatial representative area using its spatial variability and temporal correlation. We also determine stations with large representative area using two grid networks with different resolutions. Based on the high spatial resolution measurements, the representative area of PM2.5 at one station can be determined from the grids with high correlations and small differences of PM2.5. The representative area for a single station in the study period ranges from 0.25 to 16.25 km2 but is less than 3 km2 for more than half of the stations. The representative area varies with locations, and observation at 10 optimal stations would have a good representativeness of those obtained from 169 stations for the 4 month time scale studied. Both evaluations with an empirical orthogonal function analysis and with independent data set corroborate the validity of the results found in this study.

  2. Challenging Hydrological Panaceas: Water poverty governance accounting for spatial scale in the Niger River Basin

    NASA Astrophysics Data System (ADS)

    Ward, John; Kaczan, David

    2014-11-01

    Water poverty in the Niger River Basin is a function of physical constraints affecting access and supply, and institutional arrangements affecting the ability to utilise the water resource. This distinction reflects the complexity of water poverty and points to the need to look beyond technical and financial means alone to reduce its prevalence and severity. Policy decisions affecting water resources are generally made at a state or national level. Hydrological and socio-economic evaluations at these levels, or at the basin level, cannot be presumed to be concordant with the differentiation of poverty or livelihood vulnerability at more local levels. We focus on three objectives: first, the initial mapping of observed poverty, using two health metrics and a household assets metric; second, the estimation of factors which potentially influence the observed poverty patterns; and third, a consideration of spatial non-stationarity, which identifies spatial correlates of poverty in the places where their effects appear most severe. We quantify the extent to which different levels of analysis influence these results. Comparative analysis of correlates of poverty at basin, national and local levels shows limited congruence. Variation in water quantity, and the presence of irrigation and dams had either limited or no significant correlation with observed variation in poverty measures across levels. Education and access to improved water quality were the only variables consistently significant and spatially stable across the entire basin. At all levels, education is the most consistent non-water correlate of poverty while access to protected water sources is the strongest water related correlate. The analysis indicates that landscape and scale matter for understanding water-poverty linkages and for devising policy concerned with alleviating water poverty. Interactions between environmental, social and institutional factors are complex and consequently a comprehensive understanding of poverty and its causes requires analysis at multiple spatial resolutions.

  3. Human Cortical θ during Free Exploration Encodes Space and Predicts Subsequent Memory

    PubMed Central

    Snider, Joseph; Plank, Markus; Lynch, Gary; Halgren, Eric

    2013-01-01

    Spatial representations and walking speed in rodents are consistently related to the phase, frequency, and/or amplitude of θ rhythms in hippocampal local field potentials. However, neuropsychological studies in humans have emphasized the importance of parietal cortex for spatial navigation, and efforts to identify the electrophysiological signs of spatial navigation in humans have been stymied by the difficulty of recording during free exploration of complex environments. We resolved the recording problem and experimentally probed brain activity of human participants who were fully ambulant. On each of 2 d, electroencephalography was synchronized with head and body movement in 13 subjects freely navigating an extended virtual environment containing numerous unique objects. θ phase and amplitude recorded over parietal cortex were consistent when subjects walked through a particular spatial separation at widely separated times. This spatial displacement θ autocorrelation (STAcc) was quantified and found to be significant from 2 to 8 Hz within the environment. Similar autocorrelation analyses performed on an electrooculographic channel, used to measure eye movements, showed no significant spatial autocorrelations, ruling out eye movements as the source of STAcc. Strikingly, the strength of an individual's STAcc maps from day 1 significantly predicted object location recall success on day 2. θ was also significantly correlated with walking speed; however, this correlation appeared unrelated to STAcc and did not predict memory performance. This is the first demonstration of memory-related, spatial maps in humans generated during active spatial exploration. PMID:24048836

  4. Human cortical θ during free exploration encodes space and predicts subsequent memory.

    PubMed

    Snider, Joseph; Plank, Markus; Lynch, Gary; Halgren, Eric; Poizner, Howard

    2013-09-18

    Spatial representations and walking speed in rodents are consistently related to the phase, frequency, and/or amplitude of θ rhythms in hippocampal local field potentials. However, neuropsychological studies in humans have emphasized the importance of parietal cortex for spatial navigation, and efforts to identify the electrophysiological signs of spatial navigation in humans have been stymied by the difficulty of recording during free exploration of complex environments. We resolved the recording problem and experimentally probed brain activity of human participants who were fully ambulant. On each of 2 d, electroencephalography was synchronized with head and body movement in 13 subjects freely navigating an extended virtual environment containing numerous unique objects. θ phase and amplitude recorded over parietal cortex were consistent when subjects walked through a particular spatial separation at widely separated times. This spatial displacement θ autocorrelation (STAcc) was quantified and found to be significant from 2 to 8 Hz within the environment. Similar autocorrelation analyses performed on an electrooculographic channel, used to measure eye movements, showed no significant spatial autocorrelations, ruling out eye movements as the source of STAcc. Strikingly, the strength of an individual's STAcc maps from day 1 significantly predicted object location recall success on day 2. θ was also significantly correlated with walking speed; however, this correlation appeared unrelated to STAcc and did not predict memory performance. This is the first demonstration of memory-related, spatial maps in humans generated during active spatial exploration.

  5. Role of centrality for the identification of influential spreaders in complex networks.

    PubMed

    de Arruda, Guilherme Ferraz; Barbieri, André Luiz; Rodríguez, Pablo Martín; Rodrigues, Francisco A; Moreno, Yamir; Costa, Luciano da Fontoura

    2014-09-01

    The identification of the most influential spreaders in networks is important to control and understand the spreading capabilities of the system as well as to ensure an efficient information diffusion such as in rumorlike dynamics. Recent works have suggested that the identification of influential spreaders is not independent of the dynamics being studied. For instance, the key disease spreaders might not necessarily be so important when it comes to analyzing social contagion or rumor propagation. Additionally, it has been shown that different metrics (degree, coreness, etc.) might identify different influential nodes even for the same dynamical processes with diverse degrees of accuracy. In this paper, we investigate how nine centrality measures correlate with the disease and rumor spreading capabilities of the nodes in different synthetic and real-world (both spatial and nonspatial) networks. We also propose a generalization of the random walk accessibility as a new centrality measure and derive analytical expressions for the latter measure for simple network configurations. Our results show that for nonspatial networks, the k-core and degree centralities are the most correlated to epidemic spreading, whereas the average neighborhood degree, the closeness centrality, and accessibility are the most related to rumor dynamics. On the contrary, for spatial networks, the accessibility measure outperforms the rest of the centrality metrics in almost all cases regardless of the kind of dynamics considered. Therefore, an important consequence of our analysis is that previous studies performed in synthetic random networks cannot be generalized to the case of spatial networks.

  6. The spatial variability of coastal surface water temperature during upwelling. [in Lake Superior

    NASA Technical Reports Server (NTRS)

    Scarpace, F. L.; Green, T., III

    1979-01-01

    Thermal scanner imagery acquired during a field experiment designed to study an upwelling event in Lake Superior is investigated. Temperature data were measured by the thermal scanner, with a spatial resolution of 7 m. These data were correlated with temperatures measured from boats. One- and two-dimensional Fourier transforms of the data were calculated and temperature variances as a function of wavenumber were plotted. A k-to-the-minus-three dependence of the temperature variance on wavenumber was found in the wavenumber range of 1-25/km. At wavenumbers greater than 25/km, a k-to-the-minus-five-thirds dependence was found.

  7. Feasibility of Computed Tomography-Guided Methods for Spatial Normalization of Dopamine Transporter Positron Emission Tomography Image.

    PubMed

    Kim, Jin Su; Cho, Hanna; Choi, Jae Yong; Lee, Seung Ha; Ryu, Young Hoon; Lyoo, Chul Hyoung; Lee, Myung Sik

    2015-01-01

    Spatial normalization is a prerequisite step for analyzing positron emission tomography (PET) images both by using volume-of-interest (VOI) template and voxel-based analysis. Magnetic resonance (MR) or ligand-specific PET templates are currently used for spatial normalization of PET images. We used computed tomography (CT) images acquired with PET/CT scanner for the spatial normalization for [18F]-N-3-fluoropropyl-2-betacarboxymethoxy-3-beta-(4-iodophenyl) nortropane (FP-CIT) PET images and compared target-to-cerebellar standardized uptake value ratio (SUVR) values with those obtained from MR- or PET-guided spatial normalization method in healthy controls and patients with Parkinson's disease (PD). We included 71 healthy controls and 56 patients with PD who underwent [18F]-FP-CIT PET scans with a PET/CT scanner and T1-weighted MR scans. Spatial normalization of MR images was done with a conventional spatial normalization tool (cvMR) and with DARTEL toolbox (dtMR) in statistical parametric mapping software. The CT images were modified in two ways, skull-stripping (ssCT) and intensity transformation (itCT). We normalized PET images with cvMR-, dtMR-, ssCT-, itCT-, and PET-guided methods by using specific templates for each modality and measured striatal SUVR with a VOI template. The SUVR values measured with FreeSurfer-generated VOIs (FSVOI) overlaid on original PET images were also used as a gold standard for comparison. The SUVR values derived from all four structure-guided spatial normalization methods were highly correlated with those measured with FSVOI (P < 0.0001). Putaminal SUVR values were highly effective for discriminating PD patients from controls. However, the PET-guided method excessively overestimated striatal SUVR values in the PD patients by more than 30% in caudate and putamen, and thereby spoiled the linearity between the striatal SUVR values in all subjects and showed lower disease discrimination ability. Two CT-guided methods showed comparable capability with the MR-guided methods in separating PD patients from controls and showed better correlation between putaminal SUVR values and the parkinsonian motor severity than the PET-guided method. CT-guided spatial normalization methods provided reliable striatal SUVR values comparable to those obtained with MR-guided methods. CT-guided methods can be useful for analyzing dopamine transporter PET images when MR images are unavailable.

  8. Feasibility of Computed Tomography-Guided Methods for Spatial Normalization of Dopamine Transporter Positron Emission Tomography Image

    PubMed Central

    Kim, Jin Su; Cho, Hanna; Choi, Jae Yong; Lee, Seung Ha; Ryu, Young Hoon; Lyoo, Chul Hyoung; Lee, Myung Sik

    2015-01-01

    Background Spatial normalization is a prerequisite step for analyzing positron emission tomography (PET) images both by using volume-of-interest (VOI) template and voxel-based analysis. Magnetic resonance (MR) or ligand-specific PET templates are currently used for spatial normalization of PET images. We used computed tomography (CT) images acquired with PET/CT scanner for the spatial normalization for [18F]-N-3-fluoropropyl-2-betacarboxymethoxy-3-beta-(4-iodophenyl) nortropane (FP-CIT) PET images and compared target-to-cerebellar standardized uptake value ratio (SUVR) values with those obtained from MR- or PET-guided spatial normalization method in healthy controls and patients with Parkinson’s disease (PD). Methods We included 71 healthy controls and 56 patients with PD who underwent [18F]-FP-CIT PET scans with a PET/CT scanner and T1-weighted MR scans. Spatial normalization of MR images was done with a conventional spatial normalization tool (cvMR) and with DARTEL toolbox (dtMR) in statistical parametric mapping software. The CT images were modified in two ways, skull-stripping (ssCT) and intensity transformation (itCT). We normalized PET images with cvMR-, dtMR-, ssCT-, itCT-, and PET-guided methods by using specific templates for each modality and measured striatal SUVR with a VOI template. The SUVR values measured with FreeSurfer-generated VOIs (FSVOI) overlaid on original PET images were also used as a gold standard for comparison. Results The SUVR values derived from all four structure-guided spatial normalization methods were highly correlated with those measured with FSVOI (P < 0.0001). Putaminal SUVR values were highly effective for discriminating PD patients from controls. However, the PET-guided method excessively overestimated striatal SUVR values in the PD patients by more than 30% in caudate and putamen, and thereby spoiled the linearity between the striatal SUVR values in all subjects and showed lower disease discrimination ability. Two CT-guided methods showed comparable capability with the MR-guided methods in separating PD patients from controls and showed better correlation between putaminal SUVR values and the parkinsonian motor severity than the PET-guided method. Conclusion CT-guided spatial normalization methods provided reliable striatal SUVR values comparable to those obtained with MR-guided methods. CT-guided methods can be useful for analyzing dopamine transporter PET images when MR images are unavailable. PMID:26147749

  9. Flux measurements in the surface Marine Atmospheric Boundary Layer over the Aegean Sea, Greece.

    PubMed

    Kostopoulos, V E; Helmis, C G

    2014-10-01

    Micro-meteorological measurements within the surface Marine Atmospheric Boundary Layer took place at the shoreline of two islands at northern and south-eastern Aegean Sea of Greece. The primary goal of these experimental campaigns was to study the momentum, heat and humidity fluxes over this part of the north-eastern Mediterranean Sea, characterized by limited spatial and temporal scales which could affect these exchanges at the air-sea interface. The great majority of the obtained records from both sites gave higher values up to factor of two, compared with the estimations from the most widely used parametric formulas that came mostly from measurements over open seas and oceans. Friction velocity values from both campaigns varied within the same range and presented strong correlation with the wind speed at 10 m height while the calculated drag coefficient values at the same height for both sites were found to be constant in relation with the wind speed. Using eddy correlation analysis, the heat flux values were calculated (virtual heat fluxes varied from -60 to 40 W/m(2)) and it was found that they are affected by the limited spatial and temporal scales of the responding air-sea interaction mechanism. Similarly, the humidity fluxes appeared to be strongly influenced by the observed intense spatial heterogeneity of the sea surface temperature. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Turbulence imaging and applications using beam emission spectroscopy on DIII-D (invited)

    NASA Astrophysics Data System (ADS)

    McKee, G. R.; Fenzi, C.; Fonck, R. J.; Jakubowski, M.

    2003-03-01

    Two-dimensional measurements of density fluctuations are obtained in the radial and poloidal plane of the DIII-D tokamak with the Beam Emission Spectroscopy (BES) diagnostic system. The goals are to visualize the spatial structure and time evolution of turbulent eddies, as well as to obtain the 2D statistical properties of turbulence. The measurements are obtained with an array of localized BES spatial channels configured to image a midplane region of the plasma. 32 channels have been deployed, each with a spatial resolution of about 1 cm in the radial and poloidal directions, thus providing measurements of turbulence in the wave number range 0

  11. Development of a local size hierarchy causes regular spacing of trees in an even-aged Abies forest: analyses using spatial autocorrelation and the mark correlation function.

    PubMed

    Suzuki, Satoshi N; Kachi, Naoki; Suzuki, Jun-Ichirou

    2008-09-01

    During the development of an even-aged plant population, the spatial distribution of individuals often changes from a clumped pattern to a random or regular one. The development of local size hierarchies in an Abies forest was analysed for a period of 47 years following a large disturbance in 1959. In 1980 all trees in an 8 x 8 m plot were mapped and their height growth after the disturbance was estimated. Their mortality and growth were then recorded at 1- to 4-year intervals between 1980 and 2006. Spatial distribution patterns of trees were analysed by the pair correlation function. Spatial correlations between tree heights were analysed with a spatial autocorrelation function and the mark correlation function. The mark correlation function was able to detect a local size hierarchy that could not be detected by the spatial autocorrelation function alone. The small-scale spatial distribution pattern of trees changed from clumped to slightly regular during the 47 years. Mortality occurred in a density-dependent manner, which resulted in regular spacing between trees after 1980. The spatial autocorrelation and mark correlation functions revealed the existence of tree patches consisting of large trees at the initial stage. Development of a local size hierarchy was detected within the first decade after the disturbance, although the spatial autocorrelation was not negative. Local size hierarchies that developed persisted until 2006, and the spatial autocorrelation became negative at later stages (after about 40 years). This is the first study to detect local size hierarchies as a prelude to regular spacing using the mark correlation function. The results confirm that use of the mark correlation function together with the spatial autocorrelation function is an effective tool to analyse the development of a local size hierarchy of trees in a forest.

  12. Brillouin Optical Correlation Domain Analysis in Composite Material Beams

    PubMed Central

    Stern, Yonatan; London, Yosef; Preter, Eyal; Antman, Yair; Diamandi, Hilel Hagai; Silbiger, Maayan; Adler, Gadi; Shalev, Doron; Zadok, Avi

    2017-01-01

    Structural health monitoring is a critical requirement in many composites. Numerous monitoring strategies rely on measurements of temperature or strain (or both), however these are often restricted to point-sensing or to the coverage of small areas. Spatially-continuous data can be obtained with optical fiber sensors. In this work, we report high-resolution distributed Brillouin sensing over standard fibers that are embedded in composite structures. A phase-coded, Brillouin optical correlation domain analysis (B-OCDA) protocol was employed, with spatial resolution of 2 cm and sensitivity of 1 °K or 20 micro-strain. A portable measurement setup was designed and assembled on the premises of a composite structures manufacturer. The setup was successfully utilized in several structural health monitoring scenarios: (a) monitoring the production and curing of a composite beam over 60 h; (b) estimating the stiffness and Young’s modulus of a composite beam; and (c) distributed strain measurements across the surfaces of a model wing of an unmanned aerial vehicle. The measurements are supported by the predictions of structural analysis calculations. The results illustrate the potential added values of high-resolution, distributed Brillouin sensing in the structural health monitoring of composites. PMID:28974041

  13. Brillouin Optical Correlation Domain Analysis in Composite Material Beams.

    PubMed

    Stern, Yonatan; London, Yosef; Preter, Eyal; Antman, Yair; Diamandi, Hilel Hagai; Silbiger, Maayan; Adler, Gadi; Levenberg, Eyal; Shalev, Doron; Zadok, Avi

    2017-10-02

    Structural health monitoring is a critical requirement in many composites. Numerous monitoring strategies rely on measurements of temperature or strain (or both), however these are often restricted to point-sensing or to the coverage of small areas. Spatially-continuous data can be obtained with optical fiber sensors. In this work, we report high-resolution distributed Brillouin sensing over standard fibers that are embedded in composite structures. A phase-coded, Brillouin optical correlation domain analysis (B-OCDA) protocol was employed, with spatial resolution of 2 cm and sensitivity of 1 °K or 20 micro-strain. A portable measurement setup was designed and assembled on the premises of a composite structures manufacturer. The setup was successfully utilized in several structural health monitoring scenarios: (a) monitoring the production and curing of a composite beam over 60 h; (b) estimating the stiffness and Young's modulus of a composite beam; and (c) distributed strain measurements across the surfaces of a model wing of an unmanned aerial vehicle. The measurements are supported by the predictions of structural analysis calculations. The results illustrate the potential added values of high-resolution, distributed Brillouin sensing in the structural health monitoring of composites.

  14. Variability of the raindrop size distribution at small spatial scales

    NASA Astrophysics Data System (ADS)

    Berne, A.; Jaffrain, J.

    2010-12-01

    Because of the interactions between atmospheric turbulence and cloud microphysics, the raindrop size distribution (DSD) is strongly variable in space and time. The spatial variability of the DSD at small spatial scales (below a few km) is not well documented and not well understood, mainly because of a lack of adequate measurements at the appropriate resolutions. A network of 16 disdrometers (Parsivels) has been designed and set up over EPFL campus in Lausanne, Switzerland. This network covers a typical operational weather radar pixel of 1x1 km2. The question of the significance of the variability of the DSD at such small scales is relevant for radar remote sensing of rainfall because the DSD is often assumed to be uniform within a radar sample volume and because the Z-R relationships used to convert the measured radar reflectivity Z into rain rate R are usually derived from point measurements. Thanks to the number of disdrometers, it was possible to quantify the spatial variability of the DSD at the radar pixel scale and to show that it can be significant. In this contribution, we show that the variability of the total drop concentration, of the median volume diameter and of the rain rate are significant, taking into account the sampling uncertainty associated with disdrometer measurements. The influence of this variability on the Z-R relationship can be non-negligible. Finally, the spatial structure of the DSD is quantified using a geostatistical tool, the variogram, and indicates high spatial correlation within a radar pixel.

  15. Are Books Like Number Lines? Children Spontaneously Encode Spatial-Numeric Relationships in a Novel Spatial Estimation Task.

    PubMed

    Thompson, Clarissa A; Morris, Bradley J; Sidney, Pooja G

    2017-01-01

    Do children spontaneously represent spatial-numeric features of a task, even when it does not include printed numbers (Mix et al., 2016)? Sixty first grade students completed a novel spatial estimation task by seeking and finding pages in a 100-page book without printed page numbers. Children were shown pages 1 through 6 and 100, and then were asked, "Can you find page X?" Children's precision of estimates on the page finder task and a 0-100 number line estimation task was calculated with the Percent Absolute Error (PAE) formula (Siegler and Booth, 2004), in which lower PAE indicated more precise estimates. Children's numerical knowledge was further assessed with: (1) numeral identification (e.g., What number is this: 57?), (2) magnitude comparison (e.g., Which is larger: 54 or 57?), and (3) counting on (e.g., Start counting from 84 and count up 5 more). Children's accuracy on these tasks was correlated with their number line PAE. Children's number line estimation PAE predicted their page finder PAE, even after controlling for age and accuracy on the other numerical tasks. Children's estimates on the page finder and number line tasks appear to tap a general magnitude representation. However, the page finder task did not correlate with numeral identification and counting-on performance, likely because these tasks do not measure children's magnitude knowledge. Our results suggest that the novel page finder task is a useful measure of children's magnitude knowledge, and that books have similar spatial-numeric affordances as number lines and numeric board games.

  16. Vision, visuo-cognition and postural control in Parkinson's disease: An associative pilot study.

    PubMed

    Hill, E; Stuart, S; Lord, S; Del Din, S; Rochester, L

    2016-07-01

    Impaired postural control (PC) is common in patients with Parkinson's disease (PD) and is a major contributor to falls, with significant consequences. Mechanisms underpinning PC are complex and include motor and non-motor features. Research has focused predominantly on motor and sensory inputs. Vision and visuo-cognitive function are also integral to PC but have largely been ignored to date. The aim of this observational cross-sectional pilot study was to explore the relationship of vision and visuo-cognition with PC in PD. Twelve people with PD and ten age-matched healthy controls (HC) underwent detailed assessments for vision, visuo-cognition and postural control. Vision assessments included visual acuity and contrast sensitivity. Visuo-cognition was measured by visuo-perception (object identification), visuo-construction (ability to copy a figure) and visuo-spatial ability (judge distances and location of object within environment). PC was measured by an accelerometer for a range of outcomes during a 2-min static stance. Spearman's correlations identified significant associations. Contrast sensitivity, visuo-spatial ability and postural control (ellipsis) were significantly impaired in PD (p=0.017; p=0.001; and p=0.017, respectively). For PD only, significant correlations were found for higher visuo-spatial function and larger ellipsis (r=0.64; p=0.024) and impaired attention and reduced visuo-spatial function (r=-0.62; p=0.028). Visuo-spatial ability is associated with PC deficit in PD, but in an unexpected direction. This suggests a non-linear pattern of response. Further research is required to examine this novel and important finding. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Accounting for connectivity and spatial correlation in the optimal placement of wildlife habitat

    Treesearch

    John Hof; Curtis H. Flather

    1996-01-01

    This paper investigates optimization approaches to simultaneously modelling habitat fragmentation and spatial correlation between patch populations. The problem is formulated with habitat connectivity affecting population means and variances, with spatial correlations accounted for in covariance calculations. Population with a pre-specifled confidence level is then...

  18. Observations and regional modeling of aerosol optical properties, speciation and size distribution over Northern Africa and western Europe

    NASA Astrophysics Data System (ADS)

    Menut, Laurent; Siour, Guillaume; Mailler, Sylvain; Couvidat, Florian; Bessagnet, Bertrand

    2016-10-01

    The aerosol speciation and size distribution is modeled during the summer 2013 and over a large area encompassing Africa, Mediterranean and western Europe. The modeled aerosol is compared to available measurements such as the AERONET aerosol optical depth (AOD) and aerosol size distribution (ASD) and the EMEP network for surface concentrations of particulate matter PM2.5, PM10 and inorganic species (nitrate, sulfate and ammonium). The main goal of this study is to quantify the model ability to realistically model the speciation and size distribution of the aerosol. Results first showed that the long-range transport pathways are well reproduced and mainly constituted by mineral dust: spatial correlation is ≈ 0.9 for AOD and Ångström exponent, when temporal correlations show that the day-to-day variability is more difficult to reproduce. Over Europe, PM2.5 and PM10 have a mean temporal correlation of ≈ 0.4 but the lowest spatial correlation ( ≈ 0.25 and 0.62, respectively), showing that the fine particles are not well localized or transported. Being short-lived species, the uncertainties on meteorology and emissions induce these lowest scores. However, time series of PM2.5 with the speciation show a good agreement between model and measurements and are useful for discriminating the aerosol composition. Using a classification from the south (Africa) to the north (northern Europe), it is shown that mineral dust relative mass contribution decreases from 50 to 10 % when nitrate increases from 0 to 20 % and all other species, sulfate, sea salt, ammonium, elemental carbon, primary organic matter, are constant. The secondary organic aerosol contribution is between 10 and 20 % with a maximum at the latitude of the Mediterranean Sea (Spanish stations). For inorganic species, it is shown that nitrate, sulfate and ammonium have a mean temporal correlation of 0.25, 0.37 and 0.17, respectively. The spatial correlation is better (0.25, 0.5 and 0.87), showing that the mean values may be biased but the spatial localization of sulfate and ammonium is well reproduced. The size distribution is compared to the AERONET product and it is shown that the model fairly reproduces the main values for the fine and coarse mode. In particular, for the fine mode, the model overestimates the aerosol mass in Africa and underestimates it in Europe.

  19. Ergodic channel capacity of spatial correlated multiple-input multiple-output free space optical links using multipulse pulse-position modulation

    NASA Astrophysics Data System (ADS)

    Wang, Huiqin; Wang, Xue; Cao, Minghua

    2017-02-01

    The spatial correlation extensively exists in the multiple-input multiple-output (MIMO) free space optical (FSO) communication systems due to the channel fading and the antenna space limitation. Wilkinson's method was utilized to investigate the impact of spatial correlation on the MIMO FSO communication system employing multipulse pulse-position modulation. Simulation results show that the existence of spatial correlation reduces the ergodic channel capacity, and the reception diversity is more competent to resist this kind of performance degradation.

  20. Is functional integration of resting state brain networks an unspecific biomarker for working memory performance?

    PubMed

    Alavash, Mohsen; Doebler, Philipp; Holling, Heinz; Thiel, Christiane M; Gießing, Carsten

    2015-03-01

    Is there one optimal topology of functional brain networks at rest from which our cognitive performance would profit? Previous studies suggest that functional integration of resting state brain networks is an important biomarker for cognitive performance. However, it is still unknown whether higher network integration is an unspecific predictor for good cognitive performance or, alternatively, whether specific network organization during rest predicts only specific cognitive abilities. Here, we investigated the relationship between network integration at rest and cognitive performance using two tasks that measured different aspects of working memory; one task assessed visual-spatial and the other numerical working memory. Network clustering, modularity and efficiency were computed to capture network integration on different levels of network organization, and to statistically compare their correlations with the performance in each working memory test. The results revealed that each working memory aspect profits from a different resting state topology, and the tests showed significantly different correlations with each of the measures of network integration. While higher global network integration and modularity predicted significantly better performance in visual-spatial working memory, both measures showed no significant correlation with numerical working memory performance. In contrast, numerical working memory was superior in subjects with highly clustered brain networks, predominantly in the intraparietal sulcus, a core brain region of the working memory network. Our findings suggest that a specific balance between local and global functional integration of resting state brain networks facilitates special aspects of cognitive performance. In the context of working memory, while visual-spatial performance is facilitated by globally integrated functional resting state brain networks, numerical working memory profits from increased capacities for local processing, especially in brain regions involved in working memory performance. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. The cluster-cluster correlation function. [of galaxies

    NASA Technical Reports Server (NTRS)

    Postman, M.; Geller, M. J.; Huchra, J. P.

