NASA Technical Reports Server (NTRS)
1971-01-01
Investigations were performed at the national economic level to explore the aggregate effects of technological progress on economic growth. Inadequacies in existing marco-economic yardsticks forced the study to focus on the cost savings effects achieved through technological progress. The central questions discussed in this report cover: (1) role of technological progress in economic growth, (2) factors determining the rate of economic growth due to technological progress; (3) quantitative measurements of relationships between technological progress, its determinants, and subsequent economic growth; and (4) effects of research and development activities of the space program. For Part 2, see N72-32174.
Montague, Enid; Asan, Onur
2012-01-01
The present study investigated factors that explain patient trust in health technology and the relationship between patient trust in technology and trust in their care provider. Sociotechnical systems theory states that changes in one part of the system are likely related to other parts of the system. Therefore, attitudes about technologies, like trust, are likely related to other aspects of the system. Contributing to appropriate trust at the technological, interpersonal, and system levels can potentially lead to positive health outcomes. The study described in this manuscript used data collected from 101 patients with a Trust in Medical Technology instrument. The instrument measured patients' trust in (1) their providers, (2) the technology, and (3) how their providers used the technology. Measure 3 was positively associated with measures 1 and 2, while measures 1 and 2 were not positively or negatively associated with one another. These results may indicate that patient assessments of the trustworthiness of care providers and technologies are based on their observations of how providers use technologies. Though patients are not active users of technologies in health care, the results of this study show that their perceptions of how providers use technology are related to their trust in both technology and the care provider. Study findings have implications for how trust is conceptualised and measured in interpersonal relationships and in technologies.
NASA Astrophysics Data System (ADS)
Matas, Richard; Syka, Tomáš; Hurda, Lukáš
2018-06-01
The article deals with a description of results from research and development of a radial compressor stage with 3D rotor blades. The experimental facility and the measurement and evaluation process is described briefly in the first part. The comparison of measured and computed characteristics can be found in the second part. The last part of this contribution is the evaluation of the rotor blades technological holes influence on the compressor stage characteristics.
The study of precision measurement of pelvis spatial structure
NASA Astrophysics Data System (ADS)
Ma, Xiang; Ouyang, Jianfei; Qu, Xinghua
2010-03-01
Osteometry is fundamental for anthropometry. It provides the key technology and value to the study of palaeoanthropology, medicine, and criminal investigation. The traditional osteometry that has been widely accepted and used since 18th century has no longer met the information demand for modern research and application. It is significant and necessary to create an advanced 3-dimensional osteometry technique for anthropometry. This paper presents a new quick and accurate method to measure human pelvis through mathematical modeling. The pelvis is a complex combination of bones, which consists of three connected parts: hipbones, sacrum, and coccyx. There are over 40 items to be measured for the 1-dimension characteristics. In this paper, a combined measuring technology is developed for pelvis measurement. It uses machine vision systems and a portable measuring arm to obtain key geometry parameters of the pelvis. The mathematics models of the pelvis spatial structure and its parts are created through the process of data collecting, digging, assembling, and modeling. The experiment shows that the proposed technology can meet traditional osteometry and obtain entire 1D geometric parameters of the pelvis, such as maximum breadth and height, diameter of obstetric conjugata, inclination angle, and sakralneigungswinkel, etc. at the same time after modeling. Besides making the measurements above, the proposed technology can measure the geometry characteristics of pelvis and its parts, such as volume, surface area, curvature, and spatial structure, which are almost impossible for traditional technology. The overall measuring error is less than 0.1mm.
ERIC Educational Resources Information Center
Gearhart, Maryl; And Others
One of the new measures developed as part of the Apple Classrooms of Tomorrow (ACOT) program is described. The ACOT project examines the impact of access to educational technology on the kindergarten through grade 12 classroom environments. The new measure is a technology-based classroom observation instrument for documenting the impact of…
The Beast of Aggregating Cognitive Load Measures in Technology-Based Learning
ERIC Educational Resources Information Center
Leppink, Jimmie; van Merriënboer, Jeroen J. G.
2015-01-01
An increasing part of cognitive load research in technology-based learning includes a component of repeated measurements, that is: participants are measured two or more times on the same performance, mental effort or other variable of interest. In many cases, researchers aggregate scores obtained from repeated measurements to one single sum or…
Measuring Human Performance in Simulated Nuclear Power Plant Control Rooms Using Eye Tracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovesdi, Casey Robert; Rice, Brandon Charles; Bower, Gordon Ross
Control room modernization will be an important part of life extension for the existing light water reactor fleet. As part of modernization efforts, personnel will need to gain a full understanding of how control room technologies affect performance of human operators. Recent advances in technology enables the use of eye tracking technology to continuously measure an operator’s eye movement, which correlates with a variety of human performance constructs such as situation awareness and workload. This report describes eye tracking metrics in the context of how they will be used in nuclear power plant control room simulator studies.
Laser triangulation method for measuring the size of parking claw
NASA Astrophysics Data System (ADS)
Liu, Bo; Zhang, Ming; Pang, Ying
2017-10-01
With the development of science and technology and the maturity of measurement technology, the 3D profile measurement technology has been developed rapidly. Three dimensional measurement technology is widely used in mold manufacturing, industrial inspection, automatic processing and manufacturing, etc. There are many kinds of situations in scientific research and industrial production. It is necessary to transform the original mechanical parts into the 3D data model on the computer quickly and accurately. At present, many methods have been developed to measure the contour size, laser triangulation is one of the most widely used methods.
NASA Astrophysics Data System (ADS)
Dijmărescu, M. C.; Dijmărescu, M. R.
2017-08-01
When talking about tests that include measurements, the uncertainty of measurement is an essential element because it is important to know the limits within the obtained results may be assumed to lie and the influence the measurement technological system elements have on these results. The research presented in this paper focuses on the estimation of the Vickers hardness uncertainty of measurement for the heterogeneous welded joint between S235JR+AR and X2CrNiMo17-12-2 materials in order to establish the results relevance and the quality assessment of this joint. The paper contents are structured in three main parts. In the first part, the initial data necessary for the experiment is presented in terms of the welded joint and technological means characterisation. The second part presents the physical experiment development and its results and in the third part the uncertainty of the measurements is calculated and a results discussion is undertaken.
Economic impact of stimulated technological activity: Bibliography
NASA Technical Reports Server (NTRS)
1971-01-01
This bibliography is divided into three parts and covers: (1) overall economic impact of technological progress and its measurement; (2) technological progress and commercialization of communications satellites; and (3) knowledge additions and earth links from space crew systems.
NASA Technical Reports Server (NTRS)
Alvarado, U. R.; Bortner, M. H.; Grenda, R. N.; Brehm, W. F.; Frippel, G. G.; Alyea, F.; Kraiman, H.; Folder, P.; Krowitz, L.
1982-01-01
The technology advancements that will be necessary to implement the atmospheric observation systems are considered. Upper and lower atmospheric air quality and meteorological parameters necessary to support the air quality investigations were included. The technology needs were found predominantly in areas related to sensors and measurements of air quality and meteorological measurements.
NASA Technical Reports Server (NTRS)
Alvarado, D. R.; Bortner, M. H.; Grenda, R. N.; Frippel, G. G.; Halsey, H.; Neste, S. L.; Kritikos, H.; Keafer, L. S.; Deryder, L. J.
1982-01-01
The technology advancements needed to implement the atmospheric observation satellite systems for air quality research were identified. Tropospheric measurements are considered. The measurements and sensors are based on a model of knowledge objectives in atmospheric science. A set of potential missions and attendant spacecraft and sensors is postulated. The results show that the predominant technology needs will be in passive and active sensors for accurate and frequent global measurements of trace gas concentration profiles.
Next-generation air measurement technologies | Science ...
This is a presentation at a workshop in Chicago on emerging air monitoring technologies, hosted by a local nonprofit. The audience is composed of a mixture of technical backgrounds. This presentation will be part of an opening panel and the goal is to give an overview of the state of science on emerging air sensor technology. This is a presentation at a workshop in Chicago on emerging air monitoring technologies, hosted by a local nonprofit. The audience is composed of a mixture of technical backgrounds. This presentation will be part of an opening panel and the goal is to give an overview of the state of science on emerging air sensor technology.
GHG emission mitigation measures and technologies in the Czech Republic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichy, M.
1996-12-31
The paper presents a short overview of main results in two fields: projection of GHG emission from energy sector in the Czech Republic and assessment of technologies and options for GHG mitigation. The last part presents an overview of measures that were prepared for potential inclusion to the Czech Climate Change Action Plan.
NASA Astrophysics Data System (ADS)
Kusumo, B. H.; Sukartono, S.; Bustan, B.
2018-02-01
Measuring soil organic carbon (C) using conventional analysis is tedious procedure, time consuming and expensive. It is needed simple procedure which is cheap and saves time. Near infrared technology offers rapid procedure as it works based on the soil spectral reflectance and without any chemicals. The aim of this research is to test whether this technology able to rapidly measure soil organic C in rice paddy field. Soil samples were collected from rice paddy field of Lombok Island Indonesia, and the coordinates of the samples were recorded. Parts of the samples were analysed using conventional analysis (Walkley and Black) and some other parts were scanned using near infrared spectroscopy (NIRS) for soil spectral collection. Partial Least Square Regression (PLSR) Models were developed using data of soil C analysed using conventional analysis and data from soil spectral reflectance. The models were moderately successful to measure soil C in rice paddy field of Lombok Island. This shows that the NIR technology can be further used to monitor the C change in rice paddy soil.
Modern energy efficient technologies of high-rise construction
NASA Astrophysics Data System (ADS)
Lukmanova, Inessa; Golov, Roman
2018-03-01
The paper analyzes modern energy-efficient technologies, both being applied, and only introduced into the application in the construction of high-rise residential buildings. All technologies are systematized by the authors as part of a unified model of "Arrows of Energy-Efficient Technologies", which imply performing energy-saving measures in the design, construction and operation of buildings.
Automated inspection of gaps on the free-form shape parts by laser scanning technologies
NASA Astrophysics Data System (ADS)
Zhou, Sen; Xu, Jian; Tao, Lei; An, Lu; Yu, Yan
2018-01-01
In industrial manufacturing processes, the dimensional inspection of the gaps on the free-form shape parts is critical and challenging, and is directly associated with subsequent assembly and terminal product quality. In this paper, a fast measuring method for automated gap inspection based on laser scanning technologies is presented. The proposed measuring method consists of three steps: firstly, the relative position is determined according to the geometric feature of measuring gap, which considers constraints existing in a laser scanning operation. Secondly, in order to acquire a complete gap profile, a fast and effective scanning path is designed. Finally, the range dimension of the gaps on the free-form shape parts including width, depth and flush, correspondingly, is described in a virtual environment. In the future, an appliance machine based on the proposed method will be developed for the on-line dimensional inspection of gaps on the automobile or aerospace production line.
NASA Astrophysics Data System (ADS)
Demerjian, K. L.
2002-12-01
In the summer of 2001, an intensive field measurement campaign was carried out in Queens, NY as part of the PM2.5 Technology Assessment and Characterization Study in New York (PMTACS-NY) to characterize the physical and chemical composition of particulate matter and related precursors utilizing conventional and advanced instrumentation technologies. The measurement program, involving a team of scientists from federal, state, university and private sector organizations, was designed to provide detailed time resolved chemical and physical characterization of the urban PM2.5/co-pollutant complex in relation to the regional environment. A summary of the chemical and meteorological data defining specific events during the field intensive is presented as are results addressing specific hypothesis designed around PMTACS-NY program objectives. These include initial findings and conclusions related to 1) performance testing and evaluation of emerging measurement technologies and comparison with EPA mandated PM federal reference methods currently operational as part of the New York State and national PM2.5 monitoring network; 2) emissions characterization of CNG, standard diesel and CRT (Continuously Regenerating Technology) diesel retrofit powered vehicles; and 3) compositional comparisons of urban and regional PM2.5.
Summary of laser speckle photogrammetry for HOST
NASA Technical Reports Server (NTRS)
Pollack, Frank G.
1986-01-01
High temperature static strain measurement capability is important for the success of the HOST program. As part of the NASA Lewis effort to develop the technology for improved hot-section durability, the HOST instrumentation program has, as a major goal, the development of methods for measuring strain at high temperature. Development work includes both improvements in resistance strain-gauge technology and, as an alternative approach, the development of optical techniques for high temperature strain measurement.
Gear Damage Detection Integrating Oil Debris and Vibration Measurement Technologies Developed
NASA Technical Reports Server (NTRS)
Gyekeyeski, Andrew L.; Sawicki, Jerzy T.
2001-01-01
The development of highly reliable health-monitoring systems is one technology area recommended for reducing the number of helicopter accidents. Helicopter transmission diagnostics are an important part of a helicopter health-monitoring system because helicopters depend on the power train for propulsion, lift, and flight maneuvering. One technique currently being tested for increasing the reliability and decreasing the false alarm rate of current transmission diagnostic tools is the replacement of simple single-sensor limits with multisensor systems integrating different measurement technologies.
Roughness and compressive strength of FDM 3D printed specimens affected by acetone vapour treatment
NASA Astrophysics Data System (ADS)
Beniak, Juraj; Križan, Peter; Šooš, Ľubomír; Matúš, Miloš
2018-01-01
Rapid Prototyping technologies are the fastest growing technologies in the manufacturing of components and parts. There are many techniques which can be used with different materials and different purposes of produced part. Gradually, Rapid Prototyping systems have grown into Additive Manufacturing, because technology expansion brings faster production, improved manufactured components, and expanded palette of used materials. So now this techniques are also used for regular production of special parts, where is usual change of part design, where is necessary to produce variety of different designs and shapes. The following article deals with Fused Deposition Modelling (FDM) technology, the core of which is the manufacture models and components from thermoplastic polymers by deposition single fibres of semi-molten plastic material layer by layer. The article focuses on the results of research for testing of manufactured specimens by FDM technology. Components are modified by acetone vapour for surface smoothing. The purpose is to point out how the additional specimen treatment influence the strength properties. Presented paper shows realized experiments and measurements of compressive force on specimens and surface roughness which are influenced by acetone vapour treatment.
NASA Astrophysics Data System (ADS)
Dudas, Illes; Berta, Miklos; Cser, Istvan
1998-12-01
Up-to-date manufacturing equipments of production of rotational parts in small series are lathe-centers and CNC grinding machines with high concentration of manufacturing operations. By the use of these machine tools it can be produced parts with requirements of increased accuracy and surface quality. In the lathe centers, which contain the manufacturing procedures of lathes using stationary tools and of drilling-milling machine tools using rotational tools, non-rotational surfaces of rotational parts can also be produced. The high concentration of manufacturing operations makes necessary the planning and programing of the measuring, monitoring and quality control into the technological process during manufacturing operation. In this way, taking into consideration the technological possibilities of lathe canters, the scope of computer aided technological planning duties significantly increases. It is trivial requirement to give only once the descriptions of the prefabricated parts and ready made parts. Starting taking into account these careful considerations we have been developing the planning system of technology of body of revolution on the base of GTIPROG/EC system which useful for programming of lathe centers. Out paper deals with the results of development and the occurring problems.
NASA Astrophysics Data System (ADS)
Manske, E.; Froehlich, T.
2012-07-01
The 56th International Scientific Colloquium was held from 12th to 16th September 2011 at the Ilmenau University of Technology in Germany. This event was organized by the Faculty of Mechanical Engineering under the title: 'Innovation in Mechanical Engineering—Shaping the Future' and was intended to reflect the entire scope of modern mechanical engineering. In three main topics many research areas, all involving innovative mechanical engineering, were addressed, especially in the fields of Precision Engineering and Precision Measurement Technology, Mechatronics and Ambient-Assisted Living and Systems Technology. The participants were scientists from 21 countries, and 166 presentations were given. This special issue of Measurement Science and Technology presents selected contributions on 'Precision Engineering and Precision Measurement Technology'. Over three days the conference participants discussed novel scientific results in two sessions. The main topics of these sessions were: Measurement and Sensor Technology Process measurement Laser measurement Force measurement Weighing technology Temperature measurement Measurement dynamics and Nanopositioning and Nanomeasuring Technology Nanopositioning and nanomeasuring machines Nanometrology Probes and tools Mechanical design Signal processing Control and visualization in NPM devices Significant research results from the Collaborative Research Centre SFB 622 'Nanopositioning and Nanomeasuring Machines' funded by the German Research Foundation (DFG) were presented as part of this topic. As the Chairmen, our special thanks are due to the International Programme Committee, the Organization Committee and the conference speakers as well as colleagues from the Institute of Process Measurement and Sensor Technology who helped make the conference a success. We would like to thank all the authors for their contributions, the referees for their time spent reviewing the contributions and their valuable comments, and the whole Editorial Board of Measurement Science and Technology for their support.
Small and big quality in health care.
Lillrank, Paul Martin
2015-01-01
The purpose of this paper is to clarify healthcare quality's ontological and epistemological foundations; and examine how these lead to different measurements and technologies. Conceptual analysis. Small quality denotes conformance to ex ante requirements. Big quality includes product and service design, based on customer requirements and expectations. Healthcare quality can be divided into three areas: clinical decision making; patient safety; and patient experience, each with distinct measurement and improvement technologies. The conceptual model is expected to bring clarity to constructing specific definitions, measures, objectives and technologies for improving healthcare. This paper claims that before healthcare quality can be defined, measured and integrated into systems, it needs to be clearly separated into ontologically and epistemologically different parts.
SITE TECHNOLOGY PROFILES, TENTH EDITION, VOLUME 3 - MEASUREMENT AND MONITORING PROGRAM
The Superfund Innovative Technology Evaluation (SITE) Program, now in its thirteenth year, is an integral part of EPA's research into alternative cleanup methods for hazardous waste sites around the nation. The SITE Program was created to encourage the development and routine us...
REAL-TIME ENVIRONMENTAL MONITORING: APPLICATIONS FOR HOMELAND SECURITY
Real-time monitoring technology developed as part of the EMPACT program has a variety of potential applications. These tools can measure a variety of potential contaminants in the air, water, in buildings, or in the soil. Real-time monitoring technology allows these detection sys...
A Combined Hazard Index Fire Test Methodology for Aircraft Cabin Materials. Volume II.
1982-04-01
Technical Center. The report was divided into two parts: Part I described the improved technology investigated to upgrade existin methods for testing...proper implementation of the computerized data acquisition and reduction programs will improve materials hazards measurement precision. Thus, other...the hold chamber before and after injection of a sample, will improve precision and repeatability of measurement. The listed data acquisition and
Distraction as a Mediator of Productivity: Measuring the Role of the Internet
ERIC Educational Resources Information Center
Newmann-Godful, Michael
2013-01-01
The use of technology at the workplace has been confirmed both in practice and in theory to be an inalienable right for many organizational employees partly because of what these employees do, or the general role of technology in the organization (Sekar, 2011). As useful as technology may be, employees sometimes misuse it. Such misuse, over time…
Abstract: As part of the Petroleum Refinery Risk and Technology Review, New Source Performance Standards rule, US EPA is proposing use of two-week passive sorbant tube fenceline monitoring for benzene. With recent technological advances, low-cost time-resolved sensors may become...
As part of a U.S. Environmental Protection Agency Environmental Technology Verification program, the Research Triangle Institute (RTI) developed a test protocol for measuring volatile organic compounds and aldehydes in a large chamber. RTI convened stakeholders for the commercial...
Web-Based Simulation in Psychiatry Residency Training: A Pilot Study
ERIC Educational Resources Information Center
Gorrindo, Tristan; Baer, Lee; Sanders, Kathy M.; Birnbaum, Robert J.; Fromson, John A.; Sutton-Skinner, Kelly M.; Romeo, Sarah A.; Beresin, Eugene V.
2011-01-01
Background: Medical specialties, including surgery, obstetrics, anesthesia, critical care, and trauma, have adopted simulation technology for measuring clinical competency as a routine part of their residency training programs; yet, simulation technologies have rarely been adapted or used for psychiatry training. Objective: The authors describe…
SITE TECHNOLOGY PROFILES - 11TH EDITION, MEASUREMENT AND MONITORING PROGRAM, VOLUME 3
The Superfund Innovative Technology Evaluation (SITE) Program, now in its eleventh year is an integral part of EPA's research into alternative cleanup methods for hazardous waste sites around the nation. The SITE Program was created to encourage the development and routine use o...
Next-generation air measurement technologies
This is a presentation at a workshop in Chicago on emerging air monitoring technologies, hosted by a local nonprofit. The audience is composed of a mixture of technical backgrounds. This presentation will be part of an opening panel and the goal is to give an overview of the st...
Renewable Energy Opportunity Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hancock, Ed; Mas, Carl
1998-11-13
Presently, the US EPA is constructing a new complex at Research Triangle Park, North Carolina to consolidate its research operations in the Raleigh-Durham area. The National Computer Center (NCC) is currently in the design process and is planned for construction as part of this complex. Implementation of the new technologies can be planned as part of the normal construction process, and full credit for elimination of the conventional technologies can be taken. Several renewable technologies are specified in the current plans for the buildings. The objective of this study is to identify measures that are likely to be both technicallymore » and economically feasible.« less
The Development of Technological Competence from Adolescence to Adulthood
ERIC Educational Resources Information Center
Autio, Ossi
2011-01-01
This article builds on earlier research that defined and assessed technological competence among adolescents. It tracks students who took part in a measurements of technical abilities study fifteen years ago. The researcher had no previous knowledge of the test subjects' current employment status, but in favorable circumstances, these test…
Development of Measures of Service Availability : Volume 2. Task Technical Reports.
DOT National Transportation Integrated Search
1978-06-01
The study (a part of UMTA's Automatic Guideway Transit Technology program) is aimed at developing a set of measures for "service availability" which will be meaningful, readily understandable, and acceptable to transit operators, suppliers, and inter...
Development of Measures of Service Availability : Volume 3. Application Guideline Manual.
DOT National Transportation Integrated Search
1978-06-01
The study (a part of UMTA's Automatic Guideway Transit Technology program) is aimed at developing a set of measures for "service availability" which will be meaningful, readily understandable, and acceptable to transit operators, suppliers, and inter...
Sixteenth International Laser Radar Conference, part 2
NASA Technical Reports Server (NTRS)
Mccormick, M. Patrick (Editor)
1992-01-01
Given here are extended abstracts of papers presented at the 16th International Laser Radar Conference, held in Cambridge, Massachusetts, July 20-24, 1992. Topics discussed include the Mt. Pinatubo volcanic dust laser observations, global change, ozone measurements, Earth mesospheric measurements, wind measurements, imaging, ranging, water vapor measurements, and laser devices and technology.
Quantitative nondestructive evaluation: Requirements for tomorrow's reliability
NASA Technical Reports Server (NTRS)
Heyman, Joseph S.
1991-01-01
Quantitative Nondestructive Evaluation (QNDE) is the technology of measurement, analysis, and prediction of the state of material/structural systems for safety, reliability, and mission assurance. QNDE has impact on everyday life from the cars we drive, the planes we fly, the buildings we work or live in, literally to the infrastructure of our world. Here, researchers highlight some of the new sciences and technologies that are part of a safer, cost effective tomorrow. Specific technologies that are discussed are thermal QNDE of aircraft structural integrity, ultrasonic QNDE for materials characterization, and technology spinoffs from aerospace to the medical sector. In each case, examples are given of how new requirements result in enabling measurement technologies, which in turn change the boundaries of design/practice.
The U.S. EPA Office of Research and Development and U.S. EPA Region 8 are collaborating to investigate the impact of energy production under the EPA’s Regional Applied Research Effort (RARE) program. As part of this effort, a research study was conducted to evaluate technologies...
Measuring Teachers' Pedagogical Content Knowledge in Primary Technology Education
ERIC Educational Resources Information Center
Rohaan, Ellen J.; Taconis, Ruurd; Jochems, Wim M. G.
2009-01-01
Pedagogical content knowledge is found to be a crucial part of the knowledge base for teaching. Studies in the field of primary technology education showed that this domain of teacher knowledge is related to pupils' increased learning, motivation, and interest. The common methods to investigate teachers' pedagogical content knowledge are often…
The rapid measurement of soil carbon stock using near-infrared technology
NASA Astrophysics Data System (ADS)
Kusumo, B. H.; Sukartono; Bustan
2018-03-01
As a soil pool stores carbon (C) three times higher than an atmospheric pool, the depletion of C stock in the soil will significantly increase the concentration of CO2 in the atmosphere, causing global warming. However, the monitoring or measurement of soil C stock using conventional procedures is time-consuming and expensive. So it requires a rapid and non-destructive technique that is simple and does not need chemical substances. This research is aimed at testing whether near-infrared (NIR) technology is able to rapidly measure C stock in the soil. Soil samples were collected from an agricultural land at the sub-district of Kayangan, North Lombok, Indonesia. The coordinates of the samples were recorded. Parts of the samples were analyzed using conventional procedure (Walkley and Black) and some other parts were scanned using near-infrared spectroscopy (NIRS) for soil spectral collection. Partial Least Square Regression (PLSR) was used to develop models from soil C data measured by conventional analysis and from spectral data scanned by NIRS. The best model was moderately successful to measure soil C stock in the study area in North Lombok. This indicates that the NIR technology can be further used to monitor the change of soil C stock in the soil.
A Multi-scale, Multi-Model, Machine-Learning Solar Forecasting Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamann, Hendrik F.
The goal of the project was the development and demonstration of a significantly improved solar forecasting technology (short: Watt-sun), which leverages new big data processing technologies and machine-learnt blending between different models and forecast systems. The technology aimed demonstrating major advances in accuracy as measured by existing and new metrics which themselves were developed as part of this project. Finally, the team worked with Independent System Operators (ISOs) and utilities to integrate the forecasts into their operations.
DOE research and development report. Progress report, October 1980-September 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bingham, Carleton D.
The DOE New Brunswick Laboratory (NBL) is the US Government's Nuclear Materials Standards and Measurement Laboratory. NBL is assigned the mission to provide and maintain, as an essential part of federal statutory responsibilities related to national and international safeguards of nuclear materials for USA defense and energy programs, an ongoing capability for: the development, preparation, certification, and distribution of reference materials for the calibration and standardization of nuclear materials measurements; the development, improvement, and evaluation of nuclear materials measurement technology; the assessment and evaluation of the practice and application of nuclear materials measurement technology; expert and reliable specialized nuclear materialsmore » measurement services for the government; and technology exchange and training in nuclear materials measurement and standards. Progress reports for this fiscal year are presented under the following sections: (1) development or evaluation of measurement technology (elemental assay of uranium plutonium; isotope composition); (2) standards and reference materials (NBL standards and reference materials; NBS reference materials); and (3) evaluation programs (safeguards analytical laboratory evaluation; general analytical evaluation program; other evaluation programs).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deka, Deepjyoti; Backhaus, Scott N.; Chertkov, Michael
Traditionally power distribution networks are either not observable or only partially observable. This complicates development and implementation of new smart grid technologies, such as those related to demand response, outage detection and management, and improved load-monitoring. In this two part paper, inspired by proliferation of the metering technology, we discuss estimation problems in structurally loopy but operationally radial distribution grids from measurements, e.g. voltage data, which are either already available or can be made available with a relatively minor investment. In Part I, the objective is to learn the operational layout of the grid. Part II of this paper presentsmore » algorithms that estimate load statistics or line parameters in addition to learning the grid structure. Further, Part II discusses the problem of structure estimation for systems with incomplete measurement sets. Our newly suggested algorithms apply to a wide range of realistic scenarios. The algorithms are also computationally efficient – polynomial in time– which is proven theoretically and illustrated computationally on a number of test cases. The technique developed can be applied to detect line failures in real time as well as to understand the scope of possible adversarial attacks on the grid.« less
ERIC Educational Resources Information Center
Blanzy, James J.; Sucher, Joseph E.
Michigan's Macomb Community College's institutional assessment model involves using technology to collect and disseminate data on student learning in order to facilitate continuous improvement and adaptation. The first element of this five-part model is the mandatory testing, orientation, and placement of incoming students. Using placement test…
Liu, Tao; Guo, Yin; Yang, Shourui; Yin, Shibin; Zhu, Jigui
2017-01-01
Industrial robots are expected to undertake ever more advanced tasks in the modern manufacturing industry, such as intelligent grasping, in which robots should be capable of recognizing the position and orientation of a part before grasping it. In this paper, a monocular-based 6-degree of freedom (DOF) pose estimation technology to enable robots to grasp large-size parts at informal poses is proposed. A camera was mounted on the robot end-flange and oriented to measure several featured points on the part before the robot moved to grasp it. In order to estimate the part pose, a nonlinear optimization model based on the camera object space collinearity error in different poses is established, and the initial iteration value is estimated with the differential transformation. Measuring poses of the camera are optimized based on uncertainty analysis. Also, the principle of the robotic intelligent grasping system was developed, with which the robot could adjust its pose to grasp the part. In experimental tests, the part poses estimated with the method described in this paper were compared with those produced by a laser tracker, and results show the RMS angle and position error are about 0.0228° and 0.4603 mm. Robotic intelligent grasping tests were also successfully performed in the experiments. PMID:28216555
Liu, Tao; Guo, Yin; Yang, Shourui; Yin, Shibin; Zhu, Jigui
2017-02-14
Industrial robots are expected to undertake ever more advanced tasks in the modern manufacturing industry, such as intelligent grasping, in which robots should be capable of recognizing the position and orientation of a part before grasping it. In this paper, a monocular-based 6-degree of freedom (DOF) pose estimation technology to enable robots to grasp large-size parts at informal poses is proposed. A camera was mounted on the robot end-flange and oriented to measure several featured points on the part before the robot moved to grasp it. In order to estimate the part pose, a nonlinear optimization model based on the camera object space collinearity error in different poses is established, and the initial iteration value is estimated with the differential transformation. Measuring poses of the camera are optimized based on uncertainty analysis. Also, the principle of the robotic intelligent grasping system was developed, with which the robot could adjust its pose to grasp the part. In experimental tests, the part poses estimated with the method described in this paper were compared with those produced by a laser tracker, and results show the RMS angle and position error are about 0.0228° and 0.4603 mm. Robotic intelligent grasping tests were also successfully performed in the experiments.
Shuttle Performance: Lessons Learned, Part 2
NASA Technical Reports Server (NTRS)
Arrington, J. P. (Compiler); Jones, J. J. (Compiler)
1983-01-01
Several areas of Space Shuttle technology were addressed including aerothermal environment, thermal protection, measurement and analysis, Shuttle carrier aerodynamics, entry analysis of the STS-3, and an overview of each section.
ERIC Educational Resources Information Center
Nsomwe-a-nfunkwa, Banza
2006-01-01
This article will primarily allow a definition of the strategic development of ICT in the Democratic Republic of Congo, to be put forward. For the most part it involves the precision of many types of measures and strategies (such as institutional, regulatory, infrastructural measures), human resources, the development of content and partnerships,…
2016-03-01
17 6. SENSOR PARTICLES...explosion also limit measurement options since any sensors employed must be able to withstand the extreme environment, or at least transmit the...in detonations and fireballs. On the other hand, temperature measurements have been less extensive, partly because sensors rugged enough to withstand
Implementation of 3D Optical Scanning Technology for Automotive Applications
Kuş, Abdil
2009-01-01
Reverse engineering (RE) is a powerful tool for generating a CAD model from the 3D scan data of a physical part that lacks documentation or has changed from the original CAD design of the part. The process of digitizing a part and creating a CAD model from 3D scan data is less time consuming and provides greater accuracy than manually measuring the part and designing the part from scratch in CAD. 3D optical scanning technology is one of the measurement methods which have evolved over the last few years and it is used in a wide range of areas from industrial applications to art and cultural heritage. It is also used extensively in the automotive industry for applications such as part inspections, scanning of tools without CAD definition, scanning the casting for definition of the stock (i.e. the amount of material to be removed from the surface of the castings) model for CAM programs and reverse engineering. In this study two scanning experiments of automotive applications are illustrated. The first one examines the processes from scanning to re-manufacturing the damaged sheet metal cutting die, using a 3D scanning technique and the second study compares the scanned point clouds data to 3D CAD data for inspection purposes. Furthermore, the deviations of the part holes are determined by using different lenses and scanning parameters. PMID:22573995
Sixteenth International Laser Radar Conference, Part 1
NASA Technical Reports Server (NTRS)
Mccormick, M. Patrick (Editor)
1992-01-01
This publication contains extended abstracts of papers presented at the 16th International Laser Radar Conference. One-hundred ninety-five papers were presented in both oral and poster sessions. The topics of the conference sessions were: (1) Mt. Pinatubo Volcanic Dust Layer Observations; (2) Global Change/Ozone Measurements; (3) GLOBE/LAWS/LITE; (4) Mesospheric Measurements and Measurement Systems; (5) Middle Atmosphere; (6) Wind Measurements and Measurement Systems; (7) Imaging and Ranging; (8) Water Vapor Measurements; (9) Systems and Facilities; and (10) Laser Devices and Technology. This conference reflects the breadth of research activities being conducted in the lidar field. These abstracts address subjects from lidar-based atmospheric investigations relating to global change to the development of new lidar systems and technology.
Space Technology 5: Enabling Future Micro-Sat Constellation Science Missions
NASA Technical Reports Server (NTRS)
Carlisle, Candace C.; Webb, Evan H.
2004-01-01
The Space Technology 5 (ST-5) Project is part of NASA s New Millennium Program. ST-5 will consist of a constellation of three micro-satellites, each approximately 25 kg in mass. The mission goals are to demonstrate the research-quality science capability of the ST-5 spacecraft; to operate the three spacecraft as a constellation; and to design, develop and flight-validate three capable micro-satellites with new technologies. ST-5 is designed to measurably raise the utility of small satellites by providing high functionality in a low mass, low power, and low volume package. The whole of ST-5 is greater than the sum of its parts: the collection of components into the ST-5 spacecraft allows it to perform the functionality of a larger scientific spacecraft on a micro-satellite platform. The ST-5 mission was originally designed to be launched as a secondary payload into a Geosynchronous Transfer Orbit (GTO). Recently, the mission has been replanned for a Pegasus XL dedicated launch into an elliptical polar orbit. A three-month flight demonstration phase, beginning in March 2006, will validate the ability to perform science measurements, as well as the technologies and constellation operations. ST- 5 s technologies and concepts will then be transferred to future micro-sat science missions.
Space Technology 5: Enabling Future Micro-Sat Constellation Science Missions
NASA Technical Reports Server (NTRS)
Carlisle, Candace C.; Webb, Evan H.; Slavin, James A.
2004-01-01
The Space Technology 5 (ST-5) Project is part of NASA s New Millennium Program. ST-5 will consist of a constellation of three micro-satellites, each approximately 25 kg in mass. The mission goals are to demonstrate the research-quality science capability of the ST-5 spacecraft, to operate the three spacecraft as a constellation; and to design, develop and flight-validate three capable micro-satellites with new technologies. ST-5 is designed to measurably raise the utility of small satellites by providing high functionality in a low mass, low power, and low volume package. The whole of ST-5 is greater than the sum of its parts: the collection of components into the ST-5 spacecraft allows it to perform the functionality of a larger scientific spacecraft on a micro-satellite platform. The ST-5 mission was originally designed to be launched as a secondary payload into a Geosynchronous Transfer Orbit (GTO). Recently, the mission has been replanned for a Pegasus XL dedicated launch into an elliptical polar orbit. A three-month flight demonstration phase, beginning in March 2006, will validate the ability to perform science measurements, as well as the technologies and constellation operations. ST- 5 s technologies and concepts will then be transferred to future micro-sat science missions.
A 3D-Printed Sensor for Monitoring Biosignals in Small Animals
Byun, Donghak; Choi, Seok-Yong; Lee, Byung-Geun; Kim, Myeong-Kyu
2017-01-01
Although additive manufacturing technologies, also known as 3D printing, were first introduced in the 1980s, they have recently gained remarkable popularity owing to decreased costs. 3D printing has already emerged as a viable technology in many industries; in particular, it is a good replacement for microfabrication technology. Microfabrication technology usually requires expensive clean room equipment and skilled engineers; however, 3D printing can reduce both cost and time dramatically. Although 3D printing technology has started to emerge into microfabrication manufacturing and medical applications, it is typically limited to creating mechanical structures such as hip prosthesis or dental implants. There have been increased interests in wearable devices and the critical part of such wearable devices is the sensing part to detect biosignals noninvasively. In this paper, we have built a 3D-printed sensor that can measure electroencephalogram and electrocardiogram from zebrafish. Despite measuring biosignals noninvasively from zebrafish has been known to be difficult due to that it is an underwater creature, we were able to successfully obtain electrophysiological information using the 3D-printed sensor. This 3D printing technique can accelerate the development of simple noninvasive sensors using affordable equipment and provide an economical solution to physiologists who are unfamiliar with complicated microfabrication techniques. PMID:29209491
Measurement of machine parts dimensions positional deviation with regard to their geometric accuracy
NASA Astrophysics Data System (ADS)
Martemyanov, D. B.; Pshenichnikova, V. V.; Penner, V. A.; Zemtsov, A. E.
2018-04-01
Real surfaces of the parts, obtained with the help of technological processes, are always characterized by deviations from a nominal (regular) form. When analyzing a nominal cylindrical surface or a prismatic component element, the interrelation between current dimensions in various sections and a surface form, as well as surfaces position, can be found.
Ultrasound use for body composition and carcass quality assessment in cattle and lambs
USDA-ARS?s Scientific Manuscript database
Genetic evaluation for carcass quality traits has evolved over time, in large part due to introduction of new technology such as ultrasound measures of body composition. Ultrasound measured body composition traits emulate important carcass traits, are very informative for selection purposes, are ac...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nabeel Riza
This final report contains the main results from a 3-year program to further investigate the merits of SiC-based hybrid sensor designs for extreme environment measurements in gas turbines. The study is divided in three parts. Part 1 studies the material properties of SiC such as temporal response, refractive index change with temperature, and material thermal response reversibility. Sensor data from a combustion rig-test using this SiC sensor technology is analyzed and a robust distributed sensor network design is proposed. Part 2 of the study focuses on introducing redundancy in the sensor signal processing to provide improved temperature measurement robustness. Inmore » this regard, two distinct measurement methods emerge. A first method uses laser wavelength sensitivity of the SiC refractive index behavior and a second method that engages the Black-Body (BB) radiation of the SiC package. Part 3 of the program investigates a new way to measure pressure via a distance measurement technique that applies to hot objects including corrosive fluids.« less
Marr, Jeffrey D.G.; Gray, John R.; Davis, Broderick E.; Ellis, Chris; Johnson, Sara; Gray, John R.; Laronne, Jonathan B.; Marr, Jeffrey D.G.
2010-01-01
A 3-month-long, large-scale flume experiment involving research and testing of selected conventional and surrogate bedload-monitoring technologies was conducted in the Main Channel at the St. Anthony Falls Laboratory under the auspices of the National Center for Earth-surface Dynamics. These experiments, dubbed StreamLab06, involved 25 researchers and volunteers from academia, government, and the private sector. The research channel was equipped with a sediment-recirculation system and a sediment-flux monitoring system that allowed continuous measurement of sediment flux in the flume and provided a data set by which samplers were evaluated. Selected bedload-measurement technologies were tested under a range of flow and sediment-transport conditions. The experiment was conducted in two phases. The bed material in phase I was well-sorted siliceous sand (0.6-1.8 mm median diameter). A gravel mixture (1-32 mm median diameter) composed the bed material in phase II. Four conventional bedload samplers – a standard Helley-Smith, Elwha, BLH-84, and Toutle River II (TR-2) sampler – were manually deployed as part of both experiment phases. Bedload traps were deployed in study Phase II. Two surrogate bedload samplers – stationarymounted down-looking 600 kHz and 1200 kHz acoustic Doppler current profilers – were deployed in experiment phase II. This paper presents an overview of the experiment including the specific data-collection technologies used and the ambient hydraulic, sediment-transport and environmental conditions measured as part of the experiment. All data collected as part of the StreamLab06 experiments are, or will be available to the research community.
Internet Self-Efficacy Does Not Predict Student Use of Internet-Mediated Educational Technology
ERIC Educational Resources Information Center
Buchanan, Tom; Joban, Sanjay; Porter, Alan
2014-01-01
Two studies tested the hypothesis that use of learning technologies among undergraduate psychology students was associated with higher Internet self-efficacy (ISE). In Study 1, the ISE scores of 86 students were found not to be associated with either attitudes towards, or measured use of, blogs and wikis as part of an IT skills course. ISE was…
SMART I.T.: Forget ROI, the Future of Technology Investment Is All about Value
ERIC Educational Resources Information Center
Krueger, Keith R.
2013-01-01
In today's economy, according to a recent "New York Times" article, the value of what Americans get from digital technologies is not calculated as part of the gross domestic product. The GDP only measures the monetary value of the goods and services that Americans pay for, not the information that they gain by using technological…
40 CFR 72.3 - Measurements, abbreviations, and acronyms.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... MWe—megawatt electrical. MWge—gross megawatt electrical. NIST—National Institute of Standards and Technology. ppm—parts per million. psi—pounds per square inch. °R—degree Rankine. RATA—relative accuracy test...
40 CFR 72.3 - Measurements, abbreviations, and acronyms.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... MWe—megawatt electrical. MWge—gross megawatt electrical. NIST—National Institute of Standards and Technology. ppm—parts per million. psi—pounds per square inch. °R—degree Rankine. RATA—relative accuracy test...
40 CFR 72.3 - Measurements, abbreviations, and acronyms.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... MWe—megawatt electrical. MWge—gross megawatt electrical. NIST—National Institute of Standards and Technology. ppm—parts per million. psi—pounds per square inch. °R—degree Rankine. RATA—relative accuracy test...
40 CFR 72.3 - Measurements, abbreviations, and acronyms.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... MWe—megawatt electrical. MWge—gross megawatt electrical. NIST—National Institute of Standards and Technology. ppm—parts per million. psi—pounds per square inch. °R—degree Rankine. RATA—relative accuracy test...
40 CFR 72.3 - Measurements, abbreviations, and acronyms.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... MWe—megawatt electrical. MWge—gross megawatt electrical. NIST—National Institute of Standards and Technology. ppm—parts per million. psi—pounds per square inch. °R—degree Rankine. RATA—relative accuracy test...
DOT National Transportation Integrated Search
2012-06-01
The purpose of these step-by-step guidelines is to assist in planning, designing, and deploying a system that uses radio frequency identification (RFID) technology to measure the time needed for commercial vehicles to complete the northbound border c...
Electronics reliability and measurement technology
NASA Technical Reports Server (NTRS)
Heyman, Joseph S. (Editor)
1987-01-01
A summary is presented of the Electronics Reliability and Measurement Technology Workshop. The meeting examined the U.S. electronics industry with particular focus on reliability and state-of-the-art technology. A general consensus of the approximately 75 attendees was that "the U.S. electronics industries are facing a crisis that may threaten their existence". The workshop had specific objectives to discuss mechanisms to improve areas such as reliability, yield, and performance while reducing failure rates, delivery times, and cost. The findings of the workshop addressed various aspects of the industry from wafers to parts to assemblies. Key problem areas that were singled out for attention are identified, and action items necessary to accomplish their resolution are recommended.
Study on the high-frequency laser measurement of slot surface difference
NASA Astrophysics Data System (ADS)
Bing, Jia; Lv, Qiongying; Cao, Guohua
2017-10-01
In view of the measurement of the slot surface difference in the large-scale mechanical assembly process, Based on high frequency laser scanning technology and laser detection imaging principle, This paragraph designs a double galvanometer pulse laser scanning system. Laser probe scanning system architecture consists of three parts: laser ranging part, mechanical scanning part, data acquisition and processing part. The part of laser range uses high-frequency laser range finder to measure the distance information of the target shape and get a lot of point cloud data. Mechanical scanning part includes high-speed rotary table, high-speed transit and related structure design, in order to realize the whole system should be carried out in accordance with the design of scanning path on the target three-dimensional laser scanning. Data processing part mainly by FPGA hardware with LAbVIEW software to design a core, to process the point cloud data collected by the laser range finder at the high-speed and fitting calculation of point cloud data, to establish a three-dimensional model of the target, so laser scanning imaging is realized.
Summary of EPA Emission Test Methods
This document provides the publication date and rule status for the air emission test methods, performance specifications and quality assurance procedures. It is updated by the Measurement Technology Group, part of the Air Quality Assessment Div., OAQPS.
ERIC Educational Resources Information Center
Al Musawi, Ali; Al Hashmi, Abdullah; Kazem, Ali Mahdi; Al Busaidi, Fatima; Al Khaifi, Salim
2016-01-01
This study is part of a 3-year strategic research project to measure the effectiveness of the design and use of new software for learning Arabic. However, this paper's particular objective is to evaluate the use of technology in the Omani basic education schools as it is perceived by the Arabic language teachers. The study follows the descriptive…
ERIC Educational Resources Information Center
Buj-Corral, Irene; Marco-Almagro, Lluís; Riba, Alex; Vivancos-Calvet, Joan; Tort-Martorell, Xavier
2015-01-01
In the subject Project I in the second year of the Degree in Industrial Technology Engineering taught at the School of Industrial Engineering of Barcelona (ETSEIB), subgroups of 3-4 students within groups of 20 students develop a project along a semester. Results of 2 projects are presented related to manufacturing, measurement of parts and the…
A single cell penetration system by ultrasonic driving
NASA Astrophysics Data System (ADS)
Zhou, Zhaoying; Xiao, Mingfei; Yang, Xing; Wu, Ting
2008-12-01
The researches of single cell's control and operation are the hotspots in whole world. Among the various technologies, the transmission of ectogenic genetic materials between cell membrane is very significant. Imitating the Chinese traditional acupuncture therapy, a new ultrasonic resonance driving method, is imported to drive a cell's penetration probe. A set of the single cell penetration system was established to perform this function. This system includes four subsystems: driving part, micromanipulation part, observation and measurement part, and actuation part. Some fish egg experiments indicate that this system is workable and effective.
Characterization of pixel sensor designed in 180 nm SOI CMOS technology
NASA Astrophysics Data System (ADS)
Benka, T.; Havranek, M.; Hejtmanek, M.; Jakovenko, J.; Janoska, Z.; Marcisovska, M.; Marcisovsky, M.; Neue, G.; Tomasek, L.; Vrba, V.
2018-01-01
A new type of X-ray imaging Monolithic Active Pixel Sensor (MAPS), X-CHIP-02, was developed using a 180 nm deep submicron Silicon On Insulator (SOI) CMOS commercial technology. Two pixel matrices were integrated into the prototype chip, which differ by the pixel pitch of 50 μm and 100 μm. The X-CHIP-02 contains several test structures, which are useful for characterization of individual blocks. The sensitive part of the pixel integrated in the handle wafer is one of the key structures designed for testing. The purpose of this structure is to determine the capacitance of the sensitive part (diode in the MAPS pixel). The measured capacitance is 2.9 fF for 50 μm pixel pitch and 4.8 fF for 100 μm pixel pitch at -100 V (default operational voltage). This structure was used to measure the IV characteristics of the sensitive diode. In this work, we report on a circuit designed for precise determination of sensor capacitance and IV characteristics of both pixel types with respect to X-ray irradiation. The motivation for measurement of the sensor capacitance was its importance for the design of front-end amplifier circuits. The design of pixel elements, as well as circuit simulation and laboratory measurement techniques are described. The experimental results are of great importance for further development of MAPS sensors in this technology.
NASA Astrophysics Data System (ADS)
Romine, William L.; Sadler, Troy D.
2016-06-01
Improving interest in science, technology, engineering, and mathematics (STEM) is crucial to widening participation and success in STEM studies at the college level. To understand how classroom and extracurricular interventions affect interest, it is necessary to have appropriate measurement tools. We describe the adaptation and revalidation of a previously existing multidimensional instrument to the end of measuring interest in environmental science and technology in college nonscience majors. We demonstrate the revised instrument's ability to detect change in this group over an 8-week time period. While collection of demographic information was not part of the study design, participating students were similar in that they hailed from three environmental science nonmajor classes sharing a common syllabus and instructional delivery method. Change in interest was measured in response to two types of scientific literature-based learning approaches: a scientific practice approach and a traditional, quiz-driven approach. We found that both approaches led to moderate gains in interest in learning environmental science and careers in environmental science across an 8-week time period. Interest in using technology for learning increased among students using the scientific practice approach; in contrast, the same measure decreased among students using the reading/quiz approach. This result invites the possibility that interest in using technology as a learning tool may relate to technological literacy, which must be taught explicitly in the context of authentic inquiry experiences.
Using LabVIEW for Telemetry Monitoring and Display
NASA Technical Reports Server (NTRS)
Wells, G.; Baroth, E.
1994-01-01
Part of the Jet Propulsion Laboratory's (JPL's) Instrumentation Section, the Measurement Technology Center (MTC) evaluates data acquisition hardware and software products for inclusion into the Instrument Loan Pool, which are the made available to JPL experimenters.
Airborne Laser/GPS Mapping of Assateague National Seashore Beach
NASA Technical Reports Server (NTRS)
Kradill, W. B.; Wright, C. W.; Brock, John C.; Swift, R. N.; Frederick, E. B.; Manizade, S. S.; Yungel, J. K.; Martin, C. F.; Sonntag, J. G.; Duffy, Mark;
1997-01-01
Results are presented from topographic surveys of the Assateague Island National Seashore using recently developed Airborne Topographic Mapper (ATM) and kinematic Global Positioning System (GPS) technology. In November, 1995, and again in May, 1996, the NASA Arctic Ice Mapping (AIM) group from the Goddard Space Flight Center's Wallops Flight Facility conducted the topographic surveys as a part of technology enhancement activities prior to conducting missions to measure the elevation of extensive sections of the Greenland Ice Sheet as part of NASA's Global Climate Change program. Differences between overlapping portions of both surveys are compared for quality control. An independent assessment of the accuracy of the ATM survey is provided by comparison to surface surveys which were conducted using standard techniques. The goal of these projects is to mdke these measurements to an accuracy of +/- 10 cm. Differences between the fall 1995 and 1996 surveys provides an assessment of net changes in the beach morphology over an annual cycle.
Optical pH detector based on LTCC and sol-gel technologies
NASA Astrophysics Data System (ADS)
Tadaszak, R. J.; Łukowiak, A.; Golonka, L. J.
2013-01-01
This paper presents an investigation on using sol-gel thin film as a material for sensors application in LTCC (Low Temperature Co-fired Ceramics) technology. This material gives the opportunity to make new, low-cost highly integrated optoelectronic devices. Sensors with optical detection are a significant part of these applications. They can be used for quick and safe diagnostics of some parameters. Authors present a pH detector with the optical detection system made of the LTCC material. The main part of the device is a flow channel with the chamber and sol-gel active material. The silica sol-gel with bromocresol green indicator was used. As the absorbance of sol-gel layer changes with the pH value of a measured medium, the transmitted light power was measured. The pH detector was integrated with the electronic components on the LTCC substrate.
A Little Sensor That Packs a Wallop
NASA Technical Reports Server (NTRS)
2000-01-01
A gas sensor originally built for NASA to measure the composition of the atmosphere of Earth and Mars has been commercialized by SpectraSensors. The commercial tunable diode laser (TDL) gas sensor can be used for oil and gas pipeline monitoring, aircraft safety, environmental monitoring and medicine. The TDL technology is good at detecting low levels of gases from parts-per-million to parts-per-billion.
Fibre optic gyroscopes for space use
NASA Astrophysics Data System (ADS)
Faussot, Nicolas; Cottreau, Yann; Hardy, Guillaume; Simonpietri, Pascal; Gaiffe, Thierry
2017-11-01
Among the technologies available for gyroscopes usable in space, the Fibre Optic Gyroscope (FOG) technology appears to be the most suitable: no moving parts, very good lifetime, low power consumption, very low random walk, arbitrarily low angular resolution and very good behaviour in radiations and vacuum. Benefiting from more than ten years of experience with this technology, Ixsea (formerly the Navigation Division of Photonetics) is developing space FOG under both CNES and ESA contracts since many years. In the 1996-1998 period, two space FOG demonstrators in the 0,01°/h class were manufactured, including an optical head (optic and optoelectronic part) designed for space use and a standard ground electronics. Beyond the demonstration of the specified FOG performances, the behaviour of the optical head has been validated for use in typical space environment: vibrations, shocks, radiations (up to 50 krad) and thermal vacuum. Since the beginning of 1999, Ixsea is developing a space electronics in order to manufacture two complete space FOG. The first one entered in qualification in October. The second one will be delivered beginning of next year, it will be used in a CNES attitude measurement experiment (MAGI) onboard the FrenchBrazilian Microsatellite (FBM) partly dedicated to technology evaluation.
Thin-film reliability and engineering overview
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr.
1984-01-01
The reliability and engineering technology base required for thin film solar energy conversions modules is discussed. The emphasis is on the integration of amorphous silicon cells into power modules. The effort is being coordinated with SERI's thin film cell research activities as part of DOE's Amorphous Silicon Program. Program concentration is on temperature humidity reliability research, glass breaking strength research, point defect system analysis, hot spot heating assessment, and electrical measurements technology.
Thin-film reliability and engineering overview
NASA Astrophysics Data System (ADS)
Ross, R. G., Jr.
1984-10-01
The reliability and engineering technology base required for thin film solar energy conversions modules is discussed. The emphasis is on the integration of amorphous silicon cells into power modules. The effort is being coordinated with SERI's thin film cell research activities as part of DOE's Amorphous Silicon Program. Program concentration is on temperature humidity reliability research, glass breaking strength research, point defect system analysis, hot spot heating assessment, and electrical measurements technology.
NASA Astrophysics Data System (ADS)
Obland, Michael D.; Campbell, Joel; Kooi, Susan; Fan, Tai-Fang; Carrion, William; Hicks, Jonathan; Lin, Bing; Nehrir, Amin R.; Browell, Edward V.; Meadows, Byron; Davis, Kenneth J.
2018-04-01
This work describes advances in critical lidar technologies and techniques developed as part of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons CarbonHawk Experiment Simulator system for measuring atmospheric column carbon dioxide (CO2) mixing ratios. This work provides an overview of these technologies and results from recent test flights during the NASA Atmospheric Carbon and Transport - America (ACT-America) Earth Venture Suborbital summer 2016 flight campaign.
