Sample records for mechanical characterization method

  1. Mechanics of ultrasound elastography

    PubMed Central

    Li, Guo-Yang

    2017-01-01

    Ultrasound elastography enables in vivo measurement of the mechanical properties of living soft tissues in a non-destructive and non-invasive manner and has attracted considerable interest for clinical use in recent years. Continuum mechanics plays an essential role in understanding and improving ultrasound-based elastography methods and is the main focus of this review. In particular, the mechanics theories involved in both static and dynamic elastography methods are surveyed. They may help understand the challenges in and opportunities for the practical applications of various ultrasound elastography methods to characterize the linear elastic, viscoelastic, anisotropic elastic and hyperelastic properties of both bulk and thin-walled soft materials, especially the in vivo characterization of biological soft tissues. PMID:28413350

  2. In situ microscopy across scales for the characterization of crystal growth mechanisms: the case of europium oxalate

    DOE PAGES

    Soltis, Jennifer A.; Isley, William C.; Conroy, Michele; ...

    2018-01-01

    The development of targeted syntheses requires a better understanding of how production pathways affect the final product, but many ex situ techniques used for studying nanoparticle growth are unsuitable as standalone methods for identifying and characterizing growth mechanisms.

  3. In situ microscopy across scales for the characterization of crystal growth mechanisms: the case of europium oxalate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soltis, Jennifer A.; Isley, William C.; Conroy, Michele

    The development of targeted syntheses requires a better understanding of how production pathways affect the final product, but many ex situ techniques used for studying nanoparticle growth are unsuitable as standalone methods for identifying and characterizing growth mechanisms.

  4. Evaluate and Characterize Mechanisms Controlling Transport, Fate, and Effects of Army Smokes in the Aerosol Wind Tunnel

    DTIC Science & Technology

    1990-02-01

    MATERIALS AND METHODS .................................................................................... 2.1 2.1 AEROSOL WIND TUNNEL RESEARCH FACILITY...2.30 2.5.1 Characterization Methods ................................................................ 2.30 2.5.2...direct artificial dosing of organisms or aqueous amendments of suspected toxicants. Although these methods may be appropriate and necessary In many

  5. Characterization of Solid Polymers, Ceramic Gap Filler, and Closed-Cell Polymer Foam Using Low-Load Test Methods

    NASA Technical Reports Server (NTRS)

    Herring, Helen M.

    2008-01-01

    Various solid polymers, polymer-based composites, and closed-cell polymer foam are being characterized to determine their mechanical properties, using low-load test methods. The residual mechanical properties of these materials after environmental exposure or extreme usage conditions determines their value in aerospace structural applications. In this experimental study, four separate polymers were evaluated to measure their individual mechanical responses after thermal aging and moisture exposure by dynamic mechanical analysis. A ceramic gap filler, used in the gaps between the tiles on the Space Shuttle, was also tested, using dynamic mechanical analysis to determine material property limits during flight. Closed-cell polymer foam, used for the Space Shuttle External Tank insulation, was tested under low load levels to evaluate how the foam's mechanical properties are affected by various loading and unloading scenarios.

  6. Phenomenological and mechanics aspects of nondestructive evaluation and characterization by sound and ultrasound of material and fracture properties

    NASA Technical Reports Server (NTRS)

    Fu, L. S. W.

    1982-01-01

    Developments in fracture mechanics and elastic wave theory enhance the understanding of many physical phenomena in a mathematical context. Available literature in the material, and fracture characterization by NDT, and the related mathematical methods in mechanics that provide fundamental underlying principles for its interpretation and evaluation are reviewed. Information on the energy release mechanism of defects and the interaction of microstructures within the material is basic in the formulation of the mechanics problems that supply guidance for nondestructive evaluation (NDE).

  7. A Novel Physical Sensing Principle for Liquid Characterization Using Paper-Based Hygro-Mechanical Systems (PB-HMS).

    PubMed

    Perez-Cruz, Angel; Stiharu, Ion; Dominguez-Gonzalez, Aurelio

    2017-07-20

    In recent years paper-based microfluidic systems have emerged as versatile tools for developing sensors in different areas. In this work; we report a novel physical sensing principle for the characterization of liquids using a paper-based hygro-mechanical system (PB-HMS). The PB-HMS is formed by the interaction of liquid droplets and paper-based mini-structures such as cantilever beams. The proposed principle takes advantage of the hygroscopic properties of paper to produce hygro-mechanical motion. The dynamic response of the PB-HMS reveals information about the tested liquid that can be applied to characterize certain properties of liquids. A suggested method to characterize liquids by means of the proposed principle is introduced. The experimental results show the feasibility of such a method. It is expected that the proposed principle may be applied to sense properties of liquids in different applications where both disposability and portability are of extreme importance.

  8. Mechanical properties of MEMS materials: reliability investigations by mechanical- and HRXRD-characterization related to environmental testing

    NASA Astrophysics Data System (ADS)

    Bandi, T.; Shea, H.; Neels, A.

    2014-06-01

    The performance and aging of MEMS often rely on the stability of the mechanical properties over time and under harsh conditions. An overview is given on methods to investigate small variations of the mechanical properties of structural MEMS materials by functional characterization, high-resolution x-ray diffraction methods (HR-XRD) and environmental testing. The measurement of the dynamical properties of micro-resonators is a powerful method for the investigation of elasticity variations in structures relevant to microtechnology. X-ray diffraction techniques are used to analyze residual strains and deformations with high accuracy and in a non-destructive manner at surfaces and in buried micro-structures. The influence of elevated temperatures and radiation damage on the performance of resonant microstructures with a focus on quartz and single crystal silicon is discussed and illustrated with examples including work done in our laboratories at CSEM and EPFL.

  9. Nano-Scale Characterization of Al-Mg Nanocrystalline Alloys

    NASA Astrophysics Data System (ADS)

    Harvey, Evan; Ladani, Leila

    Materials with nano-scale microstructure have become increasingly popular due to their benefit of substantially increased strengths. The increase in strength as a result of decreasing grain size is defined by the Hall-Petch equation. With increased interest in miniaturization of components, methods of mechanical characterization of small volumes of material are necessary because traditional means such as tensile testing becomes increasingly difficult with such small test specimens. This study seeks to characterize elastic-plastic properties of nanocrystalline Al-5083 through nanoindentation and related data analysis techniques. By using nanoindentation, accurate predictions of the elastic modulus and hardness of the alloy were attained. Also, the employed data analysis model provided reasonable estimates of the plastic properties (strain-hardening exponent and yield stress) lending credibility to this procedure as an accurate, full mechanical characterization method.

  10. An Optical Method for the In-Vivo Characterization of the Biomechanical Response of the Right Ventricle.

    PubMed

    Soltani, A; Lahti, J; Järvelä, K; Curtze, S; Laurikka, J; Hokka, M; Kuokkala, V-T

    2018-05-01

    The intraoperative in-vivo mechanical function of the left ventricle has been studied thoroughly using echocardiography in the past. However, due to technical and anatomical issues, the ultrasound technology cannot easily be focused on the right side of the heart during open-heart surgery, and the function of the right ventricle during the intervention remains largely unexplored. We used optical imaging and digital image correlation for the characterization of the right ventricle motion and deformation during open-heart surgery. This work is a pilot study focusing on one patient only with the aim of establishing the framework for long term research. These experiments show that optical imaging and the analysis of the images can be used to obtain similar parameters, and partly at higher accuracy, for describing the mechanical functioning of the heart as the ultrasound technology. This work describes the optical imaging based method to characterize the mechanical response of the heart in-vivo, and offers new insight into the mechanical function of the right ventricle.

  11. Characterization of fission gas bubbles in irradiated U-10Mo fuel

    DOE PAGES

    Casella, Andrew M.; Burkes, Douglas E.; MacFarlan, Paul J.; ...

    2017-06-06

    A simple, repeatable method for characterization of fission gas bubbles in irradiated U-Mo fuels has been developed. This method involves mechanical potting and polishing of samples along with examination with a scanning electron microscope located outside of a hot cell. The commercially available software packages CellProfiler, MATLAB, and Mathematica are used to segment and analyze the captured images. The results are compared and contrasted. Finally, baseline methods for fission gas bubble characterization are suggested for consideration and further development.

  12. Atomic Force Microscopy in Characterizing Cell Mechanics for Biomedical Applications: A Review.

    PubMed

    Li, Mi; Dang, Dan; Liu, Lianqing; Xi, Ning; Wang, Yuechao

    2017-09-01

    Cell mechanics is a novel label-free biomarker for indicating cell states and pathological changes. The advent of atomic force microscopy (AFM) provides a powerful tool for quantifying the mechanical properties of single living cells in aqueous conditions. The wide use of AFM in characterizing cell mechanics in the past two decades has yielded remarkable novel insights in understanding the development and progression of certain diseases, such as cancer, showing the huge potential of cell mechanics for practical applications in the field of biomedicine. In this paper, we reviewed the utilization of AFM to characterize cell mechanics. First, the principle and method of AFM single-cell mechanical analysis was presented, along with the mechanical responses of cells to representative external stimuli measured by AFM. Next, the unique changes of cell mechanics in two types of physiological processes (stem cell differentiation, cancer metastasis) revealed by AFM were summarized. After that, the molecular mechanisms guiding cell mechanics were analyzed. Finally the challenges and future directions were discussed.

  13. Mechanical characterization of TiO{sub 2} nanofibers produced by different electrospinning techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vahtrus, Mikk; Šutka, Andris; Institute of Silicate Materials, Riga Technical University, P. Valdena 3/7, Riga LV-1048

    2015-02-15

    In this work TiO{sub 2} nanofibers produced by needle and needleless electrospinning processes from the same precursor were characterized and compared using Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and in situ SEM nanomechanical testing. Phase composition, morphology, Young's modulus and bending strength values were found. Weibull statistics was used to evaluate and compare uniformity of mechanical properties of nanofibers produced by two different methods. It is shown that both methods yield nanofibers with very similar properties. - Graphical abstract: Display Omitted - Highlights: • TiO{sub 2} nanofibers were produced by needle and needleless electrospinning processes. •more » Structure was studied by Raman spectroscopy and electron microscopy methods. • Mechanical properties were measured using advanced in situ SEM cantilevered beam bending technique. • Both methods yield nanofibers with very similar properties.« less

  14. In Situ Mechanical Testing of Nanostructured Bijel Fibers.

    PubMed

    Haase, Martin F; Sharifi-Mood, Nima; Lee, Daeyeon; Stebe, Kathleen J

    2016-06-28

    Bijels are a class of soft materials with potential for application in diverse areas including healthcare, food, energy, and reaction engineering due to their unique structural, mechanical, and transport properties. To realize their potential, means to fabricate, characterize, and manipulate bijel mechanics are needed. We recently developed a method based on solvent transfer-induced phase separation (STRIPS) that enables continuous fabrication of hierarchically structured bijel fibers from a broad array of constituent fluids and nanoparticles using a microfluidic platform. Here, we introduce an in situ technique to characterize bijel fiber mechanics at initial and final stages of the formation process within a microfluidics device. By manipulation of the hydrodynamic stresses applied to the fiber, the fiber is placed under tension until it breaks into segments. Analysis of the stress field allows fracture strength to be inferred; fracture strengths can be as high as several thousand Pa, depending on nanoparticle content. These findings broaden the potential for the use of STRIPS bijels in applications with different mechanical demands. Moreover, our in situ mechanical characterization method could potentially enable determination of properties of other soft fibrous materials made of hydrogels, capillary suspensions, colloidal gels, or high internal phase emulsions.

  15. On the Use of Accelerated Test Methods for Characterization of Advanced Composite Materials

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.

    2003-01-01

    A rational approach to the problem of accelerated testing for material characterization of advanced polymer matrix composites is discussed. The experimental and analytical methods provided should be viewed as a set of tools useful in the screening of material systems for long-term engineering properties in aerospace applications. Consideration is given to long-term exposure in extreme environments that include elevated temperature, reduced temperature, moisture, oxygen, and mechanical load. Analytical formulations useful for predictive models that are based on the principles of time-based superposition are presented. The need for reproducible mechanisms, indicator properties, and real-time data are outlined as well as the methodologies for determining specific aging mechanisms.

  16. Combination of experimental and numerical methods for mechanical characterization of Al-Si alloys

    NASA Astrophysics Data System (ADS)

    Kruglova, A.; Roland, M.; Diebels, S.; Mücklich, F.

    2017-10-01

    In general, mechanical properties of Al-Si alloys strongly depend on the morphology and arrangement of microconstituents, such as primary aluminium dendrites, silicon particles, etc. Therefore, a detailed characterization of morphological and mechanical properties of the alloys is necessary to better understand the relations between the underlined properties and to tailor the material’s microstructure to the specific application needs. The mechanical characterization usually implies numerical simulations and mechanical tests, which allow to investigate the influence of different microstructural aspects on different scales. In this study, the uniaxial tension and compression tests have been carried out on Al-Si alloys having different microstructures. The mechanical behavior of the alloys has been interpreted with respect to the morphology of the microconstituents and has been correlated with the results of numerical simulations. The advantages and limitations of the experimental and numerical methods have been disclosed and the importance of combining both techniques for the interpretation of the mechanical behavior of Al-Si alloys has been shown. Thereby, it has been suggested that the density of Si particles and the size of Al dendrites are more important for the strengthening of the alloys than the size-shape features of the eutectic Si induced by the modification.

  17. Emerging technologies for the non-invasive characterization of physical-mechanical properties of tablets.

    PubMed

    Dave, Vivek S; Shahin, Hend I; Youngren-Ortiz, Susanne R; Chougule, Mahavir B; Haware, Rahul V

    2017-10-30

    The density, porosity, breaking force, viscoelastic properties, and the presence or absence of any structural defects or irregularities are important physical-mechanical quality attributes of popular solid dosage forms like tablets. The irregularities associated with these attributes may influence the drug product functionality. Thus, an accurate and efficient characterization of these properties is critical for successful development and manufacturing of a robust tablets. These properties are mainly analyzed and monitored with traditional pharmacopeial and non-pharmacopeial methods. Such methods are associated with several challenges such as lack of spatial resolution, efficiency, or sample-sparing attributes. Recent advances in technology, design, instrumentation, and software have led to the emergence of newer techniques for non-invasive characterization of physical-mechanical properties of tablets. These techniques include near infrared spectroscopy, Raman spectroscopy, X-ray microtomography, nuclear magnetic resonance (NMR) imaging, terahertz pulsed imaging, laser-induced breakdown spectroscopy, and various acoustic- and thermal-based techniques. Such state-of-the-art techniques are currently applied at various stages of development and manufacturing of tablets at industrial scale. Each technique has specific advantages or challenges with respect to operational efficiency and cost, compared to traditional analytical methods. Currently, most of these techniques are used as secondary analytical tools to support the traditional methods in characterizing or monitoring tablet quality attributes. Therefore, further development in the instrumentation and software, and studies on the applications are necessary for their adoption in routine analysis and monitoring of tablet physical-mechanical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Study of hepatocyte plasma membrane mechanical properties using optical trapping

    NASA Astrophysics Data System (ADS)

    Vedyaykin, A. D.; Morozova, N. E.; Pobegalov, G. E.; Arseniev, A. N.; Khodorkoskii, M. A.; Sabantsev, A. V.

