Science.gov

Sample records for mechanical analysis teoria

  1. Local dynamic mechanical analysis.

    PubMed

    Foschia, Raphael; Jobin, Marc; Hengsberger, Stefan

    2009-01-01

    While new materials with tailored properties appear every day, the need of appropriate characterization tools is still an important concern. Analyses of thin films on thick substrate are often highly influenced by the substrate properties. A dynamical nanoindentation system has been designed and built through the integration of a nanoindenter head equipped with capacitive displacement sensing, scanning probe microscope with related XYZ scanning electronics and an additional transducer for sample actuation. Our Local-Dynamic Mechanical Analysis (L-DMA) setup allows for both, tip and sample modulation mode what somehow contrasts with commercially available systems. This issue allows for direct comparison between both techniques and therefore for consistent quantitative mechanical measurements. The system offers two distinctive measurement techniques, local mechanical spectroscopy and mechanical imaging modes. Bulk materials as well as thin films of ceramics and polymers have been used for testing and validating the setup. The instrument has been modeled in sample modulation mode and experimental results obtained for different materials were compared with simulation data.

  2. Majorana Electroformed Copper Mechanical Analysis

    SciTech Connect

    Overman, Nicole R.; Overman, Cory T.; Kafentzis, Tyler A.; Edwards, Danny J.; Hoppe, Eric W.

    2012-04-30

    The MAJORANA DEMONSTRATOR is a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay. The DEMONSTRATOR will utilize ultra high purity electroformed copper for a variety of detector components and shielding. A preliminary mechanical evaluation was performed on the Majorana prototype electroformed copper material. Several samples were removed from a variety of positions on the mandrel. Tensile testing, optical metallography, scanning electron microscopy, and hardness testing were conducted to evaluate mechanical response. Analyses carried out on the Majorana prototype copper to this point show consistent mechanical response from a variety of test locations. Evaluation shows the copper meets or exceeds the design specifications.

  3. Numerical Analysis in Fracture Mechanics.

    DTIC Science & Technology

    1983-01-20

    in the following. A. 2-D Elastic-Plastic Crack Problem In 1975, ASTh Committee E24.01.09 undertook a task to compare numerical solutions to elastic...Penalty Function and Superposition Method", Fracture Mechanics, 12th Symposium, ed. by P. C. Paris, ASTh SIP 700, p. 439, 1980. [44) Barsoum, R...Landes, J. A. Begley and G. A. Clarke, ASTh SIP 668, p. 65, 1979. [46) Benzley, S., "Nonlinear Calculations With a Quadratic Quarter-point Crack Tip

  4. Kinematic Analysis of Mechanical Systems

    DTIC Science & Technology

    1981-06-16

    by the user. ( iv ) Ability to handle constraints, when they are supplied as a set of dis- crete points, by constructing a third-order spline function...Multipliers ........... .23 3.5 Analysis of Systems with Springs, Dampers and Actuator Forces ......... .................... 24 IV . EQUILIBRIUM IN...constraints into a problem, if supplied by the user. ( iv ) Ability to handle constraints, when they are supplied as a set of dis- crete points, by

  5. Control Engineering Analysis of Mechanical Pitch Systems

    NASA Astrophysics Data System (ADS)

    Bernicke, Olaf; Gauterin, Eckhard; Schulte, Horst; Zajac, Michal

    2014-12-01

    With the help of a local stability analysis the coefficient range of a discrete damper, used for centrifugal forced, mechanical pitch system of small wind turbines (SWT), is gained for equilibrium points. - By a global stability analysis the gained coefficient range can be validated. An appropriate approach by Takagi-Sugeno is presented in the paper.

  6. Analysis of Skylab fluid mechanics science demonstrations

    NASA Technical Reports Server (NTRS)

    Tegart, J. R.; Butz, J. R.

    1975-01-01

    The results of the data reduction and analysis of the Skylab fluid mechanics demonstrations are presented. All the fluid mechanics data available from the Skylab missions were identified and surveyed. The significant fluid mechanics phenomena were identified and reduced to measurable quantities wherever possible. Data correlations were performed using existing theories. Among the phenomena analyzed were: static low-g interface shapes, oscillation frequency and damping of a liquid drop, coalescence, rotating drop, liquid films and low-g ice melting. A survey of the possible applications of the results was made and future experiments are recommended.

  7. Campo de velocidade peculiar na teoria linear

    NASA Astrophysics Data System (ADS)

    Pires, N.

    2003-08-01

    Aglomerados e superaglomerados de galáxias são responsáveis pela chamada velocidade peculiar (movimentos relativos à expansão pura do universo) das galáxias. A amplitude destas perturbações depende da densidade de matéria do universo e do contraste de densidade no interior do volume onde está localizada a galáxia. Em 1980, Peebles introduziu o fator "f", que relaciona a amplitude das perturbações da velocidade com o campo gravitacional peculiar, no contexto da teoria linear. No presente trabalho obtemos uma solução geral analítica para o fator "f" de Peebles do campo de velocidades peculiares, em termos de funções hipergeométricas, válida para qualquer geometria do universo. Como um teste de nossa solução, os resultados encontrados originalmente por Peebles em 1980 e os resultados mais gerais encontrados por O. Lahav e colaboradores em 1991, são reobtidos.

  8. Diesel Mechanics. Ohio's Competency Analysis Profile.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Vocational Instructional Materials Lab.

    This Ohio Competency Analysis Profile (OCAP), derived from a modified Developing a Curriculum (DACUM) process, is a current comprehensive and verified employer competency program list for diesel mechanics. Each unit (with or without subunits) contains competencies and competency builders that identify the occupational, academic, and employability…

  9. Elucidation of wear mechanisms by ferrographic analysis

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1981-01-01

    The use of ferrographic analysis in conjunction with light and scanning electron microscopy is described for the elucidation of wear mechanisms taking place in operating equipment. Example of adhesive wear, abrasive wear, corrosive wear, rolling element fatigue, lubricant breakdown, and other wear modes are illustrated. In addition, the use of magnetic solutions to precipitate nonmagnetic debris from aqueous and nonaqueous fluids is described.

  10. An Analysis of the Auto Mechanic Occupation.

    ERIC Educational Resources Information Center

    Conner, Michael; Thoman, LeRoy

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the auto mechanic occupation. It identifies the broad area of skills and knowledge necessary to perform various tasks involved in diagnosis, maintenance, and repair of automotive systems. Selected…

  11. A mechanical energy analysis of gait initiation

    NASA Technical Reports Server (NTRS)

    Miller, C. A.; Verstraete, M. C.

    1999-01-01

    The analysis of gait initiation (the transient state between standing and walking) is an important diagnostic tool to study pathologic gait and to evaluate prosthetic devices. While past studies have quantified mechanical energy of the body during steady-state gait, to date no one has computed the mechanical energy of the body during gait initiation. In this study, gait initiation in seven normal male subjects was studied using a mechanical energy analysis to compute total body energy. The data showed three separate states: quiet standing, gait initiation, and steady-state gait. During gait initiation, the trends in the energy data for the individual segments were similar to those seen during steady-state gait (and in Winter DA, Quanbury AO, Reimer GD. Analysis of instantaneous energy of normal gait. J Biochem 1976;9:253-257), but diminished in amplitude. However, these amplitudes increased to those seen in steady-state during the gait initiation event (GIE), with the greatest increase occurring in the second step due to the push-off of the foundation leg. The baseline level of mechanical energy was due to the potential energy of the individual segments, while the cyclic nature of the data was indicative of the kinetic energy of the particular leg in swing phase during that step. The data presented showed differences in energy trends during gait initiation from those of steady state, thereby demonstrating the importance of this event in the study of locomotion.

  12. A mechanical energy analysis of gait initiation

    NASA Technical Reports Server (NTRS)

    Miller, C. A.; Verstraete, M. C.

    1999-01-01

    The analysis of gait initiation (the transient state between standing and walking) is an important diagnostic tool to study pathologic gait and to evaluate prosthetic devices. While past studies have quantified mechanical energy of the body during steady-state gait, to date no one has computed the mechanical energy of the body during gait initiation. In this study, gait initiation in seven normal male subjects was studied using a mechanical energy analysis to compute total body energy. The data showed three separate states: quiet standing, gait initiation, and steady-state gait. During gait initiation, the trends in the energy data for the individual segments were similar to those seen during steady-state gait (and in Winter DA, Quanbury AO, Reimer GD. Analysis of instantaneous energy of normal gait. J Biochem 1976;9:253-257), but diminished in amplitude. However, these amplitudes increased to those seen in steady-state during the gait initiation event (GIE), with the greatest increase occurring in the second step due to the push-off of the foundation leg. The baseline level of mechanical energy was due to the potential energy of the individual segments, while the cyclic nature of the data was indicative of the kinetic energy of the particular leg in swing phase during that step. The data presented showed differences in energy trends during gait initiation from those of steady state, thereby demonstrating the importance of this event in the study of locomotion.

  13. Mechanical properties of kenaf composites using dynamic mechanical analysis

    NASA Astrophysics Data System (ADS)

    Loveless, Thomas A.

    Natural fibers show potential to replace glass fibers in thermoset and thermoplastic composites. Kenaf is a bast-type fiber with high specific strength and great potential to compete with glass fibers. In this research kenaf/epoxy composites were analyzed using Dynamic Mechanical Analysis (DMA). A three-point bend apparatus was used in the DMA testing. The samples were tested at 1 hertz, at a displacement of 10 ?m, and at room temperature. The fiber volume content of the kenaf was varied from 20% - 40% in 5% increments. Ten samples of each fiber volume fraction were manufactured and tested. The flexural storage modulus, the flexural loss modulus, and the loss factor were reported. Generally as the fiber volume fraction of kenaf increased, the flexural storage and flexural loss modulus increased. The loss factor remained relatively constant with increasing fiber volume fraction. Woven and chopped fiberglass/epoxy composites were manufactured and tested to be compared with the kenaf/epoxy composites. Both of the fiberglass/epoxy composites reported higher flexural storage and flexural loss modulus values. The kenaf/epoxy composites reported higher loss factor values. The specific flexural storage and specific flexural loss modulus were calculated for both the fiberglass and kenaf fiber composites. Even though the kenaf composites reported a lower density, the fiberglass composites reported higher specific mechanical properties.

  14. Analysis of respiratory mechanics during artificial ventilation.

    PubMed

    Guttmann, J

    1998-04-01

    Mechanical or artificial ventilation is the most important life-saving therapeutic instrument in modern intensive care medicine. The ventilator takes on the convective transport of the respiratory gas, i.e. delivery of oxygen and removal of carbon dioxide. The technical gas delivery system (ventilator, respiratory tubing system, gas humidifier) and the respiratory system (lungs and thorax) of the patients form a connected pneumatic system of high complexity. The respiratory system produces a mechanical impedance to ventilator output. Impedance is composed of an elastic, a non-elastic, i.e. resistive, and an inertive part. The corresponding indices describing respiratory mechanics are compliance, flow resistance and inertance. Based on the equation of motion of the respiratory system, several methods of analysing respiratory mechanics during mechanical ventilation are described. Quantitative analysis of respiratory system mechanics (a) is a prerequisite for the understanding of the complex patient-ventilator interaction, (b) provides important clinical information on pulmonary function and the course of disease, and (c) allows the physician at the bedside to adjust the ventilatory settings to the needs of the individual patient.

  15. Analysis of Homeostatic Mechanisms in Biochemical Networks.

    PubMed

    Reed, Michael; Best, Janet; Golubitsky, Martin; Stewart, Ian; Nijhout, H Frederik

    2017-09-07

    Cell metabolism is an extremely complicated dynamical system that maintains important cellular functions despite large changes in inputs. This "homeostasis" does not mean that the dynamical system is rigid and fixed. Typically, large changes in external variables cause large changes in some internal variables so that, through various regulatory mechanisms, certain other internal variables (concentrations or velocities) remain approximately constant over a finite range of inputs. Outside that range, the mechanisms cease to function and concentrations change rapidly with changes in inputs. In this paper we analyze four different common biochemical homeostatic mechanisms: feedforward excitation, feedback inhibition, kinetic homeostasis, and parallel inhibition. We show that all four mechanisms can occur in a single biological network, using folate and methionine metabolism as an example. Golubitsky and Stewart have proposed a method to find homeostatic nodes in networks. We show that their method works for two of these mechanisms but not the other two. We discuss the many interesting mathematical and biological questions that emerge from this analysis, and we explain why understanding homeostatic control is crucial for precision medicine.

  16. Likelihood analysis of earthquake focal mechanism distributions

    NASA Astrophysics Data System (ADS)

    Kagan, Yan Y.; Jackson, David D.

    2015-06-01

    In our paper published earlier we discussed forecasts of earthquake focal mechanism and ways to test the forecast efficiency. Several verification methods were proposed, but they were based on ad hoc, empirical assumptions, thus their performance is questionable. We apply a conventional likelihood method to measure the skill of earthquake focal mechanism orientation forecasts. The advantage of such an approach is that earthquake rate prediction can be adequately combined with focal mechanism forecast, if both are based on the likelihood scores, resulting in a general forecast optimization. We measure the difference between two double-couple sources as the minimum rotation angle that transforms one into the other. We measure the uncertainty of a focal mechanism forecast (the variability), and the difference between observed and forecasted orientations (the prediction error), in terms of these minimum rotation angles. To calculate the likelihood score we need to compare actual forecasts or occurrences of predicted events with the null hypothesis that the mechanism's 3-D orientation is random (or equally probable). For 3-D rotation the random rotation angle distribution is not uniform. To better understand the resulting complexities, we calculate the information (likelihood) score for two theoretical rotational distributions (Cauchy and von Mises-Fisher), which are used to approximate earthquake source orientation pattern. We then calculate the likelihood score for earthquake source forecasts and for their validation by future seismicity data. Several issues need to be explored when analyzing observational results: their dependence on forecast and data resolution, internal dependence of scores on forecasted angle and random variability of likelihood scores. Here, we propose a simple tentative solution but extensive theoretical and statistical analysis is needed.

  17. SIGNAL FLOW GRAPH ANALYSIS OF MECHANICAL ENGINEERING SYSTEMS

    DTIC Science & Technology

    CONTROL SYSTEMS, *MECHANICS, *STRUCTURES, *THERMODYNAMICS, *TOPOLOGY, BEAMS(ELECTROMAGNETIC), BEAMS(STRUCTURAL), GAS FLOW, GEARS, HEAT EXCHANGERS, MATHEMATICAL ANALYSIS, MATHEMATICS, MECHANICAL ENGINEERING , RAMJET ENGINES.

  18. Analysis of mechanical joint in composite cylinder

    NASA Astrophysics Data System (ADS)

    Hong, C. S.; Kim, Y. W.; Park, J. S.

    Joining techniques of composite materials are of great interest in cylindrical structures as the application of composites is widely used for weight-sensitive structures. Little information for the mechanical fastening joint of the laminated shell structure is available in the literature. In this study, a finite element program, which was based on the first order shear deformation theory, was developed for the analysis of the mechanical joint in the laminated composite structure. The failure of the mechanical fastening joint for the laminated graphite/epoxy cylinder subject to internal pressure was analyzed by using the developed program. Modeling of the bolt head in the composite cylinder was studied, and the effect of steel reinforcement outside the composite cylinder on the failure was investigated. The stress component near the bolt head was influenced by the size of the bolt head. The failure load and the failure mode were dependent on the bolt diameter, the number of bolts, and fiber orientation. The failure load was constant when the edge distance exceeds three times the bolt diameter.

  19. Molecular mechanics conformational analysis of tylosin

    NASA Astrophysics Data System (ADS)

    Ivanov, Petko M.

    1998-01-01

    The conformations of the 16-membered macrolide antibiotic tylosin were studied with molecular mechanics (AMBER∗ force field) including modelling of the effect of the solvent on the conformational preferences (GB/SA). A Monte Carlo conformational search procedure was used for finding the most probable low-energy conformations. The present study provides complementary data to recently reported analysis of the conformations of tylosin based on NMR techniques. A search for the low-energy conformations of protynolide, a 16-membered lactone containing the same aglycone as tylosin, was also carried out, and the results were compared with the observed conformation in the crystal as well as with the most probable conformations of the macrocyclic ring of tylosin. The dependence of the results on force field was also studied by utilizing the MM3 force field. Some particular conformations were computed with the semiempirical molecular orbital methods AM1 and PM3.

  20. Pharmaceutical applications of dynamic mechanical thermal analysis.

    PubMed

    Jones, David S; Tian, Yiwei; Abu-Diak, Osama; Andrews, Gavin P

    2012-04-01

    The successful development of polymeric drug delivery and biomedical devices requires a comprehensive understanding of the viscoleastic properties of polymers as these have been shown to directly affect clinical efficacy. Dynamic mechanical thermal analysis (DMTA) is an accessible and versatile analytical technique in which an oscillating stress or strain is applied to a sample as a function of oscillatory frequency and temperature. Through cyclic application of a non-destructive stress or strain, a comprehensive understanding of the viscoelastic properties of polymers may be obtained. In this review, we provide a concise overview of the theory of DMTA and the basic instrumental/operating principles. Moreover, the application of DMTA for the characterization of solid pharmaceutical and biomedical systems has been discussed in detail. In particular we have described the potential of DMTA to measure and understand relaxation transitions and miscibility in binary and higher-order systems and describe the more recent applications of the technique for this purpose.

  1. [Analysis on processing mechanism of calamine].

    PubMed

    Guo, Yi-Ming; Yu, Kai-Feng; Liu, Yan-Hua; Zhao, Jing-Zhe; Wang, Zi-Cheng; Zhang, Heng-Bin

    2005-04-01

    To study processing method and mechanism of Calamine. Thermogravimetry analysis method and nano-technology were adopted to analyze and synthesize the components in Calamine, Tetracycline was took as the comparison drug to determine the antibacterial activity of Calamine and its components. A part of zinc carbonate in Calamine was decomposed into zinc oxide when processing, and the particle size was smaller than before. The antibacterial activity of Calamine is decided by the content and particle size of zinc oxide, and has nothing with zinc carbonate. The more content and the smaller particle size of zinc oxide, the more powerful antibacterial activity of Calamine. The content and the particle size of zinc oxide can be the important targets in the processing of Calamine.

  2. Thermal mechanical analysis of sprag clutches

    NASA Technical Reports Server (NTRS)

    Mullen, Robert L.; Zab, Ronald Joseph; Kurniawan, Antonius S.

    1992-01-01

    Work done at Case Western Reserve University on the Thermal Mechanical analysis of sprag helicopter clutches is reported. The report is presented in two parts. The first part is a description of a test rig for the measurement of the heat generated by high speed sprag clutch assemblies during cyclic torsional loading. The second part describes a finite element modeling procedure for sliding contact. The test rig provides a cyclic torsional load of 756 inch-pounds at 5000 rpm using a four-square arrangement. The sprag clutch test unit was placed between the high speed pinions of the circulating power loop. The test unit was designed to have replaceable inner ad outer races, which contain the instrumentation to monitor the sprag clutch. The torque loading device was chosen to be a water cooled magnetic clutch, which is controlled either manually or through a computer. In the second part, a Generalized Eulerian-Lagrangian formulation for non-linear dynamic problems is developed for solid materials. This formulation is derived from the basic laws and axioms of continuum mechanics. The novel aspect of this method is that we are able to investigate the physics in the spatial region of interest as material flows through it without having to follow material points. A finite element approximation to the governing equations is developed. Iterative Methods for the solution of the discrete finite element equations are explored. A FORTRAN program to implement this formulation is developed and a number of solutions to problems of sliding contact are presented.

  3. Mechanical analysis of infant carrying in hominoids

    NASA Astrophysics Data System (ADS)

    Amaral, Lia Q.

    2008-04-01

    In all higher nonhuman primates, species survival depends upon safe carrying of infants clinging to body hair of adults. In this work, measurements of mechanical properties of ape hair (gibbon, orangutan, and gorilla) are presented, focusing on constraints for safe infant carrying. Results of hair tensile properties are shown to be species-dependent. Analysis of the mechanics of the mounting position, typical of heavier infant carrying among African apes, shows that both clinging and friction are necessary to carry heavy infants. As a consequence, a required relationship between infant weight, hair-hair friction coefficient, and body angle exists. The hair-hair friction coefficient is measured using natural ape skin samples, and dependence on load and humidity is analyzed. Numerical evaluation of the equilibrium constraint is in agreement with the knuckle-walking quadruped position of African apes. Bipedality is clearly incompatible with the usual clinging and mounting pattern of infant carrying, requiring a revision of models of hominization in relation to the divergence between apes and hominins. These results suggest that safe carrying of heavy infants justify the emergence of biped form of locomotion. Ways to test this possibility are foreseen here.

  4. Mechanical analysis of infant carrying in hominoids

    PubMed Central

    2007-01-01

    In all higher nonhuman primates, species survival depends upon safe carrying of infants clinging to body hair of adults. In this work, measurements of mechanical properties of ape hair (gibbon, orangutan, and gorilla) are presented, focusing on constraints for safe infant carrying. Results of hair tensile properties are shown to be species-dependent. Analysis of the mechanics of the mounting position, typical of heavier infant carrying among African apes, shows that both clinging and friction are necessary to carry heavy infants. As a consequence, a required relationship between infant weight, hair–hair friction coefficient, and body angle exists. The hair–hair friction coefficient is measured using natural ape skin samples, and dependence on load and humidity is analyzed. Numerical evaluation of the equilibrium constraint is in agreement with the knuckle-walking quadruped position of African apes. Bipedality is clearly incompatible with the usual clinging and mounting pattern of infant carrying, requiring a revision of models of hominization in relation to the divergence between apes and hominins. These results suggest that safe carrying of heavy infants justify the emergence of biped form of locomotion. Ways to test this possibility are foreseen here. PMID:18030438

  5. Mechanical analysis of infant carrying in hominoids.

    PubMed

    Amaral, Lia Q

    2008-04-01

    In all higher nonhuman primates, species survival depends upon safe carrying of infants clinging to body hair of adults. In this work, measurements of mechanical properties of ape hair (gibbon, orangutan, and gorilla) are presented, focusing on constraints for safe infant carrying. Results of hair tensile properties are shown to be species-dependent. Analysis of the mechanics of the mounting position, typical of heavier infant carrying among African apes, shows that both clinging and friction are necessary to carry heavy infants. As a consequence, a required relationship between infant weight, hair-hair friction coefficient, and body angle exists. The hair-hair friction coefficient is measured using natural ape skin samples, and dependence on load and humidity is analyzed. Numerical evaluation of the equilibrium constraint is in agreement with the knuckle-walking quadruped position of African apes. Bipedality is clearly incompatible with the usual clinging and mounting pattern of infant carrying, requiring a revision of models of hominization in relation to the divergence between apes and hominins. These results suggest that safe carrying of heavy infants justify the emergence of biped form of locomotion. Ways to test this possibility are foreseen here.

  6. PERFORMANCE ANALYSIS OF MECHANICAL DRAFT COOLING TOWER

    SciTech Connect

    Lee, S; Alfred Garrett, A; James02 Bollinger, J; Larry Koffman, L

    2009-02-10

    Industrial processes use mechanical draft cooling towers (MDCT's) to dissipate waste heat by transferring heat from water to air via evaporative cooling, which causes air humidification. The Savannah River Site (SRS) has cross-flow and counter-current MDCT's consisting of four independent compartments called cells. Each cell has its own fan to help maximize heat transfer between ambient air and circulated water. The primary objective of the work is to simulate the cooling tower performance for the counter-current cooling tower and to conduct a parametric study under different fan speeds and ambient air conditions. The Savannah River National Laboratory (SRNL) developed a computational fluid dynamics (CFD) model and performed the benchmarking analysis against the integral measurement results to accomplish the objective. The model uses three-dimensional steady-state momentum, continuity equations, air-vapor species balance equation, and two-equation turbulence as the basic governing equations. It was assumed that vapor phase is always transported by the continuous air phase with no slip velocity. In this case, water droplet component was considered as discrete phase for the interfacial heat and mass transfer via Lagrangian approach. Thus, the air-vapor mixture model with discrete water droplet phase is used for the analysis. A series of parametric calculations was performed to investigate the impact of wind speeds and ambient conditions on the thermal performance of the cooling tower when fans were operating and when they were turned off. The model was also benchmarked against the literature data and the SRS integral test results for key parameters such as air temperature and humidity at the tower exit and water temperature for given ambient conditions. Detailed results will be published here.

  7. Mechanics analysis of molar tooth splitting.

    PubMed

    Barani, Amir; Chai, Herzl; Lawn, Brian R; Bush, Mark B

    2015-03-01

    A model for the splitting of teeth from wedge loading of molar cusps from a round indenting object is presented. The model is developed in two parts: first, a simple 2D fracture mechanics configuration with the wedged tooth simulated by a compact tension specimen; second, a full 3D numerical analysis using extended finite element modeling (XFEM) with an embedded crack. The result is an explicit equation for splitting load in terms of indenter radius and key tooth dimensions. Fracture experiments on extracted human molars loaded axially with metal spheres are used to quantify the splitting forces and thence to validate the model. The XFEM calculations enable the complex crack propagation, initially in the enamel coat and subsequently in the interior dentin, to be followed incrementally with increasing load. The fracture evolution is shown to be stable prior to failure, so that dentin toughness, not strength, is the controlling material parameter. Critical conditions under which tooth splitting in biological and dental settings are likely to be met, however rare, are considered.

  8. Mechanics of conducting a task analysis

    NASA Technical Reports Server (NTRS)

    Rappold, V.

    1983-01-01

    Task analysis (TA) which is a set of analytical procedures used to describe human work in terms of tasks is discussed. The method of TA was derived from various techniques of methods analysis of the industrial engineers. The topic of TA is organized around the following main areas: (1) a detailed discussion of what a TA is; (2) the uses of TA; (3) evaluation of the TA procedure and an assessment of the procedure's worth.

  9. Dynamic mechanical analysis of fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Reed, K. E.

    1979-01-01

    Dynamic mechanical and thermal properties were determined for unidirectional epoxy/glass composites at various fiber orientation angles. Resonant frequency and relative logarithmic decrement were measured as functions of temperature. In low angle and longitudinal specimens a transition was observed above the resin glass transition temperature which was manifested mechanically as an additional damping peak and thermally as a change in the coefficient of thermal expansion. The new transition was attributed to a heterogeneous resin matrix induced by the fiber. The temperature span of the glass-rubber relaxation was found to broaden with decreasing orientation angle, reflecting the growth of fiber contribution and exhibiting behavior similar to that of Young's modulus. The change in resonant frequency through the glass transition was greatest for samples of intermediate fiber angle, demonstrating behavior similar to that of the longitudinal shear modulus.

  10. Analysis of Stabilization Mechanisms in Lifted Flames

    NASA Astrophysics Data System (ADS)

    Navarro-Martinez, S.; Kronenburg, A.

    2009-12-01

    Flame stabilization and the mechanisms that govern the dynamics at the flame base have been subject to numerous studies in recent years. Recent results using a combined Large Eddy Simulation-Conditional Moment Closure (LES-CMC) approach to model the turbulent flow field and the turbulence-chemistry interactions has been successful in predicting flame ignition and stabilization by auto-ignition, but LES-CMCs capability of the accurate modelling of the competition between turbulent quenching and laminar and turbulent flame propagation at the anchor point has not been resolved. This paper will consolidate LES-CMC results by analysing a wide range of lifted flame geometries with different prevailing stabilization mechanisms. The simulations allow a clear distinction of the prevailing stabilization mechanisms for the different flames, LES-CMC accurately predicts the competition between turbulence and chemistry during the auto-ignition process, however, the dynamics of the extinction process and turbulent flame propagation are not well captured. The averaging process inherent in the CMC methods does not allow for an instant response of the transported conditionally averaged reactive species to the changes in the flow conditions and any response of the scalars will therefore be delayed. Stationary or quasi-stationary conditions, however, can be well predicted for all flame configurations.

  11. Genetic analysis of mechanisms of aging.

    PubMed

    Rose, M R; Archer, M A

    1996-06-01

    A wide range of genetic models with postponed aging are now available, from selected mice and Drosophilia to mutant Caenorhabditis elegans and Saccharomyces cerevisiae. These systems allow efficient testing of alternative mechanistic hypotheses for aging. Genetic analysis is forging stronger connections between particular alleles and susceptibility to particular 'diseases of aging'; for example, two different genes for Alzheimer disease have been identified.

  12. A biomechanical analysis of youth pitching mechanics.

    PubMed

    Keeley, David W; Hackett, Thomas; Keirns, Mike; Sabick, Michelle B; Torry, Michael R

    2008-06-01

    It is estimated that nearly 6% of youth baseball participants seek medical attention for injuries sustained during play. Most injuries are overuse injuries, and 26% are to the shoulder or upper arm. By quantifying youth pitching biomechanics, knowledge can be gained concerning the manner in which these injuries are sustained during play. Sixteen healthy right hand-dominant baseball pitchers participated in this study. After digitization of 21 bony landmarks, kinematic calculations were conducted using the 3-dimensional coordinates from each video frame. Data were time normalized, forcing major temporal components of the movement to occur at specific intervals. Segment-based reference frames were established, and resultant joint kinetics were projected onto each reference frame. Kinetic data were normalized and calculated along or about the anterior/posterior, medial/lateral, and proximal/distal axes. Maximum trunk rotation and external shoulder rotation were observed during arm cocking. Each of the remaining kinematic parameters peaked after ball release. All maximum values for joint kinetics were measured during arm cocking with the exception of compressive forces experienced at the shoulder and elbow, which peaked after the instant of ball release. Data produced in this study indicate that youth pitchers initiate trunk rotation early in the movement, which can lead to shoulder hyperangulation. Opposing torques at each end of the humerus also produce a large net torque about the longitudinal axis of the humerus during late arm cocking and may increase humeral retrotorsion in youth pitchers. Underdeveloped musculature in the rotator cuff may lead to difficulty controlling throwing-arm deceleration, causing an increase in horizontal adduction across the torso. An improved understanding of youth pitching mechanics is gained from the data collected, analyzed, and discussed in this study. Through increases in the knowledge pertaining specifically to the mechanics of

  13. Kinematic analysis of a flexible six-DOF parallel mechanism.

    PubMed

    Jing, Feng-Shui; Tan, Min; Hou, Zeng-Guang; Liang, Zi-Ze; Wang, Yun-Kuan; Gupta, Madan M; Nikiforuk, Peter N

    2006-04-01

    In this paper, a new type of six-degrees of freedom (DOF) flexible parallel mechanism (FPM) is presented. This type of parallel mechanism possesses several favorable properties: (1) its number of DOFs is independent of the number of serial chains which make up the mechanism; (2) it has no kinematical singularities; (3) it is designed to move on rails, and therefore its workspace is much larger than that of a conventional parallel manipulator; and (4) without changing the number of DOFs and the kinematics of the mechanisms, the number of the serial chains can be reconfigured according to the needs of the tasks. These properties make the mechanism very preferable in practice, especially for such tasks as joining huge ship blocks, in which the manipulated objects vary dramatically both in weights and dimensions. Furthermore, the mechanism can be used as either a fully actuated system or an underactuated system. In the fully actuated case, the mechanism has six DOF motion capabilities and manipulation capabilities. However, in the underactuated case, the mechanism still has six DOF motion capabilities, but it has only five DOF manipulation capabilities. In this paper, both the inverse and forward kinematics are studied and expressed in a closed form. The workspace and singularity analysis of the mechanism are also presented. An example is presented to illustrate how to calculate the kinematics of the mechanism in both fully-actuated and underactuated cases. Finally, an application of such a mechanism to manufacturing industry is introduced.

  14. Mechanics of intraply hybrid composites - Properties, analysis and design

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1979-01-01

    A mechanics theory is developed for predicting the physical thermal, hygral and mechanical properties (including various strengths) of unidirectional intraply hybrid composites (UIHC) based on unidirectional properties of the constituent composites. Procedures are described which can use this theory in conjunction with composite mechanics computer codes and general purpose structural analysis finite element programs for the analysis/design of structural components made from intraply hybrid angleplied laminates (IHAL). Comparisons with limited data show that this theory predicts mechanical properties of UIHC and flexural stiffnesses of IHAL which are in good agreement with experimental data. The theory developed herein makes it possible to design and optimize structural components from IHAL based on a large class of available constituent fibers.

  15. Dynamic mechanical analysis: A practical introduction to techniques and applications

    SciTech Connect

    Menard, K.

    1999-03-01

    This introduction provides the chemist, chemical engineer, or materials scientists with a starting point to understand the applications of dynamic mechanical analysis, its workings, and its advantages and limitations. This book serves as a systematic study of manufacturing polymeric materials and components as well as for developing new materials. Contents include: introduction to dynamic mechanical analysis; basic rheological concepts: stress, strain, and flow; rheology basic: creep-recovery and stress relaxation; dynamic testing; time-temperature scans part 1: transitions in polymers; time and temperature studies part 2: thermosets; frequency scans; DMA applications to real problems: guidelines; and appendix: sample experiments for the DMA.

  16. Analysis of fluid/mechanical systems using EASY5

    NASA Technical Reports Server (NTRS)

    Clark, Robert W., Jr.; Arndt, Scott D.; Hurlbert, Eric A.

    1992-01-01

    This paper illustrates how the use of a general analysis package can simplify modeling and analyzing fluid/mechanical systems. One such package is EASY5, a Boeing Computer Services product. The basic transmission line equations for modeling piped fluid systems are presented, as well as methods of incorporating these equations into the EASY5 environment. The paper describes how this analysis tool has been used to model several fluid subsystems of the Space Shuttle Orbiter.

  17. Acoustic emission spectral analysis of fiber composite failure mechanisms

    NASA Technical Reports Server (NTRS)

    Egan, D. M.; Williams, J. H., Jr.

    1978-01-01

    The acoustic emission of graphite fiber polyimide composite failure mechanisms was investigated with emphasis on frequency spectrum analysis. Although visual examination of spectral densities could not distinguish among fracture sources, a paired-sample t statistical analysis of mean normalized spectral densities did provide quantitative discrimination among acoustic emissions from 10 deg, 90 deg, and plus or minus 45 deg, plus or minus 45 deg sub s specimens. Comparable discrimination was not obtained for 0 deg specimens.

  18. From quantitative protein complex analysis to disease mechanism.

    PubMed

    Texier, Y; Kinkl, N; Boldt, K; Ueffing, M

    2012-12-15

    Interest in the field of cilia biology and cilia-associated diseases - ciliopathies - has strongly increased over the last few years. Proteomic technologies, especially protein complex analysis by affinity purification-based methods, have been used to decipher various basic but also disease-associated mechanisms. This review focusses on some selected recent studies using affinity purification-based protein complex analysis, thereby exemplifying the great possibilities this technology offers.

  19. UPDATE ON MECHANICAL ANALYSIS OF MONOLITHIC FUEL PLATES

    SciTech Connect

    D. E. Burkes; F. J. Rice; J.-F. Jue; N. P. Hallinan

    2008-03-01

    Results on the relative bond strength of the fuel-clad interface in monolithic fuel plates have been presented at previous RRFM conferences. An understanding of mechanical properties of the fuel, cladding, and fuel / cladding interface has been identified as an important area of investigation and quantification for qualification of monolithic fuel forms. Significant progress has been made in the area of mechanical analysis of the monolithic fuel plates, including mechanical property determination of fuel foils, cladding processed by both hot isostatic pressing and friction bonding, and the fuel-clad composite. In addition, mechanical analysis of fabrication induced residual stress has been initiated, along with a study to address how such stress can be relieved prior to irradiation. Results of destructive examinations and mechanical tests are presented along with analysis and supporting conclusions. A brief discussion of alternative non-destructive evaluation techniques to quantify not only bond quality, but also bond integrity and strength, will also be provided. These are all necessary steps to link out-of-pile observations as a function of fabrication with in-pile behaviours.

  20. Analysis of mechanical contrast in optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Kennedy, Kelsey M.; Ford, Chris; Kennedy, Brendan F.; Bush, Mark B.; Sampson, David D.

    2013-12-01

    Optical coherence elastography (OCE) maps the mechanical properties of tissue microstructure and has potential applications in both fundamental investigations of biomechanics and clinical medicine. We report the first analysis of contrast in OCE, including evaluation of the accuracy with which OCE images (elastograms) represent mechanical properties and the sensitivity of OCE to mechanical contrast within a sample. Using phase-sensitive compression OCE, we generate elastograms of tissue-mimicking phantoms with known mechanical properties and identify limitations on contrast imposed by sample mechanics and the imaging system, including signal-processing parameters. We also generate simulated elastograms using finite element models to perform mechanical analysis in the absence of imaging system noise. In both experiments and simulations, we illustrate artifacts that degrade elastogram accuracy, depending on sample geometry, elasticity contrast between features, and surface conditions. We experimentally demonstrate sensitivity to features with elasticity contrast as small as 1.1∶1 and calculate, based on our imaging system parameters, a theoretical maximum sensitivity to elasticity contrast of 1.002∶1. The results highlight the microstrain sensitivity of compression OCE, at a spatial resolution of tens of micrometers, suggesting its potential for the detection of minute changes in elasticity within heterogeneous tissue.

  1. Analysis of Links Positions in Landing Gear Mechanism

    NASA Astrophysics Data System (ADS)

    Brewczyński, D.; Tora, G.

    2014-08-01

    This article contains a kinematic analysis of an aircraft chassis mechanism in a range of positions. The mechanism of the chassis is made up of several smaller subsystems with different functions. The first mechanism is used to eject the chassis before landing (touchdown) and fold it to hatchway after the lift off. The second mechanism is designed to perform rotation of the crossover with the wheel, in order to adjust the position of the wheel to fit it in the limited space in the hold. The third mechanism allows movement of the chassis resulting from the change in length of the damper. To determine the position of the following links of the mechanism calculus of vectors was applied in which unit vectors were used to represent the angular position of the links. The aim of the analysis is to determine the angle of convergence and the angle of heel wheels as a function of the variable length of hydraulic cylinder, length of the shock absorber, length of the regulations rods

  2. Thermo-Mechanical Modeling and Analysis for Turbopump Assemblies

    NASA Technical Reports Server (NTRS)

    Platt, Mike; Marsh, Matt

    2003-01-01

    Life, reliability, and cost are strongly impacted by steady and transient thermo-mechanical effect. Design cycle can suffer big setbacks when working a transient stress/deflection issue. Balance between objectives and constrains is always difficult. Requires assembly-level analysis early in the design cycle.

  3. An Analysis of the Waste Water Treatment Maintenance Mechanic Occupation.

    ERIC Educational Resources Information Center

    Clark, Anthony B.; And Others

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the waste water treatment mechanics occupation. The document opens with a brief introduction followed by a job description. The bulk of the document is presented in table form. Twelve duties are broken…

  4. An Analysis of the Diesel Truck Mechanic Occupation.

    ERIC Educational Resources Information Center

    Kilo, Joseph L.

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the diesel truck mechanic occupation. The document opens with a brief introduction followed by a job description. The bulk of the document is presented in table form. Thirteen duties are broken down into a…

  5. Computer-aided design and analysis of mechanisms

    NASA Technical Reports Server (NTRS)

    Knight, F. L.

    1982-01-01

    An introduction to the computer programs developed to assist in the design and analysis of mechanisms is presented. A survey of the various types of programs which are available is given, and the most widely used programs are compared. The way in which the programs are used is discussed, and demonstrated with an example.

  6. Fracture mechanics analysis of composite microcracking - Experimental results in fatigue

    NASA Technical Reports Server (NTRS)

    Nairn, J. A.; Liu, S.

    1990-01-01

    The Nairn (1989) variational mechanics analysis, which yields the energy release rate of a microcrack's formation between two existing microcracks, has proven useful in the fracture mechanics interpretation of cross-ply laminates' microcracking. Attention is presently given to the application of this energy release rate analysis to a fracture mechanics-based interpretation of microcrack formation during fatigue loading, for the case of fatigue experiments on three layups of Avimid K/IM6 laminates and four layups of Fiberite 934/T300 laminates. The single master Paris-law plot onto which the data from all layups of a given material system fall is claimed to offer a complete characterization of that system's microcrack-formation resistance during fatigue loading.

  7. Independent Orbiter Assessment (IOA): Analysis of the mechanical actuation subsystem

    NASA Technical Reports Server (NTRS)

    Bacher, J. L.; Montgomery, A. D.; Bradway, M. W.; Slaughter, W. T.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Mechanical Actuation System (MAS) hardware. Specifically, the MAS hardware consists of the following components: Air Data Probe (ADP); Elevon Seal Panel (ESP); External Tank Umbilical (ETU); Ku-Band Deploy (KBD); Payload Bay Doors (PBD); Payload Bay Radiators (PBR); Personnel Hatches (PH); Vent Door Mechanism (VDM); and Startracker Door Mechanism (SDM). The IOA analysis process utilized available MAS hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.

  8. Aging mechanisms of perfluorocarbon emulsions using image analysis.

    PubMed

    Freire, Mara G; Dias, Ana M A; Coelho, Maria A Z; Coutinho, João A P; Marrucho, Isabel M

    2005-06-01

    The aging mechanisms of perfluorocarbon emulsions were investigated using image analysis. Oil-in-water emulsions of two perfluorocarbons, n-perfluorohexane and perfluorodecalin, were prepared with three emulsifiers, Lecithin, Span 20, and Pluronic F-68. The effect of the temperature and the replacement of water by an aqueous phase consisting of a microbial culture medium were also studied. The emulsions were prepared by sonication and their stability was followed through analysis of the evolution of mean droplet size. The results indicate that the stability of perfluorocarbon in water emulsions depends on all the parameters investigated and that two aging mechanisms, coalescence and molecular diffusion, may take place. Analysis of the evolution of the mean droplet size during long time periods indicate that coalescence is more common than previously reported for these systems and seems to be favored by a temperature increase.

  9. Mechanical fault interaction within the Los Angeles Basin: A two-dimensional analysis using mechanical efficiency

    NASA Astrophysics Data System (ADS)

    Cooke, Michele L.; Kameda, Ayako

    2002-07-01

    Mechanical models examine deformation within eight different structural cross sections proposed by Davis et al. [1989] and Shaw and Suppe [1996] along a northeast-southwest transect across the Los Angeles Basin, California. Horizontal contraction of the models, constrained by geodetic measurements, yields varying dip-slip rates along frictionally sliding faults within the different cross sections. Mechanical efficiency analysis using effective stiffness and strain energy density assesses the overall fault system deformation as well as the partitioning of work between fault slip and host rock strain. The cross section interpreted by Shaw and Suppe [1996] has the best fit to paleoseismically determined slip rates and the greatest mechanical efficiency (greatest proportion of work toward fault slip); however, this model produces excessive reverse slip along the Newport-Inglewood fault. A modified fault configuration with a wedge or blind Puente Hills thrust fault rather than a ramp-detachment configuration better matches the paleoseismic data with slightly lower mechanical efficiency. Slip rates in the mechanical models based on interpretations of Shaw and Suppe [1996] have much closer match to the geologically determined rates than those estimated from kinematic models. This difference is due to (1) differing time spans of slip rate estimates and (2) deformable rather than rigid host rock in the mechanical models. The mechanical efficiency analysis provides quantitative indicators of overall fault system deformation, including the cumulative effect of interaction between individual faults. Assessment of effective stiffness and strain energy density furthers our understanding of two-dimensional fault interactions in the Los Angeles Basin and offers great potential for future applications.

  10. Scaling analysis for the investigation of slip mechanisms in nanofluids.

    PubMed

    Savithiri, S; Pattamatta, Arvind; Das, Sarit K

    2011-07-26

    The primary objective of this study is to investigate the effect of slip mechanisms in nanofluids through scaling analysis. The role of nanoparticle slip mechanisms in both water- and ethylene glycol-based nanofluids is analyzed by considering shape, size, concentration, and temperature of the nanoparticles. From the scaling analysis, it is found that all of the slip mechanisms are dominant in particles of cylindrical shape as compared to that of spherical and sheet particles. The magnitudes of slip mechanisms are found to be higher for particles of size between 10 and 80 nm. The Brownian force is found to dominate in smaller particles below 10 nm and also at smaller volume fraction. However, the drag force is found to dominate in smaller particles below 10 nm and at higher volume fraction. The effect of thermophoresis and Magnus forces is found to increase with the particle size and concentration. In terms of time scales, the Brownian and gravity forces act considerably over a longer duration than the other forces. For copper-water-based nanofluid, the effective contribution of slip mechanisms leads to a heat transfer augmentation which is approximately 36% over that of the base fluid. The drag and gravity forces tend to reduce the Nusselt number of the nanofluid while the other forces tend to enhance it.

  11. Scaling analysis for the investigation of slip mechanisms in nanofluids

    PubMed Central

    2011-01-01

    The primary objective of this study is to investigate the effect of slip mechanisms in nanofluids through scaling analysis. The role of nanoparticle slip mechanisms in both water- and ethylene glycol-based nanofluids is analyzed by considering shape, size, concentration, and temperature of the nanoparticles. From the scaling analysis, it is found that all of the slip mechanisms are dominant in particles of cylindrical shape as compared to that of spherical and sheet particles. The magnitudes of slip mechanisms are found to be higher for particles of size between 10 and 80 nm. The Brownian force is found to dominate in smaller particles below 10 nm and also at smaller volume fraction. However, the drag force is found to dominate in smaller particles below 10 nm and at higher volume fraction. The effect of thermophoresis and Magnus forces is found to increase with the particle size and concentration. In terms of time scales, the Brownian and gravity forces act considerably over a longer duration than the other forces. For copper-water-based nanofluid, the effective contribution of slip mechanisms leads to a heat transfer augmentation which is approximately 36% over that of the base fluid. The drag and gravity forces tend to reduce the Nusselt number of the nanofluid while the other forces tend to enhance it. PMID:21791036

  12. Scaling analysis for the investigation of slip mechanisms in nanofluids

    NASA Astrophysics Data System (ADS)

    Savithiri, S.; Pattamatta, Arvind; Das, Sarit K.

    2011-07-01

    The primary objective of this study is to investigate the effect of slip mechanisms in nanofluids through scaling analysis. The role of nanoparticle slip mechanisms in both water- and ethylene glycol-based nanofluids is analyzed by considering shape, size, concentration, and temperature of the nanoparticles. From the scaling analysis, it is found that all of the slip mechanisms are dominant in particles of cylindrical shape as compared to that of spherical and sheet particles. The magnitudes of slip mechanisms are found to be higher for particles of size between 10 and 80 nm. The Brownian force is found to dominate in smaller particles below 10 nm and also at smaller volume fraction. However, the drag force is found to dominate in smaller particles below 10 nm and at higher volume fraction. The effect of thermophoresis and Magnus forces is found to increase with the particle size and concentration. In terms of time scales, the Brownian and gravity forces act considerably over a longer duration than the other forces. For copper-water-based nanofluid, the effective contribution of slip mechanisms leads to a heat transfer augmentation which is approximately 36% over that of the base fluid. The drag and gravity forces tend to reduce the Nusselt number of the nanofluid while the other forces tend to enhance it.

  13. Failure analysis for micro-electrical-mechanical systems (MEMS)

    SciTech Connect

    Peterson, K.A.; Tangyunyong, P.; Barton, D.L.

    1997-10-01

    Micro-Electrical Mechanical Systems (MEMS) is an emerging technology with demonstrated potential for a wide range of applications including sensors and actuators for medical, industrial, consumer, military, automotive and instrumentation products. Failure analysis (FA) of MEMS is critically needed for the successful design, fabrication, performance analysis and reliability assurance of this new technology. Many devices have been examined using techniques developed for integrated circuit analysis, including optical inspection, scanning laser microscopy (SLM), scanning electron microscopy (SEM), focused ion beam (FIB) techniques, atomic force microscopy (AFM), infrared (IR) microscopy, light emission (LE) microscopy, acoustic microscopy and acoustic emission analysis. For example, the FIB was used to microsection microengines that developed poor performance characteristics. Subsequent SEM analysis clearly demonstrated the absence of wear on gear, hub, and pin joint bearing surfaces, contrary to expectations. Another example involved the use of infrared microscopy for thermal analysis of operating microengines. Hot spots were located, which did not involve the gear or hub, but indicated contact between comb structures which drive microengines. Voltage contrast imaging proved useful on static and operating MEMS in both the SEM and the FIB and identified electrostatic clamping as a potentially significant contributor to failure mechanisms in microengines. This work describes MEMS devices, FA techniques, failure modes, and examples of FA of MEMS.

  14. Human brain mechanisms for the early analysis of voices.

    PubMed

    Warren, J D; Scott, S K; Price, C J; Griffiths, T D

    2006-07-01

    In this functional magnetic resonance imaging study, we investigated human brain mechanisms that are involved in the analysis of voices as sound sources and in the pre-semantic analysis of voice information. The source of the voice was altered by changing the speaker, and the salience of the voice was altered by changing the amount of spectrotemporal detail. We identified a mechanism for detecting a change in the source of the voice in the posterior superior temporal lobe and anatomically distinct mechanisms for the detailed analysis of voice information in a bilateral network extending from the posterior to the anterior superior temporal lobe surrounding the superior temporal sulcus. The findings are consistent with a processing hierarchy in which general source attributes are analyzed in the posterior superior temporal lobe, abstraction of voice identity features occurs in posterior superior temporal sulcus, and further analysis of voice information occurs in anterior superior temporal sulcus and higher order cortices in the middle and anterior temporal lobe.

  15. [Development of Fluorescence Sensing Mechanism for Cell Functional Analysis].

    PubMed

    Ojida, Akio; Takashima, Ippei

    2016-01-01

      Fluorescence probes are now widely used as indispensable tools in many cell functional analyses. At present, the design of fluorescent probes largely depends on the limited numbers of established sensing mechanisms such as photo-induced electron transfer (PET), photo-induced charge transfer (PCT), and fluorescence resonance energy transfer (FRET). Although these mechanisms are versatile in metal ion sensing, introduction of a new sensing mechanism is highly desirable not only to design a more sophisticated probe with high selectivity and sensitivity but also to expand the diversity of the sensing targets to unveil biological phenomena. In this article, we report the design of dual emission fluorescent probes for metal ions based on a unique fluorescence-sensing mechanism. The fluorescent probes incorporating this sensing mechanism displayed a large emission red-shift on complexation with metal ions such as Cd(II) and Ag(I). X-ray crystallography and theoretical computational calculations of the Cd(II) and Ag(I) complexes revealed that the emission shift was induced by non-coordination contact between the aromatic ring of fluorophore and the metal ion (arene-metal ion contact; AM-contact), which modulates the energy levels of molecular orbitals. The fluorescent probe was successfully applied to in cell ratiometric bioimaging of bioactive hydrogen sulfide (H2S). These successful applications highlight the usefulness of this sensing mechanism in biological fluorescence analysis.

  16. Constitutive formulation and analysis of heel pad tissues mechanics.

    PubMed

    Natali, A N; Fontanella, C G; Carniel, E L

    2010-06-01

    This paper presents a visco-hyperelastic constitutive model developed to describe the biomechanical response of heel pad tissues. The model takes into account the typical features of the mechanical response such as large displacement, strain phenomena, and non-linear elasticity together with time-dependent effects. The constitutive model was formulated, starting from the analysis of the complex structural and micro-structural configuration of the tissues, to evaluate the relationship between tissue histology and mechanical properties. To define the constitutive model, experimental data from mechanical tests were analyzed. To obtain information about the mechanical response of the tissue so that the constitutive parameters could be established, data from both in vitro and in vivo tests were investigated. Specifically, the first evaluation of the constitutive parameters was performed by a coupled deterministic and stochastic optimization method, accounting for data from in vitro tests. The comparison of constitutive model results and experimental data confirmed the model's capability to describe the compression behaviour of the heel pad tissues, regarding both constant strain rate and stress relaxation tests. Based on the data from additional experimental tests, some of the constitutive parameters were modified in order to interpret the in vivo mechanical response of the heel pad tissues. This approach made it possible to interpret the actual mechanical function of the tissues.

  17. Terahertz mechanical vibrations in lysozyme: Raman spectroscopy vs modal analysis

    NASA Astrophysics Data System (ADS)

    Carpinteri, Alberto; Lacidogna, Giuseppe; Piana, Gianfranco; Bassani, Andrea

    2017-07-01

    The mechanical behaviour of proteins is receiving an increasing attention from the scientific community. Recently it has been suggested that mechanical vibrations play a crucial role in controlling structural configuration changes (folding) which govern proteins biological function. The mechanism behind protein folding is still not completely understood, and many efforts are being made to investigate this phenomenon. Complex molecular dynamics simulations and sophisticated experimental measurements are conducted to investigate protein dynamics and to perform protein structure predictions; however, these are two related, although quite distinct, approaches. Here we investigate mechanical vibrations of lysozyme by Raman spectroscopy and linear normal mode calculations (modal analysis). The input mechanical parameters to the numerical computations are taken from the literature. We first give an estimate of the order of magnitude of protein vibration frequencies by considering both classical wave mechanics and structural dynamics formulas. Afterwards, we perform modal analyses of some relevant chemical groups and of the full lysozyme protein. The numerical results are compared to experimental data, obtained from both in-house and literature Raman measurements. In particular, the attention is focused on a large peak at 0.84 THz (29.3 cm-1) in the Raman spectrum obtained analyzing a lyophilized powder sample.

  18. Behavior analysis and mechanism: One is not the other

    PubMed Central

    Morris, Edward K.

    1993-01-01

    Behavior analysts have been called mechanists, and behavior analysis is said to be mechanistic; that is, they are claimed to be aligned with the philosophy of mechanism. What this means is analyzed by (a) examining standard and specialized dictionary and encyclopedia definitions and descriptions of mechanism and its cognates and (b) reviewing contemporary representations of the mechanistic worldview in the literature on the philosophy of psychology. Although the term mechanism and its cognates are sometimes an honorific (e.g., “natural science”), their standard meanings, usages, and functions in society, science, psychology, and philosophy do not aptly characterize the discipline. These terms mischaracterize how behavior analysts conceptualize (a) the behavior of their subjects and the individuals with whom they work and (b) their own behavior as scientists. Discussion is interwoven throughout about the nature of terms and definitions in science. PMID:22478129

  19. Conformational analysis of small molecules: NMR and quantum mechanics calculations.

    PubMed

    Tormena, Cláudio F

    2016-08-01

    This review deals with conformational analysis in small organic molecules, and describes the stereoelectronic interactions responsible for conformational stability. Conformational analysis is usually performed using NMR spectroscopy through measurement of coupling constants at room or low temperature in different solvents to determine the populations of conformers in solution. Quantum mechanical calculations are used to address the interactions responsible for conformer stability. The conformational analysis of a large number of small molecules is described, using coupling constant measurements in different solvents and at low temperature, as well as recent applications of through-space and through-hydrogen bond coupling constants JFH as tools for the conformational analysis of fluorinated molecules. Besides NMR parameters, stereoelectronic interactions such as conjugative, hyperconjugative, steric and intramolecular hydrogen bond interactions involved in conformational preferences are discussed.

  20. Classical mechanics approach applied to analysis of genetic oscillators.

    PubMed

    Vasylchenkova, Anastasiia; Mraz, Miha; Zimic, Nikolaj; Moskon, Miha

    2016-04-05

    Biological oscillators present a fundamental part of several regulatory mechanisms that control the response of various biological systems. Several analytical approaches for their analysis have been reported recently. They are, however, limited to only specific oscillator topologies and/or to giving only qualitative answers, i.e., is the dynamics of an oscillator given the parameter space oscillatory or not. Here we present a general analytical approach that can be applied to the analysis of biological oscillators. It relies on the projection of biological systems to classical mechanics systems. The approach is able to provide us with relatively accurate results in the meaning of type of behaviour system reflects (i.e. oscillatory or not) and periods of potential oscillations without the necessity to conduct expensive numerical simulations. We demonstrate and verify the proposed approach on three different implementations of amplified negative feedback oscillator.

  1. Parametric Design and Mechanical Analysis of Beams based on SINOVATION

    NASA Astrophysics Data System (ADS)

    Xu, Z. G.; Shen, W. D.; Yang, D. Y.; Liu, W. M.

    2017-07-01

    In engineering practice, engineer needs to carry out complicated calculation when the loads on the beam are complex. The processes of analysis and calculation take a lot of time and the results are unreliable. So VS2005 and ADK are used to develop a software for beams design based on the 3D CAD software SINOVATION with C ++ programming language. The software can realize the mechanical analysis and parameterized design of various types of beams and output the report of design in HTML format. Efficiency and reliability of design of beams are improved.

  2. A method of damage mechanics analysis for solder material

    SciTech Connect

    Fang, H.E.; Chow, C.L.; Yang, Fan

    1997-06-01

    This paper presents as a method of damage mechanics analysis for solder joint material stressed to extensive plastic deformation. The material chosen for the current work is the 60Sn-40Pb eutectic alloy due to its wide use. The analysis is based on the thermodynamic theory of irreversible processes. With the introduction of a set of internal state variables, known as damage variables, and a damage effect tensor, a damage dissipative potential function is proposed to enable the formulation of the constitutive equations of elasticity and plasticity coupled with damage. The equations of damage evolution are also derived to monitor damage initiation and growth. Before a damage analysis can be performed with a finite element analysis, the mechanical properties of the chosen solder joint material and its damage variables must first be determined. A method of experimental analysis was developed and used to successfully measure the highly strain sensitive 60Sn-40Pb solder material. The measured properties are presented and various characteristics of the solder material are examined and discussed. 7 refs., 8 figs.

  3. Transcriptome analysis reveals manifold mechanisms of cyst development in ADPKD.

    PubMed

    de Almeida, Rita M C; Clendenon, Sherry G; Richards, William G; Boedigheimer, Michael; Damore, Michael; Rossetti, Sandro; Harris, Peter C; Herbert, Britney-Shea; Xu, Wei Min; Wandinger-Ness, Angela; Ward, Heather H; Glazier, James A; Bacallao, Robert L

    2016-11-21

    Autosomal dominant polycystic kidney disease (ADPKD) causes progressive loss of renal function in adults as a consequence of the accumulation of cysts. ADPKD is the most common genetic cause of end-stage renal disease. Mutations in polycystin-1 occur in 87% of cases of ADPKD and mutations in polycystin-2 are found in 12% of ADPKD patients. The complexity of ADPKD has hampered efforts to identify the mechanisms underlying its pathogenesis. No current FDA (Federal Drug Administration)-approved therapies ameliorate ADPKD progression. We used the de Almeida laboratory's sensitive new transcriptogram method for whole-genome gene expression data analysis to analyze microarray data from cell lines developed from cell isolates of normal kidney and of both non-cystic nephrons and cysts from the kidney of a patient with ADPKD. We compared results obtained using standard Ingenuity Volcano plot analysis, Gene Set Enrichment Analysis (GSEA) and transcriptogram analysis. Transcriptogram analysis confirmed the findings of Ingenuity, GSEA, and published analysis of ADPKD kidney data and also identified multiple new expression changes in KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways related to cell growth, cell death, genetic information processing, nucleotide metabolism, signal transduction, immune response, response to stimulus, cellular processes, ion homeostasis and transport and cofactors, vitamins, amino acids, energy, carbohydrates, drugs, lipids, and glycans. Transcriptogram analysis also provides significance metrics which allow us to prioritize further study of these pathways. Transcriptogram analysis identifies novel pathways altered in ADPKD, providing new avenues to identify both ADPKD's mechanisms of pathogenesis and pharmaceutical targets to ameliorate the progression of the disease.

  4. Multifractal and mechanical analysis of amorphous solid dispersions.

    PubMed

    Adler, Camille; Teleki, Alexandra; Kuentz, Martin

    2017-05-15

    The formulation of lipophilic and hydrophobic compounds is a challenge for the pharmaceutical industry and it requires the development of complex formulations. Our first aim was to investigate hot-melt extrudate microstructures by means of multifractal analysis using scanning electron microscopy imaging. Since the microstructure can affect solid dosage form performance such as mechanical properties, a second objective was to study the influence of the type of adsorbent and of the presence of an amorphous compound on extrudate hardness. β-Carotene (BC) was chosen as poorly water-soluble model compound. Formulations containing a polymer, a lipid and two different silica based inorganic carriers were produced by hot-melt extrusion. Based on scanning electron microscopy/energy dispersive X-ray spectroscopy, the obtained images were analyzed using multifractal formalism. The breaking force of the strands was assessed by a three point bending test. Multifractal analysis and three point bending results showed that the nature of interparticle interactions in the inorganic carrier as well as the presence of amorphous BC had an influence on the microstructure and thus on the mechanical performance. The use of multifractal analysis and the study of the mechanical properties were complementary to better characterize and understand complex formulations obtained by hot-melt extrusion. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Towards the mechanical characterization of abdominal wall by inverse analysis.

    PubMed

    Simón-Allué, R; Calvo, B; Oberai, A A; Barbone, P E

    2017-02-01

    The aim of this study is to characterize the passive mechanical behaviour of abdominal wall in vivo in an animal model using only external cameras and numerical analysis. The main objective lies in defining a methodology that provides in vivo information of a specific patient without altering mechanical properties. It is demonstrated in the mechanical study of abdomen for hernia purposes. Mechanical tests consisted on pneumoperitoneum tests performed on New Zealand rabbits, where inner pressure was varied from 0mmHg to 12mmHg. Changes in the external abdominal surface were recorded and several points were tracked. Based on their coordinates we reconstructed a 3D finite element model of the abdominal wall, considering an incompressible hyperelastic material model defined by two parameters. The spatial distributions of these parameters (shear modulus and non linear parameter) were calculated by inverse analysis, using two different types of regularization: Total Variation Diminishing (TVD) and Tikhonov (H(1)). After solving the inverse problem, the distribution of the material parameters were obtained along the abdominal surface. Accuracy of the results was evaluated for the last level of pressure. Results revealed a higher value of the shear modulus in a wide stripe along the craneo-caudal direction, associated with the presence of linea alba in conjunction with fascias and rectus abdominis. Non linear parameter distribution was smoother and the location of higher values varied with the regularization type. Both regularizations proved to yield in an accurate predicted displacement field, but H(1) obtained a smoother material parameter distribution while TVD included some discontinuities. The methodology here presented was able to characterize in vivo the passive non linear mechanical response of the abdominal wall. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Multi technical analysis of wear mechanisms in axial piston pumps

    NASA Astrophysics Data System (ADS)

    Schuhler, G.; Jourani, A.; Bouvier, S.; Perrochat, J.-M.

    2017-05-01

    Axial piston pumps convert a motor rotation motion into hydraulic or pneumatic power. Their compactness and efficiency of approximately 0.9 make them suitable for actuation applications especially in aeronautics. However, they suffer a limited life due to the wear of their components. In the literature, studies of axial piston pumps deal with contact between its different elements under lubrication conditions. Nevertheless, they are more focused on analytic or numerical approaches. This study consists in an experimental analysis of worn pump components to highlight and understand wear mechanisms. Piston shoes are central components in the axial piston pump since they are involved in three tribological contacts. These three contacts are thereby studied: piston shoes/swashplate, piston shoes/pistons and piston shoes/shoes hold down plate (SHDP). To perform this analysis, helicopter hydraulic pumps after different operating times have been studied. The wear damage mechanisms and wear debris are analysed using SEM observations. 3D surface roughness measurements are then used to characterize worn surfaces. The observations reveal that in the contact between shoes and swashplate, the main wear mechanism is three-body abrasive wear due to coarse carbides removal. Between shoes and pistons, wear occurs in a less severe way and is mainly due to the debris generated in the first contact and conveyed by the lubricating fluid. In the third contact, the debris are also the prime cause of the abrasive wear and the generation of deep craters in the piston shoes.

  7. A mechanical analysis of myomere shape in fish.

    PubMed

    Van Leeuwen, J L

    1999-12-01

    An architectural analysis is offered of the trunk muscles in fish, which are arranged in a longitudinal series of geometrically complex myomeres. The myomeres are separated by myosepta, collagenous sheets with complex fibre patterns. The muscle fibres in the myomeres are also arranged in complex three-dimensional patterns. Previously, it has been proposed that the muscle fibre arrangement allows for a uniform strain distribution within the muscle. Physical constraints limit the range of shapes that fibre-reinforced materials such as muscles can adopt, irrespective of their genetic profile. The three-dimensional shapes of myosepta are predicted by mechanical modelling from the requirements for mechanical stability and prescribed muscle fibre arrangements. The model can also be used to study the force transmission and likely locations of ligaments and bones in the myosepta. The model shows that the dorsal and ventral fins are located such that unfavourable mechanical interactions with the trunk muscles are avoided. In bony fish, extensive muscular deformations (notably in the region of the horizontal septum) that would not contribute to bending are avoided by the mechanical support of the skin, intramuscular bones and ribs. In sharks, the skin plays a more prominent role in avoiding such deformations because of the absence of bony elements.

  8. Analysis of Mechanical Stresses/Strains in Superconducting Wire

    NASA Astrophysics Data System (ADS)

    Barry, Matthew; Chen, Jingping; Zhai, Yuhu

    2016-10-01

    The optimization of superconducting magnet performance and development of high-field superconducting magnets will greatly impact the next generation of fusion devices. A successful magnet development, however, relies deeply on the understanding of superconducting materials. Among the numerous factors that impact a superconductor's performance, mechanical stress is the most important because of the extreme operation temperature and large electromagnetic forces. In this study, mechanical theory is used to calculate the stresses/strains in typical superconducting strands, which consist of a stabilizer, a barrier, a matrix and superconducting filaments. Both thermal loads and mechanical loads are included in the analysis to simulate operation conditions. Because this model simulates the typical architecture of major superconducting materials, such as Nb3Sn, MgB2, Bi-2212 etc., it provides a good overall picture for us to understand the behavior of these superconductors in terms of thermal and mechanical loads. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship (SULI) program.

  9. A Characterization of the Mechanical Behavior of Resin-Infiltrated Dentin Using Nanoscopic Dynamic Mechanical Analysis

    PubMed Central

    Ryou, Heonjune; Pashley, David H.; Tay, Franklin R.; Arola, Dwayne

    2013-01-01

    This study explored the spatial variations in mechanical behavior of resin-infiltrated dentin using nanoscopic Dynamic Mechanical Analysis (DMA). Objective The objectives were to: 1) evaluate the mechanical behavior of resin-infiltrated dentin using a scanning-based approach to nanoindentation, 2) identify contributions of the collagen matrix to time-dependent deformation of the hybrid layer, and 3) assess the importance of specimen hydration on the nanoDMA response. Methods Specimens of completely demineralized dentin infiltrated with commercial resin adhesive and control samples of resin adhesive were evaluated using a nanoindenter in scanning mode. The load and displacement responses were used to perform DMA and to estimate the complex (E*), storage (E’) and loss (E”) moduli over selected regions of evaluation. The importance of hydration on the mechanical behavior was also examined from a comparison of responses in the hydrated and dehydrated conditions. Results In the hydrated state the apparent complex, storage and loss moduli for the resin-infiltrated dentin samples were 3.5±0.3 GPa, 3.4±0.2 GPa and 0.9±0.3 GPa, respectively. Those values for the resin adhesive control were 2.7±0.3 GPa, 2.7±0.3 GPa and 0.2±0.02 GPa, respectively. Viscoelastic deformation of the resin-infiltrated collagen exceeded that occurring in regions of uniform resin adhesive. Though dehydration resulted in a significant increase in both the complex and storage moduli of the macro hybrid layer, the largest changes occurred to the resin adhesive. Significance The microstructure and hydration play critical roles on the mechanical behavior of the hybrid layer and nanoDMA provides a potent measurement tool for identifying the spatial variations. PMID:23639453

  10. A characterization of the mechanical behavior of resin-infiltrated dentin using nanoscopic Dynamic Mechanical Analysis.

    PubMed

    Ryou, Heonjune; Pashley, David H; Tay, Franklin R; Arola, Dwayne

    2013-07-01

    This study explored the spatial variations in mechanical behavior of resin-infiltrated dentin using nanoscopic Dynamic Mechanical Analysis (DMA). The objectives were to: (1) evaluate the mechanical behavior of resin-infiltrated dentin using a scanning-based approach to nanoindentation, (2) identify contributions of the collagen matrix to time-dependent deformation of the hybrid layer, and (3) assess the importance of specimen hydration on the nanoDMA response. Specimens of completely demineralized dentin infiltrated with commercial resin adhesive and control samples of resin adhesive were evaluated using a nanoindenter in scanning mode. The load and displacement responses were used to perform DMA and to estimate the complex (E*), storage (E') and loss (E″) moduli over selected regions of evaluation. The importance of hydration on the mechanical behavior was also examined from a comparison of responses in the hydrated and dehydrated conditions. In the hydrated state the apparent complex, storage and loss moduli for the resin-infiltrated dentin samples were 3.5±0.3GPa, 3.4±0.2GPa and 0.9±0.3GPa, respectively. Those values for the resin adhesive control were 2.7±0.3GPa, 2.7±0.3GPa and 0.2±0.02GPa, respectively. Viscoelastic deformation of the resin-infiltrated collagen exceeded that occurring in regions of uniform resin adhesive. Though dehydration resulted in a significant increase in both the complex and storage moduli of the macro hybrid layer, the largest changes occurred to the resin adhesive. The microstructure and hydration play critical roles on the mechanical behavior of the hybrid layer and nanoDMA provides a potent measurement tool for identifying the spatial variations. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Identifying regulatory mechanisms underlying tumorigenesis using locus expression signature analysis.

    PubMed

    Lee, Eunjee; de Ridder, Jeroen; Kool, Jaap; Wessels, Lodewyk F A; Bussemaker, Harmen J

    2014-04-15

    Retroviral insertional mutagenesis is a powerful tool for identifying putative cancer genes in mice. To uncover the regulatory mechanisms by which common insertion loci affect downstream processes, we supplemented genotyping data with genome-wide mRNA expression profiling data for 97 tumors induced by retroviral insertional mutagenesis. We developed locus expression signature analysis, an algorithm to construct and interpret the differential gene expression signature associated with each common insertion locus. Comparing locus expression signatures to promoter affinity profiles allowed us to build a detailed map of transcription factors whose protein-level regulatory activity is modulated by a particular locus. We also predicted a large set of drugs that might mitigate the effect of the insertion on tumorigenesis. Taken together, our results demonstrate the potential of a locus-specific signature approach for identifying mammalian regulatory mechanisms in a cancer context.

  12. Collapse Mechanism Analysis in the Design of Superstructure Vehicle

    NASA Astrophysics Data System (ADS)

    Mohd Nor, M. K.

