NASA Technical Reports Server (NTRS)
Adrian, Gabriele; Blumenstock, Thomas; Fischer, Herbert; Frank, Eckard; Gerhardt, Lothar; Gulde, Thomas; Maucher, Guido; Oelhaf, Hermann; Thomas, Peter; Trieschmann, Olaf
1994-01-01
Two FTIR spectrometers were employed in the late winters 1990 and 1991 in Esrange, North Sweden, and in Ny Aalesund, Spitsbergen to detect zenith column amounts of several trace gases. Time series of column amounts of the trace gases O3, N2O, CH4, HNO3, NO2, CHl, and HF have been derived from the measured spectra. Additionally, some information on the vertical distribution of HCl could be obtained by analyzing the spectral line shapes. The results are interpreted in terms of dynamical and chemical processes.
Ambient methods and apparatus for rapid laser trace constituent analysis
Snyder, Stuart C.; Partin, Judy K.; Grandy, Jon D.; Jeffery, Charles L.
2002-01-01
A method and apparatus are disclosed for measuring trace amounts of constituents in samples by using laser induced breakdown spectroscopy and laser induced fluorescence under ambient conditions. The laser induced fluorescence is performed at a selected wavelength corresponding to an absorption state of a selected trace constituent. The intensity value of the emission decay signal which is generated by the trace constituent is compared to calibrated emission intensity decay values to determine the amount of trace constituent present.
Determination of trace amount of formaldehyde base on a bromate-Malachite Green system.
Tang, Yufang; Chen, Hao; Weng, Chao; Tang, Xiaohui; Zhang, Miaoling; Hu, Tao
2015-01-25
A novel catalytic kinetic spectrophotometric method for determination of trace amount of formaldehyde (FA) has been established, based on catalytic effect of trace amount of FA on the oxidation of Malachite Green (MG) by potassium bromate in presence of sulfuric acid medium, and was reported for the first time. The method was monitored by measuring the decrease in absorbance of MG at 617 nm and allowed a precise determination of FA in the range of 0.003-0.08 μg mL(-1), with a limit of detection down to 1 ng mL(-1). The relative standard deviation of 10 replicate measurements was 1.63%. The method developed was approved to be sensitive, selective and accurate, and adopted to determinate free FA in samples directly with good accuracy and reproducibility. Copyright © 2014 Elsevier B.V. All rights reserved.
A dynamic gravimetric standard for trace water.
Brewer, P J; Goody, B A; Woods, P T; Milton, M J T
2011-10-01
A system for generating traceable reference standards of water vapor at trace levels between 5 and 2000 nmol/mol has been developed. It can provide different amount fractions of trace water vapor by using continuous accurate measurements of mass loss from a permeation device coupled with a dilution system based on an array of critical flow orifices. An estimated relative expanded uncertainty of ±2% has been achieved for most amount fractions generated. The system has been used in an international comparison and demonstrates excellent comparability with National Metrology Institutes maintaining standards of water vapor in this range using other methods.
How Markovian is exciton dynamics in purple bacteria?
NASA Astrophysics Data System (ADS)
Vaughan, Felix; Linden, Noah; Manby, Frederick R.
2017-03-01
We investigate the extent to which the dynamics of excitons in the light-harvesting complex LH2 of purple bacteria can be described using a Markovian approximation. To analyse the degree of non-Markovianity in these systems, we introduce a measure based on fitting Lindblad dynamics, as well as employing a recently introduced trace-distance measure. We apply these measures to a chromophore-dimer model of exciton dynamics and use the hierarchical equation-of-motion method to take into account the broad, low-frequency phonon bath. With a smooth phonon bath, small amounts of non-Markovianity are present according to the trace-distance measure, but the dynamics is poorly described by a Lindblad master equation unless the excitonic dimer coupling strength is modified. Inclusion of underdamped, high-frequency modes leads to significant deviations from Markovian evolution in both measures. In particular, we find that modes that are nearly resonant with gaps in the excitonic spectrum produce dynamics that deviate most strongly from the Lindblad approximation, despite the trace distance measuring larger amounts of non-Markovianity for higher frequency modes. Overall we find that the detailed structure in the high-frequency region of the spectral density has a significant impact on the nature of the dynamics of excitons.
Bockman, R S; Repo, M A; Warrell, R P; Pounds, J G; Schidlovsky, G; Gordon, B M; Jones, K W
1990-01-01
Gallium nitrate, a drug that inhibits calcium release from bone, has been proven a safe and effective treatment for the accelerated bone resorption associated with cancer. Though bone is a target organ for gallium, the kinetics, sites, and effects of gallium accumulation in bone are not known. We have used synchrotron x-ray microscopy to map the distribution of trace levels of gallium in bone. After short-term in vivo administration of gallium nitrate to rats, trace (nanogram) amounts of gallium preferentially localized to the metabolically active regions in the metaphysis as well as the endosteal and periosteal surfaces of diaphyseal bone, regions where new bone formation and modeling were occurring. The amounts measured were well below the levels known to be cytotoxic. Iron and zinc, trace elements normally found in bone, were decreased in amount after in vivo administration of gallium. These studies represent a first step toward understanding the mechanism(s) of action of gallium in bone by suggesting the possible cellular, structural, and elemental "targets" of gallium. Images PMID:2349224
Method for Trace Oxygen Detection
NASA Technical Reports Server (NTRS)
Man, Kim Fung (Inventor); Boumsellek, Said (Inventor); Chutjian, Ara (Inventor)
1997-01-01
Trace levels of molecular oxygen are measured by introducing a gas containing the molecular oxygen into a target zone, and impacting the molecular oxygen in the target zone with electrons at the O(-) resonant energy level for dissociative electron attachment to produce O(-) ions. Preferably, the electrons have an energy of about 4 to about 10 eV. The amount of O(-) ions produced is measured, and is correlated with the molecular oxygen content in the target zone. The technique is effective for measuring levels of oxygen below 50 ppb. and even less than 1 ppb. The amount of O(-) can be measured in a quadrupole mass analyzer. Best results are obtained when the electrons have an energy of about 6 to about 8 eV. and preferably about 6.8 eV. The method can be used for other species by selecting the appropriate electron energy level.
Neutron activation analyses and half-life measurements at the usgs triga reactor
NASA Astrophysics Data System (ADS)
Larson, Robert E.
Neutron activation of materials followed by gamma spectroscopy using high-purity germanium detectors is an effective method for making measurements of nuclear beta decay half-lives and for detecting trace amounts of elements present in materials. This research explores applications of neutron activation analysis (NAA) in two parts. Part 1. High Precision Methods for Measuring Decay Half-Lives, Chapters 1 through 8 Part one develops research methods and data analysis techniques for making high precision measurements of nuclear beta decay half-lives. The change in the electron capture half-life of 51Cr in pure chromium versus chromium mixed in a gold lattice structure is explored, and the 97Ru electron capture decay half-life are compared for ruthenium in a pure crystal versus ruthenium in a rutile oxide state, RuO2. In addition, the beta-minus decay half-life of 71mZn is measured and compared with new high precision findings. Density Functional Theory is used to explain the measured magnitude of changes in electron capture half-life from changes in the surrounding lattice electron configuration. Part 2. Debris Collection Nuclear Diagnostic at the National Ignition Facility, Chapters 9 through 11 Part two explores the design and development of a solid debris collector for use as a diagnostic tool at the National Ignition Facility (NIF). NAA measurements are performed on NIF post-shot debris collected on witness plates in the NIF chamber. In this application NAA is used to detect and quantify the amount of trace amounts of gold from the hohlraum and germanium from the pellet present in the debris collected after a NIF shot. The design of a solid debris collector based on material x-ray ablation properties is given, and calculations are done to predict performance and results for the collection and measurements of trace amounts of gold and germanium from dissociated hohlraum debris.
Remediation using trace element humate surfactant
Riddle, Catherine Lynn; Taylor, Steven Cheney; Bruhn, Debra Fox
2016-08-30
A method of remediation at a remediation site having one or more undesirable conditions in which one or more soil characteristics, preferably soil pH and/or elemental concentrations, are measured at a remediation site. A trace element humate surfactant composition is prepared comprising a humate solution, element solution and at least one surfactant. The prepared trace element humate surfactant composition is then dispensed onto the remediation site whereby the trace element humate surfactant composition will reduce the amount of undesirable compounds by promoting growth of native species activity. By promoting native species activity, remediation occurs quickly and environmental impact is minimal.
NASA Astrophysics Data System (ADS)
Ganzha, V.; Ivshin, K.; Kammel, P.; Kravchenko, P.; Kravtsov, P.; Petitjean, C.; Trofimov, V.; Vasilyev, A.; Vorobyov, A.; Vznuzdaev, M.; Wauters, F.
2018-02-01
A series of muon experiments at the Paul Scherrer Institute in Switzerland deploy ultra-pure hydrogen active targets. A new gas impurity analysis technique was developed, based on conventional gas chromatography, with the capability to measure part-per-billion (ppb) traces of nitrogen and oxygen in hydrogen and deuterium. Key ingredients are a cryogenic admixture accumulation, a directly connected sampling system and a dedicated calibration setup. The dependence of the measured concentration on the sample volume was investigated, confirming that all impurities from the sample gas are collected in the accumulation column and measured with the gas chromatograph. The system was calibrated utilizing dynamic dilution of admixtures into the gas flow down to sub-ppb level concentrations. The total amount of impurities accumulated in the purification system during a three month long experimental run was measured and agreed well with the calculated amount based on the measured concentrations in the flow.
NASA Astrophysics Data System (ADS)
Donner, Sebastian; Shaiganfar, Reza; Riffel, Katharina; Dörner, Steffen; Lampel, Johannes; Remmers, Julia; Wagner, Thomas
2016-04-01
The DOAS (differential optical absorption spectroscopy)-method analyses the absorptions of atmospheric trace gases in spectra of scattered sun light. It is an excellent way to determine the concentrations of different trace gases (e.g. NO2, SO2, HCHO…) simultaneously. MAX (Multi-AXis)-DOAS measurements observe scattered sun light under different elevation angles. From such measurements tropospheric vertical column densities (VCDs) or even vertical profiles of the measured trace gases and aerosols can be determined. We performed mobile MAX-DOAS measurements using two instruments on the roof of a car in summer 2015 in Romania during the AROMAT2 campaign and in the Winter/Spring 2016 in the Rhein-Main area (Germany). The latter is one of the densest populated areas in Germany. One instrument is a commercial Mini-MAX-DOAS instrument from the Hoffmann company, the other a self-built instrument using an AVANTES spectrometer with better optical characteristics. The instruments were looking in two different directions (one forward and one backward). Mobile MAX-DOAS measurements cover a quite large area in a short period of time. This enables to map existing gradients of concentrations of tropospheric trace gases, e.g. NO2 and HCHO. The results of those measurements then can be used to validate satellite measurements or can be compared to model results. In this study we focus on formaldehyde (HCHO). In small amounts it is emitted directly by industries and other anthropogenic and biogenic activities. Large amounts are mostly secondary produced. As it is an intermediate product of basic oxidation cycles of other hydrocarbons its concentrations are determined by the abundances of other hydrocarbons. Therefore it can be used as an indicator for volatile organic compounds (VOCs). Furthermore HCHO plays an important role in photochemical smog chemistry and tropospheric O3 chemistry. In this work we present the measurement setup and preliminary HCHO results of the AROMAT2 campaign and first results of the measurements in the Rhein-Main area. We characterize the amounts, spatial gradients and identify potential emission sources of HCHO.
Remote Sensing of Tropospheric Pollution from Space
NASA Technical Reports Server (NTRS)
Fishman, Jack; Bowman, Kevin W.; Burrows, John P.; Chance, Kelly V.; Edwards, David P.; Martin, Randall V.; Morris, Gary A.; Pierce, R. Bradley; Ziemke, Jerald R.; Al-Saadi, Jassim A.;
2008-01-01
We review the progress of tropospheric trace gas observations and address the need for additional measurement capabilities as recommended by the National Academy of Science (NAS, 2007). Tropospheric measurements from current and earlier instruments show pollution in the Northern Hemisphere as a result of fossil fuel burning and a strong seasonal dependence with the largest amounts of photochemically-generated ozone in summer. At low latitudes, where photon flux is stronger throughout the year, trace gas concentrations are driven by the abundance of the emissions, where the largest source, biomass burning, is readily seen in carbon monoxide measurements, but lightning and biogenic trace gases may also contribute to trace gas variability. Although substantive progress has been achieved in seasonal and global mapping of a few tropospheric trace gases, satellite trace-gas observations with considerably better temporal and spatial resolution are essential to forecasting air quality at scales required by policy-makers. The concurrent use of atmospheric composition measurements for both scientific and operational purposes is a new paradigm for the atmospheric chemistry community. The examples presented illustrate both the promise and challenge of merging satellite information with in situ observations in state-of-the-art data assimilation models.
Differential-optoacoustic absorption detector
NASA Technical Reports Server (NTRS)
Shumate, M. S.
1977-01-01
Two-cell spectrophone detects trace amounts of atmospheric pollutants by measuring absorption coefficients of gases with various laser sources. Device measures pressure difference between two tapered cells with differential manometer. Background signal is reduced by balanced window heating and balanced carrier gas absorption in two cells.
Hamidizadeh, Nasrin; Simaeetabar, Shima; Handjani, Farhad; Ranjbar, Sara; Moghadam, Mohammad Gohari; Parvizi, Mohammad Mahdi
2017-01-01
Some skin diseases are incurable and modern medicine can only control them. In addition, alternative treatment remedies including balneotherapy can be effective in improving skin conditions. However, there are only a limited number of studies on particular mineral or trace elements of mineral sources that have been identified in Iran. In this respect, the amount of minerals and trace elements in Mamasani thermal source, Fars Province, Iran, was measured using electrochemical, titration, and spectrophotometric methods and evaluated. The amount of minerals and trace elements in Mamasani thermal source, Fars Province, Iran, was measured using electrochemical, titration, and spectrophotometric methods. The concentrations of natural gases such as H 2 S and NO 3 in Mamasani thermal source were measured to be 22.10 mg/L and 42.79 mg/L, respectively. The source also contained major ions such as chloride, sulfate, sodium, calcium, magnesium, potassium, and carbonate. Due to the high concentration of chloride, sulfate, and sodium ions in comparison with other major ions, the water source is also classified as sulfide water. The existing trace elements in this thermal water source are iron, zinc, copper, selenium, cobalt, chromium, boron, silisium, aluminum, magnesium, and molybdenum. We concluded that bathing in this source could be beneficial. As nitrate concentration is close to the highest standard concentration for drinking water, it can be used in chronic dermatitis, psoriasis, burns, and allergy. Furthermore, the antibacterial and antifungal effects of sulfur-containing water in this source can be helpful in the treatment of leg ulcers, tinea versicolor, tinea corporis, and tinea capitis.
Hamidizadeh, Nasrin; Simaeetabar, Shima; Handjani, Farhad; Ranjbar, Sara; Moghadam, Mohammad Gohari; Parvizi, Mohammad Mahdi
2017-01-01
INTRODUCTION: Some skin diseases are incurable and modern medicine can only control them. In addition, alternative treatment remedies including balneotherapy can be effective in improving skin conditions. However, there are only a limited number of studies on particular mineral or trace elements of mineral sources that have been identified in Iran. In this respect, the amount of minerals and trace elements in Mamasani thermal source, Fars Province, Iran, was measured using electrochemical, titration, and spectrophotometric methods and evaluated. MATERIALS AND METHODS: The amount of minerals and trace elements in Mamasani thermal source, Fars Province, Iran, was measured using electrochemical, titration, and spectrophotometric methods. RESULTS: The concentrations of natural gases such as H2S and NO3 in Mamasani thermal source were measured to be 22.10 mg/L and 42.79 mg/L, respectively. The source also contained major ions such as chloride, sulfate, sodium, calcium, magnesium, potassium, and carbonate. Due to the high concentration of chloride, sulfate, and sodium ions in comparison with other major ions, the water source is also classified as sulfide water. The existing trace elements in this thermal water source are iron, zinc, copper, selenium, cobalt, chromium, boron, silisium, aluminum, magnesium, and molybdenum. CONCLUSION: We concluded that bathing in this source could be beneficial. As nitrate concentration is close to the highest standard concentration for drinking water, it can be used in chronic dermatitis, psoriasis, burns, and allergy. Furthermore, the antibacterial and antifungal effects of sulfur-containing water in this source can be helpful in the treatment of leg ulcers, tinea versicolor, tinea corporis, and tinea capitis. PMID:29296611
Measuring protein isoelectric points by AFM-based force spectroscopy using trace amounts of sample
NASA Astrophysics Data System (ADS)
Guo, Shifeng; Zhu, Xiaoying; Jańczewski, Dominik; Lee, Serina Siew Chen; He, Tao; Teo, Serena Lay Ming; Vancso, G. Julius
2016-09-01
Protein charge at various pH and isoelectric point (pI) values is important in understanding protein function. However, often only trace amounts of unknown proteins are available and pI measurements cannot be obtained using conventional methods. Here, we show a method based on the atomic force microscope (AFM) to determine pI using minute quantities of proteins. The protein of interest is immobilized on AFM colloidal probes and the adhesion force of the protein is measured against a positively and a negatively charged substrate made by layer-by-layer deposition of polyelectrolytes. From the AFM force-distance curves, pI values with an estimated accuracy of ±0.25 were obtained for bovine serum albumin, myoglobin, fibrinogen and ribonuclease A over a range of 4.7-9.8. Using this method, we show that the pI of the ‘footprint’ of the temporary adhesive proteins secreted by the barnacle cyprid larvae of Amphibalanus amphitrite is in the range 9.6-9.7.
Trace metals in Bermuda rainwater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jickells, T.D.; Knap, A.H.; Church, T.M.
1984-02-20
The concentration of Cd, Cu, Fe, Mn, Ni, Pb, and Zn have been measured in Bermuda rainwater. Factor analysis indicates that Fe, Mn, and Pb have similar to acidic components derived from North America. The other metals all behave simiarly but differently to the acides. Sea salt, even after allowances for fractionation, apparently contributes minor amounts of Cu, Pb, and Zn and uncertain amounts of Fe, Mn, and Cd to Atlantic Ocean precipitation. Wash out ratios, calculated from this data along with earlier measurements of atmospheric trace metal concentration on Bermuda, are of the same order as those reported frommore » other remote ocean areas. The wet depositional fluxes of Cu, Ni, Pb, and Zn to the western Atlantic Ocean are significant compared to measured oceanic flux rates. However, the wet depositional fluxes of Fe and Mn to this area are relatively small, suggesting additional inputs, while an excess wet depositional flux of Cd suggests large-scale atmospheric recycling of this element.« less
Koo, Jackson C.; Yu, Conrad M.
2002-01-01
A highly sensitive electronic ion cell for the measurement of trace elements in He carrier gas which involves glow discharge. A constant wave (CW) glow discharge detector which is controlled through a biased resistor, can detect the change of electron density caused by impurities in the He carrier gas by many orders of magnitude larger than that caused by direct ionization or electron capture. The glow discharge detector utilizes a floating pseudo-electrode to form a probe in or near the plasma. By using this probe, the large variation of electron density due to trace amounts of impurities can be directly measured.
Leventhal, J.S.; Hosterman, J.W.
1982-01-01
Core samples of Devonian shales from five localities in the Appalachian basin have been analyzed chemically and mineralogically. The amounts of major elements are similar; however, the minor constituents, organic C, S, phosphate and carbonate show ten-fold variations in amounts. Trace elements Mo, Ni, Cu, V, Co, U, Zn, Hg, As and Mn show variations in amounts that can be related to the minor constituents. All samples contain major amounts of quartz, illite, two types of mixed-layer clays, and chlorite in differing quantities. Pyrite, calcite, feldspar and kaolinite are also present in many samples in minor amounts. Dolomite, apatite, gypsum, barite, biotite and marcasite are present in a few samples in trace amounts. Trace elements listed above are strongly controlled by organic C with the exception of Mn which is associated with carbonate minerals. Amounts of organic C generally range from 3 to 6%, and S is in the range of 2-5%. Amounts of trace elements show the following general ranges in ppm (parts per million): Co, 20-40; Cu, 40-70; U, 10-40; As, 20-40; V, 150-300; Ni, 80-150; high values are as much as twice these values. The organic C was probably the concentrating agent, and the organic C and sulfide S together created an environment that immobilized and preserved these trace elements. Closely spaced samples showing an abrupt transition in color also show changes in organic C, S and trace-element contents. Several associations exist between mineral and chemical content. Pyrite and marcasite are the only minerals found to contain sulfide-S. In general, the illite-chlorite mixed-layer clay mineral shows covariation with organic C if calcite is not present. The enriched trace elements are not related to the clay types, although the clay and organic matter are intimately associated as the bulk fabric of the rock. ?? 1982.
NASA Astrophysics Data System (ADS)
Bahramvash Shams, S.; Walden, V. P.; Turner, D. D.
2017-12-01
Measurements of trace gases at high temporal resolution are important for understanding variations and trends at high latitudes. Trace gases over Greenland can be influenced by both long-range transport from pollution sources as well as local chemical processes. Satellite retrievals are an important data source in the polar regions, but accurate ground-based measurements are needed for proper validation, especially in data sparse regions. A moderate-resolution (0.5 cm-1) Fourier transform infrared spectrometer (FTIR), the Polar Atmospheric Emitted Radiance Interferometer (P-AERI), has been operated at Summit Station, Greenland as part of the ICECAPS project since 2010. In this study, trace gas concentrations, including ozone, nitrous oxide, and methane are retrieved using different optimal estimation retrieval codes. We first present results of retrieved gases using synthetic spectra (from a radiative transfer model) that mimic P-AERI measurements to evaluate systematic errors in the inverse models. We also retrieve time series of trace gas concentrations during periods of clear skies over Summit. We investigate the amount of vertical information that can be obtained with moderate resolution spectra for each of the trace gases, and also the impact of the seasonal variation of atmospheric water vapor on the retrievals. Data from surface observations and ozonesondes obtained by the NOAA Global Monitoring Division are used to improve the retrievals and as validation.
Trace elements in hazardous mineral fibres.
Bloise, Andrea; Barca, Donatella; Gualtieri, Alessandro Francesco; Pollastri, Simone; Belluso, Elena
2016-09-01
Both occupational and environmental exposure to asbestos-mineral fibres can be associated with lung diseases. The pathogenic effects are related to the dimension, biopersistence and chemical composition of the fibres. In addition to the major mineral elements, mineral fibres contain trace elements and their content may play a role in fibre toxicity. To shed light on the role of trace elements in asbestos carcinogenesis, knowledge on their concentration in asbestos-mineral fibres is mandatory. It is possible that trace elements play a synergetic factor in the pathogenesis of diseases caused by the inhalation of mineral fibres. In this paper, the concentration levels of trace elements from three chrysotile samples, four amphibole asbestos samples (UICC amosite, UICC anthophyllite, UICC crocidolite and tremolite) and fibrous erionite from Jersey, Nevada (USA) were determined using inductively coupled plasma mass spectrometry (ICP-MS). For all samples, the following trace elements were measured: Li, Be, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, As, Rb, Sr, Y, Sb, Cs, Ba, La, Pb, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, U. Their distribution in the various mineral species is thoroughly discussed. The obtained results indicate that the amount of trace metals such as Mn, Cr, Co, Ni, Cu and Zn is higher in anthophyllite and chrysotile samples, whereas the amount of rare earth elements (REE) is higher in erionite and tremolite samples. The results of this work can be useful to the pathologists and biochemists who use asbestos minerals and fibrous erionite in-vitro studies as positive cyto- and geno-toxic standard references. Copyright © 2016 Elsevier Ltd. All rights reserved.
Application of SERS spectroscopy for detection of trace components in urinary deposits
NASA Astrophysics Data System (ADS)
Pucetaite, Milda; Velicka, Martynas; Tamosaityte, Sandra; Sablinskas, Valdas
2014-03-01
Surface-enhanced Raman scattering (SERS) spectroscopy can be a useful tool in regard to disease diagnosis and prevention. Advantage of SERS over conventional Raman spectroscopy is its significantly increased signal (up to factor of 106-108) which allows detection of trace amounts of substances in the sample. So far, this technique is successfully used for analysis of food, pieces of art and various biochemical/biomedical samples. In this work, we survey the possibility of applying SERS spectroscopy for detection of trace components in urinary deposits. Early discovery together with the identification of the exact chemical composition of urinary sediments could be crucial for taking appropriate preventive measures that inhibit kidney stone formation or growth processes. In this initial study, SERS spectra (excitation wavelength - 1064 nm) of main components of urinary deposits (calcium oxalate, uric acid, cystine, etc.) were recorded by using silver (Ag) colloid. Spectra of 10-3-10-5 M solutions were obtained. While no/small Raman signal was detected without the Ag colloid, characteristic peaks of the substances could be clearly separated in the SERS spectra. This suggests that even small amounts of the components could be detected and taken into account while determining the type of kidney stone forming in the urinary system. We found for the first time that trace amounts of components constituting urinary deposits could be detected by SERS spectroscopy. In the future study, the analysis of centrifuged urine samples will be carried out.
A study of the utility of measuring mandibular mobility by means of the interincisal dimension.
Ellis, E; Fonseca, R J; Upton, L G; Scott, R F
1989-02-01
The purpose of this investigation was to determine the reliability of using the interincisal dimension as a measure of mandibular range of motion. Thirty patients who underwent mandibular advancement and 15 patients who underwent mandibular setback were included in this study. Preoperatively, a lateral cephalogram in centric relation and a second cephalogram with the mandible at maximum voluntary gape were obtained. Immediately following surgery, another centric relation cephalogram was obtained. A composite tracing of the two preoperative tracings was made to show how the mandible changed in position from the closed-mouth to the open-mouth radiographs. The proximal segment (ramus) of the postoperative cephalogram was then superimposed on the open-mouth mandibular ramus, and the distal segment of the postoperative mandible was drawn. This composite produced a tracing of what the postoperative maximal gape cephalogram would be if the same amount of condylar rotation and translation as in the preoperative tracing had occurred. The preoperative interincisal dimension was recorded on the composite tracings (factoring in any overbite or openbite) as was the would-be postoperative interincisal dimension. These measures were compared using the paired t test and Pearson's correlations to determine if there were any significant differences between them. The results showed that the interincisal dimension is a fairly reliable measure of mandibular mobility even when the length of the mandible is altered with surgery.
Variable thickness double-refracting plate
Hadeishi, Tetsuo
1976-01-01
This invention provides an A.C., cyclic, current-controlled, phase retardation plate that uses a magnetic clamp to produce stress birefringence. It was developed for an Isotope-Zeeman Atomic Absorption Spectrometer that uses polarization modulation to effect automatic background correction in atomic absorption trace-element measurements. To this end, the phase retardation plate of the invention is a variable thickness, photoelastic, double-refracting plate that is alternately stressed and released by the magnetic clamp selectively to modulate specific components selected from the group consisting of circularly and plane polarized Zeeman components that are produced in a dc magnetic field so that they correspond respectively to Zeeman reference and transmission-probe absorption components. The polarization modulation changes the phase of these polarized Zeeman components, designated as .sigma. reference and .pi. absorption components, so that every half cycle the components change from a transmission mode to a mode in which the .pi. component is blocked and the .sigma. components are transmitted. Thus, the Zeeman absorption component, which corresponds in amplitude to the amount of the trace element to be measured in a sample, is alternately transmitted and blocked by a linear polarizer, while the circularly polarized reference components are continuously transmitted thereby. The result is a sinusoidally varying output light amplitude whose average corresponds to the amount of the trace element present in the sample.
Wang, Guannan; Su, Xingguang
2010-06-01
A novel, highly sensitive technology for the detection, enrichment, and separation of trace amounts of target DNA was developed on the basis of amino-modified fluorescent magnetic composite nanoparticles (AFMN). In this study, the positively charged amino-modified composite nanoparticles conjugate with the negatively charged capture DNA through electrostatic binding. The optimal combination of AFMN and capture DNA was measured by dynamic light scattering (DLS) and UV-vis absorption spectroscopy. The highly sensitive detection of trace amounts of target DNA was achieved through enrichment by means of AFMN. The detection limit for target DNA is 0.4 pM, which could be further improved by using a more powerful magnet. Because of their different melting temperatures, single-base mismatched target DNA could be separated from perfectly complementary target DNA. In addition, the photoluminescence (PL) signals of perfectly complementary target DNA and single-base mismatched DNA as well as the hybridization kinetics of different concentrations of target DNA at different reaction times have also been studied. Most importantly, the detection, enrichment, and separation ability of AFMN was further verified with milk. Simple and satisfactory results were obtained, which show the great potential in the fields of mutation identification and clinical diagnosis.
Kubica, Paweł; Kot-Wasik, Agata; Wasik, Andrzej; Namieśnik, Jacek
2013-05-10
Two analytical procedures are proposed where HILIC and RPLC techniques are coupled with tandem mass spectrometry detection for rapid determination of trace amounts of nicotine in zero-level liquids for electronic cigarettes. Samples are prepared on the basis of the approach "dilute & shoot" which makes this important step quick and not complicated. The chromatographic separation was carried out on a Zorbax XDB column (RPLC method) and Ascentis Si column (HILIC mode). Within-run precisions (CVs) measured at three concentration levels were as follows: 0.73%, 0.98% and 1.44% for RPLC method and 1.39%, 1.44% and 0.57% (HILIC mode). Between-run CVs were as follows: 1.94%, 1.02% and 1.22% for RPLC mode and 1.49%, 1.20% and 1.22% for HILIC mode. The detection limits of RPLC and HILIC modes were 4.08 and 3.90 ng/mL respectively. The proposed procedures are rapid, not complicated, sensitive and are suitable for fast determination of trace amounts of nicotine in zero-level liquids for electronic cigarettes. Copyright © 2013 Elsevier B.V. All rights reserved.
Karimi, H; Ghaedi, M; Shokrollahi, A; Rajabi, H R; Soylak, M; Karami, B
2008-02-28
A simple, selective and rapid flotation method for the separation-preconcentration of trace amounts of cobalt, nickel, iron and copper ions using phenyl 2-pyridyl ketone oxime (PPKO) has been developed prior to their flame atomic absorption spectrometric determinations. The influence of pH, amount of PPKO as collector, type and amount of eluting agent, type and amount of surfactant as floating agent and ionic strength was evaluated on the recoveries of analytes. The influences of the concomitant ions on the recoveries of the analyte ions were also examined. The enrichment factor was 93. The detection limits based on 3 sigma for Cu, Ni, Co and Fe were 0.7, 0.7, 0.8, and 0.7 ng mL(-1), respectively. The method has been successfully applied for determination of trace amounts of ions in various real samples.
Trace Gas Retrievals from the GeoTASO Aircraft Instrument
NASA Astrophysics Data System (ADS)
Nowlan, C. R.; Liu, X.; Leitch, J. W.; Liu, C.; Gonzalez Abad, G.; Chance, K.; Cole, J.; Delker, T.; Good, W. S.; Murcray, F.; Ruppert, L.; Soo, D.; Loughner, C.; Follette-Cook, M. B.; Janz, S. J.; Kowalewski, M. G.; Pickering, K. E.; Zoogman, P.; Al-Saadi, J. A.
2015-12-01
The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument is a passive remote sensing instrument capable of making 2-D measurements of trace gases and aerosols from aircraft. The instrument measures backscattered UV and visible radiation, allowing the retrieval of trace gas amounts below the aircraft at horizontal resolutions on the order of 250 m x 250 m. GeoTASO was originally developed under NASA's Instrument Incubator Program as a test-bed instrument for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey mission, and is now also part of risk reduction for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions. We present spatially resolved observations of ozone, nitrogen dioxide, formaldehyde and sulfur dioxide over urban areas and power plants from flights during the DISCOVER-AQ field campaigns in Texas and Colorado, as well as comparisons with observations made by ground-based Pandora spectrometers, in situ monitoring instruments and other aircraft instruments deployed during these campaigns. These measurements at various times of day are providing a very useful data set for testing and improving TEMPO and GEMS retrieval algorithms, as well as demonstrating prototype validation strategies.
Stable glow discharge detector
Koo, Jackson C.; Yu, Conrad M.
2004-05-18
A highly sensitive electronic ion cell for the measurement of trace elements in He carrier gas which involves glow discharge. A constant wave (CW) stable glow discharge detector which is controlled through a biased resistor, can detect the change of electron density caused by impurities in the He carrier gas by many orders of magnitude larger than that caused by direct ionization or electron capture. The stable glow discharge detector utilizes a floating pseudo-electrode to form a probe in or near the plasma and a solid rod electrode. By using this probe, the large variation of electron density due to trace amounts of impurities can be directly measured. The solid rod electrode provides greater stability and thus easier alignment.
Electrochemical Impedance Sensors for Monitoring Trace Amounts of NO3 in Selected Growing Media.
Ghaffari, Seyed Alireza; Caron, William-O; Loubier, Mathilde; Normandeau, Charles-O; Viens, Jeff; Lamhamedi, Mohammed S; Gosselin, Benoit; Messaddeq, Younes
2015-07-21
With the advent of smart cities and big data, precision agriculture allows the feeding of sensor data into online databases for continuous crop monitoring, production optimization, and data storage. This paper describes a low-cost, compact, and scalable nitrate sensor based on electrochemical impedance spectroscopy for monitoring trace amounts of NO3- in selected growing media. The nitrate sensor can be integrated to conventional microelectronics to perform online nitrate sensing continuously over a wide concentration range from 0.1 ppm to 100 ppm, with a response time of about 1 min, and feed data into a database for storage and analysis. The paper describes the structural design, the Nyquist impedance response, the measurement sensitivity and accuracy, and the field testing of the nitrate sensor performed within tree nursery settings under ISO/IEC 17025 certifications.
Electrochemical Impedance Sensors for Monitoring Trace Amounts of NO3 in Selected Growing Media
Ghaffari, Seyed Alireza; Caron, William-O.; Loubier, Mathilde; Normandeau, Charles-O.; Viens, Jeff; Lamhamedi, Mohammed S.; Gosselin, Benoit; Messaddeq, Younes
2015-01-01
With the advent of smart cities and big data, precision agriculture allows the feeding of sensor data into online databases for continuous crop monitoring, production optimization, and data storage. This paper describes a low-cost, compact, and scalable nitrate sensor based on electrochemical impedance spectroscopy for monitoring trace amounts of NO3− in selected growing media. The nitrate sensor can be integrated to conventional microelectronics to perform online nitrate sensing continuously over a wide concentration range from 0.1 ppm to 100 ppm, with a response time of about 1 min, and feed data into a database for storage and analysis. The paper describes the structural design, the Nyquist impedance response, the measurement sensitivity and accuracy, and the field testing of the nitrate sensor performed within tree nursery settings under ISO/IEC 17025 certifications. PMID:26197322
An automatic gas chromatograph with a flame photometric detector that samples and analyzes hydrogen sulfide and carbonyl sulfide at 30-s intervals is described. Temperature programming was used to elute trace amounts of carbon disulfide present in each injection from a Supelpak-S...
NASA Astrophysics Data System (ADS)
Ray, E. A.; Daniel, J. S.; Montzka, S. A.; Portmann, R. W.; Yu, P.; Rosenlof, K. H.; Moore, F. L.
2017-12-01
We use surface measurements of a number of long-lived trace gases, including CFC-11, CFC-12 and N2O, and a 3-box model to estimate the interannual variability of bulk stratospheric transport characteristics. Coherent features among the different surface measurements suggest that there have been periods over the last two decades with significant variability in the amount of stratospheric loss transported downward to the troposphere both globally and between the NH and SH. This is especially apparent around the year 2000 and in the recent period since 2013 when surface measurements suggest an overall slowdown of the transport of stratospheric air to the troposphere as well as a shift towards a relatively stronger stratospheric circulation in the SH compared to the NH. We compare these results to stratospheric satellite measurements, residual circulation estimates and global model simulations to check for consistency. The implications of not accounting for interannual variability in stratospheric loss transported to the surface in emission estimates of long-lived trace gases can be significant, including for those gases monitored by the Montreal Protocol and/or of climatic importance.
Micovascular integration into porous polyHEMA scaffold
NASA Astrophysics Data System (ADS)
Cho, Eugenia H.; Boico, Alina; Wisniewski, Natalie A.; Gant, Rebecca; Helton, Kristen L.; Brown, Nga L.; Register, Janna K.; Vo-Dinh, Tuan; Schroeder, Thies; Klitzman, Bruce
2014-03-01
Surface-enhanced Raman scattering (SERS) spectroscopy can be a useful tool in regard to disease diagnosis and prevention. Advantage of SERS over conventional Raman spectroscopy is its significantly increased signal (up to factor of 106-108) which allows detection of trace amounts of substances in the sample. So far, this technique is successfully used for analysis of food, pieces of art and various biochemical/biomedical samples. In this work, we survey the possibility of applying SERS spectroscopy for detection of trace components in urinary deposits. Early discovery together with the identification of the exact chemical composition of urinary sediments could be crucial for taking appropriate preventive measures that inhibit kidney stone formation or growth processes. In this initial study, SERS spectra (excitation wavelength - 1064 nm) of main components of urinary deposits (calcium oxalate, uric acid, cystine, etc.) were recorded by using silver (Ag) colloid. Spectra of 10-3-10-5 M solutions were obtained. While no/small Raman signal was detected without the Ag colloid, characteristic peaks of the substances could be clearly separated in the SERS spectra. This suggests that even small amounts of the components could be detected and taken into account while determining the type of kidney stone forming in the urinary system. We found for the first time that trace amounts of components constituting urinary deposits could be detected by SERS spectroscopy. In the future study, the analysis of centrifuged urine samples will be carried out.
NASA Technical Reports Server (NTRS)
Traub, Wesley A.; Chance, Kelly V.
1988-01-01
The major events and results to date of the ongoing program of measuring stratospheric composition by the technique of far-infrared Fourier-transform spectroscopy from a balloon-borne platform are reviewed. The highlights of this period were the two balloon flight campaigns which were performed at Palestine, Texas, both of which produced large amounts of scientifically useful data.
Measurements of Trace Gases in the Tropical Tropopause Layer
NASA Technical Reports Server (NTRS)
Marcy, T. P.; Popp, P. J.; Gao, R. S.; Fahey, D. W.; Ray, E. A.; Richard, E. C.; Thompson, T. L.; Atlas, E. L.; Lowenstein, M.; Wofsy, S. C.;
2008-01-01
A unique dataset of airborne in situ observations of HCl, O3, HNO3, H2O, CO, CO2 and CH3Cl has been made in and near the tropical tropopause layer (TTL). A total of 16 profiles across the tropopause were obtained at latitudes between 10degN and 3degs from the NASA WB-57F high-altitude aircraft flying from Costa Rica. Few in situ measurements of these gases, particularly HCl and HNO3, have been reported for the TTL. The general features of the trace gas vertical profiles are consistent with the concept of the TTL as distinct from the lower troposphere and lower stratosphere. A combination of the tracer profiles and correlations with O3 is used to show that a measurable amount of stratospheric air is mixed into this region. The HCl measurements offer an important constraint on stratospheric mixing into the TTL because once the contribution from halocarbon decomposition is quantified, the remaining HCl (>60% in this study) must have a stratospheric source. Stratospheric HCl in the TTL brings with it a proportional amount of stratospheric O3. Quantifying the sources of O3 in the TTL is important because O3 is particularly effective as a greenhouse gas in the tropopause region.
Chronological protein synthesis in regenerating rat liver.
He, Jinjun; Hao, Shuai; Zhang, Hao; Guo, Fuzheng; Huang, Lingyun; Xiao, Xueyuan; He, Dacheng
2015-07-01
Liver regeneration has been studied for decades; however, its regulation remains unclear. In this study, we report a dynamic tracing of protein synthesis in rat regenerating liver with a new proteomic technique, (35) S in vivo labeling analysis for dynamic proteomics (SiLAD). Conventional proteomic techniques typically measure protein alteration in accumulated amounts. The SiLAD technique specifically detects protein synthesis velocity instead of accumulated amounts of protein through (35) S pulse labeling of newly synthesized proteins, providing a direct way for analyzing protein synthesis variations. Consequently, protein synthesis within short as 30 min was visualized and protein regulations in the first 8 h of regenerating liver were dynamically traced. Further, the 3.5-5 h post partial hepatectomy (PHx) was shown to be an important regulatory turning point by acute regulation of many proteins in the initiation of liver regeneration. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hydrocyclone/Filter for Concentrating Biomarkers from Soil
NASA Technical Reports Server (NTRS)
Ponce, Adrian; Obenhuber, Donald
2008-01-01
The hydrocyclone-filtration extractor (HFE), now undergoing development, is a simple, robust apparatus for processing large amounts of soil to extract trace amounts of microorganisms, soluble organic compounds, and other biomarkers from soil and to concentrate the extracts in amounts sufficient to enable such traditional assays as cell culturing, deoxyribonucleic acid (DNA) analysis, and isotope analysis. Originally intended for incorporation into a suite of instruments for detecting signs of life on Mars, the HFE could also be used on Earth for similar purposes, including detecting trace amounts of biomarkers or chemical wastes in soils.
Metabolic measures of male southern toads (Bufo terrestris) exposed to coal combustion waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, C.K.; Appel, A.G.; Mendonca, M.T.
2006-03-15
Southern toads (Bufo terrestris) are found in coal fly ash collection basins associated with coal-burning electrical power plants. These basins contain large amounts of trace metals and organisms found in these basins are known to accumulate large quantities of metals. Studies on a variety of organisms exposed to trace metals found that they experience a significant increase in standard metabolic rate. We experimentally exposed southern toads to metal-contaminated sediment and food and measured changes in standard and exercise metabolic rates as well as changes in body, liver and muscle mass, blood glucose, and corticosterone. We found that toads exposed tomore » trace metal contamination gained significantly less mass (18.3%) than control toads (31.3%) when food was limited and experienced significantly decreased RQ after exercise. However, contaminated toads did not experience changes in standard or exercise metabolic rates, plasma glucose levels, and hepatic or muscle percentage indices whether food was limited or not.« less
Low, I A; Liu, R H; Legendre, M G; Piotrowski, E G; Furner, R L
1986-10-01
A gas chromatograph/quadrupole mass spectrometer system, operated in electron impact/selected ion monitoring mode, is used to determine the intensity ratio of the m/z 59 and the m/z 58 ions of the [C3H8N]+ fragment derived from methamphetamine samples synthesized with varying amounts of 13C-labeled methylamine. Crude products are introduced into the gas chromatograph without prior cleanup. The ratios measured were in excellent agreement with those calculated. A change in 0.25% use of 13C-methylamine is sufficient for product differentiation. The feasibility of using isotope labeling and subsequent mass spectrometric isotope ratio measurement as the basis of a compound tracing mechanism is discussed. Specifically, if methamphetamine samples manufactured from legal sources are asked to incorporate distinct 13C compositions, their sources can be traced when samples are diverted into illegal channels. Samples derived from illicit preparations can also be traced if the manufacturers of a precursor (methylamine in this case) incorporate distinct 13C compositions in their products.
NASA Astrophysics Data System (ADS)
Hueneke, Tilman; Grossmann, Katja; Knecht, Matthias; Raecke, Rasmus; Stutz, Jochen; Werner, Bodo; Pfeilsticker, Klaus
2016-04-01
Changing atmospheric conditions during DOAS measurements from fast moving aircraft platforms pose a challenge for trace gas retrievals. Traditional inversion techniques to retrieve trace gas concentrations from limb scattered UV/vis spectroscopy, like optimal estimation, require a-priori information on Mie extinction (e.g., aerosol concentration and cloud cover) and albedo, which determine the atmospheric radiative transfer. In contrast to satellite applications, cloud filters can not be applied because they would strongly reduce the usable amount of expensively gathered measurement data. In contrast to ground-based MAX-DOAS applications, an aerosol retrieval based on O4 is not able to constrain the radiative transfer in air-borne applications due to the rapidly decreasing amount of O4 with altitude. Furthermore, the assumption of a constant cloud cover is not valid for fast moving aircrafts, thus requiring 2D or even 3D treatment of the radiative transfer. Therefore, traditional techniques are not applicable for most of the data gathered by fast moving aircraft platforms. In order to circumvent these limitations, we have been developing the so-called X-gas scaling method. By utilising a proxy gas X (e.g. O3, O4, …), whose concentration is either a priori known or simultaneously in-situ measured as well as remotely measured, an effective absorption length for the target gas is inferred. In this presentation, we discuss the strengths and weaknesses of the novel approach along with some sample cases. A particular strength of the X-gas scaling method is its insensitivity towards the aerosol abundance and cloud cover as well as wavelength dependent effects, whereas its sensitivity towards the profiles of both gases requires a priori information on their shapes.
The global consequences of increasing tropospheric ozone concentrations
NASA Technical Reports Server (NTRS)
Fishman, Jack
1989-01-01
Recent analyses of long term records of tropospheric ozone measurements in the Northern Hemisphere suggest that it is increasing at a rate of 1 to 2 percent per year. Because of this, it is argued that the amount of atmospheric warming due to increasing tropospheric ozone is comparable to, or possibly even greater than, the amount of warming due to the increase of carbon dioxide. Unlike all other climatically important trace gases, ozone is toxic, and increases in its concentration will result in serious environmental damage, as well as impairment of human health.
Rapid detection of trace amounts of surfactants using nanoparticles in fluorometric assays
NASA Astrophysics Data System (ADS)
Härmä, Harri; Laakso, Susana; Pihlasalo, Sari; Hänninen, Pekka; Faure, Bertrand; Rana, Subhasis; Bergström, Lennart
2010-01-01
Rapid microtiter assays that utilize the time-resolved fluorescence resonance energy transfer or quenching of dye-labeled proteins adsorbed onto the surfaces of polystyrene or maghemite nanoparticles have been developed for the detection and quantification of trace amounts of surfactants at concentrations down to 10 nM.Rapid microtiter assays that utilize the time-resolved fluorescence resonance energy transfer or quenching of dye-labeled proteins adsorbed onto the surfaces of polystyrene or maghemite nanoparticles have been developed for the detection and quantification of trace amounts of surfactants at concentrations down to 10 nM. Electronic supplementary information (ESI) available: Experimental details and Fig. S1 and S2. See DOI: 10.1039/b9nr00172g
Atmospheric Deposition of Trace Elements in Ombrotrophic Peat as a Result of Anthropic Activities
NASA Astrophysics Data System (ADS)
Fabio Lourençato, Lucio; Cabral Teixeira, Daniel; Vieira Silva-Filho, Emmanoel
2014-05-01
Ombrotrophic peat can be defined as a soil rich in organic matter, formed from the partial decomposition of vegetable organic material in a humid and anoxic environment, where the accumulation of material is necessarily faster than the decomposition. From the physical-chemical point of view, it is a porous and highly polar material with high adsorption capacity and cation exchange. The high ability of trace elements to undergo complexation by humic substances happens due to the presence of large amounts of oxygenated functional groups in these substances. Since the beginning of industrialization human activities have scattered a large amount of trace elements in the environment. Soil contamination by atmospheric deposition can be expressed as a sum of site contamination by past/present human activities and atmospheric long-range transport of trace elements. Ombrotrophic peat records can provide valuable information about the entries of trace metals into the atmosphere and that are subsequently deposited on the soil. These trace elements are toxic, non-biodegradable and accumulate in the food chain, even in relatively low quantities. Thus studies on the increase of trace elements in the environment due to human activities are necessary, particularly in the southern hemisphere, where these data are scarce. The aims of this study is to evaluate the concentrations of mercury in ombrotrophic peat altomontanas coming from atmospheric deposition. The study is conducted in the Itatiaia National Park, Brazilian conservation unit, situated between the southeastern state of Rio de Janeiro, São Paulo and Minas Gerais. An ombrotrophic peat core is being sampled in altitude (1980m), to measure the trace elements concentrations of this material. As it is conservation area, the trace elements found in the samples is mainly from atmospheric deposition, since in Brazil don't exist significant lithology of trace elements. The samples are characterized by organic matter content which is determined by calcination and pH. For the determination of mercury, an aliquot of 10 mL of sample with 5 mL of the reducing agent 2 % SnCl2, purged with air by atomic absorption spectrophotometry by cold vapor, EAAVF is being used. The determination of other trace elements (Zn, Cd and Pb) is analyzed by flame atomic absorption spectroscopy (FAAS).
Hasegawa, Yuya; Suzuki, Yasutada; Kawakubo, Susumu
2017-01-01
An on-site determination method for trace arsenic has been developed by collecting it as molybdenum blue (MB) in the presence of tetradecyldimethylbenzylammonium chloride on a mixed cellulose ester membrane filter and by measuring reflection absorbance (RA) of MB on the filter using a laboratory-made palm-top size reflection-absorbance colorimeter with a red light-emitting diode. The value of RA was proportional to the amount of arsenic up to 0.5 μg with a detection limit of 0.01 μg. The proposed method was successfully applied to soil extract and hot-spring water samples.
NASA Technical Reports Server (NTRS)
2002-01-01
The upper troposphere (6-12 km altitude) is a poorly understood and highly vulnerable region of the atmosphere. It is important because many trace species, including ozone, have their greatest impact as greenhouse (infrared-absorbing) gases in this region. The addition of relatively small amounts of anthropogenic chemicals, such as nitrogen oxides, can have a dramatic effect on the abundance of ozone. Some of these pollutants are deposited directly, e.g., by aircraft, while others are transported in. The primary goal of this project was to measure several chemical compounds in the upper troposphere that will help us to understand how air is to transported to that part of the atmosphere; that is, does it come down from the stratosphere, does it rise from the surface via convection, and so on. To obtain adequate sampling to accomplish this goal, we proposed to make measurements from revenue aircraft during normal flight operations.
Emissions from Biomass Burning in the Yucatan
NASA Technical Reports Server (NTRS)
Yokelson, R.; Crounse, J. D.; DeCarlo, P. F.; Karl, T.; Urbanski, S.; Atlas, E.; Campos, T.; Shinozuka, Y.; Kapustin, V.; Clarke, A. D.;
2009-01-01
In March 2006 two instrumented aircraft made the first detailed field measurements of biomass burning (BB) emissions in the Northern Hemisphere tropics as part of the MILAGRO project. The aircraft were the National Center for Atmospheric Research C-130 and a University of Montana/US Forest Service Twin Otter. The initial emissions of up to 49 trace gas or particle species were measured from 20 deforestation and crop residue fires on the Yucatan peninsula. This included two trace gases useful as indicaters of BB (HCN and acetonitrile) and several rarely, or never before, measured species: OH, peroxyacetic acid, propanoic acid, hydrogen peroxide, methane sulfonic acid, and sulfuric acid. Crop residue fires emitted more organic acids and ammonia than deforestation fires, but the emissions from the main fire types were otherwise fairly similar. The Yucatan fires emitted unusually amounts of SO2 and particle chloride, likely due to a strong marine influence on the peninsula.
NASA Astrophysics Data System (ADS)
Broekhuizen, K. E.; Thornberry, T.; Abbatt, J. P.
2003-12-01
The ability of organic aerosols to act as cloud condensation nuclei (CCN) will be discussed. A variety of laboratory experiments will be presented which address several key questions concerning organic particle activation. Does the particle phase impact activation? How does surface tension play a role and can a trace amount of a surface active species impact activation? Does a trace amount of a highly soluble species impact the activation of organic particles of moderate to low solubility? Can the activation properties of organic aerosols be enhanced through oxidative processing? To systematically address these issues, the CCN activity of various diacids such as oxalic, malonic, succinic, adipic and azelaic acid have been studied, as well as the addition of trace amounts of nonanoic acid and ammonium sulfate to examine the roles of surface active and soluble species, respectively. The first examination of the role of oxidative processing on CCN activity has involved investigating the effect of ozone oxidation on the activity of oleic acid particles.
NASA Astrophysics Data System (ADS)
Franklin, J. E.; Drummond, J. R.; Griffin, D.; Pierce, J. R.; Waugh, D. L.; Palmer, P. I.; Parrington, M.; Lee, J. D.; Lewis, A. C.; Rickard, A. R.; Taylor, J. W.; Allan, J. D.; Coe, H.; Walker, K. A.; Chisholm, L.; Duck, T. J.; Hopper, J. T.; Blanchard, Y.; Gibson, M. D.; Curry, K. R.; Sakamoto, K. M.; Lesins, G.; Dan, L.; Kliever, J.; Saha, A.
2014-08-01
We present measurements of a long-range smoke transport event recorded on 20-21 July 2011 over Halifax, Nova Scotia, Canada, during the Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS-B) campaign. Ground-based Fourier transform spectrometers and photometers detected air masses associated with large wildland fires burning in eastern Manitoba and western Ontario. We investigate a plume with high trace gas amounts but low amounts of particles that preceded and overlapped at the Halifax site with a second plume with high trace gas loadings and significant amounts of particulate material. We show that the first plume experienced a meteorological scavenging event, but the second plume had not been similarly scavenged. This points to the necessity to account carefully for the plume history when considering long-range transport since simultaneous or near-simultaneous times of arrival are not necessarily indicative of either similar trajectories or meteorological history. We investigate the origin of the scavenged plume, and the possibility of an aerosol wet deposition event occurring in the plume ~ 24 h prior to the measurements over Halifax. The region of lofting and scavenging is only monitored on an intermittent basis by the present observing network, and thus we must consider many different pieces of evidence in an effort to understand the early dynamics of the plume. Through this discussion we also demonstrate the value of having many simultaneous remote-sensing measurements in order to understand the physical and chemical behaviour of biomass burning plumes.
NASA Astrophysics Data System (ADS)
Franklin, J. E.; Drummond, J. R.; Griffin, D.; Pierce, J. R.; Waugh, D. L.; Palmer, P. I.; Parrington, M.; Lee, J. D.; Lewis, A. C.; Rickard, A. R.; Taylor, J. W.; Allan, J. D.; Coe, H.; Walker, K. A.; Chisholm, L.; Duck, T. J.; Hopper, J. T.; Blanchard, Y.; Gibson, M. D.; Curry, K. R.; Sakamoto, K. M.; Lesins, G.; Dan, L.; Kliever, J.; Saha, A.
2014-02-01
We present measurements of a long range smoke transport event recorded on 20-21 July 2011 over Halifax, Nova Scotia, Canada, during the Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS-B) campaign. Ground-based Fourier transform spectrometers and photometers detected air masses associated with large wildland fires burning in eastern Manitoba and western Ontario. We investigate a plume with high trace gas amounts but low amounts of particles that preceded and overlapped at the Halifax site with a second plume with high trace gas loadings and significant amounts of particulate material. We show that the first plume experienced a meteorological scavenging event but the second plume had not been similarly scavenged. This points to the necessity to account carefully for the plume history when considering long range transport since simultaneous or near-simultaneous times of arrival are not necessarily indicative of either similar trajectories or meteorological history. We investigate the origin of the scavenged plume, and the possibility of an aerosol wet deposition event occurring in the plume ~24 h prior to the measurements over Halifax. The region of lofting and scavenging is only monitored on an intermittent basis by the present observing network, and thus we must consider many different pieces of evidence in an effort to understand the early dynamics of the plume. Through this discussion we also demonstrate the value of having many simultaneous remote-sensing measurements in order to understand the physical and chemical behaviour of biomass burning plumes.
Leventhal, Joel S.
1979-01-01
Core samples from Devonian shales from five localities in the Appalachian Basin have been analyzed for major, minor, and trace constituents. The contents of major elements are rather similar; however, the minor constituents, organic C, S, PO4, and CO3, show variations by a factor of 10. Trace elements Mo, Ni, Cu, V, Co, U, Zn, Hg, As, and Mn show variations that can be related graphically and statistically to the minor constituents. Down-hole plots show the relationships most clearly. Mn is associated with CO3 content, the other trace elements are strongly Controlled by organic C. Amounts of organic C are generally in the range of 3-6 percent, and S is in the range of 2-5 percent. Trace-element amounts show the following general ranges (ppm, parts per million)- Co, 20-40; Cu,40-70; U, 10-40; As, 20-40, V, 150-300; Ni, 80-150; high values are as much as twice these values. The organic C was probably the concentrating agent, whereas the organic C and sulfide S created an environment for preservation or immobilization of trace elements. Closely spaced samples showing an abrupt transition in color from black to gray and gray to black shale show similar effects of trace-element changes, that is, black shale contains enhanced amounts of organic C and trace elements. Ratios of trace elements to organic C or sulfide S were relatively constant even though deposition rates varied from 10 to 300 meters in 5 million years.
Nuntawong, N; Eiamchai, P; Limwichean, S; Wong-ek, B; Horprathum, M; Patthanasettakul, V; Leelapojanaporn, A; Nakngoenthong, S; Chindaudom, P
2013-12-10
Recent analyses by ion-exchange chromatography (IC) showed that, beside nitrate, the majority of the industrial-grade emulsion explosives, extensively used by most separatists in the southern Thailand insurgency, contained small traces of perchlorate anions. In demand for the faster, reliable, and simple detection methods, the portable detection of nitrate and perchlorate became the great interest for the forensic and field-investigators. This work proposed a unique method to detect the trace amount of perchlorate in seven industrial-grade emulsion explosives under the field tests. We utilized the combination of the portable Raman spectroscope, the developed surfaced-enhanced Raman substrates, and the sample preparation procedures. The portable Raman spectroscope with a laser diode of 785 nm for excitation and a thermoelectric-cooled CCD spectrometer for detection was commercially available. The SERS substrates, with uniformly distributed nanostructured silver nanorods, were fabricated by the DC magnetron sputtering system, based on the oblique-angle deposition technique. The sample preparation procedures were proposed based on (1) pentane extraction technique and (2) combustion technique, prior to being dissolved in the purified water. In comparison to the ion chromatography and the conventional Raman measurements, our proposed methods successfully demonstrated the highly sensitive detectability of the minimal trace amount of perchlorate from five of the explosives with minimal operating time. This work was therefore highly practical to the development for the forensic analyses of the post-blast explosive residues under the field-investigations. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Novel fluorimetric assay of trace analysis of epinephrine in human serum
NASA Astrophysics Data System (ADS)
Adeniyi, William K.; Wright, Ashleigh R.
2009-12-01
A simple, rapid, and sensitive spectrofluorimetric technique for the microdetermination of epinephrine in human serum is described. The investigation shows that trace amounts of epinephrine, antidepressant of clinical importance, can be determined without the conventional derivatization or use of fluorophores by diazotization. The method is based on the optimization of experimental parameters, such as pH, temperature, careful selection of excitation and emission wavelengths and on the use of anionic surfactant, sodium dodecyl sulfate (SDS), to enhance sensitivity. The measurement was carried out at 360 nm with excitation at 286 nm. Under the optimum conditions, a linear relationship was obtained between the fluorescence intensity and epinephrine concentration in the range of 0.10 and 1.0 μg/mL; the correlation coefficient and detection limit are 0.9953 and 0.05 μg/mL, respectively. Recovery tests indicated an efficiency of 95.5-98.7% by using known amounts of epinephrine spiked with human serum.
Bobbitt, James M; Eddy, Nicholas A; Cady, Clyde X; Jin, Jing; Gascon, Jose A; Gelpí-Dominguez, Svetlana; Zakrzewski, Jerzy; Morton, Martha D
2017-09-15
Three new homologous TEMPO oxoammonium salts and three homologous nitroxide radicals have been prepared and characterized. The oxidation properties of the salts have been explored. The direct 13 C NMR and EPR spectra of the nitroxide free radicals and the oxoammonium salts, along with TEMPO and its oxoammonium salt, have been successfully measured with little peak broadening of the NMR signals. In the spectra of all ten compounds (nitroxides and corresponding oxoammonium salts), the carbons in the 2,2,6,6-tetramethylpiperidine core do not appear, implying paramagnetic properties. This unpredicted overall paramagnetism in the oxoammonium salt solutions is explained by a redox equilibrium as shown between oxoammonium salts and trace amounts of corresponding nitroxide. This equilibrium is confirmed by electron interchange reactions between nitroxides with an N-acetyl substituent and oxoammonium salts with longer acyl side chains.
Usage of CO2 microbubbles as flow-tracing contrast media in X-ray dynamic imaging of blood flows.
Lee, Sang Joon; Park, Han Wook; Jung, Sung Yong
2014-09-01
X-ray imaging techniques have been employed to visualize various biofluid flow phenomena in a non-destructive manner. X-ray particle image velocimetry (PIV) was developed to measure velocity fields of blood flows to obtain hemodynamic information. A time-resolved X-ray PIV technique that is capable of measuring the velocity fields of blood flows under real physiological conditions was recently developed. However, technical limitations still remained in the measurement of blood flows with high image contrast and sufficient biocapability. In this study, CO2 microbubbles as flow-tracing contrast media for X-ray PIV measurements of biofluid flows was developed. Human serum albumin and CO2 gas were mechanically agitated to fabricate CO2 microbubbles. The optimal fabricating conditions of CO2 microbubbles were found by comparing the size and amount of microbubbles fabricated under various operating conditions. The average size and quantity of CO2 microbubbles were measured by using a synchrotron X-ray imaging technique with a high spatial resolution. The quantity and size of the fabricated microbubbles decrease with increasing speed and operation time of the mechanical agitation. The feasibility of CO2 microbubbles as a flow-tracing contrast media was checked for a 40% hematocrit blood flow. Particle images of the blood flow were consecutively captured by the time-resolved X-ray PIV system to obtain velocity field information of the flow. The experimental results were compared with a theoretically amassed velocity profile. Results show that the CO2 microbubbles can be used as effective flow-tracing contrast media in X-ray PIV experiments.
2010-01-01
DNA analysis is frequently used to acquire information from biological material to aid enquiries associated with criminal offences, disaster victim identification and missing persons investigations. As the relevance and value of DNA profiling to forensic investigations has increased, so too has the desire to generate this information from smaller amounts of DNA. Trace DNA samples may be defined as any sample which falls below recommended thresholds at any stage of the analysis, from sample detection through to profile interpretation, and can not be defined by a precise picogram amount. Here we review aspects associated with the collection, DNA extraction, amplification, profiling and interpretation of trace DNA samples. Contamination and transfer issues are also briefly discussed within the context of trace DNA analysis. Whilst several methodological changes have facilitated profiling from trace samples in recent years it is also clear that many opportunities exist for further improvements. PMID:21122102
Dosimetry analyses of the Ringhals 3 and 4 reactor pressure vessels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulesza, J.A.; Fero, A.H.; Rouden, J.
2011-07-01
A comprehensive series of neutron dosimetry measurements consisting of surveillance capsules, reactor pressure vessel cladding samples, and ex-vessel neutron dosimetry has been analyzed and compared to the results of three-dimensional, cycle-specific neutron transport calculations for the Ringhals Unit 3 and Unit 4 reactors in Sweden. The comparisons show excellent agreement between calculations and measurements. The measurements also demonstrate that it is possible to perform retrospective dosimetry measurements using the {sup 93}Nb (n,n') {sup 93m}Nb reaction on samples of 18-8 austenitic stainless steel with only trace amounts of elemental niobium. (authors)
Measurement of cardiac output using improved chromatographic analysis of sulfur hexafluoride (SF6).
Klocke, F J; Roberts, D L; Farhi, E R; Naughton, B J; Sekovski, B; Klocke, R A
1977-06-01
A constant current variable frequency pulsed electron capture detector has been incorporated into the gas chromatographic analysis of trace amounts of sulfur hexafluoride (SF6) in water and blood. The resulting system offers a broader effective operating range than more conventional electron capture units and has been utilized for measurements of cardiac output employing constant-rate infusion of dissolved SF6. The SF6 technique has been validated against direct volumetric measurements of cardiac output in a canine right-heart bypass preparation and used subsequently for rapidly repeated measurements in conscious animals and man.
Detection of chemical residues in food oil via surface-enhanced Raman spectroscopy
NASA Astrophysics Data System (ADS)
Sun, Kexi; Huang, Qing
2016-05-01
Highly ordered hexagonally patterned Ag-nanorod (Ag-NR) arrays for surface-enhanced Raman scattering (SERS) detection of unhealthy chemical residues in food oil was reported, which was obtained by sputtering Ag on the alumina nanotip arrays stuck out of conical-pore anodic aluminum oxide (AAO) templates. SERS measurements demonstrate that the as-fabricated large-scale Ag-nanostructures can serve as highly sensitive and reproducible SERS substrates for detection of trace amount of chemicals in oil with the lower detection limits of 2×10-6 M for thiram and 10-7 M for rhodamine B, showing the potential of application of SERS in rapid trace detection of pesticide residues and illegal additives in food oils.
Method for removing trace pollutants from aqueous solutions
Silver, G.L.
A method of substantially removing a trace metallic contaminant from a liquid containing the same comprises: adding an oxidizing agent to a liquid containing a trace amount of a metallic contaminant of a concentration of up to about 0.1 ppM, and separating the homogeneously precipitated product from the liquid.
Ritchie, Nicholas W M; Newbury, Dale E; Lindstrom, Abigail P
2011-12-01
Artifacts are the nemesis of trace element analysis in electron-excited energy dispersive X-ray spectrometry. Peaks that result from nonideal behavior in the detector or sample can fool even an experienced microanalyst into believing that they have trace amounts of an element that is not present. Many artifacts, such as the Si escape peak, absorption edges, and coincidence peaks, can be traced to the detector. Others, such as secondary fluorescence peaks and scatter peaks, can be traced to the sample. We have identified a new sample-dependent artifact that we attribute to Compton scattering of energetic X-rays generated in a small feature and subsequently scattered from a low atomic number matrix. It seems likely that this artifact has not previously been reported because it only occurs under specific conditions and represents a relatively small signal. However, with the advent of silicon drift detectors and their utility for trace element analysis, we anticipate that more people will observe it and possibly misidentify it. Though small, the artifact is not inconsequential. Under some conditions, it is possible to mistakenly identify the Compton scatter artifact as approximately 1% of an element that is not present.
Tsutsumi, T; Nagata, S; Hasegawa, A; Ueno, Y
2000-07-01
Trace amounts of microcystins (MCs) in drinking water should be monitored because of their potential hazard for human health as an environmental tumor promoter. We describe here a new clean-up tool with immunoaffinity column (IAC) for determination of trace amounts of MCs (from pg to microg/litre) in tap water. The water samples were concentrated with IAC clean-up and MCs levels were determined by HPLC with UV detection or enzyme-linked immunosorbent assay (ELISA). In the combination with HPLC analysis, mean recovery of microcystin-LR (MCLR),-RR and-YR spiked to tap water were 91.8%, 77.3% and 86.4%, respectively, in the range 2.5-100 microg/litre. The chromatogram of MCs-spiked tap water sample cleaned up with IAC showed effective elimination of the impurities compared to that with octadecyl silanized cartridge, which had been cleaned up with a conventional method. Also, in the combination with highly sensitive ELISA, mean recovery of MCLR spiked to tap water was 80% in the range 0.1-1000 ng/litre. The combined methods developed here can detect pg to microg/litre of MCs in tap water. The overall results indicated that IAC will be suitable as a clean-up tool for trace amounts of MCs in tap water.
A first proposal for a general description model of forensic traces
NASA Astrophysics Data System (ADS)
Lindauer, Ina; Schäler, Martin; Vielhauer, Claus; Saake, Gunter; Hildebrandt, Mario
2012-06-01
In recent years, the amount of digitally captured traces at crime scenes increased rapidly. There are various kinds of such traces, like pick marks on locks, latent fingerprints on various surfaces as well as different micro traces. Those traces are different from each other not only in kind but also in which information they provide. Every kind of trace has its own properties (e.g., minutiae for fingerprints, or raking traces for locks) but there are also large amounts of metadata which all traces have in common like location, time and other additional information in relation to crime scenes. For selected types of crime scene traces, type-specific databases already exist, such as the ViCLAS for sexual offences, the IBIS for ballistic forensics or the AFIS for fingerprints. These existing forensic databases strongly differ in the trace description models. For forensic experts it would be beneficial to work with only one database capable of handling all possible forensic traces acquired at a crime scene. This is especially the case when different kinds of traces are interrelated (e.g., fingerprints and ballistic marks on a bullet casing). Unfortunately, current research on interrelated traces as well as general forensic data models and structures is not mature enough to build such an encompassing forensic database. Nevertheless, recent advances in the field of contact-less scanning make it possible to acquire different kinds of traces with the same device. Therefore the data of these traces is structured similarly what simplifies the design of a general forensic data model for different kinds of traces. In this paper we introduce a first common description model for different forensic trace types. Furthermore, we apply for selected trace types from the well established database schema development process the phases of transferring expert knowledge in the corresponding forensic fields into an extendible, database-driven, generalised forensic description model. The trace types considered here are fingerprint traces, traces at locks, micro traces and ballistic traces. Based on these basic trace types, also combined traces (multiple or overlapped fingerprints, fingerprints on bullet casings, etc) and partial traces are considered.
Wamsley, Paula R.; Weimer, Carl S.; Nelson, Loren D.; O'Brien, Martin J.
2003-01-01
An oil and gas exploration system and method for land and airborne operations, the system and method used for locating subsurface hydrocarbon deposits based upon a remote detection of trace amounts of gases in the atmosphere. The detection of one or more target gases in the atmosphere is used to indicate a possible subsurface oil and gas deposit. By mapping a plurality of gas targets over a selected survey area, the survey area can be analyzed for measurable concentration anomalies. The anomalies are interpreted along with other exploration data to evaluate the value of an underground deposit. The system includes a differential absorption lidar (DIAL) system with a spectroscopic grade laser light and a light detector. The laser light is continuously tunable in a mid-infrared range, 2 to 5 micrometers, for choosing appropriate wavelengths to measure different gases and avoid absorption bands of interference gases. The laser light has sufficient optical energy to measure atmospheric concentrations of a gas over a path as long as a mile and greater. The detection of the gas is based on optical absorption measurements at specific wavelengths in the open atmosphere. Light that is detected using the light detector contains an absorption signature acquired as the light travels through the atmosphere from the laser source and back to the light detector. The absorption signature of each gas is processed and then analyzed to determine if a potential anomaly exists.