    2014-12-01

    In this paper we describe the use of membrane tether formation technique which is widely used to study mechanical properties of plasma membranes. This method was successfully used for the direct measurement of parameters characterizing membranes mechanical properties (static tether tension force and effective membrane viscosity) of human hepatocytes (HepG2 hepatocellular carcinoma line). These results allow using this method in future for diagnostics of the cell membrane, evaluating the influence on the mechanical parameters of various factors, including toxins and drugs.

  19. Characterization of mixing of suspension in a mechanically stirred precipitation system

    NASA Astrophysics Data System (ADS)

    Farkas, B.; Blickle, T.; Ulbert, Zs.; Hasznos-Nezdei, M.

    1996-09-01

    In the case of precipitational crystallization, the particle size distribution of the resulting product is greatly influenced by the mixing rate of the system. We have worked out a method of characterizing the mixing of precipitated suspensions by applying a function of mean residence time and particle size distribution. For the experiments a precipitated suspension of β-lactam-type antibiotic has been used in a mechanically stirred tank.

  20. Remote Determination of Time-Dependent Stiffness of Surface-Degrading-Polymer Scaffolds Via Synchrotron-Based Imaging.

    PubMed

    Bawolin, N K; Chen, X B

    2017-04-01

    Surface-degrading polymers have been widely used to fabricate scaffolds with the mechanical properties appropriate for tissue regeneration/repair. During their surface degradation, the material properties of polymers remain approximately unchanged, but the scaffold geometry and thus mechanical properties vary with time. This paper presents a novel method to determine the time-dependent mechanical properties, particularly stiffness, of scaffolds from the geometric changes captured by synchrotron-based imaging, with the help of finite element analysis (FEA). Three-dimensional (3D) tissue scaffolds were fabricated from surface-degrading polymers, and during their degradation, the tissue scaffolds were imaged via the synchrotron-based imaging to characterize their changing geometry. On this basis, the stiffness behavior of scaffolds was estimated from the FEA, and the results obtained were compared to the direct measurements of scaffold stiffness from the load-displacement material testing. The comparison illustrates that the Young's moduli estimated from the FEA and characterized geometry are in agreement with the ones of direct measurements. The developed method of estimating the mechanical behavior was also demonstrated effective with a nondegrading scaffold that displays the nonlinear stress-strain behavior. The in vivo monitoring of Young's modulus by morphology characterization also suggests the feasibility of characterizing experimentally the difference between in vivo and in vitro surface degradation of tissue engineering constructs.

  1. Microstructural characterization of Ti-6Al-4V alloy subjected to the duplex SMAT/plasma nitriding.

    PubMed

    Pi, Y; Faure, J; Agoda-Tandjawa, G; Andreazza, C; Potiron, S; Levesque, A; Demangel, C; Retraint, D; Benhayoune, H

    2013-09-01

    In this study, microstructural characterization of Ti-6Al-4V alloy, subjected to the duplex surface mechanical attrition treatment (SMAT)/nitriding treatment, leading to improve its mechanical properties, was carried out through novel and original samples preparation methods. Instead of acid etching which is limited for morphological characterization by scanning electron microscopy (SEM), an original ion polishing method was developed. Moreover, for structural characterization by transmission electron microscopy (TEM), an ion milling method based with the use of two ions guns was also carried out for cross-section preparation. To demonstrate the efficiency of the two developed methods, morphological investigations were done by traditional SEM and field emission gun SEM. This was followed by structural investigations through selected area electron diffraction (SAED) coupled with TEM and X-ray diffraction techniques. The results demonstrated that ionic polishing allowed to reveal a variation of the microstructure according to the surface treatment that could not be observed by acid etching preparation. TEM associated to SAED and X-ray diffraction provided information regarding the nanostructure compositional changes induced by the duplex SMAT/nitriding process. Copyright © 2013 Wiley Periodicals, Inc.

  2. In situ mechanical characterization of the cell nucleus by atomic force microscopy.

    PubMed

    Liu, Haijiao; Wen, Jun; Xiao, Yun; Liu, Jun; Hopyan, Sevan; Radisic, Milica; Simmons, Craig A; Sun, Yu

    2014-04-22

    The study of nuclear mechanical properties can provide insights into nuclear dynamics and its role in cellular mechanotransduction. While several methods have been developed to characterize nuclear mechanical properties, direct intracellular probing of the nucleus in situ is challenging. Here, a modified AFM (atomic force microscopy) needle penetration technique is demonstrated to mechanically characterize cell nuclei in situ. Cytoplasmic and nuclear stiffness were determined based on two different segments on the AFM indentation curves and were correlated with simultaneous confocal Z-stack microscopy reconstructions. On the basis of direct intracellular measurement, we show that the isolated nuclei from fibroblast-like cells exhibited significantly lower Young's moduli than intact nuclei in situ. We also show that there is in situ nucleus softening in the highly metastatic bladder cancer cell line T24 when compared to its less metastatic counterpart RT4. This technique has potential to become a reliable quantitative measurement tool for intracellular mechanics studies.

  3. Optical characterization of high speed microscanners based on static slit profiling method

    NASA Astrophysics Data System (ADS)

    Alaa Elhady, A.; Sabry, Yasser M.; Khalil, Diaa

    2017-01-01

    Optical characterization of high-speed microscanners is a challenging task that usually requires special high speed, extremely expensive camera systems. This paper presents a novel simple method to characterize the scanned beam spot profile and size in high-speed optical scanners under operation. It allows measuring the beam profile and the spot sizes at different scanning angles. The method is analyzed theoretically and applied experimentally on the characterization of a Micro Electro Mechanical MEMS scanner operating at 2.6 kHz. The variation of the spot size versus the scanning angle, up to ±15°, is extracted and the dynamic bending curvature effect of the micromirror is predicted.

  4. Characterization of fission gas bubbles in irradiated U-10Mo fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casella, Andrew M.; Burkes, Douglas E.; MacFarlan, Paul J.

    2017-09-01

    Irradiated U-10Mo fuel samples were prepared with traditional mechanical potting and polishing methods with in a hot cell. They were then removed and imaged with an SEM located outside of a hot cell. The images were then processed with basic imaging techniques from 3 separate software packages. The results were compared and a baseline method for characterization of fission gas bubbles in the samples is proposed. It is hoped that through adoption of or comparison to this baseline method that sample characterization can be somewhat standardized across the field of post irradiated examination of metal fuels.

  5. Caspase enzymology and activation mechanisms.

    PubMed

    Mace, Peter D; Riedl, Stefan J; Salvesen, Guy S

    2014-01-01

    Apical caspases 8, 9, and 10 are only active as dimers. These dimers are unstable, and to characterize their activity they need to be maintained in vitro in a dimeric state. We provide updated methods for those looking to characterize various aspects of caspase function. We describe full methods for those looking to activate caspases in vitro using kosmotropic reagents, an essential step in characterizing upstream (apical) caspases. We detail methods for fusion of caspase domains to engineered dimerization domains as an alternative method to trigger regulated dimerization of caspases. We also describe methods to determine caspase activity profiles in cells and provide methods for studying the ability of SMAC-mimetic reagents to release inhibition of caspases by IAPs. © 2014 Elsevier Inc. All rights reserved.

  6. Application of the time-temperature superposition principle to the mechanical characterization of elastomeric adhesives for crash simulation purposes

    NASA Astrophysics Data System (ADS)

    Rauh, A.; Hinterhölzl, R.; Drechsler, K.

    2012-05-01

    In the automotive industry, finite element simulation is widely used to ensure crashworthiness. Mechanical material data over wide strain rate and temperature ranges are required as a basis. This work proposes a method reducing the cost of mechanical material characterization by using the time-temperature superposition principle on elastomeric adhesives. The method is based on the time and temperature interdependence which is characteristic for mechanical properties of polymers. Based on the assumption that polymers behave similarly at high strain rates and at low temperatures, a temperature-dominated test program is suggested, which can be used to deduce strain rate dependent material behavior at different reference temperatures. The temperature shift factor is found by means of dynamic mechanical analysis according to the WLF-equation, named after Williams, Landel and Ferry. The principle is applied to the viscoelastic properties as well as to the failure properties of the polymer. The applicability is validated with high strain rate tests.

  7. Nano/micro/meso scale interactions in mechanics of pharmaceutical solid dosage forms

    NASA Astrophysics Data System (ADS)

    Akseli, Ilgaz

    Oral administration in form tablets has been the most common method for delivering drug to the human systemic blood circulation accurately and reproducibly due to its established manufacturing methods and reliability as well as cost. The mechanical criteria for a successful powder-to-tablet processing are good flowability, compressibility and compactibility that are closely related to the mechanical and adhesion properties of the particles and particle strength. In this thesis, air-coupled acoustic and ultrasonic techniques are presented and demonstrated as noncontact and nondestructive methods for physical (mechanical) integrity monitoring and mechanical characterization of tablets. A testing and characterization experimental platform for defect detection, coating thickness and mechanical property determination of tablets was also developed. The presented air-coupled technique was based on the analysis of the transient vibrational responses of a tablet in both temporal and spectral domains. The contact ultrasonic technique was based on the analysis of the propagation speed of an acoustic pulse launched into a tablet and its reflection from the coat-core interface of the tablet. In defect monitoring, the ultimate objective is to separate defective tablets from nominal ones. In the case of characterization, to extract the coating layer thicknesses and mechanical properties of the tablets from a subset of the measured resonance frequencies, an iterative computational procedure was demonstrated. In the compaction monitoring experiments, an instrumented punch and a cylindrical die were employed to extract the elasticity properties of tablets during compaction. To study the effect of compaction kinetics on tablet properties and defect, finite element analyses of single layer and bilayer tablets were performed. A noncontact work-of-adhesion technique was also demonstrated to determine the work-of-adhesion of pharmaceutical powder particles.

  8. Evaluation of the flexibility of protective gloves.

    PubMed

    Harrabi, Lotfi; Dolez, Patricia I; Vu-Khanh, Toan; Lara, Jaime

    2008-01-01

    Two mechanical methods have been developed for the characterization of the flexibility of protective gloves, a key factor affecting their degree of usefulness for workers. The principle of the first method is similar to the ASTM D 4032 standard relative to fabric stiffness and simulates the deformations encountered by gloves that are not tight fitted to the hand. The second method characterizes the flexibility of gloves that are worn tight fitted. Its validity was theoretically verified for elastomer materials. Both methods should prove themselves as valuable tools for protective glove manufacturers, allowing for the characterization of their existing products in terms of flexibility and the development of new ones better fitting workers' needs.

  9. Characterization of a polyvinyl alcohol-hydrogel artificial articular cartilage prepared by injection molding.

    PubMed

    Kobayashi, Masanori; Oka, Masanori

    2004-01-01

    We have developed a hip hemi-arthroplasty using polyvinyl alcohol-hydrogel (PVA-H) as the treatment for hip joint disorders in which the lesion is limited to the joint surface. In previous studies, we characterized the biocompatibility and the mechanical properties of PVA-H as an arthroplasty material. To fix PVA-H firmly to the bone, we have devised an implant composed of PVA-H and porous titanium fiber mesh (TFM). However, because of poor infiltration of the PVA solution into the pores of the TFM when using the low temperature crystallization method, the strength of the PVA-H-TFM interface was insufficient. Consequently, the infiltration method was improved by adopting high-pressure injection molding. With this improved method, the bonding strength of the interface increased remarkably. However, as this injection molding requires high temperature, various mechanical properties of the PVA-H might change with this treatment in comparison with the previous method. The purpose of this study was to investigate the effect of high temperature treatment on the mechanical properties of PVA-H as artificial articular cartilage, the tensile test and friction test were performed about new PVA-H. The results showed no significant mechanical deterioration of the PVA-H. This certified that the injection-molding method did not induce the change of the mechanical properties of PVA-H and indicated the potential of hemi-arthroplasty using PVA-H by this method in the future.

  10. Modeling and Characterization of Damage Processes in Metallic Materials

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Saether, E.; Smith, S. W.; Hochhalter, J. D.; Yamakov, V. I.; Gupta, V.

    2011-01-01

    This paper describes a broad effort that is aimed at understanding the fundamental mechanisms of crack growth and using that understanding as a basis for designing materials and enabling predictions of fracture in materials and structures that have small characteristic dimensions. This area of research, herein referred to as Damage Science, emphasizes the length scale regimes of the nanoscale and the microscale for which analysis and characterization tools are being developed to predict the formation, propagation, and interaction of fundamental damage mechanisms. Examination of nanoscale processes requires atomistic and discrete dislocation plasticity simulations, while microscale processes can be examined using strain gradient plasticity, crystal plasticity and microstructure modeling methods. Concurrent and sequential multiscale modeling methods are being developed to analytically bridge between these length scales. Experimental methods for characterization and quantification of near-crack tip damage are also being developed. This paper focuses on several new methodologies in these areas and their application to understanding damage processes in polycrystalline metals. On-going and potential applications are also discussed.

  11. Mechanical characterization of human brain tumors from patients and comparison to potential surgical phantoms.

    PubMed

    Stewart, Daniel C; Rubiano, Andrés; Dyson, Kyle; Simmons, Chelsey S

    2017-01-01

    While mechanical properties of the brain have been investigated thoroughly, the mechanical properties of human brain tumors rarely have been directly quantified due to the complexities of acquiring human tissue. Quantifying the mechanical properties of brain tumors is a necessary prerequisite, though, to identify appropriate materials for surgical tool testing and to define target parameters for cell biology and tissue engineering applications. Since characterization methods vary widely for soft biological and synthetic materials, here, we have developed a characterization method compatible with abnormally shaped human brain tumors, mouse tumors, animal tissue and common hydrogels, which enables direct comparison among samples. Samples were tested using a custom-built millimeter-scale indenter, and resulting force-displacement data is analyzed to quantify the steady-state modulus of each sample. We have directly quantified the quasi-static mechanical properties of human brain tumors with effective moduli ranging from 0.17-16.06 kPa for various pathologies. Of the readily available and inexpensive animal tissues tested, chicken liver (steady-state modulus 0.44 ± 0.13 kPa) has similar mechanical properties to normal human brain tissue while chicken crassus gizzard muscle (steady-state modulus 3.00 ± 0.65 kPa) has similar mechanical properties to human brain tumors. Other materials frequently used to mimic brain tissue in mechanical tests, like ballistic gel and chicken breast, were found to be significantly stiffer than both normal and diseased brain tissue. We have directly compared quasi-static properties of brain tissue, brain tumors, and common mechanical surrogates, though additional tests would be required to determine more complex constitutive models.