    2016-11-01

    The EU directive 2001/85/EC is an official European text which describes the specifications for “single deck class II and III vehicles” required to be approved by the regulation UN/ECE no.66 (R66). To prevent the catastrophic consequences by occupant during an accident, the Malaysian government has reinforced the same regulation upon superstructure construction. This paper discusses collapse mechanism analysis of a superstructure vehicle using a Crash D nonlinear analysis computer program based on this regulation. The analysis starts by hand calculation to define the required energy absorption by the chosen structure. Simple calculations were then performed to define the weakest collapse mechanism after undesirable collapse modes are eliminated. There are few factors highlighted in this work to pass the regulation. Using the selected cross section, Crash D simulation showed a good result. Generally, the deformation is linearly correlates to the energy absorption for the structure with low stiffness. Failure of critical members such as vertical lower side wall must be avoided to sustain safety of the passenger compartment and prevent from severe and fatal injuries to the trapped occupant.

  13. Nonlinear analysis of collapse mechanism in superstructure vehicle

    NASA Astrophysics Data System (ADS)

    Nor, M. K. Mohd; Ho, C. S.; Ma'at, N.

    2017-04-01

    The EU directive 2001/85/EC is an official European text which describes the specifications for "single deck class II and III vehicles" required to be approved by the regulation UN/ECE no.66 (R66). To prevent the catastrophic consequences by occupant during an accident, the Malaysian government has reinforced the same regulation upon superstructure construction. This paper discusses collapse mechanism analysis of a superstructure vehicle using a Crash D nonlinear analysis computer program based on this regulation. The analysis starts by hand calculation to define the required energy absorption by the chosen structure. Simple calculations were then performed to define the weakest collapse mechanism after undesirable collapse modes are eliminated. There are few factors highlighted in this work to pass the regulation. Using the selected cross section, Crash D simulation showed a good result. Generally, the deformation is linearly correlates to the energy absorption for the structure with low stiffness. Failure of critical members such as vertical lower side wall must be avoided to sustain safety of the passenger compartment and prevent from severe and fatal injuries to the trapped occupant.

  14. Mechanical testing for three-dimensional motion analysis reliability.

    PubMed

    Miller, Emily; Kaufman, Kenton; Kingsbury, Trevor; Wolf, Erik; Wilken, Jason; Wyatt, Marilynn

    2016-10-01

    The purpose of this study was to use simple mechanical tests to evaluate the reliability of three-dimensional motion analysis systems and biomechanical models. Three different tests were conducted at four motion analysis laboratories where clinical care and research studies are routinely performed. The laboratories had different motion capture systems, different types and number of cameras, different types and numbers of force plates and different biomechanical models. These mechanical tests evaluated the accuracy of the motion capture system, the integration of the force plate and the motion capture system, and the strength of the biomechanical model used to calculate rotational kinematics. Results of motion capture system accuracy tests showed that, for all labs, the error between the measured and calculated distances between markers was less than 2mm and 1° for marker separations which ranged from 24mm to 500mm. Results from the force plate integration tests demonstrated errors in center of pressure calculation of less than 4mm across all labs, despite varied force plate and motion system configurations. Finally, errors across labs for single joint rotations and for combined rotations at the hip and knee were less than 2° at the hip and less than 10° at the knee. These results demonstrate that system accuracy and reliability can be obtained allowing the collection of comparable data across different motion analysis laboratories with varying configurations and equipment. This testing is particularly important when multi-center studies are planned in order to assure data consistency across labs.

  15. The Schwickerath adhesion test: A fracture mechanics analysis.

    PubMed

    Schneider, G A; Swain, M V

    2015-08-01

    The Schwickerath three point bending adhesion test is the basis of the International Standard ISO 9693:1999 procedure for assessing porcelain bonding to metals [1]. It has also been used to evaluate the adhesion of porcelain to zirconia. The purpose of this paper is a fracture mechanics analysis of this test, which allows determination of the crack-length load-displacement and toughness dependence of cracks extending along or near the interface. Linear elastic mechanics is used to develop expressions for the strain energy and compliance of Schwickerath geometry specimens as a function of crack extension along or near the interface. From the derivative of the compliance as a function of crack growth the strain energy release rate (G, N/m) is determined. The energy release rate for interface crack extension of Schwickerath geometry specimens is determined. It is found that a simple relationship between the minima of the force-displacement response and the strain energy release rate G exists. Further development enables the predicted force-displacement response as a function of crack length to be derived for different values of G. Experimental results of porcelain bonded to zirconia with and without notches of various lengths machined along the interface verify the expressions and analysis developed. With the fracture mechanics analysis developed in this paper it is possible to determine the quality of adhesion in Schwickerath specimens by the interface toughness in addition to the nominal interface shear bond strength. As the toughness of brittle materials has much less scatter than its strength, the interface toughness characterization of the adhesion should allow for a better distinction between the adhesion quality of bonding. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Intraoral Laser Welding (ILW): ultrastructural and mechanical analysis

    NASA Astrophysics Data System (ADS)

    Fornaini, Carlo; Passaretti, Francesca; Villa, Elena; Nammour, Samir

    2010-05-01

    Nd:YAG, currently used since 1970 in dental laboratories to weld metals on dental prostheses has some limits such great dimensions, high costs and fixed delivery system. Recently it was proposed the possibility to use the Nd:YAG laser device commonly utilised in dental office, to repair broken fixed, removable and orthodontic prostheses and to weld metals directly into the mouth. The aim of this work is to value, through SEM (Scanning Electron Microscope), EDS (Energy Dispersive X-Ray Spectroscopy) and DMA (Dynamic Mechanical Analysis), quality and mechanical strength of the welding process comparing a device normally used in dental lab and a device normally used in dental office for oral surgery. Sixteen CoCrMo metal plates and twenty steel orthodontic wires were divided in four groups: one was welded without metal apposition by laboratory laser, one was welded with metal apposition by laboratory laser, one was welded without metal apposition by office laser and one was welded with metal apposition by office laser. The welding process was analysed by SEM, EDS and DMA to compare the differences between the different samples. By SEM analysis it was seen that the plates welded by office laser without apposition metal showed a greater number of fissurations compared with the other samples. By EDS analysis it was seen a homogeneous composition of the metals in all the samples. The mechanical tests showed a similar elastic behaviour of the samples, with minimal differences between the two devices. No wire broke even under the maximum strength by the Analyser. This study seems to demonstrate that the welding process by office Nd:YAG laser device and the welding process by laboratory Nd:YAG laser device, analysed by SEM, EDS and DMA, showed minimal and not significant differences even if these data will be confirmed by a greater number of samples.

  17. Surge Nozzle NDE Specimen Mechanical Stress Improvement Analysis

    SciTech Connect

    Fredette, Lee F.

    2011-07-14

    The purpose of this project was to perform a finite element analysis of a pressurized water reactor pressurizer surge nozzle mock-up to predict both the weld residual stresses created in its construction and the final stress state after the application of the Mechanical Stress Improvement Process (MSIP). Strain gages were applied to the inner diameter of the mock-up to record strain changes during the MSIP. These strain readings were used in an attempt to calculate the final stress state of the mock-up as well.

  18. Nonlinear fracture mechanics-based analysis of thin wall cylinders

    NASA Technical Reports Server (NTRS)

    Brust, Frederick W.; Leis, Brian N.; Forte, Thomas P.

    1994-01-01

    This paper presents a simple analysis technique to predict the crack initiation, growth, and rupture of large-radius, R, to thickness, t, ratio (thin wall) cylinders. The method is formulated to deal both with stable tearing as well as fatigue mechanisms in applications to both surface and through-wall axial cracks, including interacting surface cracks. The method can also account for time-dependent effects. Validation of the model is provided by comparisons of predictions to more than forty full scale experiments of thin wall cylinders pressurized to failure.

  19. Adhesive fracture mechanics. [stress analysis for bond line interface

    NASA Technical Reports Server (NTRS)

    Bennett, S. J.; Devries, K. L.; Williams, M. L.

    1974-01-01

    In studies of fracture mechanics the adhesive fracture energy is regarded as a fundamental property of the adhesive system. It is pointed out that the value of the adhesive fracture energy depends on surface preparation, curing conditions, and absorbed monolayers. A test method reported makes use of a disk whose peripheral part is bonded to a substrate material. Pressure is injected into the unbonded central part of the disk. At a certain critical pressure value adhesive failure can be observed. A numerical stress analysis involving arbitrary geometries is conducted.

  20. Analysis of the degradation mechanisms in an impacted ceramic

    NASA Astrophysics Data System (ADS)

    Denoual, C.; Cottenot, C. E.; Hild, F.

    1998-07-01

    To analyze the degradation mechanisms in a natural sintered SiC (SSiC) ceramic during impact, three edge-on impact configurations are considered. First, the ceramic is confined by aluminum to allow a post-mortem analysis. In the second configuration, a polished surface of the ceramic is observed each micro-second by a high-speed camera to follow the damage generation and evolution. The third configuration uses a high-speed Moiré photography system to measure dynamic 2-D strain fields. Sequences of fringe patterns are analyzed.

  1. Cell mechanics through analysis of cell trajectories in microfluidic channel

    NASA Astrophysics Data System (ADS)

    Bowie, Samuel; Alexeev, Alexander; Sulchek, Todd

    The understanding of dynamic cell behavior can aid in research ranging from the mechanistic causes of diseases to the development of microfluidic devices for cancer detection. Through analysis of trajectories captured from video of the cells moving in a specially designed microfluidic device, insight into the dynamic viscoelastic nature of cells can be found. The microfluidic device distinguishes cells viscoelastic properties through the use of angled ridges causing a series of compressions, resulting in differences in trajectories based on cell stiffness. Trajectories of cell passing through the device are collected using image processing methods and data mining techniques are used to relate the trajectories to cell properties obtained from experiments. Furthermore, numerical simulation of the cell and microfluidic device are used to match the experimental results from the trajectory analysis. Combination of the modeling and experimental data help to uncover how changes in cellular structures result in changes in mechanical properties.

  2. Diameter of basalt columns derived from fracture mechanics bifurcation analysis.

    PubMed

    Bahr, H-A; Hofmann, M; Weiss, H-J; Bahr, U; Fischer, G; Balke, H

    2009-05-01

    The diameter of columnar joints forming in cooling basalt and drying starch increases with decreasing growth rate. This observation can be reproduced with a linear-elastic three-dimensional fracture mechanics bifurcation analysis, which has been done for a periodic array of hexagonal columnar joints by considering a bifurcation mode compatible with observations on drying starch. In order to be applicable to basalt columns, the analysis has been carried out with simplified stationary temperature fields. The critical diameter differs from the one derived with a two-dimensional model by a mere factor of 1/2. By taking into account the latent heat released at the solidification front, the results agree fairly well with observed column diameters.

  3. Thermodynamic and Mechanical Analysis of a Thermomagnetic Rotary Engine

    NASA Astrophysics Data System (ADS)

    Fajar, D. M.; Khotimah, S. N.; Khairurrijal

    2016-08-01

    A heat engine in magnetic system had three thermodynamic coordinates: magnetic intensity ℋ, total magnetization ℳ, and temperature T, where the first two of them are respectively analogous to that of gaseous system: pressure P and volume V. Consequently, Carnot cycle that constitutes the principle of a heat engine in gaseous system is also valid on that in magnetic system. A thermomagnetic rotary engine is one model of it that was designed in the form of a ferromagnetic wheel that can rotates because of magnetization change at Curie temperature. The study is aimed to describe the thermodynamic and mechanical analysis of a thermomagnetic rotary engine and calculate the efficiencies. In thermodynamic view, the ideal processes are isothermal demagnetization, adiabatic demagnetization, isothermal magnetization, and adiabatic magnetization. The values of thermodynamic efficiency depend on temperature difference between hot and cold reservoir. In mechanical view, a rotational work is determined through calculation of moment of inertia and average angular speed. The value of mechanical efficiency is calculated from ratio between rotational work and heat received by system. The study also obtains exergetic efficiency that states the performance quality of the engine.

  4. Quantitative Financial Analysis of Alternative Energy Efficiency Shareholder Incentive Mechanisms

    SciTech Connect

    Cappers, Peter; Goldman, Charles; Chait, Michele; Edgar, George; Schlegel, Jeff; Shirley, Wayne

    2008-08-03

    Rising energy prices and climate change are central issues in the debate about our nation's energy policy. Many are demanding increased energy efficiency as a way to help reduce greenhouse gas emissions and lower the total cost of electricity and energy services for consumers and businesses. Yet, as the National Action Plan on Energy Efficiency (NAPEE) pointed out, many utilities continue to shy away from seriously expanding their energy efficiency program offerings because they claim there is insufficient profit-motivation, or even a financial disincentive, when compared to supply-side investments. With the recent introduction of Duke Energy's Save-a-Watt incentive mechanism and ongoing discussions about decoupling, regulators and policymakers are now faced with an expanded and diverse landscape of financial incentive mechanisms, Determining the 'right' way forward to promote deep and sustainable demand side resource programs is challenging. Due to the renaissance that energy efficiency is currently experiencing, many want to better understand the tradeoffs in stakeholder benefits between these alternative incentive structures before aggressively embarking on a path for which course corrections can be time-consuming and costly. Using a prototypical Southwest utility and a publicly available financial model, we show how various stakeholders (e.g. shareholders, ratepayers, etc.) are affected by these different types of shareholder incentive mechanisms under varying assumptions about program portfolios. This quantitative analysis compares the financial consequences associated with a wide range of alternative incentive structures. The results will help regulators and policymakers better understand the financial implications of DSR program incentive regulation.

  5. Compaction bands in porous rocks: localization analysis using breakage mechanics

    NASA Astrophysics Data System (ADS)

    Das, Arghya; Nguyen, Giang; Einav, Itai

    2010-05-01

    It has been observed in fields and laboratory studies that compaction bands are formed within porous rocks and crushable granular materials (Mollema and Antonellini, 1996; Wong et al., 2001). These localization zones are oriented at high angles to the compressive maximum principal stress direction. Grain crushing and pore collapse are the integral parts of the compaction band formation; the lower porosity and increased tortuosity within such bands tend to reduce their permeability compared to the outer rock mass. Compaction bands may thereafter act as flow barriers, which can hamper the extraction or injection of fluid into the rocks. The study of compaction bands is therefore not only interesting from a geological viewpoint but has great economic importance to the extraction of oil or natural gas in the industry. In this paper, we study the formation of pure compaction bands (i.e. purely perpendicular to the principal stress direction) or shear-enhanced compaction bands (i.e. with angles close to the perpendicular) in high-porosity rocks using both numerical and analytical methods. A model based on the breakage mechanics theory (Einav, 2007a, b) is employed for the present analysis. The main aspect of this theory is that it enables to take into account the effect that changes in grain size distribution has on the constitutive stress-strain behaviour of granular materials at the microscopic level due to grain crushing. This microscopic phenomenon of grain crushing is explicitly linked with a macroscopic internal variable, called Breakage, so that the evolving grain size distribution can be continuously monitored at macro scale during the process of deformation. Through the inclusion of an appropriate parameter the model is also able to capture the effects of pore collapse on the macroscopic response. Its possession of few physically identifiable parameters is another important feature which minimises the effort of their recalibration, since those become less

  6. The allosteric mechanism of yeast chorismate mutase: a dynamic analysis.

    PubMed

    Kong, Yifei; Ma, Jianpeng; Karplus, Martin; Lipscomb, William N

    2006-02-10

    The effector-regulated allosteric mechanism of yeast chorismate mutase (YCM) was studied by normal mode analysis and targeted molecular dynamics. The normal mode analysis shows that the conformational change between YCM in the R state and in the T state can be represented by a relatively small number of low-frequency modes. This suggests that the transition is coded in the structure and is likely to have a low energetic barrier. Quantitative comparisons (i.e. frequencies) between the low-frequency modes of YCM with and without effectors (modeled structures) reveal that the binding of Trp increases the global flexibility, whereas Tyr decreases global flexibility. The targeted molecular dynamics simulation of substrate analog release from the YCM active site suggests that a series of residues are critical for orienting and "recruiting" the substrate. The simulation led to the switching of a series of substrate-release-coupled salt-bridge partners in the ligand-binding domain; similar changes occur in the transition between YCM R-state and T-state crystal structures. Thus, the normal mode analysis and targeted molecular dynamics results provide evidence that the effectors regulate YCM activity by influencing the global flexibility. The change in flexibility is coupled to the binding of substrate to the T state and release of the product from the R state, respectively.

  7. Development of test methodology for dynamic mechanical analysis instrumentation

    NASA Technical Reports Server (NTRS)

    Allen, V. R.

    1982-01-01

    Dynamic mechanical analysis instrumentation was used for the development of specific test methodology in the determination of engineering parameters of selected materials, esp. plastics and elastomers, over a broad range of temperature with selected environment. The methodology for routine procedures was established with specific attention given to sample geometry, sample size, and mounting techniques. The basic software of the duPont 1090 thermal analyzer was used for data reduction which simplify the theoretical interpretation. Clamps were developed which allowed 'relative' damping during the cure cycle to be measured for the fiber-glass supported resin. The correlation of fracture energy 'toughness' (or impact strength) with the low temperature (glassy) relaxation responses for a 'rubber-modified' epoxy system was negative in result because the low-temperature dispersion mode (-80 C) of the modifier coincided with that of the epoxy matrix, making quantitative comparison unrealistic.

  8. Dynamic Mechanical Thermal Analysis of Virgin TR-55 Silicone Rubber

    SciTech Connect

    Small IV, W; Wilson, T S

    2009-10-09

    Dynamic mechanical thermal analysis (DMTA) of virgin TR-55 silicone rubber specimens was conducted. Dynamic frequency/temperature sweep tests were conducted over the ranges 0.1-100 rad/s and 30-100 C using a parallel plate test geometry. A strain of 0.2% was used, which was near the upper limit of the linear viscoelastic region of the material based on initial dynamic strain sweep tests. Master curves of G{prime} and G{double_prime} as a function of frequency were generated using time-temperature superposition (horizontal shift with initial vertical correction). The activation energy calculated from an Arrhenius fit to the horizontal shift factors was 178-355 kJ/mol. The calculated percent load retention at {approx}50 years was 61-68%.

  9. Multiple methods integration for structural mechanics analysis and design

    NASA Technical Reports Server (NTRS)

    Housner, J. M.; Aminpour, M. A.

    1991-01-01

    A new research area of multiple methods integration is proposed for joining diverse methods of structural mechanics analysis which interact with one another. Three categories of multiple methods are defined: those in which a physical interface are well defined; those in which a physical interface is not well-defined, but selected; and those in which the interface is a mathematical transformation. Two fundamental integration procedures are presented that can be extended to integrate various methods (e.g., finite elements, Rayleigh Ritz, Galerkin, and integral methods) with one another. Since the finite element method will likely be the major method to be integrated, its enhanced robustness under element distortion is also examined and a new robust shell element is demonstrated.

  10. A dynamic mechanical analysis technique for porous media

    PubMed Central

    Pattison, Adam J; McGarry, Matthew; Weaver, John B; Paulsen, Keith D

    2015-01-01

    Dynamic mechanical analysis (DMA) is a common way to measure the mechanical properties of materials as functions of frequency. Traditionally, a viscoelastic mechanical model is applied and current DMA techniques fit an analytical approximation to measured dynamic motion data by neglecting inertial forces and adding empirical correction factors to account for transverse boundary displacements. Here, a finite element (FE) approach to processing DMA data was developed to estimate poroelastic material properties. Frequency-dependent inertial forces, which are significant in soft media and often neglected in DMA, were included in the FE model. The technique applies a constitutive relation to the DMA measurements and exploits a non-linear inversion to estimate the material properties in the model that best fit the model response to the DMA data. A viscoelastic version of this approach was developed to validate the approach by comparing complex modulus estimates to the direct DMA results. Both analytical and FE poroelastic models were also developed to explore their behavior in the DMA testing environment. All of the models were applied to tofu as a representative soft poroelastic material that is a common phantom in elastography imaging studies. Five samples of three different stiffnesses were tested from 1 – 14 Hz with rough platens placed on the top and bottom surfaces of the material specimen under test to restrict transverse displacements and promote fluid-solid interaction. The viscoelastic models were identical in the static case, and nearly the same at frequency with inertial forces accounting for some of the discrepancy. The poroelastic analytical method was not sufficient when the relevant physical boundary constraints were applied, whereas the poroelastic FE approach produced high quality estimates of shear modulus and hydraulic conductivity. These results illustrated appropriate shear modulus contrast between tofu samples and yielded a consistent contrast in

  11. Mechanical Properties for Fracture Analysis of Mild Steel Storage Tasks

    SciTech Connect

    Sindelar, R.L.

    1999-03-03

    Mechanical properties of 1950's vintage, A285 Grade B carbon steels have been compiled for elastic-plastic fracture mechanics analysis of storage tanks (Lam and Sindelar, 1999). The properties are from standard Charpy V-notch (CVN), 0.4T planform Compact Tension (C(T)), and Tensile (T) specimens machined from archival steel from large water piping. The piping and storage tanks were constructed in the 1950s from semi-killed, hot-rolled carbon steel plate specified as A285 Grade B. Evaluation of potential aging mechanisms at both service conditions shows no loss in fracture resistance of the steel in either case.Site and literature data show that the A285, Grade B steel, at and above approximately 70 degrees Fahrenheit, is in the upper transition to upper shelf region for absorbed energy and is not subject to cleavage cracking or a brittle fracture mode. Furthermore, the tank sidewalls are 1/2 or 5/8-inch thick, and therefore, the J-resistance (JR) curve that characterizes material resistance to stable crack extension under elastic-plastic deformation best defines the material fracture toughness. The JR curves for several heats of A285, Grade B steel tested at 40 degrees Fahrenheit, a temperature near the average ductile-to-brittle (DBTT) transition temperature (CVN {at} 15 ft-lb), are presented. This data is applicable to evaluate flaw stability of the storage tanks that are operated above 70 degrees Fahrenheit since, even at 40 degrees Fahrenheit, crack advance is observed to proceed by ductile tearing.

  12. Analysis of sponge zones for computational fluid mechanics

    SciTech Connect

    Bodony, Daniel J. . E-mail: bodony@stanford.edu

    2006-03-01

    The use of sponge regions, or sponge zones, which add the forcing term -{sigma}(q - q {sub ref}) to the right-hand-side of the governing equations in computational fluid mechanics as an ad hoc boundary treatment is widespread. They are used to absorb and minimize reflections from computational boundaries and as forcing sponges to introduce prescribed disturbances into a calculation. A less common usage is as a means of extending a calculation from a smaller domain into a larger one, such as in computing the far-field sound generated in a localized region. By analogy to the penalty method of finite elements, the method is placed on a solid foundation, complete with estimates of convergence. The analysis generalizes the work of Israeli and Orszag [M. Israeli, S.A. Orszag, Approximation of radiation boundary conditions, J. Comp. Phys. 41 (1981) 115-135] and confirms their findings when applied as a special case to one-dimensional wave propagation in an absorbing sponge. It is found that the rate of convergence of the actual solution to the target solution, with an appropriate norm, is inversely proportional to the sponge strength. A detailed analysis for acoustic wave propagation in one-dimension verifies the convergence rate given by the general theory. The exponential point-wise convergence derived by Israeli and Orszag in the high-frequency limit is recovered and found to hold over all frequencies. A weakly nonlinear analysis of the method when applied to Burgers' equation shows similar convergence properties. Three numerical examples are given to confirm the analysis: the acoustic extension of a two-dimensional time-harmonic point source, the acoustic extension of a three-dimensional initial-value problem of a sound pulse, and the introduction of unstable eigenmodes from linear stability theory into a two-dimensional shear layer.

  13. Correlation between videogame mechanics and executive functions through EEG analysis.

    PubMed

    Mondéjar, Tania; Hervás, Ramón; Johnson, Esperanza; Gutierrez, Carlos; Latorre, José Miguel

    2016-10-01

    This paper addresses a different point of view of videogames, specifically serious games for health. This paper contributes to that area with a multidisciplinary perspective focus on neurosciences and computation. The experiment population has been pre-adolescents between the ages of 8 and 12 without any cognitive issues. The experiment consisted in users playing videogames as well as performing traditional psychological assessments; during these tasks the frontal brain activity was evaluated. The main goal was to analyse how the frontal lobe of the brain (executive function) works in terms of prominent cognitive skills during five types of game mechanics widely used in commercial videogames. The analysis was made by collecting brain signals during the two phases of the experiment, where the signals were analysed with an electroencephalogram neuroheadset. The validated hypotheses were whether videogames can develop executive functioning and if it was possible to identify which kind of cognitive skills are developed during each kind of typical videogame mechanic. The results contribute to the design of serious games for health purposes on a conceptual level, particularly in support of the diagnosis and treatment of cognitive-related pathologies.

  14. Biomechanical analysis of force distribution in human finger extensor mechanisms.

    PubMed

    Hu, Dan; Ren, Lei; Howard, David; Zong, Changfu

    2014-01-01

    The complexities of the function and structure of human fingers have long been recognised. The in vivo forces in the human finger tendon network during different activities are critical information for clinical diagnosis, surgical treatment, prosthetic finger design, and biomimetic hand development. In this study, we propose a novel method for in vivo force estimation for the finger tendon network by combining a three-dimensional motion analysis technique and a novel biomechanical tendon network model. The extensor mechanism of a human index finger is represented by an interconnected tendinous network moving around the phalanx's dorsum. A novel analytical approach based on the "Principle of Minimum Total Potential Energy" is used to calculate the forces and deformations throughout the tendon network of the extensor mechanism when subjected to an external load and with the finger posture defined by measurement data. The predicted deformations and forces in the tendon network are in broad agreement with the results obtained by previous experimental in vitro studies. The proposed methodology provides a promising tool for investigating the biomechanical function of complex interconnected tendon networks in vivo.

  15. Silk Fiber Mechanics from Multiscale Force Distribution Analysis

    PubMed Central

    Cetinkaya, Murat; Xiao, Senbo; Markert, Bernd; Stacklies, Wolfram; Gräter, Frauke

    2011-01-01

    Here we decipher the molecular determinants for the extreme toughness of spider silk fibers. Our bottom-up computational approach incorporates molecular dynamics and finite element simulations. Therefore, the approach allows the analysis of the internal strain distribution and load-carrying motifs in silk fibers on scales of both molecular and continuum mechanics. We thereby dissect the contributions from the nanoscale building blocks, the soft amorphous and the strong crystalline subunits, to silk fiber mechanics. We identify the amorphous subunits not only to give rise to high elasticity, but to also ensure efficient stress homogenization through the friction between entangled chains, which also allows the crystals to withstand stresses as high as 2 GPa in the context of the amorphous matrix. We show that the maximal toughness of silk is achieved at 10–40% crystallinity depending on the distribution of crystals in the fiber. We also determined a serial arrangement of the crystalline and amorphous subunits in lamellae to outperform a random or a parallel arrangement, putting forward what we believe to be a new structural model for silk and other semicrystalline materials. The multiscale approach, not requiring any empirical parameters, is applicable to other partially ordered polymeric systems. Hence, it is an efficient tool for the design of artificial silk fibers. PMID:21354403

  16. Analysis of the degradation mechanisms in an impacted ceramic

    NASA Astrophysics Data System (ADS)

    Denoual, Christophe; Cottenot, Charles; Hild, Francois

    1997-07-01

    To analyze the degradation mechanism in a SiC ceramic during impact, three edge-on impact configurations are used with a steel blunt cylinder projectile fired at 330 m/s. First, the polished surface of the ceramic is recorded each 300 nano-second with a high speed camera that allows to follow the damage generation and evolution. The main damage mechanism is shown to be microcracking in mode I. The second configuration uses a high speed Moiré photography system which allows to measure dynamic 2-D strain fields. Sequences of fringe patterns are analyzed. An illustration of the history of strains and principal directions of a 32mm*32mm strain field is shown. In the third configuration, the ceramic is confined by aluminum to allow a post mortem analysis. The main result is that the macroscopic cracks are surrounded by many short cracks. This study can be used to validate damage evolution laws for impacted ceramics, as shown in a companion paper.

  17. Mechanical analysis of UMo/Al dispersion fuel

    NASA Astrophysics Data System (ADS)

    Jeong, Gwan Yoon; Kim, Yeon Soo; Sohn, Dong-Seong

    2015-11-01

    Deformation of fuel particles and mass transfer from the transverse end of fuel meat toward the meat center was observed. This caused plate thickness peaking at a location between the meat edge and the meat center. The underlying mechanism for this fuel volume transport is believed to be fission induced creep of the U-Mo/Al meat. Fuel meat swelling was measured using optical microscopy images of the cross sections of the irradiated test plates. The time-dependent meat swelling was modeled for use in numerical simulation. A distinctive discrepancy between the predicted and measured meat thickness was found at the meat ends, which was assumed to be due to creep-induced mass relocation from the meat end to the meat center region that was not considered in the meat swelling model. ABAQUS FEA simulation was performed to reproduce the observed phenomenon at the meat ends. Through the simulation, we obtained the effective creep rate constants for the interaction layers (IL) and aluminum matrix. In addition, we obtained the corresponding stress and strain analysis results that can be used to understand mechanical behavior of U-Mo/Al dispersion fuel.

  18. Video analysis of concussion injury mechanism in under-18 rugby

    PubMed Central

    Hendricks, Sharief; O'Connor, Sam; Lambert, Michael; Brown, James C; Burger, Nicholas; Mc Fie, Sarah; Readhead, Clint; Viljoen, Wayne

    2016-01-01

    Background Understanding the mechanism of injury is necessary for the development of effective injury prevention strategies. Video analysis of injuries provides valuable information on the playing situation and athlete-movement patterns, which can be used to formulate these strategies. Therefore, we conducted a video analysis of the mechanism of concussion injury in junior-level rugby union and compared it with a representative and matched non-injury sample. Methods Injury reports for 18 concussion events were collected from the 2011 to 2013 under-18 Craven Week tournaments. Also, video footage was recorded for all 3 years. On the basis of the injury events, a representative ‘control’ sample of matched non-injury events in the same players was identified. The video footage, which had been recorded at each tournament, was then retrospectively analysed and coded. 10 injury events (5 tackle, 4 ruck, 1 aerial collision) and 83 non-injury events were analysed. Results All concussions were a result of contact with an opponent and 60% of players were unaware of the impending contact. For the measurement of head position on contact, 43% had a ‘down’ position, 29% the ‘up and forward’ and 29% the ‘away’ position (n=7). The speed of the injured tackler was observed as ‘slow’ in 60% of injurious tackles (n=5). In 3 of the 4 rucks in which injury occurred (75%), the concussed player was acting defensively either in the capacity of ‘support’ (n=2) or as the ‘jackal’ (n=1). Conclusions Training interventions aimed at improving peripheral vision, strengthening of the cervical muscles, targeted conditioning programmes to reduce the effects of fatigue, and emphasising safe and effective playing techniques have the potential to reduce the risk of sustaining a concussion injury. PMID:27900149

  19. Comparative analysis reveals the underlying mechanism of vertebrate seasonal reproduction.

    PubMed

    Ikegami, Keisuke; Yoshimura, Takashi

    2016-02-01

    Animals utilize photoperiodic changes as a calendar to regulate seasonal reproduction. Birds have highly sophisticated photoperiodic mechanisms and functional genomics analysis in quail uncovered the signal transduction pathway regulating avian seasonal reproduction. Birds detect light with deep brain photoreceptors. Long day (LD) stimulus induces secretion of thyroid-stimulating hormone (TSH) from the pars tuberalis (PT) of the pituitary gland. PT-derived TSH locally activates thyroid hormone (TH) in the hypothalamus, which induces gonadotropin-releasing hormone (GnRH) and hence gonadotropin secretion. However, during winter, low temperatures increase serum TH for adaptive thermogenesis, which accelerates germ cell apoptosis by activating the genes involved in metamorphosis. Therefore, TH has a dual role in the regulation of seasonal reproduction. Studies using TSH receptor knockout mice confirmed the involvement of PT-derived TSH in mammalian seasonal reproduction. In addition, studies in mice revealed that the tissue-specific glycosylation of TSH diversifies its function in the circulation to avoid crosstalk. In contrast to birds and mammals, one of the molecular machineries necessary for the seasonal reproduction of fish are localized in the saccus vasculosus from the photoreceptor to the neuroendocrine output. Thus, comparative analysis is a powerful tool to uncover the universality and diversity of fundamental properties in various organisms.

  20. Connecting caddisworm silk structure and mechanical properties: combined infrared spectroscopy and mechanical analysis

    PubMed Central

    Ashton, Nicholas N.; Pan, Huaizhong; Stewart, Russell J.

    2016-01-01

    The underwater silk of an aquatic casemaking caddisfly larvae (Hesperophylax occidentalis) is viscoelastic, and displays distinct yield behaviour, large strain cycle hysteresis and near complete recovery of its initial strength and stiffness when unloaded. Yield followed by a stress plateau has been attributed to sequential rupture of serial Ca2+-cross-linked phosphoserine (pS) β-domains. Spontaneous recovery has been attributed to refolding of the Ca2+/pS domains powered by an elastic network. In this study, native Ca2+ ions were exchanged with other metal ions, followed by combined mechanical and FTIR analysis to probe the contribution of pS/metal ion complexes to silk mechanical properties. After exchange of Ca2+ with Na+, the fibres are soft elastomers and the infrared spectra are consistent with Cv3 symmetry of the – groups. Multivalent metal ions decreased the – symmetry and the symmetric stretching modes (vs) split in a manner characteristic of ordered phosphate compounds, such as phosphate minerals and lamellar bilayers of phosphatidic acid lipids. Integrated intensities of the vs bands, indicative of the metal ion's effect on transition dipole moment of the P–O bonds, and thereby the strength of the phosphate metal complex, increased in the order: Na+ < Mg2+ < Sr2+ < Ba2+ < Ca2+ < Eu3+ < La3+ < Zn2+ < Fe2+. With a subset of the metal ion series, the initial stiffness and yield stress of metal ion-exchanged fibres increased in the same order: establishing the link between phosphate transition dipole moments and silk fibre strength. PMID:27278649

  1. Connecting caddisworm silk structure and mechanical properties: combined infrared spectroscopy and mechanical analysis.

    PubMed

    Ashton, Nicholas N; Pan, Huaizhong; Stewart, Russell J

    2016-06-01

    The underwater silk of an aquatic casemaking caddisfly larvae (Hesperophylax occidentalis) is viscoelastic, and displays distinct yield behaviour, large strain cycle hysteresis and near complete recovery of its initial strength and stiffness when unloaded. Yield followed by a stress plateau has been attributed to sequential rupture of serial Ca(2+)-cross-linked phosphoserine (pS) β-domains. Spontaneous recovery has been attributed to refolding of the Ca(2+)/pS domains powered by an elastic network. In this study, native Ca(2+) ions were exchanged with other metal ions, followed by combined mechanical and FTIR analysis to probe the contribution of pS/metal ion complexes to silk mechanical properties. After exchange of Ca(2+) with Na(+), the fibres are soft elastomers and the infrared spectra are consistent with Cv3 symmetry of the -[Formula: see text] groups. Multivalent metal ions decreased the -[Formula: see text] symmetry and the symmetric stretching modes (vs) split in a manner characteristic of ordered phosphate compounds, such as phosphate minerals and lamellar bilayers of phosphatidic acid lipids. Integrated intensities of the vs bands, indicative of the metal ion's effect on transition dipole moment of the P-O bonds, and thereby the strength of the phosphate metal complex, increased in the order: Na(+) < Mg(2+) < Sr(2+) < Ba(2+) < Ca(2+) < Eu(3+) < La(3+) < Zn(2+) < Fe(2+) With a subset of the metal ion series, the initial stiffness and yield stress of metal ion-exchanged fibres increased in the same order: [Formula: see text] [Formula: see text] establishing the link between phosphate transition dipole moments and silk fibre strength. © 2016 The Authors.

  2. Kinetic analysis of the multistep aggregation mechanism of monoclonal antibodies.

    PubMed

    Nicoud, Lucrèce; Arosio, Paolo; Sozo, Margaux; Yates, Andrew; Norrant, Edith; Morbidelli, Massimo

    2014-09-11

    We investigate by kinetic analysis the aggregation mechanism of two monoclonal antibodies belonging to the IgG1 and IgG2 subclass under thermal stress. For each IgG, we apply a combination of size exclusion chromatography and light scattering techniques to resolve the time evolution of the monomer, dimer, and trimer concentrations, as well as the average molecular weight and the average hydrodynamic radius of the aggregate distribution. By combining the detailed experimental characterization with a theoretical kinetic model based on population balance equations, we extract relevant information on the contribution of the individual elementary steps on the global aggregation process. The analysis shows that the two molecules follow different aggregation pathways under the same operating conditions. In particular, while the monomer depletion of the IgG1 is found to be rate-limited by monomeric conformational changes, bimolecular collision is identified as the rate-limiting step in the IgG2 aggregation process. The measurement of the microscopic rate constants by kinetic analysis allows the quantification of the protein-protein interaction potentials expressed in terms of the Fuchs stability ratio (W). It is found that the antibody solutions exhibit large W values, which are several orders of magnitude larger than the values computed in the frame of the DLVO theory. This indicates that, besides net electrostatic repulsion, additional effects delay the aggregation kinetics of the antibody solutions with respect to diffusion-limited conditions. These effects likely include the limited efficiency of the collision events due to the presence of a limited number of specific aggregation-prone patches on the heterogeneous protein surface, and the contribution of additional repulsive non-DLVO forces to the protein-protein interaction potential, such as hydration forces.

  3. Atom depth analysis delineates mechanisms of protein intermolecular interactions

    SciTech Connect

    Alocci, Davide; Bernini, Andrea; Niccolai, Neri

    2013-07-12

    Highlights: •3D atom depth analysis is proposed to identify different layers in protein structures. •Amino acid contents for each layers have been analyzed for a large protein dataset. •Charged amino acids in the most external layer are present at very different extents. •Atom depth indexes of K residues reflect their side chains flexibility. •Mobile surface charges can be responsible for long range protein–protein recognition. -- Abstract: The systematic analysis of amino acid distribution, performed inside a large set of resolved protein structures, sheds light on possible mechanisms driving non random protein–protein approaches. Protein Data Bank entries have been selected using as filters a series of restrictions ensuring that the shape of protein surface is not modified by interactions with large or small ligands. 3D atom depth has been evaluated for all the atoms of the 2,410 selected structures. The amino acid relative population in each of the structural layers formed by grouping atoms on the basis of their calculated depths, has been evaluated. We have identified seven structural layers, the inner ones reproducing the core of proteins and the outer one incorporating their most protruding moieties. Quantitative analysis of amino acid contents of structural layers identified, as expected, different behaviors. Atoms of Q, R, K, N, D residues are increasingly more abundant in going from core to surfaces. An opposite trend is observed for V, I, L, A, C, and G. An intermediate behavior is exhibited by P, S, T, M, W, H, F and Y. The outer structural layer hosts predominantly E and K residues whose charged moieties, protruding from outer regions of the protein surface, reorient free from steric hindrances, determining specific electrodynamics maps. This feature may represent a protein signature for long distance effects, driving the formation of encounter complexes and the eventual short distance approaches that are required for protein

  4. Dynamic mechanical analysis of compatibilizer effect on the mechanical properties of wood flour/high-density polyethylene composites

    Treesearch

    Mehdi Behzad; Medhi Tajvidi; Ghanbar Ehrahimi; Robert H. Falk

    2004-01-01

    In this study, effect of MAPE (maleic anhydride polyethylene) as the compatibilizer on the mechanical properties of wood-flour polyethylene composites has been investigated by using Dynamic Mechanical Analysis (DMA). Composites were made at 25% and 50% by weight fiber contents and 1% and 2% compatibilizer respectively. Controls were also made at the same fiber contents...

  5. A Mechanical Composite Spheres Analysis of Engineered Cartilage Dynamics

    PubMed Central

    Kohles, Sean S.; Wilson, Christopher G.; Bonassar, Lawrence J.

    2007-01-01

    In the preparation of bioengineered reparative strategies for damaged or diseased tissues, the processes of biomaterial degradation and neotissue synthesis combine to affect the developing mechanical state of multiphase, composite engineered tissues. Here, cell-polymer constructs for engineered cartilage have been fabricated by seeding chondrocytes within three-dimensional scaffolds of biodegradable polymers. During culture, synthetic scaffolds degraded passively as the cells assembled an extracellular matrix (ECM) composed primarily of glycosaminoglycan and collagen. Biochemical and biomechanical assessment of the composite (cells, ECM, and polymer scaffold) were modeled at a unit-cell level to mathematically solve stress-strain relationships and thus construct elastic properties (n=4 samples per seven time points). This approach employed a composite spheres, micromechanical analysis to determine bulk moduli of: (1) the cellular-ECM inclusion within the supporting scaffold structure; and (2) the cellular inclusion within its ECM. Results indicate a dependence of constituent volume fractions with culture time (p<0.05). Overall mean bulk moduli were variably influenced by culture, as noted for the cell-ECM inclusion (Kc-m=29.7 kPa, p=0.1439), the cellular inclusion (Kc=5.5 kPa, p=0.0067), and its surrounding ECM (Km=373.9 kPa, p=0.0748), as well as the overall engineered construct (K=165.0 kPa, p=0.6899). This analytical technique provides a framework to describe the time-dependent contribution of cells, accumulating ECM, and a degrading scaffold affecting bioengineered construct mechanical properties. PMID:17655467

  6. Numerical analysis of fume formation mechanism in arc welding

    NASA Astrophysics Data System (ADS)

    Tashiro, Shinichi; Zeniya, Tasuku; Yamamoto, Kentaro; Tanaka, Manabu; Nakata, Kazuhiro; Murphy, Anthony B.; Yamamoto, Eri; Yamazaki, Kei; Suzuki, Keiichi

    2010-11-01

    In order to clarify the fume formation mechanism in arc welding, a quantitative investigation based on the knowledge of interaction among the electrode, arc and weld pool is indispensable. A fume formation model consisting of a heterogeneous condensation model, a homogeneous nucleation model and a coagulation model has been developed and coupled with the GTA or GMA welding model. A series of processes from evaporation of metal vapour to fume formation from the metal vapour was totally investigated by employing this simulation model. The aim of this paper is to visualize the fume formation process and clarify the fume formation mechanism theoretically through a numerical analysis. Furthermore, the reliability of the simulation model was also evaluated through a comparison of the simulation result with the experimental result. As a result, it was found that the size of the secondary particles consisting of small particles with a size of several tens of nanometres reached 300 nm at maximum and the secondary particle was in a U-shaped chain form in helium GTA welding. Furthermore, it was also clarified that most part of the fume was produced in the downstream region of the arc originating from the metal vapour evaporated mainly from the droplet in argon GMA welding. The fume was constituted by particles with a size of several tens of nanometres and had similar characteristics to that of GTA welding. On the other hand, if the metal transfer becomes unstable and the metal vapour near the droplet diffuses directly towards the surroundings of the arc not getting into the plasma flow, the size of the particles reaches several hundred nanometres.

  7. Pathway Analysis and the Search for Causal Mechanisms

    ERIC Educational Resources Information Center

    Weller, Nicholas; Barnes, Jeb

    2016-01-01

    The study of causal mechanisms interests scholars across the social sciences. Case studies can be a valuable tool in developing knowledge and hypotheses about how causal mechanisms function. The usefulness of case studies in the search for causal mechanisms depends on effective case selection, and there are few existing guidelines for selecting…

  8. Majorana Demonstrator Bolted Joint Mechanical and Thermal Analysis

    SciTech Connect

    Aguayo Navarrete, Estanislao; Reid, Douglas J.; Fast, James E.

    2012-06-01

    The MAJORANA DEMONSTRATOR is designed to probe for neutrinoless double-beta decay, an extremely rare process with a half-life in the order of 1026 years. The experiment uses an ultra-low background, high-purity germanium detector array. The germanium crystals are both the source and the detector in this experiment. Operating these crystals as ionizing radiation detectors requires having them under cryogenic conditions (below 90 K). A liquid nitrogen thermosyphon is used to extract the heat from the detectors. The detector channels are arranged in strings and thermally coupled to the thermosyphon through a cold plate. The cold plate is joined to the thermosyphon by a bolted joint. This circular plate is housed inside the cryostat can. This document provides a detailed study of the bolted joint that connects the cold plate and the thermosyphon. An analysis of the mechanical and thermal properties of this bolted joint is presented. The force applied to the joint is derived from the torque applied to each one of the six bolts that form the joint. The thermal conductivity of the joint is measured as a function of applied force. The required heat conductivity for a successful experiment is the combination of the thermal conductivity of the detector string and this joint. The thermal behavior of the joint is experimentally implemented and analyzed in this study.

  9. Analysis of barosensitive mechanisms in yeast for Pressure Regulated Fermentation

    NASA Astrophysics Data System (ADS)

    Nomura, Kazuki; Iwahashi, Hitoshi; Iguchi, Akinori; Shigematsu, Toru

    2013-06-01

    Introduction: We are intending to develop a novel food processing technology, Pressure Regulated Fermentation (PReF), using pressure sensitive (barosensitive) fermentation microorganisms. Objectives of our study are to clarify barosensitive mechanisms for application to PReF technology. We isolated Saccharomyces cerevisiae barosensitive mutant a924E1 that was derived from the parent KA31a. Methods: Gene expression levels were analyzed by DNA microarray. The altered genes of expression levels were classified according to the gene function. Mutated genes were estimated by mating and producing diploid strains and confirmed by PCR of mitochondrial DNA (mtDNA). Results and Discussion: Gene expression profiles showed that genes of `Energy' function and that of encoding protein localized in ``Mitochondria'' were significantly down regulated in the mutant. These results suggest the respiratory deficiency and relationship between barosensitivity and respiratory deficiency. Since the respiratory functions of diploids showed non Mendelian inheritance, the respiratory deficiency was indicated to be due to mtDNA mutation. PCR analysis showed that the region of COX1 locus was deleted. COX1 gene encodes the subunit 1 of cytochrome c oxidase. For this reason, barosensitivity is strongly correlated with mitochondrial functions.

  10. Dissection of the Hormetic Curve: Analysis of Components and Mechanisms

    PubMed Central

    Lushchak, Volodymyr I.

    2014-01-01

    The relationship between the dose of an effector and the biological response frequently is not described by a linear function and, moreover, in some cases the dose-response relationship may change from positive/adverse to adverse/positive with increasing dose. This complicated relationship is called “hormesis”. This paper provides a short analysis of the concept along with a description of used approaches to characterize hormetic relationships. The whole hormetic curve can be divided into three zones: I – a lag-zone where no changes are observed with increasing dose; II – a zone where beneficial/adverse effects are observed, and III – a zone where the effects are opposite to those seen in zone II. Some approaches are proposed to analyze the molecular components involved in the development of the hormetic character of dose-response relationships with the use of specific genetic lines or inhibitors of regulatory pathways. The discussion is then extended to suggest a new parameter (half-width of the hormetic curve at zone II) for quantitative characterization of the hormetic curve. The problems limiting progress in the development of the hormesis concept such as low reproducibility and predictability may be solved, at least partly, by deciphering the molecular mechanisms underlying the hormetic dose-effect relationship. PMID:25249836

  11. Dissection of the hormetic curve: analysis of components and mechanisms.

    PubMed

    Lushchak, Volodymyr I

    2014-07-01

    The relationship between the dose of an effector and the biological response frequently is not described by a linear function and, moreover, in some cases the dose-response relationship may change from positive/adverse to adverse/positive with increasing dose. This complicated relationship is called "hormesis". This paper provides a short analysis of the concept along with a description of used approaches to characterize hormetic relationships. The whole hormetic curve can be divided into three zones: I - a lag-zone where no changes are observed with increasing dose; II - a zone where beneficial/adverse effects are observed, and III - a zone where the effects are opposite to those seen in zone II. Some approaches are proposed to analyze the molecular components involved in the development of the hormetic character of dose-response relationships with the use of specific genetic lines or inhibitors of regulatory pathways. The discussion is then extended to suggest a new parameter (half-width of the hormetic curve at zone II) for quantitative characterization of the hormetic curve. The problems limiting progress in the development of the hormesis concept such as low reproducibility and predictability may be solved, at least partly, by deciphering the molecular mechanisms underlying the hormetic dose-effect relationship.

  12. Morphological and mechanical analysis of electrospun shape memory polymer fibers

    NASA Astrophysics Data System (ADS)

    Budun, Sinem; İşgören, Erkan; Erdem, Ramazan; Yüksek, Metin

    2016-09-01

    Shape memory block co-polymer Polyurethane (PU) fibers were fabricated by electrospinning technique. Four different solution concentrations (5 wt.%, 10 wt.%, 15 wt.% and 20 wt.%) were prepared by using Tetrahydrofuran (THF)/N,N-dimethylformamide (DMF) (50:50, v/v) as solvents, and three different voltages (30 kV, 35 kV and 38.9 kV) were determined for the electrospinning process. Solution properties were explored in terms of viscosity and electrical conductivity. It was observed that as the polymer concentration increased in the solution, the conductivity declined. Morphological characteristics of the obtained fibers were analyzed through Scanning Electron Microscopy (SEM) measurements. Findings indicated that fiber morphology varied especially with polymer concentration and applied voltage. Obtained fiber diameter ranged from 112 ± 34 nm to 2046 ± 654 nm, respectively. DSC analysis presented that chain orientation of the polymer increased after electrospinning process. Shape fixity and shape recovery calculations were realized. The best shape fixity value (92 ± 4%) was obtained for Y10K30 and the highest shape recovery measurement (130 ± 4%) was belonged to Y15K39. Mechanical properties of the electrospun webs were also investigated in both machine and transverse directions. Tensile and elongation values were also affected from fiber diameter distribution and morphological characteristics of the electrospun webs.

  13. Immunosensor with fluid control mechanism for salivary cortisol analysis.

    PubMed

    Yamaguchi, Masaki; Matsuda, Yohei; Sasaki, Shohei; Sasaki, Makoto; Kadoma, Yoshihiro; Imai, Yoshikatsu; Niwa, Daisuke; Shetty, Vivek

    2013-03-15

    The purpose of this research is to demonstrate a new design for a cortisol immunosensor for the noninvasive and quantitative analysis of salivary cortisol. We propose a cortisol immunosensor with a fluid control mechanism which has both a vertical flow and a lateral flow. The detected current resulting from a competitive reaction between the sample cortisol and a glucose oxidase (GOD)-labeled cortisol conjugate was found to be inversely related to the concentration of cortisol in the sample solution. A calibration curve using the relative detected current showed a R(2)=0.98 and CV=14% for a range of standard cortisol solutions corresponding to the concentrations of native salivary cortisol (0.1-10 ng/ml). The measurement could be accomplished within 35 min and the cortisol immunosensor could be reused. These results show promise for realizing an on-site and easy-to-use biosensor for cortisol. Used for evaluation of human salivary cortisol levels, the cortisol immunosensor measurement corresponded closely with commercially available ELISA method (R(2)=0.92). Our results indicate the promise of the new cortisol immunosensor for noninvasive, point of care measurement of human salivary cortisol levels.

  14. [Phenotype analysis and the molecular mechanism of enamel hypoplasia].

    PubMed

    Lv, Ping; Gao, Xue-jun

    2009-02-18

    Enamel hypoplasia is a surface defect of the tooth crown caused by a disturbance of enamel matrix secretion. Enamel hypoplasia may be inherited, or result from illness, malnutrition, trauma, or high concentrations of fluorides or strontium in the drinking water or food. Different types of enamel hypoplasia have been distinguished, such as pit-type, plane-type, and linear enamel hypoplasia. Hypoplasia has been related to the intensity and duration of stress events, the number of affected ameloblasts, and their position along the forming tooth crown. Amelogenesis imperfecta (AI) is a heterogeneous group of inherited defects in dental enamel formation, most teeth are affected in both the primary and permanent dentition. The malformed enamel can be unusually thin, soft, rough and stained. The strict definition of AI includes only those cases where enamel defects occur in the absence of other symptoms. Currently, there are seven candidate genes for AI: amelogenin, enamelin, ameloblastin, tuftelin, distal-less homeobox 3, enamelysin, and kallikrein 4. Since the enamel is formed according to a strict chronological sequence, and once formed, undergoes no repair or regeneration. Then the analysis the phenotype of enamel hypoplasia can provide insights of the severity of inherited or environmental stress and the molecular mechanism during the period of enamel formation.

  15. Sun Protection Belief Clusters: Analysis of Amazon Mechanical Turk Data.

    PubMed

    Santiago-Rivas, Marimer; Schnur, Julie B; Jandorf, Lina

    2016-12-01

    This study aimed (i) to determine whether people could be differentiated on the basis of their sun protection belief profiles and individual characteristics and (ii) explore the use of a crowdsourcing web service for the assessment of sun protection beliefs. A sample of 500 adults completed an online survey of sun protection belief items using Amazon Mechanical Turk. A two-phased cluster analysis (i.e., hierarchical and non-hierarchical K-means) was utilized to determine clusters of sun protection barriers and facilitators. Results yielded three distinct clusters of sun protection barriers and three distinct clusters of sun protection facilitators. Significant associations between gender, age, sun sensitivity, and cluster membership were identified. Results also showed an association between barrier and facilitator cluster membership. The results of this study provided a potential alternative approach to developing future sun protection promotion initiatives in the population. Findings add to our knowledge regarding individuals who support, oppose, or are ambivalent toward sun protection and inform intervention research by identifying distinct subtypes that may best benefit from (or have a higher need for) skin cancer prevention efforts.

  16. BOOK REVIEW: Nonlinear Continuum Mechanics for Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Bialek, James M.

    1998-05-01

    Nonlinear continuum mechanics of solids is a fascinating subject. All the assumptions inherited from an overexposure to linear behaviour and analysis must be re-examined. The standard definitions of strain designed for small deformation linear problems may be totally misleading when finite motion or large deformations are considered. Nonlinear behaviour includes phenomena like `snap-through', where bifurcation theory is applied to engineering design. Capabilities in this field are growing at a fantastic speed; for example, modern automobiles are presently being designed to crumple in the most energy absorbing manner in order to protect the occupants. The combination of nonlinear mechanics and the finite element method is a very important field. Most engineering designs encountered in the fusion effort are strictly limited to small deformation linear theory. In fact, fusion devices are usually kept in the low stress, long life regime that avoids large deformations, nonlinearity and any plastic behaviour. The only aspect of nonlinear continuum solid mechanics about which the fusion community now worries is that rare case where details of the metal forming process must be considered. This text is divided into nine sections: introduction, mathematical preliminaries, kinematics, stress and equilibrium, hyperelasticity, linearized equilibrium equations, discretization and solution, computer implementation and an appendix covering an introduction to large inelastic deformations. The authors have decided to use vector and tensor notation almost exclusively. This means that the usual maze of indicial equations is avoided, but most readers will therefore be stretched considerably to follow the presentation, which quickly proceeds to the heart of nonlinear behaviour in solids. With great speed the reader is led through the material (Lagrangian) and spatial (Eulerian) co-ordinates, the deformation gradient tensor (an example of a two point tensor), the right and left Cauchy

  17. Mechanical analysis of arterial plaques in native geometry with OCT wall motion analysis

    PubMed Central

    Robertson, Claire; Heidari, Andrew E.; Chen, Zhongping; George, Steven C.

    2014-01-01

    The mechanical behavior of an atherosclerotic plaque may encode information about the type, composition, and vulnerability to rupture. Human arterial segments with varying plaque burden were analyzed ex vivo with optical coherence tomography (OCT) to determine plaque type and to determine compliance during pulsatile inflation in their native geometry. Calcifications and lipid filled plaques showed markedly different compliance when analyzed with OCT wall motion analysis. There was also a trend towards increased circumferential variation in arterial compliance with increasing plaque burden. PMID:24388166

  18. Trajectory planning and mechanic's analysis of lower limb rehabilitation robot.

    PubMed

    Zhiyong, Tang; Xiaodong, Xu; Zhongcai, Pei

    2015-01-01

    A new rehabilitation robot was designed. The robot included a suspension mechanism, a drive unit, and an adjustment mechanism. Additionally, innovative weight loss mechanism increased the dynamical device so that it could be used with patients of varying lower extremity muscle strengths. The relationship of hip and knee angles with height, step length, and gait cycle was studied. It was developed to generate different trajectories for different patients. Kinematics and dynamics were studied to lay the foundation for control.

  19. Transient thermal-mechanical coupling behavior analysis of mechanical seals during start-up operation

    NASA Astrophysics Data System (ADS)

    Gao, B. C.; Meng, X. K.; Shen, M. X.; Peng, X. D.

    2016-05-01

    A transient thermal-mechanical coupling model for a contacting mechanical seal during start-up has been developed. It takes into consideration the coupling relationship among thermal-mechanical deformation, film thickness, temperature and heat generation. The finite element method and multi-iteration technology are applied to solve the temperature distribution and thermal-mechanical deformation as well as their evolution behavior. Results show that the seal gap transforms from negative coning to positive coning and the contact area of the mechanical seal gradually decreases during start-up. The location of the maximum temperature and maximum contact pressure move from the outer diameter to inside diameter. The heat generation and the friction torque increase sharply at first and then decrease. Meanwhile, the contact force decreases and the fluid film force and leakage rate increase.

  20. Pulmonary mechanics by spectral analysis of forced random noise.

    PubMed Central

    Michaelson, E D; Grassman, E D; Peters, W R

    1975-01-01

    The magnitude (Zrs) and phase angle (thetars) of the total respiratory impedance (Zrs), from 3 to 45 Hz, were rapidly obtained by a modification of the forced oscillation method, in which a random noise pressure wave is imposed on the respiratory system at the mouth and compared to the induced random flow using Fourier and spectral analysis. No significant amplitude or phase errors were introduced by the instrumentation. 10 normals, 5 smokers, and 5 patients with chronic obstructive lung disease (COPD) were studied. Measurements of Zrs were corrected for the parallel shunt impedance of the mouth, which was independently measured during a Valsalva maneuver, and from which the mechanical properties of the mouth were derived. There were small differences in Zrs between normals and smokers but both behaved approximately like a second-order system with thetars = 0 degree in the range of 5--9 Hz, and thetars in the range of +40 degrees at 20 Hz and +60 degrees at 40 Hz. In COPD, thetars remained more negative (compared to normals and smokers) at all frequencies and crossed 0 between 15 and 29 Hz. Changes in Zrs, similar in those in COPD, were also observed at low lung volumes in normals. These changes, the effects of a bronchodilator in COPD, and deviations of Zrs from second-order behavior in normals, can best be explained by a two-compartment parallel model, in which time-constant discrepancies between the lung parenchyma and compliant airway keep compliant greater than inertial reactance, resulting in a more negative phase angle as frequency is increased. PMID:1184746

  1. Quantitative analysis and parametric display of regional myocardial mechanics

    NASA Astrophysics Data System (ADS)

    Eusemann, Christian D.; Bellemann, Matthias E.; Robb, Richard A.

    2000-04-01

    Quantitative assessment of regional heart motion has significant potential for more accurate diagnosis of heart disease and/or cardiac irregularities. Local heart motion may be studied from medical imaging sequences. Using functional parametric mapping, regional myocardial motion during a cardiac cycle can be color mapped onto a deformable heart model to obtain better understanding of the structure- to-function relationships in the myocardium, including regional patterns of akinesis or diskinesis associated with ischemia or infarction. In this study, 3D reconstructions were obtained from the Dynamic Spatial Reconstructor at 15 time points throughout one cardiac cycle of pre-infarct and post-infarct hearts. Deformable models were created from the 3D images for each time point of the cardiac cycles. Form these polygonal models, regional excursions and velocities of each vertex representing a unit of myocardium were calculated for successive time-intervals. The calculated results were visualized through model animations and/or specially formatted static images. The time point of regional maximum velocity and excursion of myocardium through the cardiac cycle was displayed using color mapping. The absolute value of regional maximum velocity and maximum excursion were displayed in a similar manner. Using animations, the local myocardial velocity changes were visualized as color changes on the cardiac surface during the cardiac cycle. Moreover, the magnitude and direction of motion for individual segments of myocardium could be displayed. Comparison of these dynamic parametric displays suggest that the ability to encode quantitative functional information on dynamic cardiac anatomy enhances the diagnostic value of 4D images of the heart. Myocardial mechanics quantified this way adds a new dimension to the analysis of cardiac functional disease, including regional patterns of akinesis and diskinesis associated with ischemia and infarction. Similarly, disturbances in

  2. Optical and mechanical characterization and analysis of nanoscale systems

    NASA Astrophysics Data System (ADS)

    Lamont, Daniel N.

    This thesis discusses research focused on the analysis and characterization of nanoscale systems. These studies are organized into three sections based on the research topic and methodology: Part I describes research using scanning probe microscopy, Part II describes research using photonic crystals and Part III describes research using spectroscopy. A brief description of the studies contained in each part follows. Part I discusses our work using scanning probe microscopy. In Chapter 3, we present our work using apertureless scanning near-field optical microscopy to study the optical properties of an isolated subwavelength slit in a gold film, while in chapter 4 atomic force microscopy and a three point bending model are used to explore the mechanical properties of individual multiwall boron nitride nanotubes. Part II includes our studies of photonic crystals. In Chapter 6 we discuss the fabrication and characterization of a photonic crystal material that utilizes electrostatic colloidal crystal array self assembly to form a highly ordered, non closed packed template; and in Chapter 7 we discuss the fabrication and characterization of a novel, simple and efficient approach to rapidly fabricate large-area 2D particle arrays on water surfaces. Finally, in Part III we present our spectroscopic studies. In Chapter 9 we use fluorescence quenching and fluorescence lifetime measurements to study electron transfer in aggregates of cadmium selenide and cadmium telluride nanoparticles assemblies. Chapter 10 features our work using the electronic structure of zinc sulfide semiconductor nanoparticles to sensitize the luminescence of Tb3+ and Eu 3+ lanthanide cations, and Chapter 11 presents our recent work studying photo-induced electron transfer between donor and acceptor moieties attached to a cleft-forming bridge. v.

  3. Dynamic mechanical analysis of supercooled water in nanoporous confinement

    NASA Astrophysics Data System (ADS)

    Soprunyuk, Viktor; Schranz, Wilfried; Huber, Patrick

    2016-08-01

    Dynamical mechanical analysis (\\text{DMA})(f=0.2\\text{--}100 \\text{Hz}) is used to study the dynamics of confined water in mesoporous Gelsil (2.6 nm and 5 nm pores) and Vycor (10 nm) in the temperature range from T=80 \\text{K} to 300 K. Confining water into nanopores partly suppresses crystallization and allows us to perform measurements of supercooled water below 235 K, i.e., in water's so-called “no man's land”, in parts of the pores. Two distinct relaxation peaks are observed in tan δ around T1 ≈ 145 \\text{K} (P1) and T2 ≈ 205 \\text{K}~(P2) for Gelsil 2.6 nm and Gelsil 5 nm at 0.2 Hz. Both peaks shift to higher T with increasing pore size d and change with f in a systematic way, typical of an Arrhenius behaviour of the corresponding relaxation times. For P 1 we obtain an average activation energy of E\\text{a} = 0.47 \\text{eV} , in good agreement with literature values, suggesting that P 1 corresponds to the glass transition of supercooled water. The observation of a pronounced softening of the Young's modulus around 165 K (for Gelsil 2.6 nm at 0.2 Hz) supports the conjecture of a glass-to-liquid transition in the vicinity of P 1. In addition we find a clear-cut (1/d)-dependence of the calculated glass transition temperatures which extrapolates to T_\\text{g}(1/d=0)=136 \\text{K} , in agreement with the traditional value of water.

  4. Dynamic mechanical analysis of high pressure polymerized urethane dimethacrylate.

    PubMed

    Béhin, Pascal; Stoclet, Grégory; Ruse, N Dorin; Sadoun, Michaël

    2014-07-01

    The aim of this study was to compare the viscoelastic properties of high pressure (HP) polymerized urethane dimethacrylate (UDMA) with those of control, ambient pressure thermo-polymerized and photo-polymerized, UDMA and to assess the effect of varying polymerization parameters (protocol, temperature, and initiator) on the viscoelastic properties of HP polymerized UDMA. The viscoelastic properties of the two control polymers, polymerized under atmospheric pressure, and four experimental polymers, polymerized under HP, were determined via dynamic mechanical analysis (DMA), in three point bending configuration. Atomic force microscopy (AFM) was used to characterize fractured polymer surface morphologies. The results showed that: HP-polymerization lead to a polymer with significantly higher Tg and E'rub, indicative of a higher crosslink density; modifying the polymerization protocol resulted in a significant increase in tanδ; increasing the polymerization temperature lead to a significant decrease in E'rub and Tg; and that the polymer with no initiator had the lowest E', E″, Tg, and E'rub and the highest tanδ, suggesting that under this conditions a polymer with significantly reduced crosslink density had been obtained. A characteristic nodular appearance was seen for the two control polymers under AFM, while a modified surface morphology was present in the case of HP polymerized materials. The DMA results suggest that polymerization under HP resulted in polymers with an increased crosslink density and that the higher polymerization temperature or the lack of initiator was detrimental to the viscoelastic properties determined. Changes in polymer network morphology were identified by AFM characterization. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. CFD MODELING ANALYSIS OF MECHANICAL DRAFT COOLING TOWER

    SciTech Connect

    Lee, S; Alfred Garrett, A; James02 Bollinger, J; Larry Koffman, L

    2008-03-03

    Industrial processes use mechanical draft cooling towers (MDCT's) to dissipate waste heat by transferring heat from water to air via evaporative cooling, which causes air humidification. The Savannah River Site (SRS) has a MDCT consisting of four independent compartments called cells. Each cell has its own fan to help maximize heat transfer between ambient air and circulated water. The primary objective of the work is to conduct a parametric study for cooling tower performance under different fan speeds and ambient air conditions. The Savannah River National Laboratory (SRNL) developed a computational fluid dynamics (CFD) model to achieve the objective. The model uses three-dimensional steady-state momentum, continuity equations, air-vapor species balance equation, and two-equation turbulence as the basic governing equations. It was assumed that vapor phase is always transported by the continuous air phase with no slip velocity. In this case, water droplet component was considered as discrete phase for the interfacial heat and mass transfer via Lagrangian approach. Thus, the air-vapor mixture model with discrete water droplet phase is used for the analysis. A series of the modeling calculations was performed to investigate the impact of ambient and operating conditions on the thermal performance of the cooling tower when fans were operating and when they were turned off. The model was benchmarked against the literature data and the SRS test results for key parameters such as air temperature and humidity at the tower exit and water temperature for given ambient conditions. Detailed results will be presented here.

  6. Conformational diversity analysis reveals three functional mechanisms in proteins

    PubMed Central

    Fornasari, María Silvina

    2017-01-01

    Protein motions are a key feature to understand biological function. Recently, a large-scale analysis of protein conformational diversity showed a positively skewed distribution with a peak at 0.5 Å C-alpha root-mean-square-deviation (RMSD). To understand this distribution in terms of structure-function relationships, we studied a well curated and large dataset of ~5,000 proteins with experimentally determined conformational diversity. We searched for global behaviour patterns studying how structure-based features change among the available conformer population for each protein. This procedure allowed us to describe the RMSD distribution in terms of three main protein classes sharing given properties. The largest of these protein subsets (~60%), which we call “rigid” (average RMSD = 0.83 Å), has no disordered regions, shows low conformational diversity, the largest tunnels and smaller and buried cavities. The two additional subsets contain disordered regions, but with differential sequence composition and behaviour. Partially disordered proteins have on average 67% of their conformers with disordered regions, average RMSD = 1.1 Å, the highest number of hinges and the longest disordered regions. In contrast, malleable proteins have on average only 25% of disordered conformers and average RMSD = 1.3 Å, flexible cavities affected in size by the presence of disordered regions and show the highest diversity of cognate ligands. Proteins in each set are mostly non-homologous to each other, share no given fold class, nor functional similarity but do share features derived from their conformer population. These shared features could represent conformational mechanisms related with biological functions. PMID:28192432

  7. Analysis of health promotion and prevention financing mechanisms in Thailand.

    PubMed

    Watabe, Akihito; Wongwatanakul, Weranuch; Thamarangsi, Thaksaphon; Prakongsai, Phusit; Yuasa, Motoyuki

    2016-03-17

    In the transition to the post-2015 agenda, many countries are striving towards universal health coverage (UHC). Achieving this, governments need to shift from curative care to promotion and prevention services. This research analyses Thailand's financing system for health promotion and prevention, and assesses policy options for health financing reforms. The study employed a mixed-methods approach and integrates multiple sources of evidence, including scientific and grey literature, expenditure data, and semi-structured interviews with key stakeholders in Thailand. The analysis was underpinned by the use of a well-known health financing framework. In Thailand, three agencies plus local governments share major funding roles for health promotion and prevention services: the Ministry of Public Health (MOPH), the National Health Security Office, the Thai Health Promotion Foundation and Tambon Health Insurance Funds. The total expenditure on prevention and public health in 2010 was 10.8% of the total health expenditure, greater than many middle-income countries that average 7.0-9.2%. MOPH was the largest contributor at 32.9%, the Universal Coverage scheme was the second at 23.1%, followed by the local governments and ThaiHealth at 22.8 and 7.3%, respectively. Thailand's health financing system for promotion and prevention is strategic and innovative due to the three complementary mechanisms in operation. There are several methodological limitations to determine the adequate level of spending. The health financing reforms in Thailand could usefully inform policymakers on ways to increase spending on promotion and prevention. Further comparative policy research is needed to generate evidence to support efforts towards UHC.

  8. Catalytic mechanism of DNA backbone cleavage by the restriction enzyme EcoRV: a quantum mechanical/molecular mechanical analysis.

    PubMed

    Imhof, Petra; Fischer, Stefan; Smith, Jeremy C

    2009-09-29

    Endonucleases, such as the restriction enzyme EcoRV, cleave the DNA backbone at a specific recognition sequence. We have investigated the catalytic mechanism of backbone phosphodiester hydrolysis by the restriction enzyme EcoRV by means of hybrid quantum mechanical/molecular mechanical calculations. An exhaustive computation of different reaction pathways is performed, thus generating a network of pathways. Comparison of the computed (AM1d/MM) enzymatic reaction pathways with an analogous mechanism for small-molecule model systems [AM1/d and B3LYP/6-31++G(d,p)] reveals that the transition barriers for associative hydrolysis, which is more probable in the model systems, are not lowered by the enzyme. Instead, a reaction mechanism which has mostly dissociative character is more likely. The protein environment is tuned to significantly electrostatically stabilize the transition state structures. The direct catalytic impact of essential residues is determined: The magnesium metal ion activates a water molecule, thus facilitating protonation of the leaving group. A reduction of the coordination number of the magnesium metal ion from six to four upon the positioning of the attacking water molecule explains why larger metal ions, such as calcium, are not catalytically active. The nucleophile is generated by the transfer of a proton from the attacking water molecule to a carboxylic oxygen atom of aspartate 90. The catalytic effect of lysine 92 involves proper positioning of the scissile phosphate group and, more importantly, stabilization of the metaphosphate intermediate in an orientation optimal for attack of the nucleophile.