Universal test system for system embedded optical interconnect
NASA Astrophysics Data System (ADS)
Pitwon, R.; Wang, K.; Immonen, M.; Schröder, H.; Neitz, M.
2018-02-01
We introduce a universal test and measurement system allowing comparative characterisation of optical transceivers, board-to-board optical connectors and both embedded and passive optical circuit boards. The system comprises a test enclosure with interlocking and interchangeable test cards, allowing different technologies spanning different Technology Readiness Levels to be both characterised alone and in combination with other technologies. They form part of the open test design standards portfolio developed on the FP7 PhoxTroT and H2020 COSMICC projects and allow testing on a common test platform.
The New Millennium Program Space Technology 5 (ST-5) Mission
NASA Technical Reports Server (NTRS)
Webb, Evan H.; Carlisle, Candace C.; Slavin, James A.
2005-01-01
The Space Technology 5 (ST-5) Project is part of NASA's New Millennium Program. ST-5 will consist of a constellation of three 25kg microsatellites. The mission goals are to demonstrate the research-quality science capability of the ST-5 spacecraft; to operate the three spacecraft as a constellation; and to design, develop and flight-validate three capable microsatellites with new technologies. ST-5 will be launched by a Pegasus XL into an elliptical polar (sun-synchronous) orbit. The three-month flight demonstration phase, beginning in March 2006, will validate the ability to perform science measurements, as well as the technologies and constellation operations. ST-5's technologies and concepts will enable future microsatellite science missions.
Schootman, M; Nelson, E J; Werner, K; Shacham, E; Elliott, M; Ratnapradipa, K; Lian, M; McVay, A
2016-06-23
Adverse neighborhood conditions play an important role beyond individual characteristics. There is increasing interest in identifying specific characteristics of the social and built environments adversely affecting health outcomes. Most research has assessed aspects of such exposures via self-reported instruments or census data. Potential threats in the local environment may be subject to short-term changes that can only be measured with more nimble technology. The advent of new technologies may offer new opportunities to obtain geospatial data about neighborhoods that may circumvent the limitations of traditional data sources. This overview describes the utility, validity and reliability of selected emerging technologies to measure neighborhood conditions for public health applications. It also describes next steps for future research and opportunities for interventions. The paper presents an overview of the literature on measurement of the built and social environment in public health (Google Street View, webcams, crowdsourcing, remote sensing, social media, unmanned aerial vehicles, and lifespace) and location-based interventions. Emerging technologies such as Google Street View, social media, drones, webcams, and crowdsourcing may serve as effective and inexpensive tools to measure the ever-changing environment. Georeferenced social media responses may help identify where to target intervention activities, but also to passively evaluate their effectiveness. Future studies should measure exposure across key time points during the life-course as part of the exposome paradigm and integrate various types of data sources to measure environmental contexts. By harnessing these technologies, public health research can not only monitor populations and the environment, but intervene using novel strategies to improve the public health.
Rapid matching of stereo vision based on fringe projection profilometry
NASA Astrophysics Data System (ADS)
Zhang, Ruihua; Xiao, Yi; Cao, Jian; Guo, Hongwei
2016-09-01
As the most important core part of stereo vision, there are still many problems to solve in stereo matching technology. For smooth surfaces on which feature points are not easy to extract, this paper adds a projector into stereo vision measurement system based on fringe projection techniques, according to the corresponding point phases which extracted from the left and right camera images are the same, to realize rapid matching of stereo vision. And the mathematical model of measurement system is established and the three-dimensional (3D) surface of the measured object is reconstructed. This measurement method can not only broaden application fields of optical 3D measurement technology, and enrich knowledge achievements in the field of optical 3D measurement, but also provide potential possibility for the commercialized measurement system in practical projects, which has very important scientific research significance and economic value.
NASA Astrophysics Data System (ADS)
Ogutu, K. B. Z.; D'Andrea, F.; Ghil, M.; Nyandwi, C.; Manene, M. M.; Muthama, J. N.
2015-04-01
This study uses the global climate-economy-biosphere (CoCEB) model developed in Part 1 to investigate economic aspects of deforestation control and carbon sequestration in forests, as well as the efficiency of carbon capture and storage (CCS) technologies as policy measures for climate change mitigation. We assume - as in Part 1 - that replacement of one technology with another occurs in terms of a logistic law, so that the same law also governs the dynamics of reduction in carbon dioxide emission using CCS technologies. In order to take into account the effect of deforestation control, a slightly more complex description of the carbon cycle than in Part 1 is needed. Consequently, we add a biomass equation into the CoCEB model and analyze the ensuing feedbacks and their effects on per capita gross domestic product (GDP) growth. Integrating biomass into the CoCEB and applying deforestation control as well as CCS technologies has the following results: (i) low investment in CCS contributes to reducing industrial carbon emissions and to increasing GDP, but further investment leads to a smaller reduction in emissions, as well as in the incremental GDP growth; and (ii) enhanced deforestation control contributes to a reduction in both deforestation emissions and in atmospheric carbon dioxide concentration, thus reducing the impacts of climate change and contributing to a slight appreciation of GDP growth. This effect is however very small compared to that of low-carbon technologies or CCS. We also find that the result in (i) is very sensitive to the formulation of CCS costs, while to the contrary, the results for deforestation control are less sensitive.
Code of Federal Regulations, 2010 CFR
2010-01-01
... requirements set forth in this part 802 describe certain specifications, tolerances, and other technical... Standards and Technology (NIST) Handbook 44, “Specifications, Tolerances, and Other Technical Requirements...), “Specifications and Tolerances for Reference Standards and Field Standard Weights and Measures,” (Handbook 105-1...
ISPI's Value Proposition: Two Examples.
ERIC Educational Resources Information Center
Swinney, John
2003-01-01
Describes two experiences that illustrate the value of the International Society for Performance Improvement (ISPI). Highlights include measuring organizational results; identifying opportunities to improve performance; training as part of the solution; the role of ISD (instructional systems design); HPT (human performance technology) issues; and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael, Buric; Jessica, Mullen; Steven, Woodruff
2012-02-24
NETL has developed new technology which enables the use of Raman spectroscopy in the real-time measurement of gas mixtures. This technology uses a hollow reflective metal-lined capillary waveguide as a gas sampling cell which contains the sample gas, and efficiently collects optical Raman scattering from the gas sample, for measurement with a miniature spectrometer. The result is an optical Raman “fingerprint” for each gas which is tens or hundreds of times larger than that which can be collected with conventional free-space optics. In this manner, the new technology exhibits a combination of measurement speed and accuracy which is unprecedented formore » spontaneous Raman measurements of gases. This makes the system especially well-suited to gas turbine engine control based on a-priori measurement of incoming fuel composition. The system has been developed to produce a measurement of all of the common components of natural gas, including the lesser nitrogen, oxygen, carbon-dioxide, and carbon monoxide diluents to better than 1% concentration accuracy each second. The objective of this task under CRADA 10-N100 was to evaluate the capability of a laser Raman capillary gas sensor for combustion fuels. A portable version of the Raman gas sensor, constructed at NETL, was used for field-trials conducted in a cooperative research effort at a GE facility. Testing under the CRADA was performed in 5 parts. Parts 1-4 were successful in testing of the Raman Gas Composition Monitor with bottled calibration gases, and in continuous monitoring of several gas streams at low pressure, in comparison with an online mass spectrometer. In part 5, the Raman Gas Composition Monitor was moved outdoors for testing with high pressure gas supplies. Some difficulties were encountered during industrial testing including the condensation of heavy hydrocarbons inside the sample cell (in part 5), communication with the GE data collection system, as well as some drift in the optical noise background. The difficulties with liquid contaminants will be overcome through the use of prodigious sample-cell heating and additional line filtration including liquid ingress-protection. The communication problem was resolved through site-specific troubleshooting of the MODBUS data tags.« less
ERIC Educational Resources Information Center
Mahu, Robert J.
2017-01-01
Performance measurement has emerged as a management tool that, accompanied by advances in technology and data analysis, has allowed public officials to control public policy at multiple levels of government. In the United States, the federal government has used performance measurement as part of an accountability strategy that enables Congress and…
A Two-Tiered Model for Analyzing Library Web Site Usage Statistics, Part 1: Web Server Logs.
ERIC Educational Resources Information Center
Cohen, Laura B.
2003-01-01
Proposes a two-tiered model for analyzing web site usage statistics for academic libraries: one tier for library administrators that analyzes measures indicating library use, and a second tier for web site managers that analyzes measures aiding in server maintenance and site design. Discusses the technology of web site usage statistics, and…
Sandoval, Guillermo A; Brown, Adalsteinn D; Wodchis, Walter P; Anderson, Geoffrey M
2018-05-17
Measuring the value of medical imaging is challenging, in part, due to the lack of conceptual frameworks underlying potential mechanisms where value may be assessed. To address this gap, this article proposes a framework that builds on the large body of literature on quality of hospital care and the classic structure-process-outcome paradigm. The framework was also informed by the literature on adoption of technological innovations and introduces 2 distinct though related aspects of imaging technology not previously addressed specifically in the literature on quality of hospital care: adoption (a structural hospital characteristic) and use (an attribute of the process of care). The framework hypothesizes a 2-part causality where adoption is proposed to be a central, linking factor between hospital structural characteristics, market factors, and hospital outcomes (ie, quality and efficiency). The first part indicates that hospital structural characteristics and market factors influence or facilitate the adoption of high technology medical imaging within an institution. The presence of this technology, in turn, is hypothesized to improve the ability of the hospital to deliver high quality and efficient care. The second part describes this ability throughout 3 main mechanisms pointing to the importance of imaging use on patients, to the presence of staff and qualified care providers, and to some elements of organizational capacity capturing an enhanced clinical environment. The framework has the potential to assist empirical investigations of the value of adoption and use of medical imaging, and to advance understanding of the mechanisms that produce quality and efficiency in hospitals. Copyright © 2018 John Wiley & Sons, Ltd.
Recent flight-test results of optical airdata techniques
NASA Technical Reports Server (NTRS)
Bogue, Rodney K.
1993-01-01
Optical techniques for measuring airdata parameters were demonstrated with promising results on high performance fighter aircraft. These systems can measure the airspeed vector, and some are not as dependent on special in-flight calibration processes as current systems. Optical concepts for measuring freestream static temperature and density are feasible for in-flight applications. The best feature of these concepts is that the air data measurements are obtained nonintrusively, and for the most part well into the freestream region of the flow field about the aircraft. Current requirements for measuring air data at high angle of attack, and future need to measure the same information at hypersonic flight conditions place strains on existing techniques. Optical technology advances show outstanding potential for application in future programs and promise to make common use of optical concepts a reality. Results from several flight-test programs are summarized, and the technology advances required to make optical airdata techniques practical are identified.
Introducing a design exigency to promote student learning through assessment: A case study.
Grealish, Laurie A; Shaw, Julie M
2018-02-01
Assessment technologies are often used to classify student and newly qualified nurse performance as 'pass' or 'fail', with little attention to how these decisions are achieved. Examining the design exigencies of classification technologies, such as performance assessment technologies, provides opportunities to explore flexibility and change in the process of using those technologies. Evaluate an established assessment technology for nursing performance as a classification system. A case study analysis that is focused on the assessment approach and a priori design exigencies of performance assessment technology, in this case the Australian Nursing Standards Assessment Tool 2016. Nurse assessors are required to draw upon their expertise to judge performance, but that judgement is described as a source of bias, creating confusion. The definition of satisfactory performance is 'ready to enter practice'. To pass, the performance on each criterion must be at least satisfactory, indicating to the student that no further improvement is required. The Australian Nursing Standards Assessment Tool 2016 does not have a third 'other' category, which is usually found in classification systems. Introducing a 'not yet competent' category and creating a two-part, mixed methods assessment process can improve the Australian Nursing Standards Assessment Tool 2016 assessment technology. Using a standards approach in the first part, judgement is valued and can generate learning opportunities across a program. Using a measurement approach in the second part, student performance can be 'not yet competent' but still meet criteria for year level performance and a graded pass. Subjecting the Australian Nursing Standards Assessment Tool 2016 assessment technology to analysis as a classification system provides opportunities for innovation in design. This design innovation has the potential to support students who move between programs and clinicians who assess students from different universities. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Wilson, L. N.
1970-01-01
The mathematical bases for the direct measurement of sound source intensities in turbulent jets using the crossed-beam technique are discussed in detail. It is found that the problems associated with such measurements lie in three main areas: (1) measurement of the correct flow covariance, (2) accounting for retarded time effects in the measurements, and (3) transformation of measurements to a moving frame of reference. The determination of the particular conditions under which these problems can be circumvented is the main goal of the study.
Coordinate Measuring Machine Pit Artifact Inspection Procedure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montano, Joshua D.
2012-07-31
The goal of this document is to outline a procedure for dimensional measurement of Los Alamos National Laboratory's CMM Pit Artifact. This procedure will be used by the Manufacturing Practice's Inspection Technology Subgroup of the Interagency Manufacturing Operations Group and Joint Operations Weapon Operations Group (IMOG/JOWOG 39) round robin participants. The intent is to assess the state of industry within the Nuclear Weapons Complex for measurements made on this type of part and find which current measurement strategies and techniques produce the best results.
NASA Astrophysics Data System (ADS)
Zalameda, Joseph N.; Burke, Eric R.; Hafley, Robert A.; Taminger, Karen M.; Domack, Christopher S.; Brewer, Amy; Martin, Richard E.
2013-05-01
Additive manufacturing is a rapidly growing field where 3-dimensional parts can be produced layer by layer. NASA's electron beam freeform fabrication (EBF3) technology is being evaluated to manufacture metallic parts in a space environment. The benefits of EBF3 technology are weight savings to support space missions, rapid prototyping in a zero gravity environment, and improved vehicle readiness. The EBF3 system is composed of 3 main components: electron beam gun, multi-axis position system, and metallic wire feeder. The electron beam is used to melt the wire and the multi-axis positioning system is used to build the part layer by layer. To insure a quality deposit, a near infrared (NIR) camera is used to image the melt pool and solidification areas. This paper describes the calibration and application of a NIR camera for temperature measurement. In addition, image processing techniques are presented for deposit assessment metrics.
Research and industrialization of near-net rolling technology used in shaft parts
NASA Astrophysics Data System (ADS)
Hu, Zhenghuan; Wang, Baoyu; Zheng, Zhenhua
2017-11-01
Shaft part rolling is an efficient and green nearnet shaping technology offering many advantages, including high production efficiency, high material utilization rate, high product quality, and excellent production environment. In this paper, the features of shaft part rolling are introduced along with the working principles of two main shaft part rolling technologies, namely, cross wedge rolling (CWR) and skew rolling (SR). In relation to this technology, some R&D achievements gained by the University of Science and Technology Beijing are summarized. Finally, the latest developments in shaft part rolling are presented, including SR steel balls, precise forming of camshaft blank by CWR, SR phosphorous copper balls at room temperature, and CWR hollow axle sleeve. Although the shaft part rolling technology has been widely used in China, it only accounts for about 15% of applicable parts at present. Nevertheless, this technology has broad application prospects.
Research and industrialization of near-net rolling technology used in shaft parts
NASA Astrophysics Data System (ADS)
Hu, Zhenghuan; Wang, Baoyu; Zheng, Zhenhua
2018-03-01
Shaft part rolling is an efficient and green nearnet shaping technology offering many advantages, including high production efficiency, high material utilization rate, high product quality, and excellent production environment. In this paper, the features of shaft part rolling are introduced along with the working principles of two main shaft part rolling technologies, namely, cross wedge rolling (CWR) and skew rolling (SR). In relation to this technology, some R&D achievements gained by the University of Science and Technology Beijing are summarized. Finally, the latest developments in shaft part rolling are presented, including SR steel balls, precise forming of camshaft blank by CWR, SR phosphorous copper balls at room temperature, and CWR hollow axle sleeve. Although the shaft part rolling technology has been widely used in China, it only accounts for about 15% of applicable parts at present. Nevertheless, this technology has broad application prospects.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-13
... Information Technology Agreement: Advice and Information on the Proposed Expansion: Part 1; The Information Technology Agreement: Advice and Information on the Proposed Expansion: Part 2 AGENCY: United States... Technology Agreement: Advice and Information on the Proposed Expansion: Part 1, and investigation No. 332-536...
Tschmelak, Jens; Proll, Guenther; Riedt, Johannes; Kaiser, Joachim; Kraemmer, Peter; Bárzaga, Luis; Wilkinson, James S; Hua, Ping; Hole, J Patrick; Nudd, Richard; Jackson, Michael; Abuknesha, Ram; Barceló, Damià; Rodriguez-Mozaz, Sara; de Alda, Maria J López; Sacher, Frank; Stien, Jan; Slobodník, Jaroslav; Oswald, Peter; Kozmenko, Helena; Korenková, Eva; Tóthová, Lívia; Krascsenits, Zoltan; Gauglitz, Guenter
2005-02-15
A novel analytical system AWACSS (automated water analyser computer-supported system) based on immunochemical technology has been developed that can measure several organic pollutants at low nanogram per litre level in a single few-minutes analysis without any prior sample pre-concentration nor pre-treatment steps. Having in mind actual needs of water-sector managers related to the implementation of the Drinking Water Directive (DWD) (98/83/EC, 1998) and Water Framework Directive WFD (2000/60/EC, 2000), drinking, ground, surface, and waste waters were major media used for the evaluation of the system performance. The instrument was equipped with remote control and surveillance facilities. The system's software allows for the internet-based networking between the measurement and control stations, global management, trend analysis, and early-warning applications. The experience of water laboratories has been utilised at the design of the instrument's hardware and software in order to make the system rugged and user-friendly. Several market surveys were conducted during the project to assess the applicability of the final system. A web-based AWACSS database was created for automated evaluation and storage of the obtained data in a format compatible with major databases of environmental organic pollutants in Europe. This first part article gives the reader an overview of the aims and scope of the AWACSS project as well as details about basic technology, immunoassays, software, and networking developed and utilised within the research project. The second part article reports on the system performance, first real sample measurements, and an international collaborative trial (inter-laboratory tests) to compare the biosensor with conventional anayltical methods.
Can eye-tracking technology improve situational awareness in paramedic clinical education?
Williams, Brett; Quested, Andrew; Cooper, Simon
2013-01-01
Human factors play a significant part in clinical error. Situational awareness (SA) means being aware of one's surroundings, comprehending the present situation, and being able to predict outcomes. It is a key human skill that, when properly applied, is associated with reducing medical error: eye-tracking technology can be used to provide an objective and qualitative measure of the initial perception component of SA. Feedback from eye-tracking technology can be used to improve the understanding and teaching of SA in clinical contexts, and consequently, has potential for reducing clinician error and the concomitant adverse events.
Caring communications: how technology enhances interpersonal relations, Part II.
Simpson, Roy L
2008-01-01
Part I of this 2-part series about technology's role in interpersonal communications examined how humans interact; proposed a caring theory of communication, collaboration, and conflict resolution; and delineated ways that technology--in general--supports this carative model of interpersonal relations. Part II will examine the barriers to adoption of carative technologies, describe the core capabilities required to overcome them, and discuss specific technologies that can support carative interpersonal relationships.
Low-Cost Sensors Deliver Nanometer-Accurate Measurements
NASA Technical Reports Server (NTRS)
2015-01-01
As part of a unique partnership program, Kennedy Space Center collaborated with a nearby business school to allow MBA students to examine and analyze the market potential for a selection of NASA-patented technologies. Following the semester, a group of students decided to form Winter Park, Florida-based Juntura Group Inc. to license and sell a technology they had worked with: a sensor capable of detecting position changes as small as 10 nanometers-approximately the thickness of a cell wall.
Safeguards and security research and development: Progress report, October 1994--September 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutherford, D.R.; Henriksen, P.W.
The primary goal of the Los Alamos Safeguards and Security Technology Development Program, International Safeguards, and other Safeguards and Security Programs is to continue to be the center of excellence in the field of Safeguards and Security. This annual report for 1995 describes those scientific and engineering projects that contribute to all of the aforementioned programs. The authors have presented the information in a different format from previous annual reports. Part I is devoted to Nuclear Material Measurement Systems. Part II contains projects that are specific to Integrated Safeguards Systems. Part III highlights Safeguards Systems Effectiveness Evaluations and Part IVmore » is a compilation of highlights from Information Assurance projects. Finally Part V highlights work on the projects at Los Alamos for International Safeguards. The final part of this annual report lists titles and abstracts of Los Alamos Safeguards and Security Technology Development reports, technical journal articles, and conference papers that were presented and published in 1995. This is the last annual report in this format. The authors wish to thank all of the individuals who have contributed to this annual report and made it so successful over the years.« less
NASA Astrophysics Data System (ADS)
Dolimont, Adrien; Rivière-Lorphèvre, Edouard; Ducobu, François; Backaert, Stéphane
2018-05-01
Additive manufacturing is growing faster and faster. This leads us to study the functionalization of the parts that are produced by these processes. Electron Beam melting (EBM) is one of these technologies. It is a powder based additive manufacturing (AM) method. With this process, it is possible to manufacture high-density metal parts with complex topology. One of the big problems with these technologies is the surface finish. To improve the quality of the surface, some finishing operations are needed. In this study, the focus is set on chemical polishing. The goal is to determine how the chemical etching impacts the dimensional accuracy and the surface roughness of EBM parts. To this end, an experimental campaign was carried out on the most widely used material in EBM, Ti6Al4V. Different exposure times were tested. The impact of these times on surface quality was evaluated. To help predicting the excess thickness to be provided, the dimensional impact of chemical polishing on EBM parts was estimated. 15 parts were measured before and after chemical machining. The improvement of surface quality was also evaluated after each treatment.
Enhancement of observability and protection of smart power system
NASA Astrophysics Data System (ADS)
Siddique, Abdul Hasib
It is important for a modern power grid to be smarter in order to provide reliable and sustainable supply of electricity. Traditional way of receiving data from the wired system is a very old and outdated technology. For a quicker and better response from the electric system, it is important to look at wireless systems as a feasible option. In order to enhance the observability and protection it is important to integrate wireless technology with the modern power system. In this thesis, wireless network based architecture for wide area monitoring and an alternate method for performing current measurement for protection of generators and motors, has been adopted. There are basically two part of this project. First part deals with the wide area monitoring of the power system and the second part focuses more on application of wireless technology from the protection point of view. A number of wireless method have been adopted in both the part, these includes Zigbee, analog transmission (Both AM and FM) and digital transmission. The main aim of our project was to propose a cost effective wide area monitoring and protection method which will enhance the observability and stability of power grid. A new concept of wireless integration in the power protection system has been implemented in this thesis work.
HEU Holdup Measurements in the 321-M Draw Bench, Straightener, and Fluoroscope Components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewberry, R.A.
The Analytical Development Section of Savannah River Technology Center (SRTC) was requested by the Facilities Disposition Division (FDD) to determine the holdup of enriched uranium in the 321-M facility as part of an overall deactivation project of the facility. This report covers holdup measurements of uranium residue on the draw bench, straightener, and the fluoroscope components of the 321-M facility.
Philosophical aspects of dual use technologies.
Pustovit, Svitlana V; Williams, Erin D
2010-03-01
The term dual use technologies refers to research and technology with the potential both to yield valuable scientific knowledge and to be used for nefarious purposes with serious consequences for public health or the environment. There are two main approaches to assessing dual use technologies: pragmatic and metaphysical. A pragmatic approach relies on ethical principles and norms to generate specific guidance and policy for dual use technologies. A metaphysical approach exhorts us to the deeper study of human nature, our intentions, goals, values ideals and social relations when considering dual use technology. Use of science and technology (S and T) is determined by two components of human nature: human intentions and choices. We have drawn a distinction between specific measures, goals and intentions with respect to technologies in order to show that moral judgment about technologies must precede their use. Understanding of our intentionality and values, and our moral ideals, as a measurable, tangible part of the real world is important for the prevention of any possible harm from S and T. In the context of dual use technologies, we stress the importance of three main understandings of human nature: vulnerability, responsibility and narrative identity. These can become a strong ontological "antidote" to technology's poisoning of modern man. Each new technology can be measured and compared with man's values, traditions and societal norms. This can be done bearing in mind the concept that human nature is not dualistic, but pluralistic. A system of ethical principles that includes the principles of good intentions, the correspondence of goals and means, the balancing of risks and benefits, simplicity, and contextuality, will help ensure that technologies are more humanistic and friendly to human beings.
SVOC emissions from diesel trucks operating on biodiesel fuels
This study measured semivolatile organic compounds (SVOCs) in particle matter (PM) emitted from three heavy-duty trucks equipped with modern after-treatment technologies. Emissions testing was conducted as described by the George et al. VOC study also presented as part of this se...
NASA Technical Reports Server (NTRS)
Rincon, Rafael F.; Fatoyinbo, Temilola; Ranson, K. Jon; Osmanoglu, Batuhan; Sun, Guoqing; Deshpande, Manohar D.; Perrine, Martin L.; Du Toit, Cornelis F.; Bonds, Quenton; Beck, Jaclyn;
2014-01-01
EcoSAR is a new synthetic aperture radar (SAR) instrument being developed at the NASA/ Goddard Space Flight Center (GSFC) for the polarimetric and interferometric measurements of ecosystem structure and biomass. The instrument uses a phased-array beamforming architecture and supports full polarimetric measurements and single pass interferometry. This Instrument development is part of NASA's Earth Science Technology Office Instrument Incubator Program (ESTO IIP).
Kligfield, Paul; Gettes, Leonard S; Bailey, James J; Childers, Rory; Deal, Barbara J; Hancock, E William; van Herpen, Gerard; Kors, Jan A; Macfarlane, Peter; Mirvis, David M; Pahlm, Olle; Rautaharju, Pentti; Wagner, Galen S
2007-03-01
This statement examines the relation of the resting ECG to its technology. Its purpose is to foster understanding of how the modern ECG is derived and displayed and to establish standards that will improve the accuracy and usefulness of the ECG in practice. Derivation of representative waveforms and measurements based on global intervals are described. Special emphasis is placed on digital signal acquisition and computer-based signal processing, which provide automated measurements that lead to computer-generated diagnostic statements. Lead placement, recording methods, and waveform presentation are reviewed. Throughout the statement, recommendations for ECG standards are placed in context of the clinical implications of evolving ECG technology.
The Future of Pharmaceutical Manufacturing Sciences
2015-01-01
The entire pharmaceutical sector is in an urgent need of both innovative technological solutions and fundamental scientific work, enabling the production of highly engineered drug products. Commercial‐scale manufacturing of complex drug delivery systems (DDSs) using the existing technologies is challenging. This review covers important elements of manufacturing sciences, beginning with risk management strategies and design of experiments (DoE) techniques. Experimental techniques should, where possible, be supported by computational approaches. With that regard, state‐of‐art mechanistic process modeling techniques are described in detail. Implementation of materials science tools paves the way to molecular‐based processing of future DDSs. A snapshot of some of the existing tools is presented. Additionally, general engineering principles are discussed covering process measurement and process control solutions. Last part of the review addresses future manufacturing solutions, covering continuous processing and, specifically, hot‐melt processing and printing‐based technologies. Finally, challenges related to implementing these technologies as a part of future health care systems are discussed. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3612–3638, 2015 PMID:26280993
The Future of Pharmaceutical Manufacturing Sciences.
Rantanen, Jukka; Khinast, Johannes
2015-11-01
The entire pharmaceutical sector is in an urgent need of both innovative technological solutions and fundamental scientific work, enabling the production of highly engineered drug products. Commercial-scale manufacturing of complex drug delivery systems (DDSs) using the existing technologies is challenging. This review covers important elements of manufacturing sciences, beginning with risk management strategies and design of experiments (DoE) techniques. Experimental techniques should, where possible, be supported by computational approaches. With that regard, state-of-art mechanistic process modeling techniques are described in detail. Implementation of materials science tools paves the way to molecular-based processing of future DDSs. A snapshot of some of the existing tools is presented. Additionally, general engineering principles are discussed covering process measurement and process control solutions. Last part of the review addresses future manufacturing solutions, covering continuous processing and, specifically, hot-melt processing and printing-based technologies. Finally, challenges related to implementing these technologies as a part of future health care systems are discussed. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association.
New Tech Measures Artery Health: Engevity Cuff
Maltz, Jonathan
2018-05-22
Jonathan Maltz, a Berkeley Lab scientist in the Molecular Biophysics and Integrated Bioimaging division, explains a new technology developed at Berkeley Lab that could soon make detecting the process of plaque buildup in vessels a routine part of a visit to the doctor and, perhaps, home healthcare settings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
As part of a two-year project to demonstrate energy efficiency measures, renewable energy generation, and energy systems integration, the National Renewable Energy Laboratory (NREL) has identified advanced plug load controls as a promising technology for reducing energy use and related costs in the U.S. Navy's Naval Facilities Engineering Command (NAVFAC) office spaces.
New Tech Measures Artery Health: Engevity Cuff
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maltz, Jonathan
2016-05-19
Jonathan Maltz, a Berkeley Lab scientist in the Molecular Biophysics and Integrated Bioimaging division, explains a new technology developed at Berkeley Lab that could soon make detecting the process of plaque buildup in vessels a routine part of a visit to the doctor and, perhaps, home healthcare settings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fort, James A.; Pfund, David M.; Sheen, David M.
2007-04-01
The MFDRC was formed in 1998 to advance the state-of-the-art in simulating multiphase turbulent flows by developing advanced computational models for gas-solid flows that are experimentally validated over a wide range of industrially relevant conditions. The goal was to transfer the resulting validated models to interested US commercial CFD software vendors, who would then propagate the models as part of new code versions to their customers in the US chemical industry. Since the lack of detailed data sets at industrially relevant conditions is the major roadblock to developing and validating multiphase turbulence models, a significant component of the work involvedmore » flow measurements on an industrial-scale riser contributed by Westinghouse, which was subsequently installed at SNL. Model comparisons were performed against these datasets by LANL. A parallel Office of Industrial Technology (OIT) project within the consortium made similar comparisons between riser measurements and models at NETL. Measured flow quantities of interest included volume fraction, velocity, and velocity-fluctuation profiles for both gas and solid phases at various locations in the riser. Some additional techniques were required for these measurements beyond what was currently available. PNNL’s role on the project was to work with the SNL experimental team to develop and test two new measurement techniques, acoustic tomography and millimeter-wave velocimetry. Acoustic tomography is a promising technique for gas-solid flow measurements in risers and PNNL has substantial related experience in this area. PNNL is also active in developing millimeter wave imaging techniques, and this technology presents an additional approach to make desired measurements. PNNL supported the advanced diagnostics development part of this project by evaluating these techniques and then by adapting and developing the selected technology to bulk gas-solids flows and by implementing them for testing in the SNL riser testbed.« less
Measuring suspended sediment: Chapter 10
Gray, J.R.; Landers, M.N.
2013-01-01
Suspended sediment in streams and rivers can be measured using traditional instruments and techniques and (or) surrogate technologies. The former, as described herein, consists primarily of both manually deployed isokinetic samplers and their deployment protocols developed by the Federal Interagency Sedimentation Project. They are used on all continents other than Antarctica. The reliability of the typically spatially rich but temporally sparse data produced by traditional means is supported by a broad base of scientific literature since 1940. However, the suspended sediment surrogate technologies described herein – based on hydroacoustic, nephelometric, laser, and pressure difference principles – tend to produce temporally rich but in some cases spatially sparse datasets. The value of temporally rich data in the accuracy of continuous sediment-discharge records is hard to overstate, in part because such data can often overcome the shortcomings of poor spatial coverage. Coupled with calibration data produced by traditional means, surrogate technologies show considerable promise toward providing the fluvial sediment data needed to increase and bring more consistency to sediment-discharge measurements worldwide.
Maximum Temperature Detection System for Integrated Circuits
NASA Astrophysics Data System (ADS)
Frankiewicz, Maciej; Kos, Andrzej
2015-03-01
The paper describes structure and measurement results of the system detecting present maximum temperature on the surface of an integrated circuit. The system consists of the set of proportional to absolute temperature sensors, temperature processing path and a digital part designed in VHDL. Analogue parts of the circuit where designed with full-custom technique. The system is a part of temperature-controlled oscillator circuit - a power management system based on dynamic frequency scaling method. The oscillator cooperates with microprocessor dedicated for thermal experiments. The whole system is implemented in UMC CMOS 0.18 μm (1.8 V) technology.
ERIC Educational Resources Information Center
Richardson, J. Jeffrey
This paper is part of an Air Force planning effort to develop a research, development, and applications program for the use of artificial intelligence (AI) technology in three target areas: training, performance measurement, and job performance aiding. The paper is organized in five sections that (1) introduce the reader to AI and those subfields…
Potential use of ground-based sensor technologies for weed detection.
Peteinatos, Gerassimos G; Weis, Martin; Andújar, Dionisio; Rueda Ayala, Victor; Gerhards, Roland
2014-02-01
Site-specific weed management is the part of precision agriculture (PA) that tries to effectively control weed infestations with the least economical and environmental burdens. This can be achieved with the aid of ground-based or near-range sensors in combination with decision rules and precise application technologies. Near-range sensor technologies, developed for mounting on a vehicle, have been emerging for PA applications during the last three decades. These technologies focus on identifying plants and measuring their physiological status with the aid of their spectral and morphological characteristics. Cameras, spectrometers, fluorometers and distance sensors are the most prominent sensors for PA applications. The objective of this article is to describe-ground based sensors that have the potential to be used for weed detection and measurement of weed infestation level. An overview of current sensor systems is presented, describing their concepts, results that have been achieved, already utilized commercial systems and problems that persist. A perspective for the development of these sensors is given. © 2013 Society of Chemical Industry.
Latest Researches Advances of Plasma Spraying: From Splat to Coating Formation
NASA Astrophysics Data System (ADS)
Fauchais, P.; Vardelle, M.; Goutier, S.
2016-12-01
The plasma spray process with solid feedstock, mainly ceramics powders, studied since the sixties is now a mature technology. The plasma jet and particle in-flight characterizations are now well established. The use of computer-aided robot trajectory allows spraying on industrial parts with complex geometries. Works about splat formation have shown the importance of: the substrate preheating over the transition temperature to get rid of adsorbates and condensates, substrate chemistry, crystal structure and substrate temperature during the whole coating process. These studies showed that coating properties strongly depend on the splat formation and layering. The first part of this work deals with a summary of conventional plasma spraying key points. The second part presents the current knowledge in plasma spraying with liquid feedstock, technology developed for about two decades with suspensions of particles below micrometers or solutions of precursors that form particles a few micrometers sized through precipitation. Coatings are finely structured and even nanostructured with properties arousing the interest of researchers. However, the technology is by far more complex than the conventional ones. The main conclusions are that models should be developed further, plasma torches and injection setups adapted, and new measuring techniques to reliably characterize these small particles must be designed.
Methods and Systems for Configuring Sensor Acquisition Based on Pressure Steps
NASA Technical Reports Server (NTRS)
DeDonato, Mathew (Inventor)
2015-01-01
Technologies are provided for underwater measurements. A system includes an underwater vessels including: a plurality of sensors disposed thereon for measuring underwater properties; and a programmable controller configured to selectively activate the plurality of sensors based at least in part on underwater pressure. A user may program at what pressure ranges certain sensors are activated to measure selected properties, and may also program the ascent/descent rate of the underwater vessel, which is correlated with the underwater pressure.
REVIEW ARTICLE: Medical implants based on microsystems
NASA Astrophysics Data System (ADS)
Mokwa, W.
2007-05-01
The fast development of CMOS technologies to smaller dimensions led to very high integration densities with complex circuitry on very small chip areas. In 2006 Intel fabricated the first products in a 65 nm technology. The cointegration of microsensors or actuators together with the very low power consumption of the CMOS circuitry is very well suited for use in implanted systems. Applications like intracranial or intraocular pressure measurements have become possible. This review presents an overview over actual applications and developments of sensor/actuator-based microsystems for medical implants. It concentrates on the technical part of these investigations. It will mainly review work on systems measuring pressure in blood vessels and on systems for ophthalmic applications.
NASA Technical Reports Server (NTRS)
Hassell, J. L., Jr.; Newsom, W. A., Jr.; Yip, L. P.
1980-01-01
An investigation was conducted to evaluate the aerodynamic performance, stability, and control characteristics of the Advanced Technology Light Twin Engine airplane (ATLIT). Data were measured over an angle of attack range from -4 deg to 20 deg for various angles of sideslip between -5 deg and 15 deg at Reynolds numbers of 0.0000023 and 0.0000035 for various settings of power and flap deflection. Measurements were also made by means of special thrust torque balances to determine the installed propeller characteristics. Part of the investigation was devoted to drag cleanup of the basic airplane and to the evaluation of the effect of winglets on drag and stability.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-23
... Commerce, as part of its continuing effort to reduce paperwork and respondent burden, invites the general... of Standards and Technology (NIST) has developed and automated an approach for measuring the life... program to collect data from product manufacturers so that the environmental performance of their products...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-23
... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 [EPA-R02-OAR-2009-0462, FRL-9178-5] Approval and Promulgation of Implementation Plans; New York Reasonably Available Control Technology and Reasonably Available Control Measures AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is...
Not Your Grandparents' Vocational School
ERIC Educational Resources Information Center
Schachter, Ron
2012-01-01
Manufacturing biodiesel fuel, building a geodesic-domed greenhouse, measuring the environmental impact of abandoned industrial canals--these might well fit the mission of cutting-edge companies specializing in green technologies, or they could be part of the curriculum at an institution of advanced science and engineering such as MIT or Cal Tech.…
This study measured semivolatile organic compounds (SVOCs) in particle matter (PM) emitted from three heavy-duty trucks equipped with modern after-treatment technologies. Emissions testing was conducted as described by the George et al. VOC study also presented as part of this se...
12 CFR Appendix A to Part 1720 - Policy Guidance; Minimum Safety and Soundness Requirements
Code of Federal Regulations, 2014 CFR
2014-01-01
... maintains an effective risk management framework, including review of such framework to monitor its... credit quality. II. Balance sheet growth and management. III. Market risk. IV. Information technology. V..., measurement, monitoring, and management of market risk. The Enterprise should: i. Establish and implement...
12 CFR Appendix A to Part 1720 - Policy Guidance; Minimum Safety and Soundness Requirements
Code of Federal Regulations, 2012 CFR
2012-01-01
... maintains an effective risk management framework, including review of such framework to monitor its... credit quality. II. Balance sheet growth and management. III. Market risk. IV. Information technology. V..., measurement, monitoring, and management of market risk. The Enterprise should: i. Establish and implement...
12 CFR Appendix A to Part 1720 - Policy Guidance; Minimum Safety and Soundness Requirements
Code of Federal Regulations, 2013 CFR
2013-01-01
... maintains an effective risk management framework, including review of such framework to monitor its... credit quality. II. Balance sheet growth and management. III. Market risk. IV. Information technology. V..., measurement, monitoring, and management of market risk. The Enterprise should: i. Establish and implement...
NASA Technical Reports Server (NTRS)
Noor, Ahmed K. (Compiler)
2003-01-01
An overview of the advanced learning technologies is given in this presentation along with a brief description of their impact on future aerospace workforce development. The presentation is divided into five parts (see Figure 1). In the first part, a brief historical account of the evolution of learning technologies is given. The second part describes the current learning activities. The third part describes some of the future aerospace systems, as examples of high-tech engineering systems, and lists their enabling technologies. The fourth part focuses on future aerospace research, learning and design environments. The fifth part lists the objectives of the workshop and some of the sources of information on learning technologies and learning networks.
NASA Astrophysics Data System (ADS)
Barasinski, Anaïs; Tertrais, Hermine; Bechtel, Stéphane; Chinesta, Francisco
2018-05-01
Welding primary structure thermoplastic composites parts is still an issue today, many technologies have been extensively studied: induction, ultrasonic, resistive welding, none is today entirely viable for this application due to various implementation reasons. On the other hand, microwave solutions are not very common in composites forming process, although being widespread in homes. Microwave (MW) technology relies on volumetric heating. Thermal energy is transferred from an electromagnetic field to materials that can absorb it at specific frequencies. Volumetric heating enables better process temperature control and less overall energy losses, which can results in shorter processing cycles and higher process efficiency. Nowadays, the main drawback of this technology is that the complex physics involved in the conversion of electromagnetic energy in thermal energy (heating) is not entirely understood and controlled for complex materials. In that work, the authors propose to look deeper in that way, first proposing a simulation tool, based on a coupling between a commercial code and a home made one, allowing the following of the electromagnetic field very precisely in the thickness of a laminate composite part, the last consisting of a stack of layers with different orientations, each layer made of a resin matrix and carbon fibers. Thermal fields are then computed and validated by experimental measurements. In a second part, the authors propose to look at a common welding case of a stringer, on a skin.
On-line measurement of diameter of hot-rolled steel tube
NASA Astrophysics Data System (ADS)
Zhu, Xueliang; Zhao, Huiying; Tian, Ailing; Li, Bin
2015-02-01
In order to design a online diameter measurement system for Hot-rolled seamless steel tube production line. On one hand, it can play a stimulate part in the domestic pipe measuring technique. On the other hand, it can also make our domestic hot rolled seamless steel tube enterprises gain a strong product competitiveness with low input. Through the analysis of various detection methods and techniques contrast, this paper choose a CCD camera-based online caliper system design. The system mainly includes the hardware measurement portion and the image processing section, combining with software control technology and image processing technology, which can complete online measurement of heat tube diameter. Taking into account the complexity of the actual job site situation, it can choose a relatively simple and reasonable layout. The image processing section mainly to solve the camera calibration and the application of a function in Matlab, to achieve the diameter size display directly through the algorithm to calculate the image. I build a simulation platform in the design last phase, successfully, collect images for processing, to prove the feasibility and rationality of the design and make error in less than 2%. The design successfully using photoelectric detection technology to solve real work problems
X-ray computed tomography for additive manufacturing: a review
NASA Astrophysics Data System (ADS)
Thompson, A.; Maskery, I.; Leach, R. K.
2016-07-01
In this review, the use of x-ray computed tomography (XCT) is examined, identifying the requirement for volumetric dimensional measurements in industrial verification of additively manufactured (AM) parts. The XCT technology and AM processes are summarised, and their historical use is documented. The use of XCT and AM as tools for medical reverse engineering is discussed, and the transition of XCT from a tool used solely for imaging to a vital metrological instrument is documented. The current states of the combined technologies are then examined in detail, separated into porosity measurements and general dimensional measurements. In the conclusions of this review, the limitation of resolution on improvement of porosity measurements and the lack of research regarding the measurement of surface texture are identified as the primary barriers to ongoing adoption of XCT in AM. The limitations of both AM and XCT regarding slow speeds and high costs, when compared to other manufacturing and measurement techniques, are also noted as general barriers to continued adoption of XCT and AM.
Gray, David B; Hollingsworth, Holly H; Stark, Susan L; Morgan, Kerri A
2006-02-01
To describe the development and psychometric properties of a self-report survey of participation by people with mobility limitations, the Participation Survey/Mobility (PARTS/M). The information obtained during interviews and focus groups was used to develop items for the PARTS/M. Demographics and measures of disability, health, and functioning were collected. The PARTS/M was administered twice. Primarily in the midwestern United States. Purposeful sample of 604 people with mobility limitations having a diagnosis of spinal cord injury, multiple sclerosis, cerebral palsy, stroke, or postpoliomyelitis. Not applicable. PARTS/M is composed of 20 major life activities that are placed in 6 domains used in the activity/participation component of the International Classification of Functioning, Disability and Health: self-care; mobility; domestic life; interpersonal interactions and relationships; major life areas; and community, social, and civic life. For each activity, questions were asked about components of participation including frequency, health-related limitations, importance, choice, satisfaction, use of assistive technology, and use of personal assistance. PARTS/M domains and components of participation had good internal consistency and stability. Composite participation scores were developed for participation components and domains. PARTS/M is a reliable measure of some aspects of participation in major life activities for people with mobility impairments and limitations living in community settings.
Research on measurement method of optical camouflage effect of moving object
NASA Astrophysics Data System (ADS)
Wang, Juntang; Xu, Weidong; Qu, Yang; Cui, Guangzhen
2016-10-01
Camouflage effectiveness measurement as an important part of the camouflage technology, which testing and measuring the camouflage effect of the target and the performance of the camouflage equipment according to the tactical and technical requirements. The camouflage effectiveness measurement of current optical band is mainly aimed at the static target which could not objectively reflect the dynamic camouflage effect of the moving target. This paper synthetical used technology of dynamic object detection and camouflage effect detection, the digital camouflage of the moving object as the research object, the adaptive background update algorithm of Surendra was improved, a method of optical camouflage effect detection using Lab-color space in the detection of moving-object was presented. The binary image of moving object is extracted by this measurement technology, in the sequence diagram, the characteristic parameters such as the degree of dispersion, eccentricity, complexity and moment invariants are constructed to construct the feature vector space. The Euclidean distance of moving target which through digital camouflage was calculated, the results show that the average Euclidean distance of 375 frames was 189.45, which indicated that the degree of dispersion, eccentricity, complexity and moment invariants of the digital camouflage graphics has a great difference with the moving target which not spray digital camouflage. The measurement results showed that the camouflage effect was good. Meanwhile with the performance evaluation module, the correlation coefficient of the dynamic target image range 0.1275 from 0.0035, and presented some ups and down. Under the dynamic condition, the adaptability of target and background was reflected. In view of the existing infrared camouflage technology, the next step, we want to carry out the camouflage effect measurement technology of the moving target based on infrared band.
Kligfield, Paul; Gettes, Leonard S; Bailey, James J; Childers, Rory; Deal, Barbara J; Hancock, E William; van Herpen, Gerard; Kors, Jan A; Macfarlane, Peter; Mirvis, David M; Pahlm, Olle; Rautaharju, Pentti; Wagner, Galen S; Josephson, Mark; Mason, Jay W; Okin, Peter; Surawicz, Borys; Wellens, Hein
2007-03-13
This statement examines the relation of the resting ECG to its technology. Its purpose is to foster understanding of how the modern ECG is derived and displayed and to establish standards that will improve the accuracy and usefulness of the ECG in practice. Derivation of representative waveforms and measurements based on global intervals are described. Special emphasis is placed on digital signal acquisition and computer-based signal processing, which provide automated measurements that lead to computer-generated diagnostic statements. Lead placement, recording methods, and waveform presentation are reviewed. Throughout the statement, recommendations for ECG standards are placed in context of the clinical implications of evolving ECG technology.
Kligfield, Paul; Gettes, Leonard S; Bailey, James J; Childers, Rory; Deal, Barbara J; Hancock, E William; van Herpen, Gerard; Kors, Jan A; Macfarlane, Peter; Mirvis, David M; Pahlm, Olle; Rautaharju, Pentti; Wagner, Galen S; Josephson, Mark; Mason, Jay W; Okin, Peter; Surawicz, Borys; Wellens, Hein
2007-03-13
This statement examines the relation of the resting ECG to its technology. Its purpose is to foster understanding of how the modern ECG is derived and displayed and to establish standards that will improve the accuracy and usefulness of the ECG in practice. Derivation of representative waveforms and measurements based on global intervals are described. Special emphasis is placed on digital signal acquisition and computer-based signal processing, which provide automated measurements that lead to computer-generated diagnostic statements. Lead placement, recording methods, and waveform presentation are reviewed. Throughout the statement, recommendations for ECG standards are placed in context of the clinical implications of evolving ECG technology.
Pibida, L; Zimmerman, B; Bergeron, D E; Fitzgerald, R; Cessna, J T; King, L
2017-11-01
The National Institute of Standards and Technology (NIST) performed new standardization measurements for 64 Cu. As part of this work the photon emission probability for the main gamma-ray line and the half-life were determined using several high-purity germanium (HPGe) detectors. Half-life determinations were also carried out with a NaI(Tl) well counter and two pressurized ionization chambers. Published by Elsevier Ltd.
Maritime Evaluation of Aerosol Fire Knock Down Tools. Part 2: Toxicity and Corrosion Potential
2014-02-01
determined using paramagnetic sensor technology, while CO and CO2 concentrations were measured, respectively, via gas filter correlation and single...time response of each sensor in the unit. Since it is important to account for this delay in response during analysis and interpretation of measured...within, the compartment as well as confinement and extinguishment of the fire. 1 The initial response of the NOx analyzer and delay in sensor
NASA Technical Reports Server (NTRS)
Zalameda, Joseph N.; Burke, Eric R.; Hafley, Robert A.; Taminger, Karen M.; Domack, Christopher S.; Brewer, Amy R.; Martin, Richard E.
2013-01-01
Additive manufacturing is a rapidly growing field where 3-dimensional parts can be produced layer by layer. NASA s electron beam free-form fabrication (EBF(sup 3)) technology is being evaluated to manufacture metallic parts in a space environment. The benefits of EBF(sup 3) technology are weight savings to support space missions, rapid prototyping in a zero gravity environment, and improved vehicle readiness. The EBF(sup 3) system is composed of 3 main components: electron beam gun, multi-axis position system, and metallic wire feeder. The electron beam is used to melt the wire and the multi-axis positioning system is used to build the part layer by layer. To insure a quality weld, a near infrared (NIR) camera is used to image the melt pool and solidification areas. This paper describes the calibration and application of a NIR camera for temperature measurement. In addition, image processing techniques are presented for weld assessment metrics.
Brodey, Benjamin B; Gonzalez, Nicole L; Elkin, Kathryn Ann; Sasiela, W Jordan; Brodey, Inger S
2017-09-06
The computerized administration of self-report psychiatric diagnostic and outcomes assessments has risen in popularity. If results are similar enough across different administration modalities, then new administration technologies can be used interchangeably and the choice of technology can be based on other factors, such as convenience in the study design. An assessment based on item response theory (IRT), such as the Patient-Reported Outcomes Measurement Information System (PROMIS) depression item bank, offers new possibilities for assessing the effect of technology choice upon results. To create equivalent halves of the PROMIS depression item bank and to use these halves to compare survey responses and user satisfaction among administration modalities-paper, mobile phone, or tablet-with a community mental health care population. The 28 PROMIS depression items were divided into 2 halves based on content and simulations with an established PROMIS response data set. A total of 129 participants were recruited from an outpatient public sector mental health clinic based in Memphis. All participants took both nonoverlapping halves of the PROMIS IRT-based depression items (Part A and Part B): once using paper and pencil, and once using either a mobile phone or tablet. An 8-cell randomization was done on technology used, order of technologies used, and order of PROMIS Parts A and B. Both Parts A and B were administered as fixed-length assessments and both were scored using published PROMIS IRT parameters and algorithms. All 129 participants received either Part A or B via paper assessment. Participants were also administered the opposite assessment, 63 using a mobile phone and 66 using a tablet. There was no significant difference in item response scores for Part A versus B. All 3 of the technologies yielded essentially identical assessment results and equivalent satisfaction levels. Our findings show that the PROMIS depression assessment can be divided into 2 equivalent halves, with the potential to simplify future experimental methodologies. Among community mental health care recipients, the PROMIS items function similarly whether administered via paper, tablet, or mobile phone. User satisfaction across modalities was also similar. Because paper, tablet, and mobile phone administrations yielded similar results, the choice of technology should be based on factors such as convenience and can even be changed during a study without adversely affecting the comparability of results. ©Benjamin B Brodey, Nicole L Gonzalez, Kathryn Ann Elkin, W Jordan Sasiela, Inger S Brodey. Originally published in JMIR Mental Health (http://mental.jmir.org), 06.09.2017.
Scaled multisensor inspection of extended surfaces for industrial quality control
NASA Astrophysics Data System (ADS)
Kayser, Daniel; Bothe, Thorsten; Osten, Wolfgang
2002-06-01
Reliable real-time surface inspection of extended surfaces with high resolution is needed in several industrial applications. With respect to an efficient application to extended technical components such as aircraft or automotive parts, the inspection system has to perform a robust measurement with a ratio of less then 10-6 between depth resolution and lateral extension. This ratio is at least one order beyond the solutions that are offered by existing technologies. The concept of scaled topometry consists of arranging different optical measurement techniques with overlapping ranges of resolution systematically in order to receive characteristic surface information with the required accuracy. In such a surface inspection system, an active algorithm combines measurements on several scales of resolution and distinguishes between local fault indicating structures with different extensions and global geometric properties. The first part of this active algorithm finds indications of critical surface areas in the data of every measurement and separates them into different categories. The second part analyses the detected structures in the data with respect to their resolution and decides whether a further local measurement with a higher resolution has to be performed. The third part positions the sensors and starts the refined measurements. The fourth part finally integrates the measured local data set into the overall data mesh. We have constructed a laboratory setup capable of measuring surfaces with extensions up to 1500mm x 1000mm x 500mm (in x-, y- and z-direction respectively). Using this measurement system we will be able to separate the fault indicating structures on the surface from the global shape and to classify the detected structures according to their extensions and characteristic shapes simultaneously. The level of fault detection probability will be applicable by input parameter control.
Influence of Forming Conditions on Springback in V-bending Process Using Servo Press
NASA Astrophysics Data System (ADS)
Abe, Shinya; Takahashi, Susumu
To improve fuel efficiency, aluminum alloys and high tensile steel sheets are increasingly being applied to automotive body parts. However, it is difficult to obtain accurate dimensions of formed parts. Therefore, technologies for reducing springback for the part formed by press are strongly demanded. It is said that the die holding time at the bottom dead center of a servo press slide can affect springback. To clarify the forming mechanisms of this phenomenon, a V bending test with a servo press was performed. Aluminum alloys sheets are applied as specimens. The location of press slide was measured by linear scales. It was found that the movement of the slide in a slide motion program differs from the actual movement of the slide. It is important to confirm if the slide is located in the position specified in the program. In addition, a springback angle measurement system is proposed that uses laser displacement measurement apparatus. Because it avoids human error, the proposed measurement system is more accurate than the image processing method.