  12. Mechanical and structural characterizations of gamma- and alpha-alumina nanofibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vahtrus, Mikk; Umalas, Madis; Polyakov, Boris

    2015-09-15

    We investigate the applicability of alumina nanofibers as a potential reinforcement material in ceramic matrix compounds by comparing the mechanical properties of individual nanofibers before and after annealing at 1400 °C. Mechanical testing is performed inside a scanning electron microscope (SEM), which enables observation in real time of the deformation and fracture of the fibers under loading, thereby providing a close-up inspection of the freshly fractured area in vacuum. Improvement of both the Young's modulus and the breaking strength for annealed nanofibers is demonstrated. Mechanical testing is supplemented with the structural characterization of the fibers before and after annealing usingmore » SEM, transmission electron microscopy and X-ray diffraction methods. - Highlights: • Mechanical properties of individual alumina nanofibers were measured using in situ SEM cantilevered beam bending technique. • Improvement of mechanical properties of the alumina fibers after annealing at 1400 °C is demonstrated. • Formation of branched structures is demonstrated and their mechanical properties are studied. • XRD and electron microscopy were used for structural characterization of untreated and annealed nanofibers.« less

  13. Structural and mechanical characterization of hybrid metallic-inorganic nanosprings

    NASA Astrophysics Data System (ADS)

    Habtoun, Sabrina; Houmadi, Said; Reig, Benjamin; Pouget, Emilie; Dedovets, Dmytro; Delville, Marie-Hélène; Oda, Reiko; Cristiano, Fuccio; Bergaud, Christian

    2017-10-01

    Silica nanosprings (NS) are fabricated by a sol-gel deposition of silica precursors onto a template made of self-assembled organic chiral nanostructures. They are deposited and assembled on microstructured silicon substrates, and then metallized and clamped in a single lithography-free step using a focused ion beam (FIB). The resulting suspended hybrid metallic/inorganic NS are then characterized with high-resolution transmission electron microscopy (HRTEM) and scanning TEM/energy-dispersive X-ray spectroscopy (STEM/EDX), showing the atomic structure of the metallic layer. Three-point bending tests are also carried out using an atomic force microscope (AFM) and supported by finite element method (FEM) simulation with COMSOL Multiphysics allowing the characterization of the mechanical behavior and the estimation of the stiffness of the resulting NS. The information obtained on the structural and mechanical properties of the NS is discussed for future nano-electro-mechanical system (NEMS) applications.

  14. Multimodal pain stimulation of the gastrointestinal tract

    PubMed Central

    Drewes, Asbjørn Mohr; Gregersen, Hans

    2006-01-01

    Understanding and characterization of pain and other sensory symptoms are among the most important issues in the diagnosis and assessment of patient with gastrointestinal disorders. Methods to evoke and assess experimental pain have recently developed into a new area with the possibility for multimodal stimulation (e.g., electrical, mechanical, thermal and chemical stimulation) of different nerves and pain pathways in the human gut. Such methods mimic to a high degree the pain experienced in the clinic. Multimodal pain methods have increased our basic understanding of different peripheral receptors in the gut in health and disease. Together with advanced muscle analysis, the methods have increased our understanding of receptors sensitive to mechanical, chemical and temperature stimuli in diseases, such as systemic sclerosis and diabetes. The methods can also be used to unravel central pain mechanisms, such as those involved in allodynia, hyperalgesia and referred pain. Abnormalities in central pain mechanisms are often seen in patients with chronic gut pain and hence methods relying on multimodal pain stimulation may help to understand the symptoms in these patients. Sex differences have been observed in several diseases of the gut, and differences in central pain processing between males and females have been hypothesized using multimodal pain stimulations. Finally, multimodal methods have recently been used to gain more insight into the effect of drugs against pain in the GI tract. Hence, the multimodal methods undoubtedly represents a major step forward in the future characterization and treatment of patients with various diseases of the gut. PMID:16688791

  15. Durability predictions of adhesively bonded composite structures using accelerated characterization methods

    NASA Technical Reports Server (NTRS)

    Brinson, H. F.

    1985-01-01

    The utilization of adhesive bonding for composite structures is briefly assessed. The need for a method to determine damage initiation and propagation for such joints is outlined. Methods currently in use to analyze both adhesive joints and fiber reinforced plastics is mentioned and it is indicated that all methods require the input of the mechanical properties of the polymeric adhesive and composite matrix material. The mechanical properties of polymers are indicated to be viscoelastic and sensitive to environmental effects. A method to analytically characterize environmentally dependent linear and nonlinear viscoelastic properties is given. It is indicated that the methodology can be used to extrapolate short term data to long term design lifetimes. That is, the method can be used for long term durability predictions. Experimental results for near adhesive resins, polymers used as composite matrices and unidirectional composite laminates is given. The data is fitted well with the analytical durability methodology. Finally, suggestions are outlined for the development of an analytical methodology for the durability predictions of adhesively bonded composite structures.

  16. Characterization of Cerebral White Matter Properties Using Quantitative Magnetic Resonance Imaging Stains

    PubMed Central

    Hurley, Samuel A.; Samsonov, Alexey A.; Adluru, Nagesh; Hosseinbor, Ameer Pasha; Mossahebi, Pouria; Tromp, Do P.M.; Zakszewski, Elizabeth; Field, Aaron S.

    2011-01-01

    Abstract The image contrast in magnetic resonance imaging (MRI) is highly sensitive to several mechanisms that are modulated by the properties of the tissue environment. The degree and type of contrast weighting may be viewed as image filters that accentuate specific tissue properties. Maps of quantitative measures of these mechanisms, akin to microstructural/environmental-specific tissue stains, may be generated to characterize the MRI and physiological properties of biological tissues. In this article, three quantitative MRI (qMRI) methods for characterizing white matter (WM) microstructural properties are reviewed. All of these measures measure complementary aspects of how water interacts with the tissue environment. Diffusion MRI, including diffusion tensor imaging, characterizes the diffusion of water in the tissues and is sensitive to the microstructural density, spacing, and orientational organization of tissue membranes, including myelin. Magnetization transfer imaging characterizes the amount and degree of magnetization exchange between free water and macromolecules like proteins found in the myelin bilayers. Relaxometry measures the MRI relaxation constants T1 and T2, which in WM have a component associated with the water trapped in the myelin bilayers. The conduction of signals between distant brain regions occurs primarily through myelinated WM tracts; thus, these methods are potential indicators of pathology and structural connectivity in the brain. This article provides an overview of the qMRI stain mechanisms, acquisition and analysis strategies, and applications for these qMRI stains. PMID:22432902

  17. In silico simulation and in vitro evaluation of an elastomeric scaffold using ultrasonic shear wave imaging

    NASA Astrophysics Data System (ADS)

    Yu, Jiao; Nie, Erwei; Zhu, Yanying; Hong, Yi

    2018-03-01

    Biodegradable elastomeric scaffolds for soft tissue repair represent a growing area of biomaterials research. Mechanical strength is one of the key factors to consider in the evaluation of candidate materials and the designs for tissue scaffolds. It is desirable to develop non-invasive evaluation methods of the mechanical property of scaffolds which would provide options for monitoring temporal mechanical property changes in situ. In this paper, we conduct in silico simulation and in vitro evaluation of an elastomeric scaffold using a novel ultrasonic shear wave imaging (USWI). The scaffold is fabricated from a biodegradable elastomer, poly(carbonate urethane) urea using salt leaching method. A numerical simulation is performed to test the robustness of the developed inversion algorithm for the elasticity map reconstruction which will be implemented in the phantom experiment. The generation and propagation of shear waves in a homogeneous tissue-mimicking medium with a circular scaffold inclusion is simulated and the elasticity map is well reconstructed. A PVA phantom experiment is performed to test the ability of USWI combined with the inversion algorithm to non-invasively characterize the mechanical property of a porous, biodegradable elastomeric scaffold. The elastic properties of the tested scaffold can be easily differentiated from the surrounding medium in the reconstructed image. The ability of the developed method to identify the edge of the scaffold and characterize the elasticity distribution is demonstrated. Preliminary results in this pilot study support the idea of applying the USWI based method for non-invasive elasticity characterization of tissue scaffolds.

  18. Method for hygromechanical characterization of graphite/epoxy composite

    NASA Technical Reports Server (NTRS)

    Yaniv, Gershon; Peimanidis, Gus; Daniel, Isaac M.

    1987-01-01

    An experimental method is described for measuring hygroscopic swelling strains and mechanical strains of moisture-conditioned composite specimens. The method consists of embedding encapsulated strain gages in the midplane of the composite laminate; thus it does not interfere with normal moisture diffusion. It is particularly suited for measuring moisture swelling coefficients and for mechanical testing of moisture-conditioned specimens at high strain rates. Results obtained by the embedded gage method were shown to be more reliable and reproducible than those obtained by surface gages, dial gages, or extensometers.

  19. Nondestructive Complete Mechanical Characterization of Zinc Blende and Wurtzite GaAs Nanowires Using Time-Resolved Pump-Probe Spectroscopy.

    PubMed

    Mante, Pierre-Adrien; Lehmann, Sebastian; Anttu, Nicklas; Dick, Kimberly A; Yartsev, Arkady

    2016-08-10

    We have developed and demonstrated an experimental method, based on the picosecond acoustics technique, to perform nondestructive complete mechanical characterization of nanowires, that is, the determination of the complete elasticity tensor. By means of femtosecond pump-probe spectroscopy, coherent acoustic phonons were generated in an ensemble of nanowires and their dynamics was resolved. Specific phonon modes were identified and the detection mechanism was addressed via wavelength dependent experiments. We calculated the exact phonon dispersion relation of the nanowires by fitting the experimentally observed frequencies, thus allowing the extraction of the complete elasticity tensor. The elasticity tensor and the nanowire diameter were determined for zinc blende GaAs nanowires and were found to be in a good agreement with literature data and independent measurements. Finally, we have applied this technique to characterize wurtzite GaAs nanowires, a metastable phase in bulk, for which no experimental values of elastic constants are currently available. Our results agree well with previous first principle calculations. The proposed approach to the complete and nondestructive mechanical characterization of nanowires will allow the efficient mechanical study of new crystal phases emerging in nanostructures, as well as size-dependent properties of nanostructured materials.

  20. Mechanical Characterization of Partially Crystallized Sphere Packings

    NASA Astrophysics Data System (ADS)

    Hanifpour, M.; Francois, N.; Vaez Allaei, S. M.; Senden, T.; Saadatfar, M.

    2014-10-01

    We study grain-scale mechanical and geometrical features of partially crystallized packings of frictional spheres, produced experimentally by a vibrational protocol. By combining x-ray computed tomography, 3D image analysis, and discrete element method simulations, we have access to the 3D structure of internal forces. We investigate how the network of mechanical contacts and intergranular forces change when the packing structure evolves from amorphous to near perfect crystalline arrangements. We compare the behavior of the geometrical neighbors (quasicontracts) of a grain to the evolution of the mechanical contacts. The mechanical coordination number Zm is a key parameter characterizing the crystallization onset. The high fluctuation level of Zm and of the force distribution in highly crystallized packings reveals that a geometrically ordered structure still possesses a highly random mechanical backbone similar to that of amorphous packings.

  1. Mechanical characterization of human brain tumors from patients and comparison to potential surgical phantoms

    PubMed Central

    Rubiano, Andrés; Dyson, Kyle; Simmons, Chelsey S.

    2017-01-01

    While mechanical properties of the brain have been investigated thoroughly, the mechanical properties of human brain tumors rarely have been directly quantified due to the complexities of acquiring human tissue. Quantifying the mechanical properties of brain tumors is a necessary prerequisite, though, to identify appropriate materials for surgical tool testing and to define target parameters for cell biology and tissue engineering applications. Since characterization methods vary widely for soft biological and synthetic materials, here, we have developed a characterization method compatible with abnormally shaped human brain tumors, mouse tumors, animal tissue and common hydrogels, which enables direct comparison among samples. Samples were tested using a custom-built millimeter-scale indenter, and resulting force-displacement data is analyzed to quantify the steady-state modulus of each sample. We have directly quantified the quasi-static mechanical properties of human brain tumors with effective moduli ranging from 0.17–16.06 kPa for various pathologies. Of the readily available and inexpensive animal tissues tested, chicken liver (steady-state modulus 0.44 ± 0.13 kPa) has similar mechanical properties to normal human brain tissue while chicken crassus gizzard muscle (steady-state modulus 3.00 ± 0.65 kPa) has similar mechanical properties to human brain tumors. Other materials frequently used to mimic brain tissue in mechanical tests, like ballistic gel and chicken breast, were found to be significantly stiffer than both normal and diseased brain tissue. We have directly compared quasi-static properties of brain tissue, brain tumors, and common mechanical surrogates, though additional tests would be required to determine more complex constitutive models. PMID:28582392

  2. An Overview of Innovative Strategies for Fracture Mechanics at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.; Glaessgen, Edward H.; Ratcliffe, James G.

    2010-01-01

    Engineering fracture mechanics has played a vital role in the development and certification of virtually every aerospace vehicle that has been developed since the mid-20th century. NASA Langley Research Center s Durability, Damage Tolerance and Reliability Branch has contributed to the development and implementation of many fracture mechanics methods aimed at predicting and characterizing damage in both metallic and composite materials. This paper presents a selection of computational, analytical and experimental strategies that have been developed by the branch for assessing damage growth under monotonic and cyclic loading and for characterizing the damage tolerance of aerospace structures

  3. Preparation and characterization of functionalized single walled carbon nanotubes (fSWCNT)/ Hydroxyapatite (HAp)-Nylon hybridized composite biomaterial to study the mechanical properties

    NASA Astrophysics Data System (ADS)

    Khanal, Suraj; Leventouri, Theodora; Mahfuz, Hassan; Rondinone, Adam

    2014-03-01

    Synthetic hydroxyapatite (HAp) bears poor mechanical properties that limit its applicability in orthopedics. We study the possibility of overcoming such limitations by incorporating functionalized single walled carbon nanotubes (fSWCNT) in a biocompatible/bioactive nano-composite. We present results from synthesis and characterization of samples prepared under different processing parameters. Ultra sonication method was to disperse functionalized single walled carbon nanotubes (fSWCNT) in HAp followed by a simple hot assorting method to incorporate with polymerized ɛ-caprolactam. The fracture toughness of the composite materials was tested in compliance with the ASTM D-5045 standard. We have found that while the fracture toughness strongly depends on the processing parameters, a value comparable to the one for cortical bone is achieved. Mechanical properties, electron microscopy and crystal structure properties of the composite materials will be discussed.

  4. A forward model-based validation of cardiovascular system identification

    NASA Technical Reports Server (NTRS)

    Mukkamala, R.; Cohen, R. J.

    2001-01-01

    We present a theoretical evaluation of a cardiovascular system identification method that we previously developed for the analysis of beat-to-beat fluctuations in noninvasively measured heart rate, arterial blood pressure, and instantaneous lung volume. The method provides a dynamical characterization of the important autonomic and mechanical mechanisms responsible for coupling the fluctuations (inverse modeling). To carry out the evaluation, we developed a computational model of the cardiovascular system capable of generating realistic beat-to-beat variability (forward modeling). We applied the method to data generated from the forward model and compared the resulting estimated dynamics with the actual dynamics of the forward model, which were either precisely known or easily determined. We found that the estimated dynamics corresponded to the actual dynamics and that this correspondence was robust to forward model uncertainty. We also demonstrated the sensitivity of the method in detecting small changes in parameters characterizing autonomic function in the forward model. These results provide confidence in the performance of the cardiovascular system identification method when applied to experimental data.

  5. Characterization of biomechanical properties of cells through dielectrophoresis-based cell stretching and actin cytoskeleton modeling.