  9. Application of symbolic computation to the analysis of mechanical systems, including robot arms

    NASA Technical Reports Server (NTRS)

    Hussain, M. A.; Noble, B.

    1984-01-01

    This paper illustrates the application of symbolic computation in connection with three aspects of mechanical systems: (1) The derivation of dynamical equations by Lagrangian methods; (2) The analysis and synthesis of kinematic mechanisms; and (3) A robot manipulator arm.

  10. Coupled Mechanical-Electrochemical-Thermal Analysis of Failure Propagation in Lithium-ion Batteries

    SciTech Connect

    Zhang, Chao; Santhanagopalan, Shriram; Pesaran, Ahmad

    2016-07-28

    This is a presentation given at the 12th World Congress for Computational Mechanics on coupled mechanical-electrochemical-thermal analysis of failure propagation in lithium-ion batteries for electric vehicles.

  11. Generalized Coordinate Partitioning in Dynamic Analysis of Mechanical Systems

    DTIC Science & Technology

    1981-06-16

    block number) A computer-based method for formulation and efficient solution of nonlinear , constrained differential equations of motion is developed...for planar mechanical systems. Nonlinear holonomic constraint equations and differential equations of motion are written in terms of a maximal set of...efficient solution of nonlinear , constrained differential equations of motion is developed for planar mechanical systems. Nonlinear holonomic con- straint

  12. Subsurface damage detection and damage mechanism analysis of chemical-mechanical polished optics

    NASA Astrophysics Data System (ADS)

    Ye, Hui; Yang, Wei; Bi, Guo; Yang, Ping; Guo, Yinbiao

    2014-09-01

    Detection of the subsurface damage depth in optical elements has significance on the subsequent material removal amount and improving element surface quality. The paper focuses on the subsurface damage of chemical-mechanical polished K9 specimen, and analyses the chemical-mechanical polishing mechanism and the cause of subsurface damage. A most suitable etchant is chosen and the step-by-step etching method is applied to measure the subsurface damage depth. A microscope is used to detect the damage morphology and the variation trend at different depth. Research shows that the subsurface damage caused by chemical-mechanical polishing is Hertz scratch, and the scratch quantity below surface presents a variation of zero-more-less-disappeared. The K9 specimen is polished for 3 min under the pressure of 2.5 Kgf and the spindle speed of 43139 r/min, thus resulting in a subsurface damage depth 15.3μm.

  13. Thermal mechanical analysis of applications with internal heat generation

    NASA Astrophysics Data System (ADS)

    Govindarajan, Srisharan Garg

    control blade, spatial variations in temperature within the control blade occur from the non-uniform heat generation within the BORAL as a result of the non-uniform thermal neutron flux along the longitudinal direction when the control blade is partially withdrawn. There is also variation in the heating profile through the thickness and about the circumferential width of the control blade. Mathematical curve-fits are generated for the non-uniform volumetric heat generation profile caused by the thermal neutron absorption and the functions are applied as heating conditions within a finite element model of the control blade built using the commercial finite element code Abaqus FEA. The finite element model is solved as a fully coupled thermal mechanical problem as in the case of the annular target. The resulting deflection is compared with the channel gap to determine if there is a significant risk of the control blade binding during reactor operation. Hence, this dissertation will consist of two sections. The first section will seek to present the thermal and structural safety analyses of the annular targets for the production of molybdenum-99. Since there hasn't been any detailed, documented, study on these annular targets in the past, the work complied in this dissertation will help to understand the thermal-mechanical behavior and failure margins of the target during in-vessel irradiation. As the work presented in this dissertation provides a general performance analysis envelope for the annular target, the tools developed in the process can also be used as useful references for future analyses that are specific to any reactor. The numerical analysis approach adopted and the analytical models developed, can also be applied to other applications, outside the Mo-99 project domain, where internal heat generation exists such as in electronic components and nuclear reactor control blades. The second section will focus on estimating the thermally induced deflection and hence

  14. Harmonic analysis of wrist mechanism of robot manipulator

    NASA Astrophysics Data System (ADS)

    Akbar, Shaik; Navuri, Karteek; Eswara Kumar, A.; Prakash, D.

    2016-09-01

    Wrist mechanism is a part of robot manipulator which is used to provide the pitch and yaw motions to the end effectors for orienting the loads carried by the end effectors. The wrist mechanism is subjected to different types of vibrations because of the various working conditions. Due to these vibrations wrist mechanism experience higher deformations and stresses; this causes failure of wrist mechanism. It is important to study the dynamic behaviour of the wrist mechanism under different loads before adopting in the application. The structure of the wrist mechanism is modelled in the ANSYS Workbench software and analysed for harmonic loads. Proper boundary conditions, mesh and connections between links& pins are assigned to the wrist mechanism assembly. From the present work, peak deformations of links and pins are occurred at 569.83Hz. Further, the link are analysed with 3D composites those are carbon epoxy and E-glass epoxy. It is observed that carbon epoxy shows better stiffness than E-Glass epoxy and it has weight reduction of 13.76% compared with metals.

  15. Analysis of fouling mechanisms in anaerobic membrane bioreactors.

    PubMed

    Charfi, Amine; Ben Amar, Nihel; Harmand, Jérôme

    2012-05-15

    In this paper, we investigate the fouling mechanisms responsible for MF and UF membrane flux decline in Anaerobic Membrane Bioreactors (AnMBR). We have used the fouling mechanism models proposed by Hermia (1982), namely pore constriction, cake formation, complete blocking and intermediate blocking. Based on an optimization approach and using experimental data extracted from the literature, we propose a systematic procedure for identifying the most likely fouling mechanism in play. Short-term as well as long-term experiments are considered and discussed. It was found that short-term experiments are usually characterized by two fouling phases during which the same fouling mechanism or two different mechanisms affect the process. In contrast, in long-term experiments involving cleaning cycles, membrane fouling appears to be better ascribed to one phase only. The impact of abiotic parameters on membrane fouling mechanisms is reviewed and discussed in the light of these results. Finally, it is shown that the mechanism most responsible for membrane fouling in an AnMBR is cake formation. This main result will be useful for the future development of simple integrated models for optimization and control. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. A physical mechanism of magnetoreception: Extension and analysis.

    PubMed

    Binhi, Vladimir N; Prato, Frank S

    2017-01-01

    Proposed is a general physical mechanism of magnetoreception of weak magnetic fields (MFs). The mechanism is based on classical precessional dynamics of a magnetic moment in a thermally disturbed environment and includes a minimum of necessary parameters-the gyromagnetic ratio, thermal relaxation time, and rate of downstream events generated by changes in the state of the magnetic moment. The mechanism imposes general restrictions on the probability of initial biophysical magnetic transduction event before the involvement of specific biophysical and biochemical mechanisms-i.e., regardless of the nature of an MF target and the subsequent cascade of events. It is shown that biological effects of weak MFs have, in certain cases, nonlinear and frequency selective properties. The observation of these characteristics provides information not only on the target's gyromagnetic ratio, but also on the parameters of its interaction with the immediate environment. This enables one to develop experimental strategies for identifying the biophysical mechanisms of magnetoreception including the specific case of effects of a near-zero MF exposure. The mechanism is universally applicable to magnetic moments of different nature, in particular, of electron and proton orbital motion and of spins. Experimental exposure conditions are derived which would lead to validation of the proposed mechanism. Bioelectromagnetics. 38:41-52, 2017. © 2016 Wiley Periodicals, Inc.

  17. Motion interference analysis and optimal control of an electronic controlled bamboo-dance mechanism

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohong; Xu, Liang; Hu, Xiaobin

    2017-08-01

    An electric bamboo-dance mechanism was designed and developed to realize mechanism of automation and mechanization. For coherent and fluent motion, ANSYS finite element analysis was applied on movement interference. Static structural method was used for analyzing dynamic deflection and deformation of the slender rod, while modal analysis was applied on frequency analysis to avoid second deformation caused by resonance. Therefore, the deformation in vertical and horizontal direction was explored and reasonable optimization was taken to avoid interference.

  18. Nonlinear Analysis and Optimal Design of Dynamic Mechanical Systems for Spacecraft Application.

    DTIC Science & Technology

    1986-02-01

    Mechanisms, vibrational analysis, optimization , geometric nonlinearity , material nonlinearity 20. AUSTRACT (C..,I.,.. 01 ".Id*If oO...p .,d Id.MII( by... nonlinear finite element analysis procedure for three-dimensional mechanisms. A niew optimization algorithm has also been developed based on the Gauss DD I...1986 NONLINEAR ANALYSIS AND OPTIMAL DESIGN OF DYNAMIC MECHANICAL SYSTEMS FOR SPACECRAFT APPLICATION Air Force Office of Scientific Research Grant No

  19. Reinforcement Mechanism Of Polyurethane-Urea/Clay Nanocomposites Probed By Positron Annihilation Lifetime Spectroscopy And Dynamic Mechanical Analysis

    SciTech Connect

    Rath, S. K.; Patri, M.; Sudarshan, K.; Pujari, P. K.; Khakhar, D. V.

    2010-12-01

    A basis for quantitative analysis of the reinforcement mechanism of polyurethane-urea/clay nanocomposites using two characterization methods, positron annihilation life time spectroscopy (PALS) and dynamic mechanical analysis (DMA) is provided. DMA was used to measure the constrained volume fraction of amorphous soft segments induced by nanoclay and the storage modulus of the nanocomposites. The interfacial interactions in the nanocomposites were investigated by PALS. The modulus enhancement of the organoclay nanocomposites was found to have a good correlation with the volume fraction of the constrained region and the interfacial interactions.

  20. Digital Image Correlation: Metrological Characterization in Mechanical Analysis

    NASA Astrophysics Data System (ADS)

    Petrella, Orsola; Signore, Davide; Caramuta, Pietro; Toscano, Cinzia; Ferraiuolo, Michele

    2017-04-01

    The Digital Image Correlation (DIC) is a newly developed optical technique that is spreading in all engineering sectors because it allows the non-destructive estimation of the entire surface deformation without any contact with the component under analysis. These characteristics make the DIC very appealing in all the cases the global deformation state is to be known without using strain gages, which are the most used measuring device. The DIC is applicable to any material subjected to distortion caused by either thermal or mechanical load, allowing to obtain high-definition mapping of displacements and deformations. That is why in the civil and the transportation industry, DIC is very useful for studying the behavior of metallic materials as well as of composite materials. DIC is also used in the medical field for the characterization of the local strain field of the vascular tissues surface subjected to uniaxial tensile loading. DIC can be carried out in the two dimension mode (2D DIC) if a single camera is used or in a three dimension mode (3D DIC) if two cameras are involved. Each point of the test surface framed by the cameras can be associated with a specific pixel of the image and the coordinates of each point are calculated knowing the relative distance between the two cameras together with their orientation. In both arrangements, when a component is subjected to a load, several images related to different deformation states can be are acquired through the cameras. A specific software analyzes the images via the mutual correlation between the reference image (obtained without any applied load) and those acquired during the deformation giving the relative displacements. In this paper, a Metrological Characterization of the Digital Image Correlation is performed on aluminum and composite targets both in static and dynamic loading conditions by comparison between DIC and strain gauges measures. In the static test, interesting results have been obtained thanks

  1. Spartan Release Engagement Mechanism (REM) stress and fracture analysis

    NASA Technical Reports Server (NTRS)

    Marlowe, D. S.; West, E. J.

    1984-01-01

    The revised stress and fracture analysis of the Spartan REM hardware for current load conditions and mass properties is presented. The stress analysis was performed using a NASTRAN math model of the Spartan REM adapter, base, and payload. Appendix A contains the material properties, loads, and stress analysis of the hardware. The computer output and model description are in Appendix B. Factors of safety used in the stress analysis were 1.4 on tested items and 2.0 on all other items. Fracture analysis of the items considered fracture critical was accomplished using the MSFC Crack Growth Analysis code. Loads and stresses were obtaind from the stress analysis. The fracture analysis notes are located in Appendix A and the computer output in Appendix B. All items analyzed met design and fracture criteria.

  2. Understanding the mechanism(s) of mosaic trisomy 21 by using DNA polymorphism analysis.

    PubMed Central

    Pangalos, C.; Avramopoulos, D.; Blouin, J. L.; Raoul, O.; deBlois, M. C.; Prieur, M.; Schinzel, A. A.; Gika, M.; Abazis, D.; Antonarakis, S. E.

    1994-01-01

    In order to investigate the mechanism(s) underlying mosaicism for trisomy 21, we genotyped 17 families with mosaic trisomy 21 probands, using 28 PCR-detectable DNA polymorphic markers that map in the pericentromeric region and long arm of chromosome 21. The percentage of cells with trisomy 21 in the probands' blood lymphocytes was 6%-94%. There were two classes of autoradiographic results: In class I, a "third allele" of lower intensity was detected in the proband's DNA for at least two chromosome 21 markers. The interpretation of this result was that the proband had inherited three chromosomes 21 after meiotic nondisjunction (NDJ) (trisomy 21 zygote) and subsequently lost one because of mitotic (somatic) error, the lost chromosome 21 being that with the lowest-intensity polymorphic allele. The parental origin and the meiotic stage of NDJ could also be determined. In class II, a "third allele" was never detected. In these cases, the mosaicism probably occurred either by a postzygotic, mitotic error in a normal zygote that followed a normal meiosis (class IIA mechanism); by premeiotic, mitotic NDJ yielding an aneusomic zygote after meiosis, and subsequent mitotic loss (class IIB mechanism); or by a meiosis II error with lack of crossover in the preceding meiosis I, followed by mitotic loss after fertilization (class IIC mechanism). Among class II mechanisms, the most likely is mechanism IIA, while IIC is the least likely. There were 10 cases of class I and 7 cases of class II results.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1 PMID:8116616

  3. Understanding the mechanism(s) of mosaic trisomy 21 by using DNA polymorphism analysis

    SciTech Connect

    Pangalos, C.; Abazis, D.; Avramopoulos, D.; Blouin, J.L.; Antonaraksi, S.E. ); Raoul, O.; deBlois, M.C.; Prieur, M. ); Schinzel, A.A.

    1994-03-01

    In order to investigate the mechanism(s) underlying mosaicism for trisomy 21, the authors genotyped 17 families with mosaic trisomy 21 probands, using 28 PCR-detectable DNA polymorphic markers that map in the pericentromeric region and long arm of chromosome 21. The percentage of cells with trisomy 21 in the probands' blood lymphocytes was 6%-94%. There were two classes of autoradiographic results: In class I, a third allele' of lower intensity was detected in the proband's DNA for at least two chromosome 21 markers. The interpretation of this result was that the proband had inherited three chromosomes 21 after meiotic nondisjunction (NDJ) (trisomy 21 zygote) and subsequently lost one because of mitotic (somatic) error, the lost chromosome 21 being that with the lowest-intensity polymorphic allele. The parental origin and the meiotic stage of NDJ could also be determined. In class II, a third allele' was never detected. In these cases, the mosaicism probably occurred either by a postzygotic, mitotic error in anormal zygote that followed a normal meiosis (class IIA mechanism); by premeiotic, mitotic NDJ yielding an aneusomic zygote after meiosis, and subsequent mitotic loss (class IIB mechanism); or by a meiosis II error with lack of crossover in the preceding meiosis I, followed by mitotic loss after fertilization (class IIC mechanism). Among class II mechanisms, the most likely is mechanism IIA, while IIC is the least likely. There were 10 cases of class I and 7 cases of class II results. Within class I, there were nine cases with maternal meitoic errors (six meiosis I and three meiosis II errors, on the basis of pericentromeric markers) and one with paternal meiosis I error. The postzygotic loss of chromosome 21 was determined in eight maternal class I cases, and it was maternally derived in five cases and paternally derived in three; this suggests that the postzygotic loss of chromosome 21 is probably random. 28 refs., 1 fig., 2 tabs.

  4. Computational mechanics analysis tools for parallel-vector supercomputers

    NASA Technical Reports Server (NTRS)

    Storaasli, Olaf O.; Nguyen, Duc T.; Baddourah, Majdi; Qin, Jiangning

    1993-01-01

    Computational algorithms for structural analysis on parallel-vector supercomputers are reviewed. These parallel algorithms, developed by the authors, are for the assembly of structural equations, 'out-of-core' strategies for linear equation solution, massively distributed-memory equation solution, unsymmetric equation solution, general eigensolution, geometrically nonlinear finite element analysis, design sensitivity analysis for structural dynamics, optimization search analysis and domain decomposition. The source code for many of these algorithms is available.

  5. Process Mechanics Analysis in Single Point Incremental Forming

    NASA Astrophysics Data System (ADS)

    Ambrogio, G.; Filice, L.; Fratini, L.; Micari, F.

    2004-06-01

    The request of highly differentiated products and the need of process flexibility have brought the researchers to focus the attention on innovative sheet forming processes. Industrial application of conventional processes is, in fact, economically convenient just for large scale productions; furthermore conventional processes do not allow to fully satisfy the mentioned demand of flexibility. In this contest, single point incremental forming (SPIF) is an innovative and flexible answer to market requests. The process is characterized by a peculiar process mechanics, being the sheet plastically deformed only through a localised stretching mechanism. Some recent experimental studies have shown that SPIF permits a relevant increase of formability limits, just as a consequence of the peculiar deformation mechanics. The research here addressed is focused on the theoretical investigation of process mechanics; the aim was to achieve a deeper understanding of basic phenomena involved in SPIF which justify the above mentioned formability enhancing.

  6. Dynamic mechanical thermal analysis of hypromellose 2910 free films.

    PubMed

    Cespi, Marco; Bonacucina, Giulia; Mencarelli, Giovanna; Casettari, Luca; Palmieri, Giovanni Filippo

    2011-10-01

    It is common practice to coat oral solid dosage forms with polymeric materials for controlled release purposes or for practical and aesthetic reasons. Good knowledge of thermo-mechanical film properties or their variation as a function of polymer grade, type and amount of additives or preparation method is of prime importance in developing solid dosage forms. This work focused on the dynamic mechanical thermal characteristics of free films of hypromellose 2910 (also known as HPMC), prepared using three grades of this polymer from two different manufacturers, in order to assess whether polymer chain length or origin affects the mechanical or thermo-mechanical properties of the final films. Hypromellose free films were obtained by casting their aqueous solutions prepared at a specific concentrations in order to obtain the same viscosity for each. The films were stored at room temperature until dried and then examined using a dynamic mechanical analyser. The results of the frequency scans showed no significant differences in the mechanical moduli E' and E″ of the different samples when analysed at room temperature; however, the grade of the polymer affected material transitions during the heating process. Glass transition temperature, apparent activation energy and fragility parameters depended on polymer chain length, while the material brand showed little impact on film performance.

  7. Computational mechanics analysis tools for parallel-vector supercomputers

    NASA Technical Reports Server (NTRS)

    Storaasli, O. O.; Nguyen, D. T.; Baddourah, M. A.; Qin, J.

    1993-01-01

    Computational algorithms for structural analysis on parallel-vector supercomputers are reviewed. These parallel algorithms, developed by the authors, are for the assembly of structural equations, 'out-of-core' strategies for linear equation solution, massively distributed-memory equation solution, unsymmetric equation solution, general eigen-solution, geometrically nonlinear finite element analysis, design sensitivity analysis for structural dynamics, optimization algorithm and domain decomposition. The source code for many of these algorithms is available from NASA Langley.

  8. Analysis of Internal Crack Healing Mechanism under Rolling Deformation

    PubMed Central

    Gao, Haitao; Ai, Zhengrong; Yu, Hailiang; Wu, Hongyan; Liu, Xianghua

    2014-01-01

    A new experimental method, called the ‘hole filling method’, is proposed to simulate the healing of internal cracks in rolled workpieces. Based on the experimental results, the evolution in the microstructure, in terms of diffusion, nucleation and recrystallisation were used to analyze the crack healing mechanism. We also validated the phenomenon of segmented healing. Internal crack healing involves plastic deformation, heat transfer and an increase in the free energy introduced by the cracks. It is proposed that internal cracks heal better under high plastic deformation followed by slow cooling after rolling. Crack healing is controlled by diffusion of atoms from the matrix to the crack surface, and also by the nucleation and growth of ferrite grain on the crack surface. The diffusion mechanism is used to explain the source of material needed for crack healing. The recrystallisation mechanism is used to explain grain nucleation and growth, accompanied by atomic migration to the crack surface. PMID:25003518

  9. Progress of Stirling cycle analysis and loss mechanism characterization

    NASA Technical Reports Server (NTRS)

    Tew, R. C., Jr.

    1986-01-01

    An assessment of Stirling engine thermodynamic modeling and design codes shows a general deficiency; this deficiency is due to poor understanding of the fluid flow and heat transfer phenomena that occur in the oscillating flow and pressure level environment within the engines. Stirling engine thermodynamic loss mechanisms are listed. Several experimental and computational research efforts now underway to characterize various loss mechanisms are reviewed. The need for additional experimental rigs and rig upgrades is discussed. Recent developments and current efforts in Stirling engine thermodynamic modeling are also reviewed.

  10. Progress of Stirling cycle analysis and loss mechanism characterization

    SciTech Connect

    Tew, R.C. Jr.

    1986-01-01

    An assessment of Stirling engine thermodynamic modeling and design codes shows a general deficiency; this deficiency is due to poor understanding of the fluid flow and heat transfer phenomena that occur in the oscillating flow and pressure level environment within the engines. Requirements for improving modeling and design are discussed. Stirling engine thermodynamic loss mechanisms are listed. Several experimental and computational research efforts now underway to characterize various loss mechanisms are reviewed. The need for additional experimental rigs and rig upgrades is discussed. Recent developments and current efforts in Stirling engine thermodynamic modeling are also reviewed.

  11. Agricultural/Industrial Mechanical Technician. Occupational Competency Analysis Profile.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Vocational Instructional Materials Lab.

    This occupational competency analysis profile (OCAP), which is one a series of employer-verified competency lists that were developed through a modified DACUM (Developing a Curriculum) job analysis process involving business, industry, labor, and community agency representatives across Ohio, identifies the occupational, academic, and employability…

  12. An Analysis of Knowledge Management Mechanisms in Healthcare Portals

    ERIC Educational Resources Information Center

    Lee, Chei Sian; Goh, Dion Hoe-Lian; Chua, Alton Y. K.

    2010-01-01

    Healthcare portals are becoming increasingly popular with Internet users since they play an important role in supporting interaction between individuals and healthcare organizations with a Web presence. Additionally, many of these organizations make use of knowledge management mechanisms on their healthcare portals to manage the abundance of…

  13. An Analysis of Knowledge Management Mechanisms in Healthcare Portals

    ERIC Educational Resources Information Center

    Lee, Chei Sian; Goh, Dion Hoe-Lian; Chua, Alton Y. K.

    2010-01-01

    Healthcare portals are becoming increasingly popular with Internet users since they play an important role in supporting interaction between individuals and healthcare organizations with a Web presence. Additionally, many of these organizations make use of knowledge management mechanisms on their healthcare portals to manage the abundance of…

  14. The Wayside Mechanic: An Analysis of Skill Acquisition in Ghana.

    ERIC Educational Resources Information Center

    McLaughlin, Stephen Douglas

    This study describes and analyzes the nature of skill acquisition process in one indigenous, informal training system--the apprenticeship of the wayside mechanics workshops in Koforidua, Ghana. Chapter 2 places apprenticeships training in the wider context of artisanship and training. It traces the history of the West African craft shop and its…

  15. Analysis of mechanical-hydraulic bedload deposition control measures

    NASA Astrophysics Data System (ADS)

    Schwindt, S.; Franca, M. J.; De Cesare, G.; Schleiss, A. J.

    2017-10-01

    During floods, the bedload transport of steep headwaters can exceed the hydraulic transport capacity of milder downstream reaches where settlements are often situated. Therefore, sediment retention barriers are typically installed upstream of such sensible areas. These barriers trigger bedload trapping via two control mechanisms, either hydraulic or mechanical. Both deposition controls, pertaining to instream sediment trapping structures, are analyzed experimentally in this study. Bedload trapping by hydraulically controlled barriers is prone to sediment flushing, i.e., the remobilization of formerly deposited sediment, in particular when the barrier is simultaneously under- and overflown. In this case, the remobilization rate is close to the bedload transport capacity of the nonconstricted channel. Mechanical deposition control by screens is in turn sensible to the grain size. Thus, both deposition control concepts may fail, and bedload may be transported downstream at a rate corresponding to the transport capacity of headwaters, thereby endangering urban areas. This study shows that the combination of both deposition control concepts is suitable for improving the control of bedload retention. With this combination, undesired sediment flushing of upstream deposits in the channel caused by insufficient hydraulic control is prevented. Furthermore, the uncertainty related to the estimation of the representative grain size in the design of mechanical control barriers is reduced.

  16. Mechanical analysis of a heat-shock induced developmental defect

    NASA Astrophysics Data System (ADS)

    Crews, Sarah M.; McCleery, W. Tyler; Hutson, M. Shane

    2014-03-01

    Embryonic development in Drosophila is a complex process involving coordinated movements of mechanically interacting tissues. Perturbing this system with a transient heat shock can result in a number of developmental defects. In particular, a heat shock applied during the earliest morphogenetic movements of gastrulation can lead to apparent recovery, but then subsequent morphogenetic failure 5-6 hours later during germ band retraction. The process of germ band retraction requires an intact amnioserosa - a single layered extra-embryonic epithelial tissue - and heat shock at gastrulation can induce the later opening of holes in the amnioserosa. These holes are highly correlated with failures of germ band retraction. These holes could be caused by a combination of mechanical weakness in the amnioserosa or local increases in mechanical stress. Here, we assess the role of mechanical stress using confocal imaging to compare cell and tissue morphology in the amnioserosa of normal and heat-shocked embryos and laser hole drilling to map the stress field around the times and locations at which heat-shock induced holes open.

  17. Agricultural/Industrial Mechanical Technician. Ohio's Competency Analysis Profile.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Vocational Instructional Materials Lab.

    Developed through a modified DACUM (Developing a Curriculum) process involving business, industry, labor, and community agency representatives in Ohio, this document is a comprehensive and verified employer competency profile for agricultural/industrial mechanical technician occupations. The list contains units (with and without subunits),…

  18. The distinct element analysis of toppling failure mechanisms

    NASA Astrophysics Data System (ADS)

    Özge Dinç, Şaziye; Sinan Işık, Nihat; Karaca, Zeki

    2016-04-01

    This project investigates the toppling failure mechanisms of rock masses having different rock materials and discontinuity properties in slopes that are designed in different heights. For this purpose, PFC2D as a distinct element code was used to anticipate the post failure behaviors of rock masses. After the simulation of laboratory tests on the samples in 2 (width) *4 (height) m, macro mechanical properties of rock masses were determined to be assigned the slopes. The properties of discontinuities were set up based on the smooth-joint method in PFC. The movements in the slopes -equipped with persistent and non-persistent discontinuities- were analyzed by using gravity increase method. The results show that the post failure behaviors of all rock samples have been controlled primarily by joint location and joint length. In addition to this, an increase on the slope height has an influence on the failure mechanism such that triggers the materials to transit from the toppling to circular yielding manner in some models. It has been also worth note that all models begin to fail as soon as the wing cracks develop by tension stresses, thus the tensile strength of the relevant rock material is the most critical mechanic parameter on the failure.

  19. Comprehensive mechanisms for combustion chemistry: Experiment, modeling, and sensitivity analysis

    SciTech Connect

    Dryer, F.L.; Yetter, R.A.

    1993-12-01

    This research program is an integrated experimental/numerical effort to study pyrolysis and oxidation reactions and mechanisms for small-molecule hydrocarbon structures under conditions representative of combustion environments. The experimental aspects of the work are conducted in large diameter flow reactors, at pressures from one to twenty atmospheres, temperatures from 550 K to 1200 K, and with observed reaction times from 10{sup {minus}2} to 5 seconds. Gas sampling of stable reactant, intermediate, and product species concentrations provides not only substantial definition of the phenomenology of reaction mechanisms, but a significantly constrained set of kinetic information with negligible diffusive coupling. Analytical techniques used for detecting hydrocarbons and carbon oxides include gas chromatography (GC), and gas infrared (NDIR) and FTIR methods are utilized for continuous on-line sample detection of light absorption measurements of OH have also been performed in an atmospheric pressure flow reactor (APFR), and a variable pressure flow (VPFR) reactor is presently being instrumented to perform optical measurements of radicals and highly reactive molecular intermediates. The numerical aspects of the work utilize zero and one-dimensional pre-mixed, detailed kinetic studies, including path, elemental gradient sensitivity, and feature sensitivity analyses. The program emphasizes the use of hierarchical mechanistic construction to understand and develop detailed kinetic mechanisms. Numerical studies are utilized for guiding experimental parameter selections, for interpreting observations, for extending the predictive range of mechanism constructs, and to study the effects of diffusive transport coupling on reaction behavior in flames. Modeling using well defined and validated mechanisms for the CO/H{sub 2}/oxidant systems.

  20. [The classification and risk analysis of clinical claims for mechanical ventilator].

    PubMed

    Liu, Yanwu; Wang, Ruitong; Xiao, Shengchun; Wang, Weidong

    2011-08-01

    The risk analysis of clinical claims of mechanical ventilator can provide the useful information to the application of the availability and safety of mechanical ventilators. This paper classifies the clinical claims of two types of mechanical ventilations, and tries to find the distribution characteristics of the failure rate of the clinical claims by using the hazard analysis method. All of the distribution characteristics are related to the factors as ventilator design, environment human factors, etc. The method of risk analysis, combining with the classification of clinical claims, is useful for the clinical application and engineering services of mechanical ventilation.

  1. Failure Analysis and Mechanisms of Failure of Fibrous Composite Structures

    NASA Technical Reports Server (NTRS)

    Noor, A. K. (Compiler); Shuart, M. J. (Compiler); Starnes, J. H., Jr. (Compiler); Williams, J. G. (Compiler)

    1983-01-01

    The state of the art of failure analysis and current design practices, especially as applied to the use of fibrous composite materials in aircraft structures is discussed. Deficiencies in these technologies are identified, as are directions for future research.

  2. Pearce Focal Sphere Analysis of Explosion and Earthquake Mechanisms.

    DTIC Science & Technology

    1983-11-10

    Center (SRC),on the Seismic Research Tnformation System -SR, )and at the Center for Seismic Studies, (CSS). A description of both systems is given... description of both sys- tems is given. Examples of the use of the algorithm as a seismic analysis tool are presented. Theoretical analysis has been...the east Kazahk test site . Four hypothetical shot ratios were considered; the first shot equal in magnitude to the second shot, ie shotl/shot2=l.0, as

  3. Mechanical analysis of Drosophila indirect flight and jump muscles

    PubMed Central

    Swank, Douglas M.

    2011-01-01

    The genetic advantages of Drosophila make it a very appealing choice for investigating muscle development, muscle physiology and muscle protein structure and function. To take full advantage of this model organism, it has been vital to develop isolated Drosophila muscle preparations that can be mechanically evaluated. We describe techniques to isolate, prepare and mechanically analyze skinned muscle fibers from two Drosophila muscle types, the indirect flight muscle and the jump muscle. The function of the indirect flight muscle is similar to vertebrate cardiac muscle, to generate power in an oscillatory manner. The indirect flight muscle is ideal for evaluating the influence of protein mutations on muscle and cross-bridge stiffness, oscillatory power, and deriving cross-bridge rate constants. Jump muscle physiology and structure are more similar to skeletal vertebrate muscle than indirect flight muscle, and it is ideal for measuring maximum shortening velocity, force-velocity characteristics and steady-state power generation. PMID:22079350

  4. Analysis of the Lifecycle of Mechanical Engineering Products

    NASA Astrophysics Data System (ADS)

    Gubaydulina, R. H.; Gruby, S. V.; Davlatov, G. D.

    2016-08-01

    Principal phases of the lifecycle of mechanical engineering products are analyzed in the paper. The authors have developed methods and procedures to improve designing, manufacturing, operating and recycling of the machine. It has been revealed that economic lifecycle of the product is a base for appropriate organization of mechanical engineering production. This lifecycle is calculated as a minimal sum total of consumer and producer costs. The machine construction and its manufacturing technology are interrelated through a maximal possible company profit. The products are to be recycled by their producer. Recycling should be considered as a feedback phase, necessary to make the whole lifecycle of the product a constantly functioning self-organizing system. The principles, outlined in this paper can be used as fundamentals to develop an automated PLM-system.

  5. The Analysis and Development of a Mechanical Breadboard Structure

    DTIC Science & Technology

    2006-12-01

    reduction , damping, linear and non-linear systems , control , degree of freedom, conversion of rotary motion into linear motion ...instrument programmable robots. The system includes IR sensors and a programmable controller as well as previously used motion sources such as pneumatic...Mindstorm systems show off an integrated electro-mechanical system complete with sensors, motors, and a programmable controller . The Zome© system

  6. Physical-Mechanisms Based Reliability Analysis For Emerging Technologies

    DTIC Science & Technology

    2017-05-05

    approved for public release. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Space and defense systems require the highest levels of functional performance in...approved for public release. 2 Physical Mechanisms Impacting Reliability in Emerging Technologies 1 EXECUTIVE SUMMARY 1.1 Overview Space and...interest to U.S. military and space applications and develop a quantitative understanding of the impact on reliability. The research tasks

  7. Civil and mechanical engineering applications of sensitivity analysis

    SciTech Connect

    Komkov, V.

    1985-07-01

    In this largely tutorial presentation, the historical development of optimization theories has been outlined as they applied to mechanical and civil engineering designs and the development of modern sensitivity techniques during the last 20 years has been traced. Some of the difficulties and the progress made in overcoming them have been outlined. Some of the recently developed theoretical methods have been stressed to indicate their importance to computer-aided design technology.

  8. Weapon foam accelerated aging using dynamic mechanical analysis

    SciTech Connect

    Rand, P.B.; Hance, B.G.

    1996-03-01

    Rigid polyurethane foams are used for supports and as encapsulants for electronic assemblies in almost all weapon systems. Mechanical properties (storage, loss, rubbery, and glassy moduli) of three foams are being evaluated; the test scheme is illustrated. Aging tests are also being run on the long-term performance of foams being used in the Russian Fissile Material Container; there was no significant change in the glass transition temperature, glassy modulus, or rubbery modulus after one year of aging.

  9. Dynamic Analysis of a Mechanical Airbag System Sensor

    NASA Astrophysics Data System (ADS)

    Pai, N. G.; Tetzlaff, S. A.; Hess, D. P.

    1998-10-01

    All-mechanical sensors for automotive airbag systems offer a compact and low cost yet highly reliable alternative to electrical sensors. In this paper, a non-linear dynamic model is presented that was used to improve the hammer-blow immunity of an all-mechanical ball-in-tube sensor without jeopardizing its endurance performance. Hammer-blows are impacts from within an automobile to the steering wheel or inflator shell that can occur during system installation or from aggressive driving. Sensor endurance is measured by the stability of calibration after being subjected to a sustained vibration environment. Numerical simulations of the model have elucidated the dynamics and mechanisms of operation of such sensors. Experimental hammer-blow tests and endurance tests, as well as simulations of these tests, have been performed. It is found that hammer-blow immunity can be improved without compromising endurance performance when a ball-seat spring is introduced with at least a 2·0 mm allowable deflection. Results which show the effect of varying the spring stiffness, allowable deflection, and pre-load are presented.

  10. Modern analysis of bone loss mechanisms in microgravity.

    PubMed

    Oganov, V S

    2004-07-01

    A summary of results of investigations by the author and a brief review of some literature data on human bone tissue deprived of mechanical loading (spaceflight, hypokinesia) is given. The direction and markedness of changes in bone mass--the bone mineral density and the bone mineral content--in different skeletal segments depend on their position relative to the gravity vector. A theoretically expected bone mass reduction was revealed in the trabecular structures of the bones of the lower part of the skeleton (local osteopenia). In the upper part of the skeleton, an increase in the bone mineral content is observed, which is considered as a secondary response and is due to redistribution of body fluids cephalad. The main cause of osteopenia is mechanical unloading. Arguments are presented that osteocyte osteolysis, delayed osteoblast histogenesis, and osteoclast resorption provoked by rearrangement in the hierarchy of the systems of fluid volume and ion regulation, and the endocrine control of calcium homeostasis are the main mechanisms of osteopenia.

  11. Numerical analysis of biosonar beamforming mechanisms and strategies in bats.

    PubMed

    Müller, Rolf

    2010-09-01

    Beamforming is critical to the function of most sonar systems. The conspicuous noseleaf and pinna shapes in bats suggest that beamforming mechanisms based on diffraction of the outgoing and incoming ultrasonic waves play a major role in bat biosonar. Numerical methods can be used to investigate the relationships between baffle geometry, acoustic mechanisms, and resulting beampatterns. Key advantages of numerical approaches are: efficient, high-resolution estimation of beampatterns, spatially dense predictions of near-field amplitudes, and the malleability of the underlying shape representations. A numerical approach that combines near-field predictions based on a finite-element formulation for harmonic solutions to the Helmholtz equation with a free-field projection based on the Kirchhoff integral to obtain estimates of the far-field beampattern is reviewed. This method has been used to predict physical beamforming mechanisms such as frequency-dependent beamforming with half-open resonance cavities in the noseleaf of horseshoe bats and beam narrowing through extension of the pinna aperture with skin folds in false vampire bats. The fine structure of biosonar beampatterns is discussed for the case of the Chinese noctule and methods for assessing the spatial information conveyed by beampatterns are demonstrated for the brown long-eared bat.

  12. Nano Scale Mechanical Analysis of Biomaterials Using Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Dutta, Diganta

    The atomic force microscope (AFM) is a probe-based microscope that uses nanoscale and structural imaging where high resolution is desired. AFM has also been used in mechanical, electrical, and thermal engineering applications. This unique technique provides vital local material properties like the modulus of elasticity, hardness, surface potential, Hamaker constant, and the surface charge density from force versus displacement curve. Therefore, AFM was used to measure both the diameter and mechanical properties of the collagen nanostraws in human costal cartilage. Human costal cartilage forms a bridge between the sternum and bony ribs. The chest wall of some humans is deformed due to defective costal cartilage. However, costal cartilage is less studied compared to load bearing cartilage. Results show that there is a difference between chemical fixation and non-chemical fixation treatments. Our findings imply that the patients' chest wall is mechanically weak and protein deposition is abnormal. This may impact the nanostraws' ability to facilitate fluid flow between the ribs and the sternum. At present, AFM is the only tool for imaging cells' ultra-structure at the nanometer scale because cells are not homogeneous. The first layer of the cell is called the cell membrane, and the layer under it is made of the cytoskeleton. Cancerous cells are different from normal cells in term of cell growth, mechanical properties, and ultra-structure. Here, force is measured with very high sensitivity and this is accomplished with highly sensitive probes such as a nano-probe. We performed experiments to determine ultra-structural differences that emerge when such cancerous cells are subject to treatments such as with drugs and electric pulses. Jurkat cells are cancerous cells. These cells were pulsed at different conditions. Pulsed and non-pulsed Jurkat cell ultra-structures were investigated at the nano meter scale using AFM. Jurkat cell mechanical properties were measured under

  13. Analysis of Mechanical Failure of Polymer Microneedles by Axial Force.

    PubMed

    Park, Jung-Hwan; Prausnitz, Mark R

    2010-04-01

    A polymeric microneedle has been developed for drug delivery applications. The ultimate goal of the polymeric microneedle is insertion into the specified region without failure for effective transdermal drug delivery. Mechanical failure of various geometries of microneedles by axial load was modeled using the Euler formula and the Johnson formula to predict the failure force of tapered-column microneedles. These formulas were compared with measured data to identify the mechanical behavior of microneedles by determining the critical factors including the actual length and end-fixed factor. The comparison of the two formulas with the data showed good agreement at the end-fixity (K) of 0.7. This value means that a microneedle column has one fixed end and one pinned end, and that part of the microneedle was overloaded by axial load. When the aspect ratio of length to equivalent diameter is 12:1 at 3 GPa of Young's modulus, there is a transition from the Euler region to the Johnson region by the decreased length and increased base diameter of the microneedle. A polymer having less than 3 GPa of stiffness would follow the Euler formula. A 12:1 aspect ratio of length to equivalent diameter of the microneedle was the mechanical indicator determining the failure mode between elastic buckling and inelastic buckling at less than 3 GPa of Young's modulus of polymer. Microneedles with below a 12:1 aspect ratio of length-to-equivalent diameter and more than 3 GPa of Young's were recommended for reducing sudden failure by buckling and for successfully inserting the microneedle into the skin.

  14. Mechanical valves in the pulmonary position: An international retrospective analysis.

    PubMed

    Pragt, Hanna; van Melle, Joost P; Javadikasgari, Hoda; Seo, Dong Man; Stulak, John M; Knez, Igor; Hörer, Jürgen; Muñoz-Guijosa, Christian; Dehaki, Mahyar G; Shin, Hong Ju; Dearani, Joseph A; Dehaki, Maziar G; Pieper, Petronella G; Eulenburg, Christine; Dos, Laura; Ebels, Tjark

    2017-10-01

    Life expectancy of patients with congenital heart disease has improved over the past decades, increasing the need for a durable pulmonary prosthetic valve. Biological valves in various forms have become the valve of choice for pulmonary valve replacement (PVR), but structural valve deterioration is unavoidable in the long term. Use of a mechanical valve could be an alternative, but data on long-term outcomes are sparse. We retrospectively collected and analyzed data on 364 patients with mechanical valves implanted in the pulmonary position between 1965 and 2014. The data originate from medical centers in Barcelona (Spain), Graz (Austria), Groningen (the Netherlands), Munich (Germany), Rochester (United States), Seoul (Republic of Korea), and Tehran (Iran). Median follow-up duration was 4.26 years (range, 0-27 years), mean age at implantation was 27.16 ± 12.2 years. Tetralogy of Fallot was the most common primary cardiac diagnosis, with a subgroup of 69.8%. Freedom from valvular thrombosis was 91% (95% confidence interval [CI], 87%-94%) at 5 years and 86% (95% CI, 81%-91%) at 10 years post-PVR. With a success rate up to 88%, thrombolysis was a successful therapy. Freedom from reoperation was 97% (95% CI, 94%-99%) at 5 years post-PVR and 91% (95% CI, 85%-95%) at 10 years. Mechanical PVR is associated with a limited risk of valvular thrombosis. Thrombolysis was an effective treatment in the majority. Copyright © 2017 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  15. Transcriptional profiling and biochemical analysis of mechanically induced cartilaginous tissues

    PubMed Central

    Salisbury Palomares, Kristy T.; Gerstenfeld, Louis C.; Wigner, Nathan A.; Lenburg, Marc E.; Einhorn, Thomas A.; Morgan, Elise F.

    2010-01-01

    Objective In order to characterize patterns of molecular expression that lead to cartilage formation in vivo in a post-natal setting, mRNA expression profiling was carried out across the timecourse of mechanically induced chondrogenesis. Methods Retired breeder Sprague-Dawley rats underwent production of a non-critical-size, transverse femoral osteotomy. Experimental animals (n=45) were subjected to bending stimulation (60° cyclic motion in the sagittal plane for 15 minutes/day) of the osteotomy gap beginning on post-operative day (POD) 10. Control animals (n=32) experienced continuous rigid fixation. mRNA isolated on POD 10, 17, 24, and 38 was analyzed using a microarray containing 608 genes involved in skeletal development, tissue differentiation, fracture healing, and mechanotransduction. The glycosaminoglycan (GAG) content of the stimulated tissues was compared to native articular cartilage as a means of assessing the progression of chondrogenic development of the tissues. Results The majority of the 100 genes that were differentially expressed were upregulated in response to mechanical stimulation. Many of these genes are associated with articular cartilage development and maintenance, diarthroidal joint development, cell adhesion, extracellular matrix synthesis, signal transduction, and skeletal development. Quantitative real-time PCR results were consistent with the microarray findings. The GAG content of the stimulated tissues increased over time and was no different from that of articular cartilage at POD 38. Conclusions The mechanical stimulation caused upregulation of genes principally involved in joint cavity morphogenesis and critical to articular cartilage function. Further study of this type of stimulation may identify key signaling events required for post-natal, hyaline cartilage formation. PMID:20131271

  16. Operation analysis of a Chebyshev-Pantograph leg mechanism for a single DOF biped robot

    NASA Astrophysics Data System (ADS)

    Liang, Conghui; Ceccarelli, Marco; Takeda, Yukio

    2012-12-01

    In this paper, operation analysis of a Chebyshev-Pantograph leg mechanism is presented for a single degree of freedom (DOF) biped robot. The proposed leg mechanism is composed of a Chebyshev four-bar linkage and a pantograph mechanism. In contrast to general fully actuated anthropomorphic leg mechanisms, the proposed leg mechanism has peculiar features like compactness, low-cost, and easy-operation. Kinematic equations of the proposed leg mechanism are formulated for a computer oriented simulation. Simulation results show the operation performance of the proposed leg mechanism with suitable characteristics. A parametric study has been carried out to evaluate the operation performance as function of design parameters. A prototype of a single DOF biped robot equipped with two proposed leg mechanisms has been built at LARM (Laboratory of Robotics and Mechatronics). Experimental test shows practical feasible walking ability of the prototype, as well as drawbacks are discussed for the mechanical design.

  17. Analysis of beam loss mechanism in the Project X linac

    SciTech Connect

    Carneiro, J.-P.; Lebedev, V.; Nagaitsev, S.; Ostiguy, J.-F.; Solyak, N.; /Fermilab

    2011-03-01

    Minimization of the beam losses in a multi-MW H{sup -} linac such as ProjectX to a level below 1 W/m is a challenging task. The impact of different mechanism of beam stripping, including stripping in electric and magnetic fields, residual gas, blackbody radiation and intra-beam stripping, is analyzed. Other sources of beam losses are misalignements of beamline elements and errors in RF fields and phases. We present in this paper requirements for dynamic errors and correction schemes to keep beam losses under control.

  18. An analysis of the mechanism of white spot formation

    NASA Astrophysics Data System (ADS)

    Shved, Felix I.

    1994-01-01

    In this article, an attempt is made to describe the mechanism for the formation of solute-lean white spot defects in vacuum-arc remelted ingots. The new explanation includes falling to the pool of metal pieces that are not necessarily different in composition from base metal. The residues of these pieces that survive on their way to the deep regions of the pool serve as nuclei for an equilibrium atom-exchange process between solid and liquid phases, which leads to the selective solute depletion at their boundary. The width of layers thus formed depends on the solid-liquid phase contact time.

  19. Formation mechanism and prevention analysis in plateau damp environment

    NASA Astrophysics Data System (ADS)

    Meng, Yongjun; Chi, Fengxia

    2017-06-01

    This paper analyses and researches road condensation ice formation mechanism, so as to find out the effective and economical method to prevent road frozen ice and govern it. The method of prevention can be divided into passive inhibition technology and proactive inhibition technology. Passive inhibition technology cannot inhibit the formation of condensation. In the process of research of prevention condensation, early warning system for snow and ice research also should not ignore. To establish early warning systems and take it into implementation will greatly reduce the extent of the ice and snow disasters.

  20. Physical mechanisms of nonlinear conductivity: A model analysis

    NASA Astrophysics Data System (ADS)

    Heuer, Andreas; Lühning, Lars

    2014-03-01

    Nonlinear effects are omnipresent in thin films of ion conducting materials showing up as a significant increase of the conductivity. For a disordered hopping model general physical mechanisms are identified giving rise to the occurrence of positive or negative nonlinear effects, respectively. Analytical results are obtained in the limit of high but finite dimensions. They are compared with the numerical results for 3D up to 6D systems. A very good agreement can be found, in particular for higher dimensions. The results can also be used to rationalize previous numerical simulations. The implications for the interpretation of nonlinear conductivity experiments on inorganic ion conductors are discussed.

  1. A356 Reinforced with Nanoparticles: Numerical Analysis of Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Mazahery, Ali; Shabani, Mohsen Ostad

    2012-02-01

    Commercial casting Al-Si (A356)-based composites reinforced with different volume fractions of alumina (Al2O3) nanoparticulates (average particle size 50 nm) were synthesized in this study. Particle distribution, hardness, and tensile properties in the as-cast condition were experimentally investigated. The A356 alloy composite showed an increase in hardness, elastic modulus, and tensile strength compared with monolithic alloys. Finally, a combination of an artificial neural network and the finite element method (FEM) was implemented to predict the microstructure and mechanical properties including grain size, length of silicon rods, amount of porosity, hardness, tensile yield stress, ultimate tensile stress, and elongation percentage.

  2. Statistical mechanics analysis of the continuous number partitioning problem

    NASA Astrophysics Data System (ADS)

    Ferreira, F. F.; Fontanari, J. F.

    1999-07-01

    The number partitioning problem consists of partitioning a sequence of positive numbers { a1, a2,…, aN} into two disjoint sets, A and B, such that the absolute value of the difference of the sums of aj over the two sets is minimized. We use statistical mechanics tools to study analytically the linear programming relaxation of this NP-complete integer programming. In particular, we calculate the probability distribution of the difference between the cardinalities of A and B and show that this difference is not self-averaging.

  3. A mechanical-thermal noise analysis of a nonlinear microgyroscope

    NASA Astrophysics Data System (ADS)

    Lajimi, S. A. M.; Heppler, G. R.; Abdel-Rahman, E. M.

    2017-01-01

    The mechanical-thermal noise (MTN) equivalent rotation rate (Ωn) is computed by using the linear approximation of the system response and the nonlinear "slow" system. The slow system, which is obtained using the method of multiple scales, is used to identify the linear single-valued response of the system. The linear estimate of the noise equivalent rate fails as the drive direction stroke increases. It becomes imperative in these conditions to use a more complex nonlinear estimate of the noise equivalent rate developed here for the first time in literature. The proposed design achieves a high performance regarding noise equivalent rotation rate.

  4. Dynamic mechanical analysis: A practical introduction to techniques and applications

    SciTech Connect

    Menard, K.

    1999-01-01

    This book introduces DMA, its history, and its current position as part of thermal analysis on polymers. It discusses major types of instrumentation, including oscillatory rotational, oscillatory axial, and torsional pendulum. It also describes analytical techniques in terms of utility, quality of data, methods of calibration, and suitability for different types of materials and assesses applications for thermoplastics, thermosetting systems, and thermosets.

  5. Mapping Learning and Game Mechanics for Serious Games Analysis

    ERIC Educational Resources Information Center

    Arnab, Sylvester; Lim, Theodore; Carvalho, Maira B.; Bellotti, Francesco; de Freitas, Sara; Louchart, Sandy; Suttie, Neil; Berta, Riccardo; De Gloria, Alessandro

    2015-01-01

    Although there is a consensus on the instructional potential of Serious Games (SGs), there is still a lack of methodologies and tools not only for design but also to support analysis and assessment. Filling this gap is one of the main aims of the Games and Learning Alliance (http://www.galanoe.eu) European Network of Excellence on Serious Games,…

  6. ESTABLISHMENT OF A COMMUNITY MODELING AND ANALYSIS SUPPORT MECHANISM

    EPA Science Inventory

    During the fall of 2001, a Cooperative Research Agreement between the U.S. Environmental Protection Agency and MCNC began a Community Modeling and Analysis System (CMAS) center. The CMAS will foster development, distribution, and use of the Models-3/CMAQ (Community Multiscale ...

  7. Human reliability considerations in the analysis of mechanical failures

    SciTech Connect

    Smith, J.B.

    1985-02-01

    Inclusion of human reliability consideration in the analysis of equipment failures is shown to produce pragmatic results while avoiding negative results often associated with human error and its connotation of placing blame. Human error is considered a subset of human reliability. Situational and human factors, including support systems, are the root cause of many failures which may otherwise appear to result from human error.

  8. ESTABLISHMENT OF A COMMUNITY MODELING AND ANALYSIS SUPPORT MECHANISM

    EPA Science Inventory

    During the fall of 2001, a Cooperative Research Agreement between the U.S. Environmental Protection Agency and MCNC began a Community Modeling and Analysis System (CMAS) center. The CMAS will foster development, distribution, and use of the Models-3/CMAQ (Community Multiscale ...

  9. Mapping Learning and Game Mechanics for Serious Games Analysis

    ERIC Educational Resources Information Center

    Arnab, Sylvester; Lim, Theodore; Carvalho, Maira B.; Bellotti, Francesco; de Freitas, Sara; Louchart, Sandy; Suttie, Neil; Berta, Riccardo; De Gloria, Alessandro

    2015-01-01

    Although there is a consensus on the instructional potential of Serious Games (SGs), there is still a lack of methodologies and tools not only for design but also to support analysis and assessment. Filling this gap is one of the main aims of the Games and Learning Alliance (http://www.galanoe.eu) European Network of Excellence on Serious Games,…

  10. Integrative network analysis reveals molecular mechanisms of blood pressure regulation

    PubMed Central

    Huan, Tianxiao; Meng, Qingying; Saleh, Mohamed A; Norlander, Allison E; Joehanes, Roby; Zhu, Jun; Chen, Brian H; Zhang, Bin; Johnson, Andrew D; Ying, Saixia; Courchesne, Paul; Raghavachari, Nalini; Wang, Richard; Liu, Poching; O'Donnell, Christopher J; Vasan, Ramachandran; Munson, Peter J; Madhur, Meena S; Harrison, David G; Yang, Xia; Levy, Daniel

    2015-01-01

    Genome-wide association studies (GWAS) have identified numerous loci associated with blood pressure (BP). The molecular mechanisms underlying BP regulation, however, remain unclear. We investigated BP-associated molecular mechanisms by integrating BP GWAS with whole blood mRNA expression profiles in 3,679 individuals, using network approaches. BP transcriptomic signatures at the single-gene and the coexpression network module levels were identified. Four coexpression modules were identified as potentially causal based on genetic inference because expression-related SNPs for their corresponding genes demonstrated enrichment for BP GWAS signals. Genes from the four modules were further projected onto predefined molecular interaction networks, revealing key drivers. Gene subnetworks entailing molecular interactions between key drivers and BP-related genes were uncovered. As proof-of-concept, we validated SH2B3, one of the top key drivers, using Sh2b3−/− mice. We found that a significant number of genes predicted to be regulated by SH2B3 in gene networks are perturbed in Sh2b3−/− mice, which demonstrate an exaggerated pressor response to angiotensin II infusion. Our findings may help to identify novel targets for the prevention or treatment of hypertension. PMID:25882670

  11. Some Aspects on the Mechanical Analysis of Micro-Shutters

    NASA Technical Reports Server (NTRS)

    Fettig, Rainer K.; Kuhn, Jonathan L.; Moseley, S. Harvey; Kutyrev, Alexander S.; Orloff, Jon; Lu, Shude

    1999-01-01

    An array of individually addressable micro-shutters is being designed for spectroscopic applications. Details of the design are presented in a companion paper. The mechanical design of a single shutter element has been completed. This design consists of a shutter blade suspended on a torsion beam manufactured out of single crystal silicon membranes. During operation the shutter blade will be rotated by 90 degrees out of the array plane. Thus, the stability and durability of the beams are crucial for the reliability of the devices. Structures were fabricated using focused ion beam milling in a FEI 620 dual beam machine, and subsequent testing was completed using the same platform. This allowed for short turn around times. We performed torsion and bending experiments to determine key characteristics of the membrane material. Results of measurements on prototype shutters were compared with the predictions of the numerical models. The data from these focused studies were used in conjunction with experiments and numerical models of shutter prototypes to optimize the design. In this work, we present the results of the material studies, and assess the mechanical performance of the resulting design.

  12. Analysis of photoconductive mechanisms of organic-on-inorganic photodiodes

    NASA Astrophysics Data System (ADS)

    Ocaya, R. O.; Dere, A.; Al-Sehemi, Abdullah G.; Al-Ghamdi, Ahmed A.; Soylu, M.; Yakuphanoglu, F.

    2017-09-01

    In this work, it is shown that choosing an organic-on-inorganic Schottky diode for photoconductive sensing by a using a power law exponent (PLE or γ) determined at a single bias point is a limited approach. The standard literature approach does not highlight any bias voltage effects on the distribution of interface state density and other operationally important parameters. In this paper we suggest a new empirical method that holistically highlights the variation of γ with voltage, irradiance and temperature to reach a more informed choice of photosensor for real applications. We obtain a simple, plausible relation of the variation of barrier height, Φ, with voltage, irradiance and temperature. The method is evaluated with data collected previously for Schottky diodes of structure Al/p-Si/organic-semiconductor (OSC)/Au, where OSC is Coumarin-doped with graphene oxide (GO), Cobalt Phthacyanine (CoPC) doped with GO or PCBM doped with GO, respectively. The method reproduces published data for the three diodes reported at specific bias and provides for the first time some qualitative evidence of barrier height variation with light intensity, for which a possible physical basis is also given. Typically, Schottky barrier height is characterized using dark current leading to an under reporting of the effect of illumination on barrier height. Finally, since recombination mechanisms are gauged on the basis of the magnitude of PLE, the method facilitates the identification of the recombination mechanism at a given bias.

  13. Mechanical, physical, and physiological analysis of symmetrical and asymmetrical combat.

    PubMed

    Clemente-Suárez, Vicente J; Robles-Pérez, José J

    2013-09-01

    In current theaters of operation, soldiers had to face a different situation as symmetrical (defined battlefield) and asymmetrical combat (non-defined battlefield), especially in urban areas. The mechanical and organic responses of soldiers in these combats are poorly studied in specific literature. This research aimed to analyze physical, mechanical, and physiological parameters during symmetrical and asymmetrical combat simulations. We analyzed 20 soldiers from the Spanish Army and Spanish Forces and Security Corps (34.5 ± 4.2 years; 176.4 ± 8.4 cm; 74.6 ± 8.7 kg; 63.3 ± 8.0 kg muscular mass; 7.6 ± 3.2 kg fat mass) during a symmetric combat (traditional combat simulation) and during an asymmetrical combat (urban combat simulation). Heart rate (HR), speed, sprints, distances, impact, and body load parameters were measured by a GPS system and a HR belt. Results showed many differences between symmetrical and asymmetrical combat. Asymmetrical combat presented higher maximum velocity movement, number of sprints, sprint distance, and average HR. By contrary, symmetric combat presented higher number of impact and body load. This information could be used to improve specific training programs for each type of combat.

  14. Experimental Analysis of the Mechanism of Hearing under Water.

    PubMed

    Chordekar, Shai; Kishon-Rabin, Liat; Kriksunov, Leonid; Adelman, Cahtia; Sohmer, Haim

    2015-01-01

    The mechanism of human hearing under water is debated. Some suggest it is by air conduction (AC), others by bone conduction (BC), and others by a combination of AC and BC. A clinical bone vibrator applied to soft tissue sites on the head, neck, and thorax also elicits hearing by a mechanism called soft tissue conduction (STC) or nonosseous BC. The present study was designed to test whether underwater hearing at low intensities is by AC or by osseous BC based on bone vibrations or by nonosseous BC (STC). Thresholds of normal hearing participants to bone vibrator stimulation with their forehead in air were recorded and again when forehead and bone vibrator were under water. A vibrometer detected vibrations of a dry human skull in all similar conditions (in air and under water) but not when water was the intermediary between the sound source and the skull forehead. Therefore, the intensities required to induce vibrations of the dry skull in water were significantly higher than the underwater hearing thresholds of the participants, under conditions when hearing by AC and osseous BC is not likely. The results support the hypothesis that hearing under water at low sound intensities may be attributed to nonosseous BC (STC).

  15. Experimental Analysis of the Mechanism of Hearing under Water

    PubMed Central

    Chordekar, Shai; Kishon-Rabin, Liat; Kriksunov, Leonid; Adelman, Cahtia; Sohmer, Haim

    2015-01-01

    The mechanism of human hearing under water is debated. Some suggest it is by air conduction (AC), others by bone conduction (BC), and others by a combination of AC and BC. A clinical bone vibrator applied to soft tissue sites on the head, neck, and thorax also elicits hearing by a mechanism called soft tissue conduction (STC) or nonosseous BC. The present study was designed to test whether underwater hearing at low intensities is by AC or by osseous BC based on bone vibrations or by nonosseous BC (STC). Thresholds of normal hearing participants to bone vibrator stimulation with their forehead in air were recorded and again when forehead and bone vibrator were under water. A vibrometer detected vibrations of a dry human skull in all similar conditions (in air and under water) but not when water was the intermediary between the sound source and the skull forehead. Therefore, the intensities required to induce vibrations of the dry skull in water were significantly higher than the underwater hearing thresholds of the participants, under conditions when hearing by AC and osseous BC is not likely. The results support the hypothesis that hearing under water at low sound intensities may be attributed to nonosseous BC (STC). PMID:26770975

  16. Identification of possible cytotoxicity mechanism of polyethylenimine by proteomics analysis.

    PubMed

    Khansarizadeh, M; Mokhtarzadeh, A; Rashedinia, M; Taghdisi, S M; Lari, P; Abnous, K H; Ramezani, M

    2016-04-01

    Polyethylenimine (PEI) is a polycation widely used for successful gene delivery both in vitro and in vivo experiments. However, different studies showed that PEI could be cytotoxic to transfected cells, and the mechanism of toxicity is poorly understood. Identification of PEI-interacting proteins may help in understanding the toxicity pathways. In this study, we investigated proteins that could interact with PEI in human colorectal adenocarcinoma cells (HT29). In order to identify the proteins interacting with PEI, PEI was immobilized to sepharose beads as solid matrix. The HT29 cell lysate were passed through the matrix. PEI-bound proteins were isolated, and further separation was performed by two-dimensional gel electrophoresis. After gel digestion, proteins were identified by matrix-assisted laser desorption/ionization-time-of-flight (TOF)/TOF mass spectrometry. Our data indicated that most of the identified PEI-interacting proteins such as shock proteins, glutathione-S-transferases, and protein disulfide isomerase are involved in apoptosis process in cells. Thus, although this is a preliminary experiment implicating the involvement of some proteins in PEI cytotoxicity, it could partly explain the mechanism of PEI cytotoxicity in cells.

  17. Some Aspects on the Mechanical Analysis of Micro-Shutters

    NASA Technical Reports Server (NTRS)

    Fettig, Rainer K.; Kuhn, Jonathan L.; Moseley, S. Harvey; Kutyrev, Alexander S.; Orloff, Jon; Lu, Shude

    1999-01-01

    An array of individually addressable micro-shutters is being designed for spectroscopic applications. Details of the design are presented in a companion paper. The mechanical design of a single shutter element has been completed. This design consists of a shutter blade suspended on a torsion beam manufactured out of single crystal silicon membranes. During operation the shutter blade will be rotated by 90 degrees out of the array plane. Thus, the stability and durability of the beams are crucial for the reliability of the devices. Structures were fabricated using focused ion beam milling in a FEI 620 dual beam machine, and subsequent testing was completed using the same platform. This allowed for short turn around times. We performed torsion and bending experiments to determine key characteristics of the membrane material. Results of measurements on prototype shutters were compared with the predictions of the numerical models. The data from these focused studies were used in conjunction with experiments and numerical models of shutter prototypes to optimize the design. In this work, we present the results of the material studies, and assess the mechanical performance of the resulting design.

  18. Analysis of femtosecond quantum control mechanisms with colored double pulses

    SciTech Connect

    Vogt, Gerhard; Nuernberger, Patrick; Selle, Reimer; Dimler, Frank; Brixner, Tobias; Gerber, Gustav

    2006-09-15

    Fitness landscapes based on a limited number of laser pulse shape parameters can elucidate reaction pathways and can help to find the underlying control mechanism of optimal pulses determined by adaptive femtosecond quantum control. In a first experiment, we employ colored double pulses and systematically scan both the temporal subpulse separation and the relative amplitude of the two subpulses to acquire fitness landscapes. Comparison with results obtained from a closed-loop experiment demonstrates the capability of fitness landscapes for the revelation of possible control mechanisms. In a second experiment, using transient absorption spectroscopy, we investigate and compare the dependence of the excitation efficiency of the solvated dye molecule 5,5{sup '}-dichloro-11-diphenylamino-3,3{sup '}-diethyl-10,12-ethylene thiatricarbocyanine perchlorate (IR140) on selected pulse shapes in two parametrizations. The results show that very different pulse profiles can be equivalently adequate to maximize a given control objective. Fitness landscapes thus provide valuable information about different pathways along which a molecular system can be controlled with shaped laser pulses.

  19. Mechanical and structural property analysis of bacterial cellulose composites.

    PubMed

    Dayal, Manmeet Singh; Catchmark, Jeffrey M

    2016-06-25

    Bacterial cellulose (BC) exhibits unique properties including high mechanical strength and high crystallinity. Improvement in the mechanical properties of BC is sought for many applications ranging from food to structural composites to biomedical materials. In this study, different additives including carboxymethyl cellulose (CMC), pectin, gelatin, cornstarch, and corn steep liquor were included in the fermentation media to alter the BC produced. Three different concentrations (1%, 3% and 5%) were chosen for each of the additives, with no additive (0%) as the control. The produced BC was then analyzed to determine tensile and compression modulus. Amongst the tested additives, BC produced in media containing 3% (w/v) pectin had the maximum compressive modulus (142kPa), and BC produced in media containing 1% (w/v) gelatin exhibited the maximum tensile modulus (21MPa). Structural characteristics of BC and BC-additive composites were compared using X-Ray diffraction (XRD). The crystal size and crystallinity of BC was reduced when grown in the presence of CMC and gelatin while pectin only decreased the crystallite size. This suggested that CMC and gelatin may be incorporated into the BC fibril structure. The field emission scanning electron microscopy (FESEM) images showed the increased micro-fibril aggregation in BC pellicles grown in the presence of additives to the culture media. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Continuum Mechanical Analysis of Collective Motion of Robots

    NASA Astrophysics Data System (ADS)

    Itami, Teturo

    Group of robots that works mainly in macroscopic systems is considered as a continuum. We need not mount specific sensors for mutual information among these robots. Increasing number of the robots makes it difficult to predict collective motion of the robots. To give a well organized strategy of designing the task, we describe these robots as that like fluid in continuum mechanics, where number density f_1 (\\vec{x},\\vec{p}; t) of the robots located at around \\vec{x} with momentum around \\vec{p} at time t is a main variable. Also we propose methods to move these robots by external potential energy V(\\vec{x};t). To specify a concept, we take a transportation system by group of robots. The objects located at \\vec{X}(t) that do not feel a potential V(\\vec{X}(t);t) can be transported by a collision with the robots moving aimlessly under the potential force -\\frac{\\partial V(\\vec{x};t)}{\\partial \\vec{x}}. The new scheme of a design based on continuum mechanics is validated by direct method of dynamical development of the system in time.

  1. Network-Based Analysis for Uncovering Mechanisms Underlying Alzheimer's Disease.

    PubMed

    Kikuchi, Masataka; Ogishima, Soichi; Mizuno, Satoshi; Miyashita, Akinori; Kuwano, Ryozo; Nakaya, Jun; Tanaka, Hiroshi

    2016-01-01

    Alzheimer's disease (AD) is known to be a multifactorial neurodegenerative disorder, and is one of the main causes of dementia in the elderly. Many studies have demonstrated molecules involved in the pathogenesis of AD, however its underlying mechanisms remain obscure. It may be simplistic to try to explain the disease based on the role of a few genes only. Accumulating new, huge amount of information from e.g. genome, proteome and interactome datasets and new knowledge, we are now able to clarify and characterize diseases essentially as a result of dysfunction of molecular networks. Recent studies have indicated that relevant genes affected in human diseases concentrate in a part of the network, often called as "disease module." In the case of AD, some disease-associated pathways seem different, but some of them are clearly disease-related and coherent. This suggests the existence of a common pathway that negatively drives from healthy state to disease state (i.e., the disease module(s)). Additionally, such disease modules should dynamically change through AD progression. Thus, network-level approaches are indispensable to address unknown mechanisms of AD. In this chapter, we introduce network strategies using gene co-expression and protein interaction networks.

  2. Analysis of Europan Cycloid Morphology and Implications for Formation Mechanisms

    NASA Technical Reports Server (NTRS)

    Marshall, S. T.; Kattenhorn, S. A.

    2004-01-01

    Europa's highly fractured crust has been shown to contain features with a range of differing morphologies. Most lineaments on Europa are believed to have initiated as cracks, although the type of cracking (e.g. tensile vs. shear) remains unclear and may vary for different morphologies. Arcuate lineaments, called cycloids or flexi, have been observed in nearly all imaged regions of Europa and have been modeled as tensile fractures that were initiated in response to diurnal variations in tides. Despite this hypothesis about the formation mechanism, there have been no detailed analyses of the variable morphologies of cycloids. We have examined Galileo images of numerous locations on Europa to develop a catalog of the different morphologies of cycloids. This study focuses on variations in morphology along individual cycloid segments and differences in cusp styles between segments, while illustrating how morphologic evidence can help unravel formation mechanisms. In so doing, we present evidence for cycloid cusps forming due to secondary fracturing during strike-slip sliding on pre-existing cycloid segments.

  3. Failure mechanics of fiber composite notched charpy specimens. [stress analysis

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1976-01-01

    A finite element stress analysis was performed to determine the stress variation in the vicinity of the notch and far field of fiber composites Charpy specimens (ASTM Standard). NASTRAN was used for the finite element analysis assuming linear behavior and equivalent static load. The unidirectional composites investigated ranged from Thornel 75 Epoxy to S-Glass/Epoxy with the fiber direction parallel to the long dimension of the specimen. The results indicate a biaxial stress state exists in (1) the notch vicinity which is dominated by transverse tensile and interlaminar shear and (2) near the load application point which is dominated by transverse compression and interlaminar shear. The results also lead to the postulation of hypotheses for the predominant failure modes, the fracture initiation, and the fracture process. Finally, the results indicate that the notched Charpy test specimen is not suitable for assessing the impact resistance of nonmetallic fiber composites directly.

  4. Mechanical System Analysis/Design Tool (MSAT) Quick Guide

    NASA Technical Reports Server (NTRS)

    Lee, HauHua; Kolb, Mark; Madelone, Jack

    1998-01-01

    MSAT is a unique multi-component multi-disciplinary tool that organizes design analysis tasks around object-oriented representations of configuration components, analysis programs and modules, and data transfer links between them. This creative modular architecture enables rapid generation of input stream for trade-off studies of various engine configurations. The data transfer links automatically transport output from one application as relevant input to the next application once the sequence is set up by the user. The computations are managed via constraint propagation - the constraints supplied by the user as part of any optimization module. The software can be used in the preliminary design stage as well as during the detail design of product development process.

  5. Dynamic Simulation and Analysis of Human Walking Mechanism

    NASA Astrophysics Data System (ADS)

    Azahari, Athirah; Siswanto, W. A.; Ngali, M. Z.; Salleh, S. Md.; Yusup, Eliza M.