Karsh, Ben-Tzion; Severtson, Dolores J; Burke, Laura J; Brown, Roger L; Brennan, Patricia Flatley
2010-01-01
Objective With the advent of personal health records and other patient-focused health technologies, there is a growing need to better understand factors that contribute to acceptance and use of such innovations. In this study, we employed the Unified Theory of Acceptance and Use of Technology as the basis for determining what predicts patients' acceptance (measured by behavioral intention) and perceived effective use of a web-based, interactive self-management innovation among home care patients. Design Cross-sectional secondary analysis of data from a randomized field study evaluating a technology-assisted home care nursing practice with adults with chronic cardiac disease. Measurement and analysis A questionnaire was designed based on validated measurement scales from prior research and was completed by 101 participants for measuring the acceptance constructs as part of the parent study protocol. Latent variable modeling with item parceling guided assessment of patients' acceptance. Results Perceived usefulness accounted for 53.9% of the variability in behavioral intention, the measure of acceptance. Together, perceived usefulness, health care knowledge, and behavioral intention accounted for 68.5% of the variance in perceived effective use. Perceived ease of use and subjective norm indirectly influenced behavioral intention, through perceived usefulness. Perceived ease of use and subjective norm explained 48% of the total variance in perceived usefulness. Conclusion The study demonstrates that perceived usefulness, perceived ease of use, subjective norm, and healthcare knowledge together predict most of the variance in patients' acceptance and self-reported use of the web-based self-management technology. PMID:21131605
Validation of Automated Scoring of Oral Reading
ERIC Educational Resources Information Center
Balogh, Jennifer; Bernstein, Jared; Cheng, Jian; Van Moere, Alistair; Townshend, Brent; Suzuki, Masanori
2012-01-01
A two-part experiment is presented that validates a new measurement tool for scoring oral reading ability. Data collected by the U.S. government in a large-scale literacy assessment of adults were analyzed by a system called VersaReader that uses automatic speech recognition and speech processing technologies to score oral reading fluency. In the…
DOT National Transportation Integrated Search
2009-06-01
A number of policy options to address aircraft emissions are available to governments and can be part of broader policies to address emissions from many sources including aircraft. Market-based measures can establish a price for emissions and provide...
Present status and trends of image fusion
NASA Astrophysics Data System (ADS)
Xiang, Dachao; Fu, Sheng; Cai, Yiheng
2009-10-01
Image fusion information extracted from multiple images which is more accurate and reliable than that from just a single image. Since various images contain different information aspects of the measured parts, and comprehensive information can be obtained by integrating them together. Image fusion is a main branch of the application of data fusion technology. At present, it was widely used in computer vision technology, remote sensing, robot vision, medical image processing and military field. This paper mainly presents image fusion's contents, research methods, and the status quo at home and abroad, and analyzes the development trend.
Historical perspective: The pros and cons of conventional outcome measures in Parkinson's disease.
Lim, Shen-Yang; Tan, Ai Huey
2018-01-01
Conventional outcome measures (COMs) in Parkinson's disease (PD) refer to rating scales, questionnaires, patient diaries and clinically-based tests that do not require specialized equipment. It is timely at this juncture - as clinicians and researchers begin to grapple with the "invasion" of digital technologies - to review the strengths and weaknesses of these outcome measures. This paper discusses advances (including an enhanced understanding of PD itself, and the development of clinimetrics as a field) that have led to improvements in the COMs used in PD; their strengths and limitations; and factors to consider when selecting and using a measuring instrument. It is envisaged that in the future, a combination of COMs and technology-based objective measures will be utilized, with different methods having their own strengths and weaknesses. Judgement is required on the part of the clinician and researcher in terms of which instrument(s) are appropriate to use, depending on the particular clinical or research setting or question. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cleaning and Cleanliness Measurement of Additive Manufactured Parts
NASA Technical Reports Server (NTRS)
Mitchell, Mark A.; Raley, Randy
2016-01-01
The successful acquisition and utilization of piece parts and assemblies for contamination sensitive applications requires application of cleanliness acceptance criteria. Contamination can be classified using many different schemes. One common scheme is classification as organic, ionic and particulate contaminants. These may be present in and on the surface of solid components and assemblies or may be dispersed in various gaseous or liquid media. This discussion will focus on insoluble particle contamination on the surfaces of piece parts and assemblies. Cleanliness of parts can be controlled using two strategies, referred to as gross cleanliness and precision cleanliness. Under a gross cleanliness strategy acceptance is based on visual cleanliness. This approach introduces a number of concerns that render it unsuitable for controlling cleanliness of high technology products. Under the precision cleanliness strategy, subjective, visual assessment of cleanliness is replaced by objective measurement of cleanliness. When a precision cleanliness strategy is adopted there naturally arises the question: How clean is clean enough? The methods for establishing objective cleanliness acceptance limits will be discussed.
NASA Technical Reports Server (NTRS)
1997-01-01
FFPI Industries Inc. is the manufacturer of fiber-optic sensors that furnish accurate pressure measurements in internal combustion chambers. Such an assessment can help reduce pollution emitted by these engines. A chief component in the sensor owes its seven year- long development to Lewis Research Center funding to embed optical fibers and sensors in metal parts. NASA support to Texas A&M University played a critical role in developing this fiber optic technology and led to the formation of FFPI Industries and the production of fiber sensor products. The simple, rugged design of the sensor offers the potential for mass production at low cost. Widespread application of the new technology is forseen, from natural gas transmission, oil refining and electrical power generation to rail transport and the petrochemical paper product industry.
Photopatterned materials in bioanalytical microfluidic technology
Tentori, Augusto M.; Herr, Amy E.
2011-01-01
Microfluidic technologies are playing an increasingly important role in biological inquiry. Sophisticated approaches to the microanalysis of biological specimens rely, in part, on the fine fluid and material control offered by microtechnology, as well as a sufficient capacity for systems integration. A suite of techniques that utilize photopatterning of polymers on fluidic surfaces, within fluidic volumes, and as primary device structures underpins recent technological innovation in bioanalysis. Well-characterized photopatterning approaches enable previously fabricated or commercially fabricated devices to be customized by the user in a straight-forward manner, making the tools accessible to laboratories that do not focus on microfabrication technology innovation. In this review of recent advances, we summarize reported microfluidic devices with photopatterned structures and regions as platforms for a diverse set of biological measurements and assays. PMID:21857772
Gauge Blocks – A Zombie Technology
Doiron, Ted
2008-01-01
Gauge blocks have been the primary method for disseminating length traceability for over 100 years. Their longevity was based on two things: the relatively low cost of delivering very high accuracy to users, and the technical limitation that the range of high precision gauging systems was very small. While the first reason is still true, the second factor is being displaced by changes in measurement technology since the 1980s. New long range sensors do not require master gauges that are nearly the same length as the part being inspected, and thus one of the primary attributes of gauge blocks, wringing stacks to match the part, is no longer needed. Relaxing the requirement that gauges wring presents an opportunity to develop new types of end standards that would increase the accuracy and usefulness of gauging systems. PMID:27096119
Tryon, Christian A.; Faith, J. Tyler
2016-01-01
Increased population density is among the proposed drivers of the behavioural changes culminating in the Middle to Later Stone Age (MSA–LSA) transition and human dispersals from East Africa, but reliable archaeological measures of demographic change are lacking. We use Late Pleistocene–Holocene lithic and faunal data from Nasera rockshelter (Tanzania) to show progressive declines in residential mobility—a variable linked to population density—and technological shifts, the latter associated with environmental changes. These data suggest that the MSA–LSA transition is part of a long-term pattern of changes in residential mobility and technology that reflect human responses to increased population density, with dispersals potentially marking a complementary response to larger populations. This article is part of the themed issue ‘Major transitions in human evolution’. PMID:27298469
New Brunswick Laboratory progress report, October 1989--September 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The New Brunswick Laboratory (NBL) has been tasked by the DOE Office of Safeguards and Security, Defense Programs (OSS/DP) to assure the application of accurate and reliable measurement technology for the safeguarding of special nuclear materials. NBL is fulfilling its mission responsibilities by identifying the measurement and measurement-related needs of the nuclear material safeguards community and addressing them by means of activities in the following program areas: (1) reference and calibration materials, (2) measurement development, (3) measurement services, (4) measurement evaluation, (5) safeguards assessment, and (6) site-specific assistance. Highlights of each of these program areas are provided in this summary.more » This progress report is written as a part of NBL's technology transfer responsibilities, primarily for the use and benefit of the scientific personnel that perform safeguards-related measurements. Consequently, the report is technical in nature. Many of the reports of multi-year projects are fragmentary in that only partial results are reported. Separate topical reports are to be issued at the completion of many of these projects. 30 refs.« less
40 CFR Table 10 to Part 455 - List of Appropriate Pollution Control Technologies
Code of Federal Regulations, 2010 CFR
2010-07-01
... Technologies 10 Table 10 to Part 455 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Appropriate Pollution Control Technologies This table contains those pollutant control technologies, such as... estimating compliance costs on a PAI specific basis. In general, these treatment technologies have been...
1991-09-27
AD-A241 692 II I] II I11 ANNUAL REPORT VOLUME 1 PART 2 TASK 1: DIGITAL EMULATION TECHNOLOGY LABORATOIRY REPORT NO. AR-0142-91-001 September 27, 1991... DIGITAL EMULATION TECHNOLOGY LABORATORY Contract No. DASG60-89-C-0142 Sponsored By The United States Army ? trategic Defense Command COMPUTER...ANNUAL REPORT VOLUME 1 PART 2 TASK 1: DIGITAL EMULATION TECHNOLOGY LABORATORY September 27, 1991 Authors Thomas R. Collins and Stephen R. Wachtel
Project support of practical training in biophysics.
Mornstein, V; Vlk, D; Forytkova, L
2006-01-01
The Department of Biophysics ensures practical training in biophysics and related subjects for students of medical and health study programmes. Demonstrations of medical technology are an important part of this training. Teaching for Faculty of Sciences in biophysical study programmes becomes also very important. Some lectures and demonstrations of technology are involved, but the practical trainig is missing. About 1 mil. CZK for additional laboratory equipment was obtained from the HEIDF project No. 1866/ 2005 "The demonstration and measuring technology for education in medical biophysics and radiological physics" for measuring system DEWETRON for high frequency signal analysis, Fluke Ti30 IR camera, PM 9000B patient monitor, ARSENAL AF 1 fluorescence microscope, and Nikon Coolpix 4500 digital camera with accessories for microphotography. At the present time, further financial resources are being provided by a development project of Ministry of Education "Inter-university co-operation in biomedical technology and engineering using top technologies" in total amount of almost 5 mil CZK, whereas over 2 mil CZK from this project are reserved for student laboratory equipment. The main goal of this project is to ensure the participation of Medical Faculty in educational co-operation in the biomedical technology and engineering, namely with the Faculty of Electrical Engineering and Communication (FEEC), Brno University of Technology. There will be taught those areas of biophysics which are not covered by FEEC, thus forming a separate subject "General Biophysics". The following instruments will be installed: UV-VIS spectrophotometers, rotation viscometers, tensiometers, microscopes with digital image processing, cooled centrifuge, optical benches, and some smaller instruments for practical measurements.
Superfast 3D shape measurement of a flapping flight process with motion based segmentation
NASA Astrophysics Data System (ADS)
Li, Beiwen
2018-02-01
Flapping flight has drawn interests from different fields including biology, aerodynamics and robotics. For such research, the digital fringe projection technology using defocused binary image projection has superfast (e.g. several kHz) measurement capabilities with digital-micromirror-device, yet its measurement quality is still subject to the motion of flapping flight. This research proposes a novel computational framework for dynamic 3D shape measurement of a flapping flight process. The fast and slow motion parts are separately reconstructed with Fourier transform and phase shifting. Experiments demonstrate its success by measuring a flapping wing robot (image acquisition rate: 5000 Hz; flapping speed: 25 cycles/second).
Evaluation of accountability measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cacic, C.G.
The New Brunswick Laboratory (NBL) is programmatically responsible to the U.S. Department of Energy (DOE) Office of Safeguards and Security (OSS) for providing independent review and evaluation of accountability measurement technology in DOE nuclear facilities. This function is addressed in part through the NBL Safegaurds Measurement Evaluation (SME) Program. The SME Program utilizes both on-site review of measurement methods along with material-specific measurement evaluation studies to provide information concerning the adequacy of subject accountability measurements. This paper reviews SME Program activities for the 1986-87 time period, with emphasis on noted improvements in measurement capabilities. Continued evolution of the SME Programmore » to respond to changing safeguards concerns is discussed.« less
Optical synthesizer for a large quadrant-array CCD camera: Center director's discretionary fund
NASA Technical Reports Server (NTRS)
Hagyard, Mona J.
1992-01-01
The objective of this program was to design and develop an optical device, an optical synthesizer, that focuses four contiguous quadrants of a solar image on four spatially separated CCD arrays that are part of a unique CCD camera system. This camera and the optical synthesizer will be part of the new NASA-Marshall Experimental Vector Magnetograph, and instrument developed to measure the Sun's magnetic field as accurately as present technology allows. The tasks undertaken in the program are outlined and the final detailed optical design is presented.
Potential of thermally conductive polymers for the cooling of mechatronic parts
NASA Astrophysics Data System (ADS)
Heinle, C.; Drummer, D.
Adding thermally conductive fillers to polymers the thermal conductivity can be raised significantly. Thermal conductive polymers (TC-plastics) open up a vast range of options to set up novel concepts of polymer technological system solutions in the area of mechatronics. Heating experiment of cooling ribs show the potential in thermal management of mechatronic parts with TC-polymers in comparison with widely used reference materials copper and aluminum. The results demonstrate that especially for certain thermal boundary conditions comparable performance between these two material grades can be measured.
Canadian Activities in Space Debris Mitigation Technologies
NASA Astrophysics Data System (ADS)
Nikanpour, Darius; Jiang, Xin Xiang; Goroshin, Samuel; Haddad, Emile; Kruzelecky, Roman; Hoa, Suong; Merle, Philippe; Kleiman, Jacob; Gendron, Stephane; Higgins, Andrew; Jamroz, Wes
The space environment, and in particular the Low Earth Orbit (LEO), is becoming increasingly populated with space debris which include fragments of dysfunctional spacecraft parts and materials traveling at speeds up to 15 km per second. These pose an escalating potential threat to LEO spacecraft, the international space station, and manned missions. This paper presents the Canadian activities to address the concerns over space debris in terms of debris mitigation measures and technologies; these include novel spacecraft demise technologies to safely decommission the spacecraft at the end of the mission, integrated self-healing material technologies for spacecraft structures to facilitate self-repair and help maintain the spacecraft structural and thermal performance, hypervelocity ground test capability to predict the impact of space debris on spacecraft performance, and ways of raising awareness within the space community through participation in targeted Science and Technology conferences and international forums.
Design and Operational Characteristics of the Shuttle Coherent Wind Lidar
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Spiers, Gary D.; Peters, Bruce R.; Li, Ye; Blackwell, Timothy S.; Geary, Joseph M.
1998-01-01
NOAA has identified the measurement of atmospheric wind velocities as one of the key unmet data sets for its next generation of sensing platforms. The merits of coherent lidars for the measurement of atmospheric winds from space platforms have been widely recognized; however, it is only recently that several key technologies have advanced to a point where a compact, high fidelity system could be created. Advances have been made in the areas of the diode-pumped, eye-safe, solid state lasers and room temperature, wide bandwidth, semiconductor detectors operating in the near-infrared region. These new lasers can be integrated into efficient and compact optical systems creating new possibilities for the development of low-cost, reliable, and compact coherent lidar systems for wind measurements. Over the past five years, the University of Alabama in Huntsville (UAH) has been working toward further advancing the solid state coherent lidar technology for the measurement of atmospheric winds from space. As part of this effort, UAH had established the design characteristics and defined the expected performance for three different proposed space-based instruments: a technology demonstrator, an operational prototype, and a 7-year lifetime operational instrument. SPARCLE is an ambitious project that is intended to evaluate the suitability of coherent lidar for wind measurements, demonstrate the maturity of the technology for space application, and provide a useable data set for model development and validation. This paper describes the SPARCLE instrument's major physical and environmental design constraints, optical and mechanical designs, and its operational characteristics.
Silicon synaptic transistor for hardware-based spiking neural network and neuromorphic system
NASA Astrophysics Data System (ADS)
Kim, Hyungjin; Hwang, Sungmin; Park, Jungjin; Park, Byung-Gook
2017-10-01
Brain-inspired neuromorphic systems have attracted much attention as new computing paradigms for power-efficient computation. Here, we report a silicon synaptic transistor with two electrically independent gates to realize a hardware-based neural network system without any switching components. The spike-timing dependent plasticity characteristics of the synaptic devices are measured and analyzed. With the help of the device model based on the measured data, the pattern recognition capability of the hardware-based spiking neural network systems is demonstrated using the modified national institute of standards and technology handwritten dataset. By comparing systems with and without inhibitory synapse part, it is confirmed that the inhibitory synapse part is an essential element in obtaining effective and high pattern classification capability.
Silicon synaptic transistor for hardware-based spiking neural network and neuromorphic system.
Kim, Hyungjin; Hwang, Sungmin; Park, Jungjin; Park, Byung-Gook
2017-10-06
Brain-inspired neuromorphic systems have attracted much attention as new computing paradigms for power-efficient computation. Here, we report a silicon synaptic transistor with two electrically independent gates to realize a hardware-based neural network system without any switching components. The spike-timing dependent plasticity characteristics of the synaptic devices are measured and analyzed. With the help of the device model based on the measured data, the pattern recognition capability of the hardware-based spiking neural network systems is demonstrated using the modified national institute of standards and technology handwritten dataset. By comparing systems with and without inhibitory synapse part, it is confirmed that the inhibitory synapse part is an essential element in obtaining effective and high pattern classification capability.
NASA Astrophysics Data System (ADS)
Vevers, A.; Kromanis, A.; Gerins, E.; Ozolins, J.
2018-04-01
The casting technology is one of the oldest production technologies in the world but in the recent years metal additive manufacturing also known as metal 3D printing has been evolving with huge steps. Both technologies have capabilities to produce parts with internal holes and at first glance surface roughness is similar for both technologies, which means that for precise dimensions parts have to be machined in places where precise fit is necessary. Benchmark tests have been made to find out if parts which are produced with metal additive manufacturing can be used to replace parts which are produced with casting technology. Most of the comparative tests have been made with GJS-400-15 grade which is one of the most popular cast iron grades. To compare mechanical properties samples have been produced using additive manufacturing and tested for tensile strength, hardness, surface roughness and microstructure and then the results have been compared with the samples produced with casting technology. In addition, both technologies have been compared in terms of the production time and production costs to see if additive manufacturing is competitive with the casting technology. The original paper has been written in the Latvian language as part of the Master Thesis within the framework of the production technology study programme at Riga Technical University.
3D laser scanning in civil engineering - measurements of volume of earth masses
NASA Astrophysics Data System (ADS)
Pawłowicz, J. A.; Szafranko, E.; Harasymiuk, J.
2018-03-01
Considering the constant drive to improve and accelerate building processes as well as possible applications of the latest technological achievements in civil engineering practice, the author has proposed to use 3D laser scanning in the construction industry. For example, data achieved through a 3D laser scanning process will facilitate making inventories of parameters of buildings in a very short time, will enable one to check irregularly shaped masses of earth, heavy and practically impossible to calculate precisely using traditional techniques. The other part of the research, performed in the laboratory, consisted of measurements of a model mound of earth. All the measurements were made with a 3D SkanStation C10 laser scanner manufactured by Leica. The data were analyzed. The results suggest that there are great opportunities for using the laser scanning technology in civil engineering
A MEMS-based super fast dew point hygrometer—construction and medical applications
NASA Astrophysics Data System (ADS)
Jachowicz, Ryszard S.; Weremczuk, Jerzy; Paczesny, Daniel; Tarapata, Grzegorz
2009-12-01
The paper shows how MEMS (micro-electro-mechanical system) technology and a modified principle of fast temperature control (by heat injection instead of careful control of cooling) can considerably improve the dynamic parameters of dew point hygrometers. Some aspects of MEMS-type integrated sensor construction and technology, whole measurement system design, the control algorithm to run the system as well as empirical dynamic parameters from the tests are discussed too. The hygrometer can easily obtain five to six measurements per second with an uncertainty of less than 0.3 K. The meter range is between -10 °C and 40 °C dew point. In the second part of the paper (section 2), two different successful applications in medicine based on fast humidity measurements have been discussed. Some specific constructions of these super fast dew point hygrometers based on a MEMS sensor as well as limited empirical results from clinical tests have been reported too.
Near-field measurement facility plans at Lewis Research Center
NASA Technical Reports Server (NTRS)
Sharp, R. G.
1983-01-01
The direction of future antenna technology will be toward antennas which are large, both physically and electrically, will operate at frequencies up to 60 GHz, and are non-reciprocal and complex, implementing multiple-beam and scanning beam concepts and monolithic semiconductor devices and techniques. The acquisition of accurate antenna performance measurements is a critical part of the advanced antenna research program and represents a substantial antenna measurement technology challenge, considering the special characteristics of future spacecraft communications antennas. Comparison of various antenna testing techniques and their relative advantages and disadvantages shows that the near-field approach is necessary to meet immediate and long-term testing requirements. The LeRC facilities, the 22 ft x 22 ft horizontal antenna boresight planar scanner and the 60 ft x 60 ft vertical antenna boresight plant scanner (with a 60 GHz frequency and D/lamdba = 3000 electrical size capabilities), will meet future program testing requirements.
Accounting for uncertainty in DNA sequencing data.
O'Rawe, Jason A; Ferson, Scott; Lyon, Gholson J
2015-02-01
Science is defined in part by an honest exposition of the uncertainties that arise in measurements and propagate through calculations and inferences, so that the reliabilities of its conclusions are made apparent. The recent rapid development of high-throughput DNA sequencing technologies has dramatically increased the number of measurements made at the biochemical and molecular level. These data come from many different DNA-sequencing technologies, each with their own platform-specific errors and biases, which vary widely. Several statistical studies have tried to measure error rates for basic determinations, but there are no general schemes to project these uncertainties so as to assess the surety of the conclusions drawn about genetic, epigenetic, and more general biological questions. We review here the state of uncertainty quantification in DNA sequencing applications, describe sources of error, and propose methods that can be used for accounting and propagating these errors and their uncertainties through subsequent calculations. Copyright © 2014 Elsevier Ltd. All rights reserved.
X-ray Fluorescence Spectroscopy Study of Coating Thickness and Base Metal Composition
NASA Technical Reports Server (NTRS)
Rolin, T. D.; Leszczuk, Y.
2008-01-01
For electrical, electronic, and electromechanical (EEE) parts to be approved for space use, they must be able to meet safety standards approved by NASA. A fast, reliable, and precise method is needed to make sure these standards are met. Many EEE parts are coated in gold (Au) and nickel (Ni), and the thickness coating is crucial to a part s performance. A nondestructive method that is efficient in measuring coating thickness is x-ray fluorescence (XRF) spectroscopy. The XRF spectrometer is a machine designed to measure layer thickness and composition of single or multilayered samples. By understanding the limitations in the collection of the data by this method, accurate composition and thickness measurements can be obtained for samples with Au and Ni coatings. To understand the limitations of data found, measurements were taken with the XRF spectrometer and compared to true values of standard reference materials (SRM) that were National Institute of Standards and Technology (NIST) traceable. For every sample, six different parameters were varied to understand measurement error: coating/substrate combination, number of layers, counting interval, collimator size, coating thickness, and test area location. Each measurement was taken in accordance with standards set by the American Society for Testing and Materials (ASTM) International Standard B 568.
Recurring Issues Encountered by Distance Educators in Developing and Emerging Nations
ERIC Educational Resources Information Center
Wright, Clayton R.; Dhanarajan, Gajaraj; Reju, Sunday A.
2009-01-01
This article explores a number of challenges faced by e-learning or distance educators in developing and emerging countries, provides a context for many of the challenges, and outlines some measures devised to overcome them. These educators must determine a sound rationale for employing online learning, recognize that technology is only part of…
Where the Butterfly Alights: The Global Location of eWork. EMERGENCE. IES Report 378.
ERIC Educational Resources Information Center
Huws, U.; Jagger, N.; Bates, P.
This study forms part of the EMERGENCE project, which is designed to measure and map information and communications technology-related employment (eWork) relocation on a global level. Information collected by Eurostat and the United Kingdom Labour Force Survey were the primary sources of data analyzed. Twelve factors identified as influencing…
Manufacturing Methods and Technology Measure for Fabrication of Silicon Transcalent Rectifier.
1980-09-01
Prod Test/Eval’, z HA Kotler a Patent- Power & E 1 RM Roderick Env. Eng. & Test 1 JB Grosh Iron Mouptain - .l TUBE PARTS MFG. 5 RL SPALDING...AFAL/PODI ATTN: Working Group on Pwr. Devices (Mr. Philip Herron) 201 Varick Street Wright Patterson AFB, OH 45433 New York, NY 10014 Commander Mr
ERIC Educational Resources Information Center
Campbell, Robert Steadman
2011-01-01
U.S. Army doctrine defines leadership around the ability to influence (Department of the U.S. Army, 2006) and accordingly, Army leaders have decided that extending influence is a vital part of any future leadership training requirements (Horey, Fallesen, Morath, Cronin, Cassella, Franks, Jr., & Smith, 2004). The literature reveals, however, a…
DOT National Transportation Integrated Search
1998-08-01
Vehicle tracking systems were installed on all DIRECT vehicles to help investigate the : relationships between the drivers actual travel experiences and their opinions about the : systems they used. The purpose of this report is to look more caref...
ERIC Educational Resources Information Center
Allen, Sarah; Crawford, Paul; Mulla, Imran
2017-01-01
Early intervention is widely recommended for children at risk of difficulties with speech, language and communication. Evidence for effective practice remains limited due in part to inherent difficulties in defining complex interventions and measuring change. The innovative Language Environment Analysis (LENA) system has exciting potential for…
ERIC Educational Resources Information Center
Nair, Priya; Ankeny, Casey J.; Ryan, Justin; Okcay, Murat; Frakes, David H.
2016-01-01
We investigated the use of a new system, HemoFlow™, which utilizes state of the art technologies such as particle image velocimetry to test endovascular devices as part of an undergraduate biomedical engineering curriculum. Students deployed an endovascular stent into an anatomical model of a cerebral aneurysm and measured intra-aneurysmal flow…
ERIC Educational Resources Information Center
Roohani, Behnam
2014-01-01
This study focused on exploring Illinois community college faculty development coordinators' perceptions about how they are implementing faculty technology professional development programs and providing technical support for part-time faculty in the Illinois community college systems. Also examined were part-time faculty perceptions of the degree…
Analysis of measurements for solid state laser remote lidar system
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin
1995-01-01
The merits of using lidar systems for remote measurements of various atmospheric processes such as wind, turbulence, moisture, and aerosol concentration are widely recognized. Although the lidar technology has progressed considerably over the past two decades, significant research particularly in the area of solid state lidars remains to be conducted in order to fully exploit this technology. The work performed by the UAH (University of Alabama in Huntsville) personnel under this Delivery Order concentrated on analyses of measurements required in support of solid state laser remote sensing lidar systems which are to be designed, deployed, and used to measure atmospheric processes and constituents. UAH personnel has studied and recommended to NASA/MSFC the requirements of the optical systems needed to characterize the detection devices suitable for solid state wavelengths and to evaluate various heterodyne detection schemes. The 2-micron solid state laser technology was investigated and several preliminary laser designs were developed and their performance for remote sensing of atmospheric winds and clouds from a spaceborne platform were specified. In addition to the laser source and the detector, the other critical technologies necessary for global wind measurements by a spaceborne solid state coherent lidar systems were identified to be developed and demonstrated. As part of this work, an analysis was performed to determine the atmospheric wind velocity estimation accuracy using the line-of-sight measurements of a scanning coherent lidar. Under this delivery order, a computer database of materials related to the theory, development, testing, and operation of lidar systems was developed to serve as a source of information for lidar research and development.
NASA Astrophysics Data System (ADS)
Lee, Hyunju; Longhurst, Max; Campbell, Todd
2017-07-01
This research investigated teacher learning and teacher beliefs in a two-year technology professional development (TPD) for teachers and its impact on their student achievement in science in the western part of the United States. Middle-school science teachers participated in TPD focused on information communication technologies (ICTs) and their applications in science inquiry pedagogy. Three self-reporting teacher instruments were used alongside their student achievement scores on the end-of-year state-science-test. The teacher self-reporting measures investigated technological literacy, ICT capabilities, and pedagogical beliefs about science inquiry pedagogy. Data were collected every year, and descriptive statistics, t-tests, and Pearson's correlations were used for analysis. We found teachers' technological skills and ICT capabilities increasing over time with significant gains each year. Additionally, teachers' pedagogical beliefs changed to become more science inquiry oriented over time; however, the gains were not significant until after the second year of TPD. Comparisons of teacher learning and belief measures with student achievement revealed that the students' performance was correlated to teachers' pedagogical beliefs about science inquiry, but not to their technological skills nor to their ICT capabilities. This research suggests that pedagogical considerations should be foregrounded in TPD and that this may require more longitudinal TPD to ensure that technology integration in science instruction is consequential to student learning.
NASA Technical Reports Server (NTRS)
May, Brian D.
1992-01-01
The experimental NASA satellite, Advanced Communications Technology Satellite (ACTS), introduces new technology for high throughput 30 to 20 GHz satellite services. Contained in a single communication payload is both a regenerative TDMA system and multiple 800 MHz 'bent pipe' channels routed to spot beams by a switch matrix. While only one mode of operation is typical during any experiment, both modes can operate simultaneously with reduced capability due to sharing of the transponder. NASA-Lewis instituted a ground terminal development program in anticipation of the satellite launch to verify the performance of the switch matrix mode of operations. Specific functions are built into the ground terminal to evaluate rain fade compensation with uplink power control and to monitor satellite transponder performance with bit error rate measurements. These functions were the genesis of the ground terminal's name, Link Evaluation Terminal, often referred to as LET. Connectors are included in LET that allow independent experimenters to run unique modulation or network experiments through ACTS using only the RF transmit and receive portions of LET. Test data indicate that LET will be able to verify important parts of ACTS technology and provide independent experimenters with a useful ground terminal. Lab measurements of major subsystems integrated into LET are presented. Bit error rate is measured with LET in an internal loopback mode.
Some problems in mechanics of growing solids with applications to AM technologies
NASA Astrophysics Data System (ADS)
Manzhirov, A. V.
2018-04-01
Additive Manufacturing (AM) technologies are an exciting area of the modern industrial revolution and have applications in engineering, medicine, electronics, aerospace industry, etc. AM enables cost-effective production of customized geometry and parts by direct fabrication from 3D data and mathematical models. Despite much progress in AM technologies, problems of mechanical analysis for AM fabricated parts yet remain to be solved. This paper deals with three main mechanical problems: the onset of residual stresses, which occur in the AM process and can lead to failure of the parts, the distortion of the final shape of AM fabricated parts, and the development of technological solutions aimed at improving existing AM technologies and creating new ones. An approach proposed deals with the construction of adequate analytical model and effective methods for the simulation of AM processes for fabricated solid parts.
NASA Astrophysics Data System (ADS)
Chugui, Yuri
2010-05-01
The papers for this special feature have been selected for publication after the successful measurement forum that took place in Saint Petersburg, Russia, in 2009. ISMTII-2009 presented state-of-the-art approaches and solutions in the most challenging areas and focused on microscale and nanoscale measurements and metrology; novel measurements and diagnostic technologies, including nondestructive and dimensional inspection; measurements for geometrical and mechanical quantities, terahertz technologies for science, industry and biomedicine; intelligent measuring instruments and systems for industry and transport; optical and x-ray tomography and interferometry, metrology and characterization of materials, measurements and metrology for the humanitarian fields; and education in measurement science. We believe that scientists and specialists around the world found there the newest information on measurement technology and intelligent instruments, and this will stimulate work in these areas which is an essential part of progress in measurement. The ISMTII Symposia have been held successfully every two years from 1989 in the People's Republic of China, Hungary, Egypt, Hong Kong, UK and Japan under the direction of ICMI. In 2009 the ISMTII measuring forum took place in Russia, and it is a great honour for our country, as well as for the Russian Academy of Sciences and its Siberian Branch—Novosibirsk Scientific Center. This Symposium was located in historic Saint Petersburg, which from its foundation has been a unique bridge of communication between countries on all continents, and participation provided an excellent opportunity for the exchange of experience, information and knowledge between specialists from different countries and fields. On behalf of the Organizers, Steering Committee and International Program Committee I would like to thank all the participants for their valuable contributions without which this special feature would not have become reality, as well as the reviewers for their careful evaluation of the papers. My special thanks go to the publishing team of the Measurement Science and Technology journal.
Studying technology use as social practice: the untapped potential of ethnography
2011-01-01
Information and communications technologies (ICTs) in healthcare are often introduced with expectations of higher-quality, more efficient, and safer care. Many fail to meet these expectations. We argue here that the well-documented failures of ICTs in healthcare are partly attributable to the philosophical foundations of much health informatics research. Positivistic assumptions underpinning the design, implementation and evaluation of ICTs (in particular the notion that technology X has an impact which can be measured and reproduced in new settings), and the deterministic experimental and quasi-experimental study designs which follow from these assumptions, have inherent limitations when ICTs are part of complex social practices involving multiple human actors. We suggest that while experimental and quasi-experimental studies have an important place in health informatics research overall, ethnography is the preferred methodological approach for studying ICTs introduced into complex social systems. But for ethnographic approaches to be accepted and used to their full potential, many in the health informatics community will need to revisit their philosophical assumptions about what counts as research rigor. PMID:21521535
Science& Technology Review October 2003
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMahon, D H
2003-10-01
The October 2003 issue of Science & Technology Review consists of the following articles: (1) Award-Winning Technologies from Collaborative Efforts--Commentary by Hal Graboske; (2) BASIS Counters Airborne Bioterrorism--The Biological Aerosol Sentry and Information System is the first integrated biodefense system; (3) In the Chips for the Coming Decade--A new system is the first full-field lithography tool for use at extreme ultraviolet wavelengths; (4) Smoothing the Way to Print the Next Generation of Computer Chips--With ion-beam thin-film planarization, the reticles and projection optics made for extreme ultraviolet lithography are nearly defect-free; (5) Eyes Can See Clearly Now--The MEMS-based adaptive optics phoroptermore » improves the process of measuring and correcting eyesight aberrations; (6) This Switch Takes the Heat--A thermally compensated Q-switch reduces the light leakage on high-average-power lasers; (7) Laser Process Forms Thick, Curved Metal Parts--A new process shapes parts to exact specifications, improving their resistance to fatigue and corrosion cracking; and (8) Characterizing Tiny Objects without Damaging Them--Livermore researchers are developing nondestructive techniques to probe the Lilliputian world of mesoscale objects.« less
IIP Update: A Packaged Coherent Doppler Wind Lidar Transceiver. Doppler Aerosol WiNd Lidar (DAWN)
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Koch, Grady J.; Yu, Jirong; Trieu, Bo C.; Amzajerdian, Farzin; Singh, Upendra N.; Petros, Mulugeta
2006-01-01
The state-of-the-art 2-micron coherent Doppler wind lidar breadboard at NASA/LaRC will be engineered and compactly packaged consistent with future aircraft flights. The packaged transceiver will be integrated into a coherent Doppler wind lidar system test bed at LaRC. Atmospheric wind measurements will be made to validate the packaged technology. This will greatly advance the coherent part of the hybrid Doppler wind lidar solution to the need for global tropospheric wind measurements.
Compact, Engineered 2-Micron Coherent Doppler Wind Lidar Prototype for Field and Airborne Evaluation
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Amzajerdian, Farzin; Koch, Grady J.
2006-01-01
The state-of-the-art 2-micron coherent Doppler wind lidar breadboard at NASA/LaRC will be engineered and compactly packaged consistent with future aircraft flights. The packaged transceiver will be integrated into a coherent Doppler wind lidar system test bed at LaRC. Atmospheric wind measurements will be made to validate the packaged technology. This will greatly advance the coherent part of the hybrid Doppler wind lidar solution to the need for global tropospheric wind measurements.
Alternative Measured-Service Rate Structures for Local Telephone Service,
1980-06-01
contracts or grants . Views expressed in a Papet are the author’s own, and are not necessarily shared by Rand or its research sponsors. The Rand Corporation...by National Science Foundation, grant DAR 77-16286 to The Rand Corporation. Measuring costs depend strongly on the technology of the telephone network...a Budget Constraint. The Case of the Two-Part Tariff," Review of Economic Studies, July 1974, Vol. 41, pp. 337-345. -28- Oi, W. Y., "A Disneyland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiatreungwattana, Kosol; Salasovich, James; Kandt, Alicen
As part of ongoing efforts by the U.S. Forest Service to reduce energy use and incorporate renewable energy technologies into its facilities, the Department of Energy's National Renewable Energy Laboratory performed an energy efficiency and renewable energy site assessment of the Seneca Rocks Discovery Center in Seneca Rocks, West Virginia. This report documents the findings of this assessment, and provides site-specific information for the implementation of energy and water conservation measures, and renewable energy measures.
Optical Fiber Power Meter Comparison Between NIST and NIM.
Vayshenker, I; Livigni, D J; Li, X; Lehman, J H; Li, J; Xiong, L M; Zhang, Z X
2010-01-01
We describe the results of a comparison of reference standards between the National Institute of Standards and Technology (NIST-USA) and National Institute of Metrology (NIM-China). We report optical fiber-based power measurements at nominal wavelengths of 1310 nm and 1550 nm. We compare the laboratories' reference standards by means of a commercial optical power meter. Measurement results showed the largest difference of less than 2.6 parts in 10(3), which is within the combined standard (k = 1) uncertainty for the laboratories' reference standards.
Educational Technology and ''Roads Scholars''
ERIC Educational Resources Information Center
Tillyer, Anthea
2005-01-01
This article discusses part-time faculty members and the importance of educational technology for these part-time faculty members. Institutions invest large amounts of money in technologies meant to improve students' educational experience and the efficiency with which institutions serve students. The most common technology in which colleges…
Science, technology and mission design for LATOR experiment
NASA Astrophysics Data System (ADS)
Turyshev, Slava G.; Shao, Michael; Nordtvedt, Kenneth L.
2017-11-01
The Laser Astrometric Test of Relativity (LATOR) is a Michelson-Morley-type experiment designed to test the Einstein's general theory of relativity in the most intense gravitational environment available in the solar system - the close proximity to the Sun. By using independent time-series of highly accurate measurements of the Shapiro time-delay (laser ranging accurate to 1 cm) and interferometric astrometry (accurate to 0.1 picoradian), LATOR will measure gravitational deflection of light by the solar gravity with accuracy of 1 part in a billion, a factor {30,000 better than currently available. LATOR will perform series of highly-accurate tests of gravitation and cosmology in its search for cosmological remnants of scalar field in the solar system. We present science, technology and mission design for the LATOR mission.
Mapping mHealth research: a decade of evolution.
Fiordelli, Maddalena; Diviani, Nicola; Schulz, Peter J
2013-05-21
For the last decade, mHealth has constantly expanded as a part of eHealth. Mobile applications for health have the potential to target heterogeneous audiences and address specific needs in different situations, with diverse outcomes, and to complement highly developed health care technologies. The market is rapidly evolving, making countless new mobile technologies potentially available to the health care system; however, systematic research on the impact of these technologies on health outcomes remains scarce. To provide a comprehensive view of the field of mHealth research to date and to understand whether and how the new generation of smartphones has triggered research, since their introduction 5 years ago. Specifically, we focused on studies aiming to evaluate the impact of mobile phones on health, and we sought to identify the main areas of health care delivery where mobile technologies can have an impact. A systematic literature review was conducted on the impact of mobile phones and smartphones in health care. Abstracts and articles were categorized using typologies that were partly adapted from existing literature and partly created inductively from publications included in the review. The final sample consisted of 117 articles published between 2002 and 2012. The majority of them were published in the second half of our observation period, with a clear upsurge between 2007 and 2008, when the number of articles almost doubled. The articles were published in 77 different journals, mostly from the field of medicine or technology and medicine. Although the range of health conditions addressed was very wide, a clear focus on chronic conditions was noted. The research methodology of these studies was mostly clinical trials and pilot studies, but new designs were introduced in the second half of our observation period. The size of the samples drawn to test mobile health applications also increased over time. The majority of the studies tested basic mobile phone features (eg, text messaging), while only a few assessed the impact of smartphone apps. Regarding the investigated outcomes, we observed a shift from assessment of the technology itself to assessment of its impact. The outcome measures used in the studies were mostly clinical, including both self-reported and objective measures. Research interest in mHealth is growing, together with an increasing complexity in research designs and aim specifications, as well as a diversification of the impact areas. However, new opportunities offered by new mobile technologies do not seem to have been explored thus far. Mapping the evolution of the field allows a better understanding of its strengths and weaknesses and can inform future developments.
Accelerator mass spectrometry in biomedical research
NASA Astrophysics Data System (ADS)
Vogel, J. S.; Turteltaub, K. W.
1994-06-01
Biological effects occur in natural systems at chemical concentrations of parts per billion (1:10 9) or less. Affected biomolecules may be separable in only milligram or microgram quantities. Quantification at attomole sensitivity is needed to study these interactions. AMS measures isotope concentrations to parts per 10 13-15 on milligram-sized samples and is ideal for quantifying long-lived radioisotopic labels for tracing biochemical pathways in natural systems. 14C-AMS has now been coupled to a variety of organic separation and definition technologies. Our primary research investigates pharmacokinetics and genotoxicities of toxins and drugs at very low doses. Human subjects research using AMS includes nutrition, toxicity and elemental balance studies. 3H, 41Ca and 26Al are also traced by AMS for fundamental biochemical kinetic research. Expansion of biomedical AMS awaits further development of biochemical and accelerator technologies designed specifically for these applications.
Development of Si(1-x)Ge(x) technology for microwave sensing applications
NASA Technical Reports Server (NTRS)
Mena, Rafael A.; Taub, Susan R.; Alterovitz, Samuel A.; Young, Paul E.; Simons, Rainee N.; Rosenfeld, David
1993-01-01
The progress for the first year of the work done under the Director's Discretionary Fund (DDF) research project entitled, 'Development of Si(1-x)Ge(x) Technology for Microwave Sensing Applications.' This project includes basic material characterization studies of silicon-germanium (SiGe), device processing on both silicon (Si) and SiGe substrates, and microwave characterization of transmission lines on silicon substrates. The material characterization studies consisted of ellipsometric and magneto-transport measurements and theoretical calculations of the SiGe band-structure. The device fabrication efforts consisted of establishing SiGe device processing capabilities in the Lewis cleanroom. The characterization of microwave transmission lines included studying the losses of various coplanar transmission lines and the development of transitions on silicon. Each part of the project is discussed individually and the findings for each part are presented. Future directions are also discussed.
Use of Technology in College and University English Classrooms
ERIC Educational Resources Information Center
Black, Bethany; Lassmann, Marie E.
2016-01-01
Many forms of technology are available to college and university instructors. Technology has become an important part of today's world and an important part of instruction in various classrooms. Many may see technology as reasonable to use in a science, mathematics, or art class. In this paper, different types of technology used in college and…
The Technology Education Graduate Research Database, 1892-2000. CTTE Monograph.
ERIC Educational Resources Information Center
Reed, Philip A., Ed.
The Technology Education Graduate Research Database (TEGRD) was designed in two parts. The first part was a 384 page bibliography of theses and dissertations from 1892-2000. The second part was an online, searchable database of graduate research completed within technology education from 1892 to the present. The primary goals of the project were:…
NASA Electronic Parts and Packaging Program
NASA Technical Reports Server (NTRS)
Kayali, Sammy
2000-01-01
NEPP program objectives are to: (1) Access the reliability of newly available electronic parts and packaging technologies for usage on NASA projects through validations, assessments, and characterizations, and the development of test methods/tools; (2)Expedite infusion paths for advanced (emerging) electronic parts and packaging technologies by evaluations of readiness for manufacturability and project usage consideration; (3) Provide NASA projects with technology selection, application, and validation guidelines for electronic parts and packaging hardware and processes; nd (4) Retain and disseminate electronic parts and packaging quality assurance, reliability validations, tools, and availability information to the NASA community.
National Security Technology Incubator Evaluation Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
This report describes the process by which the National Security Technology Incubator (NSTI) will be evaluated. The technology incubator is being developed as part of the National Security Preparedness Project (NSPP), funded by a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. This report includes a brief description of the components, steps, and measures of the proposed evaluation process. The purpose of the NSPP is to promote national security technologies through business incubation, technology demonstration and validation, and workforce development. The NSTI will focus on serving businesses with national security technology applications by nurturing them through critical stages ofmore » early development. An effective evaluation process of the NSTI is an important step as it can provide qualitative and quantitative information on incubator performance over a given period. The vision of the NSTI is to be a successful incubator of technologies and private enterprise that assist the NNSA in meeting new challenges in national safety and security. The mission of the NSTI is to identify, incubate, and accelerate technologies with national security applications at various stages of development by providing hands-on mentoring and business assistance to small businesses and emerging or growing companies. To achieve success for both incubator businesses and the NSTI program, an evaluation process is essential to effectively measure results and implement corrective processes in the incubation design if needed. The evaluation process design will collect and analyze qualitative and quantitative data through performance evaluation system.« less
Technology for the Future: In-Space Technology Experiments Program, part 2
NASA Technical Reports Server (NTRS)
Breckenridge, Roger A. (Compiler); Clark, Lenwood G. (Compiler); Willshire, Kelli F. (Compiler); Beck, Sherwin M. (Compiler); Collier, Lisa D. (Compiler)
1991-01-01
The purpose of the Office of Aeronautics and Space Technology (OAST) In-Space Technology Experiments Program In-STEP 1988 Workshop was to identify and prioritize technologies that are critical for future national space programs and require validation in the space environment, and review current NASA (In-Reach) and industry/ university (Out-Reach) experiments. A prioritized list of the critical technology needs was developed for the following eight disciplines: structures; environmental effects; power systems and thermal management; fluid management and propulsion systems; automation and robotics; sensors and information systems; in-space systems; and humans in space. This is part two of two parts and contains the critical technology presentations for the eight theme elements and a summary listing of critical space technology needs for each theme.
Genetically-Based Biologic Technologies. Biology and Human Welfare.
ERIC Educational Resources Information Center
Mayer, William V.; McInerney, Joseph D.
The purpose of this six-part booklet is to review the current status of genetically-based biologic technologies and to suggest how information about these technologies can be inserted into existing educational programs. Topic areas included in the six parts are: (1) genetically-based technologies in the curriculum; (2) genetic technologies…
NASA Astrophysics Data System (ADS)
Stepanov, V. E.; Volkovich, A. G.; Potapov, V. N.; Semin, I. A.; Stepanov, A. V.; Simirskii, Iu. N.
2018-01-01
From 2011 in the NRC "Kurchatov Institute" carry out the dismantling of the MR multiloop research reactor. Now the reactor and all technological equipment in the premises of the reactor were dismantled. Now the measurements of radioactive contamination in the reactor premises are made. The most contaminated parts of premises - floor and the ground beneath it. To measure the distribution of specific activity in the ground the CdZnTe detector (volume 500MM3) was used. Detector placed in a lead shielding with a slit collimation hole. The upper part of shielding is made movable to close and open the slit of the collimator. At each point two measurements carried out: with open and closed collimator. The software for determination specific activity of radionuclides in ground was developed. The mathematical model of spectrometric system based on the Monte-Carlo method. Measurements of specific activity of ground were made. Using the results of measurements the thickness of the removed layer of ground and the amount of radioactive waste were calculated.
ERIC Educational Resources Information Center
Duchesne, Roddy; Sonnemann, Sabine S.
This report is intended to assist Canadian libraries in assessing potential library applications of optical disk technology. Part 1 provides a general outline of the technology and describes a number of library applications and projects. Descriptions are purposely general and illustrative in nature since the technology and its applications are…
The Solar Jobs Book: How to Take Part in the New Movement Toward Energy Self-Sufficiency.
ERIC Educational Resources Information Center
Ericson, Katharine
Solutions to this country's energy problems can be found through a combination of conservation measures and solar technology. Accordingly, this book provides an overview of employment in the solar energy and energy conservation fields, an analysis of related life styles and working situations, a listing of solar energy programs and agencies, and a…
ERIC Educational Resources Information Center
Hodges, Charles; Jones, R. Caroline; Prater, Alyssa
2014-01-01
The purpose of this paper is to report the results of a two-part study. Study 1 was conducted to refine and validate a survey instrument, SELMA (Hodges, 2008), used to measure learners' self-efficacy toward learning mathematics in online or technology-intensive, asynchronous learning environments. Study 2 was conducted to investigate the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
As part of the U.S. Navy's overall energy strategy, the National Renewable Energy Laboratory (NREL) partnered with the Naval Facilities Engineering Command (NAVFAC) to demonstrate market-ready energy efficiency measures, renewable energy generation, and energy systems integration. One such technology - retrofitting rooftop air-conditioning units with an advanced rooftop control system - was identified as a promising source for reducing energy use and costs, and can contribute to increasing energy security.
Remote Blood Glucose Monitoring in mHealth Scenarios: A Review.
Lanzola, Giordano; Losiouk, Eleonora; Del Favero, Simone; Facchinetti, Andrea; Galderisi, Alfonso; Quaglini, Silvana; Magni, Lalo; Cobelli, Claudio
2016-11-24
Glucose concentration in the blood stream is a critical vital parameter and an effective monitoring of this quantity is crucial for diabetes treatment and intensive care management. Effective bio-sensing technology and advanced signal processing are therefore of unquestioned importance for blood glucose monitoring. Nevertheless, collecting measurements only represents part of the process as another critical task involves delivering the collected measures to the treating specialists and caregivers. These include the clinical staff, the patient's significant other, his/her family members, and many other actors helping with the patient treatment that may be located far away from him/her. In all of these cases, a remote monitoring system, in charge of delivering the relevant information to the right player, becomes an important part of the sensing architecture. In this paper, we review how the remote monitoring architectures have evolved over time, paralleling the progress in the Information and Communication Technologies, and describe our experiences with the design of telemedicine systems for blood glucose monitoring in three medical applications. The paper ends summarizing the lessons learned through the experiences of the authors and discussing the challenges arising from a large-scale integration of sensors and actuators.
[Assessing the depth-of-hypnosis].
Høymork, Siv Cathrine
2010-03-25
There has been a breakthrough in the understanding of anaesthetic drug effects during the last two decades, and new monitors aimed at quantifying such effects have been developed. This review is based on publications from the last 15 years, oral presentations, and rewritten parts of the author's PhD thesis. General anaesthesia can be regarded as a combination of hypnosis (sleep), analgesia and muscle relaxation. Modern anaesthetic drugs aim at each of these effects separately. Pharmacological variation makes it impossible to find one dose suitable for all, so tools for measuring drug effects in the individual patient are warranted. Monitors for measuring depth-of-hypnosis and partly analgesic effect are commercially available. Among these, BIS (bispectral index), based on EEG, is by far the best documented. BIS is proven useful for preventing undesired awareness and overdosing, but there are major limitations. Use of such technology in clinical practice is under constant debate. Even though the BIS technology is promising and used widely, no health authorities have so far recommended that such monitors should be compulsory during general anaesthesia, but rather that it should be considered on an individual basis. So far, it seems like this is a sensible approach in Norway as well.
[Development of human resources and the Plan of Action].
Vidal, C
1984-01-01
This article (whose first part was published in the previous issue of Educación Médica y Salud) concludes an exhaustive review of manpower development in the Americas. This part considers the specific measures in this field enunciated in the Plan of Action; these measures pertain to four main areas: planning and programming of human resources, training in priority areas, utilization of human resources, and educational technology. The author discusses the present and future possibilities and obstacles of each of these activities and the steps to be taken to bring needs into line with real situations. It is of paramount importance that the national health authorities clearly spell out their policies for the development of human resources in the health field within the framework of general development policies. Another point to be insisted upon is the multiprofessional and multidisciplinary training of the health team and the importance of the education-service-supervision function, which usually results in permanent and continuing education, which in turn optimizes the utilization of personnel. However, none of this will be possible without an appropriate education technology with which to innovate, analyze and refine the entire education process and so meet the needs of both society and the health services.
Remote Blood Glucose Monitoring in mHealth Scenarios: A Review
Lanzola, Giordano; Losiouk, Eleonora; Del Favero, Simone; Facchinetti, Andrea; Galderisi, Alfonso; Quaglini, Silvana; Magni, Lalo; Cobelli, Claudio
2016-01-01
Glucose concentration in the blood stream is a critical vital parameter and an effective monitoring of this quantity is crucial for diabetes treatment and intensive care management. Effective bio-sensing technology and advanced signal processing are therefore of unquestioned importance for blood glucose monitoring. Nevertheless, collecting measurements only represents part of the process as another critical task involves delivering the collected measures to the treating specialists and caregivers. These include the clinical staff, the patient’s significant other, his/her family members, and many other actors helping with the patient treatment that may be located far away from him/her. In all of these cases, a remote monitoring system, in charge of delivering the relevant information to the right player, becomes an important part of the sensing architecture. In this paper, we review how the remote monitoring architectures have evolved over time, paralleling the progress in the Information and Communication Technologies, and describe our experiences with the design of telemedicine systems for blood glucose monitoring in three medical applications. The paper ends summarizing the lessons learned through the experiences of the authors and discussing the challenges arising from a large-scale integration of sensors and actuators. PMID:27886122
ERIC Educational Resources Information Center
Peterson, Charles R., Ed.
This document is prefaced with a descriptive introduction to the "Access to the Arts Through Assistive Technology Project." The contents that follow are organized in 5 parts. Part 1 includes: "Introduction" (Betsy Foley), and "My Voice Has Wings" (Jeff Moyer). Part 2, "Major Addresses," presents: (1) "Welcome from the Wisconsin Department of…
Mathematics on the Move: Using Mobile Technologies to Support Student Learning (Part 2)
ERIC Educational Resources Information Center
Attard, Catherine; Northcote, Maria
2012-01-01
Continuing the series of articles on teaching mathematics with technology, this article furthers the authors' exploration of the use of a range of mobile technologies to enhance teachers' practices in the primary mathematics classroom. In Part 1 of this article, the authors explored the use of the iPod Touch and iPad. In Part 2, they explore…
Bridging the Skills Gap. Working Paper Part II: High Technology and Related Occupations.