    1986-01-01

    The clustering properties of the Abell and Zwicky cluster catalogs are studied using the two-point angular and spatial correlation functions. The catalogs are divided into eight subsamples to determine the dependence of the correlation function on distance, richness, and the method of cluster identification. It is found that the Corona Borealis supercluster contributes significant power to the spatial correlation function to the Abell cluster sample with distance class of four or less. The distance-limited catalog of 152 Abell clusters, which is not greatly affected by a single system, has a spatial correlation function consistent with the power law Xi(r) = 300r exp -1.8. In both the distance class four or less and distance-limited samples the signal in the spatial correlation function is a power law detectable out to 60/h Mpc. The amplitude of Xi(r) for clusters of richness class two is about three times that for richness class one clusters. The two-point spatial correlation function is sensitive to the use of estimated redshifts.

  2. Thinner regions of intracranial aneurysm wall correlate with regions of higher wall shear stress: a 7.0 tesla MRI

    PubMed Central

    Blankena, Roos; Kleinloog, Rachel; Verweij, Bon H.; van Ooij, Pim; ten Haken, Bennie; Luijten, Peter R.; Rinkel, Gabriel J.E.; Zwanenburg, Jaco J.M.

    2016-01-01

    Purpose To develop a method for semi-quantitative wall thickness assessment on in vivo 7.0 tesla (7T) MRI images of intracranial aneurysms for studying the relation between apparent aneurysm wall thickness and wall shear stress. Materials and Methods Wall thickness was analyzed in 11 unruptured aneurysms in 9 patients, who underwent 7T MRI with a TSE based vessel wall sequence (0.8 mm isotropic resolution). A custom analysis program determined the in vivo aneurysm wall intensities, which were normalized to signal of nearby brain tissue and were used as measure for apparent wall thickness (AWT). Spatial wall thickness variation was determined as the interquartile range in AWT (the middle 50% of the AWT range). Wall shear stress was determined using phase contrast MRI (0.5 mm isotropic resolution). We performed visual and statistical comparisons (Pearson’s correlation) to study the relation between wall thickness and wall shear stress. Results 3D colored AWT maps of the aneurysms showed spatial AWT variation, which ranged from 0.07 to 0.53, with a mean variation of 0.22 (a variation of 1.0 roughly means a wall thickness variation of one voxel (0.8mm)). In all aneurysms, AWT was inversely related to WSS (mean correlation coefficient −0.35, P<0.05). Conclusions A method was developed to measure the wall thickness semi-quantitatively, using 7T MRI. An inverse correlation between wall shear stress and AWT was determined. In future studies, this non-invasive method can be used to assess spatial wall thickness variation in relation to pathophysiologic processes such as aneurysm growth and –rupture. PMID:26892986

  3. Multivariate spatial models of excess crash frequency at area level: case of Costa Rica.

    PubMed

    Aguero-Valverde, Jonathan

    2013-10-01

    Recently, areal models of crash frequency have being used in the analysis of various area-wide factors affecting road crashes. On the other hand, disease mapping methods are commonly used in epidemiology to assess the relative risk of the population at different spatial units. A natural next step is to combine these two approaches to estimate the excess crash frequency at area level as a measure of absolute crash risk. Furthermore, multivariate spatial models of crash severity are explored in order to account for both frequency and severity of crashes and control for the spatial correlation frequently found in crash data. This paper aims to extent the concept of safety performance functions to be used in areal models of crash frequency. A multivariate spatial model is used for that purpose and compared to its univariate counterpart. Full Bayes hierarchical approach is used to estimate the models of crash frequency at canton level for Costa Rica. An intrinsic multivariate conditional autoregressive model is used for modeling spatial random effects. The results show that the multivariate spatial model performs better than its univariate counterpart in terms of the penalized goodness-of-fit measure Deviance Information Criteria. Additionally, the effects of the spatial smoothing due to the multivariate spatial random effects are evident in the estimation of excess equivalent property damage only crashes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. The genetic and environmental aetiology of spatial, mathematics and general anxiety

    PubMed Central

    Malanchini, Margherita; Rimfeld, Kaili; Shakeshaft, Nicholas G.; Rodic, Maja; Schofield, Kerry; Selzam, Saskia; Dale, Philip S.; Petrill, Stephen A.; Kovas, Yulia

    2017-01-01

    Individuals differ in their level of general anxiety as well as in their level of anxiety towards specific activities, such as mathematics and spatial tasks. Both specific anxieties correlate moderately with general anxiety, but the aetiology of their association remains unexplored. Moreover, the factor structure of spatial anxiety is to date unknown. The present study investigated the factor structure of spatial anxiety, its aetiology, and the origins of its association with general and mathematics anxiety in a sample of 1,464 19-21-year-old twin pairs from the UK representative Twins Early Development Study. Participants reported their general, mathematics and spatial anxiety as part of an online battery of tests. We found that spatial anxiety is a multifactorial construct, including two components: navigation anxiety and rotation/visualization anxiety. All anxiety measures were moderately heritable (30% to 41%), and non-shared environmental factors explained the remaining variance. Multivariate genetic analysis showed that, although some genetic and environmental factors contributed to all anxiety measures, a substantial portion of genetic and non-shared environmental influences were specific to each anxiety construct. This suggests that anxiety is a multifactorial construct phenotypically and aetiologically, highlighting the importance of studying anxiety within specific contexts. PMID:28220830

  5. The genetic and environmental aetiology of spatial, mathematics and general anxiety.

    PubMed

    Malanchini, Margherita; Rimfeld, Kaili; Shakeshaft, Nicholas G; Rodic, Maja; Schofield, Kerry; Selzam, Saskia; Dale, Philip S; Petrill, Stephen A; Kovas, Yulia

    2017-02-21

    Individuals differ in their level of general anxiety as well as in their level of anxiety towards specific activities, such as mathematics and spatial tasks. Both specific anxieties correlate moderately with general anxiety, but the aetiology of their association remains unexplored. Moreover, the factor structure of spatial anxiety is to date unknown. The present study investigated the factor structure of spatial anxiety, its aetiology, and the origins of its association with general and mathematics anxiety in a sample of 1,464 19-21-year-old twin pairs from the UK representative Twins Early Development Study. Participants reported their general, mathematics and spatial anxiety as part of an online battery of tests. We found that spatial anxiety is a multifactorial construct, including two components: navigation anxiety and rotation/visualization anxiety. All anxiety measures were moderately heritable (30% to 41%), and non-shared environmental factors explained the remaining variance. Multivariate genetic analysis showed that, although some genetic and environmental factors contributed to all anxiety measures, a substantial portion of genetic and non-shared environmental influences were specific to each anxiety construct. This suggests that anxiety is a multifactorial construct phenotypically and aetiologically, highlighting the importance of studying anxiety within specific contexts.

  6. Modeling the Spatiotemporal Evolution of the Melanoma Tumor Microenvironment

    NASA Astrophysics Data System (ADS)

    Signoriello, Alexandra; Bosenberg, Marcus; Shattuck, Mark; O'Hern, Corey

    The tumor microenvironment, which includes tumor cells, tumor-associated macrophages (TAM), cancer-associated fibroblasts, and endothelial cells, drives the formation and progression of melanoma tumors. Using quantitative analysis of in vivo confocal images of melanoma tumors in three spatial dimensions, we examine the physical properties of the melanoma tumor microenvironment, including the numbers of different cells types, cell size, and morphology. We also compute the nearest neighbor statistics and measure intermediate range spatial correlations between different cell types. We also calculate the step size distribution, mean-square displacement, and non-Gaussian parameter from the spatial trajectories of different cell types in the tumor microenvironment.

  7. Soil variability in engineering applications

    NASA Astrophysics Data System (ADS)

    Vessia, Giovanna

    2014-05-01

    Natural geomaterials, as soils and rocks, show spatial variability and heterogeneity of physical and mechanical properties. They can be measured by in field and laboratory testing. The heterogeneity concerns different values of litho-technical parameters pertaining similar lithological units placed close to each other. On the contrary, the variability is inherent to the formation and evolution processes experienced by each geological units (homogeneous geomaterials on average) and captured as a spatial structure of fluctuation of physical property values about their mean trend, e.g. the unit weight, the hydraulic permeability, the friction angle, the cohesion, among others. The preceding spatial variations shall be managed by engineering models to accomplish reliable designing of structures and infrastructures. Materon (1962) introduced the Geostatistics as the most comprehensive tool to manage spatial correlation of parameter measures used in a wide range of earth science applications. In the field of the engineering geology, Vanmarcke (1977) developed the first pioneering attempts to describe and manage the inherent variability in geomaterials although Terzaghi (1943) already highlighted that spatial fluctuations of physical and mechanical parameters used in geotechnical designing cannot be neglected. A few years later, Mandelbrot (1983) and Turcotte (1986) interpreted the internal arrangement of geomaterial according to Fractal Theory. In the same years, Vanmarcke (1983) proposed the Random Field Theory providing mathematical tools to deal with inherent variability of each geological units or stratigraphic succession that can be resembled as one material. In this approach, measurement fluctuations of physical parameters are interpreted through the spatial variability structure consisting in the correlation function and the scale of fluctuation. Fenton and Griffiths (1992) combined random field simulation with the finite element method to produce the Random Finite Element Method (RFEM). This method has been used to investigate the random behavior of soils in the context of a variety of classical geotechnical problems. Afterward, some following studies collected the worldwide variability values of many technical parameters of soils (Phoon and Kulhawy 1999a) and their spatial correlation functions (Phoon and Kulhawy 1999b). In Italy, Cherubini et al. (2007) calculated the spatial variability structure of sandy and clayey soils from the standard cone penetration test readings. The large extent of the worldwide measured spatial variability of soils and rocks heavily affects the reliability of geotechnical designing as well as other uncertainties introduced by testing devices and engineering models. So far, several methods have been provided to deal with the preceding sources of uncertainties in engineering designing models (e.g. First Order Reliability Method, Second Order Reliability Method, Response Surface Method, High Dimensional Model Representation, etc.). Nowadays, the efforts in this field have been focusing on (1) measuring spatial variability of different rocks and soils and (2) developing numerical models that take into account the spatial variability as additional physical variable. References Cherubini C., Vessia G. and Pula W. 2007. Statistical soil characterization of Italian sites for reliability analyses. Proc. 2nd Int. Workshop. on Characterization and Engineering Properties of Natural Soils, 3-4: 2681-2706. Griffiths D.V. and Fenton G.A. 1993. Seepage beneath water retaining structures founded on spatially random soil, Géotechnique, 43(6): 577-587. Mandelbrot B.B. 1983. The Fractal Geometry of Nature. San Francisco: W H Freeman. Matheron G. 1962. Traité de Géostatistique appliquée. Tome 1, Editions Technip, Paris, 334 p. Phoon K.K. and Kulhawy F.H. 1999a. Characterization of geotechnical variability. Can Geotech J, 36(4): 612-624. Phoon K.K. and Kulhawy F.H. 1999b. Evaluation of geotechnical property variability. Can Geotech J, 36(4): 625-639. Terzaghi K. 1943. Theoretical Soil Mechanics. New York: John Wiley and Sons. Turcotte D.L. 1986. Fractals and fragmentation. J Geophys Res, 91: 1921-1926. Vanmarcke E.H. 1977. Probabilistic modeling of soil profiles. J Geotech Eng Div, ASCE, 103: 1227-1246. Vanmarcke E.H. 1983. Random fields: analysis and synthesis. MIT Press, Cambridge.

  8. Remote sensing of exposure to NO2: Satellite versus ground-based measurement in a large urban area

    NASA Astrophysics Data System (ADS)

    Bechle, Matthew J.; Millet, Dylan B.; Marshall, Julian D.

    2013-04-01

    Remote sensing may be a useful tool for exploring spatial variability of air pollution exposure within an urban area. To evaluate the extent to which satellite data from the Ozone Monitoring Instrument (OMI) can resolve urban-scale gradients in ground-level nitrogen dioxide (NO2) within a large urban area, we compared estimates of surface NO2 concentrations derived from OMI measurements and US EPA ambient monitoring stations. OMI, aboard NASA's Aura satellite, provides daily afternoon (˜13:30 local time) measurements of NO2 tropospheric column abundance. We used scaling factors (surface-to-column ratios) to relate satellite column measurements to ground-level concentrations. We compared 4138 sets of paired data for 25 monitoring stations in the South Coast Air Basin of California for all of 2005. OMI measurements include more data gaps than the ground monitors (60% versus 5% of available data, respectively), owing to cloud contamination and imposed limits on pixel size. The spatial correlation between OMI columns and corrected in situ measurements is strong (r = 0.93 for annual average data), indicating that the within-urban spatial signature of surface NO2 is well resolved by the satellite sensor. Satellite-based surface estimates employing scaling factors from an urban model provide a reliable measure (annual mean bias: -13%; seasonal mean bias: <1% [spring] to -22% [fall]) of fine-scale surface NO2. We also find that OMI provides good spatial density in the study region (average area [km2] per measurement: 730 for the satellite sensor vs. 1100 for the monitors). Our findings indicate that satellite observations of NO2 from the OMI sensor provide a reliable measure of spatial variability in ground-level NO2 exposure for a large urban area.

  9. Damage evolution analysis of coal samples under cyclic loading based on single-link cluster method

    NASA Astrophysics Data System (ADS)

    Zhang, Zhibo; Wang, Enyuan; Li, Nan; Li, Xuelong; Wang, Xiaoran; Li, Zhonghui

    2018-05-01

    In this paper, the acoustic emission (AE) response of coal samples under cyclic loading is measured. The results show that there is good positive relation between AE parameters and stress. The AE signal of coal samples under cyclic loading exhibits an obvious Kaiser Effect. The single-link cluster (SLC) method is applied to analyze the spatial evolution characteristics of AE events and the damage evolution process of coal samples. It is found that a subset scale of the SLC structure becomes smaller and smaller when the number of cyclic loading increases, and there is a negative linear relationship between the subset scale and the degree of damage. The spatial correlation length ξ of an SLC structure is calculated. The results show that ξ fluctuates around a certain value from the second cyclic loading process to the fifth cyclic loading process, but spatial correlation length ξ clearly increases in the sixth loading process. Based on the criterion of microcrack density, the coal sample failure process is the transformation from small-scale damage to large-scale damage, which is the reason for changes in the spatial correlation length. Through a systematic analysis, the SLC method is an effective method to research the damage evolution process of coal samples under cyclic loading, and will provide important reference values for studying coal bursts.

  10. Scales of snow depth variability in high elevation rangeland sagebrush

    NASA Astrophysics Data System (ADS)

    Tedesche, Molly E.; Fassnacht, Steven R.; Meiman, Paul J.

    2017-09-01

    In high elevation semi-arid rangelands, sagebrush and other shrubs can affect transport and deposition of wind-blown snow, enabling the formation of snowdrifts. Datasets from three field experiments were used to investigate the scales of spatial variability of snow depth around big mountain sagebrush ( Artemisia tridentata Nutt.) at a high elevation plateau rangeland in North Park, Colorado, during the winters of 2002, 2003, and 2008. Data were collected at multiple resolutions (0.05 to 25 m) and extents (2 to 1000 m). Finer scale data were collected specifically for this study to examine the correlation between snow depth, sagebrush microtopography, the ground surface, and the snow surface, as well as the temporal consistency of snow depth patterns. Variograms were used to identify the spatial structure and the Moran's I statistic was used to determine the spatial correlation. Results show some temporal consistency in snow depth at several scales. Plot scale snow depth variability is partly a function of the nature of individual shrubs, as there is some correlation between the spatial structure of snow depth and sagebrush, as well as between the ground and snow depth. The optimal sampling resolution appears to be 25-cm, but over a large area, this would require a multitude of samples, and thus a random stratified approach is recommended with a fine measurement resolution of 5-cm.

  11. Functional imaging of the nonhuman primate Placenta with endogenous blood oxygen level-dependent contrast.

    PubMed

    Schabel, M C; Roberts, V H J; Lo, J O; Platt, S; Grant, K A; Frias, A E; Kroenke, C D

    2016-11-01

    To characterize spatial patterns of T2* in the placenta of the rhesus macaque (Macaca mulatta), to correlate these patterns with placental perfusion determined using dynamic contrast-enhanced MRI (DCE-MRI), and to evaluate the potential for using the blood oxygen level-dependent effect to quantify placental perfusion without the use of exogenous contrast reagent. MRI was performed on three pregnant rhesus macaques at gestational day 110. Multiecho spoiled gradient echo measurements were used to compute maps of T2*. Spatial maxima in these maps were compared with foci of early enhancement determined by DCE-MRI. Local maxima in T2* maps were strongly correlated with spiral arteries identified by DCE-MRI, with mean spatial separations ranging from 2.34 to 6.11 mm in the three animals studied. Spatial patterns of R2* ( = 1/ T2*) within individual placental lobules can be quantitatively analyzed using a simple model to estimate fetal arterial oxyhemoglobin concentration [Hbo,f] and a parameter viPS/Φ, reflecting oxygen transport to the fetus. Estimated mean values of [Hbo,f] ranged from 4.25 mM to 4.46 mM, whereas viPS/Φ ranged from 2.80 × 10 5 cm -3 to 1.61 × 10 6 cm -3 . Maternal spiral arteries show strong spatial correlation with foci of extended T2* observed in the primate placenta. A simple model of oxygen transport accurately describes the spatial dependence of R2* within placental lobules and enables assessment of placental function and oxygenation without requiring administration of an exogenous contrast reagent. Magn Reson Med 76:1551-1562, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.

  12. Non-destructive Measurement of Calcium and Potassium in Apple and Pear Using Handheld X-ray Fluorescence

    PubMed Central

    Kalcsits, Lee A.

    2016-01-01

    Calcium and potassium are essential for cell signaling, ion homeostasis and cell wall strength in plants. Unlike nutrients such as nitrogen and potassium, calcium is immobile in plants. Localized calcium deficiencies result in agricultural losses; particularly for fleshy horticultural crops in which elemental imbalances in fruit contribute to the development of physiological disorders such as bitter pit in apple and cork spot in pear. Currently, elemental analysis of plant tissue is destructive, time consuming and costly. This is a limitation for nutrition studies related to calcium in plants. Handheld portable x-ray fluorescence (XRF) can be used to non-destructively measure elemental concentrations. The main objective was to test if handheld XRF can be used for semi-quantitative calcium and potassium analysis of in-tact apple and pear. Semi-quantitative measurements for individual fruit were compared to results obtained from traditional lab analysis. Here, we observed significant correlations between handheld XRF measurements of calcium and potassium and concentrations determined using MP-AES lab analysis. Pearson correlation coefficients ranged from 0.73 and 0.97. Furthermore, measuring apple and pear using handheld XRF identified spatial variability in calcium and potassium concentrations on the surface of individual fruit. This variability may contribute to the development of localized nutritional imbalances. This highlights the importance of understanding spatial and temporal variability in elemental concentrations in plant tissue. Handheld XRF is a relatively high-throughput approach for measuring calcium and potassium in plant tissue. It can be used in conjunction with traditional lab analysis to better understand spatial and temporal patterns in calcium and potassium uptake and distribution within an organ, plant or across the landscape. PMID:27092160

  13. Spatiotemporal Discordance in Five Common Measures of Rurality for US Counties and Applications for Health Disparities Research in Older Adults.

    PubMed

    Cohen, Steven A; Kelley, Lauren; Bell, Allison E

    2015-01-01

    Rural populations face numerous barriers to health, including poorer health care infrastructure, access to care, and other sociodemographic factors largely associated with rurality. Multiple measures of rurality used in the biomedical and public health literature can help assess rural-urban health disparities and may impact the observed associations between rurality and health. Furthermore, understanding what makes a place truly "rural" versus "urban" may vary from region to region in the US. The objectives of this study are to compare and contrast five common measures of rurality and determine how well-correlated these measures are at the national, regional, and divisional level, as well as to assess patterns in the correlations between the prevalence of obesity in the population aged 60+ and each of the five measures of rurality at the regional and divisional level. Five measures of rurality were abstracted from the US Census and US Department of Agriculture (USDA) to characterize US counties. Obesity data in the population aged 60+ were abstracted from the Behavioral Risk Factor Surveillance System (BRFSS). Spearman's rank correlations were used to quantify the associations among the five rurality measurements at the national, regional, and divisional level, as defined by the US Census Bureau. Geographic information systems were used to visually illustrate temporal, spatial, and regional variability. Overall, Spearman's rank correlations among the five measures ranged from 0.521 (percent urban-urban influence code) to 0.917 (rural-urban continuum code-urban influence code). Notable discrepancies existed in these associations by Census region and by division. The associations between measures of rurality and obesity in the 60+ population varied by rurality measure used and by region. This study is among the first to systematically assess the spatial, temporal, and regional differences and similarities among five commonly used measures of rurality in the US. There are important, quantifiable distinctions in defining what it means to be a rural county depending on both the geographic region and the measurement used. These findings highlight the importance of developing and selecting an appropriate rurality metric in health research.

  14. Polarization-correlation optical microscopy of anisotropic biological layers

    NASA Astrophysics Data System (ADS)

    Ushenko, A. G.; Dubolazov, A. V.; Ushenko, V. A.; Ushenko, Yu. A.; Sakhnovskiy, M. Y.; Balazyuk, V. N.; Khukhlina, O.; Viligorska, K.; Bykov, A.; Doronin, A.; Meglinski, I.

    2016-09-01

    The theoretical background of azimuthally stable method of Jones-matrix mapping of histological sections of biopsy of myocardium tissue on the basis of spatial frequency selection of the mechanisms of linear and circular birefringence is presented. The diagnostic application of a new correlation parameter - complex degree of mutual anisotropy - is analytically substantiated. The method of measuring coordinate distributions of complex degree of mutual anisotropy with further spatial filtration of their high- and low-frequency components is developed. The interconnections of such distributions with parameters of linear and circular birefringence of myocardium tissue histological sections are found. The comparative results of measuring the coordinate distributions of complex degree of mutual anisotropy formed by fibrillar networks of myosin fibrils of myocardium tissue of different necrotic states - dead due to coronary heart disease and acute coronary insufficiency are shown. The values and ranges of change of the statistical (moments of the 1st - 4th order) parameters of complex degree of mutual anisotropy coordinate distributions are studied. The objective criteria of differentiation of cause of death are determined.

  15. Errors on interrupter tasks presented during spatial and verbal working memory performance are linearly linked to large-scale functional network connectivity in high temporal resolution resting state fMRI.

    PubMed

    Magnuson, Matthew Evan; Thompson, Garth John; Schwarb, Hillary; Pan, Wen-Ju; McKinley, Andy; Schumacher, Eric H; Keilholz, Shella Dawn

    2015-12-01

    The brain is organized into networks composed of spatially separated anatomical regions exhibiting coherent functional activity over time. Two of these networks (the default mode network, DMN, and the task positive network, TPN) have been implicated in the performance of a number of cognitive tasks. To directly examine the stable relationship between network connectivity and behavioral performance, high temporal resolution functional magnetic resonance imaging (fMRI) data were collected during the resting state, and behavioral data were collected from 15 subjects on different days, exploring verbal working memory, spatial working memory, and fluid intelligence. Sustained attention performance was also evaluated in a task interleaved between resting state scans. Functional connectivity within and between the DMN and TPN was related to performance on these tasks. Decreased TPN resting state connectivity was found to significantly correlate with fewer errors on an interrupter task presented during a spatial working memory paradigm and decreased DMN/TPN anti-correlation was significantly correlated with fewer errors on an interrupter task presented during a verbal working memory paradigm. A trend for increased DMN resting state connectivity to correlate to measures of fluid intelligence was also observed. These results provide additional evidence of the relationship between resting state networks and behavioral performance, and show that such results can be observed with high temporal resolution fMRI. Because cognitive scores and functional connectivity were collected on nonconsecutive days, these results highlight the stability of functional connectivity/cognitive performance coupling.

  16. Measurement of correlations between low-frequency vibrational modes and particle rearrangements in quasi-two-dimensional colloidal glasses.

    PubMed

    Chen, Ke; Manning, M L; Yunker, Peter J; Ellenbroek, Wouter G; Zhang, Zexin; Liu, Andrea J; Yodh, A G

    2011-09-02

    We investigate correlations between low-frequency vibrational modes and rearrangements in two-dimensional colloidal glasses composed of thermosensitive microgel particles, which readily permit variation of the sample packing fraction. At each packing fraction, the particle displacement covariance matrix is measured and used to extract the vibrational spectrum of the "shadow" colloidal glass (i.e., the particle network with the same geometry and interactions as the sample colloid but absent damping). Rearrangements are induced by successive, small reductions in the packing fraction. The experimental results suggest that low-frequency quasilocalized phonon modes in colloidal glasses, i.e., modes that present low energy barriers for system rearrangements, are spatially correlated with rearrangements in this thermal system.

  17. On the Character and Mitigation of Atmospheric Noise in InSAR Time Series Analysis (Invited)

    NASA Astrophysics Data System (ADS)

    Barnhart, W. D.; Fielding, E. J.; Fishbein, E.

    2013-12-01

    Time series analysis of interferometric synthetic aperture radar (InSAR) data, with its broad spatial coverage and ability to image regions that are sometimes very difficult to access, is a powerful tool for characterizing continental surface deformation and its temporal variations. With the impending launch of dedicated SAR missions such as Sentinel-1, ALOS-2, and the planned NASA L-band SAR mission, large volume data sets will allow researchers to further probe ground displacement processes with increased fidelity. Unfortunately, the precision of measurements in individual interferograms is impacted by several sources of noise, notably spatially correlated signals caused by path delays through the stratified and turbulent atmosphere and ionosphere. Spatial and temporal variations in atmospheric water vapor often introduce several to tens of centimeters of apparent deformation in the radar line-of-sight, correlated over short spatial scales (<10 km). Signals resulting from atmospheric path delays are particularly problematic because, like the subsidence and uplift signals associated with tectonic deformation, they are often spatially correlated with topography. In this talk, we provide an overview of the effects of spatially correlated tropospheric noise in individual interferograms and InSAR time series analysis, and we highlight where common assumptions of the temporal and spatial characteristics of tropospheric noise fail. Next, we discuss two classes of methods for mitigating the effects of tropospheric water vapor noise in InSAR time series analysis and single interferograms: noise estimation and characterization with independent observations from multispectral sensors such as MODIS and MERIS; and noise estimation and removal with weather models, multispectral sensor observations, and GPS. Each of these techniques can provide independent assessments of the contribution of water vapor in interferograms, but each technique also suffers from several pitfalls that we outline. The multispectral near-infrared (NIR) sensors provide high spatial resolution (~1 km) estimates of total column tropospheric water vapor by measuring the absorption of reflected solar illumination and provide may excellent estimates of wet delay. The Online Services for Correcting Atmosphere in Radar (OSCAR) project currently provides water vapor products through web services (http://oscar.jpl.nasa.gov). Unfortunately, such sensors require daytime and cloudless observations. Global and regional numerical weather models can provide an additional estimate of both the dry and atmospheric delays with spatial resolution of (3-100 km) and time scales of 1-3 hours, though these models are of lower accuracy than imaging observations and are benefited by independent observations from independent observations of atmospheric water vapor. Despite these issues, the integration of these techniques for InSAR correction and uncertainty estimation may contribute substantially to the reduction and rigorous characterization of uncertainty in InSAR time series analysis - helping to expand the range of tectonic displacements imaged with InSAR, to robustly constrain geophysical models, and to generate a-priori assessments of satellite acquisitions goals.