    2017-01-01

    Behaviour such as gait or posture may affect a person with the physiological condition during daily activities. The characteristic of human gait cycle phase is one of the important parameter which used to described the human movement whether it is in normal gait or abnormal gait. This research investigates four types of crouch walking (upright, interpolated, crouched and severe) by simulation approach. The assessment are conducting by looking the parameters of hamstring muscle joint, knee joint and ankle joint. The analysis results show that based on gait analysis approach, the crouch walking have a weak pattern of walking and postures. Short hamstring and knee joint is the most influence factor contributing to the crouch walking due to excessive hip flexion that typically accompanies knee flexion.

  6. Dynamic fracture mechanics analysis for an edge delamination crack

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Doyle, James F.

    1994-01-01

    A global/local analysis is applied to the problem of a panel with an edge delamination crack subject to an impulse loading to ascertain the dynamic J integral. The approach uses the spectral element method to obtain the global dynamic response and local resultants to obtain the J integral. The variation of J integral along the crack front is shown. The crack behavior is mixed mode (Mode 2 and Mode 3), but is dominated by the Mode 2 behavior.

  7. Thermodynamic Mechanism Analysis of Calcification Roasting Process of Bastnaesite Concentrates

    NASA Astrophysics Data System (ADS)

    Cen, Peng; Wu, Wenyuan; Bian, Xue

    2017-03-01

    A novel calcification roasting decomposition method for bastnaesite concentrates has been proposed previously. In this work, the thermodynamic mechanism was investigated via simultaneous measurements of thermogravimetry and differential thermal analyses, combined with X-ray diffraction analyses. Rare earth oxides and calcium fluorides were generated after bastnaesite and calcium hydroxide broke down, respectively. The generation and decomposition of calcium carbonate occurred at the same time. Considering the difficulties in obtaining pure substances, theoretical calculations were applied to determine the standard enthalpy of formation (Δf H 298), Gibbs free energies of formation (Δf G 298), and heat capacities at constant pressure (C p) of some rare earth minerals (CeFCO3 and CeOF). Based on these results, the standard Gibbs energy of reaction at different temperatures (Δr G T) was ascertained, and the major reactions were verified to be thermodynamically reasonable.

  8. Compatibility conditions of structural mechanics for finite element analysis

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Berke, Laszlo; Gallagher, Richard H.

    1990-01-01

    The equilibrium equations and the compatibility conditions are fundamental to the analyses of structures. However, anyone who undertakes even a cursory generic study of the compatibility conditions can discover, with little effort, that historically this facet of structural mechanics had not been adequately researched by the profession. Now the compatibility conditions (CC's) have been researched and are understood to a great extent. For finite element discretizations, the CC's are banded and can be divided into three distinct categories: (1) the interface CC's; (2) the cluster or field CC's; and (3) the external CC's. The generation of CC's requires the separating of a local region, then writing the deformation displacement relation (ddr) for the region, and finally, the eliminating of the displacements from the ddr. The procedure to generate all three types of CC's is presented and illustrated through examples of finite element models. The uniqueness of the CC's thus generated is shown.

  9. Free energy analysis along the stalk mechanism of membrane fusion.

    PubMed

    Kawamoto, Shuhei; Shinoda, Wataru

    2014-05-07

    The free energy profile of the stalk model of membrane fusion has been calculated using coarse-grained molecular dynamics simulations. The proposed method guides the lipid configuration using a guiding wall potential to make the transition from two apposed membranes to a stalk and a fusion pore. The free energy profile is obtained with a thermodynamic integration scheme using the mean force working on the guiding wall as a response of the system. We applied the method to two apposed flat bilayers composed of dioleoyl phosphatidylethanolamine/dioleoyl phosphatidylcholine expanding over the simulation box under the periodic boundary conditions. The two transition states are identified as pre-stalk and pre-pore states. The free energy barrier for the latter is confirmed to be in good agreement with that estimated by the pulling method. The present method provides a practical way to calculate the free energy profile along the stalk mechanism.

  10. Compatibility conditions of structural mechanics for finite element analysis

    NASA Technical Reports Server (NTRS)

    Patnaik, S. N.; Berke, L.; Gallagher, R. H.

    1991-01-01

    The equilibrium equations and the compatibility conditions are fundamental to the analyses of structures. However, anyone who undertakes even a cursory generic study of the compatibility conditions can discover, with little effort, that historically this facet of structural mechanics had not been adequately researched by the profession. Now the compatibility conditions (CC's) have been researched and are understood to a great extent. For finite element discretizations, the CC's are banded and can be divided into three distinct categories: (1) the interface CC's; (2) the cluster or field CC's; and (3) the external CC's. The generation of CC's requires the separating of a local region, then writing the deformation displacement relation (ddr) for the region, and finally, the eliminating of the displacements from the ddr. The procedure to generate all three types of CC's is presented and illustrated through examples of finite element models. The uniqueness of the CC's thus generated is shown.

  11. Thermodynamic Mechanism Analysis of Calcification Roasting Process of Bastnaesite Concentrates

    NASA Astrophysics Data System (ADS)

    Cen, Peng; Wu, Wenyuan; Bian, Xue

    2017-06-01

    A novel calcification roasting decomposition method for bastnaesite concentrates has been proposed previously. In this work, the thermodynamic mechanism was investigated via simultaneous measurements of thermogravimetry and differential thermal analyses, combined with X-ray diffraction analyses. Rare earth oxides and calcium fluorides were generated after bastnaesite and calcium hydroxide broke down, respectively. The generation and decomposition of calcium carbonate occurred at the same time. Considering the difficulties in obtaining pure substances, theoretical calculations were applied to determine the standard enthalpy of formation (Δf H 298), Gibbs free energies of formation (Δf G 298), and heat capacities at constant pressure ( C p) of some rare earth minerals (CeFCO3 and CeOF). Based on these results, the standard Gibbs energy of reaction at different temperatures (Δr G T) was ascertained, and the major reactions were verified to be thermodynamically reasonable.

  12. Hyperthermia of the cancerous breast: analysis of mechanism.

    PubMed

    Anbar, M

    1994-08-29

    Cancerous breast hyperthermia is seemingly associated with non-neurological vasodilation modulated by nitric oxide (NO). NO, associated with enhanced immune response, is produced autocatalytically involving ferritin as the supplier of Fe2+, which catalyses the formation of NO. NO, in turn, releases Fe2+ from ferritin. This mechanism implies: (1) dependence of hyperthermia on the ferritin content of the neoplastic tissue; (2) oscillatory behavior of the hyperperfusion; (3) hyperthermia that extends far beyond the boundaries of the neoplastic tissue; (4) diminished neurological control of the perfusion in the affected breast; (5) limitations on the observed asymmetry between the breasts. These five effects were previously observed in numerous independent studies. Monitoring the temporal behavior of the hyperthermia is expected to substantially increase both sensitivity and specificity of cancer detection.

  13. Analysis of thermal mechanical fatigue in titanium matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. Steven; Mirdamadi, Massoud

    1993-01-01

    Titanium metal matrix composites are being evaluated for structural applications on advanced hypersonic vehicles. These composites are reinforced with ceramic fibers such as silicon carbide, SCS-6. This combination of matrix and fiber results in a high stiffness, high strength composite that has good retention of properties even at elevated temperatures. However, significant thermal stresses are developed within the composite between the fiber and the matrix due to the difference in their respective coefficients of thermal expansion. In addition to the internal stresses that are generated due to thermal cycling, the overall laminate will be subjected to considerable mechanical loads during the thermal cycling. In order to develop life prediction methodology, one must be able to predict the stresses and strains that occur in the composite's constituents during the complex loading. Thus the purpose is to describe such an analytical tool, VISCOPLY.

  14. Analysis of Jovian decametric data: Study of radio emission mechanisms

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.; Arias, T. A.

    1985-01-01

    Data gathered by the Voyager 1 and Voyager 2 Planetary Radio Astronomy Experiments (PRA) are unique in many ways including their frequency range, time resolution, polarization information and geometric characteristics. Studies of rapidly varying phenomena have thus far been hampered by paper display techniques which require large amounts of paper to exploit the full PRA time resolution. A software package capable of effectively displaying full 6s resolution PRA dynamic spectra on a high quality video monitor while compensating for the aforementioned variations was developed. The most striking phenomena revealed by the new display techniques is called Modulated Spectral Activity (MSA) because of its appearance in dynamic spectra as a series at least two parallel emission bands which drift back and forth in frequency on time scales of tens of seconds. In an attempt to locate and understand the MSA source mechanism, a catalogue has been compiled of the start and end of all known MSA events.

  15. Systems analysis of the CO2 concentrating mechanism in cyanobacteria.

    PubMed

    Mangan, Niall; Brenner, Michael

    2014-04-29

    Cyanobacteria are photosynthetic bacteria with a unique CO2 concentrating mechanism (CCM), enhancing carbon fixation. Understanding the CCM requires a systems level perspective of how molecular components work together to enhance CO2 fixation. We present a mathematical model of the cyanobacterial CCM, giving the parameter regime (expression levels, catalytic rates, permeability of carboxysome shell) for efficient carbon fixation. Efficiency requires saturating the RuBisCO reaction, staying below saturation for carbonic anhydrase, and avoiding wasteful oxygenation reactions. We find selectivity at the carboxysome shell is not necessary; there is an optimal non-specific carboxysome shell permeability. We compare the efficacy of facilitated CO2 uptake, CO2 scavenging, and HCO3- transport with varying external pH. At the optimal carboxysome permeability, contributions from CO2 scavenging at the cell membrane are small. We examine the cumulative benefits of CCM spatial organization strategies: enzyme co-localization and compartmentalization. Copyright © 2014, Mangan et al.

  16. Analysis of thermal mechanical fatigue in titanium matrix composites

    NASA Astrophysics Data System (ADS)

    Johnson, W. Steven; Mirdamadi, Massoud

    1993-10-01

    Titanium metal matrix composites are being evaluated for structural applications on advanced hypersonic vehicles. These composites are reinforced with ceramic fibers such as silicon carbide, SCS-6. This combination of matrix and fiber results in a high stiffness, high strength composite that has good retention of properties even at elevated temperatures. However, significant thermal stresses are developed within the composite between the fiber and the matrix due to the difference in their respective coefficients of thermal expansion. In addition to the internal stresses that are generated due to thermal cycling, the overall laminate will be subjected to considerable mechanical loads during the thermal cycling. In order to develop life prediction methodology, one must be able to predict the stresses and strains that occur in the composite's constituents during the complex loading. Thus the purpose is to describe such an analytical tool, VISCOPLY.

  17. Forebrain Mechanisms of Nociception and Pain: Analysis through Imaging

    NASA Astrophysics Data System (ADS)

    Casey, Kenneth L.

    1999-07-01

    Pain is a unified experience composed of interacting discriminative, affective-motivational, and cognitive components, each of which is mediated and modulated through forebrain mechanisms acting at spinal, brainstem, and cerebral levels. The size of the human forebrain in relation to the spinal cord gives anatomical emphasis to forebrain control over nociceptive processing. Human forebrain pathology can cause pain without the activation of nociceptors. Functional imaging of the normal human brain with positron emission tomography (PET) shows synaptically induced increases in regional cerebral blood flow (rCBF) in several regions specifically during pain. We have examined the variables of gender, type of noxious stimulus, and the origin of nociceptive input as potential determinants of the pattern and intensity of rCBF responses. The structures most consistently activated across genders and during contact heat pain, cold pain, cutaneous laser pain or intramuscular pain were the contralateral insula and anterior cingulate cortex, the bilateral thalamus and premotor cortex, and the cerebellar vermis. These regions are commonly activated in PET studies of pain conducted by other investigators, and the intensity of the brain rCBF response correlates parametrically with perceived pain intensity. To complement the human studies, we developed an animal model for investigating stimulus-induced rCBF responses in the rat. In accord with behavioral measures and the results of human PET, there is a progressive and selective activation of somatosensory and limbic system structures in the brain and brainstem following the subcutaneous injection of formalin. The animal model and human PET studies should be mutually reinforcing and thus facilitate progress in understanding forebrain mechanisms of normal and pathological pain.

  18. Design and characteristic analysis of L1B4 ultrasonic motor considering contact mechanism.

    PubMed

    Rho, Jong-Seok; Kim, Byung-Jai; Lee, Chang-Hwan; Joo, Hyun-Woo; Jung, Hyun-Kyo

    2005-11-01

    Up to the present time, the analysis and design of ultrasonic motors (USMs) have been performed using rough analytic methods or commercial analysis tools without considering the complex contact mechanisms. As a result, it was impossible to achieve an exact analysis and design of a USM. In order to address the problem, we proposed the analysis and design methodology of an L1B4 USM using a three-dimensional finite element method combined with an analytic method that considers complex contact mechanisms in linear operation. This methodology is applicable to many other kinds of USMs which use resonance modes and contact mechanisms. Also, we designed and prototyped the mechanical system and driving circuit of the L1B4 USM, and finally validated the proposed analysis and design methodology by comparing their outcomes with experimental data.

  19. Fluorescence anisotropy analysis of the mechanism of action of mesenterocin 52A: speculations on antimicrobial mechanism.

    PubMed

    Jasniewski, Jordane; Cailliez-Grimal, Catherine; Younsi, Mohamed; Millière, Jean-Bernard; Revol-Junelles, Anne-Marie

    2008-11-01

    Mesenterocin 52A (Mes 52A) is a class IIa bacteriocin produced by Leuconostoc mesenteroides subsp. mesenteroides FR52, active against Listeria sp. The interaction of Mes 52A with bacterial membranes of two sensitive Listeria strains has been investigated. The Microbial Adhesion to Solvents test used to study the physico-chemical properties of the surface of the two strains indicated that both surfaces were rather hydrophilic and bipolar. The degree of insertion of Mes 52A in phospholipid bilayer was studied by fluorescence anisotropy measurements using two probes, 1-(4-trimethylammonium)-6-phenyl-1,3,5-hexatriene (TMA-DPH) and DPH, located at different positions in the membrane. TMA-DPH reflects the fluidity at the membrane surface and DPH of the heart. With Listeria ivanovii CIP 12510, Mes 52A induced an increase only in the TMA-DPH fluorescence anisotropy, indicating that this bacteriocin affects the membrane surface without penetration into the hydrophobic core of the membrane. No significant K(+) efflux was measured, whereas the Delta Psi component of the membrane potential was greatly affected. With Listeria innocua CIP 12511, Mes 52A caused an increase in the fluorescence of TMA-DPH and DPH, indicating that this peptide inserts deeply in the cytoplasmic membrane of this sensitive strain. This insertion led to K(+) efflux, without perturbation of Delta pH and a weak modification of Delta Psi, and is consistent with pore formation. These data indicate that Mes 52A interacts at different positions of the membrane, with or without pore formation, suggesting two different mechanisms of action for Mes 52A depending on the target strain.

  20. [A cyberbullying study: Analysis of cyberbullying, comorbidities and coping mechanisms].

    PubMed

    Rémond, J-J; Kern, L; Romo, L

    2015-09-01

    Cyberbullying is a relatively new form of bullying. This bullying is committed by means of an electronic act, the transmission of a communication by message, text, sound, or image by means of an electronic device, including but limited to, a computer phone, wireless telephone, or other wireless communication device, computer, games console or pager. Cyberbullying is characterized by deliberately threatening, harassing, intimidating, or ridiculing an individual or group of individuals; placing an individual in reasonable fear of harm; posting sensitive, private information about another person without his/her permission; breaking into another person's account and/or assuming another individual's identity in order to damage that person's reputation or friendships. A review of the literature shows that between 6 and 40% of all youths have experienced cyberbullying at least once in their lives. Several cyberbullying definitions have been offered in the literature, many of which are derived from definitions of traditional bullying. In our study we asked clear definition of cyberbullying. Few studies explicate the psychosocial determinants of cyberbullying, and coping mechanisms. The authors of the literature recommend developing resiliency, but without analyzing the resilience factor. The first aim of this study was to determine the prevalence of adolescents and adults engaged in cyberbullying. The second aim was to examine the coping mechanisms and comorbidity factors associated with the cyberbullied people. The sample was composed of 272 adolescents (from a high school) and adults (mean age=16.44 ± 1). The Olweus Bully/Victim Questionnaire was used to identify profiles of cyberbullying. Coping mechanisms were investigated using the Hurt Disposition Scale (HDS) and the Brief Resilience Scale (BRS). Comorbidities were assessed using the Hospital Anxiety and Depression Scale (HAD), Liebowitz's Social Anxiety Scale (LSAS), and the Bermond-Vorst Alexithymia Questionnaire

  1. Thermal-mechanical coupled analysis of a brake disk rotor

    NASA Astrophysics Data System (ADS)

    Belhocine, Ali; Bouchetara, Mostefa

    2013-08-01

    The main purpose of this study is to analyze the thermomechanical behavior of the dry contact between the brake disk and pads during the braking phase. The simulation strategy is based on computer code ANSYS11. The modeling of transient temperature in the disk is actually used to identify the factor of geometric design of the disk to install the ventilation system in vehicles The thermal-structural analysis is then used with coupling to determine the deformation and the Von Mises stress established in the disk, the contact pressure distribution in pads. The results are satisfactory when compared to those of the specialized literature.

  2. Fracture mechanics analysis of the dentine-luting cement interface.

    PubMed

    Ryan, A K; Mitchell, C A; Orr, J F

    2002-01-01

    The objectives of this study were to determine the fracture toughness of adhesive interfaces between dentine and clinically relevant, thin layers of dental luting cements. Cements tested included a conventional glass-ionomer, F (Fuji 1), a resin-modified glass-ionomer, FP (Fuji Plus) and a compomer cement, D (DyractCem). Ten miniature short-bar chevron notch specimens were manufactured for each cement, each comprising a 40 microm thick chevron of lute, between two 1.5 mm thick blocks of bovine dentine, encased in resin composite. The interfacial K(IC) results (MN/m3/2) were median (range): F; 0.152 (0.14-0.16), FP; 0.306 (0.27-0.37), D; 0.351 (0.31-0.37). Non-parametric statistical analysis showed that the fracture toughness of F was significantly lower (p <0.05) than those of FP or D, and all were significantly lower than values for monolithic cement specimens. Scanning electron microscopy of the specimens suggested crack propagation along the interface. However, energy dispersive X-ray analysis indicated that failure was cohesive within the cement. It is concluded that the fracture toughness of luting cement was lowered by cement-dentine interactions.

  3. Improved inhomogeneous finite elements for fabric reinforced composite mechanics analysis

    NASA Technical Reports Server (NTRS)

    Foye, R. L.

    1992-01-01

    There is a need to do routine stress/failure analysis of fabric reinforced composite microstructures to provide additional confidence in critical applications and guide materials development. Conventional methods of 3-D stress analysis are time consuming to set up, run and interpret. A need exists for simpler methods of modeling these structures and analyzing the models. The principal difficulty is the discrete element mesh generation problem. Inhomogeneous finite elements are worth investigating for application to these problems because they eliminate the mesh generation problem. However, there are penalties associated with these elements. Their convergence rates can be slow compared to homogeneous elements. Also, there is no accepted method for obtaining detailed stresses in the constituent materials of each element. This paper shows that the convergence rate can be significantly improved by a simple device which substitutes homogeneous elements for the inhomogeneous ones. The device is shown to work well in simple one and two dimensional problems. However, demonstration of the application to more complex two and three dimensional problems remains to be done. Work is also progressing toward more realistic fabric microstructural geometries.

  4. Mechanical and Infrared Thermography Analysis of Shape Memory Polyurethane

    NASA Astrophysics Data System (ADS)

    Pieczyska, Elzbieta Alicja; Maj, Michal; Kowalczyk-Gajewska, Katarzyna; Staszczak, Maria; Urbanski, Leszek; Tobushi, Hisaaki; Hayashi, Shunichi; Cristea, Mariana

    2014-07-01

    Multifunctional new material—polyurethane shape memory polymer (PU-SMP)—was subjected to tension carried out at room temperature at various strain rates. The influence of effects of thermomechanical couplings on the SMP mechanical properties was studied, based on the sample temperature changes, measured by a fast and sensitive infrared camera. It was found that the polymer deformation process strongly depends on the strain rate applied. The initial reversible strain is accompanied by a small drop in temperature, called thermoelastic effect. Its maximal value is related to the SMP yield point and increases upon increase of the strain rate. At higher strains, the stress and temperature significantly increase, caused by reorientation of the polymer molecular chains, followed by the stress drop and its subsequent increase accompanying the sample rupture. The higher strain rate, the higher stress, and temperature changes were obtained, since the deformation process was more dynamic and has occurred in almost adiabatic conditions. The constitutive model of SMP valid in finite strain regime was developed. In the proposed approach, SMP is described as a two-phase material composed of hyperelastic rubbery phase and elastic-viscoplastic glassy phase, while the volume content of phases is specified by the current temperature.

  5. Analysis of Pad Surface Roughness on Copper Chemical Mechanical Planarization

    NASA Astrophysics Data System (ADS)

    Matsumura, Yoshiyuki; Hirao, Takashi; Kinoshita, Masaharu

    2008-04-01

    For Cu high removal rate (RR) chemical mechanical planarization (CMP), the effect of pad surface roughness on Cu RR was investigated. Because surface roughness measured by the stylus profiler and the laser microscope (optical) profiler includes various topographies, it is difficult to conclude which effective roughness parameter affects Cu RR. Accordingly, the measured surface roughness was classified into two types of roughness scales. One is the topography by pores, and the other one is the micro roughness caused by conditioner. These were divided by a wavelength of surface profile. In this result, a stylus profile could not precisely trace two types of roughness scales. On the other hand, an optical magnification of 400 could trace the change in topography by micropores. And an optical magnification of 1000 could trace the change in micro roughness caused by conditioning. In the evaluation of Cu RR and the classified roughness, micro roughness measured by the optical magnification of 1000 was strongly correlated with Cu RR. It is concluded that Cu RR is affected by micro roughness caused by conditioner, and also its roughness is necessary to be measured by an optical profiler at high magnification.

  6. Fracture Mechanics Analysis of LH2 Feed Line Flow Liners

    NASA Technical Reports Server (NTRS)

    James, Mark A.; Dawicke, David S.; Brzowski, Matthew B.; Raju, Ivatury S.; Elliott, Kenny B.; Harris, Charles E.

    2006-01-01

    Inspections of the Space Shuttle Main Engine revealed fatigue cracks growing from slots in the flow liner of the liquid hydrogen (LH2) feed lines. During flight, the flow liners experience complex loading induced by flow of LH2 and the resonance characteristics of the structure. The flow liners are made of Inconel 718 and had previously not been considered a fracture critical component. However, fatigue failure of a flow liner could have catastrophic effect on the Shuttle engines. A fracture mechanics study was performed to determine if a damage tolerance approach to life management was possible and to determine the sensitivity to the load spectra, material properties, and crack size. The load spectra were derived separately from ground tests and material properties were obtained from coupon tests. The stress-intensity factors for the fatigue cracks were determined from a shell-dynamics approach that simulated the dominant resonant frequencies. Life predictions were obtained using the NASGRO life prediction code. The results indicated that adequate life could not be demonstrated for initial crack lengths of the size that could be detected by traditional NDE techniques.

  7. Redox biocatalysis and metabolism: molecular mechanisms and metabolic network analysis.

    PubMed

    Blank, Lars M; Ebert, Birgitta E; Buehler, Katja; Bühler, Bruno

    2010-08-01

    Whole-cell biocatalysis utilizes native or recombinant enzymes produced by cellular metabolism to perform synthetically interesting reactions. Besides hydrolases, oxidoreductases represent the most applied enzyme class in industry. Oxidoreductases are attributed a high future potential, especially for applications in the chemical and pharmaceutical industries, as they enable highly interesting chemistry (e.g., the selective oxyfunctionalization of unactivated C-H bonds). Redox reactions are characterized by electron transfer steps that often depend on redox cofactors as additional substrates. Their regeneration typically is accomplished via the metabolism of whole-cell catalysts. Traditionally, studies towards productive redox biocatalysis focused on the biocatalytic enzyme, its activity, selectivity, and specificity, and several successful examples of such processes are running commercially. However, redox cofactor regeneration by host metabolism was hardly considered for the optimization of biocatalytic rate, yield, and/or titer. This article reviews molecular mechanisms of oxidoreductases with synthetic potential and the host redox metabolism that fuels biocatalytic reactions with redox equivalents. The tools discussed in this review for investigating redox metabolism provide the basis for studies aiming at a deeper understanding of the interplay between synthetically active enzymes and metabolic networks. The ultimate goal of rational whole-cell biocatalyst engineering and use for fine chemical production is discussed.

  8. Mechanisms of change in adolescent life satisfaction: a longitudinal analysis.

    PubMed

    Lyons, Michael D; Huebner, E Scott; Hills, Kimberly J; Van Horn, M Lee

    2013-10-01

    This study explored the psychosocial mechanisms of change associated with differences in levels and linear change of adolescents' global life satisfaction across a 2-year time period. Based on a theoretical model proposed by Evans (1994), this study tested the relations between selected personality (i.e., extraversion and neuroticism) and environmental (stressful life events) variables and global life satisfaction when mediated by internalizing and externalizing problems. The results suggested support for internalizing problems as a mediator of the relationship of personality and environmental variables with life satisfaction. Pathways mediated by internalizing problems significantly predicted levels and linear change of life satisfaction across a 2-year time span. Furthermore, pathways mediated by externalizing problems significantly predicted the level but not the linear change of life satisfaction. Thus, behavior problems and their antecedents appear to relate significantly to adolescents' perceptions of their quality of life. Implications for adolescent mental health promotion were discussed. Copyright © 2013 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  9. Mechanical analysis of lightweight constructions manufactured with fused deposition modeling

    NASA Astrophysics Data System (ADS)

    Bagsik, A.; Josupeit, S.; Schoeppner, V.; Klemp, E.

    2014-05-01

    Additive production techniques have the advantage of manufacturing parts without needing a forming tool. One of the most used additive manufacturing processes is "Fused Deposition Modeling" (FDM) which allows the production of prototypes and end-use parts. Due to the manufacture layer by layer, also complex part geometries can be created in one working step. Furthermore, lightweight parts with specific inner core structures can be manufactured in order to achieve good weightrelated strength properties. In this paper the mechanical behavior of lightweight parts manufactured with the 3D production system Fortus 400mc from Stratasys and the material Polyetherimide (PEI) with the trade name Ultem*9085 is analyzed. The test specimens were built up with different inner structures and building directions. Therefore, test specimens with known lightweight core geometries (e.g. corrugated and honeycomb cores) were designed. A four-point bending test was conducted to analyze the strength properties as well as the weight-related strength properties. Additionally the influence of the structure width, the structure wall thickness and the top layer thickness was analyzed using a honeycomb structure.

  10. High-resolution analysis of the mechanical behavior of tissue

    NASA Astrophysics Data System (ADS)

    Hudnut, Alexa W.; Armani, Andrea M.

    2017-06-01

    The mechanical behavior and properties of biomaterials, such as tissue, have been directly and indirectly connected to numerous malignant physiological states. For example, an increase in the Young's Modulus of tissue can be indicative of cancer. Due to the heterogeneity of biomaterials, it is extremely important to perform these measurements using whole or unprocessed tissue because the tissue matrix contains important information about the intercellular interactions and the structure. Thus, developing high-resolution approaches that can accurately measure the elasticity of unprocessed tissue samples is of great interest. Unfortunately, conventional elastography methods such as atomic force microscopy, compression testing, and ultrasound elastography either require sample processing or have poor resolution. In the present work, we demonstrate the characterization of unprocessed salmon muscle using an optical polarimetric elastography system. We compare the results of compression testing within different samples of salmon skeletal muscle with different numbers of collagen membranes to characterize differences in heterogeneity. Using the intrinsic collagen membranes as markers, we determine the resolution of the system when testing biomaterials. The device reproducibly measures the stiffness of the tissues at variable strains. By analyzing the amount of energy lost by the sample during compression, collagen membranes that are 500 μm in size are detected.

  11. Mechanical analysis of PA66 under combined shear-compression

    NASA Astrophysics Data System (ADS)

    Duan, Qian; Jin, Tao; Chen, Shengjia; Shu, Xuefeng

    2017-05-01

    The large-strain mechanical behavior of PA66 was investigated using shear-compression specimens (SCS) with two opposite slots machined at different angles (15°, 30°, 45°, and 50°). Results show that strain rate and slot angle affect the equivalent stress in different levels. Slot angle sensitivity affects both flow stress and hardening characteristics, and strain rate influences elastic deformation. Increasing the strain rate gradually increases the equivalent stress. SCS with a slot angle of 30° exhibits the largest equivalent stress and the greatest effect of strain rate. The stress-strain curve differs between cylindrical specimens and SCS under quasi-static conditions. The yield stress obtained by the cylindrical specimens is higher than that of SCS. A constitutive model is modified based on the Drucker-Prager criterion to describe the effect of hydrostatic pressure and strain rate on the equivalent yield stress of polymer materials. The theoretical formula predictions are consistent with experimental results, thereby confirming the feasibility of this constitutive relationship.

  12. Analysis of Jovian decametric data: Study of radio emission mechanisms

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.

    1986-01-01

    Catalogues of approx. 200 decametric arcs and approx. 200 gaps between arcs were studied, in an effort to reconcile the data with predictions for the model wherein reflections of Io-induced currents each emit in a conical pattern and yield a distinct radio arc. The most recent interpretations of this data suggest that these Io-produced Alfven waves persist for at least one or two passages of Io, and that the emission cone half angles are approx. 40 to 90 deg., varying from arc to arc. Below 1.2 MHz it was discovered that Jupiter emits radiation strongly modulated in frequency with periods of approx. 200 kHz; this quasi-sinusoidal emission (MSA) can shift more than 180 deg. in phase over periods of 6 seconds, although these shifts are usually much smaller. MSA is not strongly correlated with the longitudes of Io or Jupiter, and typically occurs in patches covering approx. 500 kHz or more for periods of a few minutes. Furthermore, this modulation sometimes resembles a train of impulses in frequency with exponential decays toward high frequencies. Comparison of these results with the previous studies of V-shaped S-bursts is suggestive of an emission mechanism.

  13. Analysis of Jovian decametric data: Study of radio emission mechanisms

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.

    1986-01-01

    Catalogues of approx. 200 decametric arcs and approx. 200 gaps between arcs were studied, in an effort to reconcile the data with predictions for the model wherein reflections of Io-induced currents each emit in a conical pattern and yield a distinct radio arc. The most recent interpretations of this data suggest that these Io-produced Alfven waves persist for at least one or two passages of Io, and that the emission cone half angles are approx. 40 to 90 deg., varying from arc to arc. Below 1.2 MHz it was discovered that Jupiter emits radiation strongly modulated in frequency with periods of approx. 200 kHz; this quasi-sinusoidal emission (MSA) can shift more than 180 deg. in phase over periods of 6 seconds, although these shifts are usually much smaller. MSA is not strongly correlated with the longitudes of Io or Jupiter, and typically occurs in patches covering approx. 500 kHz or more for periods of a few minutes. Furthermore, this modulation sometimes resembles a train of impulses in frequency with exponential decays toward high frequencies. Comparison of these results with the previous studies of V-shaped S-bursts is suggestive of an emission mechanism.

  14. Statistical mechanics analysis of thresholding 1-bit compressed sensing

    NASA Astrophysics Data System (ADS)

    Xu, Yingying; Kabashima, Yoshiyuki

    2016-08-01

    The one-bit compressed sensing framework aims to reconstruct a sparse signal by only using the sign information of its linear measurements. To compensate for the loss of scale information, past studies in the area have proposed recovering the signal by imposing an additional constraint on the l 2-norm of the signal. Recently, an alternative strategy that captures scale information by introducing a threshold parameter to the quantization process was advanced. In this paper, we analyze the typical behavior of thresholding 1-bit compressed sensing utilizing the replica method of statistical mechanics, so as to gain an insight for properly setting the threshold value. Our result shows that fixing the threshold at a constant value yields better performance than varying it randomly when the constant is optimally tuned, statistically. Unfortunately, the optimal threshold value depends on the statistical properties of the target signal, which may not be known in advance. In order to handle this inconvenience, we develop a heuristic that adaptively tunes the threshold parameter based on the frequency of positive (or negative) values in the binary outputs. Numerical experiments show that the heuristic exhibits satisfactory performance while incurring low computational cost.

  15. Prolonged mechanical ventilation after CABG: risk factor analysis.

    PubMed

    Gumus, Funda; Polat, Adil; Yektas, Abdulkadir; Totoz, Tolga; Bagci, Murat; Erentug, Vedat; Alagol, Aysin

    2015-02-01

    Prolonged ventilation (PV) after coronary artery bypass graft (CABG) surgery is a common postoperative complication. Preoperative and operative parameters were evaluated in order to identify the patients at risk for prolonged ventilation postoperatively in coronary artery bypass graft (CABG) patients. Retrospective. Research and training hospital, single institution. The authors analyzed the prospectively collected data of 830 on- and off-pump coronary bypass patients. The relationships of PV (>24 hours) with preoperative and operative parameters were evaluated with logistic regression analysis. Forty-six patients (5.6%) required PV postoperatively. Hospital mortality was significantly higher in this group (45.7% v 4.0%; p = 0.0001). Univariate analysis showed that these patients were older (65.6±9.3 v 60.4±9.9; p = 0.001), had higher incidences of cerebrovascular disease (21.7% v 10.5%; p = 0.032), advanced ASA (58.7% v 41.8%; p = 0.026) and NYHA classes (32.6% v 12.2%; p = 0.001), and chronic renal dysfunction (20.0% v 4.0%; p = 0.0001). Concomitant procedures were more commonly performed in these patients (30.4% v 7.8%; p = 0.0001), and total durations of perfusion were longer (147.2±69.1 v 95.7±33.9 minutes; p = 0.0001). In regression analysis, advanced NYHA class (odds ratio = 8.2; 95% CI = 1.5-43.5; p = 0.015), chronic renal dysfunction (odds ratio = 7.7; 95% CI = 1.3-47.6; p = 0.027), and longer perfusion durations (p = 0.012) were found to be independently associated with delayed weaning from the ventilator. Every 1-minute increase over 82.5 minutes of cardiopulmonary bypass increased risk of delayed extubation by 3.5% (95% CI = 0.8%-6.4%). Postoperative prolonged ventilation is associated with advanced NYHA class, chronic renal dysfunction and longer perfusion times in CABG patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Endocrine-disrupting Chemicals: Review of Toxicological Mechanisms Using Molecular Pathway Analysis

    PubMed Central

    Yang, Oneyeol; Kim, Hye Lim; Weon, Jong-Il; Seo, Young Rok

    2015-01-01

    Endocrine disruptors are known to cause harmful effects to human through various exposure routes. These chemicals mainly appear to interfere with the endocrine or hormone systems. As importantly, numerous studies have demonstrated that the accumulation of endocrine disruptors can induce fatal disorders including obesity and cancer. Using diverse biological tools, the potential molecular mechanisms related with these diseases by exposure of endocrine disruptors. Recently, pathway analysis, a bioinformatics tool, is being widely used to predict the potential mechanism or biological network of certain chemicals. In this review, we initially summarize the major molecular mechanisms involved in the induction of the above mentioned diseases by endocrine disruptors. Additionally, we provide the potential markers and signaling mechanisms discovered via pathway analysis under exposure to representative endocrine disruptors, bisphenol, diethylhexylphthalate, and nonylphenol. The review emphasizes the importance of pathway analysis using bioinformatics to finding the specific mechanisms of toxic chemicals, including endocrine disruptors. PMID:25853100

  17. Dynamic Analysis of AN Automatic Dynamic Balancer for Rotating Mechanisms

    NASA Astrophysics Data System (ADS)

    CHUNG, J.; RO, D. S.

    1999-12-01

    Dynamic stability and behavior of an automatic dynamic balance (ADB) are analyzed by a theoretical approach. Using Lagrange's equation, we derive the non-linear equations of motion for an autonomous system with respect to the polar co-ordinate system. From the equations of motion for the autonomous system, the equilibrium positions and the linear variational equations are obtained by the perturbation method. Based on the variational equations, the dynamic stability of the system in the neighborhood of the equilibrium positions is investigated by the Routh-Hurwitz criteria. The results of the stability analysis provide the design requirements for the ADB to achieve balancing of the system. In addition, in order to verify the stability of the system, time responses are computed by the generalized-α method. We also investigate the dynamic behavior of the system and the effects of damping on balancing.

  18. Fracture Mechanics Analysis of Stitched Stiffener-Skin Debonding

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Raju, I. S.; Poe, C. C., Jr.

    1998-01-01

    An analysis based on plate finite elements and the virtual crack closure technique has been implemented to study the effect of stitching on mode I and mode II strain energy release rates for debond configurations. The stitches were modeled as discrete nonlinear fastener elements with a compliance determined by experiment. The axial and shear behavior of the stitches was considered, however, the two compliances and failure loads were assumed to be independent. Both a double cantilever beam (mode I) and a mixed mode skin-stiffener debond configuration were studied. In the double cantilever beam configurations, G(sub I) began to decrease once the debond had grown beyond the first row of stitches and was reduced to zero for long debonds. In the mixed-mode skin-stiffener configurations, G(sub I) showed a similar behavior as in the double cantilever beam configurations, however, G(sub u), continued to increase with increasing debond length.

  19. Mechanical analysis of the Nautilus leg curl machine.

    PubMed

    Pizzimenti, M A

    1992-03-01

    The present study assessed the capability of the Nautilus leg curl machine to reflect changes in the isokinetic resistance torque offered to the user commensurate with the human torque pattern generated by the knee flexor muscle group. An averaged isokinetic torque pattern was determined from the exercise machine and from a subject pool (N = 20) of physically active men performing prone knee flexion at two angular velocities (30 degrees/s and 60 degrees/s). The torque patterns of the exercise machine and the subject pool were expressed mathematically. Analysis of the linear regression coefficients established that the resistance torque pattern of the exercise machine was not similar to that of the subject pool (p less than .001). It was concluded that the present exercise machine system did not adequately alter the weight-stack load to provide a resistive torque suited to the biomechanical capabilities of the knee flexors under the two isokinetic conditions studied.

  20. Theoretical analysis of hydrogen spillover mechanism on carbon nanotubes

    PubMed Central

    Juarez-Mosqueda, Rosalba; Mavrandonakis, Andreas; Kuc, Agnieszka B.; Pettersson, Lars G. M.; Heine, Thomas

    2015-01-01

    The spillover mechanism of molecular hydrogen on carbon nanotubes in the presence of catalytically active platinum clusters was critically and systematically investigated by using density-functional theory. Our simulation model includes a Pt4 cluster for the catalyst nanoparticle and curved and planar circumcoronene for two exemplary single-walled carbon nanotubes (CNT), the (10,10) CNT and one of large diameter, respectively. Our results show that the H2 molecule dissociates spontaneously on the Pt4 cluster. However, the dissociated H atoms have to overcome a barrier of more than 2 eV to migrate from the catalyst to the CNT, even if the Pt4 cluster is at full saturation with six adsorbed and dissociated hydrogen molecules. Previous investigations have shown that the mobility of hydrogen atoms on the CNT surface is hindered by a barrier. We find that instead the Pt4 catalyst may move along the outer surface of the CNT with activation energy of only 0.16 eV, and that this effect offers the possibility of full hydrogenation of the CNT. Thus, although we have not found a low-energy pathway to spillover onto the CNT, we suggest, based on our calculations and calculated data reported in the literature, that in the hydrogen-spillover process the observed saturation of the CNT at hydrogen background pressure occurs through mobile Pt nanoclusters, which move on the substrate more easily than the substrate-chemisorbed hydrogens, and deposit or reattach hydrogens in the process. Initial hydrogenation of the carbon substrate, however, is thermodynamically unfavoured, suggesting that defects should play a significant role. PMID:25699250

  1. Theoretical analysis of hydrogen spillover mechanism on carbon nanotubes.

    PubMed

    Juarez-Mosqueda, Rosalba; Mavrandonakis, Andreas; Kuc, Agnieszka B; Pettersson, Lars G M; Heine, Thomas

    2015-01-01

    The spillover mechanism of molecular hydrogen on carbon nanotubes in the presence of catalytically active platinum clusters was critically and systematically investigated by using density-functional theory. Our simulation model includes a Pt4 cluster for the catalyst nanoparticle and curved and planar circumcoronene for two exemplary single-walled carbon nanotubes (CNT), the (10,10) CNT and one of large diameter, respectively. Our results show that the H2 molecule dissociates spontaneously on the Pt4 cluster. However, the dissociated H atoms have to overcome a barrier of more than 2 eV to migrate from the catalyst to the CNT, even if the Pt4 cluster is at full saturation with six adsorbed and dissociated hydrogen molecules. Previous investigations have shown that the mobility of hydrogen atoms on the CNT surface is hindered by a barrier. We find that instead the Pt4 catalyst may move along the outer surface of the CNT with activation energy of only 0.16 eV, and that this effect offers the possibility of full hydrogenation of the CNT. Thus, although we have not found a low-energy pathway to spillover onto the CNT, we suggest, based on our calculations and calculated data reported in the literature, that in the hydrogen-spillover process the observed saturation of the CNT at hydrogen background pressure occurs through mobile Pt nanoclusters, which move on the substrate more easily than the substrate-chemisorbed hydrogens, and deposit or reattach hydrogens in the process. Initial hydrogenation of the carbon substrate, however, is thermodynamically unfavoured, suggesting that defects should play a significant role.

  2. Theoretical analysis of hydrogen spillover mechanism on carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Juarez Mosqueda, Rosalba; Mavrandonakis, Andreas; Kuc, Agnieszka; Pettersson, Lars; Heine, Thomas

    2015-02-01

    The spillover mechanism of molecular hydrogen on carbon nanotubes in the presence of catalytically active platinum clusters was critically and systematically investigated by using density-functional theory. Our simulation model includes a Pt4 cluster for the catalyst nanoparticle and curved and planar circumcoronene for two exemplary single-walled carbon nanotubes (CNT), the (10,10) CNT and one of large diameter, respectively. Our results show that the H2 molecule dissociates spontaneously on the Pt4 cluster. However, the dissociated H atoms have to overcome a barrier of more than 2 eV to migrate from the catalyst to the CNT, even if the Pt4 cluster is at full saturation with six adsorbed and dissociated hydrogen molecules. Previous investigations have shown that the mobility of hydrogen atoms on the CNT surface is hindered by a barrier. We find that instead the Pt4 catalyst may move along the outer surface of the CNT with activation energy of only 0.16 eV, and that this effect offers the possibility of full hydrogenation of the CNT. Thus, although we have not found a low-energy pathway to spillover onto the CNT, we suggest, based on our calculations and calculated data reported in the literature, that in the hydrogen-spillover process the observed saturation of the CNT at hydrogen background pressure occurs through mobile Pt nanoclusters, which move on the substrate more easily than the substrate-chemisorbed hydrogens, and deposit or reattach hydrogens in the process. Initial hydrogenation of the carbon substrate, however, is thermodynamically unfavoured, suggesting that defects should play a significant role.

  3. Mechanical Analysis of Cartilage Graft Reinforced with PDS Plate

    PubMed Central

    Conderman, Christian; Kinzinger, Michael; Manuel, Cyrus; Protsenko, Dmitry; Wong, Brian J. F.

    2014-01-01

    Objectives/Hypothesis This study attempts to characterize the biomechanical properties of a PDS-cartilage composite graft for use in septorhinoplasty. Study Design Experimental Study. Methods This study used a PDS analog, porcine cartilage cut to 1 × 5 × 20 mm, and a mechanical testing platform to measure flexure of a composite graft. Samples were assessed in four groups based on variations in suture pattern and orientation. The platform measured the force required to deflect the sample 2 mm in single cantilever beam geometry before and after the polymer was affixed to the specimen. Elastic Moduli were calculated before and after application of the polydioxanone polymer. Results The average modulus of the cartilage alone was 17 ± 0.9 MPa. The modulus of the composite cartilage-polymer graft with 2 suture fixation was 21.2 ± 1.5 MPa. The 3-suture configuration produced an increase to 25.8 ± 2.23 MPa. The four-suture configuration produced 23.1 ± 3.19 MPa. The five-suture configuration produced 25.7 ± 2.6 MPa. The modulus of the analog alone was 170 ± 30 MPa. The modulus of the 0.5 mm PDS was 692 ± 37.4 MPa. The modulus of the 0.15 mm perforated PDS was 447 ± 34.8 MPa. Conclusions The study found that suturing a polymer plate to cartilage resulted in enhanced stiffness of the composite. Under the conditions of the study, there was no significant difference in elastic moduli between suture configurations, making the two-suture linear configuration optimal in the one-plane cantilever deflection model. PMID:22965809

  4. An Historical Perspective on the Theory and Practice of Soil Mechanical Analysis.

    ERIC Educational Resources Information Center

    Miller, W. P.; And Others

    1988-01-01

    Traces the history of soil mechanical analysis. Evaluates this history in order to place current concepts in perspective, from both a research and teaching viewpoint. Alternatives to traditional separation techniques for use in soils teaching laboratories are discussed. (TW)

  5. A Hybrid Approach to Composite Damage and Failure Analysis Combining Synergistic Damage Mechanics and Peridynamics

    DTIC Science & Technology

    2016-03-31

    Damage and Failure Analysis Combining Synergistic Damage Mechanics and Peridynamics 5b. GRANT NUMBER N00014-1 6-1-2173 5c. PROGRAM ELEMENT NUMBER 6...Damage Mechanics and Peridynamics Award Number N00014-16-1-2173 DOD - NAVY- Office of Naval Research PI: Ramesh Talreja Co-PI: Florin Bobaru Executive...local stress states are responsible for the precursor mechanisms that initiate cracks. This task studies the point-failure processes that become critical

  6. A Hybrid Approach to Composite Damage and Failure Analysis Combining Synergistic Damage Mechanics and Peridynamics

    DTIC Science & Technology

    2017-06-30

    to Composite Damage and Failure Analysis Combining Synergistic Damage Mechanics and Peridynamics Sb. GRANT NUMBER N00014- l6- l -2 173 Sc. PROGRAM... Composite Damage and Failure Analysis Combining Synergistic Damage Mechanics and Peridynamics A ward Number 1\\00014-1 6-1-2173 DOD - NAVY -Office of...of interface bonds between different phases in a composite . Task 1.2 Ply level constrained cracking Task 1.1 dealt with initiation of micro-level

  7. Analysis of Composite Panels Subjected to Thermo-Mechanical Loads

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Peters, Jeanne M.

    1999-01-01

    The results of a detailed study of the effect of cutout on the nonlinear response of curved unstiffened panels are presented. The panels are subjected to combined temperature gradient through-the-thickness combined with pressure loading and edge shortening or edge shear. The analysis is based on a first-order, shear deformation, Sanders-Budiansky-type shell theory with the effects of large displacements, moderate rotations, transverse shear deformation, and laminated anisotropic material behavior included. A mixed formulation is used with the fundamental unknowns consisting of the generalized displacements and the stress resultants of the panel. The nonlinear displacements, strain energy, principal strains, transverse shear stresses, transverse shear strain energy density, and their hierarchical sensitivity coefficients are evaluated. The hierarchical sensitivity coefficients measure the sensitivity of the nonlinear response to variations in the panel parameters, as well as in the material properties of the individual layers. Numerical results are presented for cylindrical panels and show the effects of variations in the loading and the size of the cutout on the global and local response quantities as well as their sensitivity to changes in the various panel, layer, and micromechanical parameters.

  8. Price Analysis of Railway Freight Transport under Marketing Mechanism

    NASA Astrophysics Data System (ADS)

    Shi, Ying; Fang, Xiaoping; Chen, Zhiya

    Regarding the problems in the reform of the railway tariff system and the pricing of the transport, by means of assaying the influence of the price elasticity on the artifice used for price, this article proposed multiple regressive model which analyzed price elasticity quantitatively. This model conclude multi-factors which influences on the price elasticity, such as the averagely railway freight charge, the averagely freight haulage of proximate supersede transportation mode, the GDP per capita in the point of origin, and a series of dummy variable which can reflect the features of some productive and consume demesne. It can calculate the price elasticity of different classes in different domains, and predict the freight traffic volume on different rate levels. It can calculate confidence-level, and evaluate the relevance of each parameter to get rid of irrelevant or little relevant variables. It supplied a good theoretical basis for directing the pricing of transport enterprises in market economic conditions, which is suitable for railway freight, passenger traffic and other transportation manner as well. SPSS (Statistical Package for the Social Science) software was used to calculate and analysis the example. This article realized the calculation by HYFX system(Ministry of Railways fund).

  9. Lidov-Kozai Mechanism in Hydrodynamical Disks: Linear Stability Analysis

    NASA Astrophysics Data System (ADS)

    Zanazzi, J. J.; Lai, Dong

    2017-05-01

    Recent SPH simulations by Martin et al. suggest that a circumstellar gaseous disc may exhibit coherent eccentricity-inclination oscillations due to the tidal forcing of an inclined binary companion, in a manner that resembles Lidov-Kozai oscillations in hierarchical triple systems. We carry out linear stability analysis for the eccentricity growth of circumstellar discs in binaries, including the effects of gas pressure and viscosity and secular (orbital-averaged) tidal force from the inclined companion. We find that the growth of disc eccentricity depends on the dimensionless ratio (S) between c_s^2 (the disc sound speed squared) and the tidal torque acting on the disc (per unit mass) from the companion. For S ≪ 1, the standard Lidov-Kozai result is recovered for a thin disc annulus: Eccentricity excitation occurs when the mutual inclination I between the disc and binary lies between 39° and 141°. As S increases, the inclination window for the eccentricity growth generally becomes narrower. For S ≳ a few, eccentricity growth is suppressed for all inclination angles. Surprisingly, we find that for S ˜ 1 and certain disc density/pressure profiles, eccentricity excitation can occur even when I is much less than 39°.

  10. Probabilistic model for fracture mechanics service life analysis

    NASA Technical Reports Server (NTRS)

    Annis, Charles; Watkins, Tommie

    1988-01-01

    The service longevity of complex propulsion systems, such as the Space Shuttle Main Engine (SSME), can be at risk from several competing failure modes. Conventional life assessment practice focuses upon the most severely life-limited feature of a given component, even though there may be other, less severe, potential failure locations. Primary, secondary, tertiary failure modes, as well as their associated probabilities, must also be considered. Futhermore, these probabilities are functions of accumulated service time. Thus a component may not always succumb to the most severe, or even the most probable failure mode. Propulsion system longevity must be assessed by considering simultaneously the actions of, and interactions among, life-limiting influences. These include, but are not limited to, high frequency fatigue (HFF), low cycle fatigue (LCF), and subsequent crack propagation, thermal and acoustic loadings, and the influence of less-than-ideal nondestructive evaluation (NDE). An outline is provided for a probabilistic model for service life analysis, and the progress towards its implementation is reported.

  11. Lidov-Kozai Mechanism in Hydrodynamical Disks: Linear Stability Analysis

    NASA Astrophysics Data System (ADS)

    Zanazzi, J. J.; Lai, Dong

    2017-01-01

    Recent SPH simulations by Martin et al. (2014) suggest a circumstellar gaseous disk may exhibit coherent eccentricity-inclination oscillations due to the tidal forcing of an inclined binary companion, in a manner that resembles Lidov-Kozai oscillations in hierarchical triple systems. We carry out linear stability analysis for the eccentricity growth of circumstellar disks in binaries, including the effects of gas pressure and viscosity and secular (orbital-averaged) tidal force from the inclined companion. We find that the growth of disk eccentricity depends on the dimensionless ratio (S) between c_s^2 (the disk sound speed squared) and the tidal torque acting on the disk (per unit mass) from the companion. For S ≪ 1, the standard Lidov-Kozai result is recovered for a thin disk annulus: eccentricity excitation occurs when the mutual inclination I between the disk and binary lies between 39° and 141°. As S increases, the inclination window for eccentricity growth generally becomes narrower. For S ≳ a few, eccentricity growth is suppressed for all inclination angles. Surprisingly, we find that for S ˜ 1 and certain disk density/pressure profiles, eccentricity excitation can occur even when I is much less than 39°.

  12. Soil mechanics and analysis of soils overlying cavitose bedrock

    SciTech Connect

    Drumm, E.C.

    1987-08-01

    The stability of the residual soils existing at the West Chestnut Ridge Site, Oak Ridge Reservation, Tennessee, was evaluated. The weathered bedrock below this residual soil contains numerous solution cavities, and several karst features were identified. The West Chestnut Ridge site was evaluated with respect to deformation and collapse of the residual soil into the bedrock cavities. A finite element analysis investigated the effects of bedrock cavity radius, thickness of soil overburden, and surface surcharge upon the deformational and stability characteristics of the residual soil. The results indicate that for small cavity radii, the thickness of the soil cover has little effect on the zone of yielded soil. For large cavity radii, a smaller zone of distressed soil occurs under thick soil cover than under thin soil cover. Dimensionless curves are presented to enable the prediction of the vertical extent of the zone of yielded soil for a range of site geometries. Although the thick soil deposits (100 feet or greater) typically found on the ridges result in high stresses adjacent to the cavity, the area of the distressed or yielded soil is small and unlikely to extend to the surface. In addition, the surface deformation or subsidence is expected to be minimal. Thus, the siting of waste facilities on the ridges where the overburden is maximum would tend to reduce the effects of deformation into the cavities. 29 refs., 37 figs., 7 tabs.

  13. [Present status and trend of heart fluid mechanics research based on medical image analysis].

    PubMed

    Gan, Jianhong; Yin, Lixue; Xie, Shenghua; Li, Wenhua; Lu, Jing; Luo, Anguo

    2014-06-01

    With introduction of current main methods for heart fluid mechanics researches, we studied the characteristics and weakness for three primary analysis methods based on magnetic resonance imaging, color Doppler ultrasound and grayscale ultrasound image, respectively. It is pointed out that particle image velocity (PIV), speckle tracking and block match have the same nature, and three algorithms all adopt block correlation. The further analysis shows that, with the development of information technology and sensor, the research for cardiac function and fluid mechanics will focus on energy transfer process of heart fluid, characteristics of Chamber wall related to blood fluid and Fluid-structure interaction in the future heart fluid mechanics fields.

  14. Analysis of thermal-hydrologic-mechanical behavior near an emplacement drift at Yucca Mountain.

    PubMed

    Rutqvist, Jonny; Tsang, Chin-Fu

    2003-01-01

    A coupled thermal, hydrologic and mechanical (THM) analysis is conducted to evaluate the impact of coupled THM processes on the performance of a potential nuclear waste repository at Yucca Mountain, Nevada. The analysis considers changes in rock mass porosity, permeability, and capillary pressure caused by rock deformations during drift excavation, as well as those caused by thermomechanically induced rock deformations after emplacement of the heat-generating waste. The analysis consists of a detailed calibration of coupled hydraulic-mechanical rock mass properties against field experiments, followed by a prediction of the coupled thermal, hydrologic, and mechanical behavior around a potential repository drift. For the particular problem studied and parameters used, the analysis indicates that the stress-induced permeability changes will be within one order of magnitude and that these permeability changes do not significantly impact the overall flow pattern around the repository drift.

  15. Strain analysis of protein structures and low dimensionality of mechanical allosteric couplings.

    PubMed

    Mitchell, Michael R; Tlusty, Tsvi; Leibler, Stanislas

    2016-10-04

    In many proteins, especially allosteric proteins that communicate regulatory states from allosteric to active sites, structural deformations are functionally important. To understand these deformations, dynamical experiments are ideal but challenging. Using static structural information, although more limited than dynamical analysis, is much more accessible. Underused for protein analysis, strain is the natural quantity for studying local deformations. We calculate strain tensor fields for proteins deformed by ligands or thermal fluctuations using crystal and NMR structure ensembles. Strains-primarily shears-show deformations around binding sites. These deformations can be induced solely by ligand binding at distant allosteric sites. Shears reveal quasi-2D paths of mechanical coupling between allosteric and active sites that may constitute a widespread mechanism of allostery. We argue that strain-particularly shear-is the most appropriate quantity for analysis of local protein deformations. This analysis can reveal mechanical and biological properties of many proteins.

  16. Analysis of the vapor-liquid-solid mechanism for nanowire growth and a model for this mechanism.

    PubMed

    Mohammad, S Noor

    2008-05-01

    The vapor-liquid-solid (VLS) mechanism is most widely employed to grow nanowires (NWs). The mechanism uses foreign element catalytic agent (FECA) to mediate the growth. Because of this, it is believed to be very stable with the FECA-mediated droplets not consumed even when reaction conditions change. Recent experiments however differ, which suggest that even under cleanest growth conditions, VLS mechanism may not produce long, thin, uniform, single-crystal nanowires of high purity. The present investigation has addressed various issues involving fundamentals of VLS growth. While addressing these issues, it has taken into consideration the influence of the electrical, hydrodynamic, thermodynamic, and surface tension effects on NW growth. It has found that parameters such as mesoscopic effects on nanoparticle seeds, charge distribution in FECA-induced droplets, electronegativity of the droplet with respect to those of reactive nanowire vapor species, growth temperature, and chamber pressure play important role in the VLS growth. On the basis of an in-depth analysis of various issues, a simple, novel, malleable (SNM) model has been presented for the VLS mechanism. The model appears to explain the formation and observed characteristics of a wide variety of nanowires, including elemental and compound semiconductor nanowires. Also it provides an understanding of the influence of the dynamic behavior of the droplets on the NW growth. This study finds that increase in diameter with time of the droplet of tapered nanowires results primarily from gradual incorporation of oversupplied nanowire species into the FECA-mediated droplet, which is supported by experiments. It finds also that optimum compositions of the droplet constituents are crucial for VLS nanowire growth. An approximate model presented to exemplify the parametric dependency of VLS growth provides good description of NW growth rate as a function of temperature.

  17. Systematic Analysis of the Functional Relevance of Nuclear Structure and Mechanics in Breast Cancer Progression

    DTIC Science & Technology

    2013-07-01

    ANSI Std. Z39.18 Systematic Analysis of the Functional Relevance of Nuclear Structure and Mechanics in Breast Cancer Progression Jan Lammerding... analysis of the functional consequences of changes in the expression of lamins (A, B1, B2, and C) and lamin B receptor on nuclear morphology and...enhanced passage), proliferation, and epithelial-to- mesenchymal transition (EMT). In addition, we proposed to conduct an analysis of samples

  18. NASGRO(registered trademark): Fracture Mechanics and Fatigue Crack Growth Analysis Software

    NASA Technical Reports Server (NTRS)

    Forman, Royce; Shivakumar, V.; Mettu, Sambi; Beek, Joachim; Williams, Leonard; Yeh, Feng; McClung, Craig; Cardinal, Joe

    2004-01-01

    This viewgraph presentation describes NASGRO, which is a fracture mechanics and fatigue crack growth analysis software package that is used to reduce risk of fracture in Space Shuttles. The contents include: 1) Consequences of Fracture; 2) NASA Fracture Control Requirements; 3) NASGRO Reduces Risk; 4) NASGRO Use Inside NASA; 5) NASGRO Components: Crack Growth Module; 6) NASGRO Components:Material Property Module; 7) Typical NASGRO analysis: Crack growth or component life calculation; and 8) NASGRO Sample Application: Orbiter feedline flowliner crack analysis.

  19. Disentangling the ambiguity of the lagged correlation function - analysis of the Walker circulation mechanism

    NASA Astrophysics Data System (ADS)

    Runge, Jakob; Kurths, Jürgen

    2013-04-01

    A first step towards the investigation of tropical climate variability and teleconnections is the analysis of observations. Lagged correlation analysis is commonly used to gain insights into interaction mechanisms between climatological processes, in particular to determine the time delay and strength of a mechanism. In this talk, such an analysis is discussed on the mechanism of the Walker circulation. The influence of serial correlation on lagged correlation functions and regressions is investigated and it is demonstrated how this influence can lead to ambiguous and misleading conclusions about the time delay and strength of an interaction mechanism. To overcome the issues arising in interpreting the lag and strength of a correlation, we propose to use graphical models that encode the lag-specific causality between multiple processes. In this framework a certain partial correlation measure is derived that allows to very specifically measure the time delay and strength of a coupling mechanism. This approach is then shown to yield a more precise picture of the interaction mechanism of the Walker circulation. The talk is intended to serve as a guideline to interpret lagged correlations and regressions and introduces a more powerful approach to analyze time delays and strengths of interaction mechanisms.

  20. Skeletal mechanism generation for surrogate fuels using directed relation graph with error propagation and sensitivity analysis

    SciTech Connect

    Niemeyer, Kyle E.; Sung, Chih-Jen; Raju, Mandhapati P.

    2010-09-15

    A novel implementation for the skeletal reduction of large detailed reaction mechanisms using the directed relation graph with error propagation and sensitivity analysis (DRGEPSA) is developed and presented with examples for three hydrocarbon components, n-heptane, iso-octane, and n-decane, relevant to surrogate fuel development. DRGEPSA integrates two previously developed methods, directed relation graph-aided sensitivity analysis (DRGASA) and directed relation graph with error propagation (DRGEP), by first applying DRGEP to efficiently remove many unimportant species prior to sensitivity analysis to further remove unimportant species, producing an optimally small skeletal mechanism for a given error limit. It is illustrated that the combination of the DRGEP and DRGASA methods allows the DRGEPSA approach to overcome the weaknesses of each, specifically that DRGEP cannot identify all unimportant species and that DRGASA shields unimportant species from removal. Skeletal mechanisms for n-heptane and iso-octane generated using the DRGEP, DRGASA, and DRGEPSA methods are presented and compared to illustrate the improvement of DRGEPSA. From a detailed reaction mechanism for n-alkanes covering n-octane to n-hexadecane with 2115 species and 8157 reactions, two skeletal mechanisms for n-decane generated using DRGEPSA, one covering a comprehensive range of temperature, pressure, and equivalence ratio conditions for autoignition and the other limited to high temperatures, are presented and validated. The comprehensive skeletal mechanism consists of 202 species and 846 reactions and the high-temperature skeletal mechanism consists of 51 species and 256 reactions. Both mechanisms are further demonstrated to well reproduce the results of the detailed mechanism in perfectly-stirred reactor and laminar flame simulations over a wide range of conditions. The comprehensive and high-temperature n-decane skeletal mechanisms are included as supplementary material with this article

  1. Estudo de soluções locais e cosmológicas em teorias do tipo tensor-escalar

    NASA Astrophysics Data System (ADS)

    Silva E Costa, S.

    2003-08-01

    Teorias do tipo tensor-escalar são a mais simples extensão possí vel da Relatividade Geral. Nessas teorias, cujo modelo padrão é a teoria de Brans-Dicke, a curvatura do espaço-tempo, descrita por componentes tensoriais, aparece acoplada a um campo escalar que, de certo modo, representa uma variação na constante de acoplamento da gravitação. Tais teorias apresentam soluções locais e cosmológicas que, em determinados limites, recaem nas apresentadas pela Relatividade Geral, mas que em outros limites trazem novidades, tais como conseqüências observacionais da evolução de flutuações primordiais distintas daquelas previstas pela Relatividade Geral (ver, por ex., Nagata et al., PRD 66, p. 103510 (2002)). Graças a esta possibilidade de trazer à luz novidades em relação à gravitação, teorias do tipo tensor-escalar podem ser vistas como um interessante campo alternativo de pesquisas para soluções dos problemas de massa faltante (ou escura) e/ou energia escura. Seguindo tal linha, este trabalho, ainda em sua fase inicial, apresenta soluções gerais de teorias do tipo tensor-escalar para diversas situações, verificando-se em que consiste a divergência dessas soluções dos casos tradicionais possí veis na Relatividade Geral. Como exemplos das soluções aqui apresentadas pode-se destacar uma expressão geral para diferentes soluções cosmológicas englobando diferentes tipos de matéria (representados por diferentes equações de estado), e a expressão para uma solução local representando um buraco negro com rotação, similar à solução de Kerr da Relatividade Geral. Por fim, é importante ressaltar que, embora aqui apresentem-se poucos resultados novos, na literatura sobre o assunto a maior parte das soluções apresentadas limita-se a uns poucos casos especí ficos, tal como soluções cosmológicas apenas com curvatura nula, e que mesmo as soluções disponí veis são, em geral, pouco divulgadas e, portanto, pouco conhecidas, e

  2. Mechanisms of SN2 reactions: insights from a nearside/farside analysis.

    PubMed

    Hennig, Carsten; Schmatz, Stefan

    2015-10-28

    A nearside/farside analysis of differential cross sections has been performed for the complex-forming SN2 reaction Cl(-) + CH3Br → ClCH3 + Br(-). It is shown that for low rotational quantum numbers a direct "nearside" reaction mechanism plays an important role and leads to anisotropic differential cross sections. For high rotational quantum numbers, indirect mechanisms via a long-lived intermediate complex are prevalent (independent of a nearside/farside configuration), leading to isotropic cross sections. Quantum mechanical interference can be significant at specific energies or angles. Averaging over energies and angles reveals that the nearside/farside decomposition in a semiclassical interpretation can reasonably account for the analysis of the reaction mechanism.

  3. Investigation on design and reliability analysis of a new deployable and lockable mechanism

    NASA Astrophysics Data System (ADS)

    Lin, Qing; Nie, Hong; Ren, Jie; Chen, Jinbao

    2012-04-01

    The traditional structure of the deployable and lockable mechanism on soft-landing gear system is complicated and unreliable. To overcome the defects, a new deployable and lockable mechanism for planetary probes is developed. The compression assembly shares a set of new mechanism with the deployment assembly and locking assembly. The new mechanism shows some advantages: more steady deployment, simpler mechanism and higher reliability. This paper presents an introduction of the deployment and locking theory of the new mechanism, and constitutes the fault tree, which would contribute to qualitative and quantitative analyses. In addition, probability importance and criticality importance of the new mechanism are derived and calculated. The reliability modeling and analysis of the mechanism are accomplished from static torque margin, torque and the work by torque. In investigation results, reliability rate that the new mechanism could deploy successfully is 0.999334. The crucial problems concentrate on the insufficiency of storage force torque of high strength spring, the lubrication failure between the inner cylinder and the outer cylinder of the strut and the stuck soft-landing gear system. And then, the paper presents some improvement approaches and suggestions according to the problems discussed above.

  4. Multiscale Thermo-Mechanical Design and Analysis of High Frequency and High Power Vacuum Electron Devices

    NASA Astrophysics Data System (ADS)

    Gamzina, Diana

    Diana Gamzina March 2016 Mechanical and Aerospace Engineering Multiscale Thermo-Mechanical Design and Analysis of High Frequency and High Power Vacuum Electron Devices Abstract A methodology for performing thermo-mechanical design and analysis of high frequency and high average power vacuum electron devices is presented. This methodology results in a "first-pass" engineering design directly ready for manufacturing. The methodology includes establishment of thermal and mechanical boundary conditions, evaluation of convective film heat transfer coefficients, identification of material options, evaluation of temperature and stress field distributions, assessment of microscale effects on the stress state of the material, and fatigue analysis. The feature size of vacuum electron devices operating in the high frequency regime of 100 GHz to 1 THz is comparable to the microstructure of the materials employed for their fabrication. As a result, the thermo-mechanical performance of a device is affected by the local material microstructure. Such multiscale effects on the stress state are considered in the range of scales from about 10 microns up to a few millimeters. The design and analysis methodology is demonstrated on three separate microwave devices: a 95 GHz 10 kW cw sheet beam klystron, a 263 GHz 50 W long pulse wide-bandwidth sheet beam travelling wave tube, and a 346 GHz 1 W cw backward wave oscillator.

  5. An improved path flux analysis with multi generations method for mechanism reduction

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Gou, Xiaolong

    2016-03-01

    An improved path flux analysis with a multi generations (IMPFA) method is proposed to eliminate unimportant species and reactions, and to generate skeletal mechanisms. The production and consumption path fluxes of each species at multiple reaction paths are calculated and analysed to identify the importance of the species and of the elementary reactions. On the basis of the indexes of each reaction path of the first, second, and third generations, the improved path flux analysis with two generations (IMPFA2) and improved path flux analysis with three generations (IMPFA3) are used to generate skeletal mechanisms that contain different numbers of species. The skeletal mechanisms are validated in the case of homogeneous autoignition and perfectly stirred reactor of methane and n-decane/air mixtures. Simulation results of the skeletal mechanisms generated by IMPFA2 and IMPFA3 are compared with those obtained by path flux analysis (PFA) with two and three generations, respectively. The comparisons of ignition delay times, final temperatures, and temperature dependence on flow residence time show that the skeletal mechanisms generated by the present IMPFA method are more accurate than those obtained by the PFA method, with almost the same number of species under a range of initial conditions. By considering the accuracy and computational efficiency, when using the IMPFA (or PFA) method, three generations may be the best choice for the reduction of large-scale detailed chemistry.

  6. Analysis of cause and mechanism for injection-induced seismicityat the Geysers Geothermal Field, California

    SciTech Connect

    Rutqvist, Jonny; Oldenburg, Curtis

    2007-06-14

    We analyzed relative contributions to the cause andmechanism of injection-induced seismicity at The Geysers geothermalfield, California, using coupled thermal-hydrological-mechanicalmodeling. Our analysis shows that the most important cause forinjection-induced seismicity is injection-induced cooling and associatedthermal-elastic shrinkage that changes the stress state in such a waythat mechanical failure and seismicity can be induced. Specifically, thecooling shrinkage results in unloading and associated loss of shearstrength in critically shear-stressed fractures, which are thenreactivated. Thus, our analysis shows that cooling-induced shear slipalong fractures is the dominant mechanism of injection-induced seismicityat The Geysers.

  7. Independent component analysis based source number estimation and its comparison for mechanical systems

    NASA Astrophysics Data System (ADS)

    Cheng, Wei; Lee, Seungchul; Zhang, Zhousuo; He, Zhengjia

    2012-11-01

    It has been challenging to correctly separate the mixed signals into source components when the source number is not known a priori. In this paper, we propose a novel source number estimation based on independent component analysis (ICA) and clustering evaluation analysis. We investigate and benchmark three information based source number estimations: Akaike information criterion (AIC), minimum description length (MDL) and improved Bayesian information criterion (IBIC). All the above methods are comparatively studied in both numerical and experimental case studies with typical mechanical signals. The results demonstrate that the proposed ICA based source number estimation with nonlinear dissimilarity measures performs more stable and robust than the information based ones for mechanical systems.