ERIC Educational Resources Information Center
Kaplan, Christine E.
This part of a 2-part working paper identifies and describes major occupational groups that are characteristic of high technology manufacturing and service industries as well as employment sectors that use high technology products in their provision of goods and services. The paper is based on a review of a wide range of employment projections…
Discharge measurements at gaging stations
Turnipseed, D. Phil; Sauer, Vernon B.
2010-01-01
The techniques and standards for making discharge measurements at streamflow gaging stations are described in this publication. The vertical axis rotating-element current meter, principally the Price current meter, has been traditionally used for most measurements of discharge; however, advancements in acoustic technology have led to important developments in the use of acoustic Doppler current profilers, acoustic Doppler velocimeters, and other emerging technologies for the measurement of discharge. These new instruments, based on acoustic Doppler theory, have the advantage of no moving parts, and in the case of the acoustic Doppler current profiler, quickly and easily provide three-dimensional stream-velocity profile data through much of the vertical water column. For much of the discussion of acoustic Doppler current profiler moving-boat methodology, the reader is referred to U.S. Geological Survey Techniques and Methods 3-A22 (Mueller and Wagner, 2009). Personal digital assistants (PDAs), electronic field notebooks, and other personal computers provide fast and efficient data-collection methods that are more error-free than traditional hand methods. The use of portable weirs and flumes, floats, volumetric tanks, indirect methods, and tracers in measuring discharge are briefly described.
Hoffman, Robert R; Hancock, P A
2017-06-01
As human factors and ergonomics (HF/E) moves to embrace a greater systems perspective concerning human-machine technologies, new and emergent properties, such as resilience, have arisen. Our objective here is to promote discussion as to how to measure this latter, complex phenomenon. Resilience is now a much-referenced goal for technology and work system design. It subsumes the new movement of resilience engineering. As part of a broader systems approach to HF/E, this concept requires both a definitive specification and an associated measurement methodology. Such an effort epitomizes our present work. Using rational analytic and synthetic methods, we offer an approach to the measurement of resilience capacity. We explicate how our proposed approach can be employed to compare resilience across multiple systems and domains, and emphasize avenues for its future development and validation. Emerging concerns for the promise and potential of resilience and associated concepts, such as adaptability, are highlighted. Arguments skeptical of these emerging dimensions must be met with quantitative answers; we advance one approach here. Robust and validated measures of resilience will enable coherent and rational discussions of complex emergent properties in macrocognitive system science.
Cleaning and Cleanliness Measurement of Additive Manufactured Parts
NASA Technical Reports Server (NTRS)
Welker, Roger W.; Mitchell, Mark A.
2015-01-01
The successful acquisition and utilization of piece parts and assemblies for contamination sensitive applications requires application of cleanliness acceptance criteria. Contamination can be classified using many different schemes. One common scheme is classification as organic, ionic and particulate contaminants. These may be present in and on the surface of solid components and assemblies or may be dispersed in various gaseous or liquid media. This discussion will focus on insoluble particle contamination on the surface of piece parts and assemblies. Cleanliness of parts can be controlled using two strategies, referred to as gross cleanliness and precision cleanliness. Under a gross cleanliness strategy acceptance is based on visual cleanliness. This approach introduces a number of concerns that render it unsuitable for controlling cleanliness of high technology products. Under the precision cleanliness strategy, subjective, visual assessment of cleanliness is replaced by objective measurement of cleanliness. When a precision cleanliness strategy is adopted there naturally arises the question: How clean is clean enough? The six commonly used methods for establishing objective cleanliness acceptance limits will be discussed. Special emphasis shall focus on the use of multiple extraction, a technique that has been demonstrated for additively manufactured parts.
NASA Astrophysics Data System (ADS)
Raeva, P. L.; Filipova, S. L.; Filipov, D. G.
2016-06-01
The following paper aims to test and evaluate the accuracy of UAV data for volumetric measurements to the conventional GNSS techniques. For this purpose, an appropriate open pit quarry has been chosen. Two sets of measurements were performed. Firstly, a stockpile was measured by GNSS technologies and later other terrestrial GNSS measurements for modelling the berms of the quarry were taken. Secondly, the area of the whole quarry including the stockpile site was mapped by a UAV flight. Having considered how dynamic our world is, new techniques and methods should be presented in numerous fields. For instance, the management of an open pit quarry requires gaining, processing and storing a large amount of information which is constantly changing with time. Fast and precise acquisition of measurements regarding the process taking place in a quarry is the key to an effective and stable maintenance. In other words, this means getting an objective evaluations of the processes, using up-to-date technologies and reliable accuracy of the results. Often legislations concerning mine engineering state that the volumetric calculations are to present ±3% accuracy of the whole amount. On one hand, extremely precise measurements could be performed by GNSS technologies, however, it could be really time consuming. On the other hand, UAV photogrammetry presents a fast, accurate method for mapping large areas and calculating stockpiles volumes. The study case was performed as a part of a master thesis.
Piezoresistive position microsensors with ppm-accuracy
NASA Astrophysics Data System (ADS)
Stavrov, Vladimir; Shulev, Assen; Stavreva, Galina; Todorov, Vencislav
2015-05-01
In this article, the relation between position accuracy and the number of simultaneously measured values, such as coordinates, has been analyzed. Based on this, a conceptual layout of MEMS devices (microsensors) for multidimensional position monitoring comprising a single anchored and a single actuated part has been developed. Both parts are connected with a plurality of micromechanical flexures, and each flexure includes position detecting cantilevers. Microsensors having detecting cantilevers oriented in X and Y direction have been designed and prototyped. Experimentally measured results at characterization of 1D, 2D and 3D position microsensors are reported as well. Exploiting different flexure layouts, a travel range between 50μm and 1.8mm and sensors' sensitivity in the range between 30μV/μm and 5mV/μm@ 1V DC supply voltage have been demonstrated. A method for accurate calculation of all three Cartesian coordinates, based on measurement of at least three microsensors' signals has also been described. The analyses of experimental results prove the capability of position monitoring with ppm-(part per million) accuracy. The technology for fabrication of MEMS devices with sidewall embedded piezoresistors removes restrictions in strong improvement of their usability for position sensing with a high accuracy. The present study is, also a part of a common strategy for developing a novel MEMS-based platform for simultaneous accurate measurement of various physical values when they are transduced to a change of position.
Dimensional measurement of micro parts with high aspect ratio in HIT-UOI
NASA Astrophysics Data System (ADS)
Dang, Hong; Cui, Jiwen; Feng, Kunpeng; Li, Junying; Zhao, Shiyuan; Zhang, Haoran; Tan, Jiubin
2016-11-01
Micro parts with high aspect ratios have been widely used in different fields including aerospace and defense industries, while the dimensional measurement of these micro parts becomes a challenge in the field of precision measurement and instrument. To deal with this contradiction, several probes for the micro parts precision measurement have been proposed by researchers in Center of Ultra-precision Optoelectronic Instrument (UOI), Harbin Institute of Technology (HIT). In this paper, optical fiber probes with structures of spherical coupling(SC) with double optical fibers, micro focal-length collimation (MFL-collimation) and fiber Bragg grating (FBG) are described in detail. After introducing the sensing principles, both advantages and disadvantages of these probes are analyzed respectively. In order to improve the performances of these probes, several approaches are proposed. A two-dimensional orthogonal path arrangement is propounded to enhance the dimensional measurement ability of MFL-collimation probes, while a high resolution and response speed interrogation method based on differential method is used to improve the accuracy and dynamic characteristics of the FBG probes. The experiments for these special structural fiber probes are given with a focus on the characteristics of these probes, and engineering applications will also be presented to prove the availability of them. In order to improve the accuracy and the instantaneity of the engineering applications, several techniques are used in probe integration. The effectiveness of these fiber probes were therefore verified through both the analysis and experiments.
Development of Laser, Detector, and Receiver Systems for an Atmospheric CO2 Lidar Profiling System
NASA Technical Reports Server (NTRS)
Ismail, Syed; Koch, Grady; Abedin, Nurul; Refaat, Tamer; Rubio, Manuel; Singh, Upendra
2008-01-01
A ground-based Differential Absorption Lidar (DIAL) is being developed with the capability to measure range-resolved and column amounts of atmospheric CO2. This system is also capable of providing high-resolution aerosol profiles and cloud distributions. It is being developed as part of the NASA Earth Science Technology Office s Instrument Incubator Program. This three year program involves the design, development, evaluation, and fielding of a ground-based CO2 profiling system. At the end of a three-year development this instrument is expected to be capable of making measurements in the lower troposphere and boundary layer where the sources and sinks of CO2 are located. It will be a valuable tool in the validation of NASA Orbiting Carbon Observatory (OCO) measurements of column CO2 and suitable for deployment in the North American Carbon Program (NACP) regional intensive field campaigns. The system can also be used as a test-bed for the evaluation of lidar technologies for space-application. This DIAL system leverages 2-micron laser technology developed under a number of NASA programs to develop new solid-state laser technology that provides high pulse energy, tunable, wavelength-stabilized, and double-pulsed lasers that are operable over pre-selected temperature insensitive strong CO2 absorption lines suitable for profiling of lower tropospheric CO2. It also incorporates new high quantum efficiency, high gain, and relatively low noise phototransistors, and a new receiver/signal processor system to achieve high precision DIAL measurements.
Surface Contamination Monitor and Survey Information Management System
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-02-01
Shonka Research Associates, Inc.`s (SRA) Surface Contamination Monitor and Survey Information management System (SCM/SIMS) is designed to perform alpha and beta radiation surveys of floors and surfaces and document the measured data. The SRA-SCM/SIMS technology can be applied to routine operational surveys, characterization surveys, and free release and site closure surveys. Any large nuclear site can make use of this technology. This report describes a demonstration of the SRA-SCM/SIMS technology. This demonstration is part of the chicago Pile-5 (CP-5) Large-Scale Demonstration Project (LSDP) sponsored by the US Department of Energy (DOE), Office of Science and Technology (ST), Deactivation and Decommissioningmore » Focus Area (DDFA). The objective of the LSDP is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory-East`s (ANL) CP-5 Research Reactor Facility. The purpose of the LSDP is to demonstrate that by using innovative and improved deactivation and decommissioning (D and D) technologies from various sources, significant benefits can be achieved when compared to baseline D and D technologies.« less
Nikitovic, M; Brener, S
2013-01-01
As part of ongoing efforts to improve the Ontario health care system, a mega-analysis examining the optimization of chronic disease management in the community was conducted by Evidence Development and Standards, Health Quality Ontario (previously known as the Medical Advisory Secretariat [MAS]). The purpose of this report was to identify health technologies previously evaluated by MAS that may be leveraged in efforts to optimize chronic disease management in the community. The Ontario Health Technology Assessment Series and field evaluations conducted by MAS and its partners between January 1, 2006, and December 31, 2011. Technologies related to at least 1 of 7 disease areas of interest (type 2 diabetes, coronary artery disease, atrial fibrillation, chronic obstructive pulmonary disease, congestive heart failure, stroke, and chronic wounds) or that may greatly impact health services utilization were reviewed. Only technologies with a moderate to high quality of evidence and associated with a clinically or statistically significant improvement in disease management were included. Technologies related to other topics in the mega-analysis on chronic disease management were excluded. Evidence-based analyses were reviewed, and outcomes of interest were extracted. Outcomes of interest included hospital utilization, mortality, health-related quality of life, disease-specific measures, and economic analysis measures. Eleven analyses were included and summarized. Technologies fell into 3 categories: those with evidence for the cure of chronic disease, those with evidence for the prevention of chronic disease, and those with evidence for the management of chronic disease. The impact on patient outcomes and hospitalization rates of new health technologies in chronic disease management is often overlooked. This analysis demonstrates that health technologies can reduce the burden of illness; improve patient outcomes; reduce resource utilization intensity; be cost-effective; and be a viable contributing factor to chronic disease management in the community. People with chronic diseases rely on the health care system to help manage their illness. Hospital use can be costly, so community-based alternatives are often preferred. Research published in the Ontario Health Technology Assessment Series between 2006 and 2011 was reviewed to identify health technologies that have been effective or cost-effective in helping to manage chronic disease in the community. All technologies identified led to better patient outcomes and less use of health services. Most were also cost-effective. Two technologies that can cure chronic disease and 1 that can prevent chronic disease were found. Eight technologies that can help manage chronic disease were also found. Health technologies should be considered an important part of chronic disease management in the community.
Health Technologies for the Improvement of Chronic Disease Management
Nikitovic, M; Brener, S
2013-01-01
Background As part of ongoing efforts to improve the Ontario health care system, a mega-analysis examining the optimization of chronic disease management in the community was conducted by Evidence Development and Standards, Health Quality Ontario (previously known as the Medical Advisory Secretariat [MAS]). Objective The purpose of this report was to identify health technologies previously evaluated by MAS that may be leveraged in efforts to optimize chronic disease management in the community. Data Sources The Ontario Health Technology Assessment Series and field evaluations conducted by MAS and its partners between January 1, 2006, and December 31, 2011. Review Methods Technologies related to at least 1 of 7 disease areas of interest (type 2 diabetes, coronary artery disease, atrial fibrillation, chronic obstructive pulmonary disease, congestive heart failure, stroke, and chronic wounds) or that may greatly impact health services utilization were reviewed. Only technologies with a moderate to high quality of evidence and associated with a clinically or statistically significant improvement in disease management were included. Technologies related to other topics in the mega-analysis on chronic disease management were excluded. Evidence-based analyses were reviewed, and outcomes of interest were extracted. Outcomes of interest included hospital utilization, mortality, health-related quality of life, disease-specific measures, and economic analysis measures. Results Eleven analyses were included and summarized. Technologies fell into 3 categories: those with evidence for the cure of chronic disease, those with evidence for the prevention of chronic disease, and those with evidence for the management of chronic disease. Conclusions The impact on patient outcomes and hospitalization rates of new health technologies in chronic disease management is often overlooked. This analysis demonstrates that health technologies can reduce the burden of illness; improve patient outcomes; reduce resource utilization intensity; be cost-effective; and be a viable contributing factor to chronic disease management in the community. Plain Language Summary People with chronic diseases rely on the health care system to help manage their illness. Hospital use can be costly, so community-based alternatives are often preferred. Research published in the Ontario Health Technology Assessment Series between 2006 and 2011 was reviewed to identify health technologies that have been effective or cost-effective in helping to manage chronic disease in the community. All technologies identified led to better patient outcomes and less use of health services. Most were also cost-effective. Two technologies that can cure chronic disease and 1 that can prevent chronic disease were found. Eight technologies that can help manage chronic disease were also found. Health technologies should be considered an important part of chronic disease management in the community. PMID:24228075
The DS1 Mission and the Validation of the SCARLET Advanced Array
NASA Technical Reports Server (NTRS)
Stella, Paul M.; Nieraeth, Donald G.; Murphy, David M.; Eskenazi, Michael I.
2000-01-01
On October 24, 1998, the first of the NASA New Millenium Spacecraft, DS1, was successfully launched into Space. The objectives for this spacecraft are to test advanced technologies that can reduce the cost or risk of future missions. One of these technologies is the SCARLET concentrating solar array. Although part of the advanced technology validation study, the array is also the spacecraft's power source. Funded by BMDO, the SCARLET concentrator solar array is the first application of a refractive lens concentrator designed for space applications. As part of the DS1 validation process, the amount of diagnostics data that will be acquired is more extensive than would be the norm for a more conventional solar array. These data include temperature measurements at numerous locations on the 2-wing, 4-panel per wing, solar array. For each panel, one 5-cell module in one of the circuit strings is wired so that a complete I-V curve can be obtained. This data is used to verify sun pointing accuracy and array output performance. In addition, the spacecraft power load can be varied in a number of discrete steps from a small fraction of the array total power capability, up to maximum power. For each of the power loads, array operating voltage can be measured along with the current output from each wing. Preliminary in-space measurements suggest SCARLET performance is within one (1) percent of predictions made from ground data. This paper will briefly discuss the SCARLET configuration and critical features. Emphasis will be given to the results of the in-space validation, including array performance as a function of changing solar distance and array performance compared to pre-launch predictions.
Development of a technology for fabricating low-cost parallel optical interconnects
NASA Astrophysics Data System (ADS)
Van Steenberge, Geert; Hendrickx, Nina; Geerinck, Peter; Bosman, Erwin; Van Put, Steven; Van Daele, Peter
2006-04-01
We present a fabrication technology for integrating polymer waveguides and 45° micromirror couplers into standard electrical printed circuit boards (PCBs). The most critical point that is being addressed is the low-cost manufacturing and the compatibility with current PCB production. The latter refers to the processes as well as material compatibility. In the fist part the waveguide fabrication technology is discussed, both photo lithography and laser ablation are proposed. It is shown that a frequency tripled Nd-YAG laser (355 nm) offers a lot of potential for defining single mode interconnections. Emphasis is on multimode waveguides, defined by KrF excimer laser (248 nm) ablation using acrylate polymers. The first conclusion out of loss spectrum measurements is a 'yellowing effect' of laser ablated waveguides, leading to an increased loss at shorter wavelengths. The second important conclusion is a potential low loss at a wavelength of 850 nm, 980 nm and 1310 nm. This is verified at 850 nm by cut-back measurements on 10-cm-long waveguides showing an average propagation loss of 0.13 dB/cm. Photo lithographically defined waveguides using inorganic-organic hybrid polymers show an attenuation loss of 0.15 dB/cm at 850 nm. The generation of debris and the presence of microstructures are two main concerns for KrF excimer laser ablation of hybrid polymers. In the second part a process for embedding metal coated 45° micromirrors in optical waveguiding layers is described. Mirrors are selectively metallized using a lift-off process. Filling up the angled via without the presence of air bubbles and providing a flat surface above the mirror is only possible by enhancing the cladding deposition process with ultrasound agitation. Initial loss measurements indicate an excess mirror loss of 1.5 dB.
ARPA-E: Accelerating U.S. Energy Innovation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manser, Joseph S.; Rollin, Joseph A.; Brown, Kristen E.
With aggressive commitments to mitigate the impacts of climate change and emphasis on maintaining an advantage in technological development in an increasingly globalized marketplace, the U.S. government is actively taking measures to ensure the nation’s environmental and economic health and sustainability. As part of its broader strategy, with motivation from the National Academies,(1) the United States established the Advanced Research Project Agency-Energy (ARPA-E) within the Department of Energy (DOE) through the America Competes Act in 2007.(2) The agency was allotted an initial appropriation of $400 million in 2009 as part of the American Recovery and Reinvestment Act.
Technology in Language Use, Language Teaching, and Language Learning
ERIC Educational Resources Information Center
Chun, Dorothy; Smith, Bryan; Kern, Richard
2016-01-01
This article offers a capacious view of technology to suggest broad principles relating technology and language use, language teaching, and language learning. The first part of the article considers some of the ways that technological media influence contexts and forms of expression and communication. In the second part, a set of heuristic…
New Technologies and Training in Metalworking.
ERIC Educational Resources Information Center
Belitsky, A. Harvey
This report reviews the role of technological factors in metalworking and the training required to adapt to new metalworking technologies. Focus is on whether firms that have adopted the new technologies have encountered obstacles in training and developing the skills of their work forces. The report is organized in three parts. Parts I and II…
NASA Astrophysics Data System (ADS)
Xu, H.; Xu, C.; Luo, S.; Chen, H.; Qin, R.
2012-12-01
The science of Geophysics applies the principles of physics to study of the earth. Geophysical exploration technologies include the earthquake seismology, the seismic reflection and refraction methods, the gravity method, the magnetic method and the magnetotelluric method, which are used to measure the interior material distribution, their structure and the tectonics in the lithosphere of the earth. Part of the research project in SinoProbe-02-06 is to develop suitable education materials for carton movies targeting the high school students and public. The carton movies include five parts. The first part includes the structures of the earth's interior and variation in their physical properties that include density, p-wave, s-wave and so on, which are the fundamentals of the geophysical exploration technologies. The second part includes the seismology that uses the propagation of elastic waves through the earth to study the structure and the material distribution of the earth interior. It can be divided into earthquake seismology and artifice seismics commonly using reflection and refraction. The third part includes the magnetic method. Earth's magnetic field (also known as the geomagnetic field)extends from the Earth's inner core to where it meets the solar wind, a stream of energetic particles emanating from the Sun. The aim of magnetic survey is to investigate subsurface geology on the basis of anomalies in the Earth's magnetic field resulting from the magnetic properties of the underlying rocks. The magnetic method in the lithosphere attempts to use magnetic disturbance to analyse the regional geological structure and the magnetic boundaries of the crust. The fourth part includes the gravity method. A gravity anomaly results from the inhomogeneous distribution of density of the Earth. Usually gravity anomalies contain superposed anomalies from several sources. The long wave length anomalies due to deep density contrasts are called regional anomalies. They are important for understanding the large-scale structure of the earth's crust under major geographic features, such as mountain ranges, oceanic ridges and subduction zones. Short wave length residual anomalies are due to shallow anomalous masses that may be of interest for commercial exploitation. The last part is the magnetotellurics (MT), which is an electromagnetic geophysical method of imaging the earth's subsurface by measuring natural variations of electrical and magnetic fields at the Earth's surface. The long-period MT technique is used to exploration deep crustal. MT has been used to investigate the distribution of silicate melts in the Earth's mantle and crust and to better understand the plate-tectonic processes.
Educational ultrasound nondestructive testing laboratory.
Genis, Vladimir; Zagorski, Michael
2008-09-01
The ultrasound nondestructive evaluation (NDE) of materials course was developed for applied engineering technology students at Drexel University's Goodwin College of Professional Studies. This three-credit, hands-on laboratory course consists of two parts: the first part with an emphasis on the foundations of NDE, and the second part during which ultrasound NDE techniques are utilized in the evaluation of parts and materials. NDE applications are presented and applied through real-life problems, including calibration and use of the latest ultrasonic testing instrumentation. The students learn engineering and physical principles of measurements of sound velocity in different materials, attenuation coefficients, material thickness, and location and dimensions of discontinuities in various materials, such as holes, cracks, and flaws. The work in the laboratory enhances the fundamentals taught during classroom sessions. This course will ultimately result in improvements in the educational process ["The greater expectations," national panel report, http://www.greaterexpectations.org (last viewed February, 2008); R. M. Felder and R. Brent "The intellectual development of Science and Engineering Students. Part 2: Teaching to promote growth," J. Eng. Educ. 93, 279-291 (2004)] since industry is becoming increasingly reliant on the effective application of NDE technology and the demand on NDE specialists is increasing. NDE curriculum was designed to fulfill levels I and II NDE in theory and training requirements, according to American Society for Nondestructive Testing, OH, Recommended Practice No. SNT-TC-1A (2006).
Technology part 1: the Internet--opportunities & threats.
Reeder, L
1999-10-01
This is the first article in a three-part series about technology and its impact on healthcare systems and the business of health care. This article explores the use and implications of Internet and Web-based technologies for physicians, managed care organizations healthcare providers. The second article will present clinical and pharmaceutical technologies. The third article will profile systems that are successfully exploiting all of these technologies.
Development of Clinically Relevant Implantable Pressure Sensors: Perspectives and Challenges
Clausen, Ingelin; Glott, Thomas
2014-01-01
This review describes different aspects to consider when developing implantable pressure sensor systems. Measurement of pressure is in general highly important in clinical practice and medical research. Due to the small size, light weight and low energy consumption Micro Electro Mechanical Systems (MEMS) technology represents new possibilities for monitoring of physiological parameters inside the human body. Development of clinical relevant sensors requires close collaboration between technological experts and medical clinicians. Site of operation, size restrictions, patient safety, and required measurement range and resolution, are only some conditions that must be taken into account. An implantable device has to operate under very hostile conditions. Long-term in vivo pressure measurements are particularly demanding because the pressure sensitive part of the sensor must be in direct or indirect physical contact with the medium for which we want to detect the pressure. New sensor packaging concepts are demanded and must be developed through combined effort between scientists in MEMS technology, material science, and biology. Before launching a new medical device on the market, clinical studies must be performed. Regulatory documents and international standards set the premises for how such studies shall be conducted and reported. PMID:25248071
Development of clinically relevant implantable pressure sensors: perspectives and challenges.
Clausen, Ingelin; Glott, Thomas
2014-09-22
This review describes different aspects to consider when developing implantable pressure sensor systems. Measurement of pressure is in general highly important in clinical practice and medical research. Due to the small size, light weight and low energy consumption Micro Electro Mechanical Systems (MEMS) technology represents new possibilities for monitoring of physiological parameters inside the human body. Development of clinical relevant sensors requires close collaboration between technological experts and medical clinicians. Site of operation, size restrictions, patient safety, and required measurement range and resolution, are only some conditions that must be taken into account. An implantable device has to operate under very hostile conditions. Long-term in vivo pressure measurements are particularly demanding because the pressure sensitive part of the sensor must be in direct or indirect physical contact with the medium for which we want to detect the pressure. New sensor packaging concepts are demanded and must be developed through combined effort between scientists in MEMS technology, material science, and biology. Before launching a new medical device on the market, clinical studies must be performed. Regulatory documents and international standards set the premises for how such studies shall be conducted and reported.
General Aviation Interior Noise. Part 1; Source/Path Identification
NASA Technical Reports Server (NTRS)
Unruh, James F.; Till, Paul D.; Palumbo, Daniel L. (Technical Monitor)
2002-01-01
There were two primary objectives of the research effort reported herein. The first objective was to identify and evaluate noise source/path identification technology applicable to single engine propeller driven aircraft that can be used to identify interior noise sources originating from structure-borne engine/propeller vibration, airborne propeller transmission, airborne engine exhaust noise, and engine case radiation. The approach taken to identify the contributions of each of these possible sources was first to conduct a Principal Component Analysis (PCA) of an in-flight noise and vibration database acquired on a Cessna Model 182E aircraft. The second objective was to develop and evaluate advanced technology for noise source ranking of interior panel groups such as the aircraft windshield, instrument panel, firewall, and door/window panels within the cabin of a single engine propeller driven aircraft. The technology employed was that of Acoustic Holography (AH). AH was applied to the test aircraft by acquiring a series of in-flight microphone array measurements within the aircraft cabin and correlating the measurements via PCA. The source contributions of the various panel groups leading to the array measurements were then synthesized by solving the inverse problem using the boundary element model.
NASA Astrophysics Data System (ADS)
Tosi, Daniele; Schena, Emiliano; Molardi, Carlo; Korganbayev, Sanzhar
2018-07-01
One of the current frontier of optical fiber sensors, and a unique asset of this sensing technology is the possibility to use a whole optical fiber, or optical fiber device, as a sensor. This solution allows shifting the whole sensing paradigm, from the measurement of a single physical parameter (such as temperature, strain, vibrations, pressure) to the measurement of a spatial distribution, or profiling, of a physical parameter along the fiber length. In the recent years, several technologies are achieving this task with unprecedentedly narrow spatial resolution, ranging from the sub-millimeter to the centimeter-level. In this work, we review the main fiber optic sensing technologies that achieve a narrow spatial resolution: Fiber Bragg Grating (FBG) dense arrays, chirped FBG (CFBG) sensors, optical frequency domain reflectometry (OFDR) based on either Rayleigh scattering or reflective elements, and microwave photonics (MWP). In the second part of the work, we present the impact of spatially dense fiber optic sensors in biomedical applications, where they find the main impact, presenting the key results obtained in thermo-therapies monitoring, high-resolution diagnostic, catheters monitoring, smart textiles, and other emerging applicative fields.
Precision forging technology for aluminum alloy
NASA Astrophysics Data System (ADS)
Deng, Lei; Wang, Xinyun; Jin, Junsong; Xia, Juchen
2018-03-01
Aluminum alloy is a preferred metal material for lightweight part manufacturing in aerospace, automobile, and weapon industries due to its good physical properties, such as low density, high specific strength, and good corrosion resistance. However, during forging processes, underfilling, folding, broken streamline, crack, coarse grain, and other macro- or microdefects are easily generated because of the deformation characteristics of aluminum alloys, including narrow forgeable temperature region, fast heat dissipation to dies, strong adhesion, high strain rate sensitivity, and large flow resistance. Thus, it is seriously restricted for the forged part to obtain precision shape and enhanced property. In this paper, progresses in precision forging technologies of aluminum alloy parts were reviewed. Several advanced precision forging technologies have been developed, including closed die forging, isothermal die forging, local loading forging, metal flow forging with relief cavity, auxiliary force or vibration loading, casting-forging hybrid forming, and stamping-forging hybrid forming. High-precision aluminum alloy parts can be realized by controlling the forging processes and parameters or combining precision forging technologies with other forming technologies. The development of these technologies is beneficial to promote the application of aluminum alloys in manufacturing of lightweight parts.
Metrology of Large Parts. Chapter 5
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2012-01-01
As discussed in the first chapter of this book, there are many different methods to measure a part using optical technology. Chapter 2 discussed the use of machine vision to measure macroscopic features such as length and position, which was extended to the use of interferometry as a linear measurement tool in chapter 3, and laser or other trackers to find the relation of key points on large parts in chapter 4. This chapter looks at measuring large parts to optical tolerances in the sub-micron range using interferometry, ranging, and optical tools discussed in the previous chapters. The purpose of this chapter is not to discuss specific metrology tools (such as interferometers or gauges), but to describe a systems engineering approach to testing large parts. Issues such as material warpage and temperature drifts that may be insignificant when measuring a part to micron levels under a microscope, as will be discussed in later chapters, can prove to be very important when making the same measurement over a larger part. In this chapter, we will define a set of guiding principles for successfully overcoming these challenges and illustrate the application of these principles with real world examples. While these examples are drawn from specific large optical testing applications, they inform the problems associated with testing any large part to optical tolerances. Manufacturing today relies on micrometer level part performance. Fields such as energy and transportation are demanding higher tolerances to provide increased efficiencies and fuel savings. By looking at how the optics industry approaches sub-micrometer metrology, one can gain a better understanding of the metrology challenges for any larger part specified to micrometer tolerances. Testing large parts, whether optical components or precision structures, to optical tolerances is just like testing small parts, only harder. Identical with what one does for small parts, a metrologist tests large parts and optics in particular to quantify their mechanical properties (such as dimensions, mass, etc); their optical prescription or design (i.e. radius of curvature, conic constant, vertex location, size); and their full part shape. And, just as with small parts, a metrologist accomplishes these tests using distance measuring instruments such as tape measures, inside micrometers, coordinate measuring machines, distance measuring interferometers; angle measuring instruments such as theodolites, autocollimators; and surface measuring instruments including interferometers, stylus profilers, interference microscopes, photogrammetric cameras, or other tools. However, while the methodology may be similar, it is more difficult to test a large object for the simple reason that most metrologists do not have the necessary intuition. The skills used to test small parts or optics in a laboratory do not extrapolate to testing large parts in an industrial setting any more than a backyard gardener might successfully operate a farm. But first, what is a large part? A simple definition might be the part's size or diameter. For optics and diffuse surface parts alike, the driving constraint is ability to illuminate the part's surface. For reflective convex mirrors, large is typically anything greater than 1 meter. But, for refractive optics, flats or convex mirrors, large is typically greater than 0.5 meter. While a size definition is simple, it may be less than universal. A more nuanced definition might be that a large part is any component which cannot be easily tested in a standard laboratory environment, on a standard vibration isolated table using standard laboratory infrastructure. A micro-switch or a precision lens might be easily measured to nanometer levels under a microscope in a lab, but a power turbine spline or a larger telescope mirror will not fit under that microscope and may not even fit on the table.
Microgravity Combustion Diagnostics Workshop
NASA Technical Reports Server (NTRS)
Santoro, Gilbert J. (Editor); Greenberg, Paul S. (Editor); Piltch, Nancy D. (Editor)
1988-01-01
Through the Microgravity Science and Applications Division (MSAD) of the Office of Space Science and Applications (OSSA) at NASA Headquarters, a program entitled, Advanced Technology Development (ATD) was promulgated with the objective of providing advanced technologies that will enable the development of future microgravity science and applications experimental flight hardware. Among the ATD projects one, Microgravity Combustion Diagnostics (MCD), has the objective of developing advanced diagnostic techniques and technologies to provide nonperturbing measurements of combustion characteristics and parameters that will enhance the scientific integrity and quality of microgravity combustion experiments. As part of the approach to this project, a workshop was held on July 28 and 29, 1987, at the NASA Lewis Research Center. A small group of laser combustion diagnosticians met with a group of microgravity combustion experimenters to discuss the science requirements, the state-of-the-art of laser diagnostic technology, and plan the direction for near-, intermediate-, and long-term programs. This publication describes the proceedings of that workshop.
Study of alternative probe technologies
NASA Technical Reports Server (NTRS)
1977-01-01
A number of implied technologies for a deep probe mission was examined; i.e., one that would provide the capability to scientifically examine planetary atmospheres at the 1000 bar level. Conditions imposed by current Jupiter, Saturn, and Uranus atmospheric models were considered. The major thrust of the measurements was to determine lower atmosphere composition, even to trace constituents of one part per billion. Two types of instruments having the necessary accuracy to meet the science objectives were considered and integrated into a deep probe configuration. One deep probe option that resulted was identified as a Minimum Technology Development approach. The significant feature of this option is that only three technology developments are required to enable the mission, i.e., (1) science instrument development, (2) advanced data processing, and (3) external high pressure/thermal insulation. It is concluded that a probe designed for a Jupiter mission could, with minor changes, be used for a Saturn or Uranus mission.
Results in standardization of FOS to support the use of SHM systems
NASA Astrophysics Data System (ADS)
Habel, Wolfgang R.; Krebber, Katerina; Daum, Werner
2016-05-01
Measurement and data recording systems are important parts of a holistic Structural Health Monitoring (SHM) system. New sensor technologies such as fiber-optic sensors are often used; however, standards (or at least guidelines) are not yet available or internationally approved. This lack in standardization makes the acceptance of FOS technologies in complex SHM systems substantially difficult. A standard family for different FOS technologies is therefore being developed that should help to design SHM systems in an optimal way. International standardization activities take place in several standardization bodies such as IEC and ASTM, and within SHM societies such as ISHMII. The paper reports on activities in standardization of fiber-optic sensors, on results already achieved, and on newly started projects. Combined activities of fiber sensor experts and SHM experts from Civil Engineering are presented. These contributions should help owners of structures as well as developers of sensors and monitoring systems to select effective and validated sensing technologies. Using these standards, both parties find recommendations how to proceed in development of SHM systems to evaluate the structural behavior based on e.g. standardized fiber optic sensors, and to derive necessary measures, e.g. the optimal maintenance strategy.
NASA Astrophysics Data System (ADS)
Skliarov, Volodymyr
2018-03-01
Many additive manufacturing (AM) systems are based on laser technology. The advantage of laser technology is that it provides a high-intensity and high-collimation energy beam that can be controlled. Since AM requires that the material on each layer has to be solid or connected to the previous one, the energy of laser radiation is exactly the needed technical tool for the processing of the material. AM uses two types of laser processing: cutting and heating. One of the most popular (common) types of measurements in the field of laser metrology is the control of the energy parameters of the sources of laser radiation. At present, calorimeters provide the highest accuracy of absolute measurements of laser radiation in the power range from several watts to tens of kilowatts. The main elements that determine the accuracy of reproduction, maintenance and transfer of the unit of laser power are the primary measuring converters (PMCs), which are the part of the equipment of the national primary measurement standards of Ukraine. A significant contribution to the uncertainty budget of the primary measuring calorimetric converter is the unbalanced replacement of laser radiation by the heat flux that calibrates this converter. The heterogeneous internal structure of the calorimetric primary converter, the nonlinearity of processes occurring in it, and the multifactorial process of its calibration substantially complicate the development of primary measuring converters. The purpose of this paper is to simulate the thermal field of the primary converter for maximum reduction of the uncertainty of calibration. The presented research is a part of the scientific work that NSC "Institute of Metrology" carries out under COOMET and EMPIRE projects. The modeling was performed in the academic version of ANSYS.
Monte Carlo simulation of non-invasive glucose measurement based on FMCW LIDAR
NASA Astrophysics Data System (ADS)
Xiong, Bing; Wei, Wenxiong; Liu, Nan; He, Jian-Jun
2010-11-01
Continuous non-invasive glucose monitoring is a powerful tool for the treatment and management of diabetes. A glucose measurement method, with the potential advantage of miniaturizability with no moving parts, based on the frequency modulated continuous wave (FMCW) LIDAR technology is proposed and investigated. The system mainly consists of an integrated near-infrared tunable semiconductor laser and a detector, using heterodyne technology to convert the signal from time-domain to frequency-domain. To investigate the feasibility of the method, Monte Carlo simulations have been performed on tissue phantoms with optical parameters similar to those of human interstitial fluid. The simulation showed that the sensitivity of the FMCW LIDAR system to glucose concentration can reach 0.2mM. Our analysis suggests that the FMCW LIDAR technique has good potential for noninvasive blood glucose monitoring.
Some infra-red applications in combustion technology. Interim report 1 March-31 August 78
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swithenbank, J.; Turan, A.; Taylor, D.S.
1978-01-01
Infrared technology finds many applications in the field of combustion ranging from pollution monitoring, through military systems, to the control of industrial furnaces and boilers. This review of some selected concepts highlights the interaction between the diagnostic role of infrared measurements and the current status of mathematical modelling of combustion systems. The link between measurement and and computing has also evolved to the point where a digital processor is becoming an inherent part of many new instruments. This point is illustrated by reference to the diffraction particle size meter, fire detection and alarm systems, and furnace control. In the future,more » as fuels become scarce and expensive, and micro-electronics become more available and inexpensive, it is certain that infrared devices will find increasing application in smaller industries and the home. (Author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hsin; Porter, Wallace D; Bottner, Harold
2013-01-01
For bulk thermoelectrics, figure-of-merit, ZT, still needs to improve from the current value of 1.0 - 1.5 to above 2 to be competitive to other alternative technologies. In recent years, the most significant improvements in ZT were mainly due to successful reduction of thermal conductivity. However, thermal conductivity cannot be measured directly at high temperatures. The combined measurements of thermal diffusivity and specific heat and density are required. It has been shown that thermal conductivity is the property with the greatest uncertainty and has a direct influence on the accuracy of the figure of merit. The International Energy Agency (IEA)more » group under the implementing agreement for Advanced Materials for Transportation (AMT) has conducted two international round-robins since 2009. This paper is Part II of the international round-robin testing of transport properties of bulk bismuth telluride. The main focuses in Part II are on thermal diffusivity, specific heat and thermal conductivity.« less
The NASA Electronic Parts and Packaging (NEPP) Program: Insertion of New Electronics Technologies
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.; Sampson, Michael J.
2007-01-01
This viewgraph presentation gives an overview of NASA Electronic Parts and Packaging (NEPP) Program's new electronics technology trends. The topics include: 1) The Changing World of Radiation Testing of Memories; 2) Even Application-Specific Tests are Costly!; 3) Hypothetical New Technology Part Qualification Cost; 4) Where we are; 5) Approaching FPGAs as a More Than a "Part" for Reliability; 6) FPGAs Beget Novel Radiation Test Setups; 7) Understanding the Complex Radiation Data; 8) Tracking Packaging Complexity and Reliability for FPGAs; 9) Devices Supporting the FPGA Need to be Considered; 10) Summary of the New Electronic Technologies and Insertion into Flight Programs Workshop; and 11) Highlights of Panel Notes and Comments
LIDAR TS for ITER core plasma. Part I: layout & hardware
NASA Astrophysics Data System (ADS)
Salzmann, H.; Gowers, C.; Nielsen, P.
2017-12-01
The original time-of-flight design of the Thomson scattering diagnostic for the ITER core plasma has been shown up by ITER. This decision was justified by insufficiencies of some of the components. In this paper we show that with available, present day technology a LIDAR TS system is feasible which meets all the ITER specifications. As opposed to the conventional TS system the LIDAR TS also measures the high field side of the plasma. The optical layout of the front end has been changed only little in comparison with the latest one considered by ITER. The main change is that it offers an optical collection without any vignetting over the low field side. The throughput of the system is defined only by the size and the angle of acceptance of the detectors. This, in combination with the fact that the LIDAR system uses only one set of spectral channels for the whole line of sight, means that no absolute calibration using Raman or Rayleigh scattering from a non-hydrogen isotope gas fill of the vessel is needed. Alignment of the system is easy since the collection optics view the footprint of the laser on the inner wall. In the described design we use, simultaneously, two different wavelength pulses from a Nd:YAG laser system. Its fundamental wavelength ensures measurements of 2 keV up to more than 40 keV, whereas the injection of the second harmonic enables measurements of low temperatures. As it is the purpose of this paper to show the technological feasibility of the LIDAR system, the hardware is considered in Part I of the paper. In Part II we demonstrate by numerical simulations that the accuracy of the measurements as required by ITER is maintained throughout the given plasma parameter range. The effect of enhanced background radiation in the wavelength range 400 nm-500 nm is considered. In Part III the recovery of calibration in case of changing spectral transmission of the front end is treated. We also investigate how to improve the spatial resolution at the plasma edge.
15 CFR 740.15 - Aircraft and vessels (AVS).
Code of Federal Regulations, 2011 CFR
2011-01-01
... transfer of technology. No technology is transferred to a national of a destination in Country Group E:1... destination in Country Group E:1 (see supplement No. 1 to this part); (vi) Technology is not transferred to a... destination in Country Group E:1 (see supplement No. 1 to this part); (vi) Technology is not transferred to a...
15 CFR Supplement No. 2 to Part 774 - General Technology and Software Notes
Code of Federal Regulations, 2010 CFR
2010-01-01
... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false General Technology and Software Notes... REGULATIONS THE COMMERCE CONTROL LIST Pt. 774, Supp. 2 Supplement No. 2 to Part 774—General Technology and Software Notes 1. General Technology Note. The export of “technology” that is “required” for the...
System approach to modeling of industrial technologies
NASA Astrophysics Data System (ADS)
Toropov, V. S.; Toropov, E. S.
2018-03-01
The authors presented a system of methods for modeling and improving industrial technologies. The system consists of information and software. The information part is structured information about industrial technologies. The structure has its template. The template has several essential categories used to improve the technological process and eliminate weaknesses in the process chain. The base category is the physical effect that takes place when the technical process proceeds. The programming part of the system can apply various methods of creative search to the content stored in the information part of the system. These methods pay particular attention to energy transformations in the technological process. The system application will allow us to systematize the approach to improving technologies and obtaining new technical solutions.
NASA Technical Reports Server (NTRS)
Madigan, J. A.; Earhart, R. W.
1978-01-01
NASA's Office of Space and Terrestrial Applications (OSTA) is currently assessing approaches to transferring NASA technology to both the public and private sectors. As part of this assessment, NASA is evaluating the effectiveness of an ongoing program in remote sensing technology transfer conducted by 20 university contractors/grantees, each supported totally or partially by NASA funds. The University-Space Applications program has as its objective the demonstration of practical benefits from the use of remote sensing technology to a broad spectrum of new users, principally in state and local governments. To evaluate the University-Space Applications program, NASA has a near-term requirement for data on each university effort including total funding, funding sources, length of program, program description, and effectiveness measures.
Mate and Dart: An Instrument Package for Characterizing Solar Energy and Atmospheric Dust on Mars
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Jenkins, Phillip; Scheiman, David; Baraona, Cosmo
2000-01-01
The MATE (Mars Array Technology Experiment) and DART (Dust Accumulation and Removal Test) instruments were developed to fly as part of the Mars ISPP Precursor (MIP) experiment on the (now postponed) Mars-2001 Surveyor Lander. MATE characterizes the solar energy reaching the surface of Mars, and measures the performance and degradation of solar cells under Martian conditions. DART characterizes the dust environment of Mars, measures the effect of settled dust on solar arrays, and investigates methods to mitigate power loss due to dust accumulation.
Optical-Fiber Power Meter Comparison between NIST and KRISS.
Vayshenker, I; Kim, S K; Hong, K; Lee, D-H; Livigni, D J; Li, X; Lehman, J H
2012-01-01
We describe the results of a comparison of reference standards between the National Institute of Standards and Technology (NIST-USA) and Korea Research Institute of Standards and Science (KRISS-R.O. Korea) for optical fiber-based power measurements at wavelengths of 1302 nm and 1546 nm. We compare the laboratories' reference standards by means of a temperature-controlled optical trap detector. Measurement results showed the largest difference of less than 2.5 parts in 10(3), which is within the combined standard (k=1) uncertainty for the two laboratories' reference standards.
DOT National Transportation Integrated Search
2000-08-01
This guidebook is divided into four parts: Part 1. Planning and Managing a Communications Project: Discusses the overall scope of a project, including planning, funding, procurement, and management. Part 2. Wireless Communications Technology: Discuss...
NASA Astrophysics Data System (ADS)
Lima de Azevedo, Ines Margarida
Energy efficiency and conservation is a very promising part of a portfolio of the needed strategies to mitigate climate change. Several technologies and energy efficiency measures in the residential sector offer potential for large energy savings. However, while energy efficiency options are currently considered as a means of reducing carbon emissions, there is still large uncertainty about the effect of such measures on overall carbon savings. The first part of this thesis provides a national assessment of the energy efficiency potential in the residential sector under several different scenarios, which include the perspectives of different economic agents (consumers, utilities, ESCOs, and a society). The scenarios also include maximizing energy, electricity or carbon dioxide savings. The second part of this thesis deals with a detailed assessment of the potential for white-light LEDs for energy and carbon dioxide savings in the U.S. commercial and residential sectors. Solid-state lighting shows great promise as a source of efficient, affordable, color-balanced white light. Indeed, assuming market discount rates, the present work demonstrates that white solid-state lighting already has a lower levelized annual cost (LAC) than incandescent bulbs and that it will be lower than that of the most efficient fluorescent bulbs by the end of this decade. However, a large literature indicates that households do not make their decisions in terms of simple expected economic value. The present analysis shows that incorporating the findings from literature on high implicit discount rates from households when performing decisions towards efficient technologies delays the adoption of white LEDs by a couple of years. After a review of the technology, the present work compares the electricity consumption, carbon emissions and cost-effectiveness of current lighting technologies, when accounting for expected performance evolution through 2015. Simulations of lighting electricity consumption and implicit greenhouse gases emissions for the U.S. residential and commercial sectors through 2015 under different policy scenarios (voluntary solid-state lighting adoption, implementation of lighting standards in new construction and rebate programs or equivalent subsidies) are also included.
Reliability and quality EEE parts issues
NASA Technical Reports Server (NTRS)
Barney, Dan; Feigenbaum, Irwin
1990-01-01
NASA policy and procedures are established which govern the selection, testing, and application of electrical, electronic, and electromechanical (EEE) parts. Recent advances in the state-of-the-art of electronic parts and associated technologies can significantly impact the electronic designs and reliability of NASA space transportation avionics. Significant issues that result from these advances are examined, including: recent advances in microelectronics technology (as applied to or considered for use in NASA projects); electron packaging technology advances (concurrent with, and as a result of, the development of the advanced microelectronic devices); availability of parts used in space avionics; and standardization and integration of parts activities between projects, centers, and contractors.
Technology in Parkinson disease: Challenges and Opportunities
Espay, Alberto J.; Bonato, Paolo; Nahab, Fatta; Maetzler, Walter; Dean, John M.; Klucken, Jochen; Eskofier, Bjoern M.; Merola, Aristide; Horak, Fay; Lang, Anthony E.; Reilmann, Ralf; Giuffrida, Joe; Nieuwboer, Alice; Horne, Malcolm; Little, Max A.; Litvan, Irene; Simuni, Tanya; Dorsey, E. Ray; Burack, Michelle A.; Kubota, Ken; Kamondi, Anita; Godinho, Catarina; Daneault, Jean-Francois; Mitsi, Georgia; Krinke, Lothar; Hausdorff, Jeffery M.; Bloem, Bastiaan R.; Papapetropoulos, Spyros
2016-01-01
The miniaturization, sophistication, proliferation, and accessibility of technologies are enabling the capturing of more and previously inaccessible phenomena in Parkinson disease (PD). However, more information has not translated into greater understanding of disease complexity to satisfy diagnostic and therapeutic needs. Challenges include non-compatible technology platforms, the need for wide-scale and long-term deployment of sensor technology (in particular among vulnerable elderly patients), and the gap between the “big data” acquired with sensitive measurement technologies and their limited clinical application. Major opportunities could be realized if new technologies are developed as part of open-source and/or open-hardware platforms enabling multi-channel data capture, sensitive to the broad range of motor and non-motor problems that characterize PD, and adaptable into self-adjusting, individualized treatment delivery systems. The International Parkinson and Movement Disorders Society Task Force on Technology is entrusted to convene engineers, clinicians, researchers, and patients to promote the development of integrated measurement and closed-loop therapeutic systems with high patient adherence that also serve to: 1) encourage the adoption of clinico-pathophysiologic phenotyping and early detection of critical disease milestones; 2) enhance tailoring of symptomatic therapy; 3) improve subgroup targeting of patients for future testing of disease modifying treatments; and 4) identify objective biomarkers to improve longitudinal tracking of impairments in clinical care and research. This article summarizes the work carried out by the Task Force toward identifying challenges and opportunities in the development of technologies with potential for improving the clinical management and quality of life of individuals with PD. PMID:27125836
NASA Astrophysics Data System (ADS)
Kwon, Hyeokjun; Oh, Sechang; Varadan, Vijay K.
2012-04-01
The Electrocardiogram(ECG) signal is one of the bio-signals to check body status. Traditionally, the ECG signal was checked in the hospital. In these days, as the number of people who is interesting with periodic their health check increase, the requirement of self-diagnosis system development is being increased as well. Ubiquitous concept is one of the solutions of the self-diagnosis system. Zigbee wireless sensor network concept is a suitable technology to satisfy the ubiquitous concept. In measuring ECG signal, there are several kinds of methods in attaching electrode on the body called as Lead I, II, III, etc. In addition, several noise components occurred by different measurement situation such as experimenter's respiration, sensor's contact point movement, and the wire movement attached on sensor are included in pure ECG signal. Therefore, this paper is based on the two kinds of development concept. The first is the Zibee wireless communication technology, which can provide convenience and simpleness, and the second is motion artifact remove algorithm, which can detect clear ECG signal from measurement subject. The motion artifact created by measurement subject's movement or even respiration action influences to distort ECG signal, and the frequency distribution of the noises is around from 0.2Hz to even 30Hz. The frequencies are duplicated in actual ECG signal frequency, so it is impossible to remove the artifact without any distortion of ECG signal just by using low-pass filter or high-pass filter. The suggested algorithm in this paper has two kinds of main parts to extract clear ECG signal from measured original signal through an electrode. The first part is to extract motion noise signal from measured signal, and the second part is to extract clear ECG by using extracted motion noise signal and measured original signal. The paper suggests several techniques in order to extract motion noise signal such as predictability estimation theory, low pass filter, a filter including a moving weighted factor, peak to peak detection, and interpolation techniques. In addition, this paper introduces an adaptive filter in order to extract clear ECG signal by using extracted baseline noise signal and measured signal from sensor.
CCD Camera Lens Interface for Real-Time Theodolite Alignment
NASA Technical Reports Server (NTRS)
Wake, Shane; Scott, V. Stanley, III
2012-01-01
Theodolites are a common instrument in the testing, alignment, and building of various systems ranging from a single optical component to an entire instrument. They provide a precise way to measure horizontal and vertical angles. They can be used to align multiple objects in a desired way at specific angles. They can also be used to reference a specific location or orientation of an object that has moved. Some systems may require a small margin of error in position of components. A theodolite can assist with accurately measuring and/or minimizing that error. The technology is an adapter for a CCD camera with lens to attach to a Leica Wild T3000 Theodolite eyepiece that enables viewing on a connected monitor, and thus can be utilized with multiple theodolites simultaneously. This technology removes a substantial part of human error by relying on the CCD camera and monitors. It also allows image recording of the alignment, and therefore provides a quantitative means to measure such error.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Questions and Answers-Technology and... Supplement No. 1 to Part 734—Questions and Answers—Technology and Software Subject to the EAR This Supplement No. 1 contains explanatory questions and answers relating to technology and software that is subject...
Dimensional Metrology of Non-rigid Parts Without Specialized Inspection Fixtures =
NASA Astrophysics Data System (ADS)
Sabri, Vahid
Quality control is an important factor for manufacturing companies looking to prosper in an era of globalization, market pressures and technological advances. Functionality and product quality cannot be guaranteed without this important aspect. Manufactured parts have deviations from their nominal (CAD) shape caused by the manufacturing process. Thus, geometric inspection is a very important element in the quality control of mechanical parts. We will focus here on the geometric inspection of non-rigid (flexible) parts which are widely used in the aeronautic and automotive industries. Non-rigid parts can have different forms in a free-state condition compared with their nominal models due to residual stress and gravity loads. To solve this problem, dedicated inspection fixtures are generally used in industry to compensate for the displacement of such parts for simulating the use state in order to perform geometric inspections. These fixtures and the installation and inspection processes are expensive and time-consuming. Our aim in this thesis is therefore to develop an inspection method which eliminates the need for specialized fixtures. This is done by acquiring a point cloud from the part in a free-state condition using a contactless measuring device such as optical scanning and comparing it with the CAD model for the deviation identification. Using a non-rigid registration method and finite element analysis, we numerically inspect the profile of a non-rigid part. To do so, a simulated displacement is performed using an improved definition of displacement boundary conditions for simulating unfixed parts. In addition, we propose a numerical method for dimensional metrology of non-rigid parts in a free-state condition based on the arc length measurement by calculating the geodesic distance using the Fast Marching Method (FMM). In this thesis, we apply our developed methods on industrial non-rigid parts with free-form surfaces simulated with different types of displacement, defect, and measurement noise in order to evaluate the metrological performance of the developed methods.