    PubMed

    Bai, Guohua; Li, Ying; Chu, Henry K; Wang, Kaiqun; Tan, Qiulin; Xiong, Jijun; Sun, Dong

    2017-04-04

    Cytoskeleton is a highly dynamic network that helps to maintain the rigidity of a cell, and the mechanical properties of a cell are closely related to many cellular functions. This paper presents a new method to probe and characterize cell mechanical properties through dielectrophoresis (DEP)-based cell stretching manipulation and actin cytoskeleton modeling. Leukemia NB4 cells were used as cell line, and changes in their biological properties were examined after chemotherapy treatment with doxorubicin (DOX). DEP-integrated microfluidic chip was utilized as a low-cost and efficient tool to study the deformability of cells. DEP forces used in cell stretching were first evaluated through computer simulation, and the results were compared with modeling equations and with the results of optical stretching (OT) experiments. Structural parameters were then extracted by fitting the experimental data into the actin cytoskeleton model, and the underlying mechanical properties of the cells were subsequently characterized. The DEP forces generated under different voltage inputs were calculated and the results from different approaches demonstrate good approximations to the force estimation. Both DEP and OT stretching experiments confirmed that DOX-treated NB4 cells were stiffer than the untreated cells. The structural parameters extracted from the model and the confocal images indicated significant change in actin network after DOX treatment. The proposed DEP method combined with actin cytoskeleton modeling is a simple engineering tool to characterize the mechanical properties of cells.

  6. APPLICATIONS OF BOREHOLE-ACOUSTIC METHODS IN ROCK MECHANICS.

    USGS Publications Warehouse

    Paillet, Frederick L.

    1985-01-01

    Acoustic-logging methods using a considerable range of wavelengths and frequencies have proven very useful in the in situ characterization of deeply buried crystalline rocks. Seismic velocities are useful in investigating the moduli of unfractured rock, and in producing a continuous record of rock quality for comparison with discontinuous intervals of core. The considerable range of frequencies makes the investigation of scale effects possible in both fractured and unfractured rock. Several specific methods for the characterization of in situ permeability have been developed and verified in the field.

  7. Chromatographic test methods for characterizing alkylsiloxane-bonded silica columns for reversed-phase liquid chromatography.

    PubMed

    Poole, Colin F

    2018-06-07

    Major obstacles to formulating a simple retention mechanism for reversed-phase liquid chromatography have a direct impact on the development of experimental methods for column characterization as they limit our capability to understand observed differences in retention at a system level. These problems arise from the heterogeneous composition of the stationary phase, the difficulty of providing a working definition for the phase ratio, and uncertainty as to whether the distribution mechanism for varied compounds is a partition, adsorption or mixed (combination) of these models. Retention factor and separation factor measurements offer little guidance as they represent an average of various and variable contributing factors that can only be interpreted by assuming a specific model. Column characterization methods have tended to ignore these difficulties by inventing a series of terms to describe column properties, such as hydrophobicity, hydrophilicity, silanol activity, steric resistance, etc., without proper definition. This has allowed multiple scales to be proposed for the same property which generally are only weakly correlated. Against this background we review the major approaches for the characterization of alkylsiloxane-bonded silica stationary phases employing prototypical compounds, the hydrophobic-subtraction model and the solvation parameter model. Those methods using prototypical compounds are limited by the lack of compounds with a singular dominant interaction. The multivariate approaches that extract column characteristic properties from the retention of varied compounds are more hopeful but it is important to be more precise in defining the characteristic column properties and cognizant that general interpretation of these properties for varied columns cannot escape the problem of a poor understanding of the distribution mechanism. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Developing Carbon Nanotube Standards at NASA

    NASA Technical Reports Server (NTRS)

    Nikolaev, Pasha; Arepalli, Sivaram; Sosa, Edward; Gorelik, Olga; Yowell, Leonard

    2007-01-01

    Single wall carbon nanotubes (SWCNTs) are currently being produced and processed by several methods. Many researchers are continuously modifying existing methods and developing new methods to incorporate carbon nanotubes into other materials and utilize the phenomenal properties of SWCNTs. These applications require availability of SWCNTs with known properties and there is a need to characterize these materials in a consistent manner. In order to monitor such progress, it is critical to establish a means by which to define the quality of SWCNT material and develop characterization standards to evaluate of nanotube quality across the board. Such characterization standards should be applicable to as-produced materials as well as processed SWCNT materials. In order to address this issue, NASA Johnson Space Center has developed a protocol for purity and dispersion characterization of SWCNTs (Ref.1). The NASA JSC group is currently working with NIST, ANSI and ISO to establish purity and dispersion standards for SWCNT material. A practice guide for nanotube characterization is being developed in cooperation with NIST (Ref.2). Furthermore, work is in progress to incorporate additional characterization methods for electrical, mechanical, thermal, optical and other properties of SWCNTs.

  9. Developing Carbon Nanotube Standards at NASA

    NASA Technical Reports Server (NTRS)

    Nikolaev, Pasha; Arepalli, Sivaram; Sosa, Edward; Gorelik, Olga; Yowell, Leonard

    2007-01-01

    Single wall carbon nanotubes (SWCNTs) are currently being produced and processed by several methods. Many researchers are continuously modifying existing methods and developing new methods to incorporate carbon nanotubes into other materials and utilize the phenomenal properties of SWCNTs. These applications require availability of SWCNTs with known properties and there is a need to characterize these materials in a consistent manner. In order to monitor such progress, it is critical to establish a means by which to define the quality of SWCNT material and develop characterization standards to evaluate of nanotube quality across the board. Such characterization standards should be applicable to as-produced materials as well as processed SWCNT materials. In order to address this issue, NASA Johnson Space Center has developed a protocol for purity and dispersion characterization of SWCNTs. The NASA JSC group is currently working with NIST, ANSI and ISO to establish purity and dispersion standards for SWCNT material. A practice guide for nanotube characterization is being developed in cooperation with NIST. Furthermore, work is in progress to incorporate additional characterization methods for electrical, mechanical, thermal, optical and other properties of SWCNTs.

  10. Processing and Testing Re2Si207 Matrix Composites (Preprint)

    DTIC Science & Technology

    2012-07-01

    using the Archimedes method. 2.3. Indentation and Characterization The hardnesses of the sintered pellets were measured by Vickers indentation at...J. Mechanical Properties and Atomistic Deformation Mechanism of g-Y2Si2O7 from First- Principles Investigations. Acta mat. 55, 6019-6026 (2007). 10

  11. Characterizing heterogeneous cellular responses to perturbations.

    PubMed

    Slack, Michael D; Martinez, Elisabeth D; Wu, Lani F; Altschuler, Steven J

    2008-12-09

    Cellular populations have been widely observed to respond heterogeneously to perturbation. However, interpreting the observed heterogeneity is an extremely challenging problem because of the complexity of possible cellular phenotypes, the large dimension of potential perturbations, and the lack of methods for separating meaningful biological information from noise. Here, we develop an image-based approach to characterize cellular phenotypes based on patterns of signaling marker colocalization. Heterogeneous cellular populations are characterized as mixtures of phenotypically distinct subpopulations, and responses to perturbations are summarized succinctly as probabilistic redistributions of these mixtures. We apply our method to characterize the heterogeneous responses of cancer cells to a panel of drugs. We find that cells treated with drugs of (dis-)similar mechanism exhibit (dis-)similar patterns of heterogeneity. Despite the observed phenotypic diversity of cells observed within our data, low-complexity models of heterogeneity were sufficient to distinguish most classes of drug mechanism. Our approach offers a computational framework for assessing the complexity of cellular heterogeneity, investigating the degree to which perturbations induce redistributions of a limited, but nontrivial, repertoire of underlying states and revealing functional significance contained within distinct patterns of heterogeneous responses.

  12. Advances in self-healing materials based on vascular networks with mechanical self-repair characteristics.

    PubMed

    Lee, Min Wook; An, Seongpil; Yoon, Sam S; Yarin, Alexander L

    2018-02-01

    Here, we review the state-of-the-art in the field of engineered self-healing materials. These materials mimic the functionalities of various natural materials found in the human body (e.g., the healing of skin and bones by the vascular system). The fabrication methods used to produce these "vascular-system-like" engineered self-healing materials, such as electrospinning (including co-electrospinning and emulsion spinning) and solution blowing (including coaxial solution blowing and emulsion blowing) are discussed in detail. Further, a few other approaches involving the use of hollow fibers are also described. In addition, various currently used healing materials/agents, such as dicyclopentadiene and Grubbs' catalyst, poly(dimethyl siloxane), and bisphenol-A-based epoxy, are described. We also review the characterization methods employed to verify the physical and chemical aspects of self-healing, that is, the methods used to confirm that the healing agent has been released and that it has resulted in healing, as well as the morphological changes induced in the damaged material by the healing agent. These characterization methods include different visualization and spectroscopy techniques and thermal analysis methods. Special attention is paid to the characterization of the mechanical consequences of self-healing. The effects of self-healing on the mechanical properties such as stiffness and adhesion of the damaged material are evaluated using the tensile test, double cantilever beam test, plane strip test, bending test, and adhesion test (e.g., blister test). Finally, the future direction of the development of these systems is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Magnetic resonance elastography (MRE) in cancer: Technique, analysis, and applications

    PubMed Central

    Pepin, Kay M.; Ehman, Richard L.; McGee, Kiaran P.

    2015-01-01

    Tissue mechanical properties are significantly altered with the development of cancer. Magnetic resonance elastography (MRE) is a noninvasive technique capable of quantifying tissue mechanical properties in vivo. This review describes the basic principles of MRE and introduces some of the many promising MRE methods that have been developed for the detection and characterization of cancer, evaluation of response to therapy, and investigation of the underlying mechanical mechanisms associated with malignancy. PMID:26592944

  14. Investigations on the Mechanical Properties of Conducting Polymer Coating-Substrate Structures and Their Influencing Factors

    PubMed Central

    Wang, Xi-Shu; Tang, Hua-Ping; Li, Xu-Dong; Hua, Xin

    2009-01-01

    This review covers recent advances and work on the microstructure features, mechanical properties and cracking processes of conducting polymer film/coating- substrate structures under different testing conditions. An attempt is made to characterize and quantify the relationships between mechanical properties and microstructure features. In addition, the film cracking mechanism on the micro scale and some influencing factors that play a significant role in the service of the film-substrate structure are presented. These investigations cover the conducting polymer film/coating nucleation process, microstructure-fracture characterization, translation of brittle-ductile fractures, and cracking processes near the largest inherent macromolecule defects under thermal-mechanical loadings, and were carried out using in situ scanning electron microscopy (SEM) observations, as a novel method for evaluation of interface strength and critical failure stress. PMID:20054470

  15. Evaluation of consolidation method on mechanical and structural properties of ODS RAF steel

    NASA Astrophysics Data System (ADS)

    Frelek-Kozak, M.; Kurpaska, L.; Wyszkowska, E.; Jagielski, J.; Jozwik, I.; Chmielewski, M.

    2018-07-01

    In the present work, the effects of the fabrication method on mechanical and structural properties of 12%Cr, 2%W, 0.25%Ti, 0.25%Y2O3 steels were investigated. Materials obtained by Spark Plasma Sintering (SPS), Hot Isostatic Pressing (HIP) and Hot Extrusion (HE) methods were studied. The microstructure was characterized by using Scanning Electron Microscopy (SEM) and Electron Backscatter Diffraction analysis (EBSD). Mechanical properties of the studied samples were evaluated by using Vickers micro hardness HV0.1, Small Punch Test (SPT) and nanoindentation (NI) methods. The analysis revealed that samples manufactured via HIP and SPS processes exhibit very similar properties, whereas SPS method produces material with slightly lower hardness. In addition, significantly lower mechanical properties of the specimens after HE process were observed. The study described in this article addresses also the problems of mechanical parameters measured in micro- and nano-scale experiments and aims to identify possible pitfalls related to the use of various manufacturing technologies.

  16. Characterization of the Mechanical Stress-Strain Performance of Aerospace Alloy Materials Using Frequency-Domain Photoacoustic Ultrasound and Photothermal Methods: An FEM Approach

    NASA Astrophysics Data System (ADS)

    Huan, Huiting; Mandelis, Andreas; Liu, Lixian

    2018-04-01

    Determining and keeping track of a material's mechanical performance is very important for safety in the aerospace industry. The mechanical strength of alloy materials is precisely quantified in terms of its stress-strain relation. It has been proven that frequency-domain photothermoacoustic (FD-PTA) techniques are effective methods for characterizing the stress-strain relation of metallic alloys. PTA methodologies include photothermal (PT) diffusion and laser thermoelastic photoacoustic ultrasound (PAUS) generation which must be separately discussed because the relevant frequency ranges and signal detection principles are widely different. In this paper, a detailed theoretical analysis of the connection between thermoelastic parameters and stress/strain tensor is presented with respect to FD-PTA nondestructive testing. Based on the theoretical model, a finite element method (FEM) was further implemented to simulate the PT and PAUS signals at very different frequency ranges as an important analysis tool of experimental data. The change in the stress-strain relation has an impact on both thermal and elastic properties, verified by FEM and results/signals from both PT and PAUS experiments.

  17. Thermal-Mechanical Noise Based CMUT Characterization and Sensing

    PubMed Central

    Gurun, Gokce; Hochman, Michael; Hasler, Paul; Degertekin, F. Levent

    2012-01-01

    When capacitive micromachined ultrasonic transducers (CMUTs) are monolithically integrated with custom-designed low-noise electronics, the output noise of the system can be dominated by the CMUT thermal-mechanical noise both in air and in immersion even for devices with low capacitance. Since the thermal-mechanical noise can be related to the electrical admittance of the CMUTs, this provides an effective means of device characterization. This approach yields a novel method to test the functionality and uniformity of CMUT arrays and the integrated electronics where a direct connection to CMUT array element terminals is not available. These measurements can be performed in air at the wafer level, suitable for batch manufacturing and testing. We demonstrate this method on the elements of an 800-μm diameter CMUT-on-CMOS array designed for intravascular imaging in the 10-20 MHz range. Noise measurements in air show the expected resonance behavior and spring softening effects. Noise measurements in immersion for the same array provide useful information on both the acoustic cross talk and radiation properties of the CMUT array elements. The good agreement between a CMUT model based on finite difference and boundary element method and the noise measurements validates the model and indicates that the output noise is indeed dominated by thermal-mechanical noise. The measurement method can be exploited to implement CMUT based passive sensors to measure immersion medium properties, or other parameters affecting the electro-mechanics of the CMUT structure. PMID:22718877

  18. Thermal-mechanical-noise-based CMUT characterization and sensing.

    PubMed

    Gurun, Gokce; Hochman, Michael; Hasler, Paul; Degertekin, F Levent

    2012-06-01

    When capacitive micromachined ultrasonic transducers (CMUTs) are monolithically integrated with custom-designed low-noise electronics, the output noise of the system can be dominated by the CMUT thermal-mechanical noise both in air and in immersion even for devices with low capacitance. Because the thermal-mechanical noise can be related to the electrical admittance of the CMUTs, this provides an effective means of device characterization. This approach yields a novel method to test the functionality and uniformity of CMUT arrays and the integrated electronics when a direct connection to CMUT array element terminals is not available. Because these measurements can be performed in air at the wafer level, the approach is suitable for batch manufacturing and testing. We demonstrate this method on the elements of an 800-μm-diameter CMUT-on-CMOS array designed for intravascular imaging in the 10 to 20 MHz range. Noise measurements in air show the expected resonance behavior and spring softening effects. Noise measurements in immersion for the same array provide useful information on both the acoustic cross talk and radiation properties of the CMUT array elements. The good agreement between a CMUT model based on finite difference and boundary element methods and the noise measurements validates the model and indicates that the output noise is indeed dominated by thermal-mechanical noise. The measurement method can be exploited to implement CMUT-based passive sensors to measure immersion medium properties, or other parameters affecting the electro-mechanics of the CMUT structure.