  8. The mechanisms of nickel toxicity in aquatic environments: an adverse outcome pathway analysis.

    PubMed

    Brix, Kevin V; Schlekat, Christian E; Garman, Emily R

    2016-12-09

    Current ecological risk assessment and water quality regulations for nickel (Ni) use mechanistically based, predictive tools such as biotic ligand models (BLMs). However, despite many detailed studies, the precise mechanism(s) of Ni toxicity to aquatic organisms remains elusive. This uncertainty in the mechanism(s) of action for Ni has led to concern over the use of tools like the BLM in some regulatory settings. To address this knowledge gap, the authors used an adverse outcome pathway (AOP) analysis, the first AOP for a metal, to identify multiple potential mechanisms of Ni toxicity and their interactions with freshwater aquatic organisms. The analysis considered potential mechanisms of action based on data from a wide range of organisms in aquatic and terrestrial environments on the premise that molecular initiating events for an essential metal would potentially be conserved across taxa. Through this analysis the authors identified 5 potential molecular initiating events by which Ni may exert toxicity on aquatic organisms: disruption of Ca(2+) homeostasis, disruption of Mg(2+) homeostasis, disruption of Fe(2+/3+) homeostasis, reactive oxygen species-induced oxidative damage, and an allergic-type response of respiratory epithelia. At the organ level of biological organization, these 5 potential molecular initiating events collapse into 3 potential pathways: reduced Ca(2+) availability to support formation of exoskeleton, shell, and bone for growth; impaired respiration; and cytotoxicity and tumor formation. At the level of the whole organism, the organ-level responses contribute to potential reductions in growth and reproduction and/or alterations in energy metabolism, with several potential feedback loops between each of the pathways. Overall, the present AOP analysis provides a robust framework for future directed studies on the mechanisms of Ni toxicity and for developing AOPs for other metals. Environ Toxicol Chem 2017;9999:1-10. © 2016 SETAC.

  9. Sample, testing and analysis variables affecting liver mechanical properties: A review.

    PubMed

    Mattei, Giorgio; Ahluwalia, Arti

    2016-11-01

    Given the critical role of liver mechanics in regulating cell response and directing the development of tissue fibrosis, accurately characterising its mechanical behaviour is of relevance for both diagnostic purposes as well as for tissue engineering and for the development of in-vitro models. Determining and quantifying the mechanical behaviour of soft biological tissues is, however, highly challenging due to their intrinsic labile nature. Indeed, a unique set of values of liver mechanical properties is still lacking to date; testing conditions can significantly affect sample status and hence the measured behaviour and reported results are strongly dependent on the adopted testing method and configuration as well as sample type and status. This review aims at summarising the bulk mechanical properties of liver described in the literature, discussing the possible sources of variation and their implications on the reported results. We distinguish between the intrinsic mechanical behaviour of hepatic tissue, which depends on sample variables, and the measured mechanical properties which also depend on the testing and analysis methods. Finally, the review provides guidelines on tissue preparation and testing conditions for generating reproducible data which can be meaningfully compared across laboratories. Soft tissue mechanics is widely investigated, but poorly understood. This review identifies and discusses sample and testing variables which can influence the mechanical behaviour of hepatic tissue and consequently the measured mechanical properties. To encourage the biomaterial community towards more standardized testing of soft tissues and enable comparisons between data from different laboratories, we have established new testing methods and experimental recommendations for sample preparation and testing. The review could be of wide interest to scientists involved in biomaterials research because it addresses and proposes guidelines for several issues related to

  10. A Hybrid Approach to Composite Damage and Failure Analysis Combining Synergistic Damage Mechanics and Peridynamics

    DTIC Science & Technology

    2016-06-30

    composites . However, this temperature can be varied. Today, resins are avai lable to do room temperature curing of thermosetting resins . Therefore, the... Composite Damage and Failure Analysis Combining Synerg istic Damage Mechanics and Peridynamics Sb. GRANT NUMBER N00014-16-1 -2 173 Sc. PROGRAM ELEMENT...by ANSI Std. Z39.18 Quarterly Progress Report, Aprill -June 30, 2016 A Hybrid Approach to Composite Damage and Failure Analysis Combining

  11. Postmodeling Sensitivity Analysis to Detect the Effect of Missing Data Mechanisms

    ERIC Educational Resources Information Center

    Jamshidian, Mortaza; Mata, Matthew

    2008-01-01

    Incomplete or missing data is a common problem in almost all areas of empirical research. It is well known that simple and ad hoc methods such as complete case analysis or mean imputation can lead to biased and/or inefficient estimates. The method of maximum likelihood works well; however, when the missing data mechanism is not one of missing…

  12. Using High Speed Smartphone Cameras and Video Analysis Techniques to Teach Mechanical Wave Physics

    ERIC Educational Resources Information Center

    Bonato, Jacopo; Gratton, Luigi M.; Onorato, Pasquale; Oss, Stefano

    2017-01-01

    We propose the use of smartphone-based slow-motion video analysis techniques as a valuable tool for investigating physics concepts ruling mechanical wave propagation. The simple experimental activities presented here, suitable for both high school and undergraduate students, allows one to measure, in a simple yet rigorous way, the speed of pulses…

  13. Postmodeling Sensitivity Analysis to Detect the Effect of Missing Data Mechanisms

    ERIC Educational Resources Information Center

    Jamshidian, Mortaza; Mata, Matthew

    2008-01-01

    Incomplete or missing data is a common problem in almost all areas of empirical research. It is well known that simple and ad hoc methods such as complete case analysis or mean imputation can lead to biased and/or inefficient estimates. The method of maximum likelihood works well; however, when the missing data mechanism is not one of missing…

  14. Identification of the mechanism underlying a human chimera by SNP array analysis.

    PubMed

    Shin, So Youn; Yoo, Han-Wook; Lee, Beom Hee; Kim, Kun Suk; Seo, Eul-Ju

    2012-09-01

    Human chimerism resulting from the fusion of two different zygotes is a rare phenomenon. Two mechanisms of chimerism have been hypothesized: dispermic fertilization of an oocyte and its second polar body and dispermic fertilization of two identical gametes from parthenogenetic activation, and these can be identified and discriminated using DNA polymorphism. In the present study we describe a patient with chimerism presenting as a true hermaphrodite and applied single nucleotide polymorphism array analysis to demonstrate dispermic fertilization of two identical gametes from parthenogenetic activation as the underlying mechanism at the whole chromosome level. We suggest that application of genotyping array analysis to the diagnostic process in patients with disorders of sex development will help identify more human chimera patients and increase our understanding of the underlying mechanisms.

  15. The research Of Multilayer Thermal Insulation With Mechanical Properties Based On Model Analysis Test

    NASA Astrophysics Data System (ADS)

    Lianhua, Yin

    The heat shield of aircraft is made of the major thrusts structure with multilayer thermal insulation part. For protecting against thermo-radiation from larger thrusting force engine,the heat shield is installed around this engine nearby.The multilayer thermal insulation part with multilayer radiation/reflection structure is made of reflection layer and interval layer.At vacuum condition,these materials is higher heat insulation capability than other material,is applied for lots of pats on aircraft extensively.But because of these material is made of metal and nonmetal,it is impossible to receive it's mechanical properties of materials from mechanical tests.These paper describes a new measure of mechanical properties of materials in the heat shield based on model analysis test.At the requirement for the first order lateral frequency,these measure provide for the FEM analysis foundation on the optimization structure of the heat shield.

  16. Gene expression profile analysis: an emerging approach to investigate mechanisms of genotoxicity.

    PubMed

    Aubrecht, Jiri; Caba, Ebru

    2005-06-01

    The response to stress triggers transcriptional activation of genes involved in cell survival and/or cell death. Thus, the monitoring of gene expression levels in large gene sets or whole genomes in response to various agents (toxicogenomics) has been proposed as a tool for investigating mechanisms of toxicity. Although standard in vitro genetic toxicity testing provides relatively simple and accurate hazard detection, interpretation of positive findings, i.e., in vitro chromosome aberrations, in terms of relevant risk to humans is difficult, due to the limited insight into the underlying mechanisms. Therefore, the development of experimental approaches capable of differentiating a wide range of genotoxic mechanisms is expected to significantly improve risk assessment. The goal of this review is to summarize current developments in toxicogenomic analysis of genotoxic stress, and to provide a perspective on the application of gene expression profile analysis in genetic toxicology.

  17. Analysis and design of a mechanical system to use with the Ronchi and Fizeau tests

    NASA Astrophysics Data System (ADS)

    Galán-Martínez, Arturo D.; Santiago-Alvarado, Agustín.; González-García, Jorge; Cruz-Martínez, Víctor M.; Cordero-Dávila, Alberto; Granados-Agustin, Fermin S.; Robledo-Sánchez, Calos

    2013-11-01

    Nowadays, there is a demand for more efficient opto-mechanical mounts which allow for the implementation of robust optical arrays in a quick and simple fashion. That is to say, mounts are needed which facilitate alignment of the optical components in order to perform the desired movements of each component. Optical testing systems available in the market today are costly, heavy and sometimes require multiple kits depending on the dimensions of the optical components. In this paper, we present the design and analysis of a mechanical system with some interchangeable basic mounts which allow for the application of both Ronchi and Fizeau tests for the evaluation of concave reflective surfaces with a diameter of 2 to 10 cm. The mechanical system design is done using the methodology of product design process, while the analysis is performed using the commercial software SolidWorks.

  18. Mechanical Analysis of the Nb3Sn Dipole Magnet HD1

    SciTech Connect

    Ferracin, Paolo; Bartlett, Scott E.; Caspi, Shlomo; Dietderich, Daniel R.; Gourlay, Steve A.; Hannaford, Charles R.; Hafalia, Aurelio R.; Lietzke, Alan F.; Mattafirri, Sara; Sabbi, Gianluca

    2005-06-01

    The Superconducting Magnet Group at Lawrence Berkeley National Laboratory (LBNL) has recently fabricated and tested HD1, a Nb3Sn dipole magnet. The magnet reached a 16 T field, and exhibited training quenches in the end regions and in the straight section. After the test, HD1 was disassembled and inspected, and a detailed 3D finite element mechanical analysis was done to investigate for possible quench triggers. The study led to minor modifications to mechanical structure and assembly procedure, which were verified in a second test (HD1b). This paper presents the results of the mechanical analysis, including strain gauge measurements and coil visual inspection. The adjustments implemented in the magnet structure are reported and their effect on magnet training discussed.

  19. Mechanical analysis of the Nb3Sn dipole magnet HD1

    SciTech Connect

    Ferracin, Paolo; Bartlett, Scott E.; Caspi, Shlomo; Dietderich,Daniel R.; Gourlay, Steve A.; Hannaford, Carles R.; Hafalia, Aurelio R.; Lietzke, Alan F.; Mattafirri, Sara; Sabbi, Gianluca

    2005-04-14

    The Superconducting Magnet Group at Lawrence Berkeley National Laboratory (LBNL) has recently fabricated and tested HD1, a Nb{sub 3}Sn dipole magnet. The magnet reached a 16 T field, and exhibited training quenches in the end regions and in the straight section. After the test, HD1 was disassembled and inspected, and a detailed 3D finite element mechanical analysis was done to investigate for possible quench triggers. The study led to minor modifications to mechanical structure and assembly procedure, which were verified in a second test (HD1b). This paper presents the results of the mechanical analysis, including strain gauge measurements and coil visual inspection. The adjustments implemented in the magnet structure are reported and their effect on magnet training discussed.

  20. Layerwise mechanics and finite element for the dynamic analysis of piezoelectric composite plates

    NASA Technical Reports Server (NTRS)

    Saravanos, Dimitris A.; Heyliger, Paul R.; Hopkins, Dale A.

    1996-01-01

    Laminate and structural mechanics for the analysis of laminated composite plate structures with piezoelectric actuators and sensors are presented. The theories implement layerwise representations of displacements and electric potential, and can model both the global and local electromechanical response of smart composite laminates. Finite-element formulations are developed for the quasi-static and dynamic analysis of smart composite structures containing piezoelectric layers. Comparisons with an exact solution illustrate the accuracy, robustness and capability of the developed mechanics to capture the global and local response of thin and/or thick laminated piezoelectric plates. Additional correlations and numerical applications demonstrate the unique capabilities of the mechanics in analyzing the static and free-vibration response of composite plates with distributed piezoelectric actuators and sensors.

  1. A Massively Parallel Solver for the Mechanical Harmonic Analysis of Accelerator Cavities

    SciTech Connect

    O. Kononenko

    2015-02-17

    ACE3P is a 3D massively parallel simulation suite that developed at SLAC National Accelerator Laboratory that can perform coupled electromagnetic, thermal and mechanical study. Effectively utilizing supercomputer resources, ACE3P has become a key simulation tool for particle accelerator R and D. A new frequency domain solver to perform mechanical harmonic response analysis of accelerator components is developed within the existing parallel framework. This solver is designed to determine the frequency response of the mechanical system to external harmonic excitations for time-efficient accurate analysis of the large-scale problems. Coupled with the ACE3P electromagnetic modules, this capability complements a set of multi-physics tools for a comprehensive study of microphonics in superconducting accelerating cavities in order to understand the RF response and feedback requirements for the operational reliability of a particle accelerator. (auth)

  2. Analysis of graphite/polyimide rail shear specimens subjected to mechanical and thermal loading. [finite element analysis

    NASA Technical Reports Server (NTRS)

    Weisshaar, T. A.; Garcia, R.

    1979-01-01

    A two-dimensional, linear-elastic, finite element analysis of selected graphite/polyimide rail shear test specimens was made to determine the mechanical loading and the effect of heating the specimen to a uniform temperature. The presence of specimen free edges and their influence on the accuracy of the rail shear test is discussed. Parameters include the length-to-width ratio of the specimen and the ply layup for symmetric, balanced laminates. Results presented include shear and normal stress distributions and the deflection behavior of various specimens caused by the mechanical loading and elevated temperature.

  3. User-defined Material Model for Thermo-mechanical Progressive Failure Analysis

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.

    2008-01-01

    Previously a user-defined material model for orthotropic bimodulus materials was developed for linear and nonlinear stress analysis of composite structures using either shell or solid finite elements within a nonlinear finite element analysis tool. Extensions of this user-defined material model to thermo-mechanical progressive failure analysis are described, and the required input data are documented. The extensions include providing for temperature-dependent material properties, archival of the elastic strains, and a thermal strain calculation for materials exhibiting a stress-free temperature.

  4. Analysis of an evaporator-condenser-separated mechanical vapor compression system

    NASA Astrophysics Data System (ADS)

    Wu, Hong; Li, Yulong; Chen, Jiang

    2013-04-01

    An evaporator-condenser-separated mechanical vapor compression (MVC) system was presented. The better effect of descaling and antiscaling was obtained by the new system. This study focused on the method of thermodynamic analysis, and the energy and exergy flow diagrams were established by using the first and second law of thermodynamics analysis. The results show that the energy utilization rate is very high and the specific power consumption is low. Exergy analysis indicates that the exergy efficiency is low, and the largest exergy loss occurs within the evaporator -condenser and the compressor.

  5. Determination of Mechanical Properties of Porous Silicon with Image Analysis and Finite Element

    NASA Astrophysics Data System (ADS)

    Rahmoun, K.; Faraoun, H. I.; Bassou, G.; Mathieu, C.; Sari, N. E. Chabane

    In order to create equivalent images, a series of SEM micrographs of porous silicon were treated with the image analysis procedure, developed using public domain software "ImageJ". A morphological description was used to reduce the complexity of the microstructure of porous silicon and an image analysis procedure has been established to quantify different geometrical parameters related to the shape, size and orientation distribution. This description allows performing predictive calculation of mechanical properties of porous silicon using finite element analysis. Results are compared with experiment and a good agreement is observed

  6. Workspace Analysis and Optimization of 3-PUU Parallel Mechanism in Medicine Base on Genetic Algorithm

    PubMed Central

    Hou, Yongchao; Zhao, Yang

    2015-01-01

    A novel 3-PUU parallel robot was put forward, on which kinematic analysis was conducted to obtain its inverse kinematics solution, and on this basis, the limitations of the sliding pair and the Hooke joint on the workspace were analyzed. Moreover, the workspace was solved through the three dimensional limit search method, and then optimization analysis was performed on the workspace of this parallel robot, which laid the foundations for the configuration design and further analysis of the parallel mechanism, with the result indicated that this type of robot was equipped with promising application prospect. In addition that, the workspace after optimization can meet more requirements of patients. PMID:26628930

  7. Workspace Analysis and Optimization of 3-PUU Parallel Mechanism in Medicine Base on Genetic Algorithm.

    PubMed

    Hou, Yongchao; Zhao, Yang

    2015-01-01

    A novel 3-PUU parallel robot was put forward, on which kinematic analysis was conducted to obtain its inverse kinematics solution, and on this basis, the limitations of the sliding pair and the Hooke joint on the workspace were analyzed. Moreover, the workspace was solved through the three dimensional limit search method, and then optimization analysis was performed on the workspace of this parallel robot, which laid the foundations for the configuration design and further analysis of the parallel mechanism, with the result indicated that this type of robot was equipped with promising application prospect. In addition that, the workspace after optimization can meet more requirements of patients.

  8. Modeling and analysis of mechanical Quality factor of the resonator for cylinder vibratory gyroscope

    NASA Astrophysics Data System (ADS)

    Xi, Xiang; Wu, Xuezhong; Wu, Yulie; Zhang, Yongmeng

    2017-01-01

    Mechanical Quality factor( Q factor) of the resonator is an important parameter for the cylinder vibratory gyroscope(CVG). Traditional analytical methods mainly focus on a partial energy loss during the vibration process of the CVG resonator, thus are not accurate for the mechanical Q factor prediction. Therefore an integrated model including air damping loss, surface defect loss, support loss, thermoelastic damping loss and internal friction loss is proposed to obtain the mechanical Q factor of the CVG resonator. Based on structural dynamics and energy dissipation analysis, the contribution of each energy loss to the total mechanical Q factor is quantificationally analyzed. For the resonator with radius ranging from 10 mm to 20 mm, its mechanical Q factor is mainly related to the support loss, thermoelastic damping loss and internal friction loss, which are fundamentally determined by the geometric sizes and material properties of the resonator. In addition, resonators made of alloy 3J53 (Ni42CrTiAl), with different sizes, were experimentally fabricated to test the mechanical Q factor. The theoretical model is well verified by the experimental data, thus provides an effective theoretical method to design and predict the mechanical Q factor of the CVG resonator.

  9. Mechanics unloading analysis and experimentation of a new type of parallel biomimetic shoulder complex

    NASA Astrophysics Data System (ADS)

    Hou, Yulei; Li, Zhisen; Wang, Yi; Zhang, Wenwen; Zeng, Daxing; Zhou, Yulin

    2016-07-01

    The structure design for high ratio of carrying capacity to deadweight is one of the challenges for the bionic mechanism, while the problem concerning high carrying capacity has not yet be solved for the existing shoulder complex. A new type biomimetic shoulder complex, which adopts 3-PSS/S(P for prismatic pair, S for spherical pair) spherical parallel mechanism (SPM), is proposed. The static equilibrium equations of each component are established by using the vector method and the equations for constrain forces with certain load are solved. Then the constrain force on the middle limb and that on the side limbs are compared in order to verify the unloading performance of the mechanism. In addition, the prototype mechanism of the shoulder complex is developed, and the force feedback experiment is conducted to verify the static analysis, which indicates that the middle limb suffers most of the external force and the effect of mechanics unloading is achieved. The 3-PSS/S spherical parallel mechanism is presented for the shoulder complex, and the realization of mechanics unloading is benefit for the improvement of the carrying capacity of the shoulder complex.

  10. Postmodeling Sensitivity Analysis to Detect the Effect of Missing Data Mechanisms.

    PubMed

    Jamshidian, Mortaza; Mata, Matthew

    2008-01-01

    Incomplete or missing data is a common problem in almost all areas of empirical research. It is well known that simple and ad hoc methods such as complete case analysis or mean imputation can lead to biased and/or inefficient estimates. The method of maximum likelihood works well; however, when the missing data mechanism is not one of missing completely at random (MCAR) or missing at random (MAR), it too can result in incorrect inference. Statistical tests for MCAR have been proposed, but these are restricted to a certain class of problems. The idea of sensitivity analysis as a means to detect the missing data mechanism has been proposed in the statistics literature in conjunction with selection models where conjointly the data and missing data mechanism are modeled. Our approach is different here in that we do not model the missing data mechanism but use the data at hand to examine the sensitivity of a given model to the missing data mechanism. Our methodology is meant to raise a flag for researchers when the assumptions of MCAR (or MAR) do not hold. To our knowledge, no specific proposal for sensitivity analysis has been set forth in the area of structural equation models (SEM). This article gives a specific method for performing postmodeling sensitivity analysis using a statistical test and graphs. A simulation study is performed to assess the methodology in the context of structural equation models. This study shows success of the method, especially when the sample size is 300 or more and the percentage of missing data is 20% or more. The method is also used to study a set of real data measuring physical and social self-concepts in 463 Nigerian adolescents using a factor analysis model.

  11. A dual analysis for recycled particulate composites: linking micro- and macro-mechanics

    SciTech Connect

    Avila, Antonio F.; Rodrigues, Paulo C.M.; Santos, Dagoberto B.; Faria, Ana C.A

    2003-06-15

    The large amount of disposable bottles produced nowadays makes imperative the search for alternative procedures for recycling them since they are not biodegradable. This paper takes into consideration the thermomechanical recycling of post-consumed plastic bottles, especially the ones made of polyethylene terephthalate (PET) and high-density polyethylene (HDPE), and their use as composite materials for engineering applications. As changes on the composite's microstructure can have an influence on macroscopic behavior, a new type of analysis is needed. To be able to evaluate the composite performance, a dual analysis procedure was developed. It consists of a micro-mechanical analysis where the microstructure is observed by optical microscopy, and variations in morphology are related to composite overall mechanical behavior. The macro-mechanical analysis is performed by ASTM D 3039/3039 M tensile tests. By doing this, the composite effective moduli can be determined. The new composite seems to be encouraging, i.e., an HDPE/PET composite with 40:60 ratio, in weight, experiments a stiffness recovery from the third to the fourth recycle. Moreover, the dual analysis was able to capture this variation.

  12. Microfluidics and cancer analysis: cell separation, cell/tissue culture, cell mechanics, and integrated analysis systems.

    PubMed

    Pappas, Dimitri

    2016-01-21

    Among the growing number of tools available for cancer studies, microfluidic systems have emerged as a promising analytical tool to elucidate cancer cell and tumor function. Microfluidic methods to culture cells have created approaches to provide a range of environments from single-cell analysis to complex three-dimensional devices. In this review we discuss recent advances in tumor cell culture, cancer cell analysis, and advanced studies enabled by microfluidic systems.

  13. Herb-target interaction network analysis helps to disclose molecular mechanism of traditional Chinese medicine

    PubMed Central

    Liang, Hao; Ruan, Hao; Ouyang, Qi; Lai, Luhua

    2016-01-01

    Though many studies have been performed to elucidate molecular mechanism of traditional Chinese medicines (TCMs) by identifying protein-compound interactions, no systematic analysis at herb level was reported. TCMs are prescribed by herbs and all compounds from a certain herb should be considered as a whole, thus studies at herb level may provide comprehensive understanding of TCMs. Here, we proposed a computational strategy to study molecular mechanism of TCM at herb level and used it to analyze a TCM anti-HIV formula. Herb-target network analysis was carried out between 17 HIV-related proteins and SH formula as well as three control groups based on systematic docking. Inhibitory herbs were identified and active compounds enrichment was found to contribute to the therapeutic effectiveness of herbs. Our study demonstrates that computational analysis of TCMs at herb level can catch the rationale of TCM formulation and serve as guidance for novel TCM formula design. PMID:27833111

  14. Analysis of a dynamic speaker in mobile phones by considering mechanical, electrical, and magnetic coupling effects

    NASA Astrophysics Data System (ADS)

    Hwang, G. Y.; Kim, K. T.; Chung, S. U.; Hwang, S. M.; Kang, B. S.; Hwang, I. C.

    2002-05-01

    With the advent of 3G mobile phones, a combined laptop personal computer and mobile phone can be realized that enables multimedia data communication such as TV streaming, web searching, music play, etc. A dynamic speaker is an essential part to generate high quality sound in the next generation mobile phones. Noting that characteristics of a dynamic speaker are a coupled phenomenon of mechanical, electrical, and magnetic system, a systematic analysis must be implemented to fully consider the coupling effects for an improved design. This paper presents a complete analysis of a dynamic speaker by considering mechanical, electrical and magnetic coupling effects. Results of the analysis are confirmed by the experiments. An improved design of a dynamic speaker is also proposed with enhanced performance.

  15. Biomechanical analysis of the human finger extensor mechanism during isometric pressing.

    PubMed

    Hu, Dan; Howard, David; Ren, Lei

    2014-01-01

    This study investigated the effects of the finger extensor mechanism on the bone-to-bone contact forces at the interphalangeal and metacarpal joints and also on the forces in the intrinsic and extrinsic muscles during finger pressing. This was done with finger postures ranging from very flexed to fully extended. The role of the finger extensor mechanism was investigated by using two alternative finger models, one which omitted the extensor mechanism and another which included it. A six-camera three-dimensional motion analysis system was used to capture the finger posture during maximum voluntary isometric pressing. The fingertip loads were recorded simultaneously using a force plate system. Two three-dimensional biomechanical finger models, a minimal model without extensor mechanism and a full model with extensor mechanism (tendon network), were used to calculate the joint bone-to-bone contact forces and the extrinsic and intrinsic muscle forces. If the full model is assumed to be realistic, then the results suggest some useful biomechanical advantages provided by the tendon network of the extensor mechanism. It was found that the forces in the intrinsic muscles (interosseus group and lumbrical) are significantly reduced by 22% to 61% due to the action of the extensor mechanism, with the greatest reductions in more flexed postures. The bone-to-bone contact force at the MCP joint is reduced by 10% to 41%. This suggests that the extensor mechanism may help to reduce the risk of injury at the finger joints and also to moderate the forces in intrinsic muscles. These apparent biomechanical advantages may be a result of the extensor mechanism's distinctive interconnected fibrous structure, through which the contraction of the intrinsic muscles as flexors of the MCP joint can generate extensions at the DIP and PIP joints.

  16. Combined in vivo and ex vivo analysis of mesh mechanics in a porcine hernia model.

    PubMed

    Kahan, Lindsey G; Lake, Spencer P; McAllister, Jared M; Tan, Wen Hui; Yu, Jennifer; Thompson, Dominic; Brunt, L Michael; Blatnik, Jeffrey A

    2017-07-21

    Hernia meshes exhibit variability in mechanical properties, and their mechanical match to tissue has not been comprehensively studied. We used an innovative imaging model of in vivo strain tracking and ex vivo mechanical analysis to assess effects of mesh properties on repaired abdominal walls in a porcine model. We hypothesized that meshes with dissimilar mechanical properties compared to native tissue would alter abdominal wall mechanics more than better-matched meshes. Seven mini-pigs underwent ventral hernia creation and subsequent open repair with one of two heavyweight polypropylene meshes. Following mesh implantation with attached radio-opaque beads, fluoroscopic images were taken at insufflation pressures from 5 to 30 mmHg on postoperative days 0, 7, and 28. At 28 days, animals were euthanized and ex vivo mechanical testing performed on full-thickness samples across repaired abdominal walls. Testing was conducted on 13 mini-pig controls, and on meshes separately. Stiffness and anisotropy (the ratio of stiffness in the transverse versus craniocaudal directions) were assessed. 3D reconstructions of repaired abdominal walls showed stretch patterns. As pressure increased, both meshes expanded, with no differences between groups. Over time, meshes contracted 17.65% (Mesh A) and 0.12% (Mesh B; p = 0.06). Mesh mechanics showed that Mesh A deviated from anisotropic native tissue more than Mesh B. Compared to native tissue, Mesh A was stiffer both transversely and craniocaudally. Explanted repaired abdominal walls of both treatment groups were stiffer than native tissue. Repaired tissue became less anisotropic over time, as mesh properties prevailed over native abdominal wall properties. This technique assessed 3D stretch at the mesh level in vivo in a porcine model. While the abdominal wall expanded, mesh-ingrown areas contracted, potentially indicating stresses at mesh edges. Ex vivo mechanics demonstrate that repaired tissue adopts mesh properties, suggesting

  17. Biomechanical Analysis of the Human Finger Extensor Mechanism during Isometric Pressing

    PubMed Central

    Hu, Dan; Howard, David; Ren, Lei

    2014-01-01

    This study investigated the effects of the finger extensor mechanism on the bone-to-bone contact forces at the interphalangeal and metacarpal joints and also on the forces in the intrinsic and extrinsic muscles during finger pressing. This was done with finger postures ranging from very flexed to fully extended. The role of the finger extensor mechanism was investigated by using two alternative finger models, one which omitted the extensor mechanism and another which included it. A six-camera three-dimensional motion analysis system was used to capture the finger posture during maximum voluntary isometric pressing. The fingertip loads were recorded simultaneously using a force plate system. Two three-dimensional biomechanical finger models, a minimal model without extensor mechanism and a full model with extensor mechanism (tendon network), were used to calculate the joint bone-to-bone contact forces and the extrinsic and intrinsic muscle forces. If the full model is assumed to be realistic, then the results suggest some useful biomechanical advantages provided by the tendon network of the extensor mechanism. It was found that the forces in the intrinsic muscles (interosseus group and lumbrical) are significantly reduced by 22% to 61% due to the action of the extensor mechanism, with the greatest reductions in more flexed postures. The bone-to-bone contact force at the MCP joint is reduced by 10% to 41%. This suggests that the extensor mechanism may help to reduce the risk of injury at the finger joints and also to moderate the forces in intrinsic muscles. These apparent biomechanical advantages may be a result of the extensor mechanism's distinctive interconnected fibrous structure, through which the contraction of the intrinsic muscles as flexors of the MCP joint can generate extensions at the DIP and PIP joints. PMID:24732789

  18. Analysis and inverse substructuring computation on dynamic quality of mechanical assembly

    NASA Astrophysics Data System (ADS)

    Lü, Guangqing; Yi, Chuijie; Fang, Ke

    2016-05-01

    Mechanical assembly has its own dynamic quality directly affecting the dynamic quality of whole product and should be considered in quality inspection and estimation of mechanical assembly. Based on functional relations between dynamic characteristics involved in mechanical assembly, the effects of assembling process on dynamic characteristics of substructural components of an assembly system are investigated by substructuring analysis. Assembly-coupling dynamic stiffness is clarified as the dominant factor of the effects and can be used as a quantitative measure of assembly dynamic quality. Two computational schemes using frequency response functions(FRFs) to determine the stiffness are provided and discussed by inverse substructuring analysis, including their applicable conditions and implementation procedure in application. Eigenvalue analysis on matrix-ratios of FRFs before and after assembling is employed and well validates the analytical outcomes and the schemes via both a lumped-parameter model and its analogic experimental counterpart. Applying the two schemes to inspect the dynamic quality provides the message of dynamic performance of the assembly system, and therefore improves conventional quality inspection and estimation of mechanical assembly in completeness.

  19. Mechanical Response of Silk Crystalline Units from Force-Distribution Analysis

    PubMed Central

    Xiao, Senbo; Stacklies, Wolfram; Cetinkaya, Murat; Markert, Bernd; Gräter, Frauke

    2009-01-01

    The outstanding mechanical toughness of silk fibers is thought to be caused by embedded crystalline units acting as cross links of silk proteins in the fiber. Here, we examine the robustness of these highly ordered β-sheet structures by molecular dynamics simulations and finite element analysis. Structural parameters and stress-strain relationships of four different models, from spider and Bombyx mori silk peptides, in antiparallel and parallel arrangement, were determined and found to be in good agreement with x-ray diffraction data. Rupture forces exceed those of any previously examined globular protein many times over, with spider silk (poly-alanine) slightly outperforming Bombyx mori silk ((Gly-Ala)n). All-atom force distribution analysis reveals both intrasheet hydrogen-bonding and intersheet side-chain interactions to contribute to stability to similar extent. In combination with finite element analysis of simplified β-sheet skeletons, we could ascribe the distinct force distribution pattern of the antiparallel and parallel silk crystalline units to the difference in hydrogen-bond geometry, featuring an in-line or zigzag arrangement, respectively. Hydrogen-bond strength was higher in antiparallel models, and ultimately resulted in higher stiffness of the crystal, compensating the effect of the mechanically disadvantageous in-line hydrogen-bond geometry. Atomistic and coarse-grained force distribution patterns can thus explain differences in mechanical response of silk crystals, opening up the road to predict full fiber mechanics. PMID:19450471

  20. A Symbolic Formulation for Analytical Compliance Analysis and Synthesis of Flexure Mechanisms.

    PubMed

    Su, Hai-Jun; Shi, Hongliang; Yu, Jingjun

    2012-05-01

    This paper presents a symbolic formulation for analytical compliance analysis and synthesis of flexure mechanisms with serial, parallel, or hybrid topologies. Our approach is based on the screw theory that characterizes flexure deformations with motion twists and loadings with force wrenches. In this work, we first derive a symbolic formulation of the compliance and stiffness matrices for commonly used flexure elements, flexure joints, and simple chains. Elements of these matrices are all explicit functions of flexure parameters. To analyze a general flexure mechanism, we subdivide it into multiple structural modules, which we identify as serial, parallel, or hybrid chains. We then analyze each module with the known flexure structures in the library. At last, we use a bottom-up approach to obtain the compliance/stiffness matrix for the overall mechanism. This is done by taking appropriate coordinate transformation of twists and wrenches in space. Four practical examples are provided to demonstrate the approach. A numerical example is employed to compare analytical compliance models against a finite element model. The results show that the errors are sufficiently small (2%, compared with finite element (FE) model), if the range of motion is limited to linear deformations. This work provides a systematical approach for compliance analysis and synthesis of general flexure mechanisms. The symbolic formulation enables subsequent design tasks, such as compliance synthesis or sensitivity analysis.

  1. Mechanical response of silk crystalline units from force-distribution analysis.

    PubMed

    Xiao, Senbo; Stacklies, Wolfram; Cetinkaya, Murat; Markert, Bernd; Gräter, Frauke

    2009-05-20

    The outstanding mechanical toughness of silk fibers is thought to be caused by embedded crystalline units acting as cross links of silk proteins in the fiber. Here, we examine the robustness of these highly ordered beta-sheet structures by molecular dynamics simulations and finite element analysis. Structural parameters and stress-strain relationships of four different models, from spider and Bombyx mori silk peptides, in antiparallel and parallel arrangement, were determined and found to be in good agreement with x-ray diffraction data. Rupture forces exceed those of any previously examined globular protein many times over, with spider silk (poly-alanine) slightly outperforming Bombyx mori silk ((Gly-Ala)(n)). All-atom force distribution analysis reveals both intrasheet hydrogen-bonding and intersheet side-chain interactions to contribute to stability to similar extent. In combination with finite element analysis of simplified beta-sheet skeletons, we could ascribe the distinct force distribution pattern of the antiparallel and parallel silk crystalline units to the difference in hydrogen-bond geometry, featuring an in-line or zigzag arrangement, respectively. Hydrogen-bond strength was higher in antiparallel models, and ultimately resulted in higher stiffness of the crystal, compensating the effect of the mechanically disadvantageous in-line hydrogen-bond geometry. Atomistic and coarse-grained force distribution patterns can thus explain differences in mechanical response of silk crystals, opening up the road to predict full fiber mechanics.

  2. A Taxonomy of Coordination Mechanisms Used in Real-Time Software Based on Domain Analysis

    DTIC Science & Technology

    1993-12-01

    Tsohnlcs Re"s CLVWEI-e3-TR-34 ESC-TR40321 ___ _ai negie-Mellon University --- Software Engineering Institute AD-A279 014 ELECTE fMAY. 8(IS 4uB Il A...Taxonomy of Coordinai-tibon Mechanisms Used in Real-Time Software Based on Domain "Analysis / Jose L. Fernandez December 1993 / for ei)94-13600 94/\\,,5...0 8 Technical Report CMU/SEI-93-TR-34 ESC-TR-93-321 December 1993 A Taxonomy of Coordination Mechanisms Used in Real-Time Software Based on Domain

  3. Research in progress in applied mathematics, numerical analysis, fluid mechanics, and computer science

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1993 through March 31, 1994. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.

  4. Experimental analysis of the self-erection mechanism of self-erecting cranes

    NASA Astrophysics Data System (ADS)

    Dima, M.; Frâncu, C.

    2016-08-01

    In this paper is presented the experimental analysis of the self-erection mechanism of the self-erecting cranes for the erection process from the transport to the building site state to the normal working state. The force in the rod of the erection hydraulic cylinder and the stress and strain on one of the mechanism's bars were determined experimentally. Measuring the stress and strain was carried out by using strain gauges bonded to the measured element and by using data acquisition equipment. The measurements were carried out in real working conditions on a Potain Igo 18 in a working building site.

  5. Using high speed smartphone cameras and video analysis techniques to teach mechanical wave physics

    NASA Astrophysics Data System (ADS)

    Bonato, Jacopo; Gratton, Luigi M.; Onorato, Pasquale; Oss, Stefano

    2017-07-01

    We propose the use of smartphone-based slow-motion video analysis techniques as a valuable tool for investigating physics concepts ruling mechanical wave propagation. The simple experimental activities presented here, suitable for both high school and undergraduate students, allows one to measure, in a simple yet rigorous way, the speed of pulses along a spring and the period of transverse standing waves generated in the same spring. These experiments can be helpful in addressing several relevant concepts about the physics of mechanical waves and in overcoming some of the typical student misconceptions in this same field.

  6. Dynamic analysis of six-bar mechanical press for deep drawing

    NASA Astrophysics Data System (ADS)

    Mitsi, S.; Tsiafis, I.; Bouzakis, K. D.

    2017-02-01

    This paper analyzes the dynamical behavior of a six-bar linkage used in mechanical presses for metal forming such as deep drawing. In the under study mechanism, a four-bar linkage is connected to a slider through an articulated binary link. The motion of the six-bar linkage is studied by kinematic analysis developing an analytical method. Furthermore, using an iterative method and d’ Alembert’s principle, the joint forces and drive moment are evaluated considering joint frictions. The simulation results obtained with a MATLAB program are validated by comparing the theoretical values of the input moment with the ones obtained from the conservation of energy law.

  7. Analysis and optimal design of an underactuated finger mechanism for LARM hand

    NASA Astrophysics Data System (ADS)

    Yao, Shuangji; Ceccarelli, Marco; Carbone, Giuseppe; Zhan, Qiang; Lu, Zhen

    2011-09-01

    This paper aims to present general design considerations and optimality criteria for underactuated mechanisms in finger designs. Design issues related to grasping task of robotic fingers are discussed. Performance characteristics are outlined as referring to several aspects of finger mechanisms. Optimality criteria of the finger performances are formulated after careful analysis. A general design algorithm is summarized and formulated as a suitable multi-objective optimization problem. A numerical case of an underactuated robot finger design for Laboratory of Robotics and Mechatronics (LARM) hand is illustrated with the aim to show the practical feasibility of the proposed concepts and computations.

  8. Deflection Analysis of the Space Shuttle External Tank Door Drive Mechanism

    NASA Technical Reports Server (NTRS)

    Tosto, Michael A.; Trieu, Bo C.; Evernden, Brent A.; Hope, Drew J.; Wong, Kenneth A.; Lindberg, Robert E.

    2008-01-01

    Upon observing an abnormal closure of the Space Shuttle s External Tank Doors (ETD), a dynamic model was created in MSC/ADAMS to conduct deflection analyses of the Door Drive Mechanism (DDM). For a similar analysis, the traditional approach would be to construct a full finite element model of the mechanism. The purpose of this paper is to describe an alternative approach that models the flexibility of the DDM using a lumped parameter approximation to capture the compliance of individual parts within the drive linkage. This approach allows for rapid construction of a dynamic model in a time-critical setting, while still retaining the appropriate equivalent stiffness of each linkage component. As a validation of these equivalent stiffnesses, finite element analysis (FEA) was used to iteratively update the model towards convergence. Following this analysis, deflections recovered from the dynamic model can be used to calculate stress and classify each component s deformation as either elastic or plastic. Based on the modeling assumptions used in this analysis and the maximum input forcing condition, two components in the DDM show a factor of safety less than or equal to 0.5. However, to accurately evaluate the induced stresses, additional mechanism rigging information would be necessary to characterize the input forcing conditions. This information would also allow for the classification of stresses as either elastic or plastic.

  9. Analysis of single-molecule mechanical measurements with high spatio-temporal resolution

    NASA Astrophysics Data System (ADS)

    Capitanio, Marco; Gardini, Lucia; Pavone, Francesco S.

    2013-09-01

    Optical tweezers allow recording mechanical data from single biological molecules such as molecular motors, DNA processing enzymes, nucleic acids. Such data consist of time series that are dominated by thermal noise and such noisy recordings require proper analysis to correctly extract kinetic and mechanical information. Several different analysis approaches have been established in the past years. Here, we propose an analysis method for optical trapping recordings of non-processive motor proteins. The method does not assume any particular interaction kinetics, allows detection of sub-millisecond interactions and quantification of the number of false and lost events. Precise alignment of interaction events and ensemble averaging allow the investigation of the stepping dynamics of non-processive motors with a temporal resolution of few tens of microseconds and a spatial resolution of few angstroms. Our analysis is applied to the study of the motor protein myosin from fast skeletal muscle. Thanks to the high spatio-temporal resolution, we can distinguish three mechanical pathways in the acto-myosin interaction, with several orders of magnitude different kinetics, which contribute in a load-dependent manner to the myosin working stroke.

  10. Finite element cochlea box model - Mechanical and electrical analysis of the cochlea

    NASA Astrophysics Data System (ADS)

    Nikolic, Milica; Teal, Paul D.; Isailovic, Velibor; Filipović, Nenad

    2015-12-01

    The primary role of the cochlea is to transform external sound stimuli into mechanical vibrations and then to neural impulses which are sent to the brain. A simplified cochlea box model was developed using the finite element method. Firstly, a mechanical model of the cochlea was analyzed. The box model consists of the basilar membrane and two fluid chambers - the scala vestibuli and scala tympani. The third chamber, the scala media, was neglected in the mechanical analysis. The best agreement with currently available analytical and experimental results was obtained when behavior of the fluid in the chambers was described using the wave acoustic equation and behavior of the basilar membrane was modeled with Newtonian dynamics. The obtained results show good frequency mapping. The second approach was to use an active model of the cochlea in which the Organ of Corti was included. The operation of the Organ of Corti involves the generation of current, caused by mechanical vibration. This current in turn causes a force applied to the basilar membrane, creating in this way an active feedback mechanism. A state space representation of the electro-mechanical model from existing literature was implemented and a first comparison with the finite element method is presented.

  11. Transcriptome Analysis Reveals Silver Nanoparticle-Decorated Quercetin Antibacterial Molecular Mechanism.

    PubMed

    Sun, Dongdong; Zhang, Weiwei; Mou, Zhipeng; Chen, Ying; Guo, Feng; Yang, Endong; Wang, Weiyun

    2017-03-22

    Facile and simple method is developed to synthesize silver-nanoparticle-decorated quercetin nanoparticles (QA NPs). Modification suggests that synergistic quercetin (Qe) improves the antibacterial effect of silver nanoparticles (Ag NPs). Characterization experiment indicates that QA NPs have a diameter of approximately 10 nm. QA NPs show highly effective antibacterial activities against drug-resistant Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). We explore antibacterial mechanisms using S. aureus and E. coli treated with QA NPs. Through morphological changes in E. coli and S. aureus, mechanisms are examined for bacterial damage caused by particulate matter from local dissociation of silver ion and Qe from QA NPs trapped inside membranes. Moreover, we note that gene expression profiling methods, such as RNA sequencing, can be used to predict discover mechanisms of toxicity of QA NPs. Gene ontology (GO) assay analyses demonstrate the molecular mechanism of the antibacterial effect of QA NPs. Regarding cellular component ontology, "cell wall organization or biogenesis" (GO: 0071554) and "cell wall macromolecule metabolic process" (GO: 0044036) are the most represented categories. The present study reports that transcriptome analysis of the mechanism offers novel insights into the molecular mechanism of antibacterial assays.

  12. Multistate Mechanism of Lysozyme Denaturation through Synchronous Analysis of Raman Spectra.

    PubMed

    Xing, Lei; Lin, Ke; Zhou, Xiaoguo; Liu, Shilin; Luo, Yi

    2016-10-10

    The denaturation mechanism of hen egg lysozyme is still controversial. In this study, Raman spectroscopy was employed to study the thermal and chemical denaturation mechanisms of lysozyme. All of the Raman bands were synchronously recorded and analyzed during the denaturation process. It was found that the Raman bands of the side groups changed before the bands of skeleton groups. This directly reveals the three-state mechanism of thermal denaturation of lysozyme. The preferential change of the side groups was also observed in the chemical denaturation of lysozyme by guanidine hydrochloride. Moreover, it was found that the Raman bands of the groups on the surface of lysozyme changed before those of the other groups. This indicates that the chemical denaturants interact with the protein surface before the protein core in each step and the chemical denaturation of lysozyme conforms to the multistate and outside-in mechanisms. The synchronous Raman study not only reveals the multistate mechanism of lysozyme denaturation but also demonstrates that this synchronous Raman analysis is a powerful method to study the denaturation mechanisms of other proteins.

  13. Mechanical evaluation and fem analysis of stress in fixed partial dentures zirconium-ceramic.

    PubMed

    Cardelli, P L; Vertucci, V; Balestra, F; Montani, M; Arcuri, C

    2013-03-01

    Over the last several years, the Finite Element Analysis (FEM) has been widely recognized as a reference method in different fields of study, to simulate the distribution of mechanical stress, in order to evaluate the relative distribution of loads of different nature. The aim of this study is to investigate through the FEM analysis the stress distribution in fixed prostheses that have a core in Zirconia and a ceramic veneer supported by implants. In this work we investigated the mechanical flexural strength of a ceramic material (Noritake(®)) and a of zirconium framework (Zircodent(®)) and the effects of the manufacturing processes of the material commonly performed during the production of fixed prostheses with CAD/CAM technology. Specifically three point bending mechanical tests were performed (three-point-bending) (1-3), using a machine from Test Equipment Instron 5566(®), on two structures in zirconium framework-ceramic (structures supported by two implant abutments with pontic elements 1 and 2). A further in-depth analysis on the mechanical behavior in flexure of the specimens was conducted carrying out FEM studies in order to compare analog and digital data. The analysis of the data obtained showed that the stresses are distributed in a different way according to the intrinsic elasticity of the structure. The analysis of FPD with four elements, the stresses are mainly concentrated on the surface of the load, while, in the FPD of three elements, much more rigid, the stresses are concentrated near the inner margins of the abutments. The concentration of many stresses in this point could be correlated to chipping (4) that is found in the outer edges of the structure, as a direct result of the ceramic brittleness which opposes the resilience of the structure subjected to bending. The analysis of the UY linear displacement confirms previous data, showing, in a numerical way, that the presence of the ceramic is related to the lowering of the structure. So, the

  14. Mechanical evaluation and fem analysis of stress in fixed partial dentures zirconium-ceramic

    PubMed Central

    CARDELLI, P.L.; VERTUCCI, V.; BALESTRA, F.; MONTANI, M.; ARCURI, C.

    2013-01-01

    SUMMARY Objective. Over the last several years, the Finite Element Analysis (FEM) has been widely recognized as a reference method in different fields of study, to simulate the distribution of mechanical stress, in order to evaluate the relative distribution of loads of different nature. The aim of this study is to investigate through the FEM analysis the stress distribution in fixed prostheses that have a core in Zirconia and a ceramic veneer supported by implants. Materials and methods. In this work we investigated the mechanical flexural strength of a ceramic material (Noritake®) and a of zirconium framework (Zircodent®) and the effects of the manufacturing processes of the material commonly performed during the production of fixed prostheses with CAD/CAM technology. Specifically three point bending mechanical tests were performed (three-point-bending) (1–3), using a machine from Test Equipment Instron 5566®, on two structures in zirconium framework-ceramic (structures supported by two implant abutments with pontic elements 1 and 2). A further in-depth analysis on the mechanical behavior in flexure of the specimens was conducted carrying out FEM studies in order to compare analog and digital data. Results. The analysis of the data obtained showed that the stresses are distributed in a different way according to the intrinsic elasticity of the structure. The analysis of FPD with four elements, the stresses are mainly concentrated on the surface of the load, while, in the FPD of three elements, much more rigid, the stresses are concentrated near the inner margins of the abutments. The concentration of many stresses in this point could be correlated to chipping (4) that is found in the outer edges of the structure, as a direct result of the ceramic brittleness which opposes the resilience of the structure subjected to bending. Conclusions. The analysis of the UY linear displacement confirms previous data, showing, in a numerical way, that the presence of the

  15. A Multi Material Shell Model for the Mechanical Analysis of Triaxial Braided Composites

    NASA Astrophysics Data System (ADS)

    García-Carpintero, A.; Herráez, M.; Xu, J.; S. Lopes, C.; González, C.

    2017-03-01

    An efficient numerical methodology based on a multi material shell (MMS) approximation is proposed in this paper for the analysis of the mechanical behavior of triaxial braided composites subjected to tensile loads. The model is based on a geometrical description of the textile architecture of the material at the Gauss point level of a standard shell including the corresponding yarn geometrical parameters. The mechanical properties at the yarn level were determined from values reported in the literature or by means of micromechanical homogenization of unidirectional fiber reinforced composites. Simulations were carried out on single representative unit cell subjected to periodic boundary conditions and on multiple cell representative volume elements corresponding to the size of the standard width of a tensile specimen. The numerical results were compared with the stress-strain curves obtained experimentally as well as the damage mechanisms progression during deformation captured using radiographs performed on interrupted tests.

  16. Three-phase electrical signals analysis for mechanical faults monitoring in rotating machine systems

    NASA Astrophysics Data System (ADS)

    Cablea, Georgia; Granjon, Pierre; Bérenguer, Christophe

    2017-08-01

    The current paper proposes a method to detect mechanical faults in rotating machines using three-phase electrical currents analysis. The proposed fault indicator relies on the use of instantaneous symmetrical components (ISCs), followed by a demodulation step enhancing the small modulations generated in electrical signals by mechanical faults. The limitations due to the multi-component nature of electrical signals, as well as to the noise naturally present in the measured signals are studied and taken into account in order to elaborate a proper and efficient algorithm to compute a mechanical fault indicator. It is theoretically shown that the ISCs based approach results in an increase of the signal-to-noise ratio compared to a single-phase approach, finally leading to an improvement of early fault detection capabilities. This result is validated using both synthetic and experimental signals where the proposed method is used to detect bearing faults and the obtained results are compared to single-phase results.

  17. Progressive damage analysis of carbon/epoxy laminates under couple laser and mechanical loading

    NASA Astrophysics Data System (ADS)

    Liu, Wanlei; Chang, Xinlong; Zhang, Xiaojun; Zhang, Youhong

    A multiscale model based bridge theory is proposed for the progressive damage analysis of carbon/epoxy laminates under couple laser and mechanical loading. The ablation model is adopted to calculate ablation temperature changing and ablation surface degradation. The polynomial strengthening model of matrix is used to improve bridging model for reducing parameter input. Stiffness degradation methods of bridging model are also improved in order to analyze the stress redistribution more accurately when the damage occurs. Thermal-mechanical analyses of the composite plate are performed using the ABAQUS/Explicit program with the developed model implemented in the VUMAT. The simulation results show that this model can be used to proclaim the mesoscale damage mechanism of composite laminates under coupled loading.

  18. Analysis of Parallelogram Mechanism used to Preserve Remote Center of Motion for Surgical Telemanipulator

    NASA Astrophysics Data System (ADS)

    Trochimczuk, R.

    2017-02-01

    This paper presents an analysis of a parallelogram mechanism commonly used to provide a kinematic remote center of motion in surgical telemanipulators. Selected types of parallel manipulator designs, encountered in commercial and laboratory-made designs described in the medical robotics literature, will serve as the research material. Among other things, computer simulations in the ANSYS 13.0 CAD/CAE software environment, employing the finite element method, will be used. The kinematics of the solution of manipulator with the parallelogram mechanism will be determined in order to provide a more complete description. These results will form the basis for the decision regarding the possibility of applying a parallelogram mechanism in an original prototype of a telemanipulator arm.

  19. Energy transfer mechanism and probability analysis of submarine pipe laterally impacted by dropped objects

    NASA Astrophysics Data System (ADS)

    Liang, Jing; Yu, Jian-xing; Yu, Yang; Lam, W.; Zhao, Yi-yu; Duan, Jing-hui

    2016-06-01

    Energy transfer ratio is the basic-factor affecting the level of pipe damage during the impact between dropped object and submarine pipe. For the purpose of studying energy transfer and damage mechanism of submarine pipe impacted by dropped objects, series of experiments are designed and carried out. The effective yield strength is deduced to make the quasi-static analysis more reliable, and the normal distribution of energy transfer ratio caused by lateral impact on pipes is presented by statistic analysis of experimental results based on the effective yield strength, which provides experimental and theoretical basis for the risk analysis of submarine pipe system impacted by dropped objects. Failure strains of pipe material are confirmed by comparing experimental results with finite element simulation. In addition, impact contact area and impact time are proved to be the major influence factors of energy transfer by sensitivity analysis of the finite element simulation.

  20. OTU Deubiquitinases Reveal Mechanisms of Linkage Specificity and Enable Ubiquitin Chain Restriction Analysis

    PubMed Central

    Mevissen, Tycho E.T.; Hospenthal, Manuela K.; Geurink, Paul P.; Elliott, Paul R.; Akutsu, Masato; Arnaudo, Nadia; Ekkebus, Reggy; Kulathu, Yogesh; Wauer, Tobias; El Oualid, Farid; Freund, Stefan M.V.; Ovaa, Huib; Komander, David

    2013-01-01

    Summary Sixteen ovarian tumor (OTU) family deubiquitinases (DUBs) exist in humans, and most members regulate cell-signaling cascades. Several OTU DUBs were reported to be ubiquitin (Ub) chain linkage specific, but comprehensive analyses are missing, and the underlying mechanisms of linkage specificity are unclear. Using Ub chains of all eight linkage types, we reveal that most human OTU enzymes are linkage specific, preferring one, two, or a defined subset of linkage types, including unstudied atypical Ub chains. Biochemical analysis and five crystal structures of OTU DUBs with or without Ub substrates reveal four mechanisms of linkage specificity. Additional Ub-binding domains, the ubiquitinated sequence in the substrate, and defined S1’ and S2 Ub-binding sites on the OTU domain enable OTU DUBs to distinguish linkage types. We introduce Ub chain restriction analysis, in which OTU DUBs are used as restriction enzymes to reveal linkage type and the relative abundance of Ub chains on substrates. PMID:23827681

  1. Mouse tetrad analysis provides insights into recombination mechanisms and hotspot evolutionary dynamics.

    PubMed

    Cole, Francesca; Baudat, Frédéric; Grey, Corinne; Keeney, Scott; de Massy, Bernard; Jasin, Maria

    2014-10-01

    The ability to examine all chromatids from a single meiosis in yeast tetrads has been indispensable for defining the mechanisms of homologous recombination initiated by DNA double-strand breaks (DSBs). Using a broadly applicable strategy for the analysis of chromatids from a single meiosis at two recombination hotspots in mouse oocytes and spermatocytes, we demonstrate here the unidirectional transfer of information-gene conversion-in both crossovers and noncrossovers. Whereas gene conversion in crossovers is associated with reciprocal exchange, the unbroken chromatid is not altered in noncrossover gene conversion events, providing strong evidence that noncrossovers arise from a distinct pathway. Gene conversion frequently spares the binding site of the hotspot-specifying protein PRDM9, with the result that erosion of the hotspot is slowed. Thus, mouse tetrad analysis demonstrates how unique aspects of mammalian recombination mechanisms shape hotspot evolutionary dynamics.

  2. Mechanical analysis of asphalt stabilized permeable base to inhibit reflective cracking

    NASA Astrophysics Data System (ADS)

    Luo, Min

    2017-09-01

    Asphalt stabilized drainage base has good drainage performance, can effectively rule out the water in pavement structure, reduce the occurrence of water damage, and maintain good pavement performance. Based on the mechanical analysis of the affect of asphalt stabilized permeable base on the inhibition of reflection crack, using the finite element software to simulate the stress characteristics of the asphalt and to do the mechanical analysis of asphalt pavement cracks at the grass-roots level to the pavement after stretching process, by comparing the pavement crack tip stress intensity factor of original pavement structure and set up the ATPB layer, respectively, to study the effect of asphalt stabilized permeable base on inhibition of reflection cracking.

  3. [Mass Spectrometric Methods for Colorative Mechanism Analysis of Yaozhou Porcelain Glaze].

    PubMed

    Xiao, Yuan-fang; He, Miao-hong; Zhang, Shu-di; Hang, Wei

    2015-09-01

    An in-house-built femtosecond laser ionization time-of-flight mass spectrometry (fs-LI-TOFMS) has been applied to the multi-elemental analysis of porcelain glaze from Yaozhou kiln. The samples are selected representing products of different dynasties, including Tang, Five, Song, Jin, and Ming Dynasty. For exploring the colorative mechanism of Yaozhou porcelain through the elemental analysis of the glaze, the effects of all potential coloring elements, especially transition elements, were considered. There was a speculation that the typical Co-Cr-Fe-Mn recipe was used in the fabrication of Yaozhou black glaze; the low content of Fe and high content of Ni resulted in the porcelain of white glaze; an increase content of P could lead the porcelain to be yellow-glazed. Undoubtedly, this research is an important supplement to the study of the colorative mechanism of the Yaozhou porcelain system.

  4. Application of Homotopy analysis method for mechanical model of deepwater SCR installation

    NASA Astrophysics Data System (ADS)

    You, Xiangcheng; Xu, Hang

    2012-09-01

    In this paper, considering the process of deepwater SCR installation with the limitations of small deformation theory of beam and catenary theory, a mechanical model of deepwater SCR installation is given based on large deformation beam model. In the following model, getting the relation of the length of the riser, bending stiffness and the unit weight by dimensional analysis, the simple approximate analytical expressions are obtained by using Homotopy Analysis Method. In the same condition, the calculated results are compared with the proposed approximate analytical expressions, the catenary theory or the commercial software of nonlinear finite element program ORCAFLEX. Hopefully, a convenient and effective method for mechanical model of deepwater SCR installation is provided.

  5. Kinetic analysis of a Michaelis-Menten mechanism in which the enzyme is unstable.

    PubMed Central

    Garrido-del Solo, C; García-Cánovas, F; Havsteen, B H; Varón-Castellanos, R

    1993-01-01

    A kinetic analysis of the Michaelis-Menten mechanism is made for the cases in which the free enzyme, or the enzyme-substrate complex, or both, are unstable, either spontaneously or as a result of the addition of a reagent. The explicit time-course equations of all of the species involved has been derived under conditions of limiting enzyme concentration. The validity of these equations has been checked by using numerical simulations. An experimental design and a kinetic data analysis allowing the evaluation of the parameters and kinetic constants are recommended. PMID:8373361

  6. Network Analysis Reveals the Recognition Mechanism for Mannose-binding Lectins

    NASA Astrophysics Data System (ADS)

    Zhao, Yunjie; Jian, Yiren; Zeng, Chen; Computational Biophysics Lab Team

    The specific carbohydrate binding of mannose-binding lectin (MBL) protein in plants makes it a very useful molecular tool for cancer cell detection and other applications. The biological states of most MBL proteins are dimeric. Using dynamics network analysis on molecular dynamics (MD) simulations on the model protein of MBL, we elucidate the short- and long-range driving forces behind the dimer formation. The results are further supported by sequence coevolution analysis. We propose a general framework for deciphering the recognition mechanism underlying protein-protein interactions that may have potential applications in signaling pathways.

  7. Code System for Fracture Mechanics Analysis of Circumferential Surface Cracks in Pipes.

    SciTech Connect

    BRUST, F.

    1999-07-28

    Version 00 The NRCPIPES software is designed to perform elastic and elastic-plastic fracture mechanics analysis for a circumferential surface cracked pipe, i.e., to establish the fracture-failure condition in terms of sustainable load (or stress) or displacement. The NRCPIPES software also includes several evaluation procedures and acceptance criteria for circumferential surface flaws based on the ASME Boiler and Pressure Vessel Code, Section XI criteria, the British R6 Revision 3 Option 1 criteria, and the original Net-Section-Collapse (limit-load) analysis.

  8. Failure mechanism analysis of electromigration dominated damage in TiSi2 nanowires

    NASA Astrophysics Data System (ADS)

    Zou, Chen-Xia; Xu, Jun; Zhang, Xin-Zheng; Song, Xue-Feng; Yu, Da-Peng

    2009-06-01

    Electromigration-induced damage has been an important concern in very large scale integrated circuit design for a long time and will be a major road block in the pursuit of nanoelectronics devices and next generation power electronics. In this letter, the failure mechanism analysis on two-terminal TiSi2 nanowire devices was reported. Electromigration dominant mass migration is observed and verified by energy dispersive spectroscopy. The contribution of thermomigration is discussed based on temperature simulation. This work provides useful reference for future devices and the failure analysis on nanostructures.

  9. BATMAN-TCM: a Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine

    PubMed Central

    Liu, Zhongyang; Guo, Feifei; Wang, Yong; Li, Chun; Zhang, Xinlei; Li, Honglei; Diao, Lihong; Gu, Jiangyong; Wang, Wei; Li, Dong; He, Fuchu

    2016-01-01

    Traditional Chinese Medicine (TCM), with a history of thousands of years of clinical practice, is gaining more and more attention and application worldwide. And TCM-based new drug development, especially for the treatment of complex diseases is promising. However, owing to the TCM’s diverse ingredients and their complex interaction with human body, it is still quite difficult to uncover its molecular mechanism, which greatly hinders the TCM modernization and internationalization. Here we developed the first online Bioinformatics Analysis Tool for Molecular mechANism of TCM (BATMAN-TCM). Its main functions include 1) TCM ingredients’ target prediction; 2) functional analyses of targets including biological pathway, Gene Ontology functional term and disease enrichment analyses; 3) the visualization of ingredient-target-pathway/disease association network and KEGG biological pathway with highlighted targets; 4) comparison analysis of multiple TCMs. Finally, we applied BATMAN-TCM to Qishen Yiqi dripping Pill (QSYQ) and combined with subsequent experimental validation to reveal the functions of renin-angiotensin system responsible for QSYQ’s cardioprotective effects for the first time. BATMAN-TCM will contribute to the understanding of the “multi-component, multi-target and multi-pathway” combinational therapeutic mechanism of TCM, and provide valuable clues for subsequent experimental validation, accelerating the elucidation of TCM’s molecular mechanism. BATMAN-TCM is available at http://bionet.ncpsb.org/batman-tcm. PMID:26879404

  10. Failure analysis of porcupine quills under axial compression reveals their mechanical response during buckling.

    PubMed

    Torres, Fernando G; Troncoso, Omar P; Diaz, John; Arce, Diego

    2014-11-01

    Porcupine quills are natural structures formed by a thin walled conical shell and an inner foam core. Axial compression tests, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FT-IR) were all used to compare the characteristics and mechanical properties of porcupine quills with and without core. The failure mechanisms that occur during buckling were analyzed by scanning electron microscopy (SEM), and it was found that delamination buckling is mostly responsible for the decrease in the measured buckling stress of the quills with regard to predicted theoretical values. Our analysis also confirmed that the foam core works as an energy dissipater improving the mechanical response of an empty cylindrical shell, retarding the onset of buckling as well as producing a step wise decrease in force after buckling, instead of an instantaneous decrease in force typical for specimens without core. Cell collapse and cell densification in the inner foam core were identified as the key mechanisms that allow for energy absorption during buckling.

  11. BATMAN-TCM: a Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine

    NASA Astrophysics Data System (ADS)

    Liu, Zhongyang; Guo, Feifei; Wang, Yong; Li, Chun; Zhang, Xinlei; Li, Honglei; Diao, Lihong; Gu, Jiangyong; Wang, Wei; Li, Dong; He, Fuchu

    2016-02-01

    Traditional Chinese Medicine (TCM), with a history of thousands of years of clinical practice, is gaining more and more attention and application worldwide. And TCM-based new drug development, especially for the treatment of complex diseases is promising. However, owing to the TCM’s diverse ingredients and their complex interaction with human body, it is still quite difficult to uncover its molecular mechanism, which greatly hinders the TCM modernization and internationalization. Here we developed the first online Bioinformatics Analysis Tool for Molecular mechANism of TCM (BATMAN-TCM). Its main functions include 1) TCM ingredients’ target prediction; 2) functional analyses of targets including biological pathway, Gene Ontology functional term and disease enrichment analyses; 3) the visualization of ingredient-target-pathway/disease association network and KEGG biological pathway with highlighted targets; 4) comparison analysis of multiple TCMs. Finally, we applied BATMAN-TCM to Qishen Yiqi dripping Pill (QSYQ) and combined with subsequent experimental validation to reveal the functions of renin-angiotensin system responsible for QSYQ’s cardioprotective effects for the first time. BATMAN-TCM will contribute to the understanding of the “multi-component, multi-target and multi-pathway” combinational therapeutic mechanism of TCM, and provide valuable clues for subsequent experimental validation, accelerating the elucidation of TCM’s molecular mechanism. BATMAN-TCM is available at http://bionet.ncpsb.org/batman-tcm.

  12. BATMAN-TCM: a Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine.

    PubMed

    Liu, Zhongyang; Guo, Feifei; Wang, Yong; Li, Chun; Zhang, Xinlei; Li, Honglei; Diao, Lihong; Gu, Jiangyong; Wang, Wei; Li, Dong; He, Fuchu

    2016-02-16

    Traditional Chinese Medicine (TCM), with a history of thousands of years of clinical practice, is gaining more and more attention and application worldwide. And TCM-based new drug development, especially for the treatment of complex diseases is promising. However, owing to the TCM's diverse ingredients and their complex interaction with human body, it is still quite difficult to uncover its molecular mechanism, which greatly hinders the TCM modernization and internationalization. Here we developed the first online Bioinformatics Analysis Tool for Molecular mechANism of TCM (BATMAN-TCM). Its main functions include 1) TCM ingredients' target prediction; 2) functional analyses of targets including biological pathway, Gene Ontology functional term and disease enrichment analyses; 3) the visualization of ingredient-target-pathway/disease association network and KEGG biological pathway with highlighted targets; 4) comparison analysis of multiple TCMs. Finally, we applied BATMAN-TCM to Qishen Yiqi dripping Pill (QSYQ) and combined with subsequent experimental validation to reveal the functions of renin-angiotensin system responsible for QSYQ's cardioprotective effects for the first time. BATMAN-TCM will contribute to the understanding of the "multi-component, multi-target and multi-pathway" combinational therapeutic mechanism of TCM, and provide valuable clues for subsequent experimental validation, accelerating the elucidation of TCM's molecular mechanism. BATMAN-TCM is available at http://bionet.ncpsb.org/batman-tcm.

  13. A Molecular Mechanics Analysis of Molecular Recognition by Cyclodextrin Mimics of Alpha-Chymotrypsin

    DTIC Science & Technology

    1989-05-26

    Recognition By Cyclodextrin Mimics of Alpha-Chymotrypsin i by C.A. Venanzi. P.M. Canzius, Z. Zhang, and J.D. Bunce LT IC To Be Published in CLECTE JUN 0 51...Clasification) A Molecular Mechanics Analysis of Molecular Recognition By Cyclodextrin Mimics of Alpha-Chymotrypsin. 12. PERSONAL AUTHOR(S) C.A. Venanzil... CYCLODEXTRIN MIMICS OF 0( -CHYMOTRYPSIN Carol A. Venanzi1 , Preston M. Canzius, Zhifeng Zhang, and Jeffrey D. Bunce Department of Chemical Engineering

  14. Symbolic Time-Series Analysis for Anomaly Detection in Mechanical Systems

    DTIC Science & Technology

    2006-08-01

    IEEE/ASME TRANSACTIONS ON MECHATRONICS , VOL. 11, NO. 4, AUGUST 2006 439 Symbolic Time-Series Analysis for Anomaly Detection in Mechanical Systems ...fabricated as a multi- degree-of-freedom (DOF) mass-beam structure excited by oscillatory motion of two vibrators as shown in Fig. 1. Physical dimensions of...1. The dynamical system attains stationary behavior, in the fast time scale of machine vibrations , under persistent excitation in the vicinity of the

  15. Air Force Dynamic Mechanical Analysis of NATO Round Robin Propellant Testing for Development of AOP-4717

    DTIC Science & Technology

    2015-09-23

    Round Robin Propellant Testing for Development of AOP-4717 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...area code) N/A Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 0 Air Force Dynamic Mechanical Analysis of NATO Round Robin ...the clamps are tight at the coldest temperature. • Long tests such as the frequency sweep sequences prescribed in this round robin may be

  16. Fracture mechanics analysis of a high-pressure hydrogen facility compressor

    NASA Technical Reports Server (NTRS)

    Vroman, G. A.

    1974-01-01

    The investigation and analysis of a high-pressure hydrogen facility compressor is chronicled, and a life prediction based on fracture mechanics is presented. Crack growth rates in SA 105 Gr II steel are developed for the condition of sustained loading, using a hypothesis of hydrogen embrittlement associated with plastic zone reverse yielding. The resultant formula is compared with test data obtained from laboratory specimens.

  17. Fermilab Central Computing Facility: Energy conservation report and mechanical systems design optimization and cost analysis study

    SciTech Connect

    Krstulovich, S.F.

    1986-11-12

    This report is developed as part of the Fermilab Central Computing Facility Project Title II Design Documentation Update under the provisions of DOE Document 6430.1, Chapter XIII-21, Section 14, paragraph a. As such, it concentrates primarily on HVAC mechanical systems design optimization and cost analysis and should be considered as a supplement to the Title I Design Report date March 1986 wherein energy related issues are discussed pertaining to building envelope and orientation as well as electrical systems design.

  18. A Hybrid Approach to Composite Damage and Failure Analysis Combining Synergistic Damage Mechanics and Peridynamics

    DTIC Science & Technology

    2017-03-30

    most manufacturing processes for polymer matrix composites (PMCs) one starts with dry bundles of fibers. On resin infusion, the initially closed-pack... Composite Damage and Failure Analysis Combining Synergistic Damage Mechanics and Peridynamics 5b. GRANT NUMBER NOOO 14-16-1-21 73 5c. PROGRAM...distributions. The activities related to Task 2 cover the new peridynamic model for multi-phase composites which can introduce the presence of pores and

  19. A Hybrid Approach to Composite Damage and Failure Analysis Combining Synergistic Damage Mechanics and Peridynamics

    DTIC Science & Technology

    2016-09-30

    during resin infusion in polymer matrix composites . Task 2.1 is concerned with damage evolution in a peridynamic model of poroelastic materials. Effects... Composite Damage and Failure Analysis Combining Synergistic Damage Mechanics and Peridynamics 5b. GRANT NUMBER NOOO 14-16-1-2173 5c. PROGRAM ELEMENT...element containing disordered fiber distributions. Procedures have been developed to simulate formation of fiber clusters during resin infusion in

  20. Network Analysis Shows Novel Molecular Mechanisms of Action for Copper-Based Chemotherapy.

    PubMed

    Espinal-Enríquez, Jesús; Hernández-Lemus, Enrique; Mejía, Carmen; Ruiz-Azuara, Lena

    2015-01-01

    The understanding of the mechanisms associated with the action of chemotherapeutic agents is fundamental to assess and account for possible side-effects of such treatments. Casiopeínas have demonstrated a cytotoxic effect by activation of pro-apoptotic processes in malignant cells. Such processes have been proved to activate the apoptotic intrinsic route, as well as cell cycle arrest. Despite this knowledge, the whole mechanism of action of Casiopeínas is yet to be completely understood. In this work we implement a systems biology approach based on two pathway analysis tools (Over-Representation Analysis and Causal Network Analysis) to observe changes in some hallmarks of cancer, induced by this copper-based chemotherapeutic agent in HeLa cell lines. We find that the metabolism of metal ions is exacerbated, as well as cell division processes being globally diminished. We also show that cellular migration and proliferation events are decreased. Moreover, the molecular mechanisms of liver protection are increased in the cell cultures under the actions of Casiopeínas, unlike the case in many other cytotoxic drugs. We argue that this chemotherapeutic agent may be promising, given its protective hepatic function, concomitant with its cytotoxic participation in the onset of apoptotic processes in malignant cells.