NASA Astrophysics Data System (ADS)
Trishchenko, Alexander P.; Khlopenkov, Konstantin V.; Wang, Shusen; Luo, Yi; Kruzelecky, Roman V.; Jamroz, Wes; Kroupnik, Guennadi
2007-10-01
Among all trace gases, the carbon dioxide and methane provide the largest contribution to the climate radiative forcing and together with carbon monoxide also to the global atmospheric carbon budget. New Micro Earth Observation Satellite (MEOS) mission is proposed to obtain information about these gases along with some other mission's objectives related to studying cloud and aerosol interactions. The miniature suit of instruments is proposed to make measurements with reduced spectral resolution (1.2nm) over wide NIR range 0.9μm to 2.45μm and with high spectral resolution (0.03nm) for three selected regions: oxygen A-band, 1.5μm-1.7μm band and 2.2μm-2.4μm band. It is also planned to supplement the spectrometer measurements with high spatial resolution imager for detailed characterization of cloud and surface albedo distribution within spectrometer field of view. The approaches for cloud/clear-sky identification and column retrievals of above trace gases are based on differential absorption technique and employ the combination of coarse and high-resolution spectral data. The combination of high and coarse resolution spectral data is beneficial for better characterization of surface spectral albedo and aerosol effects. An additional capability for retrieval of the vertical distribution amounts is obtained from the combination of nadir and limb measurements. Oxygen A-band path length will be used for normalization of trace gas retrievals.
Gold nanochestnut arrays as ultra-sensitive SERS substrate for detecting trace pesticide residue.
Geng, Fei; Zhao, Huaping; Fu, Qun; Mi, Yan; Miao, Likun; Li, Wei; Dong, Yulian; Wu, Minghong; Lei, Yong
2018-07-20
In comparison to conventional spectroscopic techniques based on chromatography, surface-enhanced Raman spectroscopy (SERS) enables the rapid identification and detection of trace pesticide residues present in trace amounts in the environment and foods. Herein, a facile approach to fabricate unique gold nanochestnuts (GNCs) as an ultra-sensitive SERS substrate for detecting trace pesticide residues has been developed based on anodic aluminum oxide (AAO) templates. The GNCs are synthesized through the galvanic replacement of Ag on the top of Ni nanorod arrays. The as-prepared GNCs have well-controlled structural parameters, and importantly have unique anisotropic morphologies that benefit the enhancement in SERS performance. As a result, rhodamine 6 G (R6G) can be efficiently detected with GNCs as the SERS substrate even with a concentration of only 10 -12 M, and the Raman enhancement factor reaches up to 5.4 × 10 9 at this concentration. Further SERS measurement of thiram indicates a remarkable SERS-active sensitivity of the as-prepared GNCs with a detection limit of thiram up to 10 -14 M. The GNCs also exhibit a high signal-to-noise ratio.
Trace-Element Analysis by Use of PIXE Technique on Agricultural Products
NASA Astrophysics Data System (ADS)
Takagi, A.; Yokoyama, R.; Makisaka, K.; Kisamori, K.; Kuwada, Y.; Nishimura, D.; Matsumiya, R.; Fujita, Y.; Mihara, M.; Matsuta, K.; Fukuda, M.
2009-10-01
In order to examine whether a trace-element analysis by PIXE (Particle Induced X-ray Emission) gives a clue to identify production area of agricultural products, we carried out a study on soy beans as an example. In the present study, a proton beam at the energy of 2.3MeV was provided by Van de Graaff accelerator at Osaka University. We used a Ge detector with Be window to measure X-ray spectra. We prepared sample soy beans from China, Thailand, Taiwan, and 7 different areas in Japan. As a result of PIXE analysis, 5 elements, potassium, iron, zinc, arsenic and rubidium, have been identified. There are clear differences in relative amount of trace-elements between samples from different international regions. Chinese beans contain much more Rb than the others, while there are significant differences in Fe and Zn between beans of Thailand and Taiwan. There are relatively smaller differences among Japanese beans. This result shows that trace-elements bring us some practical information of the region where the product grown.
Stratospheric constituent measurements using UV solar occultation technique
NASA Technical Reports Server (NTRS)
Murcray, D. G.; Gillis, J.; Goldman, A.; Kosters, J. J.
1981-01-01
The photochemistry of the stratospheric ozone layer was studied as the result of predictions that trace amounts of pollutants can significantly affect the layer. One of the key species in the determination of the effects of these pollutants is the OH radical. A balloon flight was made to determine whether data on atmospheric OH could be obtained from lower resolution solar spectra obtained from high altitude during sunset.
New perspectives on quantitative characterization of biomass burning (Invited)
NASA Astrophysics Data System (ADS)
Ichoku, C. M.
2010-12-01
Biomass burning (BB) occurs seasonally in different vegetated landscapes across the world, consuming large amounts of biomass, generating intense heat energy, and emitting corresponding amounts of smoke plumes that comprise aerosols and trace gases, which include carbon monoxide (CO), carbon dioxide (CO2), methane (CH4), non-methane hydrocarbons, and numerous other trace compounds, many of which have adverse effects on human health, air quality, and environmental processes. Accurate estimates of these emissions are required as model inputs to evaluate and forecast smoke plume transport and impacts on air quality, human health, clouds, weather, radiation, and climate. The goal of this presentation is to highlight results of research activities that are aimed at advancing the quantitative characterization of various aspects of biomass burning (energetics, intensity, burn areas, burn severity, emissions, and fire weather) from aircraft and satellite measurements that can help advance our understanding of biomass burning and its overall effects. We will show recent results of analysis of fire radiative power (FRP), burned areas, fuel consumption, smoke emission rates, and plume heights from satellite measurements, as well as related aircraft calibration/validation activities. We will also briefly examine potential future plans and strategies for effective monitoring of biomass burning characteristics and emissions from aircraft and satellite.
Are non-linearity effects of absorption important for MAX-DOAS observations?
NASA Astrophysics Data System (ADS)
Pukite, Janis; Wang, Yang; Wagner, Thomas
2017-04-01
For scattered light observations the absorption optical depth depends non-linearly on the trace gas concentrations if their absorption is strong. This is the case because the Beer-Lambert law is generally not applicable for scattered light measurements due to many (i.e. more than one) light paths contributing to the measurement. While in many cases a linear approximation can be made, for scenarios with strong absorption non-linear effects cannot always be neglected. This is especially the case for observation geometries with spatially extended and diffuse light paths, especially in satellite limb geometry but also for nadir measurements as well. Fortunately the effects of non-linear effects can be quantified by means of expanding the radiative transfer equation in a Taylor series with respect to the trace gas absorption coefficients. Herewith if necessary (1) the higher order absorption structures can be described as separate fit parameters in the DOAS fit and (2) the algorithm constraints of retrievals of VCDs and profiles can be improved by considering higher order sensitivity parameters. In this study we investigate the contribution of the higher order absorption structures for MAX-DOAS observation geometry for different atmospheric and ground properties (cloud and aerosol effects, trace gas amount, albedo) and geometry (different Sun and viewing angles).
Plume composition as observed by the Cassini Ion Neutral Mass Spectrometer
NASA Astrophysics Data System (ADS)
Waite, J. Hunter; Magee, Brian; Yelle, Roger; Cravens, Tom; Luhmann, Janet; McNutt, Ralph; Kasprzak, Wayne; Niemann, Hasso
The gaseous composition as measured by the Cassini Ion Neutral Mass Spectrometer has been used to infer a plume composition composed mainly of water vapor with percentage amounts of carbon dioxide, ammonia, carbon dioxide and/or molecular nitrogen, and smaller amounts of methane, a combination of acetylene, hydrogen cyanide, and ethylene, propene, argon, and other trace organics (benzene, methanol, formaldehyde, etc). High signal to noise values on the fifth Cassini flyby of Enceladus allowed the determination of a D/H ratio in water of 2.9 x 10-4 similar to values observed in Oort cloud comets to date and suggesting some similarities in conditions during formation. The high value of 40 Ar inferred suggests liquid processes in the interior. Earlier measurements and later measurements present some indication of changes in composition with time or encounter conditions that will be emphasized in this presentation.
ERIC Educational Resources Information Center
Pettyjohn, Wayne A.
1972-01-01
Summarizes the effects of arsenic, lead, zinc, mercury, and cadmium on human health, indicates the sources of the elements in water, and considers the possibility of students in high schools analyzing water for trace amounts of the elements. (AL)
Inert Reassessment Document for Ethylenediaminetetracetric acid (EDTA)
EDTA is a chelating agent. Its ability to bind heavy metal ions can be used to sequester these trace metals. However, trace amounts of various metals are necessary for the proper functioning of the body.
Steam stable mesoporous silica MCM-41 stabilized by trace amounts of Al.
Tompkins, Jordan T; Mokaya, Robert
2014-02-12
Evaluation of low and ultralow Al content (Si/Al between 50 and 412) aluminosilicate Al-MCM-41 materials synthesized via three contrasting alumination routes, namely, direct mixed-gel synthesis, post-synthesis wet grafting, and post-synthesis dry grafting, indicates that trace amounts of Al introduced via dry grafting can stabilize mesoporous silica MCM-41 to steaming at 900 °C for 4 h. It was found that trace amounts of Al (Si/Al > 400) introduced via so-called dry grafting of Al stabilize the virtually purely siliceous MCM-41 to steaming, whereas Al incorporated via other methods that involve aqueous media such as direct mixed gel synthesis or wet grafting of Al offer only limited protection at low Al content. It is particularly remarkable that a post-synthesis dry grafted Al-MCM-41 material possessing trace amounts of Al (i.e., Si/Al ratio of 412) and surface area and pore volume of 1112 m(2)/g and 1.20 cm(3)/g, respectively, retains 90% (998 m(2)/g) of the surface area and 85% (1.03 cm(3)/g) of the pore volume after exposure to steaming at 900 °C for 4 h. Under similar steam treatment conditions, the mesostructure of pure silica Si-MCM-41 is virtually destroyed and undergoes a 93% reduction in surface area (958 m(2)/g to 69 m(2)/g) and 88% decrease in pore volume (0.97 cm(3)/g to 0.12 cm(3)/g). The steam stable ultralow (i.e., trace) Al containing MCM-41 materials is found to be virtually similar to mesoporous pure silica Si-MCM-41 with hardly any detectable acidity. The improvement in steam stability arises from not only the presence of trace amounts of Al, but also from an apparent increase in the level of silica condensation that is specific to dry grafted alluminosilicate MCM-41 materials. The more highly condensed framework has fewer silanol groups and therefore is more resistant to hydrolysis under steaming conditions.
Injection and trapping of tunnel-ionized electrons into laser-produced wakes.
Pak, A; Marsh, K A; Martins, S F; Lu, W; Mori, W B; Joshi, C
2010-01-15
A method, which utilizes the large difference in ionization potentials between successive ionization states of trace atoms, for injecting electrons into a laser-driven wakefield is presented. Here a mixture of helium and trace amounts of nitrogen gas was used. Electrons from the K shell of nitrogen were tunnel ionized near the peak of the laser pulse and were injected into and trapped by the wake created by electrons from majority helium atoms and the L shell of nitrogen. The spectrum of the accelerated electrons, the threshold intensity at which trapping occurs, the forward transmitted laser spectrum, and the beam divergence are all consistent with this injection process. The experimental measurements are supported by theory and 3D OSIRIS simulations.
Method for detecting pollutants. [through chemical reactions and heat treatment
NASA Technical Reports Server (NTRS)
Rogowski, R. S.; Richards, R. R.; Conway, E. J. (Inventor)
1976-01-01
A method is described for detecting and measuring trace amounts of pollutants of the group consisting of ozone, nitrogen dioxide, and carbon monoxide in a gaseous environment. A sample organic solid material that will undergo a chemical reaction with the test pollutant is exposed to the test environment and thereafter, when heated in the temperature range of 100-200 C., undergoes chemiluminescence that is measured and recorded as a function of concentration of the test pollutant. The chemiluminescence of the solid organic material is specific to the pollutant being tested.
Work required for selective quantum measurement
NASA Astrophysics Data System (ADS)
Konishi, Eiji
2018-06-01
In quantum mechanics, we define the measuring system M in a selective measurement by two conditions. Firstly, when we define the measured system S as the system in which the non-selective measurement part acts, M is independent from the measured system S as a quantum system in the sense that any time-dependent process in the total system S + M is divisible into parts for S and M. Secondly, when we can separate S and M from each other without changing the unitary equivalence class of the state of S from that obtained by the partial trace of M, the eigenstate selection in the selective measurement cannot be realized. In order for such a system M to exist, we show that in one selective measurement of an observable of a quantum system S 0 of particles in S, there exists a negative entropy transfer from M to S that can be directly transformed into an amount of Helmholtz free energy of where T is the thermodynamic temperature of the system S. Equivalently, an extra amount of work, , is required to be done by the system M.
Final report of the SIM.QM-S7 supplementary comparison, trace metals in drinking water
NASA Astrophysics Data System (ADS)
Yang, Lu; Nadeau, Kenny; Gedara Pihillagawa, Indu; Meija, Juris; Grinberg, Patricia; Mester, Zoltan; Valle Moya, Edith; Solís González, Faviola Alejandra; del Rocio Arvizu Torres, María; Yañez Muñoz, Oscar; Velina Lara-Manzano, Judith; Mazzitello, Gisela; Prina, Pedro; Acosta, Osvaldo; Napoli, Romina; Pérez Zambra, Ramiro; Ferreira, Elizabeth; Dobrovolskiy, Vladimir; Aprelev, Aleksei; Stakheev, Aleksei; Frolov, Dmitriy; Gusev, Leonid; Ivanova, Veronika; Näykki, Teemu; Sara-Aho, Timo; Venegas Padilla, Jimmy; Acuña Cubillo, Carlos; Bremmer, Dwyte; Freemantle, Ruel; Taebunpakul, Sutthinun; Tangpaisarnkul, Nongluck; Rodruangthum, Patumporn; Kaewkhomdee, Nattikarn; Thiengmanee, Usana; Tangjit, Tararat; Buzoianu, Mirella; Alejandro Ahumada Forigua, Diego; Abella Gamba, Johanna Paola; Alfredo Chavarro Medina, Luis; Sobina, Egor; Tabatchikova, Tatyana; Alexopoulos, Charalambos; Kakoulides, Elias; Delgado, Mabel; Flores, Liliana; Knox, Saira; Siewlal, Kester; Maharaj, Avinash
2018-01-01
SIM.QM-S7 was performed to assess the analytical capabilities of National Metrology Institutes (NMIs) and Designated Institutes (DIs) of SIM members (or other regions) for the accurate determination of trace metals in drinking water. The study was proposed by the coordinating laboratories National Research Council Canada (NRC) and Centro Nacional de Metrologia (CENAM) as an activity of Inorganic Analysis Working Group (IAWG) of Consultative Committee for Amount of Substance - Metrology in Chemistry and Biology (CCQM). Participants included 16 NMIs/DIs from 15 countries. No measurement method was prescribed by the coordinating laboratories. Therefore, NMIs used measurement methods of their choice. However, the majority of NMIs/DIs used ICP-MS. This SIM.QM-S7 Supplementary Comparison provides NMIs/DIs with the needed evidence for CMC claims for trace elements in fresh waters and similar matrices. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
Application of relativistic electrons for the quantitative analysis of trace elements
NASA Astrophysics Data System (ADS)
Hoffmann, D. H. H.; Brendel, C.; Genz, H.; Löw, W.; Richter, A.
1984-04-01
Particle induced X-ray emission methods (PIXE) have been extended to relativistic electrons to induce X-ray emission (REIXE) for quantitative trace-element analysis. The electron beam (20 ≤ E0≤ 70 MeV) was supplied by the Darmstadt electron linear accelerator DALINAC. Systematic measurements of absolute K-, L- and M-shell ionization cross sections revealed a scaling behaviour of inner-shell ionization cross sections from which X-ray production cross sections can be deduced for any element of interest for a quantitative sample investigation. Using a multielemental mineral monazite sample from Malaysia the sensitivity of REIXE is compared to well established methods of trace-element analysis like proton- and X-ray-induced X-ray fluorescence analysis. The achievable detection limit for very heavy elements amounts to about 100 ppm for the REIXE method. As an example of an application the investigation of a sample prepared from manganese nodules — picked up from the Pacific deep sea — is discussed, which showed the expected high mineral content of Fe, Ni, Cu and Ti, although the search for aliquots of Pt did not show any measurable content within an upper limit of 250 ppm.
Context-sensitive trace inlining for Java.
Häubl, Christian; Wimmer, Christian; Mössenböck, Hanspeter
2013-12-01
Method inlining is one of the most important optimizations in method-based just-in-time (JIT) compilers. It widens the compilation scope and therefore allows optimizing multiple methods as a whole, which increases the performance. However, if method inlining is used too frequently, the compilation time increases and too much machine code is generated. This has negative effects on the performance. Trace-based JIT compilers only compile frequently executed paths, so-called traces, instead of whole methods. This may result in faster compilation, less generated machine code, and better optimized machine code. In the previous work, we implemented a trace recording infrastructure and a trace-based compiler for [Formula: see text], by modifying the Java HotSpot VM. Based on this work, we evaluate the effect of trace inlining on the performance and the amount of generated machine code. Trace inlining has several major advantages when compared to method inlining. First, trace inlining is more selective than method inlining, because only frequently executed paths are inlined. Second, the recorded traces may capture information about virtual calls, which simplify inlining. A third advantage is that trace information is context sensitive so that different method parts can be inlined depending on the specific call site. These advantages allow more aggressive inlining while the amount of generated machine code is still reasonable. We evaluate several inlining heuristics on the benchmark suites DaCapo 9.12 Bach, SPECjbb2005, and SPECjvm2008 and show that our trace-based compiler achieves an up to 51% higher peak performance than the method-based Java HotSpot client compiler. Furthermore, we show that the large compilation scope of our trace-based compiler has a positive effect on other compiler optimizations such as constant folding or null check elimination.
Nitrogen dioxide observations from the Geostationary Trace ...
The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m × 250 m spatial resolution with a fitting precision of 2.2 × 1015 moleculescm−2. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements and r = 0.74 overall), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.85). NO2 slant columns from GeoTASO also agree well with prelim
Evaluation of the combined measurement uncertainty in isotope dilution by MC-ICP-MS.
Fortunato, G; Wunderli, S
2003-09-01
The combination of metrological weighing, the measurement of isotope amount ratios by a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS) and the use of high-purity reference materials are the cornerstones to achieve improved results for the amount content of lead in wine by the reversed isotope dilution technique. Isotope dilution mass spectrometry (IDMS) and reversed IDMS have the potential to be a so-called primary method, with which close comparability and well-stated combined measurement uncertainties can be obtained. This work describes the detailed uncertainty budget determination using the ISO-GUM approach. The traces of lead in wine were separated from the matrix by ion exchange chromatography after HNO(3)/H(2)O(2) microwave digestion. The thallium isotope amount ratio ( n((205)Tl)/ n((203)Tl)) was used to correct for mass discrimination using an exponential model approach. The corrected lead isotope amount ratio n((206)Pb)/ n((208)Pb) for the isotopic standard SRM 981 measured in our laboratory was compared with ratio values considered to be the least uncertain. The result has been compared in a so-called pilot study "lead in wine" organised by the CCQM (Comité Consultatif pour la Quantité de Matière, BIPM, Paris; the highest measurement authority for analytical chemical measurements). The result for the lead amount content k(Pb) and the corresponding expanded uncertainty U given by our laboratory was:k(Pb)=1.329 x 10-10mol g-1 (amount content of lead in wine)U[k(Pb)]=1.0 x 10-12mol g-1 (expanded uncertainty U=kxuc, k=2)The uncertainty of the main influence parameter of the combined measurement uncertainty was determined to be the isotope amount ratio R(206,B) of the blend between the enriched spike and the sample.
1991-09-01
9H and tungsten silicides may also be present in the microstructure. The non-SiC eiemental concentrations for NC-203 would not be expected to exceed...lesser amounts of yttrium silicate and tungsten silicide . Trace amounts of a-Si 3N4 , silicon oxynitride, tungsten-iron- silicide , and yttrium silicon...SiC ESK On this sample, we detect Silicon, Carbon, and also Oxygen and Nitrogen, as well as Calcium and Sodium traces. After ionic etching up to about
Measurement of curium in marine samples
NASA Astrophysics Data System (ADS)
Schneider, D. L.; Livingston, H. D.
1984-06-01
Measurement of environmentally small but detectable amounts of curium requires reliable, accureate, and sensitive analytical methods. The radiochemical separation developed at Woods Hole is briefly reviewed with specific reference to radiochemical interferences in the alpha spectrometric measurement of curium nuclides and to the relative amounts of interferences expected in different oceanic regimes and sample types. Detection limits for 242 Cm and 244 Cm are ultimately limited by their presence in the 243Am used as curium yield monitor. Environmental standard reference materials are evaluated with regard to curium. The marine literature is reviewed and curium measurements are discussed in relation to their source of introduction to the environment. Sources include ocean dumping of low-level radioactive wastes and discharges from nuclear fuel reporcessing activities, In particular, the question of a detectable presence of 244Cm in global fallout from nuclear weapons testing is addressed and shown to be essentially negligible. Analyses of Scottish coastal sedimantes show traces of 242Cm and 244Cm activity which are believed to originate from transport from sources in the Irish Sea.
NASA Astrophysics Data System (ADS)
Andrews, H.; Eberwein, J. R.; Jenerette, D.
2016-12-01
As humans continue to introduce exotic plants and to alter climate and fire regimes in semi-arid ecosystems, many plant communities have begun to shift from perennial forbs and shrubs to annual grasses with different functional traits. Shifts in plant types are also associated with shifts in microclimate, microbial activity, and litter inputs, all of which contribute to the efficiency of nitrogen processing and the magnitude of trace gas emissions (NOx and N2O), which are increasingly important fluxes in water-limited systems. Here, we explored how changes in plant litter impact trace gas emissions, asking the question: How does conversion from a native shrubland to exotic grassland ecosystem alter NOx and N2O fluxes in a semi-arid climate? We posed two hypotheses to explain the impacts of different types of litter on soils disturbed by exotic grasses and those that were still considered shrublands: 1.) Soils that have undergone conversion by exotic grasses release higher amounts of NOx and N2O than do those of unconverted shrublands, due to disruptions of native plant and soil processes by exotic grasses, and 2.) Because litter of exotic grasses has lower C:N than that of shrubs, litter inputs from exotic grasses will increase NOx and N2O emissions from soils more than will litter inputs from shrubs. As a preliminary study, we experimentally wetted mesocosms in a laboratory incubation containing converted and unconverted soils that had been mixed with no litter or either exotic grass or coastal sage scrub (CSS) litter. We measured N2O fluxes from mesocosms over a 48-hour period. 24 hours after wetting, samples with grass litter produced higher amounts of N2O than those with CSS litter; similarly, converted soils produced higher amounts of N2O than unconverted soils. These two effects combined resulted in exotic grassland conditions (converted soils with exotic grass litter) producing 10 times the amount of N2O as those containing native shrubland conditions (unconverted soils with CSS litter). Additionally, soils with no litter peaked in N2O emissions earlier than those with litter (12 hours after wetting compared to 24 hours after wetting). Following preliminary results, we suggest that differences in plant traits, such as litter, play a significant role in the magnitude and timing of trace gas nitrogen emissions.
Status of GeoTASO Trace Gas Data Analysis for the KORUS-AQ Campaign
NASA Astrophysics Data System (ADS)
Janz, S. J.; Nowlan, C. R.; Lamsal, L. N.; Kowalewski, M. G.; Judd, L. M.; Wang, J.
2017-12-01
The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument measures spectrally resolved backscattered solar radiation at high spatial resolution. The instrument completed 30 sorties on board the NASA LaRC UC-12 aircraft during the KORUS-AQ deployment in May-June of 2016. GeoTASO collects spatially resolved spectra with sufficient sensitivity to retrieve column amounts of the trace gas molecules NO2, SO2, H2CO, O3, and C2H2O2 as well as aerosol products. Typical product retrievals are done in 250 m2 bins with multiple overpasses of key ground sites, allowing for detailed spatio-temporal analysis. Flight patterns consisted of both contiguous overlapping grid patterns to simulate satellite observational strategies in support of future geostationary satellite algorithm development, and "race-track" sampling to perform calibration and validation with the in-situ DC-8 platform as well as ground based assets. We will summarize the status of the radiance data set as well as ongoing analysis from our co-Investigators.
Fate of tannins in Corsican pine litter.
Nierop, Klaas G J; Verstraten, Jacobus M
2006-12-01
Tannins are ubiquitous in higher plants and also in litter and soils where they affect many biogeochemical processes. Despite this well-recognized role, their fate in litter and mineral soils is hardly known, as often only trace amounts, if any, are measured. In this study, we conducted an incubation experiment with Corsican pine litter to which known amounts of tannic acid (TA) or condensed tannins (CTs) from Corsican pine were added. Using Folin-Ciocalteu as a measure for total phenolics and HCl-butanol as an assay specific for CTs, acetone/water extractable phenolics and tannins decreased with time towards very low levels. Application of thermally assisted hydrolysis and methylation to litter before and after acetone/water extraction revealed that TA concentration decreased. By contrast, CTs remained to a great extent in the litter and could not be extracted suggesting that they were tightly bound.
Detection of titanium in human tissues after craniofacial surgery.
Jorgenson, D S; Mayer, M H; Ellenbogen, R G; Centeno, J A; Johnson, F B; Mullick, F G; Manson, P N
1997-04-01
Generally, titanium fixation plates are not removed after osteosynthesis, because they have high biocompatability and high corrosion resistance characteristics. Experiments with laboratory animals, and limited studies of analyses of human tissues, have reported evidence of titanium release into local and distant tissues. This study summarizes our results of the analysis of soft tissues for titanium in four patients with titanium microfixation plates. Energy dispersive x-ray analysis, scanning electron microscopy, and electrothermal atomic absorption spectrophotometry were used to detect trace amounts of titanium in surrounding soft tissues. A single metal inclusion was detected by scanning electron microscopy and energy dispersive x-ray analysis in one patient, whereas, electrothermal atomic absorption spectrophotometry analyses revealed titanium present in three of four specimens in levels ranging from 7.92 to 31.8 micrograms/gm of dry tissue. Results from this study revealed trace amounts of titanium in tissues surrounding craniofacial plates. At the atomic level, electrothermal atomic absorption spectrophotometry appears to be a sensitive tool to quantitatively detect ultra-trace amounts of metal in human tissue.
Ren, Ling; Xu, Lu; Feng, Jingwen; Zhang, Yang; Yang, Ke
2012-05-01
A novel 316L type Cu-bearing stainless steel was developed in present work, aiming at reducing the occurrence of the in-stent restenosis after implantations of coronary stents, through trace amount of Cu release from surface of the steel in body fluid. It was found that there was a trace amount of Cu released from the Cu-bearing steel in a simulated body fluid, with no cytotoxicity. All the in vitro experimental results proved that this Cu-bearing steel could not only inhibit the proliferation of vascular smooth muscle cells, reducing the formation of thrombosis, which are the main reasons for happening of the in-stent restenosis, but also promote the proliferation of vascular endothelial cells needed for the revascularization, showing that this novel steel is prospective to be a new material for manufacturing coronary stents with function of reducing the in-stent restenosis.
Reactivity and Air Composition at Taehwa Research Forest During KORUS-AQ 2016
NASA Astrophysics Data System (ADS)
Sanchez, D.; Seco, R.; Gu, D.; Jeong, D.; Blake, D. R.; Herndon, S. C.; Lee, Y.; Mak, J. E.; McGee, T. J.; Guenther, A. B.; Kim, S.
2017-12-01
The existence of unmeasured volatile organic compounds (VOCs) has been strongly suggested by past studies. Combining OH reactivity (inverse OH lifetime) observations, or total reactivity of ambient air, with VOC and other trace gas observations allows us to examine reactive gas budgets. Previous studies at various field sites have shown that significant amounts of OH reactivity cannot be accounted for, especially in areas influenced by biogenic VOCs and their oxidation products. Thus, we will present the improvements in completing the OH reactivity budget at the Taehwa research forest using the OH reactivity, VOC, and other trace gas observations conducted from May to June during the KORUS-AQ 2016 campaign in South Korea. OH reactivity was measured using the comparative reactivity method with chemical ionization mass spectrometry (CRM-CIMS). The VOCs were measured using a proton transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS). A preliminary assessment of the OH reactivity budget at the Taehwa research using only conventionally measured trace gases and VOCs demonstrated that 54% of OH reactivity remained unaccounted. However, the improved mass resolution and sensitivity towards higher mass compounds (m/z > 100) of the PTR-ToF-MS allowed us to observe typically unmeasured VOCs. Identification of these VOCs may help account for the remaining missing OH reactivity observed at the Taehwa research forest.
NASA Astrophysics Data System (ADS)
Tirpitz, Jan-Lukas; Friess, Udo; Platt, Ulrich
2017-04-01
An accurate knowledge of the vertical distribution of trace gases and aerosols is crucial for our understanding of the chemical and dynamical processes in the lower troposphere. Their accurate determination is typically only possible by means of laborious and expensive airborne in-situ measurements but in the recent decades, numerous promising ground-based remote sensing approaches have been developed. One of them is to infer vertical distributions from "Differential Optical Absorption Spectroscopy" (DOAS) measurements. DOAS is a technique to analyze UV- and visible radiation spectra of direct or scattered sunlight, which delivers information on different atmospheric parameters, integrated over the light path from space to the instrument. An appropriate set of DOAS measurements, recorded under different viewing directions (Multi-Axis DOAS) and thus different light path geometries, provides information on the atmospheric state. The vertical profiles of aerosol properties and trace gas concentrations can be retrieved from such a set by numerical inversion techniques, incorporating radiative transfer models. The information content of measured data is rarely sufficient for a well-constrained retrieval, particularly for atmospheric layers above 1 km. We showed in first simulations that, apart from spectral properties, the polarization state of skylight is likely to provide a significant amount of additional information on the atmospheric state and thus to enhance retrieval quality. We present first simulations, expectations and ideas on how to implement and characterize a polarization sensitive Multi-Axis DOAS instrument and a corresponding profile retrieval algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esposito, R.A.; Castleman, S.P.; King, D.T. Jr.
X-radiography has been useful in studying biogenic sedimentary structures in unconsolidated sediments but the technique has not been applied often to the study of hard carbonate rock. The authors have applied x-radiography to the study of the lower part of the Smackover to enhance the complete petrologic description of the rock. The lower Smackover has many dense micrite intervals and intervals of monotonous, thin graded beds. Parts of the lower Smackover is also dolomitized. None of the above rocks contains significant amount of skeletal debris and trace fossils are not generally obvious in an etched slab of core. In limestone,more » they have detected well-preserved trace fossils by x-radiography, however. The dolostones show no traces using our method. In limestones, the traces are marked by minute amounts of finely divided iron sulfides. This causes a slight density difference resulting in greater x-ray absorption. They recognize two main trace-fossil types: a Thalassinoides best seen in slabs cut parallel to bedding and a Zoophycos best seen in slabs cut perpendicular to bedding. The technique requires a slab cut 8 mm thick with parallel flat surfaces and a medical x-ray unit using accelerating voltages of 66 kV and 10 mas. Traces are most successfully imaged on industrial-quality films.« less
Multi-capillary based optical sensors for highly sensitive protein detection
NASA Astrophysics Data System (ADS)
Okuyama, Yasuhira; Katagiri, Takashi; Matsuura, Yuji
2017-04-01
A fluorescence measuring method based on glass multi-capillary for detecting trace amounts of proteins is proposed. It promises enhancement of sensitivity due to effects of the adsorption area expansion and the longitudinal excitation. The sensitivity behavior of this method was investigated by using biotin-streptavidin binding. According to experimental examinations, it was found that the sensitivity was improved by a factor of 70 from common glass wells. We also confirmed our measuring system could detect 1 pg/mL of streptavidin. These results suggest that multi-capillary has a potential as a high-sensitive biosensor.
NASA Technical Reports Server (NTRS)
1994-01-01
Measurement of the total organic carbon content in water is important in assessing contamination levels in high purity water for power generation, pharmaceutical production and electronics manufacture. Even trace levels of organic compounds can cause defects in manufactured products. The Sievers Model 800 Total Organic Carbon (TOC) Analyzer, based on technology developed for the Space Station, uses a strong chemical oxidizing agent and ultraviolet light to convert organic compounds in water to carbon dioxide. After ionizing the carbon dioxide, the amount of ions is determined by measuring the conductivity of the deionized water. The new technique is highly sensitive, does not require compressed gas, and maintenance is minimal.
Iron active electrode and method of making same
Jackovitz, John F.; Seidel, Joseph; Pantier, Earl A.
1982-10-26
An iron active electrode and method of preparing same in which iron sulfate is calcined in an oxidizing atmosphere at a temperature in the range of from about 600.degree. C. to about 850.degree. C. for a time sufficient to produce an iron oxide with a trace amount of sulfate. The calcined material is loaded into an electrically conductive support and then heated in a reducing atmosphere at an elevated temperature to produce activated iron having a trace amount of sulfide which is formed into an electrode plate.
Immunosensors using a quartz crystal microbalance
NASA Astrophysics Data System (ADS)
Kurosawa, Shigeru; Aizawa, Hidenobu; Tozuka, Mitsuhiro; Nakamura, Miki; Park, Jong-Won
2003-11-01
Better analytical technology has been demanded for accurate and rapid determination of trace amounts of chemical compounds, such as marker proteins for disease or endocrine disrupters like dioxin, which might be contained in blood, food and the environment. The study of immunosensors using a quartz crystal microbalance (QCM) has recently focused on conventional detection methods for the determination of chemical compounds together with the development of reagents and processes. This paper introduces the principle of the detection method of QCM immunosensors developed at AIST and its application to the detection of trace amounts of chemical compounds.
Trace determination of zinc by substoichiometric isotope dilution analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandhya, D.; Priya, S.; Subramanian, M.O.S.
1996-09-01
A radiometric method based on substoichiometric isotope dilution analysis using 1,10-phenanthroline and a substoichiometric amount of eosin was developed for determining trace amounts of zinc. Evaluation of various metal ion interferences shows that as little as 0.2 {mu}g Zn could be determined in an aqueous-phase volume of 60 mL. The method has been successfully applied to the determination of Zn in city waste incineration ash, cadmium metal, Fourts-B tablets, Boro-plus ointment, and magnesium alloy samples. 12 refs., 3 figs., 3 tabs.
Guided wave tomography in anisotropic media using recursive extrapolation operators
NASA Astrophysics Data System (ADS)
Volker, Arno
2018-04-01
Guided wave tomography is an advanced technology for quantitative wall thickness mapping to image wall loss due to corrosion or erosion. An inversion approach is used to match the measured phase (time) at a specific frequency to a model. The accuracy of the model determines the sizing accuracy. Particularly for seam welded pipes there is a measurable amount of anisotropy. Moreover, for small defects a ray-tracing based modelling approach is no longer accurate. Both issues are solved by applying a recursive wave field extrapolation operator assuming vertical transverse anisotropy. The inversion scheme is extended by not only estimating the wall loss profile but also the anisotropy, local material changes and transducer ring alignment errors. This makes the approach more robust. The approach will be demonstrated experimentally on different defect sizes, and a comparison will be made between this new approach and an isotropic ray-tracing approach. An example is given in Fig. 1 for a 75 mm wide, 5 mm deep defect. The wave field extrapolation based tomography clearly provides superior results.
Stec, Katarzyna
2017-11-02
Materials made with chromite ore are widely applied in the industry metallurgy as well as in the foundry industry. The oxidation number of chromium in these materials is both (III) and (VI). Currently there are no procedures allowing proper determination of chrome in chromite ores and ore-containing materials. The analytical methods applied, which are dedicated to a very narrow range of materials, e.g., cement, and cannot be applied in the case of materials which, apart from trace amounts of Cr(VI), contain mainly compounds of Cr(III), Fe(III) as well as trace compounds of Cu(II), Ni(II) and V(V). In the work particular attention has been paid to the preparation of test samples and creating measurement conditions in which interferences from Cr(III) and Fe(III) spectral lines could be minimized. Two separate instrumental measurement techniques have been applied: Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP AES) and the spectrophotometric method using diphenylcarbazide.
Estimation of trace amounts of benzene in solvent-extracted vegetable oils and oil seed cakes.
Masohan, A; Parsad, G; Khanna, M K; Chopra, S K; Rawat, B S; Garg, M O
2000-09-01
A new method is presented for the qualitative and quantitative estimation of trace amounts (up to 0.15 ppm) of benzene in crude as well as refined vegetable oils obtained by extraction with food grade hexane (FGH), and in the oil seed cakes left after extraction. The method involves the selection of two solvents; cyclohexanol, for thinning of viscous vegetable oil, and heptane, for azeotroping out trace benzene as a concentrate from the resulting mixture. Benzene is then estimated in the resulting azeotrope either by UV spectroscopy or by GC-MS subject to availability and cost effectiveness of the latter. Repeatability and reproducibility of the method is within 1-3% error. This method is suitable for estimating benzene in vegetable oils and oil seed cakes.
Sadeghi, Naficeh; Oveisi, Mohammad Reza; Jannat, Behrooz; Hajimahmoodi, Mannan; Behfar, Abdolazim; Behzad, Masoomeh; Norouzi, Narges; Oveisi, Morvarid; Jannat, Behzad
2014-01-01
Apart from the breast milk, infant formula and baby weaning food have a special role in infant diet. Infants and young children are very susceptible to amount of trace elements. Copper and zinc are two elements that add in infant food. Lead and cadmium are heavy metals that enter to food chain unavoidably. DPASV is a benefit and applicable method for measurement of trace elements in food products. In this study, concentration of zinc, copper, lead and cadmium in four brands of baby food (rice and wheat based) and powder milk was analyzed with DPASV and polarograph set. Total Mean ± SE of zinc, copper, lead and cadmium in baby foods (n = 240) were 11.86 ± 1.474 mg/100g, 508.197 ± 83.154 μg/100g, 0.445 ± 0.006, 0.050 ± 0.005 mg/Kg respectively. Also these amount in powder milk (n = 240) were 3.621± 0.529 mg/100g, 403.822 ± 133.953 μg/100g, 0.007 ± 0.003, 0.060 ± 0.040 mg/Kg respectively. Zinc level in baby food type I was higher than lablled value (P = 0.030), but in other brands was not difference. Concentration of copper in all of samples was in labeled range (P > 0.05). In each four products, level of lead and cadmium were lower than the standard limit (P < 0.05). Amount of zinc and lead in baby food I, had difference versus other products. Concentration of zinc, camium in baby food type I, was higher than type II (P = 0.043, 0.001 respectively). Concentration of lead and cadmium in baby food type II, was higher than infant formulas, but are in standard limit.
Method for remote detection of trace contaminants
Simonson, Robert J.; Hance, Bradley G.
2003-09-09
A method for remote detection of trace contaminants in a target area comprises applying sensor particles that preconcentrate the trace contaminant to the target area and detecting the contaminant-sensitive fluorescence from the sensor particles. The sensor particles can have contaminant-sensitive and contaminant-insensitive fluorescent compounds to enable the determination of the amount of trace contaminant present in the target are by relative comparison of the emission of the fluorescent compounds by a local or remote fluorescence detector. The method can be used to remotely detect buried minefields.
Mataba, Gordian Rocky; Verhaert, Vera; Blust, Ronny; Bervoets, Lieven
2016-03-15
The aim of the present study was to assess the distribution of trace elements in the aquatic ecosystem of the Thigithe river. Samples of surface water, sediment and fish were collected up- and downstream of the North Mara Gold Mine (Tanzania) and following trace elements were analysed: As, Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn. Trace element concentrations in surface water were below or near the detection limit. Regarding the sediments, relative high concentrations of arsenic at all sites and high levels of mercury at a site downstream of the mine where artisanal mining is performed were observed. Trace element concentrations in Ningu fish tissues (Labeo victorianus) were comparable to slightly higher than levels in fishes from unpolluted environments. For none of the measured human health risk by consumption of fish from the Thigithe river is expected when the Tanzanian average amount of 17 g/day is consumed. However, for Hg and As the advised maximum daily consumption of Ningu fish was lower than 100g. As a result fishermen and people living along the shores of the river consuming more fish than the average Tanzanian fish consumption set by the FAO (2005) are possibly at risk. Copyright © 2015 Elsevier B.V. All rights reserved.
Lin, Yi-Zhen; Ou, Da-Liang; Chang, Hsin-Yuan; Lin, Wei-Yu; Hsu, Chiun; Chang, Po-Ling
2017-09-01
The family of microRNAs (miRNAs) not only plays an important role in gene regulation but is also useful for the diagnosis of diseases. A reliable method with high sensitivity may allow researchers to detect slight fluctuations in ultra-trace amounts of miRNA. In this study, we propose a sensitive imaging method for the direct probing of miR-10b (miR-10b-3p, also called miR-10b*) and its target ( HOXD10 mRNA) in fixed cells based on the specific recognition of molecular beacons combined with highly inclined and laminated optical sheet (HILO) fluorescence microscopy. The designed dye-quencher-labelled molecular beacons offer excellent efficiencies of fluorescence resonance energy transfer that allow us to detect miRNA and the target mRNA simultaneously in hepatocellular carcinoma cells using HILO fluorescence microscopy. Not only can the basal trace amount of miRNA be observed in each individual cell, but the obtained images also indicate that this method is useful for monitoring the fluctuations in ultra-trace amounts of miRNA when the cells are transfected with a miRNA precursor or a miRNA inhibitor (anti-miR). Furthermore, a reasonable causal relation between the miR-10b and HOXD10 expression levels was observed in miR-10b* precursor-transfected cells and miR-10b* inhibitor-transfected cells. The trends of the miRNA alterations obtained using HILO microscopy completely matched the RT-qPCR data and showed remarkable reproducibility (the coefficient of variation [CV] = 0.86%) and sensitivity (<1.0 fM). This proposed imaging method appears to be useful for the simultaneous visualisation of ultra-trace amounts of miRNA and target mRNA and excludes the procedures for RNA extraction and amplification. Therefore, the visualisation of miRNA and the target mRNA should facilitate the exploration of the functions of ultra-trace amounts of miRNA in fixed cells in biological studies and may serve as a powerful tool for diagnoses based on circulating cancer cells.
Past pilot-scale experimental studies have shown a dramatic increase in the formation of certain chlorinated products of incomplete combustion (PICs) caused by the addition of trace amounts of bromine (Br). Emissions of trichloroethylene and tetrachloorethylene, generated as PICs...
Soil trace element changes during a phytoremediation trial with willows in southern Québec, Canada.
Courchesne, François; Turmel, Marie-Claude; Cloutier-Hurteau, Benoît; Tremblay, Gilbert; Munro, Lara; Masse, Jacynthe; Labrecque, Michel
2017-07-03
This study determined the changes in trace elements (TE) (As, Cd, Cu, Ni, Pb, Zn) chemistry in the soils of a willow ("Fish Creek" - Salix purpurea, SV1 - Salix x dasyclados and SX67 - Salix miyabeana) plantation growing under a cold climate during a three-year trial. The soil HNO 3 -extractable and H 2 O-soluble TE concentrations and pools significantly decreased under most cultivars (Fish, SX67). Yet, TE changes showed inconsistent patterns and localized soil TE increases (Ni, Pb) were measured. Temporal changes in soil TE were also detected in control plots and sometimes exceeded changes in planted plots. Discrepancies existed between the amount of soil TE change and the amount of TE uptake by willows, except for Cd and Zn. Phytoremediation with willows could reduce soil Cd and Zn within a decadal timeframe indicating that they can be remediated by willows in moderately contaminated soils. However, the time needed to reduce soil As, Cu, Ni and Pb was too long to be efficient. We submit that soil leaching contributed to the TE decrease in controls and the TE discrepancies, and that the plantation could have secondary effects such as the accelerated leaching of soil TE.
Nielsen, Forrest H
2014-10-01
Today, most nutritionists do not consider a trace element essential unless it has a defined biochemical function in higher animals or humans. As a result, even though it has been found that trace elements such as boron and silicon have beneficial bioactivity in higher animals and humans, they generally receive limited attention or mention when dietary guidelines or intake recommendations are formulated. Recently, the possibility of providing dietary intake recommendations such as an adequate intake (AI) for some bioactive food components (e.g., flavonoids) has been discussed. Boron, chromium, nickel, and silicon are bioactive food components that provide beneficial health effects by plausible mechanisms of action in nutritional and supra nutritional amounts, and thus should be included in the discussions. Although the science base may not be considered adequate for establishing AIs, a significant number of findings suggest that statements about these trace elements should be included when dietary intake guidance is formulated. An appropriate recommendation may be that diets should include foods that would provide trace elements not currently recognized as essential in amounts shown to reduce the risk of chronic disease and/or promote health and well-being. Published by Elsevier GmbH.
NASA Technical Reports Server (NTRS)
1980-01-01
Barringer Research, Inc.'s COSPEC IVB (correlation spectrometer) can sense from a considerable distance emissions from a volcanic eruption. Remote sensor is capable of measuring sulfur dioxide and nitrogen dioxide in the atmosphere. An associated product, GASPEC, a compression of Non-dispersive Gas Filter Spectrometer, is an infrared/ultraviolet gas analyzer which can be used as either a ground based detector or in aircraft/spacecraft applications. Extremely sensitive, it is useful in air pollution investigations for detecting a variety of trace elements, vapors, which exist in the atmosphere in small amounts.
Isotopic abundance in atom trap trace analysis
Lu, Zheng-Tian; Hu, Shiu-Ming; Jiang, Wei; Mueller, Peter
2014-03-18
A method and system for detecting ratios and amounts of isotopes of noble gases. The method and system is constructed to be able to measure noble gas isotopes in water and ice, which helps reveal the geological age of the samples and understand their movements. The method and system uses a combination of a cooled discharge source, a beam collimator, a beam slower and magneto-optic trap with a laser to apply resonance frequency energy to the noble gas to be quenched and detected.
NASA Astrophysics Data System (ADS)
Huntrieser, H.; Lichtenstern, M.; Scheibe, M.; Aufmhoff, H.; Schlager, H.; Heimerl, K.; Pucik, T.; Minikin, A.; Weinzierl, B.; Fütterer, D.; Pollack, I. B.; Peischl, J.; Ryerson, T. B.; Honomichl, S.; Hair, J. W.; Butler, C. F.; Schwartz, M. J.; Rappenglück, B.; Ackermann, L.; Pickering, K. E.; Cummings, K.; Biggerstaff, M. I.; Betten, D.; Barth, M. C.
2016-12-01
The Central United States is known to be a region where intense thunderstorms develop. During the Deep Convective Cloud and Chemistry Experiment (DC3) in summer 2012 a number of these imposing storms were investigated by airborne and ground-based measurements focusing on the chemistry, microphysics and dynamics in these unique storms. Here we report on aircraft penetrations of the anvil outflow of isolated supercells and organized mesoscale convective systems and the distribution of different trace species as e.g. CO, O3, and NOx. Conspicuously, the burning of several extended wildfires in New Mexico and Colorado, which emitted huge amounts of SO2 and black carbon (BC), significantly impacted the chemical composition within and nearby the probed thunderstorms. In several cases, overshooting thunderstorms developed that injected considerable amounts of pollutants into the lower stratosphere. Both in the lofted biomass burning plumes and in the thunderstorm outflow, O3 mixing ratios were frequently enhanced due to photochemical production and downward transport from the stratosphere; however, the latter process dominated the measured O3 enhancements in the storms. Here we present results from the local flights over Colorado, Oklahoma and Texas along with transit flights over the North Atlantic conducted by the German DLR Falcon research aircraft. In addition, microphysical measurements from radar, and remote trace species measurements (lidar and satellites) are used to demonstrate the strong air mass exchange in the UTLS region caused by the frequent occurrence of very deep convection over the Central U.S. The more general impact of these widespread, aged, and more or less invisible anvil outflows on the UTLS region downwind of the U.S. continent (North Atlantic) is discussed regarding chemistry, new particle formation, and radiation.
Limchoowong, Nunticha; Sricharoen, Phitchan; Techawongstien, Suchila; Chanthai, Saksit
2017-09-01
A green approach using chitosan solution as a novel bio-dispersive agent for the dispersive liquid-liquid microextraction (DLLME) of trace amounts of Cu(II) in edible oils is presented. An emulsion was formed by mixing the oil sample with 300µL of 0.25% (w/v) chitosan solution containing 200µL of 6molL -1 HCl. Deionized water was used to induce emulsion breaking without centrifugation. The centrifuged Cu(II) extract was collected and analyzed using an inductively coupled plasma-optical emission spectrometer. The detection and quantitation limits were 2.1 and 6.8µgL -1 , respectively. Trace amounts of Cu(II) in six edible oil samples were tested under optimum conditions for DLLME, with a recovery ranging from 90.3% to 109.3%. Therefore, the new dispersive agent in DLLME offers superior performance owing to the non-toxic nature of the solvent, short extraction time, high sensitivity, and easy operation. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Nowlan, Caroline R.; Liu, Xiong; Leitch, James W.; Chance, Kelly; Abad, Gonzalo Gonzalez; Liu, Xiaojun; Zoogman, Peter; Cole, Joshua; Delker, Thomas; Good, William;
2016-01-01
The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m x 250 m spatial resolution with a fitting precision of 2.2 x 10(exp 15) molecules/sq cm. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements and r = 0.74 overall), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.85). NO2 slant columns from GeoTASO also agree well with preliminary retrievals from the GEO-CAPE Airborne Simulator (GCAS) which flew on the NASA King Air B200 (r = 0.81, slope = 0.91). Enhanced NO2 is resolvable over areas of traffic NOx emissions and near individual petrochemical facilities.
Aerosol Optical Properties and Trace Gas Emissions From Laboratory-Simulated Western US Wildfires
NASA Astrophysics Data System (ADS)
Selimovic, V.; Yokelson, R. J.; Warneke, C.; Roberts, J. M.; De Gouw, J. A.; Reardon, J.; Griffith, D. W. T.
2017-12-01
Western wildfires have a major impact on air quality in the US. In the fall of 2016, 107 fires were burned in the large-scale combustion facility at the US Forest Service Missoula Fire Sciences Laboratory as part of the Fire Influence on Regional and Global Environments Experiment (FIREX). Canopy, litter, duff, dead wood, and other fuels from various widespread coniferous and chaparral ecosystems were burned in combinations to represent relevant configurations in the field and as pure components to investigate the effects of individual fuels. The smoke emissions were characterized by a large suite of state-of-the-art instruments. In this study we report emission factor (EF, g compound emitted per kg fuel burned) measurements in fresh smoke of a diverse suite of critically-important trace gases measured by open-path Fourier transform infrared spectroscopy (OP-FTIR). We also report aerosol optical properties (absorption EF, single scattering albedo (SSA) and Ångström absorption exponent (AAE)) as well as black carbon (BC) EF measured by photoacoustic extinctiometers (PAX) at 870 and 401 nm. A careful comparison with available field measurements of wildfires confirms that representative data can be extracted from the lab fire data. The OP-FTIR data show that ammonia (1.65 g kg-1), acetic acid (2.44 g kg-1), and other trace gases are significant emissions not previously measured for US wildfires. The PAX measurements show that brown carbon (BrC) absorption is most dominant for combustion of duff (AAE 7.13) and rotten wood (AAE 4.60): fuels that are consumed in greater amounts during wildfires than prescribed fires. We confirm that about 86% of the aerosol absorption at 401 nm in typical fresh wildfire smoke is due to BrC.
Physiological Effects of Trace Elements and Chemicals in Water
ERIC Educational Resources Information Center
Varma, M. M.; And Others
1976-01-01
The physiological effects on humans and animals of trace amounts of organic and unorganic pollutants in natural and waste waters are examined. The sensitivity of particular organs and species is emphasized. Substances reviewed include mercury, arsenic, cadmium, lead, chromium, fluorides, nitrates and organics, including polychlounated biphenyls.…
Useful ion yields for Cameca IMS 3f and 6f SIMS: Limits on quantitative analysis
Hervig, R.L.; Mazdab, F.K.; Williams, Pat; Guan, Y.; Huss, G.R.; Leshin, L.A.
2006-01-01
The useful yields (ions detected/atom sputtered) of major and trace elements in NIST 610 glass were measured by secondary ion mass spectrometry (SIMS) using Cameca IMS 3f and 6f instruments. Useful yields of positive ions at maximum transmission range from 10-4 to 0.2 and are negatively correlated with ionization potential. We quantified the decrease in useful yields when applying energy filtering or high mass resolution techniques to remove molecular interferences. The useful yields of selected negative ions (O, S, Au) in magnetite and pyrite were also determined. These data allow the analyst to determine if a particular analysis (trace element contents or isotopic ratio) can be achieved, given the amount of sample available and the conditions of the analysis. ?? 2005 Elsevier B.V. All rights reserved.
Measuring Theta_13 at Daya Bay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, Kwong
2014-03-14
We measured the neutrino mixing angle, theta13, presumably related to the preponderance of matter over antimatter in our universe with high precision. We determined theta13 by measuring the disappearance of neutrinos from a group of six nuclear reactors. The target, located inside a mountain at about 2 km from the reactors, is 80 tons of liquid scintillator doped with trace amount of Gadolinium to increase its neutron detection efficiency. The neutrino flux is measured by the inverse beta-decay reaction where the final-state particles are detected by the liquid scintillator. The measured value of theta13, based on data collected over 3more » years, is large, around 8 degrees, rendering the measurement of the parameter related to matter-antimatter asymmetry in future long baseline neutrino experiments easier.« less
Kinney, C.A.; Mosier, A.R.; Ferrer, I.; Furlong, E.T.; Mandernack, K.W.
2004-01-01
The effect that pesticides have on trace gas production and consumption in agricultural soils is often overlooked. Independent field and laboratory experiments were used to measure the effects that the commonly used herbicides prosulfuron and metolachlor have on trace gas fluxes (CO2, N2O, and CH4) from fertilized soil of the Colorado shortgrass steppe. Separate sample plots (1 m2) on tilled and no-till soil at the sites included the following treatments: 1) a control without fertilizer or herbicide, 2) a fertilized (NH4NO3 equivalent to 244 kg ha-1) control without herbicide, 3) and fertilized plots amended with an herbicide (prosulfuron equivalent to 0.46 kg ha-1 57% by weight active ingredient or metolachlor equivalent to 5.7 L ha-1, 82.4% by weight active ingredient). During an initial study of one year duration, measurement of gas exchange revealed that prosulfuron-amendment stimulated N2O emissions and CH4 consumption by as much as 1600% and 1300% during a single measurement, respectively. During a second set of flux measurements beginning in August 2001, more frequent weekly measurements were made during a twelve week period. From this second study an increased N2O efflux and CH4 uptake occurred after a 7-week lag period that persisted for about 5 weeks. These changes in gas flux amounted to an overall increase of 41% and 30% for N2O emission and CH4 consumption, respectively. The co-occurrence of stimulated N2O and CH4 fluxes suggests a similar cause that is related to prosulfuron degradation. Evidence suggested that prosulfuron degradation stimulated microbial activity responsible for trace gas flux. Ultimately, prosulfuron-amendment led to an ???50% reduction in the global warming potential from N2O and CH4 fluxes at this field site, which is equivalent to a reduction of the global warming potential of 0.18 mols CO2 m-2 d-1 from these gases. Metolachlor application did not significantly affect the trace gas fluxes measured. These results demonstrate the potential impact that pesticides have on trace gas fluxes from agricultural soils, which could mean that the effects of other agricultural practices have been over or under estimated. Copyright 2004 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Jacquet, Emmanuel; Marrocchi, Yves
2017-12-01
We report combined oxygen isotope and mineral-scale trace element analyses of amoeboid olivine aggregates (AOA) and chondrules in ungrouped carbonaceous chondrite, Northwest Africa 5958. The trace element geochemistry of olivine in AOA, for the first time measured by LA-ICP-MS, is consistent with a condensation origin, although the shallow slope of its rare earth element (REE) pattern is yet to be physically explained. Ferromagnesian silicates in type I chondrules resemble those in other carbonaceous chondrites both geochemically and isotopically, and we find a correlation between 16O enrichment and many incompatible elements in olivine. The variation in incompatible element concentrations may relate to varying amounts of olivine crystallization during a subisothermal stage of chondrule-forming events, the duration of which may be anticorrelated with the local solid/gas ratio if this was the determinant of oxygen isotopic ratios as proposed recently. While aqueous alteration has depleted many chondrule mesostases in REE, some chondrules show recognizable subdued group II-like patterns supporting the idea that the immediate precursors of chondrules were nebular condensates.
Single-shot high-resolution characterization of optical pulses by spectral phase diversity
Dorrer, C.; Waxer, L. J.; Kalb, A.; ...
2015-12-15
The concept of spectral phase diversity is proposed and applied to the temporal characterization of optical pulses. The experimental trace is composed of the measured power of a plurality of ancillary optical pulses derived from the pulse under test by adding known amounts of chromatic dispersion. The spectral phase of the pulse under test is retrieved by minimizing the error between the experimental trace and a trace calculated from the optical spectrum using the known diagnostic parameters. An assembly composed of splitters and dispersive delay fibers has been used to generate 64 ancillary pulses whose instantaneous power can be detectedmore » in a single shot with a high-bandwidth photodiode and oscilloscope. Pulse-shape reconstruction for pulses shorter than the photodetection impulse response has been demonstrated.The diagnostic is experimentally shown to accurately characterize pulses from a chirped-pulse–amplification system when its stretcher is detuned from the position for optimal recompression. As a result, various investigations of the performance with respect to the number of ancillary pulses and the range of chromatic dispersion generated in the diagnostic are presented.« less
Single-shot high-resolution characterization of optical pulses by spectral phase diversity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorrer, C.; Waxer, L. J.; Kalb, A.
The concept of spectral phase diversity is proposed and applied to the temporal characterization of optical pulses. The experimental trace is composed of the measured power of a plurality of ancillary optical pulses derived from the pulse under test by adding known amounts of chromatic dispersion. The spectral phase of the pulse under test is retrieved by minimizing the error between the experimental trace and a trace calculated from the optical spectrum using the known diagnostic parameters. An assembly composed of splitters and dispersive delay fibers has been used to generate 64 ancillary pulses whose instantaneous power can be detectedmore » in a single shot with a high-bandwidth photodiode and oscilloscope. Pulse-shape reconstruction for pulses shorter than the photodetection impulse response has been demonstrated.The diagnostic is experimentally shown to accurately characterize pulses from a chirped-pulse–amplification system when its stretcher is detuned from the position for optimal recompression. As a result, various investigations of the performance with respect to the number of ancillary pulses and the range of chromatic dispersion generated in the diagnostic are presented.« less
NASA Astrophysics Data System (ADS)
Tsapin, A.; Jones, S.; Petkov, M.; Borchardt, D.; Anderson, M.
2017-03-01
A study was conducted to determine the efficacy of using silica aerogel to collect and concentrate ambient trace organics for spectroscopic analysis. Silica aerogel was exposed to atmospheres containing trace amounts of polycyclic aromatic and aliphatic hydrocarbons. The organics present were concentrated in the aerogels by factors varying from 10 to more than 1000 over the levels found in the atmospheres, depending on the specific organic present. Since silica aerogel is transparent over a wide range of optical and near infrared wavelengths, UV-induced fluorescence, Raman and infrared spectroscopies were used to detect and identify the organics collected by the aerogel. Measurements were conducted to determine the sensitivity of these spectroscopic methods for determining organics concentrated by aerogels and the effectiveness of this method for identifying systems containing multiple organic species. Polycyclic aromatic hydrocarbons (PAHs) were added to simulated Mars regolith and then vaporized by modest heating in the presence of aerogel. The aerogels adsorbed and concentrated the PAHs, which were detected by induced fluorescence and Raman and FTIR spectroscopies.
Determination of trace and heavy metals in some commonly used medicinal herbs in Ayurveda.
Nema, Neelesh K; Maity, Niladri; Sarkar, Birendra K; Mukherjee, Pulok K
2014-11-01
Traditionally, the herbal drugs are well established for their therapeutic benefits. Depending upon their geographical sources sometimes the trace and heavy metals' content may differ, which may lead to severe toxicity. So, the toxicological and safety assessment of these herbal drugs are one of the major issues in recent days. Eight different plant species including Aloe vera, Centella asiatica, Calendula officinalis, Cucumis sativus, Camellia sinensis, Clitoria ternatea, Piper betel and Tagetes erecta were selected to determine their heavy and trace metals content and thereby to assure their safer therapeutic application. The trace and heavy metals were detected through atomic absorption spectrometry analysis. The selected medicinal plant materials were collected from the local cultivated regions of West Bengal, India, and were digested with nitric acid and hydrochloric acid as specified. Absorbance was measured through atomic absorption spectrometer (AA 303) and the concentration of different trace and heavy metals in the plant samples were calculated. The quantitative determinations were carried out using standard calibration curve obtained by the standard solutions of different metals. The contents of heavy metals were found to be within the prescribed limit. Other trace metals were found to be present in significant amount. Thus, on the basis of experimental outcome, it can be concluded that the plant materials collected from the specific region are safe and may not produce any harmful effect of metal toxicity during their therapeutic application. The investigated medicinal plants contain trace metals such as copper (Cu), chromium (Cr), manganese (Mn), iron (Fe) and nickel (Ni) as well as heavy metals such as arsenic (As), lead (Pb) and mercury (Hg), which were present within the permissible limit. © The Author(s) 2012.
McComb, Jacqueline Q.; Rogers, Christian; Han, Fengxiang X.; Tchounwou, Paul B.
2014-01-01
With industrialization, great amounts of trace elements and heavy metals have been excavated and released on the surface of the earth and dissipated into the environments. Rapid screening technology for detecting major and trace elements as well as heavy metals in variety of environmental samples is most desired. The objectives of this study were to determine the detection limits, accuracy, repeatability and efficiency of a X-ray fluorescence spectrometer (Niton XRF analyzer) in comparison with the traditional analytical methods, inductively coupled plasma optical emission spectrometer (ICP-OES) and inductively coupled plasma optical emission spectrometer (ICP-MS) in screening of major and trace elements of environmental samples including estuary soils and sediments, contaminated soils, and biological samples. XRF is a fast and non-destructive method in measuring the total concentration of multi--elements simultaneously. Contrary to ICP-OES and ICP-MS, XRF analyzer is characterized by the limited preparation required for solid samples, non-destructive analysis, increased total speed and high throughout, the decreased production of hazardous waste and the low running costs as well as multi-elemental determination and portability in the fields. The current comparative study demonstrates that XRF is a good rapid non-destructive method for contaminated soils, sediments and biological samples containing higher concentrations of major and trace elements. Unfortunately, XRF does not have sensitive detection limits of most major and trace elements as ICP-OES or ICP-MS but it may serve as a rapid screening tool for locating hot spots of uncontaminated field soils and sediments. PMID:25861136
Infrared measurements of atmospheric gases above Mauna Loa, Hawaii, in February 1987
NASA Technical Reports Server (NTRS)
Rinsland, C. P.; Goldman, A.; Murcray, F. J.; Murcray, F. H.; Blatherwick, R. D.
1988-01-01
The IR absorptions spectra of 13 minor and trace atmospheric gases, recorded by the NOAA's Geophysical Monitoring for Climate Change (GMCC) program station at Mauna Loa, Hawaii, for four days in February 1987, were analyzed to determine simultaneous total vertical column amounts for these gases. Comparisons with other data indicate that the NOAA GMCC surface volume mixing ratios are good measures of the mean volume mixing ratios of these gases in the troposphere and that Mauna Loa is a favorable site for IR monitoring of atmospheric gases. The ozone total columns deduced from the IR spectra agreed with the correlative Umkehr observations.
Travar, I; Kihl, A; Kumpiene, J
2015-12-01
The aim of this study was to evaluate the stabilization/solidification (S/S) of trace element-contaminated soil using air pollution control residues (APCRs) prior to disposal in landfill sites. Two soil samples (with low and moderate concentrations of organic matter) were stabilized using three APCRs that originated from the incineration of municipal solid waste, bio-fuels and a mixture of coal and crushed olive kernels. Two APCR/soil mixtures were tested: 30% APCR/70% soil and 50% APCR/50% soil. A batch leaching test was used to study immobilization of As and co-occurring metals Cr, Cu, Pb and Zn. Solidification was evaluated by measuring the unconfined compression strength (UCS). Leaching of As was reduced by 39-93% in APCR/soil mixtures and decreased with increased amounts of added APCR. Immobilization of As positively correlated with the amount of Ca in the APCR and negatively with the amount of soil organic matter. According to geochemical modelling, the precipitation of calcium arsenate (Ca3(AsO4)2/4H2O) and incorporation of As in ettringite (Ca6Al2(SO4)3(OH)12 · 26H2O) in soil/APCR mixtures might explain the reduced leaching of As. A negative effect of the treatment was an increased leaching of Cu, Cr and dissolved organic carbon. Solidification of APCR/soil was considerably weakened by soil organic matter.
Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji; Shakerian, Farid; Shiralian Esfahani, Golnaz
2013-12-15
A simple and sensitive method for the separation and preconcentration of the ultra trace amounts of uranium and its determination by spectrophotometry was developed. The method is based on the combination of solid phase extraction and dispersive liquid-liquid microextraction. Thus, by passing the sample through the basic alumina column, the uranyl ion and some cations are separated from the sample matrix. The retained uranyl ion along with the cations are eluted with 5 mL of nitric acid (2 mol L(-1)) and after neutralization of the eluent, the extracted uranyl ion is converted to its anionic benzoate complex and is separated from other cations by extraction of its ion pair with malachite green into small volume of chloroform using dispersive liquid-liquid microextraction. The amount of uranium is then determined by the absorption measurement of the extracted ion pair at 621 nm using flow injection spectrophotometry. Under the optimum conditions, with 500 mL of the sample, a preconcentration factor of 1980, a detection limit of 40 ng L(-1), and a relative standard deviation of 4.1% (n=6) at 400 ng L(-1) were obtained. The method was successfully applied to the determination of uranium in mineral water, river water, well water, spring water and sea water samples. Copyright © 2013 Elsevier B.V. All rights reserved.
The Trace Element Composition of Plankton and Dust in the Qatari EEZ
NASA Astrophysics Data System (ADS)
Turner, J.; Murray, J. W.; Yigiterhan, O.; Al-Ansari, I. S.; Al-Ansi, M.; Abdel-Moati, M.; Paul, B.; Nelson, A.
2015-12-01
We present data on elemental concentrations of plankton net tow samples from the Exclusive Economic Zone (EEZ) of Qatar in the Arabian Gulf as part of a broader study of biogenic and lithogenic influences on particulate trace metal concentrations in the surface ocean. There are relatively few analyses of planktonic trace metals and their associated role in the biogeochemical system. We had the opportunity to investigate the composition of plankton in a region heavily affected by dust, a significant factor for phytoplankton growth. Our samples were collected from 2012 to 2015 using trace metal clean net tows with mesh sizes of 50 and 200 microns for measurements of phytoplankton and zooplankton, respectively. Samples were totally digested and analyzed by inductively coupled plasma-mass spectroscopy (ICP-MS). The biogenic portion was determined by subtracting the lithogenic portion from the total concentration. The lithogenic fraction was defined as the concentration of aluminum in the sample multiplied by a [Me]/Al ratio. Using average Qatari dust for these ratios generated a significant amount of overcorrection, so ratios were established using average upper continental crust (UCC). This method still caused some overcorrection for the lithogenic portion resulting in negative excess values for barium, molybdenum, and lead. These same elements showed the least consistency between measurements. For the other elements, a relative stoichiometry for plankton was determined as Fe > Cu ≈ Zn > As ≈ Cr ≈ Mn ≈ Ni ≈ V > Cd ≈ Co. We also found a significant near shore enrichment for 9 out of 13 elements analyzed, indicative of a possible influence of coastal processes.
Oshida, Eiki; Arai, Kiyomi; Sakai, Miki; Chikuda, Makoto
2014-09-01
This study was conducted for the purpose of comparing differences in the types of free radicals in the aqueous humor of glaucoma and cataract patients. Free radicals in the aqueous humor of 44 glaucoma eyes and 15 cataract eyes were measured by electron spin resonance (ESR), followed by comparing the detection rates. In addition, subgroup analyses were also conducted for the presence or absence of complications of diabetes mellitus (DM) and neovascular glaucoma (NVG) in the patients. Three types of free radicals were measured, ascorbate-free radical (AFR), AFR containing a trace amount of superoxide (SO) (AFR +), and SO containing a trace amount of AFR (SO +). Significant differences were observed in the detection rates of each type between the glaucoma group (maximum SO +) and the cataract group (maximum AFR), between the DM group (maximum SO +) and the non-DM group (maximum AFR) in the glaucoma, and between the DM group (maximum AFR +) and the non-DM group (maximum AFR) in the cataract. SO + was detected in all cases of NVG regardless of whether they were DM or non-DM. Glaucoma cases are more susceptible to the generation of SO in the aqueous humor than cataracts, and they are more liable to occur in DM than in non-DM in both glaucoma and cataract cases. This study suggest an evidence for a strong correlation with SO and vascularization in NVG.
Isotope pattern deconvolution as a tool to study iron metabolism in plants.