  19. Skin mechanical properties and modeling: A review.

    PubMed

    Joodaki, Hamed; Panzer, Matthew B

    2018-04-01

    The mechanical properties of the skin are important for various applications. Numerous tests have been conducted to characterize the mechanical behavior of this tissue, and this article presents a review on different experimental methods used. A discussion on the general mechanical behavior of the skin, including nonlinearity, viscoelasticity, anisotropy, loading history dependency, failure properties, and aging effects, is presented. Finally, commonly used constitutive models for simulating the mechanical response of skin are discussed in the context of representing the empirically observed behavior.

  20. Characterization of nitride hole lateral transport in a charge trap flash memory by using a random telegraph signal method

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Heng; Jiang, Cheng-Min; Lin, Hsiao-Yi; Wang, Tahui; Tsai, Wen-Jer; Lu, Tao-Cheng; Chen, Kuang-Chao; Lu, Chih-Yuan

    2017-07-01

    We use a random telegraph signal method to investigate nitride trapped hole lateral transport in a charge trap flash memory. The concept of this method is to utilize an interface oxide trap and its associated random telegraph signal as an internal probe to detect a local channel potential change resulting from nitride charge lateral movement. We apply different voltages to the drain of a memory cell and vary a bake temperature in retention to study the electric field and temperature dependence of hole lateral movement in a nitride. Thermal energy absorption by trapped holes in lateral transport is characterized. Mechanisms of hole lateral transport in retention are investigated. From the measured and modeled results, we find that thermally assisted trap-to-band tunneling is a major trapped hole emission mechanism in nitride hole lateral transport.

  1. Noninvasive Evaluation of Special Alloys for Prostheses Using Complementary Methods

    NASA Astrophysics Data System (ADS)

    Savin, A.; Vizureanu, P.; Prevorovsky, Z.; Chlada, M.; Krofta, J.; Baltatu, M. S.; Istrate, B.; Steigmann, R.

    2018-06-01

    Ti-Mo-Si alloys have gained the attention of biomedical industry due to specific strength and corrosion resistance and the best biocompatibility among metallic materials used in medical prostheses. In order to characterize the material, the experimental determination of elastic matrix, mechanical wear and the probability of appearance and propagation of thin cracks are imposed. Thus, resonant ultrasound spectroscopy and acoustic emission as non-invasive methods and complementary methods as SEM, EDX are involved, to choose the best concentration of elements with the aim of mechanical properties improvement.

  2. Indentation-Enabled In Situ Mechanical Characterization of Micro/Nanopillars in Electron Microscopes

    NASA Astrophysics Data System (ADS)

    Guo, Qiang; Fu, Xidan; Guo, Xiaolei; Liu, Zhiying; Shi, Yan; Zhang, Di

    2018-04-01

    Indentation-enabled micro/nanomechanical characterization of small-scale specimens provides powerful new tools for probing materials properties that were once unattainable by conventional experimental methods. Recent advancement in instrumentation further allows mechanical testing to be carried out in situ in electron microscopes, with high spatial and temporal resolution. This review discusses the recent development of nanoindentation-enabled in situ mechanical testing in electron microscopes, with an emphasis on the study of micro/nanopillars. Focus is given to novel applications beyond simple compressive and tensile testing that have been developed in the past few years, and limitations and possible future research directions in this field are proposed and discussed.

  3. Photothermal method using a pyroelectric sensor for thermophysical characterization of agricultural and biological samples

    NASA Astrophysics Data System (ADS)

    Frandas, A.; Dadarlat, Dorin; Chirtoc, Mihai; Jalink, Henk; Bicanic, Dane D.; Paris, D.; Antoniow, Jean S.; Egee, Michel; Ungureanu, Costica

    1998-07-01

    The photopyroelectric method in different experimental configurations was used for thermophysical characterization of agricultural and biological samples. The study appears important due to the relation of thermal parameters to the quality of foodstuffs (connected to their preservation, storage and adulteration), migration profiles in biodegradable packages, and the mechanism of desiccation tolerance of seeds. Results are presented on the thermal parameters measurement and their dependence on temperature and water content for samples such as: honey, starch, seeds.

  4. Virus-induced gene silencing (VIGS) in barley seedling leaves

    USDA-ARS?s Scientific Manuscript database

    Virus-induced gene silencing (VIGS) is one of the most potent reverse genetics technologies for gene functional characterization. This method exploits a dsRNA-mediated antiviral defense mechanism in plants. Using this method allows researchers to generate rapid phenotypic data in a relatively rapid ...

  5. Large amplitude oscillatory measurements as mechanical characterization methods for soft elastomers

    NASA Astrophysics Data System (ADS)

    Skov, Anne L.

    2012-04-01

    Mechanical characterization of soft elastomers is usually done either by traditional shear rheometry in the linear viscoelastic (LVE) regime (i.e. low strains) or by extensional rheology in the nonlinear regime. However, in many commercially available rheometers for nonlinear extensions the measurements rely on certain assumptions such as a predefined shape alteration and are very hard to perform on soft elastomers in most cases. The LVE data provides information on important parameters for DEAP purposes such as the Young's modulus and the tendency to viscous dissipation (at low strains only) but provides no information on the strain hardening or softening effects at larger strains, and the mechanical breakdown strength. Therefore it is obvious that LVE can not be used as the single mechanical characterization tool in large strain applications. We show how the data set of LVE, and large amplitude oscillating elongation (LAOE)1 and planar elongation2,3 make the ideal set of experiments to evaluate the mechanical performance of DEAPs. We evaluate the mechanical performance of several soft elastomers applicable for DEAP purposes such as poly(propyleneoxide) (PPO) networks3,4 and traditional unfilled silicone (PDMS) networks5.

  6. Analytical ultrasonics for evaluation of composite materials response. Part 2: Generation and detection

    NASA Technical Reports Server (NTRS)

    Duke, J. C., Jr.; Henneke, E. G., II

    1986-01-01

    To evaluate the response of composite materials, it is imperative that the input excitation as well as the observed output be well characterized. This characterization ideally should be in terms of displacements as a function of time with high spatial resolution. Additionally, the ability to prescribe these features for the excitation is highly desirable. Various methods for generating and detecting ultrasound in advanced composite materials are examined. Characterization and tailoring of input excitation is considered for contact and noncontact, mechanical, and electromechanical devices. Type of response as well as temporal and spatial resolution of detection methods are discussed as well. Results of investigations at Virginia Tech in application of these techniques to characterizing the response of advanced composites are presented.

  7. Mode II Interlaminar Fracture Toughness and Fatigue Characterization of a Graphite Epoxy Composite Material

    NASA Technical Reports Server (NTRS)

    O'Brien, T. Kevin; Johnston, William M.; Toland, Gregory J.

    2010-01-01

    Mode II interlaminar fracture toughness and delamination onset and growth characterization data were generated for IM7/8552 graphite epoxy composite materials from two suppliers for use in fracture mechanics analyses. Both the fracture toughness testing and the fatigue testing were conducted using the End-notched Flexure (ENF) test. The ENF test for mode II fracture toughness is currently under review by ASTM as a potential standard test method. This current draft ASTM protocol was used as a guide to conduct the tests on the IM7/8552 material. This report summarizes the test approach, methods, procedures and results of this characterization effort.

  8. Systems Biology Methods for Alzheimer's Disease Research Toward Molecular Signatures, Subtypes, and Stages and Precision Medicine: Application in Cohort Studies and Trials.

    PubMed

    Castrillo, Juan I; Lista, Simone; Hampel, Harald; Ritchie, Craig W

    2018-01-01

    Alzheimer's disease (AD) is a complex multifactorial disease, involving a combination of genomic, interactome, and environmental factors, with essential participation of (a) intrinsic genomic susceptibility and (b) a constant dynamic interplay between impaired pathways and central homeostatic networks of nerve cells. The proper investigation of the complexity of AD requires new holistic systems-level approaches, at both the experimental and computational level. Systems biology methods offer the potential to unveil new fundamental insights, basic mechanisms, and networks and their interplay. These may lead to the characterization of mechanism-based molecular signatures, and AD hallmarks at the earliest molecular and cellular levels (and beyond), for characterization of AD subtypes and stages, toward targeted interventions according to the evolving precision medicine paradigm. In this work, an update on advanced systems biology methods and strategies for holistic studies of multifactorial diseases-particularly AD-is presented. This includes next-generation genomics, neuroimaging and multi-omics methods, experimental and computational approaches, relevant disease models, and latest genome editing and single-cell technologies. Their progressive incorporation into basic research, cohort studies, and trials is beginning to provide novel insights into AD essential mechanisms, molecular signatures, and markers toward mechanism-based classification and staging, and tailored interventions. Selected methods which can be applied in cohort studies and trials, with the European Prevention of Alzheimer's Dementia (EPAD) project as a reference example, are presented and discussed.

  9. Spatio-temporal correlations in models of collective motion ruled by different dynamical laws.

    PubMed

    Cavagna, Andrea; Conti, Daniele; Giardina, Irene; Grigera, Tomas S; Melillo, Stefania; Viale, Massimiliano

    2016-11-15

    Information transfer is an essential factor in determining the robustness of biological systems with distributed control. The most direct way to study the mechanisms ruling information transfer is to experimentally observe the propagation across the system of a signal triggered by some perturbation. However, this method may be inefficient for experiments in the field, as the possibilities to perturb the system are limited and empirical observations must rely on natural events. An alternative approach is to use spatio-temporal correlations to probe the information transfer mechanism directly from the spontaneous fluctuations of the system, without the need to have an actual propagating signal on record. Here we test this method on models of collective behaviour in their deeply ordered phase by using ground truth data provided by numerical simulations in three dimensions. We compare two models characterized by very different dynamical equations and information transfer mechanisms: the classic Vicsek model, describing an overdamped noninertial dynamics and the inertial spin model, characterized by an underdamped inertial dynamics. By using dynamic finite-size scaling, we show that spatio-temporal correlations are able to distinguish unambiguously the diffusive information transfer mechanism of the Vicsek model from the linear mechanism of the inertial spin model.

  10. An evaluation of seed scarification methods of four native Lupinus species

    Treesearch

    C. D. Jones; S. L. Jensen; M. R. Stevens

    2010-01-01

    Seed dormancy is a survival strategy that better ensures the persistence of a species. Dormancy is characterized as exogenous if caused by factors outside the embryo or endogenous if caused by factors within the embryo. Exogenous dormancy is further characterized as physical, mechanical or chemical, while endogenous dormancy may be physiological or morphological....

  11. Current characterization methods for cellulose nanomaterials.

    PubMed

    Foster, E Johan; Moon, Robert J; Agarwal, Umesh P; Bortner, Michael J; Bras, Julien; Camarero-Espinosa, Sandra; Chan, Kathleen J; Clift, Martin J D; Cranston, Emily D; Eichhorn, Stephen J; Fox, Douglas M; Hamad, Wadood Y; Heux, Laurent; Jean, Bruno; Korey, Matthew; Nieh, World; Ong, Kimberly J; Reid, Michael S; Renneckar, Scott; Roberts, Rose; Shatkin, Jo Anne; Simonsen, John; Stinson-Bagby, Kelly; Wanasekara, Nandula; Youngblood, Jeff

    2018-04-23

    A new family of materials comprised of cellulose, cellulose nanomaterials (CNMs), having properties and functionalities distinct from molecular cellulose and wood pulp, is being developed for applications that were once thought impossible for cellulosic materials. Commercialization, paralleled by research in this field, is fueled by the unique combination of characteristics, such as high on-axis stiffness, sustainability, scalability, and mechanical reinforcement of a wide variety of materials, leading to their utility across a broad spectrum of high-performance material applications. However, with this exponential growth in interest/activity, the development of measurement protocols necessary for consistent, reliable and accurate materials characterization has been outpaced. These protocols, developed in the broader research community, are critical for the advancement in understanding, process optimization, and utilization of CNMs in materials development. This review establishes detailed best practices, methods and techniques for characterizing CNM particle morphology, surface chemistry, surface charge, purity, crystallinity, rheological properties, mechanical properties, and toxicity for two distinct forms of CNMs: cellulose nanocrystals and cellulose nanofibrils.

  12. High-resolution optical polarimetric elastography for measuring the mechanical properties of tissue

    NASA Astrophysics Data System (ADS)

    Hudnut, Alexa W.; Armani, Andrea M.

    2018-02-01

    Traditionally, chemical and molecular markers have been the predominate method in diagnostics. Recently, alternate methods of determining tissue and disease characteristics have been proposed based on testing the mechanical behavior of biomaterials. Existing methods for performing elastography measurements, such as atomic force microscopy, compression testing, and ultrasound elastography, require either extensive sample processing or have poor resolution. In the present work, we demonstrate an optical polarimetric elastography device to characterize the mechanical properties of salmon skeletal muscle. A fiber-coupled 1550nm laser paired with an optical polarizer is used to create a fiber optic sensing region. By measuring the change in polarization from the initial state to the final state within the fiber sensing region with a polarimeter, the loading-unloading curves can be determined for the biomaterial. The device is used to characterize the difference between samples with a range of collagen membranes. The loading-unloading curves are used to determine the change in polarization phase and energy loss of the samples at 10%, 20% and 30% strain. As expected, the energy loss is a better metric for measuring the mechanical properties of the tissues because it incorporates the entire loading-unloading curve rather than a single point. Using this metric, it is demonstrated the device can repeatedly differentiate between the different membrane configurations.

  13. Mechanical Impact Testing: A Statistical Measurement

    NASA Technical Reports Server (NTRS)

    Engel, Carl D.; Herald, Stephen D.; Davis, S. Eddie

    2005-01-01

    In the decades since the 1950s, when NASA first developed mechanical impact testing of materials, researchers have continued efforts to gain a better understanding of the chemical, mechanical, and thermodynamic nature of the phenomenon. The impact mechanism is a real combustion ignition mechanism that needs understanding in the design of an oxygen system. The use of test data from this test method has been questioned due to lack of a clear method of application of the data and variability found between tests, material batches, and facilities. This effort explores a large database that has accumulated over a number of years and explores its overall nature. Moreover, testing was performed to determine the statistical nature of the test procedure to help establish sample size guidelines for material characterization. The current method of determining a pass/fail criterion based on either light emission or sound report or material charring is questioned.

  14. PTFE-nanocomposites structure and wear-resistance changing in various methods of structural modification

    NASA Astrophysics Data System (ADS)

    Mashkov, Yu K.; Ruban, A. S.; Rogachev, E. A.; Chemisenko, O. V.

    2018-01-01

    Conditions of polymer materials usage containing nanoelements as modifiers significantly affect the requirements for their physic-mechanical and tribological properties. However, the mechanisms of nanoparticles effect to the polymers tribotechnical properties have not been studied enough. The article aim is to analyze the results of studying polytetrafluoroethylene modified with cryptocrystalline graphite and silicon dioxide and to determine the effectiveness of the modification methods used and methods for further improving filled PTFE mechanical and tribotechnical properties. The effect of modifiers to PCM supramolecular structure was analyzed with SEM methods. The results of modifying the PCM samples surface by depositing a copper film with ion-vacuum deposition methods and changing the structural-phase composition and tribological characteristics are considered. The findings make possible to characterize the physicochemical processes under frictional interaction in metal polymer tribosystems.