Technology for the Future: In-Space Technology Experiments Program, part 1
NASA Technical Reports Server (NTRS)
Breckenridge, Roger A. (Compiler); Clark, Lenwood G. (Compiler); Willshire, Kelli F. (Compiler); Beck, Sherwin M. (Compiler); Collier, Lisa D. (Compiler)
1991-01-01
The purpose of the Office of Aeronautics and Space Technology (OAST) In-Space Technology Experiment Program (In-STEP) 1988 Workshop was to identify and prioritize technologies that are critical for future national space programs and require validation in the space environment, and review current NASA (In-Reach) and industry/university (Out-Reach) experiments. A prioritized list of the critical technology needs was developed for the following eight disciplines: structures; environmental effects; power systems and thermal management; fluid management and propulsion systems; automation and robotics; sensors and information systems; in-space systems; and humans in space. This is part one of two parts and is the executive summary and experiment description. The executive summary portion contains keynote addresses, strategic planning information, and the critical technology needs summaries for each theme. The experiment description portion contains brief overviews of the objectives, technology needs and backgrounds, descriptions, and development schedules for current industry, university, and NASA space flight technology experiments.
NASA Technical Reports Server (NTRS)
Chojnacki, Kent T.; Crane, Deborah J.; Motil, Susan M.; Ginty, Carol A.; Tofil, Todd A.
2014-01-01
As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including the Moon, asteroids, Lagrange points, and Mars and its environs. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages and propellant depots. The TDM CPST will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration that enables long term human space exploration missions beyond low Earth orbit. This paper will present a summary of the cryogenic fluid management technology maturation effort, infusion of those technologies into flight hardware development, and a summary of the CPST preliminary design.
Measurement of material mechanical properties in microforming
NASA Astrophysics Data System (ADS)
Yun, Wang; Xu, Zhenying; Hui, Huang; Zhou, Jianzhong
2006-02-01
As the rapid market need of micro-electro-mechanical systems engineering gives it the wide development and application ranging from mobile phones to medical apparatus, the need of metal micro-parts is increasing gradually. Microforming technology challenges the plastic processing technology. The findings have shown that if the grain size of the specimen remains constant, the flow stress changes with the increasing miniaturization, and also the necking elongation and the uniform elongation etc. It is impossible to get the specimen material properties in conventional tensile test machine, especially in the high precision demand. Therefore, one new measurement method for getting the specimen material-mechanical property with high precision is initiated. With this method, coupled with the high speed of Charge Coupled Device (CCD) camera and high precision of Coordinate Measuring Machine (CMM), the elongation and tensile strain in the gauge length are obtained. The elongation, yield stress and other mechanical properties can be calculated from the relationship between the images and CCD camera movement. This measuring method can be extended into other experiments, such as the alignment of the tool and specimen, micro-drawing process.
Long, Stephen E; Catron, Brittany L; Boggs, Ashley Sp; Tai, Susan Sc; Wise, Stephen A
2016-09-01
The use of urinary iodine as an indicator of iodine status relies in part on the accuracy of the analytical measurement of iodine in urine. Likewise, the use of dietary iodine intake as an indicator of iodine status relies in part on the accuracy of the analytical measurement of iodine in dietary sources, including foods and dietary supplements. Similarly, the use of specific serum biomarkers of thyroid function to screen for both iodine deficiency and iodine excess relies in part on the accuracy of the analytical measurement of those biomarkers. The National Institute of Standards and Technology has been working with the NIH Office of Dietary Supplements for several years to develop higher-order reference measurement procedures and Standard Reference Materials to support the validation of new routine analytical methods for iodine in foods and dietary supplements, for urinary iodine, and for several serum biomarkers of thyroid function including thyroid-stimulating hormone, thyroglobulin, total and free thyroxine, and total and free triiodothyronine. These materials and methods have the potential to improve the assessment of iodine status and thyroid function in observational studies and clinical trials, thereby promoting public health efforts related to iodine nutrition. © 2016 American Society for Nutrition.
Seeking the Tricorder: Report on Workshops on Advanced Technologies for Life Detection
NASA Astrophysics Data System (ADS)
Reiss-Bubenheim, D.; Boston, P. J.; Partridge, H.; Lindensmith, C.; Nadeau, J. L.
2017-12-01
There's great excitement about life prospects on icy fluid-containing moons orbiting our Solar System's gas giant planets, newly discovered planet candidates and continuing long-term interest in possible Mars life. The astrobiology/planetary research communities require advanced technologies to explore and study both Solar System bodies and exoplanets for evidence of life. The Tricorder Workshop, held at Ames Research Center May 19-20, 2017, explored technology topics focused on non-invasive or minimally invasive methods for life detection. The workshop goal was to tease out promising ideas for low TRL concepts for advanced life detection technologies that could be applied to the surface and near-subsurface of Mars and Ocean Worlds (such as Europa and Enceladus) dominated by icy terrain. The workshop technology focus centered on mid-to-far term instrument concepts or other enabling technologies (e.g. robotics, machine learning, etc.) primarily for landed missions, which could detect evidence of extant, extinct and/or "weird" life including the notion of "universal biosignatures". Emphasis was placed on simultaneous and serial sample measurements using a suite of instruments and technological approaches with planetary protection in mind. A follow-on workshop, held July 24 at Caltech, sought to develop a generic flowchart of in situ observations and measurements to provide sufficient information to determine if extant life is present in an environment. The process didn't require participant agreement as to definition of extant life, but instead developed agreement on necessary observations and instruments. The flowchart of measurements was designed to maximize the number of simultaneous observations on a single sample where possible, serializing where necessary, and finally dividing it into parts for the most destructive analyses at the end. Selected concepts from the workshops outlined in this poster provide those technology areas necessary to solicit and develop for future life detection exploration via fly-by missions, orbiters, and landers.
The Study on the Communication Network of Wide Area Measurement System in Electricity Grid
NASA Astrophysics Data System (ADS)
Xiaorong, Cheng; Ying, Wang; Yangdan, Ni
Wide area measurement system(WAMS) is a fundamental part of security defense in Smart Grid, and the communication system of WAMS is an important part of Electric power communication network. For a large regional network is concerned, the real-time data which is transferred in the communication network of WAMS will affect the safe operation of the power grid directly. Therefore, WAMS raised higher requirements for real-time, reliability and security to its communication network. In this paper, the architecture of WASM communication network was studied according to the seven layers model of the open systems interconnection(OSI), and the network architecture was researched from all levels. We explored the media of WAMS communication network, the network communication protocol and network technology. Finally, the delay of the network were analyzed.
40 CFR 455.10 - General definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... pollution control technology means the wastewater treatment technology listed in Table 10 to this part 455... emulsions are present in the wastewater to be treated. (h) Equivalent system means a wastewater treatment... pollution control technology listed in Table 10 to this part 455. (i) Formulation of pesticide products...
40 CFR 455.10 - General definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... pollution control technology means the wastewater treatment technology listed in Table 10 to this part 455... emulsions are present in the wastewater to be treated. (h) Equivalent system means a wastewater treatment... pollution control technology listed in Table 10 to this part 455. (i) Formulation of pesticide products...
40 CFR 455.10 - General definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... pollution control technology means the wastewater treatment technology listed in Table 10 to this part 455... emulsions are present in the wastewater to be treated. (h) Equivalent system means a wastewater treatment... pollution control technology listed in Table 10 to this part 455. (i) Formulation of pesticide products...
40 CFR 455.10 - General definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... pollution control technology means the wastewater treatment technology listed in Table 10 to this part 455... emulsions are present in the wastewater to be treated. (h) Equivalent system means a wastewater treatment... pollution control technology listed in Table 10 to this part 455. (i) Formulation of pesticide products...
40 CFR 455.10 - General definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... pollution control technology means the wastewater treatment technology listed in Table 10 to this part 455... emulsions are present in the wastewater to be treated. (h) Equivalent system means a wastewater treatment... pollution control technology listed in Table 10 to this part 455. (i) Formulation of pesticide products...
Anisotropy of Photopolymer Parts Made by Digital Light Processing
Monzón, Mario; Ortega, Zaida; Hernández, Alba; Paz, Rubén; Ortega, Fernando
2017-01-01
Digital light processing (DLP) is an accurate additive manufacturing (AM) technology suitable for producing micro-parts by photopolymerization. As most AM technologies, anisotropy of parts made by DLP is a key issue to deal with, taking into account that several operational factors modify this characteristic. Design for this technology and photopolymers becomes a challenge because the manufacturing process and post-processing strongly influence the mechanical properties of the part. This paper shows experimental work to demonstrate the particular behavior of parts made using DLP. Being different to any other AM technology, rules for design need to be adapted. Influence of build direction and post-curing process on final mechanical properties and anisotropy are reported and justified based on experimental data and theoretical simulation of bi-material parts formed by fully-cured resin and partially-cured resin. Three photopolymers were tested under different working conditions, concluding that post-curing can, in some cases, correct the anisotropy, mainly depending on the nature of photopolymer. PMID:28772426
Assessment of Student Learning in Modern Experiments in the Introductory Calculus-Based Physics Labs
NASA Astrophysics Data System (ADS)
Woodahl, Brian; Ross, John; Lang, Sarah; Scott, Derek; Williams, Jeremy
2010-10-01
With the advent of newer microelectronic sensors it's now possible to modernize introductory physics labs with the latest technology and this may allow for enhanced student participation/learning in the experiments. For example, force plate sensors can digitize and record the force on an object, later it can be analyzed in detail (i.e, impulse from force vs. time). Small 3-axis accelerometers can record 3-dim, time-dependent acceleration of objects undergoing complex motions. These devices are small, fairly easy to use, and importantly, are likely to enhance student learning by ``personalizing'' data collection, i.e. making the student an active part of the measurement process and no longer a passive observer. To assess whether these new high-tech labs enhance student learning, we have implemented pre- and post- test sessions to measure the effectiveness of student learning. Four of our calculus-based lab sections were used: Two sections the control group, using the previous ``old technology'' labs, the other two, the experimental group, using the new ``modern technology'' labs. Initial returns of assessment data offer some surprising insight.
Decision Gate Process for Assessment of a NASA Technology Development Portfolio
NASA Technical Reports Server (NTRS)
Kohli, Rajiv; Fishman, Julianna L.; Hyatt, Mark J.
2012-01-01
The NASA Dust Management Project (DMP) was established to provide technologies (to Technology Readiness Level (TRL) 6) required to address adverse effects of lunar dust to humans and to exploration systems and equipment, to reduce life cycle cost and risk, and to increase the probability of sustainable and successful lunar missions. The technology portfolio of DMP consisted of different categories of technologies whose final product was either a technology solution in itself, or one that contributes toward a dust mitigation strategy for a particular application. A Decision Gate Process (DGP) was developed to assess and validate the achievement and priority of the dust mitigation technologies as the technologies progress through the development cycle. The DGP was part of continuous technology assessment and was a critical element of DMP risk management. At the core of the process were technology-specific criteria developed to measure the success of each DMP technology in attaining the technology readiness levels assigned to each decision gate. The DGP accounts for both categories of technologies and qualifies the technology progression from technology development tasks to application areas. The process provided opportunities to validate performance, as well as to identify non-performance in time to adjust resources and direction. This paper describes the overall philosophy of the DGP and the methodology for implementation for DMP, and describes the method for defining the technology evaluation criteria. The process is illustrated by example of an application to a specific DMP technology.
A compendium of solar dish/Stirling technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stine, W.B.; Diver, R.B.
1994-01-01
This report surveys the emerging dish/Stirling technology. It documents -- using consistent terminology the design characteristics of dish concentrators, receivers, and Stirling engines applicable to solar electric power generation. Development status and operating experience for each system and an overview of dish/Stirling technology are also presented. This report enables comparisons of concentrator, receiver, and engine technologies. Specifications and performance data are presented on systems and on components that are in use or that could be used in dish/Stirling systems. This report is organized into two parts: The first part (Chapters 1 through 4) provides an overview of dish/Stirling technology --more » the dish/ Stirling components (concentrator, receiver, and engine/alternator), current technology, basic theory, and technology development. The second part (Chapters 5 through 7) provides a detailed survey of the existing dish/Stirling concentrators, receivers, and engine/alternators.« less
A Descriptive Study of Technology Use in an Urban Setting: Implications for Schools Change
ERIC Educational Resources Information Center
Teclehaimanot, Berhane
2008-01-01
Technology is an integral part of educational goals today. A study of technology use in a large urban Midwestern school district found that teachers have equipment available to them, but it is oftentimes inadequate, inconvenient, or not working. Teachers would like to use technology, but in reality they don't use it. Part of the reason is lack of…
78 FR 12254 - Interest in Restructure of Rotorcraft Airworthiness Standards
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-22
... recognized that the evolution of the part 27 and 29 rules has not kept pace with technology and the... and adaptable to future technology. This action is part of an effort to develop recommendations for... rotorcraft airworthiness regulations more efficient and adaptable to future technology. Additionally, the FAA...
Using Technology as a Course Supplement (Part II).
ERIC Educational Resources Information Center
Eastmond, Dan; Granger, Dan
1997-01-01
This article, the second in a two-part series on aspects of distance education, presents pedagogical considerations concerning Type I Technology, technology (such as e-mail, Listservs, newsgroups, and MOOs) used primarily to supplement other learning resources. Examines the design, development, delivery, and evaluation phases of courses using Type…
NASA Astrophysics Data System (ADS)
Singh, Upendra; Koch, Grady; Kavaya, Michael; Yu, Jirong; Beyon, Jeffrey; Demoz, Belay
2010-05-01
This paper presents an overview of 2-micron laser transmitter development at NASA Langley Research Center (LaRC) for coherent-detection lidar profiling of winds. The novel high-energy, 2-micron, Ho:Tm:LuLiF laser technology developed at NASA Langley was employed to study laser technology currently envisioned by NASA for future global coherent Doppler lidar winds measurement. The 250 mJ, 10 Hz laser was designed as an integral part of a compact lidar transceiver developed for future aircraft flight. Ground-based wind profiles made with this transceiver will be presented. NASA Langley is currently funded to build complete Doppler lidar systems using this transceiver for the DC-8 and WB-57 aircraft. The WB-57 flights will present a more severe environment and will require autonomous operation of the lidar system. The DC-8 lidar system is a likely component of future NASA hurricane research. It will include real-time data processing and display, as well as full data archiving. The LaRC mobile lidar was deployed at Howard University facility in Beltsville, Maryland as part of NASA HQ funded (ROSES-2007, Wind Lidar Science Proposal entitled "Intercomparison of Multiple Lidars for Wind Measurements). During the campaign, testing of the lidar was combined with a field campaign to operate a 2-micron coherent lidar alongside a 355-nm direct detection lidar to demonstrate the hybrid wind lidar concept. Besides lidar, many other meteorological sensors were located at the campaign site, including wind measuring balloon sondes, sonic and propeller anemometers mounted on a tower, and a 915-MHz radio acoustic sounding system. Comparisons among these wind measurement sensors will be presented at the conference.
NASA Astrophysics Data System (ADS)
Čuma, Matúš; Török, Jozef; Telišková, Monika
2016-12-01
Surface integrity is a broad term which includes various quality factors affecting the functional properties of parts. Residual stress is one of these factors. Machining generates residual stresses in the surface and subsurface layers of the structural elements. X-ray diffractometry is a non-destructive method applicable for the measurement of residual stresses in surface and subsurface layers of components. The article is focused on the non-destructive progressive method of triaxial measurement of residual stress after machining the surface of sample by high feed milling technology. Significance of triaxial measuring is the capability of measuring in different angles so it is possible to acquire stress tensor containing normal and shear stress components acting in the spot of measuring, using a Cartesian coordinate system.
Metrological assurance and traceability for Industry 4.0 and additive manufacturing in Ukraine
NASA Astrophysics Data System (ADS)
Skliarov, Volodymyr; Neyezhmakov, Pavel; Prokopov, Alexander
2018-03-01
The national measurement standards from the point of view of traceability of the results of measurement in additive manufacturing in Ukraine are considered in the paper. The metrological characteristics of the national primary measurement standards in the field of geometric, temperature, optical-physical and time-frequency measurements, which took part in international comparisons within COOMET projects, are presented. The accurate geometric, temperature, optical-physical and time-frequency measurements are the key ones in controlling the quality of additive manufacturing. The use of advanced CAD/CAE/CAM systems allows to simulate the process of additive manufacturing at each stage. In accordance with the areas of the technology of additive manufacturing, the ways of improving the national measurement standards of Ukraine for the growing needs of metrology of additive manufacturing are considered.
The benefits of improved technologies in agricultural aviation
NASA Technical Reports Server (NTRS)
Lietzke, K.; Abram, P.; Braen, C.; Givens, S.; Hazelrigg, G. A., Jr.; Fish, R.; Clyne, F.; Sand, F.
1977-01-01
The results are present for a study of the economic benefits attributed to a variety of potential technological improvements in agricultural aviation. Part 1 gives a general description of the ag-air industry and discusses the information used in the data base to estimate the potential benefits from technological improvements. Part 2 presents the benefit estimates and provides a quantitative basis for the estimates in each area study. Part 3 is a bibliography of references relating to this study.
Development of a Novel Erosion Resistant Coating System for Use on Rotorcraft Blades
2012-05-01
Technologies Research Center (UTRC) and Sikorsky utilizes a two part metal/ cermet coating system on the leading edge of the blades to provide unmatched...ARL, United Technologies Research Center (UTRC) and Sikorsky utilizes a two part metal/ cermet coating system on the leading edge of the blades to...Rotor Blade Tip Fairing A study by Ely et.al. evaluated dozens of coating technologies and down-selected a two-part metal/ceramic coating system on
Technology Foresight For Youth: A Project For Science and Technology Education in Sweden
NASA Astrophysics Data System (ADS)
Kendal, Anne Louise
"Technology Foresight for Youth" is a project run by two science museums, two science centres and "Technology Foresight (Sweden)" an organization in which both business and scientists are represented. The project is designed to strengthen young people's interest in ongoing technological work, research and education. It should give them confidence in their own ability both to understand today's techniques including its influence on people's daily lives, and to influence future developments. One part of the project is aimed at school teachers, teacher cooperation groups and students in the age group 12 to 18 years. A second part encourages dialog and meetings by arranging debates, seminars, theatre, science demonstrations in cooperation with business representatives and scientists. A third important part of the project is a special exhibition to be shown at the four cooperating institutions: "To be where I am not - young people's dreams about the future". The exhibition is meant to be sensual, interactive and partly virtual. It will change and grow with time as young people contribute with their thoughts, visions and challenges. Young people in different parts of the country will be able to interact electronically with each other and with the virtual part of the exhibition. The main aim of the project is to develop new interactive pedagogic methods for science and technology based on young people's own visions about the future.
Additive Manufacturing Infrared Inspection
NASA Technical Reports Server (NTRS)
Gaddy, Darrell
2014-01-01
Additive manufacturing is a rapid prototyping technology that allows parts to be built in a series of thin layers from plastic, ceramics, and metallics. Metallic additive manufacturing is an emerging form of rapid prototyping that allows complex structures to be built using various metallic powders. Significant time and cost savings have also been observed using the metallic additive manufacturing compared with traditional techniques. Development of the metallic additive manufacturing technology has advanced significantly over the last decade, although many of the techniques to inspect parts made from these processes have not advanced significantly or have limitations. Several external geometry inspection techniques exist such as Coordinate Measurement Machines (CMM), Laser Scanners, Structured Light Scanning Systems, or even traditional calipers and gages. All of the aforementioned techniques are limited to external geometry and contours or must use a contact probe to inspect limited internal dimensions. This presentation will document the development of a process for real-time dimensional inspection technique and digital quality record of the additive manufacturing process using Infrared camera imaging and processing techniques.
Frankel, P; Chernow, R; Rosenberg, W
1994-02-01
Part I of this article ("Six Design and Implementation Lessons," Physician Executive, Sept.-Oct. 1993, pp. 46-50) described an ambulatory utilization review (AUR) program designed and implemented by Metropolitan Life Insurance Company and reviewed some of the lessons learned over the past five years. Those lessons pertained to the tasks of inventing a new information technology to measure and evaluate ambulatory care and some of the practical implementation issues associated with review of 30,000 small dollar value claims per day in 19 claim offices nationwide. This article turns to the basic purpose of AUR--to review the medical necessity and appropriateness of ambulatory utilization. One lesson learned about AUR in this context is that AUR works: savings from the program outweigh costs by almost 5:1. The more important lessons, however, stem from understanding how the savings are achieved, and what some of the other unintended benefits of the program are.
Dynamic Capability of an Operating Stirling Convertor
NASA Technical Reports Server (NTRS)
Goodnight, Thomas W.; Hughes, William O.; McNelis, Mark E.
2000-01-01
The NASA John H. Glenn Research Center and the US Department of Energy are currently developing a Stirling convertor for use as an advanced spacecraft power system for future NASA deep-space missions. NASA Headquarters has recently identified the Stirling technology generator for potential use as the spacecraft power system for two of NASA's new missions, the Europa Orbiter and the Solar Probe missions (planned for launch in 2006 and 2007 respectively). As part of the development of this power system, a Stirling Technology Demonstration Convertor was vibration tested at NASA John H. Glenn Research Center to verify its survivability and capability of withstanding the harsh dynamic environment typically seen by the spacecraft when it is launched by an expendable launch vehicle. The Technology Demonstration Convertor was fully operational (producing power) during the random vibration testing. The output power of the convertor and other convertor performance indicators were measured during the testing, and these results are discussed in this paper. Numerous accelerometers and force gauges also were used to provide information on the dynamic characteristics of the Technology Demonstration Convertor and as an indication of any possible damage due to the vibration. These measurements will also be discussed in this paper. The vibration testing of the Stirling Technology Demonstration Convertor was extremely successful. The Technology Demonstration Convertor survived all its vibration testing with no structural damage or functional performance degradation. As a result of this testing, the Stirling convertor's capability to withstand vibration has been demonstrated, enabling its usage in future spacecraft power systems.
Accessible Information for Equally-Distant Partially-Entangled Alphabet State Resource
NASA Astrophysics Data System (ADS)
Hao, San-Ru; Hou, Bo-Yu; Xi, Xiao-Qiang; Yue, Rui-Hong
2002-02-01
We have proposed a quantum system with equally-distant partially-entangled alphabet states which has the minimal mutual overlap and the highly distinguishability, these quantum states are used as the "signal states" of the quantum communication. We have also constructed the positive operator-valued measure for these "signal states" and discussed their entanglement properties and measurement of entanglement. We calculate the accessible information for these alphabet states and show that the accessible information is closely related to the entanglement of the "signal states": the higher the entanglement of the "signal states", the better the accessible information of the quantum system, and the accessible information reaches its maximal value when the alphabet states have their maximal entanglement. The project supported in part by Foundation of the Science and Technology Committee of China, and Foundation of the Science and Technology Committee of Hunan Province of China under the contract FSTCH-21000205
Sampling and Control Circuit Board for an Inertial Measurement Unit
NASA Technical Reports Server (NTRS)
Chelmins, David; Powis, Rick
2012-01-01
Spacesuit navigation is one component of NASA s efforts to return humans to the Moon. Studies performed at the NASA Glenn Research Center (GRC) considered various navigation technologies and filtering approaches to enable navigation on the lunar surface. As part of this effort, microelectromechanical systems (MEMS) inertial measurement units (IMUs) were studied to determine if they could supplement a radiometric infrastructure. MEMS IMUs were included in the Lunar Extra-Vehicular Activity Crewmember Location Determination System (LECLDS) testbed during NASA s annual Desert Research and Technology Studies (D-RATS) event in 2009 and 2010. The testbed included one IMU in 2009 and three IMUs in 2010, along with a custom circuit board interfacing between the navigation processor and each IMU. The board was revised for the 2010 test, and this paper documents the design details of this latest revision of the interface circuit board and firmware.
Noise and range considerations for close-range radar sensing of life signs underwater.
Hafner, Noah; Lubecke, Victor
2011-01-01
Close-range underwater sensing of motion-based life signs can be performed with low power Doppler radar and ultrasound techniques. Corresponding noise and range performance trade-offs are examined here, with regard to choice of frequency and technology. The frequency range examined includes part of the UHF and microwave spectrum. Underwater detection of motion by radar in freshwater and saltwater are demonstrated. Radar measurements exhibited reduced susceptibility to noise as compared to ultrasound. While higher frequency radar exhibited better signal to noise ratio, propagation was superior for lower frequencies. Radar detection of motion through saltwater was also demonstrated at restricted ranges (1-2 cm) with low power transmission (10 dBm). The results facilitate the establishment of guidelines for optimal choice in technology for the underwater measurement motion-based life signs, with respect to trade offs involving range and noise.
Decision Gate Process for Assessment of a Technology Development Portfolio
NASA Technical Reports Server (NTRS)
Kohli, Rajiv; Fishman, Julianna; Hyatt, Mark
2012-01-01
The NASA Dust Management Project (DMP) was established to provide technologies (to TRL 6 development level) required to address adverse effects of lunar dust to humans and to exploration systems and equipment, which will reduce life cycle cost and risk, and will increase the probability of sustainable and successful lunar missions. The technology portfolio of DMP consisted of different categories of technologies whose final product is either a technology solution in itself, or one that contributes toward a dust mitigation strategy for a particular application. A Decision Gate Process (DGP) was developed to assess and validate the achievement and priority of the dust mitigation technologies as the technologies progress through the development cycle. The DGP was part of continuous technology assessment and was a critical element of DMP risk management. At the core of the process were technology-specific criteria developed to measure the success of each DMP technology in attaining the technology readiness levels assigned to each decision gate. The DGP accounts for both categories of technologies and qualifies the technology progression from technology development tasks to application areas. The process provided opportunities to validate performance, as well as to identify non-performance in time to adjust resources and direction. This paper describes the overall philosophy of the DGP and the methodology for implementation for DMP, and describes the method for defining the technology evaluation criteria. The process is illustrated by example of an application to a specific DMP technology.
NASA Astrophysics Data System (ADS)
Panagea, I. S.; Daliakopoulos, I. N.; Tsanis, I. K.; Schwilch, G.
2016-02-01
Soil salinity management can be complex, expensive, and time demanding, especially in arid and semi-arid regions. Besides taking no action, possible management strategies include amelioration and adaptation measures. Here we apply the World Overview of Conservation Approaches and Technologies (WOCAT) framework for the systematic analysis and evaluation and selection of soil salinisation amelioration technologies in close collaboration with stakeholders. The participatory approach is applied in the RECARE (Preventing and Remediating degradation of soils in Europe through Land Care) project case study of Timpaki, a semi-arid region in south-central Crete (Greece) where the main land use is horticulture in greenhouses irrigated by groundwater. Excessive groundwater abstractions have resulted in a drop of the groundwater level in the coastal part of the aquifer, thus leading to seawater intrusion and in turn to soil salinisation. The documented technologies are evaluated for their impacts on ecosystem services, cost, and input requirements using a participatory approach and field evaluations. Results show that technologies which promote maintaining existing crop types while enhancing productivity and decreasing soil salinity are preferred by the stakeholders. The evaluation concludes that rainwater harvesting is the optimal solution for direct soil salinity mitigation, as it addresses a wider range of ecosystem and human well-being benefits. Nevertheless, this merit is offset by poor financial motivation making agronomic measures more attractive to users.
ERIC Educational Resources Information Center
Wagner, David; And Others
This volume is one in a series which outlines performance objectives and instructional modules for a course of study which explains the relationship and function of the process units in a wastewater treatment plant. Examples of modules include measuring settleable matter, total solids, dissolved solids, suspended solids, and volatile solids. The…
Noise Abatement Technology Options for Conventional Turboprop Airplanes.
1981-06-01
Noise Reduction Service, Springfield, Virginia 22161. Cost/ Benefit 19. Security cIosoil. (of Ohio rope$) 30. Securityr Clesoi. (of IN ae go ) 21. Mo. of...Aircraft ......... .................. 2 1.3 Cost and Performance Effects ... ........ 5 1.4 Cost/ Benefit Relationships .... ......... 6 1.5 Stage 3 Noise...5.4 Measures of Noise Benefits ..... ..... 84 5.4.1 Effective Perceived Noise Levels For FAR Part 36 Conditions ... ........ 84 5.4.2 Area Enclosed by
NASA Astrophysics Data System (ADS)
Braban, Christine; Tang, Sim; Bealey, Bill; Roberts, Elin; Stephens, Amy; Galloway, Megan; Greenwood, Sarah; Sutton, Mark; Nemitz, Eiko; Leaver, David
2017-04-01
Ambient ammonia measurements have been undertaken both in the atmosphere to understand sources, concentrations at background and vulnerable ecosystems and for long term monitoring of concentrations. As a pollutant which is projected to increase concentration in the coming decades with significant policy challenges to implementing mitigation strategies it is useful to assess what has been measured, where and why. In this study a review of the literature, has shown that ammonia measurements are frequently not publically reported and in general not reposited in the open data centres, available for research. The specific sectors where measurements have been undertaken are: agricultural point source assessments, agricultural surface exchange measurements, sensitive ecosystem monitoring, landscape/regional studies and governmental long term monitoring. Less frequently ammonia is measured as part of an intensive atmospheric chemistry field campaign. Technology is developing which means a shift from chemical denuder methods to spectroscopic techniques may be possible, however chemical denuding techniques with off-line laboratory analysis will likely be an economical approach for some time to come. This paper reviews existing datasets from the different sectors of research and integrates them for a global picture to allow both a long term understanding and facilitate comparison with future measurements.
Organizational Development: Values, Process, and Technology.
ERIC Educational Resources Information Center
Margulies, Newton; Raia, Anthony P.
The current state-of-the-art of organizational development is the focus of this book. The five parts into which the book is divided are as follows: Part One--Introduction (Organizational Development in Perspective--the nature, values, process, and technology of organizational development); Part Two--The Components of Organizational Developments…
Electron Beam Irradiation Induced Multiwalled Carbon Nanotubes Fusion inside SEM.
Shen, Daming; Chen, Donglei; Yang, Zhan; Liu, Huicong; Chen, Tao; Sun, Lining; Fukuda, Toshio
2017-01-01
This paper reported a method of multiwalled carbon nanotubes (MWCNTs) fusion inside a scanning electron microscope (SEM). A CNT was picked up by nanorobotics manipulator system which was constructed in SEM with 21 DOFs and 1 nm resolution. The CNT was picked up and placed on two manipulators. The tensile force was 140 nN when the CNT was pulled into two parts. Then, two parts of the CNT were connected to each other by two manipulators. The adhered force between two parts was measured to be about 20 nN. When the two parts of CNT were connected again, the contact area was fused by focused electron beam irradiation for 3 minutes. The tensile force of the junction was measured to be about 100 nN. However, after fusion, the tensile force was five times larger than the tensile force connected only by van der Waals force. This force was 70 percent of the tensile force before pulling out of CNTs. The results revealed that the electron beam irradiation was a promising method for CNT fusion. We hope this technology will be applied to nanoelectronics in the near future.
Remote monitoring of primates using automated GPS technology in open habitats.
Markham, A Catherine; Altmann, Jeanne
2008-05-01
Automated tracking using a satellite global position system (GPS) has major potential as a research tool in studies of primate ecology. However, implementation has been limited, at least partly because of technological difficulties associated with the dense forest habitat of many primates. In contrast, primates inhabiting relatively open environments may provide ideal subjects for use of GPS collars, yet no empirical tests have evaluated this proposition. Here, we used an automated GPS collar to record the locations, approximate body surface temperature, and activity for an adult female baboon during 90 days in the savannah habitat of Amboseli, Kenya. Given the GPS collar's impressive reliability, high spatial accuracy, other associated measurements, and low impact on the study animal, our results indicate the great potential of applying GPS technology to research on wild primates. © 2008 Wiley-Liss, Inc.
Finding the Effective Mass and Spring Constant of a Force Probe from Simple Harmonic Motion
NASA Astrophysics Data System (ADS)
Greene, Nathaniel R.; Gill, Tom; Eyerly, Stephen
2016-03-01
Force probes are versatile tools in the physics lab, but their internal workings can introduce artifacts when measuring rapidly changing forces. The Dual-Range Force Sensor by Vernier (Fig. 1) uses strain gage technology to measure force, based on the bending of a beam. Strain gages along the length of the beam change resistance as the beam bends (Fig. 2). The elasticity of the beam leads to oscillations that persist after being excited by an impulsive force. How quickly the force probe freely returns to zero is thus related to the rigidity of the beam and the total mass attached to it. By varying the added mass and measuring the resulting frequency of the probe's internal free oscillations, the effective mass and spring constant of the probe's moveable parts can be found. Weighing of the probe parts and conducting a Hooke's law experiment provide static verification of these parameters. Study of the force sensor's behavior helps students to learn about damped harmonic motion, mathematical modeling, and the limitations of measuring devices.
Introduction: Prediction of F-16XL Flight Flow Physics
NASA Technical Reports Server (NTRS)
Lamar, John E.
2009-01-01
This special section is the result of fruitful endeavors by an international group of researchers in industry, government laboratories and university-led efforts to improve the technology readiness level of their CFD solvers through comparisons with flight data collected on the F-16XL-1 aircraft at a variety of test conditions. These 1996 flight data were documented and detailed the flight-flow physics of this aircraft through surface tufts and pressures, boundary-layer rakes and skin-friction measurements. The flight project was called the Cranked Wing Aerodynamics Project (CAWAP), due to its leading-edge sweep crank (70 degrees inboard, 50 degrees outboard), and served as a basis for the International comparisons to be made, called CAWAPI. This highly focused effort was one of two vortical flow studies facilitated by the NATO Research and Technology Organization through its Applied Vehicle Panel with a title of Understanding and Modeling Vortical Flows to Improve the Technology Readiness Level for Military Aircraft. It was given a task group number of AVT-113 and had an official start date of Spring 2003. The companion part of this task group dealt with fundamentals of vortical flow from both an experimental and numerical perspective on an analytically describable 65 degree delta-wing model for which much surface pressure data had already been measured at NASA Langley Research Center at a variety of Mach and Reynolds numbers and is called the Vortex Flow Experiment - 2 (VFE-2). These two parts or facets helped one another in understanding the predictions and data that had been or were being collected.
Rapid Prototyping Technologies for Manufacturing and Maintenance Activities
NASA Astrophysics Data System (ADS)
Pfeifer, Marcel Rolf
2017-12-01
The paper deals with the direct application of Rapid Prototyping technologies for parts and spare parts production in production companies and the economic effect by making use of this technology. Traditional production technologies are technologies such as forging, cutting, machining, etc. These technologies are widely accepted and the teething troubles are solved. Rapid Prototyping technologies such as 3D printing on the other hand came into the focus in the recent years when the technologies and the produced quality gradually advanced. Providing flexibility and time efficiency the technology should also have a practical application in production. This paper has the aim to provide a case-study based on existing cost figures to show that these technologies are not limited to prototype developments.
1980-10-01
AFAPL-TR-78-6 ’: Part Vill (U ROTOR -BEARING DYNAMICS - TECHNOLOGY DESIGN GUIDE ¢ Part Vil A Comput eri eval Syteftor Fluid Film Bearings SHAKER...Protection," Task 304806, "Aerospace Lubrication," Work Unit 30480685, " Rotor -Bearing Dynamics Design." The work reported herein was performed during the...the previous issue of the Rotor -Bearing Dynamics Technology Design Guide, - one volume dealt with the calculation of performance parameters and pertur
3D Printing in Zero-G Experiment, In Space Manufacturing (LPS, 4)
NASA Technical Reports Server (NTRS)
Bean, Quincy; Cooper, Ken; Werkheiser, Niki
2015-01-01
The 3D Printing in Zero-G Experiment has been an ongoing effort for several years. In June 2014 the technology demonstration 3D printer was launched to the International Space Station. In November 2014 the first 21 parts were manufactured in orbit marking the beginning of a paradigm shift that will allow astronauts to be more self-sufficient and pave the way to larger scale orbital manufacturing. Prior to launch the 21 parts were built on the ground with the flight unit with the same feedstock. These ground control samples are to be tested alongside the flight samples in order to determine if there is a measurable difference between parts built on the ground vs. parts built in space. As of this writing, testing has not yet commenced. Tests to be performed are structured light scanning for volume and geometric discrepancies, CT scanning for density measurement, destructive testing of mechanical samples, and SEM analysis for inter-laminar adhesion discrepancies. Additionally, an ABS material characterization was performed on mechanical samples built from the same CAD files as the flight and ground samples on different machine / feedstock combinations. The purpose of this testing was twofold: first to obtain mechanical data in order to have a baseline comparison for the flight and ground samples and second to ascertain if there is a measurable difference between machines and feedstock.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Secretary of Commerce DISCLOSURE OF GOVERNMENT INFORMATION Pt. 4, App. B Appendix B to Part 4—Officials... Secretary for Information Technology Industries Deputy Assistant Secretary for Environmental Technologies... Environmental Technologies Director, Office of Export Trading Company Affairs Director, Office of Finance...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Secretary of Commerce DISCLOSURE OF GOVERNMENT INFORMATION Pt. 4, App. B Appendix B to Part 4—Officials... Secretary for Information Technology Industries Deputy Assistant Secretary for Environmental Technologies... Environmental Technologies Director, Office of Export Trading Company Affairs Director, Office of Finance...
The laboratory diagnosis of testosterone deficiency.
Paduch, Darius A; Brannigan, Robert E; Fuchs, Eugene F; Kim, Edward D; Marmar, Joel L; Sandlow, Jay I
2014-05-01
The evaluation and treatment of hypogonadal men has become an important part of urologic practice. Fatigue, loss of libido, and erectile dysfunction are commonly reported, but nonspecific symptoms and laboratory verification of low testosterone (T) are an important part of evaluation in addition to a detailed history and physical examination. Significant intraindividual fluctuations in serum T levels, biologic variation of T action on end organs, the wide range of T levels in human serum samples, and technical limitations of currently available assays have led to poor reliability of T measurements in the clinical laboratory setting. There is no universally accepted threshold of T concentration that distinguishes eugonadal from hypogonadal men; thus, laboratory results have to be interpreted in the appropriate clinical setting. This review focuses on clinical, biological, and technological challenges that affect serum T measurements to educate clinicians regarding technological advances and limitations of the currently available laboratory methods to diagnose hypogonadism. A collaborative effort led by the American Urological Association between practicing clinicians, patient advocacy groups, government regulatory agencies, industry, and professional societies is underway to provide optimized assay platforms and evidence-based normal assay ranges to guide clinical decision making. Until such standardization is commonplace in clinical laboratories, the decision to treat should be based on the presence of signs and symptoms in addition to serum T measurements. Rigid interpretation of T ranges should not dictate clinical decision making or define coverage of treatment by third party payers. Copyright © 2014 Elsevier Inc. All rights reserved.
Artefacts for optical surface measurement
NASA Astrophysics Data System (ADS)
Robson, Stuart; Beraldin, J.-Angelo; Brownhill, Andrew; MacDonald, Lindsay
2011-07-01
Flexible manufacturing technologies are supporting the routine production of components with freeform surfaces in a wide variety of materials and surface finishes. Such surfaces may be exploited for both aesthetic and performance criteria for a wide range of industries, for example automotive, aircraft, small consumer goods and medial components. In order to ensure conformance between manufactured part and digital design it is necessary to understand, validate and promote best practice of the available measurement technologies. Similar, but currently less quantifiable, measurement requirements also exist in heritage, museum and fine art recording where objects can be individually hand crafted to extremely fine levels of detail. Optical 3D measurement systems designed for close range applications are typified by one or more illumination sources projecting a spot, line or structured light pattern onto a surface or surfaces of interest. Reflections from the projected light are detected in one or more imaging devices and measurements made concerning the location, intensity and optionally colour of the image. Coordinates of locations on the surface may be computed either directly from an understanding of the illumination and imaging geometry or indirectly through analysis of the spatial frequencies of the projected pattern. Regardless of sensing configuration some independent means is necessary to ensure that measurement capability will meet the requirements of a given level of object recording and is consistent for variations in surface properties and structure. As technologies mature, guidelines for best practice are emerging, most prominent at the current time being the German VDI/VDE 2634 and ISO/DIS 10360-8 guidelines. This considers state of the art capabilities for independent validation of optical non-contact measurement systems suited to the close range measurement of table top sized manufactured or crafted objects.
AISI/DOE Technology Roadmap Program: Cold Work Embrittlement of Interstitial Free Steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
John T Bowker; Pierre Martin
2002-10-31
This work addresses the issues of measurement of secondary cold work embrittlement (SCWE) of an IF steel in deep-drawn parts using laboratory tests, and its correlation with real part fracture. It aimed at evaluating the influence of the steel chemistry and processing condition, microstructure, and test conditions, on SCWE as well as the effect of SCWE on fatigue properties. Size 6-in. cups produced with various draw ratios or trimmed at different heights were tested to determine the ductile-to-brittle-transition temperature (DBTT) as a function of strain. The 2-in. cup/expansion test, bend test and fracture of notched specimens were also used tomore » generate information complementary to that provided by the 6-inch cup/expansion test. The relationship between laboratory tests and fracture in real parts was established by testing large-scale parts. The fatigue behavior was investigated in the as-rolled and deep drawn (high stain) conditions, using prestrained specimens taken from the wall of a formed part.« less
Technology in Parkinson's disease: Challenges and opportunities.
Espay, Alberto J; Bonato, Paolo; Nahab, Fatta B; Maetzler, Walter; Dean, John M; Klucken, Jochen; Eskofier, Bjoern M; Merola, Aristide; Horak, Fay; Lang, Anthony E; Reilmann, Ralf; Giuffrida, Joe; Nieuwboer, Alice; Horne, Malcolm; Little, Max A; Litvan, Irene; Simuni, Tanya; Dorsey, E Ray; Burack, Michelle A; Kubota, Ken; Kamondi, Anita; Godinho, Catarina; Daneault, Jean-Francois; Mitsi, Georgia; Krinke, Lothar; Hausdorff, Jeffery M; Bloem, Bastiaan R; Papapetropoulos, Spyros
2016-09-01
The miniaturization, sophistication, proliferation, and accessibility of technologies are enabling the capture of more and previously inaccessible phenomena in Parkinson's disease (PD). However, more information has not translated into a greater understanding of disease complexity to satisfy diagnostic and therapeutic needs. Challenges include noncompatible technology platforms, the need for wide-scale and long-term deployment of sensor technology (among vulnerable elderly patients in particular), and the gap between the "big data" acquired with sensitive measurement technologies and their limited clinical application. Major opportunities could be realized if new technologies are developed as part of open-source and/or open-hardware platforms that enable multichannel data capture sensitive to the broad range of motor and nonmotor problems that characterize PD and are adaptable into self-adjusting, individualized treatment delivery systems. The International Parkinson and Movement Disorders Society Task Force on Technology is entrusted to convene engineers, clinicians, researchers, and patients to promote the development of integrated measurement and closed-loop therapeutic systems with high patient adherence that also serve to (1) encourage the adoption of clinico-pathophysiologic phenotyping and early detection of critical disease milestones, (2) enhance the tailoring of symptomatic therapy, (3) improve subgroup targeting of patients for future testing of disease-modifying treatments, and (4) identify objective biomarkers to improve the longitudinal tracking of impairments in clinical care and research. This article summarizes the work carried out by the task force toward identifying challenges and opportunities in the development of technologies with potential for improving the clinical management and the quality of life of individuals with PD. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.
Status of Duct Liner Technology for Application to Aircraft Engine Nacelles
NASA Technical Reports Server (NTRS)
Parrott, Tony L.; Jones, Michael G.; Watson, Willie R.
2005-01-01
Grazing flows and high acoustic intensities impose unusual design requirements on acoustic liner treatments used in aircraft engine nacelles. Increased sound absorption efficiency (requiring increased accuracy of liner impedance specification) is particularly critical in the face of ever decreasing nacelle wall area available for liner treatments in modern, high-bypass ratio engines. This paper reviews the strategy developed at Langley Research Center for achieving a robust measurement technology that is crucial for validating impedance models for aircraft liners. Specifically, the paper describes the current status of computational and data acquisition technologies for reducing impedance in a flow duct. Comparisons of reduced impedances for a "validation liner" using 1980's and 2000's measurement technology are consistent, but show significant deviations (up to 0.5 c exclusive of liner anti-resonance region) from a first principles impedance prediction model as grazing flow centerline Mach numbers increase up to 0.5. The deviations, in part, are believed related to uncertainty in the choice of grazing flow parameters (e.g. cross-section averaged, core-flow averaged, or centerline Mach number?). Also, there may be an issue with incorporating the impedance discontinuities corresponding to the hard wall to liner interface (i.e. leading and trailing edge of test liner) within the discretized finite element model.
NASA Astrophysics Data System (ADS)
Drbúl, Mário; Šajgalík, Michal; Litvaj, lvan; Babík, Ondrej
2016-12-01
Each part as a final product and its surface is composed of various geometric elements, although at first glance seem as smooth and shiny. During the manufacturing process, there is a number of influences (e.g. selected manufacturing technology, production process, human factors, the strategy of measurement, scanning speed, shape of the measurement contact tip, temperature, or the surface tension and the like), which hinder the production of component with ideally shaped elements. From the economic and design point of view (in accordance with determined GPS standards), there is necessary fast and accurate analyze and evaluate these elements. Presented article deals with the influence of scanning speed and measuring strategy for assessment of shape deviations.
Business Intelligence in Process Control
NASA Astrophysics Data System (ADS)
Kopčeková, Alena; Kopček, Michal; Tanuška, Pavol
2013-12-01
The Business Intelligence technology, which represents a strong tool not only for decision making support, but also has a big potential in other fields of application, is discussed in this paper. Necessary fundamental definitions are offered and explained to better understand the basic principles and the role of this technology for company management. Article is logically divided into five main parts. In the first part, there is the definition of the technology and the list of main advantages. In the second part, an overview of the system architecture with the brief description of separate building blocks is presented. Also, the hierarchical nature of the system architecture is shown. The technology life cycle consisting of four steps, which are mutually interconnected into a ring, is described in the third part. In the fourth part, analytical methods incorporated in the online analytical processing and data mining used within the business intelligence as well as the related data mining methodologies are summarised. Also, some typical applications of the above-mentioned particular methods are introduced. In the final part, a proposal of the knowledge discovery system for hierarchical process control is outlined. The focus of this paper is to provide a comprehensive view and to familiarize the reader with the Business Intelligence technology and its utilisation.
SEACAS Theory Manuals: Part II. Nonlinear Continuum Mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Attaway, S.W.; Laursen, T.A.; Zadoks, R.I.
1998-09-01
This report summarizes the key continuum mechanics concepts required for the systematic prescription and numerical solution of finite deformation solid mechanics problems. Topics surveyed include measures of deformation appropriate for media undergoing large deformations, stress measures appropriate for such problems, balance laws and their role in nonlinear continuum mechanics, the role of frame indifference in description of large deformation response, and the extension of these theories to encompass two dimensional idealizations, structural idealizations, and rigid body behavior. There are three companion reports that describe the problem formulation, constitutive modeling, and finite element technology for nonlinear continuum mechanics systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, J Michael; Deru, Michael
2007-01-01
In 2005, Wal-Mart opened experimental stores in McKinney, Texas (hot climate), and Aurora, Colo. (cold climate). With these projects Wal-Mart can: * Learn how to achieve sustainability improvements; * Gain experience with the design, design process, and operations for some specific advanced technologies; * Understand energy use patterns in their stores more clearly; * Lay groundwork for better understanding of how to achieve major carbon footprint reductions; and * Measure the potential benefits of specific technologies tested.
Research in Natural Laminar Flow and Laminar-Flow Control, part 1
NASA Technical Reports Server (NTRS)
Hefner, Jerry N. (Compiler); Sabo, Frances E. (Compiler)
1987-01-01
Since the mid 1970's, NASA, industry, and universities have worked together to conduct important research focused at developing laminar flow technology that could reduce fuel consumption for general aviation, commuter, and transport aircraft by as much as 40 to 50 percent. The symposium was planned in view of the recent accomplishments within the areas of laminar flow control and natural laminar flow, and the potential benefits of laminar flow technology to the civil and military aircraft communities in the United States. Included were technical sessions on advanced theory and design tool development; wind tunnel and flight research; transition measurement and detection techniques; low and high Reynolds number research; and subsonic and supersonic research.
Lightweight 3.66-meter-diameter conical mesh antenna reflector
NASA Technical Reports Server (NTRS)
Moore, D. M.
1974-01-01
A description is given of a 3.66 m diameter nonfurlable conical mesh antenna incorporating the line source feed principle recently developed. The weight of the mesh reflector and its support structure is 162 N. An area weighted RMS surface deviation of 0.28 mm was obtained. The RF performance measurements show a gain of 48.3 db at 8.448 GHz corresponding to an efficiency of 66%. During the design and development of this antenna, the technology for fabricating the large conical membranes of knitted mesh was developed. As part of this technology a FORTRAN computer program, COMESH, was developed which permits the user to predict the surface accuracy of a stretched conical membrane.
Curriculum Development--Post-Secondary Electro-Mechanical Technology. Parts I-IV.
ERIC Educational Resources Information Center
Texas State Technical Inst., Sweetwater.
This curriculum guide consists of materials for use in teaching a four-part course in electromechanical technical technology. The first part contains nine units dealing with hydraulics and nine units on pneumatics. Addressed in the individual units are the following topics: an introduction to hydraulics; control of hydraulic energy; check valves…
Wilking, Nils; Wilking, Ulla; Jönsson, Bengt
2014-06-01
Cancer is a major burden to the health care system, presently mainly in developed countries, but is rapidly becoming a problem of similar magnitude in developing countries. Cancer ranks number two or three measured in loss of "good years of life" in Europe. The direct cost of cancer are estimated to be around 50% of total health care costs and of these costs a major part is linked to cancer drugs. With the ongoing revolution in the understanding of cancer and the development of an increasing number of new, but often very costly drugs, the health care systems in all parts of the world need to have a systematic way of evaluating new cancer drugs. Health technology assessment (HTA) now plays a major role in many parts of Europe. HTA has its focus on determining the value of new innovations in order to balance allocation of health care resources in a fair and equal way. This paper reviews the HTA process in general and for cancer drugs specifically. The key findings are that cancer drugs must be evaluated in a similar way as other health care technologies. One must however take into account that cancer drugs are often approved with a high level of uncertainty. Thus, it is of key importance that not only clinical efficacy, i.e., effect in pivotal clinical trials, is taken into account, but that there is a great need for follow-up studies so that post regulatory approval is able to properly measure population based effects [clinical effectiveness (CLE)].
The 3-D image recognition based on fuzzy neural network technology
NASA Technical Reports Server (NTRS)
Hirota, Kaoru; Yamauchi, Kenichi; Murakami, Jun; Tanaka, Kei
1993-01-01
Three dimensional stereoscopic image recognition system based on fuzzy-neural network technology was developed. The system consists of three parts; preprocessing part, feature extraction part, and matching part. Two CCD color camera image are fed to the preprocessing part, where several operations including RGB-HSV transformation are done. A multi-layer perception is used for the line detection in the feature extraction part. Then fuzzy matching technique is introduced in the matching part. The system is realized on SUN spark station and special image input hardware system. An experimental result on bottle images is also presented.
Health physics division annual progress report for period ending June 30, 1977
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-07-01
This annual progress report follows, as in the past, the organizational structure of the Health Physics Division. Each part is a report of work done by a section of the division: Assessment and Technology Section (Part I), headed by H.W. Dickson; Biological and Radiation Physics Section (Part II), H.A. Wright; Chemical Physics and Spectroscopy Section (Part III), W.R. Garrett; Emergency Technology Section (Part IV), C.V. Chester, Medical Physics and Internal Dosimetry Section (Part V), K.E. Cowser; and the Analytic Dosimetry and Education Group (Part VI), J.E. Turner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gyorke, D.F.; Butcher, T.A.
1995-12-31
To implement the Krakow Clean Fossil Fuels and Energy Efficiency Program, eight U.S. firms were selected by the U.S. Department of Energy to market their technologies to reduce pollution from low emission sources in Krakow. The eight U.S. firms were selected by a competitive solicitation that required the proposing firms to themselves provide funding to match or exceed the funding provided by the Program. These U.S. firms and their Polish partner companies have begun sales and cooperative work efforts in Krakow, and some have already made initial equipment installations with measurable performance improvements. Following their efforts as part of themore » Program, these U.S.-Polish joint ventures will market their technologies and achieve the associated environmental benefits elsewhere in Poland and Eastern and Central Europe. As part of the Krakow Program a spreadsheet model was developed to compare technological options for supplying heat to the city by calculation and comparing the heating costs and associated emissions reduction for each option. Comparison of options is made on the basis of the user cost-per-metric ton of equivalent emissions reduction. For all options considered in the Krakow Program, this cost parameter has ranged from -$1469 (best) to $2650 (worst). The costs for technologies associated with the eight projects in the Krakow Program are at the lower end of this range placing these technologies among the most cost effective solutions to the pollution problems from the low emission sources.« less
Testing and ground calibration of DREAMS-H relative humidity device
NASA Astrophysics Data System (ADS)
Genzer, Maria; Hieta, Maria; Nikkanen, Timo; Schmidt, Walter; Kemppinen, Osku; Harri, Ari-Matti; Haukka, Harri
2015-04-01
DREAMS (Dust Characterization, Risk Assessment and Environmental Analyzer on the Martian Surface) instrument suite is to be launched as part of the ESA ExoMars 2016/Schiaparelli lander. DREAMS consists of an environmental package for monitoring temperature, pressure, relative humidity, winds and dust opacity, as well as atmospheric electricity of Martian atmosphere. The DREAMS instruments and scientific goals are described in [1]. Here we describe testing and ground calibration of the relative humidity device, DREAMS-H, provided to the DREAMS payload by the Finnish Meteorological Institute and based on proprietary technology of Vaisala, Inc. The same kind of device is part of the REMS instrument package onboard MSL Curiosity Rover [2][3]. DREAMS-H is based on Vaisala Humicap® technology adapted for use in Martian environment by the Finnish Meteorological Institute. The device is very small and lightweighed, with total mass less than 20 g and consuming only 15 mW of power. The Humicap® sensor heads contain an active polymer film that changes its capacitance as function of relative humidity, with 0% to 100% RH measurement range. The dynamic range of the device gets smaller with sensor temperature, being in -70°C approximately 30% of the dynamic range in 0°C [3]. Good-quality relative humidity measurements require knowing the temperature of the environment in which relative humidity is measured. An important part of DREAMS-H calibration was temperature calibration of Vaisala Thermocap® temperature sensors used for housekeeping temperature measurements of the DREAMS-H device. For this, several temperature points in the desired operational range were measured with 0.1°C accuracy traceable to national standards. The main part of humidity calibration of DREAMS-H flight models was done in subzero temperatures in a humidity generator of the Finnish Center of Metrology and Accreditation (MIKES). Several relative humidity points ranging from almost dry to almost wet were measured at several temperature points between 0°C and -70°C. Dry baseline was established in vacuum measurements at the Finnish Meteorological Institute. In addition to stable relative humidity points, measurements in changing relative humidity and temperature were done in order to get information about the lag of the sensor. References: 1] Esposito, F. et al: The DREAMS Experiment on the ExoMars 2016 Mission for the Study of Martian Environment during the Dust Storm Season, The Fifth International Workshop on the Mars Atmosphere, 13-16 January 2014, Oxford, UK, 2014. [2] Gómez-Elvira, J. et al.: REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover, Space Sci. Rev., 170, pp. 583-640, 2012. [3] Harri, A.-M. et al.: Mars Science Laboratory Relative Humidity Observations - Initial Results, JGR Planets, Vol 119 Issue 9, pp. 2132-2147, 2014.