Rodríguez-Castrillón, José Angel; Moldovan, Mariella; García Alonso, J Ignacio; Lucena, Juan José; García-Tomé, Maria Luisa; Hernández-Apaolaza, Lourdes
2008-01-01
Isotope pattern deconvolution is a mathematical technique for isolating distinct isotope signatures from mixtures of natural abundance and enriched tracers. In iron metabolism studies measurement of all four isotopes of the element by high-resolution multicollector or collision cell ICP-MS allows the determination of the tracer/tracee ratio with simultaneous internal mass bias correction and lower uncertainties. This technique was applied here for the first time to study iron uptake by cucumber plants using 57Fe-enriched iron chelates of the o,o and o,p isomers of ethylenediaminedi(o-hydroxyphenylacetic) acid (EDDHA) and ethylenediamine tetraacetic acid (EDTA). Samples of root, stem, leaves, and xylem sap, after exposure of the cucumber plants to the mentioned 57Fe chelates, were collected, dried, and digested using nitric acid. The isotopic composition of iron in the samples was measured by ICP-MS using a high-resolution multicollector instrument. Mass bias correction was computed using both a natural abundance iron standard and by internal correction using isotope pattern deconvolution. It was observed that, for plants with low 57Fe enrichment, isotope pattern deconvolution provided lower tracer/tracee ratio uncertainties than the traditional method applying external mass bias correction. The total amount of the element in the plants was determined by isotope dilution analysis, using a collision cell quadrupole ICP-MS instrument, after addition of 57Fe or natural abundance Fe in a known amount which depended on the isotopic composition of the sample.
Koskela, Harri; Rapinoja, Marja-Leena; Kuitunen, Marja-Leena; Vanninen, Paula
2007-12-01
Decontamination solutions are used for an efficient detoxification of chemical warfare agents (CWAs). As these solutions can be composed of strong alkaline chemicals with hydrolyzing and oxidizing properties, the analysis of CWA degradation products in trace levels from these solutions imposes a challenge for any analytical technique. Here, we present results of application of nuclear magnetic resonance spectroscopy for analysis of trace amounts of CWA degradation products in several untreated decontamination solutions. Degradation products of the nerve agents sarin, soman, and VX were selectively monitored with substantially reduced interference of background signals by 1D 1H-31P heteronuclear single quantum coherence (HSQC) spectrometry. The detection limit of the chemicals was at the low part-per-million level (2-10 microg/mL) in all studied solutions. In addition, the concentration of the degradation products was obtained with sufficient confidence with external standards.
NASA Astrophysics Data System (ADS)
Donner, Sebastian; Gu, Myojeong; Remmers, Julia; Wang, Yang; Wagner, Thomas
2017-04-01
The Differential Optical Absorption Spectroscopy (DOAS)-method allows to investigate the distribution of different atmospheric trace gases (e.g. NO2, SO2, HCHO...) simultaneously. This is done by analysing the absorptions of these species in spectra of scattered sunlight. Multi-AXis (MAX)-DOAS measurements observe scattered sun light under different elevation angles. From such measurements tropospheric vertical column densities (VCDs) and vertical profiles of the measured trace gases and aerosols can be determined. We performed measurements using a 4 azimuth MAX-DOAS system on the roof of the Max Planck Institute for Chemistry in Mainz/Germany since 2013. This instrument observes scattered sunlight in 4 separate orthogonal azimuth directions. We derive vertical profiles of trace gases in these 4 different azimuth directions. From these results we can investigate the 3D distribution of the trace gases. Mainz is located at the edge of the Rhine-Main area which is one of the densest populated areas in Germany. Therefore it experiences episodes of high and low pollution depending on the meteorological conditions. In this study we focus on formaldehyde (HCHO). It is either emitted directly by industries and other anthropogenic and biogenic activities. Usually higher amounts are produced by photochemical reactions from precursor substances (secondary production), where it plays an important role in photochemical smog chemistry and O3 chemistry. As it is an intermediate product of basic oxidation cycles of other hydrocarbons (also referred to as volatile organic compounds (VOCs)) especially in summer its concentrations are determined by the abundances of VOCs. Therefore HCHO observations can be used as an indicator for VOCs. Up to now we have nearly 4 years (starting from May 2013) of almost continuous data which provides already a quite large dataset. In this work we present a first overview of our HCHO results including time series of HCHO columns, a first comparison of the results for different azimuth directions, a first characterisation of the corresponding spatial gradients and a comparison to mobile MAX-DOAS measurements which were performed in Winter 2015/2016.
Rajan, Jay Prakash; Singh, Kshetrimayum Birla; Kumar, Sanjiv; Mishra, Raj Kumar
2014-09-01
To determine the trace elements content in the selected medicinal plants, namely, Eryngium foetidum L., Mimosa pudica L., Polygonum plebeium, and Prunus cerasoides D. Don traditionally used by the natives of the Mizoram, one of the north eastern states in India as their folklore medicines for curing skin diseases like eczema, leg and fingers infection, swelling and wound. A 3 MeV proton beam of proton induced X-ray emission technique, one of the most powerful techniques for its quick multi elemental trace analysis capability and high sensitivity was used to detect and characterized for trace elements. The studies revealed that six trace elements, namely, Fe, Zn, Cu, Mn, V, and Co detected in mg/L unit were present in varying concentrations in the selected medicinal plants with high and notable concentration of Fe, Zn, Mn and appreciable amount of the Cu, Co and V in all the plants. The results of the present study support the therapeutic usage of these medicinal plants in the traditional practices for curing skin diseases since they are found to contain appreciable amount of the Fe, Zn, Cu, Mn, V and Co. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Measurement of trace elements in tree rings using the PIXE method
NASA Astrophysics Data System (ADS)
Aoki, Toru; Katayama, Yukio; Kagawa, Akira; Koh, Susumu; Yoshida, Kohji
1998-03-01
Standard materials were prepared in order to calculate element concentrations in tree samples using the particle induced X-ray emission (PIXE) method. Five standard solutions (1) Ti, Fe, Cu, As, Rb, Sr; (2) Ca, V, Co, Zn, As, Rb; (3) Ti, Mn, Ni, As, Sr; (4) K, Mn, Co, As, Rb, Sr; and (5) Ca, Mn, Cu, As, Rb, Sr, were added to filter papers. The dried filter papers were used as standard samples. Pellets of Pepperbush leaves (National Institute for Environmental Studies (NIES)) and Peach leaves (National Institute of Standards and Technology (NIST)) were used as references. The peak counts of Ca, Mn, Cu, Zn, Rb, and Sr in samples taken from a kaki ( Diospros kaki Thunb.) were measured and the concentrations (ppm) of the elements were calculated using the yield curve obtained from the standard filter papers. The concentrations of Mn, Zn, Rb, and Ca were compared with the data obtained from a separate INAA analysis. Concentrations of Mn, Zn, and Ca obtained by both methods were almost the same, but the concentrations of Rb differed slightly. The amounts of trace elements in samples taken from a sugi ( Cryptomeria japonica D. Don) were also measured.
Privacy Vulnerability of Published Anonymous Mobility Traces
Ma, Chris Y. T.; Yau, David K. Y.; Yip, Nung Kwan; ...
2013-06-01
Mobility traces of people and vehicles have been collected and published to assist the design and evaluation of mobile networks, such as large-scale urban sensing networks. Although the published traces are often made anonymous in that the true identities of nodes are replaced by random identifiers, the privacy concern remains. This is because in real life, nodes are open to observations in public spaces, or they may voluntarily or inadvertently disclose partial knowledge of their whereabouts. Thus, snapshots of nodes’ location information can be learned by interested third parties, e.g., directly through chance/engineered meetings between the nodes and their observers,more » or indirectly through casual conversations or other information sources about people. In this paper, we investigate how an adversary, when equipped with a small amount of the snapshot information termed as side information, can infer an extended view of the whereabouts of a victim node appearing in an anonymous trace. Our results quantify the loss of victim nodes’ privacy as a function of the nodal mobility, the inference strategies of adversaries, and any noise that may appear in the trace or the side information. Generally, our results indicate that the privacy concern is significant in that a relatively small amount of side information is sufficient for the adversary to infer the true identity (either uniquely or with high probability) of a victim in a set of anonymous traces. For instance, an adversary is able to identify the trace of 30%-50% of the victims when she has collected 10 pieces of side information about a victim.« less
Heterodyne method for high specificity gas detection.
NASA Technical Reports Server (NTRS)
Dimeff, J.; Donaldson, R. W.; Gunter, W. D., Jr.; Jaynes, D. N.; Margozzi, A. P.; Deboo, G. J.; Mcclatchie, E. A.; Williams, K. G.
1971-01-01
This paper describes a new technique for measuring trace quantities of gases. The technique involves the use of a reference cell (containing a known amount of the gas being sought) and a sample cell (containing an unknown amount of the same gas) wherein the gas densities are modulated. Light passing through the two cells in sequence is modulated in intensity at the vibrational-rotational lines characteristic of the absorption spectrum for the gas of interest. Since the absorption process is nonlinear, modulating the two absorption cells at two different frequencies gives rise to a heterodyning effect, which in turn introduces sum and difference frequencies in the detected signal. Measuring the ratio of the difference frequency signal for example, to the signal introduced by the reference cell provides a normalized measure of the amount of the gas in the sample cell. The readings produced are thereby independent of source intensity, window transparency, and detector sensitivity. Experimental evaluation of the technique suggests that it should be applicable to a wide range of gases, that it should be able to reject spurious signals due to unwanted gases, and that it should be sensitive to concentrations of the order of 10 to the minus 8th power when used with a sample cell of only 20 cm length.
NASA Astrophysics Data System (ADS)
Ladstaetter-Weissenmayer, A.; Meyer-Arnek, J.; Burrows, J. P.
During the dry season, biomass burning is an important source of ozone precursors for the tropical troposphere, and ozone formation can occur in biomass burning plumes originating in Indonesia and northern Australia. Satellite based GOME (Global Ozone Measuring experiment) data are used to characterize the amount of tropospheric ozone production over this region during the El Niño event in September 1997 compared to a so called "normal" year 1998. Large scale biomass burning occurred over Kalimantan in 1997 caused by the absence of the northern monsoon rains, leading to significant increases in tropospheric ozone. Tropospheric ozone was determined from GOME data using the Tropospheric Excess Method (TEM). Backtrajectory calculations show that Indonesia is influenced every summer by the emissions of trace gases from biomass buring over northern Australia. But in 1997 over Indonesia an increasing of tropospheric ozone amounts can be observed caused by the fires over Indonesia itself as well as by northern Australia. The analysis of the measurements of BIBLE-A (Biomass Burning and Lightning Experiment) and using ATSR (Along the Track Scanning Radiometer) data show differences in the view to the intensity of fire counts and therefore in the amount of the emission of precursors of tropospheric ozone comparing September 1997 to September 1998.
Refraction effects on the Galileo probe telemetry carrier frequency
NASA Technical Reports Server (NTRS)
Atkinson, D. H.; Spilker, T. R.
1991-01-01
As the Galileo probe relay radio link (RRL) signal propagates outward through the Jovian atmosphere, the atmosphere will manifest itself in two ways. First, the geometric path length of the signal is increased, resulting in a small change of the RRL signal departure angle from the proble (transmitter). Secondly, the velocity of the signal is decreased. For a spherical, static atmosphere with a known profile of refractivity versus altitude the effects of refraction on the RRL frequency can be found using a variation of standard ray-tracing techniques, whereby the ray departure angle is found by an iterative process. From the dispersive characteristics of a mixture of hydrogen and helium with trace amounts of methane and ammonia a simple model of the Jovian atmosphere is constructed assuming spherical symmetry and uniform mixing. The contribution to the RRL Doppler frequency arising from refraction is calculated, and its effect on the Doppler wind measurements is discussed.
NASA Technical Reports Server (NTRS)
Meyer, Michael (Technical Monitor); Ehrenfreund, Pascale; Glavin, Daniel P.; Bota, Oliver; Cooper, George; Bada, Jeffrey
2001-01-01
Amino acid analyses using HPLC of pristine interior pieces of the CI carbonaceous chondrites Orgueil and Ivuna have found that beta-alanine, glycine, and gamma-amino-n-butyric acid (ABA) are the most abundant amino acids in these two meteorites, with concentrations ranging from approx. 600 to 2,000 parts per billion (ppb). Other alpha-amino acids such as alanine, alpha-ABA, alpha-aminoisobutyric acid (AIB), and isovaline are present only in trace amounts (less than 200 ppb). Carbon isotopic measurements of beta-alanine and glycine and the presence of racemic (D/L 1) alanine and beta-ABA in Orgueil suggest that these amino acids are extraterrestrial in origin. In comparison to the CM carbonaceous chondrites Murchison and Murray, the amino acid composition of the CIs is strikingly distinct, suggesting that these meteorites came from a different type of parent body, possibly an extinct comet, than did the CM carbonaceous chondrites.
Piezoelectric trace vapor calibrator
NASA Astrophysics Data System (ADS)
Verkouteren, R. Michael; Gillen, Greg; Taylor, David W.
2006-08-01
The design and performance of a vapor generator for calibration and testing of trace chemical sensors are described. The device utilizes piezoelectric ink-jet nozzles to dispense and vaporize precisely known amounts of analyte solutions as monodisperse droplets onto a hot ceramic surface, where the generated vapors are mixed with air before exiting the device. Injected droplets are monitored by microscope with strobed illumination, and the reproducibility of droplet volumes is optimized by adjustment of piezoelectric wave form parameters. Complete vaporization of the droplets occurs only across a 10°C window within the transition boiling regime of the solvent, and the minimum and maximum rates of trace analyte that may be injected and evaporated are determined by thermodynamic principles and empirical observations of droplet formation and stability. By varying solution concentrations, droplet injection rates, air flow, and the number of active nozzles, the system is designed to deliver—on demand—continuous vapor concentrations across more than six orders of magnitude (nominally 290fg/lto1.05μg/l). Vapor pulses containing femtogram to microgram quantities of analyte may also be generated. Calibrated ranges of three explosive vapors at ng/l levels were generated by the device and directly measured by ion mobility spectrometry (IMS). These data demonstrate expected linear trends within the limited working range of the IMS detector and also exhibit subtle nonlinear behavior from the IMS measurement process.
Qing, De-Kui; Mengüç, M Pinar; Payne, Fred A; Danao, Mary-Grace C
2003-06-01
Fluorescence correlation spectroscopy (FCS) is adapted for a new procedure to detect trace amounts of Escherichia coli in water. The present concept is based on convective diffusion rather than Brownian diffusion and employs confocal microscopy as in traditional FCS. With this system it is possible to detect concentrations as small as 1.5 x 10(5) E. coli per milliliter (2.5 x 10(-16) M). This concentration corresponds to an approximately 1.0-nM level of Rhodamine 6G dyes. A detailed analysis of the optical system is presented, and further improvements for the procedure are discussed.
Analysis of volatile organic compounds. [trace amounts of organic volatiles in gas samples
NASA Technical Reports Server (NTRS)
Zlatkis, A. (Inventor)
1977-01-01
An apparatus and method are described for reproducibly analyzing trace amounts of a large number of organic volatiles existing in a gas sample. Direct injection of the trapped volatiles into a cryogenic percolum provides a sharply defined plug. Applications of the method include: (1) analyzing the headspace gas of body fluids and comparing a profile of the organic volatiles with standard profiles for the detection and monitoring of disease; (2) analyzing the headspace gas of foods and beverages and comparing the profile with standard profiles to monitor and control flavor and aroma; and (3) analyses for determining the organic pollutants in air or water samples.
Urban and industrial contribution to trace elements in the atmosphere as measured in holm oak bark
NASA Astrophysics Data System (ADS)
Drava, Giuliana; Brignole, Daniele; Giordani, Paolo; Minganti, Vincenzo
2016-11-01
The concentrations of As, Cd, Co, Cu, Fe, Mn, Ni, Pb, V and Zn were measured by ICP-OES in samples of bark of the holm oak (Quercus ilex L.) collected from trees in different urban environments (residential and mixed residential/industrial). The use of tree bark as a bioindicator makes it easy to create maps that can provide detailed data on the levels and on the spatial distribution of each trace element. For most of the elements considered (As, Co, Fe, Mn, Ni, V and Zn), the concentrations in the industrial sites are about twice (from 1.9 to 2.8 times higher) of those in the residential area. Arsenic, Fe and Zn show the highest concentrations near a steel plant (operational until 2005), but for the other elements it is not possible to identify any localized source, as evident from the maps. In areas where urban pollution is summed up by the impact of industrial activities, the population is exposed to significantly higher amounts of some metals than people living in residential areas.
NASA Astrophysics Data System (ADS)
Amin, Alaa S.; El-Sharjawy, Abdel-Azeem M.; Kassem, Mohammed A.
2013-06-01
A new simple, very sensitive, selective and accurate procedure for the determination of trace amounts of thallium(III) by solid-phase spectrophotometry (SPS) has been developed. The procedure is based on fixation of Tl(III) as quinalizarin ion associate on a styrene-divinylbenzene anion-exchange resin. The absorbance of resin sorbed Tl(III) ion associate is measured directly at 636 and 830 nm. Thallium(I) was determined by difference measurements after oxidation of Tl(I) to Tl(III) with bromine. Calibration is linear over the range 0.5-12.0 μg L-1 of Tl(III) with relative standard deviation (RSD) of 1.40% (n = 10). The detection and quantification limits are 150 and 495 ng L-1 using 0.6 g of the exchanger. The molar absorptivity and Sandell sensitivity are also calculated and found to be 1.31 × 107 L mol-1 cm-1 and 0.00156 ng cm-2, respectively. The proposed procedure has been successfully applied to determine thallium in water, urine and serum samples.
Amin, Alaa S; El-Sharjawy, Abdel-Azeem M; Kassem, Mohammed A
2013-06-01
A new simple, very sensitive, selective and accurate procedure for the determination of trace amounts of thallium(III) by solid-phase spectrophotometry (SPS) has been developed. The procedure is based on fixation of Tl(III) as quinalizarin ion associate on a styrene-divinylbenzene anion-exchange resin. The absorbance of resin sorbed Tl(III) ion associate is measured directly at 636 and 830 nm. Thallium(I) was determined by difference measurements after oxidation of Tl(I) to Tl(III) with bromine. Calibration is linear over the range 0.5-12.0 μg L(-1) of Tl(III) with relative standard deviation (RSD) of 1.40% (n=10). The detection and quantification limits are 150 and 495 ng L(-1) using 0.6 g of the exchanger. The molar absorptivity and Sandell sensitivity are also calculated and found to be 1.31×10(7) L mol(-1)cm(-1) and 0.00156 ng cm(-2), respectively. The proposed procedure has been successfully applied to determine thallium in water, urine and serum samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Eddins, W.H.; Crawford, J.K.
1984-01-01
In 1979-81, water samples were collected from 119 sites on streams throughout the City of Charlotte and Mecklenburg County, North Carolina, and were analyzed for specific conductance, dissolved chloride, hardness, pH, total alkalinity, total phosphorus, trace elements, arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, silver, and zinc and biological measures including dissolved oxygen, biochemical oxygen demand, fecal coliform bacteria, and fecal streptococcus bacteria. Sampling was conducted during both low flow (base flow) and high flow. Several water-quality measures including pH, total arsenic, total cadmium, total chromium, total copper, total iron, total lead, total manganese, total mercury, total silver, total zinc, dissolved oxygen, and fecal coliform bacteria at times exceeded North Carolina water-quality standards in various streams. Runoff from non-point sources appears to contribute more to the deterioration of streams in Charlotte and Mecklenburg County than point-source effluents. Urban and industrial areas contribute various trace elements. Residential and rural areas and municipal waste-water treatment plants contribute high amounts of phosphorus.
Cause and Effects of Fluorocarbon Degradation in Electronics and Opto-Electronic Systems
NASA Technical Reports Server (NTRS)
Predmore, Roamer E.; Canham, John S.
2002-01-01
Trace degradation of fluorocarbon or halocarbon materials must be addressed in their application in sensitive systems. As the dimensions and/or tolerances of components in a system decrease, the sensitivity of the system to trace fluorocarbon or halocarbon degradation products increases. Trace quantities of highly reactive degradation products from fluorocarbons have caused a number of failures of flight hardware. It is of utmost importance that the risk of system failure, resulting from trace amounts of reactive fluorocarbon degradation products be addressed in designs containing fluorocarbon or halocarbon materials. Thermal, electrical, and mechanical energy input into the system can multiply the risk of failure.
NASA Astrophysics Data System (ADS)
Ghaedi, Mehrorang
2007-02-01
Highly sensitive and interference-free sensitized spectrophotometric method for the determination of Ni(II) ions is described. The method is based on the reaction between Ni(II) ion and benzyl dioxime in micellar media in the presence of sodium dodecyl sulfate (SDS). The absorbance is linear from 0.1 up to 25.0 μg mL -1 in aqueous solution with repeatability (RSD) of 1.0% at a concentration of 1 μg mL -1 and a detection limit of 0.12 ng mL -1 and molar absorption coefficient of 68,600 L mol -1 cm -1. The influence of reaction variables including type and amount of surfactant, pH, and amount of ligand and complexation time and the effect of interfering ions are investigated. The proposed procedure was applied to the determination of trace amounts of Ni(II) ion in tap water, river water, chocolate and vegetable without separation or organic solvent extraction.
Does Time-on-Task Estimation Matter? Implications for the Validity of Learning Analytics Findings
ERIC Educational Resources Information Center
Kovanovic, Vitomir; Gaševic, Dragan; Dawson, Shane; Joksimovic, Srecko; Baker, Ryan S.; Hatala, Marek
2015-01-01
With\twidespread adoption of Learning Management Systems (LMS) and other learning technology, large amounts of data--commonly known as trace data--are readily accessible to researchers. Trace data has been extensively used to calculate time that students spend on different learning activities--typically referred to as time-on-task. These measures…
Werner, R A; Rothe, M; Brand, W A
2001-01-01
The determination of delta18O values in CO2 at a precision level of +/-0.02 per thousand (delta-notation) has always been a challenging, if not impossible, analytical task. Here, we demonstrate that beyond the usually assumed major cause of uncertainty - water contamination - there are other, hitherto underestimated sources of contamination and processes which can alter the oxygen isotope composition of CO2. Active surfaces in the preparation line with which CO2 comes into contact, as well as traces of air in the sample, can alter the apparent delta18O value both temporarily and permanently. We investigated the effects of different surface materials including electropolished stainless steel, Duran glass, gold and quartz, the latter both untreated and silanized. CO2 frozen with liquid nitrogen showed a transient alteration of the 18O/16O ratio on all surfaces tested. The time to recover from the alteration as well as the size of the alteration varied with surface type. Quartz that had been ultrasonically cleaned for several hours with high purity water (0.05 microS) exhibited the smallest effect on the measured oxygen isotopic composition of CO2 before and after freezing. However, quartz proved to be mechanically unstable with time when subjected to repeated large temperature changes during operation. After several days of operation the gas released from the freezing step contained progressively increasing trace amounts of O2 probably originating from inclusions within the quartz, which precludes the use of quartz for cryogenically trapping CO2. Stainless steel or gold proved to be suitable materials after proper pre-treatment. To ensure a high trapping efficiency of CO2 from a flow of gas, a cold trap design was chosen comprising a thin wall 1/4" outer tube and a 1/8" inner tube, made respectively from electropolished stainless steel and gold. Due to a considerable 18O specific isotope effect during the release of CO2 from the cold surface, the thawing time had to be as long as 20 min for high precision delta18O measurements. The presence of traces of air in almost all CO2 gases that we analyzed was another major source of error. Nitrogen and oxygen in the ion source of our mass spectrometer (MAT 252, Finnigan MAT, Bremen, Germany) give rise to the production of NO2 at the hot tungsten filament. NO2+ is isobaric with C16O18O+ (m/z 46) and interferes with the delta18O measurement. Trace amounts of air are present in CO2 extracted cryogenically from air at -196 degrees C. This air, trapped at the cold surface, cannot be pumped away quantitatively. The amount of air present depends on the surface structure and, hence, the alteration of the measured delta18O value varies with the surface conditions. For automated high precision measurement of the isotopic composition of CO2 of air samples stored in glass flasks an extraction interface ('BGC-AirTrap') was developed which allows 18 analyses (including standards) per day to be made. For our reference CO2-in-air, stored in high pressure cylinders, the long term (>9 months) single sample precision was 0.012 per thousand for delta13C and 0.019 per thousand for delta18O. Copyright 2001 John Wiley & Sons, Ltd.
Baumrind, S; Ben-Bassat, Y; Bravo, L A; Curry, S; Korn, E L
1996-01-01
Using roentgenographic cephalograms from a sample of subjects with metallic implants, appropriately superimposed tracings were used to distinguish developmental and treatment-associated displacements of the maxillary central incisor and first molar associated "local" changes within the periodontium from "secondary" changes which reflect sutural and appositional growth at more distant osseous loci. Tracings were superimposed on anterior cranial base (ACB), on the maxillary implants only (IMP_MAX), and according to the best fit of maxillary anatomic structures without reference to the implants (A_MAX). Using the IMP_MAX superimposition, one could measure total local displacement at any landmark taking into consideration the effects of all appositional and resorptive changes on the superior and anterior surfaces of the palate, whereas using the A_MAX superimposition one could measure local displacement without consideration of surface appositional and resorptive changes. If the second of these measurements were subtracted from the first, the result would be a direct measurement of the effects of surface appositional and resorptive changes as they are expressed at that particular landmark. This strategy has enabled us to quantify and report the amount of accommodation which occurs at the location of each dental landmark in association with the resorptive and appositional changes which occur through time on the superior and anterior surfaces of the hard palate.
A XANES Study of Sulfur Speciation and Reactivity in Cokes for Anodes Used in Aluminum Production
NASA Astrophysics Data System (ADS)
Jahrsengene, Gøril; Wells, Hannah C.; Rørvik, Stein; Ratvik, Arne Petter; Haverkamp, Richard G.; Svensson, Ann Mari
2018-03-01
Availability of anode raw materials in the growing aluminum industry results in a wider range of petroleum cokes being used to produce carbon anodes. The boundary between anode grade cokes and what previously was considered non-anode grades are no longer as distinct as before, leading to introduction of cokes with higher sulfur and higher trace metal impurity content in anode manufacturing. In this work, the chemical nature of sulfur in five industrial cokes, ranging from 1.42 to 5.54 wt pct S, was investigated with K-edge XANES, while the reactivity of the cokes towards CO2 was measured by a standard mass loss test. XANES identified most of the sulfur as organic sulfur compounds. In addition, a significant amount is identified (16 to 53 pct) as S-S bound sulfur. A strong inverse correlation is observed between CO2-reactivity and S-S bound sulfur in the cokes, indicating that the reduction in reactivity is more dependent on the amount of this type of sulfur compound rather than the total amount of sulfur or the amount of organic sulfur.
A XANES Study of Sulfur Speciation and Reactivity in Cokes for Anodes Used in Aluminum Production
NASA Astrophysics Data System (ADS)
Jahrsengene, Gøril; Wells, Hannah C.; Rørvik, Stein; Ratvik, Arne Petter; Haverkamp, Richard G.; Svensson, Ann Mari
2018-06-01
Availability of anode raw materials in the growing aluminum industry results in a wider range of petroleum cokes being used to produce carbon anodes. The boundary between anode grade cokes and what previously was considered non-anode grades are no longer as distinct as before, leading to introduction of cokes with higher sulfur and higher trace metal impurity content in anode manufacturing. In this work, the chemical nature of sulfur in five industrial cokes, ranging from 1.42 to 5.54 wt pct S, was investigated with K-edge XANES, while the reactivity of the cokes towards CO2 was measured by a standard mass loss test. XANES identified most of the sulfur as organic sulfur compounds. In addition, a significant amount is identified (16 to 53 pct) as S-S bound sulfur. A strong inverse correlation is observed between CO2-reactivity and S-S bound sulfur in the cokes, indicating that the reduction in reactivity is more dependent on the amount of this type of sulfur compound rather than the total amount of sulfur or the amount of organic sulfur.
[Micro-Raman and fluorescence spectra of several agrochemicals].
Xiao, Yi-lin; Zhang, Peng-xiang; Qian, Xiao-fan
2004-05-01
Raman and fluorescence spectra from several agrochemicals were measured, which are sold for the use in vegetables, fruits and grains. Characteristic vibration Raman peaks from some of the agrochemicals were recorded, hence the spectra can be used for their identification. Other marketed agrochemicals demonstrated strong fluorescence under 514.5 nm excitation. It was found that the fluorescence spectra of the agrochemicals are very different. According to these results one can detect the trace amount of agrochemicals left on the surface of fruits, vegetables and grains in situ and conveniently.
Polychlorinated biphenyl contamination of nursing mothers' milk in Michigan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wickizer, T.M.; Brilliant, L.B.; Copeland, R.
As part of an effort to assess the extent and distribution of PCB contamination in the human population of Michigan, PCB levels in the breast milk of Michigan nursing mothers were investigated. All of the 1057 samples collected from 68 counties contained PCB residues ranging from trace amounts to 5.1 ppm. The mean PCB level was 1.496 ppm. The public health significance of PCB contamination in human populations and the implications of PCB contamination of human milk for current breast-feeding practices are discussed. Several precautionary measures for nursing mothers are recommended.
Laser absorption spectroscopy - Method for monitoring complex trace gas mixtures
NASA Technical Reports Server (NTRS)
Green, B. D.; Steinfeld, J. I.
1976-01-01
A frequency stabilized CO2 laser was used for accurate determinations of the absorption coefficients of various gases in the wavelength region from 9 to 11 microns. The gases investigated were representative of the types of contaminants expected to build up in recycled atmospheres. These absorption coefficients were then used in determining the presence and amount of the gases in prepared mixtures. The effect of interferences on the minimum detectable concentration of the gases was measured. The accuracies of various methods of solution were also evaluated.
NASA Technical Reports Server (NTRS)
Planet, W. G.; Lienesch, J. H.; Miller, A. J.; Nagatani, R.; Mcpeters, R. D.; Hilsenrath, E.; Cebula, R. P.; Deland, M. T.; Wellemeyer, C. G.; Horvath, K.
1994-01-01
Determinations of global total ozone amounts have been made from recently reprocessed measurements with the SBUV/2 on the NOAA-11 environmental satellite since January 1989. This data set employs a new algorithm and an updated calibration. Comparisons with total ozone amounts derived from a significant subset of the global network of Dobson spectrophotometers shows a 0.3% bias between the satellite and ground measurements for the period January 1989-May 1993. Comparisons with the data from individual stations exhibit differing degrees of agreement which could be due to the matchup procedures and also to the uncertainties in the Dobson data. The SBUV/2 data set discussed here traces the Northern Hemisphere total ozone from 1989 to the present, showing a marked decrease from the average of those years starting in the summer of 1992 and continuing into 1993, with an apparent returning to more normal levels in late 1993.
Christman, Stephen D; Weaver, Ryan
2008-05-01
The nature of temporal variability during speeded finger tapping was examined using linear (standard deviation) and non-linear (Lyapunov exponent) measures. Experiment 1 found that right hand tapping was characterised by lower amounts of both linear and non-linear measures of variability than left hand tapping, and that linear and non-linear measures of variability were often negatively correlated with one another. Experiment 2 found that increased non-linear variability was associated with relatively enhanced performance on a closed-loop motor task (mirror tracing) and relatively impaired performance on an open-loop motor task (pointing in a dark room), especially for left hand performance. The potential uses and significance of measures of non-linear variability are discussed.
Method for removing trace pollutants from aqueous solutions
Silver, Gary L.
1986-01-01
A method of substantially removing a trace metallic contaminant from a liquid containing the same comprises, adding an oxidizing agent to a liquid containing a trace amount of a metallic contaminant of a concentration of up to about 10.sup.-1 ppm, the oxidizing agent being one which oxidizes the contaminant to form an oxidized product which is insoluble in the liquid and precipitates therefrom, and the conditions of the addition being selected to ensure that the precipitation of the oxidized product is homogeneous, and separating the homogeneously precipitated product from the liquid.
Tran, Tuan D.; Amin, Aenia; Jones, Keith G.; Sheffer, Ellen M.; Ortega, Lidia; Dolman, Keith
2017-01-01
Neonatal rats were administered a relatively high concentration of ethyl alcohol (11.9% v/v) during postnatal days 4-9, a time when the fetal brain undergoes rapid organizational change and is similar to accelerated brain changes that occur during the third trimester in humans. This model of fetal alcohol spectrum disorders (FASDs) produces severe brain damage, mimicking the amount and pattern of binge-drinking that occurs in some pregnant alcoholic mothers. We describe the use of trace eyeblink classical conditioning (ECC), a higher-order variant of associative learning, to assess long-term hippocampal dysfunction that is typically seen in alcohol-exposed adult offspring. At 90 days of age, rodents were surgically prepared with recording and stimulating electrodes, which measured electromyographic (EMG) blink activity from the left eyelid muscle and delivered mild shock posterior to the left eye, respectively. After a 5 day recovery period, they underwent 6 sessions of trace ECC to determine associative learning differences between alcohol-exposed and control rats. Trace ECC is one of many possible ECC procedures that can be easily modified using the same equipment and software, so that different neural systems can be assessed. ECC procedures in general, can be used as diagnostic tools for detecting neural pathology in different brain systems and different conditions that insult the brain. PMID:28809846
Parallel program debugging with flowback analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jongdeok.
1989-01-01
This thesis describes the design and implementation of an integrated debugging system for parallel programs running on shared memory multi-processors. The goal of the debugging system is to present to the programmer a graphical view of the dynamic program dependences while keeping the execution-time overhead low. The author first describes the use of flowback analysis to provide information on causal relationship between events in a programs' execution without re-executing the program for debugging. Execution time overhead is kept low by recording only a small amount of trace during a program's execution. He uses semantic analysis and a technique called incrementalmore » tracing to keep the time and space overhead low. As part of the semantic analysis, he uses a static program dependence graph structure that reduces the amount of work done at compile time and takes advantage of the dynamic information produced during execution time. The cornerstone of the incremental tracing concept is to generate a coarse trace during execution and fill incrementally, during the interactive portion of the debugging session, the gap between the information gathered in the coarse trace and the information needed to do the flowback analysis using the coarse trace. Then, he describes how to extend the flowback analysis to parallel programs. The flowback analysis can span process boundaries; i.e., the most recent modification to a shared variable might be traced to a different process than the one that contains the current reference. The static and dynamic program dependence graphs of the individual processes are tied together with synchronization and data dependence information to form complete graphs that represent the entire program.« less
Tuinman, Albert A; Lewis, Linda A; Lewis, Samuel A
2003-06-01
The application of electrospray ionization mass spectrometry (ESI-MS) to trace-fiber color analysis is explored using acidic dyes commonly employed to color nylon-based fibers, as well as extracts from dyed nylon fibers. Qualitative information about constituent dyes and quantitative information about the relative amounts of those dyes present on a single fiber become readily available using this technique. Sample requirements for establishing the color identity of different samples (i.e., comparative trace-fiber analysis) are shown to be submillimeter. Absolute verification of dye mixture identity (beyond the comparison of molecular weights derived from ESI-MS) can be obtained by expanding the technique to include tandem mass spectrometry (ESI-MS/MS). For dyes of unknown origin, the ESI-MS/MS analyses may offer insights into the chemical structure of the compound-information not available from chromatographic techniques alone. This research demonstrates that ESI-MS is viable as a sensitive technique for distinguishing dye constituents extracted from a minute amount of trace-fiber evidence. A protocol is suggested to establish/refute the proposition that two fibers--one of which is available in minute quantity only--are of the same origin.
Procedures of determining organic trace compounds in municipal sewage sludge-a review.
Lindholm-Lehto, Petra C; Ahkola, Heidi S J; Knuutinen, Juha S
2017-02-01
Sewage sludge is the largest by-product generated during the wastewater treatment process. Since large amounts of sludge are being produced, different ways of disposal have been introduced. One tempting option is to use it as fertilizer in agricultural fields due to its high contents of inorganic nutrients. This, however, can be limited by the amount of trace contaminants in the sewage sludge, containing a variety of microbiological pollutants and pathogens but also inorganic and organic contaminants. The bioavailability and the effects of trace contaminants on the microorganisms of soil are still largely unknown as well as their mixture effects. Therefore, there is a need to analyze the sludge to test its suitability before further use. In this article, a variety of sampling, pretreatment, extraction, and analysis methods have been reviewed. Additionally, different organic trace compounds often found in the sewage sludge and their methods of analysis have been compiled. In addition to traditional Soxhlet extraction, the most common extraction methods of organic contaminants in sludge include ultrasonic extraction (USE), supercritical fluid extraction (SFE), microwave-assisted extraction (MAE), and pressurized liquid extraction (PLE) followed by instrumental analysis based on gas or liquid chromatography and mass spectrometry.
Mobile Instruments Measure Atmospheric Pollutants
NASA Technical Reports Server (NTRS)
2009-01-01
As a part of NASA's active research of the Earth s atmosphere, which has included missions such as the Atmospheric Laboratory of Applications and Science (ATLAS, launched in 1992) and the Total Ozone Mapping Spectrometer (TOMS, launched on the Earth Probe satellite in 1996), the Agency also performs ground-based air pollution research. The ability to measure trace amounts of airborne pollutants precisely and quickly is important for determining natural patterns and human effects on global warming and air pollution, but until recent advances in field-grade spectroscopic instrumentation, this rapid, accurate data collection was limited and extremely difficult. In order to understand causes of climate change and airborne pollution, NASA has supported the development of compact, low power, rapid response instruments operating in the mid-infrared "molecular fingerprint" portion of the electromagnetic spectrum. These instruments, which measure atmospheric trace gases and airborne particles, can be deployed in mobile laboratories - customized ground vehicles, typically - to map distributions of pollutants in real time. The instruments must be rugged enough to operate rapidly and accurately, despite frequent jostling that can misalign, damage, or disconnect sensitive components. By measuring quickly while moving through an environment, a mobile laboratory can correlate data and geographic points, revealing patterns in the environment s pollutants. Rapid pollutant measurements also enable direct determination of pollutant sources and sinks (mechanisms that remove greenhouse gases and pollutants), providing information critical to understanding and managing atmospheric greenhouse gas and air pollutant concentrations.
NASA Astrophysics Data System (ADS)
Bartels-Rausch, T.; Wren, S. N.; Schreiber, S.; Riche, F.; Schneebeli, M.; Ammann, M.
2013-07-01
Release of trace gases from surface snow on earth drives atmospheric chemistry, especially in the polar regions. The gas-phase diffusion of methanol and of acetone through the interstitial air of snow was investigated in a well-controlled laboratory study in the temperature range of 223 to 263 K. The aim of this study was to evaluate how the structure of the snowpack, the interaction of the trace gases with the snow surface, and the grain boundaries influence the diffusion on timescales up to 1 h. The diffusive loss of these two volatile organics into packed snow samples was measured using a chemical ionization mass spectrometer. The structure of the snow was analysed by means of X-ray-computed micro-tomography. The observed diffusion profiles could be well described based on gas-phase diffusion and the known structure of the snow sample at temperatures ≥ 253 K. At colder temperatures, surface interactions start to dominate the diffusive transport. Parameterizing these interactions in terms of adsorption to the solid ice surface, i.e. using temperature-dependent air-ice partitioning coefficients, better described the observed diffusion profiles than the use of air-liquid partitioning coefficients. No changes in the diffusive fluxes were observed by increasing the number of grain boundaries in the snow sample by a factor of 7, indicating that for these volatile organic trace gases, uptake into grain boundaries does not play a role on the timescale of diffusion through porous surface snow. For this, a snow sample with an artificially high amount of ice grains was produced and the grain boundary surface measured using thin sections. In conclusion, we have shown that the diffusivity can be predicted when the structure of the snowpack and the partitioning of the trace gas to solid ice is known.
Fate dynamics of environmentally exposed explosive traces.
Kunz, Roderick R; Gregory, Kerin E; Aernecke, Matthew J; Clark, Michelle L; Ostrinskaya, Alla; Fountain, Augustus W
2012-04-12
The chemical and physical fates of trace amounts (<50 μg) of explosives containing 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and pentaerythritol tetranitrate (PETN) were determined for the purpose of informing the capabilities of tactical trace explosive detection systems. From these measurements, it was found that the mass decreases and the chemical composition changes on a time scale of hours, with the loss mechanism due to a combination of sublimation and photodegradation. The rates for these processes were dependent on the explosive composition, as well as on both the ambient temperature and the size distribution of the explosive particulates. From these results, a persistence model was developed and applied to model the time dependence of both the mass and areal coverage of the fingerprints, resulting in a predictive capability for determining fingerprint fate. Chemical analysis confirmed that sublimation rates for TNT were depressed by UV (330-400 nm) exposure due to photochemically driven increases in the molecular weight, whereas the opposite was observed for RDX. No changes were observed for PETN upon exposure to UV radiation, and this was attributed to its low UV absorbance.
Aoki, Kimiko; Tanaka, Hiroyuki; Kawahara, Takashi
2018-07-01
The standard method for personal identification and verification of urine samples in doping control is short tandem repeat (STR) analysis using nuclear DNA (nDNA). The DNA concentration of urine is very low and decreases under most conditions used for sample storage; therefore, the amount of DNA from cryopreserved urine samples may be insufficient for STR analysis. We aimed to establish a multiplexed assay for urine mitochondrial DNA typing containing only trace amounts of DNA, particularly for Japanese populations. A multiplexed suspension-array assay using oligo-tagged microspheres (Luminex MagPlex-TAG) was developed to measure C-stretch length in hypervariable region 1 (HV1) and 2 (HV2), five single nucleotide polymorphisms (SNPs), and one polymorphic indel. Based on these SNPs and the indel, the Japanese population can be classified into five major haplogroups (D4, B, M7a, A, D5). The assay was applied to DNA samples from urine cryopreserved for 1 - 1.5 years (n = 63) and fresh blood (n = 150). The assay with blood DNA enabled Japanese subjects to be categorized into 62 types, exhibiting a discriminatory power of 0.960. The detection limit for cryopreserved urine was 0.005 ng of nDNA. Profiling of blood and urine pairs revealed that 5 of 63 pairs showed different C-stretch patterns in HV1 or HV2. The assay described here yields valuable information in terms of the verification of urine sample sources employing only trace amounts of recovered DNA. However, blood cannot be used as a reference sample.
Xu, Pengcheng; Yu, Haitao; Li, Xinxin
2016-05-03
Activation-energy (Ea) value for trace-amount adsorption of gas molecules on material is rapidly and inexpensively obtained, for the first time, from a microgravimetric analysis experiment. With the material loaded, a resonant microcantilever is used to record in real time the adsorption process at two temperatures. The kinetic parameter Ea is thereby extracted by solving the Arrhenius equation. As an example, two CO2 capture nanomaterials are examined by the Ea extracting method for evaluation/optimization and, thereby, demonstrating the applicability of the microgravimetric analysis method. The achievement helps to solve the absence in rapid quantitative characterization of sorption kinetics and opens a new route to investigate molecule adsorption processes and materials.
NASA Astrophysics Data System (ADS)
Scharko, N.; Safdari, S.; Danby, T. O.; Howarth, J.; Beiswenger, T. N.; Weise, D.; Myers, T. L.; Fletcher, T. H.; Johnson, T. J.
2017-12-01
Combustion is an oxidation reaction that occurs when there is less fuel available than oxidizers, while pyrolysis is a thermal decomposition process that occurs under "fuel rich" conditions where all of the available oxidizers are consumed leaving some fuel(s) either unreacted or partially reacted. Gas-phase combustion products from biomass burning experiments have been studied extensively; less is known, however, about pyrolysis processes and products. Pyrolysis is the initial reaction occurring in the burning process and generates products that are subsequently oxidized during combustion, yielding highly-oxidized chemicals. This laboratory study investigates the pyrolysis processes by using an FTIR spectrometer to detect and quantify the gas-phase products from thermal decomposition of intact understory fuels from forests in the southeastern United States. In particular, a laboratory flat-flame burner operating under fuel rich conditions (no oxygen) was used to heat individual leaves to cause decomposition. The gas-phase products were introduced to an 8 meter gas cell coupled to an infrared spectrometer were used to monitor the products. Trace gas emissions along with emission ratios, which are calculated by dividing the change in the amount of the trace gas by the change in the amount of CO, for the plant species, gallberry (Ilex glabra) and swampbay (Persea palustris) were determined. Preliminary measurements observed species such as CO2, CO, C2H2, C2H4, HCHO, CH3OH, isoprene, 1,3-butadiene, phenol and NH3 being produced as part of the thermal decomposition process. It is important to note that FTIR will not detect H2.
Avni, A; Avital, S; Gromet-Elhanan, Z
1991-04-25
Incubation of tobacco and lettuce thylakoids with 2 M LiCl in the presence of MgATP removes the beta subunit from their CF1-ATPase (CF1 beta) together with varying amounts of the CF1 alpha subunit (CF1 alpha). These 2 M LiCl extracts, as with the one obtained from spinach thylakoids (Avital, S., and Gromet-Elhanan, Z. (1991) J. Biol. Chem. 266, 7067-7072), could form active hybrid ATPases when reconstituted into inactive beta-less Rhodospirillum rubrum chromatophores. Pure CF1 beta fractions that have been isolated from these extracts could not form such active hybrids by themselves, but could do so when supplemented with trace amounts (less than 5%) of CF1 alpha. A mitochondrial F1-ATPase alpha subunit was recently reported to be a heat-shock protein, having two amino acid sequences that show a highly conserved identity with sequences found in molecular chaperones (Luis, A. M., Alconada, A., and Cuezva, J. M. (1990) J. Biol. Chem. 265, 7713-7716). These sequences are also conserved in CF1 alpha isolated from various plants, but not in F1 beta subunits. The above described reactivation of CF1 beta by trace amounts of CF1 alpha could thus be due to a chaperonin-like function of CF1 alpha, which involves the correct, active folding of isolated pure CF1 beta.
Meintjies, E; Strelow, F W; Victor, A H
1987-04-01
Traces and small amounts of bismuth can be separated from gram amounts of thallium and silver by successively eluting these elements with 0.3M and 0.6M nitric acid from a column containing 13 ml (3 g) of AG50W-X4, a cation-exchanger (100-200 mesh particle size) with low cross-linking. Bismuth is retained and can be eluted with 0.2M hydrobromic acid containing 20% v/v acetone, leaving many other trace elements absorbed. Elution of thallium is quite sharp, but silver shows a small amount of tailing (less than 1 gmg/ml silver in the eluate) when gram amounts are present, between 20 and 80 mug of silver appearing in the bismuth fraction. Relevant elution curves and results for the analysis of synthetic mixtures containing between 50 mug and 10 mg of bismuth and up to more than 1 g of thallium and silver are presented, as well as results for bismuth in a sample of thallium metal and in Merck thallium(I) carbonate. As little as 0.01 ppm of bismuth can be determined when the separation is combined with electrothermal atomic-absorption spectrometry.
Isotope-Labeled Composition B for Tracing Detonation Signatures
NASA Astrophysics Data System (ADS)
Manner, Virginia; Podlesak, David; Huber, Rachel; Amato, Ronald; Giambra, Anna; Bowden, Patrick; Hartline, Ernest; Dattelbaum, Dana
2017-06-01
To better understand how solid carbon forms and evolves during detonation, we have prepared Composition B with 13 C and 15 N-labeled 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) and 2,4,6-trinitrotoluene (TNT) in order to trace the formation of soot from the carbon and nitrogen atoms in these explosives. Isotope-labeling of explosives has been performed in the recent past for a variety of reasons, including environmental remediation and reaction mechanism studies. Because it is expensive and time consuming to prepare these materials, and our detection equipment only requires trace amounts of isotopes, we have prepared fully-labeled materials and substituted them into unlabeled RDX and TNT at less than the 1% level. We will discuss the preparation and full characterization of this labeled Composition B, the detonation tests performed, along with the results of the post-detonation soot analysis. Various detonation models predict differing amounts and forms of carbon and nitrogen; these isotopically-labeled precursors have allowed these models to be tested.
NASA Astrophysics Data System (ADS)
Nowlan, Caroline R.; Liu, Xiong; Leitch, James W.; Chance, Kelly; González Abad, Gonzalo; Liu, Cheng; Zoogman, Peter; Cole, Joshua; Delker, Thomas; Good, William; Murcray, Frank; Ruppert, Lyle; Soo, Daniel; Follette-Cook, Melanie B.; Janz, Scott J.; Kowalewski, Matthew G.; Loughner, Christopher P.; Pickering, Kenneth E.; Herman, Jay R.; Beaver, Melinda R.; Long, Russell W.; Szykman, James J.; Judd, Laura M.; Kelley, Paul; Luke, Winston T.; Ren, Xinrong; Al-Saadi, Jassim A.
2016-06-01
The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m × 250 m spatial resolution with a fitting precision of 2.2 × 1015 molecules
NASA Astrophysics Data System (ADS)
Merkel, Ronny; Gruhn, Stefan; Dittmann, Jana; Vielhauer, Claus; Bräutigam, Anja
2012-03-01
Determining the age of latent fingerprint traces found at crime scenes is an unresolved research issue since decades. Solving this issue could provide criminal investigators with the specific time a fingerprint trace was left on a surface, and therefore would enable them to link potential suspects to the time a crime took place as well as to reconstruct the sequence of events or eliminate irrelevant fingerprints to ensure privacy constraints. Transferring imaging techniques from different application areas, such as 3D image acquisition, surface measurement and chemical analysis to the domain of lifting latent biometric fingerprint traces is an upcoming trend in forensics. Such non-destructive sensor devices might help to solve the challenge of determining the age of a latent fingerprint trace, since it provides the opportunity to create time series and process them using pattern recognition techniques and statistical methods on digitized 2D, 3D and chemical data, rather than classical, contact-based capturing techniques, which alter the fingerprint trace and therefore make continuous scans impossible. In prior work, we have suggested to use a feature called binary pixel, which is a novel approach in the working field of fingerprint age determination. The feature uses a Chromatic White Light (CWL) image sensor to continuously scan a fingerprint trace over time and retrieves a characteristic logarithmic aging tendency for 2D-intensity as well as 3D-topographic images from the sensor. In this paper, we propose to combine such two characteristic aging features with other 2D and 3D features from the domains of surface measurement, microscopy, photography and spectroscopy, to achieve an increase in accuracy and reliability of a potential future age determination scheme. Discussing the feasibility of such variety of sensor devices and possible aging features, we propose a general fusion approach, which might combine promising features to a joint age determination scheme in future. We furthermore demonstrate the feasibility of the introduced approach by exemplary fusing the binary pixel features based on 2D-intensity and 3D-topographic images of the mentioned CWL sensor. We conclude that a formula based age determination approach requires very precise image data, which cannot be achieved at the moment, whereas a machine learning based classification approach seems to be feasible, if an adequate amount of features can be provided.
Investigation of human biomarkers in exhaled breath by laser photoacoustic spectroscopy
NASA Astrophysics Data System (ADS)
Dumitras, D. C.; Giubileo, G.; Puiu, A.
2005-06-01
The paper underlines the importance of breath tests in medicine and the potential of laser techniques to measure in-vivo and in real time human biomarkers. The presence of trace amounts of gases or the metabolites of a precursor in exhaled air could be linked to kidney or liver malfunction, asthma, diabetes, cancer, ulcers or neurological disorders. The measurement of some human biomarkers (ethylene, ammonia), based on laser photoacoustic spectroscopy methods, insure very high sensitivity and selectivity. The technical characteristics of this instrument were measured to determine the detection limits (sub-ppb for ethylene). The results of ethylene release following lipid peroxidation initiated by X-ray irradiation or ingestion of radioactive compounds are presented. The possibility to extend this technique for measurement of breath ammonia levels in patients with end-stage renal disease while they are undergoing hemodialysis is discussed.
Study of V-OTDR stability for dynamic strain measurement in piezoelectric vibration
NASA Astrophysics Data System (ADS)
Ren, Meiqi; Lu, Ping; Chen, Liang; Bao, Xiaoyi
2016-09-01
In a phase-sensitive optical-time domain reflectometry (Φ-OTDR) system, the challenge for dynamic strain measurement lies in large intensity fluctuations from trace to trace. The intensity fluctuation caused by stochastic characteristics of Rayleigh backscattering sets detection limit for the minimum strength of vibration measurement and causes the large measurement uncertainty. Thus, a trace-to-trace correlation coefficient is introduced to quantify intensity fluctuation of Φ-OTDR traces and stability of the sensor system theoretically and experimentally. A novel approach of measuring dynamic strain induced by various driving voltages of lead zirconate titanate (PZT) in Φ-OTDR is also demonstrated. Piezoelectric vibration signals are evaluated through analyzing peak values of fast Fourier transform spectra at the fundamental frequency and high-order harmonics based on Bessel functions. High trace-to-trace correlation coefficients varying from 0.824 to 0.967 among 100 measurements are obtained in experimental results, showing the good stability of our sensor system, as well as small uncertainty of measured peak values.
Micro-quantity tissue digestion for metal measurements by use of a microwave acid-digestion bomb.
Nicholson, J R; Savory, M G; Savory, J; Wills, M R
1989-03-01
We describe a simple and convenient method for processing small amounts of tissue samples for trace-metal measurements by atomic absorption spectrometry, by use of a modified Parr microwave digestion bomb. Digestion proceeds rapidly (less than or equal to 90 s) in a sealed Teflon-lined vessel that eliminates contamination or loss from volatilization. Small quantities of tissue (5-100 mg dry weight) are digested in high-purity nitric acid, yielding concentrations of analyte that can be measured directly without further sample manipulation. We analyzed National Institute of Standards and Technology bovine liver Standard Reference Material to verify the accuracy of the technique. We assessed the applicability of the technique to analysis for aluminum in bone by comparison with a dry ashing procedure.
Effects of psilocybin on hippocampal neurogenesis and extinction of trace fear conditioning.
Catlow, Briony J; Song, Shijie; Paredes, Daniel A; Kirstein, Cheryl L; Sanchez-Ramos, Juan
2013-08-01
Drugs that modulate serotonin (5-HT) synaptic concentrations impact neurogenesis and hippocampal (HPC)-dependent learning. The primary objective is to determine the extent to which psilocybin (PSOP) modulates neurogenesis and thereby affects acquisition and extinction of HPC-dependent trace fear conditioning. PSOP, the 5-HT2A agonist 25I-NBMeO and the 5-HT2A/C antagonist ketanserin were administered via an acute intraperitoneal injection to mice. Trace fear conditioning was measured as the amount of time spent immobile in the presence of the conditioned stimulus (CS, auditory tone), trace (silent interval) and post-trace interval over 10 trials. Extinction was determined by the number of trials required to resume mobility during CS, trace and post-trace when the shock was not delivered. Neurogenesis was determined by unbiased counts of cells in the dentate gyrus of the HPC birth-dated with BrdU co-expressing a neuronal marker. Mice treated with a range of doses of PSOP acquired a robust conditioned fear response. Mice injected with low doses of PSOP extinguished cued fear conditioning significantly more rapidly than high-dose PSOP or saline-treated mice. Injection of PSOP, 25I-NBMeO or ketanserin resulted in significant dose-dependent decreases in number of newborn neurons in hippocampus. At the low doses of PSOP that enhanced extinction, neurogenesis was not decreased, but rather tended toward an increase. Extinction of "fear conditioning" may be mediated by actions of the drugs at sites other than hippocampus such as the amygdala, which is known to mediate the perception of fear. Another caveat is that PSOP is not purely selective for 5-HT2A receptors. PSOP facilitates extinction of the classically conditioned fear response, and this, and similar agents, should be explored as potential treatments for post-traumatic stress disorder and related conditions.
Some thoughts on problems associated with various sampling media used for environmental monitoring
Horowitz, A.J.
1997-01-01
Modern analytical instrumentation is capable of measuring a variety of trace elements at concentrations down into the single or double digit parts-per-trillion (ng l-1) range. This holds for the three most common sample media currently used in environmental monitoring programs: filtered water, whole-water and separated suspended sediment. Unfortunately, current analytical capabilities have exceeded the current capacity to collect both uncontaminated and representative environmental samples. The success of any trace element monitoring program requires that this issue be both understood and addressed. The environmental monitoring of trace elements requires the collection of calendar- and event-based dissolved and suspended sediment samples. There are unique problems associated with the collection and chemical analyses of both types of sample media. Over the past 10 years, reported ambient dissolved trace element concentrations have declined. Generally, these decreases do not reflect better water quality, but rather improvements in the procedures used to collect, process, preserve and analyze these samples without contaminating them during these steps. Further, recent studies have shown that the currently accepted operational definition of dissolved constituents (material passing a 0.45 ??m membrane filter) is inadequat owing to sampling and processing artifacts. The existence of these artifacts raises questions about the generation of accurate, precise and comparable 'dissolved' trace element data. Suspended sediment and associated trace elements can display marked short- and long-term spatial and temporal variability. This implies that spatially representative samples only can be obtained by generating composites using depth- and width-integrated sampling techniques. Additionally, temporal variations have led to the view that the determination of annual trace element fluxes may require nearly constant (e.g., high-frequency) sampling and subsequent chemical analyses. Ultimately, sampling frequency for flux estimates becomes dependent on the time period of concern (daily, weekly, monthly, yearly) and the amount of acceptable error associated with these estimates.
Above detection limits - Prebiotic organics in comets and carbonaceous meteorites
NASA Astrophysics Data System (ADS)
Stern, J. C.; Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Martin, M. G.; Dworkin, J. P.
2009-12-01
The delivery of organic compounds such as amino acids and nucleobases by comets, asteroids, and their fragments may have contributed feedstock for prebiotic chemistry leading to the first self-replicating systems of the early Earth. In order to determine the isotopic composition, distribution, and abundance of prebiotic organic compounds in extraterrestrial samples we have recently optimized a highly sensitive liquid chromatography tandem quadupole mass spectrometer (LC-QqQ-MS) and a gas chromatography mass spectrometer coupled with an isotope ratio mass spectrometer (GC-MS/IRMS). This suite of instruments not only allows us to identify and quantify extremely trace amounts of organics of astrobiological interest, but also to confirm their extraterrestrial origins by stable isotopic measurements. The amino acid glycine was detected upon preliminary examinations of foils from NASA’s Stardust mission, which returned cometary material from comet 81P/Wild 2. To rule out the possibility of terrestrial contamination as the source of the glycine, the carbon isotopic ratio was measured. The δ13C value for glycine was determined to be +29 ± 6‰, well outside the terrestrial range for organic carbon of +6 ‰ to -40 ‰. The Stardust glycine δ13C value falls in the range previously reported for glycine (+22‰ to +41‰) in the carbonaceous meteorites Murchison and Orgueil. This represents the first detection of glycine or any other amino acid in a comet. Recent investigations of carbonaceous meteorite organic matter have revealed the presence of several nucleobases in the Murchison meteorite and several Antarctic CR meteorites never before analyzed for nucleobases using LC-QqQ-MS. This analytical tool is a sensitive and highly selective method for measuring the trace amounts of these organics in meteorites. In particular, the unusual Antarctic C2 meteorite, LON 94102, shows high abundances of guanine, hypoxanthine, and xanthine with concentrations ranging from 70 to 200 ppb. Nitrogen isotopic measurements will be made to determine the origin (extraterrestrial or terrestrial) of these compounds.
ERIC Educational Resources Information Center
Weiss, Craig; Sametsky, Evgeny; Sasse, Astrid; Spiess, Joachim; Disterhoft, John F.
2005-01-01
The effects of stress (restraint plus tail shock) on hippocampus-dependent trace eyeblink conditioning and hippocampal excitability were examined in C57BL/6 male mice. The results indicate that the stressor significantly increased the concentration of circulating corticosterone, the amount and rate of learning relative to nonstressed conditioned…
Study of the Effect of Trace Mg Additions on Carbides in Die Steel H13
NASA Astrophysics Data System (ADS)
Li, Ji; Li, Jing; Wang, Liang-liang; Zhu, Qin-tian
2016-09-01
Carbides in annealed steel H13 without magnesium and with a micro-addition of magnesium (0.0010%) are studied. Trace amounts of magnesium strengthen carbide segregation and reduce their size. Carbides phases M7C3, M6 C, and M(C, N) are detected in steel H13, and this agrees with results of thermodynamic calculations.
NASA Technical Reports Server (NTRS)
Liu, Nan-Suey; Wey, Thomas
2001-01-01
Many of the engine exhaust species resulting in significant environmental impact exist in trace amounts. Recent research, e.g., conducted at MIT-AM, has pointed to the intra-engine environment as a possible site for important trace chemistry activity. In addition, the key processes affecting the trace species activity occurring downstream in the air passages of the turbine and exhaust nozzle are not well understood. Most recently, an effort has been initiated at NASA Glenn Research Center under the UEET Program to evaluate and further develop CFD-based technology for modeling and simulation of intra-engine trace chemical changes relevant to atmospheric effects of pollutant emissions from aircraft engines. This presentation will describe the current effort conducted at Glenn; some preliminary results relevant to the trace species chemistry in a turbine passage will also be presented to indicate the progress to date.
McBain, M C; Warland, J S; McBride, R A; Wagner-Riddle, C
2004-12-01
The purpose of this study was to determine whether or not young hybrid poplar (Populus deltoides x Populus nigra) could transport landfill biogas internally from the root zone to the atmosphere, thereby acting as conduits for landfill gas release. Fluxes of methane (CH4) and nitrous oxide (N2O) from the seedlings to the atmosphere were measured under controlled conditions using dynamic flux chambers and a tunable diode laser trace gas analyser (TDLTGA). Nitrous oxide was emitted from the seedlings, but only when extremely high soil N2O concentrations were applied to the root zone. In contrast, no detectable emissions of CH4 were measured in a similar experimental trial. Visible plant morphological responses, characteristic of flood-tolerant trees attempting to cope with the negative effects of soil hypoxia, were observed during the CH4 experiments. Leaf chlorosis, leaf abscission and adventitious roots were all visible plant responses. In addition, seedling survival was observed to be highest in the biogas 'hot spot' areas of a local municipal solid waste landfill involved in this study. Based on the available literature, these observations suggest that CH4 can be transported internally by Populus deltoides x Populus nigra seedlings in trace amounts, although future research is required to fully test this hypothesis.
Real-time trace ambient ammonia monitor for haze prevention
NASA Astrophysics Data System (ADS)
Nishimura, Katsumi; Sakaguchi, Yuhei; Crosson, Eric; Wahl, Edward; Rella, Chris
2007-05-01
In photolithography, haze prevention is of critical importance to integrated circuit chip manufacturers. Numerous studies have established that the presence of ammonia in the photolithography tool can cause haze to form on optical surfaces resulting in permanent damage to costly deep ultra-violet optics. Ammonia is emitted into wafer fab air by various semiconductor processes including coating steps in the track and CMP. The workers in the clean room also emit a significant amount of ammonia. Chemical filters are typically used to remove airborne contamination from critical locations but their lifetime and coverage cannot offer complete protection. Therefore, constant or periodic monitoring of airborne ammonia at parts-per-trillion (ppt) levels is critical to insure the integrity of the lithography process. Real time monitoring can insure that an accidental ammonia release in the clean room is detected before any optics is damaged. We have developed a transportable, highly accurate, highly specific, real-time trace gas monitor that detects ammonia using Cavity Ring-Down Spectroscopy (CRDS). The trace gas monitor requires no calibration gas standards, and can measure ammonia with 200 ppt sensitivity in five minutes with little or no baseline drift. In addition, the high spectral resolution of CRDS makes the analyzer less susceptible to interference from other gases when compared to other detection methods. In this paper we describe the monitor, focus on its performance, discuss the results of a careful comparison with ion chromatography (IC), and present field data measured inside the aligner and the reticule stocker at a semiconductor fab.
Greenhouse effects due to man-made perturbations of trace gases
NASA Technical Reports Server (NTRS)
Wang, W. C.; Yung, Y. L.; Lacis, A. A.; Mo, T.; Hansen, J. E.
1976-01-01
Nitrous oxide, methane, ammonia, and a number of other trace constituents of the earth's atmosphere have infrared absorption bands in the spectral range from 7 to 14 microns. Despite their small amounts, these gases can have a significant effect on the thermal structure of the atmosphere by transmitting most of the thermal radiation from the earth's surface to the lower atmosphere. In the present paper, this greenhouse effect is computed for a number of trace gases. The nature and climatic implications of possible changes in the concentrations of N2O, CH4, NH3, and HNO3 are discussed.
The SNPforID Assay as a Supplementary Method in Kinship and Trace Analysis
Schwark, Thorsten; Meyer, Patrick; Harder, Melanie; Modrow, Jan-Hendrick; von Wurmb-Schwark, Nicole
2012-01-01
Objective Short tandem repeat (STR) analysis using commercial multiplex PCR kits is the method of choice for kinship testing and trace analysis. However, under certain circumstances (deficiency testing, mutations, minute DNA amounts), STRs alone may not suffice. Methods We present a 50-plex single nucleotide polymorphism (SNP) assay based on the SNPs chosen by the SNPforID consortium as an additional method for paternity and for trace analysis. The new assay was applied to selected routine paternity and trace cases from our laboratory. Results and Conclusions Our investigation shows that the new SNP multiplex assay is a valuable method to supplement STR analysis, and is a powerful means to solve complicated genetic analyses. PMID:22851934
A multi-channel photometric detector for multi-component analysis in flow injection analysis
Tan, Aimin; Huang, Jialin; Geng, Liudi; Xu, Jinhua; Zhao, Xinna
1994-01-01
The detector, a multi-channel photometric detector, described in this paper was developed using multi-wavelength LEDs (light emitting diode) and phototransistors for absorbance measurement controlled by an Intel 8031 8-bit single chip microcomputer. Up to four flow cells can be attached to the detector. The LEDs and phototransistors are both inexpensive, and reliable. The results given by the detector for simultaneous determination of trace amounts of cobalt and cadmium in zinc sulphate electrolyte are reported. Because of the newly developed detector, this approach employs much less hardware apparatus than by employing conventional photometric detectors. PMID:18924688
A multi-channel photometric detector for multi-component analysis in flow injection analysis.
Tan, A; Huang, J; Geng, L; Xu, J; Zhao, X
1994-01-01
The detector, a multi-channel photometric detector, described in this paper was developed using multi-wavelength LEDs (light emitting diode) and phototransistors for absorbance measurement controlled by an Intel 8031 8-bit single chip microcomputer. Up to four flow cells can be attached to the detector. The LEDs and phototransistors are both inexpensive, and reliable. The results given by the detector for simultaneous determination of trace amounts of cobalt and cadmium in zinc sulphate electrolyte are reported. Because of the newly developed detector, this approach employs much less hardware apparatus than by employing conventional photometric detectors.
The detection of sulphur in contamination spots in electron probe X-ray microanalysis
Adler, I.; Dwornik, E.J.; Rose, H.J.
1962-01-01
Sulphur has been identified as one of the elements present in the contamination spot which forms under the electron beam in the microprobe. The presence of the sulphur results in a rapid change in intensity measurements causing a loss of observed intensity for elements other than sulphur. The source of sulphur has been traced at least in part to the Apiezon B diffusion pump oil. A comparative X-ray fluorescence study of the Apiezon B and Octoil diffusion pump oils showed substantial amounts of sulphur in the Apiezon B. The Octoil was relatively free of sulphur.
Notes on modified trace distance measure of coherence
NASA Astrophysics Data System (ADS)
Chen, Bin; Fei, Shao-Ming
2018-05-01
We investigate the modified trace distance measure of coherence recently introduced in Yu et al. [Phys. Rev. A 94, 060302(R), 2016]. We show that for any single-qubit state, the modified trace norm of coherence is equal to the l1-norm of coherence. For any d-dimensional quantum system, an analytical formula of this measure for a class of maximally coherent mixed states is provided. The trade-off relation between the coherence quantified by the new measure and the mixedness quantified by the trace norm is also discussed. Furthermore, we explore the relation between the modified trace distance measure of coherence and other measures such as the l1-norm of coherence and the geometric measure of coherence.
Photoacoustic Effect of Ethene: Sound Generation due to Plant Hormone Gases.
NASA Astrophysics Data System (ADS)
Park, Han Jung; Ide, David; University of Tennessee at Chattanooga Team
2017-01-01
Ethene, which is produced in plants as they mature, was used to study its photoacoustic properties using photoacoustic spectroscopy. Detection of trace amounts, with N2 gas, of the ethylene gas were also applied. The gas was tested in various conditions: temperature, concentration of the gas, gas cell length, and power of the laser, were varied to determine their effect on the photoacoustic signal, the ideal conditions to detect trace gas amounts, and concentration of ethylene produced by an avocado and banana. A detection limit of 10 ppm was determined for pure C2H4. A detection of 5% and 13% (by volume) concentration of ethylene were produced for a ripening avocado and banana, respectively, in closed space.
The potential impact on atmospheric ozone and temperature of increasing trace gas concentrations
NASA Technical Reports Server (NTRS)
Brasseur, G.; Derudder, A.
1987-01-01
The response of the atmosphere to emissions of chlorofluorocarbons (CFCs) and other chlorocarbons, and to increasing concentrations of other radiatively active trace gases such as CO2, CH4, and N2O is calculated by a coupled chemical-radiative transport one-dimensional model. It is shown that significant reductions in the ozone concentration and in the temperature are expected in the upper stratosphere as a result of increasing concentrations of active chlorine produced by photodecomposition of the CFCs. The ozone content is expected to increase in the troposphere, as a consequence of increasing concentrations of methane and nitrogen oxides. Due to enhanced greenhouse effects, the Earth's surface should warm up by several degrees. The amplitude and even the sign of future changes in the ozone column are difficult to predict as they are strongly scenario-dependent. An early detection system to prevent noticeable ozone changes as a result of increasing concentrations of source gases should thus be based on a continuous monitoring of the ozone amount in the upper stratosphere rather than on measurements of the ozone column only. Measurements of NOx, Clx, and HOx are also required for unambiguous trend detection and interpretation.