  18. [Temporal and spatial characteristics of ecological risk in Shunyi, Beijing, China based on landscape structure.

    PubMed

    Qing, Feng Ting; Peng, Yu

    2016-05-01

    Based on the remote sensing data in 1997, 2001, 2005, 2009 and 2013, this article classified the landscape types of Shunyi, and the ecological risk index was built based on landscape disturbance index and landscape fragility. The spatial auto-correlation and geostatistical analysis by GS + and ArcGIS was used to study temporal and spatial changes of ecological risk. The results showed that eco-risk degree in the study region had positive spatial correlation which decreased with the increasing grain size. Within a certain grain range (<12 km), the spatial auto-correlation had an obvious dependence on scale. The random variation of spatial heterogeneity was less than spatial auto-correlation variation from 1997 to 2013, which meant the auto-correlation had a dominant role in spatial heterogeneity. The ecological risk of Shunyi was mainly at moderate level during the study period. The area of the district with higher and lower ecological risk increased, while that of mode-rate ecological risk decreased. The area with low ecological risk was mainly located in the airport region and forest of southeast Shunyi, while that with high ecological risk was mainly concentrated in the water landscape, such as the banks of Chaobai River.

  19. Design fluency and neuroanatomical correlates in 54 neurosurgical patients with lesions to the right hemisphere.

    PubMed

    Marin, Dario; Madotto, Eleonora; Fabbro, Franco; Skrap, Miran; Tomasino, Barbara

    2017-10-01

    We addressed the neuroanatomical correlates of 54 right-brain-damaged neurosurgical patients on visuo-spatial design fluency, which is a measure of the ability to generate/plan a series of new abstract combinations in a flexible way. 22.2% of the patients were impaired. They failed the task because they did not use strategic behavior, in particular they used rotational strategy to a significantly lower extent and produced a significantly higher rate of perseverative errors. Overall performance did not correlate with neuropsychological tests, suggesting that proficient performance was independent of other cognitive domains. Performance significantly correlated with use of rotational strategy. Tasks related to executive functions such as psychomotor speed and capacity to shift were positively correlated to the number of strategies used to solve the task. Lesion analysis showed that the maximum density of the patients' lesions-obtained by subtracting the overlap of lesions of spared patients from the overlap of lesions of impaired patients-overlaps with the precentral gyrus, rolandic operculum/insula, superior/middle temporal gyrus/hippocampus and, at subcortical level, with part of the superior longitudinal fasciculus, external capsule, retrolenticular part of the internal capsule and sagittal stratum (inferior longitudinal fasciculus and inferior fronto-occipital fasciculus). These areas are part of the fronto-parietal-temporal network known to be involved in top-down control of visuo-spatial attention, suggesting that the mechanisms and the strategies needed for proficient performance are essentially visuo-spatial in nature.

  20. Characterizing the heterogeneity of tumor tissues from spatially resolved molecular measures

    PubMed Central

    Zavodszky, Maria I.

    2017-01-01

    Background Tumor heterogeneity can manifest itself by sub-populations of cells having distinct phenotypic profiles expressed as diverse molecular, morphological and spatial distributions. This inherent heterogeneity poses challenges in terms of diagnosis, prognosis and efficient treatment. Consequently, tools and techniques are being developed to properly characterize and quantify tumor heterogeneity. Multiplexed immunofluorescence (MxIF) is one such technology that offers molecular insight into both inter-individual and intratumor heterogeneity. It enables the quantification of both the concentration and spatial distribution of 60+ proteins across a tissue section. Upon bioimage processing, protein expression data can be generated for each cell from a tissue field of view. Results The Multi-Omics Heterogeneity Analysis (MOHA) tool was developed to compute tissue heterogeneity metrics from MxIF spatially resolved tissue imaging data. This technique computes the molecular state of each cell in a sample based on a pathway or gene set. Spatial states are then computed based on the spatial arrangements of the cells as distinguished by their respective molecular states. MOHA computes tissue heterogeneity metrics from the distributions of these molecular and spatially defined states. A colorectal cancer cohort of approximately 700 subjects with MxIF data is presented to demonstrate the MOHA methodology. Within this dataset, statistically significant correlations were found between the intratumor AKT pathway state diversity and cancer stage and histological tumor grade. Furthermore, intratumor spatial diversity metrics were found to correlate with cancer recurrence. Conclusions MOHA provides a simple and robust approach to characterize molecular and spatial heterogeneity of tissues. Research projects that generate spatially resolved tissue imaging data can take full advantage of this useful technique. The MOHA algorithm is implemented as a freely available R script (see supplementary information). PMID:29190747

  1. A Scalable Field Study Protocol and Rationale for Passive Ambient Air Sampling: A Spatial Phytosampling for Leaf Data Collection

    PubMed Central

    Oyana, Tonny J.; Lomnicki, Slawomir M.; Guo, Chuqi; Cormier, Stephania A.

    2018-01-01

    Stable, bioreactive, radicals known as environmentally persistent free radicals (EPFRs) have been found to exist on the surface of airborne PM2.5. These EPFRs have been found to form during many combustion processes, are present in vehicular exhaust, and persist in the environment for weeks and biological systems for up to 12 h. To measure EPFRs in PM samples, high volume samplers are required and measurements are less representative of community exposure; therefore, we developed a novel spatial phytosampling methodology to study the spatial patterns of EPFR concentrations using plants. Leaf samples for laboratory PM analysis were collected from 188 randomly drawn sampling sites within a 500-m buffer zone of pollution sources across a sampling grid measuring 32.9 × 28.4 km in Memphis, Tennessee. PM was isolated from the intact leaves and size fractionated, and EPFRs on PM quantified by electron paramagnetic resonance spectroscopy. The radical concentration was found to positively correlate with the EPFR g-value, thus indicating cumulative content of oxygen centered radicals in PM with higher EPFR load. Our spatial phytosampling approach reveals spatial variations and potential “hotspots” risk due to EPFR exposure across Memphis and provides valuable insights for identifying exposure and demographic differences for health studies. PMID:28805054

  2. A Scalable Field Study Protocol and Rationale for Passive Ambient Air Sampling: A Spatial Phytosampling for Leaf Data Collection.

    PubMed

    Oyana, Tonny J; Lomnicki, Slawomir M; Guo, Chuqi; Cormier, Stephania A

    2017-09-19

    Stable, bioreactive, radicals known as environmentally persistent free radicals (EPFRs) have been found to exist on the surface of airborne PM 2.5 . These EPFRs have been found to form during many combustion processes, are present in vehicular exhaust, and persist in the environment for weeks and biological systems for up to 12 h. To measure EPFRs in PM samples, high volume samplers are required and measurements are less representative of community exposure; therefore, we developed a novel spatial phytosampling methodology to study the spatial patterns of EPFR concentrations using plants. Leaf samples for laboratory PM analysis were collected from 188 randomly drawn sampling sites within a 500-m buffer zone of pollution sources across a sampling grid measuring 32.9 × 28.4 km in Memphis, Tennessee. PM was isolated from the intact leaves and size fractionated, and EPFRs on PM quantified by electron paramagnetic resonance spectroscopy. The radical concentration was found to positively correlate with the EPFR g-value, thus indicating cumulative content of oxygen centered radicals in PM with higher EPFR load. Our spatial phytosampling approach reveals spatial variations and potential "hotspots" risk due to EPFR exposure across Memphis and provides valuable insights for identifying exposure and demographic differences for health studies.

  3. Comparisons of neural networks to standard techniques for image classification and correlation

    NASA Technical Reports Server (NTRS)

    Paola, Justin D.; Schowengerdt, Robert A.

    1994-01-01

    Neural network techniques for multispectral image classification and spatial pattern detection are compared to the standard techniques of maximum-likelihood classification and spatial correlation. The neural network produced a more accurate classification than maximum-likelihood of a Landsat scene of Tucson, Arizona. Some of the errors in the maximum-likelihood classification are illustrated using decision region and class probability density plots. As expected, the main drawback to the neural network method is the long time required for the training stage. The network was trained using several different hidden layer sizes to optimize both the classification accuracy and training speed, and it was found that one node per class was optimal. The performance improved when 3x3 local windows of image data were entered into the net. This modification introduces texture into the classification without explicit calculation of a texture measure. Larger windows were successfully used for the detection of spatial features in Landsat and Magellan synthetic aperture radar imagery.

  4. Macroscopic Spatial Complexity of the Game of Life Cellular Automaton: A Simple Data Analysis

    NASA Astrophysics Data System (ADS)

    Hernández-Montoya, A. R.; Coronel-Brizio, H. F.; Rodríguez-Achach, M. E.

    In this chapter we present a simple data analysis of an ensemble of 20 time series, generated by averaging the spatial positions of the living cells for each state of the Game of Life Cellular Automaton (GoL). We show that at the macroscopic level described by these time series, complexity properties of GoL are also presented and the following emergent properties, typical of data extracted complex systems such as financial or economical come out: variations of the generated time series following an asymptotic power law distribution, large fluctuations tending to be followed by large fluctuations, and small fluctuations tending to be followed by small ones, and fast decay of linear correlations, however, the correlations associated to their absolute variations exhibit a long range memory. Finally, a Detrended Fluctuation Analysis (DFA) of the generated time series, indicates that the GoL spatial macro states described by the time series are not either completely ordered or random, in a measurable and very interesting way.

  5. Scale effects on information theory-based measures applied to streamflow patterns in two rural watersheds

    NASA Astrophysics Data System (ADS)

    Pan, Feng; Pachepsky, Yakov A.; Guber, Andrey K.; McPherson, Brian J.; Hill, Robert L.

    2012-01-01

    SummaryUnderstanding streamflow patterns in space and time is important for improving flood and drought forecasting, water resources management, and predictions of ecological changes. Objectives of this work include (a) to characterize the spatial and temporal patterns of streamflow using information theory-based measures at two thoroughly-monitored agricultural watersheds located in different hydroclimatic zones with similar land use, and (b) to elucidate and quantify temporal and spatial scale effects on those measures. We selected two USDA experimental watersheds to serve as case study examples, including the Little River experimental watershed (LREW) in Tifton, Georgia and the Sleepers River experimental watershed (SREW) in North Danville, Vermont. Both watersheds possess several nested sub-watersheds and more than 30 years of continuous data records of precipitation and streamflow. Information content measures (metric entropy and mean information gain) and complexity measures (effective measure complexity and fluctuation complexity) were computed based on the binary encoding of 5-year streamflow and precipitation time series data. We quantified patterns of streamflow using probabilities of joint or sequential appearances of the binary symbol sequences. Results of our analysis illustrate that information content measures of streamflow time series are much smaller than those for precipitation data, and the streamflow data also exhibit higher complexity, suggesting that the watersheds effectively act as filters of the precipitation information that leads to the observed additional complexity in streamflow measures. Correlation coefficients between the information-theory-based measures and time intervals are close to 0.9, demonstrating the significance of temporal scale effects on streamflow patterns. Moderate spatial scale effects on streamflow patterns are observed with absolute values of correlation coefficients between the measures and sub-watershed area varying from 0.2 to 0.6 in the two watersheds. We conclude that temporal effects must be evaluated and accounted for when the information theory-based methods are used for performance evaluation and comparison of hydrological models.

  6. Intracellular applications of fluorescence correlation spectroscopy: prospects for neuroscience.

    PubMed

    Kim, Sally A; Schwille, Petra

    2003-10-01

    Based on time-averaging fluctuation analysis of small fluorescent molecular ensembles in equilibrium, fluorescence correlation spectroscopy has recently been applied to investigate processes in the intracellular milieu. The exquisite sensitivity of fluorescence correlation spectroscopy provides access to a multitude of measurement parameters (rates of diffusion, local concentration, states of aggregation and molecular interactions) in real time with fast temporal and high spatial resolution. The introduction of dual-color cross-correlation, imaging, two-photon excitation, and coincidence analysis coupled with fluorescence correlation spectroscopy has expanded the utility of the technique to encompass a wide range of promising applications in living cells that may provide unprecedented insight into understanding the molecular mechanisms of intracellular neurobiological processes.

  7. Methane fugitive emissions quantification using the novel 'plume camera' (spatial correlation) method

    NASA Astrophysics Data System (ADS)

    Crosson, E.; Rella, C.

    2012-12-01

    Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Given that the global warming potential of methane is many times greater than that of carbon dioxide, the importance of quantifying methane emissions becomes clear. The rapidly increasing reliance on shale gas (or other unconventional sources) is only intensifying the interest in fugitive methane releases. Natural gas (which is predominantly methane) is an attractive energy source, as it emits 40% less carbon dioxide per Joule of energy generated than coal. However, if just a small percentage of the natural gas consumed is lost due to fugitive emissions during production, processing, or transport, this global warming benefit is lost (Howarth et al. 2012). It is therefore imperative, as production of natural gas increases, that the fugitive emissions of methane are quantified accurately. Traditional direct measurement techniques often involve physical access of the leak itself to quantify the emissions rate, and are generally require painstaking effort to first find the leak and then quantify the emissions rate. With over half a million natural gas producing wells in the U.S. (U.S. Energy Information Administration), not including the associated processing, storage, and transport facilities, and with each facility having hundreds or even thousands of fittings that can potentially leak, the need is clear to develop methodologies that can provide a rapid and accurate assessment of the total emissions rate on a per-well head basis. In this paper we present a novel method for emissions quantification which uses a 'plume camera' with three 'pixels' to quantify emissions using direct measurements of methane concentration in the downwind plume. By analyzing the spatial correlation between the pixels, the spatial extent of the instantaneous plume can be inferred. This information, when combined with the wind speed through the measurement plane, provides a direct measurement of the emission rate. One example of this method is shown in Fig. 1. This method is simple to deploy, does not require an accurate model of atmospheric transport or knowledge of the distance to the emission source or its spatial distribution. Accurate measurements of the emissions can be made with just a few minutes of data collection. Results of controlled release methane experiments are presented, and the strengths and limitations of the methodology are discussed. REFERENCES R. Howarth, R. Santoro, and A. Ingraffea (2011): "Methane and the greenhouse-gas footprint of natural gas from shale formations," Climatic Change 106, 679 - 690. Fig 1: Spatial correlation analysis for two measurement points (or pixels) distributed vertically (A and B) or horizontally (A and C), for measurements at a distance of 21 meters from a methane point source of 650 sccm. The emission rate recovered from this analysis was 496 ± 160 sccm of CH4. The total measurement time was 30 minutes.

  8. Effects of calcium leaching on diffusion properties of hardened and altered cement pastes

    NASA Astrophysics Data System (ADS)

    Kurumisawa, Kiyofumi; Haga, Kazuko; Hayashi, Daisuke; Owada, Hitoshi

    2017-06-01

    It is very important to predict alterations in the concrete used for fabricating disposal containers for radioactive waste. Therefore, it is necessary to understand the alteration of cementitious materials caused by calcium leaching when they are in contact with ground water in the long term. To evaluate the long-term transport characteristics of cementitious materials, the microstructural behavior of these materials should be considered. However, many predictive models of transport characteristics focus on the pore structure, while only few such models consider both, the spatial distribution of calcium silicate hydrate (C-S-H), portlandite, and the pore spaces. This study focused on the spatial distribution of these cement phases. The auto-correlation function of each phase of cementitious materials was calculated from two-dimensional backscattered electron imaging, and the three-dimensional spatial image of the cementitious material was produced using these auto-correlation functions. An attempt was made to estimate the diffusion coefficient of chloride from the three-dimensional spatial image. The estimated diffusion coefficient of the altered sample from the three-dimensional spatial image was found to be comparable to the measured value. This demonstrated that it is possible to predict the diffusion coefficient of the altered cement paste by using the proposed model.

  9. Rotation is visualisation, 3D is 2D: using a novel measure to investigate the genetics of spatial ability

    PubMed Central

    Shakeshaft, Nicholas G.; Rimfeld, Kaili; Schofield, Kerry L.; Selzam, Saskia; Malanchini, Margherita; Rodic, Maja; Kovas, Yulia; Plomin, Robert

    2016-01-01

    Spatial abilities–defined broadly as the capacity to manipulate mental representations of objects and the relations between them–have been studied widely, but with little agreement reached concerning their nature or structure. Two major putative spatial abilities are “mental rotation” (rotating mental models) and “visualisation” (complex manipulations, such as identifying objects from incomplete information), but inconsistent findings have been presented regarding their relationship to one another. Similarly inconsistent findings have been reported for the relationship between two- and three-dimensional stimuli. Behavioural genetic methods offer a largely untapped means to investigate such relationships. 1,265 twin pairs from the Twins Early Development Study completed the novel “Bricks” test battery, designed to tap these abilities in isolation. The results suggest substantial genetic influence unique to spatial ability as a whole, but indicate that dissociations between the more specific constructs (rotation and visualisation, in 2D and 3D) disappear when tested under identical conditions: they are highly correlated phenotypically, perfectly correlated genetically (indicating that the same genetic influences underpin performance), and are related similarly to other abilities. This has important implications for the structure of spatial ability, suggesting that the proliferation of apparent sub-domains may sometimes reflect idiosyncratic tasks rather than meaningful dissociations. PMID:27476554

  10. Spatial correlation in precipitation trends in the Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Buarque, Diogo Costa; Clarke, Robin T.; Mendes, Carlos Andre Bulhoes

    2010-06-01

    A geostatistical analysis of variables derived from Amazon daily precipitation records (trends in annual precipitation totals, trends in annual maximum precipitation accumulated over 1-5 days, trend in length of dry spell, trend in number of wet days per year) gave results that are consistent with those previously reported. Averaged over the Brazilian Amazon region as a whole, trends in annual maximum precipitations were slightly negative, the trend in the length of dry spell was slightly positive, and the trend in the number of wet days in the year was slightly negative. For trends in annual maximum precipitation accumulated over 1-5 days, spatial correlation between trends was found to extend up to a distance equivalent to at least half a degree of latitude or longitude, with some evidence of anisotropic correlation. Time trends in annual precipitation were found to be spatially correlated up to at least ten degrees of separation, in both W-E and S-N directions. Anisotropic spatial correlation was strongly evident in time trends in length of dry spell with much stronger evidence of spatial correlation in the W-E direction, extending up to at least five degrees of separation, than in the S-N. Because the time trends analyzed are shown to be spatially correlated, it is argued that methods at present widely used to test the statistical significance of climate trends over time lead to erroneous conclusions if spatial correlation is ignored, because records from different sites are assumed to be statistically independent.

  11. Vision based tunnel inspection using non-rigid registration

    NASA Astrophysics Data System (ADS)

    Badshah, Amir; Ullah, Shan; Shahzad, Danish

    2015-04-01

    Growing numbers of long tunnels across the globe has increased the need for safety measurements and inspections of tunnels in these days. To avoid serious damages, tunnel inspection is highly recommended at regular intervals of time to find any deformations or cracks at the right time. While following the stringent safety and tunnel accessibility standards, conventional geodetic surveying using techniques of civil engineering and other manual and mechanical methods are time consuming and results in troublesome of routine life. An automatic tunnel inspection by image processing techniques using non rigid registration has been proposed. There are many other image processing methods used for image registration purposes. Most of the processes are operation of images in its spatial domain like finding edges and corners by Harris edge detection method. These methods are quite time consuming and fail for some or other reasons like for blurred or images with noise. Due to use of image features directly by these methods in the process, are known by the group, correlation by image features. The other method is featureless correlation, in which the images are converted into its frequency domain and then correlated with each other. The shift in spatial domain is the same as in frequency domain, but the processing is order faster than in spatial domain. In the proposed method modified normalized phase correlation has been used to find any shift between two images. As pre pre-processing the tunnel images i.e. reference and template are divided into small patches. All these relative patches are registered by the proposed modified normalized phase correlation. By the application of the proposed algorithm we get the pixel movement of the images. And then these pixels shifts are converted to measuring units like mm, cm etc. After the complete process if there is any shift in the tunnel at described points are located.

  12. Predicting detection performance with model observers: Fourier domain or spatial domain?

    PubMed

    Chen, Baiyu; Yu, Lifeng; Leng, Shuai; Kofler, James; Favazza, Christopher; Vrieze, Thomas; McCollough, Cynthia

    2016-02-27

    The use of Fourier domain model observer is challenged by iterative reconstruction (IR), because IR algorithms are nonlinear and IR images have noise texture different from that of FBP. A modified Fourier domain model observer, which incorporates nonlinear noise and resolution properties, has been proposed for IR and needs to be validated with human detection performance. On the other hand, the spatial domain model observer is theoretically applicable to IR, but more computationally intensive than the Fourier domain method. The purpose of this study is to compare the modified Fourier domain model observer to the spatial domain model observer with both FBP and IR images, using human detection performance as the gold standard. A phantom with inserts of various low contrast levels and sizes was repeatedly scanned 100 times on a third-generation, dual-source CT scanner at 5 dose levels and reconstructed using FBP and IR algorithms. The human detection performance of the inserts was measured via a 2-alternative-forced-choice (2AFC) test. In addition, two model observer performances were calculated, including a Fourier domain non-prewhitening model observer and a spatial domain channelized Hotelling observer. The performance of these two mode observers was compared in terms of how well they correlated with human observer performance. Our results demonstrated that the spatial domain model observer correlated well with human observers across various dose levels, object contrast levels, and object sizes. The Fourier domain observer correlated well with human observers using FBP images, but overestimated the detection performance using IR images.

  13. Predicting detection performance with model observers: Fourier domain or spatial domain?

    PubMed Central

    Chen, Baiyu; Yu, Lifeng; Leng, Shuai; Kofler, James; Favazza, Christopher; Vrieze, Thomas; McCollough, Cynthia

    2016-01-01

    The use of Fourier domain model observer is challenged by iterative reconstruction (IR), because IR algorithms are nonlinear and IR images have noise texture different from that of FBP. A modified Fourier domain model observer, which incorporates nonlinear noise and resolution properties, has been proposed for IR and needs to be validated with human detection performance. On the other hand, the spatial domain model observer is theoretically applicable to IR, but more computationally intensive than the Fourier domain method. The purpose of this study is to compare the modified Fourier domain model observer to the spatial domain model observer with both FBP and IR images, using human detection performance as the gold standard. A phantom with inserts of various low contrast levels and sizes was repeatedly scanned 100 times on a third-generation, dual-source CT scanner at 5 dose levels and reconstructed using FBP and IR algorithms. The human detection performance of the inserts was measured via a 2-alternative-forced-choice (2AFC) test. In addition, two model observer performances were calculated, including a Fourier domain non-prewhitening model observer and a spatial domain channelized Hotelling observer. The performance of these two mode observers was compared in terms of how well they correlated with human observer performance. Our results demonstrated that the spatial domain model observer correlated well with human observers across various dose levels, object contrast levels, and object sizes. The Fourier domain observer correlated well with human observers using FBP images, but overestimated the detection performance using IR images. PMID:27239086

  14. Spatial correlation analysis of urban traffic state under a perspective of community detection

    NASA Astrophysics Data System (ADS)

    Yang, Yanfang; Cao, Jiandong; Qin, Yong; Jia, Limin; Dong, Honghui; Zhang, Aomuhan

    2018-05-01

    Understanding the spatial correlation of urban traffic state is essential for identifying the evolution patterns of urban traffic state. However, the distribution of traffic state always has characteristics of large spatial span and heterogeneity. This paper adapts the concept of community detection to the correlation network of urban traffic state and proposes a new perspective to identify the spatial correlation patterns of traffic state. In the proposed urban traffic network, the nodes represent road segments, and an edge between a pair of nodes is added depending on the result of significance test for the corresponding correlation of traffic state. Further, the process of community detection in the urban traffic network (named GWPA-K-means) is applied to analyze the spatial dependency of traffic state. The proposed method extends the traditional K-means algorithm in two steps: (i) redefines the initial cluster centers by two properties of nodes (the GWPA value and the minimum shortest path length); (ii) utilizes the weight signal propagation process to transfer the topological information of the urban traffic network into a node similarity matrix. Finally, numerical experiments are conducted on a simple network and a real urban road network in Beijing. The results show that GWPA-K-means algorithm is valid in spatial correlation analysis of traffic state. The network science and community structure analysis perform well in describing the spatial heterogeneity of traffic state on a large spatial scale.

  15. Quantum correlations of lights in macroscopic environments

    NASA Astrophysics Data System (ADS)

    Sua, Yong Meng

    This dissertation presents a detailed study in exploring quantum correlations of lights in macroscopic environments. We have explored quantum correlations of single photons, weak coherent states, and polarization-correlated/polarization-entangled photons in macroscopic environments. These included macroscopic mirrors, macroscopic photon number, spatially separated observers, noisy photons source and propagation medium with loss or disturbances. We proposed a measurement scheme for observing quantum correlations and entanglement in the spatial properties of two macroscopic mirrors using single photons spatial compass state. We explored the phase space distribution features of spatial compass states, such as chessboard pattern by using the Wigner function. The displacement and tilt correlations of the two mirrors were manifested through the propensities of the compass states. This technique can be used to extract Einstein-Podolsky-Rosen correlations (EPR) of the two mirrors. We then formulated the discrete-like property of the propensity P b(m,n), which can be used to explore environmental perturbed quantum jumps of the EPR correlations in phase space. With single photons spatial compass state, the variances in position and momentum are much smaller than standard quantum limit when using a Gaussian TEM 00 beam. We observed intrinsic quantum correlations of weak coherent states between two parties through balanced homodyne detection. Our scheme can be used as a supplement to decoy-state BB84 protocol and differential phase-shift QKD protocol. We prepared four types of bipartite correlations +/- cos2(theta1 +/- theta 2) that shared between two parties. We also demonstrated bits correlations between two parties separated by 10 km optical fiber. The bits information will be protected by the large quantum phase fluctuation of weak coherent states, adding another physical layer of security to these protocols for quantum key distribution. Using 10 m of highly nonlinear fiber (HNLF) at 77 K, we observed coincidence to accidental-coincidence ratio of 130+/-5 for correlated photon-pair and Two-Photon Interference visibility >98% entangled photon-pair. We also verified the non-local behavior of polarization-entangled photon pair by violating Clauser-Horne-Shimony-Holt Bell's inequality by more than 12 standard deviations. With the HNLF at 300 K (77 K), photon-pair production rate about factor 3(2) higher than a 300 m dispersion-shifted fiber is observed. Then, we studied quantum correlation and interference of photon-pairs; with one photon of the photon-pair experiencing multiple scattering in a random medium. We observed that depolarization noise photon in multiple scattering degrading the purity of photon-pair, and the existence of Raman noise photon in a photon-pair source will contribute to the depolarization affect. We found that quantum correlation of polarization-entangled photon-pair is better preserved than polarization-correlated photon-pair as one photon of the photon-pair scattered through a random medium. Our findings showed that high purity polarization-entangled photon-pair is better candidate for long distance quantum key distribution.

  16. Drift and pseudomomentum in bounded turbulent shear flows

    NASA Astrophysics Data System (ADS)

    Phillips, W. R. C.