Electroacoustics modeling of piezoelectric welders for ultrasonic additive manufacturing processes
NASA Astrophysics Data System (ADS)
Hehr, Adam; Dapino, Marcelo J.
2016-04-01
Ultrasonic additive manufacturing (UAM) is a recent 3D metal printing technology which utilizes ultrasonic vibrations from high power piezoelectric transducers to additively weld similar and dissimilar metal foils. CNC machining is used intermittent of welding to create internal channels, embed temperature sensitive components, sensors, and materials, and for net shaping parts. Structural dynamics of the welder and work piece influence the performance of the welder and part quality. To understand the impact of structural dynamics on UAM, a linear time-invariant model is used to relate system shear force and electric current inputs to the system outputs of welder velocity and voltage. Frequency response measurements are combined with in-situ operating measurements of the welder to identify model parameters and to verify model assumptions. The proposed LTI model can enhance process consistency, performance, and guide the development of improved quality monitoring and control strategies.
Lambertus, Gordon; Shi, Zhenqi; Forbes, Robert; Kramer, Timothy T; Doherty, Steven; Hermiller, James; Scully, Norma; Wong, Sze Wing; LaPack, Mark
2014-01-01
An on-line analytical method based on transmission near-infrared spectroscopy (NIRS) for the quantitative determination of water concentrations (in parts per million) was developed and applied to the manufacture of a pharmaceutical intermediate. Calibration models for water analysis, built at the development site and applied at the manufacturing site, were successfully demonstrated during six manufacturing runs at a 250-gallon scale. The water measurements will be used as a forward-processing control point following distillation of a toluene product solution prior to use in a Grignard reaction. The most significant impact of using this NIRS-based process analytical technology (PAT) to replace off-line measurements is the significant reduction in the risk of operator exposure through the elimination of sampling of a severely lachrymatory and mutagenic compound. The work described in this report illustrates the development effort from proof-of-concept phase to manufacturing implementation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickerson, Patricia O'Donnell; Summa, Deborah Ann; Liu, Cheng
The goals of this project were to demonstrate reliable, reproducible solid state bonding of aluminum 6061 alloy plates together to encapsulate DU-10 wt% Mo surrogate fuel foils. This was done as part of the CONVERT Fuel Fabrication Capability effort in Process Baseline Development . Bonding was done using Hot Isotatic Pressing (HIP) of evacuated stainless steel cans (a.k.a HIP cans) containing fuel plate components and strongbacks. Gross macroscopic measurements of HIP cans prior to HIP and after HIP were used as part of this demonstration, and were used to determine the accuracy of a finitie element model of the HIPmore » bonding process. The quality of the bonding was measured by controlled miniature bulge testing for Al-Al, Al-Zr, and Zr-DU bonds. A special objective was to determine if the HIP process consistently produces good quality bonding and to determine the best characterization techniques for technology transfer.« less
The Army’s Pipeline for Technological Officers: Is It Broken
1993-04-15
technological education in the United States. It concludes that most Americans are improperl) educated to function in the everyday world of the next century...parts. The first part investigates the overall status of technological education in the United States. It concludes that most Americans are improperly... educate its citizens to be scientifically and technologically literate, and it must ensure that it has an adequate pool of citizens pursuing technical
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloß, P., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Jüttner, G., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Jacob, S., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de
2014-05-15
Micro plastic parts open new fields for application, e. g., to electronics, sensor technologies, optics, and medical engineering. Before micro parts can go to mass production, there is a strong need of having the possibility for testing different designs and materials including material combinations. Hence, flexible individual technical and technological solutions for processing are necessary. To manufacture high quality micro parts, a micro injection moulding machine named formicaPlast based on a two-step plunger injection technology was developed. Resulting from its design, the residence time and the accuracy problems for managing small shot volumes with reproducible high accuracy are uncompromisingly solved.more » Due to their simple geometry possessing smooth transitions and non adherent inner surfaces, the plunger units allow to process 'all' thermoplastics from polyolefines to high performance polymers, optical clear polymers, thermally sensitive bioresorbables, highly filled systems (the so-called powder injection molding PIM), and liquid silicon rubber (LSR, here with a special kit). The applied platform strategy in the 1K and 2K version allows integrating automation for assembling, handling and packaging. A perpendicular arrangement allows encapsulation of inserts, also partially, and integration of this machine into process chains. Considering a wide variety of different parts consisting of different materials, the high potential of the technology is demonstrated. Based on challenging industrial parts from electronic applications (2K micro MID and bump mat, where both are highly structured parts), the technological solutions are presented in more detail.« less
Progress toward ultra-stable lasers for use in space
NASA Technical Reports Server (NTRS)
Buoncristiani, A. M.; Sandford, S. P.; Amundsen, R. M.
1992-01-01
This is a summary of a research project that has come to be known as SUNLITE, initially standing for Stanford University - NASA laser in space technology experiment. It involves scientists from the NASA Langley Research Center (LaRC), Stanford University, the National Institute of Standards and Technology (NIST), and the Joint Institute for Laboratory Astrophysics (JILA), and a growing number of other institutions. The long range objective of the SUNLITE effort is to examine the fundamental linewidth and frequency stability limits of an actively stabilized laser oscillator in the microgravity and vibration-free environment of space. The ground-based SUNLITE activities supporting that objective will develop a space-qualified, self-contained and completely automated terahertz oscillator stabilized to a linewidth of less than 3 Hz, along with a measurement system capable of determining laser linewidth to one part in 10(exp 16). The purpose of this paper is to discuss the critical technologies needed to place stabilized lasers in space and to describe the progress made by the SUNLITE project to develop these technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheppy, M.; Metzger, I.; Cutler, D.
2014-01-01
As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with the Department of Energy's National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This project was one of several demonstrations of new or underutilized commercial energy technologies. The common goal was to demonstrate and measure the performance and economic benefit of the system while monitoring any ancillary impacts to related standards of service and operation and maintenance (O&M) practices. In short, demonstrations at naval facilities simultaneously evaluate the benefits and compatibility of themore » technology with the U.S. Department of Defense (DOD) mission, and with NAVFAC's design, construction, operations, and maintenance practices, in particular. This project demonstrated the performance of commercially available advanced power strips (APSs) for plug load energy reductions in building A4 at Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spielman, Zachary; Hill, Racheal; LeBlanc, Katya
Control room modernization is critical to extending the life of the 99 operating commercial nuclear power plants (NPP) within the United States. However, due to the lack of evidence demonstrating the efficiency and effectiveness of recent candidate technologies, current NPP control rooms operate without the benefit of various newer technologies now available. As nuclear power plants begin to extend their licenses to continue operating for another 20 years, there is increased interest in modernizing the control room and supplementing the existing control boards with advanced technologies. As part of a series of studies investigating the benefits of advanced control roommore » technologies, the researchers conducted an experimental study to observe the effect of Task-Based Overview Displays (TODs) on operator workload and situation awareness (SA) while completing typical operating scenarios. Researchers employed the Situation Awareness Rating Technique (SART) and the NASA Task Load Index (TLX) as construct measures.« less
Fundamental Aeronautics Program: Overview of Project Work in Supersonic Cruise Efficiency
NASA Technical Reports Server (NTRS)
Castner, Raymond
2011-01-01
The Supersonics Project, part of NASA?s Fundamental Aeronautics Program, contains a number of technical challenge areas which include sonic boom community response, airport noise, high altitude emissions, cruise efficiency, light weight durable engines/airframes, and integrated multi-discipline system design. This presentation provides an overview of the current (2011) activities in the supersonic cruise efficiency technical challenge, and is focused specifically on propulsion technologies. The intent is to develop and validate high-performance supersonic inlet and nozzle technologies. Additional work is planned for design and analysis tools for highly-integrated low-noise, low-boom applications. If successful, the payoffs include improved technologies and tools for optimized propulsion systems, propulsion technologies for a minimized sonic boom signature, and a balanced approach to meeting efficiency and community noise goals. In this propulsion area, the work is divided into advanced supersonic inlet concepts, advanced supersonic nozzle concepts, low fidelity computational tool development, high fidelity computational tools, and improved sensors and measurement capability. The current work in each area is summarized.
Technology demonstration of starshade manufacturing for NASA's Exoplanet mission program
NASA Astrophysics Data System (ADS)
Kasdin, N. J.; Lisman, D.; Shaklan, S.; Thomson, M.; Cady, E.; Martin, S.; Marchen, L.; Vanderbei, R. J.; Macintosh, B.; Rudd, R. E.; Savransky, D.; Mikula, J.; Lynch, D.
2012-09-01
It is likely that the coming decade will see the development of a large visible light telescope with enabling technology for imaging exosolar Earthlike planets in the habitable zone of nearby stars. One such technology utilizes an external occulter, a satellite flying far from the telescope and employing a large screen, or starshade, to suppress the incoming starlight suffciently for detecting and characterizing exoplanets. This trades the added complexity of building the precisely shaped starshade and flying it in formation against simplifications in the telescope since extremely precise wavefront control is no longer necessary. In this paper we present the results of our project to design, manufacture, and measure a prototype occulter petal as part of NASA's first Technology Development for Exoplanet Missions program. We describe the mechanical design of the starshade and petal, the precision manufacturing tolerances, and the metrology approach. We demonstrate that the prototype petal meets the requirements and is consistent with a full-size occulter achieving better than 10-10 contrast.
NASA Technical Reports Server (NTRS)
Castner, Ray
2012-01-01
The Supersonics Project, part of NASA's Fundamental Aeronautics Program, contains a number of technical challenge areas which include sonic boom community response, airport noise, high altitude emissions, cruise efficiency, light weight durable engines/airframes, and integrated multi-discipline system design. This presentation provides an overview of the current (2012) activities in the supersonic cruise efficiency technical challenge, and is focused specifically on propulsion technologies. The intent is to develop and validate high-performance supersonic inlet and nozzle technologies. Additional work is planned for design and analysis tools for highly-integrated low-noise, low-boom applications. If successful, the payoffs include improved technologies and tools for optimized propulsion systems, propulsion technologies for a minimized sonic boom signature, and a balanced approach to meeting efficiency and community noise goals. In this propulsion area, the work is divided into advanced supersonic inlet concepts, advanced supersonic nozzle concepts, low fidelity computational tool development, high fidelity computational tools, and improved sensors and measurement capability. The current work in each area is summarized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roeleveld, J.J.
1985-01-01
This dissertation develops a general model of technological substitution that could be of help to planners and decision makers in industry who are faced with the problems created by continual technological change. The model as presented differs from existing models in the theoretical literature because of its emphasis on analyzing current and potential technologies in an attempt to understand the underlying factors contributing to technological substitution. The general model and the cost model that is part of it belong to that step in the interactive planning cycle called the formulation of the mess. The methodology underlying the cost model ismore » a combination of life-cycle analysis (i.e., from raw materials in nature, through all intermediate products, to waste returned to the environment) and resoumetrics, which is an engineering approach to measuring all physical inputs required to produce a certain level of output. The models are illustrated with a specific field of interest: substitution of primary packaging technologies in the US brewing industry. The physical costs of packaging beer in different containers are compared. Strategic considerations for a brewery deciding to adopt plastic packaging technology are discussed. Attention is given to another potential fruitful application of the model in the field of technology transfer to developing countries.« less
NASA Technical Reports Server (NTRS)
Monaghan, R. C.
1981-01-01
The aeroelastically tailored outer wing and canard of the highly maneuverable aircraft technology (HiMAT) vehicle are closely examined and a general description of the overall structure of the vehicle is provided. Test data in the form of laboratory measured twist under load and predicted twist from the HiMAT NASTRAN structural design program are compared. The results of this comparison indicate that the measured twist is generally less than the NASTRAN predicted twist. These discrepancies in twist predictions are attributed, at least in part, to the inability of current analytical composite materials programs to provide sufficiently accurate properties of matrix dominated laminates for input into structural programs such as NASTRAN.
NASA Technical Reports Server (NTRS)
Przekop, Adam; Jegley, Dawn C.; Rouse, Marshall; Lovejoy, Andrew E.
2016-01-01
This report documents the comparison of test measurements and predictive finite element analysis results for a hybrid wing body center section test article. The testing and analysis efforts were part of the Airframe Technology subproject within the NASA Environmentally Responsible Aviation project. Test results include full field displacement measurements obtained from digital image correlation systems and discrete strain measurements obtained using both unidirectional and rosette resistive gauges. Most significant results are presented for the critical five load cases exercised during the test. Final test to failure after inflicting severe damage to the test article is also documented. Overall, good comparison between predicted and actual behavior of the test article is found.
Using Digital Technology to See Angles from Different Angles. Part 1: Corners
ERIC Educational Resources Information Center
Host, Erin; Baynham, Emily; McMaster, Heather
2014-01-01
In Part 1 of their article, Erin Host, Emily Baynham and Heather McMaster use a combination of digital technology and concrete materials to explore the concept of "corners". They provide a practical, easy to follow sequence of activities that builds on students' understandings. [For "Using Digital Technology to See Angles from…
Seeds of Innovation: Three Years of the Technology Innovation Challenge Grant Program.
ERIC Educational Resources Information Center
Harris, Larry A.
This publication describes the 62 projects that received 5-year Technology Innovation Challenge Grants beginning in 1995, 1996, and 1997, with reviews of the projects occurring in late 1999 and early 2000. Part 1 of the report describes the Technology Innovation Challenge Grant (TICG) program and its importance. Part 2 contains the project…
The 21st Century Community College: Technology and the New Learning Paradigm.
ERIC Educational Resources Information Center
Johnson, Larry, Ed.; Lobello, Sharon T., Ed.
Resulting from a forum for community college leaders exploring the effects of technological change on education, this three-part monograph discusses the role of technology in community colleges and reviews strategies for responding to changes. The first part addresses the vision and leadership needed to bring the colleges into the next century and…
NASA Technical Reports Server (NTRS)
Lepore, K. H.; Mackie, J.; Dyar, M. D.; Fassett, C. I.
2017-01-01
Information on emission lines for major and minor elements is readily available from the National Institute of Standards and Technology (NIST) as part of the Atomic Spectra Database. However, tabulated emission lines are scarce for some minor elements and the wavelength ranges presented on the NIST database are limited to those included in existing studies. Previous work concerning minor element calibration curves measured using laser-induced break-down spectroscopy found evidence of Zn emission lines that were not documented on the NIST database. In this study, rock powders were doped with Rb, Ce, La, Sr, Y, Zr, Pb and Se in concentrations ranging from 10 percent to 10 parts per million. The difference between normalized spectra collected on samples containing 10 percent dopant and those containing only 10 parts per million were used to identify all emission lines that can be detected using LIBS (Laser-Induced Breakdown Spectroscopy) in a ChemCam-like configuration at the Mount Holyoke College LIBS facility. These emission spectra provide evidence of many previously undocumented emission lines for the elements measured here.
The Multiple Doppler Radar Workshop, November 1979.
NASA Astrophysics Data System (ADS)
Carbone, R. E.; Harris, F. I.; Hildebrand, P. H.; Kropfli, R. A.; Miller, L. J.; Moninger, W.; Strauch, R. G.; Doviak, R. J.; Johnson, K. W.; Nelson, S. P.; Ray, P. S.; Gilet, M.
1980-10-01
The findings of the Multiple Doppler Radar Workshop are summarized by a series of six papers. Part I of this series briefly reviews the history of multiple Doppler experimentation, fundamental concepts of Doppler signal theory, and organization and objectives of the Workshop. Invited presentations by dynamicists and cloud physicists are also summarized.Experimental design and procedures (Part II) are shown to be of critical importance. Well-defined and limited experimental objectives are necessary in view of technological limitations. Specified radar scanning procedures that balance temporal and spatial resolution considerations are discussed in detail. Improved siting for suppression of ground clutter as well as scanning procedures to minimize errors at echo boundaries are discussed. The need for accelerated research using numerically simulated proxy data sets is emphasized.New technology to eliminate various sampling limitations is cited as an eventual solution to many current problems in Part III. Ground clutter contamination may be curtailed by means of full spectral processing, digital filters in real time, and/or variable pulse repetition frequency. Range and velocity ambiguities also may be minimized by various pulsing options as well as random phase transmission. Sidelobe contamination can be reduced through improvements in radomes, illumination patterns, and antenna feed types. Radar volume-scan time can be sharply reduced by means of wideband transmission, phased array antennas, multiple beam antennas, and frequency agility.Part IV deals with synthesis of data from several radars in the context of scientific requirements in cumulus clouds, widespread precipitation, and severe convective storms. The important temporal and spatial scales are examined together with the accuracy required for vertical air motion in each phenomenon. Factors that introduce errors in the vertical velocity field are identified and synthesis techniques are discussed separately for the dual Doppler and multiple Doppler cases. Various filters and techniques, including statistical and variational approaches, are mentioned. Emphasis is placed on the importance of experiment design and procedures, technological improvements, incorporation of all information from supporting sensors, and analysis priority for physically simple cases. Integrated reliability is proposed as an objective tool for radar siting.Verification of multiple Doppler-derived vertical velocity is discussed in Part V. Three categories of verification are defined as direct, deductive, and theoretical/numerical. Direct verification consists of zenith-pointing radar measurements (from either airborne or ground-based systems), air motion sensing aircraft, instrumented towers, and tracking of radar chaff. Deductive sources include mesonetworks, aircraft (thermodynamic and microphysical) measurements, satellite observations, radar reflectivity, multiple Doppler consistency, and atmospheric soundings. Theoretical/numerical sources of verification include proxy data simulation, momentum checking, and numerical cloud models. New technology, principally in the form of wide bandwidth radars, is seen as a development that may reduce the need for extensive verification of multiple Doppler-derived vertical air motions. Airborne Doppler radar is perceived as the single most important source of verification within the bounds of existing technology.Nine stages of data processing and display are identified in Part VI. The stages are identified as field checks, archival, selection, editing, coordinate transformation, synthesis of Cartesian fields, filtering, display, and physical analysis. Display of data is considered to be a problem critical to assimilation of data at all stages. Interactive computing systems and software are concluded to be very important, particularly for the editing stage. Three- and 4-dimensional displays are considered essential for data assimilation, particularly at the physical analysis stage. The concept of common data tape formats is approved both for data in radar spherical space as well as for synthesized Cartesian output.1169
NASA Technical Reports Server (NTRS)
2003-01-01
While most parents would agree that playing videos games is the antithesis of time well spent for their children, recent advances involving NASA biofeedback technology are proving otherwise. The same techniques used to measure brain activity in NASA pilots during flight simulation exercises are now a part of a revolutionary video game system that is helping to improve overall mental awareness for Americans of all ages, including those who suffer from Attention Deficit Hyperactivity Disorder (ADHD).
NASA-sponsored containerless processing experiments
NASA Technical Reports Server (NTRS)
Hofmeister, William H.
1990-01-01
An outline is presented of containerless processing and facilities at Intersonics which is sponsored by NASA. There are electromagnetic, acoustic, and aerodynamic levitation facilities. There are also laser beam and arc lamp heating systems along with state of the art noncontact temperature and optical property measurement facilities. Nonintrusive diagnostic techniques with Laser Induced Fluorescence and mass spectrometer are also available. Controlled atmosphere processing, gas quenching, and proven microgravity processing technology is part of the Intersonics capabilities.
Pulsed Corona Discharge Generated By Marx Generator
NASA Astrophysics Data System (ADS)
Sretenovic, G. B.; Obradovic, B. M.; Kovacevic, V. V.; Kuraica, M. M.; Puric J.
2010-07-01
The pulsed plasma has a significant role in new environmental protection technologies. As a part of a pulsed corona system for pollution control applications, Marx type repetitive pulse generator was constructed and tested in arrangement with wire-plate corona reactor. We performed electrical measurements, and obtained voltage and current signals, and also power and energy delivered per pulse. Ozone formation by streamer plasma in air was chosen to monitor chemical activity of the pulsed corona discharge.
Validation of Aurora Solar Inc.'s Envision Software Capabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
As part of the Department of Energy's SunShot Incubator program, Aurora has worked to develop a web-based application that quickly and precisely calculates the solar potential of a building's roof. The Aurora Envision platform utilizes Google StreetView photos as a basis for measuring roof slope and linear measurements of determining the proper inputs into an eventual shade model. The stated accuracy by Aurora Solar to be tested is lengths within 1.5 feet and slope measurements within 5 degrees. The National Renewable Energy Laboratory (NREL), in partnership with Aurora and supported by the U.S. Department of Energy's (DOE) SunShot Technology tomore » Market Incubator program, independently verified the accuracy of Aurora's Envision measurements on 15 unique roofs throughout the Denver, Colorado region. NREL measured 60 measurements: 27 of 28 slope measurements were within the stated accuracy, 32 of 32 distance measurements were within the stated accuracy.« less
Cleaning Process Development for Metallic Additively Manufactured Parts
NASA Technical Reports Server (NTRS)
Tramel, Terri L.; Welker, Roger; Lowery, Niki; Mitchell, Mark
2014-01-01
Additive Manufacturing of metallic components for aerospace applications offers many advantages over traditional manufacturing techniques. As a new technology, many aspects of its widespread utilization remain open to investigation. Among these are the cleaning processes that can be used for post finishing of parts and measurements to verify effectiveness of the cleaning processes. Many cleaning and drying processes and measurement methods that have been used for parts manufactured using conventional techniques are candidates that may be considered for cleaning and verification of additively manufactured parts. Among these are vapor degreasing, ultrasonic immersion and spray cleaning, followed by hot air drying, vacuum baking and solvent displacement drying. Differences in porosity, density, and surface finish of additively manufactured versus conventionally manufactured parts may introduce new considerations in the selection of cleaning and drying processes or the method used to verify their effectiveness. This presentation will review the relative strengths and weaknesses of different candidate cleaning and drying processes as they may apply to additively manufactured metal parts for aerospace applications. An ultrasonic cleaning technique for exploring the cleanability of parts will be presented along with an example using additively manufactured Inconel 718 test specimens to illustrate its use. The data analysis shows that this ultrasonic cleaning approach results in a well-behaved ultrasonic cleaning/extraction behavior. That is, it does not show signs of accelerated cavitation erosion of the base material, which was later confirmed by neutron imaging. In addition, the analysis indicated that complete cleaning would be achieved by ultrasonic immersion cleaning at approximately 5 minutes, which was verified by subsequent cleaning of additional parts.
VZLUSAT-1: verification of new materials and technologies for space
NASA Astrophysics Data System (ADS)
Daniel, Vladimir; Urban, Martin; Nentvich, Ondrej; Stehlikova, Veronika
2016-09-01
CubeSats are a good opportunity to test new technologies and materials on orbit. These innovations can be later used for improving of properties and life length of Cubesat or other satellites as well. VZLUSAT-1 is a small satellite from the CubeSat family, which will carry a wide scale of payloads with different purposes. The poster is focused on measuring of degradation and properties measurement of new radiation hardened composite material in orbit due to space environment. Material properties changes can be studied by many methods and in many disciplines. One payload measures mechanical changes in dependence on Young's modulus of elasticity which is got from non-destructive testing by mechanical vibrations. The natural frequencies we get using Fast Fourier Transform. The material is tested also by several thermometers which measure heat distribution through the composite, as well as reflectivity in dependence on different coatings. The satellite also will measure the material radiation shielding properties. There are PIN diodes which measure the relative shielding efficiency of composite and how it will change in time in space environment. Last one of material space testing is measurement of outgassing from tested composite material. It could be very dangerous for other parts of satellite, like detectors, when anything was outgassing, for example water steam. There are several humidity sensors which are sensitive to steam and other gases and measures temperatures as well.
Medical device integration using mobile telecommunications infrastructure.
Moorman, Bridget A; Cockle, Richard A
2013-01-01
Financial pressures, an aging population, and a rising number of patients with chronic diseases, have encouraged the use of remote monitoring technologies. This usually entails at least one physiological parameter measurement for a clinician. Mobile telecommunication technologies lend themselves to this functionality, and in some cases, avoid some of the issues encountered with device integration. Moreover, the inherent characteristics of the mobile telecommunications infrastructure allow a coupling of business and clinical functions that were not possible before. Table I compares and contrasts some key aspect of device integration in and out of a healthcare facility. An HTM professional may be part of the team that acquires and/or manages a system using a mobile telecommunications technology. It is important for HTM professionals to ensure the data is in a standard format so that the interfaces across this system don't become brittle and break easily if one part changes. Moreover, the security and safety considerations of the system and the data should be a primary consideration in and y purchase, with attention given to the proper environmental and encryption mechanisms. Clinical engineers and other HTM professionals are unique in that they understand the patient/clinician/device interface and the need to ensure its safety and effectiveness regardless of geographical environment.
Precision machining of advanced materials with waterjets
NASA Astrophysics Data System (ADS)
Liu, H. T.
2017-01-01
Recent advances in abrasive waterjet technology have elevated to the state that it often competes on equal footing with lasers and EDM for precision machining. Under the support of a National Science Foundation SBIR Phase II grant, OMAX has developed and commercialized micro abrasive water technology that is incorporated into a MicroMAX® JetMa- chining® Center. Waterjet technology, combined both abrasive waterjet and micro abrasive waterjet technology, is capable of machining most materials from macro to micro scales for a wide range of part size and thickness. Waterjet technology has technological and manufacturing merits that cannot be matched by most existing tools. As a cold cutting tool that creates no heat-affected zone, for example, waterjet cuts much faster than wire EDM and laser when measures to minimize a heat-affected zone are taken into account. In addition, waterjet is material independent; it cuts materials that cannot be cut or are difficult to cut otherwise. The versatility of waterjet has also demonstrated machining simulated nanomaterials with large gradients of material properties from metal, nonmetal, to anything in between. This paper presents waterjet-machined samples made of a wide range of advanced materials from macro to micro scales.
Randomness in quantum mechanics: philosophy, physics and technology.
Bera, Manabendra Nath; Acín, Antonio; Kuś, Marek; Mitchell, Morgan W; Lewenstein, Maciej
2017-12-01
This progress report covers recent developments in the area of quantum randomness, which is an extraordinarily interdisciplinary area that belongs not only to physics, but also to philosophy, mathematics, computer science, and technology. For this reason the article contains three parts that will be essentially devoted to different aspects of quantum randomness, and even directed, although not restricted, to various audiences: a philosophical part, a physical part, and a technological part. For these reasons the article is written on an elementary level, combining simple and non-technical descriptions with a concise review of more advanced results. In this way readers of various provenances will be able to gain while reading the article.
Randomness in quantum mechanics: philosophy, physics and technology
NASA Astrophysics Data System (ADS)
Nath Bera, Manabendra; Acín, Antonio; Kuś, Marek; Mitchell, Morgan W.; Lewenstein, Maciej
2017-12-01
This progress report covers recent developments in the area of quantum randomness, which is an extraordinarily interdisciplinary area that belongs not only to physics, but also to philosophy, mathematics, computer science, and technology. For this reason the article contains three parts that will be essentially devoted to different aspects of quantum randomness, and even directed, although not restricted, to various audiences: a philosophical part, a physical part, and a technological part. For these reasons the article is written on an elementary level, combining simple and non-technical descriptions with a concise review of more advanced results. In this way readers of various provenances will be able to gain while reading the article.
Information Technology Resources Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-04-01
The Information Technology Resources Assessment (ITRA) is being published as a companion document to the Department of Energy (DOE) FY 1994--FY 1998 Information Resources Management Long-Range Plan. This document represents a collaborative effort between the Office of Information Resources Management and the Office of Energy Research that was undertaken to achieve, in part, the Technology Strategic Objective of IRM Vision 21. An integral part of this objective, technology forecasting provides an understanding of the information technology horizon and presents a perspective and focus on technologies of particular interest to DOE program activities. Specifically, this document provides site planners with anmore » overview of the status and use of new information technology for their planning consideration.« less
Wind tunnel tests of the dynamic characteristics of the fluidic rudder
NASA Technical Reports Server (NTRS)
Belsterling, C. A.
1976-01-01
The fourth phase is given of a continuing program to develop the means to stabilize and control aircraft without moving parts or a separate source of power. Previous phases have demonstrated the feasibility of (1) generating adequate control forces on a standard airfoil, (2) controlling those forces with a fluidic amplifier and (3) cascading non-vented fluidic amplifiers operating on ram air supply pressure. The foremost objectives of the fourth phase covered under Part I of this report were to demonstrate a complete force-control system in a wind tunnel environment and to measure its static and dynamic control characteristics. Secondary objectives, covered under Part II, were to evaluate alternate configurations for lift control. The results demonstrate an overall response time of 150 msec, confirming this technology as a viable means for implementing low-cost reliable flight control systems.
The pattern of childhood accidents in south-western Nigeria
Sinnette, Calvin H.
1969-01-01
All childhood accidents treated at the University College Hospital, Ibadan, Nigeria, during a 4-year period are analysed. The pattern of childhood injuries in the part of Nigeria served by this hospital does not differ significantly from the pattern reported in studies from other parts of the world. The chain of events leading to an accident appears in large measure to be directly influenced by the mode of life in the community. This in turn is related to the prevailing level of technological development. There is an obvious need for more exhaustive studies of childhood accidents in developing countries. However, these countries need not wait for this information to become available before initiating accident-prevention programmes. PMID:5309535
Thermal expansion coefficient determination of polylactic acid using digital image correlation
NASA Astrophysics Data System (ADS)
Botean, Adrian-Ioan
2018-02-01
This paper aims determining the linear thermal expansion coefficient (CTE) of polylactic acid (PLA) using an optical method for measuring deformations called digital image correlation method (DIC). Because PLA is often used in making many pieces with 3D printing technology, it is opportune to know this coefficient to obtain a higher degree of precision in the construction of parts and to monitor deformations when these parts are subjected to a thermal gradient. Are used two PLA discs with 20 and 40% degree of filling. In parallel with this approach was determined the linear thermal expansion coefficient (CTE) for the copper cylinder on the surface of which are placed the two discs of PLA.
Research on rapid agile metrology for manufacturing based on real-time multitask operating system
NASA Astrophysics Data System (ADS)
Chen, Jihong; Song, Zhen; Yang, Daoshan; Zhou, Ji; Buckley, Shawn
1996-10-01
Rapid agile metrology for manufacturing (RAMM) using multiple non-contact sensors is likely to remain a growing trend in manufacturing. High speed inspecting systems for manufacturing is characterized by multitasks implemented in parallel and real-time events which occur simultaneously. In this paper, we introduce a real-time operating system into RAMM research. A general task model of a class-based object- oriented technology is proposed. A general multitask frame of a typical RAMM system using OPNet is discussed. Finally, an application example of a machine which inspects parts held on a carrier strip is described. With RTOS and OPNet, this machine can measure two dimensions of the contacts at 300 parts/second.
Practical aspects of modern interferometry for optical manufacturing quality control: Part 2
NASA Astrophysics Data System (ADS)
Smythe, Robert
2012-07-01
Modern phase shifting interferometers enable the manufacture of optical systems that drive the global economy. Semiconductor chips, solid-state cameras, cell phone cameras, infrared imaging systems, space based satellite imaging and DVD and Blu-Ray disks are all enabled by phase shifting interferometers. Theoretical treatments of data analysis and instrument design advance the technology but often are not helpful towards the practical use of interferometers. An understanding of the parameters that drive system performance is critical to produce useful results. Any interferometer will produce a data map and results; this paper, in three parts, reviews some of the key issues to minimize error sources in that data and provide a valid measurement.
Practical aspects of modern interferometry for optical manufacturing quality control, Part 3
NASA Astrophysics Data System (ADS)
Smythe, Robert A.
2012-09-01
Modern phase shifting interferometers enable the manufacture of optical systems that drive the global economy. Semiconductor chips, solid-state cameras, cell phone cameras, infrared imaging systems, space-based satellite imaging, and DVD and Blu-Ray disks are all enabled by phase-shifting interferometers. Theoretical treatments of data analysis and instrument design advance the technology but often are not helpful toward the practical use of interferometers. An understanding of the parameters that drive the system performance is critical to produce useful results. Any interferometer will produce a data map and results; this paper, in three parts, reviews some of the key issues to minimize error sources in that data and provide a valid measurement.
Teaching Einsteinian physics at schools: part 3, review of research outcomes
NASA Astrophysics Data System (ADS)
Kaur, Tejinder; Blair, David; Moschilla, John; Stannard, Warren; Zadnik, Marjan
2017-11-01
This paper reviews research results obtained from Einsteinian physics programs run by different instructors with Years 6, 9, 10 and 11 students using the models and analogies described in parts 1 and 2. The research aimed to determine whether it is possible to teach Einsteinian physics and to measure the changes in student attitudes to physics engendered by introducing the modern concepts that underpin technology today. Results showed that students easily coped with the concepts of Einsteinian physics, and considered that they were not too young for the material presented. Importantly, in all groups, girls improved their attitude to physics considerably more than the boys, generally achieving near parity with the boys.
NASA Astrophysics Data System (ADS)
Nagorkin, M. N.; Fyodorov, V. P.; Kovalyova, E. V.
2018-03-01
The paper presents a methodology for quantitative assessment of the influence of technological heredity on the formation of quality parameters for surfaces of machine parts. An example of an estimation of influence factors of technological subsystems of processing by end milling processing by composite 10 and the subsequent diamond burnishing is presented.
NASA Astrophysics Data System (ADS)
Crassous, Jerome; Gabay, Claude; Liogier, Gaetan; Berge, Bruno
2004-12-01
A new technology for focus variation with direct electric control without moving part will be presented. The technology relies on an interface between two non-miscible transparent liquids, which can be deformed by electrowetting. This technology has been developed since 10 years in the lab and starts to be available commercially, with the following characteristics: large amplitude of dioptric correction (20 dioptries for a 5mm pupil size), fast response, small power consumption and good transmission in the visible range, clear pupil 1-10mm diameter. This paper will show the basic principle, as well as the physical limitations and optical aberrations due to differential thermal expansion of the two liquids in the cell. Experimental measurements made with a Schack Hartmann wave front analyzer will be presented, as well as numerical simulations of the liquid-liquid interface. Applications will be discussed, mainly in consumer electronics.
Implementation of Wireless and Intelligent Sensor Technologies in the Propulsion Test Environment
NASA Technical Reports Server (NTRS)
Solano, Wanda M.; Junell, Justin C.; Shumard, Kenneth
2003-01-01
From the first Saturn V rocket booster (S-II-T) testing in 1966 and the routine Space Shuttle Main Engine (SSME) testing beginning in 1975, to more recent test programs such as the X-33 Aerospike Engine, the Integrated Powerhead Development (IPD) program, and the Hybrid Sounding Rocket (HYSR), Stennis Space Center (SSC) continues to be a premier location for conducting large-scale propulsion testing. Central to each test program is the capability for sensor systems to deliver reliable measurements and high quality data, while also providing a means to monitor the test stand area to the highest degree of safety and sustainability. As part of an on-going effort to enhance the testing capabilities of Stennis Space Center, the Test Technology and Development group is developing and applying a number of wireless and intelligent sensor technologies in ways that are new to the test existing test environment.
Momentum and velocity of the ablated material in laser machining of carbon fiber preforms
NASA Astrophysics Data System (ADS)
Mucha, P.; Speker, N.; Weber, R.; Graf, T.
2013-11-01
The automation in fabrication of CFRP (carbon-fiber-reinforced plastics) parts demands efficient and low-cost machining technologies. In conventional cutting technologies, tool-wear and low process speeds are some of the reasons for high costs. Thus, the use of lasers is an attractive option for cutting CF-preforms. A typical effect degrading the quality in laser cutting CF-preform is a bulged cutting edge. This effect is assumed to be caused by interaction of the fibers with the ablated material, which leaves the kerf at high velocity. Hence, a method for measuring the momentum and the velocity of the vapor is presented in this article. To measure the momentum of the ablated material, the CF-preform is mounted on a precision scale while cutting it with a laser. The direction of the momentum was determined by measuring the momentum parallel and orthogonal to the CF-preform surface. A change of the direction of the momentum with different cutting-speeds is assessed at constant laser-power. Averaged velocities of the ablation products of up to 300 m/s were determined by measuring the ablated mass and the momentum.
The science of sustainable supply chains.
O'Rourke, Dara
2014-06-06
Recent advances in the science and technology of global supply chain management offer near-real-time demand-response systems for decision-makers across production networks. Technology is helping propel "fast fashion" and "lean manufacturing," so that companies are better able to deliver products consumers want most. Yet companies know much less about the environmental and social impacts of their production networks. The failure to measure and manage these impacts can be explained in part by limitations in the science of sustainability measurement, as well as by weaknesses in systems to translate data into information that can be used by decision-makers inside corporations and government agencies. There also remain continued disincentives for firms to measure and pay the full costs of their supply chain impacts. I discuss the current state of monitoring, measuring, and analyzing information related to supply chain sustainability, as well as progress that has been made in translating this information into systems to advance more sustainable practices by corporations and consumers. Better data, decision-support tools, and incentives will be needed to move from simply managing supply chains for costs, compliance, and risk reduction to predicting and preventing unsustainable practices. Copyright © 2014, American Association for the Advancement of Science.
Design and evaluation of the ONC health information technology curriculum
Mohan, Vishnu; Abbott, Patricia; Acteson, Shelby; Berner, Eta S; Devlin, Corkey; Hammond, William E; Kukafka, Rita; Hersh, William
2014-01-01
Objective As part of the Heath Information Technology for Economic and Clinical Health (HITECH) Act, the Office of the National Coordinator for Health Information Technology (ONC) implemented its Workforce Development Program, which included initiatives to train health information technology (HIT) professionals in 12 workforce roles, half of them in community colleges. To achieve this, the ONC tasked five universities with established informatics programs with creating curricular materials that could be used by community colleges. The five universities created 20 components that were made available for downloading from the National Training and Dissemination Center (NTDC) website. This paper describes an evaluation of the curricular materials by its intended audience of educators. Methods We measured the quantity of downloads from the NTDC site and administered a survey about the curricular materials to its registered users to determine use patterns and user characteristics. The survey was evaluated using mixed methods. Registered users downloaded nearly half a million units or components from the NTDC website. We surveyed these 9835 registered users. Results 1269 individuals completed all or part of the survey, of whom 339 identified themselves as educators (26.7% of all respondents). This paper addresses the survey responses of educators. Discussion Successful aspects of the curriculum included its breadth, convenience, hands-on and course planning capabilities. Several areas were identified for potential improvement. Conclusions The ONC HIT curriculum met its goals for community college programs and will likely continue to be a valuable resource for the larger informatics community in the future. PMID:23831832
Design and evaluation of the ONC health information technology curriculum.
Mohan, Vishnu; Abbott, Patricia; Acteson, Shelby; Berner, Eta S; Devlin, Corkey; Hammond, William E; Kukafka, Rita; Hersh, William
2014-01-01
As part of the Heath Information Technology for Economic and Clinical Health (HITECH) Act, the Office of the National Coordinator for Health Information Technology (ONC) implemented its Workforce Development Program, which included initiatives to train health information technology (HIT) professionals in 12 workforce roles, half of them in community colleges. To achieve this, the ONC tasked five universities with established informatics programs with creating curricular materials that could be used by community colleges. The five universities created 20 components that were made available for downloading from the National Training and Dissemination Center (NTDC) website. This paper describes an evaluation of the curricular materials by its intended audience of educators. We measured the quantity of downloads from the NTDC site and administered a survey about the curricular materials to its registered users to determine use patterns and user characteristics. The survey was evaluated using mixed methods. Registered users downloaded nearly half a million units or components from the NTDC website. We surveyed these 9835 registered users. 1269 individuals completed all or part of the survey, of whom 339 identified themselves as educators (26.7% of all respondents). This paper addresses the survey responses of educators. Successful aspects of the curriculum included its breadth, convenience, hands-on and course planning capabilities. Several areas were identified for potential improvement. The ONC HIT curriculum met its goals for community college programs and will likely continue to be a valuable resource for the larger informatics community in the future.
Technologies for Nondestructive Evaluation of Surfaces and Thin Coatings
NASA Technical Reports Server (NTRS)
1999-01-01
The effort included in this project included several related activities encompassing basic understanding, technological development, customer identification and commercial transfer of several methodologies for nondestructive evaluation of surfaces and thin surface coatings. Consistent with the academic environment, students were involved in the effort working with established investigators to further their training, provide a nucleus of experienced practitioners in the new technologies during their industrial introduction, and utilize their talents for project goals. As will be seen in various portions of the report, some of the effort has led to commercialization. This process has spawned other efforts related to this project which are supported from outside sources. These activities are occupying the efforts of some of the people who were previously supported within this grant and its predecessors. The most advanced of the supported technologies is thermography, for which the previous joint efforts of the investigators and NASA researchers have developed several techniques for extending the utility of straight thermographic inspection by producing methods of interpretation and analysis accessible to automatic image processing with computer data analysis. The effort reported for this technology has been to introduce the techniques to new user communities, who are then be able to add to the effective uses of existing products with only slight development work. In a related development, analysis of a thermal measurement situation in past efforts led to a new insight into the behavior of simple temperature probes. This insight, previously reported to the narrow community in which the particular measurement was made, was reported to the community of generic temperature measurement experts this year. In addition to the propagation of mature thermographic techniques, the development of a thermoelastic imaging system has been an important related development. Part of the work carried out in the effort reported here has been to prepare reports introducing the newly commercially available thermoelastic measurements to the appropriate user communities.
Measuring the free neutron lifetime to <= 0.3s via the beam method
NASA Astrophysics Data System (ADS)
Fomin, Nadia
2017-09-01
Neutron beta decay is an archetype for all semi-leptonic charged-current weak processes. While of interest as a fundamental particle property, a precise value for the neutron lifetime is also required for consistency tests of the Standard Model as well as to calculate the primordial 4He abundance in Big Bang Nucleosynthesis models. An effort has begun to develop an in-beam measurement of the neutron lifetime with a projected <= 0.3s uncertainty. This effort is part of a phased campaign of neutron lifetime measurements based at the NIST Center for Neutron Research, using the Sussex-ILL-NIST technique. Recent advances in neutron fluence measurement techniques as well as new large area silicon detector technology address the two largest sources of uncertainty of in-beam measurements, paving the way for a new measurement. The experimental design and projected uncertainties for the 0.3s measurement will be discussed.
Measuring the free neutron lifetime to <= 0.3s via the beam method
NASA Astrophysics Data System (ADS)
Mulholland, Jonathan; Fomin, Nadia; BL3 Collaboration
2015-10-01
Neutron beta decay is an archetype for all semi-leptonic charged-current weak processes. A precise value for the neutron lifetime is required for consistency tests of the Standard Model and is needed to predict the primordial 4He abundance from the theory of Big Bang Nucleosynthesis. An effort has begun for an in-beam measurement of the neutron lifetime with an projected <=0.3s uncertainty. This effort is part of a phased campaign of neutron lifetime measurements based at the NIST Center for Neutron Research, using the Sussex-ILL-NIST technique. Recent advances in neutron fluence measurement techniques as well as new large area silicon detector technology address the two largest sources of uncertainty of in-beam measurements, paving the way for a new measurement. The experimental design and projected uncertainties for the 0.3s measurement will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, David J.; Strom, Daniel J.
This paper is part one of a three-part series investigating annual effective doses to residents of the United States from intakes of ubiquitous radionuclides, including radionuclides occurring naturally, radionuclides whose concentrations are technologically enhanced, and anthropogenic radionuclides. This series of papers explicitly excludes intakes from inhaling 222Rn, 220Rn, and their short-lived decay products; it also excludes intakes of radionuclides in occupational and medical settings. The goal of part one of this work was to review, summarize, and characterize all published and some unpublished data for U.S. residents on ubiquitous radionuclide concentrations in tissues and organs. Forty-five papers and reports weremore » obtained and their data reviewed, and three data sets were obtained via private communication. The 45 radionuclides of interest are the 238U series (14 nuclides), the actinium series (headed by 235U; 11 nuclides), and the 232Th series (11 nuclides); primordial radionuclides 87Rb and 40 K; cosmogenic and fallout radionuclides 14C and 3H; and purely anthropogenic radionuclides 137Cs-137mBa, 129I, and 90Sr-90Y. Measurements judged to be relevant were available for only 15 of these radionuclides: 238U, 235U, 234U, 232Th, 230Th, 228Th, 228Ra, 226Ra, 210Pb, 210Po, 137Cs, 87Rb, 40K, 14C, and 3H. Recent and relevant measurements were not available for 129I and 90Sr-90Y. A total of 11,714 radionuclide concentration measurements were found in one or more tissues or organs from 14 States. Data on age, sex, geographic locations, height, and weight of subjects were available only sporadically. Too often authors did not provide meaningful values of uncertainty of measurements so that variability in data sets is confounded with measurement uncertainty. The following papers detail how these shortcomings are overcome to achieve the goals of the three-part series.« less
A new sensor for the assessment of personal exposure to volatile organic compounds
NASA Astrophysics Data System (ADS)
Chen, Cheng; Driggs Campbell, Katherine; Negi, Indira; Iglesias, Rodrigo A.; Owens, Patrick; Tao, Nongjian; Tsow, Francis; Forzani, Erica S.
2012-07-01
To improve our understanding of indoor and outdoor personal exposures to common environmental toxicants released into the environment, new technologies that can monitor and quantify the toxicants anytime anywhere are needed. This paper presents a wearable sensor to provide such capabilities. The sensor can communicate with a common smart phone and provides accurate measurement of volatile organic compound concentration at a personal level in real-time, providing environmental toxicants data every three minutes. The sensor has high specificity and sensitivity to aromatic, alkyl, and chlorinated hydrocarbons with a resolution as low as 4 parts-per-billion (ppb), with a detection range of 4 ppb-1000 ppm (parts-per-million). The sensor's performance was validated using Gas Chromatography and Selected Ion Flow Tube - Mass Spectrometry reference methods in a variety of environments and activities with overall accuracy higher than 81% (r2 > 0.9). Field tests examined personal exposure in various scenarios including: indoor and outdoor environments, traffic exposure in different cities which vary from 0 to 50 ppmC (part-per-million carbon from hydrocarbons), and pollutants near the 2010 Deepwater Horizon's oil spill. These field tests not only validated the performance but also demonstrated unprecedented high temporal and spatial toxicant information provided by the new technology.
A New Sensor for the Assessment of Personal Exposure to Volatile Organic Compounds
Chen, Cheng; Campbell, Katherine Driggs; Negi, Indira; Iglesias, Rodrigo A.; Owens, Patrick; Tao, Nongjian; Tsow, Francis; Forzani, Erica
2012-01-01
To improve our understanding of indoor and outdoor personal exposures to common environmental toxicants released into the environment, new technologies that can monitor and quantify the toxicants anytime anywhere are needed. This paper presents a wearable sensor to provide such capabilities. The sensor can communicate with a common smart phone and provides accurate measurement of volatile organic compound concentration at a personal level in real time, providing environmental toxicants data every three minutes. The sensor has high specificity and sensitivity to aromatic, alkyl, and chlorinated hydrocarbons with a resolution as low as 4 parts per billion (ppb), with a detection range of 4 ppb to 1000 ppm (parts per million). The sensor's performance was validated using Gas Chromatography and Selected Ion Flow Tube - Mass Spectrometry reference methods in a variety of environments and activities with overall accuracy higher than 81% (r2 > 0.9). Field tests examined personal exposure in various scenarios including: indoor and outdoor environments, traffic exposure in different cities which vary from 0 to 50 ppmC (part-per-million carbon from hydrocarbons), and pollutants near the 2010 Deepwater Horizon's oil spill. These field tests not only validated the performance but also demonstrated unprecedented high temporal and spatial toxicant information provided by the new technology. PMID:22736952
Code of Federal Regulations, 2010 CFR
2010-01-01
... (CONTINUED) ASSISTANCE REGULATIONS FINANCIAL ASSISTANCE RULES General § 600.1 Purpose. This part implements... procedures applicable to the award and administration of grants, cooperative agreements, and technology investment agreements. The specific guidance for technology investment agreements is contained in part 603...
Technology, Utopia and Scholarly Life: Ideals and Realities in the Work of Hermann Hesse
ERIC Educational Resources Information Center
Roberts, Peter
2009-01-01
This article considers the relationship between technology, utopia and scholarly life in Hermann Hesse's novel, "The Glass Bead Game." In the first part of Hesse's book, the Glass Bead Game and the society of which it is a part, Castalia, are portrayed in idealistic terms. The second part of the novel chronicles the educational life of Joseph…
Scholtens, Lianne H; de Reus, Marcel A; van den Heuvel, Martijn P
2015-08-01
The cerebral cortex is a distinctive part of the mammalian nervous system, displaying a spatial variety in cyto-, chemico-, and myelinoarchitecture. As part of a rich history of histological findings, pioneering anatomists von Economo and Koskinas provided detailed mappings on the cellular structure of the human cortex, reporting on quantitative aspects of cytoarchitecture of cortical areas. Current day investigations into the structure of human cortex have embraced technological advances in Magnetic Resonance Imaging (MRI) to assess macroscale thickness and organization of the cortical mantle in vivo. However, direct comparisons between current day MRI estimates and the quantitative measurements of early anatomists have been limited. Here, we report on a simple, but nevertheless important cross-analysis between the histological reports of von Economo and Koskinas on variation in thickness of the cortical mantle and MRI derived measurements of cortical thickness. We translated the von Economo cortical atlas to a subdivision of the commonly used Desikan-Killiany atlas (as part of the FreeSurfer Software package and a commonly used parcellation atlas in studies examining MRI cortical thickness). Next, values of "width of the cortical mantle" as provided by the measurements of von Economo and Koskinas were correlated to cortical thickness measurements derived from high-resolution anatomical MRI T1 data of 200+ subjects of the Human Connectome Project (HCP). Cross-correlation revealed a significant association between group-averaged MRI measurements of cortical thickness and histological recordings (r = 0.54, P < 0.001). Further validating such a correlation, we manually segmented the von Economo parcellation atlas on the standardized Colin27 brain dataset and applied the obtained three-dimensional von Economo segmentation atlas to the T1 data of each of the HCP subjects. Highly consistent with our findings for the mapping to the Desikan-Killiany regions, cross-correlation between in vivo MRI cortical thickness and von Economo histology-derived values of cortical mantle width revealed a strong positive association (r = 0.62, P < 0.001). Linking today's state-of-the-art T1-weighted imaging to early histological examinations our findings indicate that MRI technology is a valid method for in vivo assessment of thickness of human cortex. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Gunawardena, N.; Pardyjak, E. R.; Stoll, R.; Khadka, A.
2018-02-01
Over the last decade there has been a proliferation of low-cost sensor networks that enable highly distributed sensor deployments in environmental applications. The technology is easily accessible and rapidly advancing due to the use of open-source microcontrollers. While this trend is extremely exciting, and the technology provides unprecedented spatial coverage, these sensors and associated microcontroller systems have not been well evaluated in the literature. Given the large number of new deployments and proposed research efforts using these technologies, it is necessary to quantify the overall instrument and microcontroller performance for specific applications. In this paper, an Arduino-based weather station system is presented in detail. These low-cost energy-budget measurement stations, or LEMS, have now been deployed for continuous measurements as part of several different field campaigns, which are described herein. The LEMS are low-cost, flexible, and simple to maintain. In addition to presenting the technical details of the LEMS, its errors are quantified in laboratory and field settings. A simple artificial neural network-based radiation-error correction scheme is also presented. Finally, challenges and possible improvements to microcontroller-based atmospheric sensing systems are discussed.
Some Aspects in Photogrammetry Education at the Department of Geodesy and Cadastre of the VGTU
NASA Astrophysics Data System (ADS)
Ruzgienė, Birutė
2008-03-01
The education in photogrammetry is very important when applying photogrammetric methods for the terrain mapping purposes, for spatial data modelling, solving engineering tasks, measuring of architectural monuments etc. During the time the traditional photogrammetric technologies have been changing to modern fully digital photogrammetric workflow. The number of potential users of the photogrammetric methods tends to increase, because of high-degree automation in photographs (images) processing. The main subjects in Photogrammetry (particularly in Digital Photogrammetry) educational process are discussed. Different methods and digital systems are demonstrated with the examples of aerial photogrammetry products. The main objective is to search the possibilities for training in the photogrammetric measurements. Special attention is paid to the stereo plotting from aerial photography applying modified for teaching analytical technology. The integration of functionality of Digital Photogrammetric Systems and Digital Image Processing is analysed as well with an intention of extending the application areas and possibilities for usage of modern technologies in urban mapping and land cadastre. The practical presentation of photos geometry restitution is implemented as significant part of the studies. The interactive teaching for main photogrammetric procedures and controlling systems are highly desirable that without any doubt improve the quality of educational process.