Application of cascade lasers to detection of trace gaseous atmospheric pollutants
NASA Astrophysics Data System (ADS)
Miczuga, Marcin; Kopczyński, Krzysztof
2016-12-01
Understanding the impact of gaseous pollutants on the earth's atmosphere, as well as more and more felt by mankind negative effects of its contamination, result in increasing the level of environmental awareness and contribute to the intensification of actions aimed at reducing the emission of harmful gases into the atmosphere. At the same time, the extensive studies are conducted in order to continuously monitor the level of air contamination with harmful gases and the industry compliance with the standards limited the amount of emitted pollutants. Over recent years, there has been increasing use of cascade lasers and multi-pass cells in optical systems detecting the gaseous atmospheric pollutants and measuring the gas concentrations. The paper presents the use of a tunable quantum cascade laser as a source of the IR radiation in an advanced detection system enabling the trace gaseous atmospheric pollutants to be identified. Apart from the laser, the main elements of the system are: a multi-pass cell, an IR detector and a module for control and analysis. Operation of the system is exemplified by measuring the level of the air pollution with ammonia, carbon oxide and nitrous oxide.
Saksono, Budi; Dewi, Beti Ernawati; Nainggolan, Leonardo; Suda, Yasuo
2015-01-01
We propose a novel method of detecting trace amounts of dengue virus (DENVs) from serum. Our method is based on the interaction between a sulfated sugar chain and a DENV surface glycoprotein. After capturing DENV with the sulfated sugar chain-immobilized gold nanoparticles (SGNPs), the resulting complex is precipitated and viral RNA content is measured using the reverse-transcription quantitative polymerase chain reaction SYBR Green I (RT-qPCR-Syb) method. Sugar chains that bind to DENVs were identified using the array-type sugar chain immobilized chip (Sugar Chip) and surface plasmon resonance (SPR) imaging. Heparin and low-molecular-weight dextran sulfate were identified as binding partners, and immobilized on gold nanoparticles to prepare 3 types of SGNPs. The capacity of these SGNPs to capture and concentrate trace amounts of DENVs was evaluated in vitro. The SGNP with greatest sensitivity was tested using clinical samples in Indonesia in 2013-2014. As a result, the novel method was able to detect low concentrations of DENVs using only 6 μL of serum, with similar sensitivity to that of a Qiagen RNA extraction kit using 140 μL of serum. In addition, this method allows for multiplex-like identification of serotypes of DENVs. This feature is important for good healthcare management of DENV infection in order to safely diagnose the dangerous, highly contagious disease quickly, with high sensitivity.
NASA Astrophysics Data System (ADS)
Yoskowitz, Joshua; Clark, Morgan; Labrake, Scott; Vineyard, Michael
2015-10-01
We have developed an external beam facility for the 1.1-MV tandem Pelletron accelerator in the Union College Ion Beam Analysis Laboratory. The beam is extracted from an aluminum pipe through a 1 / 4 ' ' diameter window with a 7.5- μm thick Kapton foil. This external beam facility allows us to perform ion beam analysis on samples that cannot be put under vacuum, including wet samples and samples too large to fit into the scattering chamber. We have commissioned the new facility by performing proton induced X-ray emission (PIXE) analysis of several samples of environmental interest. These include samples of artificial turf, running tracks, and a human tooth with an amalgam filling. A 1.7-MeV external proton beam was incident on the samples positioned 2 cm from the window. The resulting X-rays were measured using a silicon drift detector and were analyzed using GUPIX software to determine the concentrations of elements in the samples. The results on the human tooth indicate that while significant concentrations of Hg, Ag, and Sn are present in the amalgam filling, only trace amounts of Hg appear to have leached into the tooth. The artificial turf and running tracks show rather large concentrations of a broad range of elements and trace amounts of Pb in the turf infill.
Determination of volatile organic compounds for a systematic evaluation of third-hand smoking.
Ueta, Ikuo; Saito, Yoshihiro; Teraoka, Kenta; Miura, Tomoya; Jinno, Kiyokatsu
2010-01-01
Third-hand smoking was quantitatively evaluated with a polymer-packed sample preparation needle and subsequent gas chromatography-mass spectroscopy analysis. The extraction needle was prepared with polymeric particles as the extraction medium, and successful extraction of typical gaseous volatile organic compounds (VOCs) was accomplished with the extraction needle. For an evaluation of this new cigarette hazard, several types of clothing fabrics were exposed to sidestream smoke, and the smoking-related VOCs evaporated from the fabrics to the environmental air were preconcentrated with the extraction needle. Smoking-related VOCs in smokers' breath were also measured using the extraction needle, and the effect of the breath VOCs on third-hand smoking pollution was evaluated. The results demonstrated that a trace amount of smoking-related VOCs was successfully determined by the proposed method. The adsorption and desorption behaviors of smoking-related VOCs were clearly different for each fabric material, and the time variations of these VOCs concentrations were quantitatively evaluated. The VOCs in the smokers' breath were clearly higher than that of nonsmokers'; however, the results suggested that no significant effect of the smokers' breath on the potential pollution occurred in the typical life space. The method was further applied to the determination of the actual third-hand smoking pollution in an automobile, and a future possibility of the proposed method to the analysis of trace amounts of VOCs in environmental air samples was suggested.
2011-01-01
Background The objective of this work was to study the vitamins B1, B2, B6 and C stability in a pediatric formulation containing high amounts of calcium in the presence of organic phosphate, amino acids, glucose, sodium chloride, magnesium sulfate, pediatric vitamins and trace elements under different conditions using developed and validated analytical methods. Methods The study was carried out during 72 h with formulations packaged in recommended storage temperature (4°C) and 25°C, with and without photoprotection. Results The results showed that the methodologies used for assessing the chemical stability of vitamins B1, B2, B6 and C in the formulation were selective, linear, precise and accurate. The vitamins could be considered stable in the formulation during the three days of study if stored at 4°C. When stored at 25°C vitamin C presented instability after 48 h. Conclusion The pediatric formulation containing high amount of calcium in the presence of organic phosphate, amino acids, glucose, sodium chloride, magnesium sulphate, pediatric vitamins and trace elements packaged in bag-type trilaminate presented a shelf life of the 72 h, when maintained under refrigeration, between 2°C and 8°C. This shelf life was measured considering the vitamins studied. Further studies are needed including all the vitamins present in this formulation. PMID:21569609
Liquid Chromatographic Analysis of Hydraulic Fluids.
1979-11-01
chemical mixtures of a petroleum- or nonpetroleum-base stock component formulated with various additives which may be present in trace amounts or...absorb UV radiation near the monitoring wavelength may swamp the detector signal and therefore should be avoided in 1JV detection. The recorder trace of...Also, organic phosphites , thiophosphates, and sulfides are used to inhibit oxidative catalysis by metal ions. The oxidation inhibitor in 6083D-0 is BPC
Uranium from German Nuclear Power Projects of the 1940s— A Nuclear Forensic Investigation
Mayer, Klaus; Wallenius, Maria; Lützenkirchen, Klaus; Horta, Joan; Nicholl, Adrian; Rasmussen, Gert; van Belle, Pieter; Varga, Zsolt; Buda, Razvan; Erdmann, Nicole; Kratz, Jens-Volker; Trautmann, Norbert; Fifield, L Keith; Tims, Stephen G; Fröhlich, Michaela B; Steier, Peter
2015-01-01
Here we present a nuclear forensic study of uranium from German nuclear projects which used different geometries of metallic uranium fuel.3b,d, 4 Through measurement of the 230Th/234U ratio, we could determine that the material had been produced in the period from 1940 to 1943. To determine the geographical origin of the uranium, the rare-earth-element content and the 87Sr/86Sr ratio were measured. The results provide evidence that the uranium was mined in the Czech Republic. Trace amounts of 236U and 239Pu were detected at the level of their natural abundance, which indicates that the uranium fuel was not exposed to any major neutron fluence. PMID:26501922
A compact permanent magnet cyclotrino for accelerator mass spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, A.T.; Clark, D.J.; Kunkel, W.B.
1995-02-01
The authors describe the development of a new instrument for the detection of trace amounts of rare isotopes, a Cyclotron Mass Spectrometer (CMS). A compact low energy cyclotron optimized for high mass resolution has been designed and has been fabricated. The instrument has high sensitivity and is designed to measure carbon-14 at abundances of < 10{sup {minus}12}. A novel feature of the instrument is the use of permanent magnets to energize the iron poles of the cyclotron. The instrument uses axial injection, employing a spiral inflector. The instrument has been assembled and preliminary measurements of the magnetic field show thatmore » it has a uniformity on the order of 2 parts in 10{sup 4}.« less
NASA Technical Reports Server (NTRS)
Husson, N.; Barbe, A.; Brown, L. R.; Carli, B.; Goldman, A.; Pickett, H. M.; Roche, A. E.; Rothman, L. S.; Smith, M. A. H.
1985-01-01
Several aspects of quantitative atmospheric spectroscopy are considered, using a classification of the molecules according to the gas amounts in the stratosphere and upper troposphere, and reviews of quantitative atmospheric high-resolution spectroscopic measurements and field measurements systems are given. Laboratory spectroscopy and spectral analysis and prediction are presented with a summary of current laboratory spectroscopy capabilities. Spectroscopic data requirements for accurate derivation of atmospheric composition are discussed, where examples are given for space-based remote sensing experiments of the atmosphere: the ATMOS (Atmospheric Trace Molecule) and UARS (Upper Atmosphere Research Satellite) experiment. A review of the basic parameters involved in the data compilations; a summary of information on line parameter compilations already in existence; and a summary of current laboratory spectroscopy studies are used to assess the data base.
Keating, Elizabeth H.; Hakala, J. Alexandra; Viswanathan, Hari; ...
2013-03-01
It is challenging to predict the degree to which shallow groundwater might be affected by leaks from a CO 2 sequestration reservoir, particularly over long time scales and large spatial scales. In this study observations at a CO 2 enriched shallow aquifer natural analog were used to develop a predictive model which is then used to simulate leakage scenarios. This natural analog provides the opportunity to make direct field observations of groundwater chemistry in the presence of elevated CO 2, to collect aquifer samples and expose them to CO 2 under controlled conditions in the laboratory, and to test themore » ability of multiphase reactive transport models to reproduce measured geochemical trends at the field-scale. The field observations suggest that brackish water entrained with the upwelling CO 2 are a more significant source of trace metals than in situ mobilization of metals due to exposure to CO 2. The study focuses on a single trace metal of concern at this site: U. Experimental results indicate that cation exchange/adsorption and dissolution/precipitation of calcite containing trace amounts of U are important reactions controlling U in groundwater at this site, and that the amount of U associated with calcite is fairly well constrained. Simulations incorporating these results into a 3-D multi-phase reactive transport model are able to reproduce the measured ranges and trends between pH, pCO 2, Ca, total C, U and Cl -at the field site. Although the true fluxes at the natural analog site are unknown, the cumulative CO 2 flux inferred from these simulations are approximately equivalent to 37.8E-3 MT, approximately corresponding to a .001% leak rate for injection at a large (750 MW) power plant. The leakage scenario simulations suggest that if the leak only persists for a short time the volume of aquifer contaminated by CO 2-induced mobilization of U will be relatively small, yet persistent over 100 a.« less
Tanaka, Yuji; Yamashita, Takako; Nagoshi, Masayasu
2017-04-01
Hydrocarbon contamination introduced during point, line and map analyses in a field emission electron probe microanalysis (FE-EPMA) was investigated to enable reliable quantitative analysis of trace amounts of carbon in steels. The increment of contamination on pure iron in point analysis is proportional to the number of iterations of beam irradiation, but not to the accumulated irradiation time. A combination of a longer dwell time and single measurement with a liquid nitrogen (LN2) trap as an anti-contamination device (ACD) is sufficient for a quantitative point analysis. However, in line and map analyses, contamination increases with irradiation time in addition to the number of iterations, even though the LN2 trap and a plasma cleaner are used as ACDs. Thus, a shorter dwell time and single measurement are preferred for line and map analyses, although it is difficult to eliminate the influence of contamination. While ring-like contamination around the irradiation point grows during electron-beam irradiation, contamination at the irradiation point increases during blanking time after irradiation. This can explain the increment of contamination in iterative point analysis as well as in line and map analyses. Among the ACDs, which are tested in this study, specimen heating at 373 K has a significant contamination inhibition effect. This technique makes it possible to obtain line and map analysis data with minimum influence of contamination. The above-mentioned FE-EPMA data are presented and discussed in terms of the contamination-formation mechanisms and the preferable experimental conditions for the quantification of trace carbon in steels. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Ehrenfreund, Pascale; Glavin, Daniel P.; Botta, Oliver; Cooper, George; Bada, Jeffrey L.
2001-01-01
Amino acid analyses using HPLC of pristine interior pieces of the CI carbonaceous chondrites Orgueil and Ivuna have found that β-alanine, glycine, and γ-amino-n-butyric acid (ABA) are the most abundant amino acids in these two meteorites, with concentrations ranging from ≈600 to 2,000 parts per billion (ppb). Other α-amino acids such as alanine, α-ABA, α-aminoisobutyric acid (AIB), and isovaline are present only in trace amounts (<200 ppb). Carbon isotopic measurements of β-alanine and glycine and the presence of racemic (D/L ≈ 1) alanine and β-ABA in Orgueil suggest that these amino acids are extraterrestrial in origin. In comparison to the CM carbonaceous chondrites Murchison and Murray, the amino acid composition of the CIs is strikingly distinct, suggesting that these meteorites came from a different type of parent body, possibly an extinct comet, than did the CM carbonaceous chondrites. PMID:11226205
Consumer-producer relationships for trace metals in Chorthippus brunneus (Thunberg. )
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, M.S.
1986-08-01
The behavior of trace metals in terrestrial food chains is a subject of ecological interest, particularly in polluted environments where the potential exists for bioconcentration of metals known to be essential in trace amounts for normal plant and animal metabolism, as well as those with no known metabolic function but recognized toxicological properties. Laboratory studies of food chain relationships afford a means by which direct comparisons can be made between trace metals as a basis for interpretation of data collected from wild plant and animal populations. This study compares the behavior of three trace elements, copper, zinc and cadmium, inmore » terms of their assimilation under experimental conditions by the herbivorous common field grasshopper, Chorthippus brunneus (Thunberg.). This voracious orthopteran is widely distributed in Britain and is particularly prominent in the restricted invertebrate community of some metal smelter-affected grasslands where it forms important seasonal prey for insectivorous small mammals.« less
Tropospheric Ozone Over the North Pacific from Ozonesdonde Observations
NASA Technical Reports Server (NTRS)
Oltmans, S. J.; Johnson, B. J.; Harris, J. M.; Thompson, A. M.; Liu, H. Y.; Voemel, H.; Chan, C. Y.; Fujimoto, T.; Brackett, V. G.; Chang, W. L.
2003-01-01
As part of the TRACE-P mission, ozone vertical profile measurements were made at a number of locations in the North Pacific. At most of the sites there is also a multi-year record of ozonesonde observations. From seven locations in the western Pacific (Hong Kong; Taipei; Jeju Island, Korea; and Naha, Kagoshima, Tsukuba, and Sapporo, Japan), a site in the central Pacific (Hilo, HI), and a site on the west coast of the U.S. (Trinidad Head, CA) both a seasonal and event specific picture of tropospheric ozone over the North Pacific emerges. At all of the sites there is a pronounced spring maximum through the troposphere. There are, however, differences in the timing and strength of this feature. Over Japan the northward movement of the jet during the spring and summer influences the timing of the seasonal maximum. The ozone profiles suggest that transport of ozone rich air from the stratosphere plays a strong role in the development of this maximum. During March and April at Hong Kong ozone is enhanced in a layer that extends from the lower free troposphere into the upper troposphere that likely has its origin in biomass burning in northern Southeast Asia and equatorial Africa. During the winter the Pacific subtropical sites (latitude -25N) are dominated by air with a low-latitude, marine source that gives low ozone amounts particularly in the upper troposphere. In the summer in the boundary layer at all of the sites marine air dominates and ozone amounts are generally quite low (less than 25 ppb). The exception is near large population centers (Tokyo and Taipei but not Hong Kong) where pollution events can give amounts in excess of 80 ppb. During the TRACE-P intensive campaign period (February-April 2001) tropospheric ozone amounts were rather typical of those seen in the long-term records of the stations with multi-year soundings.
Holleczek, B; Brenner, H
2016-01-01
Population-based cancer registries (CRs) are powerful tools for measuring cancer burden and progress against cancer. The study's objective was to investigate the effects of under-reporting at lifetime, death certificate notifications, and trace-back on the incidence a newly established population-based CR may record during its initial 15 years of operation. Using cancer data of nine CRs of the SEER programme we performed model calculations to investigate temporal trends of the recorded incidence that might be expected if registration started in 1995 with gradually increasing proportions of cancers reported to the CR. It was assumed that the CR obtains all death certificates providing cancer as the underlying cause of death. Different scenarios with regard to the development of the proportions of cancers reported to the CR and the use of trace-back were evaluated. Our model calculations demonstrated that the inclusion of cancers notified from death certificates which were diagnosed prior to the start of registration and which attribute to the incidence estimates of the year of death ('prevalent' cases) may compensate under-reporting typically observed right after the start of a CR. The recorded incidence may even be overestimated during the first years of registration, if large amounts of prevalent cancers are notified from death certificates (e.g. overestimation of lung cancer incidence by 8% and 21% in the first year of registration, if the proportions of cases reported were 50% and 70% in that year, overestimation of myeloma incidence still exceeding 5% after eight years of registration, if the proportion of cases reported to the CR had reached 97.5% after six years). Trace-back may effectively reduce the recorded surplus cancer cases. During the initial years of registration, the inclusion of prevalent cancers from death certificates may compensate the higher amount of underreporting right after the start of a CR. Accurate incidence estimates may nevertheless be observed for highly fatal cancers if substantial proportions of cancer cases are missed at lifetime, however apparent incidence trends observed in the initial years of registration need to be interpreted with caution.
Kahe, Hadi; Chamsaz, Mahmoud
2016-11-01
A simple and reliable supramolecule-aggregated liquid solid microextraction method is described for preconcentration and determination of trace amounts of bismuth in water as well as human blood serum and hair samples. Catanionic microstructures of cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) surfactants, dissolved in deionized water/propanol, are used as a green solvent to extract bismuth (III)-diethyldithiocarbamate complexes by dispersive microextraction methodology. The extracted solid phase is easily removed and dissolved in 50 μL propanol for subsequent measurement by electrothermal atomic absorption spectrometry (ET-AAS). The procedure benefits the merits of supramolecule aggregates' properties and dispersive microextraction technique using water as the main component of disperser solvent, leading to direct interaction with analyte. Phase separation behavior of extraction solvent and different parameters influencing the extraction efficiency of bismuth ion such as salt concentration, pH, centrifugation time, amount of chelating agent, SDS:CTAB mole ratio, and solvent amounts were thoroughly optimized. Under the optimal experimental conditions, the calibration curve was linear in the range of 0.3-6 μg L -1 Bi (III) with a limit of detection (LOD) of 0.16 μg L -1 (S/N = 3). The relative standard deviations (RSD) of determination were obtained to be 5.1 and 6.2 % for 1 and 3 μg L -1 of Bi (III), respectively. The developed method was successfully applied as a sensitive and accurate technique for determination of bismuth ion in human blood serum, hair samples, and a certified reference material.
A Method for Assessing the Retention of Trace Elements in Human Body Using Neural Network Technology
Ragimov, Aligejdar; Faizullin, Rashat; Valiev, Vsevolod
2017-01-01
Models that describe the trace element status formation in the human organism are essential for a correction of micromineral (trace elements) deficiency. A direct trace element retention assessment in the body is difficult due to the many internal mechanisms. The trace element retention is determined by the amount and the ratio of incoming and excreted substance. So, the concentration of trace elements in drinking water characterizes the intake, whereas the element concentration in urine characterizes the excretion. This system can be interpreted as three interrelated elements that are in equilibrium. Since many relationships in the system are not known, the use of standard mathematical models is difficult. The artificial neural network use is suitable for constructing a model in the best way because it can take into account all dependencies in the system implicitly and process inaccurate and incomplete data. We created several neural network models to describe the retentions of trace elements in the human body. On the model basis, we can calculate the microelement levels in the body, knowing the trace element levels in drinking water and urine. These results can be used in health care to provide the population with safe drinking water. PMID:29065586
[Determination of trace amounts of zinc in nickel electrolyte by flow injection on-line enrichment].
Zhou, Z; Wang, Y; Dong, Z; Tong, K; Guo, X; Guo, X
1999-10-01
A method for the determination of trace amount of zinc in nickel electrolyte utilizing the flow injection on-line enrichment technique is reported in this paper. Atomic absorption spectrometer was used as detector. Zinc was separated from large amounts of nickel andother components in the electrolyte by absorption its chlorocomplex on a mini-column packed with strongly basic anion exchangers. It was found that sodium chloride containing in the electrolyte offered a sufficient chloride concentration needed for the formation of the zinc chlorocomplex and thus no additional reagent was required for the determination. The throughput of the method is 30 determinations per hour. The detection limit of the method is 0.002 microg x mL(-1) and the precision is 1.9% (RSD). The proposed method is rapid and cost-effective. It has been used for almost three years in the quality control of the electrolyte in the factory with great success.
The repair of low dose UV light-induced damage to human skin DNA in condition of trace amount Mg 2+
NASA Astrophysics Data System (ADS)
Gao, Fang; Guo, Zhouyi; Zheng, Changchun; Wang, Rui; Liu, Zhiming; Meng, Pei; Zhai, Juan
2008-12-01
Ultraviolet light-induced damage to human skin DNA was widely investigated. The primary mechanism of this damage contributed to form cyclobutane pyrimidine dimmers (CPDs). Although the distribution of UV light-induced CPDs within a defined sequence is similar, the damage in cellular environment which shields the nuclear DNA was higher than that in organism in apparent dose. So we use low UVB light as main study agent. Low dose UV-irradiated HDF-a cells (Human Dermal Fibroblasts-adult cells) which is weaker than epidermic cells were cultured with DMEM at different trace amount of Mg2+ (0mmol/L , 0.1mmol/L , 0.2mmol/L, 0.4mmol/L, 0.8mmol/L, 1.2mmol/L) free-serum DMEM and the repair of DNA strands injured were observed. Treat these cells with DNA strand breaks detection, photoproducts detection and the repair of photoproducts detection. Then quantitate the role of trace amount Mg2+ in repair of UV light-induced damage to human skin. The experiment results indicated that epidermic cells have capability of resistance to UV-radiation at a certain extent. And Mg2+ can regulate the UV-induced damage repair and relative vitality. It can offer a rationale and experiment data to relieve UV light-induced skin disease.
Trace gas emissions from burning Florida wetlands
NASA Astrophysics Data System (ADS)
Cofer, Wesley R.; Levine, Joel S.; Winstead, Edward L.; Lebel, Peter J.; Koller, Albert M.; Hinkle, C. Ross
1990-02-01
Measurements of biomass burn-produced trace gases are presented that were obtained using a helicopter at low altitudes above burning Florida wetlands on November 9, 1987, and from both helicopter and light-aircraft samplings on November 7, 1988. Carbon dioxide (CO2) normalized emission ratios (ΔX/ΔCO2; V/V; where X is trace gas) for carbon monoxide (CO), hydrogen (H2), methane (CH4), total nonmethane hydrocarbons (TNMHC), and nitrous oxide (N2O) were obtained over burning graminoid wetlands consisting primarily of Spartina bakeri and Juncus roemerianus. Some interspersed scrub oak (Quercus spp) and saw palmetto (Screnoa repens) were also burned. No significant differences were observed in the emission ratios determined for these gases from samples collected over flaming, mixed, and smoldering phases of combustion during the 1987 fire. Combustion-categorized differences in emission ratios were small for the 1988 fire. Combustion efficiency was relatively good (low emission ratios for reduced gases) for both fires. We believe that the consistently low emission ratios were a unique result of graminoid wetlands fires, in which the grasses and rushes (both small-size fuels) burned rapidly down to standing water and were quickly extinguished. Consequently, the efficiency of the combustion was good and the amount and duration of smoldering combustion was greatly diminished.
Ramamurthy, N; Thillaivelavan, K
2005-01-01
In the present study the environmental effects on herbivores mammals in and around Coal-fired power plant were studied by collecting the various milk samples of Cow and Buffalo in clean polyethylene bottles. Milk samples collected at five different locations along the banks of the Paravanaru river in and around Neyveli area. These samples were prepared for trace metal determination. The concentration of trace metals (Cu, Zn, Ni, Cd, Cr, Mn, Co and Hg) were determined by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) and Cold Vapour Atomic Absorption Spectrometry (CVAAS). It is observed that the samples contain greater amounts of trace metals than that in the unexposed areas. Obviously the milk samples are contaminated with these metals due to fly ash released in such environment.
Analysis of memory use for improved design and compile-time allocation of local memory
NASA Technical Reports Server (NTRS)
Mcniven, Geoffrey D.; Davidson, Edward S.
1986-01-01
Trace analysis techniques are used to study memory referencing behavior for the purpose of designing local memories and determining how to allocate them for data and instructions. In an attempt to assess the inherent behavior of the source code, the trace analysis system described here reduced the effects of the compiler and host architecture on the trace by using a technical called flattening. The variables in the trace, their associated single-assignment values, and references are histogrammed on the basis of various parameters describing memory referencing behavior. Bounds are developed specifying the amount of memory space required to store all live values in a particular histogram class. The reduction achieved in main memory traffic by allocating local memory is specified for each class.
Origin of conductivity anomalies in the asthenosphere
NASA Astrophysics Data System (ADS)
Yoshino, T.; Zhang, B.
2013-12-01
Electrical conductivity anomalies with anisotropy parallel to the plate motion have been observed beneath the oceanic lithosphere by electromagnetic studies (e.g., Evans et al., 2005; Baba et al., 2010; Naif et al., 2013). Electrical conductivity of the oceanic asthenosphere at ~100 km depth is very high, about 10-2 to 10-1 S/m. This zone is also known in seismology as the low velocity zone. Since Karato (1990) first suggested that electrical conductivity is sensitive to water content in NAMs, softening of asthenosphere has been regarded as a good indicator for constraining the distribution of water. There are two difficulties to explain the observed conductivity features in the asthenosphere. Recent publications on electrical conductivity of hydrous olivine suggested that olivine with the maximum soluble H2O content at the top of the asthenosphere has much lower conductivity less than 0.1 S/m (e.g., Yoshino et al., 2006; 2009a; Poe et al., 2010; Du Frane and Tyburczy, 2012; Yang, 2012), which is a typical value of conductivity anomaly observed in the oceanic mantle. Partial melting has been considered as an attractive agent for substantially raising the conductivity in this region (Shankland and Waff, 1977), because basaltic melt has greater electrical conductivity (> 100.5 S/m) and high wetting properties. However, dry mantle peridotite cannot reach the solidus temperature at depth 100 km. Volatile components can dramatically reduce melting temperature, even if its amount is very small. Recent studies on conductivity measurement of volatile-bearing melt suggest that conductivity of melt dramatically increases with increasing volatile components (H2O: Ni et al., 2010a, b; CO2: Gaillard et al., 2008; Yoshino et al., 2010; 2012a). Because incipient melt includes higher amount of volatile components, conductivity enhancement by the partial melt is very effective at temperatures just above that of the volatile-bearing peridotite solidus. In this study, the electrical conductivity of peridotite with trace amount of volatile phases was measured in single crystal olivine capsule to protect escape of water from the sample at 3 GPa. The conductivity values were significantly higher than those of dry peridotite, suggesting that the observed conductivity anomalies at the asthenosphere are caused by a presence of trace amount of volatile component in fluid or melt. On the other hand, conductivity of partial molten peridotite measured under shear showed that the conductivity parallel to the shear direction becomes one order of magnitude higher than that normal direction. These observations suggest that partial melting can explain softening and the observed geophysical anomalies of asthenosphere.
David R. Weise; Timothy J. Johnson; James Reardon
2015-01-01
Management of smoke from prescribed fires requires knowledge of fuel quantity and the amount and composition of the smoke produced by the fire to minimize adverse impacts on human health. A five-year study produced new emissions information for more than 100 trace gases and particulate matter in smoke for fuel types found in the southern United States of America using...
Elimination of cadmium trace contaminations from drinking water.
Zhao, Xuan; Höll, Wolfgang H; Yun, Guichun
2002-02-01
Raw waters polluted with trace heavy metals present serious problems to the part of the Chinese water supply. One of the important contaminants is cadmium. Removal of trace amounts of heavy metals can be achieved by means of selective sorption processes. One of the possibilities is the application of weak base anion exchangers. LEWIS-base/acid interactions lead to an exclusive sorption of heavy metal cations and an equivalent amount of anions of strong acids. The respective elimination of cadmium from pure solutions and spiked natural water and the regeneration of the exhausted exchanger has been investigated. The results demonstrate a very efficient elimination. The standards for drinking water are met for a very large relative volume of treated water. In addition, even a considerable share of dissolved organic matter is adsorbed. Regeneration requires a first step with sulfuric acid to remove the metals and a second one with sodium hydroxide to neutralize the exchanger and to displace the DOC adsorbed. The heavy metals can be concentrated in a small volume which facilitates the discharge of the waste.
Is violence in part a lithium deficiency state?
Goldstein, Mark R; Mascitelli, Luca
2016-04-01
Violence, particularly firearm violence, leading to suicide and homicide is a significant problem worldwide. A majority of suicidal and homicidal violence involves males; homicidal violence is prevalent among young men and suicide is the leading cause of violence worldwide. Lithium, in pharmacological doses, has been used successfully for decades in treating bipolar disorders, and has been shown to decrease violent crime in this situation. Interestingly, lithium, in trace amounts, as occurs in some drinking water, has been inversely related to aggression, and suicidal and homicidal violence. Lithium is naturally found in vegetables, grains and drinking water, and dietary intake varies from nearly zero to 3mg daily. Elemental lithium, in trace doses, has been shown to improve mood in weeks. Moreover, lithium, in trace amounts, has no toxicity. In order to ensure adequate dietary intakes of elemental lithium daily for the purpose of decreasing aggression and violence, we propose considering the fortification of cereal grain products with lithium and also the addition of lithium to vitamin preparations for adults. Importantly, randomized trials in various populations are needed to test this hypothesis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Determination of uranium in zircon
Cuttitta, F.; Daniels, G.J.
1959-01-01
A routine fluorimetric procedure is described for the determination of trace amounts of uranium in zircon. It employs the direct extraction of uranyl nitrate with ethyl acetate using phosphate as a retainer for zirconium. Submicrogram amounts or uranium are separated in the presence of 100,000 times the amount of zirconium. The modified procedure has been worked out using synthetic mixtures of known composition and zircon. Results of analyses have an accuracy of 97-98% of the contained uranium and a standard deviation of less than 2.5%. ?? 1959.
NASA Astrophysics Data System (ADS)
Siklosy, Z.; Demeny, A.; Pilet, S.; Leel-Ossy, Sz.; Lin, K.; Shen, C.-C.
2009-04-01
Speleothems can provide accurate chronologies for reconstructions of climate change by combination of U/Th dating and climate-related geochemical compositions. Geochemical studies of speleothems from Central Europe are mostly based on stable C and O isotope analyses, thus, complex geochemical studies combining isotope and trace element measurements are needed for more reliable climate models for this transitional area between oceanic and continental regions. We present stable H-C-O isotope and trace element records obtained on speleothems covering the Last Interglacial (MIS 5e) and the transition to MIS 5d. A stalagmite from Baradla Cave grew from 127.5 to 110 ka. Accelerated growth rates have been detected by U/Th age data in the 127 to 126 ka and 119 to 117 ka parts. Trace element compositions and 230Th/232Th ratios suggest changes in the hydrological regime, whereby early calcite precipitates formed in fissures during the dry and cold glacial period were dissolved by the starting flux of infiltrating meteoric water (producing elevated dissolved ion concentration but low detrital Th component), then the increasing amount of dripwater during the interglacial period resulted in trace element dilution. Temperature and precipitation amount variations are also reflected by the stable isotope compositions. Oxygen isotope composition shows a continuous increase from 127.5 ka until about 118 ka most probably related to temperature rise, whereas C isotope values are shifted in negative direction suggesting increasing humidity in accordance with trace element contents. The presumably warmest period at ca. 118 ka is associated with rather arid climate as indicated by peak d18O values coinciding with the highest dD values of fluid inclusion water. This is followed by a pronounced negative shift in both O and H isotope values, similarly to recent Alpine studies (Meyer et al., 2008), most probably related to cooling. Hydrogen isotope compositions of fluid inclusion water evaluated together with calculated oxygen isotope compositions of water indicate warming and increasing significance of summer precipitation at the latest period of the last interglacial, then increasing importance of winter precipitation and/or changes in oceanic source composition during the cooling phase. The good agreement with other (Alpine and marine) records indicate a synchronous climate change. However, after a negative shift in the wet/warm phase (increasing soil activity), C isotope values start to increase already at about 119 ky BP, warning to the use of the two isotope systems as event correlation tools. In conclusion, our combined isotope and trace element study indicate a complex pattern of temperature and humidity variations during and right after the Last Interglacial. Acknowledgements — This study was financially supported by the Hungarian Scientific Research Fund (OTKA T 049713). Measurements of U-Th isotopic compositions and and 230Th dates were supported by the National Science Council grants (94-2116-M002-012, 97-2752-M002-004-PAE & -005-PAE to C.C.S.). [Meyer, M.; Spötl, C.; Mangini, A. (2008): The demise of the Last Interglacial recorded in isotopically dated speleothems from the Alps. Quaternary Science Reviews, 27, 476-496.
NARSTO EPA SS ST LOUIS AIR CHEM PM MET DATA
Atmospheric Science Data Center
2018-04-09
... Winds Precipitation Amount Surface Pressure Solar Radiation Surface Air Temperature Particulates Trace Metals ... Earth Related Data: Environmental Protection Agency Supersites St. Louis SCAR-B Block: ...
Luleva, Mila Ivanova; van der Werff, Harald; Jetten, Victor; van der Meer, Freek
2011-01-01
Displacement of soil particles caused by erosion influences soil condition and fertility. To date, the cesium 137 isotope (137Cs) technique is most commonly used for soil particle tracing. However when large areas are considered, the expensive soil sampling and analysis present an obstacle. Infrared spectral measurements would provide a solution, however the small concentrations of the isotope do not influence the spectral signal sufficiently. Potassium (K) has similar electrical, chemical and physical properties as Cs. Our hypothesis is that it can be used as possible replacement in soil particle tracing. Soils differing in texture were sampled for the study. Laboratory soil chemical analyses and spectral sensitivity analyses were carried out to identify the wavelength range related to K concentration. Different concentrations of K fertilizer were added to soils with varying texture properties in order to establish spectral characteristics of the absorption feature associated with the element. Changes in position of absorption feature center were observed at wavelengths between 2,450 and 2,470 nm, depending on the amount of fertilizer applied. Other absorption feature parameters (absorption band depth, width and area) were also found to change with K concentration with coefficient of determination between 0.85 and 0.99. Tracing soil particles using K fertilizer and infrared spectral response is considered suitable for soils with sandy and sandy silt texture. It is a new approach that can potentially grow to a technique for rapid monitoring of soil particle movement over large areas. PMID:22163843
Trace metal dynamics in floodplain soils of the river Elbe: a review.
Schulz-Zunkel, Christiane; Krueger, Frank
2009-01-01
This paper reviews trace metal dynamics in floodplain soils using the Elbe floodplains in Germany as an example of extraordinary importance because of the pollution level of its sediments and soils. Trace metal dynamics are determined by processes of retention and release, which are influenced by a number of soil properties including pH value, redox potential, organic matter, type and amount of clay minerals, iron-, manganese- and aluminum-oxides. Today floodplains act as important sinks for contaminants but under changing hydraulic and geochemical conditions they may also act as sources for pollutants. In floodplains such changes may be extremes in flooding or dry periods that particularly lead to altered redox potentials and that in turn influence the pH value, the mineralization of organic matter as well as the charge of the pedogenic oxides. Such reactions may affect the bioavailability of trace metals in soils and it can be clearly seen that the bioavailability of metals is an important factor for estimating trace metal remobilization in floodplain soils. However as bioavailability is not a constant factor, there is still a lack of quantification of metal mobilization particularly on the basis of changing geochemical conditions. Moreover, mobile amounts of metals in the soil solution do not indicate to which extent remobilized metals will be transported to water bodies or plants and therefore potentially have toxicological effects. Consequently, floodplain areas still need to be taken into consideration when studying the role and behavior of sediments and soils for transporting pollutants within river systems, particularly concerning the Water Framework Directive.
Dansby-Sparks, Royce; Chambers, James Q.; Xue, Zi-Ling
2009-01-01
An electrochemical technique has been developed for ultra trace (ngL−1) vanadium (V) measurement. Catalytic adsorptive stripping voltammetry for V analysis was developed at mercury-coated gold micro-wire (MWE, 100 μm) electrodes in the presence of gallic acid (GA) and bromate ion. A potential of −0.275 V (vs Ag/AgCl) was used to accumulate the complex in acetate buffer (pH 5.0) at the electrode surface followed by a differential pulse voltammetric scan. Parameters affecting the electrochemical response, including pH, concentration of GA and bromate, deposition potential and time have been optimized. Linear response was obtained in the 0–1000 ngL−1 range (2 min deposition), with a detection limit of 0.88 ngL−1. The method was validated by comparison of results for an unknown solution of V by atomic absorption measurement. The protocol was evaluated in a real sample by measuring the amount of V in river water samples. Thick bismuth film electrodes with protective polystyrene films have also been made and evaluated as a mercury free alternative. However, ngL−1 level detection was only attainable with extended (10 min) deposition times. The proposed use of MWEs for the detection of V is sensitive enough for future use to test V concentration in biological fluids treated by the advanced oxidation process (AOP). PMID:19446059
Determination of total and polycyclic aromatic hydrocarbons in aviation jet fuel.
Bernabei, M; Reda, R; Galiero, R; Bocchinfuso, G
2003-01-24
The aviation jet fuel widely used in turbine engine aircraft is manufactured from straight-run kerosene. The combustion quality of jet fuel is largely related to the hydrocarbon composition of the fuel itself; paraffins have better burning properties than aromatic compounds, especially naphthalenes and light polycyclic aromatic hydrocarbons (PAHs), which are characterised as soot and smoke producers. For this reason the burning quality of fuel is generally measured as smoke fermation. This evaluation is carried out with UV spectrophotometric determination of total naphthalene hydrocarbons and a chromatographic analysis to determine the total aromatic compounds. These methods can be considered insufficient to evaluate the human health impact of these compounds due to their inability to measure trace (ppm) amounts of each aromatic hyrcarbon and each PAH in accordance with limitations imposed because of their toxicological properties. In this paper two analytical methods are presented. Both are based on a gas chromatographic technique with a mass detector operating in be selected ion monitoring mode. The first method was able to determine more than 60 aromatic hydrocarbons in a fuel sample in a 35-min chromatographic run, while the second was able to carry out the analysis of more than 30 PAHs in a 40-min chromatographic run. The linearity and sensitivity of the methods in measuring these analytes at trace levels are described.
Spectroscopic Determination of Trace Contaminants in High Purity Oxygen
NASA Technical Reports Server (NTRS)
Hornung, Steven D.
2011-01-01
Oxygen used for extravehicular activities (EVA) must be free of contaminants because a difference in a few tenths of a percent of argon or nitrogen content can mean significant reduction in available EVA time. These inert gases build up in the extravehicular mobility unit because they are not metabolized or scrubbed from the atmosphere. Measurement of oxygen purity above 99.5% is problematic, and currently only complex instruments such as gas chromatographs or mass spectrometers are used for these determinations. Because liquid oxygen boil-off from the space shuttle will no longer be available to supply oxygen for EVA use, other concepts are being developed to produce and validate high purity oxygen from cabin air aboard the International Space Station. A prototype optical emission technique capable of detecting argon and nitrogen below 0.1% in oxygen was developed at White Sands Test Facility. This instrument uses a glow discharge in reduced pressure gas to produce atomic emission from the species present. Because the atomic emission lines from oxygen, nitrogen, and argon are discrete and in many cases well-separated, trace amounts of argon and nitrogen can be detected in the ultraviolet and visible spectrum. This is a straightforward, direct measurement of the target contaminants and may lend itself to a device capable of on-orbit verification of oxygen purity. System design and optimized measurement parameters are presented.
Hollow fibers for compact infrared gas sensors
NASA Astrophysics Data System (ADS)
Lambrecht, A.; Hartwig, S.; Herbst, J.; Wöllenstein, J.
2008-02-01
Hollow fibers can be used for compact infrared gas sensors. The guided light is absorbed by the gas introduced into the hollow core. High sensitivity and a very small sampling volume can be achieved depending on fiber parameters i.e. attenuation, flexibility, and gas exchange rates. Different types of infrared hollow fibers including photonic bandgap fibers were characterized using quantum cascade lasers and thermal radiation sources. Obtained data are compared with available product specifications. Measurements with a compact fiber based ethanol sensor are compared with a system simulation. First results on the detection of trace amounts of the explosive material TATP using hollow fibers and QCL will be shown.
Tropospheric Chemistry Studies using Observations from GOME and TOMS
NASA Technical Reports Server (NTRS)
Chance, Kelly; Spurr, Robert J. D.; Kurosu, Thomas P.; Jacob, Daniel J.; Gleason, James F.
2003-01-01
Studies to quantitatively determine trace gas and aerosol amounts from the Global Ozone Monitoring Experiment (GOME) and the Total Ozone Monitoring Experiment (TOMS) and to perform chemical modeling studies which utilize these results are given. This includes: 1. Analysis of measurements from the GOME and TOMS instruments for troposphere distributions of O3 and HCHO; troposphere enhancements of SO2, NO2 and aerosols associated with major sources; and springtime events of elevated BrO in the lower Arctic troposphere. 2. Application of a global 3-dimensional model of troposphere chemistry to interpret the GOME observations in terms of the factors controlling the abundances of troposphere ozone and OH.
Molybdenite Mineral Evolution: A Study Of Trace Elements Through Time
NASA Astrophysics Data System (ADS)
McMillan, M. M.; Downs, R. T.; Stein, H. J.; Zimmerman, A.; Beitscher, B. A.; Sverjensky, D. A.; Papineau, D.; Armstrong, J. T.; Hazen, R. M.
2010-12-01
Mineral evolution explores changes through time in Earth’s near-surface mineralogy, including diversity of species, relative abundances of species, and compositional ranges of major, minor and trace elements. Such studies elucidate the co-evolution of the geosphere and biosphere. Accordingly, we investigated trace and minor elements in molybdenite (MoS2) with known ages from 3 billion years to recent. Molybdenite, the commonest mineral of Mo, may prove to be a useful case study as a consequence of its presence in Earth’s early history, the effects of oxidation on Mo mobility, and the possible role of Mo mineral coevolution with biology via its role in the nitrogen fixation enzyme nitrogenase. We employed ICPMS, SEM and electron microprobe analyses to detect trace and minor elements. We detected significant amounts of Mn and Cu (~100 ppm) and greater amounts of Fe, W, and Re (to ~4000 ppm). Molybdenites commonly contain micro inclusions, resulting in local concentrations in otherwise homogeneous samples. Inhomogeneities in Fe, Zn and Sn concentrations, for example, point to the presence of pyrite, sphalerite and cassiterite inclusions, respectively. Analyses examined as a function of time reveal that samples containing significant concentrations (>200 ppm, compared to average values < 100 ppm) of W and Re formed primarily within the last billion years. These trends may reflect changes in the mobility of W and Re in oxic hydrothermal fluids at shallow crustal conditions following the Great Oxidation Event.
Trace-Based Microanalytic Measurement of Self-Regulated Learning Processes
ERIC Educational Resources Information Center
Siadaty, Melody; Gaševic, Dragan; Hatala, Marek
2016-01-01
To keep pace with today's rapidly growing knowledge-driven society, productive self-regulation of one's learning processes are essential. We introduce and discuss a trace-based measurement protocol to measure the effects of scaffolding interventions on self-regulated learning (SRL) processes. It guides tracing of learners' actions in a learning…
Uranium from German Nuclear Power Projects of the 1940s--A Nuclear Forensic Investigation.
Mayer, Klaus; Wallenius, Maria; Lützenkirchen, Klaus; Horta, Joan; Nicholl, Adrian; Rasmussen, Gert; van Belle, Pieter; Varga, Zsolt; Buda, Razvan; Erdmann, Nicole; Kratz, Jens-Volker; Trautmann, Norbert; Fifield, L Keith; Tims, Stephen G; Fröhlich, Michaela B; Steier, Peter
2015-11-02
Here we present a nuclear forensic study of uranium from German nuclear projects which used different geometries of metallic uranium fuel. Through measurement of the (230)Th/(234)U ratio, we could determine that the material had been produced in the period from 1940 to 1943. To determine the geographical origin of the uranium, the rare-earth-element content and the (87)Sr/(86)Sr ratio were measured. The results provide evidence that the uranium was mined in the Czech Republic. Trace amounts of (236)U and (239)Pu were detected at the level of their natural abundance, which indicates that the uranium fuel was not exposed to any major neutron fluence. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
RBS and PIXE analysis of chlorine contamination in ALD-Grown TiN films on silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meersschaut, J.; Witters, T.; Kaeyhkoe, M.
2013-04-19
The performance, strengths and limitations of RBS and PIXE for the characterization of trace amounts of Cl in TiN thin films are critically compared. The chlorine atomic concentration in ALD grown TiN thin films on Si is determined for samples grown at temperatures ranging from 350 Degree-Sign C to 550 Degree-Sign C. We show that routine Rutherford backscattering spectrometry measurements (1.5 MeV He{sup +}) and PIXE measurements (1.5 MeV H{sup +}) on 20 nm thick TiN films allow one to determine the Cl content down to 0.3 at% with an absolute statistical accuracy reaching 0.03 at%. Possible improvements to pushmore » the sensitivity limit for both approaches are proposed.« less
Trace element release from estuarine sediments of South Mosquito Lagoon near Kennedy Space Center
NASA Technical Reports Server (NTRS)
Menon, M. P.; Ghuman, G. S.; Emeh, C. O.
1979-01-01
Analytical partitioning of four trace metals in estuarine sediments collected from eight sites in South Mosquito Lagoon near Kennedy Space Center, in terms of four different categories was accomplished using four different extraction techniques. The concentrations of the four trace metals, Zn, Mn, Cd, and Cu, released in interstitial water extract, 1 N ammonium acetate extract, conc. HCl extract and fusion extract of sediments as well as their concentrations in water samples collected from the same location were determined using flame atomic absorption technique. From the analytical results the percentages of total amount of each metal distributed among four different categories, interstitial water phase, acetate extractable, acid extractable and detrital crystalline material, were determined. Our results suggest that analytical partitioning of trace metals in estuarine sediments may be used to study the mechanism of incorporation of trace metals with sediments from natural waters. A correlation between the seasonal variation in the concentration of acetate extractable trace metals in the sediment and similar variation in their concentration in water was observed. A mechanism for the release of trace metals from estuarine sediments to natural water is also suggested.
Cong, Zhiyuan; Kang, Shichang; Zhang, Yulan; Gao, Shaopeng; Wang, Zhongyan; Liu, Bin; Wan, Xin
2015-02-01
Our research provides the first complete year-long dataset of wet deposition of trace elements in the high Himalayas based on a total of 42 wet deposition events on the northern slope of Mt. Qomolangma (Everest). Except for typical crustal elements (Al, Fe, and Mn), the concentration level of most trace elements (Sc, V, Cr, Co, Ni, Cu, Zn, As, Mo, Cd, Sn, Cs, Pb, Bi, and U) are generally comparable to those preserved in snow pits and ice cores from the nearby East Rongbuk Glacier. Cadmium was the element most affected by anthropogenic emissions. No pronounced seasonal variations are observed for most trace elements despite different transport pathways. In our study, the composition of wet precipitation reflects a regional background condition and is not clearly related to specific source regions. For the trace element record from ice cores and snow pits in the Himalayas, it could be deduced that the pronounced seasonal patterns were caused by the dry deposition of trace elements (aerosols) during their long exposure to the atmosphere after precipitation events. Our findings are of value for the understanding of the trace element deposition mechanisms in the Himalayas.
Development of a primary diffusion source of organic vapors for gas analyzer calibration
NASA Astrophysics Data System (ADS)
Lecuna, M.; Demichelis, A.; Sassi, G.; Sassi, M. P.
2018-03-01
The generation of reference mixtures of volatile organic compounds (VOCs) at trace levels (10 ppt-10 ppb) is a challenge for both environmental and clinical measurements. The calibration of gas analyzers for trace VOC measurements requires a stable and accurate source of the compound of interest. The dynamic preparation of gas mixtures by diffusion is a suitable method for fulfilling these requirements. The estimation of the uncertainty of the molar fraction of the VOC in the mixture is a key step in the metrological characterization of a dynamic generator. The performance of a dynamic generator was monitored over a wide range of operating conditions. The generation system was simulated by a model developed with computational fluid dynamics and validated against experimental data. The vapor pressure of the VOC was found to be one of the main contributors to the uncertainty of the diffusion rate and its influence at 10-70 kPa was analyzed and discussed. The air buoyancy effect and perturbations due to the weighing duration were studied. The gas carrier flow rate and the amount of liquid in the vial were found to play a role in limiting the diffusion rate. The results of sensitivity analyses were reported through an uncertainty budget for the diffusion rate. The roles of each influence quantity were discussed. A set of criteria to minimize the uncertainty contribution to the primary diffusion source (25 µg min-1) were estimated: carrier gas flow rate higher than 37.7 sml min-1, a maximum VOC liquid mass decrease in the vial of 4.8 g, a minimum residual mass of 1 g and vial weighing times of 1-3 min. With this procedure a limit uncertainty of 0.5% in the diffusion rate can be obtained for VOC mixtures at trace levels (10 ppt-10 ppb), making the developed diffusion vials a primary diffusion source with potential to become a new reference material for trace VOC analysis.
Ray tracing: Experience at SRC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Severson, M.
1996-09-01
SHADOW [B. Lai and F. Cerrina, Nucl. Instrum. Methods A {bold 246}, 337 (1986)] is the primary ray-tracing program used at SRC. Ray tracing provides a tremendous amount of information regarding beamline layout, mirror sizes, resolution, alignment tolerances, and beam size at various locations. It also provides a way to check the beamline design for errors. Two recent designs have been ray traced extensively: an undulator-based, 4-meter, normal-incidence monochromator (NIM) [R. Reininger, M.C. Severson, R.W.C. Hansen, W.R. Winter, M.A. Green, and W.S. Trzeciak, Rev. Sci. Instrum. {bold 66}, 2194 (1995)] and an undulator-based, plane-grating monochromator (PGM) [R. Reininger, S.L. Crossley,more » M.A. Lagergren, M.C. Severson, and R.W.C. Hansen, Nucl. Instrum. Methods A {bold 347}, 304 (1994)]. {copyright} {ital 1996 American Institute of Physics.}« less
Mobile Platforms for Continuous Spatial Measurements of Urban Trace Gases and Criteria Pollutants
NASA Astrophysics Data System (ADS)
Fasoli, B.; Mitchell, L.; Bares, R.; Crosman, E.; Bush, S. E.; Horel, J.; Lin, J. C.; Bowling, D. R.; Ehleringer, J. R.
2015-12-01
Surface-based observations of atmospheric trace gases and criteria pollutants provide critical data on how emissions and pollutant concentrations vary over time. However, traditional stationary measurement sites only quantify concentrations at a single point in space, limiting our ability to understand spatial patterns. Using trace gas instrumentation capable of making continuous high-frequency (~1s) measurements, we have developed mobile platforms to complement stationary observation sites in order to better constrain the heterogeneity and complexities of urban emissions. These compact trace gas and criteria pollutant measurement systems are capable of precisely measuring CO2, CH4 PM2.5, O3, NOx, and several meteorological parameters on TRAX, Salt Lake City's light-rail system, and in a van-based mobile laboratory. Using case study observations, we discuss mobile measurement methodologies and the practical applications of mobile trace gas sampling platforms.
Blood-collection device for trace and ultra-trace metal specimens evaluated.
Moyer, T P; Mussmann, G V; Nixon, D E
1991-05-01
We evaluated the evacuated phlebotomy tube designed specifically for trace metal analysis by Sherwood Medical Co. Pools of human serum containing known concentrations of aluminum, arsenic, calcium, cadmium, copper, chromium, iron, lead, magnesium, manganese, mercury, selenium, and zinc were exposed to the tube and rubber stopper for defined periods ranging from 5 min to 24 h. Analysis for each element was performed in a randomized fashion under rigidly controlled conditions by use of standard electrothermal atomization atomic absorption spectroscopy, inductively coupled plasma atomic emission spectroscopy, and cold vapor atomic absorption spectrometry. In addition, for comparative purposes, we collected blood samples from normal volunteers by use of ultra-clean polystyrene phlebotomy syringes as well as standard evacuated phlebotomy tubes. We conclude that, except for lead, there was no significant contribution of any trace element studied from the evaluated tube and stopper to the serum. Because whole blood is the usual specimen for lead testing, the observation of a trace amount of lead in this tube designed for serum collection is trivial.
Variation in Macro and Trace Elements in Progression of Type 2 Diabetes
2014-01-01
Macro elements are the minerals of which the body needs more amounts and are more important than any other elements. Trace elements constitute a minute part of the living tissues and have various metabolic characteristics and functions. Trace elements participate in tissue and cellular and subcellular functions; these include immune regulation by humoral and cellular mechanisms, nerve conduction, muscle contractions, membrane potential regulations, and mitochondrial activity and enzyme reactions. The status of micronutrients such as iron and vanadium is higher in type 2 diabetes. The calcium, magnesium, sodium, chromium, cobalt, iodine, iron, selenium, manganese, and zinc seem to be low in type 2 diabetes while elements such as potassium and copper have no effect. In this review, we emphasized the status of macro and trace elements in type 2 diabetes and its advantages or disadvantages; this helps to understand the mechanism, progression, and prevention of type 2 diabetes due to the lack and deficiency of different macro and trace elements. PMID:25162051
Additional studies for the spectrophotometric measurement of iodine in water
NASA Technical Reports Server (NTRS)
1972-01-01
Previous work in iodine spectroscopy is briefly reviewed. Continued studies of the direct spectrophotometric determination of aqueous iodine complexed with potassium iodide show that free iodine is optimally determined at the isosbestic point for these solutions. The effects on iodine determinations of turbidity and chemical substances (in trace amounts) is discussed and illustrated. At the levels tested, iodine measurements are not significantly altered by such substances. A preliminary design for an on-line, automated iodine monitor with eventual capability of operating also as a controller was analyzed and developed in detail with respect single beam colorimeter operating at two wavelengths (using a rotating filter wheel). A flow-through sample cell allows the instrument to operate continuously, except for momentary stop flow when measurements are made. The timed automatic cycling of the system may be interrupted whenever desired, for manual operation. An analog output signal permits controlling an iodine generator.
Monitoring Telluric Water Absorption with CAMAL
NASA Astrophysics Data System (ADS)
Baker, Ashley; Blake, Cullen; Sliski, David
2017-01-01
Ground-based observations are severely limited by telluric water vapor absorption features, which are highly variable in time and significantly complicate both spectroscopy and photometry in the near-infrared (NIR). To achieve the stability required to study Earth-sized exoplanets, monitoring the precipitable water vapor (PWV) becomes necessary to mitigate the impact of telluric lines on radial velocity measurements and transit light curves. To address this issue, we present the Camera for the Automatic Monitoring of Atmospheric Lines (CAMAL), a stand-alone, inexpensive 6-inch aperture telescope dedicated to measuring PWV at the Whipple Observatory. CAMAL utilizes three NIR narrowband filters to trace the amount of atmospheric water vapor affecting simultaneous observations with the MINiature Exoplanet Radial Velocity Array (MINERVA) and MINERVA-Red telescopes. We present the current design of CAMAL, discuss our calibration methods, and show PWV measurements taken with CAMAL compared to those of a nearby GPS water vapor monitor.
Extracting quantum coherence via steering
Hu, Xueyuan; Fan, Heng
2016-01-01
As the precious resource for quantum information processing, quantum coherence can be created remotely if the involved two sites are quantum correlated. It can be expected that the amount of coherence created should depend on the quantity of the shared quantum correlation, which is also a resource. Here, we establish an operational connection between coherence induced by steering and the quantum correlation. We find that the steering-induced coherence quantified by such as relative entropy of coherence and trace-norm of coherence is bounded from above by a known quantum correlation measure defined as the one-side measurement-induced disturbance. The condition that the upper bound saturated by the induced coherence varies for different measures of coherence. The tripartite scenario is also studied and similar conclusion can be obtained. Our results provide the operational connections between local and non-local resources in quantum information processing. PMID:27682450
Zhang, Weihua; Ungar, Kurt; Stukel, Matthew; Mekarski, Pawel
2014-04-01
In this study, a digital gamma-gamma coincidence/anticoincidence spectrometer was developed and examined for low-level cosmogenic (22)Na and (7)Be in air-filter sample monitoring. The spectrometer consists of two bismuth germanate scintillators (BGO) and an XIA LLC Digital Gamma Finder (DGF)/Pixie-4 software and card package. The spectrometer design allows a more selective measurement of (22)Na with a significant background reduction by gamma-gamma coincidence events processing. Hence, the system provides a more sensitive way to quantify trace amounts of (22)Na than normal high resolution gamma spectrometry providing a critical limit of 3 mBq within a 20 h count. The use of a list-mode data acquisition technique enabled simultaneous determination of (22)Na and (7)Be activity concentrations using a single measurement by coincidence and anticoincidence mode respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.
Shindo, K.; Koide, K.; Hirai, Y.; Sumitomo, M.; Fukumura, M.
1996-01-01
BACKGROUND: Eosinophils from asthmatic patients are known to release greater amounts of leukotrienes than normal eosinophils when stimulated by the calcium ionophore A23187. The effect of platelet activating factor (PAF) in priming eosinophils was investigated. METHODS: Eosinophils were obtained from 18 asthmatic patients and 18 healthy donors. Cells separated by the Percoll gradients were incubated with PAF (C-18) for 30 minutes and then stimulated with the calcium ionophore A23187 (2.5 microM) for 15 minutes. The amount of leukotriene C4 (LTC4) in supernatants was measured using a combination of high pressure liquid chromatography and radioimmunoassay. RESULTS: The mean (SD) amount of LTC4 released by eosinophils from asthmatic patients upon stimulation with the calcium ionophore A23187 alone was 27.9 (9.9) ng/10(6) cells (n = 6). The amount of LTC4 released following stimulation with the calcium ionophore A23187 after pretreatment with PAF (1, 5, and 10 microM) was 57.2 (8.9), 75.1 (14.3), and 52.6 (10.7) ng/10(6) cells (n = 6), respectively. Trace amounts of LTC4 (0.9 (0.02) ng/10(6) cells, n = 6) were detected in the supernatant of the cells after stimulation by PAF alone (5 microM). The amount of LTC4 released upon stimulation by calcium ionophore A23187 alone in eosinophils from healthy donors was 10.3 (3.7) ng/10(6) cells (n = 4). The amounts of LTC4 released upon stimulation with calcium ionophore A23187 after pretreatment with PAF at concentrations of 1, 5, and 10 microM were 11.9 (3.5), 17.8 (5.6), and 12.7 (5.1) ng/10(6) cells (n = 4), respectively. Trace amounts of LTC4 (0.6 (0.02) ng/10(6) cells, n = 4) were detected in the supernatant of the cells upon stimulation with PAF alone (5 microM). The amounts of LTC4 released upon stimulation with calcium ionophore A23187 after pretreatment with lyso-PAF at concentrations of 1, 5, and 10 microM (n = 4 or 6) were 30.8 (5.2), 22.9 (5.1), and 27.3 (4.3) ng/10(6) cells (n = 6) from the eosinophils of asthmatic patients and 13.7 (3.3), 15.2 (4.9), and 14.7 (3.8) ng/10(6) cells (n = 4) from the eosinophils of healthy donors. CONCLUSIONS: The results indicated that PAF enhanced LTC4 formation by eosinophils obtained from asthmatic patients stimulated with the calcium ionophore A23187, but not those obtained from normal subjects. PMID:8711647
Ancient Oceans Had Less Oxygen
ERIC Educational Resources Information Center
King, Angela G.
2004-01-01
The amount of dissolved oxygen in the oceans in the mid-Proterozoic period has evolutionary implications since essential trace metals are redox sensitive. The findings suggest that there is global lack of oxygen in seawater.
Premature Craniosynostosis: A Complication of Thyroid Replacement Therapy
ERIC Educational Resources Information Center
Penfold, James L.; Simpson, Donald A.
1975-01-01
Presented are case studies of 3 children, infancy to 9-years-old, whose premature skull ossification (craniosynostosis) is traced to iatrogenic hyperthyroidism from the administration of excessive amounts of thyroid hormone. (CL)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoshika, Y.; Nihei, Y.; Muto, G.
1981-04-01
A simple circular odor chart is proposed for the explanation of the relationship between sensory responses (to odor quality and intensity) to odors and chemical analysis data of the odorants responsible for each odor discharged from thirteen odor sources. The odorants were classified into eight odorant groups and were analyzed by a systematic gas chromatographic (GC) technique. The characterization of the trace amounts of the odorants was carried out by using the values of a new proposed unit (pOU) based on the ratio of detected concentration to recognition threshold value. The calculated pOU values of the eight groups were plottedmore » in circular charts. It was found that the shape and size of each circular odor chart represent the quality and the intensity of each odor.« less
Mashhadizadeh, Mohammad Hossein; Karami, Zahra
2011-06-15
A fast, sensitive, and simple method using magnetic nanoparticles (MNPs) coated by 3-(trimethoxysilyl)-1-propantiol and modified with 2-amino-5-mercapto-1,3,4-thiadiazole, as an adsorbent has been successfully developed for extraction, preconcentration, and determination of trace amounts of Ag, Cd, Cu, and Zn from environmental samples. The prepared nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). These magnetic nanoparticles can be easily dispersed in aqueous samples and retrieved by the application of external magnetic field via a piece of permanent magnet. The main factors affecting the extraction efficiency such as pH value, sample volume, eluent concentration and volume, ultrasonication time, and coexisting ions have been investigated and established. Under the optimal conditions, high concentration factors (194, 190, 170, and 182) were achieved for Ag, Cd, Cu, and Zn with relative standard deviations of 5.31%, 4.03%, 3.62%, and 4.20%, respectively. The limits of detection for Ag, Cd, Cu, and Zn were as low as 0.12, 0.12, 0.13 and 0.11 ng mL(-1). The prepared sorbent was applied for preconcentration of trace amounts of Ag, Cd, Cu, and Zn in the various water samples with satisfactory results. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Satar, Ece; Nyfeler, Peter; Pascale, Céline; Niederhauser, Bernhard; Leuenberger, Markus
2017-04-01
Long term atmospheric monitoring of trace gases requires great attention to precision and accuracy of the measurement setups. For globally integrated and well established greenhouse gas observation networks, the World Meteorological Organization (WMO) has set recommended compatibility goals within the framework of its Global Atmosphere Watch (GAW) Programme [1]. To achieve these challenging limits, the measurement systems are regularly calibrated with standard gases of known composition. Therefore, the stability of the primary and secondary gas standards over time is an essential issue. Past studies have explained the small instabilities in high pressure standard gas cylinders through leakage, diffusion, regulator effects, gravimetric fractionation and surface processes [2, 3]. The latter include adsorption/desorption, which are functions of temperature, pressure and surface properties. For high pressure standard gas mixtures used in atmospheric trace gas analysis, there exists only a limited amount of data and few attempts to quantify the surface processes [4, 5]. Specifically, we have designed a high pressure measurement chamber to investigate trace gases and their affinity for adsorption on different surfaces over various temperature and pressure ranges. Here, we focus on measurements of CO2, CH4 and CO using a cavity ring down spectroscopy analyzer and quantify the concentration changes due to adsorption/desorption. In this study, the first results from these prototype cylinders of steel and aluminum will be presented. References [1] World Meteorological Organization (WMO), Global Atmosphere Watch.(GAW): Report No. 229, 18th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Tracers Measurement Techniques (GGMT-2015), 2016. [2] Keeling, R. F., Manning, A. C., Paplawsky, W. J., and Cox, A. C.: On the long-term stability of reference gases for atmospheric O2 /N2 and CO2 measurements, Tellus B, 59, 10.3402/tellusb.v59i1.16964, 2007. [3] Langenfelds, R. L., van der Schoot, M. V., Francey, R. J., Steele, L. P., Schmidt, M., and Mukai, H.: Modification of air standard composition by diffusive and surface processes, Journal of Geophysical Research: Atmospheres, 110, n/a-n/a, 10.1029/2004JD005482, 2005. [4] Leuenberger, M. C., Schibig, M. F., and Nyfeler, P.: Gas adsorption and desorption effects on cylinders and their importance for long-term gas records, Atmos. Meas. Tech., 8, 5289-5299, 10.5194/amt-8-5289-2015, 2015 [5] Miller, W. R., Rhoderick, G. C., and Guenther, F. R.: Investigating Adsorption/Desorption of Carbon Dioxide in Aluminum Compressed Gas Cylinders, Analytical Chemistry, 87, 1957-1962, 10.1021/ac504351b, 2015.
NASA Technical Reports Server (NTRS)
Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; LeBlanc, S.; Russell, P. B.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.;
2014-01-01
The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions. The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. Dunagan et al. [2013] present results establishing the performance of the instrument, along with calibration, engineering flight test, and preliminary scientific field data. The 4STAR instrument operated successfully in the SEAC4RS [Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys] experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE [Department of Energy]-sponsored TCAP [Two Column Aerosol Project, July 2012 & Feb. 2013] experiment aboard the DoE G-1 aircraft (Shinozuka et al., 2013), and acquired a wealth of data in support of mission objectives on all SEAC4RS and TCAP research flights. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2; Segal-Rosenheimer et al., 2014), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In addition, 4STAR measured zenith radiances underneath cloud decks for retrievals of cloud optical depth and effective diameter. In this presentation, we provide an overview of the new 4STAR capabilities for airborne field campaigns, with an emphasis on comparisons between 4STAR and AERONET sky radiances, and retrievals of aerosol microphysical properties based on sky radiance measurements, column trace gas amounts from spectral direct beam measurements and cloud property retrievals from zenith mode observations for a few select case studies in the SEAC4RS and TCAP experiments. We summarize the aerosol, trace gas, cloud and airmass characterization studies made possible by the combined 4STAR direct beam, and sky/zenith radiance observations.
Carbon and Aerosol Emissions from Biomass Fires in Mexico
NASA Astrophysics Data System (ADS)
Hao, W. M.; Flores Garnica, G.; Baker, S. P.; Urbanski, S. P.
2009-12-01
Biomass burning is an important source of many atmospheric greenhouse gases and photochemically reactive trace gases. There are limited data available on the spatial and temporal extent of biomass fires and associated trace gas and aerosol emissions in Mexico. Biomass burning is a unique source of these gases and aerosols, in comparison to industrial and biogenic sources, because the locations of fires vary considerably both daily and seasonally and depend on human activities and meteorological conditions. In Mexico, the fire season starts in January and about two-thirds of the fires occur in April and May. The amount of trace gases and aerosols emitted by fires spatially and temporally is a major uncertainty in quantifying the impact of fire emissions on regional atmospheric chemical composition. To quantify emissions, it is necessary to know the type of vegetation, the burned area, the amount of biomass burned, and the emission factor of each compound for each ecosystem. In this study biomass burning experiments were conducted in Mexico to measure trace gas emissions from 24 experimental fires and wildfires in semiarid, temperate, and tropical ecosystems from 2005 to 2007. A range of representative vegetation types were selected for ground-based experimental burns to characterize fire emissions from representative Mexico fuels. A third of the country was surveyed each year, beginning in the north. The fire experiments in the first year were conducted in Chihuahua, Nuevo Leon, and Tamaulipas states in pine forest, oak forest, grass, and chaparral. The second-year fire experiments were conducted on pine forest, oak forest, shrub, agricultural, grass, and herbaceous fuels in Jalisco, Puebla, and Oaxaca states in central Mexico. The third-year experiments were conducted in pine-oak forests of Chiapas, coastal grass, and low subtropical forest on the Yucatan peninsula. FASS (Fire Atmosphere Sampling System) towers were deployed for the experimental fires. Each FASS system contains 4 electro-polished stainless steel canisters to sample trace gas emissions, with a corresponding set of Teflon filters in the sampling ports to collect PM2.5 particulates. In addition, biomass burning was sampled by aircraft with canisters and real-time instruments as part of the MILAGRO field campaign. We present the emission factors of CO2, CO, CH4, C2-C4 compounds, and PM2.5 for prescribed fires of the major vegetation types in Mexico, as well as for regional wildfires in southern and central Mexico. We will also present a high-resolution vegetation map in Mexico based on the Landsat satellites and the fuel consumption models for various components and sizes of fuels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, Christopher R.; Brant, Heather A.; Nuessle, Patterson R.
Owing to the rich history of heavy element production in the unique high flux reactors that operated at the Savannah River Site, USA (SRS) decades ago, trace quantities of plutonium with highly unique isotopic characteristics still persist today in the SRS terrestrial environment. Development of an effective sampling, processing, and analysis strategy enables detailed monitoring of the SRS environment, revealing plutonium isotopic compositions, e.g., 244Pu, that reflect the unique legacy of plutonium production at SRS. This work describes the first long-term investigation of anthropogenic 244Pu occurrence in the environment. Environmental samples, consisting of collected foot borne debris, were taken atmore » SRS over an eleven year period, from 2003 to 2014. Separation and purification of trace plutonium was carried out followed by three stage thermal ionization mass spectrometry (3STIMS) measurements for plutonium isotopic content and isotopic ratios. Furthermore, significant 244Pu was measured in all of the years sampled with the highest amount observed in 2003. The 244Pu content, in femtograms (fg = 10 –15 g) per gram, ranged from 0.31 fg/g to 44 fg/g in years 2006 and 2003 respectively. In all years, the 244Pu/ 239Pu atom ratios were significantly higher than global fallout, ranging from 0.003 to 0.698 in years 2014 and 2003 respectively.« less
Shi, Huilin; Pierson, Nicholas A.; Valentine, Stephen J.; Clemmer, David E.