  1. Individual Participant Data Meta-Analysis of Mechanical Workplace Risk Factors and Low Back Pain

    PubMed Central

    Shannon, Harry S.; Wells, Richard P.; Walter, Stephen D.; Cole, Donald C.; Côté, Pierre; Frank, John; Hogg-Johnson, Sheilah; Langlois, Lacey E.

    2012-01-01

    Objectives. We used individual participant data from multiple studies to conduct a comprehensive meta-analysis of mechanical exposures in the workplace and low back pain. Methods. We conducted a systematic literature search and contacted an author of each study to request their individual participant data. Because outcome definitions and exposure measures were not uniform across studies, we conducted 2 substudies: (1) to identify sets of outcome definitions that could be combined in a meta-analysis and (2) to develop methods to translate mechanical exposure onto a common metric. We used generalized estimating equation regression to analyze the data. Results. The odds ratios (ORs) for posture exposures ranged from 1.1 to 2.0. Force exposure ORs ranged from 1.4 to 2.1. The magnitudes of the ORs differed according to the definition of low back pain, and heterogeneity was associated with both study-level and individual-level characteristics. Conclusions. We found small to moderate ORs for the association of mechanical exposures and low back pain, although the relationships were complex. The presence of individual-level OR modifiers in such an area can be best understood by conducting a meta-analysis of individual participant data. PMID:22390445

  2. Anti-inflammatory mechanism research of tanshinone II A by module-based network analysis.

    PubMed

    Zheng, Shichao; Ren, Zhenzhen; Zhang, Yanling; Qiao, Yanjiang

    2014-01-01

    Tanshinone IIA (Tan IIA) is one of the major fat-soluble ingredients in Salvia miltiorrhiza which has been widely used for various inflammatory conditions associated with cardiovascular and cerebrovascular disorders. However, the underlying anti-inflammatory mechanisms of Tan IIA are incompletely understood. The purpose of this study was to illuminate the anti-inflammatory mechanism of Tan IIA based on the protein interaction network (PIN) analysis. A PIN of Tan IIA was constructed with 281 nodes and 814 interactions and analyzed by gene ontology (GO) enrichment analysis based on Markov Cluster algorithm (MCL). Three modules were associated with anti-inflammatory actions. The most interesting finding of this study was that the anti-inflammatory effect of Tan IIA may be partly attributable to the mediate activation of TRAF2, TRAF3 and TRAF6, to inhibit the toll-like receptor signaling pathway and combine with AGER. Therefore, the module-based network analysis approach will be a new method for better understanding the anti-inflammatory mechanism of Tan IIA.

  3. Continuum Damage Mechanics Models for the Analysis of Progressive Failure in Open-Hole Tension Laminates

    NASA Technical Reports Server (NTRS)

    Song, Kyonchan; Li, Yingyong; Rose, Cheryl A.

    2011-01-01

    The performance of a state-of-the-art continuum damage mechanics model for interlaminar damage, coupled with a cohesive zone model for delamination is examined for failure prediction of quasi-isotropic open-hole tension laminates. Limitations of continuum representations of intra-ply damage and the effect of mesh orientation on the analysis predictions are discussed. It is shown that accurate prediction of matrix crack paths and stress redistribution after cracking requires a mesh aligned with the fiber orientation. Based on these results, an aligned mesh is proposed for analysis of the open-hole tension specimens consisting of different meshes within the individual plies, such that the element edges are aligned with the ply fiber direction. The modeling approach is assessed by comparison of analysis predictions to experimental data for specimen configurations in which failure is dominated by complex interactions between matrix cracks and delaminations. It is shown that the different failure mechanisms observed in the tests are well predicted. In addition, the modeling approach is demonstrated to predict proper trends in the effect of scaling on strength and failure mechanisms of quasi-isotropic open-hole tension laminates.

  4. Network Analysis Shows Novel Molecular Mechanisms of Action for Copper-Based Chemotherapy

    PubMed Central

    Espinal-Enríquez, Jesús; Hernández-Lemus, Enrique; Mejía, Carmen; Ruiz-Azuara, Lena

    2016-01-01

    The understanding of the mechanisms associated with the action of chemotherapeutic agents is fundamental to assess and account for possible side-effects of such treatments. Casiopeínas have demonstrated a cytotoxic effect by activation of pro-apoptotic processes in malignant cells. Such processes have been proved to activate the apoptotic intrinsic route, as well as cell cycle arrest. Despite this knowledge, the whole mechanism of action of Casiopeínas is yet to be completely understood. In this work we implement a systems biology approach based on two pathway analysis tools (Over-Representation Analysis and Causal Network Analysis) to observe changes in some hallmarks of cancer, induced by this copper-based chemotherapeutic agent in HeLa cell lines. We find that the metabolism of metal ions is exacerbated, as well as cell division processes being globally diminished. We also show that cellular migration and proliferation events are decreased. Moreover, the molecular mechanisms of liver protection are increased in the cell cultures under the actions of Casiopeínas, unlike the case in many other cytotoxic drugs. We argue that this chemotherapeutic agent may be promising, given its protective hepatic function, concomitant with its cytotoxic participation in the onset of apoptotic processes in malignant cells. PMID:26793116

  5. Systems analysis of the mechanisms of cardiac diastolic function changes after microgravity exposure

    NASA Astrophysics Data System (ADS)

    Summers, Richard; Coleman, Thomas; Steven, Platts; Martin, David

    Detailed information concerning cardiac function was collected by two-dimensional and M-mode echocardiography at 10 days before flight and 3h after landing in astronauts returning from shuttle missions. A comparative analysis of this data suggests that cardiac diastolic function is reduced after microgravity exposure with little or no change in systolic function as measured by ejection fraction However, the mechanisms responsible for these adaptations have not been determined. In this study, an integrative computer model of human physiology that forms the framework for the Digital Astronaut Project (Guyton/Coleman/Summers Model) was used in a systems analysis of the echocardiographic data in the context of general cardiovascular physiologic functioning. The physiologic mechanisms involved in the observed changes were then determined by a dissection of model interrelationships. The systems analysis of possible physiologic mechanisms involved reveals that a loss of fluid from the myocardial interstitial space may lead to a stiffening of the myocardium and could potentially result in some of the cardiac diastolic dysfunction seen postflight. The cardiovascular dynamics may be different during spaceflight.

  6. Mechanical analysis and fabrication of a penetrating silicon microprobe as an artificial optic nerve visual prosthesis.

    PubMed

    Sui, Xiaohong; Han, Zhaolong; Zhou, Dai; Ren, Qiushi

    2012-01-01

    To investigate the mechanical response of a silicon microprobe while it penetrates the optic nerve. The finite element method was adopted to analyze models of the mechanical aspects of the silicon microprobe, including the effects of dimensions, the buckling load, lateral load, and the interaction between the microprobe and the tissue of the optic nerve. The silicon microprobe was fabricated based on silicon-on-insulator (SOI) wafer by micro-electro-mechanical system (MEMS) processing techniques. The designed microprobe shank was 750 µm long and 110 µm wide with thickness of 15 µm. Lateral barbs were included so as to decrease the stress at stimulating-site regions. The microprobe could withstand a 50 MPa vertical load on the shank tip before buckling, but was more likely to be damaged by a lateral load rather than a vertical one. The silicon microprobe was successfully fabricated by MEMS processing techniques based on a four-inch SOI wafer. Mechanical analysis of the interactions between shank and optic nerve tissue showed that the maximum stress changed during the process of the microprobe insertion. A silicon microprobe was designed as a potential visual prosthesis to be used for optic nerve stimulation. The mechanical issues were analyzed by means of the finite element method, and the implantable microprobe was fabricated based on a silicon-on-insulator wafer to maintain a uniform thickness.

  7. Comparative Analysis of the Tour Jete and Aerial with Detailed Analysis of Aerial Takeoff Mechanics

    NASA Astrophysics Data System (ADS)

    Pierson, Mimi; Coplin, Kim

    2006-10-01

    Whether internally as muscle tension or from external sources, forces are necessary for all motion. This research focused on athletic rotations where conditions of flight are established during takeoff. By studying reaction forces that produce torques, moments of inertia, and linear and angular differences between distinct rotations around different principle axes of the body (tour jete in ballet - longitudinal axis; aerial in gymnastics - anteroposterior axis), and by looking at the values of angular momentum in the specific mechanics of aerial takeoff, we can gain insight into possible causes of injury, flaws in technique and limitations of athletes. Results showed significant differences in the horizontal and vertical components of takeoff between the tour jete and the aerial, and a realization that torque was produced in different biomechanical planes. Both rotations showed braking forces before takeoff to counteract forward momentum and increase vertical lift, but the angle of applied force varied, and the horizontal components of velocity and force and vertical velocity as well as moment of inertia throughout flight were consistently greater for the aerial. Breakdown of aerial takeoff highlighted the relative importance of the takeoff phases, showing that completion depends fundamentally upon the rotation of the rear foot and torso twisting during takeoff rather than the last foot in contact with the ground.

  8. Evaluation of a post-processing approach for multiscale analysis of biphasic mechanics of chondrocytes.

    PubMed

    Sibole, Scott C; Maas, Steve; Halloran, Jason P; Weiss, Jeffrey A; Erdemir, Ahmet

    2013-10-01

    Understanding the mechanical behaviour of chondrocytes as a result of cartilage tissue mechanics has significant implications for both evaluation of mechanobiological function and to elaborate on damage mechanisms. A common procedure for prediction of chondrocyte mechanics (and of cell mechanics in general) relies on a computational post-processing approach where tissue-level deformations drive cell-level models. Potential loss of information in this numerical coupling approach may cause erroneous cellular-scale results, particularly during multiphysics analysis of cartilage. The goal of this study was to evaluate the capacity of first- and second-order data passing to predict chondrocyte mechanics by analysing cartilage deformations obtained for varying complexity of loading scenarios. A tissue-scale model with a sub-region incorporating representation of chondron size and distribution served as control. The post-processing approach first required solution of a homogeneous tissue-level model, results of which were used to drive a separate cell-level model (same characteristics as the sub-region of control model). The first-order data passing appeared to be adequate for simplified loading of the cartilage and for a subset of cell deformation metrics, for example, change in aspect ratio. The second-order data passing scheme was more accurate, particularly when asymmetric permeability of the tissue boundaries was considered. Yet, the method exhibited limitations for predictions of instantaneous metrics related to the fluid phase, for example, mass exchange rate. Nonetheless, employing higher order data exchange schemes may be necessary to understand the biphasic mechanics of cells under lifelike tissue loading states for the whole time history of the simulation.

  9. Evaluation of a Post-Processing Approach for Multiscale Analysis of Biphasic Mechanics of Chondrocytes

    PubMed Central

    Sibole, Scott C.; Maas, Steve; Halloran, Jason P.; Weiss, Jeffrey A.; Erdemir, Ahmet

    2014-01-01

    Understanding the mechanical behavior of chondrocytes as a result of cartilage tissue mechanics has significant implications for both evaluation of mechanobiological function and to elaborate on damage mechanisms. A common procedure for prediction of chondrocyte mechanics (and of cell mechanics in general) relies on a computational post-processing approach where tissue level deformations drive cell level models. Potential loss of information in this numerical coupling approach may cause erroneous cellular scale results, particularly during multiphysics analysis of cartilage. The goal of this study was to evaluate the capacity of 1st and 2nd order data passing to predict chondrocyte mechanics by analyzing cartilage deformations obtained for varying complexity of loading scenarios. A tissue scale model with a sub-region incorporating representation of chondron size and distribution served as control. The postprocessing approach first required solution of a homogeneous tissue level model, results of which were used to drive a separate cell level model (same characteristics as the subregion of control model). The 1st data passing appeared to be adequate for simplified loading of the cartilage and for a subset of cell deformation metrics, e.g., change in aspect ratio. The 2nd order data passing scheme was more accurate, particularly when asymmetric permeability of the tissue boundaries were considered. Yet, the method exhibited limitations for predictions of instantaneous metrics related to the fluid phase, e.g., mass exchange rate. Nonetheless, employing higher-order data exchange schemes may be necessary to understand the biphasic mechanics of cells under lifelike tissue loading states for the whole time history of the simulation. PMID:23809004

  10. Studies in photochemical smog chemistry. 1. Atmospheric chemistry of toulene. 2. Analysis of chemical reaction mechanisms for photochemical smog

    SciTech Connect

    Leone, J.A.

    1985-01-01

    This study focuses on two related topics in the gas phase organic chemistry of importance in urban air pollution. An experimental effort aimed at developing a new explicit reaction mechanism for the atmospheric photooxidation of toluene is described. This mechanism is tested using experimental data from both indoor and outdoor smog chamber facilities. The predictions of the new reaction mechanism are found to be in good agreement with both sets of experimental data. Additional simulations performed with the new mechanism are used to investigate various mechanistic paths. A theoretical analysis of lumped chemical reaction mechanisms for photochemical smog is presented. Included is a description of a new counter species analysis technique which can be used to analyze any complex chemical reaction mechanism. When applied to mechanisms for photochemical smog, this analysis is shown capable of providing answers to previously inaccessible questions such as the relative contributions of individual organics to photochemical ozone formation.

  11. Genetic analysis, structural modeling, and direct coupling analysis suggest a mechanism for phosphate signaling in Escherichia coli

    PubMed Central

    2015-01-01

    Background Proper phosphate signaling is essential for robust growth of Escherichia coli and many other bacteria. The phosphate signal is mediated by a classic two component signal system composed of PhoR and PhoB. The PhoR histidine kinase is responsible for phosphorylating/dephosphorylating the response regulator, PhoB, which controls the expression of genes that aid growth in low phosphate conditions. The mechanism by which PhoR receives a signal of environmental phosphate levels has remained elusive. A transporter complex composed of the PstS, PstC, PstA, and PstB proteins as well as a negative regulator, PhoU, have been implicated in signaling environmental phosphate to PhoR. Results This work confirms that PhoU and the PstSCAB complex are necessary for proper signaling of high environmental phosphate. Also, we identify residues important in PhoU/PhoR interaction with genetic analysis. Using protein modeling and docking methods, we show an interaction model that points to a potential mechanism for PhoU mediated signaling to PhoR to modify its activity. This model is tested with direct coupling analysis. Conclusions These bioinformatics tools, in combination with genetic and biochemical analysis, help to identify and test a model for phosphate signaling and may be applicable to several other systems. PMID:25953406

  12. Gas-phase Ion Isomer Analysis Reveals the Mechanism of Peptide Sequence Scrambling

    PubMed Central

    Jia, Chenxi; Wu, Zhe; Lietz, Christopher B.; Liang, Zhidan; Cui, Qiang; Li, Lingjun

    2014-01-01

    Peptide sequence scrambling during mass spectrometry-based gas-phase fragmentation analysis causes misidentification of peptides and proteins. Thus, there is a need to develop an efficient approach to probing the gas-phase fragment ion isomers related to sequence scrambling and the underlying fragmentation mechanism, which will facilitate the development of bioinformatics algorithm for proteomics research. Herein, we report on the first use of electron transfer dissociation (ETD)-produced diagnostic fragment ions to probe the components of gas-phase peptide fragment ion isomers. In combination with ion mobility spectrometry (IMS) and formaldehyde labeling, this novel strategy enables qualitative and quantitative analysis of b-type fragment ion isomers. ETD fragmentation produced diagnostic fragment ions indicative of the precursor ion isomer components, and subsequent IMS analysis of b ion isomers provided their quantitative and structural information. The isomer components of three representative b ions (b9, b10, and b33 from three different peptides) were accurately profiled by this method. IMS analysis of the b9 ion isomers exhibited dynamic conversion among these structures. Furthermore, molecular dynamics simulation predicted theoretical drift time values which were in good agreement with experimentally measured values. Our results strongly support the mechanism of peptide sequence scrambling via b ion cyclization, and provide the first experimental evidence to support that the conversion from molecular precursor ion to cyclic b ion (M→cb) pathway is less energetically (or kinetically) favored. PMID:24313304

  13. Gas-phase ion isomer analysis reveals the mechanism of peptide sequence scrambling.

    PubMed

    Jia, Chenxi; Wu, Zhe; Lietz, Christopher B; Liang, Zhidan; Cui, Qiang; Li, Lingjun

    2014-03-18

    Peptide sequence scrambling during mass spectrometry-based gas-phase fragmentation analysis causes misidentification of peptides and proteins. Thus, there is a need to develop an efficient approach to probing the gas-phase fragment ion isomers related to sequence scrambling and the underlying fragmentation mechanism, which will facilitate the development of bioinformatics algorithm for proteomics research. Herein, we report on the first use of electron transfer dissociation (ETD)-produced diagnostic fragment ions to probe the components of gas-phase peptide fragment ion isomers. In combination with ion mobility spectrometry (IMS) and formaldehyde labeling, this novel strategy enables qualitative and quantitative analysis of b-type fragment ion isomers. ETD fragmentation produced diagnostic fragment ions indicative of the precursor ion isomer components, and subsequent IMS analysis of b ion isomers provided their quantitative and structural information. The isomer components of three representative b ions (b9, b10, and b33 from three different peptides) were accurately profiled by this method. IMS analysis of the b9 ion isomers exhibited dynamic conversion among these structures. Furthermore, molecular dynamics simulation predicted theoretical drift time values, which were in good agreement with experimentally measured values. Our results strongly support the mechanism of peptide sequence scrambling via b ion cyclization, and provide the first experimental evidence to support that the conversion from molecular precursor ion to cyclic b ion (M → (c)b) pathway is less energetically (or kinetically) favored.

  14. Free body analysis, beam mechanics, and finite element modeling of the mandible of Alligator mississippiensis.

    PubMed

    Porro, Laura B; Holliday, Casey M; Anapol, Fred; Ontiveros, Lupita C; Ontiveros, Lolita T; Ross, Callum F

    2011-08-01

    The mechanical behavior of mammalian mandibles is well-studied, but a comprehensive biomechanical analysis (incorporating detailed muscle architecture, accurate material properties, and three-dimensional mechanical behavior) of an extant archosaur mandible has never been carried out. This makes it unclear how closely models of extant and extinct archosaur mandibles reflect reality and prevents comparisons of structure-function relationships in mammalian and archosaur mandibles. We tested hypotheses regarding the mechanical behavior of the mandible of Alligator mississippiensis by analyzing reaction forces and bending, shear, and torsional stress regimes in six models of varying complexity. Models included free body analysis using basic lever arm mechanics, 2D and 3D beam models, and three high-resolution finite element models of the Alligator mandible, incorporating, respectively, isotropic bone without sutures, anisotropic bone with sutures, and anisotropic bone with sutures and contact between the mandible and the pterygoid flange. Compared with the beam models, the Alligator finite element models exhibited less spatial variability in dorsoventral bending and sagittal shear stress, as well as lower peak values for these stresses, suggesting that Alligator mandibular morphology is in part designed to reduce these stresses during biting. However, the Alligator models exhibited greater variability in the distribution of mediolateral and torsional stresses than the beam models. Incorporating anisotropic bone material properties and sutures into the model reduced dorsoventral and torsional stresses within the mandible, but led to elevated mediolateral stresses. These mediolateral stresses were mitigated by the addition of a pterygoid-mandibular contact, suggesting important contributions from, and trade-offs between, material properties and external constraints in Alligator mandible design. Our results suggest that beam modeling does not accurately represent the

  15. Multifractal spectrum analysis of nonlinear dynamical mechanisms in China’s agricultural futures markets

    NASA Astrophysics Data System (ADS)

    Chen, Shu-Peng; He, Ling-Yun

    2010-04-01

    Based on Partition Function and Multifractal Spectrum Analysis, we investigated the nonlinear dynamical mechanisms in China’s agricultural futures markets, namely, Dalian Commodity Exchange (DCE for short) and Zhengzhou Commodity Exchange (ZCE for short), where nearly all agricultural futures contracts are traded in the two markets. Firstly, we found nontrivial multifractal spectra, which are the empirical evidence of the existence of multifractal features, in 4 representative futures markets in China, that is, Hard Winter wheat (HW for short) and Strong Gluten wheat (SG for short) futures markets from ZCE and Soy Meal (SM for short) futures and Soy Bean No.1 (SB for short) futures markets from DCE. Secondly, by shuffling the original time series, we destroyed the underlying nonlinear temporal correlation; thus, we identified that long-range correlation mechanism constitutes major contributions in the formation in the multifractals of the markets. Thirdly, by tracking the evolution of left- and right-half spectra, we found that there exist critical points, between which there are different behaviors, in the left-half spectra for large price fluctuations; but for the right-hand spectra for small price fluctuations, the width of those increases slowly as the delay t increases in the long run. Finally, the dynamics of large fluctuations is significantly different from that of the small ones, which implies that there exist different underlying mechanisms in the formation of multifractality in the markets. Our main contributions focus on that we not only provided empirical evidence of the existence of multifractal features in China agricultural commodity futures markets; but also we pioneered in investigating the sources of the multifractality in China’s agricultural futures markets in current literature; furthermore, we investigated the nonlinear dynamical mechanisms based on spectrum analysis, which offers us insights into the underlying dynamical mechanisms in

  16. [Analysis of Conformational Features of Watson-Crick Duplex Fragments by Molecular Mechanics and Quantum Mechanics Methods].

    PubMed

    Poltev, V I; Anisimov, V M; Sanchez, C; Deriabina, A; Gonzalez, E; Garcia, D; Rivas, F; Polteva, N A

    2016-01-01

    It is generally accepted that the important characteristic features of the Watson-Crick duplex originate from the molecular structure of its subunits. However, it still remains to elucidate what properties of each subunit are responsible for the significant characteristic features of the DNA structure. The computations of desoxydinucleoside monophosphates complexes with Na-ions using density functional theory revealed a pivotal role of DNA conformational properties of single-chain minimal fragments in the development of unique features of the Watson-Crick duplex. We found that directionality of the sugar-phosphate backbone and the preferable ranges of its torsion angles, combined with the difference between purines and pyrimidines. in ring bases, define the dependence of three-dimensional structure of the Watson-Crick duplex on nucleotide base sequence. In this work, we extended these density functional theory computations to the minimal' fragments of DNA duplex, complementary desoxydinucleoside monophosphates complexes with Na-ions. Using several computational methods and various functionals, we performed a search for energy minima of BI-conformation for complementary desoxydinucleoside monophosphates complexes with different nucleoside sequences. Two sequences are optimized using ab initio method at the MP2/6-31++G** level of theory. The analysis of torsion angles, sugar ring puckering and mutual base positions of optimized structures demonstrates that the conformational characteristic features of complementary desoxydinucleoside monophosphates complexes with Na-ions remain within BI ranges and become closer to the corresponding characteristic features of the Watson-Crick duplex crystals. Qualitatively, the main characteristic features of each studied complementary desoxydinucleoside monophosphates complex remain invariant when different computational methods are used, although the quantitative values of some conformational parameters could vary lying within the

  17. Hemodynamics and wall mechanics of a compliance matching stent: in vitro and in vivo analysis.

    PubMed

    Berry, Joel L; Manoach, Emil; Mekkaoui, Choukri; Rolland, Pierre H; Moore, J E; Rachev, Alexander

    2002-01-01

    Evidence is emerging that the abrupt compliance mismatch that exists at the junction between the stent ends and the host arterial wall disturbs both the vascular hemodynamics and the natural wall stress distribution. These stent-induced alterations are greatly reduced by smoothing the compliance mismatch between the stent and host vessel. A stent that provides this smooth transition in compliance, the compliance matching stent (CMS), has been developed. This study attempts to evaluate the hemodynamics and wall mechanical consequences of the CMS both in vitro and in vivo. Finite element analysis was used to assess the solid mechanical behavior (compliance and stress) of the CMS in a stent/artery hybrid structure. A similar analysis was performed with a Palmaz stent. In vivo hemodynamics and wall mechanical changes induced by the CMS were investigated in a swine model from direct measurements of flow, pressure, diameter, and histology in the stented segment of superficial femoral arteries after 7 days. Finite element analysis showed that the abrupt compliance mismatch was substantially smoothed between the vessel portions with and without the stent with CMS segments. Circumferential stress was also markedly reduced with the CMS compared to other stent. The in vivo results showed that the CMS was efficient in compliance matching and did not dampen flow or pressure waves downstream the stent. Concurrent histology showed limited thrombus and inflammatory cell accumulation around the stent struts. These results indicate that the stent/artery hybrid structure can be compliance matched with proper stent design and that this structure limits solid mechanical stress and hemodynamic disturbances. It remains to be seen whether compliance-matched vascular stents reduce in-stent restenosis.

  18. Kinematic analysis of in situ measurement during chemical mechanical planarization process

    SciTech Connect

    Li, Hongkai; Wang, Tongqing; Zhao, Qian; Meng, Yonggang; Lu, Xinchun

    2015-10-15

    Chemical mechanical planarization (CMP) is the most widely used planarization technique in semiconductor manufacturing presently. With the aid of in situ measurement technology, CMP tools can achieve good performance and stable productivity. However, the in situ measurement has remained unexplored from a kinematic standpoint. The available related resources for the kinematic analysis are very limited due to the complexity and technical secret. In this paper, a comprehensive kinematic analysis of in situ measurement is provided, including the analysis model, the measurement trajectory, and the measurement time of each zone of wafer surface during the practical CMP process. In addition, a lot of numerical calculations are performed to study the influences of main parameters on the measurement trajectory and the measurement velocity variation of the probe during the measurement process. All the efforts are expected to improve the in situ measurement system and promote the advancement in CMP control system.

  19. Kinematic analysis of in situ measurement during chemical mechanical planarization process

    NASA Astrophysics Data System (ADS)

    Li, Hongkai; Wang, Tongqing; Zhao, Qian; Meng, Yonggang; Lu, Xinchun

    2015-10-01

    Chemical mechanical planarization (CMP) is the most widely used planarization technique in semiconductor manufacturing presently. With the aid of in situ measurement technology, CMP tools can achieve good performance and stable productivity. However, the in situ measurement has remained unexplored from a kinematic standpoint. The available related resources for the kinematic analysis are very limited due to the complexity and technical secret. In this paper, a comprehensive kinematic analysis of in situ measurement is provided, including the analysis model, the measurement trajectory, and the measurement time of each zone of wafer surface during the practical CMP process. In addition, a lot of numerical calculations are performed to study the influences of main parameters on the measurement trajectory and the measurement velocity variation of the probe during the measurement process. All the efforts are expected to improve the in situ measurement system and promote the advancement in CMP control system.

  20. Kinematic analysis of in situ measurement during chemical mechanical planarization process.

    PubMed

    Li, Hongkai; Wang, Tongqing; Zhao, Qian; Meng, Yonggang; Lu, Xinchun

    2015-10-01

    Chemical mechanical planarization (CMP) is the most widely used planarization technique in semiconductor manufacturing presently. With the aid of in situ measurement technology, CMP tools can achieve good performance and stable productivity. However, the in situ measurement has remained unexplored from a kinematic standpoint. The available related resources for the kinematic analysis are very limited due to the complexity and technical secret. In this paper, a comprehensive kinematic analysis of in situ measurement is provided, including the analysis model, the measurement trajectory, and the measurement time of each zone of wafer surface during the practical CMP process. In addition, a lot of numerical calculations are performed to study the influences of main parameters on the measurement trajectory and the measurement velocity variation of the probe during the measurement process. All the efforts are expected to improve the in situ measurement system and promote the advancement in CMP control system.

  1. The design and realisation of the IXV Mission Analysis and Flight Mechanics

    NASA Astrophysics Data System (ADS)

    Haya-Ramos, Rodrigo; Blanco, Gonzalo; Pontijas, Irene; Bonetti, Davide; Freixa, Jordi; Parigini, Cristina; Bassano, Edmondo; Carducci, Riccardo; Sudars, Martins; Denaro, Angelo; Angelini, Roberto; Mancuso, Salvatore

    2016-07-01

    The Intermediate eXperimental Vehicle (IXV) is a suborbital re-entry demonstrator successfully launched in February 2015 focusing on the in-flight demonstration of a lifting body system with active aerodynamic control surfaces. This paper presents an overview of the Mission Analysis and Flight Mechanics of the IXV vehicle, which comprises computation of the End-to-End (launch to splashdown) design trajectories, characterisation of the Entry Corridor, assessment of the Mission Performances through Monte Carlo campaigns, contribution to the aerodynamic database, analysis of the Visibility and link budget from Ground Stations and GPS, support to safety analyses (off nominal footprints), specification of the Centre of Gravity box, selection of the Angle of Attack trim line to be flown and characterisation of the Flying Qualities performances. An initial analysis and comparison with the raw flight data obtained during the flight will be discussed and first lessons learned derived.

  2. Nonlinear dynamic mechanism of vocal tremor from voice analysis and model simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Jiang, Jack J.

    2008-09-01

    Nonlinear dynamic analysis and model simulations are used to study the nonlinear dynamic characteristics of vocal folds with vocal tremor, which can typically be characterized by low-frequency modulation and aperiodicity. Tremor voices from patients with disorders such as paresis, Parkinson's disease, hyperfunction, and adductor spasmodic dysphonia show low-dimensional characteristics, differing from random noise. Correlation dimension analysis statistically distinguishes tremor voices from normal voices. Furthermore, a nonlinear tremor model is proposed to study the vibrations of the vocal folds with vocal tremor. Fractal dimensions and positive Lyapunov exponents demonstrate the evidence of chaos in the tremor model, where amplitude and frequency play important roles in governing vocal fold dynamics. Nonlinear dynamic voice analysis and vocal fold modeling may provide a useful set of tools for understanding the dynamic mechanism of vocal tremor in patients with laryngeal diseases.

  3. Nonlinear dynamic mechanism of vocal tremor from voice analysis and model simulations

    PubMed Central

    Zhang, Yu; Jiang, Jack J.

    2009-01-01

    Nonlinear dynamic analysis and model simulations are used to study the nonlinear dynamic characteristics of vocal folds with vocal tremor, which can typically be characterized by low frequency modulation and aperiodicity. Tremor voices from patients with disorders such as paresis, Parkinson's disease, hyperfunction, and adductor spasmodic dysphonia show low-dimensional characteristics, differing from random noise. Correlation dimension analysis statistically distinguishes tremor voices from normal voices. Furthermore, a nonlinear tremor model is proposed to study the vibrations of the vocal folds with vocal tremor. Fractal dimensions and positive Lyapunov exponents demonstrate the evidence of chaos in the tremor model, where amplitude and frequency play important roles in governing vocal fold dynamics. Nonlinear dynamic voice analysis and vocal fold modeling may provide a useful set of tools for understanding the dynamic mechanism of vocal tremor in patients with laryngeal diseases. PMID:22505778

  4. Mechanism of Xinfeng Capsule on Adjuvant-Induced Arthritis via Analysis of Urinary Metabolomic Profiles

    PubMed Central

    Jiang, Hui; Liu, Jian; Wang, Ting; Gao, Jia-rong; Sun, Yue; Huang, Chuan-bing; Meng, Mei; Qin, Xiu-juan

    2016-01-01

    We aimed to explore the potential effects of Xinfeng capsule (XFC) on urine metabolic profiling in adjuvant-induced arthritis (AA) rats by using gas chromatography time-of-flight mass spectrometry (GC-TOF/MS). GC-TOF/MS technology was combined with multivariate statistical approaches, such as principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and orthogonal projections to latent structures discriminant analysis (OPLS-DA). These methods were used to distinguish the healthy group, untreated group, and XFC treated group and elucidate potential biomarkers. Nine potential biomarkers such as hippuric acid, adenine, and L-dopa were identified as potential biomarkers, indicating that purine metabolism, fat metabolism, amino acid metabolism, and energy metabolism were disturbed in AA rats. This study demonstrated that XFC is efficacious for RA and explained its potential metabolomics mechanism. PMID:26989506

  5. The prognosis of infective endocarditis treated with biological valves versus mechanical valves: A meta-analysis.

    PubMed

    Tao, Ende; Wan, Li; Wang, WenJun; Luo, YunLong; Zeng, JinFu; Wu, Xia

    2017-01-01

    Surgery remains the primary form of treatment for infective endocarditis (IE). However, it is not clear what type of prosthetic valve provides a better prognosis. We conducted a meta-analysis to compare the prognosis of infective endocarditis treated with biological valves to cases treated with mechanical valves. Pubmed, Embase and Cochrane databases were searched from January 1960 to November 2016.Randomized controlled trials, retrospective cohorts and prospective studies comparing outcomes between biological valve and mechanical valve management for infective endocarditis were analyzed. The Newcastle-Ottawa Scale(NOS) was used to evaluate the quality of the literature and extracted data, and Stata 12.0 software was used for the meta-analysis. A total of 11 publications were included; 10,754 cases were selected, involving 6776 cases of biological valves and 3,978 cases of mechanical valves. The all-cause mortality risk of the biological valve group was higher than that of the mechanical valve group (HR = 1.22, 95% CI 1.03 to 1.44, P = 0.023), as was early mortality (RR = 1.21, 95% CI 1.02 to 1.43, P = 0.033). The recurrence of endocarditis (HR = 1.75, 95% CI 1.26 to 2.42, P = 0.001), as well as the risk of reoperation (HR = 1.79, 95% CI 1.15 to 2.80, P = 0.010) were more likely to occur in the biological valve group. The incidence of postoperative embolism was less in the biological valve group than in the mechanical valve group, but this difference was not statistically significant (RR = 0.90, 95% CI 0.76 to 1.07, P = 0.245). For patients with prosthetic valve endocarditis (PVE), there was no significant difference in survival rates between the biological valve group and the mechanical valve group (HR = 0.91, 95% CI 0.68 to 1.21, P = 0.520). The results of our meta-analysis suggest that mechanical valves can provide a significantly better prognosis in patients with infective endocarditis. There were significant differences in the clinical features of patients

  6. Floating clamping mechanism of PT fuel injector and its dynamic characteristics analysis

    NASA Astrophysics Data System (ADS)

    Wang, Xinqing; Liang, Sheng; Xia, Tian; Wang, Dong; Qian, Shuhua

    2012-05-01

    PT fuel injector is one of the most important parts of modern diesel engine. To satisfy the requirements of the rapid and accurate test of PT fuel injector, the self-adaptive floating clamping mechanism was developed and used in the relevant bench. Its dynamic characteristics directly influence the test efficiency and accuracy. However, due to its special structure and complex oil pressure signal, related documents for evaluating dynamic characteristics of this mechanism are lack and some dynamic characteristics of this mechanism can't be extracted and recognized effectively by traditional methods. Aiming at the problem above-mentioned, a new method based on Hilbert-Huang transform (HHT) is presented. Firstly, combining with the actual working process, the dynamic liquid pressure signal of the mechanism is acquired. By analyzing the pressure fluctuation during the whole working process in time domain, oil leakage and hydraulic shock in the clamping chamber are discovered. Secondly, owing to the nonlinearity and nonstationarity of pressure signal, empirical mode decomposition is used, and the signal is decomposed and reconstructed into forced vibration, free vibration and noise. By analyzing forced vibration in the time domain, machining error and installation error of cam are revealed. Finally, free vibration component is analyzed in time-frequency domain with HHT, the traits of free vibration in the time-frequency domain are revealed. Compared with traditional methods, Hilbert spectrum has higher time-frequency resolutions and higher credibility. The improved mechanism based on the above analyses can guarantee the test accuracy of injector injection. This new method based on the analyses of the pressure signal and combined with HHT can provide scientific basis for evaluation, design improvement of the mechanism, and give references for dynamic characteristics analysis of the hydraulic system in the interrelated fields.

  7. Finite element analysis of mechanics of neovessels with intraplaque hemorrhage in carotid atherosclerosis

    PubMed Central

    2015-01-01

    Background Intraplaque hemorrhage is a widely known factor facilitating plaque instability. Neovascularization of plaque can be regarded as a compensatory response to the blood supply in the deep intimal and medial areas of the artery. Due to the physiological function, the deformation of carotid atherosclerotic plaque would happen under the action of blood pressure and blood flow. Neovessels are subject to mechanical loading and likely undergo deformation. The rupture of neovessels may deteriorate the instability of plaque. This study focuses on the local mechanical environments around neovessels and investigates the relationship between the biomechanics and the morphological specificity of neovessels. Methods Stress and stretch were used to evaluate the rupture risk of the neovessels in plaque. Computational structural analysis was performed based on two human carotid plaque slice samples. Two-dimensional models containing neovessels and other components were built according to the plaque slice samples. Each component was assumed to be non-linear isotropic, piecewise homogeneous and incompressible. Different mechanical boundary conditions, i.e. static pressures, were imposed in the carotid lumen and neovessels lumen respectively. Finite element method was used to simulate the mechanical conditions in the atherosclerotic plaque. Results Those neovessels closer to the carotid lumen undergo larger stress and stretch. With the same distance to the carotid lumen, the longer the perimeter of neovessels is, the larger stress and the deformation of the neovessels will be. Under the same conditions, the neovessels with larger curvature suffer greater stress and stretch. Neovessels surrounded by red blood cells undergo a much larger stretch. Conclusions Local mechanical conditions may result in the hemorrhage of neovessels and accelerate the rupture of plaque. The mechanical environments of the neovessel are related to its shape, curvature, distance to the carotid lumen

  8. Nanoscale structural and mechanical analysis of Bacillus anthracis spores inactivated with rapid dry heating.

    PubMed

    Xing, Yun; Li, Alex; Felker, Daniel L; Burggraf, Larry W

    2014-03-01

    Effective killing of Bacillus anthracis spores is of paramount importance to antibioterrorism, food safety, environmental protection, and the medical device industry. Thus, a deeper understanding of the mechanisms of spore resistance and inactivation is highly desired for developing new strategies or improving the known methods for spore destruction. Previous studies have shown that spore inactivation mechanisms differ considerably depending upon the killing agents, such as heat (wet heat, dry heat), UV, ionizing radiation, and chemicals. It is believed that wet heat kills spores by inactivating critical enzymes, while dry heat kills spores by damaging their DNA. Many studies have focused on the biochemical aspects of spore inactivation by dry heat; few have investigated structural damages and changes in spore mechanical properties. In this study, we have inactivated Bacillus anthracis spores with rapid dry heating and performed nanoscale topographical and mechanical analysis of inactivated spores using atomic force microscopy (AFM). Our results revealed significant changes in spore morphology and nanomechanical properties after heat inactivation. In addition, we also found that these changes were different under different heating conditions that produced similar inactivation probabilities (high temperature for short exposure time versus low temperature for long exposure time). We attributed the differences to the differential thermal and mechanical stresses in the spore. The buildup of internal thermal and mechanical stresses may become prominent only in ultrafast, high-temperature heat inactivation when the experimental timescale is too short for heat-generated vapor to efficiently escape from the spore. Our results thus provide direct, visual evidences of the importance of thermal stresses and heat and mass transfer to spore inactivation by very rapid dry heating.

  9. Kinematics and dynamics analysis of a quadruped walking robot with parallel leg mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Hongbo; Sang, Lingfeng; Hu, Xing; Zhang, Dianfan; Yu, Hongnian

    2013-09-01

    It is desired to require a walking robot for the elderly and the disabled to have large capacity, high stiffness, stability, etc. However, the existing walking robots cannot achieve these requirements because of the weight-payload ratio and simple function. Therefore, Improvement of enhancing capacity and functions of the walking robot is an important research issue. According to walking requirements and combining modularization and reconfigurable ideas, a quadruped/biped reconfigurable walking robot with parallel leg mechanism is proposed. The proposed robot can be used for both a biped and a quadruped walking robot. The kinematics and performance analysis of a 3-UPU parallel mechanism which is the basic leg mechanism of a quadruped walking robot are conducted and the structural parameters are optimized. The results show that performance of the walking robot is optimal when the circumradius R, r of the upper and lower platform of leg mechanism are 161.7 mm, 57.7 mm, respectively. Based on the optimal results, the kinematics and dynamics of the quadruped walking robot in the static walking mode are derived with the application of parallel mechanism and influence coefficient theory, and the optimal coordination distribution of the dynamic load for the quadruped walking robot with over-determinate inputs is analyzed, which solves dynamic load coupling caused by the branches’ constraint of the robot in the walk process. Besides laying a theoretical foundation for development of the prototype, the kinematics and dynamics studies on the quadruped walking robot also boost the theoretical research of the quadruped walking and the practical applications of parallel mechanism.

  10. Nanoscale Structural and Mechanical Analysis of Bacillus anthracis Spores Inactivated with Rapid Dry Heating

    PubMed Central

    Felker, Daniel L.; Burggraf, Larry W.

    2014-01-01

    Effective killing of Bacillus anthracis spores is of paramount importance to antibioterrorism, food safety, environmental protection, and the medical device industry. Thus, a deeper understanding of the mechanisms of spore resistance and inactivation is highly desired for developing new strategies or improving the known methods for spore destruction. Previous studies have shown that spore inactivation mechanisms differ considerably depending upon the killing agents, such as heat (wet heat, dry heat), UV, ionizing radiation, and chemicals. It is believed that wet heat kills spores by inactivating critical enzymes, while dry heat kills spores by damaging their DNA. Many studies have focused on the biochemical aspects of spore inactivation by dry heat; few have investigated structural damages and changes in spore mechanical properties. In this study, we have inactivated Bacillus anthracis spores with rapid dry heating and performed nanoscale topographical and mechanical analysis of inactivated spores using atomic force microscopy (AFM). Our results revealed significant changes in spore morphology and nanomechanical properties after heat inactivation. In addition, we also found that these changes were different under different heating conditions that produced similar inactivation probabilities (high temperature for short exposure time versus low temperature for long exposure time). We attributed the differences to the differential thermal and mechanical stresses in the spore. The buildup of internal thermal and mechanical stresses may become prominent only in ultrafast, high-temperature heat inactivation when the experimental timescale is too short for heat-generated vapor to efficiently escape from the spore. Our results thus provide direct, visual evidences of the importance of thermal stresses and heat and mass transfer to spore inactivation by very rapid dry heating. PMID:24375142

  11. Analysis method and principle of dual-mode electro-mechanical variable transmission program

    NASA Astrophysics Data System (ADS)

    Li, Hongcai; Yan, Qingdong; Xiang, Changle; Wang, Weida

    2012-05-01

    Automotive industry, as an important pillar of the national economy, has been rapidly developing in recent years. But proplems such as energy comsumption and environmental pollution are posed at the same time. Electro-mechanical variable transmission system is considered one of avilable workarounds. It is brought forward a kind of design methods of dual-mode electro-mechanical variable transmission system rotational speed characteristics and dual-mode drive diagrams. With the motor operating behavior of running in four quadrants and the speed characteristics of the simple internal and external meshing single planetary gear train, four kinds of dual-mode electro-mechanical transmission system scheme are designed. And the velocity, torque and power characteristics of one of the programs are analyzed. The magnitude of the electric split-flow power is an important factor which influences the system performance, so in the parameters matching design, it needs to reduce the power needs under the first mode of the motor. The motor, output rotational speed range and the position of the mode switching point have relationships with the characteristics design of the planetary gear set. The analysis method is to provide a reference for hybrid vehicles' design. As the involved rotational speed and torque relationships are the natural contact of every part of transmission system, a theory basis of system program and performance analysis is provided.

  12. Integrated network analysis reveals potentially novel molecular mechanisms and therapeutic targets of refractory epilepsies

    PubMed Central

    Liu, Guangming; Wang, Yiwei; Zhao, Pengyao; Zhu, Yizhun; Yang, Xiaohan; Zheng, Tiezheng; Zhou, Xuezhong; Jin, Weilin; Sun, Changkai

    2017-01-01

    Epilepsy is a complex neurological disorder and a significant health problem. The pathogenesis of epilepsy remains obscure in a significant number of patients and the current treatment options are not adequate in about a third of individuals which were known as refractory epilepsies (RE). Network medicine provides an effective approach for studying the molecular mechanisms underlying complex diseases. Here we integrated 1876 disease-gene associations of RE and located those genes to human protein-protein interaction (PPI) network to obtain 42 significant RE-associated disease modules. The functional analysis of these disease modules showed novel molecular pathological mechanisms of RE, such as the novel enriched pathways (e.g., “presynaptic nicotinic acetylcholine receptors”, “signaling by insulin receptor”). Further analysis on the relationships between current drug targets and the RE-related disease genes showed the rational mechanisms of most antiepileptic drugs. In addition, we detected ten potential novel drug targets (e.g., KCNA1, KCNA4-6, KCNC3, KCND2, KCNMA1, CAMK2G, CACNB4 and GRM1) located in three RE related disease modules, which might provide novel insights into the new drug discovery for RE therapy. PMID:28388656

  13. Differentiating mechanisms of toxicity using global gene expression analysis in Saccharomyces cerevisiae.

    PubMed

    Caba, Ebru; Dickinson, Donna A; Warnes, Gregory R; Aubrecht, Jiri

    2005-08-04

    Genotoxic stress triggers a variety of biological responses including the transcriptional activation of genes regulating DNA repair, cell survival and cell death. Genomic approaches, which monitor gene expressions across large numbers of genes, can serve as a powerful tool for exploring mechanisms of toxicity. Here, using five different agents, we investigated whether the analysis of genome-wide expression profiles in Saccharomyces cerevisiae could provide insights into mechanisms of genotoxicity versus cytotoxicity. To differentiate the genotoxic stress-associated expression signatures from that of a general cytotoxic stress, we compared gene expression profiles following the treatment with DNA-reactive (cisplatin, MMS, bleomycin) and DNA non-reactive (ethanol and sodium chloride) compounds. Although each of the tested chemicals produced a distinct gene expression profile, we were able to identify a gene expression signature consisting of a relatively small number of biologically relevant genes capable of differentiating genotoxic and cytotoxic stress. The gene set includes such upregulated genes as HUG1, ECM4 and previously uncharacterized gene, YLR297W in the genotoxic and GAP1, CGR1 in the cytotoxic group. Our results indicate the potential of gene expression profile analysis for elucidating mechanism of action of genotoxic agents.

  14. Mechanical modeling of battery separator based on microstructure image analysis and stochastic characterization

    NASA Astrophysics Data System (ADS)

    Xu, Hongyi; Zhu, Min; Marcicki, James; Yang, Xiao Guang

    2017-03-01

    A microstructure-based modeling method is developed to predict the mechanical behaviors of lithium-ion battery separators. Existing battery separator modeling methods cannot capture the structural features on the microscale. To overcome this issue, we propose an image-based microstructure Representative Volume Element (RVE) modeling method, which facilitates the understanding of the separators' complex macro mechanical behaviors from the perspective of microstructural features. A generic image processing workflow is developed to identify different phases in the microscopic image. The processed RVE image supplies microstructural information to the Finite Element Analysis (FEA). Both mechanical behavior and microstructure evolution are obtained from the simulation. The evolution of microstructure features is quantified using the stochastic microstructure characterization methods. The proposed method successfully captures the anisotropic behavior of the separator under tensile test, and provides insights into the microstructure deformation, such as the growth of voids. We apply the proposed method to a commercially available separator as the demonstration. The analysis results are validated using experimental testing results that are reported in literature.

  15. Isolation of sarcolemmal plasma membranes by mechanically skinning rat skeletal muscle fibers for phospholipid analysis.

    PubMed

    Fajardo, Val Andrew; McMeekin, Lauren; Basic, Admir; Lamb, Graham D; Murphy, Robyn M; LeBlanc, Paul J

    2013-04-01

    Membrane phospholipid (PL) composition has been shown to affect cellular function by altering membrane physical structure. The sarcolemma plasma membrane (SLpm) is integral to skeletal muscle function and health. Previous studies assessing SLpm PL composition have demonstrated contamination from transverse (t)-tubule, sarcoplasmic reticulum, and nuclear membranes. This study assessed the possibility of isolating SL by mechanically skinning skeletal muscle fiber segments for the analysis of SLpm PL composition. Mechanically skinned SLpm from rat extensor digitorum longus (EDL) muscle fibers underwent Western blot analysis to assess contamination from t-tubule, sarcoplasmic reticulum, nuclear and mitochondrial membranes. The results indicate that isolated SLpm had minimal nuclear and mitochondrial membrane contamination and was void of contamination from sarcoplasmic reticulum and t-tubule membranes. After performing both high-performance thin layer chromatography and gas chromatography, we found that the SLpm obtained by mechanical skinning had higher sphingomyelin and total fatty acid saturation and lower phosphatidylcholine when compared to previous literature. Thus, by avoiding the use of various chemical treatments and membrane fractionation, we present data that may truly represent the SLpm and future studies can use this technique to assess potential changes under various perturbations and disease conditions such as insulin resistance and muscular dystrophy.

  16. Characterization of the mechanical behavior of SU-8 at microscale by viscoelastic analysis

    NASA Astrophysics Data System (ADS)

    Xu, Tingge; Yoo, Jun Hyeon; Babu, Sachin; Roy, Samit; Lee, Jeong-Bong; Lu, Hongbing

    2016-10-01

    The mechanical properties of SU-8 at microscale were measured under both micropillar compression and nanoindentation on a film on a substrate. To the best of our knowledge, this paper reports the first set of results for microcompression of SU-8 micropillars for measurement of mechanical properties using viscoelastic analysis. The effects of loading rate and micropillar size are examined. It was determined that the SU-8 exhibits viscoelastic properties at room temperature, the time-average Young’s modulus increases in general with the loading rate. The average Young’s modulus determined by compression of a micropillar was 4.1 GPa at a strain rate near 10-3 s-1. For nanoindentation on a SU-8 film supported by a silicon substrate, the default output from the nanoindenter for the Young’s modulus was approximately 6.0 GPa with the consideration of elastic-plastic behavior of the SU-8. When the viscoelastic effects were considered, the time-average Young’s modulus at a given strain rate was determined to be near 3.6 GPa, which agrees with the reported values in the literature obtained from tension and bending, and also correlates reasonably well with data from microcompression. This work indicates that viscoelastic analysis is necessary to extract the valid mechanical properties at nano/microscales for SU-8.

  17. Characterization of PV modules by combining results of mechanical and electrical analysis methods

    NASA Astrophysics Data System (ADS)

    Sander, Martin; Henke, Bastian; Schwarz, Hannes; Dietrich, Sascha; Schweizer, Stefan; Ebert, Matthias; Bagdahn, Jörg

    2010-08-01

    Photovoltaic modules (PV modules) are supposed to have a lifetime of more than 20 years under various environmental conditions like temperature changes, mechanical loads, etc. Common outdoor exposure may influence efficiency and lifetime which necessitates assessment of PV module performance and detection of output deficits. For this purpose reliable and nondestructive testing methods are desirable. Commercially available PV modules were tested by different analysis methods. The PV module's electrical properties were investigated by thermography and electroluminescence measurements. The combination of these two techniques is well-suited to detect many cell and module defects. A crystalline module showed significant cell breakage after temperature cycle test. To observe the mechanisms of this specific defect type laminated test specimens on smaller scales were produced and analyzed over production process and during temperature cycles derived from the international standards IEC 61215 and IEC 61646. The defect study on small scales allows conclusions about the defect's influence on larger PV modules. Further methods capable for mechanical characterization like Laser Doppler vibrometry, surface geometry scan and digital image correlation are presented briefly. The combination of the methods mentioned above allows a very precise assessment of the mechanical and electrical capability which is essential for reliability and lifetime concepts.

  18. Dynamic analysis and control of lightweight manipulators with flexible parallel link mechanisms

    NASA Technical Reports Server (NTRS)

    Lee, Jeh Won

    1991-01-01

    The flexible parallel link mechanism is designed for increased rigidity to sustain the buckling when it carries a heavy payload. Compared to a one link flexible manipulator, a two link flexible manipulator, especially the flexible parallel mechanism, has more complicated characteristics in dynamics and control. The objective of this research is the theoretical analysis and the experimental verification of dynamics and control of a two link flexible manipulator with a flexible parallel link mechanism. Nonlinear equations of motion of the lightweight manipulator are derived by the Lagrangian method in symbolic form to better understand the structure of the dynamic model. A manipulator with a flexible parallel link mechanism is a constrained dynamic system whose equations are sensitive to numerical integration error. This constrained system is solved using singular value decomposition of the constraint Jacobian matrix. The discrepancies between the analytical model and the experiment are explained using a simplified and a detailed finite element model. The step response of the analytical model and the TREETOPS model match each other well. The nonlinear dynamics is studied using a sinusoidal excitation. The actuator dynamic effect on a flexible robot was investigated. The effects are explained by the root loci and the Bode plot theoretically and experimentally. For the base performance for the advanced control scheme, a simple decoupled feedback scheme is applied.

  19. Dynamic analysis and control of lightweight manipulators with flexible parallel link mechanisms

    NASA Technical Reports Server (NTRS)

    Lee, Jeh Won

    1991-01-01

    The flexible parallel link mechanism is designed for increased rigidity to sustain the buckling when it carries a heavy payload. Compared to a one link flexible manipulator, a two link flexible manipulator, especially the flexible parallel mechanism, has more complicated characteristics in dynamics and control. The objective of this research is the theoretical analysis and the experimental verification of dynamics and control of a two link flexible manipulator with a flexible parallel link mechanism. Nonlinear equations of motion of the lightweight manipulator are derived by the Lagrangian method in symbolic form to better understand the structure of the dynamic model. A manipulator with a flexible parallel link mechanism is a constrained dynamic system whose equations are sensitive to numerical integration error. This constrained system is solved using singular value decomposition of the constraint Jacobian matrix. The discrepancies between the analytical model and the experiment are explained using a simplified and a detailed finite element model. The step response of the analytical model and the TREETOPS model match each other well. The nonlinear dynamics is studied using a sinusoidal excitation. The actuator dynamic effect on a flexible robot was investigated. The effects are explained by the root loci and the Bode plot theoretically and experimentally. For the base performance for the advanced control scheme, a simple decoupled feedback scheme is applied.

  20. A biomechanical study on burst mechanisms of plant fruit: stress analysis of pericarps before bursting.

    PubMed

    Endo, Yasuhiro; Sakamoto, Jiro; Kashiwano, Yuki; Yokota, Hideo; Nakamura, Sakiko; Kinoshita, Eichiro

    2010-10-01

    Bursting of fruit is a very interesting biomechanical phenomenon because its mechanism is directly related to the plant's reproduction. A plant that produces fruit that bursts powerfully and spreads the seeds widely has the advantage of reproduction without relying on other mechanisms such as transportation of fruit by insects. The structures of many types of fruit have likely been optimized by evolution, although the structure itself appears rather simplistic. Strain energy is stored in each pericarp because of growth deformation, swelling or desiccation just before bursting. Throughout these changes, the mechanical stress of the pericarps is at equilibrium. At the instant of bursting, the stored strain energy is released very rapidly. Quick and wide motion of the pericarps in a certain direction is advantageous for throwing the seed a long distance. The motion and deformation of bursting pericarps depend on their tissue structure and mechanical stress condition just before the burst. We tracked the bursting motion by using a high-speed camera. Then we calculated the pre-burst stress generated in a pericarp of Impatiens by using the finite-element method. The boundary condition obtained by experiments using a high-speed video camera is given, and the stress was calculated using reverse deformation analysis. The stress distribution of the pericarp is effective in causing the pericarp motion to throw the seeds far away.

  1. Dynamical systems analysis of spike-adding mechanisms in transient bursts

    PubMed Central

    2012-01-01

    Transient bursting behaviour of excitable cells, such as neurons, is a common feature observed experimentally, but theoretically, it is not well understood. We analyse a five-dimensional simplified model of after-depolarisation that exhibits transient bursting behaviour when perturbed with a short current injection. Using one-parameter continuation of the perturbed orbit segment formulated as a well-posed boundary value problem, we show that the spike-adding mechanism is a canard-like transition that has a different character from known mechanisms for periodic burst solutions. The biophysical basis of the model gives a natural time-scale separation, which allows us to explain the spike-adding mechanism using geometric singular perturbation theory, but it does not involve actual bifurcations as for periodic bursts. We show that unstable sheets of the critical manifold, formed by saddle equilibria of the system that only exist in a singular limit, are responsible for the spike-adding transition; the transition is organised by the slow flow on the critical manifold near folds of this manifold. Our analysis shows that the orbit segment during the spike-adding transition includes a fast transition between two unstable sheets of the slow manifold that are of saddle type. We also discuss a different parameter regime where the presence of additional saddle equilibria of the full system alters the spike-adding mechanism. PMID:22655748

  2. Magnetic microposts for mechanical stimulation of biological cells: Fabrication, characterization, and analysis

    NASA Astrophysics Data System (ADS)

    Sniadecki, Nathan J.; Lamb, Corinne M.; Liu, Yaohua; Chen, Christopher S.; Reich, Daniel H.

    2008-04-01

    Cells use force as a mechanical signal to sense and respond to their microenvironment. Understanding how mechanical forces affect living cells requires the development of tool sets that can apply nanoscale forces and also measure cellular traction forces. However, there has been a lack of techniques that integrate actuation and sensing components to study force as a mechanical signal. Here, we describe a system that uses an array of elastomeric microposts to apply external forces to cells through cobalt nanowires embedded inside the microposts. We first biochemically treat the posts' surfaces to restrict cell adhesion to the posts' tips. Then by applying a uniform magnetic field (B<0.3T), we induce magnetic torque on the nanowires that is transmitted to a cell's adhesion site as an external force. We have achieved external forces of up to 45nN, which is in the upper range of current nanoscale force-probing techniques. Nonmagnetic microposts, similarly prepared but without nanowires, surround the magnetic microposts and are used to measure the traction forces and changes in cell mechanics. We record the magnitude and direction of the external force and the traction forces by optically measuring the deflection of the microposts, which linearly deflect as cantilever springs. With this approach, we can measure traction forces before and after force stimulation in order to monitor cellular response to forces. We present the fabrication methods, magnetic force characterization, and image analysis techniques used to achieve the measurements.

  3. Comparison of bioprosthesis and mechanical valves, a meta-analysis of randomised clinical trials.

    PubMed

    Kassaï, B; Gueyffier, F; Cucherat, M; Boissel, J P

    2000-10-01

    The main purpose of this meta-analysis was to compare the outcomes of patients who randomly received mechanical valves or bioprosthesis, over a long-term clinical follow-up. We found only three trials meeting our selection criteria with a total of 1229 patients (8069. 5 patient-yr). Bleeding was more frequent in patients with mechanical prostheses both after 5 yr (RR=2.6; IC=[1.9;3.5]; P<0.0001) and 11 yr (RR=1.6; IC=[1.2;2.2]; P<0.001) of follow-up. However, the increased risk of bleeding at 11 yr was only statistically significant with mechanical prostheses in the aortic position (RR=1.93; IC=[1.36;2. 74]; P=0.0002). Reoperation was significantly more frequent in patients with bioprosthesis after 11 yr follow-up (RR=0.4; IC=[0.3;0. 6]; P<0.001). Endocarditis was more frequent after 11 yr (RR=0.6; IC=[0.3;0.95]; P<0.05) in patients with mechanical prostheses but these results were heterogeneous between mitral and aortic valves. The choice of valve type does not significantly influence survival.

  4. Time resolved impedance spectroscopy analysis of lithium phosphorous oxynitride - LiPON layers under mechanical stress

    NASA Astrophysics Data System (ADS)

    Glenneberg, Jens; Bardenhagen, Ingo; Langer, Frederieke; Busse, Matthias; Kun, Robert

    2017-08-01

    In this paper we present investigations on the morphological and electrochemical changes of lithium phosphorous oxynitride (LiPON) under mechanically bent conditions. Therefore, two types of electrochemical cells with LiPON thin films were prepared by physical vapor deposition. First, symmetrical cells with two blocking electrodes (Cu/LiPON/Cu) were fabricated. Second, to simulate a more application-related scenario cells with one blocking and one non-blocking electrode (Cu/LiPON/Li/Cu) were analyzed. In order to investigate mechanical distortion induced transport property changes in LiPON layers the cells were deposited on a flexible polyimide substrate. Morphology of the as-prepared samples and deviations from the initial state after applying external stress by bending the cells over different radii were investigated by Focused Ion Beam- Scanning Electron Microscopy (FIB-SEM) cross-section and surface images. Mechanical stress induced changes in the impedance were evaluated by time-resolved electrochemical impedance spectroscopy (EIS). Due to the formation of a stable, ion-conducting solid electrolyte interphase (SEI), cells with lithium show decreased impedance values. Furthermore, applying mechanical stress to the cells results in a further reduction of the electrolyte resistance. These results are supported by finite element analysis (FEA) simulations.

  5. Grid indentation analysis of mechanical properties of composite electrodes in Li-ion batteries

    SciTech Connect

    Vasconcelos, Luize Scalco de; Xu, Rong; Li, Jianlin; Zhao, Kejie

    2016-03-09

    We report that electrodes in commercial rechargeable batteries are microscopically heterogeneous materials. The constituent components, including active materials, polymeric binders, and porous conductive matrix, often have large variation in their mechanical properties, making the mechanical characterization of composite electrodes a challenging task. In a model system of LiNi0.5Mn0.3Co0.2O2 cathode, we employ the instrumented grid indentation to determine the elastic modulus and hardness of the constituent phases. The approach relies on a large array of nanoindentation experiments and statistical analysis of the resulting data provided that the maximum indentation depth is carefully chosen. The statistically extracted properties of the active particles and the surrounding medium are in good agreement with the tests of targeted indentation at selected sites. Lastly, the combinatory technique of grid indentation and statistical deconvolution represents a fast and reliable route to quantify the mechanical properties of composite electrodes that feed the parametric input for the mechanics models.

  6. Grid indentation analysis of mechanical properties of composite electrodes in Li-ion batteries

    DOE PAGES

    Vasconcelos, Luize Scalco de; Xu, Rong; Li, Jianlin; ...

    2016-03-09

    We report that electrodes in commercial rechargeable batteries are microscopically heterogeneous materials. The constituent components, including active materials, polymeric binders, and porous conductive matrix, often have large variation in their mechanical properties, making the mechanical characterization of composite electrodes a challenging task. In a model system of LiNi0.5Mn0.3Co0.2O2 cathode, we employ the instrumented grid indentation to determine the elastic modulus and hardness of the constituent phases. The approach relies on a large array of nanoindentation experiments and statistical analysis of the resulting data provided that the maximum indentation depth is carefully chosen. The statistically extracted properties of the active particlesmore » and the surrounding medium are in good agreement with the tests of targeted indentation at selected sites. Lastly, the combinatory technique of grid indentation and statistical deconvolution represents a fast and reliable route to quantify the mechanical properties of composite electrodes that feed the parametric input for the mechanics models.« less

  7. Cell Type-Specific Expression Analysis to Identify Putative Cellular Mechanisms for Neurogenetic Disorders

    PubMed Central

    Xu, Xiaoxiao; Wells, Alan B.; O'Brien, David R.; Nehorai, Arye

    2014-01-01

    Recent advances have substantially increased the number of genes that are statistically associated with complex genetic disorders of the CNS such as autism and schizophrenia. It is now clear that there will likely be hundreds of distinct loci contributing to these disorders, underscoring a remarkable genetic heterogeneity. It is unclear whether this genetic heterogeneity indicates an equal heterogeneity of cellular mechanisms for these diseases. The commonality of symptoms across patients suggests there could be a functional convergence downstream of these loci upon a limited number of cell types or circuits that mediate the affected behaviors. One possible mechanism for this convergence would be the selective expression of at least a subset of these genes in the cell types that comprise these circuits. Using profiling data from mice and humans, we have developed and validated an approach, cell type-specific expression analysis, for identifying candidate cell populations likely to be disrupted across sets of patients with distinct genetic lesions. Using human genetics data and postmortem gene expression data, our approach can correctly identify the cell types for disorders of known cellular etiology, including narcolepsy and retinopathies. Applying this approach to autism, a disease where the cellular mechanism is unclear, indicates there may be multiple cellular routes to this disorder. Our approach may be useful for identifying common cellular mechanisms arising from distinct genetic lesions. PMID:24453331

  8. Mechanical analysis of fault activation in southern Longmen Shan fold-and- thrust belt

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Zhang, Huai; Wang, Liangshu; Shi, Yaolin; Leroy, Yves M.

    2017-04-01

    A mixed fault activation mode with obvious hinterland rupture in the southern Longmen Shan, the eastern margin of Tibetan Plateau, is revealed by recent 2008 Mw7.9 Wenchuan and 2013 Mw6.6 Lushan earthquakes together with GPS measurements. How to systematically understand the coexistence and competition mechanisms of fault activation, especially the principal-subordinate relationship on deformation absorption, in essence, involves mechanical onset analysis of this fold- and-thrust belt. However, due to the two-décollement- level thrust system with active 'flat-ramp- flat' geometry décollement, the predication of fault activation in the LMS has beyond the scope of Critical Coulomb wedge theory, not to mention the synchronous listric-type splay fault rupturing in the Beichuan fault (BCF) and Pengguan fault (PGF). For that purpose, we adopted maximum strength theorem, the kinematic approach of limit analysis, to deal with mechanical analysis of fault activation. Four end-member failure modes, or collapse mechanisms (CMs) in classical limit analysis, are proposed corresponding to the rupture of BCF, PGF, Range Frontal Blind Fault (RFBF) and the rupture of the flat-ramp- flat décollement into Sichuan Basin via RFBF. By selecting the available CMs via finite element limit analysis, the listric geometry of BCF and PGF is demonstrated to the dominant factor in trapping deformation in the hinterland. To activate the high-angle Beichuan splay fault, low cohesion and low friction angle on the BCF are combined effects on the rupturing of BCF. The change in cohesion and friction on BCF eventually forms the transition state between high angle BCF and low-angle PGF. Besides, due to the existence of low frictional upper décollement layer in Sichuan Basin (the Triassic evaporate layer), small amount of deformation is attracted into the Sichuan Basin forming small-scale thrusting folding. Moreover, favorable deformation migration toward Sichuan Basin is jointly influenced by

  9. Design, analysis, and applications of cellular contact-aided compliant mechanisms

    NASA Astrophysics Data System (ADS)

    Mehta, Vipul

    A new class of compliant mechanisms utilizing the benefits of cellular geometry and contact are addressed in this work. The design, analysis, fabrication and testing of such structures for high-strain and high-strength applications is the focus of the present research. Cellular structures have relatively good strength-to-weight ratios. They also have a higher strain capability than solid structures. Contact during deformation reduces failure-causing bending stresses through stress relief, thereby enabling such cellular structures to be stretched more than the corresponding structures without contact. Both analytical and numerical models are developed to represent one specific mechanism. Several candidate materials are investigated for such mechanisms. Although the allowable strain of all these materials is small, the overall strain of the contact-aided cellular mechanisms is at least an order of magnitude greater than that of the constitutive material. Application of contact to different materials yields an improvement in the global strain capacity by more than 100% relative to cellular structures without contact. Experiments are conducted to validate the models, and good agreement is found. Size optimization is carried out to maximize the stress relief and the overall strain. Two main applications are considered in the present work. One application consists of a morphing aircraft skin for adaptive structures. Different material models such as linearly elastic and multi-linear elastic are examined. For linearly elastic materials, contact-induced stress-relief is advantageous and for nonlinear elastic materials, reduction of transverse deflection due to contact is useful. The proposed contact-aided skin structure is compared with a cellular skin without contact. The contact mechanism helps to increase the morphing capacity while decreasing the structural mass. Using contact-aided cellular mechanisms, the global strain capability is increased by as much as 37%. For a

  10. Mechanical models of the cellular cytoskeletal network for the analysis of intracellular mechanical properties and force distributions: a review.

    PubMed

    Chen, Ting-Jung; Wu, Chia-Ching; Su, Fong-Chin

    2012-12-01

    The cytoskeleton, which is the major mechanical component of cells, supports the cell body and regulates the cellular motility to assist the cell in performing its biological functions. Several cytoskeletal network models have been proposed to investigate the mechanical properties of cells. This review paper summarizes these models with a focus on the prestressed cable network, the semi-flexible chain network, the open-cell foam, the tensegrity, and the granular models. The components, material parameters, types of connection joints, tension conditions, and the advantages and disadvantages of each model are evaluated from a structural and biological point of view. The underlying mechanisms that are associated with the morphological changes of spreading cells are expected to be simulated using a cytoskeletal model; however, it is still paid less attention most likely due to the lack of a suitable cytoskeletal model that can accurately model the spreading process. In this review article, the established cytoskeletal models are hoped to provide useful information for the development of future cytoskeletal models with different degrees of cell attachment for the study of the mechanical mechanisms underlying the cellular behaviors in response to external stimulations.

  11. Mechanical performance and parameter sensitivity analysis of 3D braided composites joints.

    PubMed

    Wu, Yue; Nan, Bo; Chen, Liang

    2014-01-01

    3D braided composite joints are the important components in CFRP truss, which have significant influence on the reliability and lightweight of structures. To investigate the mechanical performance of 3D braided composite joints, a numerical method based on the microscopic mechanics is put forward, the modeling technologies, including the material constants selection, element type, grid size, and the boundary conditions, are discussed in detail. Secondly, a method for determination of ultimate bearing capacity is established, which can consider the strength failure. Finally, the effect of load parameters, geometric parameters, and process parameters on the ultimate bearing capacity of joints is analyzed by the global sensitivity analysis method. The results show that the main pipe diameter thickness ratio γ, the main pipe diameter D, and the braided angle α are sensitive to the ultimate bearing capacity N.