New Developments in the Technology Readiness Assessment Process in US DOE-EM - 13247
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krahn, Steven; Sutter, Herbert; Johnson, Hoyt
2013-07-01
A Technology Readiness Assessment (TRA) is a systematic, metric-based process and accompanying report that evaluates the maturity of the technologies used in systems; it is designed to measure technology maturity using the Technology Readiness Level (TRL) scale pioneered by the National Aeronautics and Space Administration (NASA) in the 1980's. More recently, DoD has adopted and provided systematic guidance for performing TRAs and determining TRLs. In 2007 the GAO recommended that the DOE adopt the NASA/DoD methodology for evaluating technology maturity. Earlier, in 2006-2007, DOE-EM had conducted pilot TRAs on a number of projects at Hanford and Savannah River. In Marchmore » 2008, DOE-EM issued a process guide, which established TRAs as an integral part of DOE-EM's Project Management Critical Decision Process. Since the development of its detailed TRA guidance in 2008, DOE-EM has continued to accumulate experience in the conduct of TRAs and the process for evaluating technology maturity. DOE has developed guidance on TRAs applicable department-wide. DOE-EM's experience with the TRA process, the evaluations that led to recently developed proposed revisions to the DOE-EM TRA/TMP Guide; the content of the proposed changes that incorporate the above lessons learned and insights are described. (authors)« less
Where's the revolution? Digital technology and health care in the internet age.
Miller, Edward Alan; West, Darrell M
2009-04-01
Despite the growing use of online resources, it is unclear how many Americans are using the World Wide Web for different health-related purposes and whether factors promoting use of the Internet in health care correspond with those affecting more traditional in-person and telemedicine encounters. This research uses a national public opinion survey to examine the degree to which health care consumers communicate through conventional, face-to-face consultation, telemedicine, or digital technology, and the relationship between these means of communication and respondent characteristics. Results indicate that few people are using digital technology to get information, communicate with health personnel, or make online medical purchases. Furthermore, less well educated, lower-income individuals living in rural areas tend to use the health care Internet less than others. Several policy measures need to be undertaken in order to accelerate the appropriate use of digital technology by health care consumers of all kinds. These include improving education and technological literacy and providing access to low-cost digital technology. Without a consumer complement to prevailing efforts to spur health information technology development and implementation on the part of providers, the promise of the digital revolution will continue to be limited to certain better-connected segments of the population.
NASA Technical Reports Server (NTRS)
Schmidt, Lorne R.; Francoeur, J.; Aguero, Alina; Wertheimer, Michael R.; Klemberg-Sapieha, J. E.; Martinu, L.; Blezius, J. W.; Oliver, M.; Singh, A.
1995-01-01
Three projects are currently underway for the development of new coatings for the protection of materials in the space environment. These coatings are based on vacuum deposition technologies. The projects will go as far as the proof-of-concept stage when the commercial potential for the technology will be demonstrated on pilot-scale fabrication facilities in 1996. These projects are part of a subprogram to develop supporting technologies for automation and robotics technologies being developed under the Canadian Space Agency's STEAR Program, part of the Canadian Space Station Program.
Review of advanced radiator technologies for spacecraft power systems and space thermal control
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.; Peterson, George P.
1994-01-01
A two-part overview of progress in space radiator technologies is presented. The first part reviews and compares the innovative heat-rejection system concepts proposed during the past decade, some of which have been developed to the breadboard demonstration stage. Included are space-constructable radiators with heat pipes, variable-surface-area radiators, rotating solid radiators, moving-belt radiators, rotating film radiators, liquid droplet radiators, Curie point radiators, and rotating bubble-membrane radiators. The second part summarizes a multielement project including focused hardware development under the Civil Space Technology Initiative (CSTI) High Capacity Power program carried out by the NASA Lewis Research Center and its contractors to develop lightweight space radiators in support of Space Exploration Initiative (SEI) power systems technology.
Evaluation of Strain Measurement Devices for Inflatable Structures
NASA Technical Reports Server (NTRS)
Litteken, Douglas A.
2017-01-01
Inflatable structures provide a significant volume savings for future NASA deep space missions. The complexity of these structures, however, provides difficulty for engineers in designing, analyzing, and testing. Common strain measurement systems for metallic parts cannot be used directly on fabrics. New technologies must be developed and tested to accuractly measure the strain of inflatable structures. This paper documents the testing of six candidate strain measurement devices for use on fabrics. The resistance devices tested showed significant hysteresis during creep and cyclic testing. The capacitive device, however, showed excellent results and little-to-no hysteresis. Because of this issue, only two out of the six proposed devices will continue in development. The resulting data and lessons learned from this effort provides direction for continued work to produce a structural health monitoring system for inflatable habitats.
Evaluation of Strain Measurement Devices for Inflatable Structures
NASA Technical Reports Server (NTRS)
Litteken, Doug
2017-01-01
Inflatable structures provide a significant volume savings for future NASA deep space missions. The complexity of these structures, however, provides difficulty for engineers in designing, analyzing, and testing. Common strain measurement systems for metallic parts cannot be used directly on fabrics. New technologies must be developed and tested to accurately measure the strain of inflatable structures. This paper documents the testing of six candidate strain measurement devices for use on fabrics. The resistance devices tested showed significant hysteresis during creep and cyclic testing. The capacitive device, however, showed excellent results and little-to-no hysteresis. Because of this issue, only two out of the six proposed devices will continue in development. The resulting data and lessons learned from this effort provides direction for continued work to produce a structural health monitoring system for inflatable habitats.
Hallberg, Lance M; Ward, Jonathan B; Wickliffe, Jeffrey K; Ameredes, Bill T
2017-01-01
Since its beginning, more than 117 years ago, the compression-ignition engine, or diesel engine, has grown to become a critically important part of industry and transportation. Public concerns over the health effects from diesel emissions have driven the growth of regulatory development, implementation, and technological advances in emission controls. In 2001, the United States Environmental Protection Agency and California Air Resources Board issued new diesel fuel and emission standards for heavy-duty engines. To meet these stringent standards, manufacturers used new emission after-treatment technology, and modified fuel formulations, to bring about reductions in particulate matter and nitrogen oxides within the exhaust. To illustrate the impact of that technological transition, a brief overview of pre-2007 diesel engine exhaust biomarkers of genotoxicity and health-related concerns is provided, to set the context for the results of our research findings, as part of the Advanced Collaborative Emissions Study (ACES), in which the effects of a 2007-compliant diesel engine were examined. In agreement with ACES findings reported in other tissues, we observed a lack of measurable 2007-compliant diesel treatment–associated DNA damage, in lung tissue (comet assay), blood serum (8-hydroxy-2′-deoxyguanosine [8-OHdG] assay), and hippocampus (lipid peroxidation assay), across diesel exhaust exposure levels. A time-dependent assessment of 8-OHdG and lipid peroxidation also suggested no differences in responses across diesel exhaust exposure levels more than 24 months of exposure. These results indicated that the 2007-compliant diesel engine reduced measurable reactive oxygen species–associated tissue derangements and suggested that the 2007 standards–based mitigation approaches were effective. PMID:28659715
ERIC Educational Resources Information Center
Self, Charles C.
The need for and uses of high technology delivery systems in education are discussed in this paper with respect to the community college level. After part I introduces the topic, part II links the need for new technology in education to the change in the nature of knowledge from a small, relatively static corpus to a large and continually changing…
ERIC Educational Resources Information Center
Muyskens, Judith A., Ed.
This collection of papers is divided into three parts. After "Introduction," (Judith A. Muyskens), Part 1, "Issues in Teaching with Technology: Implications for the Future Training of Teaching Assistants," includes "Exploring the Link between Teaching and Technology: An Approach to TA Development" (Virginia M. Scott) and "A Revolution from Above:…
1984-02-01
measurable impact if changed. The following items were included in the sample: * Mark Zero Items -Low demand insurance items which represent about three...R&D efforts reviewed. The resulting assessment highlighted the generic enabling technologies and cross- cutting R&D projects required to focus current...supplied by spot buys, and which may generate Navy Inventory Control Numbers (NICN). Random samples of data were extracted from the Master Data File ( MDF
3D model of filler melting with micro-beam plasma arc based on additive manufacturing technology
NASA Astrophysics Data System (ADS)
Chen, Weilin; Yang, Tao; Yang, Ruixin
2017-07-01
Additive manufacturing technology is a systematic process based on discrete-accumulation principle, which is derived by the dimension of parts. Aiming at the dimension mathematical model and slicing problems in additive manufacturing process, the constitutive relations between micro-beam plasma welding parameters and the dimension of part were investigated. The slicing algorithm and slicing were also studied based on the dimension characteristics. By using the direct slicing algorithm according to the geometric characteristics of model, a hollow thin-wall spherical part was fabricated by 3D additive manufacturing technology using micro-beam plasma.
NASA Astrophysics Data System (ADS)
Oziel, M.; Hjouj, M.; Gonzalez, C. A.; Lavee, J.; Rubinsky, B.
2016-02-01
Monitoring changes in non-ionizing radiofrequency electromagnetic waves as they traverse the brain can detect the effects of stimuli employed in cerebrovascular autoregulation (CVA) tests on the brain, without contact and in real time. CVA is a physiological phenomenon of importance to health, used for diagnosis of a number of diseases of the brain with a vascular component. The technology described here is being developed for use in diagnosis of injuries and diseases of the brain in rural and economically underdeveloped parts of the world. A group of nine subjects participated in this pilot clinical evaluation of the technology. Substantial research remains to be done on correlating the measurements with physiology and anatomy.
Overview of a HLA-Ig based "Lego-like system" for T cell monitoring, modulation and expansion.
Oelke, Mathias; Schneck, Jonathan P
2010-07-01
Recent advances in molecular medicine have shown that soluble MHC-multimers can be valuable tools for both analysis and modulation of antigen-specific immune responses in vitro and in vivo. In this review, we describe the use of dimeric human and mouse major histocompatibility complexes, MHC-Ig, as part of an artificial Antigen-Presenting Cell (aAPC). MHC-Ig-based aAPC and its derivatives represent an exciting new platform technology for measuring and manipulating immune responses in vitro as well as in vivo. This new technology has the potential to help overcome many of the obstacles associated with limitations in current antigen-specific approaches of immunotherapy for the treatment of cancer, infectious diseases and autoimmunity.
Changes and challenges in the Software Engineering Laboratory
NASA Technical Reports Server (NTRS)
Pajerski, Rose
1994-01-01
Since 1976, the Software Engineering Laboratory (SEL) has been dedicated to understanding and improving the way in which one NASA organization, the Flight Dynamics Division (FDD), develops, maintains, and manages complex flight dynamics systems. The SEL is composed of three member organizations: NASA/GSFC, the University of Maryland, and Computer Sciences Corporation. During the past 18 years, the SEL's overall goal has remained the same: to improve the FDD's software products and processes in a measured manner. This requires that each development and maintenance effort be viewed, in part, as a SEL experiment which examines a specific technology or builds a model of interest for use on subsequent efforts. The SEL has undertaken many technology studies while developing operational support systems for numerous NASA spacecraft missions.
Polarimetry with Nanowires in the UV Solar Corona
NASA Astrophysics Data System (ADS)
Landini, Federico; Romoli, Marco; Baccani, Cristian; Dinescu, Adrian; Meneghin, Andrea; Scippa, Antonio; Pancrazzi, Maurizio; Focardi, Mauro; Landi Degl'Innocenti, Egidio
2017-04-01
The magnetic field in corona can be measured through the Hanle effect, which is the magnetic field induced modification of the linear polarization signals produced by anisotropic scattering processes. The HI Lyman α 121.6 nm is the most intense emission line of the EUV coronal spectrum, is formed by resonant scattering of the underlying chromospheric emission and is highly sensitive to the Hanle effect. Through the comparison between the measured and the expected polarization in the HI line it is possible to infer the magnetic field in corona. PENCIL (Polarimetry with Nanowires for Coronal Imaging of Ly α) may constitute the ideal candidate to measure the linear polarization of the whole Lyman α 121.6 nm corona. It is a transmitting polarimeter optimized for the Ly α 121.6 nm line, thought as part of an internally occulted coronagraph to be flown aboard a future small solar mission or a sounding rocket. It is a light device, completely free of mechanical moving parts, made by a fixed MgF2 quarter wave retarder, a nano-wire grid polarizer (nano-WGP) and a MgF2 variable retarder modulated through a calibrated piezo-clamp (PCVR). The nano-WGP and the PCVR are the two main components of PENCIL and represent a first-ever achievement in the history of technology development for VUV. New technological limits are being challenged in the development of such cutting edge devices. This contribution addresses the status of the project with particular emphasis on the design and manufacturing of the nano-WGP and the PCVR.
Titanium Aluminide Casting Technology Development
NASA Astrophysics Data System (ADS)
Bünck, Matthias; Stoyanov, Todor; Schievenbusch, Jan; Michels, Heiner; Gußfeld, Alexander
2017-12-01
Titanium aluminide alloys have been successfully introduced into civil aircraft engine technology in recent years, and a significant order volume increase is expected in the near future. Due to its beneficial buy-to-fly ratio, investment casting bears the highest potential for cost reduction of all competing production technologies for TiAl-LPTB. However, highest mechanical properties can be achieved by TiAl forging. In view of this, Access e.V. has developed technologies for the production of TiAl investment cast parts and TiAl die cast billets for forging purposes. While these parts meet the highest requirements, establishing series production and further optimizing resource and economic efficiency are present challenges. In order to meet these goals, Access has recently been certified according to aircraft standards, aiming at qualifying parts for production on technology readiness level 6. The present work gives an overview of the phases of development and certification.
Wireless technology in disease management and medicine.
Clifford, Gari D; Clifton, David
2012-01-01
Healthcare information, and to some extent patient management, is progressing toward a wireless digital future. This change is driven partly by a desire to improve the current state of medicine using new technologies, partly by supply-and-demand economics, and partly by the utility of wireless devices. Wired technology can be cumbersome for patient monitoring and can restrict the behavior of the monitored patients, introducing bias or artifacts. However, wireless technologies, while mitigating some of these issues, have introduced new problems such as data dropout and "information overload" for the clinical team. This review provides an overview of current wireless technology used for patient monitoring and disease management. We identify some of the major related issues and describe some existing and possible solutions. In particular, we discuss the rapidly evolving fields of telemedicine and mHealth in the context of increasingly resource-constrained healthcare systems.
Virtual microscopy and digital cytology: state of the art.
Giansanti, Daniele; Grigioni, Mauro; D'Avenio, Giuseppe; Morelli, Sandra; Maccioni, Giovanni; Bondi, Arrigo; Giovagnoli, Maria Rosaria
2010-01-01
The paper approaches a new technological scenario relevant for the introduction of the digital cytology (D-CYT) in the health service. A detailed analysis of the state of the art on the status of the introduction of D-CYT in the hospital and more in general in the dispersed territory has been conducted. The analysis was conducted in a form of review and was arranged into two parts: the first part focused on the technological tools needed to carry out a successful service (client server architectures, e-learning, quality assurance issues); the second part focused on issues oriented to help the introduction and evaluation of the technology (specific training in D-CYT, health technology assessment in-routine application, data format standards and picture archiving computerized systems (PACS) implementation, image quality assessment, strategies of navigation, 3D-virtual-reality potentialities). The work enlightens future scenarios of actions relevant for the introduction of the technology.
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.; Sampson, Michael J.
2015-01-01
The NEPP Program focuses on the reliability aspects of electronic devices (integrated circuits such as a processor in a computer). There are three principal aspects of this reliability: 1) Lifetime, inherent failure and design issues related to the EEE parts technology and packaging; 2) Effects of space radiation and the space environment on these technologies, and; 3) Creation and maintenance of the assurance support infrastructure required for mission success. The NEPP mission is to provide guidance to NASA for the selection and application of microelectronics technologies, to improve understanding of the risks related to the use of these technologies in the space environment, and to ensure that appropriate EEE parts research is performed to meet NASA mission assurance needs. NEPPs FY15 goals are to represent the NASA voice to the greater aerospace EEE parts community including supporting anti-counterfeit and trust, provide relevant guidance to cost-effective missions, aid insertion of advanced (and commercial) technologies, resolve unexpected parts issues, ensure access to appropriate radiation test facilities, and collaborate as widely as possible with external entities. In accordance with the changing mission profiles throughout NASA, the NEPP Program has developed a balanced portfolio of efforts to provide agency-wide assurance for not only traditional spacecraft developments, but also those in-line with the new philosophies emerging worldwide. In this presentation, we shall present an overview of this program and considerations for EEE parts assurance as applied to cost conscious missions.
Recommended Protocol for Round Robin Studies in Additive Manufacturing
Moylan, Shawn; Brown, Christopher U.; Slotwinski, John
2016-01-01
One way to improve confidence and encourage proliferation of additive manufacturing (AM) technologies and parts is by generating more high quality data describing the performance of AM processes and parts. Many in the AM community see round robin studies as a way to generate large data sets while distributing the cost among the participants, thereby reducing the cost to individual users. The National Institute of Standards and Technology (NIST) has conducted and participated in several of these AM round robin studies. While the results of these studies are interesting and informative, many of the lessons learned in conducting these studies concern the logistics and methods of the study and unique issues presented by AM. Existing standards for conducting interlaboratory studies of measurement methods, along with NIST’s experience, form the basis for recommended protocols for conducting AM round robin studies. The role of round robin studies in AM qualification, some of the limitations of round robin studies, and the potential benefit of less formal collaborative experiments where multiple factors, AM machine being only one, are varied simultaneously are also discussed. PMID:27274602
Recommended Protocol for Round Robin Studies in Additive Manufacturing.
Moylan, Shawn; Brown, Christopher U; Slotwinski, John
2016-03-01
One way to improve confidence and encourage proliferation of additive manufacturing (AM) technologies and parts is by generating more high quality data describing the performance of AM processes and parts. Many in the AM community see round robin studies as a way to generate large data sets while distributing the cost among the participants, thereby reducing the cost to individual users. The National Institute of Standards and Technology (NIST) has conducted and participated in several of these AM round robin studies. While the results of these studies are interesting and informative, many of the lessons learned in conducting these studies concern the logistics and methods of the study and unique issues presented by AM. Existing standards for conducting interlaboratory studies of measurement methods, along with NIST's experience, form the basis for recommended protocols for conducting AM round robin studies. The role of round robin studies in AM qualification, some of the limitations of round robin studies, and the potential benefit of less formal collaborative experiments where multiple factors, AM machine being only one, are varied simultaneously are also discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-13
...EPA is proposing to approve in part and disapprove in part state implementation plan (SIP) revisions submitted by California to provide for attainment of the 1997 fine particulate matter (PM2.5) national ambient air quality standards in the San Joaquin Valley (SJV). These SIP revisions are the SJV 2008 PM2.5 Plan (revised 2010 and 2011) and SJV-related provisions of the 2007 State Strategy (revised 2009 and 2011). EPA is proposing to approve the emissions inventories; air quality modeling; the reasonably available control measures/reasonably available control technology, reasonable further progress, and attainment demonstrations; and the transportation conformity motor vehicle emissions budgets. EPA is also proposing to grant California's request to extend the attainment deadline for the SJV to April 5, 2015 and to approve commitments to measures and reductions by the SJV Air Pollution Control District and the California Air Resources Board. Finally, it is proposing to disapprove the SIP's contingency measures. This proposed rule amends EPA's November 30, 2010 proposed rule (75 FR 74518) on the SJV 2008 PM2.5 Plan and 2007 State Strategy.
A laboratory activity for teaching natural radioactivity
NASA Astrophysics Data System (ADS)
Pilakouta, M.; Savidou, A.; Vasileiadou, S.
2017-01-01
This paper presents an educational approach for teaching natural radioactivity using commercial granite samples. A laboratory activity focusing on the topic of natural radioactivity is designed to develop the knowledge and understanding of undergraduate university students on the topic of radioactivity, to appreciate the importance of environmental radioactivity and familiarize them with the basic technology used in radioactivity measurements. The laboratory activity is divided into three parts: (i) measurements of the count rate with a Geiger-Muller counter of some granite samples and the ambient background radiation rate, (ii) measurement of one of the samples using gamma ray spectrometry with a NaI detector and identification of the radioactive elements of the sample, (iii) using already recorded 24 h gamma ray spectra of the samples from the first part (from the Granite Gamma-Ray Spectrum Library (GGRSL) of our laboratory) and analyzing selected peaks in the spectrum, students estimate the contribution of each radioactive element to the total specific activity of each sample. A brief description of the activity as well as some results and their interpretation are presented.
Butrimiene, Edita; Stankeviciene, Nida
2008-01-01
Both traditional and new educational environments, the latter enriched with information and communication technologies, coexist in today's university. The goal of this article is to present the concept of educational environment enriched with information and communication technologies, to reveal the main features of such environment, and to present the results of certain investigation on the application of information technologies in teaching/learning processes at the Faculty of Pharmacy of Kaunas University of Medicine. The discussion object of this paper is the educational environment enriched with information and communication technologies. In designing the environments of this type, positive aspects of traditional teaching models are being developed by integrating them into the new educational environment. The concept of educational environment enriched with information and communication technologies is reviewed in the first part of this paper. The structure and main features of educational environments enriched with information and communication technologies are highlighted in the second part. The results of the study on the application of information technologies in teaching/learning processes at the Faculty of Pharmacy of Kaunas University of Medicine are presented in the third part.
Automated Measurement and Verification and Innovative Occupancy Detection Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Phillip; Bruce, Nordman; Piette, Mary Ann
In support of DOE’s sensors and controls research, the goal of this project is to move toward integrated building to grid systems by building on previous work to develop and demonstrate a set of load characterization measurement and evaluation tools that are envisioned to be part of a suite of applications for transactive efficient buildings, built upon data-driven load characterization and prediction models. This will include the ability to include occupancy data in the models, plus data collection and archival methods to include different types of occupancy data with existing networks and a taxonomy for naming these data within amore » Volttron agent platform.« less
How to tap NASA-developed technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruzic, N.
The National Aeronautics and Space Administration (NASA) space program's contribution to technology and the transfer of its achievements to industrial and consumer products is unprecedented. The process of transferring new technology suffers, however, partly because managers tend to ignore new technological markets unless new products solve their specific problems and partly because managers may not know the technology is available. NASA's Technology Utilization Branch has learned to initiate transfer, using a network of centers to dispense information on applications. NASA also has a large software library and computer programs, as well as teams to make person-to-person contacts. Examples of successfulmore » transfers have affected energy sources, building contruction, health, and safety. (DCK)« less
Tindall, J.A.; Friedel, M.J.; Szmajter, R.J.; Cuffin, S.M.
2005-01-01
The objectives of the laboratory study described in this paper were (1) to determine the effectiveness of four nutrient solutions and a control in stimulating the microbial degradation of toluene in the unsaturated zone as an alternative to bioremediation methodologies such as air sparging, in situ vitrification, or others (Part I), and (2) to compare the effectiveness of the addition of the most effective nutrient solution from Part I (modified Hoagland type, nitrate-rich) and hydrogen peroxide (H2O2) on microbial degradation of toluene for repeated, simulated spills in the unsaturated zone (Part II). For Part 1, fifteen columns (30-cm diameter by 150-cm height), packed with air-dried, 0.25-mm, medium-fine sand, were prepared to simulate shallow unconfined aquifer conditions. Toluene (10 mL) was added to the surface of each column, and soil solution and soil gas samples were collected from the columns every third day for 21 days. On day 21, a second application of toluene (10 mL) was made, and the experiment was run for another 21 days. Solution 4 was the most effective for microbial degradation in Part I. For Part II, three columns were designated nutrient-rich 3-day toluene columns and received toluene injections every 3 days; three columns were designated as nutrient-rich 7-day columns and received toluene injections every 7 days; and two columns were used as controls to which no nutrient was added. As measured by CO2 respiration, the initial benefits for aerobic organisms from the O2 enhancement were sustained by the bacteria for only a short period of time (about 8 days). Degradation benefits from the nutrient solution were sustained throughout the experiment. The O2 and nutrient-enhanced columns degraded significantly more toluene than the control columns when simulating repeated spills onto the unsaturated zone, and demonstrated a potentially effective in situ bioremediation technology when used immediately or within days after a spill. The combined usage of H 2O2 and nitrate-rich nutrients served to effectively maximize natural aerobic and anaerobic metabolic processes that biodegrade hydrocarbons in petroleum-contaminated media. Applications of this technology in the field may offer economical advantages to other, more intrusive abatement technologies. ?? Springer 2005.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 1 2010-07-01 2010-07-01 false What Is the Civil-Military Integration Policy That Is the Basis for Technology Investment Agreements? A Appendix A to Part 37 National Defense... INVESTMENT AGREEMENTS Pt. 37, App. A Appendix A to Part 37—What Is the Civil-Military Integration Policy That...
Delivery of Colloid Micro-Newton Thrusters for the Space Technology 7 Mission
NASA Technical Reports Server (NTRS)
Ziemer, John K.; Randolph, Thomas M.; Franklin, Garth W.; Hruby, Vlad; Spence, Douglas; Demmons, Nathaniel; Roy, Thomas; Ehrbar, Eric; Zwahlen, Jurg; Martin, Roy;
2008-01-01
Two flight-qualified clusters of four Colloid Micro-Newton Thruster (CMNT) systems have been delivered to the Jet Propulsion Laboratory (JPL). The clusters will provide precise spacecraft control for the drag-free technology demonstration mission, Space Technology 7 (ST7). The ST7 mission is sponsored by the NASA New Millennium Program and will demonstrate precision formation flying technologies for future missions such as the Laser Interferometer Space Antenna (LISA) mission. The ST7 disturbance reduction system (DRS) will be on the ESA LISA Pathfinder spacecraft using the European gravitational reference sensor (GRS) as part of the ESA LISA Technology Package (LTP). Developed by Busek Co. Inc., with support from JPL in design and testing, the CMNT has been developed over the last six years into a flight-ready and flight-qualified microthruster system, the first of its kind. Recent flight-unit qualification tests have included vibration and thermal vacuum environmental testing, as well as performance verification and acceptance tests. All tests have been completed successfully prior to delivery to JPL. Delivery of the first flight unit occurred in February of 2008 with the second unit following in May of 2008. Since arrival at JPL, the units have successfully passed through mass distribution, magnetic, and EMI/EMC measurements and tests as part of the integration and test (I&T) activities including the integrated avionics unit (IAU). Flight software sequences have been tested and validated with the full flight DRS instrument successfully to the extent possible in ground testing, including full functional and 72 hour autonomous operations tests. Delivery of the cluster assemblies along with the IAU to ESA for integration into the LISA Pathfinder spacecraft is planned for the summer of 2008 with a planned launch and flight demonstration in late 2010.
NASA Technical Reports Server (NTRS)
Nickol, Craig L.; Haller, William J.
2016-01-01
NASA's Environmentally Responsible Aviation (ERA) project has matured technologies to enable simultaneous reductions in fuel burn, noise, and nitrogen oxide (NOx) emissions for future subsonic commercial transport aircraft. The fuel burn reduction target was a 50% reduction in block fuel burn (relative to a 2005 best-in-class baseline aircraft), utilizing technologies with an estimated Technology Readiness Level (TRL) of 4-6 by 2020. Progress towards this fuel burn reduction target was measured through the conceptual design and analysis of advanced subsonic commercial transport concepts spanning vehicle size classes from regional jet (98 passengers) to very large twin aisle size (400 passengers). Both conventional tube-and-wing (T+W) concepts and unconventional (over-wing-nacelle (OWN), hybrid wing body (HWB), mid-fuselage nacelle (MFN)) concepts were developed. A set of propulsion and airframe technologies were defined and integrated onto these advanced concepts which were then sized to meet the baseline mission requirements. Block fuel burn performance was then estimated, resulting in reductions relative to the 2005 best-in-class baseline performance ranging from 39% to 49%. The advanced single-aisle and large twin aisle T+W concepts had reductions of 43% and 41%, respectively, relative to the 737-800 and 777-200LR aircraft. The single-aisle OWN concept and the large twin aisle class HWB concept had reductions of 45% and 47%, respectively. In addition to their estimated fuel burn reduction performance, these unconventional concepts have the potential to provide significant noise reductions due, in part, to engine shielding provided by the airframe. Finally, all of the advanced concepts also have the potential for significant NOx emissions reductions due to the use of advanced combustor technology. Noise and NOx emissions reduction estimates were also generated for these concepts as part of the ERA project.
A major advance in powder metallurgy
NASA Technical Reports Server (NTRS)
Williams, Brian E.; Stiglich, Jacob J., Jr.; Kaplan, Richard B.; Tuffias, Robert H.
1991-01-01
Ultramet has developed a process which promises to significantly increase the mechanical properties of powder metallurgy (PM) parts. Current PM technology uses mixed powders of various constituents prior to compaction. The homogeneity and flaw distribution in PM parts depends on the uniformity of mixing and the maintenance of uniformity during compaction. Conventional PM fabrication processes typically result in non-uniform distribution of the matrix, flaw generation due to particle-particle contact when one of the constituents is a brittle material, and grain growth caused by high temperature, long duration compaction processes. Additionally, a significant amount of matrix material is usually necessary to fill voids and create 100 percent dense parts. In Ultramet's process, each individual particle is coated with the matrix material, and compaction is performed by solid state processing. In this program, Ultramet coated 12-micron tungsten particles with approximately 5 wt percent nickel/iron. After compaction, flexure strengths were measured 50 percent higher than those achieved in conventional liquid phase sintered parts (10 wt percent Ni/Fe). Further results and other material combinations are discussed.
U-235 Holdup Measurements in the 321-M Lathe HEPA Banks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salaymeh, S.R.
The Analytical Development Section of Savannah River Technology Center (SRTC) was requested by the Facilities Decommissioning Division (FDD) to determine the holdup of enriched uranium in the 321-M facility as part of an overall deactivation project of the facility. The results of the holdup assays are essential for determining compliance with the Waste Acceptance Criteria, Material Control and Accountability, and to meet criticality safety controls. This report covers holdup measurements of uranium residue in six high efficiency particulate air (HEPA) filter banks of the A-lathe and B-lathe exhaust systems of the 321-M facility. This report discusses the non-destructive assay measurements,more » assumptions, calculations, and results of the uranium holdup in these six items.« less
Progress of the Dust Accumulation and Removal Technology Experiment (DART) for the Mars 2001 Lander
NASA Technical Reports Server (NTRS)
Jenkins, Phillip; Landis, Geoffrey A.; Wilt, David; Krasowski, Michael; Greer, Lawrence; Baraona, Cosmo; Scheiman, David
2005-01-01
Dust deposition could be a significant problem for photovoltaic array operation for long duration missions on the surface of Mars. Measurements made by Pathfinder showed 0.3 percent loss of solar array performance per day due to dust obscuration. We have designed an experiment package, "DART", which is part of the Mars ISPP Precursor (MIP) package, to fly on the Mars-2001 Surveyor Lander. This mission, to launch in April 2001, will arrive on Mars in January 2002. The DART experiment is designed to quantify dust deposition from the Mars atmosphere, measure the properties of settled dust, measure the effect of dust deposition on array performance, and test several methods of clearing dust from solar cells.
Emotion-on-a-chip (EOC): evolution of biochip technology to measure human emotion using body fluids.
Lee, Jung-Hyun; Hwang, Yoosun; Cheon, Keun-Ah; Jung, Hyo-Il
2012-12-01
Recent developments in nano/micro technology have made it possible to construct small-scale sensing chips for the analysis of biological markers such as nucleic acids, proteins, small molecules, and cells. Although biochip technology for the diagnosis of severe physiological diseases (e.g., cancer, diabetes, and cardiovascular disease) has been extensively studied, biochips for the monitoring of human emotions such as stress, fear, depression, and sorrow have not yet been introduced, and the development of such a biochip is in its infancy. Emotion science (or affective engineering) is a rapidly expanding engineering/scientific discipline that has a major impact on human society. The growing interest in the integration of emotion science and engineering is a result of the recent trend of merging various academic fields. In this paper we discuss the potential importance of biochip technology in which human emotion can be precisely measured in real time using body fluids such as blood, saliva, urine, or sweat. We call these biochips emotion-on-a-chip (EOC). The EOC system consists of four parts: (1) collection of body fluids, (2) separation of emotional markers, (3) detection of optical or electrical signals, and (4) display of results. These techniques provide new opportunities to precisely investigate human emotion. Future developments in EOC techniques will combine social and natural sciences to expand their scope of study. Copyright © 2012 Elsevier Ltd. All rights reserved.
Weaver, Lawrence T.
2010-01-01
Summary The nineteenth century saw the incorporation of technology, such as the stethoscope, microscope, and thermometer, into clinical medicine. An instrument that has received less attention in the history of the role of technology in medicine is the weighing balance, or scale. Although not new to nineteenth-century medicine, it played an important part in the rise of the numerical method and its application to the development and shaping of pediatrics. This article explores the origin and development of the weighing of babies. During its clinical and scientific adoption, this simple procedure was refined and applied in a number of increasingly sophisticated and far-reaching ways: as a measure of the dimensions of the fetus and newborn, as an index of the viability of the newborn, as a means of estimating milk intake, as a way of distinguishing normality from abnormality, as a summary measure of infant health, and as an instrument of mass surveillance. In so doing it changed the way in which medical care was delivered to infants. PMID:20632732
First measurement of ice-bedrock interface of alpine glaciers by cosmic muon radiography
NASA Astrophysics Data System (ADS)
Nishiyama, R.; Ariga, A.; Ariga, T.; Käser, S.; Lechmann, A.; Mair, D.; Scampoli, P.; Vladymyrov, M.; Ereditato, A.; Schlunegger, F.
2017-06-01
The shape of the bedrock underneath alpine glaciers bears vital information on the erosional mechanism related to the flow of ice. So far, several geophysical exploration methods have been proposed to map the bedrock topography though with limited accuracy. Here we illustrate the first results from a technology, called cosmic ray muon radiography, newly applied in glacial geology to investigate the bedrock geometry beneath the Aletsch Glacier situated in the Central Swiss Alps. For this purpose we installed new cosmic muon detectors made of emulsion films at three sites along the Jungfrau railway tunnel and measured the shape of the bedrock under the uppermost part of Aletsch Glacier (Jungfraufirn). Our results constrain the continuation of the bedrock-ice interface up to a depth of 50 m below the surface, where the bedrock underneath the glacier strikes NE-SW and dips at 45° ± 5°. This documents the first successful application of this technology to a glaciated environment.
Safeguards by Design Challenge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alwin, Jennifer Louise
The International Atomic Energy Agency (IAEA) defines Safeguards as a system of inspection and verification of the peaceful uses of nuclear materials as part of the Nuclear Nonproliferation Treaty. IAEA oversees safeguards worldwide. Safeguards by Design (SBD) involves incorporation of safeguards technologies, techniques, and instrumentation during the design phase of a facility, rather that after the fact. Design challenge goals are the following: Design a system of safeguards technologies, techniques, and instrumentation for inspection and verification of the peaceful uses of nuclear materials. Cost should be minimized to work with the IAEA’s limited budget. Dose to workers should always bemore » as low are reasonably achievable (ALARA). Time is of the essence in operating facilities and flow of material should not be interrupted significantly. Proprietary process information in facilities may need to be protected, thus the amount of information obtained by inspectors should be the minimum required to achieve the measurement goal. Then three different design challenges are detailed: Plutonium Waste Item Measurement System, Marine-based Modular Reactor, and Floating Nuclear Power Plant (FNPP).« less
Reconstitution of a nanomachine driving the assembly of proteins into bacterial outer membranes
NASA Astrophysics Data System (ADS)
Shen, Hsin-Hui; Leyton, Denisse L.; Shiota, Takuya; Belousoff, Matthew J.; Noinaj, Nicholas; Lu, Jingxiong; Holt, Stephen A.; Tan, Khershing; Selkrig, Joel; Webb, Chaille T.; Buchanan, Susan K.; Martin, Lisandra L.; Lithgow, Trevor
2014-10-01
In biological membranes, various protein secretion devices function as nanomachines, and measuring the internal movements of their component parts is a major technological challenge. The translocation and assembly module (TAM) is a nanomachine required for virulence of bacterial pathogens. We have reconstituted a membrane containing the TAM onto a gold surface for characterization by quartz crystal microbalance with dissipation (QCM-D) and magnetic contrast neutron reflectrometry (MCNR). The MCNR studies provided structural resolution down to 1 Å, enabling accurate measurement of protein domains projecting from the membrane layer. Here we show that dynamic movements within the TamA component of the TAM are initiated in the presence of a substrate protein, Ag43, and that these movements recapitulate an initial stage in membrane protein assembly. The reconstituted system provides a powerful new means to study molecular movements in biological membranes, and the technology is widely applicable to studying the dynamics of diverse cellular nanomachines.
Method for technology-delivered healthcare measures.
Kramer-Jackman, Kelli Lee; Popkess-Vawter, Sue
2011-12-01
Current healthcare literature lacks development and evaluation methods for research and practice measures administered by technology. Researchers with varying levels of informatics experience are developing technology-delivered measures because of the numerous advantages they offer. Hasty development of technology-delivered measures can present issues that negatively influence administration and psychometric properties. The Method for Technology-delivered Healthcare Measures is designed to systematically guide the development and evaluation of technology-delivered measures. The five-step Method for Technology-delivered Healthcare Measures includes establishment of content, e-Health literacy, technology delivery, expert usability, and participant usability. Background information and Method for Technology-delivered Healthcare Measures steps are detailed.
75 FR 69575 - Permission To Use Air Inflation of Meat Carcasses and Parts
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-15
... introducing new air inflation technology and procedures will likely spur technological innovation that will provide this new technology to additional meat establishments. Greater technological innovation more...
A follow-on study for miniature solid-state pressure transducer
NASA Technical Reports Server (NTRS)
1974-01-01
The activities of a developmental program to design, fabricate and test an absolute pressure transducer based upon the piezojunction properties of silicon are summarized. The prime problem addressed is the development of a housing capable of applying the high stress levels needed for sensitive piezojunction operation but at the same, free from the creep effects and the fragility that limit the usefulness of previous designs. The first part of the report describes the initial fabrication and test and reviews the theory of sensor performance. The second part incorporates two recommendations of the first part (the use of commercially manufactured silicon planar mesa diodes and the adoption of an all-silicon structure for loading) and presents some preliminary test data on the transducers thus fabricated. These initial measurements show much improved performance over any previously fabricated piezojunction transducers but testing is incomplete and several problems in manufacturing technology remain.
Large Space Antenna Systems Technology, part 1
NASA Technical Reports Server (NTRS)
Lightner, E. B. (Compiler)
1983-01-01
A compilation of the unclassified papers presented at the NASA Conference on Large Space Antenna Systems Technology covers the following areas: systems, structures technology, control technology, electromagnetics, and space flight test and evaluation.
What does voice-processing technology support today?
Nakatsu, R; Suzuki, Y
1995-01-01
This paper describes the state of the art in applications of voice-processing technologies. In the first part, technologies concerning the implementation of speech recognition and synthesis algorithms are described. Hardware technologies such as microprocessors and DSPs (digital signal processors) are discussed. Software development environment, which is a key technology in developing applications software, ranging from DSP software to support software also is described. In the second part, the state of the art of algorithms from the standpoint of applications is discussed. Several issues concerning evaluation of speech recognition/synthesis algorithms are covered, as well as issues concerning the robustness of algorithms in adverse conditions. Images Fig. 3 PMID:7479720
The museum maze in oral pathology demystified-part I.
Patil, Shankargouda; Rao, Roopa S; Ganavi, B S
2013-07-01
Museum technologies provide a wide array of choice of museums to those who wish to exploit technology to attract, excite and ensure an unrivalled visitor experience, as well as capture and sustain share of mind and heart. Museum being a combination of both art and science requires skilled workmanship, meticulous planning and execution to exhibit a specimen to its optimal elegance due to its relatively smaller size and fragile nature. A well established oral pathology museum is rarely seen due to negligence of oral specimens, dearth of knowledge in this field and also available data on it. An insight on oral pathology museum, including its establishment, importance and advanced technologies to make it more simple and accessible are discussed in two parts. Part I emphasizes on basics in oral pathology museum, whereas part II highlights the specialized techniques and recent advances in museum technology. Our effort is to present this article as hands on experience for the pathologists, student population and the technicians.
Component technology for stirling power converters
NASA Technical Reports Server (NTRS)
Thieme, Lanny G.
1991-01-01
NASA Lewis Research Center has organized a component technology program as part of the efforts to develop Stirling converter technology for space power applications. The Stirling Space Power Program is part of the NASA High Capacity Power Project of the Civil Space Technology Initiative (CSTI). NASA Lewis is also providing technical management for the DOE/Sandia program to develop Stirling converters for solar terrestrial power producing electricity for the utility grid. The primary contractors for the space power and solar terrestrial programs develop component technologies directly related to their goals. This Lewis component technology effort, while coordinated with the main programs, aims at longer term issues, advanced technologies, and independent assessments. An overview of work on linear alternators, engine/alternator/load interactions and controls, heat exchangers, materials, life and reliability, and bearings is presented.
NASA's Next Generation Launch Technology Program - Strategy and Plans
NASA Technical Reports Server (NTRS)
Hueter, Uwe
2003-01-01
The National Aeronautics and Space Administration established a new program office, Next Generation Launch Technology (NGLT) Program Office, last year to pursue technologies for future space launch systems. NGLT will fund research in key technology areas such as propulsion, launch vehicles, operations and system analyses. NGLT is part of NASA s Integrated Space Technology Plan. The NGLT Program is sponsored by NASA s Office of Aerospace Technology and is part of the Space Launch Initiative theme that includes both NGLT and Orbital Space Plane. NGLT will focus on technology development to increase safety and reliability and reduce overall costs associated with building, flying and maintaining the nation s next-generations of space launch vehicles. These investments will be guided by systems engineering and analysis with a focus on the needs of National customers.
Factors influencing residents' acceptance (support) of remediation technologies.
Prior, Jason
2018-05-15
An increasing diversity of technologies are being used to remediate contaminated sites, yet there remains little understanding of the level of acceptance that residents living near these sites hold for these technologies, and what factors influence their level of acceptance. This lack of understanding hinders the remediation industry's ability to effectively engage with these residents about remediation technology selection, at a time when such engagement is become part and parcel of remediation policy and practice. The study develops on wider research into public acceptance of technologies, using data from a telephone survey of 2009 residents living near thirteen contaminated sites across Australia. Within the survey acceptance is measured through residents' level of support for the application of remediation technologies in their local area. Firstly, a regression analysis of closed-ended questions, and coding of open-ended questions are combined to identify the main predictors of residents' support for remediation technologies. Secondly, coding of open-ended questions was analysed using Crawford and Ostrom's Institutional Grammar Tool to identify norms and sanctions guiding residents' willingness to negotiate their support. The research identifies factors associated with the residents' personal and demographic characteristics, their physical context and engagement with institution during remediation processes, and the technologies themselves which predict residents' level of support for the application of remediation technologies. Bioremediation technologies had higher levels of support than chemical, thermal and physical technologies. Furthermore, the paper identifies a core set of norms and sanctions residents use to negotiate their level of support for remediation technologies. Copyright © 2017 Elsevier B.V. All rights reserved.
Low-power circuits design for the wireless force measurement system of the total knee arthroplasty.
Chen, Hong; Liu, Ming; Wan, Weiyi; Jia, Chen; Zhang, Chun; Wang, Zihua
2010-01-01
This paper proposes a novel wireless force measurement system for the Total Knee Arthroplasty (TKA) to improve the ligament balancing procedure during TKA. The force measurement system is comprised of a Wireless Force Measurement Spacer (WFMS) and the display part. They communicate with each other by the Radio Frequency (RF) signal. The WFMS is designed to measure the force between the WFMS and the femoral component of the artificial implants and to transmit the force data wirelessly by a low power transceiver. The display part demonstrates the force data in 3D images in real time. The WFMS composes of a sensors array, a Universal Transducer Interfaces (UTIs) array, a low-power sub-threshold microprocessor and a transceiver. The sub-threshold 8-bit microprocessor is taped out with 0.18 microm CMOS technology. The testing results of the microprocessor show that the leakage power of 46nW and the dynamic power of 385nW@165kHz are achieved with the operating voltage of 350 mV. The test results of the system are given and the errors of the system are analyzed. The results verified the reliability of the system. The future work is to design the microprocessor and a lower power transceiver within a single chip.
ERIC Educational Resources Information Center
Morris, Michael W.; Golinker, Lewis A.
This compilation on assistive technology devices and services aims to improve understanding of funding streams and creative ways to eliminate funding barriers in Medicaid, special education, and vocational rehabilitation. The first part comprises a workbook titled "A Road Map to Funding Sources." It assists in creating a systematic…
NASA Technical Reports Server (NTRS)
Ratner, R. S.; Shapiro, E. B.; Zeidler, H. M.; Wahlstrom, S. E.; Clark, C. B.; Goldberg, J.
1973-01-01
This final report summarizes the work on the design of a fault tolerant digital computer for aircraft. Volume 2 is composed of two parts. Part 1 is concerned with the computational requirements associated with an advanced commercial aircraft. Part 2 reviews the technology that will be available for the implementation of the computer in the 1975-1985 period. With regard to the computation task 26 computations have been categorized according to computational load, memory requirements, criticality, permitted down-time, and the need to save data in order to effect a roll-back. The technology part stresses the impact of large scale integration (LSI) on the realization of logic and memory. Also considered was module interconnection possibilities so as to minimize fault propagation.
Rapid manufacturing of metallic Molds for parts in Automobile
NASA Astrophysics Data System (ADS)
Zhang, Renji; Xu, Da; Liu, Yuan; Yan, Xudong; Yan, Yongnian
1998-03-01
The recent research of RPM (Rapid Prototyping Manufacturing) in our lab has been focused on the rapid creation of alloyed cast iron (ACI) molds. There are a lot of machinery parts in an automobile, so a lot of mettallic molds are needed in automobile industry. A new mold manufacturing technology has been proposed. A new large scale RP machine has been set up in our lab now. Then rapid prototypes could be manufactured by means of laminated object manufacturing (LOM) technology. The molds for parts in automobile have been produced by ceramic shell precision casting. An example is a drawing mold for cover parts in automobile. Sufficient precision and surface roughness have been obtained. Itis proved that this is a vew kind of technology. Work supported by the Mational Science Foundation of China.
Evaluation of soil salinity amelioration technologies in Timpaki, Crete: a participatory approach
NASA Astrophysics Data System (ADS)
Panagea, I. S.; Daliakopoulos, I. N.; Tsanis, I. K.; Schwilch, G.
2015-10-01
Soil salinity management can be complex, expensive and time demanding, especially in arid and semi-arid regions. Besides taking no action, possible management strategies include amelioration and adaptation measures. Here we use the World Overview of Conservation Approaches and Technologies (WOCAT) framework for the systematic analysis and evaluation of soil salinisation amelioration technologies in close collaboration with stakeholders. The participatory approach is applied in the RECARE Project Case Study of Timpaki, a semi-arid region in south-central Crete (Greece) where the main land use is horticulture in greenhouses irrigated by groundwater. Excessive groundwater abstractions have resulted in a drop of the groundwater level in the coastal part of the aquifer, thus leading to seawater intrusion and in turn to soil salinisation. The documented technologies are evaluated for their impacts on ecosystem services, cost and input requirements using a participatory approach and field evaluations. Results show that technologies which promote maintaining existing crop types while enhancing productivity and decreasing soil salinity are preferred by the stakeholders. The evaluation concludes that rain water harvesting is the optimal solution for direct soil salinity mitigation, whereas green manuring and the use of biological agents can support increasing production/efficiency and improving soil properties.
One-step shaping of NiTi biomaterial by selective laser melting
NASA Astrophysics Data System (ADS)
Yang, Yongqiang; Huang, Yanlu; Wu, Wenhui
2007-11-01
NiTi alloy has excellent biocompatibility. This paper presents a novel technology of direct shaping of this promising biomaterial with selective laser melting (SLM). The frequently encountered defects of the SLM metal alloy parts such as non-fully melting, thermal deformation and balling were analyzed theoretically and experimentally, and the microstructure of the parts was analyzed on microscope. The results show that an appropriate selection of laser mode and scanning strategy assures a satisfying quality of the final parts; they also reveal that the SLM technology can be expected as a potential technology to directly manufacture the artificial implant of NiTi alloys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehoff, Ryan R.; List, III, Frederick Alyious; Carver, Keith
ORNL Manufacturing Demonstration Facility worked with ECM Technologies LLC to investigate the use of precision electro-chemical machining technology to polish the surface of parts created by Arcam electron beam melting. The goals for phase one of this project have been met. The project goal was to determine whether electro-chemical machining is a viable method to improve the surface finish of Inconel 718 parts fabricated using the Arcam EBM method. The project partner (ECM) demonstrated viability for parts of both simple and complex geometry. During the course of the project, detailed process knowledge was generated. This project has resulted in themore » expansion of United States operations for ECM Technologies.« less
NASA Astrophysics Data System (ADS)
Hossain, Mohammad Shojib
Material extrusion based additive manufacturing (AM) technology, such as fused deposition modeling (FDM), is gaining popularity with the numerous 3D printers available worldwide. FDM technology is advancing from exclusively prototype construction to achieving production-grade quality. Today, FDM-fabricated parts are widely used in the aerospace industries, biomedical applications, and other industries that may require custom fabricated, low volume parts. These applications are and were possible because of the different production grade material options (e.g., acrylonitrile butadiene styrene (ABS), polycarbonate (PC), polyphenylsulfone (PPSF), etc.) available to use in FDM systems. Recent researchers are exploring other material options including polycaprolactone (PCL), polymethylmethacrylate (PMMA), composites containing ceramic, glass and metal fillers, and even metals which depict the diversified materials and possibility of new material options using FDM technology. The understanding of the behavior and mechanical properties of the finished FDM-fabricated parts is of utmost importance in the advancement of this technology. The processing parameters, e.g., build orientation, raster width (RW), contour width (CW), raster angle (RA), and raster to raster air gap (RRAG) are important factors in determining the mechanical properties of FDM fabricated parts. The work presented here focused on the mechanical properties improvement by modifying those build parameters. The main concentration is on how modifying those parameters can improve ultimate tensile stress (UTS), Young's modulus, and tensile strain of the final product. In this research, PC parts were fabricated using three build methods: 1) default method, 2) Insight revision method, and 3) visual feedback method. By modifying build parameters, the highest average UTS obtained for PC was 63.96 MPa which was 7% higher than that of 59.73 MPa obtained using the default build parameters. The parameter modification using visual feedback method led to an increase in UTS of 16% in XYZ, 7% in XZY, and 22% in ZXY. The FDM fabricated parts using PC were tested under thermal cycling of -30° C to 85° C. A series of experiments were performed (e.g., tensile test, deformation of fabricated part, glass transition measurement) to evaluate the possibility of FDM fabricated parts in the harsh environment (embedded electronics, wiring in automotive industry, etc.). The UTS results showed that the results were not significantly different using statistical analysis after 150 thermal cycles while average Young's modulus increased from 1389 MPa to 1469 MPa after 150 thermal cycles. The highest warping of the specimen was found to be 78 microm which was the result of continuous thermal expansion and contraction. A sealing algorithm was developed using LabVIEW and MATLAB programming. The LabVIEW program was developed to obtain the edge information of each layer of a 3D model part. The MATLAB programming was used to gather the output information from LabVIEW and calculate the suggested RW providing least amount of gap in between rasters and contours. As a result, each layer became sealed and was able to withstand air pressure within a pressure vessel. A test specimen was fabricated according to the developed sealing algorithm parameters and used to show entirely sealed walls capable of withstanding up to 138 kPa air pressure.
1999-01-01
published in December of 1998. In addition, Mr. Drake is the author of a theme article entitled: "Measuring Software Quality: A Case Study...and services may run on different platforms in differing combinations , • Partial application failure (e.g., a client running, service down) is...result in a combined utility function that is some aggregation of the underlying utility functions. The benefit a client receives from a service
Bibliography on Cold Regions Science and Technology, Volume 46, Part 2, 1992
1992-01-01
Modelling of heat capacity-temperature data for sucrose- conditions: trial study . Peck, L.. 1)992. 15p.. eng) Comparison of four cold hardiness tests on...authors are listed along with the title, date, pagination, and language of the document and the accession number. The subject index is composed of four ...eng1 46-1074 Radar backscatter measurements during the Winter Weddell Abramov Glacier and the runoff in its basin (1989. p.85- Aakjaer. P.D. Gyre Study
Nano-interconnection for microelectronics and polymers with benzo-triazole
NASA Technical Reports Server (NTRS)
Park, Yeonjoon; Choi, Sang H.; Noh, Hyunpil; Kuk, Young
2006-01-01
Benzo-Triazole (BTA) is considered as an important bridging material that can connect an organic polymer to the metal electrode on silicon wafers as a part of the microelectronics fabrication technology. We report a detailed process of surface induced 3-D polymerization of BTA on the Cu electrode material which was measured with the Ultraviolet Photoemission Spectroscopy (UPS), X-ray Photoemission Spectroscopy (XPS), and Scanning Tunneling Microscope (STM). The electric utilization of shield and chain polymerization of BTA on Cu surface is contemplated in this study.
1993-04-01
mitigate the risks of utilizing this novel technology for spaceflight systems such as BE. The various elements of the development program include...the cylinder. The DC offset has been observed to change significantly with time or with a change in the environmental parameters. Also, a change in...in Figure 5, and immersed in an environmental vacuum chamber with the bonnet removed. In both cases, parasitic measurement confirmed that radiative
Advancement of proprotor technology. Task 2: Wind-tunnel test results
NASA Technical Reports Server (NTRS)
1971-01-01
An advanced-design 25-foot-diameter flightworthy proprotor was tested in the NASA-Ames Large-Scale Wind Tunnel. These tests, have verified and confirmed the theory and design solutions developed as part of the Army Composite Aircraft Program. This report presents the test results and compares them with theoretical predictions. During performance tests, the results met or exceeded predictions. Hover thrust 15 percent greater than the predicted maximum was measured. In airplane mode, propulsive efficiencies (some of which exceeded 90 percent) agreed with theory.