    2015-10-01

    This paper is concerned with the evaluation of two Lagrangian measures which arise in oscillatory or fluctuating shear flows when the fluctuating field is rotational and the spectrum of wave numbers which comprise it is continuous. The measures are the drift and pseudomomentum. Phillips [J. Fluid Mech. 430, 209 (2001), 10.1017/S0022112000002858] has shown that the measures are, in such instances, succinctly expressed in terms of Lagrangian integrals of Eulerian space-time correlations. But they are difficult to interpret, and the present work begins by expressing them in a more insightful form. This is achieved by assuming the space-time correlations are separable as magnitude, determined by one-point velocity correlations, and spatial diminution. The measures then parse into terms comprised of the mean Eulerian velocity, one-point velocity correlations, and a family of integrals of spatial diminution, which in turn define a series of Lagrangian time and velocity scales. The pseudomomentum is seen to be strictly negative and related to the turbulence kinetic energy, while the drift is mixed and strongly influenced by the Reynolds stress. Both are calculated for turbulent channel flow for a range of Reynolds numbers and appear, as the Reynolds number increases, to approach a terminal form. At all Reynolds numbers studied, the pseudomomentum has a sole peak located in wall units in the low teens, while at the highest Reynolds number studied, Reτ=5200 , the drift is negative in the vicinity of that peak, positive elsewhere, and largest near the rigid boundary. In contrast, the time and velocity scales grow almost logarithmically over much of the layer. Finally, the drift and pseudomomentum are discussed in the context of coherent wall layer structures with which they are intricately linked.

  17. Multiple Point Dynamic Gas Density Measurements Using Molecular Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard; Panda, Jayanta

    1999-01-01

    A nonintrusive technique for measuring dynamic gas density properties is described. Molecular Rayleigh scattering is used to measure the time-history of gas density simultaneously at eight spatial locations at a 50 kHz sampling rate. The data are analyzed using the Welch method of modified periodograms to reduce measurement uncertainty. Cross-correlations, power spectral density functions, cross-spectral density functions, and coherence functions may be obtained from the data. The technique is demonstrated using low speed co-flowing jets with a heated inner jet.

  18. Inspecting Friction Stir Welding using Electromagnetic Probes

    NASA Technical Reports Server (NTRS)

    Kinchen, David G.

    2004-01-01

    A report describes the use of advanced electromagnetic probes to measure the dimensions, the spatial distribution of electrical conductivity, and related other properties of friction stir welds (FSWs) between parts made of the same or different aluminum alloy(s). The probes are of the type described in in another Tech Brief. To recapitulate: A probe of this type is essentially an eddy-current probe that includes a primary (driver) winding that meanders and multiple secondary (sensing) windings that meander along the primary winding. Electrical conductivity is commonly used as a measure of heat treatment and tempering of aluminum alloys, but prior to the development of these probes, the inadequate sensitivity and limited accuracy of electrical-conductivity probes precluded such use on FSWs between different aluminum alloys, and the resolution of those probes was inadequate for measurement of FSW dimensions with positions and metallurgical properties. In contrast, the present probes afford adequate accuracy and spatial resolution for the purposes of measuring the dimensions of FSW welds and correlating spatially varying electrical conductivities with metallurgical properties, including surface defects.

  19. Hemispheric Connectivity and the Visual-Spatial Divergent-Thinking Component of Creativity

    ERIC Educational Resources Information Center

    Moore, Dana W.; Bhadelia, Rafeeque A.; Billings, Rebecca L.; Fulwiler, Carl; Heilman, Kenneth M.; Rood, Kenneth M. J.; Gansler, David A.

    2009-01-01

    Background/hypothesis: Divergent thinking is an important measurable component of creativity. This study tested the postulate that divergent thinking depends on large distributed inter- and intra-hemispheric networks. Although preliminary evidence supports increased brain connectivity during divergent thinking, the neural correlates of this…

  20. Earth Radiation Budget Science, 1978. [conferences

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An earth radiation budget satellite system planned in order to understand climate on various temporal and spatial scales is considered. Topics discussed include: climate modeling, climate diagnostics, radiation modeling, radiation variability and correlation studies, cloudiness and the radiation budget, and radiation budget and related measurements in 1985 and beyond.

  1. Cosmic Infrared Background Fluctuations and Zodiacal Light

    NASA Technical Reports Server (NTRS)

    Arendt, Richard G.; Kashlinsky, A.; Moseley, S. H.; Mather, J.

    2017-01-01

    We performed a specific observational test to measure the effect that the zodiacal light can have on measurements of the spatial fluctuations of the near-IR (near-infrared)background. Previous estimates of possible fluctuations caused by zodiacal light have often been extrapolated from observations of the thermal emission at longer wavelengths and low angular resolution or from IRAC (Infrared Array Camera) observations of high-latitude fields where zodiacal light is faint and not strongly varying with time. The new observations analyzed here target the COSMOS (Cosmic Evolution Survey) field at low ecliptic latitude where the zodiacal light intensity varies by factors of approximately 2 over the range of solar elongations at which the field can be observed. We find that the white-noise component of the spatial power spectrum of the background is correlated with the modeled zodiacal light intensity. Roughly half of the measured white noise is correlated with the zodiacal light, but a more detailed interpretation of the white noise is hampered by systematic uncertainties that are evident in the zodiacal light model. At large angular scales (greater than or approximately equal to 100 arcseconds) where excess power above the white noise is observed, we find no correlation of the power with the modeled intensity of the zodiacal light. This test clearly indicates that the large-scale power in the infrared background is not being caused by the zodiacal light.

  2. Selecting a Separable Parametric Spatiotemporal Covariance Structure for Longitudinal Imaging Data

    PubMed Central

    George, Brandon; Aban, Inmaculada

    2014-01-01

    Longitudinal imaging studies allow great insight into how the structure and function of a subject’s internal anatomy changes over time. Unfortunately, the analysis of longitudinal imaging data is complicated by inherent spatial and temporal correlation: the temporal from the repeated measures, and the spatial from the outcomes of interest being observed at multiple points in a patients body. We propose the use of a linear model with a separable parametric spatiotemporal error structure for the analysis of repeated imaging data. The model makes use of spatial (exponential, spherical, and Matérn) and temporal (compound symmetric, autoregressive-1, Toeplitz, and unstructured) parametric correlation functions. A simulation study, inspired by a longitudinal cardiac imaging study on mitral regurgitation patients, compared different information criteria for selecting a particular separable parametric spatiotemporal correlation structure as well as the effects on Type I and II error rates for inference on fixed effects when the specified model is incorrect. Information criteria were found to be highly accurate at choosing between separable parametric spatiotemporal correlation structures. Misspecification of the covariance structure was found to have the ability to inflate the Type I error or have an overly conservative test size, which corresponded to decreased power. An example with clinical data is given illustrating how the covariance structure procedure can be done in practice, as well as how covariance structure choice can change inferences about fixed effects. PMID:25293361

  3. Environment-induced decoherence II. Effect of decoherence on Bell's inequality for an EPR pair

    NASA Astrophysics Data System (ADS)

    Venugopalan, A.; Kumar, Deepak; Ghosh, R.

    1995-02-01

    According to Bell's theorem, the degree of correlation between spatially separated measurements on a quantum system is limited by certain inequalities if one assumes the condition of locality. Quantum mechanics predicts that this limit can be exceeded, making it nonlocal. We analyse the effect of an environment modelled by a fluctuating magnetic field on the quantum correlations in an EPR singlet as seen in the Bell inequality. We show that in an EPR setup, the system goes from the usual ‘violation’ of Bell's inequality to a ‘non-violation’ for times larger than a characteristic time scale which is related to the parameters of the fluctuating field. We also look at these inequalities as a function of the spatial separation between the EPR pair.

  4. A spatial length scale analysis of turbulent temperature and velocity fluctuations within and above an orchard canopy

    USGS Publications Warehouse

    Wang, Y.S.; Miller, D.R.; Anderson, D.E.; Cionco, R.M.; Lin, J.D.

    1992-01-01

    Turbulent flow within and above an almond orchard was measured with three-dimensional wind sensors and fine-wire thermocouple sensors arranged in a horizontal array. The data showed organized turbulent structures as indicated by coherent asymmetric ramp patterns in the time series traces across the sensor array. Space-time correlation analysis indicated that velocity and temperature fluctuations were significantly correlated over a transverse distance more than 4m. Integral length scales of velocity and temperature fluctuations were substantially greater in unstable conditions than those in stable conditions. The coherence spectral analysis indicated that Davenport's geometric similarity hypothesis was satisfied in the lower frequency region. From the geometric similarity hypothesis, the spatial extents of large ramp structures were also estimated with the coherence functions.

  5. Fiber fault location utilizing traffic signal in optical network.

    PubMed

    Zhao, Tong; Wang, Anbang; Wang, Yuncai; Zhang, Mingjiang; Chang, Xiaoming; Xiong, Lijuan; Hao, Yi

    2013-10-07

    We propose and experimentally demonstrate a method for fault location in optical communication network. This method utilizes the traffic signal transmitted across the network as probe signal, and then locates the fault by correlation technique. Compared with conventional techniques, our method has a simple structure and low operation expenditure, because no additional device is used, such as light source, modulator and signal generator. The correlation detection in this method overcomes the tradeoff between spatial resolution and measurement range in pulse ranging technique. Moreover, signal extraction process can improve the location result considerably. Experimental results show that we achieve a spatial resolution of 8 cm and detection range of over 23 km with -8-dBm mean launched power in optical network based on synchronous digital hierarchy protocols.

  6. Heralded entanglement between solid-state qubits separated by three metres.

    PubMed

    Bernien, H; Hensen, B; Pfaff, W; Koolstra, G; Blok, M S; Robledo, L; Taminiau, T H; Markham, M; Twitchen, D J; Childress, L; Hanson, R

    2013-05-02

    Quantum entanglement between spatially separated objects is one of the most intriguing phenomena in physics. The outcomes of independent measurements on entangled objects show correlations that cannot be explained by classical physics. As well as being of fundamental interest, entanglement is a unique resource for quantum information processing and communication. Entangled quantum bits (qubits) can be used to share private information or implement quantum logical gates. Such capabilities are particularly useful when the entangled qubits are spatially separated, providing the opportunity to create highly connected quantum networks or extend quantum cryptography to long distances. Here we report entanglement of two electron spin qubits in diamond with a spatial separation of three metres. We establish this entanglement using a robust protocol based on creation of spin-photon entanglement at each location and a subsequent joint measurement of the photons. Detection of the photons heralds the projection of the spin qubits onto an entangled state. We verify the resulting non-local quantum correlations by performing single-shot readout on the qubits in different bases. The long-distance entanglement reported here can be combined with recently achieved initialization, readout and entanglement operations on local long-lived nuclear spin registers, paving the way for deterministic long-distance teleportation, quantum repeaters and extended quantum networks.

  7. Propagation of terahertz pulses in random media.

    PubMed

    Pearce, Jeremy; Jian, Zhongping; Mittleman, Daniel M

    2004-02-15

    We describe measurements of single-cycle terahertz pulse propagation in a random medium. The unique capabilities of terahertz time-domain spectroscopy permit the characterization of a multiply scattered field with unprecedented spatial and temporal resolution. With these results, we can develop a framework for understanding the statistics of broadband laser speckle. Also, the ability to extract information on the phase of the field opens up new possibilities for characterizing multiply scattered waves. We illustrate this with a simple example, which involves computing a time-windowed temporal correlation between fields measured at different spatial locations. This enables the identification of individual scattering events, and could lead to a new method for imaging in random media.

  8. Impact of grass cover on the magnetic susceptibility measurements for assessing metal contamination in urban topsoil.

    PubMed

    Golden, Nessa; Zhang, Chaosheng; Potito, Aaron P; Gibson, Paul J; Bargary, Norma; Morrison, Liam

    2017-05-01

    In recent decades, magnetic susceptibility monitoring has developed as a useful technique in environmental pollution studies, particularly metal contamination of soil. This study provides the first ever examination of the effects of grass cover on magnetic susceptibility (MS) measurements of underlying urban soils. Magnetic measurements were taken in situ to determine the effects on κ (volume magnetic susceptibility) when the grass layer was present (κ grass ) and after the grass layer was trimmed down to the root (κ no grass ). Height of grass was recorded in situ at each grid point. Soil samples (n=185) were collected and measurements of mass specific magnetic susceptibility (χ) were performed in the laboratory and frequency dependence (χ fd %) calculated. Metal concentrations (Pb, Cu, Zn and Fe) in the soil samples were determined and a gradiometry survey carried out in situ on a section of the study area. Significant correlations were found between each of the MS measurements and the metal content of the soil at the p<0.01 level. Spatial distribution maps were created using Inverse Distance Weighting (IDW) and Local Indicators of Spatial Association (LISA) to identify common patterns. κ grass (ranged from 1.67 to 301.00×10 -5 SI) and κ no grass (ranged from 2.08 to 530.67×10 -5 SI) measured in situ are highly correlated [r=0.966, n=194, p<0.01]. The volume susceptibility datasets in the presence and absence of grass coverage share a similar spatial distribution pattern. This study re-evaluates in situ κ monitoring techniques and the results suggest that the removal of grass coverage prior to obtaining in situ κ measurements of urban soil is unnecessary. This layer does not impede the MS sensor from accurately measuring elevated κ in soils, and therefore κ measurements recorded with grass coverage present can be reliably used to identify areas of urban soil metal contamination. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. On the relationship between land surface infrared emissivity and soil moisture

    NASA Astrophysics Data System (ADS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu

    2018-01-01

    The relationship between surface infrared (IR) emissivity and soil moisture content has been investigated based on satellite measurements. Surface soil moisture content can be estimated by IR remote sensing, namely using the surface parameters of IR emissivity, temperature, vegetation coverage, and soil texture. It is possible to separate IR emissivity from other parameters affecting surface soil moisture estimation. The main objective of this paper is to examine the correlation between land surface IR emissivity and soil moisture. To this end, we have developed a simple yet effective scheme to estimate volumetric soil moisture (VSM) using IR land surface emissivity retrieved from satellite IR spectral radiance measurements, assuming those other parameters impacting the radiative transfer (e.g., temperature, vegetation coverage, and surface roughness) are known for an acceptable time and space reference location. This scheme is applied to a decade of global IR emissivity data retrieved from MetOp-A infrared atmospheric sounding interferometer measurements. The VSM estimated from these IR emissivity data (denoted as IR-VSM) is used to demonstrate its measurement-to-measurement variations. Representative 0.25-deg spatially-gridded monthly-mean IR-VSM global datasets are then assembled to compare with those routinely provided from satellite microwave (MW) multisensor measurements (denoted as MW-VSM), demonstrating VSM spatial variations as well as seasonal-cycles and interannual variability. Initial positive agreement is shown to exist between IR- and MW-VSM (i.e., R2 = 0.85). IR land surface emissivity contains surface water content information. So, when IR measurements are used to estimate soil moisture, this correlation produces results that correspond with those customarily achievable from MW measurements. A decade-long monthly-gridded emissivity atlas is used to estimate IR-VSM, to demonstrate its seasonal-cycle and interannual variation, which is spatially coherent and consistent with that from MW measurements, and, moreover, to achieve our objective of investigating the relationship between land surface IR emissivity and soil moisture.

  10. Comparison of NaF and FDG PET/CT for assessment of treatment response in castrate-resistant prostate cancers with osseous metastases

    PubMed Central

    Simoncic, Urban; Perlman, Scott; Liu, Glenn; Staab, Mary Jane; Straus, Jane; Jeraj, Robert

    2014-01-01

    Background Assessment of skeletal metastases response to therapy is highly relevant, but unresolved clinical problem. The main goal of this work was to compare pharmacodynamic responses to therapy assessed with NaF and FDG PET/CT. Materials and Methods Prostate cancer patients with known osseous metastases were treated with Zibotentan (ZD4054) and imaged with combined dynamic NaF/FDG PET/CT prior to therapy (Baseline), after 4 weeks of therapy (Week 4) and after 2 weeks of treatment break (Week 6). Kinetic analysis allowed comparison of voxel-based tracer uptake rate parameter Ki, vasculature parameters K1 (measuring perfusion/permeability) and Vb (measuring vasculature fraction in the tissue) together with standardized uptake values (SUVs). Results Correlations were high for the NaF and FDG peak uptake parameters (Ki and SUV correlations ranged from 0.57 to 0.88) and for vasculature parameters (K1 and Vb correlations ranged from 0.61 to 0.81). Correlation between the NaF and FDG Week 4 Ki responses was low (ρ=0.35, p=0.084), but higher for NaF and FDG Week 6 Ki responses (ρ=0.72, p<0.0001). Correlations for vasculature responses were always low (ρ<0.35). NaF and FDG uptakes in the osseous metastases were spatially dislocated, with overlap in the range from 0% to 80%. Conclusions These results showed that late NaF and FDG uptake responses are consistently correlated, but earlier uptake responses and all vasculature responses can be unrelated. This study also proved that FDG and NaF uptakes are spatially dislocated. Although treatment responses assessed with NaF and FDG may be correlated, using both tracers provides additional information. PMID:25128349

  11. Two speed factors of visual recognition independently correlated with fluid intelligence.

    PubMed

    Tachibana, Ryosuke; Namba, Yuri; Noguchi, Yasuki

    2014-01-01

    Growing evidence indicates a moderate but significant relationship between processing speed in visuo-cognitive tasks and general intelligence. On the other hand, findings from neuroscience proposed that the primate visual system consists of two major pathways, the ventral pathway for objects recognition and the dorsal pathway for spatial processing and attentive analysis. Previous studies seeking for visuo-cognitive factors of human intelligence indicated a significant correlation between fluid intelligence and the inspection time (IT), an index for a speed of object recognition performed in the ventral pathway. We thus presently examined a possibility that neural processing speed in the dorsal pathway also represented a factor of intelligence. Specifically, we used the mental rotation (MR) task, a popular psychometric measure for mental speed of spatial processing in the dorsal pathway. We found that the speed of MR was significantly correlated with intelligence scores, while it had no correlation with one's IT (recognition speed of visual objects). Our results support the new possibility that intelligence could be explained by two types of mental speed, one related to object recognition (IT) and another for manipulation of mental images (MR).

  12. The effect of the dynamic wet troposphere on radio interferometric measurements

    NASA Technical Reports Server (NTRS)

    Treuhaft, R. N.; Lanyi, G. E.

    1987-01-01

    A statistical model of water vapor fluctuations is used to describe the effect of the dynamic wet troposphere on radio interferometric measurements. It is assumed that the spatial structure of refractivity is approximated by Kolmogorov turbulence theory, and that the temporal fluctuations are caused by spatial patterns moved over a site by the wind, and these assumptions are examined for the VLBI delay and delay rate observables. The results suggest that the delay rate measurement error is usually dominated by water vapor fluctuations, and water vapor induced VLBI parameter errors and correlations are determined as a function of the delay observable errors. A method is proposed for including the water vapor fluctuations in the parameter estimation method to obtain improved parameter estimates and parameter covariances.

  13. Performance on a virtual reality angled laparoscope task correlates with spatial ability of trainees.

    PubMed

    Rosenthal, Rachel; Hamel, Christian; Oertli, Daniel; Demartines, Nicolas; Gantert, Walter A

    2010-08-01

    The aim of the present study was to investigate whether trainees' performance on a virtual reality angled laparoscope navigation task correlates with scores obtained on a validated conventional test of spatial ability. 56 participants of a surgery workshop performed an angled laparoscope navigation task on the Xitact LS 500 virtual reality Simulator. Performance parameters were correlated with the score of a validated paper-and-pencil test of spatial ability. Performance at the conventional spatial ability test significantly correlated with performance at the virtual reality task for overall task score (p < 0.001), task completion time (p < 0.001) and economy of movement (p = 0.035), not for endoscope travel speed (p = 0.947). In conclusion, trainees' performance in a standardized virtual reality camera navigation task correlates with their innate spatial ability. This VR session holds potential to serve as an assessment tool for trainees.

  14. CONSTRAINTS ON SPATIAL VARIATIONS IN THE FINE-STRUCTURE CONSTANT FROM PLANCK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Bryan, Jon; Smidt, Joseph; De Bernardis, Francesco

    2015-01-01

    We use the cosmic microwave background (CMB) anisotropy data from Planck to constrain the spatial fluctuations of the fine-structure constant α at a redshift of 1100. We use a quadratic estimator to measure the four-point correlation function of the CMB temperature anisotropies and extract the angular power spectrum fine-structure constant spatial variations projected along the line of sight at the last scattering surface. At tens of degree angular scales and above, we constrain the fractional rms fluctuations of the fine-structure constant to be (δα/α){sub rms} < 3.4 × 10{sup –3} at the 68% confidence level. We find no evidence formore » a spatially varying α at a redshift of 10{sup 3}.« less

  15. A new multidimensional population health indicator for policy makers: absolute level, inequality and spatial clustering - an empirical application using global sub-national infant mortality data.

    PubMed

    Sartorius, Benn K D; Sartorius, Kurt

    2014-11-01

    The need for a multidimensional measure of population health that accounts for its distribution remains a central problem to guide the allocation of limited resources. Absolute proxy measures, like the infant mortality rate (IMR), are limited because they ignore inequality and spatial clustering. We propose a novel, three-part, multidimensional mortality indicator that can be used as the first step to differentiate interventions in a region or country. The three-part indicator (MortalityABC index) combines absolute mortality rate, the Theil Index to calculate mortality inequality and the Getis-Ord G statistic to determine the degree of spatial clustering. The analysis utilises global sub-national IMR data to empirically illustrate the proposed indicator. The three-part indicator is mapped globally to display regional/country variation and further highlight its potential application. Developing countries (e.g. in sub-Saharan Africa) display high levels of absolute mortality as well as variable mortality inequality with evidence of spatial clustering within certain sub-national units ("hotspots"). Although greater inequality is observed outside developed regions, high mortality inequality and spatial clustering are common in both developed and developing countries. Significant positive correlation was observed between the degree of spatial clustering and absolute mortality. The proposed multidimensional indicator should prove useful for spatial allocation of healthcare resources within a country, because it can prompt a wide range of policy options and prioritise high-risk areas. The new indicator demonstrates the inadequacy of IMR as a single measure of population health, and it can also be adapted to lower administrative levels within a country and other population health measures.

  16. Complementary aspects of spatial resolution and signal-to-noise ratio in computational imaging

    NASA Astrophysics Data System (ADS)

    Gureyev, T. E.; Paganin, D. M.; Kozlov, A.; Nesterets, Ya. I.; Quiney, H. M.

    2018-05-01

    A generic computational imaging setup is considered which assumes sequential illumination of a semitransparent object by an arbitrary set of structured coherent illumination patterns. For each incident illumination pattern, all transmitted light is collected by a photon-counting bucket (single-pixel) detector. The transmission coefficients measured in this way are then used to reconstruct the spatial distribution of the object's projected transmission. It is demonstrated that the square of the spatial resolution of such a setup is usually equal to the ratio of the image area to the number of linearly independent illumination patterns. If the noise in the measured transmission coefficients is dominated by photon shot noise, then the ratio of the square of the mean signal to the noise variance is proportional to the ratio of the mean number of registered photons to the number of illumination patterns. The signal-to-noise ratio in a reconstructed transmission distribution is always lower if the illumination patterns are nonorthogonal, because of spatial correlations in the measured data. Examples of imaging methods relevant to the presented analysis include conventional imaging with a pixelated detector, computational ghost imaging, compressive sensing, super-resolution imaging, and computed tomography.

  17. Modeling of two-particle femtoscopic correlations at top RHIC energy

    NASA Astrophysics Data System (ADS)

    Ermakov, N.; Nigmatkulov, G.

    2017-01-01

    The spatial and temporal characteristics of particle emitting source produced in particle and/or nuclear collisions can be measured by using two-particle femtoscopic correlations. These correlations arise due to quantum statistics, Coulomb and strong final state interactions. In this paper we report on the calculations of like-sign pion femtoscopic correlations produced in p+p, p+Au, d+Au, Au+Au at top RHIC energy using Ultra Relativistic Quantum Molecular Dynamics Model (UrQMD). Three-dimensional correlation functions are constructed using the Bertsch-Pratt parametrization of the two-particle relative momentum. The correlation functions are studied in several transverse mass ranges. The emitting source radii of charged pions, Rout, Rside, Rlong , are obtained from Gaussian fit to the correlation functions and compared to data from the STAR and PHENIX experiments.

  18. Rain radar measurement error estimation using data assimilation in an advection-based nowcasting system

    NASA Astrophysics Data System (ADS)

    Merker, Claire; Ament, Felix; Clemens, Marco

    2017-04-01

    The quantification of measurement uncertainty for rain radar data remains challenging. Radar reflectivity measurements are affected, amongst other things, by calibration errors, noise, blocking and clutter, and attenuation. Their combined impact on measurement accuracy is difficult to quantify due to incomplete process understanding and complex interdependencies. An improved quality assessment of rain radar measurements is of interest for applications both in meteorology and hydrology, for example for precipitation ensemble generation, rainfall runoff simulations, or in data assimilation for numerical weather prediction. Especially a detailed description of the spatial and temporal structure of errors is beneficial in order to make best use of the areal precipitation information provided by radars. Radar precipitation ensembles are one promising approach to represent spatially variable radar measurement errors. We present a method combining ensemble radar precipitation nowcasting with data assimilation to estimate radar measurement uncertainty at each pixel. This combination of ensemble forecast and observation yields a consistent spatial and temporal evolution of the radar error field. We use an advection-based nowcasting method to generate an ensemble reflectivity forecast from initial data of a rain radar network. Subsequently, reflectivity data from single radars is assimilated into the forecast using the Local Ensemble Transform Kalman Filter. The spread of the resulting analysis ensemble provides a flow-dependent, spatially and temporally correlated reflectivity error estimate at each pixel. We will present first case studies that illustrate the method using data from a high-resolution X-band radar network.

  19. A nonlinear controlling function of geological features on magmatic–hydrothermal mineralization

    PubMed Central

    Zuo, Renguang

    2016-01-01

    This paper reports a nonlinear controlling function of geological features on magmatic–hydrothermal mineralization, and proposes an alternative method to measure the spatial relationships between geological features and mineral deposits using multifractal singularity theory. It was observed that the greater the proximity to geological controlling features, the greater the number of mineral deposits developed, indicating a nonlinear spatial relationship between these features and mineral deposits. This phenomenon can be quantified using the relationship between the numbers of mineral deposits N(ε) of a D-dimensional set and the scale of ε. The density of mineral deposits can be expressed as ρ(ε) = Cε−(De−a), where ε is the buffer width of geological controlling features, De is Euclidean dimension of space (=2 in this case), a is singularity index, and C is a constant. The expression can be rewritten as ρ = Cεa−2. When a < 2, there is a significant spatial correlation between specific geological features and mineral deposits; lower a values indicate a more significant spatial correlation. This nonlinear relationship and the advantages of this method were illustrated using a case study from Fujian Province in China and a case study from Baguio district in Philippines. PMID:27255794

  20. A nonlinear controlling function of geological features on magmatic-hydrothermal mineralization.

    PubMed

    Zuo, Renguang

    2016-06-03

    This paper reports a nonlinear controlling function of geological features on magmatic-hydrothermal mineralization, and proposes an alternative method to measure the spatial relationships between geological features and mineral deposits using multifractal singularity theory. It was observed that the greater the proximity to geological controlling features, the greater the number of mineral deposits developed, indicating a nonlinear spatial relationship between these features and mineral deposits. This phenomenon can be quantified using the relationship between the numbers of mineral deposits N(ε) of a D-dimensional set and the scale of ε. The density of mineral deposits can be expressed as ρ(ε) = Cε(-(De-a)), where ε is the buffer width of geological controlling features, De is Euclidean dimension of space (=2 in this case), a is singularity index, and C is a constant. The expression can be rewritten as ρ = Cε(a-2). When a < 2, there is a significant spatial correlation between specific geological features and mineral deposits; lower a values indicate a more significant spatial correlation. This nonlinear relationship and the advantages of this method were illustrated using a case study from Fujian Province in China and a case study from Baguio district in Philippines.

  1. Accounting for spatial correlation errors in the assimilation of GRACE into hydrological models through localization

    NASA Astrophysics Data System (ADS)

    Khaki, M.; Schumacher, M.; Forootan, E.; Kuhn, M.; Awange, J. L.; van Dijk, A. I. J. M.