  15. Advanced image based methods for structural integrity monitoring: Review and prospects

    NASA Astrophysics Data System (ADS)

    Farahani, Behzad V.; Sousa, Pedro José; Barros, Francisco; Tavares, Paulo J.; Moreira, Pedro M. G. P.

    2018-02-01

    There is a growing trend in engineering to develop methods for structural integrity monitoring and characterization of in-service mechanical behaviour of components. The fast growth in recent years of image processing techniques and image-based sensing for experimental mechanics, brought about a paradigm change in phenomena sensing. Hence, several widely applicable optical approaches are playing a significant role in support of experiment. The current review manuscript describes advanced image based methods for structural integrity monitoring, and focuses on methods such as Digital Image Correlation (DIC), Thermoelastic Stress Analysis (TSA), Electronic Speckle Pattern Interferometry (ESPI) and Speckle Pattern Shearing Interferometry (Shearography). These non-contact full-field techniques rely on intensive image processing methods to measure mechanical behaviour, and evolve even as reviews such as this are being written, which justifies a special effort to keep abreast of this progress.

  16. Methods of Soft Tissue Emulsification Using a Mechanism of Ultrasonic Atomization Inside Gas or Vapor Cavities and Associated Systems and Devices

    NASA Technical Reports Server (NTRS)

    Bailey, Michael R. (Inventor); Simon, Julianna C. (Inventor); Crum, Lawrence A. (Inventor); Khokhlova, Vera A. (Inventor); Wang, Yak-Nam (Inventor); Sapozhnikov, Oleg A. (Inventor); Khokhlova, Tatiana D. (Inventor)

    2016-01-01

    The present technology is directed to methods of soft tissue emulsification using a mechanism of ultrasonic atomization inside gas or vapor cavities, and associated systems and devices. In several embodiments, for example, a method of non-invasively treating tissue includes pulsing ultrasound energy from the ultrasound source toward the target site in tissue. The ultrasound source is configured to emit high intensity focused ultrasound (HIFU) waves. The target site comprises a pressure-release interface of a gas or vapor cavity located within the tissue. The method continues by generating shock waves in the tissue to induce a lesion in the tissue at the target site. The method additionally includes characterizing the lesion based on a degree of at least one of a mechanical or thermal ablation of the tissue.

  17. System identification of closed-loop cardiovascular control: effects of posture and autonomic blockade

    NASA Technical Reports Server (NTRS)

    Mullen, T. J.; Appel, M. L.; Mukkamala, R.; Mathias, J. M.; Cohen, R. J.

    1997-01-01

    We applied system identification to the analysis of fluctuations in heart rate (HR), arterial blood pressure (ABP), and instantaneous lung volume (ILV) to characterize quantitatively the physiological mechanisms responsible for the couplings between these variables. We characterized two autonomically mediated coupling mechanisms [the heart rate baroreflex (HR baroreflex) and respiratory sinus arrhythmia (ILV-HR)] and two mechanically mediated coupling mechanisms [the blood pressure wavelet generated with each cardiac contraction (circulatory mechanics) and the direct mechanical effects of respiration on blood pressure (ILV-->ABP)]. We evaluated the method in humans studied in the supine and standing postures under control conditions and under conditions of beta-sympathetic and parasympathetic pharmacological blockades. Combined beta-sympathetic and parasympathetic blockade abolished the autonomically mediated couplings while preserving the mechanically mediated coupling. Selective autonomic blockade and postural changes also altered the couplings in a manner consistent with known physiological mechanisms. System identification is an "inverse-modeling" technique that provides a means for creating a closed-loop model of cardiovascular regulation for an individual subject without altering the underlying physiological control mechanisms.

  18. Mechanism and structure of the plant plasma membrane Ca{sup 2+}-ATPase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briskin, D.P.

    1993-12-31

    Objectives of this project were the following: development of an enriched preparation of the red beet plasma membrane Ca{sup 2+} ATPase in order to develop a procedure for detergent solubilization of the enzyme from the membrane using detergents, resolution by a method which could be upscaled for batch isolation, and then reconstitution into liposomes to allow characterization of Ca{sup 2+} transport by the purified enzyme and; characterization of the reaction mechanism for the coupling of nucleoside triphosphate hydrolysis to Ca{sup 2+} transport as mediated by the plasma membrane Ca{sup 2+} ATPase.

  19. Shear wave induced resonance elastography of spherical masses with polarized torsional waves

    NASA Astrophysics Data System (ADS)

    Hadj Henni, Anis; Schmitt, Cédric; Trop, Isabelle; Cloutier, Guy

    2012-03-01

    Shear wave induced resonance (SWIR) is a technique for dynamic ultrasound elastography of confined mechanical inclusions. It was developed for breast tumor imaging and tissue characterization. This method relies on the polarization of torsional shear waves modeled with the Helmholtz equation in spherical coordinates. To validate modeling, an invitro set-up was used to measure and image the first three eigenfrequencies and eigenmodes of a soft sphere. A preliminary invivo SWIR measurement on a breast fibroadenoma is also reported. Results revealed the potential of SWIR elastography to detect and mechanically characterize breast lesions for early cancer detection.

  20. Shear wave induced resonance elastography of spherical masses with polarized torsional waves.

    PubMed

    Henni, Anis Hadj; Schmitt, Cédric; Trop, Isabelle; Cloutier, Guy

    2012-03-26

    Shear Wave Induced Resonance (SWIR) is a technique for dynamic ultrasound elastography of confined mechanical inclusions. It was developed for breast tumor imaging and tissue characterization. This method relies on the polarization of torsional shear waves modeled with the Helmholtz equation in spherical coordinates. To validate modeling, an in vitro set-up was used to measure and image the first three eigenfrequencies and eigenmodes of a soft sphere. A preliminary in vivo SWIR measurement on a breast fibroadenoma is also reported. Results revealed the potential of SWIR elastography to detect and mechanically characterize breast lesions for early cancer detection.

  1. Characterizing viscoelastic mechanical properties of highly compliant polymers and biological tissues using impact indentation.

    PubMed

    Mijailovic, Aleksandar S; Qing, Bo; Fortunato, Daniel; Van Vliet, Krystyn J

    2018-04-15

    Precise and accurate measurement of viscoelastic mechanical properties becomes increasingly challenging as sample stiffness decreases to elastic moduli <1 kPa, largely due to difficulties detecting initial contact with the compliant sample surface. This limitation is particularly relevant to characterization of biological soft tissues and compliant gels. Here, we employ impact indentation which, in contrast to shear rheology and conventional indentation, does not require contact detection a priori, and present a novel method to extract viscoelastic moduli and relaxation time constants directly from the impact response. We first validate our approach by using both impact indentation and shear rheology to characterize polydimethylsiloxane (PDMS) elastomers of stiffness ranging from 100 s of Pa to nearly 10 kPa. Assuming a linear viscoelastic constitutive model for the material, we find that the moduli and relaxation times obtained from fitting the impact response agree well with those obtained from fitting the rheological response. Next, we demonstrate our validated method on hydrated, biological soft tissues obtained from porcine brain, murine liver, and murine heart, and report the equilibrium shear moduli, instantaneous shear moduli, and relaxation time constants for each tissue. Together, our findings provide a new and straightforward approach capable of probing local mechanical properties of highly compliant viscoelastic materials with millimeter scale spatial resolution, mitigating complications involving contact detection or sample geometric constraints. Characterization and optimization of mechanical properties can be essential for the proper function of biomaterials in diverse applications. However, precise and accurate measurement of viscoelastic mechanical properties becomes increasingly difficult with increased compliance (particularly for elastic moduli <1 kPa), largely due to challenges detecting initial contact with the compliant sample surface and measuring response at short timescale or high frequency. By contrast, impact indentation has highly accurate contact detection and can be used to measure short timescale (glassy) response. Here, we demonstrate an experimental and analytical method that confers significant advantages over existing approaches to extract spatially resolved viscoelastic moduli and characteristic time constants of biological tissues (e.g., brain and heart) and engineered biomaterials. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. In situ MEMS testing: correlation of high-resolution X-ray diffraction with mechanical experiments and finite element analysis

    NASA Astrophysics Data System (ADS)

    Schifferle, Andreas; Dommann, Alex; Neels, Antonia

    2017-12-01

    New methods are needed in microsystems technology for evaluating microelectromechanical systems (MEMS) because of their reduced size. The assessment and characterization of mechanical and structural relations of MEMS are essential to assure the long-term functioning of devices, and have a significant impact on design and fabrication.

  3. Modeling of a Micro-Electronic Mechanical Systems (MEMS) Deformable Mirror for Simulation and Characterization

    DTIC Science & Technology

    2016-09-01

    1  II.  MODEL DESIGN ...Figure 10.  Experimental Optical Layout for the Boston DM Characterization ..........13  Figure 11.  Side View Showing the Curved Surface on a DM...of different methods for deposition, patterning, and etching until the desired design of the device is achieved. While a large number of devices

  4. Monitoring microstructural evolution of alloy 617 with non-linear acoustics for remaining useful life prediction; multiaxial creep-fatigue and creep-ratcheting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lissenden, Cliff; Hassan, Tasnin; Rangari, Vijaya

    The research built upon a prior investigation to develop a unified constitutive model for design-­by-­analysis of the intermediate heat exchanger (IHX) for a very high temperature reactor (VHTR) design of next generation nuclear plants (NGNPs). Model development requires a set of failure data from complex mechanical experiments to characterize the material behavior. Therefore uniaxial and multiaxial creep-­fatigue and creep-­ratcheting tests were conducted on the nickel-­base Alloy 617 at 850 and 950°C. The time dependence of material behavior, and the interaction of time dependent behavior (e.g., creep) with ratcheting, which is an increase in the cyclic mean strain under load-­controlled cycling,more » are major concerns for NGNP design. This research project aimed at characterizing the microstructure evolution mechanisms activated in Alloy 617 by mechanical loading and dwell times at elevated temperature. The acoustic harmonic generation method was researched for microstructural characterization. It is a nonlinear acoustics method with excellent potential for nondestructive evaluation, and even online continuous monitoring once high temperature sensors become available. It is unique because it has the ability to quantitatively characterize microstructural features well before macroscale defects (e.g., cracks) form. The nonlinear acoustics beta parameter was shown to correlate with microstructural evolution using a systematic approach to handle the complexity of multiaxial creep-­fatigue and creep-­ratcheting deformation. Mechanical testing was conducted to provide a full spectrum of data for: thermal aging, tensile creep, uniaxial fatigue, uniaxial creep-­fatigue, uniaxial creep-ratcheting, multiaxial creep-fatigue, and multiaxial creep-­ratcheting. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Optical Microscopy were conducted to correlate the beta parameter with individual microstructure mechanisms. We researched application of the harmonic generation method to tubular mechanical test specimens and pipes for nondestructive evaluation. Tubular specimens and pipes act as waveguides, thus we applied the acoustic harmonic generation method to guided waves in both plates and shells. Magnetostrictive transducers were used to generate and receive guided wave modes in the shell sample and the received signals were processed to show the sensitivity of higher harmonic generation to microstructure evolution. Modeling was initiated to correlate higher harmonic generation with the microstructure that will lead to development of a life prediction model that is informed by the nonlinear acoustics measurements.« less

  5. Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics

    NASA Astrophysics Data System (ADS)

    Dagdeviren, Canan; Shi, Yan; Joe, Pauline; Ghaffari, Roozbeh; Balooch, Guive; Usgaonkar, Karan; Gur, Onur; Tran, Phat L.; Crosby, Jessi R.; Meyer, Marcin; Su, Yewang; Chad Webb, R.; Tedesco, Andrew S.; Slepian, Marvin J.; Huang, Yonggang; Rogers, John A.

    2015-07-01

    Mechanical assessment of soft biological tissues and organs has broad relevance in clinical diagnosis and treatment of disease. Existing characterization methods are invasive, lack microscale spatial resolution, and are tailored only for specific regions of the body under quasi-static conditions. Here, we develop conformal and piezoelectric devices that enable in vivo measurements of soft tissue viscoelasticity in the near-surface regions of the epidermis. These systems achieve conformal contact with the underlying complex topography and texture of the targeted skin, as well as other organ surfaces, under both quasi-static and dynamic conditions. Experimental and theoretical characterization of the responses of piezoelectric actuator-sensor pairs laminated on a variety of soft biological tissues and organ systems in animal models provide information on the operation of the devices. Studies on human subjects establish the clinical significance of these devices for rapid and non-invasive characterization of skin mechanical properties.

  6. Experimental Evolution of Diverse Strains as a Method for the Determination of Biochemical Mechanisms of Action for Novel Pyrrolizidinone Antibiotics.

    PubMed

    Beabout, Kathryn; McCurry, Megan D; Mehta, Heer; Shah, Akshay A; Pulukuri, Kiran Kumar; Rigol, Stephan; Wang, Yanping; Nicolaou, K C; Shamoo, Yousif

    2017-11-10

    The continuing rise of multidrug resistant pathogens has made it clear that in the absence of new antibiotics we are moving toward a "postantibiotic" world, in which even routine infections will become increasingly untreatable. There is a clear need for the development of new antibiotics with truly novel mechanisms of action to combat multidrug resistant pathogens. Experimental evolution to resistance can be a useful tactic for the characterization of the biochemical mechanism of action for antibiotics of interest. Herein, we demonstrate that the use of a diverse panel of strains with well-annotated reference genomes improves the success of using experimental evolution to characterize the mechanism of action of a novel pyrrolizidinone antibiotic analog. Importantly, we used experimental evolution under conditions that favor strongly polymorphic populations to adapt a panel of three substantially different Gram-positive species (lab strain Bacillus subtilis and clinical strains methicillin-resistant Staphylococcus aureus MRSA131 and Enterococcus faecalis S613) to produce a sufficiently diverse set of evolutionary outcomes. Comparative whole genome sequencing (WGS) between the susceptible starting strain and the resistant strains was then used to identify the genetic changes within each species in response to the pyrrolizidinone. Taken together, the adaptive response across a range of organisms allowed us to develop a readily testable hypothesis for the mechanism of action of the CJ-16 264 analog. In conjunction with mitochondrial inhibition studies, we were able to elucidate that this novel pyrrolizidinone antibiotic is an electron transport chain (ETC) inhibitor. By studying evolution to resistance in a panel of different species of bacteria, we have developed an enhanced method for the characterization of new lead compounds for the discovery of new mechanisms of action.