High Stability Engine Control (HISTEC): Flight Demonstration Results
NASA Technical Reports Server (NTRS)
Delaat, John C.; Southwick, Robert D.; Gallops, George W.; Orme, John S.
1998-01-01
Future aircraft turbine engines, both commercial and military, must be able to accommodate expected increased levels of steady-state and dynamic engine-face distortion. The current approach of incorporating sufficient design stall margin to tolerate these increased levels of distortion would significantly reduce performance. The High Stability Engine Control (HISTEC) program has developed technologies for an advanced, integrated engine control system that uses measurement- based estimates of distortion to enhance engine stability. The resulting distortion tolerant control reduces the required design stall margin, with a corresponding increase in performance and/or decrease in fuel burn. The HISTEC concept was successfully flight demonstrated on the F-15 ACTIVE aircraft during the summer of 1997. The flight demonstration was planned and carried out in two parts, the first to show distortion estimation, and the second to show distortion accommodation. Post-flight analysis shows that the HISTEC technologies are able to successfully estimate and accommodate distortion, transiently setting the stall margin requirement on-line and in real-time. Flight demonstration of the HISTEC technologies has significantly reduced the risk of transitioning the technology to tactical and commercial engines.
A novel integrated assessment methodology of urban water reuse.
Listowski, A; Ngo, H H; Guo, W S; Vigneswaran, S
2011-01-01
Wastewater is no longer considered a waste product and water reuse needs to play a stronger part in securing urban water supply. Although treatment technologies for water reclamation have significantly improved the question that deserves further analysis is, how selection of a particular wastewater treatment technology relates to performance and sustainability? The proposed assessment model integrates; (i) technology, characterised by selected quantity and quality performance parameters; (ii) productivity, efficiency and reliability criteria; (iii) quantitative performance indicators; (iv) development of evaluation model. The challenges related to hierarchy and selections of performance indicators have been resolved through the case study analysis. The goal of this study is to validate a new assessment methodology in relation to performance of the microfiltration (MF) technology, a key element of the treatment process. Specific performance data and measurements were obtained at specific Control and Data Acquisition Points (CP) to satisfy the input-output inventory in relation to water resources, products, material flows, energy requirements, chemicals use, etc. Performance assessment process contains analysis and necessary linking across important parametric functions leading to reliable outcomes and results.
The NASA Electronic Parts and Packaging (NEPP) Program: An Overview
NASA Technical Reports Server (NTRS)
Label, Kenneth A.; Sampson, Michael J.
2016-01-01
This presentation provides an overview of the NEPP Program. The NEPP Mission is to provide guidance to NASA for the selection and application of microelectronics technologies; Improve understanding of the risks related to the use of these technologies in the space environment; Ensure that appropriate research is performed to meet NASA mission assurance needs. NEPP's Goals are to provide customers with appropriate and cost-effective risk knowledge to aid in: Selection and application of microelectronics technologies; Improved understanding of risks related to the use of these technologies in the space environment; Appropriate evaluations to meet NASA mission assurance needs; Guidelines for test and application of parts technologies in space; Assurance infrastructure and support for technologies in use by NASA space systems.
32 CFR 2402.1 - Purpose and scope.
Code of Federal Regulations, 2014 CFR
2014-07-01
... National Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY... part prescribe procedures to obtain information and records from the Office of Science and Technology Policy (OSTP) under the Freedom of Information Act (FOIA), 5 U.S.C. 552. The regulations in this part...
32 CFR 2402.1 - Purpose and scope.
Code of Federal Regulations, 2013 CFR
2013-07-01
... National Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY... part prescribe procedures to obtain information and records from the Office of Science and Technology Policy (OSTP) under the Freedom of Information Act (FOIA), 5 U.S.C. 552. The regulations in this part...
2004-03-04
A butterfly photographed in the La Selva region of the Costa Rican rain forest as part of NASA's AirSAR 2004 Mesoamerica campaign. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central America with NASA's AirSAR technology to improve and expand on the quality of research they are able to do. NASA's AIRSAR technolgy provides two essential elements to the ground-based scientists. First, it tests and provides accurate measurements of the forest structure. Secondly, AirSAR can study a larger area of the forest versus the smaller area that can be tested and plotted by the ground scientists. It also provides a unique one-of-a-kind system of measurement that obtains important information for the scientists, such as where forests are located and what exactly is in them.
2004-03-04
A lizard photographed in the La Selva region of the Costa Rican rain forest as part of NASA's AirSAR 2004 Mesoamerica campaign. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central America with NASA's AirSAR technology to improve and expand on the quality of research they are able to do. NASA's AIRSAR technolgy provides two essential elements to the ground-based scientists. First, it tests and provides accurate measurements of the forest structure. Secondly, AirSAR can study a larger area of the forest versus the smaller area that can be tested and plotted by the ground scientists. It also provides a unique one-of-a-kind system of measurement that obtains important information for the scientists, such as where forests are located and what exactly is in them.
2004-03-04
A plant photographed in the La Selva region of the Costa Rican rain forest as part of NASA's AirSAR 2004 Mesoamerica campaign. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central America with NASA's AirSAR technology to improve and expand on the quality of research they are able to do. NASA's AIRSAR technolgy provides two essential elements to the ground-based scientists. First, it tests and provides accurate measurements of the forest structure. Secondly, AirSAR can study a larger area of the forest versus the smaller area that can be tested and plotted by the ground scientists. It also provides a unique one-of-a-kind system of measurement that obtains important information for the scientists, such as where forests are located and what exactly is in them.
2004-03-04
A tree trunk structure photographed in the La Selva region of the Costa Rican rain forest as part of NASA's AirSAR 2004 Mesoamerica campaign. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central America with NASA's AirSAR technology to improve and expand on the quality of research they are able to do. NASA's AIRSAR technolgy provides two essential elements to the ground-based scientists. First, it tests and provides accurate measurements of the forest structure. Secondly, AirSAR can study a larger area of the forest versus the smaller area that can be tested and plotted by the ground scientists. It also provides a unique one-of-a-kind system of measurement that obtains important information for the scientists, such as where forests are located and what exactly is in them.
2004-03-04
A unique tree trunk photographed in La Selva region of the Costa Rican rain forest as part of NASA's AirSAR 2004 Mesoamerica campaign. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central America with NASA's AirSAR technology to improve and expand on the quality of research they are able to do. NASA's AIRSAR technolgy provides two essential elements to the ground-based scientists. First, it tests and provides accurate measurements of the forest structure. Secondly, AirSAR can study a larger area of the forest versus the smaller area that can be tested and plotted by the ground scientists. It also provides a unique one-of-a-kind system of measurement that obtains important information for the scientists, such as where forests are located and what exactly is in them.
2004-03-04
A tree frog photographed in the La Selva region of the Costa Rican rain forest as part of NASA's AirSAR 2004 Mesoamerica campaign. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central America with NASA's AirSAR technology to improve and expand on the quality of research they are able to do. NASA's AIRSAR technolgy provides two essential elements to the ground-based scientists. First, it tests and provides accurate measurements of the forest structure. Secondly, AirSAR can study a larger area of the forest versus the smaller area that can be tested and plotted by the ground scientists. It also provides a unique one-of-a-kind system of measurement that obtains important information for the scientists, such as where forests are located and what exactly is in them.
Costs, Benefits, and Adoption of Additive Manufacturing: A Supply Chain Perspective
Thomas, Douglas
2017-01-01
There are three primary aspects to the economics of additive manufacturing: measuring the value of goods produced, measuring the costs and benefits of using the technology, and estimating the adoption and diffusion of the technology. This paper provides an updated estimate of the value of goods produced. It then reviews the literature on additive manufacturing costs and identifies those instances in the literature where this technology is cost effective. The paper then goes on to propose an approach for examining and understanding the societal costs and benefits of this technology both from a monetary viewpoint and a resource consumption viewpoint. The final section discusses the trends in the adoption of additive manufacturing. Globally, there is an estimated $667 million in value added produced using additive manufacturing, which equates to 0.01 % of total global manufacturing value added. US value added is estimated as $241 million. Current research on additive manufacturing costs reveals that it is cost effective for manufacturing small batches with continued centralized production; however, with increased automation distributed production may become cost effective. Due to the complexities of measuring additive manufacturing costs and data limitations, current studies are limited in their scope. Many of the current studies examine the production of single parts and those that examine assemblies tend not to examine supply chain effects such as inventory and transportation costs along with decreased risk to supply disruption. The additive manufacturing system and the material costs constitute a significant portion of an additive manufactured product; however, these costs are declining over time. The current trends in costs and benefits have resulted in this technology representing 0.02 % of the relevant manufacturing industries in the US; however, as the costs of additive manufacturing systems decrease, this technology may become widely adopted and change the supplier, manufacturer, and consumer interactions. An examination in the adoption of additive manufacturing reveals that for this technology to exceed $4.4 billion in 2020, $16.0 billion in 2025, and $196.8 billion in 2035 it would need to deviate from its current trends of adoption. PMID:28747809
Costs, Benefits, and Adoption of Additive Manufacturing: A Supply Chain Perspective.
Thomas, Douglas
2016-07-01
There are three primary aspects to the economics of additive manufacturing: measuring the value of goods produced, measuring the costs and benefits of using the technology, and estimating the adoption and diffusion of the technology. This paper provides an updated estimate of the value of goods produced. It then reviews the literature on additive manufacturing costs and identifies those instances in the literature where this technology is cost effective. The paper then goes on to propose an approach for examining and understanding the societal costs and benefits of this technology both from a monetary viewpoint and a resource consumption viewpoint. The final section discusses the trends in the adoption of additive manufacturing. Globally, there is an estimated $667 million in value added produced using additive manufacturing, which equates to 0.01 % of total global manufacturing value added. US value added is estimated as $241 million. Current research on additive manufacturing costs reveals that it is cost effective for manufacturing small batches with continued centralized production; however, with increased automation distributed production may become cost effective. Due to the complexities of measuring additive manufacturing costs and data limitations, current studies are limited in their scope. Many of the current studies examine the production of single parts and those that examine assemblies tend not to examine supply chain effects such as inventory and transportation costs along with decreased risk to supply disruption. The additive manufacturing system and the material costs constitute a significant portion of an additive manufactured product; however, these costs are declining over time. The current trends in costs and benefits have resulted in this technology representing 0.02 % of the relevant manufacturing industries in the US; however, as the costs of additive manufacturing systems decrease, this technology may become widely adopted and change the supplier, manufacturer, and consumer interactions. An examination in the adoption of additive manufacturing reveals that for this technology to exceed $4.4 billion in 2020, $16.0 billion in 2025, and $196.8 billion in 2035 it would need to deviate from its current trends of adoption.
Kern, Lisa M; Abramson, Erika; Kaushal, Rainu
2011-01-01
With the proliferation of relatively mature health information technology (IT) systems with large numbers of users, it becomes increasingly important to evaluate the effect of these systems on the quality and safety of healthcare. Previous research on the effectiveness of health IT has had mixed results, which may be in part attributable to the evaluation frameworks used. The authors propose a model for evaluation, the Triangle Model, developed for designing studies of quality and safety outcomes of health IT. This model identifies structure-level predictors, including characteristics of: (1) the technology itself; (2) the provider using the technology; (3) the organizational setting; and (4) the patient population. In addition, the model outlines process predictors, including (1) usage of the technology, (2) organizational support for and customization of the technology, and (3) organizational policies and procedures about quality and safety. The Triangle Model specifies the variables to be measured, but is flexible enough to accommodate both qualitative and quantitative approaches to capturing them. The authors illustrate this model, which integrates perspectives from both health services research and biomedical informatics, with examples from evaluations of electronic prescribing, but it is also applicable to a variety of types of health IT systems. PMID:21857023
Combined Infrared Stereo and Laser Ranging Cloud Measurements from Shuttle Mission STS-85
NASA Technical Reports Server (NTRS)
Lancaster, R. S.; Spinhirne, J. D.; Manizade, K. F.
2004-01-01
Multiangle remote sensing provides a wealth of information for earth and climate monitoring, such as the ability to measure the height of cloud tops through stereoscopic imaging. As technology advances so do the options for developing spacecraft instrumentation versatile enough to meet the demands associated with multiangle measurements. One such instrument is the infrared spectral imaging radiometer, which flew as part of mission STS-85 of the space shuttle in 1997 and was the first earth- observing radiometer to incorporate an uncooled microbolometer array detector as its image sensor. Specifically, a method for computing cloud-top height with a precision of +/- 620 m from the multispectral stereo measurements acquired during this flight has been developed, and the results are compared with coincident direct laser ranging measurements from the shuttle laser altimeter. Mission STS-85 was the first space flight to combine laser ranging and thermal IR camera systems for cloud remote sensing.
NASA Astrophysics Data System (ADS)
Joshi, Tenzing H. Y.; Quiter, Brian J.; Maltz, Jonathan S.; Bandstra, Mark S.; Haefner, Andrew; Eikmeier, Nicole; Wagner, Eric; Luke, Tanushree; Malchow, Russell; McCall, Karen
2017-07-01
The Airborne Radiological Enhanced-sensor System (ARES) includes a prototype helicopter-borne CsI(Na) detector array that has been developed as part of the DHS Domestic Nuclear Detection Office Advanced Technology Demonstration. The detector system geometry comprises two pairs of 23-detector arrays designed to function as active masks, providing additional angular resolution of measured gamma rays in the roll dimension. Experimental measurements, using five radioisotopes (137Cs, 60Co, 241Am, 131I, and 99mTc), were performed to map the detector response in both roll and pitch dimensions. This paper describes the acquisition and analysis of these characterization measurements, calculation of the angular response of the ARES system, and how this response function is used to improve aerial detection and localization of radiological and nuclear threat sources.
NASA Astrophysics Data System (ADS)
Hitzenberger, R.; Giebl, H.; Petzold, A.; Gysel, M.; Nyeki, S.; Weingartner, E.; Baltensperger, U.; Wilson, C. W.
2003-07-01
During the EU Project PartEmis, the microphysical properties of aircraft combustion aerosol were investigated. This study is focused on the ability of exhaust aerosols to act as cloud condensation nuclei (CCN). The combustor was operated at two different conditions representing old and modern aircraft engine technology. CCN concentrations were measured with the University of Vienna CCN counter [ Giebl et al., 2002] at supersaturations around 0.7%. The activation ratio (fraction of CCN in total aerosol) depended on the fuel sulphur content (FSC) and also on the operation conditions. CCN/CN ratios increased from 0.93 through 1.43 to 5.15 . 10-3 (old cruise conditions) and 0.67 through 3.04 to 7.94 . 10-3 (modern cruise conditions) when FSC increased from 50 through 410 to1270 μg/g. The activation behaviour was modelled using classical theories and with a semi-empirical model [ Gysel et al., 2003] based on measured hygroscopicity of the aerosol under subsaturated conditions, which gave the best agreement.
Low cost Earth attitude sensor
NASA Astrophysics Data System (ADS)
Liberati, Fabrizio; Perrotta, Giorgio; Verzegnassi, Fulvia
2017-11-01
A patent-pending, low-cost, moderate performance, Earth Attitude Sensor for LEO satellites is described in this paper. The paper deals with the system concepts, the technology adopted and the simulation results. The sensor comprises three or four narrow field of view mini telescopes pointed towards the Earth edge to detect and measure the variation of the off-nadir angle of the Earth-to-black sky transition using thermopile detectors suitably placed in the foci of the optical min telescopes. The system's innovation consists in the opto-mechanical configuration adopted that is sturdy and has no moving parts being , thus, inherently reliable. In addition, with a view to reducing production costs, the sensor does without hi-rel and is instead mainly based on COTS parts suitably chosen. Besides it is flexible and can be adapted to perform attitude measurement onboard spacecraft flying in orbits other than LEO with a minimum of modifications to the basic design. At present the sensor is under development by IMT and OptoService.
NIST Efforts to Quality-Assure Gunpowder Measurements
NASA Technical Reports Server (NTRS)
MacCrehan, William A.; Reardon, Michelle R.
2000-01-01
In the past few years, the National Institute for Standards and Technology (NIST) has been promoting the idea of quantitatively determining the additives in smokeless gunpowder using micellar capillary electrophoresis as a means of investigating the criminal use of hand guns and pipe bombs. As a part of this effort, we have evaluated both supercritical fluid and ultrasonic solvent extractions for the quantitative recovery of nitroglycerin (NG), diphenylamine (DPA), N-nitrosodiphenylamine (NnDPA), and ethyl centralite (EC) from gunpowder. Recoveries were evaluated by repeat extraction and matrix spiking experiments. The final extraction protocol provides greater than 95 percent recoveries. To help other researches validate their own analytical method for additive determinations, NIST is exploring the development of a standard reference material, Additives in Smokeless Gunpowder. The evaluated method is being applied to two double-base (NG-containing) powders, one stabilized with diphenylamine and the other with ethyl centralite. As part of this reference material development effort, we are conducting an interlaboratory comparison exercise among the forensic and military gunpowder measurement community.
NASA Astrophysics Data System (ADS)
Cuca, Branka; Tzouvaras, Marios; Agapiou, Athos; Lysandrou, Vasiliki; Themistocleous, Kyriacos; Nisantzi, Argyro; Hadjimitsis, Diofantos G.
2016-08-01
The Cultural landscapes are witnesses of "the creative genius, social development and the imaginative and spiritual vitality of humanity. They are part of our collective identity", as it is internationally defined and accepted (ICOMOSUNESCO). The need for their protection, management and inclusion in the territorial policies has already been widely accepted and pursued. There is a great number of risks to which the cultural landscapes are exposed, arising mainly from natural (both due to slow geo-physical phenomena as well as hazards) and anthropogenic causes (e.g. urbanisation pressure, agriculture, landscape fragmentation etc.). This paper explores to what extent Earth Observation (EO) technologies can contribute to identify and evaluate the risks to which Cultural Landscapes of Cyprus are exposed, taking into consideration specific phenomena, such as land movements and soil erosion. The research of the paper is illustrated as part of the activities carried out in the CLIMA project - "Cultural Landscape risk Identification, Management and Assessment". It aims to combine the fields of remote sensing technologies, including Sentinel data, and monitoring of cultural landscape for its improved protection and management. Part of this approach will be based on the use of InSAR techniques in order to monitor the temporal evolution of deformations through the detection and measurement of the effects of surface movements caused by various factors. The case study selected for Cyprus is the Nea Paphos archeological site and historical center of Paphos, which are listed as UNESCO World Heritage sites. The interdisciplinary approach adopted in this research was useful to identify major risks affecting the landscape of Cyprus and to classify the most suitable EO methods to assess and map such risks.
A 0.4-2.3 GHz broadband power amplifier extended continuous class-F design technology
NASA Astrophysics Data System (ADS)
Chen, Peng; He, Songbai
2015-08-01
A 0.4-2.3 GHz broadband power amplifier (PA) extended continuous class-F design technology is proposed in this paper. Traditional continuous class-F PA performs in high-efficiency only in one octave bandwidth. With the increasing development of wireless communication, the PA is in demand to cover the mainstream communication standards' working frequencies from 0.4 GHz to 2.2 GHz. In order to achieve this objective, the bandwidths of class-F and continuous class-F PA are analysed and discussed by Fourier series. Also, two criteria, which could reduce the continuous class-F PA's implementation complexity, are presented and explained to investigate the overlapping area of the transistor's current and voltage waveforms. The proposed PA design technology is based on the continuous class-F design method and divides the bandwidth into two parts: the first part covers the bandwidth from 1.3 GHz to 2.3 GHz, where the impedances are designed by the continuous class-F method; the other part covers the bandwidth from 0.4 GHz to 1.3 GHz, where the impedance to guarantee PA to be in high-efficiency over this bandwidth is selected and controlled. The improved particle swarm optimisation is employed for realising the multi-impedances of output and input network. A PA based on a commercial 10 W GaN high electron mobility transistor is designed and fabricated to verify the proposed design method. The simulation and measurement results show that the proposed PA could deliver 40-76% power added efficiency and more than 11 dB power gain with more than 40 dBm output power over the bandwidth from 0.4-2.3 GHz.
NASA Astrophysics Data System (ADS)
Zavala, Miguel; Molina, Luisa T.; Fortner, Edward; Knighton, Berk; Herndon, Scott; Yacovitch, Tara; Floerchinger, Cody; Roscioli, Joseph; Kolb, Charles; Mejia, Jose Antonio; Sarmiento, Jorge; Paramo, Victor Hugo; Zirath, Sergio; Jazcilevich, Aron
2014-05-01
Black carbon emitted from freight, public transport, and heavy duty trucks sources is linked with adverse effects on human health. In addition, the control of emissions of black carbon, an important short-lived climate forcing agent (SLCF), has recently been considered as one of the key strategies for mitigating regional near-term climate change. Despite the availability of new emissions control technologies for reducing emissions from diesel-powered mobile sources, their introduction is still not widespread in many urban areas and there is a need to characterize real-world emission rates of black carbon from this key source. The emissions of black carbon, organic carbon, and other gaseous and particle pollutants from diesel-powered mobile sources in Mexico were characterized by deploying a mobile laboratory equipped with real-time instrumentation in Mexico City as part of the SLCFs-Mexico 2013 project. From February 25-28 of 2013 the emissions from selected diesel-powered vehicles were measured in both controlled experiments and real-world on-road driving conditions. Sampled vehicles had several emissions levels technologies, including: EPA98, EPA03, EPA04, EURO3-5, and Hybrid. All vehicles were sampled using diesel fuel and several vehicles were measured using both diesel and biodiesel fuels. Additional measurements included the use of a remote sensing unit for the co-sampling of all tested vehicles, and the installation and operation of a Portable Emissions Measurements System (PEMS) for the measurement of emissions from a test vehicle. We will present inter-comparisons of the emission factors obtained among the various vehicle technologies that were sampled during the experiment as well as the inter-comparison of results from the various sampling platforms. The results can be used to
Aerodynamic Measurements of a Gulfstream Aircraft Model With and Without Noise Reduction Concepts
NASA Technical Reports Server (NTRS)
Neuhart, Dan H.; Hannon, Judith A.; Khorrami, Mehdi R.
2014-01-01
Steady and unsteady aerodynamic measurements of a high-fidelity, semi-span 18% scale Gulfstream aircraft model are presented. The aerodynamic data were collected concurrently with acoustic measurements as part of a larger aeroacoustic study targeting airframe noise associated with main landing gear/flap components, gear-flap interaction noise, and the viability of related noise mitigation technologies. The aeroacoustic tests were conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Wind Tunnel with the facility in the acoustically treated open-wall (jet) mode. Most of the measurements were obtained with the model in landing configuration with the flap deflected at 39º and the main landing gear on and off. Data were acquired at Mach numbers of 0.16, 0.20, and 0.24. Global forces (lift and drag) and extensive steady and unsteady surface pressure measurements were obtained. Comparison of the present results with those acquired during a previous test shows a significant reduction in the lift experienced by the model. The underlying cause was traced to the likely presence of a much thicker boundary layer on the tunnel floor, which was acoustically treated for the present test. The steady and unsteady pressure fields on the flap, particularly in the regions of predominant noise sources such as the inboard and outboard tips, remained unaffected. It is shown that the changes in lift and drag coefficients for model configurations fitted with gear/flap noise abatement technologies fall within the repeatability of the baseline configuration. Therefore, the noise abatement technologies evaluated in this experiment have no detrimental impact on the aerodynamic performance of the aircraft model.
Progress of the Mars Array Technology Experiment (MATE) on the '01 Lander
NASA Technical Reports Server (NTRS)
Scheiman, D. A.; Baraona, C. R.; Jenkins, P.; Wilt, D.; Krasowski, M.; Greer, L.; Lekki, J.; Spina, D.
1999-01-01
Future missions to Mars will rely heavily on solar power from the sun, various solar cell types and structures must be evaluated to find the optimum. Sunlight on the surface of Mars is altered by air-borne dust that fluctuates in density from day to day. The dust affects both the intensity and spectral content of the sunlight. The MATE flight experiment was designed for this purpose and will fly on the Mars 2001 Surveyor Lander as part of the Mars In-Situ Propellant Production Precursor (MIP) package. MATE will measure the performance of several solar cell technologies and characterize the Martian environment in terms of solar power. This will be done by measuring full IV curves on solar cells, direct and global insolation, temperature, and spectral content. The Lander is is scheduled to launch in April 2001 and arrive on Mars in January of 2002. The site location has not been identified but will be near the equator and last from 100 to 300 days. The intent of this of this paper is to describe and update the progress on MATE. MATE has four main objectives for its mission to Mars. First is to measure the performance of solar cells daily on the surface of Mars, this will determine the day to day fluctuations in sunlight and temperature and provide a nominal power output. Second, in addition to measuring solar cell performance, it will allow for an intercomparison of different solar cell technologies. Third, It will study the long term effects of dust on the solar cells. Fourth and last, it will characterize the mars environment as viewed by the solar cell, measuring spectrum, insolation, and temperature. Additional information is contained in the original extended abstract.
Evaluation of Soil Salinity Amelioration Technologies in Timpaki, Crete
NASA Astrophysics Data System (ADS)
Panagea, Ioanna; Daliakopoulos, Ioannis; Tsanis, Ioannis; Schwilch, Gudrun
2015-04-01
Salinization is a soil threat that adversely affects ecosystem services and diminishes soil functions in many arid and semi-arid regions. Soil salinity management depends on a range of factors, and can be complex expensive and time demanding. Besides taking no action, possible management strategies include amelioration and adaptation measures. The WOCAT Technologies Questionnaire is a standardized methodology for monitoring, evaluating and documenting sustainable land management practices through interaction with the stakeholders. Here we use WOCAT for the systematic analysis and evaluation of soil salinization amelioration measures, for the RECARE project Case Study in Greece, the Timpaki basin, a semi-arid region in south-central Crete where the main land use is horticulture in greenhouses irrigated by groundwater. Excessive groundwater abstractions have resulted in a drop of the groundwater level in the coastal part of the aquifer, thus leading to seawater intrusion and in turn to soil salinization due to irrigation with brackish water. Amelioration technologies that have already been applied in the case study by the stakeholders are examined and classified depending on the function they promote and/or improve. The documented technologies are evaluated for their impacts on ecosystem services, cost and input requirements. Preliminary results show that technologies which promote maintaining existing crop types while enhancing productivity and decreasing soil salinity such as composting, mulching, rain water harvesting and seed biopriming are preferred by the stakeholders. Further work will include result validation using qualitative approaches. Keywords: soil salinity; salinization; evaluation of soil salinization amelioration techniques; WOCAT; RECARE FP7 project; Timpaki Crete
Planning for Follow-On Spare Part Support by the Naval Electronic Systems Command.
1984-06-01
System Replenishment Spare Parts", by Edward J. Brost , Air Force Institute of Technology [17]_ The objective of this study was to determine the...Competition in the Acquisition of Replenishment Spare Parts, M.S. Thesis, Air Force Institute of Technology, WPAFB, Ohio, September 1983. 17. Brost ...Instruction 4000.6D, Integrated Logistic Support (ILS); policy and responsibilities. 21 July 1983. 20. Mr. George Hughes, NAVELEX Code 81234
Starting a hospital-based home health agency: Part II--Key success factors.
Montgomery, P
1993-09-01
In Part II of a three-part series, the financial, technological and legislative issues of a hospital-based home health-agency are discussed. Beginning a home healthcare service requires intensive research to answer key environmental and operational questions--need, competition, financial projections, initial start-up costs and the impact of delayed depreciation. Assessments involving technology, staffing, legislative and regulatory issues can help project service volume, productivity and cost-control.
ERIC Educational Resources Information Center
Schaffhauser, Dian
2013-01-01
With so many disruptive forces at work in higher education, colleges and universities are faced with the imperative to change not just technologies and processes, but behaviors and mindsets. In part one of a two-part series, change-management experts share six ways to foster large-scale transformations on campus. "Campus Technology"…
This report is a standardized methodology description for the determination of strong acidity of fine particles (less than 2.5 microns) in ambient air using annular denuder technology. his methodology description includes two parts: art A - Standard Method and Part B - Enhanced M...
Science, Technology, Society: Opportunities.
ERIC Educational Resources Information Center
Lux, Donald G., Ed.
1992-01-01
Recognizing the potential pitfalls resulting from a lack of human foresight lies at the heart of the science-technology-society (STS) movement. This issue of "Theory Into Practice" is the second part of a two-part series that examines the educational opportunities arising as educators attempt to develop student understanding of STS. In the first…
Method and apparatus for measuring surface contour on parts with elevated temperatures
Horvath, Mark S.; Nance, Roy A.; Cohen, George H.; Fodor, George
1991-01-01
The invention is directed to a method and apparatus for measuring the surface contour of a test piece, such as the bow of a radioactive fuel rod, which is completely immersed in water. The invention utilizes ultrasonic technology and is capable of measuring surface contours of test pieces which are at a higher temperature than the surrounding water. The presence of a test piece at a higher temperature adversely affects the distance measurements by causing thermal variations in the water near the surface of the test piece. The contour measurements depend upon a constant temperature of the water in the path of the ultrasonic wave to provide a constant acoustical velocity (the measurement is made by the time of flight measurement for an ultrasonic wave). Therefore, any variations of water temperature near the surface will introduce errors degrading the measurement. The present invention overcomes these problems by assuring that the supply of water through which the ultrasonic waves travel is at a predetermined and constant temperature.
NASA Technical Reports Server (NTRS)
Hayati, Samad A.
2002-01-01
Future Mars missions require new capabilities that currently are not available. The Mars Technology Program (MTP) is an integral part of the Mars Exploration Program (MEP). Its sole purpose is to assure that required technologies are developed in time to enable the baselined and future missions. The MTP is a NASA-wide technology development program managed by JPL. It is divided into a Focused Program and a Base Program. The Focused Program is tightly tied to the proposed Mars Program mission milestones. It involves time-critical deliverables that must be developed in time for infusion into the proposed Mars 2005, and, 2009 missions. In addition a technology demonstration mission by AFRL will test a LIDAR as part of a joint NASNAFRL experiment. This program bridges the gap between technology and projects by vertically integrating the technology work with pre-project development in a project-like environment with critical dates for technology infusion. A Base Technology Program attacks higher riskhigher payoff technologies not in the critical path of missions.
Treatment BMP technology report.
DOT National Transportation Integrated Search
2006-04-01
The Treatment BMP Technology Report consolidates and standardizes information on storm : water quality technologies that are part of the California Department of Transportations : (Departments) BMP identification, and evaluation process describ...
Optical Multi-Gas Monitor Technology Demonstration on the International Space Station
NASA Technical Reports Server (NTRS)
Pilgrim, Jeffrey S.; Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B,; Johnson, Michael D.; Mudgett, Paul D.
2014-01-01
There are a variety of both portable and fixed gas monitors onboard the International Space Station (ISS). Devices range from rack-mounted mass spectrometers to hand-held electrochemical sensors. An optical Multi-Gas Monitor has been developed as an ISS Technology Demonstration to evaluate long-term continuous measurement of 4 gases. Based on tunable diode laser spectroscopy, this technology offers unprecedented selectivity, concentration range, precision, and calibration stability. The monitor utilizes the combination of high performance laser absorption spectroscopy with a rugged optical path length enhancement cell that is nearly impossible to misalign. The enhancement cell serves simultaneously as the measurement sampling cell for multiple laser channels operating within a common measurement volume. Four laser diode based detection channels allow quantitative determination of ISS cabin concentrations of water vapor (humidity), carbon dioxide, ammonia and oxygen. Each channel utilizes a separate vertical cavity surface emitting laser (VCSEL) at a different wavelength. In addition to measuring major air constituents in their relevant ranges, the multiple gas monitor provides real time quantitative gaseous ammonia measurements between 5 and 20,000 parts-per-million (ppm). A small ventilation fan draws air with no pumps or valves into the enclosure in which analysis occurs. Power draw is only about 3 W from USB sources when installed in Nanoracks or when connected to 28V source from any EXPRESS rack interface. Internal battery power can run the sensor for over 20 hours during portable operation. The sensor is controlled digitally with an FPGA/microcontroller architecture that stores data internally while displaying running average measurements on an LCD screen and interfacing with the rack or laptop via USB. Design, construction and certification of the Multi-Gas Monitor were a joint effort between Vista Photonics, Nanoracks and NASA-Johnson Space Center (JSC). Vista Photonics developed the core technology and built the sensor. Nanoracks designed, constructed the enclosure, interfaces, and battery power management circuitry, integrated all subsystems into the enclosure, and then managed the certification tests, documentation and manifesting. The unit was calibrated in the JSC Toxicology Laboratory. The Multi-Gas Monitor is manifested to fly as a technology demonstration to the ISS in November 2013 and will operate for at least 6 months with data sent to the ground for evaluation. The primary goal is to demonstrate long term interference free operation in the real spacecraft environment.
Adopting Digital Technologies in the Classroom: 10 Assessment Questions
ERIC Educational Resources Information Center
Staley, David J.
2004-01-01
Technology has long been a part of the classroom space. Sometime in the 1990s, the word technology was co-opted to refer only to digital tools. "Technology in the classroom" or "technology stocks" or "the dangers posed by technology" came to refer only to digital technology rather than to technology as a whole. As such, much of the discussion…
Induction technique in manufacturing preforms
NASA Astrophysics Data System (ADS)
Frauenhofer, M.; Ströhlein, T.; Fabig, S.; Böhm, S.; Herbeck, L.; Dilger, K.
2008-09-01
The prepreg technology is a state-of-the-art method to produce high-performance CFRP parts. Due to the high material prices, the restricted process rate, and limitations to the component complexity, in future, more and more parts will be assembled by using liquid composite moulding. Especially in the case of series larger than 100 parts per year, the LCM technology offers the best cost-effectiveness. This technology is based on resin injection into dry multilayer fibre textiles (preforms). The Institute of Joining and Welding (TU, Braunschweig), together with the Institute of Composite Structures and Adaptive Systems (DLR), has elaborated a new technology to speed up the preform process, which is the most labour-intensive step within the LCM process chain. A novel concept to consolidate binder-coated fabrics is under development. By applying the high energy transfer rate of induction technology, it is possible to heat up a preform with rates up to 50 K/s to melt the binder and consolidate the preform.
NASA Astrophysics Data System (ADS)
Crippa, Monica; Janssens-Maenhout, Greet; Dentener, Frank; Guizzardi, Diego; Sindelarova, Katerina; Muntean, Marilena; Van Dingenen, Rita; Granier, Claire
2016-03-01
The EDGARv4.3.1 (Emissions Database for Global Atmospheric Research) global anthropogenic emissions inventory of gaseous (SO2, NOx, CO, non-methane volatile organic compounds and NH3) and particulate (PM10, PM2.5, black and organic carbon) air pollutants for the period 1970-2010 is used to develop retrospective air pollution emissions scenarios to quantify the roles and contributions of changes in energy consumption and efficiency, technology progress and end-of-pipe emission reduction measures and their resulting impact on health and crop yields at European and global scale. The reference EDGARv4.3.1 emissions include observed and reported changes in activity data, fuel consumption and air pollution abatement technologies over the past 4 decades, combined with Tier 1 and region-specific Tier 2 emission factors. Two further retrospective scenarios assess the interplay of policy and industry. The highest emission STAG_TECH scenario assesses the impact of the technology and end-of-pipe reduction measures in the European Union, by considering historical fuel consumption, along with a stagnation of technology with constant emission factors since 1970, and assuming no further abatement measures and improvement imposed by European emission standards. The lowest emission STAG_ENERGY scenario evaluates the impact of increased fuel consumption by considering unchanged energy consumption since the year 1970, but assuming the technological development, end-of-pipe reductions, fuel mix and energy efficiency of 2010. Our scenario analysis focuses on the three most important and most regulated sectors (power generation, manufacturing industry and road transport), which are subject to multi-pollutant European Union Air Quality regulations. Stagnation of technology and air pollution reduction measures at 1970 levels would have led to 129 % (or factor 2.3) higher SO2, 71 % higher NOx and 69 % higher PM2.5 emissions in Europe (EU27), demonstrating the large role that technology has played in reducing emissions in 2010. However, stagnation of energy consumption at 1970 levels, but with 2010 fuel mix and energy efficiency, and assuming current (year 2010) technology and emission control standards, would have lowered today's NOx emissions by ca. 38 %, SO2 by 50 % and PM2.5 by 12 % in Europe. A reduced-form chemical transport model is applied to calculate regional and global levels of aerosol and ozone concentrations and to assess the associated impact of air quality improvements on human health and crop yield loss, showing substantial impacts of EU technologies and standards inside as well as outside Europe. We assess that the interplay of policy and technological advance in Europe had substantial benefits in Europe, but also led to an important improvement of particulate matter air quality in other parts of the world.
Highly Selective Nuclide Removal from the R-Reactor Disassembly Basin at the SRS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickett, J. B.; Austin, W. E.; Dukes, H. H.
This paper describes the results of a deployment of highly selective ion-exchange resin technologies for the in-situ removal of Cs-137 and Sr-90 from the Savannah River Site (SRS) R-Reactor Disassembly Basin. The deployment was supported by the DOE Office of Science and Technology's (OST, EM-50) National Engineering Technology Laboratory (NETL), as a part of an Accelerated Site Technology Deployment (ASTD) project. The Facilities Decontamination and Decommissioning (FDD) Program at the SRS conducted this deployment as a part of an overall program to deactivate three of the site's five reactor disassembly basins.
Highly Selective Nuclide Removal from the R-Reactor Disassembly Basin at SRS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickett, J.B.
This paper describes the results of a deployment of highly selective ion-exchange resin technologies for the in-situ removal of Cs-137 and Sr-90 from the Savannah River Site (SRS) R-Reactor Disassembly Basin. The deployment was supported by the DOE Office of Science and Technology's (OST, EM-50) National Engineering Technology Laboratory (NETL), as a part of an Accelerated Site Technology Deployment (ASTD) project. The Facilities Decontamination and Decommissioning (FDD) Program at the SRS conducted this deployment as a part of an overall program to deactivate three of the site's five reactor disassembly basins
1980-10-01
by block number) Air bearings, gas bearings, air lubrication, gas lubrication, rotor dynamics , gas turbines, turbomachinery, foil bearings, compliant...coverage of the subject at this time. Therefore, as a part of the Rotor -Bearing Dynamics Technology Design Guide update, this document is prepared...of the inertia and flexure properties of the rotor together with the dynamic character- istics of the bearing(s). However, an examination of the
Transparent electrodes made with ultrasonic spray coating technique for flexible heaters
NASA Astrophysics Data System (ADS)
Wroblewski, G.; Krzemiński, J.; Janczak, D.; Sowiński, J.; Jakubowska, M.
2017-08-01
Transparent electrodes are one of the basic elements of various electronic components. The paper presents the preliminary results related to novel method of ultrasonic spray coating used for fabrication of transparent flexible electrodes. Experiments were conducted by means of specially made laboratory setup composed of ultrasonic spray generator and XYZ plotter. In the first part of the paper diverse solvents were used to determine the crucial technological parameters such as atomization voltage and fluid flow velocity. Afterwards paint containing carbon nanotubes suspended in the two solvent system was prepared and deposited on the polyethylene terephthalate foil. Thickness, roughness and electrical measurements were performed to designate the relations of technological parameters of ultrasonic spray coating on thickness, roughness, sheet resistance and optical transmission of fabricated samples.
IEC 61850: Technology Standards and Cyber-Security Threats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youssef, Tarek A; El Hariri, mohamed; Bugay, Nicole
Substations constitute a fundamental part in providing reliable electricity to consumers. For a substation to maintain electricity reliability and its own real-time operability, communication between its components is inevitable. Before the emergence of IEC 61850, inter-substation communication was established via expensive copper wires with limited capabilities. IEC 61850 is the standard set by the International Electrotechnical Commission (IEC) Technical Committee Number 57 Working Group 10 and IEEE for Ethernet (IEEE 802.3)-based communication in electrical substations. Like many power grid systems standards, IEC 61850 was set without extensive consideration for critical security measures. This paper discusses IEC 61850 technology standards andmore » applications thoroughly and points out major security vulnerabilities it introduces in the context of current cyber-physical smart grid systems.« less
MTF measurements with high-resolution a-Si:H imaging arrays
NASA Astrophysics Data System (ADS)
Yorkston, John; Antonuk, Larry E.; Seraji, N.; Huang, Weidong; Siewerdsen, Jeffrey H.; El-Mohri, Youcef
1995-05-01
Recent advances in a-Si:H fabrication technology have opened the way for the application of flat panel imaging arrays in a number of areas in medical imaging. Their large area (up to approximately 26 X 26 cm), thin profile (< 1 mm) and real time readout capability make them strong candidates for the replacement of more traditional x-ray imaging technologies such as film and image intensifier systems. As a first step towards a device suitable for clinical use we have created a 24.4 X 19.4 cm array with 127 micrometers pitch pixels. This device serves as a testbed for investigating the effects of design changes on array imaging performance. This paper reports on initial measurements of the spatial resolution of this device used in conjunction with an overlaying Lanex Regular screen and 90 kVp x rays. The measured pre-sampled modulation transfer function (p.s. MTF) is found to fall below the predicted value by up to approximately 8%. At least part of this reduction seems to be due to scattering of light photons between the array and the surface of the phosphor screen contacting the array.
Note: Fully integrated time-to-amplitude converter in Si-Ge technology.
Crotti, M; Rech, I; Ghioni, M
2010-10-01
Over the past years an always growing interest has arisen about the measurement technique of time-correlated single photon counting TCSPC), since it allows the analysis of extremely fast and weak light waveforms with a picoseconds resolution. Consequently, many applications exploiting TCSPC have been developed in several fields such as medicine and chemistry. Moreover, the development of multianode PMT and of single photon avalanche diode arrays led to the realization of acquisition systems with several parallel channels to employ the TCSPC technique in even more applications. Since TCSPC basically consists of the measurement of the arrival time of a photon, the most important part of an acquisition chain is the time measurement block, which must have high resolution and low differential nonlinearity, and in order to realize multidimensional systems, it has to be integrated to reduce both cost and area. In this paper we present a fully integrated time-to-amplitude converter, built in 0.35 μm Si-Ge technology, characterized by a good time resolution (60 ps), low differential nonlinearity (better than 3% peak to peak), high counting rate (16 MHz), low and constant power dissipation (40 mW), and low area occupation (1.38×1.28 mm(2)).
Underwater Electromagnetic Sensor Networks—Part I: Link Characterization †
Quintana-Díaz, Gara; Mena-Rodríguez, Pablo; Pérez-Álvarez, Iván; Jiménez, Eugenio; Dorta-Naranjo, Blas-Pablo; Zazo, Santiago; Pérez, Marina; Quevedo, Eduardo; Cardona, Laura; Hernández, J. Joaquín
2017-01-01
Underwater Wireless Sensor Networks (UWSNs) using electromagnetic (EM) technology in marine shallow waters are examined, not just for environmental monitoring but for further interesting applications. Particularly, the use of EM waves is reconsidered in shallow waters due to the benefits offered in this context, where acoustic and optical technologies have serious disadvantages. Sea water scenario is a harsh environment for radiocommunications, and there is no standard model for the underwater EM channel. The high conductivity of sea water, the effect of seabed and the surface make the behaviour of the channel hard to predict. This justifies the need of link characterization as the first step to approach the development of EM underwater sensor networks. To obtain a reliable link model, measurements and simulations are required. The measuring setup for this purpose is explained and described, as well as the procedures used. Several antennas have been designed and tested in low frequency bands. Agreement between attenuation measurements and simulations at different distances was analysed and made possible the validation of simulation setups and the design of different communications layers of the system. This leads to the second step of this work, where data and routing protocols for the sensor network are examined. PMID:28106843
Underwater Electromagnetic Sensor Networks-Part I: Link Characterization.
Quintana-Díaz, Gara; Mena-Rodríguez, Pablo; Pérez-Álvarez, Iván; Jiménez, Eugenio; Dorta-Naranjo, Blas-Pablo; Zazo, Santiago; Pérez, Marina; Quevedo, Eduardo; Cardona, Laura; Hernández, J Joaquín
2017-01-19
Underwater Wireless Sensor Networks (UWSNs) using electromagnetic (EM) technology in marine shallow waters are examined, not just for environmental monitoring but for further interesting applications. Particularly, the use of EM waves is reconsidered in shallow waters due to the benefits offered in this context, where acoustic and optical technologies have serious disadvantages. Sea water scenario is a harsh environment for radiocommunications, and there is no standard model for the underwater EM channel. The high conductivity of sea water, the effect of seabed and the surface make the behaviour of the channel hard to predict. This justifies the need of link characterization as the first step to approach the development of EM underwater sensor networks. To obtain a reliable link model, measurements and simulations are required. The measuring setup for this purpose is explained and described, as well as the procedures used. Several antennas have been designed and tested in low frequency bands. Agreement between attenuation measurements and simulations at different distances was analysed and made possible the validation of simulation setups and the design of different communications layers of the system. This leads to the second step of this work, where data and routing protocols for the sensor network are examined.
ERIC Educational Resources Information Center
Svensson, Maria; Ingerman, Ake
2010-01-01
Understanding technology today implies more than being able to use the technological objects present in our everyday lives. Our society is increasingly integrated with technological systems, of which technological objects, and their function, form a part. Technological literacy in that context implies understanding how knowledge is constituted in…
Variation in use of technology among vascular access specialists: an analysis of the PICC1 survey.
Chopra, Vineet; Kuhn, Latoya; Ratz, David; Winter, Suzanne; Carr, Peter J; Paje, David; Krein, Sarah L
2017-05-15
While the use of technologies such as ultrasound and electrocardiographic (ECG) guidance systems to place peripherally inserted central catheters (PICCs) has grown, little is known about the clinicians who use these tools or their work settings. Using data from a national survey of vascular access specialists, we identified technology users as PICC inserters that: (a) use ultrasound to find a suitable vein for catheter placement; (b) measure catheter-to-vein ratio; and (c) use ECG for PICC placement. Individual and organizational-level characteristics between technology users versus non-users were assessed. Bivariable comparisons were made using Chi-squared or Fisher's exact tests; two-sided alpha with p<0.05 was considered statistically significant. Of the 2762 PICC inserters who accessed the survey, 1518 (55%) provided information regarding technology use. Technology users reported greater experience than non-technology users, with a higher percentage stating they had placed >1000 PICCs (55% vs. 45%, p<0.001). A significantly greater percentage of technology users also reported being certified in vascular access by an external agency than non-technology users (75% vs. 63%, p<0.001). Technology users were more often part of vascular access teams with ≥10 members compared to non-technology users (35% vs. 22%, p<0.001). Some practices also varied between the two groups: for example, use of certain securement devices and dressings differed between technology users and non-users (p<0.001). Technology use by vascular access clinicians while placing PICCs is associated with clinician characteristics, work setting and practice factors. Understanding whether such differences influence clinical care or patient outcomes appears necessary.
48 CFR 39.001 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-10-01
... CONTRACTING ACQUISITION OF INFORMATION TECHNOLOGY 39.001 Applicability. This part applies to the acquisition of information technology by or for the use of agencies except for acquisitions of information technology for national security systems. However, acquisitions of information technology for national...
Volumetric electromagnetic phase-shift spectroscopy of brain edema and hematoma.
Gonzalez, Cesar A; Valencia, Jose A; Mora, Alfredo; Gonzalez, Fernando; Velasco, Beatriz; Porras, Martin A; Salgado, Javier; Polo, Salvador M; Hevia-Montiel, Nidiyare; Cordero, Sergio; Rubinsky, Boris
2013-01-01
Motivated by the need of poor and rural Mexico, where the population has limited access to advanced medical technology and services, we have developed a new paradigm for medical diagnostic based on the technology of "Volumetric Electromagnetic Phase Shift Spectroscopy" (VEPS), as an inexpensive partial substitute to medical imaging. VEPS, can detect changes in tissue properties inside the body through non-contact, multi-frequency electromagnetic measurements from the exterior of the body, and thereby provide rapid and inexpensive diagnostics in a way that is amenable for use in economically disadvantaged parts of the world. We describe the technology and report results from a limited pilot study with 46 healthy volunteers and eight patients with CT radiology confirmed brain edema and brain hematoma. Data analysis with a non-parametric statistical Mann-Whitney U test, shows that in the frequency range of from 26 MHz to 39 MHz, VEPS can distinguish non-invasively and without contact, with a statistical significance of p<0.05, between healthy subjects and those with a medical conditions in the brain. In the frequency range of between 153 MHz to 166 MHz it can distinguish with a statistical significance of p<0.05 between subjects with brain edema and those with a hematoma in the brain. A classifier build from measurements in these two frequency ranges can provide instantaneous diagnostic of the medical condition of the brain of a patient, from a single set of measurements. While this is a small-scale pilot study, it illustrates the potential of VEPS to change the paradigm of medical diagnostic of brain injury through a VEPS classifier-based technology. Obviously substantially larger-scale studies are needed to verify and expand on the findings in this small pilot study.
Volumetric Electromagnetic Phase-Shift Spectroscopy of Brain Edema and Hematoma
Gonzalez, Cesar A.; Valencia, Jose A.; Mora, Alfredo; Gonzalez, Fernando; Velasco, Beatriz; Porras, Martin A.; Salgado, Javier; Polo, Salvador M.; Hevia-Montiel, Nidiyare; Cordero, Sergio; Rubinsky, Boris
2013-01-01
Motivated by the need of poor and rural Mexico, where the population has limited access to advanced medical technology and services, we have developed a new paradigm for medical diagnostic based on the technology of “Volumetric Electromagnetic Phase Shift Spectroscopy” (VEPS), as an inexpensive partial substitute to medical imaging. VEPS, can detect changes in tissue properties inside the body through non-contact, multi-frequency electromagnetic measurements from the exterior of the body, and thereby provide rapid and inexpensive diagnostics in a way that is amenable for use in economically disadvantaged parts of the world. We describe the technology and report results from a limited pilot study with 46 healthy volunteers and eight patients with CT radiology confirmed brain edema and brain hematoma. Data analysis with a non-parametric statistical Mann-Whitney U test, shows that in the frequency range of from 26 MHz to 39 MHz, VEPS can distinguish non-invasively and without contact, with a statistical significance of p<0.05, between healthy subjects and those with a medical conditions in the brain. In the frequency range of between 153 MHz to 166 MHz it can distinguish with a statistical significance of p<0.05 between subjects with brain edema and those with a hematoma in the brain. A classifier build from measurements in these two frequency ranges can provide instantaneous diagnostic of the medical condition of the brain of a patient, from a single set of measurements. While this is a small-scale pilot study, it illustrates the potential of VEPS to change the paradigm of medical diagnostic of brain injury through a VEPS classifier-based technology. Obviously substantially larger-scale studies are needed to verify and expand on the findings in this small pilot study. PMID:23691001
High resolution wind turbine wake measurements with a scanning lidar
NASA Astrophysics Data System (ADS)
Herges, T. G.; Maniaci, D. C.; Naughton, B. T.; Mikkelsen, T.; Sjöholm, M.
2017-05-01
High-resolution lidar wake measurements are part of an ongoing field campaign being conducted at the Scaled Wind Farm Technology facility by Sandia National Laboratories and the National Renewable Energy Laboratory using a customized scanning lidar from the Technical University of Denmark. One of the primary objectives is to collect experimental data to improve the predictive capability of wind plant computational models to represent the response of the turbine wake to varying inflow conditions and turbine operating states. The present work summarizes the experimental setup and illustrates several wake measurement example cases. The cases focus on demonstrating the impact of the atmospheric conditions on the wake shape and position, and exhibit a sample of the data that has been made public through the Department of Energy Atmosphere to Electrons Data Archive and Portal.
HEU Holdup Measurements in 321-M B and Spare U-Al Casting Furnaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salaymeh, S.R.
The Analytical Development Section of Savannah River Technology Center (SRTC) was requested by the Facilities Decontamination Division (FDD) to determine the holdup of enriched uranium in the 321-M facility as part of an overall deactivation project of the facility. The 321-M facility was used to fabricate enriched uranium fuel assemblies, lithium-aluminum target tubes, neptunium assemblies, and miscellaneous components for the production reactors. This report covers holdup measurements in two uranium aluminum alloy (U-Al) casting furnaces. Our results indicate an upper limit of 235U content for the B and Spare furnaces of 51 and 67 g respectively. This report discusses themore » methodology, non-destructive assay (NDA) measurements, and results of the uranium holdup on the two furnaces.« less
Stability of Gadolinium-Doped Liquid Organic Scintillators
NASA Astrophysics Data System (ADS)
Gromov, M. B.; Kuznetsov, D. S.; Murchenko, A. E.; Novikova, G. Ya.; Obinyakov, B. A.; Oralbaev, A. Yu.; Plakitina, K. V.; Skorokhvatov, M. D.; Sukhotin, S. V.; Chepurnov, A. S.; Etenko, A. V.
2018-03-01
The technology of preparing a linear-alkylbenzene-based gadolinium-doped liquid organic scintillator (Gd-LOS) as a target material in reactor antineutrino detectors has been developed. Results of longterm measurements of the light yield of Gd-LOS in contact with acryl and stainless steel are presented, which confirm the compatibility of Gd-LOS with these materials. The measurements were performed for two otherwise identical LOS detectors only differing in wall materials of the sensitive volume: acryl versus stainless steel. The results of measurements over about one year showed almost the same, relatively small decreases in the light yield of both detectors. It is concluded that both structural materials can be used in detector parts contacting with Gd-doped scintillator. Such a long-term parallel comparative test was carried out for the first time.
Portable Diagnostics Technology Assessment for Space Missions. Part 2; Market Survey
NASA Technical Reports Server (NTRS)
Nelson, Emily S.; Chait, Arnon
2010-01-01
A mission to Mars of several years duration requires more demanding standards for all onboard instruments than a 6-month mission to the Moon or the International Space Station. In Part 1, we evaluated generic technologies and suitability to NASA needs. This prior work considered crew safety, device maturity and flightworthiness, resource consumption, and medical value. In Part 2, we continue the study by assessing the current marketplace for reliable Point-of-Care diagnostics. The ultimate goal of this project is to provide a set of objective analytical tools to suggest efficient strategies for reaching specific medical targets for any given space mission as program needs, technological development, and scientific understanding evolve.