2012-01-01
Ion mobility and mass spectrometry measurements are used to examine the gas-phase populations of [M+8H]8+ ubiquitin ions formed upon electrospraying 20 different solutions: from 100:0 to 5:95 water:methanol that are maintained at pH = 2.0. Over this range of solution conditions, mobility distributions for the +8 charge state show substantial variations. Here we develop a model that treats the combined measurements as one data set. By varying the relative abundances of a discrete set of conformation types, it is possible to represent distributions obtained from any solution. For solutions that favor the well-known A-state ubiquitin, it is possible to represent the gas-phase distributions with seven conformation types. Aqueous conditions that favor the native structure require four more structural types to represent the distribution. This analysis provides the first direct evidence for trace amounts of the A state under native conditions. The method of analysis presented here should help illuminate how solution populations evolve into new gas-phase structures as solvent is removed. Evidence for trace quantities of previously unknown states under native solution conditions may provide insight about the relationship of dynamics to protein function as well as misfolding and aggregation phenomena. PMID:22315998
Vita, Fabio; Kern, Christoph; Inguaggiato, Salvatore
2014-01-01
Active long-path differential optical absorption spectroscopy (LP-DOAS) has been an effective tool for measuring atmospheric trace gases for several decades. However, instruments were large, heavy and power-inefficient, making their application to remote environments extremely challenging. Recent developments in fibre-coupling telescope technology and the availability of ultraviolet light emitting diodes (UV-LEDS) have now allowed us to design and construct a lightweight, portable, low-power LP-DOAS instrument for use at remote locations and specifically for measuring degassing from active volcanic systems. The LP-DOAS was used to measure sulfur dioxide (SO2) emissions from La Fossa crater, Vulcano, Italy, where column densities of up to 1.2 × 1018 molec cm−2 (~ 500 ppmm) were detected along open paths of up to 400 m in total length. The instrument's SO2 detection limit was determined to be 2 × 1016 molec cm−2 (~ 8 ppmm), thereby making quantitative detection of even trace amounts of SO2 possible. The instrument is capable of measuring other volcanic volatile species as well. Though the spectral evaluation of the recorded data showed that chlorine monoxide (ClO) and carbon disulfide (CS2) were both below the instrument's detection limits during the experiment, the upper limits for the X / SO2 ratio (X = ClO, CS2) could be derived, and yielded 2 × 10−3 and 0.1, respectively. The robust design and versatility of the instrument make it a promising tool for monitoring of volcanic degassing and understanding processes in a range of volcanic systems.
Performance Data Gathering and Representation from Fixed-Size Statistical Data
NASA Technical Reports Server (NTRS)
Yan, Jerry C.; Jin, Haoqiang H.; Schmidt, Melisa A.; Kutler, Paul (Technical Monitor)
1997-01-01
The two commonly-used performance data types in the super-computing community, statistics and event traces, are discussed and compared. Statistical data are much more compact but lack the probative power event traces offer. Event traces, on the other hand, are unbounded and can easily fill up the entire file system during program execution. In this paper, we propose an innovative methodology for performance data gathering and representation that offers a middle ground. Two basic ideas are employed: the use of averages to replace recording data for each instance and 'formulae' to represent sequences associated with communication and control flow. The user can trade off tracing overhead, trace data size with data quality incrementally. In other words, the user will be able to limit the amount of trace data collected and, at the same time, carry out some of the analysis event traces offer using space-time views. With the help of a few simple examples, we illustrate the use of these techniques in performance tuning and compare the quality of the traces we collected with event traces. We found that the trace files thus obtained are, indeed, small, bounded and predictable before program execution, and that the quality of the space-time views generated from these statistical data are excellent. Furthermore, experimental results showed that the formulae proposed were able to capture all the sequences associated with 11 of the 15 applications tested. The performance of the formulae can be incrementally improved by allocating more memory at runtime to learn longer sequences.
Samsahl, K; Wester, P O
1977-09-01
A chemical procedure for studying trace metals leached from metallic cooking utensils and preserving cans used in the preparation and storage of food has been developed. The method consists in the destruction of the major part of organic matter with HNO3-vapour followed by a complete mineralization of residues with small amounts of HNO3 in Teflon bombs at 150-160 degrees C under a pressure of 3-12 kg/cm2, depending on the amount and composition of the samples. Subsequently, an ion-exchange step removes major components and concentrates the trace elements in a dilute HNO3-solution, suitable for analysis. The ion-exchange separation, which is performed with an automatic ion-exchange separator, is practically free from blank level problems, e.g., typically a mean of less than 2 per cent of the sample levels of the elements being determined. Preliminary results show that large amounts of aluminium are released from vessels to the water during boiling at the same pH-range which exist for most drinking water in Sweden.
Sowa, Alina; Zgórka, Grażyna; Szykuła, Aleksandra; Franiczek, Roman; Żbikowska, Beata; Gamian, Andrzej
2016-01-01
In this study, methanol, ethyl acetate, water extracts, and precipitate were obtained from leaves of Malus domestica cultivars: Golden delicious, Jonagold, Elstar, Ligol, and Mutsu. Antiradical activity of these extracts was measured using the ABTS+∙ radical, and antimicrobial activity was measured with the disk-diffusion method. Phenolic compounds were measured with the colorimetric method and identified with high performance liquid chromatography (HPLC). The highest antiradical activity was observed for the Jonagold variety, and in particular strong activity was noted for ethyl acetate extracts. Antimicrobial activity was observed against strains of Staphylococcus aureus, Enterococcus faecalis, and the fungus Candida glabrata. Particularly susceptible to the extracts activity appeared to be Staphylococcus aureus, but the growth of Candida glabrata was inhibited in the presence of ethyl acetate extracts. With the HPLC method we identified a high amount of phloridzin (above 500 mg per g of ethyl acetate extracts), lower amounts of hyperoside, isoquercitrin, and quercitrin, and traces of p-hydroxybenzoic and chlorogenic acids. The contribution of phloridzin to antiradical activity of methanol and ethyl acetate extracts was very high (above 90%). In water extract the contribution of phloridzin was between 38.9 and 55.2%, chlorogenic acid 22.7 and 36.1%, and hyperoside 12.2 and 13.3%. PMID:28097143
Sowa, Alina; Zgórka, Grażyna; Szykuła, Aleksandra; Franiczek, Roman; Żbikowska, Beata; Gamian, Andrzej; Sroka, Zbigniew
2016-01-01
In this study, methanol, ethyl acetate, water extracts, and precipitate were obtained from leaves of Malus domestica cultivars: Golden delicious, Jonagold, Elstar, Ligol, and Mutsu. Antiradical activity of these extracts was measured using the ABTS +∙ radical, and antimicrobial activity was measured with the disk-diffusion method. Phenolic compounds were measured with the colorimetric method and identified with high performance liquid chromatography (HPLC). The highest antiradical activity was observed for the Jonagold variety, and in particular strong activity was noted for ethyl acetate extracts. Antimicrobial activity was observed against strains of Staphylococcus aureus , Enterococcus faecalis , and the fungus Candida glabrata . Particularly susceptible to the extracts activity appeared to be Staphylococcus aureus , but the growth of Candida glabrata was inhibited in the presence of ethyl acetate extracts. With the HPLC method we identified a high amount of phloridzin (above 500 mg per g of ethyl acetate extracts), lower amounts of hyperoside, isoquercitrin, and quercitrin, and traces of p -hydroxybenzoic and chlorogenic acids. The contribution of phloridzin to antiradical activity of methanol and ethyl acetate extracts was very high (above 90%). In water extract the contribution of phloridzin was between 38.9 and 55.2%, chlorogenic acid 22.7 and 36.1%, and hyperoside 12.2 and 13.3%.
[Measurement of the status of trace elements in cattle using liver biopsy samples].
Ouweltjes, W; de Zeeuw, A C; Moen, A; Counotte, G H M
2007-02-01
Serum, plasma, or urine samples are usually used for the measurement of the trace elements copper; zinc, iron, selenium, because these samples are easy to obtain; however; these samples are not always appropriate. For example, it is not possible to measure molybdenum, the major antagonist of copper; in blood or urine. Therefore measurement of trace elements in liver tissue is considered the gold standard. For the assessment of selenium the method of choice remains determination of glutathion peroxidase in erythrocytes and for the assessment of magnesium determination of magnesium in urine. We determined the accuracy and repeatability of measuring trace elements in liver biopsies and whole liver homogenates. The levels of trace elements measured were similar in both preparations (92% agreement). Liver biopsy in live animals is a relatively simple procedure but not common in The Netherlands. Reference levels of trace elements, classified as too low, low, adequate, high, and too high, were established on the basis of our research and information in the literature. In a second study we investigated the practical aspects of obtaining liver tissue samples and their use. Samples were collected from cattle on a commercial dairy farm. Liver biopsy provided additional information to that obtained from serum and urine samples. We prepared a biopsy protocol and a test package, which we tested on 14 farms where an imbalance of trace minerals was suspected. Biopsy samples taken from 4 to 6 animals revealed extreme levels of trace elements.
Zhang, Liuyang; Luo, Jinju; Shen, Xinyu; Li, Chunya; Wang, Xian; Nie, Bei; Fang, Huaifang
2018-05-10
Direct detecting of trace amount Al(III) in aqueous solution by stripping voltammetry is often frustrated by its irreversible reduction, resided at −1.75 V (vs. Ag/AgCl reference), which is in a proximal potential of proton reduction. Here, we described an electroanalytical approach, combined with liquid phase microextraction (LPME) using ionic liquid (IL), to quantitatively assess trace amount aluminum in environmental samples. The Al(III) was caged by 8-hydroxyquinoline, forming a superb hydrophobic metal⁻chelate, which sequentially transfers and concentrates in the bottom layer of IL-phase during LPME. The preconcentrated Al(III) was further analyzed by a square-wave anodic stripping voltammetry (SW-ASV). The resulting Al-deposited electrodes were characterized by scanning electron microscopy and powder X-ray diffraction, showing the intriguing amorphous nanostructures. The method developed provides a linear calibration ranging from 0.1 to 1.2 ng L −1 with a correlation coefficient of 0.9978. The LOD attains as low as 1 pmol L −1 , which reaches the lowest report for Al(III) detection using electroanalytical techniques. The applicable methodology was implemented for monitoring Al(III) in commercial distilled water.
Antoniotti, M; Park, F; Policriti, A; Ugel, N; Mishra, B
2003-01-01
The analysis of large amounts of data, produced as (numerical) traces of in vivo, in vitro and in silico experiments, has become a central activity for many biologists and biochemists. Recent advances in the mathematical modeling and computation of biochemical systems have moreover increased the prominence of in silico experiments; such experiments typically involve the simulation of sets of Differential Algebraic Equations (DAE), e.g., Generalized Mass Action systems (GMA) and S-systems. In this paper we reason about the necessary theoretical and pragmatic foundations for a query and simulation system capable of analyzing large amounts of such trace data. To this end, we propose to combine in a novel way several well-known tools from numerical analysis (approximation theory), temporal logic and verification, and visualization. The result is a preliminary prototype system: simpathica/xssys. When dealing with simulation data simpathica/xssys exploits the special structure of the underlying DAE, and reduces the search space in an efficient way so as to facilitate any queries about the traces. The proposed system is designed to give the user possibility to systematically analyze and simultaneously query different possible timed evolutions of the modeled system.
Savio, Marianela; Ortiz, María S; Almeida, César A; Olsina, Roberto A; Martinez, Luis D; Gil, Raúl A
2014-09-15
Trace metals have negative effects on the oxidative stability of edible oils and they are important because of possibility for oils characterisation. A single-step procedure for trace elemental analysis of edible oils is presented. To this aim, a solubilisation with tetramethylammonium hydroxide (TMAH) was assayed prior to inductively coupled plasma mass spectrometry detection. Small amounts of TMAH were used, resulting in high elemental concentrations. This method was applied to edible oils commercially available in Argentine. Elements present in small amounts (Cu, Ge, Mn, Mo, Ni, Sb, Sr, Ti, and V) were determined in olive, corn, almond and sunflower oils. The limits of detection were between 0.004 μg g(-1) for Mn and Sr, and 0.32 μg g(-1) for Sb. Principal components analysis was used to correlate the content of trace metals with the type of oils. The two first principal components retained 91.6% of the variability of the system. This is a relatively simple and safe procedure, and could be an attractive alternative for quality control, traceability and routine analysis of edible oils. Copyright © 2014 Elsevier Ltd. All rights reserved.
Farooqui, Javed Hussain; Sharma, Mansi; Koul, Archana; Dutta, Ranjan; Shroff, Noshir Minoo
2017-01-01
The aim of this study is to compare two different methods of analysis of preoperative reference marking for toric intraocular lens (IOL) after marking with an electronic marker. Cataract and IOL Implantation Service, Shroff Eye Centre, New Delhi, India. Fifty-two eyes of thirty patients planned for toric IOL implantation were included in the study. All patients had preoperative marking performed with an electronic preoperative two-step toric IOL reference marker (ASICO AE-2929). Reference marks were placed at 3-and 9-o'clock positions. Marks were analyzed with two systems. First, slit-lamp photographs taken and analyzed using Adobe Photoshop (version 7.0). Second, Tracey iTrace Visual Function Analyzer (version 5.1.1) was used for capturing corneal topograph examination and position of marks noted. Amount of alignment error was calculated. Mean absolute rotation error was 2.38 ± 1.78° by Photoshop and 2.87 ± 2.03° by iTrace which was not statistically significant ( P = 0.215). Nearly 72.7% of eyes by Photoshop and 61.4% by iTrace had rotation error ≤3° ( P = 0.359); and 90.9% of eyes by Photoshop and 81.8% by iTrace had rotation error ≤5° ( P = 0.344). No significant difference in absolute amount of rotation between eyes when analyzed by either method. Difference in reference mark positions when analyzed by two systems suggests the presence of varying cyclotorsion at different points of time. Both analysis methods showed an approximately 3° of alignment error, which could contribute to 10% loss of astigmatic correction of toric IOL. This can be further compounded by intra-operative marking errors and final placement of IOL in the bag.
Geomorphological assessment of sediment contamination in an urban stream system
Rhoads, B.L.; Cahill, R.A.
1999-01-01
Little is known about the influence of fluvial-geomorphological features on the dispersal of sediment-related contaminants in urban drainage systems. This study investigates the relation between reach-scale geomorphological conditions and network-scale patterns of trace-element concentrations in a partially urbanized stream system in East-Central Illinois, USA Robust statistical analysis of bulk sediment samples reveals levels of Cr, Cu, Pb, Ni, and Zn exceed contamination thresholds in the portion of the watershed in close proximity to potential sources of pollution-in this case storm-sewer outfalls. Although trace-element concentrations decrease rapidly downstream from these sources, substantial local variability in metal levels exists within contaminated reaches. This local variability is related to reach-scale variation in fluvial-geomorphic conditions, which in turn produces variation in the degree of sorting and organic-matter content of bed material. Metal concentrations at contaminated sites also exhibit considerable variability over time. Analytical tests on specific size fractions of material collected at a highly contaminated site indicate that Cr and Ni are concentrated in the 0.063 to 0.250 mm fraction of the sediment. This fraction also has elevated concentration of Zr. SEM analysis shows that the fine sand fraction contains shards of stainless steel within a matrix of zircon sand, an industrial material associated with a nearby alloy casting operation. Samples of suspended load and bedload at the contaminated site also have elevated amounts of trace metals, but concentrations of Ni and Cr in the bedload are less than concentrations in the bed material, suggesting that these trace elements are relatively immobile. Off the other hand, amounts of CU and Zn in the bedload exceed concentrations in the bed material, implying that these trace metals are preferentially mobilized during transport events.
Abbasi, Shahriar; ShanbehDehbalai, Mehdi; Khani, Hossein
2017-03-01
A new, simple and rapid method for solid phase extraction and preconcentration of trace amounts of cadmium ions using 2-mercaptobenzothiazole/sodium dodecyl sulfate immobilized on magnetite nanoparticles (MBT-SDS-MNPs) was proposed. The method is based on the extraction of cadmium ions via complexation with MBT immobilized on SDS-coated MNPs and their determination by flame atomic absorption spectrometry. The effects of different parameters - pH; eluent type, concentration and volume; amounts of salt and adsorbent; contact time and interfering ions - on the adsorption of cadmium ions were studied. Under optimized conditions, the calibration curve was linear in the range of 10-5,000 μg L -1 . Detection limit and relative standard deviation of the proposed method were 0.009 μg L -1 and 2.2%, respectively. The adsorption data were analyzed by Langmuir and Freundlich isotherm models and a maximum adsorption amount of 24.80 mg g -1 , a Langmuir adsorption equilibrium constant (b) of 4.62 and Freundlich constants K f and n of 6.075 mg 1-1/n L 1/n g -1 and 2.391, respectively, were obtained. Finally, this adsorbent was successfully used for extraction of cadmium from water and food samples.
TENORM: Wastewater Treatment Residuals
Water and wastes which have been discharged into municipal sewers are treated at wastewater treatment plants. These may contain trace amounts of both man-made and naturally occurring radionuclides which can accumulate in the treatment plant and residuals.
76 FR 65749 - Importer of Controlled Substances; Notice of Registration
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-24
... treatment of wounds which contains trace amounts of the controlled substances normally found in poppy straw... the company's compliance with state and local laws, and a review of the company's background and...
27 CFR 5.23 - Alteration of class and type.
Code of Federal Regulations, 2014 CFR
2014-04-01
... trace amount of citric acid. (b) Extractions. The removal from any distilled spirits of any constituents... than 15 percent of the fixed acids, or volatile acids, or esters, or soluble solids, or higher alcohols...
27 CFR 5.23 - Alteration of class and type.
Code of Federal Regulations, 2012 CFR
2012-04-01
... trace amount of citric acid. (b) Extractions. The removal from any distilled spirits of any constituents... than 15 percent of the fixed acids, or volatile acids, or esters, or soluble solids, or higher alcohols...
27 CFR 5.23 - Alteration of class and type.
Code of Federal Regulations, 2013 CFR
2013-04-01
... trace amount of citric acid. (b) Extractions. The removal from any distilled spirits of any constituents... than 15 percent of the fixed acids, or volatile acids, or esters, or soluble solids, or higher alcohols...
26 CFR 301.6362-5 - Qualified nonresident tax.
Code of Federal Regulations, 2010 CFR
2010-04-01
... which bears the same ratio to such sum as the amount described in subdivision (i) of this subparagraph... tracing of the profitability of each phase and aspect of the partnership's operations, and shows the State...
Moore, Diane E.; Hickman, S.; Lockner, D.A.; Dobson, P.F.
2001-01-01
Detailed study of core samples of silicic tuff recovered from three geothermal wells along the strike-slip Great Sumatran fault zone near Silangkitang, North Sumatra, supports a model for enhanced hydrothermal circulation adjacent to this major plate-boundary fault. Two wells (A and C) were drilled nearly vertically ??1 km southwest of the eastern (i.e., the principal) fault trace, and the third, directional well (B) was drilled eastward from the site of well A to within ??100 m of the principal fault trace. The examined core samples come from depths of 1650-2120 m at measured well temperatures of 180-320 ??C. The samples collected near the principal fault trace have the highest temperatures, the largest amount of secondary pore space that correlates with high secondary permeability, and the most extensive hydrothermal mineral development. Secondary permeability and the degree of hydrothermal alteration decrease toward the southwestern margin of the fault zone. These features indicate episodic, localized flow of hot, possibly CO2-rich fluids within the fault zone. The microstructure populations identified in the core samples correlate to the subsidiary fault patterns typical of strike-slip faults. The geothermal reservoir appears to be centered on the fault zone, with the principal fault strands and adjoining, highly fractured and hydrothermally altered rock serving as the main conduits for vertical fluid flow and advective heat transport from deeper magmatic sources.
Gao, Zhonghong; Xu, Huibi; Huang, Kaixun
2002-09-01
The effect of rutin on total antioxidant status as well as on trace elements such as iron, copper, and zinc in mouse liver and brain were studied. Mice were administrated with 0.75 g/kg or 2.25 g/kg P. O. of rutin for 30 d consecutively. Following the treatment, the activity of total antioxidant status, catalase, Cu,Zn-superoxide dismutase, Mn-superoxide dismutase, zinc, copper, and iron were measured in mouse liver and brain. The results showed that rutin significantly increased the antioxidant status and Mn-superoxide dismutase activities in mouse liver, but it had no effect on these variables in the brain. Treatment with a higher concentration of rutin significantly decreased catalase activity and iron, zinc, and copper contents in mouse liver; it also resulted in a slower weight gain for the first 20 d. These results indicate that rutin taken in proper amount can effectively improve antioxidant status, whereas at an increased dosage, it may cause trace element (such as iron, zinc, and copper) deficiencies and a decrease in the activities of related metal-containing enzymes.
Trace gas emissions from burning Florida wetlands
NASA Technical Reports Server (NTRS)
Cofer, Wesley R., III; Levine, Joel S.; Lebel, Peter J.; Winstead, Edward L.; Koller, Albert M., Jr.; Hinkle, C. Ross
1990-01-01
Measurements of biomass burn-produced trace gases were obtained using a helicopter at low altitudes above burning Florida wetlands on November 9, 1987, and from both helicopter and light-aircraft samplings on November 7, 1988. Carbon dioxide normalized emission ratios for carbon monoxide, hydrogen, methane, total nonmethane hydrocarbons, and nitrous oxide were obtained over burning graminoid wetlands consisting primarily of Spartina bakeri and Juncus roemerianus. Some interspersed scrub oak and saw palmetto were also burned. No significant differences were observed in the emission ratios determined for these gases from samples collected over flaming, mixed, and smoldering phases of combustion during the 1987 fire. Combustion-categorized differences in emission ratios were small for the 1988 fire. Combustion efficiency was relatively good (low emission ratios for reduced gases) for both fires. It is believed that the consistently low emission ratios were a unique result of graminoid wetlands fires, in which the grasses and rushes burned rapidly down to standing water and were quickly extinguished. Consequently, the efficiency of the combustion was good and the amount and duration of smoldering combustion was greatly deminished.
Transmitted wavefront testing with large dynamic range based on computer-aided deflectometry
NASA Astrophysics Data System (ADS)
Wang, Daodang; Xu, Ping; Gong, Zhidong; Xie, Zhongmin; Liang, Rongguang; Xu, Xinke; Kong, Ming; Zhao, Jun
2018-06-01
The transmitted wavefront testing technique is demanded for the performance evaluation of transmission optics and transparent glass, in which the achievable dynamic range is a key issue. A computer-aided deflectometric testing method with fringe projection is proposed for the accurate testing of transmitted wavefronts with a large dynamic range. Ray tracing of the modeled testing system is carried out to achieve the virtual ‘null’ testing of transmitted wavefront aberrations. The ray aberration is obtained from the ray tracing result and measured slope, with which the test wavefront aberration can be reconstructed. To eliminate testing system modeling errors, a system geometry calibration based on computer-aided reverse optimization is applied to realize accurate testing. Both numerical simulation and experiments have been carried out to demonstrate the feasibility and high accuracy of the proposed testing method. The proposed testing method can achieve a large dynamic range compared with the interferometric method, providing a simple, low-cost and accurate way for the testing of transmitted wavefronts from various kinds of optics and a large amount of industrial transmission elements.
Hydrogen ions associated with the dry deposition of pollen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noll, K.E.; Khalili, E.K.
The data provided in this paper demonstrates that pollen can generate significant amounts of hydrogen ions when added to water and that the deposition of tree pollen in forested areas represents a significant hydrogen ion source. Measurements of dry deposition of pollen were made during the months of May and June, 1987 in Northern Wisconsin, using a smooth surrogate surface. Rain samples were also collected. Deposited particles were weighed to determine mass fluxes, then washed and ion chromatographed for SO {sub 4} = and NO {sub 3} {minus} analysis. Species of pollen collected from different types of trees during themore » sampling period were analyzed for SO{sub 4} = NO {sub 3} and other trace constituents. The micrograms of hydrogen ions (protons) generated per gram for different types of pollen added to water, were measured. From 56 to 566 gm were generated per gram or pollen added. The amount generated varied with pollen type. Based on this information, the equivalent protons from the dry deposition of pollen were calculated and compared with the wet deposition proton data. The sulfate, nitrate, and protons associated with dry deposition were of a magnitude comparable with wet deposition.« less
Luke, Paul
1996-01-01
An ionization detector electrode and signal subtraction apparatus and method provides at least one first conductive trace formed onto the first surface of an ionization detector. The first surface opposes a second surface of the ionization detector. At least one second conductive trace is also formed on the first surface of the ionization detector in a substantially interlaced and symmetrical pattern with the at least one first conductive trace. Both of the traces are held at a voltage potential of a first polarity type. By forming the traces in a substantially interlaced and symmetric pattern, signals generated by a charge carrier are substantially of equal strength with respect to both of the traces. The only significant difference in measured signal strength occurs when the charge carrier moves to within close proximity of the traces and is received at the collecting trace. The measured signals are then subtracted and compared to quantitatively measure the magnitude of the charge and to determine the position at which the charge carrier originated within the ionization detector.
Luke, P.
1996-06-25
An ionization detector electrode and signal subtraction apparatus and method provide at least one first conductive trace formed onto the first surface of an ionization detector. The first surface opposes a second surface of the ionization detector. At least one second conductive trace is also formed on the first surface of the ionization detector in a substantially interlaced and symmetrical pattern with the at least one first conductive trace. Both of the traces are held at a voltage potential of a first polarity type. By forming the traces in a substantially interlaced and symmetric pattern, signals generated by a charge carrier are substantially of equal strength with respect to both of the traces. The only significant difference in measured signal strength occurs when the charge carrier moves to within close proximity of the traces and is received at the collecting trace. The measured signals are then subtracted and compared to quantitatively measure the magnitude of the charge and to determine the position at which the charge carrier originated within the ionization detector. 9 figs.
Lin, Yi-Zhen; Ou, Da-Liang; Chang, Hsin-Yuan; Lin, Wei-Yu; Hsu, Chiun
2017-01-01
The family of microRNAs (miRNAs) not only plays an important role in gene regulation but is also useful for the diagnosis of diseases. A reliable method with high sensitivity may allow researchers to detect slight fluctuations in ultra-trace amounts of miRNA. In this study, we propose a sensitive imaging method for the direct probing of miR-10b (miR-10b-3p, also called miR-10b*) and its target (HOXD10 mRNA) in fixed cells based on the specific recognition of molecular beacons combined with highly inclined and laminated optical sheet (HILO) fluorescence microscopy. The designed dye-quencher-labelled molecular beacons offer excellent efficiencies of fluorescence resonance energy transfer that allow us to detect miRNA and the target mRNA simultaneously in hepatocellular carcinoma cells using HILO fluorescence microscopy. Not only can the basal trace amount of miRNA be observed in each individual cell, but the obtained images also indicate that this method is useful for monitoring the fluctuations in ultra-trace amounts of miRNA when the cells are transfected with a miRNA precursor or a miRNA inhibitor (anti-miR). Furthermore, a reasonable causal relation between the miR-10b and HOXD10 expression levels was observed in miR-10b* precursor-transfected cells and miR-10b* inhibitor-transfected cells. The trends of the miRNA alterations obtained using HILO microscopy completely matched the RT-qPCR data and showed remarkable reproducibility (the coefficient of variation [CV] = 0.86%) and sensitivity (<1.0 fM). This proposed imaging method appears to be useful for the simultaneous visualisation of ultra-trace amounts of miRNA and target mRNA and excludes the procedures for RNA extraction and amplification. Therefore, the visualisation of miRNA and the target mRNA should facilitate the exploration of the functions of ultra-trace amounts of miRNA in fixed cells in biological studies and may serve as a powerful tool for diagnoses based on circulating cancer cells. PMID:28989695
Clemons, Kristina; Dake, Jeffrey; Sisco, Edward; Verbeck, Guido F
2013-09-10
Direct analysis in real time mass spectrometry (DART-MS) has proven to be a useful forensic tool for the trace analysis of energetic materials. While other techniques for detecting trace amounts of explosives involve extraction, derivatization, solvent exchange, or sample clean-up, DART-MS requires none of these. Typical DART-MS analyses directly from a solid sample or from a swab have been quite successful; however, these methods may not always be an optimal sampling technique in a forensic setting. For example, if the sample were only located in an area which included a latent fingerprint of interest, direct DART-MS analysis or the use of a swab would almost certainly destroy the print. To avoid ruining such potentially invaluable evidence, another method has been developed which will leave the fingerprint virtually untouched. Direct analyte-probed nanoextraction coupled to nanospray ionization-mass spectrometry (DAPNe-NSI-MS) has demonstrated excellent sensitivity and repeatability in forensic analyses of trace amounts of illicit drugs from various types of surfaces. This technique employs a nanomanipulator in conjunction with bright-field microscopy to extract single particles from a surface of interest and has provided a limit of detection of 300 attograms for caffeine. Combining DAPNe with DART-MS provides another level of flexibility in forensic analysis, and has proven to be a sufficient detection method for trinitrotoluene (TNT), RDX, and 1-methylaminoanthraquinone (MAAQ). Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chang, C.; Kenna, T. C.; Nitsche, F. O.
2016-12-01
The IPCC predicts that the frequency and severity of storms worldwide will increase due to climate change, a growing concern for the highly populated coastal areas near the Hudson River estuary. Storms have the potential to change the river's sediment budget, and it is necessary to update the current understanding of the effect of storms on sediment dynamics. In 2011, Tropical Storm Lee and Hurricane Irene delivered over 2.7 million tons of sediment to the Hudson River including over 1.5 million tons from the Mohawk River, a freshwater tributary, in addition to record amounts contributed from other major tributaries. The goals of this project are to use sediment elemental compositions to trace the major tributaries contributing to this storm-deposited sediment and to determine where sediment is accumulating as a result of storm activity. Chemical analysis of over 800 archived sediment samples are compiled to provide a pre-storm background level. These samples are compared to newly deposited sediment and material from specific tributaries. Elemental abundances (K, Ca, Ti, Cr, Mn, Fe, Co, Cu, Zn, Rb, Sr, Zr, Pb, and U) are measured using a field portable X-Ray Fluorescence (XRF) unit and core scanning XRF unit. Bulk matrix density is measured using a pycnometer. The measurements are used to identify elemental signatures from tributary sediment and to trace the influence of specific tributaries on deposition through the river. Our results suggests measureable signatures in sediment from individual tributaries. The Mohawk River contributes high concentrations of Ca due to the calcite deposits in its watershed. XRF measurements also show the effect of human activity on sediment deposition; variations in Rb and Zr indicate changes in deposition due to dredging in Haverstraw Bay. The salt wedge front, where ocean and fresh water meets is evident in areas of below average matrix density. This project shows significant geochemical variability between sediment from different areas of the river, and indicates that XRF can be used to track sediment sources and deposition.
Removal of trace organic chemical contaminants by a membrane bioreactor.
Trinh, T; van den Akker, B; Stuetz, R M; Coleman, H M; Le-Clech, P; Khan, S J
2012-01-01
Emerging wastewater treatment processes such as membrane bioreactors (MBRs) have attracted a significant amount of interest internationally due to their ability to produce high quality effluent suitable for water recycling. It is therefore important that their efficiency in removing hazardous trace organic contaminants be assessed. Accordingly, this study investigated the removal of trace organic chemical contaminants through a full-scale, package MBR in New South Wales, Australia. This study was unique in the context of MBR research because it characterised the removal of 48 trace organic chemical contaminants, which included steroidal hormones, xenoestrogens, pesticides, caffeine, pharmaceuticals and personal care products (PPCPs). Results showed that the removal of most trace organic chemical contaminants through the MBR was high (above 90%). However, amitriptyline, carbamazepine, diazepam, diclofenac, fluoxetine, gemfibrozil, omeprazole, sulphamethoxazole and trimethoprim were only partially removed through the MBR with the removal efficiencies of 24-68%. These are potential indicators for assessing MBR performance as these chemicals are usually sensitive to changes in the treatment systems. The trace organic chemical contaminants detected in the MBR permeate were 1 to 6 orders of magnitude lower than guideline values reported in the Australian Guidelines for Water Recycling. The outcomes of this study enhanced our understanding of the levels and removal of trace organic contaminants by MBRs.
Tracing the trajectory of skill learning with a very large sample of online game players.
Stafford, Tom; Dewar, Michael
2014-02-01
In the present study, we analyzed data from a very large sample (N = 854,064) of players of an online game involving rapid perception, decision making, and motor responding. Use of game data allowed us to connect, for the first time, rich details of training history with measures of performance from participants engaged for a sustained amount of time in effortful practice. We showed that lawful relations exist between practice amount and subsequent performance, and between practice spacing and subsequent performance. Our methodology allowed an in situ confirmation of results long established in the experimental literature on skill acquisition. Additionally, we showed that greater initial variation in performance is linked to higher subsequent performance, a result we link to the exploration/exploitation trade-off from the computational framework of reinforcement learning. We discuss the benefits and opportunities of behavioral data sets with very large sample sizes and suggest that this approach could be particularly fecund for studies of skill acquisition.
Determination of the D and L isomers of some protein amino acids present in soils
NASA Technical Reports Server (NTRS)
Pollock, G. E.; Cheng, C.-N.; Cronin, S. E.
1977-01-01
The D and L isomers of some protein amino acids present in soils were measured by using a gas chromatographic technique. The results of two processing procedures were compared to determine the better method. Results of the comparison indicated that the determination of D and L percentages requires amino acid purification if one is to obtain accurate data. It was found that very significant amounts of D-alanine, D-aspartic acid, and D-glutamic acid were present in the contemporary soils studied. Valine, isoleucine, leucine, proline, and phenylalanine generally contained only a trace to very small amounts of the D isomer. It is probable that the D-amino acids from the alanine, aspartic, and glutamic acids are contributed to the soil primarily via microorganisms. The finding of very significant quantities of some D-amino acids (about 5-16%) in present-day soils may alert some investigators of geological sediments to a possible problem in using amino acid racemization as an age-dating technique.
A Principal Component Analysis of the Diffuse Interstellar Bands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ensor, T.; Cami, J.; Bhatt, N. H.
2017-02-20
We present a principal component (PC) analysis of 23 line-of-sight parameters (including the strengths of 16 diffuse interstellar bands, DIBs) for a well-chosen sample of single-cloud sightlines representing a broad range of environmental conditions. Our analysis indicates that the majority (∼93%) of the variations in the measurements can be captured by only four parameters The main driver (i.e., the first PC) is the amount of DIB-producing material in the line of sight, a quantity that is extremely well traced by the equivalent width of the λ 5797 DIB. The second PC is the amount of UV radiation, which correlates wellmore » with the λ 5797/ λ 5780 DIB strength ratio. The remaining two PCs are more difficult to interpret, but are likely related to the properties of dust in the line of sight (e.g., the gas-to-dust ratio). With our PCA results, the DIBs can then be used to estimate these line-of-sight parameters.« less
Abdi, Mahnaz M; Abdullah, Luqman Chuah; Sadrolhosseini, Amir R; Mat Yunus, Wan Mahmood; Moksin, Mohd Maarof; Tahir, Paridah Md
2011-01-01
A new sensing area for a sensor based on surface plasmon resonance (SPR) was fabricated to detect trace amounts of mercury and lead ions. The gold surface used for SPR measurements were modified with polypyrrole-chitosan (PPy-CHI) conducting polymer composite. The polymer layer was deposited on the gold surface by electrodeposition. This optical sensor was used for monitoring toxic metal ions with and without sensitivity enhancement by chitosan in water samples. The higher amounts of resonance angle unit (ΔRU) were obtained for PPy-CHI film due to a specific binding of chitosan with Pb(2+) and Hg(2+) ions. The Pb(2+) ion bind to the polymer films most strongly, and the sensor was more sensitive to Pb(2+) compared to Hg(2+). The concentrations of ions in the parts per million range produced the changes in the SPR angle minimum in the region of 0.03 to 0.07. Data analysis was done by Matlab software using Fresnel formula for multilayer system.
Luo, Weifang [Livermore, CA; Stewart, Kenneth D [Valley Springs, CA
2009-11-17
Disclosed is a device for removing trace amounts of ammonia from a stream of gas, particularly hydrogen gas, prepared by a reformation apparatus. The apparatus is used to prevent PEM "poisoning" in a fuel cell receiving the incoming hydrogen stream.
76 FR 30969 - Importer of Controlled Substances; Notice of Registration
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-27
... treatment of wounds which contain trace amounts of the controlled substances normally found in poppy straw... company's background and history. Therefore, pursuant to 21 U.S.C. 952(a) and 958(a), and in accordance...
75 FR 9614 - Importer of Controlled Substances; Notice of Registration
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-03
... an ointment for the treatment of wounds which contains trace amounts of controlled substances... background and history. Therefore, pursuant to 21 U.S.C. 952(a) and Sec. 958(a), and in accordance with 21...
ERIC Educational Resources Information Center
Pinkham, Jim
1994-01-01
Discusses legislation currently under consideration that sets standards for the amount of radon, aluminum, and arsenic allowable in drinking water. Considers the economic impact of the legislation and traces the status of the Safe Drinking Water Act Regulations from 1989-92. (MDH)
Bonanno, Giuseppe; Lo Giudice, Rosa; Pavone, Pietro
2012-08-01
Trace element impact was assessed using mosses in a densely inhabited area affected by mud volcanoes. Such volcanoes, locally called Salinelle, are phenomena that occur around Mt. Etna (Sicily, Italy) and are interpreted as the surface outflow of a hydrothermal system located below Mt. Etna, releasing sedimentary fluids (hydrocarbons and NaCl brines) along with magmatic gases (mainly CO(2) and He). To date, scarce data are available about the presence of trace elements, and no biomonitoring campaigns are reported about the cumulative effects of such emissions. In this study, concentrations of Al, As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, V, and Zn were detected in the moss Bryum argenteum, in soil and water. Results showed that the trace element contribution of the Salinelle to the general pollution was significant for Al, Mn, Ni, and Zn. The comparison of trace concentrations in mosses from Salinelle and Etna showed that the mud volcanoes release a greater amount of Al and Mn, whereas similar values of Ni were found. Natural emissions of trace elements could be hazardous in human settlements, in particular, the Salinelle seem to play an important role in environmental pollution.
NIST Role in Advancing Innovation
NASA Astrophysics Data System (ADS)
Semerjian, Hratch
2006-03-01
According to the National Innovation Initiative, a report of the Council on Competitiveness, innovation will be the single most important factor in determining America's success through the 21^st century. NIST mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology -- in ways that enhance economic security and improve the quality of life for all Americans. NIST innovations in measurement science and technology often become the basis for new industrial capabilities. Several examples of such developments will be discussed, including the development of techniques for manipulation and measurement of biomolecules which may become the building blocks for molecular electronics; expansion of the frontiers of quantum theory to develop the field of quantum computing and communication; development of atomic scale measurement capabilities for future nano- and molecular scale electronic devices; development of a lab-on-a-chip that can detect within seconds trace amounts of toxic chemicals in water, or can be used for rapid DNA analysis; and standards to facilitate supply chain interoperability.
Miller, C.M.; Nogar, N.S.
1982-09-02
Photoionization via autoionizing atomic levels combined with conventional mass spectroscopy provides a technique for quantitative analysis of trace quantities of chemical elements in the presence of much larger amounts of other elements with substantially the same atomic mass. Ytterbium samples smaller than 10 ng have been detected using an ArF* excimer laser which provides the atomic ions for a time-of-flight mass spectrometer. Elemental selectivity of greater than 5:1 with respect to lutetium impurity has been obtained. Autoionization via a single photon process permits greater photon utilization efficiency because of its greater absorption cross section than bound-free transitions, while maintaining sufficient spectroscopic structure to allow significant photoionization selectivity between different atomic species. Separation of atomic species from others of substantially the same atomic mass is also described.
Detecting influences on California drought intervals using isotopes in tree-ring cellulose
NASA Astrophysics Data System (ADS)
Kanner, L. C.; Buenning, N. H.; Stott, L. D.; Stahle, D. W.
2012-12-01
Multi-decadal drought events have characterized climate variability in California over the last century. However, the causes of interannual precipitation variability and the origins of multi-decadal drought in California remain unclear. We utilize the oxygen isotopic composition (δ18O) of tree-ring cellulose in combination with previously developed ring-width measurements to trace the delivery of moisture to the region and investigate ocean-atmosphere patterns that might generate prolonged drought. Of the 36 Quercus douglasii (blue oak) sites in the California central valley, we have focused our work at two locations - one north of Los Angeles (34.74°N, 120°W, 1036 masl) and the other east of San Francisco (37.88°N 121.97°W, 182 masl). Using cores from at least five different trees at each location, tree-ring cellulose δ18O was measured for each year of growth from 1954 to 2004. The δ18O values of tree-ring cellulose range from 29‰ to 34‰ (VSMOW) at both sites and exhibit shared interannual variance (r = 0.43, p < 0.01). To trace changes in moisture delivery, we apply a biophysical model of cellulose δ18O and derive a proxy for rainfall δ18O. A reasonable approximation of rainfall δ18O is soil water δ18O, which, based on the biophysical model, can be estimated using cellulose δ18O, relative humidity, and temperature. High-resolution climate data from PRISM are combined with our cellulose measurements to compute soil water δ18O (and thus rainfall δ18O). Calculated rainfall δ18O is well correlated between the two locations (r = 0.55, p < 0.001) and the variance in δ18O at each site is 6‰. In terms of regional climate changes, our rainfall δ18O proxy exhibits a positive correlation with local precipitation amount, inferred from tree-ring width (r = 0.66, p < 0.001). This positive correlation suggests rainfall amount cannot be the main influence on the isotopic composition because changes in δ18O solely due to amount typically occur in the negative direction (the so-called amount effect usually observed in the tropics). Instead, we hypothesize that shifts in the moisture source region are of primary importance because moisture from high latitude sources has a lower isotopic composition compared to subtropical regions. Using NCAR reanalysis data, wind field anomalies suggest that moisture is derived from the north during dry years (low δ18O) and from the subtropics during wet years (high δ18O). Additional processes such as condensation height and post-condensation effects may also be important in controlling isotopic variability.
SU-F-T-555: Accurate Stereotactic Cone TMRs Converted from PDDs Scanned with Ray Trace
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, H; Zhong, H; Qin, Y
Purpose: To investigate whether the accuracy of TMRs for stereotactic cones converted from PDDs scanned with Ray Trace can be improved, when compared against the TMRs converted from the traditional PDDs. Methods: Ray Trace measurement in Sun Nuclear 3D Scanner is for accurate scan of small field PDDs. The system detects the center of field at two depths, for example, at 3 and 20 cm in our study, and then performs scan along the line passing the two centers. With both Ray Trace and the traditional method, PDDs for conical cones of 4, 5, 7.5, 10, 12.5, 15, and 17.5more » mm diameter (jaws set to 5×5 cm) were obtained for 6X FFF and 10X FFF energies on a Varian Edge linac, using Edge detectors. The formalism of converting PDD to TMR given in Khan’s book (4th Edition, p.161) was applied. Sp values at dmax were obtained by measuring cone Scp and Sc. Continuous direct measurement of TMR by filling/draining water to/from the tank and spot measurement by moving the tank and detector were also performed with the same equipment, using 100 cm SDD. Results: For 6XFFF energy and all the cones, TMRs converted from Ray Trace were very close to the continuous and spot measurement, while TMRs converted from traditional PDDs had larger deviation. Along the central axis beyond dmax, 1.7% of TMR data points calculated from Ray Trace had more 3% deviation from measurement, with maximal deviation of 5.2%. Whereas, 34% of TMR points calculated from traditional PDDs had more than 3% deviation, with maximum of 5.7%. In this initial study, Ray Trace scans for 10XFFF beam were noisy, further measurement is warranted. Conclusion: The Ray Trace could improve the accuracy of PDDs measurement and the calculated TMRs for stereotactic cones, which was within 3% of the measured TMRs.« less
Crespo, Elena; Devasena, Samudrala; Sikkens, Cor; Centeno, Raymund; Cristescu, Simona M; Harren, Frans J M
2012-04-30
When performing trace gas analysis, it is not always possible to bring the source of volatiles and the gas analyzer together. In these cases, volatile storage containers, such as thermal desorption (TD) tubes, can be used for off-line measurement. TD is routinely combined with gas chromatography/mass spectrometry (GC/MS), but so far not with proton-transfer reaction mass spectrometry (PTRMS), which has a faster response. A PTR-quadrupole-MS instrument and a PTR-ion-trap-MS instrument were separately coupled to a TD unit for off-line analysis of trace volatiles in air. Carbograph 1TD/Carbopack X sorbent tubes were filled with different concentrations of a trace gas mixture containing low molecular weight volatiles (32 g/mol up to 136 g/mol) and measured with the above-mentioned combinations. The carrier gas in the TD unit was changed from helium to nitrogen to be able to combine this instrument with the mass spectrometer. Good linearity and reproducibility with the amount of gas stored were obtained. The storage capacity over time (up to 14 days) showed larger variability (<11% for all compounds, except for acetone 27%). Several tubes were filled with breath of different persons, and the breath of a smoker showed increased levels of acetonitrile and benzene. The combination of the PTR ion-trap instrument with the TD unit was also investigated. Due to its higher sampling rate, the ion-trap system showed higher throughput capabilities than the quadrupole system. The combination of TD with PTRMS using both a quadrupole and an ion trap for off-line volatile analysis has been validated. TD tubes can be a robust and compact volatile storage method when the mass spectrometry and the sampling cannot be performed in the same place, for example in large screening studies. In addition, a higher measurement throughput than with GC/MS could be obtained. Copyright © 2012 John Wiley & Sons, Ltd.
Trace elements in a commercial freeze-dried human urine reference material.
Veillon, C; Patterson, K Y
1996-07-01
A large batch of freeze-dried human urine reference material, Seronorm Trace Elements Urine, Lot 101021, was prepared commercially (Nycomed Pharma AS, Oslo, Norway) for quality control purposes in trace element analysis. Analytes are being determined by a voluntary, international co-operative effort so that the material will be available to the scientific community at modest cost. The material is in stoppered glass vials and is to be reconstituted with 5.00 ml of water prior to use. We have evaluated the trace element content for several elements, including chromium and zinc, elements for which we have two independent methods available for the determinations, namely isotope dilution mass spectrometry (IDMS) and atomic absorption spectrometry (AAS). We also report on other trace elements measured by IDMS alone, such as Se, for which we have enriched stable isotopes available. Results for chromium indicate a mean +/- standard deviation (n = 10) of 1.2 +/- 0.3 (by IDMS) and 1.4 +/- 0.3 (by AAS) ng Cr per ml of reconstituted urine, indicating possible inhomogeneity and/or contamination (21-25% relative standard deviation, RSD). Approximately half of the observed chromium originates from the sample container. The values observed for zinc were 590 +/- 90 ng ml-1 (15% RSD) for freshly reconstituted material, 760 +/- 60 ng ml-1 (8% RSD) for material reconstituted 4 d earlier, and 940 +/- 60 ng ml-1 (6% RSD) 2 months after reconstitution. Selenium values by IDMS were very reproducible, with a mean concentration of 16 +/- 0.15 ng g-1 (0.9% RSD), suggesting little or no contamination and a high degree of sample homogeneity for this element. The source of potential contaminants has been evaluated by multielement determinations of leachates of the vials and stoppers. Elements noted in significant amounts include B, Ba, Sr, Mo, Cu and Zn, with most of the zinc coming from the rubber stopper.
NASA Astrophysics Data System (ADS)
Cai, W.; Lu, H.; Huang, X.
2016-12-01
In natural gas hydrates, some heavy hydrocarbons are always detected in addition to methane. However, it is still not well understood how the trace amount of heavy gas affect the hydrate properties. Intensive studies have been carried out to study the thermodynamic properties and structure types of mixed gases hydrates, but comparatively few investigations have been carried out on the cage occupancies of guest molecules in mixed gases hydrates. For understanding how trace amount of propane affects the formation of mixed methane-propane hydrates, X-ray diffraction, Raman spectroscopy, and gas chromatography were applied to the synthesized mixed methane-propane hydrate specimens, to get their structural characteristics (structure type, structural parameters, cage occupancy, etc.) and gas compositions. The mixed methane-propane hydrates were prepared by reacting fine ice powders with various gas mixtures of methane and propane. When the propane content was below 0.4%, the hydrates synthesized were found containing both sI methane hydrate and sII methane-propane hydrate; while the hydrates were found always sII when propane was over certain content. Detail studies about the cage occupancies of propane and methane in sII hydrate revealed that: 1) with the increase in propane content of methane-propane mixture, the occupancy of propane in large cage increased as accompanied with the decrease in methane occupancy in large cage, however the occupancy of methane in small cage didn't experience significant change; 2) temperature and pressure seemed no obvious influence on cage occupancy.
Faraji, Mohammad; Yamini, Yadollah; Shariati, Shahab
2009-07-30
Copper, as a heavy metal, is toxic for many biological systems. Thus, the determination of trace amounts of copper in environmental samples is of great importance. In the present work, a new method was developed for the determination of trace amounts of copper in water samples. The method is based on the formation of ternary Cu(II)-CAS-CTAB ion-pair and adsorption of it into a mini-column packed with cotton prior applying inductively coupled plasma optical emission spectrometry (ICP-OES). The experimental parameters that affected the extraction efficiency of the method such as pH, flow rate and volume of the sample solution, concentration of chromazurol S (CAS) and cethyltrimethylammonium bromide (CTAB) as well as type and concentration of eluent were investigated and optimized. The ion-pair (Cu(II)-CAS-CTAB) was quantitatively retained on the cotton under the optimum conditions, then eluted completely using a solution of 25% (v/v) 1-propanol in 0.5 mol L(-1) HNO(3) and directly introduced into the nebulizer of the ICP-OES. The detection limit (DL) of the method for copper was 40 ng L(-1) (V(sample)=100mL) and the relative standard deviation (R.S.D.) for the determination of copper at 10 microg L(-1) level was found to be 1.3%. The method was successfully applied to determine the trace amounts of copper in tap water, deep well water, seawater and two different mineral waters, and suitable recoveries were obtained (92-106%).
Vasylechko, Volodymyr O; Gryshchouk, Galyna V; Zakordonskiy, Victor P; Vyviurska, Olga; Pashuk, Andriy V
2015-01-01
In spite of the fact that terbium is one of the rarest elements in the Earth's crust, it is frequently used for the production of high technological materials. At the result, an effective combination of sample preparation procedure and detection method for terbium ions in different matrices is highly required. The solid-phase extraction procedure with natural Transcarpathian clinoptilolite thermally activated at 350 °C was used to preconcentrate trace amounts of terbium ions in aqueous solutions for a final spectrophotometric determination with arsenazo III. Thermogravimetric investigations confirmed the existence of relations between changes that appeared during dehydratation of calcined zeolite and its sorption affinity. Since the maximum of sorption capacity towards terbium was observed at pH 8.25, a borate buffer medium (2.5 · 10(-4) М) was used to maintain ionic force and solution acidity. Terbium was quantitatively removed from the solid-phase extraction column with a 1.0 M solution of sodium chloride (pH 2.5). The linearity of the proposed method was evaluated in the range of 2.5-200 ng · mL(-1) with detection limit 0.75 ng · mL(-1). Due to acceptable recoveries (93.3-102.0 %) and RSD values (6-7.1) from spiked tap water, the developed method can be successfully applied for the determination of trace amounts of terbium ions in the presence of major components of water. Graphical abstractSorption of terbium(III) ions on clinoptilolite.
NASA Astrophysics Data System (ADS)
Luke, Winston T.; Dickerson, Russell R.; Ryan, William F.; Pickering, Kenneth E.; Nunnermacker, Linda J.
1992-12-01
Convective clouds and thunderstorms redistribute air pollutants vertically, and by altering the chemistry and radiative balance of the upper troposphere, these local actions can have global consequences. To study these effects, measurements of trace gases ozone, O3, carbon monoxide, CO, and odd nitrogen were made aboard the NCAR Sabreliner on 18 flights over the southern Great Plains during June 1985. To demonstrate chemical changes induced by vertical motions in the atmosphere and to facilitate comparison with computer model calculations, these data were categorized according to synoptic flow patterns. Part 1 of this two-part paper details the alternating pulses of polar and maritime air masses that dominate the vertical mixing in this region. In this paper, trace gas measurements are presented as altitude profiles (0-12 km) with statistical distributions of mixing ratios for each species in each flow pattern. The polar flow regime is characterized by northwesterly winds, subsiding air, and convective stability. Concentrations of CO and total odd nitrogen (NOy) are relatively high in the shallow planetary boundary layer (PBL) but decrease rapidly with altitude. Ozone, on the other hand, is uniformly distributed, suggesting limited photochemical production; in fact, nitric oxide, NO, mixing ratios fell below 10 ppt (parts per 1012 by volume) in the midtroposphere. The maritime regime is characterized by southerly surface winds, convective instability, and a deep PBL; uniformly high concentrations of trace gases were found up to 4 km on one flight. Severe storms occur in maritime flow, especially when capped by a dry layer, and they transport large amounts of CO, O3, and NOy into the upper troposphere. Median NO levels at high altitude exceeded 300 ppt. Lightning produces spikes of NO (but not CO) with mixing ratios sometimes exceeding 1000 ppt. This flow pattern tends to leave the midtroposphere relatively clean with concentrations of trace gases similar to those observed in the polar category. During frontal passage both stratiform and convective clouds mix pollutants more uniformly into the middle and upper levels; high mixing ratios of CO are found at all altitudes, and O3 levels are highest of any category, implicating photochemical production. These results illustrate the importance of convection in tropospheric chemistry. Use of average trace gas profiles or eddy diffusion parameterized vertical mixing can lead to errors of 30 to 50% in O3 and CO concentrations and an order of magnitude for odd nitrogen.
Khan, Naeem; Choi, Ji Yeon; Nho, Eun Yeong; Jamila, Nargis; Habte, Girum; Hong, Joon Ho; Hwang, In Min; Kim, Kyong Su
2014-09-01
This study aimed at analyzing the concentrations of 23 minor and trace elements in aromatic spices by inductively coupled plasma-mass spectrometry (ICP-MS), after wet digestion by microwave system. The analytical method was validated by linearity, detection limits, precision, accuracy and recovery experiments, obtaining satisfactory values in all cases. Results indicated the presence of variable amounts of both minor and trace elements in the selected aromatic spices. Manganese was high in cinnamon (879.8 μg/g) followed by cardamom (758.1 μg/g) and clove (649.9 μg/g), strontium and zinc were high in ajwain (489.9 μg/g and 84.95 μg/g, respectively), while copper was high in mango powder (77.68 μg/g). On the whole some of the minor and essential trace elements were found to have good nutritional contribution in accordance to RDA. The levels of toxic trace elements, including As, Cd, and Pb were very low and did not found to pose any threat to consumers. Copyright © 2014 Elsevier Ltd. All rights reserved.
Infrared trace element detection system
Bien, F.; Bernstein, L.S.; Matthew, M.W.
1988-11-15
An infrared trace element detection system includes an optical cell into which the sample fluid to be examined is introduced and removed. Also introduced into the optical cell is a sample beam of infrared radiation in a first wavelength band which is significantly absorbed by the trace element and a second wavelength band which is not significantly absorbed by the trace element for passage through the optical cell through the sample fluid. The output intensities of the sample beam of radiation are selectively detected in the first and second wavelength bands. The intensities of a reference beam of the radiation are similarly detected in the first and second wavelength bands. The sensed output intensity of the sample beam in one of the first and second wavelength bands is normalized with respect to the other and similarly, the intensity of the reference beam of radiation in one of the first and second wavelength bands is normalized with respect to the other. The normalized sample beam intensity and normalized reference beam intensity are then compared to provide a signal from which the amount of trace element in the sample fluid can be determined. 11 figs.
Infrared trace element detection system
Bien, Fritz; Bernstein, Lawrence S.; Matthew, Michael W.
1988-01-01
An infrared trace element detection system including an optical cell into which the sample fluid to be examined is introduced and removed. Also introduced into the optical cell is a sample beam of infrared radiation in a first wavelength band which is significantly absorbed by the trace element and a second wavelength band which is not significantly absorbed by the trace element for passage through the optical cell through the sample fluid. The output intensities of the sample beam of radiation are selectively detected in the first and second wavelength bands. The intensities of a reference beam of the radiation are similarly detected in the first and second wavelength bands. The sensed output intensity of the sample beam in one of the first and second wavelength bands is normalized with respect to the other and similarly, the intensity of the reference beam of radiation in one of the first and second wavelength bands is normalized with respect to the other. The normalized sample beam intensity and normalized reference beam intensity are then compared to provide a signal from which the amount of trace element in the sample fluid can be determined.
Stratospheric H2O and HNO3 profiles derived from solar occultation measurements
NASA Technical Reports Server (NTRS)
Fischer, H.; Fergg, F.; Rabus, D.; Burkert, P.
1985-01-01
Compact two-channel radiometers for solar occultation experiments have been constructed in order to measure stratospheric trace gases. The instruments can be used as filter- or correlation-type radiometers, depending on the trace gas under investigation. Within the LIMS correlative measurement program, balloon flights were performed with a payload of up to four of these two-channel radiometers. From the filter-type measurements, profiles of the trace gases H2O and HNO3 are inferred for the height region between the tropopause and the balloon float level. The data evaluation also includes a comprehensive analysis of the error sources and their effect on the accuracy of the trace gas profiles. The derived H2O and HNO3 profiles are assessed against the observations of other authors and are discussed in the light of the trace gas distributions calcualted from photochemical models.
NASA Astrophysics Data System (ADS)
Marsden, Islay D.; Baharuddin, Nursalwa
2015-04-01
The effects of multiple stressors on estuarine organisms are not well understood. Using cage experiments we measured the survival and growth of the pulmonate gastropod Amphibola crenata at five locations which differed contaminant levels. Water nutrients came from a nearby sewage treatment works and the sediment contained low levels of trace metals. Over 6 weeks of exposure, sediment surface chlorophyll levels varied amongst locations. The Chl a values were positively correlated with sediment N and P and trace metals As, Cd, Cu, Pb and Zn. Pulmonate survival depended on location, highest mortality was from a site close to the treatment plant and mortality rate of large individuals decreased significantly with distance away from it. For four locations, medium A. crenata had higher survival than small (juveniles) or adults. Growth rates of small individuals exceeded those for medium and large A. crenata. The mean length increment/week for medium gastropods ranged between 0.49 and 1.11 mm and was negatively correlated with the amount of Chl a in the surface sediment, suggesting the negative effects of eutrophication on gastropod growth. Growth rate of the pulmonate was not correlated with nutrient concentration or trace metal concentrations in the sediment. The dry weight condition index (CI) did not correlate with the growth rate, and for medium individuals, was unaffected by any of the environmental variables. The CI of small individuals was negatively affected by increasing water nutrient levels and the CI of large individuals negatively affected by increasing sediment nutrients and trace metal concentrations. The results from this study suggest that gastropod growth and survival could be used as tools to monitor the effects of changing nutrient levels and recovery from eutrophication within temperate estuaries.
Optimal conditions for elution of hepatitis B antigen after absorption onto colloidal silica.
Pillot, J; Goueffon, S; Keros, R G
1976-01-01
Hepatitis B surface antigen (HBSAg) adsorbed from sera onto colloidal silica could be completely eluted through the use of 0.25% sodium deoxycholate in 0.01 M borax, pH 9.3, at 56 degrees C. The HBSAg recovered in the eluate represented 100% of that present in the original serum, and it was contaminated by only trace amounts of serum proteins (in decreasing amounts: beta-lipoprotein, immunoglobulin G, albumin). This preliminary step greatly facilitates purification of large amounts of HBSAg and provides small volumes of highly concentrated material for subsequent purification by density gradient centrifugation. PMID:9423
Trace detection of analytes using portable raman systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, M. Kathleen; Hotchkiss, Peter J.; Martin, Laura E.
Apparatuses and methods for in situ detection of a trace amount of an analyte are disclosed herein. In a general embodiment, the present disclosure provides a surface-enhanced Raman spectroscopy (SERS) insert including a passageway therethrough, where the passageway has a SERS surface positioned therein. The SERS surface is configured to adsorb molecules of an analyte of interest. A concentrated sample is caused to flow over the SERS surface. The SERS insert is then provided to a portable Raman spectroscopy system, where it is analyzed for the analyte of interest.
78 FR 39338 - Importer of Controlled Substances; Notice of Registration; Catalent CTS., Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-01
... plans to import an ointment for the treatment of wounds, which contains trace amounts of the controlled..., verification of the company's compliance with state and local laws, and a review of the company's background...
75 FR 9613 - Importer of Controlled Substances; Notice of Registration
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-03
... for the treatment of wounds which contain trace amounts of the controlled substance normally found in..., and a review of the company's background and history. Therefore, pursuant to 21 U.S.C. 952(a) and 958...
Helium Find Thaws the Cold Fusion Trail.
ERIC Educational Resources Information Center
Pennisi, E.
1991-01-01
Reported is a study of cold fusion in which trace amounts of helium, possible evidence of an actual fusion reaction, were found. Research methodology is detailed. The controversy over the validity of experimental results with cold fusion are reviewed. (CW)
Effect of copper chloride on the emissions of PCDD/Fs and PAHs from PVC combustion.
Wang, Dongli; Xu, Xiaobai; Zheng, Minghui; Chiu, Chung H
2002-09-01
The influences of temperature, air flow and the amount of copper chloride upon the types and amount of the toxic emissions such as polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) and polycyclic aromatic hydrocarbons (PAHs) during combustion of polyvinyl chloride (PVC) were investigated. The mechanism concerning the effect of temperature and copper chloride on the PCDD/Fs and PAHs formation was discussed. The results shown that without copper chloride, trace amounts of PCDD/Fs and large amounts of PAHs were found in the emissions from the pure PVC combustion under various combustion conditions. The addition of copper chloride enhanced PCDD/Fs formation, but it seems that the formation of PAHs decreased with increasing amount of copper chloride, and greater total amount of PAHs were produced at the higher temperature under our experimental conditions.
Baki, Mostafa Hossein; Shemirani, Farzaneh; Khani, Rouhollah
2013-05-01
Application of treated sawdust with NaOH as a green and economical sorbent for simultaneous preconcentration of trace amounts of Cd(II), Co(II), and Pb(II) ions from liver, lettuce, fish, and water as test samples with complicated matrices was investigated. Various parameters, such as effect of pH and contact time, breakthrough volume, type, and concentration of eluent and interference of ions were studied. The sorption was quantitative in the pH of 5.0 to 7.0 and desorption occurred instantaneously with 5.0 mL of mixed solutions of ethanol and 2.0 mol/L HNO3 -HCl and the amount of ions was measured by using flame atomic absorption spectrometry. Linearity was maintained at 3 to 500 μg/L for cobalt, 5.0 to 800 μg/L for lead, and 2.0 to 300 μg/L for cadmium in the original solution. The relative standard deviation was less than 1.80% (n = 6, with concentration of 0.3 mg/L for cadmium and 0.5 mg/L for lead and cobalt). Detection limits and maximum capacity of the sorbent for Co (II), Cd (II), and Pb (II) in the original solution were 0.86, 0.50, and 1.7 μg/L and 28.5, 30.6, and 47.3 mg/g, respectively. The results for spiked real samples, effect of interfering ions, and adsorption capacity indicated that the applicability of this method for lead preconcentration is better than cadmium and cobalt preconcentration from complicated matrices. Practical Application: Sawdust can be applied as a green and economical sorbent for simultaneous preconcentration and solid-phase extraction of metal ions from food and environmental samples with complicated matrices. © 2013 Institute of Food Technologists®
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golow, A.A.; Laryea, J.N.
1994-09-01
Fruits such as oranges and avocados are important sources of drinks and food in the Ghanaian Society. If such fruits contain various types of metals they may augument the types and amounts of them in the human body. The metals in fruits may depend on what is in the soils from which they are grown. If the soils contain toxic metals like lead, mercury and cadmium then the consumers may be poisoned as happened in the [open quotes]Ouchi - ouchi[close quotes], disease in Japan and similar episodes. In the area under study, the Geological Survey indicates the presence of 2.5more » ppm of lead, 10 - 20 ppm of copper and less than 15 ppm of nickel. Silver, not reported in commercial amounts, is a byproduct of gold productions at Obuasi. Since copper and nickel are presented in the area traces of silver will certainly occur. In the same manner zinc is usually associated with lead as sulphide of zinc blend trace amounts of it are likely to occur in the area. Of the four metals measured, iron and zinc essential for citrus. The extractable iron and zinc in the area of study were 90 and 1.8 mg/kg, levels on the low side for the healthy growth of crops. The investigation reported here is the comparison of the levels of some metals in oranges and avocados from farms in Obuasi and Konongo with those from farms in Kumasi City. This is a part of a project aimed at finding out differences in the metal contents of various food crops grown in various regions of the country. Konongo and Obuasi have soils which are rich in gold but Kumasi city, which is not too distant from these towns, does not have gold in its soil. 18 refs., 1 tab.« less
Mønster, Jacob G; Samuelsson, Jerker; Kjeldsen, Peter; Rella, Chris W; Scheutz, Charlotte
2014-08-01
Using a dual species methane/acetylene instrument based on cavity ring down spectroscopy (CRDS), the dynamic plume tracer dispersion method for quantifying the emission rate of methane was successfully tested in four measurement campaigns: (1) controlled methane and trace gas release with different trace gas configurations, (2) landfill with unknown emission source locations, (3) landfill with closely located emission sources, and (4) comparing with an Fourier transform infrared spectroscopy (FTIR) instrument using multiple trace gasses for source separation. The new real-time, high precision instrument can measure methane plumes more than 1.2 km away from small sources (about 5 kg h(-1)) in urban areas with a measurement frequency allowing plume crossing at normal driving speed. The method can be used for quantification of total methane emissions from diffuse area sources down to 1 kg per hour and can be used to quantify individual sources with the right choice of wind direction and road distance. The placement of the trace gas is important for obtaining correct quantification and uncertainty of up to 36% can be incurred when the trace gas is not co-located with the methane source. Measurements made at greater distances are less sensitive to errors in trace gas placement and model calculations showed an uncertainty of less than 5% in both urban and open-country for placing the trace gas 100 m from the source, when measurements were done more than 3 km away. Using the ratio of the integrated plume concentrations of tracer gas and methane gives the most reliable results for measurements at various distances to the source, compared to the ratio of the highest concentration in the plume, the direct concentration ratio and using a Gaussian plume model. Under suitable weather and road conditions, the CRDS system can quantify the emission from different sources located close to each other using only one kind of trace gas due to the high time resolution, while the FTIR system can measure multiple trace gasses but with a lower time resolution. Copyright © 2014 Elsevier Ltd. All rights reserved.
Krawczyk, Magdalena
2014-01-01
In this research, three different commercially available multivitamin dietary supplements were analyzed by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS) with slurry sampling. The concentrations of Cr, Cu, Fe, Mn, and Se were determined and compared to the amounts stated by producers. The safety of multivitamin dietary supplements depends on various factors including the manufacturing process and the purity and origins of the raw ingredients. For this reason, this research determined concentrations of several toxic elements (As, Cd, and Pb). Microwave-assisted high pressure Teflon bomb digestion was used to determine total amounts of elements in samples. Samples were prepared as slurries at a concentration of 0.1% (m/v) for macro elements (Cr, Cu, Fe, Mn, and Se) and at a concentration of % (m/v) for trace elements (As, Cd, and Pb) in acidic media (3M HNO3). The influence of acid concentration, Triton X-100 addition, sonication time, and sonication power on absorbance was investigated. The accuracy of this method was validated by analyses of NRCC LUTS-1 (Lobster hepatopancreas), NRCC DORM-1 (Dogfish Muscle), NRCC DOLT-2 (Dogfish Liver), NBS SRM 1570 (Spinach Leaves) and NBS SRM 1573 (Tomato Leaves) certified reference materials. The measured elements contents in these reference materials (except NRCC DOLT-2) were in satisfactory agreement with the certified values according to the t-test for a 95% confidence level. Copyright © 2013 Elsevier B.V. All rights reserved.
Salbu, B; Burkitbaev, M; Strømman, G; Shishkov, I; Kayukov, P; Uralbekov, B; Rosseland, B O
2013-09-01
The Kurday uranium mining site in Kazakhstan operated from 1954 to 1965 as part of the USSR nuclear weapon programme. To assess the environmental impact of radionuclides and trace elements associated with the Kurday mining site, field expeditions were performed in 2006. In addition to in situ gamma and (220)Rn dose rate measurements, sampling included at site fractionation of water as well as sampling of water, fish, sediment, soils and vegetation. The concentrations of U and associated trace metals were enriched in the Pit Lake and in the artesian water (U exceeding the WHO guideline value for drinking water), and decreased downstream from the mining area. Uranium, As, Mo and Ni were predominantly present as mobile low molecular mass species in waters, while a significant proportion of Cr, Mn and Fe were associated with colloids and particles. Due to oxidation of divalent iron in the artesian ground water upon contact with air, Fe served as scavenger for other elements, and peak concentrations of U-, Ra-isotopes, As and Mn were seen. Most radionuclides and trace elements were contained in minerals in soils and sediments, and good correlations were obtained between U and As, Cd, Mo and (226)Ra. Based on sequential extractions, a significant fraction of U, Pb and Cd could be considered mobile. Radioactive particles carrying significant amount of trace metals may represent a hazard during strong wind events. The transfer of radionuclides and metals from soils or sediments to water was in general low. The Kd levels varied with the element in question, ranging from 0.5 to 3 × 10(2) L/kg d.w. for (238)U being relatively mobile, 10(3) for (226)Ra, As, Cd, Ni, to 10(4) L/kg d.w. for Cu, Cr and Pb being rather inert The transfer of radionuclides and metals from soils to vegetation (TF) was low, while higher if the transfer to vegetation, especially underwater mosses, occurred via water (e.g., BCF 37 L/kg w.w. for (238)U and 3 × 10(3) L/kg w.w. for (226)Ra). The transfer of Cd, Pb and As from water to fish liver (BCF) was rather high, showing BCFs in the range of 10(2)-10(3) L/kg w.w., and may, if eaten, represent a health risk. Furthermore, the high Hg level in fish filet reaching 0.3 mg/kg w.w. muscle and the tendency of biomagnification call for dietary restrictions. Total gamma and Rn dose rate to man amounted to about 6 mSv/y, while the highest calculated dose rate for non-human species based on the ERICA Assessment Tool were obtained in aquatic plants, with calculated mean doses of 700 μGy/hr, mostly due to the U exposure. Overall, it is concluded that measures such as restricted access to the Pit Lake as well as dietary restrictions with respect to drinking water and intake of fish should be taken to reduce the environmental risk to man and biota. Copyright © 2012. Published by Elsevier Ltd.