  7. Characterizing the mechanical behavior of the zebrafish germ layers

    NASA Astrophysics Data System (ADS)

    Kealhofer, David; Serwane, Friedhelm; Mongera, Alessandro; Rowghanian, Payam; Lucio, Adam; Campàs, Otger

    Organ morphogenesis and the development of the animal body plan involve complex spatial and temporal control of tissue- and cell-level mechanics. A prime example is the generation of stresses by individual cells to reorganize the tissue. These processes have remained poorly understood due to a lack of techniques to characterize the local constitutive law of the material, which relates local cellular forces to the resulting tissue flows. We have developed a method for quantitative, local in vivo study of material properties in living tissue using magnetic droplet probes. We use this technique to study the material properties of the different zebrafish germ layers using aggregates of zebrafish mesendodermal and ectodermal cells as a model system. These aggregates are ideal for controlled studies of the mechanics of individual germ layers because of the homogeneity of the cell type and the simple spherical geometry. Furthermore, the numerous molecular tools and transgenic lines already developed for this model organism can be applied to these aggregates, allowing us to characterize the contributions of cell cortex tension and cell adhesion to the mechanical properties of the zebrafish germ layers.

  8. Fabrication and characterization of an ultrasensitive acousto-optical cantilever

    NASA Astrophysics Data System (ADS)

    Sievilä, P.; Rytkönen, V.-P.; Hahtela, O.; Chekurov, N.; Kauppinen, J.; Tittonen, I.

    2007-05-01

    A cantilever-type silicon device for sensing changes in pressure has been designed, fabricated and characterized. The microfabrication process is based on two-sided etching of silicon-on insulator (SOI) wafers. The rectangular cantilevers are 9.5 µm thick, and cover an area of a few square millimeters. The cantilevers are surrounded by thick and tight frames, since on the three free sides there are only narrow, micrometer sized air gaps between the cantilever and the frame. This design and excellent mechanical properties of single crystal silicon enable sensitive detection of time-dependent gas pressure variations, i.e. acoustic waves. The mechanical properties of the cantilever have been characterized by analyzing its dynamic behavior. The resonance frequency and the mechanical vibrational mode patterns have been determined using finite-element method (FEM) simulations and laser interferometry. These results are found to be in good agreement with each other. Initially this mechanical door-like cantilever was designed to be used in ultra-high sensitivity photoacoustic gas sensing, but it can also be applied quite generally in various kinds of sound wave detection schemes.

  9. Phase imaging of mechanical properties of live cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wax, Adam

    2017-02-01

    The mechanisms by which cells respond to mechanical stimuli are essential for cell function yet not well understood. Many rheological tools have been developed to characterize cellular viscoelastic properties but these typically require direct mechanical contact, limiting their throughput. We have developed a new approach for characterizing the organization of subcellular structures using a label free, noncontact, single-shot phase imaging method that correlates to measured cellular mechanical stiffness. The new analysis approach measures refractive index variance and relates it to disorder strength. These measurements are compared to cellular stiffness, measured using the same imaging tool to visualize nanoscale responses to flow shear stimulus. The utility of the technique is shown by comparing shear stiffness and phase disorder strength across five cellular populations with varying mechanical properties. An inverse relationship between disorder strength and shear stiffness is shown, suggesting that cell mechanical properties can be assessed in a format amenable to high throughput studies using this novel, non-contact technique. Further studies will be presented which include examination of mechanical stiffness in early carcinogenic events and investigation of the role of specific cellular structural proteins in mechanotransduction.

  10. New experimental method to study acid/base transporters and their regulation in lacrimal gland ductal epithelia.

    PubMed

    Tóth-Molnár, Edit; Venglovecz, Viktória; Ozsvári, Béla; Rakonczay, Zoltán; Varró, András; Papp, Julius G; Tóth, András; Lonovics, János; Takács, Tamás; Ignáth, Imre; Iványi, Béla; Hegyi, Péter

    2007-08-01

    The main function of the lacrimal gland is to produce the most aqueous component of the tear film covering the surfaces of the cornea and the conjunctiva. Studies have been conducted that characterize the mixed fluid and protein secretion of isolated acini, but no methods have been developed to characterize lacrimal gland ductal cell (LGDC) secretion. Secretory mechanisms of ductal epithelia may play physiological roles in the maintenance of the standard environments for the cornea and the conjunctiva. In this study, the authors developed a rapid method to isolate large quantities of intact lacrimal ducts. The preparation of isolated intact lacrimal gland ducts for the first time enabled the performance of real-time functional experiments on cleaned ducts. Electron microscopy and fluorescence measurements were used to evaluate the viability of lacrimal ducts. Fluorescence measurements showed that LGDCs express functionally active Na(+)/H(+) exchanger (NHE) and Cl(-)/HCO(3)(-) exchanger (AE). Parasympathomimetic stimulation by carbachol stimulated NHE and AE through the elevation of intracellular calcium concentration. This mechanism can play a role in the regulation of ion and water secretion by LGDCs. The authors have described a lacrimal gland duct isolation technique in which the intact ducts remain viable and the role of duct cells in tear film secretion can be characterized. These data combined with the novel isolation facilitated understanding of the regulation mechanisms of ductal cell secretion at cellular and molecular levels under normal and pathologic conditions.

  11. Flexible Material Systems Testing

    NASA Technical Reports Server (NTRS)

    Lin, John K.; Shook, Lauren S.; Ware, Joanne S.; Welch, Joseph V.

    2010-01-01

    An experimental program has been undertaken to better characterize the stress-strain characteristics of flexible material systems to support a NASA ground test program for inflatable decelerator material technology. A goal of the current study is to investigate experimental methods for the characterization of coated woven material stiffness. This type of experimental mechanics data would eventually be used to define the material inputs of fluid-structure interaction simulation models. The test methodologies chosen for this stress-strain characterization are presented along with the experimental results.

  12. Simultaneous Contact Sensing and Characterizing of Mechanical and Dynamic Heat Transfer Properties of Porous Polymeric Materials

    PubMed Central

    Yao, Bao-Guo; Peng, Yun-Liang; Zhang, De-Pin

    2017-01-01

    Porous polymeric materials, such as textile fabrics, are elastic and widely used in our daily life for garment and household products. The mechanical and dynamic heat transfer properties of porous polymeric materials, which describe the sensations during the contact process between porous polymeric materials and parts of the human body, such as the hand, primarily influence comfort sensations and aesthetic qualities of clothing. A multi-sensory measurement system and a new method were proposed to simultaneously sense the contact and characterize the mechanical and dynamic heat transfer properties of porous polymeric materials, such as textile fabrics in one instrument, with consideration of the interactions between different aspects of contact feels. The multi-sensory measurement system was developed for simulating the dynamic contact and psychological judgment processes during human hand contact with porous polymeric materials, and measuring the surface smoothness, compression resilience, bending and twisting, and dynamic heat transfer signals simultaneously. The contact sensing principle and the evaluation methods were presented. Twelve typical sample materials with different structural parameters were measured. The results of the experiments and the interpretation of the test results were described. An analysis of the variance and a capacity study were investigated to determine the significance of differences among the test materials and to assess the gage repeatability and reproducibility. A correlation analysis was conducted by comparing the test results of this measurement system with the results of Kawabata Evaluation System (KES) in separate instruments. This multi-sensory measurement system provides a new method for simultaneous contact sensing and characterizing of mechanical and dynamic heat transfer properties of porous polymeric materials. PMID:29084152

  13. Simultaneous Contact Sensing and Characterizing of Mechanical and Dynamic Heat Transfer Properties of Porous Polymeric Materials.

    PubMed

    Yao, Bao-Guo; Peng, Yun-Liang; Zhang, De-Pin

    2017-10-30

    Porous polymeric materials, such as textile fabrics, are elastic and widely used in our daily life for garment and household products. The mechanical and dynamic heat transfer properties of porous polymeric materials, which describe the sensations during the contact process between porous polymeric materials and parts of the human body, such as the hand, primarily influence comfort sensations and aesthetic qualities of clothing. A multi-sensory measurement system and a new method were proposed to simultaneously sense the contact and characterize the mechanical and dynamic heat transfer properties of porous polymeric materials, such as textile fabrics in one instrument, with consideration of the interactions between different aspects of contact feels. The multi-sensory measurement system was developed for simulating the dynamic contact and psychological judgment processes during human hand contact with porous polymeric materials, and measuring the surface smoothness, compression resilience, bending and twisting, and dynamic heat transfer signals simultaneously. The contact sensing principle and the evaluation methods were presented. Twelve typical sample materials with different structural parameters were measured. The results of the experiments and the interpretation of the test results were described. An analysis of the variance and a capacity study were investigated to determine the significance of differences among the test materials and to assess the gage repeatability and reproducibility. A correlation analysis was conducted by comparing the test results of this measurement system with the results of Kawabata Evaluation System (KES) in separate instruments. This multi-sensory measurement system provides a new method for simultaneous contact sensing and characterizing of mechanical and dynamic heat transfer properties of porous polymeric materials.

  14. Experimental Study in Taguchi Method on Surface Quality Predication of HSM

    NASA Astrophysics Data System (ADS)

    Ji, Yan; Li, Yueen

    2018-05-01

    Based on the study of ball milling mechanism and machining surface formation mechanism, the formation of high speed ball-end milling surface is a time-varying and cumulative Thermos-mechanical coupling process. The nature of this problem is that the uneven stress field and temperature field affect the machined surface Process, the performance of the processing parameters in the processing interaction in the elastic-plastic materials produced by the elastic recovery and plastic deformation. The surface quality of machining surface is characterized by multivariable nonlinear system. It is still an indispensable and effective method to study the surface quality of high speed ball milling by experiments.

  15. A Practical Quantum Mechanics Molecular Mechanics Method for the Dynamical Study of Reactions in Biomolecules.

    PubMed

    Mendieta-Moreno, Jesús I; Marcos-Alcalde, Iñigo; Trabada, Daniel G; Gómez-Puertas, Paulino; Ortega, José; Mendieta, Jesús

    2015-01-01

    Quantum mechanics/molecular mechanics (QM/MM) methods are excellent tools for the modeling of biomolecular reactions. Recently, we have implemented a new QM/MM method (Fireball/Amber), which combines an efficient density functional theory method (Fireball) and a well-recognized molecular dynamics package (Amber), offering an excellent balance between accuracy and sampling capabilities. Here, we present a detailed explanation of the Fireball method and Fireball/Amber implementation. We also discuss how this tool can be used to analyze reactions in biomolecules using steered molecular dynamics simulations. The potential of this approach is shown by the analysis of a reaction catalyzed by the enzyme triose-phosphate isomerase (TIM). The conformational space and energetic landscape for this reaction are analyzed without a priori assumptions about the protonation states of the different residues during the reaction. The results offer a detailed description of the reaction and reveal some new features of the catalytic mechanism. In particular, we find a new reaction mechanism that is characterized by the intramolecular proton transfer from O1 to O2 and the simultaneous proton transfer from Glu 165 to C2. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Nondestructive mechanical characterization of developing biological tissues using inflation testing.

    PubMed

    Oomen, P J A; van Kelle, M A J; Oomens, C W J; Bouten, C V C; Loerakker, S

    2017-10-01

    One of the hallmarks of biological soft tissues is their capacity to grow and remodel in response to changes in their environment. Although it is well-accepted that these processes occur at least partly to maintain a mechanical homeostasis, it remains unclear which mechanical constituent(s) determine(s) mechanical homeostasis. In the current study a nondestructive mechanical test and a two-step inverse analysis method were developed and validated to nondestructively estimate the mechanical properties of biological tissue during tissue culture. Nondestructive mechanical testing was achieved by performing an inflation test on tissues that were cultured inside a bioreactor, while the tissue displacement and thickness were nondestructively measured using ultrasound. The material parameters were estimated by an inverse finite element scheme, which was preceded by an analytical estimation step to rapidly obtain an initial estimate that already approximated the final solution. The efficiency and accuracy of the two-step inverse method was demonstrated on virtual experiments of several material types with known parameters. PDMS samples were used to demonstrate the method's feasibility, where it was shown that the proposed method yielded similar results to tensile testing. Finally, the method was applied to estimate the material properties of tissue-engineered constructs. Via this method, the evolution of mechanical properties during tissue growth and remodeling can now be monitored in a well-controlled system. The outcomes can be used to determine various mechanical constituents and to assess their contribution to mechanical homeostasis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Novel instrument for characterizing comprehensive physical properties under multi-mechanical loads and multi-physical field coupling conditions

    NASA Astrophysics Data System (ADS)

    Liu, Changyi; Zhao, Hongwei; Ma, Zhichao; Qiao, Yuansen; Hong, Kun; Ren, Zhuang; Zhang, Jianhai; Pei, Yongmao; Ren, Luquan

    2018-02-01

    Functional materials represented by ferromagnetics and ferroelectrics are widely used in advanced sensor and precision actuation due to their special characterization under coupling interactions of complex loads and external physical fields. However, the conventional devices for material characterization can only provide a limited type of loads and physical fields and cannot simulate the actual service conditions of materials. A multi-field coupling instrument for characterization has been designed and implemented to overcome this barrier and measure the comprehensive physical properties under complex service conditions. The testing forms include tension, compression, bending, torsion, and fatigue in mechanical loads, as well as different external physical fields, including electric, magnetic, and thermal fields. In order to offer a variety of information to reveal mechanical damage or deformation forms, a series of measurement methods at the microscale are integrated with the instrument including an indentation unit and in situ microimaging module. Finally, several coupling experiments which cover all the loading and measurement functions of the instrument have been implemented. The results illustrate the functions and characteristics of the instrument and then reveal the variety in mechanical and electromagnetic properties of the piezoelectric transducer ceramic, TbDyFe alloy, and carbon fiber reinforced polymer under coupling conditions.

  18. Normalized stiffness ratios for mechanical characterization of isotropic acoustic foams.

    PubMed

    Sahraoui, Sohbi; Brouard, Bruno; Benyahia, Lazhar; Parmentier, Damien; Geslain, Alan

    2013-12-01

    This paper presents a method for the mechanical characterization of isotropic foams at low frequency. The objective of this study is to determine the Young's modulus, the Poisson's ratio, and the loss factor of commercially available foam plates. The method is applied on porous samples having square and circular sections. The main idea of this work is to perform quasi-static compression tests of a single foam sample followed by two juxtaposed samples having the same dimensions. The load and displacement measurements lead to a direct extraction of the elastic constants by means of normalized stiffness and normalized stiffness ratio which depend on Poisson's ratio and shape factor. The normalized stiffness is calculated by the finite element method for different Poisson ratios. The no-slip boundary conditions imposed by the loading rigid plates create interfaces with a complex strain distribution. Beforehand, compression tests were performed by means of a standard tensile machine in order to determine the appropriate pre-compression rate for quasi-static tests.

  19. Application of micromechanics to the characterization of mortar by ultrasound.

    PubMed

    Hernández, M G; Anaya, J J; Izquierdo, M A G; Ullate, L G

    2002-05-01

    Mechanical properties of concrete and mortar structures can be estimated by ultrasonic non-destructive testing. When the ultrasonic velocity is known, there are standardized methods based on considering the concrete a homogeneous material. Cement composites, however, are heterogeneous and porous, and have a negative effect on the mechanical properties of structures. This work studies the impact of porosity on mechanical properties by considering concrete a multiphase material. A micromechanical model is applied in which the material is considered to consist of two phases: a solid matrix and pores. From this method, a set of expressions is obtained that relates the acoustic velocity and Young's modulus of mortar. Experimental work is based on non-destructive and destructive procedures over mortar samples whose porosity is varied. A comparison is drawn between micromechanical and standard methods, showing positive results for the method here proposed.

  20. Research on aviation fuel instability

    NASA Technical Reports Server (NTRS)

    Baker, C. E.; Bittker, D. A.; Cohen, S. M.; Seng, G. T.