    2017-10-01

    Assimilation of terrestrial water storage (TWS) information from the Gravity Recovery And Climate Experiment (GRACE) satellite mission can provide significant improvements in hydrological modelling. However, the rather coarse spatial resolution of GRACE TWS and its spatially correlated errors pose considerable challenges for achieving realistic assimilation results. Consequently, successful data assimilation depends on rigorous modelling of the full error covariance matrix of the GRACE TWS estimates, as well as realistic error behavior for hydrological model simulations. In this study, we assess the application of local analysis (LA) to maximize the contribution of GRACE TWS in hydrological data assimilation. For this, we assimilate GRACE TWS into the World-Wide Water Resources Assessment system (W3RA) over the Australian continent while applying LA and accounting for existing spatial correlations using the full error covariance matrix. GRACE TWS data is applied with different spatial resolutions including 1° to 5° grids, as well as basin averages. The ensemble-based sequential filtering technique of the Square Root Analysis (SQRA) is applied to assimilate TWS data into W3RA. For each spatial scale, the performance of the data assimilation is assessed through comparison with independent in-situ ground water and soil moisture observations. Overall, the results demonstrate that LA is able to stabilize the inversion process (within the implementation of the SQRA filter) leading to less errors for all spatial scales considered with an average RMSE improvement of 54% (e.g., 52.23 mm down to 26.80 mm) for all the cases with respect to groundwater in-situ measurements. Validating the assimilated results with groundwater observations indicates that LA leads to 13% better (in terms of RMSE) assimilation results compared to the cases with Gaussian errors assumptions. This highlights the great potential of LA and the use of the full error covariance matrix of GRACE TWS estimates for improved data assimilation results.

  2. Nonlocal correlations in a macroscopic measurement scenario

    NASA Astrophysics Data System (ADS)

    Kunkri, Samir; Banik, Manik; Ghosh, Sibasish

    2017-02-01

    Nonlocality is one of the main characteristic features of quantum systems involving more than one spatially separated subsystem. It is manifested theoretically as well as experimentally through violation of some local realistic inequality. On the other hand, classical behavior of all physical phenomena in the macroscopic limit gives a general intuition that any physical theory for describing microscopic phenomena should resemble classical physics in the macroscopic regime, the so-called macrorealism. In the 2-2-2 scenario (two parties, with each performing two measurements and each measurement having two outcomes), contemplating all the no-signaling correlations, we characterize which of them would exhibit classical (local realistic) behavior in the macroscopic limit. Interestingly, we find correlations which at the single-copy level violate the Bell-Clauser-Horne-Shimony-Holt inequality by an amount less than the optimal quantum violation (i.e., Cirel'son bound 2 √{2 } ), but in the macroscopic limit gives rise to a value which is higher than 2 √{2 } . Such correlations are therefore not considered physical. Our study thus provides a sufficient criterion to identify some of unphysical correlations.

  3. [Spatial point patterns of Antarctic krill fishery in the northern Antarctic Peninsula].

    PubMed

    Yang, Xiao Ming; Li, Yi Xin; Zhu, Guo Ping

    2016-12-01

    As a key species in the Antarctic ecosystem, the spatial distribution of Antarctic krill (thereafter krill) often tends to present aggregation characteristics, which therefore reflects the spatial patterns of krill fishing operation. Based on the fishing data collected from Chinese krill fishing vessels, of which vessel A was professional krill fishing vessel and Vessel B was a fishing vessel which shifted between Chilean jack mackerel (Trachurus murphyi) fishing ground and krill fishing ground. In order to explore the characteristics of spatial distribution pattern and their ecological effects of two obvious different fishing fleets under a high and low nominal catch per unit effort (CPUE), from the viewpoint of spatial point pattern, the present study analyzed the spatial distribution characteristics of krill fishery in the northern Antarctic Peninsula from three aspects: (1) the two vessels' point pattern characteristics of higher CPUEs and lower CPUEs at different scales; (2) correlation of the bivariate point patterns between these points of higher CPUE and lower CPUE; and (3) correlation patterns of CPUE. Under the analysis derived from the Ripley's L function and mark correlation function, the results showed that the point patterns of the higher/lo-wer catch available were similar, both showing an aggregation distribution in this study windows at all scale levels. The aggregation intensity of krill fishing was nearly maximum at 15 km spatial scale, and kept stably higher values at the scale of 15-50 km. The aggregation intensity of krill fishery point patterns could be described in order as higher CPUE of vessel A > lower CPUE of vessel B >higher CPUE of vessel B > higher CPUE of vessel B. The relationship of the higher and lo-wer CPUEs of vessel A showed positive correlation at the spatial scale of 0-75 km, and presented stochastic relationship after 75 km scale, whereas vessel B showed positive correlation at all spatial scales. The point events of higher and lower CPUEs were synchronized, showing significant correlations at most of spatial scales because of the dynamics nature and complex of krill aggregation patterns. The distribution of vessel A's CPUEs was positively correlated at scales of 0-44 km, but negatively correlated at the scales of 44-80 km. The distribution of vessel B's CPUEs was negatively correlated at the scales of 50-70 km, but no significant correlations were found at other scales. The CPUE mark point patterns showed a negative correlation, which indicated that intraspecific competition for space and prey was significant. There were significant differences in spatial point pattern distribution between vessel A with higher fishing capacity and vessel B with lower fishing capacity. The results showed that the professional krill fishing vessel is suitable to conduct the analysis of spatial point pattern and scientific fishery survey.

  4. Cognition, glucose metabolism and amyloid burden in Alzheimer’s disease

    PubMed Central

    Furst, Ansgar J.; Rabinovici, Gil D.; Rostomian, Ara H.; Steed, Tyler; Alkalay, Adi; Racine, Caroline; Miller, Bruce L.; Jagust, William J.

    2010-01-01

    We investigated relationships between glucose metabolism, amyloid load and measures of cognitive and functional impairment in Alzheimer’s disease (AD). Patients meeting criteria for probable AD underwent [11C]PIB and [18F]FDG PET imaging and were assessed on a set of clinical measures. PIB Distribution volume ratios and FDG scans were spatially normalized and average PIB counts from regions-of-interest (ROI) were used to compute a measure of global PIB uptake. Separate voxel-wise regressions explored local and global relationships between metabolism, amyloid burden and clinical measures. Regressions reflected cognitive domains assessed by individual measures, with visuospatial tests associated with more posterior metabolism, and language tests associated with metabolism in the left hemisphere. Correlating regional FDG uptake with these measures confirmed these findings. In contrast, no correlations were found between either voxel-wise or regional PIB uptake and any of the clinical measures. Finally, there were no associations between regional PIB and FDG uptake. We conclude that regional and global amyloid burden does not correlate with clinical status or glucose metabolism in AD. PMID:20417582

  5. Global Characteristics of the Correlation and Time Lag Between Solar and Ionospheric Parameters in the 27-day Period

    NASA Technical Reports Server (NTRS)

    Lee, Choon-Ki; Han, Shin-Chan; Dieter,Bilitza; Ki-Weon,Seo

    2012-01-01

    The 27-day variations of topside ionosphere are investigated using the in-situ electron density measurements from the CHAMP planar Langmuir probe and GRACE K-band ranging system. As the two satellite systems orbit at the altitudes of approx. 370 km and approx. 480 km, respectively, the satellite data sets are greatly valuable for examining the electron density variations in the vicinity of F2-peak. In a 27-day period, the electron density measurements from the satellites are in good agreements with the solar flux, except during the solar minimum period. The time delays are mostly 1-2 day and represent the hemispherical asymmetry. The globally-estimated spatial patterns of the correlation between solar flux and in-situ satellite measurements show poor correlations in the (magnetic) equatorial region, which are not found from the ground measurements of vertically-integrated electron content. We suggest that the most plausible cause for the poor correlation is the vertical movement of ionization due to atmospheric dynamic processes that is not controlled by the solar extreme ultraviolet radiation.

  6. Temporal and Spatial Variations in Soil CO2 Effluxes of Different Ecosystems

    NASA Astrophysics Data System (ADS)

    Liang, N.; Kim, S.; Shimoyama, K.; Kim, Y.; Hirano, T.; Takagi, K.; Suto, H.; Fujinuma, Y.; Inoue, G.

    2005-12-01

    Regional networks for measuring carbon sequestration or loss by terrestrial ecosystems on a year round basis have been in operation since the mid-1990s. However, continuous measurements of soil CO2 efflux, the largest component of ecosystem respiration have only been reported over similar time scales at a few of the sites. Reasons include the lack of automated measurement systems that are commercially available, and the need for frequent servicing to ensure accurate measurements. We have developed a multichannel automated chamber system that can be used for continuous measuring soil CO2 efflux during snow-free seasons. We installed the chamber systems in boreal forest in Alaska, tundra in west Siberia, temperate and cool-temperate forests in Japan and Korea, tropical seasonal forest in Thailand, and tropical rainforest in Malaysia. Annual soil CO2 efflux were measured to be about 5-6 tC ha-1 y-1 in the boreal and cool-temperate forests, 10 tC ha-1 y-1 in the temperate forests, and 26 tC ha-1 y-1 in the tropical rainforests. Efflux showed significant seasonality in the boreal and temperate forest that corresponding with the seasonal soil temperature. However, the wavelike efflux rates in the tropical forests were correlated with the seasonality of soil moisture. Soil CO2 efflux of forest ecosystems showed large spatial variation and was correlated with vegetation type and the chamber size.

  7. Failure criterion for materials with spatially correlated mechanical properties

    NASA Astrophysics Data System (ADS)

    Faillettaz, J.; Or, D.

    2015-03-01

    The role of spatially correlated mechanical elements in the failure behavior of heterogeneous materials represented by fiber bundle models (FBMs) was evaluated systematically for different load redistribution rules. Increasing the range of spatial correlation for FBMs with local load sharing is marked by a transition from ductilelike failure characteristics into brittlelike failure. The study identified a global failure criterion based on macroscopic properties (external load and cumulative damage) that is independent of spatial correlation or load redistribution rules. This general metric could be applied to assess the mechanical stability of complex and heterogeneous systems and thus provide an important component for early warning of a class of geophysical ruptures.

  8. Are Books Like Number Lines? Children Spontaneously Encode Spatial-Numeric Relationships in a Novel Spatial Estimation Task

    PubMed Central

    Thompson, Clarissa A.; Morris, Bradley J.; Sidney, Pooja G.

    2017-01-01

    Do children spontaneously represent spatial-numeric features of a task, even when it does not include printed numbers (Mix et al., 2016)? Sixty first grade students completed a novel spatial estimation task by seeking and finding pages in a 100-page book without printed page numbers. Children were shown pages 1 through 6 and 100, and then were asked, “Can you find page X?” Children’s precision of estimates on the page finder task and a 0-100 number line estimation task was calculated with the Percent Absolute Error (PAE) formula (Siegler and Booth, 2004), in which lower PAE indicated more precise estimates. Children’s numerical knowledge was further assessed with: (1) numeral identification (e.g., What number is this: 57?), (2) magnitude comparison (e.g., Which is larger: 54 or 57?), and (3) counting on (e.g., Start counting from 84 and count up 5 more). Children’s accuracy on these tasks was correlated with their number line PAE. Children’s number line estimation PAE predicted their page finder PAE, even after controlling for age and accuracy on the other numerical tasks. Children’s estimates on the page finder and number line tasks appear to tap a general magnitude representation. However, the page finder task did not correlate with numeral identification and counting-on performance, likely because these tasks do not measure children’s magnitude knowledge. Our results suggest that the novel page finder task is a useful measure of children’s magnitude knowledge, and that books have similar spatial-numeric affordances as number lines and numeric board games. PMID:29312084

  9. Spatio-temporal dynamics of ocean conditions and forage taxa reveal regional structuring of seabird–prey relationships.

    PubMed

    Santora, Jarrod A; Schroeder, Isaac D; Field, John C; Wells, Brian K; Sydeman, William J

    Studies of predator–prey demographic responses and the physical drivers of such relationships are rare, yet essential for predicting future changes in the structure and dynamics of marine ecosystems. Here, we hypothesize that predator–prey relationships vary spatially in association with underlying physical ocean conditions, leading to observable changes in demographic rates, such as reproduction. To test this hypothesis, we quantified spatio-temporal variability in hydrographic conditions, krill, and forage fish to model predator (seabird) demographic responses over 18 years (1990–2007). We used principal component analysis and spatial correlation maps to assess coherence among ocean conditions, krill, and forage fish, and generalized additive models to quantify interannual variability in seabird breeding success relative to prey abundance. The first principal component of four hydrographic measurements yielded an index that partitioned “warm/weak upwelling” and “cool/strong upwelling” years. Partitioning of krill and forage fish time series among shelf and oceanic regions yielded spatially explicit indicators of prey availability. Krill abundance within the oceanic region was remarkably consistent between years, whereas krill over the shelf showed marked interannual fluctuations in relation to ocean conditions. Anchovy abundance varied on the shelf, and was greater in years of strong stratification, weak upwelling and warmer temperatures. Spatio-temporal variability of juvenile forage fish co-varied strongly with each other and with krill, but was weakly correlated with hydrographic conditions. Demographic responses between seabirds and prey availability revealed spatially variable associations indicative of the dynamic nature of “predator–habitat” relationships. Quantification of spatially explicit demographic responses, and their variability through time, demonstrate the possibility of delineating specific critical areas where the implementation of protective measures could maintain functions and productivity of central place foraging predators.

  10. Upgrades and Real Time Ntm Control Application of the Ece Radiometer on Asdex Upgrade

    NASA Astrophysics Data System (ADS)

    Hicks, N. K.; Suttrop, W.; Behler, K.; Giannone, L.; Manini, A.; Maraschek, M.; Raupp, G.; Reich, M.; Sips, A. C. C.; Stober, J.; Treutterer, W.; ASDEX Upgrade Team; Cirant, S.

    2009-04-01

    The 60-channel electron cyclotron emission (ECE) radiometer diagnostic on the ASDEX Upgrade tokamak is presently being upgraded to include a 1 MHz sampling rate data acquisition system. This expanded capability allows electron temperature measurements up to 500 kHz (anti-aliasing filter cut-off) with spatial resolution ~1 cm, and will thus provide measurement of plasma phenomena on the MHD timescale, such as neoclassical tearing modes (NTMs). The upgraded and existing systems may be run in parallel for comparison, and some of the first plasma measurements using the two systems together are presented. A particular planned application of the upgraded radiometer is integration into a real-time NTM stabilization loop using targeted deposition of electron cyclotron resonance heating (ECRH). For this loop, it is necessary to determine the locations of the NTM and ECRH deposition using ECE measurements. As the magnetic island of the NTM repeatedly rotates through the ECE line of sight, electron temperature fluctuations at the NTM frequency are observed. The magnetic perturbation caused by the NTM is independently measured using Mirnov coils, and a correlation profile between these magnetic measurements and the ECE data is constructed. The phase difference between ECE oscillations on opposite sides of the island manifests as a zero-crossing of the correlation profile, which determines the NTM location in ECE channel space. To determine the location of ECRH power deposition, the power from a given gyrotron may be modulated at a particular frequency. Correlation analysis of this modulated signal and the ECE data identifies a particular ECE channel associated with the deposition of that gyrotron. Real time equilibrium reconstruction allows the ECE channels to be translated into flux surface and spatial coordinates for use in the feedback loop.

  11. Spatial and temporal patterns of spontaneous grass cover as a control measure of soil loss: a study case in an olive orchard microcatchment

    NASA Astrophysics Data System (ADS)

    Taguas, Encarnación; Vanderlinden, Karl; Pedrera-Parrilla, Aura; Giráldez, Juan V.; Gómez, Jose A.

    2016-04-01

    Spatial and temporal patterns of vegetal communities control local biogeophysical processes.. The use of cover crops and spontaneous grass cover as a soil erosion control measure is quite common, particularly in hilly agricultural areas. Spontaneous covers show usually irregular spatial and temporal patterns, resulting in a questionable efficiency and and unresolved management requirements. However, due to its zero cost, it is a helpful alternative for soil erosion control in marginal farms (Taguas et al., 2015). The main aim of this work was to characterize the spatial and temporal patterns of spontaneous grass cover in an olive orchard microcatchment to interpret its dependences on other physical features as well as its influence on soil loss control. The specific objectives were: i) to evaluate the relationships between the mean cover and the variables: accumulated precipitation, accumulated evapotranspiration and average minimum temperature for the preceding 5, 15, 30 and 60 days to the sampling date; ii) study the spatial aggregation degree of the cover, its temporal stability and its correlation with different topographical properties, the richness of species and the apparent electrical conductivity as a measure of soil variability; and iii) describe the influence of the cover on runoff and soil loss in the catchments. Cover percentage corresponding to spontaneous grass was evaluated on a seaonsal basis during 3 years (2011-2013), resulting in 12 surveys. A permanent and regular grid of 36 points covering the entire catchment (5-6 samples/ha) was used in each survey. At each location cover percentage was determined through image analyses. In order to explore the relations between cover percentage and meteorological variables, multiple linear regression was applied whereas the SADIE approach (Spatial analysis by distance indices; Perry, 1998) was used to describe possible spatial aggregation patterns and the correlation with features such as aspect, slope, drainage area, height, richness and apparent electrical conductivity. The mean annual cover percentage varied from 23% to 36% with a coefficient of variation of 57% and 6%, respectively. On the seasonal scale, the cover varied between 0.2% and 50% . Significant effects of accumulated precipitation during the precedubg 15 days on the cover percentage were detected. In addition, a permanent aggregated pattern of spontaneous grass was observed for different seasonal surveys with abundant preceding rainfall. No clear correlations were found with physical attributes with the exception of electrical conductivity (50 cm-depth). Finally, the differences found in the hydrological responses for similar events with different degrees of soil cover highlighted the role that spontaneous vegetation plays in the sediment discharge control during humid periods. REFERENCES: Perry, J. N., 1998. Measures of spatial pattern for counts. Ecology 79: 1008-1017. E. V. Taguas, C. Arroyo, A. Lora, G. Guzmán, K. Vanderlinden. J. A. Gómez. 2015. Exploring the linkage between spontaneous grass cover biodiversity and soil degradation in two olive orchard microcatchments with contrasting environmental and management conditions. SOIL, 1, 651-664.

  12. Development of Mobile Tracer Correlation Strategies for Quantification of Emissions from Landfills and Other Large Area Sources

    EPA Science Inventory

    Emission measurements from large area sources such as landfills are complicated by their spatial extent and heterogeneous nature. In recent years, an on-site optical remote sensing (ORS) technique for characterizing emissions from area sources was described in an EPA-published p...

  13. Midsagittal Brain Shape Correlation with Intelligence and Cognitive Performance

    ERIC Educational Resources Information Center

    Bruner, Emiliano; Martin-Loeches, Manuel; Burgaleta, Miguel; Colom, Roberto

    2011-01-01

    Brain shape might influence cognitive performance because of the relationships between functions, spatial organization, and differential volumetric development of cortical areas. Here we analyze the relationships between midsagittal brain shape variation and a set of basic psychological measures. Coordinates in 2D from 102 MRI-scanned young adult…

  14. Identifying, characterizing and predicting spatial patterns of lacustrine groundwater discharge

    NASA Astrophysics Data System (ADS)

    Tecklenburg, Christina; Blume, Theresa

    2017-10-01

    Lacustrine groundwater discharge (LGD) can significantly affect lake water balances and lake water quality. However, quantifying LGD and its spatial patterns is challenging because of the large spatial extent of the aquifer-lake interface and pronounced spatial variability. This is the first experimental study to specifically study these larger-scale patterns with sufficient spatial resolution to systematically investigate how landscape and local characteristics affect the spatial variability in LGD. We measured vertical temperature profiles around a 0.49 km2 lake in northeastern Germany with a needle thermistor, which has the advantage of allowing for rapid (manual) measurements and thus, when used in a survey, high spatial coverage and resolution. Groundwater inflow rates were then estimated using the heat transport equation. These near-shore temperature profiles were complemented with sediment temperature measurements with a fibre-optic cable along six transects from shoreline to shoreline and radon measurements of lake water samples to qualitatively identify LGD patterns in the offshore part of the lake. As the hydrogeology of the catchment is sufficiently homogeneous (sandy sediments of a glacial outwash plain; no bedrock control) to avoid patterns being dominated by geological discontinuities, we were able to test the common assumptions that spatial patterns of LGD are mainly controlled by sediment characteristics and the groundwater flow field. We also tested the assumption that topographic gradients can be used as a proxy for gradients of the groundwater flow field. Thanks to the extensive data set, these tests could be carried out in a nested design, considering both small- and large-scale variability in LGD. We found that LGD was concentrated in the near-shore area, but alongshore variability was high, with specific regions of higher rates and higher spatial variability. Median inflow rates were 44 L m-2 d-1 with maximum rates in certain locations going up to 169 L m-2 d-1. Offshore LGD was negligible except for two local hotspots on steep steps in the lake bed topography. Large-scale groundwater inflow patterns were correlated with topography and the groundwater flow field, whereas small-scale patterns correlated with grain size distributions of the lake sediment. These findings confirm results and assumptions of theoretical and modelling studies more systematically than was previously possible with coarser sampling designs. However, we also found that a significant fraction of the variance in LGD could not be explained by these controls alone and that additional processes need to be considered. While regression models using these controls as explanatory variables had limited power to predict LGD rates, the results nevertheless encourage the use of topographic indices and sediment heterogeneity as an aid for targeted campaigns in future studies of groundwater discharge to lakes.

  15. Coexistence of species with different dispersal across landscapes: a critical role of spatial correlation in disturbance.

    PubMed

    Liao, Jinbao; Ying, Zhixia; Woolnough, Daelyn A; Miller, Adam D; Li, Zhenqing; Nijs, Ivan

    2016-05-11

    Disturbance is key to maintaining species diversity in plant communities. Although the effects of disturbance frequency and extent on species diversity have been studied, we do not yet have a mechanistic understanding of how these aspects of disturbance interact with spatial structure of disturbance to influence species diversity. Here we derive a novel pair approximation model to explore competitive outcomes in a two-species system subject to spatially correlated disturbance. Generally, spatial correlation in disturbance favoured long-range dispersers, while distance-limited dispersers were greatly suppressed. Interestingly, high levels of spatial aggregation of disturbance promoted long-term species coexistence that is not possible in the absence of disturbance, but only when the local disperser was intrinsically competitively superior. However, spatial correlation in disturbance led to different competitive outcomes, depending on the disturbed area. Concerning ecological conservation and management, we theoretically demonstrate that introducing a spatially correlated disturbance to the system or altering an existing disturbance regime can be a useful strategy either to control species invasion or to promote species coexistence. Disturbance pattern analysis may therefore provide new insights into biodiversity conservation. © 2016 The Author(s).

  16. Pair correlation functions for identifying spatial correlation in discrete domains

    NASA Astrophysics Data System (ADS)

    Gavagnin, Enrico; Owen, Jennifer P.; Yates, Christian A.

    2018-06-01

    Identifying and quantifying spatial correlation are important aspects of studying the collective behavior of multiagent systems. Pair correlation functions (PCFs) are powerful statistical tools that can provide qualitative and quantitative information about correlation between pairs of agents. Despite the numerous PCFs defined for off-lattice domains, only a few recent studies have considered a PCF for discrete domains. Our work extends the study of spatial correlation in discrete domains by defining a new set of PCFs using two natural and intuitive definitions of distance for a square lattice: the taxicab and uniform metric. We show how these PCFs improve upon previous attempts and compare between the quantitative data acquired. We also extend our definitions of the PCF to other types of regular tessellation that have not been studied before, including hexagonal, triangular, and cuboidal. Finally, we provide a comprehensive PCF for any tessellation and metric, allowing investigation of spatial correlation in irregular lattices for which recognizing correlation is less intuitive.

  17. Spatial weighting approach in numerical method for disaggregation of MDGs indicators

    NASA Astrophysics Data System (ADS)

    Permai, S. D.; Mukhaiyar, U.; Satyaning PP, N. L. P.; Soleh, M.; Aini, Q.

    2018-03-01

    Disaggregation use to separate and classify the data based on certain characteristics or on administrative level. Disaggregated data is very important because some indicators not measured on all characteristics. Detailed disaggregation for development indicators is important to ensure that everyone benefits from development and support better development-related policymaking. This paper aims to explore different methods to disaggregate national employment-to-population ratio indicator to province- and city-level. Numerical approach applied to overcome the problem of disaggregation unavailability by constructing several spatial weight matrices based on the neighbourhood, Euclidean distance and correlation. These methods can potentially be used and further developed to disaggregate development indicators into lower spatial level even by several demographic characteristics.

  18. Spatial organization and correlation properties quantify structural changes on mesoscale of parenchymatous plant tissue

    NASA Astrophysics Data System (ADS)

    Valous, N. A.; Delgado, A.; Drakakis, K.; Sun, D.-W.

    2014-02-01

    The study of plant tissue parenchyma's intercellular air spaces contributes to the understanding of anatomy and physiology. This is challenging due to difficulty in making direct measurements of the pore space and the complex mosaic of parenchymatous tissue. The architectural complexity of pore space has shown that single geometrical measurements are not sufficient for characterization. The inhomogeneity of distribution depends not only on the percentage content of phase, but also on how the phase fills the space. The lacunarity morphometric, as multiscale measure, provides information about the distribution of gaps that correspond to degree of spatial organization in parenchyma. Additionally, modern theories have suggested strategies, where the focus has shifted from the study of averages and histograms to the study of patterns in data fluctuations. Detrended fluctuation analysis provides information on the correlation properties of the parenchyma at different spatial scales. The aim is to quantify (with the aid of the aforementioned metrics), the mesostructural changes—that occur from one cycle of freezing and thawing—in the void phase of pome fruit parenchymatous tissue, acquired with X-ray microcomputed tomography. Complex systems methods provide numerical indices and detailed insights regarding the freezing-induced modifications upon the arrangement of cells and voids. These structural changes have the potential to lead to physiological disorders. The work can further stimulate interest for the analysis of internal plant tissue structures coupled with other physico-chemical processes or phenomena.

  19. Time-of-flight camera via a single-pixel correlation image sensor

    NASA Astrophysics Data System (ADS)

    Mao, Tianyi; Chen, Qian; He, Weiji; Dai, Huidong; Ye, Ling; Gu, Guohua

    2018-04-01

    A time-of-flight imager based on single-pixel correlation image sensors is proposed for noise-free depth map acquisition in presence of ambient light. Digital micro-mirror device and time-modulated IR-laser provide spatial and temporal illumination on the unknown object. Compressed sensing and ‘four bucket principle’ method are combined to reconstruct the depth map from a sequence of measurements at a low sampling rate. Second-order correlation transform is also introduced to reduce the noise from the detector itself and direct ambient light. Computer simulations are presented to validate the computational models and improvement of reconstructions.