Chen, Ting; Jin, Yiying; Qiu, Xiaopeng; Chen, Xin
2015-03-01
Using laboratory experiments, the authors investigated the impact of dry-heat and moist-heat treatment processes on hazardous trace elements (As, Hg, Cd, Cr, and Pb) in food waste and explored their distribution patterns for three waste components: oil, aqueous, and solid components. The results indicated that an insignificant reduction of hazardous trace elements in heat-treated waste-0.61-14.29% after moist-heat treatment and 4.53-12.25% after dry-heat treatment-and a significant reduction in hazardous trace elements (except for Hg without external addition) after centrifugal dehydration (P < 0.5). Moreover, after heat treatment, over 90% of the hazardous trace elements in the waste were detected in the aqueous and solid components, whereas only a trace amount of hazardous trace elements was detected in the oil component (<0.01%). In addition, results indicated that heat treatment process did not significantly reduce the concentration of hazardous trace elements in food waste, but the separation process for solid and aqueous components, such as centrifugal dehydration, could reduce the risk considerably. Finally, combined with the separation technology for solid and liquid components, dry-heat treatment is superior to moist-heat treatment on the removal of external water-soluble ionic hazardous trace elements. An insignificant reduction of hazardous trace elements in heat-treated waste showed that heat treatment does not reduce trace elements contamination in food waste considerably, whereas the separation process for solid and aqueous components, such as centrifugal dehydration, could reduce the risk significantly. Moreover, combined with the separation technology for solid and liquid components, dry-heat treatment is superior to moist-heat treatment for the removal of external water-soluble ionic hazardous trace elements, by exploring distribution patterns of trace elements in three waste components: oil, aqueous, and solid components.
NASA Technical Reports Server (NTRS)
Righter, M.; Lapen, T.; Righter, K.
2008-01-01
Achondritic meteorites are a diverse group of meteorites that formed by igneous activity in asteroids. These meteorites can provide important information about early differentiation processes on asteroidal bodies. The howardite-eucrite-diogenite (HED) meteorites, the largest group of achondrites, are the only group of meteorites for which a potential parent body has been identified (4 Vesta) [e.g., 1]. Mesosiderites are stony-iron meteorites composed of roughly equal amounts of metal and silicates and silicates are broadly similar to HED meteorites [2]. They may have been formed by impact-mixing of crustal and core materials of differentiated meteorite parent bodies. Chemical and oxygen isotopic compositional data suggest that the HED meteorites and silicate portions of mesosiderites originated on the same or closely related parent bodies. Pallasites and IIIAB irons also have similar oxygen isotope compositions and have been thought to be related to the HEDs [3,4]. However, recent high resolution analyses have shown that pallasites and HED's have different oxygen isotopic values, but mesosiderites and HED s have the same isotope compositions implying a close connection [5]. QUE 93148 is a small (1.1g) olivine-rich (mg 86) achondrite that contains variable amounts of orthopyroxenene (mg 87) and kamacite (6.7 wt% Ni), with minor augite [6]. This meteorite was originally classified as a lodranite [7], but it s oxygen isotopic composition precludes a genetic relationship to the acapulcoites and lodranites. And also this meteorite has a lower Mn/Mg ratio than any major group of primitive or evolved achondrites and suggested that QUE 93148 may be a piece of the deep mantle of the HED parent body [6]. To better understand the relationship between HED s, mesosiderites and related achondrites, we have measured trace elements in the individual metallic and silicate phases. In this study, abundances of a suite of elements were measured for the unusual mesosiderite RKPA 79015 and a ungrouped achondrite QUE93148.
Bomb swab: Can trace explosive particle sampling and detection be improved?
Fisher, Danny; Zach, Raya; Matana, Yossef; Elia, Paz; Shustack, Shiran; Sharon, Yarden; Zeiri, Yehuda
2017-11-01
The marked increase in international terror in recent years requires the development of highly efficient methods to detect trace amounts of explosives at airports, border crossings and check points. The preferred analytical method worldwide is the ion mobility spectrometry (IMS) that is capable of detecting most explosives at the nano-gram level. Sample collection for the IMS analysis is based on swabbing of a passenger's belongings to collect possible explosive residues. The present study examines a wide range of issues related to swab-based particle collection and analysis, in the hope of gaining deeper understanding into this technique that will serve to improve the detection process. The adhesion of explosive particles to three typical materials, plastic, metal and glass, were measured using atomic force microscopy (AFM). We found that a strong contribution of capillary forces to adhesion on glass and metal surfaces renders these substrates more promising materials upon which to find and collect explosive residues. The adhesion of explosives to different swipe materials was also examined. Here we found that Muslin, Nomex ® and polyamide membrane surfaces are the most promising materials for use as swipes. Subsequently, the efficiency of multiple swipe use - for collecting explosive residues from a glass surface using Muslin, Nomex ® and Teflon™ swipes - was examined. The study suggests that swipes used in about 5-10 "sampling and analysis cycles" have higher efficiency as compared to new unused swipes. The reason for this behavior was found to be related to the increased roughness of the swipe surface following a few swab measurements. Lastly, GC-MS analysis was employed to examine the nature of contaminants collected by the three types of swipe. The relative amounts of different contaminants are reported. The existence and interference of these contaminants have to be considered in relation to the detection efficiency of the various explosives by the IMS. Copyright © 2017 Elsevier B.V. All rights reserved.
Amplification of trace amounts of nucleic acids
Church, George M [Brookline, MA; Zhang, Kun [Brighton, MA
2008-06-17
Methods of reducing background during amplification of small amounts of nucleic acids employ careful analysis of sources of low level contamination. Ultraviolet light can be used to reduce nucleic acid contaminants in reagents and equipment. "Primer-dimer" background can be reduced by judicious design of primers. We have shown clean signal-to-noise with as little as starting material as one single human cell (.about.6 picogram), E. coli cell (.about.5 femtogram) or Prochlorococcus cell (.about.3 femtogram).
NASA Astrophysics Data System (ADS)
Alvarez-Llamas, C.; Pisonero, J.; Bordel, N.
2016-09-01
Direct solid determination of trace amounts of fluorine using Laser-Induced Breakdown Spectroscopy (LIBS) is a challenging task due to the low excitation efficiency of this element. Several strategies have been developed to improve the detection capabilities, including the use of LIBS in a He atmosphere to enhance the signal to background ratios of F atomic emission lines. An alternative method is based on the detection of the molecular compounds that are formed with fluorine in the LIBS plasma. In this work, the detection of CaF molecular emission bands is investigated to improve the analytical capabilities of atmospheric air LIBS for the determination of fluorine traces in solid samples. In particular, Cu matrix samples containing different fluorine concentration (between 50 and 600 μg/g), and variable amounts of Ca, are used to demonstrate the linear relationships between CaF emission signal and F concentration. Limits of detection for fluorine are improved by more than 1 order of magnitude using CaF emission bands versus F atomic lines, in atmospheric-air LIBS. Furthermore, a toothpaste powder sample is used to validate this analytical method. Good agreement is observed between the nominal and the predicted fluorine mass-content.
Wang, Shu; Li, Yun; Wu, Xiaoli; Ding, Meijuan; Yuan, Lihua; Wang, Ruoyu; Wen, Tingting; Zhang, Jun; Chen, Lina; Zhou, Xuemin; Li, Fei
2011-02-28
To assess the potential risks associated with the environmental exposure of steroid estrogens, a novel highly efficient and selective estrogen enrichment procedure based on the use of molecularly imprinted polymer has been developed and evaluated. Herein, analogue of estrogens, namely 17-ethyl estradiol (EE(2)) was used as the pseudo template, to avoid the leakage of a trace amount of the target analytes. The resulting pseudo molecularly imprinted polymers (PMIPs) showed large sorption capacity, high recognition ability and fast binding kinetics for estrogens. Moreover, using these imprinted particles as dispersive solid-phase extraction (DSPE) materials, the amounts of three estrogens (E(1), E(2) and E(3)) which were detected by HPLC-UV from the chicken tissue samples were 0.28, 0.31 and 0.17 μg g(-1), and the recoveries were 72.5-78.7%, 90.3-95.2% and 80.5-83.6% in spiked chicken tissue samples with RSD <7%, respectively. All these results reveal that EE(2)-PMIPs as DSPE materials coupled with HPLC-UV could be applied to the highly selective separation and sensitive determination of trace estrogens in chicken tissue samples. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mirabi, Ali; Dalirandeh, Zeinab; Rad, Ali Shokuhi
2015-05-01
A new method has been developed for the separation/preconcentration of trace level cadmium ions using diphenyl carbazone/sodium dodecyl sulfate immobilized on magnetic nanoparticle Fe3O4 as a new sorbent SPE and their determination by flame atomic absorption spectrometry (FAAS). Synthesized nanoparticle was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). Various influencing parameters on the separation and preconcentration of trace level cadmium ions such as, pH value, amount of nanoparticles, amount of diphenyl carbazone, condition of eluting solution, the effects of matrix ions were examined. The cadmium ions can be eluted from the modified magnetic nanoparticle using 1 mol L-1 HCl as a desorption reagent. The detection limit of this method for cadmium was 3.71 ng ml-1 and the R.S.D. was 0.503% (n=6). The advantages of this new method include rapidity, easy preparation of sorbents and a high concentration factor. The proposed method has been applied to the determination of Cd ions at trace levels in real samples such as, green tea, rice, tobacco, carrot, lettuce, ginseng, spice, tap water, river water, sea water with satisfactory results.
78 FR 69131 - Importer of Controlled Substances; Notice of Registration; Catalent CTS, LLC
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-18
... treatment of wounds which contains trace amounts of the controlled substances normally found in poppy straw... company's background and history. Therefore, pursuant to 21 U.S.C. 952(a) and 958(a), and in accordance...
RELATIONSHIPS BETWEEN LABORATORY AND PILOT-SCALE COMBUSTION OF SOME CHLORINATED HYDROCARBONS
Factors governing the occurence of trace amounts of residual organic substance emmissions (ROSEs) in full-scale incierators are not fully understood. Pilot-scale spray combustion expereiments involving some liquid chlorinated hydrocarbons (CHCs) and their dilute mixtures with hy...
Determination of trace metals in spirits by total reflection X-ray fluorescence spectrometry
NASA Astrophysics Data System (ADS)
Siviero, G.; Cinosi, A.; Monticelli, D.; Seralessandri, L.
2018-06-01
Eight spirituous samples were analyzed for trace metal content with Horizon Total Reflection X-Ray Fluorescence (TXRF) Spectrometer. The expected single metal amount is at the ng/g level in a mixed aqueous/organic matrix, thus requiring a sample preparation method capable of achieving suitable limits of detection. On-site enrichment and Atmospheric Pressure-Vapor Phase Decomposition allowed to detect Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Sr and Pb with detection limits ranging from 0.1 ng/g to 4.6 ng/g. These results highlight how the synergy between instrument and sample preparation strategy may foster the use of TXRF as a fast and reliable technique for the determination of trace elements in spirituous samples, either for quality control or risk assessment purposes.
NASA Technical Reports Server (NTRS)
Goldman, Aaron
1999-01-01
The Langley-D.U. collaboration on the analysis of high resolution infrared atmospheric spectra covered a number of important studies of trace gases identification and quantification from field spectra, and spectral line parameters analysis. The collaborative work included: Quantification and monitoring of trace gases from ground-based spectra available from various locations and seasons and from balloon flights. Studies toward identification and quantification of isotopic species, mostly oxygen and Sulfur isotopes. Search for new species on the available spectra. Update of spectroscopic line parameters, by combining laboratory and atmospheric spectra with theoretical spectroscopy methods. Study of trends of atmosphere trace constituents. Algorithms developments, retrievals intercomparisons and automatization of the analysis of NDSC spectra, for both column amounts and vertical profiles.
Anthropogenic plutonium-244 in the environment: Insights into plutonium’s longest-lived isotope
Armstrong, Christopher R.; Brant, Heather A.; Nuessle, Patterson R.; ...
2016-02-22
Owing to the rich history of heavy element production in the unique high flux reactors that operated at the Savannah River Site, USA (SRS) decades ago, trace quantities of plutonium with highly unique isotopic characteristics still persist today in the SRS terrestrial environment. Development of an effective sampling, processing, and analysis strategy enables detailed monitoring of the SRS environment, revealing plutonium isotopic compositions, e.g., 244Pu, that reflect the unique legacy of plutonium production at SRS. This work describes the first long-term investigation of anthropogenic 244Pu occurrence in the environment. Environmental samples, consisting of collected foot borne debris, were taken atmore » SRS over an eleven year period, from 2003 to 2014. Separation and purification of trace plutonium was carried out followed by three stage thermal ionization mass spectrometry (3STIMS) measurements for plutonium isotopic content and isotopic ratios. Furthermore, significant 244Pu was measured in all of the years sampled with the highest amount observed in 2003. The 244Pu content, in femtograms (fg = 10 –15 g) per gram, ranged from 0.31 fg/g to 44 fg/g in years 2006 and 2003 respectively. In all years, the 244Pu/ 239Pu atom ratios were significantly higher than global fallout, ranging from 0.003 to 0.698 in years 2014 and 2003 respectively.« less
Anthropogenic plutonium-244 in the environment: Insights into plutonium’s longest-lived isotope
Armstrong, Christopher R.; Brant, Heather A.; Nuessle, Patterson R.; Hall, Gregory; Cadieux, James R.
2016-01-01
Owing to the rich history of heavy element production in the unique high flux reactors that operated at the Savannah River Site, USA (SRS) decades ago, trace quantities of plutonium with highly unique isotopic characteristics still persist today in the SRS terrestrial environment. Development of an effective sampling, processing, and analysis strategy enables detailed monitoring of the SRS environment, revealing plutonium isotopic compositions, e.g., 244Pu, that reflect the unique legacy of plutonium production at SRS. This work describes the first long-term investigation of anthropogenic 244Pu occurrence in the environment. Environmental samples, consisting of collected foot borne debris, were taken at SRS over an eleven year period, from 2003 to 2014. Separation and purification of trace plutonium was carried out followed by three stage thermal ionization mass spectrometry (3STIMS) measurements for plutonium isotopic content and isotopic ratios. Significant 244Pu was measured in all of the years sampled with the highest amount observed in 2003. The 244Pu content, in femtograms (fg = 10−15 g) per gram, ranged from 0.31 fg/g to 44 fg/g in years 2006 and 2003 respectively. In all years, the 244Pu/239Pu atom ratios were significantly higher than global fallout, ranging from 0.003 to 0.698 in years 2014 and 2003 respectively. PMID:26898531
Determination of trace metals in drinking water in Irbid City-Northern Jordan.
Alomary, Ahmed
2013-02-01
Drinking water samples from Irbid, the second populated city in Jordan were analyzed for trace metals (As, Ba, Cd, Pb, Cr, Cu, Fe, Zn, Mn, Ni, and Se) content. The study was undertaken to determine if the metal concentrations were within the national and international guidelines. A total of 90 drinking water samples were collected from Al-Yarmouk University area. The samples were collected from three different water types: tap water (TW), home-purified water (HPW), and plant-purified water (PPW). All the samples were analyzed for trace metals using an inductively coupled plasma-optical emission spectrometry. All the samples analyzed were within the United States Environmental Protection Agency admissible pH limit (6.5-8.5). The results showed that concentrations of the trace metals vary significantly between the three drinking water types. The results showed that HPW samples have the lowest level of trace metals and the concentrations of some essential trace metals in these samples are less than the recommended amounts. Slight differences in the metal contents were found between HPW samples, little differences between PPW samples; however, significant differences were found between TW samples. Although some TW samples showed high levels of trace metals, however, the mean level of most elements determined in the samples were well within the Jordanian standards as well as the World Health Organization standards for drinking water.
Constructing Space-Time Views from Fixed Size Statistical Data: Getting the Best of both Worlds
NASA Technical Reports Server (NTRS)
Schmidt, Melisa; Yan, Jerry C.
1997-01-01
Many performance monitoring tools are currently available to the super-computing community. The performance data gathered and analyzed by these tools fall under two categories: statistics and event traces. Statistical data is much more compact but lacks the probative power event traces offer. Event traces, on the other hand, can easily fill up the entire file system during execution such that the instrumented execution may have to be terminated half way through. In this paper, we propose an innovative methodology for performance data gathering and representation that offers a middle ground. The user can trade-off tracing overhead, trace data size vs. data quality incrementally. In other words, the user will be able to limit the amount of trace collected and, at the same time, carry out some of the analysis event traces offer using space-time views for the entire execution. Two basic ideas arc employed: the use of averages to replace recording data for each instance and formulae to represent sequences associated with communication and control flow. With the help of a few simple examples, we illustrate the use of these techniques in performance tuning and compare the quality of the traces we collected vs. event traces. We found that the trace files thus obtained are, in deed, small, bounded and predictable before program execution and that the quality of the space time views generated from these statistical data are excellent. Furthermore, experimental results showed that the formulae proposed were able to capture 100% of all the sequences associated with 11 of the 15 applications tested. The performance of the formulae can be incrementally improved by allocating more memory at run-time to learn longer sequences.
Constructing Space-Time Views from Fixed Size Statistical Data: Getting the Best of Both Worlds
NASA Technical Reports Server (NTRS)
Schmidt, Melisa; Yan, Jerry C.; Bailey, David (Technical Monitor)
1996-01-01
Many performance monitoring tools are currently available to the super-computing community. The performance data gathered and analyzed by these tools fall under two categories: statistics and event traces. Statistical data is much more compact but lacks the probative power event traces offer. Event traces, on the other hand, can easily fill up the entire file system during execution such that the instrumented execution may have to be terminated half way through. In this paper, we propose an innovative methodology for performance data gathering and representation that offers a middle ground. The user can trade-off tracing overhead, trace data size vs. data quality incrementally. In other words, the user will be able to limit the amount of trace collected and, at the same time, carry out some of the analysis event traces offer using spacetime views for the entire execution. Two basic ideas are employed: the use of averages to replace recording data for each instance and "formulae" to represent sequences associated with communication and control flow. With the help of a few simple examples, we illustrate the use of these techniques in performance tuning and compare the quality of the traces we collected vs. event traces. We found that the trace files thus obtained are, in deed, small, bounded and predictable before program execution and that the quality of the space time views generated from these statistical data are excellent. Furthermore, experimental results showed that the formulae proposed were able to capture 100% of all the sequences associated with 11 of the 15 applications tested. The performance of the formulae can be incrementally improved by allocating more memory at run-time to learn longer sequences.
Hu, Yufei; Zhang, Zhujun; Yang, Chunyan
2008-07-01
Measurement methods for ultrasonic fields are important for reasons of safety. The investigation of an ultrasonic field can be performed by detecting the yield of hydroxyl radicals resulting from ultrasonic cavitations. In this paper, a novel method is introduced for detecting hydroxyl radicals by a chemiluminescence (CL) reaction of luminol-hydrogen peroxide (H2O2)-K5[Cu(HIO6)2](DPC). The yield of hydroxyl radicals is calculated directly by the relative CL intensity according to the corresponding concentration of H2O2. This proposed CL method makes it possible to perform an in-line and real-time assay of hydroxyl radicals in an ultrasonic aqueous solution. With flow injection (FI) technology, this novel CL reaction is sensitive enough to detect ultra trace amounts of H2O2 with a limit of detection (3sigma) of 4.1 x 10(-11) mol L(-1). The influences of ultrasonic output power and ultrasonic treatment time on the yield of hydroxyl radicals by an ultrasound generator were also studied. The results indicate that the amount of hydroxyl radicals increases with the increase of ultrasonic output power (< or = 15 W mL(-1)). There is a linear relationship between the time of ultrasonic treatment and the yield of H2O2. The ultrasonic field of an ultrasonic cleaning baths has been measured by calculating the yield of hydroxyl radicals.
Trace Gas Retrievals from the GeoTASO Aircraft Instrument During the DISCOVER-AQ Campaigns
NASA Astrophysics Data System (ADS)
Nowlan, C. R.; Liu, X.; Leitch, J. W.; Liu, C.; Gonzalez Abad, G.; Chance, K.; Delker, T.; Good, W. S.; Murcray, F.; Ruppert, L.; Kaptchen, P. F.; Loughner, C.; Follette-Cook, M. B.; Pickering, K. E.
2014-12-01
The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument is a recently-developed passive remote sensing instrument capable of making 2-D measurements of trace gases from aircraft. GeoTASO was developed under NASA's Instrument Incubator program and is a test-bed instrument for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey and the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite missions. The instrument collects spectra of backscattered UV-visible radiation for the detection of tropospheric trace gases such as NO2, ozone, formaldehyde and SO2. GeoTASO flew on the NASA HU-25C Falcon aircraft during the 2013 (Texas) and 2014 (Colorado) DISCOVER-AQ field campaigns, making satellite-analog measurements of trace gases at a spatial resolution of approximately 500x500 m over urban areas, power plants and other industrial sources of pollution. We present the GeoTASO retrieval algorithms, trace gas measurement results, and validation comparisons with ground-based observations and other aircraft instruments during these campaigns.
Tropospheric nitrogen dioxide column retrieval based on ground-based zenith-sky DOAS observations
NASA Astrophysics Data System (ADS)
Tack, F. M.; Hendrick, F.; Pinardi, G.; Fayt, C.; Van Roozendael, M.
2013-12-01
A retrieval approach has been developed to derive tropospheric NO2 vertical column amounts from ground-based zenith-sky measurements of scattered sunlight. Zenith radiance spectra are observed in the visible range by the BIRA-IASB Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) instrument and analyzed by the DOAS technique, based on a least-squares spectral fitting. In recent years, this technique has shown to be a well-suited remote sensing tool for monitoring atmospheric trace gases. The retrieval algorithm is developed and validated based on a two month dataset acquired from June to July 2009 in the framework of the Cabauw (51.97° N, 4.93° E) Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI). Once fully operational, the retrieval approach can be applied to observations from stations of the Network for the Detection of Atmospheric Composition Change (NDACC). The obtained tropospheric vertical column amounts are compared with the multi-axis retrieval from the BIRA-IASB MAX-DOAS instrument and the retrieval from a zenith-viewing only SAOZ instrument (Système d'Analyse par Observations Zénithales), owned by Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS). First results show a good agreement for the whole time series with the multi-axis retrieval (R = 0.82; y = 0.88x + 0.30) as well as with the SAOZ retrieval (R = 0.85; y = 0.76x + 0.28 ). Main error sources arise from the uncertainties in the determination of tropospheric and stratospheric air mass factors, the stratospheric NO2 abundances and the residual amount in the reference spectrum. However zenith-sky measurements have been commonly used over the last decades for stratospheric monitoring, this study also illustrates the suitability for retrieval of tropospheric column amounts. As there are long time series of zenith-sky acquisitions available, the developed approach offers new perspectives with regard to the use of observations from the NDACC stations.
Paper-based SERS swab for rapid trace detection on real-world surfaces.
Lee, Chang H; Tian, Limei; Singamaneni, Srikanth
2010-12-01
One of the important but often overlooked considerations in the design of surface-enhanced Raman scattering (SERS) substrates for trace detection is the efficiency of sample collection. Conventional designs based on rigid substrates such as silicon, alumina, and glass resist conformal contact with the surface under investigation, making the sample collection inefficient. We demonstrate a novel SERS substrate based on common filter paper adsorbed with gold nanorods, which allows conformal contact with real-world surfaces, thus dramatically enhancing the sample collection efficiency compared to conventional rigid substrates. We demonstrate the detection of trace amounts of analyte (140 pg spread over 4 cm2) by simply swabbing the surface under investigation with the novel SERS substrate. The hierarchical fibrous structure of paper serves as a 3D vasculature for easy uptake and transport of the analytes to the electromagnetic hot spots in the paper. Simple yet highly efficient and cost-effective SERS substrate demonstrated here brings SERS-based trace detection closer to real-world applications.
Han, Hengda; Hu, Song; Syed-Hassan, Syed Shatir A; Xiao, Yiming; Wang, Yi; Xu, Jun; Jiang, Long; Su, Sheng; Xiang, Jun
2017-07-01
Sewage sludge is an important class of bioresources whose energy content could be exploited using pyrolysis technology. However, some harmful trace elements in sewage sludge can escape easily to the gas phase during pyrolysis, increasing the potential of carcinogenic material emissions to the atmosphere. This study investigates emission characteristics of arsenic, cadmium and lead under different pyrolysis conditions for three different sewage sludge samples. The increased temperature (within 723-1123K) significantly promoted the cadmium and lead emissions, but its influence on arsenic emission was not pronounced. The releasing rate order of the three trace elements is volatile arsenic compounds>cadmium>lead in the beginning of pyrolysis. Fast heating rates promoted the emission of trace elements for the sludge containing the highest amount of ash, but exhibited an opposite effect for other studied samples. Overall, the high ash sludge released the least trace elements almost under all reaction conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goode, S.R.; Angel, S.M.
1997-01-01
'The long-term goal of this project is to develop a system to measure the elemental composition of unprepared samples using laser-induced breakdown spectroscopy, LIBS, with a fiber-optic probe. From images shown in this report it is evident that the temporal and spatial behavior of laser-induced plasmas IS a complex process. However, through the use of spectral imaging, optimal conditions can be determined for collecting the atomic emission signal in these plasmas. By tailoring signal collection to the regions of the plasma that contain the highest emission signal with the least amount of background interference both the detection limits and themore » precision of LIBS measurements could be improved. The optimal regions for both gated and possibly non-gated LIBS measurements have been shown to correspond to the inner regions and outer regions, respectively, in an axial plasma. By using this data fiber-optic LIBS probe designs can be optimized for collecting plasma emission at the optimal regions for improved detection limits and precision in a LIBS measurement.'« less
An effective temperature compensation approach for ultrasonic hydrogen sensors
NASA Astrophysics Data System (ADS)
Tan, Xiaolong; Li, Min; Arsad, Norhana; Wen, Xiaoyan; Lu, Haifei
2018-03-01
Hydrogen is a kind of promising clean energy resource with a wide application prospect, which will, however, cause a serious security issue upon the leakage of hydrogen gas. The measurement of its concentration is of great significance. In a traditional approach of ultrasonic hydrogen sensing, a temperature drift of 0.1 °C results in a concentration error of about 250 ppm, which is intolerable for trace amount of gas sensing. In order to eliminate the influence brought by temperature drift, we propose a feasible approach named as linear compensation algorithm, which utilizes the linear relationship between the pulse count and temperature to compensate for the pulse count error (ΔN) caused by temperature drift. Experimental results demonstrate that our proposed approach is capable of improving the measurement accuracy and can easily detect sub-100 ppm of hydrogen concentration under variable temperature conditions.
Management of exposure to waste anesthetic gases.
Smith, Francis Duval
2010-04-01
Anesthetic agents were developed in the 1700s, and nitrous oxide was first used in 1884. Research on the effects of waste anesthetic gas exposure started appearing in the literature in 1967. Short-term exposure causes lethargy and fatigue, and long-term exposure may be linked to spontaneous abortion, congenital abnormalities, infertility, premature births, cancer, and renal and hepatic disease. Today, perioperative staff members are exposed to trace amounts of waste anesthetic gas, and although this exposure cannot be eliminated, it can be controlled. Health care facilities are required to develop, implement, measure, and control practices to reduce anesthetic gas exposure to the lowest practical level. Exposure levels must be measured every six months and maintained at less than 25 parts per million for nitrous oxide and 2 parts per million for halogenated agents to be compliant with Occupational Safety and Health Administration standards. Copyright 2010 AORN, Inc. Published by Elsevier Inc. All rights reserved.
Measurement of the first ionization potential of astatine by laser ionization spectroscopy
Rothe, S.; Andreyev, A. N.; Antalic, S.; Borschevsky, A.; Capponi, L.; Cocolios, T. E.; De Witte, H.; Eliav, E.; Fedorov, D. V.; Fedosseev, V. N.; Fink, D. A.; Fritzsche, S.; Ghys, L.; Huyse, M.; Imai, N.; Kaldor, U.; Kudryavtsev, Yuri; Köster, U.; Lane, J. F. W.; Lassen, J.; Liberati, V.; Lynch, K. M.; Marsh, B. A.; Nishio, K.; Pauwels, D.; Pershina, V.; Popescu, L.; Procter, T. J.; Radulov, D.; Raeder, S.; Rajabali, M. M.; Rapisarda, E.; Rossel, R. E.; Sandhu, K.; Seliverstov, M. D.; Sjödin, A. M.; Van den Bergh, P.; Van Duppen, P.; Venhart, M.; Wakabayashi, Y.; Wendt, K. D. A.
2013-01-01
The radioactive element astatine exists only in trace amounts in nature. Its properties can therefore only be explored by study of the minute quantities of artificially produced isotopes or by performing theoretical calculations. One of the most important properties influencing the chemical behaviour is the energy required to remove one electron from the valence shell, referred to as the ionization potential. Here we use laser spectroscopy to probe the optical spectrum of astatine near the ionization threshold. The observed series of Rydberg states enabled the first determination of the ionization potential of the astatine atom, 9.31751(8) eV. New ab initio calculations are performed to support the experimental result. The measured value serves as a benchmark for quantum chemistry calculations of the properties of astatine as well as for the theoretical prediction of the ionization potential of superheavy element 117, the heaviest homologue of astatine. PMID:23673620
Muscarinic receptors in amygdala control trace fear conditioning.
Baysinger, Amber N; Kent, Brianne A; Brown, Thomas H
2012-01-01
Intelligent behavior requires transient memory, which entails the ability to retain information over short time periods. A newly-emerging hypothesis posits that endogenous persistent firing (EPF) is the neurophysiological foundation for aspects or types of transient memory. EPF is enabled by the activation of muscarinic acetylcholine receptors (mAChRs) and is triggered by suprathreshold stimulation. EPF occurs in several brain regions, including the lateral amygdala (LA). The present study examined the role of amygdalar mAChRs in trace fear conditioning, a paradigm that requires transient memory. If mAChR-dependent EPF selectively supports transient memory, then blocking amygdalar mAChRs should impair trace conditioning, while sparing delay and context conditioning, which presumably do not rely upon transient memory. To test the EPF hypothesis, LA was bilaterally infused, prior to trace or delay conditioning, with either a mAChR antagonist (scopolamine) or saline. Computerized video analysis quantified the amount of freezing elicited by the cue and by the training context. Scopolamine infusion profoundly reduced freezing in the trace conditioning group but had no significant effect on delay or context conditioning. This pattern of results was uniquely anticipated by the EPF hypothesis. The present findings are discussed in terms of a systems-level theory of how EPF in LA and several other brain regions might help support trace fear conditioning.
Olafisoye, O B; Oguntibeju, O O; Osibote, O A
2017-05-03
Oil palm (Elaeisguineensis) is one of the most productive oil producing plant in the world. Crude palm oil is composed of triglycerides supplying the world's need of edible oils and fats. Palm oil also provides essential elements and antioxidants that are potential mediators of cellular functions. Experimental studies have demonstrated the toxicity of the accumulation of significant amounts of nonessential trace elements and radionuclides in palm oil that affects the health of consumers. It has been reported that uptake of trace elements and radionuclides from the oil palm tree may be from water and soil on the palm plantations. In the present review, an attempt was made to revise and access knowledge on the presence of some selected trace elements and radionuclides in palm oil, soil, water, and leaves from oil palm plantations based on the available facts and data. Existing reports show that the presence of nonessential trace elements and radionuclides in palm oil may be from natural or anthropogenic sources in the environment. However, the available literature is limited and further research need to be channeled to the investigation of trace elements and radionuclides in soil, water, leaves, and palm oil from oil palm plantations around the globe.
Electrostatic precipitator performance and trace element emissions from two Kraft recovery boilers.
Lind, Terttaliisa; Hokkinen, Jouni; Jokiniemi, Jorma K; Hillamo, Risto; Makkonen, Ulla; Raukola, Antti; Rintanen, Jaakko; Saviharju, Kari
2006-01-15
Fine particle emissions from combustion sources have gained attention recently due to their adverse effects on human health. The emission depends on the combustion process, fuel, and particulate removal technology. Particle concentrations at Kraft recovery boiler exits are very high, and the boilers are typically equipped with electrostatic precipitators (ESP). However, little data are available on the ESP performance in recovery boilers. Particle concentrations and size distributions were determined at two modern, operating recovery boilers. In addition, we determined the fractional collection efficiency of the ESPs by simultaneous measurements at the ESP inlet and outlet and the particulate emissions of trace metals. The particle mass concentration atthe ESP inlet was 11-24 g/Nm3 at the two boilers. Particle emissions were 30-40 mg/ Nm3 at boiler A and 12-15 mg/Nm3 at boiler B. The particle size distributions had a major particle mode at around 1 microm. These fume particles contained most of the particle mass. The main components in the particles were sodium and sulfate with minor amounts of chloride, potassium, and presumably some carbonate. The ESP collection efficiency was 99.6-99.8% at boiler A and 99.9% at boiler B. The particle penetration through the ESP was below 0.6% in the entire fume particle size range of 0.3-3 microm. Trace element emissions from both boilers were well below the limit values set by EU directive for waste incineration.
NASA Astrophysics Data System (ADS)
Ceco, Ema; Önnerud, Hans; Menning, Dennis; Gilljam, John L.; Bââth, Petra; Östmark, Henric
2014-05-01
The following paper presents a realistic forensic capability test of an imaging Raman spectroscopy based demonstrator system, developed at FOI, the Swedish Defence Research Agency. The system uses a 532 nm laser to irradiate a surface of 25×25mm. The backscattered radiation from the surface is collected by an 8" telescope with subsequent optical system, and is finally imaged onto an ICCD camera. We present here an explosives trace analysis study of samples collected from a realistic scenario after a detonation. A left-behind 5 kg IED, based on ammonium nitrate with a TNT (2,4,6-trinitrotoluene) booster, was detonated in a plastic garbage bin. Aluminum sample plates were mounted vertically on a holder approximately 6 m from the point of detonation. Minutes after the detonation, the samples were analyzed with stand-off imaging Raman spectroscopy from a distance of 10 m. Trace amounts could be detected from the secondary explosive (ammonium nitrate with an analysis time of 1 min. Measurement results also indicated detection of residues from the booster (TNT). The sample plates were subsequently swabbed and analyzed with HPLC and GC-MS analyses to confirm the results from the stand-off imaging Raman system. The presented findings indicate that it is possible to determine the type of explosive used in an IED from a distance, within minutes after the attack, and without tampering with physical evidence at the crime scene.
Trace detection of specific viable bacteria using tetracysteine-tagged bacteriophages.
Wu, Lina; Luan, Tian; Yang, Xiaoting; Wang, Shuo; Zheng, Yan; Huang, Tianxun; Zhu, Shaobin; Yan, Xiaomei
2014-01-07
Advanced methods are urgently needed to determine the identity and viability of trace amounts of pathogenic bacteria in a short time. Existing approaches either fall short in the accurate assessment of microbial viability or lack specificity in bacterial identification. Bacteriophages (or phages for short) are viruses that exclusively infect bacterial host cells with high specificity. As phages infect and replicate only in living bacterial hosts, here we exploit the strategy of using tetracysteine (TC)-tagged phage in combination with biarsenical dye to the discriminative detection of viable target bacteria from dead target cells and other viable but nontarget bacterial cells. Using recombinant M13KE-TC phage and Escherichia coli ER2738 as a model system, distinct differentiation between individual viable target cells from dead target cells was demonstrated by flow cytometry and fluorescence microscopy. As few as 1% viable E. coli ER2738 can be accurately quantified in a mix with dead E. coli ER2738 by flow cytometry. With fluorescence microscopic measurement, specific detection of as rare as 1 cfu/mL original viable target bacteria was achieved in the presence of a large excess of dead target cells and other viable but nontarget bacterial cells in 40 mL artificially contaminated drinking water sample in less than 3 h. This TC-phage-FlAsH approach is sensitive, specific, rapid, and simple, and thus shows great potential in water safety monitoring, health surveillance, and clinical diagnosis of which trace detection and identification of viable bacterial pathogens is highly demanded.
NASA Technical Reports Server (NTRS)
Thomas, K. L.; Clemett, S. J.; Flynn, G. J.; Keller, L. P.; Mckay, David S.; Messenger, S.; Nier, A. O.; Schlutter, D. J.; Sutton, S. R.; Walker, R. M.
1994-01-01
The topics discussed include the following: noble gas content and release temperatures; trace element abundances; heating summary of cluster fragments; isotopic measurements; and trace organic chemistry.
Flux measurements of energy and trace gases in urban Houston, Texas
NASA Astrophysics Data System (ADS)
Boedeker, I.; Schade, G. W.; Adams, S.; Park, C.
2008-12-01
We describe the setup and some first year results of a new flux measurements tower in an urban area. An existing radio communications tower 4 km north of downtown Houston was equipped with micrometeorological instrumentation and trace gas sampling lines in spring 2007. Wind speed, temperature and relative humidity are recorded at five levels between 12 and 60 m above ground; 3-D wind speed measurements, solar and net radiances, and trace gas sampling are established from the 60 m level. A closed path IRGA is used for CO2 and water vapor fluxes, and independent instrumentation for criteria pollutant and VOC fluxes. Two CSI data loggers and software control the measurements, and EdiRe software is used to analyze turbulence data and compute fluxes. A project description is provided at http://atmo.tamu.edu/yellowcabtower. Surface properties as calculated from the gradient measurements show the site to be surprisingly uniform, with displacement heights between 5 and 9 m and roughness lengths between 0.4 and 0.7 m, despite urban heterogeneity. The latter is investigated through visible/near IR orthoimagery and LIDAR data, which are incorporated into a local GIS. Net radiation was also only marginally affected by surface heterogeneity. At this urban location it is balanced by roughly equal amounts of sensible heat, latent heat, and storage fluxes. Latent heat flux, however, is smaller outside the growing season, with an equivalent increase in winter storage fluxes, as expected. Significant differences are also observed with direction during summer, showing decreased Bowen ratios and lower CO2 emissions from sectors with a larger urban tree canopy cover in the footprint. The largely mature, dominantly oak urban canopy cover alleviates approximately 100 W m- 2 during typical summer days. On the other hand, anthropogenic CO2 emissions dominate over photosynthetic uptake all year round. Measured carbon fluxes peak during morning rush-hour traffic, especially when increasing stretches of the main commuter road fall into the footprint. Outside the rush hour, daytime carbon fluxes typically ranged from 0.4 to 1.6 g C m-2 h-1. A seasonal comparison shows that up to 75% of midday anthropogenic carbon flux is removed via photosynthesis in the dominant wind sector, S, which bears typical tree canopy covers of 25-50% on pervious surfaces.
Lockie, Tim; Rolandi, M Cristina; Piek, Jan J
2013-10-01
We report on two cases that illustrate an important caveat in the measurement of fractional flow reserve (FFR) in coronary arteries. To obtain accurate FFR measurements, two fundamental requirements must be fulfilled. One is to minimize microvascular resistance; the other is that there is no damping of the proximal aortic pressure trace. A problem with either of these requirements can be a source of serious error in the measurement of FFR. In each case we present here, despite a good aortic pressure trace at the start of the procedure, there is dynamic damping of the pressure trace during hyperemia, secondary to axial migration of the guiding catheter into the left main stem (LMS). In both cases, a normal aortic pressure trace (Pa) is present at baseline. After intracoronary adenosine injection, there was a fall in both mean Pa and distal coronary pressure (Pd) concomitant with damping of Pa, evidenced by loss of the dicrotic notch and ventricularization of the pressure trace. The resultant FFR value is underestimated. As hyperemia wears off, both pressure traces return to normal with good articulation of the dicrotic notch. When the procedure was repeated taking care to ensure that the guide did not move into the LMS during hyperemia, the Pa trace remained stable following intracoronary adenosine, while mean Pd decreased as before. In both cases, hemodynamically significant lesions were demonstrated that had been masked by the artifactual drop in Pa during the first attempt.
NASA Technical Reports Server (NTRS)
Keitz, E. L.
1978-01-01
Contained in this volume is material of a supportive nature not considered to be of sufficient importance to be included in the other two previous volumes. This material is of two types:(1) information and numerical evaluations used in the development of mission evaluations for stratospheric trace constituent measurement;and (2) various spatial and temporal distributions for those stratospheric trace species having sufficient measurements available to warrant their presentation.
Lead Speciation And Bioavailability In Apatite-Amended Sediments
The in situ sequestration of lead (Pb) in sediment with a phosphate amendment was investigated by Pb speciation and bioavailability. Sediment Pb in preamendment samples was identified as galena (PbS) with trace amounts of absorbed Pb. Sediment exposed to atmospheric conditions ...
Detection of Staphylococcal Enterotoxin in Food
Casman, Ezra P.; Bennett, Reginald W.
1965-01-01
Methods are described for the extraction and serological detection of trace amounts of enterotoxins A and B in foods incriminated in outbreaks of staphylococcal food poisoning. Evidence is presented for the probable applicability of the methods for the detection of unidentified enterotoxins. PMID:14325876
Acrylamide in processed potato products
USDA-ARS?s Scientific Manuscript database
Trace amounts of acrylamide are found in many foods cooked at high temperatures. Acrylamide in processed potato products is formed from reducing sugars and asparagine and is a product of the Maillard reaction. Processed potato products including fries and chips are relatively high in acrylamide comp...
Neutron activation analysis: A primary method of measurement
NASA Astrophysics Data System (ADS)
Greenberg, Robert R.; Bode, Peter; De Nadai Fernandes, Elisabete A.
2011-03-01
Neutron activation analysis (NAA), based on the comparator method, has the potential to fulfill the requirements of a primary ratio method as defined in 1998 by the Comité Consultatif pour la Quantité de Matière — Métrologie en Chimie (CCQM, Consultative Committee on Amount of Substance — Metrology in Chemistry). This thesis is evidenced in this paper in three chapters by: demonstration that the method is fully physically and chemically understood; that a measurement equation can be written down in which the values of all parameters have dimensions in SI units and thus having the potential for metrological traceability to these units; that all contributions to uncertainty of measurement can be quantitatively evaluated, underpinning the metrological traceability; and that the performance of NAA in CCQM key-comparisons of trace elements in complex matrices between 2000 and 2007 is similar to the performance of Isotope Dilution Mass Spectrometry (IDMS), which had been formerly designated by the CCQM as a primary ratio method.
NASA Astrophysics Data System (ADS)
Selimovic, Vanessa; Yokelson, Robert J.; Warneke, Carsten; Roberts, James M.; de Gouw, Joost; Reardon, James; Griffith, David W. T.
2018-03-01
Western wildfires have a major impact on air quality in the US. In the fall of 2016, 107 test fires were burned in the large-scale combustion facility at the US Forest Service Missoula Fire Sciences Laboratory as part of the Fire Influence on Regional and Global Environments Experiment (FIREX). Canopy, litter, duff, dead wood, and other fuel components were burned in combinations that represented realistic fuel complexes for several important western US coniferous and chaparral ecosystems including ponderosa pine, Douglas fir, Engelmann spruce, lodgepole pine, subalpine fir, chamise, and manzanita. In addition, dung, Indonesian peat, and individual coniferous ecosystem fuel components were burned alone to investigate the effects of individual components (e.g., duff
) and fuel chemistry on emissions. The smoke emissions were characterized by a large suite of state-of-the-art instruments. In this study we report emission factor (EF, grams of compound emitted per kilogram of fuel burned) measurements in fresh smoke of a diverse suite of critically important trace gases measured using open-path Fourier transform infrared spectroscopy (OP-FTIR). We also report aerosol optical properties (absorption EF; single-scattering albedo, SSA; and Ångström absorption exponent, AAE) as well as black carbon (BC) EF measured by photoacoustic extinctiometers (PAXs) at 870 and 401 nm. The average trace gas emissions were similar across the coniferous ecosystems tested and most of the variability observed in emissions could be attributed to differences in the consumption of components such as duff and litter, rather than the dominant tree species. Chaparral fuels produced lower EFs than mixed coniferous fuels for most trace gases except for NOx and acetylene. A careful comparison with available field measurements of wildfires confirms that several methods can be used to extract data representative of real wildfires from the FIREX laboratory fire data. This is especially valuable for species rarely or not yet measured in the field. For instance, the OP-FTIR data alone show that ammonia (1.62 g kg-1), acetic acid (2.41 g kg-1), nitrous acid (HONO, 0.61 g kg-1), and other trace gases such as glycolaldehyde (0.90 g kg-1) and formic acid (0.36 g kg-1) are significant emissions that were poorly characterized or not characterized for US wildfires in previous work. The PAX measurements show that the ratio of brown carbon (BrC) absorption to BC absorption is strongly dependent on modified combustion efficiency (MCE) and that BrC absorption is most dominant for combustion of duff (AAE 7.13) and rotten wood (AAE 4.60): fuels that are consumed in greater amounts during wildfires than prescribed fires. Coupling our laboratory data with field data suggests that fresh wildfire smoke typically has an EF for BC near 0.2 g kg-1, an SSA of ˜ 0.91, and an AAE of ˜ 3.50, with the latter implying that about 86 % of the aerosol absorption at 401 nm is due to BrC.
Development, characterization, and validation of an optical transfer standard for ammonia in air
NASA Astrophysics Data System (ADS)
Lüttschwager, Nils; Balslev-Harder, David; Leuenberger, Daiana; Pogány, Andrea; Werhahn, Olav; Ebert, Volker
2017-04-01
Ammonia is an atmospheric trace gas that is predominantly emitted from anthropogenic agricultural activities. Since elevated levels of ammonia can have negative effects to human health as well as ecosystems, it is imperative to monitor and control ammonia emissions. This requires SI-traceable standards to calibrate ammonia monitoring instrumentation and to make measurements comparable. The lack of such standards became a pressing issue in recent years and the MetNH3 project (www.metnh3.eu) was initiated to fill the gap, pursuing different strategies. The work that we present was part of these endeavours and focusses on the development and application of an optical transfer standard for amount fraction measurements of ammonia in ambient air. An optical transfer standard (OTS) offers an alternative to calibrations of air monitoring instrumentation by means of reference gas mixtures. With an OTS, absolute amount fraction results are derived by evaluating absorption spectra using a spectral model and pre-measured spectral properties of the analyte. In that way, the instrument can measure calibration gas-independent ("calibration-free") and, moreover, can itself serve as standard to calibrate air monitoring analyzers. Molecular spectral properties are the excellent, non-drifting point of reference of the OTS and form, together with traceable measurements of temperature and pressure, the basis for SI-traceable amount fraction measurements. We developed an OTS based on a commercial cavity-ring-down spectrometer with a detection limit below 1 ppb (1 nmol/mol). A custom spectral data evaluation routine for absolute, calibration-free measurements, as well as measurements of spectral properties of ammonia with the focus on measurement uncertainty and traceability [1] are the fundaments of our OTS. Validation measurements were conducted using a SI-traceable ammonia reference gas generator over a period of several months. Here, we present an evaluation of the performance of our OTS from 1 ppb to 200 ppb. We found the results obtained with the OTS to be concordant to reference gas mixtures yielding amount fraction results with standard uncertainties of less than 3 %, for which an uncertainty budget is provided. Acknowledgement: This work was supported by the European Metrology Research Programme (EMRP). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. References 1. A. Pogány, O. Werhahn, and V. Ebert, High-Accuracy Ammonia Line Intensity Measurements at 1.5 µm, in Imaging and Applied Optics 2016, OSA Technical Digest (online) (Optical Society of America, 2016), paper JT3A.15, DOI: 10.1364/3D.2016.JT3A.15
Use of a tracing task to assess visuomotor performance for evidence of concussion and recuperation.
Kelty-Stephen, Damian G; Qureshi Ahmad, Mona; Stirling, Leia
2015-12-01
The likelihood of suffering a concussion while playing a contact sport ranges from 15-45% per year of play. These rates are highly variable as athletes seldom report concussive symptoms, or do not recognize their symptoms. We performed a prospective cohort study (n = 206, aged 10-17) to examine visuomotor tracing to determine the sensitivity for detecting neuromotor components of concussion. Tracing variability measures were investigated for a mean shift with presentation of concussion-related symptoms and a linear return toward baseline over subsequent return visits. Furthermore, previous research relating brain injury to the dissociation of smooth movements into "submovements" led to the expectation that cumulative micropause duration, a measure of motion continuity, might detect likelihood of injury. Separate linear mixed effects regressions of tracing measures indicated that 4 of the 5 tracing measures captured both short-term effects of injury and longer-term effects of recovery with subsequent visits. Cumulative micropause duration has a positive relationship with likelihood of participants having had a concussion. The present results suggest that future research should evaluate how well the coefficients for the tracing parameter in the logistic regression help to detect concussion in novel cases. (c) 2015 APA, all rights reserved).
Afzali, Darush; Taher, Mohammad Ali; Mostafavi, Ali; Mahani, Mohammad Khayatzadeh
2005-01-01
Nickel is a moderately toxic element compared with other transition metals. However, inhalation of nickel and its compounds leads to serious problems, including cancer of the respiratory system and a skin disorder, nickel-eczema. Thus, attention has focused on the toxicity of nickel at low concentrations, and the development of reliable, analytical approaches for the determination of trace amounts of nickel is needed. This paper describes a simple, rapid, and sensitive flame atomic absorption spectrometric method for the determination of trace amounts of nickel in various samples after adsorption of its 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol complex on a modified Analcime column in the pH range of 7.5-10.5. The retained analyte on the Analcime is recovered with 5.0 mL 2 M nitric acid and determined by flame atomic absorption spectrometry. The detection limit is 20 ng/mL, and the calibration curve is linear for analyte concentrations in the range of 0.1-8 microg/mL final solution, with a correlation coefficient of 0.9993. Eight replicate determinations of nickel at 2 microg/mL in the final solution gave an absorbance of 0.1222, with a relative standard deviation (RSD) of +/-1.2%. The interference of a large number of anions and cations was studied, and the proposed method was used for the determination of nickel in various standard reference samples. The accuracy of the proposed method was evaluated by analyzing standard reference samples, and the results were satisfactory (recoveries of >96%; RSD of <3.5%).
Ali, Hatem Salama Mohamed; Alhaj, Omar Amin; Al-Khalifa, Abdulrahman Saleh; Brückner, Hans
2014-09-01
Whereas an abundance of literature is available on the occurrence of common proteinogenic amino acids (AAs) in edible fruits of the date palm (Phoenix dactylifera L.), recent reports on non-proteinogenic (non-coded) AAs and amino components are scarce. With emphasis on these components we have analyzed total hydrolysates of twelve cultivars of date fruits using automated ion-exchange chromatography, HPLC employing a fluorescent aminoquinolyl label, and GC-MS of total hydrolysates using the chiral stationary phases Chirasil(®)-L-Val and Lipodex(®) E. Besides common proteinogenic AAs, relatively large amounts of the following non-proteinogenic amino acids were detected: (2S,5R)-5-hydroxypipecolic acid (1.4-4.0 g/kg dry matter, DM), 1-aminocyclopropane-1-carboxylic acid (1.3-2.6 g/kg DM), γ-amino-n-butyric acid (0.5-1.2 g/kg DM), (2S,4R)-4-hydroxyproline (130-230 mg/kg DM), L-pipecolic acid (40-140 mg/kg DM), and 2-aminoethanol (40-160 mg/kg DM) as well as low or trace amounts (<70 mg/kg DM) of L-ornithine, 5-hydroxylysine, β-alanine, and in some samples (<20 mg/kg DM) of (S)-β-aminoisobutyric acid and (<10 mg/kg DM) L-allo-isoleucine. In one date fruit, traces of α-aminoadipic acid could be determined. Enantiomeric analysis of 6 M DCl/D2O hydrolysates of AAs using chiral capillary gas chromatography-mass spectrometry revealed the presence of very low amounts of D-Ala, D-Asp, D-Glu, D-Ser and D-Phe (1.2-0.4%, relative to the corresponding L-enantiomers), besides traces (0.2-1%) of other D-AAs. The possible relevance of non-proteinogenic amino acids in date fruits is briefly addressed.
NASA Astrophysics Data System (ADS)
Katz, O.; Natan, A.; Silberberg, Y.; Rosenwaks, S.
2008-04-01
We demonstrate a single-beam, standoff (>10m) detection and identification of various materials including minute amounts of explosives under ambient light conditions. This is obtained by multiplex coherent anti-Stokes Raman scattering spectroscopy (CARS) using a single femtosecond phase-shaped laser pulse. We exploit the strong nonresonant background for amplification of the backscattered resonant CARS signals by employing a homodyne detection scheme. The simple and highly sensitive spectroscopic technique has a potential for hazardous materials standoff detection applications.
Can Dynamic Bubble Templating Play a Role in Corrosion Product Morphology?
2012-02-01
FeOOH (goethite) with moderate amounts of metallic luster Fe304 (magnetite), and trace amounts of CaC03 (calcite). In addition, the core was marbled ...cathodically produced gas bubbles (i.e., H2). By physically separating the anode and cathode. Stone and Goldstein26 generated tubular structures electro...D.A. Stone , RE. Goldstein. Proc. MatL Acad. Set U.S-A. 101 (2004): p. 11537. G. Butler, H.C.K. Ison, Nature 182 (1958): p. 1229. B. McEnaney. D.C
Effect of doping in the Bi-Sr-Ca-Cu-O superconductor
NASA Technical Reports Server (NTRS)
Akbar, S. A.; Wong, M. S.; Botelho, M. J.; Sung, Y. M.; Alauddin, M.; Drummer, C. E.; Fair, M. J.
1991-01-01
The results of the effect of doping on the superconducting transition in the Bi-Sr-Ca-Cu-O system are reported. Samples were prepared under identical conditions with varying types (Pb, Sb, Sn, Nb) and amounts of dopants. All samples consisted of multiple phases, and showed stable and reproducible superconducting transitions. Stabilization of the well known 110 K phase depends on both the type and amount of dopant. No trace of superconducting phase of 150 K and above was observed.
Fate of the Hoop Conjecture in Quantum Gravity.
Anzà, Fabio; Chirco, Goffredo
2017-12-08
We consider a closed region R of 3D quantum space described via SU(2) spin networks. Using the concentration of measure phenomenon we prove that, whenever the ratio between the boundary ∂R and the bulk edges of the graph overcomes a finite threshold, the state of the boundary is always thermal, with an entropy proportional to its area. The emergence of a thermal state of the boundary can be traced back to a large amount of entanglement between boundary and bulk degrees of freedom. Using the dual geometric interpretation provided by loop quantum gravity, we interpret such phenomenon as a pregeometric analogue of Thorne's "hoop conjecture," at the core of the formation of a horizon in general relativity.
Farooqui, Javed Hussain; Sharma, Mansi; Koul, Archana; Dutta, Ranjan; Shroff, Noshir Minoo
2017-01-01
PURPOSE: The aim of this study is to compare two different methods of analysis of preoperative reference marking for toric intraocular lens (IOL) after marking with an electronic marker. SETTING/VENUE: Cataract and IOL Implantation Service, Shroff Eye Centre, New Delhi, India. PATIENTS AND METHODS: Fifty-two eyes of thirty patients planned for toric IOL implantation were included in the study. All patients had preoperative marking performed with an electronic preoperative two-step toric IOL reference marker (ASICO AE-2929). Reference marks were placed at 3-and 9-o'clock positions. Marks were analyzed with two systems. First, slit-lamp photographs taken and analyzed using Adobe Photoshop (version 7.0). Second, Tracey iTrace Visual Function Analyzer (version 5.1.1) was used for capturing corneal topograph examination and position of marks noted. Amount of alignment error was calculated. RESULTS: Mean absolute rotation error was 2.38 ± 1.78° by Photoshop and 2.87 ± 2.03° by iTrace which was not statistically significant (P = 0.215). Nearly 72.7% of eyes by Photoshop and 61.4% by iTrace had rotation error ≤3° (P = 0.359); and 90.9% of eyes by Photoshop and 81.8% by iTrace had rotation error ≤5° (P = 0.344). No significant difference in absolute amount of rotation between eyes when analyzed by either method. CONCLUSIONS: Difference in reference mark positions when analyzed by two systems suggests the presence of varying cyclotorsion at different points of time. Both analysis methods showed an approximately 3° of alignment error, which could contribute to 10% loss of astigmatic correction of toric IOL. This can be further compounded by intra-operative marking errors and final placement of IOL in the bag. PMID:28757694
NASA Astrophysics Data System (ADS)
de Winter, Niels; Goderis, Steven; van Malderen, Stijn; Vanhaecke, Frank; Claeys, Philippe
2016-04-01
A combination of laboratory micro-X-ray Fluorescence (μXRF) and stable carbon and oxygen isotope analysis shows that trace element profiles from modern horse molars reveal a seasonal pattern that co-varies with seasonality in the oxygen isotope records of enamel carbonate from the same teeth. A combination of six cheek teeth (premolars and molars) from the same individual yields a seasonal isotope and trace element record of approximately three years recorded during the growth of the molars. This record shows that reproducible measurements of various trace element ratios (e.g., Sr/Ca, Zn/Ca, Fe/Ca, K/Ca and S/Ca) lag the seasonal pattern in oxygen isotope records by 2-3 months. Laser Ablation-ICP-Mass Spectrometry (LA-ICP-MS) analysis on a cross-section of the first molar of the same individual is compared to the bench-top tube-excitation μXRF results to test the robustness of the measurements and to compare both methods. Furthermore, trace element (e.g. Sr, Zn, Mg & Ba) profiles perpendicular to the growth direction of the same tooth, as well as profiles parallel to the growth direction are measured with LA-ICP-MS and μXRF to study the internal distribution of trace element ratios in two dimensions. Results of this extensive complementary line-scanning procedure shows the robustness of state of the art laboratory micro-XRF scanning for the measurement of trace elements in bioapatite. The comparison highlights the advantages and disadvantages of both methods for trace element analysis and illustrates their complementarity. Results of internal variation within the teeth shed light on the origins of trace elements in mammal teeth and their potential use for paleo-environmental reconstruction.
Greenhouse effect of trace gases, 1970-1980
NASA Technical Reports Server (NTRS)
Lacis, A.; Hansen, J.; Lee, P.; Lebedeff, S.; Mitchell, T.
1981-01-01
Increased abundances were measured for several trace atmospheric gases in the decade 1970-1980. The equilibrium greenhouse warming for the measured increments of CH4, chlorofluorocarbons and N2O is between 50% and 100% of the equilibrium warming for the measured increase of atmospheric CO2 during the same 10 years. The combined warming of CO2 and trace gases should exceed natural global temperature variability in the 1980's and cause the global mean temperature to rise above the maximum of the late 1930's.
CO2 lidar for measurements of trace gases and wind velocities
NASA Technical Reports Server (NTRS)
Hess, R. V.
1982-01-01
CO2 lidar systems technology and signal processing requirements relevant to measurement needs and sensitivity are discussed. Doppler processing is similar to microwave radar, with signal reception controlled by a computer capable of both direct and heterodyne operations. Trace gas concentrations have been obtained with the NASA DIAL system, and trace gas transport has been determined with Doppler lidar measurements for wind velocity and turbulence. High vertical resolution measurement of trace gases, wind velocity, and turbulence are most important in the planetary boundary layer and in regions between the PBL and the lower stratosphere. Shear measurements are critical for airport operational safety. A sensitivity analysis for heterodyne detection with the DIAL system and for short pulses using a Doppler lidar system is presented. The development of transient injection locking techniques, as well as frequency stability by reducing chirp and catalytic control of closed cycle CO2 laser chemistry, is described.
Major and trace element chemistry of separated fragments from a hibonite-bearing Allende inclusion
NASA Technical Reports Server (NTRS)
Davis, A. M.; Grossman, L.; Allen, J. M.
1978-01-01
The major and trace elements of separated fragments and a bulk sample from CG-11, a hibonite-bearing inclusion in the Allende meteorite, were analyzed. Major element abundances were used to determine the minerology of separated fragments. The high degree of correlation between Eu/Sm ratios and Lu/Yb ratios for the samples studied indicates that their rare earth element (REE) distributions are governed by two components. One, Lu-, Eu-rich, is probably hibonite; the other, depleted in these elements, seems to be associated with the secondary alteration phases, grossular, nepheline and anorthite. The REE distribution in CG-11 precludes melting events after formation of the secondary alteration phases, but a melting event involving the primary minerals cannot be excluded. The enrichment of Lu with respect to other measured REE in hibonite can be explained by present REE condensation models. Two Hf-bearing components, most likely hibonite and perovskite, are necessary to account for variations in Sc/Hf ratios in the fragments studied. The lithophile volatiles Na, Mn, Fe, Zn, and probably Cr increase in the same order as the amount of secondary alteration minerals; the volatile siderophile elements Co and Au, however, do not.
Study of Methanogenesis while Bioutilisation of Plant Residuals
NASA Astrophysics Data System (ADS)
Ilyin, V. K.; Korniushenkova, I. N.; Starkova, L. V.; Lauriniavichius, K. S.
respect principals of planet ecology, and compatibility with other habitability systems. For these purpose the waste management technologies, relevant to application of the biodegradation properties of bacteria are of great value. Biological treatment method is based upon the biodegradation of organic substances by various microorganisms. vegetable non-edible residual, using artificial inoculum; to study peculiarities of biogas, possibilities to optimize or to reduce the share of methane. fermentation. The biogas production achieved 46 l per 1 kg of substrate. The microbial studies of biodegradation process revealed following peculiarities: (i)gradual quantitative increasing of Lactobacillus sp. (from 103 to 105 colony forming units (CFU) per ml); (ii)activation of Clostridia sp. (from 102 to 104 CFU/ml); (iii) elimination of aerobic conventional pathogens (Enterobacteriaceae sp., Protea sp., staphylococci). methane content measures revealed traces 0.1-0.4%. granules, the amount of methane in biogas reached 80-90%. biodegradation of vegetable wastes. This inoculum consists of active sludge adapted to wastes mixed with excretes of insects which consume plant wastes. Using this inoculum the biodegradation process takes less time, then that using active sludge. Regulation of methane concentration from traces to 90% may be achieved by adding of methane reactor to the plant digester.
The deposition and fate of trace metals in our environment.
Elon S. Verry; Stephen J. Vermette
1992-01-01
This proceedings contains 14 invited papers from Canada and the United States on trace metal emissions, trace metal measurement in precipitation and dry fall, regional deposition, and the fate of trace metals in soils, plants, waters, and fish. A summary paper integrates the major findings of each paper.
Hesterberg, Dean; Polizzotto, Matthew L; Crozier, Carl; Austin, Robert E
2016-04-01
Catastrophic events require rapid, scientifically sound decision making to mitigate impacts on human welfare and the environment. The objective of this study was to analyze potential impacts of coal ash-derived trace elements on agriculture following a 35,000-tonne release of coal ash into the Dan River at the Duke Energy Steam Station in Eden, North Carolina. We performed scenario calculations to assess the potential for excessive trace element loading to soils via irrigation and flooding with Dan River water, uptake of trace elements by crops, and livestock consumption of trace elements via drinking water. Concentrations of 13 trace elements measured in Dan River water samples within 4 km of the release site declined sharply after the release and were equivalent within 5 d to measurements taken upriver. Mass-balance calculations based on estimates of soil trace-element concentrations and the nominal river water concentrations indicated that irrigation or flooding with 25 cm of Dan River water would increase soil concentrations of all trace elements by less than 0.5%. Calculations of potential increases of trace elements in corn grain and silage, fescue, and tobacco leaves suggested that As, Cr, Se, Sr, and V were elements of most concern. Concentrations of trace elements measured in river water following the ash release never exceeded adopted standards for livestock drinking water. Based on our analyses, we present guidelines for safe usage of Dan River water to diminish negative impacts of trace elements on soils and crop production. In general, the approach we describe here may serve as a basis for rapid assessment of environmental and agricultural risks associated with any similar types of releases that arise in the future. © 2015 SETAC.
Seasonal variations of trace elements in precipitation at the largest city in Tibet, Lhasa
NASA Astrophysics Data System (ADS)
Guo, Junming; Kang, Shichang; Huang, Jie; Zhang, Qianggong; Tripathee, Lekhendra; Sillanpää, Mika
2015-02-01
Precipitation samples were collected from March 2010 to August 2012 at an urban site in Lhasa, the capital and largest city of Tibet. The volume weighted mean (VWM) concentrations of 17 trace elements in precipitation were higher during the non-monsoon season than in the monsoon season, but inverse seasonal variations occurred for wet deposition fluxes of most of the trace elements. Concentrations for most of trace elements were negatively correlated with precipitation amount, indicating that below-cloud scavenging of trace elements was an important mechanism contributing to wet deposition of these elements. The elements Al, Sc, V, Cr, Mn, Fe, Mn, Ni, and U displayed low crustal enrichment factors (EFs), whereas Co, Cu, Zn, As, Cd Sn, Pb, and Bi showed high EF values in precipitation, suggesting that anthropogenic activities might be important contributors of these elements at Lhasa. However, this present work indicates a much lower anthropogenic emission at Lhasa than in seriously polluted regions. Our study will not only provide insights for assessing the current status of the atmospheric environment in Lhasa but also enhance our understanding for updating the baseline for environmental protection over the Tibetan Plateau.
TRACE ELEMENT ANALYSES OF URANIUM MATERIALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beals, D; Charles Shick, C
The Savannah River National Laboratory (SRNL) has developed an analytical method to measure many trace elements in a variety of uranium materials at the high part-per-billion (ppb) to low part-per-million (ppm) levels using matrix removal and analysis by quadrapole ICP-MS. Over 35 elements were measured in uranium oxides, acetate, ore and metal. Replicate analyses of samples did provide precise results however none of the materials was certified for trace element content thus no measure of the accuracy could be made. The DOE New Brunswick Laboratory (NBL) does provide a Certified Reference Material (CRM) that has provisional values for a seriesmore » of trace elements. The NBL CRM were purchased and analyzed to determine the accuracy of the method for the analysis of trace elements in uranium oxide. These results are presented and discussed in the following paper.« less
NASA Astrophysics Data System (ADS)
Bhattacharyya, S.; Donahoe, R. J.; Graham, E. Y.
2006-12-01
For much of the U.S., coal-fired power plants are the most important source of electricity for domestic and industrial use. Large quantities of fly ash and other coal combustion by-products are produced every year, the majority of which is impounded in lagoons and landfills located throughout the country. Many older fly ash disposal facilities are unlined and have been closed for decades. Fly ash often contains high concentrations of toxic trace elements such as arsenic, boron, chromium, molybdenum, nickel, selenium, lead, strontium and vanadium. Trace elements present in coal fly ash are of potential concern due to their toxicity, high mobility in the environment and low drinking water MCL values. Concern about the potential release of these toxic elements into the environment due to leaching of fly ash by acid rain, groundwater or acid mine drainage has prompted the EPA to develop national standards under the subtitle D of the Resource Conservation and Recovery Act (RCRA) to regulate ash disposal in landfills and surface impoundments. An attempt is made to predict the leaching of toxic elements into the environment by studying trace element partitioning in coal fly ash. A seven step sequential chemical extraction procedure (SCEP) modified from Filgueiras et al. (2002) is used to determine the trace element partitioning in seven coal fly ash samples collected directly from electric power plants. Five fly ash samples were derived from Eastern Bituminous coal, one derived from Western Sub-bituminous coal and the other derived from Northern Lignite. The sequential chemical extraction procedure gives valuable information on the association of trace elements: 1) soluble fraction, 2) exchangeable fraction, 3) acid soluble fraction, 4) easily reducible fraction, 5) moderately reducible fraction, 6) poorly reducible fraction and 7) oxidizable organics/sulfide fraction. The trace element partitioning varies with the composition of coal fly ash which is influenced by the type of coal burned. Preliminary studies show that in some fly ash samples, significant amounts of As, B, Mo, Se, Sr and V are associated with the soluble and exchangeable fraction, and thus would be highly mobile in the environment. Lead, on the other hand, is mainly associated with the amorphous Fe and Mn oxide fractions and would be highly immobile in oxidizing conditions, but mobile in reducing conditions. Ni and Cr show different associations in different fly ash samples. In most fly ash samples, significant amounts of the trace elements are associated with more stable fractions that do not threaten the environment. The study of trace element partitioning in coal fly ash thus helps us to predict their leaching behavior under various conditions.
AIR EMISSIONS FROM LASER DRILLING OF PRINTED WIRING BOARD MATERIALS
The paper gives results of a study to characterize gases generated during laser drilling of printed wiring board (PWB) material and identifies the pollutants and generation rates found during the drilling process. Typically found in the missions stream were trace amounts of carbo...
GENERATION AND CONTROL OF AIR POLLUTANTS FROM ORIMULSION (R) COMBUSTION
The paper discusses a study requested in 1997 by the U.S. Congress to provide technical information regarding Orimulsion (R) and its environmental impacts. (NOTE: Orimulsion is an emulsified fuel, composed of approximately 70% Venezuelan bitumen, 30% water, and trace amounts of ...