  12. Mechanical Performance and Parameter Sensitivity Analysis of 3D Braided Composites Joints

    PubMed Central

    Wu, Yue; Nan, Bo; Chen, Liang

    2014-01-01

    3D braided composite joints are the important components in CFRP truss, which have significant influence on the reliability and lightweight of structures. To investigate the mechanical performance of 3D braided composite joints, a numerical method based on the microscopic mechanics is put forward, the modeling technologies, including the material constants selection, element type, grid size, and the boundary conditions, are discussed in detail. Secondly, a method for determination of ultimate bearing capacity is established, which can consider the strength failure. Finally, the effect of load parameters, geometric parameters, and process parameters on the ultimate bearing capacity of joints is analyzed by the global sensitivity analysis method. The results show that the main pipe diameter thickness ratio γ, the main pipe diameter D, and the braided angle α are sensitive to the ultimate bearing capacity N. PMID:25121121

  13. Experimental analysis of mechanical response of stabilized occipitocervical junction by 3D mark tracking technique

    NASA Astrophysics Data System (ADS)

    Germaneau, A.; Doumalin, P.; Dupré, J. C.; Brèque, C.; Brémand, F.; D'Houtaud, S.; Rigoard, P.

    2010-06-01

    This study is about a biomechanical comparison of some stabilization solutions for the occipitocervical junction. Four kinds of occipito-cervical fixations are analysed in this work: lateral plates fixed by two kinds of screws, lateral plates fixed by hooks and median plate. To study mechanical rigidity of each one, tests have been performed on human skulls by applying loadings and by studying mechanical response of fixations and bone. For this experimental analysis, a specific setup has been developed to impose a load corresponding to the flexion-extension physiological movements. 3D mark tracking technique is employed to measure 3D displacement fields on the bone and on the fixations. Observations of displacement evolution on the bone according to the fixation show different rigidities given by each solution.

  14. A meta-analysis of the mechanical properties of ice-templated ceramics and metals

    PubMed Central

    Deville, Sylvain; Meille, Sylvain; Seuba, Jordi

    2015-01-01

    Ice templating, also known as freeze casting, is a popular shaping route for macroporous materials. Over the past 15 years, it has been widely applied to various classes of materials, and in particular ceramics. Many formulation and process parameters, often interdependent, affect the outcome. It is thus difficult to understand the various relationships between these parameters from isolated studies where only a few of these parameters have been investigated. We report here the results of a meta analysis of the structural and mechanical properties of ice templated materials from an exhaustive collection of records. We use these results to identify which parameters are the most critical to control the structure and properties, and to derive guidelines for optimizing the mechanical response of ice templated materials. We hope these results will be a helpful guide to anyone interested in such materials. PMID:27877817

  15. Dynamic mechanical analysis in La-based bulk metallic glasses: Secondary (β) and main (α) relaxations

    NASA Astrophysics Data System (ADS)

    Qiao, J. C.; Pelletier, J. M.

    2012-10-01

    Relaxation behavior was investigated in typical La-based bulk metallic glasses by dynamic mechanical analysis, both in the isochronal and in the isothermal routes. Two relaxations were observed: the main relaxation (α), associated with the glass transition, and a secondary relaxation, at lower temperature or higher frequency. This secondary relaxation corresponds to the well known Johari-Goldstein (JG) β relaxation. Master curves can be obtained. The activation energy Eβ of β relaxation (about 1 eV) is in agreement with the empirical relation Eβ ≈ 26(±2) RTg. The high value of the activation energy Eα of the α relaxation (about 5 eV) indicates that this relaxation corresponds to correlated movements. The mechanism of JG β relaxation in metallic glasses is discussed.

  16. Network Analysis of Students' Representation Use in Mechanics and E&M

    NASA Astrophysics Data System (ADS)

    McPadden, Daryl; Brewe, Eric

    2017-01-01

    In this study, we analyzed the representational tools that students in the Modeling Instruction-Introductory E&M (MI-E&M) course use on introductory physics problems. Representational competence is a critical skill needed for students to develop and communicate a sophisticated understanding of science topics, particularly in physics where multiple representations are often used within a single problem. The Modeling Instruction curriculum highlights representation development as a part of the modeling process, making the MI-E&M course a rich context to collect data. In the Spring 2015 and Spring 2016 semesters, over 150 students total (from 3 sections of MI-E&M) were given a survey of 25 physics problem statements both pre- and post- instruction, covering both Newtonian Mechanics and Electricity and Magnetism (E&M), and asked which representations they would use in that given situation. Using network analysis, we compare how students use representations in Mechanics and E&M contexts.

  17. Characterization of Thin Film Polymers Through Dynamic Mechanical Analysis and Permeation

    NASA Technical Reports Server (NTRS)

    Herring, Helen

    2003-01-01

    Thin polymer films are being considered, as candidate materials to augment the permeation resistance of cryogenic hydrogen fuel tanks such as would be required for future reusable launch vehicles. To evaluate performance of candidate films after environmental exposure, an experimental study was performed to measure the thermal/mechanical and permeation performance of six, commercial-grade materials. Dynamic storage modulus, as measured by Dynamic Mechanical Analysis, was found over a range of temperatures. Permeability, as measured by helium gas diffusion, was found at room temperature. Test data was correlated with respect to film type and pre-test exposure to moisture, elevated temperature, and cryogenic temperature. Results indicated that the six films were comparable in performance and their resistance to environmental degradation.

  18. Real-time analysis of mechanical and electrical resonances with open-source sound card software

    NASA Astrophysics Data System (ADS)

    Makan, G.; Kopasz, K.; Gingl, Z.

    2014-01-01

    We present an easily reproducible, open-source, sound card based experimental set-up to support transfer function measurement. Our system is able to visualize the signals of mechanical and electrical resonances and their spectra in real time. We give a brief description of the system, and show some examples of electrical and mechanical resonance experiments that are supported by the system. The theoretical background, experimental set-up, component selection and digital signal processing are all discussed, and more detailed information (building instructions, software download) is provided on a dedicated web page (www.noise.inf.u-szeged.hu/edudev/RealTimeAnalysisOfResonances/). The experimental set-up can support the undergraduate and graduate education of students of physics, physics education and engineering by means of experimental demonstrations and laboratory exercises. The very low cost, high efficiency and transparent system provides a scalable experimental environment that can be easily built in several instances.

  19. Mechanical vulnerability of lower second premolar utilising visco-elastic dynamic stress analysis.

    PubMed

    Khani, M M; Tafazzoli-Shadpour, M; Aghajani, F; Naderi, P

    2009-10-01

    Stress analysis determines vulnerability of dental tissues to external loads. Stress values depend on loading conditions, mechanical properties and constrains of structural components. The critical stress levels lead to tissue damage. The aim of this study is to analyse dynamic stress distribution of lower second premolar due to physiological cyclic loading, and dependency of pulsatile stress characteristics to visco-elastic property of dental components by finite element modelling. Results show that visco-elastic property markedly influences stress determinants in major anatomical sites including dentin, cementum-enamel and dentin-enamel junctions. Reduction of visco-elastic parameter leads to mechanical vulnerability through elevation of stress pulse amplitude, maximum stress value; and reduction of stress phase shift as a determinant of stress wave propagation. The results may be applied in situations in which visco-elasticity is reduced such as root canal therapy and post and core restoration in which teeth are more vulnerable to fracture.

  20. Mechanical versus clinical data combination in selection and admissions decisions: a meta-analysis.

    PubMed

    Kuncel, Nathan R; Klieger, David M; Connelly, Brian S; Ones, Deniz S

    2013-11-01

    In employee selection and academic admission decisions, holistic (clinical) data combination methods continue to be relied upon and preferred by practitioners in our field. This meta-analysis examined and compared the relative predictive power of mechanical methods versus holistic methods in predicting multiple work (advancement, supervisory ratings of performance, and training performance) and academic (grade point average) criteria. There was consistent and substantial loss of validity when data were combined holistically-even by experts who are knowledgeable about the jobs and organizations in question-across multiple criteria in work and academic settings. In predicting job performance, the difference between the validity of mechanical and holistic data combination methods translated into an improvement in prediction of more than 50%. Implications for evidence-based practice are discussed. (c) 2013 APA, all rights reserved.

  1. Coupled model analysis of the structure and nano-mechanical properties of dragonfly wings.

    PubMed

    Sun, J Y; Pan, C X; Tong, J; Zhang, J

    2010-03-01

    To establish the quantitative model of the dragonfly wing the reconfiguration and nanoindentation technique were used. The mechanical properties of wings were measured by nanoindentre. Generally, the costa undertake is mainly pressure, and its mechanical properties should be the largest. However, in the nanoindentation test, the largest value of the reduced modulus (E(r)) and hardness (H) mainly appear in the radius, except the value at 0.7L (L is the wing length). The E(r) and H of the forewing were larger than that of the hindwing, except the value at 0.7L. The reversing engineering (3-D scanner) and AutoCAD were cooperated to reconfigure the dragonfly wing. Then the material parameters and skeleton transforms to a finite element analysis. The quantitative models were discussed in static range.

  2. A failure modes, mechanisms, and effects analysis (FMMEA) of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Hendricks, Christopher; Williard, Nick; Mathew, Sony; Pecht, Michael

    2015-11-01

    Lithium-ion batteries are popular energy storage devices for a wide variety of applications. As batteries have transitioned from being used in portable electronics to being used in longer lifetime and more safety-critical applications, such as electric vehicles (EVs) and aircraft, the cost of failure has become more significant both in terms of liability as well as the cost of replacement. Failure modes, mechanisms, and effects analysis (FMMEA) provides a rigorous framework to define the ways in which lithium-ion batteries can fail, how failures can be detected, what processes cause the failures, and how to model failures for failure prediction. This enables a physics-of-failure (PoF) approach to battery life prediction that takes into account life cycle conditions, multiple failure mechanisms, and their effects on battery health and safety. This paper presents an FMMEA of battery failure and describes how this process enables improved battery failure mitigation control strategies.

  3. Dynamic Analysis and Control of Lightweight Manipulators with Flexible Parallel Link Mechanisms. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lee, Jeh Won

    1990-01-01

    The objective is the theoretical analysis and the experimental verification of dynamics and control of a two link flexible manipulator with a flexible parallel link mechanism. Nonlinear equations of motion of the lightweight manipulator are derived by the Lagrangian method in symbolic form to better understand the structure of the dynamic model. The resulting equation of motion have a structure which is useful to reduce the number of terms calculated, to check correctness, or to extend the model to higher order. A manipulator with a flexible parallel link mechanism is a constrained dynamic system whose equations are sensitive to numerical integration error. This constrained system is solved using singular value decomposition of the constraint Jacobian matrix. Elastic motion is expressed by the assumed mode method. Mode shape functions of each link are chosen using the load interfaced component mode synthesis. The discrepancies between the analytical model and the experiment are explained using a simplified and a detailed finite element model.

  4. A structural mechanics approach for the phonon dispersion analysis of graphene

    NASA Astrophysics Data System (ADS)

    Hou, X. H.; Deng, Z. C.; Zhang, K.

    2017-04-01

    A molecular structural mechanics model for the numerical simulation of phonon dispersion relations of graphene is developed by relating the C-C bond molecular potential energy to the strain energy of the equivalent beam-truss space frame. With the stiffness matrix known and further based on the periodic structure characteristics, the Bloch theorem is introduced to develop the dispersion relation of graphene sheet. Being different from the existing structural mechanics model, interactions between the fourth-nearest neighbor atoms are further simulated with beam elements to compensate the reduced stretching stiffness, where as a result not only the dispersion relations in the low frequency field are accurately achieved, but results in the high frequency field are also reasonably obtained. This work is expected to provide new opportunities for the dynamic properties analysis of graphene and future application in the engineering sector.

  5. Deformation and fracture of Macadamia nuts Part 2: Microstructure and fracture mechanics analysis of nutshell

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Hui; Mai, Yiu-Wing

    A study of the microstructure and mechanical properties of Macadamia nutshells subjected to various heat treatments is given in Part 2 of this paper. It is found that the nutshell has a three-dimensional, close-packed, cell structure. The cells have a diameter to length ratio of about 1 to 3, and the orientation of the cells is reasonably isotropic with no apparent variation with either position or direction. The material behaves in a very brittle manner under tension and compression. Based on the elastic stress analysis of a nut under diametrical compression and the mechanical properties of the shell, it is shown that cracks that cause the final fracture are initiated from the inner surface beneath the loading point. A theoretical model is proposed and predictions of the fracture load for Macadamia nuts are in good agreement with experimental results.

  6. Mechanical left ventricular dyssynchrony detection by endocardium displacement analysis with 3D speckle tracking technology.

    PubMed

    Li, Chi Hion; Carreras, Francesc; Leta, Rubén; Carballeira, Lidia; Pujadas, Sandra; Pons-Lladó, Guillem

    2010-12-01

    Myocardium deformation and displacement analysis by echocardiography has proven useful to evaluate the synchrony of myocardial mechanics. The aim of our study was to evaluate the mean standard deviation of time to longitudinal peak displacement in 16 cardiac segments by 3D echo wall motion Speckle Tracking analysis. We studied 15 patients with ventricular dyssynchrony-defined by a QRS > 120 ms in the ECG. We obtained the differences between time peaks of endocardial longitudinal displacement for 16 segments of the heart by 3D echo Speckle Tracking. We compared the temporal dispersion of these peaks with results obtained in a control group of 13 healthy individuals without dyssynchrony. The results showed a significant difference (p < 0.001) between the dispersion of standard deviation in the 13 patients in the control group (34 ms ± 19) and the 15 patients in the dyssynchrony group (117 ms ± 57). We describe a new parameter obtained by 3D echo wall motion Speckle Tracking analysis for the detection of dyssynchrony. It can be useful to identify dyssynchrony of left ventricular myocardial mechanics, to indicate the resynchronization therapy, to optimize the parameters of the device and to achieve a less operator-dependent evaluation.

  7. The use of proteomic analysis for exploring the phytoremediation mechanism of Scirpus triqueter to pyrene.

    PubMed

    Zhang, Xinying; Liu, Xiaoyan; Chai, Wenbo; Wei, Jing; Wang, Qian; Li, Beibei; Li, Hongbing

    2013-09-15

    Scirpus triqueter has been reported to be an effective phytoremediation plant for pyrene dissipation. The study of S. triqueter in response to pyrene is crucial to understand the mechanism of phytoremediation. To gain a certain extent understanding of S. triqueter in response to pyrene, S. triqueter seedlings were exposed to 50 mg kg(-1) pyrene and a comparative proteomic analysis of total proteins was performed. 37 and 55 proteins were significantly differentially expressed in the shoot and root of S. triqueter upon exposure, respectively. 24 proteins (17 proteins in shoot and 7 proteins in root) were identified on the basis of the homology of their peptide profiles with existing protein sequences using mass spectrometry analysis. Analysis of protein expression patterns revealed that proteins in shoot associated with photosynthesis, defense, energy and matter metabolism, coenzyme metabolism and protein metabolism. Moreover, the proteins related photosynthesis accounted for more than 70% of the identified proteins. The proteins in root associated with stress, defense, energy metabolism, protein modification and carbohydrate metabolism. Pyrene appears to have an important deleterious effect on primary carbon metabolism, the synthesis of proteins and signal transduction. The present study demonstrates the use of proteomic approach to help us understand the phytoremediation mechanism of S. triqueter.

  8. Design sensitivity analysis of dynamic responses for a BLDC motor with mechanical and electromagnetic interactions

    NASA Astrophysics Data System (ADS)

    Im, Hyungbin; Bae, Dae Sung; Chung, Jintai

    2012-04-01

    This paper presents a design sensitivity analysis of dynamic responses of a BLDC motor with mechanical and electromagnetic interactions. Based on the equations of motion which consider mechanical and electromagnetic interactions of the motor, the sensitivity equations for the dynamic responses were derived by applying the direct differential method. From the sensitivity equation along with the equations of motion, the time responses for the sensitivity analysis were obtained by using the Newmark time integration method. The sensitivities of the motor performances such as the electromagnetic torque, rotating speed, and vibration level were analyzed for the six design parameters of rotor mass, shaft/bearing stiffness, rotor eccentricity, winding resistance, coil turn number, and residual magnetic flux density. Furthermore, to achieve a higher torque, higher speed, and lower vibration level, a new BLDC motor was designed by applying the multi-objective function method. It was found that all three performances are sensitive to the design parameters in the order of the coil turn number, magnetic flux density, rotor mass, winding resistance, rotor eccentricity, and stiffness. It was also found that the torque and vibration level are more sensitive to the parameters than the rotating speed. Finally, by applying the sensitivity analysis results, a new optimized design of the motor resulted in better performances. The newly designed motor showed an improved torque, rotating speed, and vibration level.

  9. Structural and mechanical analysis of the Mont Terri Anticline (Jura, Switzerland)

    NASA Astrophysics Data System (ADS)

    Caer, Typhaine; Souloumiac, Pauline; Maillot, Bertrand; Leturmy, Pascale; Nussbaum, Christophe

    2014-05-01

    The main motivation of this study is to illustrate how geometrical constructions of geological structures can be constrained by mechanical equilibrium and the Coulomb criterion using the theory of limit analysis. In the NW deformation front of the Jura thrust belt in Switzerland, the Mont-Terri anticline is located at an interruption of the Muschelkalk décollement, due to former normal faults. It is characterised by a reversed frontal limb, a steep back limb, and a ramp cross-cutting some of the former normal faults. A borehole and a highway tunnel constrain the inner structure. Three 2D kinematics and present-day cross-sections are proposed as various combinations of fault-bend folds, fault propagation folds and detachment folds (one of them being the only previously published interpretation of Mont Terri). Each interpretation is tentatively tested with the external approach of limit analysis, leading to different compatible ranges of values of the frictional parameters and of their variation with progressive shortening. It is not possible to reject any interpretation with confidence. Furthermore, the exact evolution of the topography during shortening is largely unknown. It is shown by the mechanical analysis to play a very important role in selecting the locations and dips of the active faults because it imposes spatial variations of their loading. The merit of the present approach is therefore to provide a quantitative link between the assumed evolution of the internal structure, the topography, and the frictional parameters.

  10. Ulna-humerus contact mechanics: Finite element analysis and experimental measurements using a tactile pressure sensor.

    PubMed

    Renani, Mohsen Sharifi; Rahman, Munsur; Cil, Akin; Stylianou, Antonis P

    2017-09-07

    Elbow articular cartilage withstands high compressive and shear forces while protecting the bone from excessive loading. Better understanding of elbow cartilage contact mechanics can provide insight into cartilage degeneration. In this study a tactile pressure sensor was used to measure the contact pressure distribution within the ulno-humeral joint of two cadaver specimens at 20° flexion angle across three different axial loads of 80 N, 110 N, and 140 N. Corresponding 3D finite element (FE) models were constructed from magnetic resonance imaging (MRI) and contact analysis was performed for each specimen with boundary and loading conditions identical to the experiment. Direct comparison between FE results and experimental measurements was conducted for the validation of the FE models and a sensitivity analysis was employed for assessing the effect of cartilage parameters on the model's outputs. The results showed a good agreement between the FE models and the experiments in terms of contact characteristics. The sensitivity analysis demonstrated that outcomes of the model, particularly peak contact pressure is more sensitive to the Poisson's ratio rather than to Young's modulus under static conditions. This result suggests that selection of Poisson's ratio is very critical for accurate prediction of contact mechanics within the ulno-humeral joint. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. Novel pathway compendium analysis elucidates mechanism of pro-angiogenic synthetic small molecule

    PubMed Central

    Wieghaus, Kristen A.; Gianchandani, Erwin P.; Paige, Mikell A.; Brown, Milton L.; Botchwey, Edward A.; Papin, Jason A.

    2008-01-01

    Motivation: Computational techniques have been applied to experimental datasets to identify drug mode-of-action. A shortcoming of existing approaches is the requirement of large reference databases of compound expression profiles. Here, we developed a new pathway-based compendium analysis that couples multi-timepoint, controlled microarray data for a single compound with systems-based network analysis to elucidate drug mechanism more efficiently. Results: We applied this approach to a transcriptional regulatory footprint of phthalimide neovascular factor 1 (PNF1)—a novel synthetic small molecule that exhibits significant in vitro endothelial potency—spanning 1–48 h post-supplementation in human micro-vascular endothelial cells (HMVEC) to comprehensively interrogate PNF1 effects. We concluded that PNF1 first induces tumor necrosis factor-alpha (TNF-α) signaling pathway function which in turn affects transforming growth factor-beta (TGF-β) signaling. These results are consistent with our previous observations of PNF1-directed TGF-β signaling at 24 h, including differential regulation of TGF-β-induced matrix metalloproteinase 14 (MMP14/MT1-MMP) which is implicated in angiogenesis. Ultimately, we illustrate how our pathway-based compendium analysis more efficiently generates hypotheses for compound mechanism than existing techniques. Availability: The microarray data generated as part of this study are available in the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/). Contact: botchwey@virginia.edu; papin@virginia.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:18718940

  12. Differential analysis of bifurcations and isolated singularities for robots and mechanisms

    SciTech Connect

    Kieffer, J. . Engineering Dept.)

    1994-02-01

    This article develops a general technique for differential analysis that can be applied to singularities of three related problems: path tracking for nonredundant robots, self-motion analysis for robots with one degree of redundancy, and displacement analysis of single-loop mechanisms. For each of these problems, the locus of displacement solutions generally forms a set of one-dimensional manifolds in the space of variable parameters. However, if singularities occur, the manifolds may degenerate into isolated points, or into curves that include bifurcation at the singular points. Higher-order equations, derived from Taylor series expansion of the matrix equation of closure, are solved to identify singularity type and, in the case of bifurcations, to determine the number of intersecting branches as well as a Taylor series expansion of each branch about the point of bifurcation. To avoid unbounded mathematics, branch expansions are derived in terms of an introduced curve parameter. The results are useful for identifying singularity type, for numerical curve tracking with continuation past bifurcations on any chosen branch, and for determining exact rate relations (i.e., velocity, acceleration, etc.) for each branch at a bifurcation. The noniterative solution procedure involves configuration-dependent systems of equations that are evaluated by recursive algorithm, then solved using singular value decomposition, polynomial equation solution, and linear system solution. Examples show applications to RCRCR mechanisms and the Puma manipulator.

  13. Analysis of seismic disaster failure mechanism and dam-break simulation of high arch dam

    NASA Astrophysics Data System (ADS)

    Zhang, Jingkui; Zhang, Liaojun

    2014-06-01

    Based on a Chinese national high arch dam located in a meizoseismal region, a nonlinear numerical analysis model of the damage and failure process of a dam-foundation system is established by employing a 3-D deformable distinct element code (3DEC) and its re-development functions. The proposed analysis model considers the dam-foundation-reservoir coupling effect, influence of nonlinear contact in the opening and closing of the dam seam surface and abutment rock joints during strong earthquakes, and radiation damping of far field energy dissipation according to the actual workability state of an arch dam. A safety assessment method and safety evaluation criteria is developed to better understand the arch dam system disaster process from local damage to ultimate failure. The dynamic characteristics, disaster mechanism, limit bearing capacity and the entire failure process of a high arch dam under a strong earthquake are then analyzed. Further, the seismic safety of the arch dam is evaluated according to the proposed evaluation criteria and safety assessment method. As a result, some useful conclusions are obtained for some aspects of the disaster mechanism and failure process of an arch dam. The analysis method and conclusions may be useful in engineering practice.

  14. Sedation of mechanically ventilated adults in intensive care unit: a network meta-analysis

    PubMed Central

    Zhang, Zhongheng; Chen, Kun; Ni, Hongying; Zhang, Xiaoling; Fan, Haozhe

    2017-01-01

    Sedatives are commonly used for mechanically ventilated patients in intensive care units (ICU). However, a variety of sedatives are available and their efficacy and safety have been compared in numerous trials with inconsistent results. To resolve uncertainties regarding usefulness of these sedatives, we performed a systematic review and network meta-analysis. Randomized controlled trials comparing sedatives in mechanically ventilated ICU patients were included. Graph-theoretical methods were employed for network meta-analysis. A total of 51 citations comprising 52 RCTs were included in our analysis. Dexmedetomidine showed shorter MV duration than lorazepam (mean difference (MD): 68.7; 95% CI: 18.2–119.3 hours), midazolam (MD: 10.2; 95% CI: 7.7–12.7 hours) and propofol (MD: 3.4; 95% CI: 0.9–5.9 hours). Compared with dexmedetomidine, midazolam was associated with significantly increased risk of delirium (OR: 2.47; 95% CI: 1.17–5.19). Our study shows that dexmedetomidine has potential benefits in reducing duration of MV and lowering the risk of delirium. PMID:28322337

  15. Coupled numerical analysis to investigate the heating mechanism of ultrasonic imprint lithography.

    PubMed

    Park, Jong Han; Lee, Ki Yeon; Park, Keun

    2015-07-01

    Ultrasonic imprint lithography (UIL) is a micropattern replication technology on thermoplastic polymers using ultrasonic vibration energy. The UIL process involves three steps: (i) microscale vibration from an ultrasonic horn causes repetitive deformation of a polymer surface, (ii) the polymer surface is locally softened by repetitive deformation and friction, and (iii) micro/nanoscale patterns engraved on the horn or the mold are replicated on the softened substrate. To replicate micro/nano patterns with high accuracy, the effects of various processing conditions should be investigated, and so far, these have been studied experimentally. In this study, coupled numerical analysis was performed using finite element simulation to investigate the heating mechanism of the UIL process, by joining transient structural analysis and heat transfer analysis. The effect of imprinting conditions on the heating capability was investigated using the proposed coupled simulation. The differences between direct and indirect imprinting are also discussed in terms of heating mechanism, and compared with experiments. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Mechanical Behavior and Microstructural Analysis of Extruded AZ31B Magnesium Alloy Processed by Backward Extrusion

    NASA Astrophysics Data System (ADS)

    Zhou, Ping; Beeh, Elmar; Friedrich, Horst E.; Grünheid, Thomas

    2016-07-01

    This study investigates the mechanical behavior of an extruded AZ31B magnesium alloy profile at various strain rates from 0.001 to 375/s. The electron backscatter diffraction analysis revealed that the profile has \\{ { 0 0 0 1} \\}< 1 0overline{1} 0 rangle and \\{ {1 0overline{1} 0 }\\}< { 1 1overline{2} 0}rangle textures. Due to the textures, the profile exhibits pronounced anisotropy in mechanical properties. In the extrusion direction (ED), the profile shows the highest yield strength (YS) but the lowest total elongation at fracture (TE) due to a hard activation of non-basal slip and \\{ { 1 0overline{1} 1} \\}< { 1 0overline{1} overline{2} } rangle twinning; in the diagonal direction (DD), it shows the lowest ultimate tensile strength (UTS) but the highest TE due to an easy activation of basal slip; in the transverse direction (TD), it shows the lowest YS due to an easy activation of \\{ {10overline{1} 2} \\}< {10overline{1} overline{1} } rangle twinning. Moreover, the number of twins increases with the increasing strain rate. This indicates that deformation twinning becomes prevalent to accommodate high-rate deformation. Due to the different deformation mechanisms, the profile exhibits an orientation-dependent effect of strain rate on the mechanical properties. A positive effect of strain rate on the YS and UTS was found in the ED, while the effect of strain rate on the YS is negligible in the DD and TD. The TE in the ED, DD, and TD decreases in general as the strain rate increases. Fractographic analysis under a scanning electron microscope revealed that the fracture is a mixed mode of ductile and brittle fracture, and the magnesium oxide inclusions could be the origins of the fracture.

  17. Mesothelioma among Motor Vehicle Mechanics: An Updated Review and Meta-analysis.

    PubMed

    Garabrant, David H; Alexander, Dominik D; Miller, Paula E; Fryzek, Jon P; Boffetta, Paolo; Teta, M J; Hessel, Patrick A; Craven, Valerie A; Kelsh, Michael A; Goodman, Michael

    2016-01-01

    We published a meta-analysis of the association between work as a motor vehicle mechanic and mesothelioma in 2004. Since then, several relevant studies on this topic have been published. Thus, to update the state-of-the-science on this issue, we conducted a new systematic review and meta-analysis. A comprehensive PubMed literature search through May 2014 was conducted to identify studies that reported relative risk estimates for mesothelioma among motor vehicle mechanics (in general), and those who were engaged in brake repair (specifically). Studies were scored and classified based on study characteristics. Random-effects meta-analyses generated summary relative risk estimates (SRREs) and corresponding 95% confidence intervals (CI). Heterogeneity of results was examined by calculating Q-test P-values (P-H) and I (2) estimates. Sub-group and sensitivity analyses were conducted for relevant study characteristics and quality measures. Ten case-control studies, one cohort study, and five proportionate mortality ratio (PMR)/standardized mortality odds ratio (SMOR) studies were identified and included in the quantitative assessment. Most meta-analysis models produced SRREs below 1.0, and no statistically significant increases in mesothelioma were observed. The SRRE for all studies was 0.80 (95% CI: 0.61-1.05) with significant heterogeneity (P-H <0.001, I (2) = 62.90). A similar SRRE was observed among the five Tier 1 studies with the highest quality ratings (SRRE = 0.76, 95% CI: 0.46-1.25), with no heterogeneity among studies (P-H = 0.912, I (2) = 0.00). Meta-analysis of the Tier 2 (n = 5) and Tier 3 (n = 6) studies resulted in SRREs of 1.09 (95% CI: 0.76-1.58) and 0.73 (95% CI: 0.49-1.08), respectively. Restricting the analysis to Tiers 1 and 2 combined resulted in an SRRE of 0.92 (95% CI: 0.72-1.29). The SRRE specific to brake work (n = 4) was 0.64 (95% CI: 0.38-1.09). This meta-analysis of the epidemiologic studies provides evidence that motor vehicle mechanics

  18. Pressurized thermal shock probabilistic fracture mechanics sensitivity analysis for Yankee Rowe reactor pressure vessel

    SciTech Connect

    Dickson, T.L.; Cheverton, R.D.; Bryson, J.W.; Bass, B.R.; Shum, D.K.M.; Keeney, J.A.

    1993-08-01

    The Nuclear Regulatory Commission (NRC) requested Oak Ridge National Laboratory (ORNL) to perform a pressurized-thermal-shock (PTS) probabilistic fracture mechanics (PFM) sensitivity analysis for the Yankee Rowe reactor pressure vessel, for the fluences corresponding to the end of operating cycle 22, using a specific small-break-loss- of-coolant transient as the loading condition. Regions of the vessel with distinguishing features were to be treated individually -- upper axial weld, lower axial weld, circumferential weld, upper plate spot welds, upper plate regions between the spot welds, lower plate spot welds, and the lower plate regions between the spot welds. The fracture analysis methods used in the analysis of through-clad surface flaws were those contained in the established OCA-P computer code, which was developed during the Integrated Pressurized Thermal Shock (IPTS) Program. The NRC request specified that the OCA-P code be enhanced for this study to also calculate the conditional probabilities of failure for subclad flaws and embedded flaws. The results of this sensitivity analysis provide the NRC with (1) data that could be used to assess the relative influence of a number of key input parameters in the Yankee Rowe PTS analysis and (2) data that can be used for readily determining the probability of vessel failure once a more accurate indication of vessel embrittlement becomes available. This report is designated as HSST report No. 117.

  19. The analysis of the immobilization mechanism of Ni(II) on Bacillus cereus.

    PubMed

    Pan, Xiaohong; Chen, Zhi; Cheng, Yangjian; Pan, Danmei; Yin, Shungao; Huang, Feng; Guan, Xiong; Lin, Zhang

    2011-04-01

    This work focused on the identification of biosorption mechanism of Ni(II) by living Bacillus cereus (B. cereus) based on batch experiments and a variety of microscopic equipments. The adsorption equilibrium reached rapidly in 2 h and the maximum nickel adsorption capability of B. cereus was 17.7 mg x g(-1) (dry weight). Atomic force microscopy (AFM) analysis showed that the bacterial surface roughness increased from 7.9 +/- 0.5 nm to 12.6 +/- 1.6 nm during this process. Scanning electron microscopy (SEM) observation confirmed that there was Ni(II) on the bacterial surface. However, transmission electron microscopy (TEM) thin section analysis coupled with energy dispersive X-ray spectroscopy (EDS) revealed that Ni(II) could also be found in the inner portions of the bacteria. Inductive coupled plasma emission spectrometer (ICP-OES) quantitative analysis elucidated that over 70% of the immobilized Ni(II) was binding on the surface of bacteria. X-ray diffraction (XRD) analysis showed that the Ni(II) collected by the bacteria was amorphous. Fourier transform infrared (FT-IR) analysis indicated that amides and carboxylation functional groups might be involved in the coordination of Ni(II).

  20. Fall from height in a stairwell--mechanics and simulation analysis.

    PubMed

    Wach, Wojciech; Unarski, Jan

    2014-11-01

    The range of problems considered in the biomechanical analysis of a fall from height has been presented. A complicated case of a fall in a stairwell was investigated, the analysis of which demonstrates the research scale and aspect multitude. The scope of the article was restricted to the analysis of biomechanical problems and the simulation analysis of the event. A virtual 3D model of the stairwell was built using sketches, photographs and photogrammetric techniques. A dummy created according to the victim's data was parameterised. Using the PC-Crash biomechanical module a series of several hundred simulations were run following the adopted research plan, allowing for pre-formulated boundary conditions. The region of the stairwell where the accident was likely to originate and the victim's initial configuration were identified. It was proved that biomechanical simulation can bring invaluable benefits in exposing the mechanism of an event and verification of various hypotheses. Despite general similarities, each fall has its own specificity, which, making the use of methodological generalisations difficult, increases the significance of casuistry. The presented analysis can prove very useful in providing guidelines on investigating other cases. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Whole population cell analysis of a landmark-rich mammalian epithelium reveals multiple elongation mechanisms

    PubMed Central

    Economou, Andrew D.; Brock, Lara J.; Cobourne, Martyn T.; Green, Jeremy B. A.

    2013-01-01

    Tissue elongation is a fundamental component of developing and regenerating systems. Although localised proliferation is an important mechanism for tissue elongation, potentially important contributions of other elongation mechanisms, specifically cell shape change, orientated cell division and cell rearrangement, are rarely considered or quantified, particularly in mammalian systems. Their quantification, together with proliferation, provides a rigorous framework for the analysis of elongation. The mammalian palatal epithelium is a landmark-rich tissue, marked by regularly spaced ridges (rugae), making it an excellent model in which to analyse the contributions of cellular processes to directional tissue growth. We captured confocal stacks of entire fixed mouse palate epithelia throughout the mid-gestation growth period, labelled with membrane, nuclear and cell proliferation markers and segmented all cells (up to ∼20,000 per palate), allowing the quantification of cell shape and proliferation. Using the rugae as landmarks, these measures revealed that the so-called growth zone is a region of proliferation that is intermittently elevated at ruga initiation. The distribution of oriented cell division suggests that it is not a driver of tissue elongation, whereas cell shape analysis revealed that both elongation of cells leaving the growth zone and apico-basal cell rearrangements do contribute significantly to directional growth. Quantitative comparison of elongation processes indicated that proliferation contributes most to elongation at the growth zone, but cell shape change and rearrangement contribute as much as 40% of total elongation. We have demonstrated the utility of an approach to analysing the cellular mechanisms underlying tissue elongation in mammalian tissues. It should be broadly applied to higher-resolution analysis of links between genotypes and malformation phenotypes. PMID:24173805

  2. Mechanisms of mosaicism, chimerism and uniparental disomy identified by single nucleotide polymorphism array analysis

    PubMed Central

    Conlin, Laura K.; Thiel, Brian D.; Bonnemann, Carsten G.; Medne, Livija; Ernst, Linda M.; Zackai, Elaine H.; Deardorff, Matthew A.; Krantz, Ian D.; Hakonarson, Hakon; Spinner, Nancy B.

    2010-01-01

    Mosaic aneuploidy and uniparental disomy (UPD) arise from mitotic or meiotic events. There are differences between these mechanisms in terms of (i) impact on embryonic development; (ii) co-occurrence of mosaic trisomy and UPD and (iii) potential recurrence risks. We used a genome-wide single nucleotide polymorphism (SNP) array to study patients with chromosome aneuploidy mosaicism, UPD and one individual with XX/XY chimerism to gain insight into the developmental mechanism and timing of these events. Sixteen cases of mosaic aneuploidy originated mitotically, and these included four rare trisomies and all of the monosomies, consistent with the influence of selective factors. Five trisomies arose meiotically, and three of the five had UPD in the disomic cells, confirming increased risk for UPD in the case of meiotic non-disjunction. Evidence for the meiotic origin of aneuploidy and UPD was seen in the patterns of recombination visible during analysis with 1–3 crossovers per chromosome. The mechanisms of formation of the UPD included trisomy rescue, with and without concomitant trisomy, monosomy rescue, and mitotic formation of a mosaic segmental UPD. UPD was also identified in an XX/XY chimeric individual, with one cell line having complete maternal UPD consistent with a parthenogenetic origin. Utilization of SNP arrays allows simultaneous evaluation of genomic alterations and insights into aneuploidy and UPD mechanisms. Differentiation of mitotic and meiotic origins for aneuploidy and UPD supports existence of selective factors against full trisomy of some chromosomes in the early embryo and provides data for estimation of recurrence and disease mechanisms. PMID:20053666

  3. Thermo-mechanical buckling analysis of FGM plate using generalized plate theory

    NASA Astrophysics Data System (ADS)

    Sharma, Kanishk; Kumar, Dinesh; Gite, Anil

    2016-05-01

    This paper investigates the thermo-mechanical buckling behavior of simply-supported FGM plate under the framework of generalized plate theory (GPT), which includes classical plate theory (CPT), first order shear deformation theory (FSDT) and higher order shear deformation theory (HSDT) as special cases. The governing equations for FGM plate under thermal and mechanical loading conditions are derived from the principle of virtual displacements and Navier-type solution is assumed for simply supported boundary condition. The efficiency and applicability of presented methodology is illustrated by considering various examples of thermal and mechanical buckling of FGM plates. The closed form solutions in the form of critical thermal and mechanical buckling loads, predicted by CPT, FSDT and HSDT are compared for different side-to-thickness of FGM plate. Subsequently, the effect of material gradation profile on critical buckling parameters is examined by evaluating the buckling response for a range of power law indexes. The effect of geometrical parameters on mechanical buckling of FGM plate under uni-axial and bi-axial loading conditions are also illustrated by calculating the critical load for various values of slenderness ratios. Furthermore a comparative analysis of critical thermal buckling loads of FGM plate for different temperature profiles is also presented. It is identified that all plate theories predicted approximately same critical buckling loads and critical buckling temperatures for thin FGM plate, however for thick FGM plates, CPT overestimates the critical buckling parameters. Moreover the critical buckling loads and critical buckling temperatures of FGM plate are found to be significantly lower than the corresponding homogenous isotropic ceramic plate (n=0).

  4. A generalized method for the analysis of planar biaxial mechanical data using tethered testing configurations.

    PubMed

    Zhang, Will; Feng, Yuan; Lee, Chung-Hao; Billiar, Kristen L; Sacks, Michael S

    2015-06-01

    Simulation of the mechanical behavior of soft tissues is critical for many physiological and medical device applications. Accurate mechanical test data is crucial for both obtaining the form and robust parameter determination of the constitutive model. For incompressible soft tissues that are either membranes or thin sections, planar biaxial mechanical testing configurations can provide much information about the anisotropic stress-strain behavior. However, the analysis of soft biological tissue planar biaxial mechanical test data can be complicated by in-plane shear, tissue heterogeneities, and inelastic changes in specimen geometry that commonly occur during testing. These inelastic effects, without appropriate corrections, alter the stress-traction mapping and violates equilibrium so that the stress tensor is incorrectly determined. To overcome these problems, we presented an analytical method to determine the Cauchy stress tensor from the experimentally derived tractions for tethered testing configurations. We accounted for the measured testing geometry and compensate for run-time inelastic effects by enforcing equilibrium using small rigid body rotations. To evaluate the effectiveness of our method, we simulated complete planar biaxial test configurations that incorporated actual device mechanisms, specimen geometry, and heterogeneous tissue fibrous structure using a finite element (FE) model. We determined that our method corrected the errors in the equilibrium of momentum and correctly estimated the Cauchy stress tensor. We also noted that since stress is applied primarily over a subregion bounded by the tethers, an adjustment to the effective specimen dimensions is required to correct the magnitude of the stresses. Simulations of various tether placements demonstrated that typical tether placements used in the current experimental setups will produce accurate stress tensor estimates. Overall, our method provides an improved and relatively straightforward

  5. Oral decontamination for prevention of pneumonia in mechanically ventilated adults: systematic review and meta-analysis

    PubMed Central

    Ruest, Annie; Meade, Maureen O; Cook, Deborah J

    2007-01-01

    Objective To evaluate the effect of oral decontamination on the incidence of ventilator associated pneumonia and mortality in mechanically ventilated adults. Design Systematic review and meta-analysis. Data sources Medline, Embase, CINAHL, the Cochrane Library, trials registers, reference lists, conference proceedings, and investigators in the specialty. Review methods Two independent reviewers screened studies for inclusion, assessed trial quality, and extracted data. Eligible trials were randomised controlled trials enrolling mechanically ventilated adults that compared the effects of daily oral application of antibiotics or antiseptics with no prophylaxis. Results 11 trials totalling 3242 patients met the inclusion criteria. Among four trials with 1098 patients, oral application of antibiotics did not significantly reduce the incidence of ventilator associated pneumonia (relative risk 0.69, 95% confidence interval 0.41 to 1.18). In seven trials with 2144 patients, however, oral application of antiseptics significantly reduced the incidence of ventilator associated pneumonia (0.56, 0.39 to 0.81). When the results of the 11 trials were pooled, rates of ventilator associated pneumonia were lower among patients receiving either method of oral decontamination (0.61, 0.45 to 0.82). Mortality was not influenced by prophylaxis with either antibiotics (0.94, 0.73 to 1.21) or antiseptics (0.96, 0.69 to 1.33) nor was duration of mechanical ventilation or stay in the intensive care unit. Conclusions Oral decontamination of mechanically ventilated adults using antiseptics is associated with a lower risk of ventilator associated pneumonia. Neither antiseptic nor antibiotic oral decontamination reduced mortality or duration of mechanical ventilation or stay in the intensive care unit. PMID:17387118

  6. Dynamic mechanical analysis and organization/storage of data for polymetric materials

    NASA Technical Reports Server (NTRS)

    Rosenberg, M.; Buckley, W.

    1982-01-01

    Dynamic mechanical analysis was performed on a variety of temperature resistant polymers and composite resin matrices. Data on glass transition temperatures and degree of cure attained were derived. In addition a laboratory based computer system was installed and data base set up to allow entry of composite data. The laboratory CPU termed TYCHO is based on a DEC PDP 11/44 CPU with a Datatrieve relational data base. The function of TYCHO is integration of chemical laboratory analytical instrumentation and storage of chemical structures for modeling of new polymeric structures and compounds

  7. Experimental analysis of the mechanism of chromatin remodeling by RNA polymerase II

    PubMed Central

    Gaykalova, Daria A.; Kulaeva, Olga I.; Pestov, Nikolai A.; Hsieh, Fu-Kai; Studitsky, Vasily M.

    2014-01-01

    The vital process of transcription by RNA polymerase II (Pol II) occurs in chromatin environment in eukaryotic cells; in fact, moderately transcribed genes retain nucleosomal structure. Recent studies suggest that chromatin structure presents a strong barrier for transcribing Pol II in vitro, and that DNA-histone interactions are only partially and transiently disrupted during transcript elongation on moderately active genes. Furthermore, elongating Pol II complex is one of the major targets during gene regulation. Below we describe a highly purified, defined experimental system that recapitulates many important properties of transcribed chromatin in vitro and allows detailed analysis of the underlying mechanisms. PMID:22910212

  8. Computational Parametric Analysis of Mechanical Behaviors of Celotex Implanted with Glue Plates

    SciTech Connect

    Gong, C.

    2001-02-20

    The purpose of this analysis of the Celotex implanted with glue plates is two-fold, first is to identify the cause of the initial stress peak in the pseudo engineering stress-strain curve in the dynamic impact test that the impact is loaded in the orientation parallel to the plane of the glue. Secondly, from the existing static mechanical properties to derive the true constitutive properties of the Celotex under dynamic impact and other environmental conditions, such as warm (250 degrees Fahrenheit), wet (100 percent relative humidity), cold (minus 40 degrees Fahrenheit), and desiccated.

  9. Finite element analysis of sliding distance and contact mechanics of hip implant under dynamic walking conditions.

    PubMed

    Gao, Yongchang; Jin, Zhongmin; Wang, Ling; Wang, Manyi

    2015-06-01

    An explicit finite element method was developed to predict the dynamic behavior of the contact mechanics for a hip implant under normal walking conditions. Two key parameters of mesh sensitivity and time steps were examined to balance the accuracy and computational cost. Both the maximum contact pressure and accumulated sliding distance showed good agreement with those in the previous studies using the implicit finite element analysis and analytical methods. Therefore, the explicit finite element method could be used to predict the contact pressure and accumulated sliding distance for an artificial hip joint simultaneously in dynamic manner.

  10. Hermetic Narratives and False Analysis: A Unique Variant of the Mechanism of Identification With the Aggressor.

    PubMed

    Amir, Dana

    2016-08-01

    This paper focuses on a unique variant of the mechanism of identification with the aggressor. The term "hermetic narrative" refers to a condition in which the trauma victim creates a hermetically sealed narrative of witnessing, which becomes an addictive and subjugating object in itself, while obstructing natural processes of thinking. This paper examines the ways in which the hermetic narrative reconstructs victim-aggressor relations both within the individual and in the analytic relationship. It further discusses the risk of creating a "false analysis" that is based on a malignant cooperation of the analyst and patient with the internalized traumatic object.

  11. Probabilistic Fracture Mechanics analysis based on three-dimensional J-integral database

    NASA Astrophysics Data System (ADS)

    Ye, G.-W.; Yagawa, G.; Yoshimura, S.

    1993-04-01

    The development is described of a novel Probabilistic Fracture Mechanics (PFM) code based on the three-dimensional J-integral database, giving so-called fully plastic solutions. An efficient technique for the evaluation of leak and break probabilities is also utilized, based on the stratified sampling Monte Carlo simulation. The outline of the present PFM code is described, and the J-integral database and the numerical technique are presented. Nonlinear effects of materials on failure probabilities are discussed through the analysis of a surface cracked structure subjected to cyclic tension.

  12. Mechanical engineering note - safety analysis of molten uranium/water interaction in the uranium foundry furnace

    SciTech Connect

    Gourdin, W H; Sze, J

    1999-08-19

    This Engineering Note describes the development of the accident criteria used the basis for the design of the uranium foundry vacuum vessel. The results of this analysis provide input into other safety notes that investigate how well the uranium containment boundary will maintain its integrity during the design basis accident. The preventative measures that have been designed into the system to minimize the potential to produce a flammable gas mixture are described. The system response is designed for consistency with applicable sections of the LLNL Health and Safety Manual, as well as the Mechanical engineering Safety Design Standards.

  13. Perturbation analysis of internal balancing for lightly damped mechanical systems with gyroscopic and circulatory forces

    NASA Technical Reports Server (NTRS)

    Blelloch, P. A.; Mingori, D. L.; Wei, J. D.

    1987-01-01

    Approximate expressions are developed for internally balanced singular values corresponding to the modes of mechanical systems with gyroscopic forces, light damping, and small circulatory forces. A brief overview is first given of the balanced realization model reduction method, including a discussion of recent work. The models considered are defined, and a perturbation analysis is used to show that the modal representation becomes asymptotically balanced as damping reduces to zero. The approximate balanced singular values are calculated, and a simple example of a flexible, dual-spin spacecraft is given as an illustration of the results.

  14. Comparative genomic analysis of NAC transcriptional factors to dissect the regulatory mechanisms for cell wall biosynthesis.

    PubMed

    Yao, Dongxia; Wei, Qiang; Xu, Wenying; Syrenne, Ryan D; Yuan, Joshua S; Su, Zhen

    2012-01-01

    NAC domain transcription factors are important transcriptional regulators involved in plant growth, development and stress responses. Recent studies have revealed several classes of NAC transcriptional factors crucial for controlling secondary cell wall biosynthesis. These transcriptional factors mainly include three classes, SND, NST and VND. Despite progress, most current analysis is carried out in the model plant Arabidopsis. Moreover, many downstream genes regulated by these transcriptional factors are still not clear. In order to identify the key homologue genes across species and discover the network controlling cell wall biosynthesis, we carried out comparative genome analysis of NST, VND and SND genes across 19 higher plant species along with computational modelling of genes regulated or co-regulated with these transcriptional factors. The comparative genome analysis revealed that evolutionarily the secondary-wall-associated NAC domain transcription factors first appeared in Selaginella moellendorffii. In fact, among the three groups, only VND genes appeared in S. moellendorffii, which is evolutionarily earlier than the other two groups. The Arabidopsis and rice gene expression analysis showed specific patterns of the secondary cell wall-associated NAC genes (SND, NST and VND). Most of them were preferentially expressed in the stem, especially the second internodes. Furthermore, comprehensive co-regulatory network analysis revealed that the SND and MYB genes were co-regulated, which indicated the coordinative function of these transcriptional factors in modulating cell wall biosynthesis. In addition, the co-regulatory network analysis revealed many novel genes and pathways that could be involved in cell wall biosynthesis and its regulation. The gene ontology analysis also indicated that processes like carbohydrate synthesis, transport and stress response, are coordinately regulated toward cell wall biosynthesis. Overall, we provided a new insight into the

  15. Analysis of Mach-Zehnder interferometric micro-opto-electro-mechanical (MOEM) pressure sensor

    NASA Astrophysics Data System (ADS)

    Srinivas, Talabuttala; Pattnaik, Prasant K.; Narayana, T. Badri; Selvarajan, Ananth

    1999-11-01

    Combination of Integrated Optics and micro-machining technologies offer immense potential for sensor applications. Small mechanical deformations can often produce considerable changes in optical properties of devices resulting in drastically improved sensitivities. Here we prose and analyze a novel pressure sensor consisting of integrated optic Mach-Zehnder interferometer whose sensing arm is fabricated on a silicon micro-machined diaphragm. The analysis consists of determining the changes in optical output corresponding to the diaphragm deflections due to impressed pressure. Dynamical equations of motion are solved and resulting displacement fields are related to refractive index and optical path length changes of the Mach-Zehnder interferometer. Results can be used to obtain the change in sensitivity due to change sin path length and refractive index variations. The analysis can easily be applied to other MOEM sensor devices like those consisting of micro-machined vibrating cantilevers and bridges controlling optical waveguides, directional couplers or multi-mode-multi-waveguide structures.

  16. Advances in explosives analysis--part I: animal, chemical, ion, and mechanical methods.

    PubMed

    Brown, Kathryn E; Greenfield, Margo T; McGrane, Shawn D; Moore, David S

    2016-01-01

    The number and capability of explosives detection and analysis methods have increased substantially since the publication of the Analytical and Bioanalytical Chemistry special issue devoted to Explosives Analysis (Moore and Goodpaster, Anal Bioanal Chem 395(2):245-246, 2009). Here we review and critically evaluate the latest (the past five years) important advances in explosives detection, with details of the improvements over previous methods, and suggest possible avenues towards further advances in, e.g., stand-off distance, detection limit, selectivity, and penetration through camouflage or packaging. The review consists of two parts. This part, Part I, reviews methods based on animals, chemicals (including colorimetry, molecularly imprinted polymers, electrochemistry, and immunochemistry), ions (both ion-mobility spectrometry and mass spectrometry), and mechanical devices. Part II will review methods based on photons, from very energetic photons including X-rays and gamma rays down to the terahertz range, and neutrons.

  17. Bearing-Load Modeling and Analysis Study for Mechanically Connected Structures

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.

    2006-01-01

    Bearing-load response for a pin-loaded hole is studied within the context of two-dimensional finite element analyses. Pin-loaded-hole configurations are representative of mechanically connected structures, such as a stiffener fastened to a rib of an isogrid panel, that are idealized as part of a larger structural component. Within this context, the larger structural component may be idealized as a two-dimensional shell finite element model to identify load paths and high stress regions. Finite element modeling and analysis aspects of a pin-loaded hole are considered in the present paper including the use of linear and nonlinear springs to simulate the pin-bearing contact condition. Simulating pin-connected structures within a two-dimensional finite element analysis model using nonlinear spring or gap elements provides an effective way for accurate prediction of the local effective stress state and peak forces.

  18. Analysis of scattering mechanisms in zinc oxide films grown by the atomic layer deposition technique

    SciTech Connect

    Krajewski, Tomasz A. Dybko, Krzysztof; Luka, Grzegorz; Wachnicki, Lukasz; Kopalko, Krzysztof; Paszkowicz, Wojciech; Guziewicz, Elzbieta

    2015-07-21

    In this work, the analysis of the temperature-dependent electrical conductivity of highly crystalline zinc oxide (ZnO) thin films obtained by the Atomic Layer Deposition (ALD) method is performed. It is deduced that the most important scattering mechanisms are: scattering by ionized defects (at low temperatures) as well as by phonons (mainly optical ones) at higher temperatures. Nevertheless, the role of grain boundaries in the carrier mobility limitation ought to be included as well. These conclusions are based on theoretical analysis and temperature-dependent Hall mobility measurements. The presented results prove that existing models can explain the mobility behavior in the ALD-ZnO films, being helpful for understanding their transport properties, which are strongly related both to the crystalline quality of deposited ZnO material and defects in its lattice.

  19. Administered chrysanthemum flower oil attenuates hyperuricemia: mechanism of action as revealed by DNA microarray analysis.

    PubMed

    Honda, Shinichi; Kawamoto, Seiji; Tanaka, Hozumi; Kishida, Hideyuki; Kitagawa, Masayasu; Nakai, Yuji; Abe, Keiko; Hirata, Dai

    2014-01-01

    We applied Chrysanthemum flower oil (CFO) to a hyperuricemia model by feeding rats a hyperuricemia-inducing diet (HID) and investigated its effect on serum uric acid (SUA) levels and its mode of action. CFO is the oily fraction that contains polyphenols derived from chrysanthemum flowers. Oral administration of CFO to HID-fed rats significantly decreased their SUA levels. It also inhibited xanthine oxidase activities in the liver and increased urine uric acid levels. The effects of CFO on the renal gene expressions that accompanied the induction of hyperuricemia were comprehensively confirmed by DNA microarray analysis. The analysis showed up-regulation of those genes for uric acid excretion by CFO administration. These results suggest that CFO suppresses the increase in SUA levels via two mechanisms: suppression of uric acid production by inhibition of xanthine oxidase in the liver and acceleration of its excretion by up-regulation of uric acid transporter genes in the kidney.

  20. Thermo-mechanical and experimental analysis of double pass line heating

    NASA Astrophysics Data System (ADS)

    Biswas, Pankaj; Mandal, N. R.; Sha, O. P.; Mahapatra, M. M.

    2011-06-01

    The present investigation deals with process analysis of oxy-acetylene flame assisted double pass line heating for varying plate thickness. oxy-acetylene flame as the heat source for multi pass line heating to achieve 3-D bending of plates with varying thicknesses was studied. The oxy-acetylene flame was modeled as the moving heat source in the FEM analysis. The transient thermal histories were predicted taking into account the temperature dependent thermo-mechanical properties. A comparative study between single pass and double pass line heating residual deformation was also carried out. The temperature distribution and residual deformations predicted by the numerical model developed in the present work compared fairly well with those of the experimental ones.

  1. Finite element analysis of surface cracks in the Wilkins Ice Shelf using fracture mechanics

    NASA Astrophysics Data System (ADS)

    Plate, Carolin; Müller, Ralf; Gross, Dietmar; Humbert, Angelika; Braun, Matthias

    2010-05-01

    Ice shelves, located between the warming atmosphere and the ocean, are sensitive elements of the climate system. The Wilkins Ice Shelf is situated in the south-western part of the Antarctic Peninsula, a well known hot spot of global warming. Recent break-up events exemplified the potential of disintegration of the ice shelf. A multi interdisciplinary project consisting of remote sensing, modeling of the ice dynamics and fracture mechanics intends to improve the understanding of the impacts of temperature increase on ice shelf stability. As a part of this project the aim of this presentation is to demonstrate the fracture mechanical approach using finite elements and configurational forces. For fracture mechanical purposes the material behavior of ice is treated as a brittle solid, and linear fracture mechanics is used. Crucial to all methods in linear fracture mechanics is the evaluation of the stress intensity factor K which is a measure for the load concentration at the crack tip and which depends on the geometry of the body and on the applied loading. The computed value of K can be compared to the critical stress intensity factor Kc, a material property obtained from experimental examinations, to judge whether a crack will propagate. One very effective procedure to obtain the stress intensity factor takes advantage of configurational forces, which can be easily obtained in the finite element analysis. An initial investigation is based on a 2-dimensional analysis of a single crack with a mode-I load type using a static plane strain model in the finite element analysis software COMSOL and additional routines to compute and evaluate the configurational forces. Analytical solutions of simple geometry and load cases are called on in comparison. The application to the Wilkins Ice Shelf follows by using material parameters, geometries and loading situations, which are obtained from literature values, remote sensing data analysis and modeling of the ice dynamics

  2. Characterization and dynamic mechanical analysis of selective laser sintered hydroxyapatite-filled polymeric composites.

    PubMed

    Zhang, Y; Hao, L; Savalani, M M; Harris, R A; Tanner, K E

    2008-09-01

    Selective laser sintering (SLS) is a manufacturing technique which enables the final product to be made directly and rapidly, without tooling or additional machining. For biomedical applications, SLS permits the fabrication of implants and scaffolds with complex geometry accurately and economically. In this study, hydroxyapatite-reinforced polyethylene and polyamide composites were fabricated using SLS. The SLS samples were characterized in terms of their internal structure, morphology, and porosity. The mechanical properties were examined by dynamic mechanical analysis. The effects of SLS processing conditions, including particle size and laser power, were investigated, and the results were compared with conventional compression-molded and machined specimens. The internal structure of sintered samples was porous, with open interconnected pores, and the pore size was up to 200 microm. Particle size and laser energy play a key role in the final density and mechanical properties of the sintered components. In the parameter range used, the use of smaller particles produced higher density and stiffness, and the laser-induced energy could also be varied to optimize the manufacturing process. This study demonstrated that high-HA-content reinforced polymer composite can be successfully manufactured by SLS with controlled porosity features.

  3. Mechanisms of injuries in World Cup Snowboard Cross: a systematic video analysis of 19 cases.

    PubMed

    Bakken, Arnhild; Bere, Tone; Bahr, Roald; Kristianslund, Eirik; Nordsletten, Lars

    2011-12-01

    Snowboard cross (SBX) became an official Olympic sport in 2006. This discipline includes manoeuvring several obstacles while competing in heats. It is common for the riders to collide, making this sport both exciting and at risk of injuries. Although a recent study from the 2010 Olympic Games has shown that the injury risk was high, little is known about the injury mechanisms. To qualitatively describe the injury situation and mechanism of injuries in World Cup Snowboard Cross. Descriptive video analysis. Nineteen video recordings of SBX injuries reported through the International Ski Federation Injury Surveillance System for four World Cup seasons (2006 to 2010) were obtained. Five experts in the field of sports medicine, snowboard and biomechanics performed analyses of each case to describe the injury mechanism in detail (riding situation and rider behaviour). Injuries occurred at jumping (n=13), bank turning (n=5) or rollers (n=1). The primary cause of the injuries was a technical error at take-off resulting in a too high jump and subsequent flat-landing. The rider was then unable to recover leading to fall at the time of injury. Injuries at bank turn was characterised by a pattern where the rider in a balanced position lost control due to unintentional contact with another rider. Jumping appeared to be the most challenging obstacle in SBX, where a technical error at take-off was the primary cause of the injuries. The second most common inciting event was unintentional board contact between riders at bank turning.

  4. Metabolomic analysis of antimicrobial mechanisms of ε-poly-L-lysine on Saccharomyces cerevisiae.

    PubMed

    Bo, Tao; Liu, Miao; Zhong, Cheng; Zhang, Qian; Su, Qin-Zhi; Tan, Zhi-Lei; Han, Pei-Pei; Jia, Shi-Ru

    2014-05-14

    ε-Poly-L-lysine (ε-PL), a naturally occurring amino acid homopolymer, has been widely used as a food preservative. However, its antimicrobial mechanism has not been fully understood. This study investigated the antimicrobial mode of action of ε-PL on a yeast, Saccharomyces cerevisiae. When treated with ε-PL at the concentration of 500 μg/mL, cell mortality was close to 100% and the phospholipid bilayer curvature, pores, and micelles on the surface of S. cerevisiae were clearly observed by scanning electron microscopy (SEM). At the level of 200 μg/mL, ε-PL significantly inhibited the cell growth of S. cerevisiae. When treated with 50 μg/mL ε-PL, the yeast cell was able to grow but the cell cycle was prolonged. A significant increase in cell membrane permeability was induced by ε-PL at higher concentrations. Metabolomics analysis revealed that the ε-PL stress led to the inhibition of primary metabolic pathways through the suppression of the tricarboxylic acid cycle and glycolysis. It is therefore proposed that the microbiostatic effect of ε-PL at lower levels on S. cerevisiae is achieved by inducing intracellular metabolic imbalance via disruption of cell membrane functions. Moreover, the results suggested that the antimicrobial mechanism of ε-PL on S. cerevisiae can in fact change from microbiostatic to microbicidal when the concentration of ε-PL increased, and the mechanisms of these two modes of action were completely different.

  5. Analysis of the Mechanism of Gram Differentiation by Use of a Filter-Paper Chromatographic Technique

    PubMed Central

    Bartholomew, J. W.; Cromwell, Thomas; Gan, Richard

    1965-01-01

    Bartholomew, J. W. (University of Southern California, Los Angeles), Thomas Cromwell, and Richard Gan. Analysis of the mechanism of Gram differentiation by use of a filter-paper chromatographic technique. J. Bacteriol. 90:766–777. 1965.—Data are presented which demonstrate that the mechanism of gram-positivity could not be due solely to factors such as a single, specific gram-positive substrate, specific affinities of crystal violet for certain cellular components, a specific crystal violet-iodine-substrate complex, or to any specific characteristic of the dye, iodine, or solvent molecules. Ruptured cells of gram-positive organisms stain gram-negatively when subjected to a standard Gram-stain procedure. However, when stained fragments of broken cells were deposited in thick layers on the surface of filter-paper strips and exposed to decolorizers, the rate of dye release correlated with the Gram characteristic of the intact cell. Therefore, the intact cell in itself is not an absolute requirement for Gram differentiation. The data are interpreted as indicating that the mechanism of Gram differentiation primarily involves the rate of permeation of molecules (dye, iodine, solvent) through the interstitial spaces of cell-wall material. Images PMID:16562079

  6. Analysis of molecular structures and mechanisms for toxins derived from venomous animals.

    PubMed

    Rocha, L F O

    2016-04-01

    As predominant component in the venom of many dangerous animal species, toxins have been thoroughly investigated for drug design or as pharmacologic tools. The present study demonstrated the use of size and hydrophobicity of amino acid residues for the purposes of quantifying the valuable sequence-structure relationship and performing further analysis of interactional mechanisms in secondary structure elements (SSEs) for toxin native conformations. First, we showed that the presence of large and hydrophobic residues varying in availability in the primary sequences correspondingly affects the amount of these residues being used in the SSEs in accordance with linear behavioral patterns from empirical assessments of experimentally derived toxins and non-toxins. Subsequent derivation of prediction rules was established with the aim of analyzing molecular structures and mechanisms by means of 114 residue compositions for venom toxins. The obtained results concerning the linear behavioral patterns demonstrated the nature of the information transfer occurring from the primary to secondary structures. A dual action mechanism was established, taking into account steric and hydrophobic interactions. Finally, a new residue composition prediction method for SSEs of toxins was suggested. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Thermal-Mechanical Analysis for in-Vessel Diagnostic Components in W7-X

    SciTech Connect

    Ye, M. Y.; Werner, A.; Hirsch, M.; Thomsen, H.; Weller, A.; Koenig, R.

    2008-03-19

    For long pulse plasma operation of the W7-X stellarator, the most serious challenge for the design of in-vessel diagnostic systems is the thermo-mechanical problem. Thermal load from convective losses and from plasma radiation can be as high as 500 kW/m{sup 2} at some locations close to plasma. The typical thermal load from plasma radiation alone ranges from several 10 to 100 kW/m{sup 2} as derived from 3-D Monte-Carlo simulations. A finite element analysis (FEA-ANSYS) is conducted for a better understanding of thermo-mechanical effects on in-vessel diagnostic components and to guide the design of the diagnostic system for steady state operation. All in-vessel diagnostic components require active cooling. Besides for long-pulse plasma operation optical components must be optimized to minimize thermal deformations. In this paper, we present the thermo-mechanical analyses of the CO{sub 2}-laser interferometer retro-reflectors, the diamagnetic loops and the soft X-ray multi camera tomography system (XMCTS)

  8. Statistical analysis of the factors that influenced the mechanical properties improvement of cassava starch films

    NASA Astrophysics Data System (ADS)

    Monteiro, Mayra; Oliveira, Victor; Santos, Francisco; Barros Neto, Eduardo; Silva, Karyn; Silva, Rayane; Henrique, João; Chibério, Abimaelle

    2017-08-01

    In order to obtain cassava starch films with improved mechanical properties in relation to the synthetic polymer in the packaging production, a complete factorial design 23 was carried out in order to investigate which factor significantly influences the tensile strength of the biofilm. The factors to be investigated were cassava starch, glycerol and modified clay contents. Modified bentonite clay was used as a filling material of the biofilm. Glycerol was the plasticizer used to thermoplastify cassava starch. The factorial analysis suggested a regression model capable of predicting the optimal mechanical property of the cassava starch film from the maximization of the tensile strength. The reliability of the regression model was tested by the correlation established with the experimental data through the following statistical analyse: Pareto graph. The modified clay was the factor of greater statistical significance on the observed response variable, being the factor that contributed most to the improvement of the mechanical property of the starch film. The factorial experiments showed that the interaction of glycerol with both modified clay and cassava starch was significant for the reduction of biofilm ductility. Modified clay and cassava starch contributed to the maximization of biofilm ductility, while glycerol contributed to the minimization.

  9. Formation mechanism of α-lactalabumin/oleic acid complex characterized by 2D correlation analysis

    NASA Astrophysics Data System (ADS)

    Park, Yeonju; Kim, Yeseul; Park, Yujeong; Jin, Sila; Hwang, Hoon; Jung, Young Mee

    2017-10-01

    Partially unfolded α-lactalbumin (ALA) forms a complex with oleic acid (OA) that exhibits cytotoxic activity. In this study, for the first time, the pH-induced formation mechanism for ALA/OA complexes with two different molar ratios was investigated at the molecular level. For a deeper understanding of the formation mechanism of the two different ALA/OA complexes with decreasing pH, principal component analysis (PCA) and two-dimensional (2D) correlation spectroscopy were used to examine the pH-dependent IR spectra of ALA/OA complexes. By tracking the secondary structural variations in the ALA/OA complexes with decreasing pH, we successfully elucidated the formation mechanism of the ALA/OA complexes at the molecular level. The results showed that the secondary structures of theses complexes exhibited the greatest change between pH 4 and pH 3.5 and that the components that mainly contributed to the pH-induced transition from the N-state to the A-state were dissimilar in the two different ALA/OA complexes.

  10. Development of an algorithm for the analysis of surface defects in mechanical elements

    NASA Astrophysics Data System (ADS)

    Fargione, Giovanna A.; Geraci, Alberto L.; Pennisi, Luigi; Risitano, Antonino

    1998-10-01

    The non-destructive tests allow to establish the physical and structural conditions of a mechanical part, to verify its condition, the superficial wear and tear and then evaluate its `remaining' efficiency. The non-destructive tests are applied in all those fields of engineering in which the determination of the mechanical and structural characteristics of elements in use is requested, without making them undergo destructive or damaging tests. In the present work an application program has been developed which, examining the surface of mechanical parts under an optical microscope and a blaster video, is able to characterize the material and to recognize and identify the possible presence of a superficial crack. The program constitutes the first step towards the realization of an industrial prototype which, thanks to the utilization of a plan moved by step-by-step motors, allowing the scanning of the whole surface of a part and the recognition of the crack in an automatic way, that is without the presence of an operator, and its characterization, in case it is identified, through the determination of some geometric parameters useful to ascertain the structural integrity of the element under examination. For the realization of the program different techniques of image analysis have been applied and the use of an artificial neural network preset for the recognition of the crack has been necessary. The program has been realized in C language and it works in Linux system.

  11. Gas-bubble growth mechanisms in the analysis of metal fuel swelling

    SciTech Connect

    Gruber, E E; Kramer, J M

    1985-10-01

    The FRAS3 code has been applied to analysis of a series of experiments on irradiated uranium fuel. Comparison of the predicted bubble-size distributions to those measured indicate that grain-boundary bubbles are an important component of the fission-gas inventory. In these experiments, bubble growth rates were not a factor because of the long heating times. On transient time scales, however, various bubble-growth mechanisms become important in determining swelling rates. These mechanisms include growth by diffusion, for bubbles within grains and on grain boundaries; dislocation nucleation at the bubble surface, or "punchout"; and bubble growth by creep. Analyses of these mechanisms are presented and applied to provide information on the conditions and the relative time scales for which the various processes should dominate fuel swelling. The results are compared to a series of experiments in which the swelling of irradiated metal fuel was determined after annealing at various temperatures and pressures. The diffusive growth of bubbles on grain boundaries is concluded to be dominant in these experiments.

  12. Ozone-cyclohexene reaction in air: quantitative analysis of particulate products and the reaction mechanism

    SciTech Connect

    Hatakeyama, S.; Tanonaka, T.; Weng, J.; Bandow, H.; Takagi, H.; Akimot, H.

    1985-10-01

    Both gaseous and particulate products of the cyclohexene-ozone reaction were analyzed. Major gaseous products were aldehydes that consist of adipaldehyde (CHO(CH/sub 2/)/sub 4/CHO), glutaraldehyde (CHO(CH/sub 2/)/sub 3/CHO), and pentanal (CH/sub 3/(CH/sub 2/)/sub 3/CHO). The sum of the primary yields of aldehydes reaches as high as 50%. In addition to aldehydes, formic acid, CO, and CO/sub 2/ were produced, but formaldehyde was not detected. Main particulate products were adipaldehyde, 6-oxohexanoic acid (CHO(CH/sub 2/)/sub 4/COOH), adipic acid (HOOC(CH/sub 2/)/sub 4/COOH), glutaraldehyde, 5-oxopentanoic acid (CHO(CH/sub 2/)/sub 3/COOH), and glutaric acid (HOOC(CH/sub 2/)/sub 3/COOH). All these compounds were analyzed quantitatively, and the fraction of initial cyclohexene converted to aerosol organic carbon was estimated to be 13 +/- 3% as the value extrapolated to a ppm concentration range of reactants. Although the reaction mechanism is in general explainable in terms of the Criegee mechanism, the reaction pathway to form formic acid is quite unique in this reaction system. The entire mechanism was discussed on the basis of the quantitative product analysis data.