  20. Dissociable brain biomarkers of fluid intelligence.

    PubMed

    Paul, Erick J; Larsen, Ryan J; Nikolaidis, Aki; Ward, Nathan; Hillman, Charles H; Cohen, Neal J; Kramer, Arthur F; Barbey, Aron K

    2016-08-15

    Cognitive neuroscience has long sought to understand the biological foundations of human intelligence. Decades of research have revealed that general intelligence is correlated with two brain-based biomarkers: the concentration of the brain biochemical N-acetyl aspartate (NAA) measured by proton magnetic resonance spectroscopy (MRS) and total brain volume measured using structural MR imaging (MRI). However, the relative contribution of these biomarkers in predicting performance on core facets of human intelligence remains to be well characterized. In the present study, we sought to elucidate the role of NAA and brain volume in predicting fluid intelligence (Gf). Three canonical tests of Gf (BOMAT, Number Series, and Letter Sets) and three working memory tasks (Reading, Rotation, and Symmetry span tasks) were administered to a large sample of healthy adults (n=211). We conducted exploratory factor analysis to investigate the factor structure underlying Gf independent from working memory and observed two Gf components (verbal/spatial and quantitative reasoning) and one working memory component. Our findings revealed a dissociation between two brain biomarkers of Gf (controlling for age and sex): NAA concentration correlated with verbal/spatial reasoning, whereas brain volume correlated with quantitative reasoning and working memory. A follow-up analysis revealed that this pattern of findings is observed for males and females when analyzed separately. Our results provide novel evidence that distinct brain biomarkers are associated with specific facets of human intelligence, demonstrating that NAA and brain volume are independent predictors of verbal/spatial and quantitative facets of Gf. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Interferometric constraints on quantum geometrical shear noise correlations

    DOE PAGES

    Chou, Aaron; Glass, Henry; Richard Gustafson, H.; ...

    2017-07-20

    Final measurements and analysis are reported from the first-generation Holometer, the first instrument capable of measuring correlated variations in space-time position at strain noise power spectral densities smaller than a Planck time. The apparatus consists of two co-located, but independent and isolated, 40 m power-recycled Michelson interferometers, whose outputs are cross-correlated to 25 MHz. The data are sensitive to correlations of differential position across the apparatus over a broad band of frequencies up to and exceeding the inverse light crossing time, 7.6 MHz. By measuring with Planck precision the correlation of position variations at spacelike separations, the Holometer searches formore » faint, irreducible correlated position noise backgrounds predicted by some models of quantum space-time geometry. The first-generation optical layout is sensitive to quantum geometrical noise correlations with shear symmetry---those that can be interpreted as a fundamental noncommutativity of space-time position in orthogonal directions. General experimental constraints are placed on parameters of a set of models of spatial shear noise correlations, with a sensitivity that exceeds the Planck-scale holographic information bound on position states by a large factor. This result significantly extends the upper limits placed on models of directional noncommutativity by currently operating gravitational wave observatories.« less

  2. Interferometric constraints on quantum geometrical shear noise correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Aaron; Glass, Henry; Richard Gustafson, H.

    Final measurements and analysis are reported from the first-generation Holometer, the first instrument capable of measuring correlated variations in space-time position at strain noise power spectral densities smaller than a Planck time. The apparatus consists of two co-located, but independent and isolated, 40 m power-recycled Michelson interferometers, whose outputs are cross-correlated to 25 MHz. The data are sensitive to correlations of differential position across the apparatus over a broad band of frequencies up to and exceeding the inverse light crossing time, 7.6 MHz. By measuring with Planck precision the correlation of position variations at spacelike separations, the Holometer searches formore » faint, irreducible correlated position noise backgrounds predicted by some models of quantum space-time geometry. The first-generation optical layout is sensitive to quantum geometrical noise correlations with shear symmetry---those that can be interpreted as a fundamental noncommutativity of space-time position in orthogonal directions. General experimental constraints are placed on parameters of a set of models of spatial shear noise correlations, with a sensitivity that exceeds the Planck-scale holographic information bound on position states by a large factor. This result significantly extends the upper limits placed on models of directional noncommutativity by currently operating gravitational wave observatories.« less

  3. A spatial epidemiological analysis of self-rated mental health in the slums of Dhaka

    PubMed Central

    2011-01-01

    Background The deprived physical environments present in slums are well-known to have adverse health effects on their residents. However, little is known about the health effects of the social environments in slums. Moreover, neighbourhood quantitative spatial analyses of the mental health status of slum residents are still rare. The aim of this paper is to study self-rated mental health data in several slums of Dhaka, Bangladesh, by accounting for neighbourhood social and physical associations using spatial statistics. We hypothesised that mental health would show a significant spatial pattern in different population groups, and that the spatial patterns would relate to spatially-correlated health-determining factors (HDF). Methods We applied a spatial epidemiological approach, including non-spatial ANOVA/ANCOVA, as well as global and local univariate and bivariate Moran's I statistics. The WHO-5 Well-being Index was used as a measure of self-rated mental health. Results We found that poor mental health (WHO-5 scores < 13) among the adult population (age ≥15) was prevalent in all slum settlements. We detected spatially autocorrelated WHO-5 scores (i.e., spatial clusters of poor and good mental health among different population groups). Further, we detected spatial associations between mental health and housing quality, sanitation, income generation, environmental health knowledge, education, age, gender, flood non-affectedness, and selected properties of the natural environment. Conclusions Spatial patterns of mental health were detected and could be partly explained by spatially correlated HDF. We thereby showed that the socio-physical neighbourhood was significantly associated with health status, i.e., mental health at one location was spatially dependent on the mental health and HDF prevalent at neighbouring locations. Furthermore, the spatial patterns point to severe health disparities both within and between the slums. In addition to examining health outcomes, the methodology used here is also applicable to residuals of regression models, such as helping to avoid violating the assumption of data independence that underlies many statistical approaches. We assume that similar spatial structures can be found in other studies focussing on neighbourhood effects on health, and therefore argue for a more widespread incorporation of spatial statistics in epidemiological studies. PMID:21599932

  4. Visualising recalcitrance by colocalisation of cellulase, lignin and cellulose in pretreated pine biomass using fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Donaldson, Lloyd; Vaidya, Alankar

    2017-03-01

    Mapping the location of bound cellulase enzymes provides information on the micro-scale distribution of amenable and recalcitrant sites in pretreated woody biomass for biofuel applications. The interaction of a fluorescently labelled cellulase enzyme cocktail with steam-exploded pine (SEW) was quantified using confocal microscopy. The spatial distribution of Dylight labelled cellulase was quantified relative to lignin (autofluorescence) and cellulose (Congo red staining) by measuring their colocalisation using Pearson correlations. Correlations were greater in cellulose-rich secondary cell walls compared to lignin-rich middle lamella but with significant variations among individual biomass particles. The distribution of cellulose in the pretreated biomass accounted for 30% of the variation in the distribution of enzyme after correcting for the correlation between lignin and cellulose. For the first time, colocalisation analysis was able to quantify the spatial distribution of amenable and recalcitrant sites in relation to the histochemistry of cellulose and lignin. This study will contribute to understanding the role of pretreatment in enzymatic hydrolysis of recalcitrant softwood biomass.

  5. Effects of water salinity on the correlation scale of Root density and Evapotranspiration fluxes

    NASA Astrophysics Data System (ADS)

    Ajeel, Ali; Saeed, Ali; Dragonetti, Giovanna; Comegna, Alessandro; Lamaddalena, Nicola; Coppola, Antonio

    2015-04-01

    Spatial pattern and the correlation of different soil and plant parameters were examined in a green bean field experiment carried out at the Mediterranean Agronomic Institute of Bari, Italy. The experiment aimed to evaluate the role of local processes of salt accumulation and transport which mainly influences the evapotranspiration (and thus the root uptake) processes under different water salinity levels. The experiment consisted of three transects of 30m length and 4.2 m width, irrigated with three different salinity levels (1dSm-1, 3dSm-1, 6dSm-1). Soil measurements (electrical conductivity and soil water content) were monitored along transects in 24 sites, 1 m apart by using TDR probes and Diviner 2000. Water storage measured by TDR and Diviner sensor were coupled for calculating directly the evapotranspiration fluxes along the whole soil profile under the different salinity levels imposed during the experiment. In the same sites, crop monitoring involved measurements of Leaf Area Index (LAI), Osmotic Potential (OP), Leaf Water Potential (LWP), and Root length Density (RlD). Soil and plant properties were analyzed by classical statistics, geostatistics methods and spectral analysis. Results indicated moderate to large spatial variability across the field for soil and plant parameters under all salinity treatments. Furthermore, cross-semivariograms exhibited a strong positive spatial interdependence between electrical conductivity of soil solution ECw with ET and RlD in transect treated with 3dSm-1 as well as with LAI in transect treated with 6dSm-1 at all 24 monitoring sites. Spectral analysis enabled to identify the observation window to sample the soil salinity information responsible for a given plant response (ET, OP, RlD). It is also allowed a clear identification of the spatial scale at which the soil water salinity level and distribution and the crop response in terms of actual evapotranspiration ET, RlD and OP, are actually correlated. Additionally, significant peaks in the power and coherency spectra around 6-8 m suggested organization into hierarchical levels of soil variability.

  6. Constraints on rapidity-dependent initial conditions from charged-particle pseudorapidity densities and two-particle correlations

    NASA Astrophysics Data System (ADS)

    Ke, Weiyao; Moreland, J. Scott; Bernhard, Jonah E.; Bass, Steffen A.

    2017-10-01

    We study the initial three-dimensional spatial configuration of the quark-gluon plasma (QGP) produced in relativistic heavy-ion collisions using centrality and pseudorapidity-dependent measurements of the medium's charged particle density and two-particle correlations. A cumulant-generating function is first used to parametrize the rapidity dependence of local entropy deposition and extend arbitrary boost-invariant initial conditions to nonzero beam rapidities. The model is then compared to p +Pb and Pb + Pb charged-particle pseudorapidity densities and two-particle pseudorapidity correlations and systematically optimized using Bayesian parameter estimation to extract high-probability initial condition parameters. The optimized initial conditions are then compared to a number of experimental observables including the pseudorapidity-dependent anisotropic flows, event-plane decorrelations, and flow correlations. We find that the form of the initial local longitudinal entropy profile is well constrained by these experimental measurements.

  7. Effects of a cognitive training on spatial learning and associated functional brain activations

    PubMed Central

    2013-01-01

    Background Both cognitive and physical exercise have been discussed as promising interventions for healthy cognitive aging. The present study assessed the effects of cognitive training (spatial vs. perceptual training) and physical training (endurance training vs. non-endurance training) on spatial learning and associated brain activation in 33 adults (40–55 years). Spatial learning was assessed with a virtual maze task, and at the same time neural correlates were measured with functional magnetic resonance imaging (fMRI). Results Only the spatial training improved performance in the maze task. These behavioral gains were accompanied by a decrease in frontal and temporal lobe activity. At posttest, participants of the spatial training group showed lower activity than participants of the perceptual training group in a network of brain regions associated with spatial learning, including the hippocampus and parahippocampal gyrus. No significant differences were observed between the two physical intervention groups. Conclusions Functional changes in neural systems associated with spatial navigation can be induced by cognitive interventions and seem to be stronger than effects of physical exercise in middle-aged adults. PMID:23870447

  8. Spatial resolution enhancement of terrestrial features using deconvolved SSM/I microwave brightness temperatures

    NASA Technical Reports Server (NTRS)

    Farrar, Michael R.; Smith, Eric A.

    1992-01-01

    A method for enhancing the 19, 22, and 37 GHz measurements of the SSM/I (Special Sensor Microwave/Imager) to the spatial resolution and sampling density of the high resolution 85-GHz channel is presented. An objective technique for specifying the tuning parameter, which balances the tradeoff between resolution and noise, is developed in terms of maximizing cross-channel correlations. Various validation procedures are performed to demonstrate the effectiveness of the method, which hopefully will provide researchers with a valuable tool in multispectral applications of satellite radiometer data.

  9. Defect-suppressed atomic crystals in an optical lattice.

    PubMed

    Rabl, P; Daley, A J; Fedichev, P O; Cirac, J I; Zoller, P

    2003-09-12

    We present a coherent filtering scheme which dramatically reduces the site occupation number defects for atoms in an optical lattice by transferring a chosen number of atoms to a different internal state via adiabatic passage. With the addition of superlattices it is possible to engineer states with a specific number of atoms per site (atomic crystals), which are required for quantum computation and the realization of models from condensed matter physics, including doping and spatial patterns. The same techniques can be used to measure two-body spatial correlation functions.

  10. Species extinction thresholds in the face of spatially correlated periodic disturbance.

    PubMed

    Liao, Jinbao; Ying, Zhixia; Hiebeler, David E; Wang, Yeqiao; Takada, Takenori; Nijs, Ivan

    2015-10-20

    The spatial correlation of disturbance is gaining attention in landscape ecology, but knowledge is still lacking on how species traits determine extinction thresholds under spatially correlated disturbance regimes. Here we develop a pair approximation model to explore species extinction risk in a lattice-structured landscape subject to aggregated periodic disturbance. Increasing disturbance extent and frequency accelerated population extinction irrespective of whether dispersal was local or global. Spatial correlation of disturbance likewise increased species extinction risk, but only for local dispersers. This indicates that models based on randomly simulated disturbances (e.g., mean-field or non-spatial models) may underestimate real extinction rates. Compared to local dispersal, species with global dispersal tolerated more severe disturbance, suggesting that the spatial correlation of disturbance favors long-range dispersal from an evolutionary perspective. Following disturbance, intraspecific competition greatly enhanced the extinction risk of distance-limited dispersers, while it surprisingly did not influence the extinction thresholds of global dispersers, apart from decreasing population density to some degree. As species respond differently to disturbance regimes with different spatiotemporal properties, different regimes may accommodate different species.

  11. Hydrological Networks and Associated Topographic Variation as Templates for the Spatial Organization of Tropical Forest Vegetation

    PubMed Central

    Detto, Matteo; Muller-Landau, Helene C.; Mascaro, Joseph; Asner, Gregory P.

    2013-01-01

    An understanding of the spatial variability in tropical forest structure and biomass, and the mechanisms that underpin this variability, is critical for designing, interpreting, and upscaling field studies for regional carbon inventories. We investigated the spatial structure of tropical forest vegetation and its relationship to the hydrological network and associated topographic structure across spatial scales of 10–1000 m using high-resolution maps of LiDAR-derived mean canopy profile height (MCH) and elevation for 4930 ha of tropical forest in central Panama. MCH was strongly associated with the hydrological network: canopy height was highest in areas of positive convexity (valleys, depressions) close to channels draining 1 ha or more. Average MCH declined strongly with decreasing convexity (transition to ridges, hilltops) and increasing distance from the nearest channel. Spectral analysis, performed with wavelet decomposition, showed that the variance in MCH had fractal similarity at scales of ∼30–600 m, and was strongly associated with variation in elevation, with peak correlations at scales of ∼250 m. Whereas previous studies of topographic correlates of tropical forest structure conducted analyses at just one or a few spatial grains, our study found that correlations were strongly scale-dependent. Multi-scale analyses of correlations of MCH with slope, aspect, curvature, and Laplacian convexity found that MCH was most strongly related to convexity measured at scales of 20–300 m, a topographic variable that is a good proxy for position with respect to the hydrological network. Overall, our results support the idea that, even in these mesic forests, hydrological networks and associated topographical variation serve as templates upon which vegetation is organized over specific ranges of scales. These findings constitute an important step towards a mechanistic understanding of these patterns, and can guide upscaling and downscaling. PMID:24204610

  12. Real-life memory and spatial navigation in patients with focal epilepsy: ecological validity of a virtual reality supermarket task.

    PubMed

    Grewe, P; Lahr, D; Kohsik, A; Dyck, E; Markowitsch, H J; Bien, C G; Botsch, M; Piefke, M

    2014-02-01

    Ecological assessment and training of real-life cognitive functions such as visual-spatial abilities in patients with epilepsy remain challenging. Some studies have applied virtual reality (VR) paradigms, but external validity of VR programs has not sufficiently been proven. Patients with focal epilepsy (EG, n=14) accomplished an 8-day program in a VR supermarket, which consisted of learning and buying items on a shopping list. Performance of the EG was compared with that of healthy controls (HCG, n=19). A comprehensive neuropsychological examination was administered. Real-life performance was investigated in a real supermarket. Learning in the VR supermarket was significantly impaired in the EG on different VR measures. Delayed free recall of products did not differ between the EG and the HCG. Virtual reality scores were correlated with neuropsychological measures of visual-spatial cognition, subjective estimates of memory, and performance in the real supermarket. The data indicate that our VR approach allows for the assessment of real-life visual-spatial memory and cognition in patients with focal epilepsy. The multimodal, active, and complex VR paradigm may particularly enhance visual-spatial cognitive resources. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Neutron imaging with lithium indium diselenide: Surface properties, spatial resolution, and computed tomography

    NASA Astrophysics Data System (ADS)

    Lukosi, Eric D.; Herrera, Elan H.; Hamm, Daniel S.; Burger, Arnold; Stowe, Ashley C.

    2017-11-01

    An array of lithium indium diselenide (LISe) scintillators were investigated for application in neutron imaging. The sensors, varying in thickness and surface roughness, were tested using both reflective and anti-reflective mounting to an aluminum window. The spatial resolution of each LISe scintillator was calculated using the knife-edge test and a modulation transfer function analysis. It was found that the anti-reflective backing case yielded higher spatial resolutions by up to a factor of two over the reflective backing case despite a reduction in measured light yield by an average of 1.97. In most cases, the use of an anti-reflective backing resulted in a higher spatial resolution than the 50 μm-thick ZnS(Cu):6 LiF comparison scintillation screen. The effect of surface roughness was not directly correlated to measured light yield or observed spatial resolution, but weighting the reflective backing case by the random surface roughness revealed that a linear relationship exists between the fractional change (RB/ARB) of the two. Finally, the LISe scintillator array was used in neutron computed tomography to investigate the features of halyomorpha halys with the reflective and anti-reflective backing.

  14. A comparison of recharge rates in aquifers of the United States based on groundwater-age data

    USGS Publications Warehouse

    McMahon, P.B.; Plummer, Niel; Böhlke, J.K.; Shapiro, S.D.; Hinkle, S.R.

    2011-01-01

    An overview is presented of existing groundwater-age data and their implications for assessing rates and timescales of recharge in selected unconfined aquifer systems of the United States. Apparent age distributions in aquifers determined from chlorofluorocarbon, sulfur hexafluoride, tritium/helium-3, and radiocarbon measurements from 565 wells in 45 networks were used to calculate groundwater recharge rates. Timescales of recharge were defined by 1,873 distributed tritium measurements and 102 radiocarbon measurements from 27 well networks. Recharge rates ranged from < 10 to 1,200 mm/yr in selected aquifers on the basis of measured vertical age distributions and assuming exponential age gradients. On a regional basis, recharge rates based on tracers of young groundwater exhibited a significant inverse correlation with mean annual air temperature and a significant positive correlation with mean annual precipitation. Comparison of recharge derived from groundwater ages with recharge derived from stream base-flow evaluation showed similar overall patterns but substantial local differences. Results from this compilation demonstrate that age-based recharge estimates can provide useful insights into spatial and temporal variability in recharge at a national scale and factors controlling that variability. Local age-based recharge estimates provide empirical data and process information that are needed for testing and improving more spatially complete model-based methods.

  15. Understanding land surface evapotranspiration with satellite multispectral measurements

    NASA Technical Reports Server (NTRS)

    Menenti, M.

    1993-01-01

    Quantitative use of remote multispectral measurements to study and map land surface evapotranspiration has been a challenging issue for the past 20 years. Past work is reviewed against process physics. A simple two-layer combination-type model is used which is applicable to both vegetation and bare soil. The theoretic analysis is done to show which land surface properties are implicitly defined by such evaporation models and to assess whether they are measurable as a matter of principle. Conceptual implications of the spatial correlation of land surface properties, as observed by means of remote multispectral measurements, are illustrated with results of work done in arid zones. A normalization of spatial variability of land surface evaporation is proposed by defining a location-dependent potential evaporation and surface temperature range. Examples of the application of remote based estimates of evaporation to hydrological modeling studies in Egypt and Argentina are presented.

  16. The Interrelationship Between Temperature Changes in the Free Atmosphere and Sea Surface Temperature Changes

    NASA Astrophysics Data System (ADS)

    Newell, Reginald E.; Wu, Zhong-Xiang

    1992-03-01

    Fields of sea surface temperature anomalies from the Global Ocean Surface Temperature Atlas (GOSTA) and microwave sounding measurements (MSU) of temperature in the troposphere are examined separately and together for the 1979-1988 period. Global correlation patterns of both sets of fields are investigated at a range of leads and lags up to 6 months and exhibit a wide range of correlation structure. There are regions, such as the tropical eastern Pacific, where sea surface temperature anomalies persist for several months and are associated with local air temperature anomalies; in this particular example, about 0.7°C air temperature change is associated with a 1.0°C sea temperature change. By contrast, some ocean regions and many atmospheric regions, mostly in middle and high latitude, show only local spatial correlations that disappear completely in a month or two. The most persistent and extensive spatial correlation patterns are quite different for the sea and the air. In the sea the "butterfly" pattern of the Pacific is the most important and reverses sign between the eastern equatorial Pacific and the western Pacific and subtropics. In the warm phase the temperature anomalies associated with this pattern are similar to the correlation pattern. For the atmosphere the main correlation pattern is an equatorial belt with no sign changes in the tropics; this pattern is linked to the oceanic El Niño mode. In the warm phase the temperature anomalies show peak values on both sides of the equator in the eastern and central Pacific. Based mainly on the results from the spatial patterns, certain regions are selected for intercomparison of time series. In the tropical eastern Pacific the sea leads the air by about a month while in the Gulf Stream and Kuroshio regions the sequence is reversed.

  17. High performance and highly reliable Raman-based distributed temperature sensors based on correlation-coded OTDR and multimode graded-index fibers

    NASA Astrophysics Data System (ADS)

    Soto, M. A.; Sahu, P. K.; Faralli, S.; Sacchi, G.; Bolognini, G.; Di Pasquale, F.; Nebendahl, B.; Rueck, C.

    2007-07-01

    The performance of distributed temperature sensor systems based on spontaneous Raman scattering and coded OTDR are investigated. The evaluated DTS system, which is based on correlation coding, uses graded-index multimode fibers, operates over short-to-medium distances (up to 8 km) with high spatial and temperature resolutions (better than 1 m and 0.3 K at 4 km distance with 10 min measuring time) and high repeatability even throughout a wide temperature range.

  18. Experimental cancellation of aberrations in intensity correlation in classical optics

    NASA Astrophysics Data System (ADS)

    Jesus-Silva, A. J.; Silva, Juarez G.; Monken, C. H.; Fonseca, E. J. S.

    2018-01-01

    We study the classical correlation function of spatially incoherent beams with a phase aberration in the beam path. On the basis of our experimental measurements and in the optical coherence theory, we show that the effects of phase disturbances, independently of their kind and without need of coordinate inversion, can be canceled out if the same phase is aligned in the signal and reference beam path. These results can be useful for imaging and microscopy through random media.

  19. Absolute calibration of a charge-coupled device camera with twin beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meda, A.; Ruo-Berchera, I., E-mail: i.ruoberchera@inrim.it; Degiovanni, I. P.

    2014-09-08

    We report on the absolute calibration of a Charge-Coupled Device (CCD) camera by exploiting quantum correlation. This method exploits a certain number of spatial pairwise quantum correlated modes produced by spontaneous parametric-down-conversion. We develop a measurement model accounting for all the uncertainty contributions, and we reach the relative uncertainty of 0.3% in low photon flux regime. This represents a significant step forward for the characterization of (scientific) CCDs used in mesoscopic light regime.

  20. Measurement potential of laser speckle velocimetry

    NASA Technical Reports Server (NTRS)

    Adrian, R. J.

    1982-01-01

    Laser speckle velocimetry, the measurement of fluid velocity by measuring the translation of speckle pattern or individual particles that are moving with the fluid, is described. The measurement is accomplished by illuminating the fluid with consecutive pulses of Laser Light and recording the images of the particles or the speckles on a double exposed photographic plate. The plate contains flow information throughout the image plane so that a single double exposure may provide data at hundreds or thousands of points in the illuminated region of the fluid. Conventional interrogation of the specklegram involves illuminating the plate to form Young's fringes, whose spacing is inversely proportional to the speckle separation. Subsequently the fringes are digitized and analyzed in a computer to determine their frequency and orientation, yielding the velocity magnitude and orientation. The Young's fringe technique is equivalent to performing a 2-D spatial correlation of the double exposed specklegram intensity pattern, and this observation suggests that correlation should be considered as an alternative processing method. The principle of the correlation technique is examined.

  1. Uncertainty Analysis of Downscaled CMIP5 Precipitation Data for Louisiana, USA

    NASA Astrophysics Data System (ADS)

    Sumi, S. J.; Tamanna, M.; Chivoiu, B.; Habib, E. H.

    2014-12-01

    The downscaled CMIP3 and CMIP5 Climate and Hydrology Projections dataset contains fine spatial resolution translations of climate projections over the contiguous United States developed using two downscaling techniques (monthly Bias Correction Spatial Disaggregation (BCSD) and daily Bias Correction Constructed Analogs (BCCA)). The objective of this study is to assess the uncertainty of the CMIP5 downscaled general circulation models (GCM). We performed an analysis of the daily, monthly, seasonal and annual variability of precipitation downloaded from the Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections website for the state of Louisiana, USA at 0.125° x 0.125° resolution. A data set of daily gridded observations of precipitation of a rectangular boundary covering Louisiana is used to assess the validity of 21 downscaled GCMs for the 1950-1999 period. The following statistics are computed using the CMIP5 observed dataset with respect to the 21 models: the correlation coefficient, the bias, the normalized bias, the mean absolute error (MAE), the mean absolute percentage error (MAPE), and the root mean square error (RMSE). A measure of variability simulated by each model is computed as the ratio of its standard deviation, in both space and time, to the corresponding standard deviation of the observation. The correlation and MAPE statistics are also computed for each of the nine climate divisions of Louisiana. Some of the patterns that we observed are: 1) Average annual precipitation rate shows similar spatial distribution for all the models within a range of 3.27 to 4.75 mm/day from Northwest to Southeast. 2) Standard deviation of summer (JJA) precipitation (mm/day) for the models maintains lower value than the observation whereas they have similar spatial patterns and range of values in winter (NDJ). 3) Correlation coefficients of annual precipitation of models against observation have a range of -0.48 to 0.36 with variable spatial distribution by model. 4) Most of the models show negative correlation coefficients in summer and positive in winter. 5) MAE shows similar spatial distribution for all the models within a range of 5.20 to 7.43 mm/day from Northwest to Southeast of Louisiana. 6) Highest values of correlation coefficients are found at seasonal scale within a range of 0.36 to 0.46.

  2. A twin study of spatial and non-spatial delayed response performance in middle age.

    PubMed

    Kremen, William S; Mai, Tuan; Panizzon, Matthew S; Franz, Carol E; Blankfeld, Howard M; Xian, Hong; Eisen, Seth A; Tsuang, Ming T; Lyons, Michael J

    2011-06-01

    Delayed alternation and object alternation are classic spatial and non-spatial delayed response tasks. We tested 632 middle-aged male veteran twins on variants of these tasks in order to compare test difficulty, measure their inter-correlation, test order effects, and estimate heritabilities (proportion of observed variance due to genetic influences). Non-spatial alternation (NSA), which may involve greater reliance on processing of subgoals, was significantly more difficult than spatial alternation (SA). Despite their similarities, NSA and SA scores were uncorrelated. NSA performance was worse when administered second; there was no SA order effect. NSA scores were modestly heritable (h(2)=.25; 26); SA was not. There was shared genetic variance between NSA scores and general intellectual ability (r(g)=.55; .67), but this also suggests genetic influences specific to NSA. Compared with findings from small, selected control samples, high "failure" rates in this community-based sample raise concerns about interpretation of brain dysfunction in elderly or patient samples. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Spatial entanglement of nonvacuum Gaussian states

    NASA Astrophysics Data System (ADS)

    Kiałka, Filip; Ahmadi, Mehdi; Dragan, Andrzej

    2016-06-01

    The vacuum state of a relativistic quantum field contains entanglement between regions separated by spacelike intervals. Such spatial entanglement can be revealed using an operational method introduced in [M. Rodriguez-Vazquez, M. del Rey, H. Westman, and J. Leon, Ann. Phys. (N.Y.) 351, 112 (2014), E. G. Brown, M. del Rey, H. Westman, J. Leon, and A. Dragan, Phys. Rev. D 91, 016005 (2015)]. In this approach, a cavity is instantaneously divided into halves by an introduction of an extra perfect mirror. Causal separation of the two regions of the cavity reveals nonlocal spatial correlations present in the field, which can be quantified by measuring particles generated in the process. We use this method to study spatial entanglement properties of nonvacuum Gaussian field states. In particular, we show how to enhance the amount of harvested spatial entanglement by an appropriate choice of the initial state of the field in the cavity. We find a counterintuitive influence of the initial entanglement between cavity modes on the spatial entanglement which is revealed by dividing the cavity in half.