ERIC Educational Resources Information Center
Rankin, John C.
In this speech, the author traces the history of lighting in schools, discusses the variables affecting the amount of illuminance needed, and provides a table of illuminances recommended for Ontario schools. Other factors that affect vision--glare, veiling reflection, color, and brightness balance--are outlined. Planners are admonished to…
NASA Astrophysics Data System (ADS)
Zhuang, Yafeng; Zhou, Meng; Gu, Jia; Li, Xiangmei
2014-03-01
A new spectrophotometric method for the determination of trace amounts of bisphenol A based on a diazotization-coupling reaction was developed. In acidic solution, clenbuterol was first diazotized with sodium nitrite, then coupled with bisphenol A to from an azo-compound [I] in NH3-NH4Cl buffer, which shows a maximum absorption at 410 nm. The effects of the amount of sodium nitrite, diazo reaction time, the amount of clenbuterol, coupling reaction time and coupling reaction temperature have been examined. Under the optional conditions, the determination of the linear range of bisphenol A is 0.24-8.4 μg/mL, correlation coefficient is 0.9905 and detection limit of this method is 0.15 μg/mL. The spectrophotometric method is simple, rapid, high sensitivity with better accuracy. High performance liquid chromatography (HPLC) technique combined with this new spectrophotometric method has been also developed for the measurement of bisphenol A. The analysis was achieved on a C18 column using water and methanol as a mobile phase and the detection was done spectrophotometrically at 410 nm. These reported methods were applied to the determination of bisphenol A in hot water in contact with commercially available table-water bottle samples.
Shamsipur, Mojtaba; Hashemi, Omid Reza; Safavi, Afsaneh
2005-09-01
A rapid flotation method for separation and enrichment of ultra trace amounts of copper(II), cadmium(II), nickel(II) and cobalt(II) ions from water samples is established. At pH 6.5 and with sodium dodecylsulfate used as a foaming reagent, Cu2+, Cd2+, Ni2+ and Co2+ were separated simultaneously with 2-aminocyclopentene-1-dithiocarboxylic acid (ACDA) added to 1 l of aqueous solution. The proposed procedure of preconcentration is applied prior to the determination of these four analytes using inductivity coupled plasma-atomic emission spectrometry (ICP-AES). The effects of pH, concentration of ACDA, applicability of different surfactants and foreign ions on the separation efficiency were investigated. The preconcentration factor of the method is 1000 and the detection limits of copper(II), cadmium(II), nickel(II) and cobalt(II) ions are 0.078, 0.075, 0.072 and 0.080 ng ml(-1), respectively.
Yang, Zhenzhou; Zhang, Yingyi; Liu, Lili; Seetharaman, Seshadri; Wang, Xidong; Zhang, Zuotai
2016-01-01
The present study firstly proposed a method of integrated utilization of sewage sludge (SS) and coal gangue (CG), two waste products, for cement clinker products with the aim of heat recovery and environment protection. The results demonstrated that the incremental amounts of SS and CG addition was favorable for the formation of tricalcium silicate (C3S) during the calcinations, but excess amount of SS addition could cause the impediment effect on C3S formation. Furthermore, it was also observed that the C3S polymorphs showed the transition from rhombohedral to monoclinic structure as SS addition was increased to 15 wt %. During the calcinations, most of trace elements could be immobilized especially Zn and cannot be easily leached out. Given the encouraging results in the present study, the co-process of sewage sludge and coal gangue in the cement kiln can be expected with a higher quality of cement products and minimum pollution to the environment. PMID:28773400
NASA Astrophysics Data System (ADS)
Peng, Qian; Hou, Faju; Jiang, Chongqiu
2006-09-01
A new spectrofluorimetric method was developed for determination of trace amount of Coenzyme II (NADP). Using europium ion-doxycycline (DC) as a fluorescent probe, in the buffer solution of pH 8.44, NADP can remarkably enhance the fluorescence intensity of the Eu 3+-DC complex at λ = 612 nm and the enhanced fluorescence intensity is in proportion to the concentration of NADP. Optimum conditions for the determination of NADP were also investigated. The dynamic range for the determination of NADP is 3.3 × 10 -7 to 6.1 × 10 -6 mol l -1 with detection limit of 6.8 × 10 -8 mol l -1. This method is simple, practical and relatively free interference from coexisting substances and can be successfully applied to determination of NADP in synthetic water samples and in serum samples. Moreover, the enhancement mechanisms of the fluorescence intensity in the Eu 3+-DC system and the Eu 3+-DC-NADP system have been also discussed.
Aydın Urucu, Oya; Dönmez, Şeyda; Kök Yetimoğlu, Ece
2017-01-01
A novel method was developed for determination of trace amounts of lead in water and food samples. Solidified floating organic drop microextraction was used to preconcentrate the lead ion. After the analyte was complexed with 1-(2-pyridylazo)-2-naphthol, undecanol and acetonitrile were added as extraction and dispersive solvent, respectively. Variables such as pH, volumes of extraction and dispersive solvents, and concentration of chelating agent were optimized. Under the optimum conditions, the detection limit of Pb (II) was determined as 0.042 µ g L -1 with an enrichment factor of 300. The relative standard deviation is <10%. Accuracy of the developed procedure was evaluated by the analysis of certified reference material of human hair (NCS DC 73347) and wastewater (SPS-WW2) with satisfactory results. The developed procedure was then successfully applied to biscuit and water samples for detection of Pb (II) ions.
Applications of organo-silica nanocomposites for SPNE of Hg(II)
NASA Astrophysics Data System (ADS)
Kaur, Anupreet
2016-02-01
An analytical method using modified SiO2 nanoparticles as solid-phase extractant has been developed for the preconcentration of trace amounts of Hg(II) in different water samples. Conditions of the analysis such as preconcentration factor, effect of pH, sample volume, shaking time, elution conditions and effects of interfering ions for the recovery of analyte were investigated. The adsorption capacity of nanometer SiO2-APTMS was found to be 181.42 µmol g-1 at optimum pH and the detection limit (3σ) was 0.45 µg L-1. The extractant showed rapid kinetic sorption. The adsorption equilibrium of Hg(II) on nanometer SiO2-APTMS was achieved just in 15 min. Adsorbed Hg(II) was easily eluted with 4 mL of 2.0 M hydrochloric acid. The maximum preconcentration factor was 75. The method was applied for the determination of trace amounts of Hg(II) in various synthetic samples and water samples.
Ghaedi, Mehrorang; Montazerozohori, Mortaza; Tabatabie, Maryam; Noormohamadi, Hamid; Haghighi, Alireza Borhan
2012-01-01
The efficiency of modified activated carbon (AC) and multiwalled carbon nanotubes (MWCNTs) for the separation/preconcentration and determination of Co, Cd, Pb, Zn, and Cu following their complexation by bis(3-nitrobenzylidene)-1,2-ethanediamine has been described and compared. A one-at-a-time optimization method investigated the influence of various parameters that significantly influence the recoveries of the studied metal ions. At the optimum values of all variables, the response was linear over the range of 0.01-0.3 microg/mL, and detection limit (3 SDb/m, n = 10) was between 1.41-2.05 ng/mL for both sorbents while the preconcentration factor was 100 for AC and 500 for MWCNTs. The method was successfully applied for preconcentration and determination of trace amount of the aforementioned ions in various real samples such as orange, lettuce, bread, and pear.
Biotinylated dextran amine anterograde tracing of the canine corticospinal tract.
Han, Xiao; Lv, Guangming; Wu, Huiqun; Ji, Dafeng; Sun, Zhou; Li, Yaofu; Tang, Lemin
2012-04-15
In this study, biotinylated dextran amine (BDA) was microinjected into the left cortical motor area of the canine brain. Fluorescence microscopy results showed that a large amount of BDA-labeled pyramidal cells were visible in the left cortical motor area after injection. In the left medulla oblongata, the BDA-labeled corticospinal tract was evenly distributed, with green fluorescence that had a clear boundary with the surrounding tissue. The BDA-positive corticospinal tract entered into the right lateral funiculus of the spinal cord and descended into the posterior part of the right lateral funiculus, close to the posterior horn, from cervical to sacral segments. There was a small amount of green fluorescence in the sacral segment. The distribution of BDA labeling in the canine central nervous system was consistent with the course of the corticospinal tract. Fluorescence labeling for BDA gradually diminished with time after injection. Our findings indicate that the BDA anterograde tracing technique can be used to visualize the localization and trajectory of the corticospinal tract in the canine central nervous system.
Ghasemi, Jahan B; Zolfonoun, E
2010-01-15
A new solid phase extraction method for separation and preconcentration of trace amounts of uranium, thorium, and zirconium in water samples is proposed. The procedure is based on the adsorption of U(VI), Th(IV) and Zr(IV) ions on a column of Amberlite XAD-2000 resin loaded with alpha-benzoin oxime prior to their simultaneous spectrophotometric determination with Arsenazo III using orthogonal signal correction partial least squares method. The enrichment factor for preconcentration of uranium, thorium, and zirconium was found to be 100. The detection limits for U(VI), Th(IV) and Zr(IV) were 0.50, 0.54, and 0.48microgL(-1), respectively. The precision of the method, evaluated as the relative standard deviation obtained by analyzing a series of 10 replicates, was below 4% for all elements. The practical applicability of the developed sorbent was examined using synthetic seawater, natural waters and ceramic samples.
Electron-rich triphenylamine-based sensors for picric acid detection.
Chowdhury, Aniket; Mukherjee, Partha Sarathi
2015-04-17
This paper demonstrates the role of solvent in selectivity and sensitivity of a series of electron-rich compounds for the detection of trace amounts of picric acid. Two new electron-rich fluorescent esters (6, 7) containing a triphenylamine backbone as well as their analogous carboxylic acids (8, 9) have been synthesized and characterized. Fluorescent triphenylamine coupled with an ethynyl moiety constitutes π-electron-rich selective and sensitive probes for electron-deficient picric acid (PA). In solution, the high sensitivity of all the sensors toward PA can be attributed to a combined effect of the ground-state charge-transfer complex formation and resonance energy transfer between the sensor and analyte. The acids 8 and 9 also showed enhanced sensitivity for nitroaromatics in the solid state, and their enhanced sensitivity could be attributed to exciton migration due to close proximity of the neighboring acid molecules, as evident from the X-ray diffraction study. The compounds were found to be quite sensitive for the detection of trace amount of nitroaromatics in solution, solid, and contact mode.
Presence and risk assessment of pharmaceuticals in surface water and drinking water.
Sanderson, Hans
2011-01-01
Trace amounts of pharmaceuticals have been detected in surface waters in the nano- to microgram per liter range, and in drinking water in the nanogram/L range. The environmental risks of pharmaceuticals in surface waters have been evaluated and generally found to be low if the wastewater is treated before release to the environment. The human health risks of trace amounts of pharmaceuticals in drinking water have however not been evaluated in any great depth. Preliminary screening level assessments suggest risk to be low--but the public and decision-makers are concerned and would like the matter investigated more thoroughly, especially with regards to mixture effects, chronic long-term effects and sensitive sub-populations. The World Health Organization is currently evaluating the need for credible health based guidance associated with low concentrations of pharmaceuticals in drinking water. The aim of this paper is to summarize the state-of-the-science and the ongoing international debate on the topic.
Microbial bioreporters of trace explosives.
Shemer, Benjamin; Koshet, Ori; Yagur-Kroll, Sharon; Belkin, Shimshon
2017-06-01
Since its introduction as an explosive in the late 19th century, 2,4,6-trinitrotoluene (TNT), along with other explosive compounds, has left numerous environmental marks. One of these is widespread soil and water pollution by trace explosives in military proving grounds, manufacturing facilities, or actual battlefields. Another dramatic impact is that exerted by the millions of landmines and other explosive devices buried in large parts of the world, causing extensive loss of life, injuries, and economical damage. In this review we highlight recent advances in the design and construction of microbial bioreporters, molecularly engineered to generate a quantifiable dose-dependent signal in the presence of trace amounts of explosives. Such sensor strains may be employed for monitoring environmental pollution as well as for the remote detection of buried landmines. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bags with oven-dried moss for the active monitoring of airborne trace elements in urban areas.
Giordano, S; Adamo, P; Monaci, F; Pittao, E; Tretiach, M; Bargagli, R
2009-10-01
To define a harmonized methodology for the use of moss and lichen bags as active monitoring devices of airborne trace elements in urban areas, we evaluated the element accumulation in bags exposed in Naples in different spring weather conditions for 6- and 12-weeks. Three different pre-exposure treatments were applied to moss and lichen materials: water-washing, acid-washing and oven-drying. During the different exposure periods in the Naples urban environment the moss accumulated always higher amounts of elements (except Hg) than lichens and the element accumulation increased during wetter weather and higher PM(10) conditions. The oven pre-treatment did not substantially modify the morphology and element composition of moss and the exposure in bags of this material for 6-weeks was sufficient to detect the pattern of airborne trace elements.
Scalable Performance Measurement and Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamblin, Todd
2009-01-01
Concurrency levels in large-scale, distributed-memory supercomputers are rising exponentially. Modern machines may contain 100,000 or more microprocessor cores, and the largest of these, IBM's Blue Gene/L, contains over 200,000 cores. Future systems are expected to support millions of concurrent tasks. In this dissertation, we focus on efficient techniques for measuring and analyzing the performance of applications running on very large parallel machines. Tuning the performance of large-scale applications can be a subtle and time-consuming task because application developers must measure and interpret data from many independent processes. While the volume of the raw data scales linearly with the number ofmore » tasks in the running system, the number of tasks is growing exponentially, and data for even small systems quickly becomes unmanageable. Transporting performance data from so many processes over a network can perturb application performance and make measurements inaccurate, and storing such data would require a prohibitive amount of space. Moreover, even if it were stored, analyzing the data would be extremely time-consuming. In this dissertation, we present novel methods for reducing performance data volume. The first draws on multi-scale wavelet techniques from signal processing to compress systemwide, time-varying load-balance data. The second uses statistical sampling to select a small subset of running processes to generate low-volume traces. A third approach combines sampling and wavelet compression to stratify performance data adaptively at run-time and to reduce further the cost of sampled tracing. We have integrated these approaches into Libra, a toolset for scalable load-balance analysis. We present Libra and show how it can be used to analyze data from large scientific applications scalably.« less
[Determination of Trace Elements in Marine Cetaceans by ICP-MS and Health Risk Assessment].
Ding, Yu-long; Ning, Xi; Gui, Duan; Mo, Hui; Li, Yu-sen; Wu, Yu-ping
2015-09-01
The liver, kidney and muscle samples from seven cetaceans were digested by microwave digestion, and trace elements amounts of V, Cd, Cu, Zn, As, Cr, Ni, Mn, Se, Hg and Pb were determined by inductively coupled plasma mass spectrometry (ICP-MS), and the health risk assessment for Zn, Cu, Cd, Hg, Se in the liver was conducted. The results of international lobster hepatopancreas standard (TORT-2) showed acceptable agreement with the certified values, and the relative standard deviation (RSD) of eleven kinds of trace elements were less than 3.54%, showing that the method is suitable for the determination of trace elements in cetaceans. The experimental results indicated that different tissues and organs of the dolphins had different trace elements, presenting the tissue specificity. There is a certain inter-species difference among different dolphins about the bioaccumulation ability of the trace elements. The distribution of trace elements in whales presented a certain regularity: the contents of most elements in liver, kidney were much higher than the contents of muscle tissues, Cu, Mn, Hg, Se, and Zn exhibit the higher concentrations in liver, while Cd was mainly accumulated in kidney. And according to the health risk assessment in liver, the exceeding standardrate of selenium and copper in seven kinds of whales was 100%, suggesting that these whales were suffering the contamination of trace elements. The experimental results is instructive to the study of trace elements in cetaceans, while this is the first report for the concentrations in organs of Striped dolphin, Bottlenose dolphin, Fraser's Dolphin and Risso's dolphin in China, it may provide us valuable data for the conservation of cetaceans.
S. K. Akagi; R. J. Yokelson; I. R. Burling; S. Meinardi; I. Simpson; D. R. Blake; G. R. McMeeking; A. Sullivan; T. Lee; S. Kreidenweis; S. Urbanski; J. Reardon; D. W. T. Griffith; T. J. Johnson; D. R. Weise
2013-01-01
In October-November 2011 we measured trace gas emission factors from seven prescribed fires in South Carolina (SC), US, using two Fourier transform infrared spectrometer (FTIR) systems and whole air sampling (WAS) into canisters followed by gas- 5 chromatographic analysis. A total of 97 trace gas species were quantified from both airborne and ground-based sampling...
Chen, J.R.; Chao, E.C.T.; Back, J.M.; Minkin, J.A.; Rivers, M.L.; Sutton, S.R.; Cygan, G.L.; Grossman, J.N.; Reed, M.J.
1993-01-01
The concentrations of rare earth elements (REEs) in specific mineral grains from the Bayan Obo ore deposit and synthetic high-silica glass samples have been measured by synchrotron X-ray fluorescence (SXRF) analysis using excitation of the REE K lines between 33 and 63 keV. Because SXRF, a nondestructive analytical technique, has much lower minimum detection limits (MDLs) for REEs, it is an important device that extends the in situ analytical capability of electron probe microanalysis (EPMA). The distribution of trace amounts of REEs in common rock-forming minerals, as well as in REE minerals and minerals having minor quantities of REEs, can be analyzed with SXRF. Synchrotron radiation from a bending magnet and a wiggler source at the National Synchrotron Light Source, Brookhaven National Laboratory, was used to excite the REEs. MDLs of 6 ppm (La) to 26 ppm (Lu) for 3600 s in 60-??m-thick standard samples were obtained with a 25-??m diameter wiggler beam. The MDLs for the light REEs were a factor of 10-20 lower than the MDLs obtained with a bending magnet beam. The SXRF REE concentrations in mineral grains greater than 25 ??m compared favorably with measurements using EPMA. Because EPMA offered REE MDLs as low as several hundred ppm, the comparison was limited to the abundant light REEs (La, Ce, Pr, Nd). For trace values of medium and heavy REEs, the SXRF concentrations were in good agreement with measurements using instrumental neutron activation analysis (INAA), a bulk analysis technique. ?? 1993.
Leifer, Robert [Environmental Measurements Lab. (EML), New York, NY (United States); Chan, Nita [Environmental Measurements Lab. (EML), New York, NY (United States)
1997-01-01
RANDAB represents the worlds largest collection of stratospheric and upper tropospheric radionuclide data. The database contains results of measurements made from 1957 to 1983 during the ASHCAN, STARDUST, AIRSTREAM, and High Altitude Sampling Program (HASP) projects. More than 20,000 filters were collected during this period and analyzed for approximately 40 different radionuclides. All of the available data characterizing each filter are included in RANDAB. RANDAB offers gas samples characterizing the tritium, radon and 14CO2 concentration in stratospheric air. Only a limited amount of data is available for radon because of analytical and sampling problems. The tritium data were provided graciously by Dr. Allen Mason of Los Alamos Laboratory and Dr. H. G. Oslund of the Tritium Laboratory, University of Miami. The second database, TRACDAB, contains more than 1000 stratospheric trace gas measurements for the period 1974 to 1983. These samples were collected during Project AIRSTREAM. During the years 1974 to 1976, the samples were analyzed at EML. Subsequently, Washington State University (1976-1979) and the Oregon Graduate Institute for Science & Technology (formerly the Oregon Graduate Center 1980-1983) were under contract to EML to analyze AIRSTREAM gas samples. During the period 1974-1983, 980 gas samples were analyzed for one or more of the following gases CCl3F, CCl2F2, CCl4, CH3CCl3, SF6, N20, CO2, CH4, and carbonyl sulfide (COS). To learn more about the naming of halocarbons (CFCs, HFCs, HCFCs, and halons), go to http://cdiac.ess-dive.lbl.gov/pns/cfcinfo.html.
NASA Technical Reports Server (NTRS)
Furrow, Keith W.; Ritchie, Steve J.; Morris, Amy
2000-01-01
To meet ballistic requirements, medium and small caliber propellants use deterrent coatings to obtain burn rate progressivity. The required amount and distribution of deterrent varies between gun systems, propellant types, and often between lots. Micro Fourier Transform Infrared (FTIR) spectroscopy was used to measure deterrent gradients in RP36 propellants coated with methyl centralite (MC) at different deterrent levels and different processing conditions. The aromatic C-C bonds at 1496 cm(exp -1) wavenumber were used to monitor the deterrent profiles through the grain. Deterrent gradients measured with FTIR spectroscopy were then used to estimate burn rate gradients in the deterred grains. Burn rates were calculated from literature models and from closed bomb data of RP36 containing uniform deterrent concentration. Finally, the burn rate gradients were input into an IBHFG2 model of a 200 cc-closed bomb. The early flame spreading portion of the closed bomb ballistic cycle (0 to 0.2 P/Pmax) was roughly modeled by dividing the charge up into five propellant decks and igniting them at different times in the ballistic cycle. Pressure traces and vivacity curves from closed bomb shots were compared to predictions. In addition to the burn rate gradient, the closed bomb pressure trace was heavily dependent on ignition and flame spread. These two phenomena were not readily distinguishable from one another in deterred grains. The same RP-36 propellant was shot in a 25 mm M793TP round which was again modeled with IBHVG2. Peak pressure and muzzle velocity were accurately modeled when erosive burning effects were empirically factored into the model.
Li, Dongmei; Guan, Tian; He, Yonghong; Liu, Fang; Yang, Anping; He, Qinghua; Shen, Zhiyuan; Xin, Meiguo
2018-07-01
A new chiral sensor based on weak measurement to accurately measure the optical rotation (OR) has been developed for the estimation of a trace amount of chiral molecule. With the principle of optical weak measurement in frequency domain, the central wavelength shift of output spectra is quantitatively relative to the angle of preselected polarization. Hence, a chiral molecule (e.g., L-amino acid, or D-amino acid) can be enantioselectively determined by modifying the preselection angle with the OR, which will cause the rotation of a polarization plane. The concentration of the chiral sample, corresponding to its optical activity, is quantitatively analyzed with the central wavelength shift of output spectra, which can be collected in real time. Immune to the refractive index change, the proposed chiral sensor is valid in complicated measuring circumstance. The detections of Proline enantiomer concentration in different solvents were implemented. The results demonstrated that weak measurement acted as a reliable method to chiral recognition of Proline enantiomers in diverse circumstance with the merits of high precision and good robustness. In addition, this real-time monitoring approach plays a crucial part in asymmetric synthesis and biological systems. Copyright © 2018. Published by Elsevier B.V.
Hunt, Pamela S; Barnet, Robert C
2015-09-01
Animal models of Fetal Alcohol Spectrum Disorders (FASD) afford the unique capacity to precisely control timing of alcohol exposure and alcohol exposure amounts in the developing animal. These models have powerfully informed neurophysiological alterations associated with fetal and perinatal alcohol. In two experiments presented here we expand use of the Pavlovian Trace Conditioning procedure to examine cognitive deficits and intervention strategies in a rat model of FASD. Rat pups were exposed to 5g/kg/day ethanol on postnatal days (PD) 4-9, simulating alcohol exposure in the third trimester in humans. During early adolescence, approximately PD 30, the rats were trained in the trace conditioning task in which a light conditioned stimulus (CS) and shock unconditioned stimulus (US) were paired but separated by a 10-s stimulus free trace interval. Learning was assessed in freezing behavior during shock-free tests. Experiment 1 revealed that neonatal ethanol exposure significantly impaired hippocampus-dependent trace conditioning relative to controls. In Experiment 2 a serial compound conditioning procedure known as 'gap filling' completely reversed the ethanol-induced deficit in trace conditioning. We also discuss prior data regarding the beneficial effects of supplemental choline and novel preliminary data regarding the pharmacological cognitive enhancer physostigmine, both of which mitigate the alcohol-induced cognitive deficit otherwise seen in trace conditioning controls. We suggest trace conditioning as a useful tool for characterizing some of the core cognitive deficits seen in FASD, and as a model for developing effective environmental as well as nutritional and pharmacological interventions. Copyright © 2014 Elsevier Inc. All rights reserved.
Hunt, Pamela S.; Barnet, Robert C.
2014-01-01
Animal models of Fetal Alcohol Spectrum Disorders (FASD) afford the unique capacity to precisely control timing of alcohol exposure and alcohol exposure amounts in the developing animal. These models have powerfully informed neurophysiological alterations associated with fetal and perinatal alcohol. In two experiments presented here we expand use of the Pavlovian Trace Conditioning procedure to examine cognitive deficits and intervention strategies in a rat model of FASD. Rat pups were exposed to 5 g/kg/day ethanol on postnatal days (PD) 4–9, simulating alcohol exposure in the third trimester in humans. During early adolescence, approximately PD 30, the rats were trained in the trace conditioning task in which a light conditioned stimulus (CS) and shock unconditioned stimulus (US) were paired but separated by a 10-s stimulus free trace interval. Learning was assessed in freezing behavior during shock-free tests. Experiment 1 revealed that neonatal ethanol exposure significantly impaired hippocampus-dependent trace conditioning relative to controls. In Experiment 2 a serial compound conditioning procedure known as ‘gap filling’ completely reversed the ethanol-induced deficit in trace conditioning. We also discuss prior data regarding the beneficial effects of supplemental choline and novel preliminary data regarding the pharmacological cognitive enhancer physostigmine, both of which mitigate the alcohol-induced cognitive deficit otherwise seen in trace conditioning controls. We suggest trace conditioning as a useful tool for characterizing some of the core cognitive deficits seen in FASD, and as a model for developing effective environmental as well as nutritional and pharmacological interventions. PMID:25477227
Practical applications of trace minerals for dairy cattle.
Overton, T R; Yasui, T
2014-02-01
Trace minerals have critical roles in the key interrelated systems of immune function, oxidative metabolism, and energy metabolism in ruminants. To date, the primary trace elements of interest in diets for dairy cattle have included Zn, Cu, Mn, and Se although data also support potentially important roles of Cr, Co, and Fe in diets. Trace minerals such as Zn, Cu, Mn, and Se are essential with classically defined roles as components of key antioxidant enzymes and proteins. Available evidence indicates that these trace minerals can modulate aspects of oxidative metabolism and immune function in dairy cattle, particularly during the transition period and early lactation. Chromium has been shown to influence both immune function and energy metabolism of cattle; dairy cows fed Cr during the transition period and early lactation have evidence of improved immune function, increased milk production, and decreased cytological endometritis. Factors that complicate trace mineral nutrition at the farm level include the existence of a large number of antagonisms affecting bioavailability of individual trace minerals and uncertainty in terms of requirements under all physiological and management conditions; therefore, determining the optimum level and source of trace minerals under each specific situation continues to be a challenge. Typical factorial approaches to determine requirements for dairy cattle do not account for nuances in biological function observed with supplementation with various forms and amounts of trace minerals. Trace mineral nutrition modulates production, health, and reproduction in cattle although both formal meta-analysis and informal survey of the literature reveal substantial heterogeneity of response in these outcome variables. The industry has largely moved away from oxide-based programs toward sulfate-based programs; however, some evidence favors shifting supplementation strategies further toward more bioavailable forms of inorganic and organic trace minerals. Furthermore, opportunities for specific modulation of aspects of health, milk production, and reproduction through supplementation strategies for diets of transition dairy cows are attractive because of the known dynamics of energy metabolism, immune function, and oxidative metabolism during this timeframe.
Subnormalized states and trace-nonincreasing maps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cappellini, Valerio; Sommers, Hans-Juergen; Zyczkowski, Karol
2007-05-15
We investigate the set of completely positive, trace-nonincreasing linear maps acting on the set M{sub N} of mixed quantum states of size N. Extremal point of this set of maps are characterized and its volume with respect to the Hilbert-Schmidt (HS) (Euclidean) measure is computed explicitly for an arbitrary N. The spectra of partially reduced rescaled dynamical matrices associated with trace-nonincreasing completely positive maps belong to the N cube inscribed in the set of subnormalized states of size N. As a by-product we derive the measure in M{sub N} induced by partial trace of mixed quantum states distributed uniformly withmore » respect to the HS measure in M{sub N{sup 2}}.« less
[Remote sensing of atmospheric trace gas by airborne passive FTIR].
Gao, Min-quang; Liu, Wen-qing; Zhang, Tian-shu; Liu, Jian-guo; Lu, Yi-huai; Wang, Ya-ping; Xu, Liang; Zhu, Jun; Chen, Jun
2006-12-01
The present article describes the details of aviatic measurement for remote sensing trace gases in atmosphere under various surface backgrounds with airborne passive FTIR. The passive down viewing and remote sensing technique used in the experiment is discussed. The method of acquiring atmospheric trace gases infrared characteristic spectra in complicated background and the algorithm of concentration retrieval are discussed. The concentrations of CO and N2O of boundary-layer atmosphere in experimental region below 1000 m are analyzed quantitatively. This measurement technique and the data analysis method, which does not require a previously measured background spectrum, allow fast and mobile remote detection and identification of atmosphere trace gas in large area, and also can be used for urgent monitoring of pollution accidental breakout.
NASA Astrophysics Data System (ADS)
Synovec, Robert E.; Renn, Curtiss N.
1991-07-01
The refractive index gradient (RIG) of hydrodynamically controlled profiles can be universally, yet sensitively, measured by carefully probing the radial RIG passing through a z-configuration flow cell. Fiber optic technology is applied in order to provide a narrow, collimated probe beam (100 micrometers diameter) that is deflected by a RIG and measured by a position sensitive detector. The fiber optic construction allows one to probe very small volumes (1 (mu) L to 3 (mu) L) amenable to microbore liquid chromatography ((mu) LC). The combination of (mu) LC and RIG detection is very useful for the analysis of trace quantities (ng injected amounts) of chemical species that are generally difficult to measure, i.e., species that are not amenable to absorbance detection or related techniques. Furthermore, the RIG detector is compatible with conventional mobile phase gradient and thermal gradient (mu) LC, unlike traditional RI detectors. A description of the RIG detector coupled with (mu) LC for the analysis of complex polymer samples is reported. Also, exploration into using the RIG detector for supercritical fluid chromatography is addressed.
NASA Astrophysics Data System (ADS)
Mirabi, Ali; Shokuhi Rad, Ali; Khodadad, Hadiseh
2015-09-01
Magnetic nanocomposites surface (MNCS) which has anionic surfactant sodium dodecyl sulfate (SDS) coating and has undergone dithiooxamide treatment as the sorbent could be an easy and useful method to extract and make a pre-concentrated in detecting the copper ions before they are determined via the flame atomic absorption spectrometry (FAAS). The influences of the experimental parameters such as the pH of the sample, the type and concentration of the eluent, dithiooxamide concentration and volume, amount of sorbent and the interactions of ions with respect to the copper ion detection have been studied. The calibration graph was linear in the range of 2-600 ng ml-1 with detection limit of 0.2 ng ml-1. Relative standard deviation (RSD) for 6 replicate measurements was 1.8%. This method of detection has been applied to the determination of Cu ions at levels in real samples such as wheat flour, tomatoes, potatoes, red beans, oat, tap water, river water and sea water with satisfactory results.
IDENTIFICATION OF POLLUTANTS IN A MUNICIPAL WELL USING HIGH RESOLUTION MASS SPECTROMETRY
An elevated incidence of childhood cancer was observed near a contaminated site. Trace amounts of several isomeric compounds were detected by gas chromatography/mass spectrometry (GC/MS) in a concentrated extract of municipal well water. No matching library mass spectra were foun...
Ammonia emissions from cattle feeding operations.
USDA-ARS?s Scientific Manuscript database
Ammonia is a colorless gas with an pungent odor that occurs naturally in trace amounts in the atmosphere, where it is the dominant base. Ammonia is produced during the decomposition of livestock manure. There is concern about atmospheric ammonia because of its potential effects on air quality, wat...
Martínez, B; Miranda, J M; Nebot, C; Rodriguez, J L; Cepeda, A; Franco, C M
2010-10-01
The proximate, cholesterol, fatty acid and trace mineral compositions in the flesh of farmed and wild turbot (Psetta maxima) were evaluated. Additionally, the potential influence of the use of antimicrobial agents in the bacteria carried by farmed turbot was investigated. For this purpose, a total of 144 Pseudomonas spp. and 127 Aeromonas spp. were isolated and tested for their susceptibility to 12 antimicrobials by a disk diffusion method. Farmed turbot contained higher fat, cholesterol and calories as well as lower moisture content than its wild counterpart. The fatty acid profile of farmed turbot included higher levels of myristic, pentadecanoic, palmitoleic, gadoleic, cetoleic, linoleic, linolenic, stearidonic, eicosadienoic and eicosapentaenoic acids, and lower levels of stearic, arachidonic, docosapentaenoic and docosahexaenoic acids than its wild counterpart. The proportions of polyunsaturated fatty acids and n-3/n-6 ratios were higher in wild turbot than in farmed turbot. With respect to trace minerals, no toxic levels were found, and higher amounts of Cd, Co, Cu, Fe, Mn, Pb and Zn, as well as lower amounts of Cr, were found in farmed turbot relative to wild turbot. The antimicrobial resistance of Pseudomonas spp. and Aeromonas spp. were quite similar, with only the trimethoprim-sulfamethoxazole resistance of Aeromonas spp. isolated from farmed turbot being higher than those isolated from wild turbot. In the case of ampicillin, Pseudomonas spp. isolated from wild turbot showed higher resistance levels than those of their counterparts isolated from farmed turbot. In conclusion, the nutritional parameters of wild turbot are more adequate with respect to nutritional recommendations, while no differences were observed in food safety derived from trace mineral concentrations or the antimicrobial resistance of bacteria isolated from wild and farmed turbot.
Developing Learning Progression-Based Teacher Knowledge Measures
ERIC Educational Resources Information Center
Jin, Hui; Shin, HyoJeong; Johnson, Michele E.; Kim, JinHo; Anderson, Charles W.
2015-01-01
This study developed learning progression-based measures of science teachers' content knowledge (CK) and pedagogical content knowledge (PCK). The measures focus on an important topic in secondary science curriculum using scientific reasoning (i.e., tracing matter, tracing energy, and connecting scales) to explain plants gaining weight and…
NASA Astrophysics Data System (ADS)
Jurkat, Tina; Kaufmann, Stefan; Voigt, Christiane; Schäuble, Dominik; Jeßberger, Philipp; Ziereis, Helmut
2016-04-01
Understanding the role of climate-sensitive trace gas variabilities in the upper troposphere and lower stratosphere region (UTLS) and their impact on its radiative budget requires accurate measurements. The composition of the UTLS is governed by transport and chemistry of stratospheric and tropospheric constituents, such as chlorine, nitrogen oxide and sulfur compounds. The Atmospheric chemical Ionization Mass Spectrometer AIMS has been developed to accurately measure a set of these constituents on aircraft by means of chemical ionization. Here we present a setup using SF5- reagent ions for the simultaneous measurement of trace gas concentrations of HCl, HNO3 and SO2 in the pptv to ppmv (10-12 to 10-6 mol mol-1) range with in-flight and online calibration called AIMS-TG (Atmospheric chemical Ionization Mass Spectrometer for measurements of trace gases). Part 1 of this paper (Kaufmann et al., 2016) reports on the UTLS water vapor measurements with the AIMS-H2O configuration. The instrument can be flexibly switched between two configurations depending on the scientific objective of the mission. For AIMS-TG, a custom-made gas discharge ion source has been developed for generation of reagent ions that selectively react with HCl, HNO3, SO2 and HONO. HNO3 and HCl are routinely calibrated in-flight using permeation devices; SO2 is continuously calibrated during flight adding an isotopically labeled 34SO2 standard. In addition, we report on trace gas measurements of HONO, which is sensitive to the reaction with SF5-. The detection limit for the various trace gases is in the low 10 pptv range at a 1 s time resolution with an overall uncertainty of the measurement of the order of 20 %. AIMS has been integrated and successfully operated on the DLR research aircraft Falcon and HALO (High Altitude LOng range research aircraft). As an example, measurements conducted during the TACTS/ESMVal (Transport and Composition of the LMS/UT and Earth System Model Validation) mission with HALO in 2012 are presented, focusing on a classification of tropospheric and stratospheric influences in the UTLS region. The combination of AIMS measurements with other measurement techniques yields a comprehensive picture of the sulfur, chlorine and reactive nitrogen oxide budget in the UTLS. The different trace gases measured with AIMS exhibit the potential to gain a better understanding of the trace gas origin and variability at and near the tropopause.
Ranjbari, Elias; Hadjmohammadi, Mohammad Reza; Kiekens, Filip; De Wael, Karolien
2015-08-04
Mixed hemi/ad-micelle sodium dodecyl sulfate (SDS)-coated magnetic iron oxide nanoparticles (MHAMS-MIONPs) were used as an efficient adsorbent for both removal and preconcentration of two important carcinogenic xanthine dyes named rhodamine-B (RB) and rhodamine-6G (RG). To gain insight in the configuration of SDS molecules on the surface of MIONPs, zeta potential measurements were performed in different [SDS]/[MIONP] ratios. Zeta potential data indicated that mixed hemi/ad-micelle MHAM was formed in [SDS]/[MIONP] ratios over the range of 1.1 to 7.3. Parameters affecting the adsorption of dyes were optimized as removal efficiency by one variable at-a-time and response surface methodology; the obtained removal efficiencies were ∼100%. Adsorption kinetic and equilibrium studies, under the optimum condition (pH = 2; amount of MIONPs = 87.15 mg; [SDS]/[MIONP] ratio = 2.9), showed that adsorption of both dyes are based on the pseudo-second-order and the Langmuir isotherm models, respectively. The maximum adsorption capacities for RB and RG were 385 and 323 mg g(-1), respectively. MHAMS-MIONPs were also applied for extraction of RB and RG. Under optimum conditions (pH = 2; amount of damped MHAMS-MIONPs = 90 mg; eluent solvent volume = 2.6 mL of 3% acetic acid in acetonitrile), extraction recoveries for 0.5 mg L(-1) of RB and RG were 98% and 99%, with preconcentration factors of 327 and 330, respectively. Limit of detection obtained for rhodamine dyes were <0.7 ng mL(-1). Finally, MHAMS-MIONPs were successfully applied for both removal and trace determination of RB and RG in environmental and wastewater samples.
Farsalinos, Konstantinos E.; Gillman, I. Gene; Melvin, Matt S.; Paolantonio, Amelia R.; Gardow, Wendy J.; Humphries, Kathy E.; Brown, Sherri E.; Poulas, Konstantinos; Voudris, Vassilis
2015-01-01
Background. Some electronic cigarette (EC) liquids of tobacco flavour contain extracts of cured tobacco leaves produced by a process of solvent extraction and steeping. These are commonly called Natural Extract of Tobacco (NET) liquids. The purpose of the study was to evaluate nicotine levels and the presence of tobacco-derived toxins in tobacco-flavoured conventional and NET liquids. Methods. Twenty-one samples (10 conventional and 11 NET liquids) were obtained from the US and Greek market. Nicotine levels were measured and compared with labelled values. The levels of tobacco-derived chemicals were compared with literature data on tobacco products. Results. Twelve samples had nicotine levels within 10% of the labelled value. Inconsistency ranged from −21% to 22.1%, with no difference observed between conventional and NET liquids. Tobacco-specific nitrosamines (TSNAs) were present in all samples at ng/mL levels. Nitrates were present almost exclusively in NET liquids. Acetaldehyde was present predominantly in conventional liquids while formaldehyde was detected in almost all EC liquids at trace levels. Phenols were present in trace amounts, mostly in NET liquids. Total TSNAs and nitrate, which are derived from the tobacco plant, were present at levels 200–300 times lower in 1 mL of NET liquids compared to 1 gram of tobacco products. Conclusions. NET liquids contained higher levels of phenols and nitrates, but lower levels of acetaldehyde compared to conventional EC liquids. The lower levels of tobacco-derived toxins found in NET liquids compared to tobacco products indicate that the extraction process used to make these products did not transfer a significant amount of toxins to the NET. Overall, all EC liquids contained far lower (by 2–3 orders of magnitude) levels of the tobacco-derived toxins compared to tobacco products. PMID:25811768
Farsalinos, Konstantinos E; Gillman, I Gene; Melvin, Matt S; Paolantonio, Amelia R; Gardow, Wendy J; Humphries, Kathy E; Brown, Sherri E; Poulas, Konstantinos; Voudris, Vassilis
2015-03-24
Some electronic cigarette (EC) liquids of tobacco flavour contain extracts of cured tobacco leaves produced by a process of solvent extraction and steeping. These are commonly called Natural Extract of Tobacco (NET) liquids. The purpose of the study was to evaluate nicotine levels and the presence of tobacco-derived toxins in tobacco-flavoured conventional and NET liquids. Twenty-one samples (10 conventional and 11 NET liquids) were obtained from the US and Greek market. Nicotine levels were measured and compared with labelled values. The levels of tobacco-derived chemicals were compared with literature data on tobacco products. Twelve samples had nicotine levels within 10% of the labelled value. Inconsistency ranged from -21% to 22.1%, with no difference observed between conventional and NET liquids. Tobacco-specific nitrosamines (TSNAs) were present in all samples at ng/mL levels. Nitrates were present almost exclusively in NET liquids. Acetaldehyde was present predominantly in conventional liquids while formaldehyde was detected in almost all EC liquids at trace levels. Phenols were present in trace amounts, mostly in NET liquids. Total TSNAs and nitrate, which are derived from the tobacco plant, were present at levels 200-300 times lower in 1 mL of NET liquids compared to 1 gram of tobacco products. NET liquids contained higher levels of phenols and nitrates, but lower levels of acetaldehyde compared to conventional EC liquids. The lower levels of tobacco-derived toxins found in NET liquids compared to tobacco products indicate that the extraction process used to make these products did not transfer a significant amount of toxins to the NET. Overall, all EC liquids contained far lower (by 2-3 orders of magnitude) levels of the tobacco-derived toxins compared to tobacco products.
Global sensing of gaseous and aerosol trace species using automated instrumentation on 747 airliners
NASA Technical Reports Server (NTRS)
Perkins, P. J.; Papathakos, L. C.
1978-01-01
The Global Atmospheric Sampling Program (GASP) is collecting and analyzing data on gaseous and aerosol trace contaminants in the upper troposphere and lower stratosphere. Measurements are obtained from automated systems installed on four 747 airliners flying global air routes. Improved instruments and analysis techniques are providing an expanding data base for trace species including ozone, carbon monoxide, water vapor, condensation nuclei, and mass concentration of sulfates and nitrates. Simultaneous measurements of several trace species obtained frequently can be used to identify the source of the air mass as being typically tropospheric or stratospheric.
[Coal fineness effect on primary particulate matter features during pulverized coal combustion].
Lü, Jian-yi; Li, Ding-kai
2007-09-01
Three kinds of coal differed from fineness were burned in a laboratory-scale drop tube furnace for combustion test, and an 8-stage Andersen particle impactor was employed for sampling the primary particulate matter (PM), in order to study coal fineness effect on primary PM features during pulverized coal combustion. It has been shown that the finer the coal was, the finer the PM produced. PM, emission amount augmented with coal fineness decreased, and the amount of PM10 increased from 13 mg/g to 21 mg/g respectively generated by coarse coal and fine coal. The amount of PM2.5 increased from 2 mg/g to 8 mg/g at the same condition. Constituents and content in bulk ash varied little after three different fineness coal combustion, while the appearance of grading PM differed visibly. The value of R(EE) increased while the coal fineness deceased. The volatility of trace elements which were investigated was Pb > Cr > Zn > Cu > Ni in turn. The concentration of poisonous trace elements was higher which generated from fine coal combustion. The volatilization capacity was influenced little by coal fineness, but the volatilization extent was influenced differently by coal fineness. Fine coal combustion affects worse environment than coarse coal does.
Mohadesi, Alireza; Falahnejad, Masoumeh
2012-01-01
In the present study, an ultrasound-assisted emulsification microextraction based on solidification floating organic drop method is described for preconcentration of trace amounts of Mn (II). 2-(5-Bromo-2-pyridylazo)-5 diethylaminophenol was added to a solution of Mn+2 at ph = 10.0. After this, 1-undecanol was added to the solution as an extraction solvent, and solution was stirred. Several factors influencing the microextraction efficiency, such as pH, the amount of chelating agent, nature and volume of extraction solvent, the volume of sample solution, stirring rate, and extraction time were investigated and optimized. Then sample vial was cooled by inserting into an ice bath, and the solidified was transferred into a suitable vial for immediate melting. Finally the sample was injected into a graphite furnace atomic absorption spectrometry. Under the optimum condition the linear dynamic range was 0.50–10.0 ng mL−1 with a correlation coefficient of 0.9926, and the detection limit of 0.3 ng mL−1 was obtained. The enrichment factor was 160. The proposed method was successfully applied for separation and determination of manganese in sea, rain, tap, and river water samples. PMID:22645504
Gouda, Ayman A; Al Ghannam, Sheikha M
2016-07-01
A new, sensitive and simple solid phase extraction (SPE), separation and preconcentration method of some heavy metal ions, Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) at trace levels using multiwalled carbon nanotubes (MWCNTs) impregnated with 2-(2-benzothiazolylazo)orcinol (BTAO) from food and water samples were investigated. The effect of analytical parameters was examined. The metals retained on the nanotubes at pH 7.0 were eluted by 5.0mL HNO3 (2.0molL(-1)). The influence of matrix ions on the proposed method was evaluated. The preconcentration factor was calculated and found to be 100. The detection limits (LODs) for Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) were found at 0.70, 1.2, 0.80, 2.6 and 2.2μgL(-1), respectively. The relative standard deviation (RSD) and the recoveries of the standard addition method were lower than 5.0% and 95-102%, respectively. The new procedure was successfully applied to the determination of trace amounts of the studied metal ions in various food and water samples and validated using certified reference materials SRM 1570A (spinach leaves) with satisfactory and compatible results. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhao, Wenhui; Sheng, Na; Zhu, Rong; Wei, Fangdi; Cai, Zheng; Zhai, Meijuan; Du, Shuhu; Hu, Qin
2010-07-15
Molecularly imprinted polymers for bisphenol A (BPA) were prepared by using surface molecular imprinting technique. Analogues of BPA, namely 4,4'-dihydroxybiphenyl and 3,3',5,5'-tetrabromobisphenol A, were used as the dummy templates instead of BPA, to avoid the leakage of a trace amount of the target analyte (BPA). The resulting dummy molecularly imprinted polymers (DMIPs) showed the large sorption capacity, high recognition ability and fast binding kinetics for BPA. The maximal sorption capacity was up to 958 micromol g(-1), and it only took 40 min for DMIPs to achieve the sorption equilibrium. The DMIPs were successfully applied to the solid-phase extraction coupled with HPLC/UV for the determination of BPA in water samples. The calibration graph of the analytical method was linear with a correlation coefficient more than 0.999 in the concentration range of 0.0760-0.912 ng mL(-1) of BPA. The limit of detection was 15.2 pg mL(-1) (S/N=3). Recoveries were in the range of 92.9-102% with relative standard deviation (RSD) less than 11%. The trace amounts of BPA in tap water, drinking water, rain and leachate of one-off tableware were determined by the method built, and the satisfactory results were obtained. 2010 Elsevier B.V. All rights reserved.
Asfaram, Arash; Ghaedi, Mehrorang; Abidi, Hassan; Javadian, Hamedreza; Zoladl, Mohammad; Sadeghfar, Fardin
2018-06-01
A simple procedure based on ultrasound-assisted (UA) dispersive micro solid phase extraction (D-μ-SPE) was applied for sorption of trace amount Allura Red (AR) in fruit juice and water samples. After loading process by UA-D-μ-SPE, the concentrated AR was eluted and monitored using high-performance liquid chromatography-ultraviolet -visible detector (HPLC-UV). The best operational conditions were obtained as follows: pH = 3.0, 8 mg of the sorbent, sonication time of 4.5 min and 0.16 mL of THF as elution solvent. Under the optimum operational conditions, the present method was acceptable for AR quantification in the range of 1.0-5000 ng mL -1 . The repeatability based on RSD with the amount of 1.67-3.18%, low LOD (0.198 ng mL -1 ) and LOQ (0.659 ng mL -1 ) were obtained. The UA-D-μ-SPE-HPLC-UV method was successfully applied for trace quantification of AR from water and commercial fruit juice samples supplied from local supermarkets, and acceptable relative recoveries over the range of 97.7-105.4% with RSDs ≤5.50% were obtained. Copyright © 2018 Elsevier B.V. All rights reserved.
S. K. Akagi; R. J. Yokelson; I. R. Burling; S. Meinardi; I. Simpson; D. R. Blake; G. R. McMeeking; A. Sullivan; T. Lee; S. Kreidenweis; S. Urbanski; J. Reardon; D. W. T. Griffith; T. J. Johnson; D. R. Weise
2012-01-01
In OctoberâNovember 2011 we measured trace gas emission factors from seven prescribed fires in South Carolina (SC), US, using two Fourier transform infrared spectrometer (FTIR) systems and whole air sampling (WAS) into canisters followed by gas-chromatographic analysis. A total of 97 trace gas species were quantified from both airborne and ground-based sampling...
Trace elements in fish from Taihu Lake, China: levels, associated risks, and trophic transfer.
Hao, Ying; Chen, Liang; Zhang, Xiaolan; Zhang, Dongping; Zhang, Xinyu; Yu, Yingxin; Fu, Jiamo
2013-04-01
Concentrations of eight trace elements [iron (Fe), manganese (Mn), zinc (Zn), chromium (Cr), mercury (Hg), cadmium (Cd), lead (Pb), and arsenic (As)] were measured in a total of 198 samples covering 24 fish species collected from Taihu Lake, China, in September 2009. The trace elements were detected in all samples, and the total mean concentrations ranged from 18.2 to 215.8 μg/g dw (dry weight). The concentrations of the trace elements followed the sequence of Zn>Fe>Mn>Cr>As>Hg>Pb>Cd. The measured trace element concentrations in fish from Taihu Lake were similar to or lower than the reported values in fish around the world. The metal pollution index was used to compare the total trace element accumulation levels among various species. Toxabramis swinhonis (1.606) accumulated the highest level of the total trace elements, and Saurogobio dabryi (0.315) contained the lowest. The concentrations of human non-essential trace elements (Hg, Cd, Pb, and As) were lower than the allowable maximum levels in fish in China and the European Union. The relationships between the trace element concentrations and the δ(15)N values of fish species were used to investigate the trophic transfer potential of the trace elements. Of the trace elements, Hg might be biomagnified through the food chain in Taihu Lake if the significant level of p-value was set at 0.1. No biomagnification and biodilution were observed for other trace elements. Copyright © 2012 Elsevier Inc. All rights reserved.
Wang, Juan; Yuan, Chengqian; Han, Yuchun; Wang, Yilin; Liu, Xiaomin; Zhang, Suojiang; Yan, Xuehai
2017-11-01
The interaction between water and biomolecules including peptides is of critical importance for forming high-level architectures and triggering life's functions. However, the bulk aqueous environment has limitations in detecting the kinetics and mechanisms of peptide self-assembly, especially relating to interactions of trace water. With ionic liquids (ILs) as a nonconventional medium, herein, it is discovered that trace amounts of water play a decisive role in triggering self-assembly of a biologically derived dipeptide. ILs provide a suitable nonaqueous environment, enabling us to mediate water content and follow the dynamic evolution of peptide self-assembly. The trace water is found to be involved in the assembly process of dipeptide, especially leading to the formation of stable noncovalent dipeptide oligomers in the early stage of nucleation, as evident by both experimental studies and theoretical simulations. The thermodynamics of the growth process is mainly governed by a synergistic effect of hydrophobic interaction and hydrogen bonds. Each step of assembly presents a different trend in thermodynamic energy. The dynamic evolution of assembly process can be efficiently mediated by changing trace water content. The decisive role of trace water in triggering and mediating self-assembly of biomolecules provides a new perspective in understanding supramolecular chemistry and molecular self-organization in biology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, ChunMei; Yuan, HaiRong; Zou, DeXun; Liu, YanPing; Zhu, BaoNing; Li, XiuJin
2015-01-01
This research applied sodium hydroxide (NaOH) pretreatment and trace elements to improve biomethane production when using corn stover for anaerobic digestion. Full-factor experimental tests identified the best combination of trace elements with the NaOH pretreatment, indicating that the best combination was with 1.0, 0.4, and 0.4 mg·L−1·d−1 of elements Fe, Co, and Ni, respectively. The cumulative biomethane production adding NaOH pretreatment and trace elements was 11,367 mL; total solid bioconversion rate was 55.7%, which was 41.8%–62.2% higher than with NaOH-pretreatment alone and 22.2%–56.3% higher than with untreated corn stover. The best combination was obtained 5–9 days shorter than T90 and maintained good system operation stability. Only a fraction of the trace elements in the best combination was present in the resulting solution; more than 85% of the total amounts added were transferred into the solid fraction. Adding 0.897 g of Fe, 0.389 g of Co, and 0.349 g of Ni satisfied anaerobic digestion needs and enhanced biological activity at the beginning of the operation. The results showed that NaOH pretreatment and adding trace elements improve corn stover biodegradability and enhance biomethane production. PMID:26137469
Statistical speed of quantum states: Generalized quantum Fisher information and Schatten speed
NASA Astrophysics Data System (ADS)
Gessner, Manuel; Smerzi, Augusto
2018-02-01
We analyze families of measures for the quantum statistical speed which include as special cases the quantum Fisher information, the trace speed, i.e., the quantum statistical speed obtained from the trace distance, and more general quantifiers obtained from the family of Schatten norms. These measures quantify the statistical speed under generic quantum evolutions and are obtained by maximizing classical measures over all possible quantum measurements. We discuss general properties, optimal measurements, and upper bounds on the speed of separable states. We further provide a physical interpretation for the trace speed by linking it to an analog of the quantum Cramér-Rao bound for median-unbiased quantum phase estimation.
NASA Technical Reports Server (NTRS)
Tzortziou, Maria A.; Herman, Jay R.; Cede, Alexander; Abuhassan, Nader
2012-01-01
We present new, high precision, high temporal resolution measurements of total column ozone (TCO) amounts derived from ground-based direct-sun irradiance measurements using our recently deployed Pandora single-grating spectrometers. Pandora's small size and portability allow deployment at multiple sites within an urban air-shed and development of a ground-based monitoring network for studying small-scale atmospheric dynamics, spatial heterogeneities in trace gas distribution, local pollution conditions, photochemical processes and interdependencies of ozone and its major precursors. Results are shown for four mid- to high-latitude sites where different Pandora instruments were used. Comparisons with a well calibrated double-grating Brewer spectrometer over a period of more than a year in Greenbelt MD showed excellent agreement and a small bias of approximately 2 DU (or, 0.6%). This was constant with slant column ozone amount over the full range of observed solar zenith angles (15-80), indicating adequate Pandora stray light correction. A small (1-2%) seasonal difference was found, consistent with sensitivity studies showing that the Pandora spectral fitting TCO retrieval has a temperature dependence of 1% per 3K, with an underestimation in temperature (e.g., during summer) resulting in an underestimation of TCO. Pandora agreed well with Aura-OMI (Ozone Measuring Instrument) satellite data, with average residuals of <1% at the different sites when the OMI view was within 50 km from the Pandora location and OMI-measured cloud fraction was <0.2. The frequent and continuous measurements by Pandora revealed significant short-term (hourly) temporal changes in TCO, not possible to capture by sun-synchronous satellites, such as OMI, alone.
Reversibility of radiocaesium sorption on illite
NASA Astrophysics Data System (ADS)
de Koning, Arjan; Comans, Rob N. J.
2004-07-01
Adsorption of trace amounts of radiocaesium on NH 4-, K-, and Na-saturated Fithian illite and subsequent desorption by 1 M NH 4 showed that a substantial amount of radiocaesium (44%, 46%, and 91% for NH 4-, K-, and Na-illite, respectively) cannot be desorbed after only 5 min of adsorption. Our results suggest that this instantaneous fixation is caused by the collapse of the frayed edges of the clay mineral and the relatively high concentration of radiocaesium building up in solution in the batch desorption experiments. Consequently, commonly applied high-NH 4 extractions underestimate truly exchangeable amounts of radiocaesium in soils and sediments containing illitic clay minerals. The rate of desorption of trace amounts of radiocaesium from the solids using high NH 4 or Cs concentrations has a half-life of about 2 yr, reflecting radiocaesium desorption from (partially) collapsed interlayers. Extraction of radiocaesium from illite after 5 min of contact time with a Cs-selective adsorbent or a 1 × 10 -6 M CsCl solution shows that 100% of the bound radiocaesium is readily available. The desorption rate in the presence of a Cs-selective adsorbent has a half-life of about 0.2 yr. Desorption of radiocaesium from illite using different ammonium concentrations shows that radiocaesium partitioning follows reversible ion-exchange theory if the NH 4 concentration is below 1 × 10 -4 M, and sufficient time (weeks) is allowed for the reaction to proceed. Thus, radiocaesium sorption reversibility in the natural environment is much higher than generally assumed, and equilibrium solid/liquid partitioning may be assumed for the long-term modelling of radiocaesium mobility in the natural environment. In the particular case of anoxic freshwater sediments with very high NH 4 concentrations in the pore waters (up to several mmol.L -1), collapse of the frayed edges of illite may occur, influencing radiocaesium partitioning. If collapse occurs before radiocaesium adsorbs to illite, high caesium sorption reversibility as measured by high-NH 4 extraction can be expected because further collapse of the frayed edges during the extraction procedure will be limited. This effect has indeed been observed earlier in the extraction of radiocaesium from anoxic freshwater sediments with high-NH 4 solutions and was as yet unexplained.
NASA Astrophysics Data System (ADS)
Sun, Jingya; Han, Yuxiang; Fu, Heyun; Wan, Haiqin; Xu, Zhaoyi; Zheng, Shourong
2018-01-01
Ag catalysts decorated by trace Pd supported on γ-Al2O3 with different structure and chemical properties were prepared using a combined impregnation and galvanic replacement method. For comparison, monometallic Ag/γ-Al2O3 and Pd/γ-Al2O3 catalysts were prepared using the impregnation method. Gas-phase catalytic hydrodechlorination of 1,2-dichloroethane to ethylene was investigated on those catalysts. The structures and chemical compositions of bimetallic Pd-Ag particles in the catalysts were controlled by adjusting Pd replacement amount. The as-prepared catalysts were characterized by X-ray diffraction, transmission electron microscopy, UV-vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, and in-situ FTIR spectroscopy of CO adsorption. The results demonstrated that contiguous Pd sites dominated in the monometallic Pd/γ-Al2O3 catalyst, while Pd atoms were separately decorated on the surface of Ag particles in the bimetallic Pd-Ag/γ-Al2O3 catalysts when Pd replacement amount was below 0.30 wt.%. At Pd replacement amount of 0.30 wt.%, Pd ensembles with contiguous Pd sites developed in the bimetallic catalyst. Thus, monometallic Pd/γ-Al2O3 catalyst displayed negligible ethylene selectivity toward the catalytic hydrodechlorination of 1,2-dichloroethane, while bimetallic Pd-Ag/γ-Al2O3 catalyst with a Pd replacement amount of 0.13 wt.% exhibited 94.6% of ethylene selectivity. Furthermore, selectivity to incompletely dechlorinated byproduct chloroethylene decreased with Pd replacement amount, due to the enhanced decoration effect of Pd on large Ag ensembles. Findings in this work provide a promising bimetallic catalyst prepared by galvanic replacement for the selective catalytic hydrodechlorination of 1,2-dichloroethane.
Kume, Teruyoshi; Kim, Byeong-Keuk; Waseda, Katsuhisa; Sathyanarayana, Shashidhar; Li, Wenguang; Teo, Tat-Jin; Yock, Paul G; Fitzgerald, Peter J; Honda, Yasuhiro
2013-02-01
The aim of this study was to evaluate a new fully automated lumen border tracing system based on a novel multifrequency processing algorithm. We developed the multifrequency processing method to enhance arterial lumen detection by exploiting the differential scattering characteristics of blood and arterial tissue. The implementation of the method can be integrated into current intravascular ultrasound (IVUS) hardware. This study was performed in vivo with conventional 40-MHz IVUS catheters (Atlantis SR Pro™, Boston Scientific Corp, Natick, MA) in 43 clinical patients with coronary artery disease. A total of 522 frames were randomly selected, and lumen areas were measured after automatically tracing lumen borders with the new tracing system and a commercially available tracing system (TraceAssist™) referred to as the "conventional tracing system." The data assessed by the two automated systems were compared with the results of manual tracings by experienced IVUS analysts. New automated lumen measurements showed better agreement with manual lumen area tracings compared with those of the conventional tracing system (correlation coefficient: 0.819 vs. 0.509). When compared against manual tracings, the new algorithm also demonstrated improved systematic error (mean difference: 0.13 vs. -1.02 mm(2) ) and random variability (standard deviation of difference: 2.21 vs. 4.02 mm(2) ) compared with the conventional tracing system. This preliminary study showed that the novel fully automated tracing system based on the multifrequency processing algorithm can provide more accurate lumen border detection than current automated tracing systems and thus, offer a more reliable quantitative evaluation of lumen geometry. Copyright © 2011 Wiley Periodicals, Inc.
Spears, D.A.; Tewalt, S.J.
2009-01-01
The Parkgate coal of Langsettian age in the Yorkshire-Nottinghamshire coalfield is typical of many coals in the UK in that it has a high sulphur (S) content. Detailed information on the distribution of the forms of S, both laterally and vertically through the seam, was known from previous investigations. In the present work, 38 interval samples from five measured sections of the coal were comprehensively analysed for major, minor and trace elements and the significance of the relationships established using both raw and centered log transformed data. The major elements are used to quantify the variations in the inorganic and organic coal components and determine the trace element associations. Pyrite contains nearly all of the Hg, As, Se, Tl and Pb and is also the major source of the Mo, Ni, Cd and Sb. The clays contain the following elements in decreasing order of association: Rb, Cs, Li, Ga, U, Cr, V, Sc, Y, Bi, Cu, Nb, Sn, Te and Th. Nearly all of the Rb is present in the clay fraction, whereas for elements such as V, Cu and U, a significant amount is thought to be present in the organic matter, based on the K vs trace element regression equations. Only Ge, and possibly Be, would appear to have a dominant organic source. The trace element concentrations are calculated for pyrite, the clay fraction and organic matter. For pyrite it is noted that concentrations agree with published data from the Yorkshire-Nottinghamshire coalfield and also that Tl concentrations (median of 0.33 ppm) in the pyrite are greater than either Hg or Cd. Unlike these elements, Tl has attracted less attention and possibly more information is needed on its anthropogenic distribution and impacts on man and the environment. A seawater source is thought to be responsible for the high concentrations of S, Cl and the non-detrital trace elements in the Parkgate coal. Indicative of the seawater control is the Th/U ratio, which expresses the detrital to non-detrital element contributions. Using other elements, similar ratios can be calculated, which in combination offer greater interpretative value. ?? 2009 Elsevier B.V.
Digital Geodata Traces--New Challenges for Geographic Education
ERIC Educational Resources Information Center
Hohnle, Steffen; Michel, Boris; Glasze, Georg; Uphues, Rainer
2013-01-01
Young people in modern societies consciously (e.g. Facebook) or unconsciously (e.g. some Google services) produce a vast amount of geodata. Using relational databases, private companies are capable of creating very precise profiles of the individual user and his/her spatial practices from this data. This almost inevitably prompts questions…
Speciation, Characterization, And Mobility Of As, Se and Hg In Flue Gas Desulphurization Residues
Flue gas from coal combustion contains significant amounts of volatile toxic trace elements such as arsenic (As), selenium (Se) and mercury (Hg). The capture of these elements in the flue gas desulphurization (FGD) scrubber unit has resulted in generation of a metal-laden residue...
Advancing Explosives Detection Capabilities: Vapor Detection
Atkinson, David
2018-05-11
A new, PNNL-developed method provides direct, real-time detection of trace amounts of explosives such as RDX, PETN and C-4. The method selectively ionizes a sample before passing the sample through a mass spectrometer to detect explosive vapors. The method could be used at airports to improve aviation security.
Reconnaissance geology of the Al Ba'ayith quadrangle, sheet 26/41 D, Kingdom of Saudi Arabia
Williams, P.L.; Simonds, F.W.; Turner, J.D.
1985-01-01
Gold-bearing quartz veins occur associated with small plutons of the Idah suite in the southeastern part of the quadrangle, and have been mined in the past. Ironstones, near Murran in the center of the quadrangle contain trace amounts of silver and gold.
Alternative technologies for water quality management
Mandla A. Tshabalala
2002-01-01
Cranberry growers are concerned about the quality of water discharged from cranberry bogs into receiving surface waters. These water discharges may contain traces of pesticides arising from herbicide, insecticide or fungicide applications. They may also contain excess phosphorus from fertilizer application. Some cranberry farms have holding ponds to reduce the amount...
Advancing Explosives Detection Capabilities: Vapor Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atkinson, David
2012-10-15
A new, PNNL-developed method provides direct, real-time detection of trace amounts of explosives such as RDX, PETN and C-4. The method selectively ionizes a sample before passing the sample through a mass spectrometer to detect explosive vapors. The method could be used at airports to improve aviation security.
Selenium cycling across soil-plant atmosphere interfaces: a critical review
USDA-ARS?s Scientific Manuscript database
Selenium (Se) is an essential element for humans and animals, which occurs ubiquitously in the environment. It is present in trace amounts in both organic and inorganic forms in marine and freshwater systems, soils, biomass, and in the atmosphere. Low Se levels in certain terrestrial environments ha...
POM-assisted electrochemical delignification and bleaching of chemical pulp
Helene Laroche; Mohini Sain; Carl Houtman; Claude Daneault
2001-01-01
A polyoxometalate-catalyzed electrochemical process has shown good selectivity in delignifying pulp. This breakthrough in redox catalysis shows promise for the development of a new environmentally benign technology for pulp bleaching. The electrochemical process, applied with a mildly alkaline electrolyte solution containing trace amounts of a vanadium-based...
Fate of the CHBrsub2O radical in air
NASA Technical Reports Server (NTRS)
Bayes, K. D.; Friedl, R. F.
2003-01-01
Trace amounts of bromoform in air have been photolyzed at 266 and 303 nm to form Br atoms and CHBr2 radicals. The Br concentration as a funtion of time is followed by resonance fluorescence. The CHBr2 radicals react with O2 in the air to form peroxy radicals.
Compounds that Inhibit Insect Host-Seeking Ability
USDA-ARS?s Scientific Manuscript database
Humans release hundreds of volatile compounds from their skin. Some of these compounds are used by mosquitoes and other insects to locate the host (kairomones) while a few compounds are found in trace amounts that tend to produce anosmia in these insects. The net result of this anosmic action on th...
Trace Norm Regularized CANDECOMP/PARAFAC Decomposition With Missing Data.
Liu, Yuanyuan; Shang, Fanhua; Jiao, Licheng; Cheng, James; Cheng, Hong
2015-11-01
In recent years, low-rank tensor completion (LRTC) problems have received a significant amount of attention in computer vision, data mining, and signal processing. The existing trace norm minimization algorithms for iteratively solving LRTC problems involve multiple singular value decompositions of very large matrices at each iteration. Therefore, they suffer from high computational cost. In this paper, we propose a novel trace norm regularized CANDECOMP/PARAFAC decomposition (TNCP) method for simultaneous tensor decomposition and completion. We first formulate a factor matrix rank minimization model by deducing the relation between the rank of each factor matrix and the mode- n rank of a tensor. Then, we introduce a tractable relaxation of our rank function, and then achieve a convex combination problem of much smaller-scale matrix trace norm minimization. Finally, we develop an efficient algorithm based on alternating direction method of multipliers to solve our problem. The promising experimental results on synthetic and real-world data validate the effectiveness of our TNCP method. Moreover, TNCP is significantly faster than the state-of-the-art methods and scales to larger problems.
Paper based Flexible and Conformal SERS Substrate for Rapid Trace Detection on Real-world Surfaces
NASA Astrophysics Data System (ADS)
Singamaneni, Srikanth; Lee, Chang; Tian, Limei
2011-03-01
One of the important but often overlooked considerations in the design of surface enhanced Raman scattering (SERS) substrates for trace detection is the efficiency of sample collection. Conventional designs based on rigid substrates such as silicon, alumina, and glass resist conformal contact with the surface under investigation, making the sample collection inefficient. We demonstrate a novel SERS substrate based on common filter paper adsorbed with gold nanorods, which allows conformal contact with real-world surfaces, thus dramatically enhancing the sample collection efficiency compared to conventional rigid substrates. We demonstrate the detection of trace amounts of analyte (140 pg spread over 4 cm2) by simply swabbing the surface under investigation with the novel SERS substrate. The hierarchical fibrous structure of paper serves as a 3D vasculature for easy uptake and transport of the analytes to the electromagnetic hot spots in the paper. Simple yet highly efficient and cost effective SERS substrate demonstrated here brings SERS based trace detection closer to real-world applications. We acknowledge the financial support from Center for Materials Innovation at Washington University.