  13. Mechanical analysis of avian feet: multiarticular muscles in grasping and perching

    PubMed Central

    Backus, Spencer B.; Sustaita, Diego; Odhner, Lael U.; Dollar, Aaron M.

    2015-01-01

    The grasping capability of birds' feet is a hallmark of their evolution, but the mechanics of avian foot function are not well understood. Two evolutionary trends that contribute to the mechanical complexity of the avian foot are the variation in the relative lengths of the phalanges and the subdivision and variation of the digital flexor musculature observed among taxa. We modelled the grasping behaviour of a simplified bird foot in response to the downward and upward forces imparted by carrying and perching tasks, respectively. Specifically, we compared the performance of various foot geometries performing these tasks when actuated by distally inserted flexors only, versus by both distally inserted and proximally inserted flexors. Our analysis demonstrates that most species possess relative phalanx lengths that are conducive to grasps actuated only by a single distally inserted tendon per digit. Furthermore, proximally inserted flexors are often required during perching, but the distally inserted flexors are sufficient when grasping and carrying objects. These results are reflected in differences in the relative development of proximally and distally inserted digital flexor musculature among ‘perching’ and ‘grasping’ taxa. Thus, our results shed light on the relative roles of variation in phalanx length and digit flexor muscle distribution in an integrative, mechanical context. PMID:26064598

  14. Tuning Chemical and Physical Crosslinks in Silk Electrogels for Morphological Analysis and Mechanical Reinforcement

    PubMed Central

    Lin, Yinan; Xia, Xiaoxia; Shang, Ke; Elia, Roberto; Huang, Wenwen; Cebe, Peggy; Leisk, Gary; Omenetto, Fiorenzo; Kaplan, David L.

    2013-01-01

    Electrochemically controlled, reversible assembly of biopolymers into hydrogel structures is a promising technique for on-demand cell or drug encapsulation and release systems. An electrochemically sol-gel transition has been demonstrated in regenerated Bombyx mori silk fibroin, offering a controllable way to generate biocompatible and reversible adhesives and other biomedical materials. Despite the involvement of an electrochemically triggered electrophoretic migration of the silk molecules, the mechanism of the reversible electrogelation remains unclear. It is, however, known that the freshly prepared silk electrogels (e-gels) adopt a predominantly random coil conformation, indicating a lack of crosslinking as well as thermal, mechanical and morphological stabilities. In the present work, the tuning of covalent and physical β-sheet crosslinks in silk hydrogels was studied for programming the structural properties. Scanning electron microscopy (SEM) revealed delicate morphology, including locally aligned fibrillar structures, in silk e-gels, preserved by combining glutaraldehyde-crosslinking and ethanol dehydration. Fourier transform infrared (FTIR) spectroscopic analysis of either electrogelled, vortex-induced or spontaneously formed silk hydrogels showed that the secondary structure of silk e-gels was tunable between non β-sheet dominated and β-sheet dominated states. Dynamic oscillatory rheology confirmed the mechanical reinforcement of silk e-gels provided by controlled chemical and physical crosslinks. The selective incorporation of either chemical or physical or both crosslinks into the electrochemically-responsive, originally unstructured silk e-gel should help in the design for electrochemically-responsive protein polymers. PMID:23859710

  15. Failure analysis of radio frequency (rf) micro-electro-mechanical systems (MEMS)

    NASA Astrophysics Data System (ADS)

    Walraven, Jeremy A.; Cole, Edward I., Jr.; Sloan, Lynn R.; Hietala, Susan L.; Tigges, Chris P.; Dyck, Christopher W.

    2001-10-01

    MEMS are rapidly emerging as critical components in the telecommunications industry. This enabling technology is currently being implemented in a variety of product and engineering applications. MEMS are currently being used as optical switches to reroute light, tunable filters, and mechanical resonators. Radio frequency (RF) MEMS must be compatible with current Gallium Arsenide (GaAs) microwave integrated circuit (MMIC) processing technologies for maximum integration levels. The RF MEMS switch discussed in this paper was fabricated using various layers of polyimide, silicon oxynitride (SiON), gold, and aluminum monolithically fabricated on a GaAs substrate. Fig. 1 shows a metal contacting series switch. This switch consists of gold signal lines (transmission lines), and contact metallization. SiON was deposited to form the fixed-fixed beam, and aluminum was deposited to form the top actuation electrode. To ensure product performance and reliability, RF MEMS switches are tested at both the wafer and package levels. Various processing irregularities may pass the visual inspection but fail electrical testing. This paper will focus on the failure mechanisms found in the first generation of RF MEMS developed at Sandia National Laboratories. Various tools and techniques such as scanning electron microscopy (SEM), resistive contrast imaging (RCI), focused ion beam (FIB), and thermally-induced voltage alteration (TIVA) have been employed to diagnose the failure mechanisms. The analysis performed using these tools and techniques led to corrective actions implemented in the next generation of RF MEMS metal contacting series switches.

  16. Thermal-Mechanical Analysis for in-Vessel Diagnostic Components in W7-X

    NASA Astrophysics Data System (ADS)

    Ye, M. Y.; Werner, A.; Hirsch, M.; Thomsen, H.; Weller, A.; König, R.

    2008-03-01

    For long pulse plasma operation of the W7-X stellarator, the most serious challenge for the design of in-vessel diagnostic systems is the thermo-mechanical problem. Thermal load from convective losses and from plasma radiation can be as high as 500 kW/m2 at some locations close to plasma. The typical thermal load from plasma radiation alone ranges from several 10 to 100 kW/m2 as derived from 3-D Monte-Carlo simulations. A finite element analysis (FEA-ANSYS) is conducted for a better understanding of thermo-mechanical effects on in-vessel diagnostic components and to guide the design of the diagnostic system for steady state operation. All in-vessel diagnostic components require active cooling. Besides for long-pulse plasma operation optical components must be optimized to minimize thermal deformations. In this paper, we present the thermo-mechanical analyses of the CO2-laser interferometer retro-reflectors, the diamagnetic loops and the soft X-ray multi camera tomography system (XMCTS).

  17. In situ multi-level analysis of viscoelastic deformation mechanisms in tendon collagen.

    PubMed

    Gupta, H S; Seto, J; Krauss, S; Boesecke, P; Screen, H R C

    2010-02-01

    Tendon is a hydrated multi-level fibre composite, in which time-dependent behaviour is well established. Studies indicate significant stress relaxation, considered important for optimising tissue stiffness. However, whilst this behaviour is well documented, the mechanisms associated with the response are largely unknown. This study investigates the sub-structural mechanisms occurring during stress relaxation at both the macro (fibre) and nano (fibril) levels of the tendon hierarchy. Stress relaxation followed a two-stage exponential behaviour, during which structural changes were visible at the fibre and fibril levels. Fibril relaxation and fibre sliding showed a double exponential response, while fibre sliding was clearly the largest contributor to relaxation. The amount of stress relaxation and sub-structural reorganisation increased with increasing load increments, but fibre sliding was consistently the largest contributor to stress relaxation. A simple model of tendon viscoelasticity at the fibril and fibre levels has been developed, capturing this behaviour by serially coupling a Voigt element (collagen fibril), with two Maxwell elements (non-collagenous matrix between fibrils and fibres). This multi-level analysis provides a first step towards understanding how sub-structural interactions contribute to viscoelastic behaviour. It indicates that nano- and micro-scale shearing are significant dissipative mechanisms, and the kinetics of relaxation follows a two-stage exponential decay, well fitted by serially coupled viscoelastic elements.

  18. Organ-specific proteome analysis for identification of abiotic stress response mechanism in crop.

    PubMed

    Komatsu, Setsuko; Hossain, Zahed

    2013-01-01

    Abiotic stresses, such as flooding, drought, salinity, and high/low temperatures, are the major constraints that global crop production faces at present. Plants respond to a stress by modulating abundance of candidate proteins, either by up-regulating expression or by the synthesizing novel proteins primarily associated with plant defense system. The cellular mechanisms of stress sensing and signal transduction into cellular organelles have been reported. Nevertheless, the responses of plant cells to abiotic stresses differ in each organ. As the correlation between the expression of mRNAs and the abundance of their corresponding proteins is difficult to assess in specific organs, proteomics techniques provide one of the best options for the functional analysis of translated regions of the genome. The present review summarizes the organ-specific proteome analyses for better understanding of the response mechanisms of crops to abiotic stresses, including flooding, drought, and salinity. The differential organ-specific responses against each of these stresses are discussed in detail to provide new insights into plant stress response mechanisms at protein level.

  19. Coupled thermal-fluid-mechanics analysis of twin roll casting of A7075 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Lee, Yun-Soo; Kim, Hyoung-Wook; Cho, Jae-Hyung; Chun, Se-Hwan

    2017-09-01

    Better understanding of temperature distribution and roll separation force during twin roll casting of aluminum alloys is critical to successfully fabricate good quality of aluminum strips. Therefore, the simulation techniques are widely applied to understand the twin roll casting process in a comprehensive way and to reduce the experimental time and cost of trial and error. However, most of the conventional approaches are considered thermally coupled flow, or thermally coupled mechanical behaviors. In this study, a fully coupled thermal-fluid-mechanical analysis of twin roll casting of A7075 aluminum strips was carried out using the finite element method. Temperature profile, liquid fraction and metal flow of aluminum strips with different thickness were predicted. Roll separation force and roll temperatures were experimentally obtained from a pilot-scale twin roll caster, and those results were compared with model predictions. Coupling the fluid of the liquid melt to the thermal and mechanical modeling reasonably predicted roll temperature distribution and roll separation force during twin roll casting.

  20. Source location and mechanism analysis of an earthquake triggered by the 2016 Kumamoto, southwestern Japan, earthquake

    NASA Astrophysics Data System (ADS)

    Nakamura, Takeshi; Aoi, Shin

    2017-01-01

    The 2016 Kumamoto earthquake ( Mw 7.0) occurred in the central part of Kyushu Island, southwestern Japan, on April 16, 2016. The mainshock triggered an event of maximum acceleration 700 gal that caused severe damage to infrastructure and thousands of homes. We investigate the source location of the triggered event, and the timing of large energy release, by employing the back-projection method for strong-motion network data. The optimal location is estimated to be [33.2750°, 131.3575°] (latitude, longitude) at a depth of 5 km, which is 80 km northeast of the epicenter of the mainshock. The timing is 33.5 s after the origin time of the mainshock. We also investigate the source mechanism by reproducing observed displacement waveforms at a near-source station. The waveforms at smaller-sized events, convolved with the source time function of a pulse width 1 s, are similar to the signature of the observed waveforms of the triggered event. The observations are also reproduced by synthetic waveforms for a normal-fault mechanism and a normal-fault with strike-slip components at the estimated locations. Although our approach does not constrain the strike direction well, our waveform analysis indicates that the triggered earthquake occurred near the station that observed the strong motions, primarily via a normal-fault mechanism or a normal-fault with strike-slip components.[Figure not available: see fulltext.

  1. Design and mechanical analysis of a 3D-printed biodegradable biomimetic micro air vehicle wing

    NASA Astrophysics Data System (ADS)

    Salami, E.; Ganesan, P. B.; Ward, T. A.; Viyapuri, R.; Romli, F. I.

    2016-10-01

    The biomimetic micro air vehicles (BMAV) are unmanned, micro-scaled aircraft that are bio-inspired from flying organisms to achieve the lift and thrust by flapping their wings. There are still many technological challenges involved with designing the BMAV. One of these is designing the ultra-lightweight materials and structures for the wings that have enough mechanical strength to withstand continuous flapping at high frequencies. Insects achieve this by having chitin-based, wing frame structures that encompass a thin, film membrane. The main objectives of this study are to design a biodegradable BMAV wing (inspired from the dragonfly) and analyze its mechanical properties. The dragonfly-like wing frame structure was bio-mimicked and fabricated using a 3D printer. A chitosan nanocomposite film membrane was applied to the BMAV wing frames through casting method. Its mechanical performance was analyzed using universal testing machine (UTM). This analysis indicates that the tensile strength and Young's modulus of the wing with a membrane is nearly double that of the wing without a membrane, which allow higher wing beat frequencies and deflections that in turn enable a greater lifting performance.

  2. Application of structural analysis to the mechanical behaviour of the cornea.

    PubMed Central

    Anderson, K.; El-Sheikh, A.; Newson, T.

    2004-01-01

    Structural engineering analysis tools have been used to improve the understanding of the biomechanical behaviour of the cornea. The research is a multi-disciplinary collaboration between structural engineers, mathematical and numerical analysts, ophthalmologists and clinicians. Mathematical shell analysis and nonlinear finite-element modelling have been used in conjunction with laboratory experiments to study the behaviour of the cornea under different loading states and to provide improved predictions of the mechanical response to disease and injury. The initial study involved laboratory tests and mathematical back analysis to determine the corneal material properties and topography. These data were then used to facilitate the construction of accurate finite-element models that are able to reliably trace the performance of cornea upon exposure to disease, injury or elevated intra-ocular pressure. The models are being adapted to study the response to keratoconus (a disease causing loss of corneal tissue) and to tonometry procedures, which are used to measure the intra-ocular pressure. This paper introduces these efforts as examples of the application of structural engineering analysis tools and shows their potential in the field of corneal biomechanics. PMID:16849148

  3. Having a direct look: analysis of DNA damage and repair mechanisms by next generation sequencing.

    PubMed

    Meier, Bettina; Gartner, Anton

    2014-11-15

    Genetic information is under constant attack from endogenous and exogenous sources, and the use of model organisms has provided important frameworks to understand how genome stability is maintained and how various DNA lesions are repaired. The advance of high throughput next generation sequencing (NGS) provides new inroads for investigating mechanisms needed for genome maintenance. These emerging studies, which aim to link genetic toxicology and mechanistic analyses of DNA repair processes in vivo, rely on defining mutational signatures caused by faulty replication, endogenous DNA damaging metabolites, or exogenously applied genotoxins; the analysis of their nature, their frequency and distribution. In contrast to classical studies, where DNA repair deficiency is assessed by reduced cellular survival, the localization of DNA repair factors and their interdependence as well as limited analysis of single locus reporter assays, NGS based approaches reveal the direct, quantal imprint of mutagenesis genome-wide, at the DNA sequence level. As we will show, such investigations require the analysis of DNA derived from single genotoxin treated cells, or DNA from cell populations regularly passaged through single cell bottlenecks when naturally occurring mutation accumulation is investigated. We will argue that the life cycle of the nematode Caenorhabditis elegans, its genetic malleability combined with whole genome sequencing provides an exciting model system to conduct such analysis. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Having a direct look: Analysis of DNA damage and repair mechanisms by next generation sequencing

    PubMed Central

    Meier, Bettina; Gartner, Anton

    2014-01-01

    Genetic information is under constant attack from endogenous and exogenous sources, and the use of model organisms has provided important frameworks to understand how genome stability is maintained and how various DNA lesions are repaired. The advance of high throughput next generation sequencing (NGS) provides new inroads for investigating mechanisms needed for genome maintenance. These emerging studies, which aim to link genetic toxicology and mechanistic analyses of DNA repair processes in vivo, rely on defining mutational signatures caused by faulty replication, endogenous DNA damaging metabolites, or exogenously applied genotoxins; the analysis of their nature, their frequency and distribution. In contrast to classical studies, where DNA repair deficiency is assessed by reduced cellular survival, the localization of DNA repair factors and their interdependence as well as limited analysis of single locus reporter assays, NGS based approaches reveal the direct, quantal imprint of mutagenesis genome-wide, at the DNA sequence level. As we will show, such investigations require the analysis of DNA derived from single genotoxin treated cells, or DNA from cell populations regularly passaged through single cell bottlenecks when naturally occurring mutation accumulation is investigated. We will argue that the life cycle of the nematode Caenorhabditis elegans, its genetic malleability combined with whole genome sequencing provides an exciting model system to conduct such analysis. PMID:25131498

  5. Genome-wide Comparative Analysis of Atopic Dermatitis and Psoriasis Gives Insight into Opposing Genetic Mechanisms

    PubMed Central

    Baurecht, Hansjörg; Hotze, Melanie; Brand, Stephan; Büning, Carsten; Cormican, Paul; Corvin, Aiden; Ellinghaus, David; Ellinghaus, Eva; Esparza-Gordillo, Jorge; Fölster-Holst, Regina; Franke, Andre; Gieger, Christian; Hubner, Norbert; Illig, Thomas; Irvine, Alan D.; Kabesch, Michael; Lee, Young A.E.; Lieb, Wolfgang; Marenholz, Ingo; McLean, W.H. Irwin; Morris, Derek W.; Mrowietz, Ulrich; Nair, Rajan; Nöthen, Markus M.; Novak, Natalija; O’Regan, Grainne M.; Schreiber, Stefan; Smith, Catherine; Strauch, Konstantin; Stuart, Philip E.; Trembath, Richard; Tsoi, Lam C.; Weichenthal, Michael; Barker, Jonathan; Elder, James T.; Weidinger, Stephan; Cordell, Heather J.; Brown, Sara J.

    2015-01-01

    Atopic dermatitis and psoriasis are the two most common immune-mediated inflammatory disorders affecting the skin. Genome-wide studies demonstrate a high degree of genetic overlap, but these diseases have mutually exclusive clinical phenotypes and opposing immune mechanisms. Despite their prevalence, atopic dermatitis and psoriasis very rarely co-occur within one individual. By utilizing genome-wide association study and ImmunoChip data from >19,000 individuals and methodologies developed from meta-analysis, we have identified opposing risk alleles at shared loci as well as independent disease-specific loci within the epidermal differentiation complex (chromosome 1q21.3), the Th2 locus control region (chromosome 5q31.1), and the major histocompatibility complex (chromosome 6p21–22). We further identified previously unreported pleiotropic alleles with opposing effects on atopic dermatitis and psoriasis risk in PRKRA and ANXA6/TNIP1. In contrast, there was no evidence for shared loci with effects operating in the same direction on both diseases. Our results show that atopic dermatitis and psoriasis have distinct genetic mechanisms with opposing effects in shared pathways influencing epidermal differentiation and immune response. The statistical analysis methods developed in the conduct of this study have produced additional insight from previously published data sets. The approach is likely to be applicable to the investigation of the genetic basis of other complex traits with overlapping and distinct clinical features. PMID:25574825

  6. Genomic and transcriptomic analysis of NDM-1 Klebsiella pneumoniae in spaceflight reveal mechanisms underlying environmental adaptability

    PubMed Central

    Li, Jia; Liu, Fei; Wang, Qi; Ge, Pupu; Woo, Patrick C. Y.; Yan, Jinghua; Zhao, Yanlin; Gao, George F.; Liu, Cui Hua; Liu, Changting

    2014-01-01

    The emergence and rapid spread of New Delhi Metallo-beta-lactamase-1 (NDM-1)-producing Klebsiella pneumoniae strains has caused a great concern worldwide. To better understand the mechanisms underlying environmental adaptation of those highly drug-resistant K. pneumoniae strains, we took advantage of the China's Shenzhou 10 spacecraft mission to conduct comparative genomic and transcriptomic analysis of a NDM-1 K. pneumoniae strain (ATCC BAA-2146) being cultivated under different conditions. The samples were recovered from semisolid medium placed on the ground (D strain), in simulated space condition (M strain), or in Shenzhou 10 spacecraft (T strain) for analysis. Our data revealed multiple variations underlying pathogen adaptation into different environments in terms of changes in morphology, H2O2 tolerance and biofilm formation ability, genomic stability and regulation of metabolic pathways. Additionally, we found a few non-coding RNAs to be differentially regulated. The results are helpful for better understanding the adaptive mechanisms of drug-resistant bacterial pathogens. PMID:25163721

  7. Genome-wide comparative analysis of atopic dermatitis and psoriasis gives insight into opposing genetic mechanisms.

    PubMed

    Baurecht, Hansjörg; Hotze, Melanie; Brand, Stephan; Büning, Carsten; Cormican, Paul; Corvin, Aiden; Ellinghaus, David; Ellinghaus, Eva; Esparza-Gordillo, Jorge; Fölster-Holst, Regina; Franke, Andre; Gieger, Christian; Hubner, Norbert; Illig, Thomas; Irvine, Alan D; Kabesch, Michael; Lee, Young A E; Lieb, Wolfgang; Marenholz, Ingo; McLean, W H Irwin; Morris, Derek W; Mrowietz, Ulrich; Nair, Rajan; Nöthen, Markus M; Novak, Natalija; O'Regan, Grainne M; Schreiber, Stefan; Smith, Catherine; Strauch, Konstantin; Stuart, Philip E; Trembath, Richard; Tsoi, Lam C; Weichenthal, Michael; Barker, Jonathan; Elder, James T; Weidinger, Stephan; Cordell, Heather J; Brown, Sara J

    2015-01-08

    Atopic dermatitis and psoriasis are the two most common immune-mediated inflammatory disorders affecting the skin. Genome-wide studies demonstrate a high degree of genetic overlap, but these diseases have mutually exclusive clinical phenotypes and opposing immune mechanisms. Despite their prevalence, atopic dermatitis and psoriasis very rarely co-occur within one individual. By utilizing genome-wide association study and ImmunoChip data from >19,000 individuals and methodologies developed from meta-analysis, we have identified opposing risk alleles at shared loci as well as independent disease-specific loci within the epidermal differentiation complex (chromosome 1q21.3), the Th2 locus control region (chromosome 5q31.1), and the major histocompatibility complex (chromosome 6p21-22). We further identified previously unreported pleiotropic alleles with opposing effects on atopic dermatitis and psoriasis risk in PRKRA and ANXA6/TNIP1. In contrast, there was no evidence for shared loci with effects operating in the same direction on both diseases. Our results show that atopic dermatitis and psoriasis have distinct genetic mechanisms with opposing effects in shared pathways influencing epidermal differentiation and immune response. The statistical analysis methods developed in the conduct of this study have produced additional insight from previously published data sets. The approach is likely to be applicable to the investigation of the genetic basis of other complex traits with overlapping and distinct clinical features. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Intraoperative mechanical ventilation strategies for obese patients: a systematic review and network meta-analysis.

    PubMed

    Wang, C; Zhao, N; Wang, W; Guo, Libo; Guo, Lei; Chi, C; Wang, X; Pi, X; Cui, Y; Li, E

    2015-06-01

    Several intraoperative ventilation strategies are available for obese patients. However, the same ventilation interventions have exhibited different effects on PaO2 /FIO2 concerning obese patients in different trials, and the issue remains controversial. Therefore, we conducted a network meta-analysis to identify the optimal mechanical ventilation strategy. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) in the Cochrane Library, Embase, MEDLINE, CINAHL and Web of Science for studies published up to June 2014, and the PaO2 /FIO2 in obese patients given different mechanical ventilation strategies was assessed. We assessed the studies for eligibility and extracted data and then pooled the data and used a Bayesian fixed-effect model to combine direct comparisons with indirect evidence. Eligible studies evaluated different ventilation strategies for obese patients and reported the intraoperative PaO2 /FIO2 ratio, atelectasis and pulmonary compliance. Thirteen randomized controlled trials were included for network meta-analysis, including 476 patients who received 1 of 12 ventilation strategies. Volume-controlled ventilation with higher PEEP plus single recruitment manoeuvres (VCV + higher PEEP + single RM) was associated with the highest PaO2 /FiO2 ratio, improving intraoperative pulmonary compliance and reducing the incidence of intraoperative atelectasis. © 2015 World Obesity.

  9. Statistical-Mechanical Analysis of Pre-training and Fine Tuning in Deep Learning

    NASA Astrophysics Data System (ADS)

    Ohzeki, Masayuki

    2015-03-01

    In this paper, we present a statistical-mechanical analysis of deep learning. We elucidate some of the essential components of deep learning — pre-training by unsupervised learning and fine tuning by supervised learning. We formulate the extraction of features from the training data as a margin criterion in a high-dimensional feature-vector space. The self-organized classifier is then supplied with small amounts of labelled data, as in deep learning. Although we employ a simple single-layer perceptron model, rather than directly analyzing a multi-layer neural network, we find a nontrivial phase transition that is dependent on the number of unlabelled data in the generalization error of the resultant classifier. In this sense, we evaluate the efficacy of the unsupervised learning component of deep learning. The analysis is performed by the replica method, which is a sophisticated tool in statistical mechanics. We validate our result in the manner of deep learning, using a simple iterative algorithm to learn the weight vector on the basis of belief propagation.

  10. Genomic and transcriptomic analysis of NDM-1 Klebsiella pneumoniae in spaceflight reveal mechanisms underlying environmental adaptability.

    PubMed

    Li, Jia; Liu, Fei; Wang, Qi; Ge, Pupu; Woo, Patrick C Y; Yan, Jinghua; Zhao, Yanlin; Gao, George F; Liu, Cui Hua; Liu, Changting

    2014-08-28

    The emergence and rapid spread of New Delhi Metallo-beta-lactamase-1 (NDM-1)-producing Klebsiella pneumoniae strains has caused a great concern worldwide. To better understand the mechanisms underlying environmental adaptation of those highly drug-resistant K. pneumoniae strains, we took advantage of the China's Shenzhou 10 spacecraft mission to conduct comparative genomic and transcriptomic analysis of a NDM-1 K. pneumoniae strain (ATCC BAA-2146) being cultivated under different conditions. The samples were recovered from semisolid medium placed on the ground (D strain), in simulated space condition (M strain), or in Shenzhou 10 spacecraft (T strain) for analysis. Our data revealed multiple variations underlying pathogen adaptation into different environments in terms of changes in morphology, H2O2 tolerance and biofilm formation ability, genomic stability and regulation of metabolic pathways. Additionally, we found a few non-coding RNAs to be differentially regulated. The results are helpful for better understanding the adaptive mechanisms of drug-resistant bacterial pathogens.

  11. Comparison of stainless steel and titanium alloy orthodontic miniscrew implants: a mechanical and histologic analysis.

    PubMed

    Brown, Ryan N; Sexton, Brent E; Gabriel Chu, Tien-Min; Katona, Thomas R; Stewart, Kelton T; Kyung, Hee-Moon; Liu, Sean Shih-Yao

    2014-04-01

    The detailed mechanical and histologic properties of stainless steel miniscrew implants used for temporary orthodontic anchorage have not been assessed. Thus, the purpose of this study was to compare them with identically sized titanium alloy miniscrew implants. Forty-eight stainless steel and 48 titanium alloy miniscrew implants were inserted into the tibias of 12 rabbits. Insertion torque and primary stability were recorded. One hundred grams of tensile force was applied between half of the implants in each group, resulting in 4 subgroups of 24 specimens each. Fluorochrome labeling was administered at weeks 4 and 5. When the rabbits were euthanized at 6 weeks, stability and removal torque were measured in half (ie, 12 specimens) of each of the 4 subgroups. Microdamage burden and bone-to-implant contact ratio were quantified in the other 12 specimens in each subgroup. Mixed model analysis of variance was used for statistical analysis. All implants were stable at insertion and after 6 weeks. The only significant difference was the higher (9%) insertion torque for stainless steel. No significant differences were found between stainless steel and titanium alloy miniscrew implants in microdamage burden and bone-to-implant contact regardless of loading status. Stainless steel and titanium alloy miniscrew implants provide the same mechanical stability and similar histologic responses, suggesting that both are suitable for immediate orthodontic clinical loads. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  12. Understanding deformation mechanisms during powder compaction using principal component analysis of compression data.

    PubMed

    Roopwani, Rahul; Buckner, Ira S

    2011-10-14

    Principal component analysis (PCA) was applied to pharmaceutical powder compaction. A solid fraction parameter (SF(c/d)) and a mechanical work parameter (W(c/d)) representing irreversible compression behavior were determined as functions of applied load. Multivariate analysis of the compression data was carried out using PCA. The first principal component (PC1) showed loadings for the solid fraction and work values that agreed with changes in the relative significance of plastic deformation to consolidation at different pressures. The PC1 scores showed the same rank order as the relative plasticity ranking derived from the literature for common pharmaceutical materials. The utility of PC1 in understanding deformation was extended to binary mixtures using a subset of the original materials. Combinations of brittle and plastic materials were characterized using the PCA method. The relationships between PC1 scores and the weight fractions of the mixtures were typically linear showing ideal mixing in their deformation behaviors. The mixture consisting of two plastic materials was the only combination to show a consistent positive deviation from ideality. The application of PCA to solid fraction and mechanical work data appears to be an effective means of predicting deformation behavior during compaction of simple powder mixtures.

  13. Analysis of the mechanical response of biomimetic materials with highly oriented microstructures through 3D printing, mechanical testing and modeling.

    PubMed

    de Obaldia, Enrique Escobar; Jeong, Chanhue; Grunenfelder, Lessa Kay; Kisailus, David; Zavattieri, Pablo

    2015-08-01

    Many biomineralized organisms have evolved highly oriented nanostructures to perform specific functions. One key example is the abrasion-resistant rod-like microstructure found in the radular teeth of Chitons (Cryptochiton stelleri), a large mollusk. The teeth consist of a soft core and a hard shell that is abrasion resistant under extreme mechanical loads with which they are subjected during the scraping process. Such remarkable mechanical properties are achieved through a hierarchical arrangement of nanostructured magnetite rods surrounded with α-chitin. We present a combined biomimetic approach in which designs were analyzed with additive manufacturing, experiments, analytical and computational models to gain insights into the abrasion resistance and toughness of rod-like microstructures. Staggered configurations of hard hexagonal rods surrounded by thin weak interfacial material were printed, and mechanically characterized with a cube-corner indenter. Experimental results demonstrate a higher contact resistance and stiffness for the staggered alignments compared to randomly distributed fibrous materials. Moreover, we reveal an optimal rod aspect ratio that lead to an increase in the site-specific properties measured by indentation. Anisotropy has a significant effect (up to 50%) on the Young's modulus in directions parallel and perpendicular to the longitudinal axis of the rods, and 30% on hardness and fracture toughness. Optical microscopy suggests that energy is dissipated in the form of median cracks when the load is parallel to the rods and lateral cracks when the load is perpendicular to the rods. Computational models suggest that inelastic deformation of the rods at early stages of indentation can vary the resistance to penetration. As such, we found that the mechanical behavior of the system is influenced by interfacial shear strain which influences the lateral load transfer and therefore the spread of damage. This new methodology can help to elucidate

  14. Statistical grand rounds: understanding the mechanism: mediation analysis in randomized and nonrandomized studies.

    PubMed

    Mascha, Edward J; Dalton, Jarrod E; Kurz, Andrea; Saager, Leif

    2013-10-01

    In comparative clinical studies, a common goal is to assess whether an exposure, or intervention, affects the outcome of interest. However, just as important is to understand the mechanism(s) for how the intervention affects outcome. For example, if preoperative anemia was shown to increase the risk of postoperative complications by 15%, it would be important to quantify how much of that effect was due to patients receiving intraoperative transfusions. Mediation analysis attempts to quantify how much, if any, of the effect of an intervention on outcome goes though prespecified mediator, or "mechanism" variable(s), that is, variables sitting on the causal pathway between exposure and outcome. Effects of an exposure on outcome can thus be divided into direct and indirect, or mediated, effects. Mediation is claimed when 2 conditions are true: the exposure affects the mediator and the mediator (adjusting for the exposure) affects the outcome. Understanding how an intervention affects outcome can validate or invalidate one's original hypothesis and also facilitate further research to modify the responsible factors, and thus improve patient outcome. We discuss the proper design and analysis of studies investigating mediation, including the importance of distinguishing mediator variables from confounding variables, the challenge of identifying potential mediators when the exposure is chronic versus acute, and the requirements for claiming mediation. Simple designs are considered, as well as those containing multiple mediators, multiple outcomes, and mixed data types. Methods are illustrated with data collected by the National Surgical Quality Improvement Project (NSQIP) and utilized in a companion paper which assessed the effects of preoperative anemic status on postoperative outcomes.

  15. Mechanical labor induction in the obese population: a secondary analysis of a prospective randomized trial.

    PubMed

    Anabusi, Saja; Mei-Dan, Elad; Hallak, Mordechai; Walfisch, Asnat

    2016-01-01

    The objective of this study was to estimate the influence of maternal body mass index (BMI) on progress and outcomes of labor induction using mechanical devices. This study was a secondary analysis of data collected during the Cook Catheter vs. Foley Catheter study, a series of prospective randomized trials of women requiring cervical ripening for labor induction. The duration, characteristics, and outcomes of labor were analyzed after stratification by BMI categories. Outcomes assessed included time from device insertion to delivery, successful ripening, cesarean delivery rates, and any maternal and neonatal adverse events. One hundred and eighty-one patients were stratified according to BMI categories, with 102 study participants classified as normal weight (BMI ≤30) and 79 as obese (BMI >30). Maternal satisfaction from the induction process was significantly lower in the obese group compared to the normal weight group (5.95 ± 3.14 vs. 7.58 ± 2.7, respectively, in a 1-10 scale, p = 0.009). The cesarean delivery rate was similar in the normal weight and the obese groups (17.6 vs. 25.3 %, respectively, p = 0.27). No statistical differences were found in all other outcomes evaluated, including a sub-analysis of the different mechanical devices. During the process of mechanical cervical ripening, maternal satisfaction, but not objective obstetrical parameters, was influenced by increased maternal BMI. The trial is registered at ClinicalTrials.gov, no: NCT00604487. Trial registry name is "Induction of Labor in Patients with Unfavorable Cervical Conditions."

  16. Intraoral laser welding: ultrastructural and mechanical analysis to compare laboratory laser and dental laser.

    PubMed

    Fornaini, Carlo; Passaretti, Francesca; Villa, Elena; Rocca, Jean-Paul; Merigo, Elisabetta; Vescovi, Paolo; Meleti, Marco; Manfredi, Maddalena; Nammour, Samir

    2011-07-01

    The Nd:YAG laser has been used since 1970 in dental laboratories to weld metals on dental prostheses. Recently in several clinical cases, we have suggested that the Nd:YAG laser device commonly utilized in the dental office could be used to repair broken fixed, removable and orthodontic prostheses and to weld metals directly in the mouth. The aim of this work was to evaluate, using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and dynamic mechanical analysis (DMA), the quality of the weld and its mechanical strength, comparing a device normally used in dental laboratory and a device normally used in the dental office for oral surgery, the same as that described for intraoral welding. Metal plates of a Co-Cr-Mo dental alloy and steel orthodontic wires were subjected to four welding procedures: welding without filler metal using the laboratory laser, welding with filler metal using the laboratory laser, welding without filler metal using the office laser, and welding with filler metal using the office laser. The welded materials were then analysed by SEM, EDS and DMA. SEM analysis did not show significant differences between the samples although the plates welded using the office laser without filler metal showed a greater number of fissures than the other samples. EDS microanalysis of the welding zone showed a homogeneous composition of the metals. Mechanical tests showed similar elastic behaviours of the samples, with minimal differences between the samples welded with the two devices. No wire broke even under the maximum force applied by the analyser. This study seems to demonstrate that the welds produced using the office Nd:YAG laser device and the laboratory Nd:YAG laser device, as analysed by SEM, EDS and DMA, showed minimal and nonsignificant differences, although these findings need to be confirmed using a greater number of samples.

  17. THERMAL MECHANICAL ANALYSIS OF THE DRIFT SCALE TEST VIA DISTINCT ELEMENT MODELING

    SciTech Connect

    S. Blair; J. Wagoner; K. Dyer

    2000-12-08

    We have performed a thermal mechanical analysis of the Drift Scale Test (DST) currently underway at Yucca Mountain. The Yucca Mountain Site Characterization Project is investigating Yucca Mountain, Nevada, as a potential repository for high-level nuclear waste. The purpose of the DST is to acquire a more in-depth understanding of coupled Thermal-Mechanical-Hydrological-Chemical (TMHC) processes likely to exist in the rock mass surrounding a potential geologic repository at Yucca Mountain. Moreover, the DST is located in a highly fractured and densely welded ash-flow tuff, and movement of fluids in this rock is thought to occur primarily through the fractures. Our work is concerned with describing fracture deformation due to thermal mechanical effects, as normal and shear deformation of fractures can substantially change the fracture permeability, and affect the coupled TMHC behavior. We modeled the DST by defining a rectangular rock mass 50m x 50m x 100m in size. The rock mass was formed by an assemblage of discrete, elastic blocks. Excavations within the DST were closely simulated, and discrete fractures mapped from video logs of several boreholes in the DST test block were incorporated. Stress boundary conditions were used on the top and sides of the rock mass, while the bottom was considered a roller boundary. Thermal inputs were based on the test design specifications. Results of the simulations show good agreement with deformations measured in the DST using multiple-point borehole extensometers. Our analysis also indicates that the most fracture deformation occurs above the drift, and co-located with micro seismic activity and acoustic emissions observed during the DST. Results to be presented include predicted temperature and stress fields, fracture displacements, and comparison between observed and predicted displacements at specific locations in the test. Maps of fractures in the DST test block will also be presented.

  18. Quantitatively probing propensity for structural transitions in engineered virus nanoparticles by single-molecule mechanical analysis

    NASA Astrophysics Data System (ADS)

    Castellanos, Milagros; Carrillo, Pablo J. P.; Mateu, Mauricio G.

    2015-03-01

    Viruses are increasingly being studied from the perspective of fundamental physics at the nanoscale as biologically evolved nanodevices with many technological applications. In viral particles of the minute virus of mice (MVM), folded segments of the single-stranded DNA genome are bound to the capsid inner wall and act as molecular buttresses that increase locally the mechanical stiffness of the particle. We have explored whether a quantitative linkage exists in MVM particles between their DNA-mediated stiffening and impairment of a heat-induced, virus-inactivating structural change. A series of structurally modified virus particles with disrupted capsid-DNA interactions and/or distorted capsid cavities close to the DNA-binding sites were engineered and characterized, both in classic kinetics assays and by single-molecule mechanical analysis using atomic force microscopy. The rate constant of the virus inactivation reaction was found to decrease exponentially with the increase in elastic constant (stiffness) of the regions closer to DNA-binding sites. The application of transition state theory suggests that the height of the free energy barrier of the virus-inactivating structural transition increases linearly with local mechanical stiffness. From a virological perspective, the results indicate that infectious MVM particles may have acquired the biological advantage of increased survival under thermal stress by evolving architectural elements that rigidify the particle and impair non-productive structural changes. From a nanotechnological perspective, this study provides proof of principle that determination of mechanical stiffness and its manipulation by protein engineering may be applied for quantitatively probing and tuning the conformational dynamics of virus-based and other protein-based nanoassemblies.Viruses are increasingly being studied from the perspective of fundamental physics at the nanoscale as biologically evolved nanodevices with many technological

  19. Quantitatively probing propensity for structural transitions in engineered virus nanoparticles by single-molecule mechanical analysis.

    PubMed

    Castellanos, Milagros; Carrillo, Pablo J P; Mateu, Mauricio G

    2015-03-19

    Viruses are increasingly being studied from the perspective of fundamental physics at the nanoscale as biologically evolved nanodevices with many technological applications. In viral particles of the minute virus of mice (MVM), folded segments of the single-stranded DNA genome are bound to the capsid inner wall and act as molecular buttresses that increase locally the mechanical stiffness of the particle. We have explored whether a quantitative linkage exists in MVM particles between their DNA-mediated stiffening and impairment of a heat-induced, virus-inactivating structural change. A series of structurally modified virus particles with disrupted capsid-DNA interactions and/or distorted capsid cavities close to the DNA-binding sites were engineered and characterized, both in classic kinetics assays and by single-molecule mechanical analysis using atomic force microscopy. The rate constant of the virus inactivation reaction was found to decrease exponentially with the increase in elastic constant (stiffness) of the regions closer to DNA-binding sites. The application of transition state theory suggests that the height of the free energy barrier of the virus-inactivating structural transition increases linearly with local mechanical stiffness. From a virological perspective, the results indicate that infectious MVM particles may have acquired the biological advantage of increased survival under thermal stress by evolving architectural elements that rigidify the particle and impair non-productive structural changes. From a nanotechnological perspective, this study provides proof of principle that determination of mechanical stiffness and its manipulation by protein engineering may be applied for quantitatively probing and tuning the conformational dynamics of virus-based and other protein-based nanoassemblies.

  20. Multi-directional mechanical analysis of synthetic scaffolds for hernia repair.

    PubMed

    Est, Savannah; Roen, Madeleine; Chi, Tingying; Simien, Adrian; Castile, Ryan M; Thompson, Dominic M; Blatnik, Jeffrey A; Deeken, Corey R; Lake, Spencer P

    2017-02-09

    Hernias remain one of the most common ailments to affect men and women worldwide. Surgical mesh materials were first used to reinforce hernia defects during surgery in the late 1950s (Laker, n.d.). Today, there are well over 50 prosthetic meshes available for hernia repair (Brown and Finch, 2010; Bryan et al., 2014; Hope and El-hayek, 2014). With the multitude of available options, surgeons are faced with the challenging task of optimizing mesh selection for each patient. If the mechanics of the mesh are not compatible with the surrounding tissue, mismatch can occur, which can lead to complications such as mesh failure and/or hernia recurrence. Unfortunately, many aspects of synthetic mesh mechanics remain poorly described. Therefore, the purpose of this study was to provide a more complete mechanical analysis of a variety of commercially available prosthetic meshes for hernia repair, including evaluation of meshes in a variety of orientations. Twenty different meshes were subjected to biaxial tensile tests at both 90° and 45° orientations, and results were analyzed for relative strength, strain behavior, and anisotropy. Peak tension and strain values varied dramatically across all mesh types for all directions, ranging between 4.08 and 25.74N/cm and -5% to 10% strain. Anisotropy ratios for the evaluated meshes ranged from 0.33 to 1.89, demonstrating a wide range in relative direction-dependence of mesh mechanics. While further study of prosthetic meshes and better characterization of properties of the human abdominal wall are needed, results of this study provide valuable data that may aid clinicians in optimizing mesh selection for specific patients and repair conditions.

  1. Cisplatin loaded PMMA: mechanical properties, surface analysis and effects on Saos-2 cell culture.

    PubMed

    Özben, Hakan; Eralp, Levent; Baysal, Gökhan; Cort, Ayşegül; Sarkalkan, Nazli; Özben, Tomris

    2013-01-01

    Despite wide resection and systemic chemotherapy, bone tumors may present with local recurrences, metastases and pathological fractures. Application of bone cement containing antineoplastic drug to fill the defect after resection of metastatic lesions and to support implants has been suggested to prevent local tumor growth and implant failures. In this study, we aimed to demonstrate the effects of the addition of cisplatin which is a widely used antineoplastic drug for osteosarcoma, on the mechanical properties of bone cement, and to evaluate the cytotoxic effects of eluted cisplatin on Saos-2 cell culture. Two cement samples were prepared by mixing 100 mg and 300 mg of cisplatin powder with 40 g cement powder. The bone cement of the control group did not contain cisplatin. Mechanical analyses included 4-point bending, compression and shear testing. For cytotoxicity analysis, samples were incubated in Dulbecco's Modified Eagle's medium for 15 days. Mediums were applied to Saos-2 cell culture and cell viability was measured. Surface analyses were performed by scanning electron microscope (SEM). The addition of cisplatin did not alter the mechanical properties of bone cement. It was observed that the eluted cisplatin had cytotoxic effects on Saos-2 cells. SEM analyses demonstrated cisplatin granules on the surface of cement samples. Cisplatin maintains its cytotoxic property when released from bone cement without compromising the mechanical stability. Application of cisplatin loaded bone cement may help local control of tumor growth. We believe that our study will shed light on to these new practices for the treatment of bone cancers and will encourage future studies.

  2. Mechanisms underpinning use of new walking and cycling infrastructure in different contexts: mixed-method analysis.

    PubMed

    Sahlqvist, Shannon; Goodman, Anna; Jones, Tim; Powell, Jane; Song, Yena; Ogilvie, David

    2015-02-21

    Few studies have evaluated the effects of infrastructural improvements to promote walking and cycling. Even fewer have explored how the context and mechanisms of such interventions may interact to produce their outcomes. This mixed-method analysis forms part of the UK iConnect study, which aims to evaluate new walking and cycling routes at three sites - Cardiff, Kenilworth and Southampton. Applying a complementary follow-up approach, we first identified differences in awareness and patterns of use of the infrastructure in survey data from a cohort of adult residents at baseline in spring 2010 (n = 3516) and again one (n = 1849) and two (n = 1510) years later following completion of the infrastructural projects (Analysis 1). We subsequently analysed data from 17 semi-structured interviews with key informants to understand how the new schemes might influence walking and cycling (Analysis 2a). In parallel, we analysed cohort survey data on environmental perceptions (Analysis 2b). We integrated these two datasets to interpret differences across the sites consistent with a theoretical framework that hypothesised that the schemes would improve connectivity and the social environment. After two years, 52% of Cardiff respondents reported using the infrastructure compared with 37% in Kenilworth and 22% in Southampton. Patterns of use did not vary substantially between sites. 17% reported using the new infrastructure for transport, compared with 39% for recreation. Environmental perceptions at baseline were generally unfavourable, with the greatest improvements in Cardiff. Qualitative data revealed that all schemes had a recreational focus to varying extents, that the visibility of schemes to local people might be an important mechanism driving use and that the scale and design of the schemes and the contrast they presented with existing infrastructure may have influenced their use. The dominance of recreational uses may have reflected the specific local goals of

  3. A multi-scale electro-thermo-mechanical analysis of single walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ragab, Tarek

    Carbon nanotubes are formed by folding a graphene sheet. They have gained a lot of attention during the last decade due to their extra ordinary mechanical, thermal and electrical properties. Molecular dynamics simulations have been used extensively for studying the mechanical properties of carbon nanotubes. In this thesis, a quantum mechanics and molecular dynamics level multi-scale modeling and analysis of single walled carbon nanotubes is presented. This dissertation reports many findings based on these simulations such as some parameters that affect the correctness of the results obtained by molecular dynamics simulation like the boundary conditions and the displacement increment. The effects of the strain rate and the length of the nanotube on the mechanical properties of carbon nanotubes under uniaxial tension are also reported. A simplification for calculating the virial stresses with multibody potential is derived to use for calculating the stresses in carbon nanotubes and compared with the stresses calculated using continuum mechanics engineering stresses. Simulation of unraveling of carbon nanotubes during field emission is simulated using Molecular dynamics simulations. The force required to start the unraveling in carbon nanotubes with different chiralities is reported as well as the maximum force that can be sustained by the atomic chain. Due to the nonlinearity in the current-voltage relation of carbon nanotubes, the traditional Joule's law for calculating joule heating in carbon nanotubes can not be used. In this thesis, the joule heating and the electron-induced wind forces per unit length of carbon nanotubes are calculated using a quantum mechanical formulation based on the energy and momentum exchange between the electrons and the phonons. Two approaches were used in the calculations; the first one is based on formulating an integral form that makes use of the relaxation time approximation into the modified Fermi-Dirac distribution for the electron

  4. Fermilab D-0 Experimental Facility: Energy conservation report and mechanical systems design optimization and cost analysis study

    SciTech Connect

    Krstulovich, S.F.

    1987-10-31

    This report is developed as part of the Fermilab D-0 Experimental Facility Project Title II Design Documentation Update. As such, it concentrates primarily on HVAC mechanical systems design optimization and cost analysis.

  5. [Arc spectrum diagnostic and heat coupling mechanism analysis of double wire pulsed MIG welding].

    PubMed

    Liu, Yong-qiang; Li, Huan; Yang, Li-jun; Zheng, Kai; Gao, Ying

    2015-01-01

    A double wire pulsed MIG welding test system was built in the present paper, in order to analyze the heat-coupling mechanism of double wire pulsed MIG welding, and study are temperature field. Spectroscopic technique was used in diagnostic analysis of the are, plasma radiation was collected by using hollow probe method to obtain the arc plasma optical signal The electron temperature of double wire pulsed MIG welding arc plasma was calculated by using Boltzmann diagram method, the electron temperature distribution was obtained, a comprehensive analysis of the arc was conducted combined with the high speed camera technology and acquisition means of electricity signal. The innovation of this paper is the combination of high-speed camera image information of are and optical signal of arc plasma to analyze the coupling mechanism for dual arc, and a more intuitive analysis for are temperature field was conducted. The test results showed that a push-pull output was achieved and droplet transfer mode was a drop in a pulse in the welding process; Two arcs attracted each other under the action of a magnetic field, and shifted to the center of the arc in welding process, so a new heat center was formed at the geometric center of the double arc, and flowing up phenomenon occurred on the arc; Dual arc electronic temperature showed an inverted V-shaped distribution overall, and at the geometric center of the double arc, the arc electron temperature at 3 mm off the workpiece surface was the highest, which was 16,887.66 K, about 4,900 K higher than the lowest temperature 11,963.63 K.

  6. Vibrational analysis of implants and tissues: Calibration and mechanical spectroscopy of multi-component materials.

    PubMed

    Shah, Ruchit G; DeVore, Dale; Pierce, Mark C; Silver, Frederick H

    2017-06-01

    Several new methods have been used to non-destructively evaluate the mechanical properties of materials and tissues including magnetic resonance elastography, ultrasound elastography, optical coherence elastography, and various forms of vibrational analysis. One of the limitations of using these methods is the need to establish a relationship between the modulus measured using each new technique and moduli measured using well-established techniques such as constant rate-of-strain and incremental stress-strain curves. In addition, there are no available methods for analyzing the mechanical properties of the individual components of multi-component materials. In this article, we present data showing that there is a strong correlation (correlation coefficient >0.9) between the modulus measured using classical uniaxial tensile incremental stress-strain tests and those made using a combination of optical coherence tomography and vibrational analysis. Beyond this, we demonstrate that the moduli of the major structural components of pig skin can be measured using this technique. These results suggest that optical coherence tomography in concert with vibrational analysis can be used to measure the moduli of biological and implant materials without having to determine Poisson's ratio. In addition, each of the moduli of the major fibrous components of pig skin can be measured concurrently using this technique. These results may be useful in the characterization of synthetic implants and tissue derived materials without requiring removal of one or more components that are to be characterized. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1666-1671, 2017. © 2017 Wiley Periodicals, Inc.

  7. A quantitative quantum-chemical analysis tool for the distribution of mechanical force in molecules

    SciTech Connect

    Stauch, Tim; Dreuw, Andreas

    2014-04-07

    The promising field of mechanochemistry suffers from a general lack of understanding of the distribution and propagation of force in a stretched molecule, which limits its applicability up to the present day. In this article, we introduce the JEDI (Judgement of Energy DIstribution) analysis, which is the first quantum chemical method that provides a quantitative understanding of the distribution of mechanical stress energy among all degrees of freedom in a molecule. The method is carried out on the basis of static or dynamic calculations under the influence of an external force and makes use of a Hessian matrix in redundant internal coordinates (bond lengths, bond angles, and dihedral angles), so that all relevant degrees of freedom of a molecule are included and mechanochemical processes can be interpreted in a chemically intuitive way. The JEDI method is characterized by its modest computational effort, with the calculation of the Hessian being the rate-determining step, and delivers, except for the harmonic approximation, exact ab initio results. We apply the JEDI analysis to several example molecules in both static quantum chemical calculations and Born-Oppenheimer Molecular Dynamics simulations in which molecules are subject to an external force, thus studying not only the distribution and the propagation of strain in mechanically deformed systems, but also gaining valuable insights into the mechanochemically induced isomerization of trans-3,4-dimethylcyclobutene to trans,trans-2,4-hexadiene. The JEDI analysis can potentially be used in the discussion of sonochemical reactions, molecular motors, mechanophores, and photoswitches as well as in the development of molecular force probes.

  8. A quantitative quantum-chemical analysis tool for the distribution of mechanical force in molecules.

    PubMed

    Stauch, Tim; Dreuw, Andreas

    2014-04-07

    The promising field of mechanochemistry suffers from a general lack of understanding of the distribution and propagation of force in a stretched molecule, which limits its applicability up to the present day. In this article, we introduce the JEDI (Judgement of Energy DIstribution) analysis, which is the first quantum chemical method that provides a quantitative understanding of the distribution of mechanical stress energy among all degrees of freedom in a molecule. The method is carried out on the basis of static or dynamic calculations under the influence of an external force and makes use of a Hessian matrix in redundant internal coordinates (bond lengths, bond angles, and dihedral angles), so that all relevant degrees of freedom of a molecule are included and mechanochemical processes can be interpreted in a chemically intuitive way. The JEDI method is characterized by its modest computational effort, with the calculation of the Hessian being the rate-determining step, and delivers, except for the harmonic approximation, exact ab initio results. We apply the JEDI analysis to several example molecules in both static quantum chemical calculations and Born-Oppenheimer Molecular Dynamics simulations in which molecules are subject to an external force, thus studying not only the distribution and the propagation of strain in mechanically deformed systems, but also gaining valuable insights into the mechanochemically induced isomerization of trans-3,4-dimethylcyclobutene to trans,trans-2,4-hexadiene. The JEDI analysis can potentially be used in the discussion of sonochemical reactions, molecular motors, mechanophores, and photoswitches as well as in the development of molecular force probes.

  9. An Integrated Tool for the Coupled Thermal and Mechanical Analysis of Pyrolyzing Heatshield Materials

    NASA Technical Reports Server (NTRS)

    Pronchick, Stephen W.

    1998-01-01

    Materials that pyrolyze at elevated temperature have been commonly used as thermal protection materials in hypersonic flight, and advanced pyrolyzing materials for this purpose continue to be developed. Because of the large temperature gradients that can arise in thermal protection materials, significant thermal stresses can develop. Advanced applications of pyrolytic materials are calling for more complex heatshield configurations, making accurate thermal stress analysis more important, and more challenging. For non-pyrolyzing materials, many finite element codes are available and capable of performing coupled thermal-mechanical analyses. These codes do not, however, have a built-in capability to perform analyses that include pyrolysis effects. When a pyrolyzing material is heated, one or more components of the original virgin material pyrolyze and create a gas. This gas flows away from the pyrolysis zone to the surface, resulting in a reduction in surface heating. A porous residue, referred to as char, remains in place of the virgin material. While the processes involved can be complex, it has been found that a simple physical model in which virgin material reacts to form char and pyrolysis gas, will yield satisfactory analytical results. Specifically, the effects that must be modeled include: (1) Variation of thermal properties (density, specific heat, thermal conductivity) as the material composition changes; (2) Energy released or absorbed by the pyrolysis reactions; (3) Energy convected by the flow of pyrolysis gas from the interior to the surface; (4) The reduction in surface heating due to surface blowing; and (5) Chemical and mass diffusion effects at the surface between the pyrolysis gas and edge gas Computational tools for the one-dimensional thermal analysis these materials exist and have proven to be reliable design tools. The objective of the present work is to extend the analysis capabilities of pyrolyzing materials to axisymmetric configurations

  10. Application of computational mechanics to the analysis of natural data: an example in geomagnetism.

    PubMed

    Clarke, Richard W; Freeman, Mervyn P; Watkins, Nicholas W

    2003-01-01

    We discuss how the ideal formalism of computational mechanics can be adapted to apply to a noninfinite series of corrupted and correlated data, that is typical of most observed natural time series. Specifically, a simple filter that removes the corruption that creates rare unphysical causal states is demonstrated, and the concept of effective soficity is introduced. We believe that computational mechanics cannot be applied to a noisy and finite data series without invoking an argument based upon effective soficity. A related distinction between noise and unresolved structure is also defined: Noise can only be eliminated by increasing the length of the time series, whereas the resolution of previously unresolved structure only requires the finite memory of the analysis to be increased. The benefits of these concepts are demonstrated in a simulated times series by (a) the effective elimination of white noise corruption from a periodic signal using the expletive filter and (b) the appearance of an effectively sofic region in the statistical complexity of a biased Poisson switch time series that is insensitive to changes in the word length (memory) used in the analysis. The new algorithm is then applied to an analysis of a real geomagnetic time series measured at Halley, Antarctica. Two principal components in the structure are detected that are interpreted as the diurnal variation due to the rotation of the Earth-based station under an electrical current pattern that is fixed with respect to the Sun-Earth axis and the random occurrence of a signature likely to be that of the magnetic substorm. In conclusion, some useful terminology for the discussion of model construction in general is introduced.

  11. Desiccation tolerance mechanism in resurrection fern-ally Selaginella tamariscina revealed by physiological and proteomic analysis.

    PubMed

    Wang, Xiaonan; Chen, Sixue; Zhang, Heng; Shi, Lei; Cao, Fenglin; Guo, Lihai; Xie, Yongming; Wang, Tai; Yan, Xiufeng; Dai, Shaojun

    2010-12-03

    Drought is one of the most severe limitations to plant growth and productivity. Resurrection plants have evolved a unique capability to tolerate desiccation in vegetative tissues. Fern-ally Selaginella tamariscina (Beauv.) is one of the most primitive vascular resurrection plants, which can survive a desiccated state and recover when water becomes available. To better understand the mechanism of desiccation tolerance, we have applied physiological and proteomic analysis. Samples of S. tamariscina were water-deprived for up to seven days followed by 12 h of rewatering. Our results showed that endogenous abscisic acid (ABA) increased to regulate dehydration-responsive genes/proteins and physiological processes. In the course of dehydration, the contents of osmolytes represented by soluble sugars and proline were increased to maintain cell structure integrity. The activities of four antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and glutathione reductase (GR)) also increased. In contrast, both the rate of photosynthesis and the chlorophyll content decreased, and plasma membrane integrity was lost. We identified 138 desiccation-responsive two-dimensional electrophoresis (2-DE) spots, representing 103 unique proteins. Hierarchical clustering analysis revealed that 83% of the proteins were down-regulated upon dehydration. They were mainly involved in photosynthesis, carbohydrate and energy metabolism, stress and defense, protein metabolism, signaling, membrane/transport, cell structure, and cell division. The dynamic expression changes of the desiccation-responsive proteins provide strong evidence that cell structure modification, photosynthesis reduction, antioxidant system activation, and protein post-transcriptional/translational modifications are essential to the poikilochlorophyllous fern-ally S. tamariscina in response to dehydration. In addition, our comparative analysis of dehydration-responsive proteins in vegetative tissues

  12. Fabrication and Dynamic Mechanical Analysis of Hydroxyapatite Nanoparticle/Gelatin Porous Scaffolds

    NASA Astrophysics Data System (ADS)

    Ghossein, Hicham

    The application of engineered biomaterial scaffolds for hard tissue repair critically depends on the scaffold's internal architecture at various length scales. The pore size, shape, surface morphology, and pore connectivity are among the most important factors that affect the scaffold's mechanical properties and biointegration. Reported in this thesis are the results of the investigation of porous constructs fabricated by a freeze-drying process from synthetic nanosized hydroxyapatite / gelatin (nanoHA/Gel) dispersions with different nanoHA/Gel ratios (nanoHA loading was varied from 0 to 50 % by weight). The fabricated scaffolds had porosity up to 90% with pore size in the range of 100 - 500 im, and good distribution of HA nanoparticles within the gelatin matrix. Such porosity is considered to be close to optimal to promote a good cell adhesion in the potential applications of prepared constructs. The fabricated scaffolds have been investigated using X-ray diffraction (XRD), Fourier-Transform Infrared Spectroscopy (FTIR), and Dynamic Mechanical Analysis (DMA). Dynamic mechanical analysis of as-fabricated scaffolds revealed that the scaffolds achieved maximum bending and tensile moduli up to 1.28 GPa and 1.5 GPa, respectively, when nanoHA loading was around 30 % by weight. The bending modulus increases by a factor of 1.6, while the Tension modulus increased by a factor of 0.8 after the cross-linking of polymer. Higher nanoHA loading above 50 % by weight results in bending modulus of about 700 MPa and Tension modulus of about 200 MPa only. However, the cross-linking still enhanced the bending up to 1 GPa while it did not affect much the Tension modulus in 50% nanoHA/gelatin constructs. It has been shown that the cross-linking with glutaraldehyde solution improves the morphological structure of the scaffolds, while there was no apparent effect of the cross-linking on the chemical changes in both organic and inorganic content during the processing. The results of this

  13. Systematic analysis of molecular mechanisms for HCC metastasis via text mining approach.

    PubMed

    Zhen, Cheng; Zhu, Caizhong; Chen, Haoyang; Xiong, Yiru; Tan, Junyuan; Chen, Dong; Li, Jin

    2017-02-21

    To systematically explore the molecular mechanism for hepatocellular carcinoma (HCC) metastasis and identify regulatory genes with text mining methods. Genes with highest frequencies and significant pathways related to HCC metastasis were listed. A handful of proteins such as EGFR, MDM2, TP53 and APP, were identified as hub nodes in PPI (protein-protein interaction) network. Compared with unique genes for HBV-HCCs, genes particular to HCV-HCCs were less, but may participate in more extensive signaling processes. VEGFA, PI3KCA, MAPK1, MMP9 and other genes may play important roles in multiple phenotypes of metastasis. Genes in abstracts of HCC-metastasis literatures were identified. Word frequency analysis, KEGG pathway and PPI network analysis were performed. Then co-occurrence analysis between genes and metastasis-related phenotypes were carried out. Text mining is effective for revealing potential regulators or pathways, but the purpose of it should be specific, and the combination of various methods will be more useful.

  14. Analysis of microstructure and mechanical properties of aluminium-copper joints welded by FSW process

    NASA Astrophysics Data System (ADS)

    Iordache, M.; Sicoe, G.; Iacomi, D.; Niţu, E.; Ducu, C.

    2017-08-01

    The research conducted in this article aimed to check the quality of joining some dissimilar materials Al-Cu by determining the mechanical properties and microstructure analysis. For the experimental measurements there were used tin alloy Al - EN-AW-1050A with a thickness of 2 mm and Cu99 sheet with a thickness of 2 mm, joined by FSW weld overlay. The main welding parameters were: rotating speed of the rotating element 1400 rev/min, speed of the rotating element 50 mm/min. The experimental results were determined on samples specially prepared for metallographic analysis. In order to prepare samples for their characterization, there was designed and built a device that allowed simultaneous positioning and fixing for grinding. The characteristics analyzed in the joint welded samples were mictrostructure, microhardness and residual stresses. The techniques used to determine these characteristics were optical microscopy, electron microscopy with fluorescence radioactive elemental analysis (EDS), Vickers microhardness line - HV0.3 and X-ray diffractometry.

  15. Genomic analysis reveals distinct mechanisms and functional classes of SOX10-regulated genes in melanocytes

    PubMed Central

    Fufa, Temesgen D.; Harris, Melissa L.; Watkins-Chow, Dawn E.; Levy, Denise; Gorkin, David U.; Gildea, Derek E.; Song, Lingyun; Safi, Alexias; Crawford, Gregory E.; Sviderskaya, Elena V.; Bennett, Dorothy C.; Mccallion, Andrew S.; Loftus, Stacie K.; Pavan, William J.

    2015-01-01

    SOX10 is required for melanocyte development and maintenance, and has been linked to melanoma initiation and progression. However, the molecular mechanisms by which SOX10 guides the appropriate gene expression programs necessary to promote the melanocyte lineage are not fully understood. Here we employ genetic and epigenomic analysis approaches to uncover novel genomic targets and previously unappreciated molecular roles of SOX10 in melanocytes. Through global analysis of SOX10-binding sites and epigenetic characteristics of chromatin states, we uncover an extensive catalog of SOX10 targets genome-wide. Our findings reveal that SOX10 predominantly engages ‘open’ chromatin regions and binds to distal regulatory elements, including novel and previously known melanocyte enhancers. Integrated chromatin occupancy and transcriptome analysis suggest a role for SOX10 in both transcriptional activation and repression to regulate functionally distinct classes of genes. We demonstrate that distinct epigenetic signatures and cis-regulatory sequence motifs predicted to bind putative co-regulatory transcription factors define SOX10-activated and SOX10-repressed target genes. Collectively, these findings uncover a central role of SOX10 as a global regulator of gene expression in the melanocyte lineage by targeting diverse regulatory pathways. PMID:26206884

  16. SLControl: PC-based data acquisition and analysis for muscle mechanics.

    PubMed

    Campbell, Kenneth S; Moss, Richard L

    2003-12-01

    SLControl is a computerized data acquisition and analysis system that was developed in our laboratory to help perform mechanical experiments using striated muscle preparations. It consists of a computer program (Windows 2000 or later) and a commercially available data acquisition board (16-bit resolution, DAP5216a, Microstar Laboratories, Bellevue, WA). Signals from the user's existing equipment representing force, fiber length (FL), and (if desired) sarcomere length (SL) are connected to the system through standard Bayonet Neill Concelman cables and saved to data files for later analysis. Output signals from the board control FL and trigger additional equipment, e.g., flash lamps. Windows dialogs drive several different experimental protocols, including slack tests and rate of tension recovery measurements. Precise measurements of muscle stiffness and force velocity/power characteristics can also be accomplished using SL and tension control, respectively. In these situations, the FL command signal is updated in real time (at rates > or =2.5 kHz) in response to changes in the measured SL or force signals. Data files can be exported as raw text or analyzed within SLControl with the use of built-in tools for cursor analysis, digital filtering, curve fitting, etc. The software is available for free download at http://www.slcontrol.com.

  17. Analysis of differentially expressed genes and adaptive mechanisms of Prunus triloba Lindl. under alkaline stress.

    PubMed

    Liu, Jia; Wang, Yongqing; Li, Qingtian

    2017-01-01

    Prunus triloba Lindl. is a naturally salt-alkaline-tolerant plant with several unique characteristics, and it can be used as the rootstock of Chinese plum (Prunus salicina Lindl.) in saline-alkaline soils. To comprehensively investigate the alkaline acclimation mechanisms in P. triloba, a series of analyses were conducted under alkaline stress, including analyses of the kinetics of molecular and physiological changes, and leaf microstructure. To understand the kinetics of molecular changes under short-term alkaline stress, we used Illumina HiSeq 2500 platform to identify alkaline stress-related differentially expressed genes (DEGs) in P. triloba. Approximately 53.0 million high-quality clean reads were generated from 59.6 million raw reads, and a total of 124,786 unigenes were obtained after de novo assembly of P. triloba transcriptome data. After alkaline stress treatment, a total of 8948 unigenes were identified as DEGs. Based on these DEGs, a Gene Ontology (GO) enrichment analysis was conducted, suggesting that 28 genes may play an important role in the early alkaline stress response. In addition, analysis of DEGs with the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that pathways were significant at different treatment time points. A significant positive correlation was found between the quantitative real-time PCR (qRT-PCR) results and the RNA-Seq data for seven alkaline-related genes, confirming the reliability of the RNA-Seq results. Based on physiological analysis of P. triloba in response to long-term alkaline stress, we found that the internal microstructures of the leaves of P. triloba changed to adapt to long-term alkaline stress. Various physiological indexes indicated that the degree of membrane injury increased with increasing duration of alkaline stress, affecting photosynthesis in P. triloba seedlings. This represents the first investigation into the physiology and transcriptome of P. triloba in response to alkaline stress. The results of

  18. Damage-Resistant Composites Using Electrospun Nanofibers: A Multiscale Analysis of the Toughening Mechanisms.

    PubMed

    Daelemans, Lode; van der Heijden, Sam; De Baere, Ives; Rahier, Hubert; Van Paepegem, Wim; De Clerck, Karen

    2016-05-11

    nanofiber bridging mechanism expresses itself is different for each scale and dependent on parameters linked to a certain scale. The multiscale analysis of the toughening mechanisms reported in this paper is therefore crucial for understanding the behavior of nanofiber toughened composites, and as such allows for designing novel, damage-resistant, nanofiber-toughened materials.

  19. Nanoscopic dynamic mechanical analysis of resin-infiltrated dentine, under in vitro chewing and bruxism events.

    PubMed

    Toledano, Manuel; Osorio, Estrella; Cabello, Inmaculada; Aguilera, Fátima S; López-López, Modesto T; Toledano-Osorio, Manuel; Osorio, Raquel

    2016-02-01

    The aim of this study was to evaluate the induced changes in mechanical behavior and bonding capability of resin-infiltrated dentine interfaces, after application of mechanical stimuli. Dentine surfaces were subjected to partial demineralization through 37% phosphoric acid etching followed by the application of an etch-and-rinse dentine adhesive, Single Bond (3M/ESPE). Bonded interfaces were stored in simulated body fluid during 24h, and then tested or submitted to the mechanical loading challenge. Different loading waveforms were applied: No cycling (I), 24h cycled in sine (II) or square (III) waves, sustained loading held for 24h (IV) or sustained loading held for 72h (V). Microtensile bond strength (MTBS) was assessed for the different groups. Debonded dentine surfaces were studied by field emission scanning electron microscopy (FESEM). At the resin-dentine interface, both the hybrid layer (HL) and the bottom of the hybrid layer (BHL), and both peritubular and intertubular were evaluated using a nanoindenter in scanning mode. The load and displacement responses were used to perform the nano-Dynamic Mechanical analysis and to estimate the complex and storage modulus. Dye assisted Confocal Microscopy Evaluation was used to assess sealing ability. Load cycling increased the percentage of adhesive failures in all groups. Specimens load cycled in held 24h attained the highest complex and storage moduli at HL and BHL. The storage modulus was maximum in specimens load cycled in held 24h at peritubular dentine, and the lowest values were attained at intertubular dentine. The storage modulus increased in all mechanical tests, at peritubular dentine. An absence of micropermeability and nanoleakage after loading in sine and square waveforms were encountered. Porosity of the resin-dentine interface was observed when specimens were load cycled in held 72h. Areas of combined sealing and permeability were discovered at the interface of specimens load cycled in held 24h. Crack

  20. Analysis of the Isolated SecA DEAD Motor Suggests a Mechanism for Chemical-Mechanical Coupling

    SciTech Connect

    Nithianantham, Stanley; Shilton, Brian H

    2010-09-20

    The preprotein cross-linking domain and C-terminal domains of Escherichia coli SecA were removed to create a minimal DEAD motor, SecA-DM. SecA-DM hydrolyzes ATP and has the same affinity for ADP as full-length SecA. The crystal structure of SecA-DM in complex with ADP was solved and shows the DEAD motor in a closed conformation. Comparison with the structure of the E. coli DEAD motor in an open conformation (Protein Data Bank ID 2FSI) indicates main-chain conformational changes in two critical sequences corresponding to Motif III and Motif V of the DEAD helicase family. The structures that the Motif III and Motif V sequences adopt in the DEAD motor open conformation are incompatible with the closed conformation. Therefore, when the DEAD motor makes the transition from open to closed, Motif III and Motif V are forced to change their conformations, which likely functions to regulate passage through the transition state for ATP hydrolysis. The transition state for ATP hydrolysis for the SecA DEAD motor was modeled based on the conformation of the Vasa helicase in complex with adenylyl imidodiphosphate and RNA (Protein Data Bank ID 2DB3). A mechanism for chemical-mechanical coupling emerges, where passage through the transition state for ATP hydrolysis is hindered by the conformational changes required in Motif III and Motif V, and may be promoted by binding interactions with the preprotein substrate and/or other translocase domains and subunits.