  4. A Twin Study of Spatial and Non-Spatial Delayed Response Performance in Middle Age

    PubMed Central

    Kremen, William S.; Mai, Tuan; Panizzon, Matthew S.; Franz, Carol E.; Blankfeld, Howard M.; Xian, Hong; Eisen, Seth A.; Tsuang, Ming T.; Lyons, Michael J.

    2011-01-01

    Delayed alternation and object alternation are classic spatial and non-spatial delayed response tasks. We tested 632 middle-aged male veteran twins on variants of these tasks in order to compare test difficulty, measure their inter-correlation, test order effects, and estimate heritabilities (proportion of observed variance due to genetic influences). Non-spatial alternation (NSA), which may involve greater reliance on processing of subgoals, was significantly more difficult than spatial alternation (SA). Despite their similarities, NSA and SA scores were uncorrelated. NSA performance was worse when administered second; there was no SA order effect. NSA scores were modestly heritable (h2=.25; 26); SA was not. There was shared genetic variance between NSA scores and general intellectual ability (rg=.55; .67), but this also suggests genetic influences specific to NSA. Compared with findings from small, selected control samples, high “failure” rates in this community-based sample raise concerns about interpretation of brain dysfunction in elderly or patient samples. PMID:21477911

  5. Predicting evapotranspiration from sparse and dense vegetation communities in a semiarid environment using NDVI from satellite and ground measurements

    NASA Astrophysics Data System (ADS)

    Baghzouz, Malika

    One of the most critical issues associated with using satellite data-based products to study and estimate surface energy fluxes and other ecosystem processes, has been the lack of frequent acquisition at a spatial scale equivalent to or finer than the footprint of field measurements. In this study, we incorporated continuous field measurements based on using Normalized difference vegetation index (NDVI) time series analysis of individual shrub species and transect measurements within 625 m2 size plots equivalent to the Landsat-5 Thematic Mapper spatial resolution. The NDVI system was a dual channel SKR-1800 radiometer that simultaneously measured incident solar radiation and upward reflectance in two broadband red and near-infrared channels comparable to Landsat-5 TM band 3 and band 4, respectively. The two study sites identified as Spring Valley 1 site (SV1) and Snake Valley 1 site (SNK1) were chosen for having different species composition, soil texture and percent canopy cover. NDVI time-series of greasewood (Sarcobatus vermiculatus) from the SV1 site allowed for clear distinction between the main phenological stages of the entire growing season during the period from January to November, 2007. Comparison of greasewood NDVI values between the two sites revealed a significant temporal difference associated with early canopy development and early dry down of greasewood at the SNK1 site. NDVI time series values were also significantly different between sagebrush (Artemisia tridentata ) and rabbitbrush (Chrysothamnus viscidiflorus) at SV1 as well as between the two bare soil types at the two sites, indicating the ability of the ground-based NDVI to distinguish between different plant species as well as between different desert soils based on their moisture level and color. The difference in phenological characteristics of greasewood between the two sites and between sagebrush, rabbitbrush and greasewood within the same site were not captured by the spatially integrated Landsat NDVI acquired during repeated overpasses. Greasewood NDVI from the SNK1 site produced significant correlations with many of the measured plant parameters, most closely with chlorophyll index (r = 0.97), leaf area index (r = 0.98) and leaf xylem water potential (r = 0.93). Whereas greasewood NDVI from the SV1 site produced lower correlations ( r = 0.89, r = 0.73), or non significant correlations (r = 0.32) with the same parameters, respectively. Total percent cover was estimated at 17.5% for SV1 and at 63% for SNK1. Transect measurements provided detailed information with regard to the spectral properties of shrub species and soil types, differentiating the two sites, which was not possible to discern with the spatial resolution of Landsat. Correlation between transect NDVI data and Landsat NDVI produced an r of 0.79. While correlation between transect NDVI data and ground-based NDVI sensors produced an r of 0.73. The linear regression equation between daily ET measured by the eddy covariance method and Landsat NDVI yielded a strong relationship (r = 0.88) for data combined across the experimental period (May to September) and across the two sites. The ET prediction equation was improved (r2 = 0.86) by introducing net solar radiation (Rn) which was the meteorological variable that had the highest prediction of ET (r2 = 0.82). A high correlation was found between weighted ground-based sensor NDVI estimates and Landsat derived NDVI at the pixel scale (r = 0.97) for the two study sites combined over time. While results from this study in scaling ground-based NDVI measurements and estimating ET were very promising, further verification and improvement is needed to determine the performance level of this approach over larger heterogeneous areas and over extended time periods.

  6. Validity of the Wechsler Test of Adult Reading (WTAR): effort considered in a clinical sample of U.S. military veterans.

    PubMed

    Whitney, Kriscinda A; Shepard, Polly H; Mariner, Jennifer; Mossbarger, Brad; Herman, Steven M

    2010-07-01

    The current study represents an examination of the construct validity of the Wechsler Test of Adult Reading (WTAR) among a sample of U.S. military veterans referred for outpatient neuropsychological evaluation that included a measure of negative response bias, namely, the Test of Memory Malingering (TOMM). This retrospective data analysis examined the relationship between the WTAR and measures of current verbal general intellectual function and current cognitive skills. Findings showed that, among patients passing the TOMM (N = 98), WTAR scores were most highly correlated with current verbal IQ but also showed significant correlations with verbal memory and lesser, but still significant, correlations with measures of visual-spatial memory. Discriminant validity for the WTAR was also shown among the group passing the TOMM in the sense that the WTAR, which is designed to measure verbal premorbid general intellectual skill, was not as highly correlated with measures of learning and memory as was a measure of current verbal general intellectual skill. Whereas scores on most study measures did significantly differ between the groups that passed versus failed the TOMM (N = 26), scores on the WTAR did not, suggesting that the WTAR may remain robust even in the face of suboptimal effort.

  7. Modeling space-time correlations of velocity fluctuations in wind farms

    NASA Astrophysics Data System (ADS)

    Lukassen, Laura J.; Stevens, Richard J. A. M.; Meneveau, Charles; Wilczek, Michael

    2018-07-01

    An analytical model for the streamwise velocity space-time correlations in turbulent flows is derived and applied to the special case of velocity fluctuations in large wind farms. The model is based on the Kraichnan-Tennekes random sweeping hypothesis, capturing the decorrelation in time while including a mean wind velocity in the streamwise direction. In the resulting model, the streamwise velocity space-time correlation is expressed as a convolution of the pure space correlation with an analytical temporal decorrelation kernel. Hence, the spatio-temporal structure of velocity fluctuations in wind farms can be derived from the spatial correlations only. We then explore the applicability of the model to predict spatio-temporal correlations in turbulent flows in wind farms. Comparisons of the model with data from a large eddy simulation of flow in a large, spatially periodic wind farm are performed, where needed model parameters such as spatial and temporal integral scales and spatial correlations are determined from the large eddy simulation. Good agreement is obtained between the model and large eddy simulation data showing that spatial data may be used to model the full temporal structure of fluctuations in wind farms.

  8. Multivariate analysis of scale-dependent associations between bats and landscape structure

    USGS Publications Warehouse

    Gorresen, P.M.; Willig, M.R.; Strauss, R.E.

    2005-01-01

    The assessment of biotic responses to habitat disturbance and fragmentation generally has been limited to analyses at a single spatial scale. Furthermore, methods to compare responses between scales have lacked the ability to discriminate among patterns related to the identity, strength, or direction of associations of biotic variables with landscape attributes. We present an examination of the relationship of population- and community-level characteristics of phyllostomid bats with habitat features that were measured at multiple spatial scales in Atlantic rain forest of eastern Paraguay. We used a matrix of partial correlations between each biotic response variable (i.e., species abundance, species richness, and evenness) and a suite of landscape characteristics to represent the multifaceted associations of bats with spatial structure. Correlation matrices can correspond based on either the strength (i.e., magnitude) or direction (i.e., sign) of association. Therefore, a simulation model independently evaluated correspondence in the magnitude and sign of correlations among scales, and results were combined via a meta-analysis to provide an overall test of significance. Our approach detected both species-specific differences in response to landscape structure and scale dependence in those responses. This matrix-simulation approach has broad applicability to ecological situations in which multiple intercorrelated factors contribute to patterns in space or time. ?? 2005 by the Ecological Society of America.

  9. Separate but correlated: The latent structure of space and mathematics across development.

    PubMed

    Mix, Kelly S; Levine, Susan C; Cheng, Yi-Ling; Young, Chris; Hambrick, D Zachary; Ping, Raedy; Konstantopoulos, Spyros

    2016-09-01

    The relations among various spatial and mathematics skills were assessed in a cross-sectional study of 854 children from kindergarten, third, and sixth grades (i.e., 5 to 13 years of age). Children completed a battery of spatial mathematics tests and their scores were submitted to exploratory factor analyses both within and across domains. In the within domain analyses, all of the measures formed single factors at each age, suggesting consistent, unitary structures across this age range. Yet, as in previous work, the 2 domains were highly correlated, both in terms of overall composite score and pairwise comparisons of individual tasks. When both spatial and mathematics scores were submitted to the same factor analysis, the 2 domain specific factors again emerged, but there also were significant cross-domain factor loadings that varied with age. Multivariate regressions replicated the factor analysis and further revealed that mental rotation was the best predictor of mathematical performance in kindergarten, and visual-spatial working memory was the best predictor of mathematical performance in sixth grade. The mathematical tasks that predicted the most variance in spatial skill were place value (K, 3rd, 6th), word problems (3rd, 6th), calculation (K), fraction concepts (3rd), and algebra (6th). Thus, although spatial skill and mathematics each have strong internal structures, they also share significant overlap, and have particularly strong cross-domain relations for certain tasks. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  10. In vivo macular pigment measurements: a comparison of resonance Raman spectroscopy and heterochromatic flicker photometry

    PubMed Central

    Hogg, R E; Anderson, R S; Stevenson, M R; Zlatkova, M B; Chakravarthy, U

    2007-01-01

    Aim To investigate whether two methods of measuring macular pigment—namely, heterochromatic flicker photometry (HFP) and resonance Raman spectroscopy (RRS)—yield comparable data. Methods Macular pigment was measured using HFP and RRS in the right eye of 107 participants aged 20–79 years. Correlations between methods were sought and regression models generated. RRS was recorded as Raman counts and HFP as macular pigment optical density (MPOD). The average of the top three of five Raman counts was compared with MPOD obtained at 0.5° eccentricity, and an integrated measure (spatial profile; MPODsp) computed from four stimulus sizes on HFP. Results The coefficient of variation was 12.0% for MPODsp and 13.5% for Raman counts. MPODsp exhibited significant correlations with Raman counts (r = 0.260, p = 0.012), whereas MPOD at 0.5° did not correlate significantly (r = 0.163, p = 0.118). MPODsp was not significantly correlated with age (p = 0.062), whereas MPOD at 0.5° was positively correlated (p = 0.011). Raman counts showed a significant decrease with age (p = 0.002) and were significantly lower when pupil size was smaller (p = 0.015). Conclusions Despite a statistically significant correlation, the correlations were weak, with those in excess of 90% of the variance between MPODsp and Raman counts remaining unexplained, meriting further research. PMID:16825281

  11. Effects of spatial heterogeneity on butterfly species richness in Rocky Mountain National Park, CO, USA

    USGS Publications Warehouse

    Kumar, S.; Simonson, S.E.; Stohlgren, T.J.

    2009-01-01

    We investigated butterfly responses to plot-level characteristics (plant species richness, vegetation height, and range in NDVI [normalized difference vegetation index]) and spatial heterogeneity in topography and landscape patterns (composition and configuration) at multiple spatial scales. Stratified random sampling was used to collect data on butterfly species richness from seventy-six 20 ?? 50 m plots. The plant species richness and average vegetation height data were collected from 76 modified-Whittaker plots overlaid on 76 butterfly plots. Spatial heterogeneity around sample plots was quantified by measuring topographic variables and landscape metrics at eight spatial extents (radii of 300, 600 to 2,400 m). The number of butterfly species recorded was strongly positively correlated with plant species richness, proportion of shrubland and mean patch size of shrubland. Patterns in butterfly species richness were negatively correlated with other variables including mean patch size, average vegetation height, elevation, and range in NDVI. The best predictive model selected using Akaike's Information Criterion corrected for small sample size (AICc), explained 62% of the variation in butterfly species richness at the 2,100 m spatial extent. Average vegetation height and mean patch size were among the best predictors of butterfly species richness. The models that included plot-level information and topographic variables explained relatively less variation in butterfly species richness, and were improved significantly after including landscape metrics. Our results suggest that spatial heterogeneity greatly influences patterns in butterfly species richness, and that it should be explicitly considered in conservation and management actions. ?? 2008 Springer Science+Business Media B.V.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thampy, V.; Chen, X. M.; Cao, Y.

    Charge-density-wave (CDW) correlations feature prominently in the phase diagram of the cuprates, motivating competing theories of whether fluctuating CDW correlations aid superconductivity or whether static CDW order coexists with superconductivity in inhomogeneous or spatially modulated states. Here we report Cu L-edge resonant x-ray photon correlation spectroscopy measurements of CDW correlations in superconducting La 2–xBa xCuO 4, x = 0.11. Static CDW order is shown to exist in the superconducting state at low temperatures and to persist up to at least 85% of the CDW transition temperature. As a result, we discuss the implications of our observations for how nominally competingmore » order parameters can coexist in the cuprates.« less

  13. Structuring Stokes correlation functions using vector-vortex beam

    NASA Astrophysics Data System (ADS)

    Kumar, Vijay; Anwar, Ali; Singh, R. P.

    2018-01-01

    Higher order statistical correlations of the optical vector speckle field, formed due to scattering of a vector-vortex beam, are explored. Here, we report on the experimental construction of the Stokes parameters covariance matrix, consisting of all possible spatial Stokes parameters correlation functions. We also propose and experimentally realize a new Stokes correlation functions called Stokes field auto correlation functions. It is observed that the Stokes correlation functions of the vector-vortex beam will be reflected in the respective Stokes correlation functions of the corresponding vector speckle field. The major advantage of proposing Stokes correlation functions is that the Stokes correlation function can be easily tuned by manipulating the polarization of vector-vortex beam used to generate vector speckle field and to get the phase information directly from the intensity measurements. Moreover, this approach leads to a complete experimental Stokes characterization of a broad range of random fields.

  14. CORRELATOR 5.2 - A program for interactive lithostratigraphic correlation of wireline logs

    USGS Publications Warehouse

    Olea, R.A.

    2004-01-01

    The limited radius of investigation of petrophysical measurements made in boreholes and the relatively large distances between wells result in an incomplete sensing of the subsurface through well logging. CORRELATOR is a program for estimating geological properties between logged boreholes. An initial and fundamental step is the lithostratigraphic correlation of logs in different wells. The method employed by the program closely emulates the process of visual inspection used by experienced subsurface geologists in manual correlation. Mathematically, the determination of lithostratigraphical equivalence is based on the simultaneous assessment of similarity in shale content, similarity in the patterns of vertical variation in a petrophysical property that is measured with high vertical resolution, and spatial consistency of stratigraphic relationships as determined by an expert system. Multiple additional options for processing log readings allow maximization in the extraction of information from pairs of logs per well and great flexibility in the final display of results in the form of cross sections and dip diagrams. ?? 2004 Elsevier Ltd. All rights reserved.

  15. Influence of macular pigment optical density spatial distribution on intraocular scatter.

    PubMed

    Putnam, Christopher M; Bland, Pauline J; Bassi, Carl J

    This study evaluated the summed measures of macular pigment optical density (MPOD) spatial distribution and their effects on intraocular scatter using a commercially available device (C-Quant, Oculus, USA). A customized heterochromatic flicker photometer (cHFP) device was used to measure MPOD spatial distribution across the central 16° using a 1° stimulus. MPOD was calculated as a discrete measure and summed measures across the central 1°, 3.3°, 10° and 16° diameters. Intraocular scatter was determined as a mean of 5 trials in which reliability and repeatability measures were met using the C-Quant. MPOD spatial distribution maps were constructed and the effects of both discrete and summed values on intraocular scatter were examined. Spatial mapping identified mean values for discrete MPOD [0.32 (s.d.=0.08)], MPOD summed across central 1° [0.37 (s.d.=0.11)], MPOD summed across central 3.3° [0.85 (s.d.=0.20)], MPOD summed across central 10° [1.60 (s.d.=0.35)] and MPOD summed across central 16° [1.78 (s.d.=0.39)]. Mean intraocular scatter was 0.83 (s.d.=0.16) log units. While there were consistent trends for an inverse relationship between MPOD and scatter, these relationships were not statistically significant. Correlations between the highest and lowest quartiles of MPOD within the central 1° were near significance. While there was an overall trend of decreased intraocular forward scatter with increased MPOD consistent with selective short wavelength visible light attenuation, neither discrete nor summed values of MPOD significantly influence intraocular scatter as measured by the C-Quant device. Published by Elsevier España, S.L.U.

  16. Comprehending 3D Diagrams: Sketching to Support Spatial Reasoning.

    PubMed

    Gagnier, Kristin M; Atit, Kinnari; Ormand, Carol J; Shipley, Thomas F

    2017-10-01

    Science, technology, engineering, and mathematics (STEM) disciplines commonly illustrate 3D relationships in diagrams, yet these are often challenging for students. Failing to understand diagrams can hinder success in STEM because scientific practice requires understanding and creating diagrammatic representations. We explore a new approach to improving student understanding of diagrams that convey 3D relations that is based on students generating their own predictive diagrams. Participants' comprehension of 3D spatial diagrams was measured in a pre- and post-design where students selected the correct 2D slice through 3D geologic block diagrams. Generating sketches that predicated the internal structure of a model led to greater improvement in diagram understanding than visualizing the interior of the model without sketching, or sketching the model without attempting to predict unseen spatial relations. In addition, we found a positive correlation between sketched diagram accuracy and improvement on the diagram comprehension measure. Results suggest that generating a predictive diagram facilitates students' abilities to make inferences about spatial relationships in diagrams. Implications for use of sketching in supporting STEM learning are discussed. Copyright © 2016 Cognitive Science Society, Inc.

  17. Spatial Variation in Soil Properties among North American Ecosystems and Guidelines for Sampling Designs

    PubMed Central

    Loescher, Henry; Ayres, Edward; Duffy, Paul; Luo, Hongyan; Brunke, Max

    2014-01-01

    Soils are highly variable at many spatial scales, which makes designing studies to accurately estimate the mean value of soil properties across space challenging. The spatial correlation structure is critical to develop robust sampling strategies (e.g., sample size and sample spacing). Current guidelines for designing studies recommend conducting preliminary investigation(s) to characterize this structure, but are rarely followed and sampling designs are often defined by logistics rather than quantitative considerations. The spatial variability of soils was assessed across ∼1 ha at 60 sites. Sites were chosen to represent key US ecosystems as part of a scaling strategy deployed by the National Ecological Observatory Network. We measured soil temperature (Ts) and water content (SWC) because these properties mediate biological/biogeochemical processes below- and above-ground, and quantified spatial variability using semivariograms to estimate spatial correlation. We developed quantitative guidelines to inform sample size and sample spacing for future soil studies, e.g., 20 samples were sufficient to measure Ts to within 10% of the mean with 90% confidence at every temperate and sub-tropical site during the growing season, whereas an order of magnitude more samples were needed to meet this accuracy at some high-latitude sites. SWC was significantly more variable than Ts at most sites, resulting in at least 10× more SWC samples needed to meet the same accuracy requirement. Previous studies investigated the relationship between the mean and variability (i.e., sill) of SWC across space at individual sites across time and have often (but not always) observed the variance or standard deviation peaking at intermediate values of SWC and decreasing at low and high SWC. Finally, we quantified how far apart samples must be spaced to be statistically independent. Semivariance structures from 10 of the 12-dominant soil orders across the US were estimated, advancing our continental-scale understanding of soil behavior. PMID:24465377

  18. Analysis of field-scale spatial correlations and variations of soil nutrients using geostatistics.

    PubMed

    Liu, Ruimin; Xu, Fei; Yu, Wenwen; Shi, Jianhan; Zhang, Peipei; Shen, Zhenyao

    2016-02-01

    Spatial correlations and soil nutrient variations are important for soil nutrient management. They help to reduce the negative impacts of agricultural nonpoint source pollution. Based on the sampled available nitrogen (AN), available phosphorus (AP), and available potassium (AK), soil nutrient data from 2010, the spatial correlation, was analyzed, and the probabilities of the nutrient's abundance or deficiency were discussed. This paper presents a statistical approach to spatial analysis, the spatial correlation analysis (SCA), which was originally developed for describing heterogeneity in the presence of correlated variation and based on ordinary kriging (OK) results. Indicator kriging (IK) was used to assess the susceptibility of excess of soil nutrients based on crop needs. The kriged results showed there was a distinct spatial variability in the concentration of all three soil nutrients. High concentrations of these three soil nutrients were found near Anzhou. As the distance from the center of town increased, the concentration of the soil nutrients gradually decreased. Spatially, the relationship between AN and AP was negative, and the relationship between AP and AK was not clear. The IK results showed that there were few areas with a risk of AN and AP overabundance. However, almost the entire study region was at risk of AK overabundance. Based on the soil nutrient distribution results, it is clear that the spatial variability of the soil nutrients differed throughout the study region. This spatial soil nutrient variability might be caused by different fertilizer types and different fertilizing practices.

  19. Using SMOS brightness temperature and derived surface-soil moisture to characterize surface conditions and validate land surface models.

    NASA Astrophysics Data System (ADS)

    Polcher, Jan; Barella-Ortiz, Anaïs; Piles, Maria; Gelati, Emiliano; de Rosnay, Patricia

    2017-04-01

    The SMOS satellite, operated by ESA, observes the surface in the L-band. On continental surface these observations are sensitive to moisture and in particular surface-soil moisture (SSM). In this presentation we will explore how the observations of this satellite can be exploited over the Iberian Peninsula by comparing its results with two land surface models : ORCHIDEE and HTESSEL. Measured and modelled brightness temperatures show a good agreement in their temporal evolution, but their spatial structures are not consistent. An empirical orthogonal function analysis of the brightness temperature's error identifies a dominant structure over the south-west of the Iberian Peninsula which evolves during the year and is maximum in autumn and winter. Hypotheses concerning forcing-induced biases and assumptions made in the radiative transfer model are analysed to explain this inconsistency, but no candidate is found to be responsible for the weak spatial correlations. The analysis of spatial inconsistencies between modelled and measured TBs is important, as these can affect the estimation of geophysical variables and TB assimilation in operational models, as well as result in misleading validation studies. When comparing the surface-soil moisture of the models with the product derived operationally by ESA from SMOS observations similar results are found. The spatial correlation over the IP between SMOS and ORCHIDEE SSM estimates is poor (ρ 0.3). A single value decomposition (SVD) analysis of rainfall and SSM shows that the co-varying patterns of these variables are in reasonable agreement between both products. Moreover the first three SVD soil moisture patterns explain over 80% of the SSM variance simulated by the model while the explained fraction is only 52% of the remotely sensed values. These results suggest that the rainfall-driven soil moisture variability may not account for the poor spatial correlation between SMOS and ORCHIDEE products. Other reasons have to be sought to explain the poor agreement in spatial patterns between satellite derived and modelled SSM. This presentation will hopefully contribute to the discussion of how SMOS and other observations can be used to prepare, carry-out and exploit a field campaign over the Iberian Peninsula which aims at improving our understanding of semi-arid land surface processes.

  20. Reconstruction of a Three Hourly 1-km Land Surface Air Temperature Dataset in the Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Ding, L.

    2017-12-01

    Land surface air temperature (SAT) is an important parameter in the modeling of radiation balance and energy budget of the earth surface. Generally, SAT is measured at ground meteorological stations; then SAT mapping is possible though a spatial interpolation process. The interpolated SAT map relies on the spatial distribution of ground stations, the terrain, and many other factors; thus, it has great uncertainties in regions with complicated terrain. Instead, SAT map can also be obtained through physical modeling of interactions between the land surface and the atmosphere. Such dataset generally has coarse spatial resolution (e.g. coarser than 0.1°) and cannot satisfy the applications at fine scales, e.g. 1 km. This presentation reports the reconstruction of a three hourly 1-km SAT dataset from 2001 to 2015 over the Qinghai-Tibet Plateau. The terrain in the Qinghai-Tibet Plateau, especially in the eastern part, is extremely complicated. Two SAT datasets with good qualities are used in this study. The first one is from the 3h China Meteorological Forcing Dataset with a 0.1° resolution released by the Institute of Tibetan Plateau Research, Chinese Academy of Sciences (Yang et al., 2010); the second one is from the ERA-Interim product with the same temporal resolution and a 0.125° resolution. A statistical approach is developed to downscale the spatial resolution of the derived SAT to 1-km. The elevation and the normalized difference vegetation index (NDVI) are selected as two scaling factors in the downscaling approach. Results demonstrate there is significantly negative correlation between the SAT and elevation in all seasons; there is also significantly negative correlation between the SAT and NDVI in the vegetation growth seasons, while the correlation decreases in the other seasons. Therefore, a temporally dynamic downscaling approach is feasible to enhance the spatial resolution of the SAT. Compared with the SAT at the 0.1° or 0.125°, the reconstructed 1-km SAT can provide much more spatial details in areas with complicated terrain. Additionally, the 1-km SAT agrees well with the ground measured air temperatures as well as the SAT before downscaling. The reconstructed SAT will be beneficial for the modeling of surface radiation balance and energy budget over the Qinghai-Tibet Plateau.

  1. Novel probabilistic models of spatial genetic ancestry with applications to stratification correction in genome-wide association studies.

    PubMed

    Bhaskar, Anand; Javanmard, Adel; Courtade, Thomas A; Tse, David

    2017-03-15

    Genetic variation in human populations is influenced by geographic ancestry due to spatial locality in historical mating and migration patterns. Spatial population structure in genetic datasets has been traditionally analyzed using either model-free algorithms, such as principal components analysis (PCA) and multidimensional scaling, or using explicit spatial probabilistic models of allele frequency evolution. We develop a general probabilistic model and an associated inference algorithm that unify the model-based and data-driven approaches to visualizing and inferring population structure. Our spatial inference algorithm can also be effectively applied to the problem of population stratification in genome-wide association studies (GWAS), where hidden population structure can create fictitious associations when population ancestry is correlated with both the genotype and the trait. Our algorithm Geographic Ancestry Positioning (GAP) relates local genetic distances between samples to their spatial distances, and can be used for visually discerning population structure as well as accurately inferring the spatial origin of individuals on a two-dimensional continuum. On both simulated and several real datasets from diverse human populations, GAP exhibits substantially lower error in reconstructing spatial ancestry coordinates compared to PCA. We also develop an association test that uses the ancestry coordinates inferred by GAP to accurately account for ancestry-induced correlations in GWAS. Based on simulations and analysis of a dataset of 10 metabolic traits measured in a Northern Finland cohort, which is known to exhibit significant population structure, we find that our method has superior power to current approaches. Our software is available at https://github.com/anand-bhaskar/gap . abhaskar@stanford.edu or ajavanma@usc.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  2. Spatial Autocorrelation Approaches to Testing Residuals from Least Squares Regression.