Osorio, J S; Wallace, R L; Tomlinson, D J; Earleywine, T J; Socha, M T; Drackley, J K
2012-10-01
The aims of the experiment were to evaluate the effects of source of trace minerals (TM) and plane of nutrition (PN) early in life on growth and health of transported calves. Ninety male Holstein calves <1 wk old were assigned to treatments in a 2×2 factorial arrangement of PN and TM source in a randomized complete block design. Calves assigned to low PN (LPN) received milk replacer [22% crude protein (CP), 20% fat, 568 g of powder/d for wk 1 to 4, and 284 g of powder/d for wk 5] plus ad libitum access to starter [18% CP, dry matter (DM) basis, for wk 1 to 12] and a limited amount of hay (0.5 kg/d as fed, for wk 10 to 12); LPN calves were weaned at 6 wk. During wk 13 to 20, LPN calves were fed 3.2 kg/d of grower mix (16% CP, DM basis) plus chopped hay for ad libitum intake. Calves assigned to high PN (HPN) received variable amounts of milk replacer (28% CP; 20% fat; and 810, 1,136, and 568 g of powder/d for wk 1, 2 to 6, and 7, respectively) plus ad libitum access to starter (22% CP, DM basis, wk 1 to 12) and limited hay (0.5 kg/d as fed, for wk 10 to 12); HPN calves were weaned at wk 7. Calves assigned to HPN were offered grower mix for ad libitum intake plus a limited amount of chopped hay (0.5 kg/d, as-fed basis) from wk 13 to 20. Milk replacers were formulated to contain balanced amounts of either inorganic (I) or organic (O) TM (50, 50, 10, and 100mg/kg of Zn, Mn, Cu, and Fe, respectively), whereas respective ITM or OTM starters and growers contained Zn, Mn, Cu, and Co at 70, 55, 12, and 1mg/kg. The HPN treatments increased final body weight and stature measurements, average daily gain, and gain-to-feed ratio through wk 20. Starter intake was lower for calves fed HPN. The OTM increased growth when supplemented to HPN but not when supplemented to LPN. During the liquid-feeding period, fecal scores were more fluid for calves fed HPN but measures of health status did not differ among diets. Results indicated that an enhanced nutritional program during early life allowed calves to have greater overall growth and maintain a normal health status throughout the preweaning period. High PN and OTM were synergistic in increasing early growth of calves. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Newbury, Dale E; Ritchie, Nicholas W M
2016-06-01
Electron-excited X-ray microanalysis performed with scanning electron microscopy and energy-dispersive spectrometry (EDS) has been used to measure trace elemental constituents of complex multielement materials, where "trace" refers to constituents present at concentrations below 0.01 (mass fraction). High count spectra measured with silicon drift detector EDS were quantified using the standards/matrix correction protocol embedded in the NIST DTSA-II software engine. Robust quantitative analytical results for trace constituents were obtained from concentrations as low as 0.000500 (mass fraction), even in the presence of significant peak interferences from minor (concentration 0.01≤C≤0.1) and major (C>0.1) constituents. Limits of detection as low as 0.000200 were achieved in the absence of peak interference.
BOREAS TGB-5 CO2, CH4 and CO Chamber Flux Data Over the NSA
NASA Technical Reports Server (NTRS)
Burke, Roger; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Zepp, Richard
2000-01-01
The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-5) team collected a variety of trace gas concentration and flux measurements at several NSA sites. This data set contains carbon dioxide (CO2), methane (CH4), and carbon monoxide (CO) chamber flux measurements conducted in 1994 at upland forest sites that experienced stand-replacement fires. These measurements were acquired to understand the impact of fires on soil biogeochemistry and related changes in trace gas exchange in boreal forest soils. Relevant ancillary data, including data concerning the soil temperature, solar irradiance, and information from nearby un-burned control sites, are included to provide a basis for modeling the regional impacts of fire and climate changes on trace gas biogeochemistry. The data are provided in tabular ASCII files.
Horowitz, A.J.; Lum, K.R.; Garbarino, J.R.; Hall, G.E.M.; Lemieux, C.; Demas, C.R.
1996-01-01
Field and laboratory experiments indicate that a number of factors associated with filtration other than just pore size (e.g., diameter, manufacturer, volume of sample processed, amount of suspended sediment in the sample) can produce significant variations in the 'dissolved' concentrations of such elements as Fe, Al, Cu, Zn, Pb, Co, and Ni. The bulk of these variations result from the inclusion/exclusion of colloidally associated trace elements in the filtrate, although dilution and sorption/desorption from filters also may be factors. Thus, dissolved trace element concentrations quantitated by analyzing filtrates generated by processing whole water through similar pore-sized filters may not be equal or comparable. As such, simple filtration of unspecified volumes of natural water through unspecified 0.45-??m membrane filters may no longer represent an acceptable operational definition for a number of dissolved chemical constituents.
Screening for trace explosives by AccuTOF™-DART®: an in-depth validation study.
Sisco, Edward; Dake, Jeffrey; Bridge, Candice
2013-10-10
Ambient ionization mass spectrometry is finding increasing utility as a rapid analysis technique in a number of fields. In forensic science specifically, analysis of many types of samples, including drugs, explosives, inks, bank dye, and lotions, has been shown to be possible using these techniques [1]. This paper focuses on one type of ambient ionization mass spectrometry, Direct Analysis in Real Time Mass Spectrometry (DART-MS or DART), and its viability as a screening tool for trace explosives analysis. In order to assess viability, a validation study was completed which focused on the analysis of trace amounts of nitro and peroxide based explosives. Topics which were studied, and are discussed, include method optimization, reproducibility, sensitivity, development of a search library, discrimination of mixtures, and blind sampling. Advantages and disadvantages of this technique over other similar screening techniques are also discussed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Starvin, A M; Rao, T Prasada
2004-09-10
As a part of removal of toxic heavy metals from hazardous wastes, solid phase extraction (SPE) of mercury(II) at trace and ultra trace levels was studied using 1-(2-thiazolylazo)-2-naphthol (TAN) functionalized activated carbon (AC). The SPE material removes traces of mercury(II) quantitatively in the pH range 6.0 +/- 0.2. Other parameters that influence quantitative recovery of mercury(II), viz. percent concentration of TAN in AC, amount of TAN-AC, preconcentration time and volume of aqueous phase were varied and optimized. The possible means of removal of Hg(II) from other metal ions that are likely to be present in the wastes of the chloroalkali industry is discussed. The potential of TAN-functionalized AC SPE material for decontaminating mercury from the brine sludge and cell house effluent of a chloralkali plant has been evaluated.
NASA Technical Reports Server (NTRS)
Goldman, A.
2002-01-01
The Langley-D.U. collaboration on the analysis of high resolultion infrared atmospheric spectra covered a number of important studies of trace gases identification and quantification from field spectra, and spectral line parameters analysis. The collaborative work included: 1) Quantification and monitoring of trace gases from ground-based spectra available from various locations and seasons and from balloon flights; 2) Identification and preliminary quantification of several isotopic species, including oxygen and Sulfur isotopes; 3) Search for new species on the available spectra, including the use of selective coadding of ground-based spectra for high signal to noise; 4) Update of spectroscopic line parameters, by combining laboratory and atmospheric spectra with theoretical spectroscopy methods; 5) Study of trends and correlations of atmosphere trace constituents; and 6) Algorithms developments, retrievals intercomparisons and automatization of the analysis of NDSC spectra, for both column amounts and vertical profiles.
McHugh, John B.; Miller, W. Roger
1989-01-01
In the spring of 1984, a hydrogeochemical survey was conducted in the Kingdom of Saudi Arabia to test ground water as a sampling medium in exploration for mineral deposits. Eighty-one water samples (mostly from wells) were collected. The samples were analysed for the presence and concentration of major cations and anions, as well as a suite of trace elements. Most of the water samples contained high concentrations of dissolved salts. The majority of the samples showed no significant amounts of the trace elements. A few well-water samples contained moderately anomalous concentrations of zinc, molybdenum, and uranium. These anomalies could be due to salinity effects, contamination, or the proximity of mineral sources. This survey has established some baseline water-chemistry data, especially for the trace metals, which to date have not been reported in ground water in the Kingdom of Saudi Arabia.
Emission and Chemical Transformation of Biogenic Volatile Organic Compounds (echo)
NASA Astrophysics Data System (ADS)
Koppmann, R.; Hoffmann, T.; Kesselmeier, J.; Schatzmann, M.
Forests are complex sources of biogenic volatile organic compounds (VOC) in the planetary boundary layer. The impact of biogenic VOC on tropospheric photochem- istry, air quality, and the formation of secondary products affects our climate on a regional and global scale but is far from being understood. A considerable lack of knowledge exists concerning a forest stand as a net source of reactive trace com- pounds, which are transported directly into the planetary boundary layer (PBL). In particular, little is known about the amounts of VOC which are processed within the canopy. The goal of ECHO, which is presented in this poster, is to investigate these questions and to improve our understanding of biosphere-atmosphere interactions and their effects on the PBL. The investigation of emissions, chemical processing and vertical transport of biogenic VOC will be carried out in and above a mixed forest stand in Jülich, Germany. A large set of trace gases, free radicals and meteorologi- cal parameters will be measured at different heights in and above the canopy, covering concentrations of VOC, CO, O3, organic nitrates und NOx as well as organic aerosols. For the first time concentration profiles of OH, HO2, RO2 und NO3 radicals will be measured as well together with the actinic UV radiation field and photolysis frequen- cies of all relevant radical precursors (O3, NO2, peroxides, oxygenated VOC). The different tasks of the field experiments will be supported by simulation experiments investigating the primary emission and the uptake of VOC by the plants in stirred tank reactors, soil parameters and soil emissions in lysimeter experiments, and the chem- ical processing of the trace gases as observed in and above the forest stand in the atmosphere simulation chamber SAPHIR. The planning and interpretation of the field experiments is supported by simulations of the field site in a wind tunnel.
A mechanism for efficient debugging of parallel programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, B.P.; Choi, J.D.
1988-01-01
This paper addresses the design and implementation of an integrated debugging system for parallel programs running on shared memory multi-processors (SMMP). The authors describe the use of flowback analysis to provide information on causal relationships between events in a program's execution without re-executing the program for debugging. The authors introduce a mechanism called incremental tracing that, by using semantic analyses of the debugged program, makes the flowback analysis practical with only a small amount of trace generated during execution. The extend flowback analysis to apply to parallel programs and describe a method to detect race conditions in the interactions ofmore » the co-operating processes.« less
NASA Astrophysics Data System (ADS)
Shirkhanloo, H.; Falahnejad, M.; Zavvar Mousavi, H.
2016-01-01
A rapid enrichment method based on solid-phase extraction (SPE) has been established for preconcentration and separation of trace Ni(II) ions in water samples prior to their determination by atom trap flame atomic absorption spectrometry. A column filled with bulky NH2-UVM7 was used as the novel adsorbent. Under optimal conditions, the linear range, limit of detection (LOD), and preconcentration factor (PF) were 3-92 μg/L, 0.8 μg/L, and 100, respectively. The validity of the method was checked by the standard reference material.
Derivatization in gas chromatographic determination of phenol and aniline traces in aqueous media
NASA Astrophysics Data System (ADS)
Gruzdev, I. V.; Zenkevich, I. G.; Kondratenok, B. M.
2015-06-01
Substituted anilines and phenols are the most common hydrophilic organic environmental toxicants. The principles of gas chromatographic determination of trace amounts of these compounds in aqueous media at concentrations <=0.1 μg litre-1 based on synthesis of their derivatives (derivatization) directly in the aqueous phase are considered. Conversion of relatively hydrophilic analytes into more hydrophobic derivatives makes it possible to achieve such low detection limits and optimize the protocols of extractive preconcentration and selective chromatographic detection. Among the known reactions, this condition is best met by electrophilic halogenation of compounds at the aromatic moiety. The bibliography includes 177 references.
NASA Technical Reports Server (NTRS)
Minschwaner, K.; Carver, R. W.; Briegleb, B. P.
1997-01-01
Observations from instruments on the Upper Atmosphere Research Satellite (UARS) have been used to constrain calculations of infrared radiative forcing by CH4, CCl2F2 and N2O, and to determine lifetimes Of CCl2F2 and N2O- Radiative forcing is calculated as a change in net infrared flux at the tropopause that results from an increase in trace gas amount from pre-industrial (1750) to contemporary (1992) times. Latitudinal and seasonal variations are considered explicitly, using distributions of trace gases and temperature in the stratosphere from UARS measurements and seasonally averaged cloud statistics from the International Satellite Cloud Climatology Project. Top-of-atmosphere fluxes calculated for the contemporary period are in good agreement with satellite measurements from the Earth Radiation Budget Experiment. Globally averaged values of the radiative forcing are 0.536, 0.125, and 0.108 W m-2 for CH4, CCl2F2, and N2O, respectively. The largest forcing occurs near subtropical latitudes during summer, predominantly as a result of the combination of cloud-free skies and a high, cold tropopause. Clouds are found to play a significant role in regulating infrared forcing, reducing the magnitude of the forcing by 30-40% compared to the case of clear skies. The vertical profile of CCl2F2 is important in determining its radiative forcing; use of a height-independent mixing ratio in the stratosphere leads to an over prediction of the forcing by 10%. The impact of stratospheric profiles on radiative forcing by CH4 and N2O is less than 2%. UARS-based distributions of CCl2F2 and N2O are used also to determine global destruction rates and instantaneous lifetimes of these gases. Rates of photolytic destruction in the stratosphere are calculated using solar ultraviolet irradiances measured on UARS and a line-by-line model of absorption in the oxygen Schumann-Runge bands. Lifetimes are 114 +/- 22 and 118 +/- 25 years for CCl2F2 and N2O, respectively.
Measurements of trace contaminants in closed-type plant cultivation chambers
NASA Astrophysics Data System (ADS)
Tani, A.; Kiyota, M.; Aiga, I.; Nitta, K.; Tako, Y.; Ashida, A.; Otsubo, K.; Saito, T.
Trace contaminants generated in closed facilities can cause abnormal plant growth. We present measurement data of trace contaminants released from soils, plants, and construction materials. We mainly used two closed chambers, a Closed-type Plant and Mushroom Cultivation Chamber (PMCC) and Closed-type Plant Cultivation Equipment (CPCE). Although trace gas budgets from soils obtained in this experiment are only one example, the results indicate that the budgets of trace gases, as well as CO_2 and O_2, change greatly with the degree of soil maturation and are dependent on the kind of substances in the soil. Both in the PMCC and in the CPCE, trace gases such as dioctyl phthalate (DOP), dibutyl phthalate (DBP), toluene and xylene were detected. These gases seemed to be released from various materials used in the construction of these chambers. The degree of increase in these trace gas levels was dependent on the relationship between chamber capacity and plant quantity. Results of trace gas measurement in the PMCC, in which lettuce and shiitake mushroom were cultivated, showed that ethylene was released both from lettuce and from the mushroom culture bed. The release rates were about 90 ng bed^-1 h^-1 for the shiitake mushroom culture bed (volume is 1700 cm^3) and 4.1 ~ 17.3 ng dm^-2h^-1 (leaf area basis) for lettuce. Higher ethylene release rates per plant and per unit leaf area were observed in mature plants than in young plants.
Breathing of the Biosphere: How Physics sets the Limits, and Biology Does the Work (Invited)
NASA Astrophysics Data System (ADS)
Baldocchi, D. D.
2009-12-01
Trace gas concentrations in the atmosphere are a consequence of fluxes between vegetation and the atmosphere. Predicting the rates of these fluxes is extremely complicated because the biosphere is a complex adaptive system that consists of a multitude of physical and biological processes that vary across 14 orders of magnitude in time and space. One challenge in predicting trace gas fluxes is to know when to lump and when to split this information into coarser or finer levels of detail. Plants, for example, abhor a vacuum and tend to fill niches if there is ample water, sunlight and soil. So ultimately, the upper limit of water, carbon and energy fluxes is set by amount of energy intercepted at the Earth’s surface, which scales with the solar constant. In addition, physics limits the supply and demand of resources that sustain plants, so many ecological scaling rules emerge; this reduces the need to consider every species, plant and leaf individually when assessing net and gross exchanges of trace gases between vegetation and the atmosphere. This trend towards the role of simplicity begins to fail when one starts to evaluate fluxes associated with microbes, like methane and nitrous oxide; microbes live in heterogeneous environments and exploit numerous routes to extract energy from their environment. Case studies, pertaining to the title, will be discussed using eddy covariance flux measurements from our field sites (peatland pasture, savanna woodland, grassland, deciduous and boreal forests), the FLUXNET network and leaf, canopy and planetary boundary-layer scale biophysical models.
Routti, Heli; Letcher, Robert J; Born, Erik W; Branigan, Marsha; Dietz, Rune; Evans, Thomas J; McKinney, Melissa A; Peacock, Elizabeth; Sonne, Christian
2012-12-01
In the present study, the authors investigated the influence of carbon and lipid sources on regional differences in liver trace element (As, Cd, Cu, total Hg, Mn, Pb, Rb, Se, and Zn) concentrations measured in polar bears (Ursus maritimus) (n = 121) from 10 Alaskan, Canadian Arctic, and East Greenland subpopulations. Carbon and lipid sources were assessed using δ(13) C in muscle tissue and fatty acid (FA) profiles in subcutaneous adipose tissue as chemical tracers. A negative relationship between total Hg and δ(13) C suggested that polar bears feeding in areas with higher riverine inputs of terrestrial carbon accumulate more Hg than bears feeding in areas with lower freshwater input. Mercury concentrations were also positively related to the FA 20:1n-9, which is biosynthesized in large amounts in Calanus copepods. This result raises the hypothesis that Calanus glacialis are an important link in the uptake of Hg in the marine food web and ultimately in polar bears. Unadjusted total Hg, Se, and As concentrations showed greater geographical variation among polar bear subpopulations compared with concentrations adjusted for carbon and lipid sources. The Hg concentrations adjusted for carbon and lipid sources in Bering-Chukchi Sea polar bear liver tissue remained the lowest among subpopulations. Based on these findings, the authors suggest that carbon and lipid sources for polar bears should be taken into account when one is assessing spatial and temporal trends of long-range transported trace elements. Copyright © 2012 SETAC.
A survey of recent results in passive sampling of water and air by semipermeable membrane devices
Prest, Harry F.; Huckins, James N.; Petty, Jimmie D.; Herve, Sirpa; Paasivirta, Jaakko; Heinonen, Pertti
1995-01-01
A survey is presented of some recent results for passive sampling of water and air for trace organic contaminants using lipid-filled semipermeable membrane devices (SPMDs). Results of water sampling for trace organochlorine compounds using simultaneously exposed SPMDs and the most universally applied biomonitor (bivalves) are discussed. In general, the total amounts of accumulated analytes available for analysis in bivalves and SPMDs were comparable. However, SPMD controls typically had negligible levels of contamination, which was not always the case for transplanted bivalves, even after prolonged depuration prior to exposure. In surveys of the spatial trends of organochlorines at a series of sites, data from bivalves and SPMDs provided the same picture of contaminant distribution and severity. An exception was ionizable contaminants such as the chlorinated phenolic compounds and their transformation products found in pulp mill effluents. In these cases the two monitoring approaches compliment each other, i.e. what is not found in bivalves appears in SPMDs and vice versa. SPMDs have also been applied in environments where biomonitoring is not feasible. SPMDs have shown their utility in studies of trace levels of polyaromatic hydrocarbons by locating and characterizing point sources. An example is given of their application to the calculation of contaminant half-lives from aqueous SPMD residues, a direct measurement of the persistence of contaminants in an environmental compartment. Similarly, results of air sampling with SPMDs in a relatively pristine coastal location are cited which reveal a tremendous enhancement in p,p′-DDE relative to open ocean values.
Feeding the fire: tracing the mass-loading of 107 K galactic outflows with O VI absorption
NASA Astrophysics Data System (ADS)
Chisholm, J.; Bordoloi, R.; Rigby, J. R.; Bayliss, M.
2018-02-01
Galactic outflows regulate the amount of gas galaxies convert into stars. However, it is difficult to measure the mass outflows remove because they span a large range of temperatures and phases. Here, we study the rest-frame ultraviolet spectrum of a lensed galaxy at z ˜ 2.9 with prominent interstellar absorption lines from O I, tracing neutral gas, up to O VI, tracing transitional phase gas. The O VI profile mimics weak low-ionization profiles at low velocities, and strong saturated profiles at high velocities. These trends indicate that O VI gas is co-spatial with the low-ionization gas. Further, at velocities blueward of -200 km s-1 the column density of the low-ionization outflow rapidly drops while the O VI column density rises, suggesting that O VI is created as the low-ionization gas is destroyed. Photoionization models do not reproduce the observed O VI, but adequately match the low-ionization gas, indicating that the phases have different formation mechanisms. Photoionized outflows are more massive than O VI outflows for most of the observed velocities, although the O VI mass outflow rate exceeds the photoionized outflow at velocities above the galaxy's escape velocity. Therefore, most gas capable of escaping the galaxy is in a hot outflow phase. We suggest that the O VI absorption is a temporary by-product of conduction transferring mass from the photoionized phase to an unobserved hot wind, and discuss how this mass-loading impacts the observed circum-galactic medium.
NASA Astrophysics Data System (ADS)
Johansen, Anne M.; Hoffmann, Michael R.
2003-07-01
Ambient aerosol samples were collected over the Arabian Sea during the month of March of 1997, aboard the German R/V Sonne, as part of the German Joint Global Ocean Flux Study (JGOFS) project. This is the third study in a series of analogous measurements taken over the Arabian Sea during different seasons of the monsoon. Dichotomous high-volume collector samples were analyzed for ferrous iron immediately after collection, while trace metals, anions, and cations were determined upon return to the laboratory. The main crustal component was geochemically well represented by the average crustal composition and amounted to 5.94 ± 3.08 μg m-3. An additional crustal constituent of clay-like character, rich in water-soluble Ca and Mg, was seen in the fine fraction in air masses of Arabian origin. Total ferrous iron concentrations varied from 3.9 to 17.2 ng m-3 and averaged 9.8 ± 3.4 ng m-3, with 87.2% of Fe(II) present in the fine aerosol fraction. Fe(II) concentrations accounted for on average 1.3 ± 0.5% of the total Fe. While ferrous iron in the coarse fraction appeared to be correlated with the main crustal component, the fine Fe(II) fraction exhibited a more complex behavior. The anthropogenic contribution to the aerosol, as traced by Pb, Zn, and some anions and cations, was found to be considerably larger, especially during the first 10 days of this cruise, than in previously collected samples from the inter-monsoon and southwest monsoon of 1995.
NASA Astrophysics Data System (ADS)
Faucher, Giulia; Hoffmann, Linn; Bach, Lennart Thomas; Bottini, Cinzia; Erba, Elisabetta; Riebesell, Ulf
2017-04-01
The Cretaceous witnessed intervals of profound perturbation named "Oceanic Anoxic Events (OAEs)" characterized by volcanic injection of large amounts of CO2, ocean anoxia, eutrophication, and introduction of biologically relevant metals. Some of these extreme events were characterized by size reduction and/or morphological changes of a number of nannofossil species. To detect the cause/s of such changes in the fossil record is challenging. Evidence of a correspondence between intervals of high trace metals concentrations and nannofossil dwarfism may be suggestive for a negative effect of these elements on nannoplankton biocalcification process. In order to verify the hypothesis that anomalously high quantities of essential and/or toxic metals were the cause of coccolith dwarfism, we explored the toxicities of a mixture of trace metals on four living coccolithophores species, namely Emiliania huxleyi, Gephyrocapsa oceanica, Pleurochrysis carterae and Coccolithus pelagicus. The trace metals tested were chosen based upon concentration peaks identified in the geological record and upon known trace metal interaction with living coccolithophores algae. Our results demonstrate a species-specific response to trace metal enrichment in living coccolithophores: E. huxleyi, G. oceanica and C. pelagicus showed a decrease in their growth rate with progressively and exponentially increased trace metal concentrations, while P. carterae is unresponsive to trace metal content. Furthermore, E. huxleyi, G. oceanica and C. pelagicus evidenced a decrease in the cell diameter. Smaller coccoliths were detected in E. huxleyi and C. pelagicus, while coccolith of G. oceanica showed a decrease in size only at the highest trace metal concentrations tested. P. carterae size was unresponsive for changing trace metal concentration. Our results on living coccolithophore algae, demonstrate that elevated trace metal concentrations not only affect growth but also coccolith size and/or weight and that there are large differences between different species. These species-specific differences must be considered before morphological features of coccoliths are used to reconstruct paleo-chemical conditions. Following the laboratory experiment results, elevated trace metal conditions in the past oceans could have caused at least part of the observed morphological changes detected during some Mesozoic OAEs.
Silurian trace fossils in carbonate turbidites from the Alexander Arc of southeastern Alaska
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soja, C.M.
Early to Late Silurian (Wenlock-Ludlow) body and trace fossils from the Heceta Formation are preserved in the oldest widespread carbonates in the Alexander terrane of southeastern Alaska. They represent the earliest shelly benthos to inhabit a diversity of marine environments and are important indicators of the early stages in benthic community development within this ancient island arc. The trace fossils are significant because they add to a small but growing body of knowledge about ichnofaunas in deep-water Paleozoic carbonates. Proximal to medial carbonate turbidites yield a low-diversity suite of trace fossils that comprises five distinct types of biogenic structures. Beddingmore » planes reveal simple epichnial burrows (Planolites), cross-cutting burrows (Fucusopsis), and tiny cylindrical burrows. These and other casts, including chondrites( )-like burrow clusters, represent the feeding activities (fodinichnia) of preturbidite animals. Hypichnial burrows and rare endichnial traces reflect the activities of postturbidite animals. Broken and offset traces indicate that infaunal biota commenced burrowing before slumping and subsequent soft-sediment deformation. The abundance and density of trace fossils increases offshore in the medial turbidites associated with a decrease in the size and amount of coarse particles and with an increase in mud and preserved organic material. Although diversity levels are similar in the proximal and medial turbidite facies, they are much lower than in Paleozoic siliciclastic turbidites. This may reflect unfavorable environmental conditions for infaunal biota or paleobiogeographic isolation of the Alexander terrane during the Silurian. A greater use of trace fossils in terrane analysis will help to resolve this issue and should provide new data for reconstructing the paleogeography of circum-Pacific terranes.« less
Optimizing detector geometry for trace element mapping by X-ray fluorescence.
Sun, Yue; Gleber, Sophie-Charlotte; Jacobsen, Chris; Kirz, Janos; Vogt, Stefan
2015-05-01
Trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. We conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples. Copyright © 2015. Published by Elsevier B.V.
Optimizing detector geometry for trace element mapping by X-ray fluorescence
Sun, Yue; Gleber, Sophie-Charlotte; Jacobsen, Chris; Kirz, Janos; Vogt, Stefan
2016-01-01
Trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. We conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples. PMID:25600825
Optimizing detector geometry for trace element mapping by X-ray fluorescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yue; Gleber, Sophie-Charlotte; Jacobsen, Chris
Trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersivemore » detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. We conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples.« less
Hedfi, Amor; Boufahja, Fehmi; Ben Ali, Manel; Aïssa, Patricia; Mahmoudi, Ezzeddine; Beyrem, Hamouda
2013-06-01
The objective of this study was to test the hypotheses that (1) free-living marine nematodes respond in a differential way to diesel fuel if it is combined with three trace metals (chromium, copper, and nickel) used as smoke suppressants and that (2) the magnitude of toxicity of diesel fuel differs according to the level of trace metal mixture added. Nematodes from Sidi Salem beach (Tunisia) were subjected separately for 30 days to three doses of diesel fuel and three others of a trace metals mixture. Simultaneously, low-dose diesel was combined with three amounts of a trace metal mixture. Results from univariate and multivariate methods of data evaluation generally support our initial hypothesis that nematode assemblages exhibit various characteristic changes when exposed to different types of disturbances; the low dose of diesel fuel, discernibly non-toxic alone, became toxic when trace metals were added. For all types of treatments, biological disturbance caused severe specific changes in assemblage structure. For diesel fuel-treated microcosms, Marylynnia bellula and Chromaspirinia pontica were the best positive indicative species; their remarkable presence in given ecosystem may predict unsafe seafood. The powerful toxicity of the combination between diesel fuel and trace metals was expressed with only negative bioindicators, namely Trichotheristus mirabilis, Pomponema multipapillatum, Ditlevsenella murmanica, Desmodora longiseta, and Bathylaimus capacosus. Assemblages with high abundances of these species should be an index of healthy seafood. When nematodes were exposed to only trace metals, their response looks special with a distinction of a different list of indicative species; the high presence of seven species (T. mirabilis, P. multipapillatum, Leptonemella aphanothecae, D. murmanica, Viscosia cobbi, Gammanema conicauda, and Viscosia glabra) could indicate a good quality of seafood and that of another species (Oncholaimellus mediterraneus) appeared an index of the opposite situation.
NASA Astrophysics Data System (ADS)
Faucher, Giulia; Hoffmann, Linn; Bach, Lennart T.; Bottini, Cinzia; Erba, Elisabetta; Riebesell, Ulf
2017-07-01
The Cretaceous ocean witnessed intervals of profound perturbations such as volcanic input of large amounts of CO2, anoxia, eutrophication and introduction of biologically relevant metals. Some of these extreme events were characterized by size reduction and/or morphological changes of a few calcareous nannofossil species. The correspondence between intervals of high trace metal concentrations and coccolith dwarfism suggests a negative effect of these elements on nannoplankton biocalcification processes in past oceans. In order to test this hypothesis, we explored the potential effect of a mixture of trace metals on growth and morphology of four living coccolithophore species, namely Emiliania huxleyi, Gephyrocapsa oceanica, Pleurochrysis carterae and Coccolithus pelagicus. The phylogenetic history of coccolithophores shows that the selected living species are linked to Mesozoic species showing dwarfism under excess metal concentrations. The trace metals tested were chosen to simulate the environmental stress identified in the geological record and upon known trace metal interactions with living coccolithophore algae.Our laboratory experiments demonstrated that elevated trace metal concentrations, similarly to the fossil record, affect coccolithophore algae size and/or weight. Smaller coccoliths were detected in E. huxleyi and C. pelagicus, while coccoliths of G. oceanica showed a decrease in size only at the highest trace metal concentrations. P. carterae coccolith size was unresponsive to changing trace metal concentrations. These differences among species allow discriminating the most- (P. carterae), intermediate- (E. huxleyi and G. oceanica) and least-tolerant (C. pelagicus) taxa. The fossil record and the experimental results converge on a selective response of coccolithophores to metal availability.These species-specific differences must be considered before morphological features of coccoliths are used to reconstruct paleo-chemical conditions.
NASA Astrophysics Data System (ADS)
Gu, Myojeong; Enell, Carl-Fredrik; Pukite, Janis; Platt, Ulrich; Raffalski, Uwe; Wagner, Thomas
2017-04-01
After to the Montreal protocol and amendments, the production of CFCs was strongly reduced. Since then scientists have steadily made efforts to monitor the amount of chlorine compounds which are responsible for the destruction of ozone in the stratosphere. Although very recent research of stratospheric ozone indicates an ozone recovery, ozone depletion is still observed in the polar spring and is expected to last for about another 70 years according to the WMO. Therefore, continuous observation and analysis of the stratospheric ozone as well as other stratospheric trace gases are highly demanded. Several previous studies have investigated OClO which is an indicator for stratospheric chlorine activation using satellite, ground-based, and balloon remote sensing measurements. In this work, we investigate long-term time series of OClO DSCDs (Differential Slant Column densities) above Kiruna, Sweden (67.84°N, 20.41°E) which is located inside the Arctic Circle by using the ground-based zenith sky DOAS measurements. Since our measurements are performed at the fixed site, for the interpretation also the relative position of the polar vortex has to be considered. Our long-term data obtained during about 15 years allows us to classify the dependence of the OClO amount on the various meteorological conditions. Our data show a large variability with high OClO SCDs in cold, and low OClO SCDs in warm winters. Our measurements also allow to investigate the effect of the chlorine activation and its duration on the strength of the ozone destruction.
Trace Elements in Ovaries: Measurement and Physiology.
Ceko, Melanie J; O'Leary, Sean; Harris, Hugh H; Hummitzsch, Katja; Rodgers, Raymond J
2016-04-01
Traditionally, research in the field of trace element biology and human and animal health has largely depended on epidemiological methods to demonstrate involvement in biological processes. These studies were typically followed by trace element supplementation trials or attempts at identification of the biochemical pathways involved. With the discovery of biological molecules that contain the trace elements, such as matrix metalloproteinases containing zinc (Zn), cytochrome P450 enzymes containing iron (Fe), and selenoproteins containing selenium (Se), much of the current research focuses on these molecules, and, hence, only indirectly on trace elements themselves. This review focuses largely on two synchrotron-based x-ray techniques: X-ray absorption spectroscopy and x-ray fluorescence imaging that can be used to identify the in situ speciation and distribution of trace elements in tissues, using our recent studies of bovine ovaries, where the distribution of Fe, Se, Zn, and bromine were determined. It also discusses the value of other techniques, such as inductively coupled plasma mass spectrometry, used to garner information about the concentrations and elemental state of the trace elements. These applications to measure trace elemental distributions in bovine ovaries at high resolutions provide new insights into possible roles for trace elements in the ovary. © 2016 by the Society for the Study of Reproduction, Inc.
Refraction of microwave signals by water vapor
NASA Technical Reports Server (NTRS)
Goldfinger, A. D.
1980-01-01
Tropospheric water vapor causes a refractive path length effect which is typically 5-10% of the 'dry' tropospheric effect and as large as several meters at elevation angles below 5 deg. The vertical water vapor profile is quite variable, and measurements of intensive atmospheric parameters such as temperature and humidity limited to the surface do not adequately predict the refractive effect. It is suggested that a water vapor refraction model that is a function of the amount of precipitable water alone can be successful at low elevation angles. From an extensive study of numerical ray tracings through radiosonde balloon data, such a model has been constructed. The model predicts the effect at all latitudes and elevation angles between 2 and 10 deg to an accuracy of better than 4% (11 cm at 3 deg elevation angle).
Flux Calculation Using CARIBIC DOAS Aircraft Measurements: SO2 Emission of Norilsk
NASA Technical Reports Server (NTRS)
Walter, D.; Heue, K.-P.; Rauthe-Schoech, A.; Brenninkmeijer, C. A. M.; Lamsal, L. N.; Krotkov, N. A.; Platt, U.
2012-01-01
Based on a case-study of the nickel smelter in Norilsk (Siberia), the retrieval of trace gas fluxes using airborne remote sensing is discussed. A DOAS system onboard an Airbus 340 detected large amounts of SO2 and NO2 near Norilsk during a regular passenger flight within the CARIBIC project. The remote sensing data were combined with ECMWF wind data to estimate the SO2 output of the Norilsk industrial complex to be around 1 Mt per year, which is in agreement with independent estimates. This value is compared to results using data from satellite remote sensing (GOME, OMI). The validity of the assumptions underlying our estimate is discussed, including the adaptation of this method to other gases and sources like the NO2 emissions of large industries or cities.
Space shuttle nonmetallic materials age life prediction
NASA Technical Reports Server (NTRS)
Mendenhall, G. D.; Hassell, J. A.; Nathan, R. A.
1975-01-01
The chemiluminescence from samples of polybutadiene, Viton, Teflon, Silicone, PL 731 Adhesive, and SP 296 Boron-Epoxy composite was measured at temperatures from 25 to 150 C. Excellent correlations were obtained between chemiluminescence and temperature. These correlations serve to validate accelerated aging tests (at elevated temperatures) designed to predict service life at lower temperatures. In most cases, smooth or linear correlations were obtained between chemiluminescence and physical properties of purified polymer gums, including the tensile strength, viscosity, and loss tangent. The latter is a complex function of certain polymer properties. Data were obtained with far greater ease by the chemiluminescence technique than by the conventional methods of study. The chemiluminescence from the Teflon (Halon) samples was discovered to arise from trace amounts of impurities, which were undetectable by conventional, destructive analysis of the sample.
Evidence of Chemical Cloud Processing from In Situ Measurements in the Polluted Marine Environment
NASA Astrophysics Data System (ADS)
Hudson, J. G.; Noble, S. R., Jr.
2017-12-01
Chemical cloud processing alters activated cloud condensation nuclei (CCN). Aqueous oxidation of trace gases dissolved within cloud droplets adds soluble material. As most cloud droplets evaporate, the residual material produces CCN that are larger and with a different hygroscopicity (κ). This improves the CCN, lowering the critical supersaturation (Sc), making it more easily activated. This process separates the processed (accumulation) and unprocessed (Aitken) modes creating bimodal CCN distributions (Hudson et al., 2015). Various measurements made during the MArine Stratus/stratocumulus Experiment (MASE), including CCN, exhibited aqueous processing signals. Particle size distributions; measured by a differential mobility analyzer; were compared with CCN distributions; measured by the Desert Research Institute CCN spectrometer; by converting size to Sc using κ to overlay concurrent distributions. By tuning each mode to the best agreement, κ for each mode is determined; processed κ (κp), unprocessed κ (κu). In MASE, 59% of bimodal distributions had different κ for the two modes indicating dominance of chemical processing via aqueous oxidation. This is consistent with Hudson et al. (2015). Figure 1A also indicates chemical processing with larger κp between 0.35-0.75. Processed CCN had an influx of soluble material from aqueous oxidation which increased κp versus κu. Above 0.75 κp is lower than κu (Fig. 1A). When κu is high and sulfate material is added, κp tends towards κ of the added material. Thus, κp is reduced by additional material that is less soluble than the original material. Chemistry measurements in MASE also indicate in-cloud aqueous oxidation (Fig. 1B and 1C). Higher fraction of CCN concentrations in the processed mode are also associated with larger amounts of sulfates (Fig. 1B, red) and nitrates (Fig. 1C, orange) while SO2 (Fig. 1B, black) and O3 (Fig. 1C, blue) have lower amounts. This larger amount of sulfate is at the expense of SO2, indicating aqueous oxidation within cloud as associated with larger concentrations in the processed mode. Thus, in situ measurements indicate that chemical cloud processing alters size, Sc and κ of activated CCN. Hudson et al. (2015), JGRA, 120, 3436-3452.
NASA Astrophysics Data System (ADS)
Jurkat, T.; Kaufmann, S.; Voigt, C.; Schäuble, D.; Jeßberger, P.; Ziereis, H.
2015-12-01
Understanding the role of climate-sensitive trace gas variabilities in the upper troposphere and lower stratosphere region (UTLS) and their impact on its radiative budget requires accurate measurements. The composition of the UTLS is governed by transport and chemistry of stratospheric and tropospheric constituents, such as chlorine, nitrogen oxide and sulphur components. The Airborne chemical Ionization Mass Spectrometer AIMS has been developed to accurately measure a set of these constituents on aircraft by means of chemical ionization. Here we present a setup using chemical ionization with SF5- reagent ions for the simultaneous measurement of trace gas concentrations in the pptv to ppmv (10-12 to 10-6 mol mol-1) range of HCl, HNO3 and SO2 with in-flight and online calibration called AIMS-TG. Part 1 of this paper (Kaufmann et al., 2015) reports on the UTLS water vapour measurements with the AIMS-H2O configuration. The instrument can be flexibly switched between two configurations depending on the scientific objective of the mission. For AIMS-TG, a custom-made gas discharge ion source has been developed generating a characteristic ionization scheme. HNO3 and HCl are routinely calibrated in-flight using permeation devices, SO2 is permanently calibrated during flight adding an isotopically labelled 34SO2 standard. In addition, we report on trace gas measurements of HONO which is sensitive to the reaction with SF5-. The detection limit for the various trace gases is in the low ten pptv range at a 1 s time resolution with an overall uncertainty of the measurement in the order of 20 %. AIMS has been integrated and successfully operated on the DLR research aircraft Falcon and HALO. Exemplarily, measurements conducted during the TACTS/ESMVal mission with HALO in 2012 are presented, focusing on a classification of tropospheric and stratospheric influences in the UTLS region. Comparison of AIMS measurements with other measurement techniques allow to draw a comprehensive picture of the sulphur, chlorine and reactive nitrogen oxide budget in the UTLS. The combination of the trace gases measured with AIMS exhibit the potential to gain a better understanding of the trace gas origin and variability at and near the tropopause.
Nanoporous impedemetric biosensor for detection of trace atrazine from water samples.
Pichetsurnthorn, Pie; Vattipalli, Krishna; Prasad, Shalini
2012-02-15
Trace contamination of ground water sources has been a problem ever since the introduction of high-soil-mobility pesticides, one such example is atrazine. In this paper we present a novel nanoporous portable bio-sensing device that can identify trace contamination of atrazine through a label-free assay. We have designed a pesticide sensor comprising of a nanoporous alumina membrane integrated with printed circuit board platform. Nanoporous alumina in the biosensor device generates a high density array of nanoscale confined spaces. By leveraging the size based immobilization of atrazine small molecules we have designed electrochemical impedance spectroscopy based biosensor to detect trace amounts of atrazine. We have calibrated the sensor using phosphate buffered saline and demonstrated trace detection from river and bottled drinking water samples. The limit of detection in all the three cases was in the femtogram/mL (fg/mL) (parts-per-trillion) regime with a dynamic range of detection spanning from 10 fg/mL to 1 ng/mL (0.01 ppt to 1 ppm). The selectivity of the device was tested using a competing pesticide; malathion and selectivity in detection was observed in the fg/mL regime in all the three cases. Copyright © 2011 Elsevier B.V. All rights reserved.
Tufarelli, Vincenzo; Petrera, F; Khan, R U; Laudadio, Vito
2011-06-01
A study was carried out to evaluate the influence of vitamin and trace mineral supplementation on milk production and composition in grazing dairy ewes during the dry season. Ewes (n = 50) were assigned at weaning to blocks and treatments. Ewes were daily conducted (8 h/day) on a pasture based on Italian ryegrass (Lolium multiflorum). At fold, ewes received a basal diet composed by ad libitum oat hay and a definite amount of a pelleted concentrate. Dietary treatments included: (1) the control concentrate containing background of vitamin and trace mineral only, and (2) the experimental concentrate containing the premix supplement (10 g/kg of dry matter). Vitamin and trace mineral supplementation did not affect ewes' body weight. Milk, fat- and protein-corrected milk, fat percentage, and clotting properties were improved in ewes fed supplemented concentrate. There was a week × treatment interaction (P < 0.05) for yield of milk and corrected milk that was greatest at peak production in ewes fed the premix. Our findings indicate that in grazing dairy ewe, the dietary vitamin and trace mineral supplementation during dry season led to an increase of milk production and quality, with positive improvement in milk clotting aptitude.
Survey of Instrumentation for the Measurement of Stratospheric Trace Gases and Particulates (CIAP)
DOT National Transportation Integrated Search
1971-11-01
A survey was conducted to determine the applicability of presently available instrumentation to the direct and/or remote measure of trace gases and particulates within the stratosphere. Consideration was also given to techniques under development whe...
Mapping Fifteen Trace Elements in Human Seminal Plasma and Sperm DNA.
Ali, Sazan; Chaspoul, Florence; Anderson, Loundou; Bergé-Lefranc, David; Achard, Vincent; Perrin, Jeanne; Gallice, Philippe; Guichaoua, Marie
2017-02-01
Studies suggest a relationship between semen quality and the concentration of trace elements in serum or seminal plasma. However, trace elements may be linked to DNA and capable of altering the gene expression patterns. Thus, trace element interactions with DNA may contribute to the mechanisms for a trans-generational reproductive effect. We developed an analytical method to determine the amount of trace elements bound to the sperm DNA, and to estimate their affinity for the sperm DNA by the ratio: R = Log [metal concentration in the sperm DNA/metal concentration in seminal plasma]. We then analyzed the concentrations of 15 trace elements (Al, Cd, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Ti, V, Zn, As, Sb, and Se) in the seminal plasma and the sperm DNA in 64 normal and 30 abnormal semen specimens with Inductively Coupled Plasma/Mass Spectrometry (ICP-MS). This study showed all trace elements were detected in the seminal plasma and only metals were detected in the sperm DNA. There was no correlation between the metals' concentrations in the seminal plasma and the sperm DNA. Al had the highest affinity for DNA followed by Pb and Cd. This strong affinity is consistent with the known mutagenic effects of these metals. The lowest affinity was observed for Zn and Ti. We observed a significant increase of Al linked to the sperm DNA of patients with oligozoospermia and teratozoospermia. Al's reproductive toxicity might be due to Al linked to DNA, by altering spermatogenesis and expression patterns of genes involved in the function of reproduction.
Spectral structure and stability studies on microstructure-fiber continuum
NASA Astrophysics Data System (ADS)
Gu, Xun; Kimmel, Mark; Zeek, Erik; Shreenath, Aparna P.; Trebino, Rick P.; Windeler, Robert S.
2003-07-01
Although previous direct measurements of the microstructure-fiber continuum have all showed a smooth and stable spectrum, our cross-correlation frequency-resolved optical gating (XFROG) full-intensity-and-phase characterization of the continuum pulse, utilizing sum-frequency-generation with a pre-characterized reference pulse and the angle-dithered-crystal technique, indicates that fine-scale spectral structure exists on a single-shot basis, contrary to previous observations. In particular, deep and fine oscillations are found in the retrieved spectrum, and the retrieved trace contains a "measles" pattern, whereas the measured trace and the independently-measured spectrum are rather smooth. The discrepancy is shown to be the result of unstable single-shot spectral structure. Although the XFROG measurement is not able to directly measure the single-shot fine structure in the trace, the redundancy of information in FROG traces enables the retrieval algorithm to correctly recognize the existence of the spectral fine structure, and restore the structure in the retrieved trace and spectrum. Numerical simulations have supported our hypothesis, and we directly observed the fine spectral structure in single-shot measurements of the continuum spectrum and the structure was seen to be highly unstable, the continuum spectrum appearing smooth only when many shots are averaged. Despite the structure and instability in the continuum spectrum, coherence experiments also reveal that the spectral phase is rather stable, being able to produce well-defined spectral fringes across the entire continuum bandwidth.
Quantification of trace elements and speciation of iron in atmospheric particulate matter
NASA Astrophysics Data System (ADS)
Upadhyay, Nabin
Trace metal species play important roles in atmospheric redox processes and in the generation of oxidants in cloud systems. The chemical impact of these elements on atmospheric and cloud chemistry is dependent on their occurrence, solubility and speciation. First, analytical protocols have been developed to determine trace elements in particulate matter samples collected for carbonaceous analysis. The validated novel protocols were applied to the determination of trace elements in particulate samples collected in the remote marine atmosphere and urban areas in Arizona to study air pollution issues. The second part of this work investigates on solubility and speciation in environmental samples. A detailed study on the impact of the nature and strength of buffer solutions on solubility and speciation of iron lead to a robust protocol, allowing for comparative measurements in matrices representative of cloud water conditions. Application of this protocol to samples from different environments showed low iron solubility (less than 1%) in dust-impacted events and higher solubility (5%) in anthropogenically impacted urban samples. In most cases, Fe(II) was the dominant oxidation state in the soluble fraction of iron. The analytical protocol was then applied to investigate iron processing by fogs. Field observations showed that only a small fraction (1%) of iron was scavenged by fog droplets for which each of the soluble and insoluble fraction were similar. A coarse time resolution limited detailed insights into redox cycling within fog system. Overall results suggested that the major iron species in the droplets was Fe(1I) (80% of soluble iron). Finally, the occurrence and sources of emerging organic pollutants in the urban atmosphere were investigated. Synthetic musk species are ubiquitous in the urban environment (less than 5 ng m-3) and investigations at wastewater treatment plants showed that wastewater aeration basins emit a substantial amount of these species to the atmosphere.
Formation of Residual Gases from Source Materials in Closed Crystal Growth Systems
NASA Technical Reports Server (NTRS)
Palosz, W.; Rose, M. Franklin (Technical Monitor)
2001-01-01
Different, non-constituent cases are present in crystal growth systems and may affect processes like growth rate in PVT or voids formation and detached solidification in melt growth systems. The presence of the gas may be detrimental or advantageous depending on its amount and composition, and on the process in question. The presence of the cases, their amount and composition, can be caused and changed by diffusion through and desorption from the growth container material. We have investigated these phenomena for silica glass ampoules. We also found, that residual cases can be generated by the source materials: even very high purity commercial elements and compounds may contain trace amounts of impurities, particularly oxides. The oxides may have low volatilities themselves but their reaction with other species, particularly carbon and hydrogen, may produce volatile compounds like water or carbon oxides. The amount of the gas and its composition is dependent on the original purity of the material (oxide contaminants) and the heat treatment of the source prior to sealing. In many cases. particularly at temperatures below about 900 C and in well-outgassed ampoules, this mechanism dominates. The problem is of a particular importance in sealed systems where the amount and composition of the gas cannot be directly controlled. Therefore, a reasonable knowledge and understanding of the origin, composition, magnitude, and change with time of gases present in sealed ampoules may be important for a meaningful control and interpretation of crystal growth processes. We have investigated this phenomenon in more details for a number of elements and compounds, primarily for II-VI and IV-VI materials. Different source pre-treatment and annealing procedures were applied, and subsequent consecutive annealings and measurements were done to determine the origin and development of the gas in the systems.
A wide field-of-view imaging DOAS instrument for two-dimensional trace gas mapping from aircraft
NASA Astrophysics Data System (ADS)
Schönhardt, A.; Altube, P.; Gerilowski, K.; Krautwurst, S.; Hartmann, J.; Meier, A. C.; Richter, A.; Burrows, J. P.
2015-12-01
The Airborne imaging differential optical absorption spectroscopy (DOAS) instrument for Measurements of Atmospheric Pollution (AirMAP) has been developed for the purpose of trace gas measurements and pollution mapping. The instrument has been characterized and successfully operated from aircraft. Nitrogen dioxide (NO2) columns were retrieved from the AirMAP observations. A major benefit of the push-broom imaging instrument is the spatially continuous, gap-free measurement sequence independent of flight altitude, a valuable characteristic for mapping purposes. This is made possible by the use of a charge coupled device (CCD) frame-transfer detector. A broad field of view across track of around 48° is achieved with wide-angle entrance optics. This leads to a swath width of about the same size as the flight altitude. The use of fibre coupled light intake optics with sorted light fibres allows flexible instrument positioning within the aircraft and retains the very good imaging capabilities. The measurements yield ground spatial resolutions below 100 m depending on flight altitude. The number of viewing directions is chosen from a maximum of 35 individual viewing directions (lines of sight, LOS) represented by 35 individual fibres. The selection is adapted to each situation by averaging according to signal-to-noise or spatial resolution requirements. Observations at 30 m spatial resolution are obtained when flying at 1000 m altitude and making use of all 35 viewing directions. This makes the instrument a suitable tool for mapping trace gas point sources and small-scale variability. The position and aircraft attitude are taken into account for accurate spatial mapping using the Attitude and Heading Reference System of the aircraft. A first demonstration mission using AirMAP was undertaken in June 2011. AirMAP was operated on the AWI Polar-5 aircraft in the framework of the AIRMETH-2011 campaign. During a flight above a medium-sized coal-fired power plant in north-west Germany, AirMAP clearly detected the emission plume downwind from the exhaust stack, with NO2 vertical columns around 2 × 1016 molecules cm-2 in the plume centre. NOx emissions estimated from the AirMAP observations are consistent with reports in the European Pollutant Release and Transfer Register. Strong spatial gradients and variability in NO2 amounts across and along flight direction are observed, and small-scale enhancements of NO2 above a motorway are detected.
PANTHER Data from SOLVE-II Through CR-AVE: A Contrast Between Long and Short Lived Compounds.
NASA Astrophysics Data System (ADS)
Moore, F. L.; Dutton, G. S.; Elkins, J. W.; Hall, B. D.; Hurst, D. F.; Nance, J. D.; Thompson, T. M.
2006-12-01
PANTHER (PAN and other Trace Hydrohalocarbons ExpeRiment) is an airborne 6-channel gas chromatograph that measures approximately 20 important atmospheric trace gases whose changing burdens impact air quality, climate change and both stratospheric and tropospheric ozone. In this presentation we will contrast measurements of the long-lived compounds against the short-lived compounds. The long-lived compounds tend to have well-defined troposphere boundary conditions and develop spatial gradients due to stratospheric processing. These measurements have played a major role in quantifying stratospheric transport, stratosphere- troposphere exchange, and ozone loss. In contrast the short-lived species develop spatial and temporal gradients in the tropical tropopause layer (TTL), due to variations in the surface boundary layer concentrations and the coupling of this surface boundary layer to the TTL via convective processes. Deep convection acts like a "conveyor belt" between the source region in the boundary layer and the relatively stable TTL region, often bypassing the free troposphere where scavenging of these short lived species takes place. Loss rates due to reaction with OH and thermal decomposition are reduced in the cold, dry air of the TTL, resulting in longer survival times. Isolation of the TTL region from the free troposphere can last from days to over a month. Significant amounts of these short-lived compound and their byproducts can therefore be transported into the lower stratosphere (LS). Of particular interest are compounds that contain bromine, iodine, and sulfur, not only because of their intrinsic harmful effects in the atmosphere, but also because they have unique source and sink regions that can help to de- convolve transport.
Fermi observations of Cassiopeia and Cepheus: Diffuse gamma-ray emission in the outer galaxy
Abdo, A. A.
2010-01-15
Here, we present the analysis of the interstellar γ-ray emission measured by the Fermi Large Area Telescope toward a region in the second Galactic quadrant at 100° ≤ l ≤ 145° and –15° ≤ b ≤ +30°. This region encompasses the prominent Gould Belt clouds of Cassiopeia, Cepheus, and the Polaris flare, as well as atomic and molecular complexes at larger distances, like that associated with NGC 7538 in the Perseus arm. The good kinematic separation in velocity between the local, Perseus, and outer arms, and the presence of massive complexes in each of them, make this region well suitedmore » to probe cosmic rays (CRs) and the interstellar medium beyond the solar circle. Furthermore, the γ-ray emissivity spectrum of the gas in the Gould Belt is consistent with expectations based on the locally measured CR spectra. The γ-ray emissivity decreases from the Gould Belt to the Perseus arm, but the measured gradient is flatter than expectations for CR sources peaking in the inner Galaxy as suggested by pulsars. The X CO = N(H 2)/W CO conversion factor is found to increase from (0.87 ± 0.05) × 10 20 cm –2 (K km s –1) –1 in the Gould Belt to (1.9 ± 0.2) × 10 20 cm –2 (K km s –1) –1 in the Perseus arm. We also derive masses for the molecular clouds under study. Dark gas, not properly traced by radio and microwave surveys, is detected in the Gould Belt through a correlated excess of dust and γ-ray emission: its mass amounts to ~50% of the CO-traced mass.« less
On the use of helium-filled soap bubbles for large-scale tomographic PIV in wind tunnel experiments
NASA Astrophysics Data System (ADS)
Scarano, Fulvio; Ghaemi, Sina; Caridi, Giuseppe Carlo Alp; Bosbach, Johannes; Dierksheide, Uwe; Sciacchitano, Andrea
2015-02-01
The flow-tracing fidelity of sub-millimetre diameter helium-filled soap bubbles (HFSB) for low-speed aerodynamics is studied. The main interest of using HFSB in relation to micron-size droplets is the large amount of scattered light, enabling larger-scale three-dimensional experiments by tomographic PIV. The assessment of aerodynamic behaviour closely follows the method proposed in the early work of Kerho and Bragg (Exp Fluids 50:929-948, 1994) who evaluated the tracer trajectories around the stagnation region at the leading edge of an airfoil. The conclusions of the latter investigation differ from the present work, which concludes sub-millimetre HFSB do represent a valid alternative for quantitative velocimetry in wind tunnel aerodynamic experiments. The flow stagnating ahead of a circular cylinder of 25 mm diameter is considered at speeds up to 30 m/s. The tracers are injected in the free-stream and high-speed PIV, and PTV are used to obtain the velocity field distribution. A qualitative assessment based on streamlines is followed by acceleration and slip velocity measurements using PIV experiments with fog droplets as a term of reference. The tracing fidelity is controlled by the flow rates of helium, liquid soap and air in HFSB production. A characteristic time response, defined as the ratio of slip velocity and the fluid acceleration, is obtained. The feasibility of performing time-resolved tomographic PIV measurements over large volumes in aerodynamic wind tunnels is also studied. The flow past a 5-cm-diameter cylinder is measured over a volume of 20 × 20 × 12 cm3 at a rate of 2 kHz. The achieved seeding density of <0.01 ppp enables resolving the Kármán vortices, whereas turbulent sub-structures cannot be captured.
NASA Astrophysics Data System (ADS)
Li, C. Y. R.; Parker, O.; Tzortziou, M.
2017-12-01
Our research sought to use ground-based and satellite products to study the spatiotemporal variability of NO2 and O3 in urban and coastal South Korea. Our data set was derived from direct-sun irradiance measurements of TCNO2 and TCO3 using Pandora spectrometers located at 8 ground sites and 1 boat-mounted sensor, as well as satellite observations from the Ozone Monitoring Instrument (OMI) on the Aura satellite. Our analysis focuses on the dates of the KORUSA campaign, which took place between May 18, 2016 through June 2, 2016, and provided our off-shore measurements. The Pandora instrument offered us continuous coverage of the local area, providing a detailed understanding of NO2 and O3 temporal variability. Ground stations allowed us to compare small-scale diurnal variability in urban and near-urban environments, while the Pandora mounted on the Onnuri research vessel permitted us to gain valuable insight into off-shore behavior of trace gases. By overlaying and comparing these measurements with TCO3/TCNO2 products from the Aura-OMI sensor, we were able to form a relatively complete picture of trace gas behavior above, and off-shore from, the Korean Peninsula. Our data was then subjected to statistical and GIS (Geographic Information System) analysis, quantifying and mapping (respectively) the spatial and temporal variability of total column amounts of NO2 and O3 along the Korean Peninsula. Results are shown for the eight sites where different Pandora instruments were used. There was a notable difference in TCNO2 variability which correlates with population and land use.
NASA Astrophysics Data System (ADS)
Andres, M.; Hagemann, U.; Pohl, M.; Sommer, M.; Augustin, J.
2012-04-01
Erosion effects and the influence of organic fertiliser (fermentation residues, FR) on the climate impact and greenhouse gas (GHG) emissions of N2O, CH4 and CO2 were investigated at an experimental field side in the lowlands of north-east Germany during the years 2010 and 2011. This intensively used agricultural landscape is glacially shaped and characterized by well-drained sandy and loamy soils. Erosion effects on GHG exchange were investigated for energy maize at the CarboZALF-D project site near Dedelow, Uckermark. In addition to a non-eroded haplic luvisol (reference), emissions were measured for three eroded soil types: a) eroded haplic luvisol, b) haplic regosol (calcaric) and c) endogleyic colluvic regosol (deposition side). In a second field trial, the impact of organic fertilization on GHG emissions was assessed for a range of FR fertilization (0-200% N) and compared to a non-fertilized and a minerally fertilized control. Only 70% of the N content of the FR was assumed to be available for plants. Discontinuous measurements of N2O and CH4 were carried out bi-weekly using the closed-chamber method and 20-minute interval sampling. Gas samples were analysed using a gas chromatograph. Gas fluxes were calculated using linear regression, interpolated and finally cumulated. CO2 flux measurements of ecosystem respiration (Reco) and net ecosystem exchange (NEE) were conducted every four weeks by using a non-flow-through non-steady-state closed chamber system (Livingston and Hutchinson 1995) based on Drösler (2005). Measurement gaps of NEE were filled by modeling the Reco fluxes using the Lloyd-Taylor (Lloyd and Taylor 1994) method and the gross primary production (GPP) fluxes using Michaelis-Menten (Michaelis and Menten 1913) modeling approach. Annual NEE balances were then calculated based on the modeled Reco and GPP fluxes. All investigated soil types were C sinks, storing up to 9,6 t CO2eq ha-1 yr-1. As expected for this well-drained soils, the climate impact of CH4 emissions was negligible on all plots with mineral and organic fertilization (-0,05 t CO2eq ha-1 yr-1 up to 0,01 t CO2eq ha-1 yr-1). On minerally fertilized plots, contribution of N2O emissions were very different and varied between 10% and 43% to the overall climate impact (-9,6 t CO2eq ha-1 yr-1 to -2,3 t CO2eq ha-1 yr-1). The highest amount was investigated on the deposition plot. For organic fertilization, N2O emissions increased moderate from 0,02 t CO2eq ha-1 yr-1 (non-fertilized control) with increasing amount of fertilizer to 1,5 t CO2eq ha-1 yr-1. In contrast to N fertilizer application, the contribution of N2O and CH4 to the overall climate impact of eroded agriculturally soils in the glacially shaped landscape is very heterogeneous. Drösler, M. 2005. Trace Gas Exchange and climatic relevance of bog ecosystems, Southern Germany, phD-thesis, TU München, München Livingston, G.P. & Hutchinson, G.L. 1995. Enclosure-based measurement of trace gas exchange: Applications and sources of error. p. 14-51. In P.A. Matson & Harriss, R.C. (ed.) Methods in ecology - Biogenic trace gases: Measuring emissions from soil and water. Blackwell Science, Oxford, England
An elevated incidence of childhood cancer was observed near a contaminated site. Trace amounts of several isomeric compounds were detected by gas chromatography/mass spectrometry (GC/MS) in a concentrated extract of municipal well water. No matching library mass spectra wer...
Crafting Media Policy: The Genesis and Implications of the Children's Television Act of 1990.
ERIC Educational Resources Information Center
Kunkel, Dale
1991-01-01
Traces the history and development of the Children's Television Act of 1990 that establishes individual stations' obligations to serve children's needs and limits the amount of advertising. Describes the failure of the marketplace to provide educational programing once children's television was deregulated. Concludes that children's television is…
Dietary selenium supplementation and whole blood gene expression in healthy North American men
USDA-ARS?s Scientific Manuscript database
Selenium (Se) is a trace nutrient required in microgram amounts by all animals, with a recommended dietary allowance of 55 µg/d in humans. The biological functions of Se are performed by a group of 25 selenoproteins containing the unusual amino acid selenocysteine at their active sites. The selenopr...
The temperature dependence of the reactions of HO2 with NO and NO2
NASA Technical Reports Server (NTRS)
Simonaitis, R.; Heicklen, J.
1977-01-01
Mixtures of N2O, H2, O2 and trace amounts of NO and NO2 were photolyzed at 213.9 nm at 245-328 K and about 1 atm total pressure (mostly H2). HO2 radicals are produced from the photolysis, and their reactions are reported.
Hydrolysis of soybean protein improves iron bioavailability
USDA-ARS?s Scientific Manuscript database
Iron is an important trace metal element in human body. Iron deficiency affects human health, especially pregnant women and children. Soybean protein is a popular food in Asia and can contain a high amount of iron (145.70±0.74 ug/g); however, it is usually reported as an inhibitor of iron absorption...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-28
... the exception of naturally occurring trace amounts. Allowable beverages for high school students are... more than 12 ounces. Also allowed in high schools are calorie-free, flavored and/or carbonated water... supports the availability of more nutritious products and is consistent with the IOM recommendation and the...
EPA'S STUDY OF THE GENERATION AND CONTROL OF AIR POLLUTANTS FROM THE COMBUSTION OF ORIMULSION
The paper discusses an EPA study of the grneration and control of air pollutants from the combustion of Orimulsion, a high-sulfur liquid petroleum fuel composed of approximately 70% Venezuelan bitumen, 30% water, and trace amounts of surfactant. (NOTE: It is being used as the pri...
Effects of gypsum on trace metals in soils and earthworms
USDA-ARS?s Scientific Manuscript database
Mined gypsum has been beneficially used for many years as an agricultural amendment. Currently a large amount of flue gas desulfurization (FGD) gypsum is produced by removal of SO2 from flue gas streams when fuels with high S content are burned. The FGD gypsum, similar to mined gypsum, can enhance c...
NASA Astrophysics Data System (ADS)
Griffin, Debora; Walker, Kaley A.; Conway, Stephanie; Kolonjari, Felicia; Strong, Kimberly; Batchelor, Rebecca; Boone, Chris D.; Dan, Lin; Drummond, James R.; Fogal, Pierre F.; Fu, Dejian; Lindenmaier, Rodica; Manney, Gloria L.; Weaver, Dan
2017-09-01
This paper presents 8 years (2006-2013) of measurements obtained from Fourier transform spectrometers (FTSs) in the high Arctic at the Polar Environment Atmospheric Research Laboratory (PEARL; 80.05° N, 86.42° W). These measurements were taken as part of the Canadian Arctic ACE (Atmospheric Chemistry Experiment) validation campaigns that have been carried out since 2004 during the polar sunrise period (from mid-February to mid-April). Each spring, two ground-based FTSs were used to measure total and partial columns of HF, O3, and trace gases that impact O3 depletion, namely, HCl and HNO3. Additionally, some tropospheric greenhouse gases and pollutant species were measured, namely CH4, N2O, CO, and C2H6. During the same time period, the satellite-based ACE-FTS made measurements near Eureka and provided profiles of the same trace gases. Comparisons have been carried out between the measurements from the Portable Atmospheric Research Interferometric Spectrometer for the InfraRed (PARIS-IR) and the co-located high-resolution Bruker 125HR FTS, as well as with the latest version of the ACE-FTS retrievals (v3.5). The total column comparison between the two co-located ground-based FTSs, PARIS-IR and Bruker 125HR, found very good agreement for most of these species (except HF), with differences well below the estimated uncertainties ( ≤ 6 %) and with high correlations (R ≥ 0. 8). Partial columns have been used for the ground-based to space-borne comparison, with coincident measurements selected based on time, distance, and scaled potential vorticity (sPV). The comparisons of the ground-based measurements with ACE-FTS show good agreement in the partial columns for most species within 6 % (except for C2H6 and PARIS-IR HF), which is consistent with the total retrieval uncertainty of the ground-based instruments. The correlation coefficients (R) of the partial column comparisons for all eight species range from approximately 0.75 to 0.95. The comparisons show no notable increases of the mean differences over these 8 years, indicating the consistency of these datasets and suggesting that the space-borne ACE-FTS measurements have been stable over this period. In addition, changes in the amounts of these trace gases during springtime between 2006 and 2013 are presented and discussed. Increased O3 (0. 9 % yr-1), HCl (1. 7 % yr-1), HF (3. 8 % yr-1), CH4 (0.5 % yr-1), and C2H6 (2. 3 % yr-1, 2009-2013) have been found with the PARIS-IR dataset, the longer of the two ground-based records.
NASA Astrophysics Data System (ADS)
Volodin, Boris; Dolgy, Sergei; Ban, Vladimir S.; Gracin, Davor; Juraić, Krunoslav; Gracin, Leo
2014-03-01
Shifted Excitation Raman Difference Spectroscopy (SERDS) has proven an effective method for performing Raman analysis of fluorescent samples. This technique allows achieving excellent signal to noise performance with shorter excitation wavelengths, thus taking full advantage of the superior signal strength afforded by shorter excitation wavelengths and the superior performance, also combined with lower cost, delivered by silicon CCDs. The technique is enabled by use of two closely space fixed-wavelength laser diode sources stabilized with the Volume Bragg gratings (VBGs). A side by side comparison reveals that SERDS technique delivers superior signal to noise ratio and better detection limits in most situations, even when a longer excitation wavelength is employed for the purpose of elimination of the fluorescence. We have applied the SERDS technique to the quantitative analysis of the presence of trace amounts of methanol in red wines, which is an important task in quality control operations within wine industry and is currently difficult to perform in the field. So far conventional Raman spectroscopy analysis of red wines has been impractical due to the high degree of fluorescence.
Vouk, V B; Piver, W T
1983-01-01
Metallic elements contained in coal, oil and gasoline are mobilized by combustion processes and may be emitted into the atmosphere, mainly as components of submicron particles. The information about the amounts, composition and form of metal compounds is reviewed for some fuels and combustion processes. Since metal compounds are always contained in urban air pollutants, they have to be considered whenever an evaluation of biological impact of air pollutants is made. The value of currently used bioassays for the evaluation of the role of trace metal compounds, either as major biologically active components or as modifiers of biological effects of organic compounds is assessed. The whole animal bioassays for carcinogenicity do not seem to be an appropriate approach. They are costly, time-consuming and not easily amenable to the testing of complex mixtures. Some problems related to the application and interpretation of short-term bioassays are considered, and the usefulness of such bioassays for the evaluation of trace metal components contained in complex air pollution mixtures is examined.
Spectrophotometric study of the thorium-morin mixed-color system
Fletcher, M.H.; Milkey, R.G.
1956-01-01
A spectrophotometric study was made of the thoriummorin reaction to evaluate the suitability of morin as a reagent for the determination of trace amounts of thorium. At pH 2, the equilibrium constant for the reaction is 1 ?? 106, and a single complex having a thorium-morin ratio of 1 to 2 is formed. The complex shows maximum absorbance at a wave length of 410 m??, and its absorbance obeys Beer's law. The absorbance readings are highly reproducible, and the sensitivity is relatively high, an absorbance difference of 0.001 being equivalent to 0.007 ?? of ThO2 per sq. cm. The effects of acid, alcohol, and morin concentration, time, temperature, and age of the morin reagent as well as the behavior of morin with zirconium(IV), iron(III), aluminum(III), ytterbium(III), yttrium(III), uranium(VI), praseodymium(III), lead(II), lanthanum(III), and calcium(II) ions are discussed. A method is presented for the determination of thorium in pure solutions. Appropriate separations for the isolation of thorium may extend the usefulness of the method and permit the determination of trace amounts of thorium in complex materials.
Chen, Guowen; Li, Wenjie; Zhang, Chen; Zhou, Chuanjian; Feng, Shengyu
2012-09-21
Phenyl-ended hyperbranched carbosilane (HBC) is synthesized and immobilized onto the inner wall of a fused silica capillary column using a sol-gel process. The hybrid coating layer formed is used as a stationary phase for gas chromatography (GC) and as an adsorption medium for solid phase microextraction (SPME). Trifluoroacetic acid, as a catalyst in this process, helps produce a homogeneous hybrid coating layer. This result is beneficial for better column chromatographic performances, such as high efficiency and high resolution. Extraction tests using the novel hybrid layer show an extraordinarily large adsorption capacity and specific adsorption behavior for aromatic compounds. A 1 ppm trace level detectability is obtained with the SPME/GC work model when both of the stationary phase and adsorption layer bear a hyperbranched structure. A large amount of phenyl groups and a low viscosity of hyperbranched polymers contribute to these valuable properties, which are important to environment and safety control, wherein detection sensitivity and special adsorption behavior are usually required. Copyright © 2012 Elsevier B.V. All rights reserved.