    PubMed

    Chen, Yanguang

    2016-01-01

    In geo-statistics, the Durbin-Watson test is frequently employed to detect the presence of residual serial correlation from least squares regression analyses. However, the Durbin-Watson statistic is only suitable for ordered time or spatial series. If the variables comprise cross-sectional data coming from spatial random sampling, the test will be ineffectual because the value of Durbin-Watson's statistic depends on the sequence of data points. This paper develops two new statistics for testing serial correlation of residuals from least squares regression based on spatial samples. By analogy with the new form of Moran's index, an autocorrelation coefficient is defined with a standardized residual vector and a normalized spatial weight matrix. Then by analogy with the Durbin-Watson statistic, two types of new serial correlation indices are constructed. As a case study, the two newly presented statistics are applied to a spatial sample of 29 China's regions. These results show that the new spatial autocorrelation models can be used to test the serial correlation of residuals from regression analysis. In practice, the new statistics can make up for the deficiencies of the Durbin-Watson test.

  3. The reduced serum free triiodothyronine and increased dorsal hippocampal SNAP-25 and Munc18-1 had existed in middle-aged CD-1 mice with mild spatial cognitive impairment.

    PubMed

    Cao, Lei; Jiang, Wei; Wang, Fang; Yang, Qi-Gang; Wang, Chao; Chen, Yong-Ping; Chen, Gui-Hai

    2013-12-02

    Changes of synaptic proteins in highlighted brain regions and decreased serum thyroid hormones (THs) have been implied in age-related learning and memory decline. Previously, we showed significant pairwise correlations among markedly impaired spatial learning and memory ability, decreased serum free triiodothyronine (FT3) and increased hippocampal SNAP-25 and Munc18-1 in old Kunming mice. However, whether these changes and the correlations occur in middle-age mice remains unclear. Since this age is one of the best stages to study age-related cognitive decline, we explored the spatial learning and memory ability, serum THs, cerebral SNAP-25 and Munc18-1 levels and their relationships of middle-aged mice in this study. The learning and memory abilities of 35 CD-1 mice (19 mice aged 6 months and 16 mice aged 12 months) were measured with a radial six-arm water maze (RAWM). The SNAP-25 and Munc18-1 levels were semi-quantified by Western blotting and the serum THs were detected by radioimmunoassay. The results showed the middle-aged mice had decreased serum FT3, increased dorsal hippocampal (DH) SNAP-25 and Munc18-1, and many or long number of errors and latency in both learning and memory phases of the RAWM. The Pearson's correlation test showed that the DH SANP-25 and Munc18-1 levels were positively correlated with the number of errors and latency in learning phases of the RAWM. Meanwhile, the DH SANP-25 and Munc18-1 levels negatively correlated with the serum FT3 level. These results suggested that reduced FT3 with increased DH SNAP-25 and Munc18-1 levels might be involved in the spatial learning ability decline in the middle-aged mice. © 2013 Elsevier B.V. All rights reserved.

  4. Adaptive foveated single-pixel imaging with dynamic supersampling

    PubMed Central

    Phillips, David B.; Sun, Ming-Jie; Taylor, Jonathan M.; Edgar, Matthew P.; Barnett, Stephen M.; Gibson, Graham M.; Padgett, Miles J.

    2017-01-01

    In contrast to conventional multipixel cameras, single-pixel cameras capture images using a single detector that measures the correlations between the scene and a set of patterns. However, these systems typically exhibit low frame rates, because to fully sample a scene in this way requires at least the same number of correlation measurements as the number of pixels in the reconstructed image. To mitigate this, a range of compressive sensing techniques have been developed which use a priori knowledge to reconstruct images from an undersampled measurement set. Here, we take a different approach and adopt a strategy inspired by the foveated vision found in the animal kingdom—a framework that exploits the spatiotemporal redundancy of many dynamic scenes. In our system, a high-resolution foveal region tracks motion within the scene, yet unlike a simple zoom, every frame delivers new spatial information from across the entire field of view. This strategy rapidly records the detail of quickly changing features in the scene while simultaneously accumulating detail of more slowly evolving regions over several consecutive frames. This architecture provides video streams in which both the resolution and exposure time spatially vary and adapt dynamically in response to the evolution of the scene. The degree of local frame rate enhancement is scene-dependent, but here, we demonstrate a factor of 4, thereby helping to mitigate one of the main drawbacks of single-pixel imaging techniques. The methods described here complement existing compressive sensing approaches and may be applied to enhance computational imagers that rely on sequential correlation measurements. PMID:28439538

  5. Retinal Layer Abnormalities as Biomarkers of Schizophrenia.

    PubMed

    Samani, Niraj N; Proudlock, Frank A; Siram, Vasantha; Suraweera, Chathurie; Hutchinson, Claire; Nelson, Christopher P; Al-Uzri, Mohammed; Gottlob, Irene

    2018-06-06

    Schizophrenia is associated with several brain deficits, as well as visual processing deficits, but clinically useful biomarkers are elusive. We hypothesized that retinal layer changes, noninvasively visualized using spectral-domain optical coherence tomography (SD-OCT), may represent a possible "window" to these abnormalities. A Leica EnvisuTM SD-OCT device was used to obtain high-resolution central foveal B-scans in both eyes of 35 patients with schizophrenia and 50 demographically matched controls. Manual retinal layer segmentation was performed to acquire individual and combined layer thickness measurements in 3 macular regions. Contrast sensitivity was measured at 3 spatial frequencies in a subgroup of each cohort. Differences were compared using adjusted linear models and significantly different layer measures in patients underwent Spearman Rank correlations with contrast sensitivity, quantified symptoms severity, disease duration, and antipsychotic medication dose. Total retinal and photoreceptor complex thickness was reduced in all regions in patients (P < .0001). Segmentation revealed consistent thinning of the outer nuclear layer (P < .001) and inner segment layer (P < .05), as well as a pattern of parafoveal ganglion cell changes. Low spatial frequency contrast sensitivity was reduced in patients (P = .002) and correlated with temporal parafoveal ganglion cell complex thinning (R = .48, P = .01). Negative symptom severity was inversely correlated with foveal photoreceptor complex thickness (R = -.54, P = .001) and outer nuclear layer thickness (R = -.47, P = .005). Our novel findings demonstrate considerable retinal layer abnormalities in schizophrenia that are related to clinical features and visual function. With time, SD-OCT could provide easily-measurable biomarkers to facilitate clinical assessment and further our understanding of the disease.

  6. Short-Term Effects of Climatic Variables on Hand, Foot, and Mouth Disease in Mainland China, 2008–2013: A Multilevel Spatial Poisson Regression Model Accounting for Overdispersion

    PubMed Central

    Yang, Fang; Yang, Min; Hu, Yuehua; Zhang, Juying

    2016-01-01

    Background Hand, Foot, and Mouth Disease (HFMD) is a worldwide infectious disease. In China, many provinces have reported HFMD cases, especially the south and southwest provinces. Many studies have found a strong association between the incidence of HFMD and climatic factors such as temperature, rainfall, and relative humidity. However, few studies have analyzed cluster effects between various geographical units. Methods The nonlinear relationships and lag effects between weekly HFMD cases and climatic variables were estimated for the period of 2008–2013 using a polynomial distributed lag model. The extra-Poisson multilevel spatial polynomial model was used to model the exact relationship between weekly HFMD incidence and climatic variables after considering cluster effects, provincial correlated structure of HFMD incidence and overdispersion. The smoothing spline methods were used to detect threshold effects between climatic factors and HFMD incidence. Results The HFMD incidence spatial heterogeneity distributed among provinces, and the scale measurement of overdispersion was 548.077. After controlling for long-term trends, spatial heterogeneity and overdispersion, temperature was highly associated with HFMD incidence. Weekly average temperature and weekly temperature difference approximate inverse “V” shape and “V” shape relationships associated with HFMD incidence. The lag effects for weekly average temperature and weekly temperature difference were 3 weeks and 2 weeks. High spatial correlated HFMD incidence were detected in northern, central and southern province. Temperature can be used to explain most of variation of HFMD incidence in southern and northeastern provinces. After adjustment for temperature, eastern and Northern provinces still had high variation HFMD incidence. Conclusion We found a relatively strong association between weekly HFMD incidence and weekly average temperature. The association between the HFMD incidence and climatic variables spatial heterogeneity distributed across provinces. Future research should explore the risk factors that cause spatial correlated structure or high variation of HFMD incidence which can be explained by temperature. When analyzing association between HFMD incidence and climatic variables, spatial heterogeneity among provinces should be evaluated. Moreover, the extra-Poisson multilevel model was capable of modeling the association between overdispersion of HFMD incidence and climatic variables. PMID:26808311

  7. Short-Term Effects of Climatic Variables on Hand, Foot, and Mouth Disease in Mainland China, 2008-2013: A Multilevel Spatial Poisson Regression Model Accounting for Overdispersion.

    PubMed

    Liao, Jiaqiang; Yu, Shicheng; Yang, Fang; Yang, Min; Hu, Yuehua; Zhang, Juying

    2016-01-01

    Hand, Foot, and Mouth Disease (HFMD) is a worldwide infectious disease. In China, many provinces have reported HFMD cases, especially the south and southwest provinces. Many studies have found a strong association between the incidence of HFMD and climatic factors such as temperature, rainfall, and relative humidity. However, few studies have analyzed cluster effects between various geographical units. The nonlinear relationships and lag effects between weekly HFMD cases and climatic variables were estimated for the period of 2008-2013 using a polynomial distributed lag model. The extra-Poisson multilevel spatial polynomial model was used to model the exact relationship between weekly HFMD incidence and climatic variables after considering cluster effects, provincial correlated structure of HFMD incidence and overdispersion. The smoothing spline methods were used to detect threshold effects between climatic factors and HFMD incidence. The HFMD incidence spatial heterogeneity distributed among provinces, and the scale measurement of overdispersion was 548.077. After controlling for long-term trends, spatial heterogeneity and overdispersion, temperature was highly associated with HFMD incidence. Weekly average temperature and weekly temperature difference approximate inverse "V" shape and "V" shape relationships associated with HFMD incidence. The lag effects for weekly average temperature and weekly temperature difference were 3 weeks and 2 weeks. High spatial correlated HFMD incidence were detected in northern, central and southern province. Temperature can be used to explain most of variation of HFMD incidence in southern and northeastern provinces. After adjustment for temperature, eastern and Northern provinces still had high variation HFMD incidence. We found a relatively strong association between weekly HFMD incidence and weekly average temperature. The association between the HFMD incidence and climatic variables spatial heterogeneity distributed across provinces. Future research should explore the risk factors that cause spatial correlated structure or high variation of HFMD incidence which can be explained by temperature. When analyzing association between HFMD incidence and climatic variables, spatial heterogeneity among provinces should be evaluated. Moreover, the extra-Poisson multilevel model was capable of modeling the association between overdispersion of HFMD incidence and climatic variables.

  8. A pilot study on the correlation between fat fraction values and glucose uptake values in supraclavicular fat by simultaneous PET/MRI.

    PubMed

    McCallister, Andrew; Zhang, Le; Burant, Alex; Katz, Laurence; Branca, Rosa Tamara

    2017-11-01

    To assess the spatial correlation between MRI and 18F-fludeoxyglucose positron emission tomography (FDG-PET) maps of human brown adipose tissue (BAT) and to measure differences in fat fraction (FF) between glucose avid and non-avid regions of the supraclavicular fat depot using a hybrid FDG-PET/MR scanner. In 16 healthy volunteers, mean age of 30 and body mass index of 26, FF, R2*, and FDG uptake maps were acquired simultaneously using a hybrid PET/MR system while employing an individualized cooling protocol to maximally stimulate BAT. Fourteen of the 16 volunteers reported BAT-positive FDG-PET scans. MR FF maps of BAT correlate well with combined FDG-PET/MR maps of BAT only in subjects with intense glucose uptake. The results indicate that the extent of the spatial correlation positively correlates with maximum FDG uptake in the supraclavicular fat depot. No consistent, significant differences were found in FF or R2* between FDG avid and non-avid supraclavicular fat regions. In a few FDG-positive subjects, a small but significant linear decrease in BAT FF was observed during BAT stimulation. MR FF, when used in conjunction with FDG uptake maps, can be seen as a valuable, radiation-free alternative to CT and can be used to measure tissue hydration and lipid consumption in some subjects. Magn Reson Med 78:1922-1932, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  9. Spatial characteristics of observed precipitation fields: A catalog of summer storms in Arizona, Volume 2

    NASA Technical Reports Server (NTRS)

    Fennessey, N. M.; Eagleson, P. S.; Qinliang, W.; Rodriguez-Iturbe, I.

    1986-01-01

    The parameters of the conceptual model are evaluated from the analysis of eight years of summer rainstorm data from the dense raingage network in the Walnut Gulch catchment near Tucson, Arizona. The occurrence of measurable rain at any one of the 93 gages during a noon to noon day defined a storm. The total rainfall at each of the gages during a storm day constituted the data set for a single storm. The data are interpolated onto a fine grid and analyzed to obtain: an isohyetal plot at 2 mm intervals, the first three moments of point storm depth, the spatial correlation function, the spatial variance function, and the spatial distribution of the total storm depth. The description of the data analysis and the computer programs necessary to read the associated data tapes are presented.

  10. Walk, Look, Remember: The Influence of the Gallery's Spatial Layout on Human Memory for an Art Exhibition.

    PubMed

    Krukar, Jakub

    2014-09-01

    The spatial organisation of museums and its influence on the visitor experience has been the subject of numerous studies. Previous research, despite reporting some actual behavioural correlates, rarely had the possibility to investigate the cognitive processes of the art viewers. In the museum context, where spatial layout is one of the most powerful curatorial tools available, attention and memory can be measured as a means of establishing whether or not the gallery fulfils its function as a space for contemplating art. In this exploratory experiment, 32 participants split into two groups explored an experimental, non-public exhibition and completed two unanticipated memory tests afterwards. The results show that some spatial characteristics of an exhibition can inhibit the recall of pictures and shift the focus to perceptual salience of the artworks.

  11. Walk, Look, Remember: The Influence of the Gallery’s Spatial Layout on Human Memory for an Art Exhibition

    PubMed Central

    Krukar, Jakub

    2014-01-01

    The spatial organisation of museums and its influence on the visitor experience has been the subject of numerous studies. Previous research, despite reporting some actual behavioural correlates, rarely had the possibility to investigate the cognitive processes of the art viewers. In the museum context, where spatial layout is one of the most powerful curatorial tools available, attention and memory can be measured as a means of establishing whether or not the gallery fulfils its function as a space for contemplating art. In this exploratory experiment, 32 participants split into two groups explored an experimental, non-public exhibition and completed two unanticipated memory tests afterwards. The results show that some spatial characteristics of an exhibition can inhibit the recall of pictures and shift the focus to perceptual salience of the artworks. PMID:25379276

  12. [Distribution features of wild feces in schistosomiasis endemic areas in Jiangling County, Hubei Province].

    PubMed

    Xia, Zhang; Jing-Bo, Xue; He-Hua, Hu; Xiong, Liu; Cai-Xia, Cui; Xiao-Hong, Wen; Xiao-Ping, Xie; Wei-Rong, Zhang; Rong, Tian; Li-Chun, Dong; Chun-Li, Cao; Shi-Zhu, Li; Yi-Biao, Zhou

    2017-03-07

    To understand the spatial distribution characteristics of wild feces in schistosomiasis endemic areas of Jiangling County, Hubei Province and further explore the source of infection efficiently, so as to provide the evidence for the development of corresponding monitoring and response technology. In 2011, the fresh wild feces were investigated every two months in the selected 15 villages by the severity of historical endemic in Jiangling County. The schistosome miracidium hatching method was used to test the schistosome infection of the wild feces. The descriptive analysis and spatial analysis were used for the description of the spatial distribution of the wild feces. Totally 701 wild feces samples were collected with the average density of 0.055 6/100 m 2 , and the positive rate of the wild feces was 11.70% (82/701). The results of the regression analysis showed a positive spatial correlation between the positive rate of wild feces and the rate of human infection, the area with infected Oncomelania hupensis and the number of fenced cattle, and the corrected R 2 of the model was 0.58. The infection rate of wild feces is positively correlated with the rate of human infection, area with infected O. hupensis and number of fenced cattle in space in Jiangling County, so the prevention and control measures could be conducted according to the spatial distribution of the positive wild feces.

  13. The Development of a Flexible Measuring System for Muscle Volume Using Ultrasonography

    NASA Astrophysics Data System (ADS)

    Fukumoto, Kiyotaka; Fukuda, Osamu; Tsubai, Masayoshi; Muraki, Satoshi

    Quantification of muscle volume can be used as a means for the estimation of muscle strength. Its measuring process does not need the subject's muscular contractions so it is completely safe and particularly suited for elderly people. Therefore, we have developed a flexible measuring system for muscle volume using ultrasonography. In this system, an ultrasound probe is installed on a link mechanism which continuously scans fragmental images along the human body surface. These images are then measured and composed into a wide area cross-sectional image based on the spatial compounding method. The flexibility of the link mechanism enables the operator to measure the images under any body postures and body site. The spatial compounding method significantly reduces speckle and artifact noises from the composed cross-sectional image so that the operator can observe the individual muscles, such as Rectus femoris, Vastus intermedius, and so on, in detail. We conducted the experiments in order to examine the advantages of this system we have developed. The experimental results showed a high accuracy of the measuring position which was calculated using the link mechanism and presented the noise reduction effect based on the spatial compounding method. Finally, we confirmed high correlations between the MRI images and the ones of the developed system to verify the validity of the system.

  14. SPATIAL DISTRIBUTIONS OF ABSORPTION, LOCAL SUPPRESSION, AND EMISSIVITY REDUCTION OF SOLAR ACOUSTIC WAVES IN MAGNETIC REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, D.-Y.; Yang, M.-H.; Zhao Hui

    Observed acoustic power in magnetic regions is lower than the quiet Sun because of absorption, emissivity reduction, and local suppression of solar acoustic waves in magnetic regions. In the previous studies, we have developed a method to measure the coefficients of absorption, emissivity reduction, and local suppression of sunspots. In this study, we go one step further to measure the spatial distributions of three coefficients in two active regions, NOAA 9055 and 9057. The maps of absorption, emissivity reduction, and local suppression coefficients correlate with the magnetic map, including plage regions, except the emissivity reduction coefficient of NOAA 9055 wheremore » the emissivity reduction coefficient is too weak and lost among the noise.« less

  15. Collective Interaction in a Linear Array of Supersonic Rectangular Jets: A Linear Spatial Instability Study

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    1999-01-01

    A linear spatial instability model for multiple spatially periodic supersonic rectangular jets is solved using Floquet-Bloch theory. It is assumed that in the region of interest a coherent wave can propagate. For the case studied large spatial growth rates are found. This work is motivated by an increase in mixing found in experimental measurements of spatially periodic supersonic rectangular jets with phase-locked screech and edge tone feedback locked subsonic jets. The results obtained in this paper suggests that phase-locked screech or edge tones may produce correlated spatially periodic jet flow downstream of the nozzles which creates a large span wise multi-nozzle region where a coherent wave can propagate. The large spatial growth rates for eddies obtained by model calculation herein are related to the increased mixing since eddies are the primary mechanism that transfer energy from the mean flow to the large turbulent structures. Calculations of spacial growth rates will be presented for a set of relative Mach numbers and spacings for which experimental measurements have been made. Calculations of spatial growth rates are presented for relative Mach numbers from 1.25 to 1.75 with ratios of nozzle spacing to nozzle width ratios from s/w(sub N) = 4 to s/w(sub N) = 13.7. The model may be of significant scientific and engineering value in the quest to understand and construct supersonic mixer-ejector nozzles which provide increased mixing and reduced noise.

  16. Temporal and spatial patterns of ambient endotoxin concentrations in Fresno, California.

    PubMed

    Tager, Ira B; Lurmann, Frederick W; Haight, Thaddeus; Alcorn, Siana; Penfold, Bryan; Hammond, S Katharine

    2010-10-01

    Endotoxins are found in indoor dust generated by human activity and pets, in soil, and adsorbed onto the surfaces of ambient combustion particles. Endotoxin concentrations have been associated with respiratory symptoms and the risk of atopy and asthma in children. We characterized the temporal and spatial variability of ambient endotoxin in Fresno/Clovis, California, located in California's Central Valley, to identify correlates and potential predictors of ambient endotoxin concentrations in a cohort of children with asthma [Fresno Asthmatic Children's Environment Study (FACES)]. Between May 2001 and October 2004, daily ambient endotoxin and air pollutants were collected at the central ambient monitoring site of the California Air Resources Board in Fresno and, for shorter time periods, at 10 schools and indoors and outdoors at 84 residences in the community. Analyses were restricted to May-October, the dry months during which endotoxin concentrations are highest. Daily endotoxin concentration patterns were determined mainly by meteorologic factors, particularly the degree of air stagnation. Overall concentrations were lowest in areas distant from agricultural activities. Highest concentrations were found in areas immediately downwind from agricultural/pasture land. Among three other measured air pollutants [fine particulate matter, elemental carbon (a marker of traffic in Fresno), and coarse particulate matter (PMc)], PMc was the only pollutant correlated with endotoxin. Endotoxin, however, was the most spatially variable. Our data support the need to evaluate the spatial/temporal variability of endotoxin concentrations, rather than relying on a few measurements made at one location, in studies of exposure and and respiratory health effects, particularly in children with asthma and other chronic respiratory diseases.

  17. Validation of Clinical Observations of Mastication in Persons with ALS.

    PubMed

    Simione, Meg; Wilson, Erin M; Yunusova, Yana; Green, Jordan R

    2016-06-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurological disease that can result in difficulties with mastication leading to malnutrition, choking or aspiration, and reduced quality of life. When evaluating mastication, clinicians primarily observe spatial and temporal aspects of jaw motion. The reliability and validity of clinical observations for detecting jaw movement abnormalities is unknown. The purpose of this study is to determine the reliability and validity of clinician-based ratings of chewing performance in neuro-typical controls and persons with varying degrees of chewing impairments due to ALS. Adults chewed a solid food consistency while full-face video were recorded along with jaw kinematic data using a 3D optical motion capture system. Five experienced speech-language pathologists watched the videos and rated the spatial and temporal aspects of chewing performance. The jaw kinematic data served as the gold-standard for validating the clinicians' ratings. Results showed that the clinician-based rating of temporal aspects of chewing performance had strong inter-rater reliability and correlated well with comparable kinematic measures. In contrast, the reliability of rating the spatial and spatiotemporal aspects of chewing (i.e., range of motion of the jaw, consistency of the chewing pattern) was mixed. Specifically, ratings of range of motion were at best only moderately reliable. Ratings of chewing movement consistency were reliable but only weakly correlated with comparable measures of jaw kinematics. These findings suggest that clinician ratings of temporal aspects of chewing are appropriate for clinical use, whereas ratings of the spatial and spatiotemporal aspects of chewing may not be reliable or valid.

  18. Spatial patterns in the abundance of the coastal horned lizard

    USGS Publications Warehouse

    Fisher, Robert N.; Suarez, Andrew V.; Case, Ted J.

    2002-01-01

    Coastal horned lizards (   Phrynosoma coronatum) have undergone severe declines in southern California and are a candidate species for state and federal listing under the Endangered Species Act. Quantitative data on their habitat use, abundance, and distribution are lacking, however. We investigated the determinants of abundance for coastal horned lizards at multiple spatial scales throughout southern California. Specifically, we estimated lizard distribution and abundance by establishing 256 pitfall trap arrays clustered within 21 sites across four counties. These arrays were sampled bimonthly for 2–3 years. At each array we measured 26 “local” site descriptors and averaged these values with other “regional” measures to determine site characteristics. Our analyses were successful at identifying factors within and among sites correlated with the presence and abundance of coastal horned lizards. These factors included the absence of the invasive Argentine ant (  Linepithema humile) (and presence of native ant species eaten by the lizards), the presence of chaparral community plants, and the presence of sandy substrates. At a regional scale the relative abundance of Argentine ants was correlated with the relative amount of developed edge around a site. There was no evidence for spatial autocorrelation, even at the scale of the arrays within sites, suggesting that the determinants of the presence or absence and abundance of horned lizard can vary over relatively small spatial scales ( hundreds of meters). Our results suggest that a gap-type approach may miss some of the fine-scale determinants of species abundance in fragmented habitats.

  19. The relationship between subjective perception and the psychological effects of patients in spatial isolation.

    PubMed

    Ibert, Fabienne; Eckstein, Monika; Günther, Frank; Mutters, Nico T

    2017-01-01

    Background: Spatial isolation is a common infection control measure, but negative psychological effects are often neglected. We investigated which factors influence the perception of single room isolated patients. Methods: In the present correlative cross-sectional study, 32 isolated patients have been interviewed within three departments of the Heidelberg University Hospital, one of Germany's largest hospitals. The following questionnaires were used: 10-Item Big Five Inventory (BFI-10), Positive and Negative Affect Schedule (PANAS), Hospital Anxiety and Depression Scale (HADS) and a self-developed questionnaire to evaluate the individual experience of isolation. Data were analysed using correlation and regression analysis. Results: A significant positive correlation was found between the isolation period and anxiety (r=.42, p<.05). Interestingly, a significant positive correlation was demonstrated between the duration of contact to nursing staff and negative daydreaming (r=.89, p<.01). The activity watching television was associated with higher levels of anxiety (r=.38, p<.05). Surfing the internet had a positive relationship with thinking about beautiful things (r=.41, p<.05). Conclusions: Our study results have implications how to improve the psychological situation of patients during spatial isolation. Contact between nursing staff and patients is crucial, since this contact significantly associated with negative daydreaming, probably due to increased neediness of emotional and physical care in some patients. The duration of the isolation has an influence on the experience of anxiety. Activities to cope with the isolation, however, not always have positive effects on the well-being of the patient.

  20. Selecting a separable parametric spatiotemporal covariance structure for longitudinal imaging data.

    PubMed

    George, Brandon; Aban, Inmaculada

    2015-01-15

    Longitudinal imaging studies allow great insight into how the structure and function of a subject's internal anatomy changes over time. Unfortunately, the analysis of longitudinal imaging data is complicated by inherent spatial and temporal correlation: the temporal from the repeated measures and the spatial from the outcomes of interest being observed at multiple points in a patient's body. We propose the use of a linear model with a separable parametric spatiotemporal error structure for the analysis of repeated imaging data. The model makes use of spatial (exponential, spherical, and Matérn) and temporal (compound symmetric, autoregressive-1, Toeplitz, and unstructured) parametric correlation functions. A simulation study, inspired by a longitudinal cardiac imaging study on mitral regurgitation patients, compared different information criteria for selecting a particular separable parametric spatiotemporal correlation structure as well as the effects on types I and II error rates for inference on fixed effects when the specified model is incorrect. Information criteria were found to be highly accurate at choosing between separable parametric spatiotemporal correlation structures. Misspecification of the covariance structure was found to have the ability to inflate the type I error or have an overly conservative test size, which corresponded to decreased power. An example with clinical data is given illustrating how the covariance structure procedure can be performed in practice, as well as how covariance structure choice can change inferences about fixed effects. Copyright © 2014 John Wiley & Sons, Ltd.

Top