    1983-01-01

    The underlying causes of fuel thermal degradation are discussed. Topics covered include: nature of fuel instability and its temperature dependence, methods of measuring the instability, chemical mechanisms involved in deposit formation, and instrumental methods for characterizing fuel deposits. Finally, some preliminary thoughts on design approaches for minimizing the effects of lowered thermal stability are briefly discussed.

  1. Characterization of Mechanical Properties and Residual Stress in API 5L X80 Steel Welded Joints

    NASA Astrophysics Data System (ADS)

    de Sousa Lins, Amilton; de Souza, Luís Felipe Guimarães; Fonseca, Maria Cindra

    2018-01-01

    The use of high-strength and low-alloy steels, high design factors and increasingly stringent safety requirements have increased the operating pressure levels and, consequently, the need for further studies to avoid and prevent premature pipe failure. To evaluate the possibility of improving productivity in manual arc welding of this type of steel, this work characterizes the mechanical properties and residual stresses in API 5L X80 steel welded joints using the SMAW and FCAW processes. The residual stresses were analyzed using x-ray diffraction with the sin2 ψ method at the top and root of the welded joints in the longitudinal and transverse directions of the weld bead. The mechanical properties of the welded joints by both processes were characterized in terms of tensile strength, impact toughness and Vickers microhardness in the welded and shot peening conditions. A predominantly compressive residual stress was found, and shot peening increased the tensile strength and impact toughness in both welded joints.

  2. Mechanical characterization of thin TiO2 films by means of microelectromechanical systems-based cantilevers

    NASA Astrophysics Data System (ADS)

    Adami, A.; Decarli, M.; Bartali, R.; Micheli, V.; Laidani, N.; Lorenzelli, L.

    2010-01-01

    The measurement of mechanical parameters by means of microcantilever structures offers a reliable and accurate alternative to traditional methods, especially when dealing with thin films, which are extensively used in microfabrication technology and nanotechnology. In this work, microelectromechanical systems (MEMS)-based piezoresistive cantilevers were realized and used for the determination of Young's modulus and residual stress of thin titanium dioxide (TiO2) deposited by sputtering from a TiO2 target using a rf plasma discharge. Films were deposited at different thicknesses, ranging from a few to a hundred nanometers. Dedicated silicon microcantilevers were designed through an optimization of geometrical parameters with the development of analytical as well as numerical models. Young's modulus and residual stress of sputtered TiO2 films were assessed by using both mechanical characterization based on scanning profilometers and piezoresistive sensing elements integrated in the silicon cantilevers. Results of MEMS-based characterization were combined with the tribological and morphological properties measured by microscratch test and x-ray diffraction analysis.

  3. Accelerated Thermal Cycling and Failure Mechanisms

    NASA Technical Reports Server (NTRS)

    Ghaffarian, R.

    1999-01-01

    This paper reviews the accelerated thermal cycling test methods that are currently used by industry to characterize the interconnect reliability of commercial-off-the-shelf (COTS) ball grid array (BGA) and chip scale package (CSP) assemblies.

  4. Mechanical properties of the rust layer induced by impressed current method in reinforced mortar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Care, S.; Nguyen, Q.T.; L'Hostis, V.

    This paper describes the mechanical effects of rust layer formed in reinforced mortar through accelerated tests of corrosion. The morphological and physico-chemical properties (composition, structures) of the corrosion system were characterized at different stages by using optical microscope and scanning electron microscope coupled with energy dispersive spectroscopy. The corrosion pattern was mainly characterized by a rust layer confined at the interface between the steel and the mortar. Expansion coefficient of rust products was determined from the rust thickness and the Faraday's law. Furthermore, in order to understand the mechanical effects of corrosion on the damage of mortar, displacement field measurementsmore » were obtained by using digital image correlation. An analytical model (hollow cylinder subjected to inner and outer pressures) was used with a set of experimental data to deduce the time of cracking and the order of magnitude of the mechanical properties of the rust layer.« less

  5. Characterization of the dominant loss mechanisms in superconducting coplanar waveguide resonators

    NASA Astrophysics Data System (ADS)

    Calusine, Greg; Melville, Alexander; Woods, Wayne; Kim, David K.; Miloshi, Xhovalin; Sevi, Arjan; Yoder, Jonilyn; Oliver, William D.

    The characterization of losses in superconducting coplanar waveguide (CPW) resonators is commonly used as a surrogate means to probe relaxation in superconducting qubit capacitor structures. However, this method is complicated by device-to-device variations that result from a sensitivity to variations in fabrication processes, packaging, and measurement methods. We present results on characterizing ensembles of aluminum, niobium, and titanium nitride superconducting CPW resonators to determine the statistical significance of the effects of fabrication process changes on resonator intrinsic quality factor. Furthermore, we report progress on experiments aimed at determining the impact of other competing loss mechanisms such as vortex trapping, package coupling, and substrate loss. These results are then applied to the study of relaxation in superconducting qubits and investigations into the microscopic origins of surface losses. This research was funded in part by the Intelligence Advanced Research Projects Activity (IARPA). The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of IARPA or the US Government.

  6. Comparison of three different scales techniques for the dynamic mechanical characterization of two polymers (PDMS and SU8)

    NASA Astrophysics Data System (ADS)

    Le Rouzic, J.; Delobelle, P.; Vairac, P.; Cretin, B.

    2009-10-01

    In this article the dynamic mechanical characterization of PDMS and SU8 resin using dynamic mechanical analysis, nanoindentation and the scanning microdeformation microscope have been presented. The methods are hereby explained, extended for viscoelastic behaviours, and their compatibility underlined. The storage and loss moduli of these polymers over a wide range of frequencies (from 0.01 Hz to somekHz) have been measured. These techniques are shown fairly matching and the two different viscoelastic behaviours of these two polymers have been exhibited. Indeed, PDMS shows moduli which still increase at 5kHz whereas SU8 ones decrease much sooner. From a material point of view, the Havriliak and Negami model to estimate instantaneous, relaxed moduli and time constant of these materials has been identified.

  7. Synthesis and Characterization of Nanodiamond Reinforced Chitosan for Bone Tissue Engineering

    PubMed Central

    Sun, Yu; Yang, Qiaoqin; Wang, Haidong

    2016-01-01

    Multifunctional tissue scaffold material nanodiamond (ND)/chitosan (CS) composites with different diamond concentrations from 1 wt % to 5 wt % were synthesized through a solution casting method. The microstructure and mechanical properties of the composites were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and nanoindentation. Compared with pristine CS, the addition of ND resulted in a significant improvement of mechanical properties, including a 239%, 276%, 321%, 333%, and 343% increase in Young’s modulus and a 68%, 96%, 114%, 118%, and 127% increase in hardness when the ND amount was 1 wt %, 2 wt %, 3 wt %, 4 wt %, and 5 wt %, respectively. The strong interaction between ND surface groups and the chitosan matrix plays an important role in improving mechanical properties. PMID:27649252

  8. Mechanical and Microstructural Effects of Thermal Aging on Cast Duplex Stainless Steels by Experiment and Finite Element Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarm, Samuel C.; Mburu, Sarah N.; Kolli, Ratna P.

    Cast duplex stainless steel piping in light water nuclear reactors expe- rience thermal aging embrittlement during operational service. Interest in extending the operational life to 80 years requires an increased understanding of the microstructural evolution and corresponding changes in mechanical behavior. We analyze the evolution of the microstructure during thermal aging of cast CF-3 and CF-8 stainless steels using electron microscopy and atom probe tomography. The evolution of the mechanical properties is measured concurrently by mechanical methods such as tensile tests, Charpy V-notch tests, and instrumented nanoinden- tation. A microstructure-based finite element method model is developed and uti- lized inmore » conjunction with the characterization results in order to correlate the local stress-strain effects in the microstructure with the bulk measurements. This work is supported by the DOE Nuclear Energy University Programs (NEUP), contract number DE-NE0000724.« less

  9. Characterization of HEM silicon for solar cells. [Heat Exchanger Method

    NASA Technical Reports Server (NTRS)

    Dumas, K. A.; Khattak, C. P.; Schmid, F.

    1981-01-01

    The Heat Exchanger Method (HEM) is a promising low-cost ingot casting process for material used for solar cells. This is the only method that is capable of casting single crystal ingots with a square cross section using a directional solidification technique. This paper describes the chemical, mechanical and electrical properties of the HEM silicon material as a function of position within the ingot.

  10. Mechanisms of action of particles used for fouling mitigation in membrane bioreactors.

    PubMed

    Loulergue, P; Weckert, M; Reboul, B; Cabassud, C; Uhl, W; Guigui, C

    2014-12-01

    Adding chemicals to the biofluid is an option to mitigate membrane fouling in membrane bioreactors. In particular, previous studies have shown that the addition of particles could enhance activated sludge filterability. Nevertheless, the mechanisms responsible for the improved filtration performance when particles are added are still unclear. Two main mechanisms might occur: soluble organic matter adsorption onto the particles and/or cake structure modification. To date, no studies have clearly dissociated the impact of these two phenomena as a method was needed for the in-line characterization of the cake structure during filtration. The objective of this study was thus to apply, for the first time, an optical method for in-situ, non-invasive, characterization of cake structure during filtration of a real biofluid in presence of particles. This method was firstly used to study local cake compressibility during the biofluid filtration. It was found that the first layers of the cake were incompressible whereas the cake appeared to be compressible at global scale. This questions the global scale analysis generally used to study cake compressibility and highlights the interest of coupling local characterization with overall process performance analysis. Secondly, the impact of adding submicronic melamine particles into the biofluid was studied. It appears that particles added into the biofluid strongly influence the cake properties, making it thicker and more permeable. Furthermore, by using liquid chromatography with an organic carbon detector to determine the detailed characteristics of the feed and permeate, it was shown that the modification of cake structure also affected the retention of soluble organic compounds by the membrane and thus the cake composition. Simultaneous use of a method for in-situ characterization of the cake structure with a detailed analysis of the fluid composition and monitoring of the global performance is thus a powerful method for evaluating cake structure and composition and their impact on global process performance. The use of this methodology should allow "cake engineering" to be developed so that cake properties (structure, composition) can be controlled and process performance optimized. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Design and Optimization of Nanomaterials for Sensing Applications

    NASA Astrophysics Data System (ADS)

    Sanderson, Robert Noboru

    Nanomaterials, materials with one or more of their dimensions on the nanoscale, have emerged as an important field in the development of next-generation sensing systems. Their high surface-to-volume ratio makes them useful for sensing, but also makes them sensitive to processing defects and inherent material defects. To develop and optimize these systems, it is thus necessary to characterize these defects to understand their origin and how to work around them. Scanning probe microscopy (SPM) techniques like atomic force microscopy (AFM) and scanning tunneling microscopy (STM) are important characterization methods which can measure nanoscale topography and electronic structure. These methods are appealing in nanomaterial systems because they are non-damaging and provide local, high-resolution data, and so are capable of detecting nanoscale features such as single defect sites. There are difficulties, however, in the interpretation of SPM data. For instance, AFM-based methods are prone to experimental artifacts due to long-range interactions, such as capacitive crosstalk in Kelvin probe force microscopy (KPFM), and artifacts due to the finite size of the probe tip, such as incorrect surface tracking at steep topographical features. Mechanical characterization (via force spectroscopy) of nanomaterials with significant nanoscale variations, such as tethered lipid bilayer membranes (tLBMs), is also difficult since variations in the bulk system's mechanical behavior must be distinguished from local fluctuations. Additionally, interpretation of STM data is non-trivial due to local variations in electron density in addition to topographical variations. In this thesis we overcome some limitations of SPM methods by supplementing them with additional surface analytical methods as well as computational methods, and we characterize several nanomaterial systems. Current-carrying vapor-liquid-solid Si nanowires (useful for interdigitated-electrode-based sensors) are characterized using finite-element-method (FEM)-supplemented KPFM to retrieve useful information about processing defects, contact resistance, and the primary charge carriers. Next, a tLBM system's stiffness and the stiffness' dependence on tethering molecule concentration is measured using statistical analysis of thousands of AFM force spectra, demonstrating a biosensor-compatible system with a controllable bulk rigidity. Finally, we utilize surface analytical techniques to inform the development of a novel three-dimensional graphene system for sensing applications.

  12. Methods to assess Drosophila heart development, function and aging

    PubMed Central

    Ocorr, Karen; Vogler, Georg; Bodmer, Rolf

    2014-01-01

    In recent years the Drosophila heart has become an established model of many different aspects of human cardiac disease. This model has allowed identification of disease-causing mechanisms underlying congenital heart disease and cardiomyopathies and has permitted the study underlying genetic, metabolic and age-related contributions to heart function. In this review we discuss methods currently employed in the analysis of the Drosophila heart structure and function, such as optical methods to infer heart function and performance, electrophysiological and mechanical approaches to characterize cardiac tissue properties, and conclude with histological techniques used in the study of heart development and adult structure. PMID:24727147

  13. Preparation and characterization of bio-composite PEEK/nHA

    NASA Astrophysics Data System (ADS)

    Jin, Y. S.; Bian, C. C.; Zhang, Z. Q.; Zhao, Y.; Yang, L.

    2017-01-01

    PEEK/nHA composite material, with excellent mechanical property as polyetheretherketone (PEEK) and biological activity as hydroxyapatite (HA), has attracted wide attention of medical experts and materials science experts. The addition of hydroxyapatite was the decisive factor for biological activity in PEEK/nHA composite. In this paper, acicular nanohydroxyapatite was prepared by chemical precipitation method with Ca(NO3)2, (NH4)2HPO4 as raw material; PEEK/nHA composite was prepared by solution blending and vacuum sintering method. The composite was characterized with FT-IR, XRD, DSC, TG and mechanical property test. Results showed that the composite has good thermal stability and compressive property when the mass ratio of PEEK to nHA is 10:3; and high nHA content can improve the biological activity of the composite, which can meet the basic requirements for bone tissue engineering scaffold.

  14. Using Nano-mechanics and Surface Acoustic Wave (SAW) for Disease Monitoring and Diagnostics at a Cellular Level in Red Blood Cells

    NASA Astrophysics Data System (ADS)

    Sivanantha, Ninnuja; Ma, Charles; Collins, David J.; Sesen, Muhsincan; Brenker, Jason; Coppel, Ross L.; Neild, Adrian; Alan, Tuncay

    A popular approach to monitoring diseases and their diagnosis is through biological, pathological or immunological characterization. However, at a cellular level progression of certain diseases manifests itself through mechanical effects as well. Here, we present a method which exploits localised flow; surface acoustic wave (SAW) induced acoustic streaming in a 9 μL droplet to characterize the adhesive properties of red blood cells (healthy, gluteraldehyde treated and malaria infected) in approximately 50 seconds. Our results show a 79% difference in cell mobilization between healthy malaria infected RBCs (and a 39% difference between healthy and treated ones), indicating that the method can serve as a platform for rapid clinical diagnosis; where separation of two or more different cell populations in a mixed solution is desirable. It can also act as a key biomarker for monitoring some diseases offering quantitative measures of disease progression and response to therapy.

  15. Multiscale Investigation from Subcellular to Tissue Scale of Onion Epidermal Plant Cell Wall Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Zamil, Mohammad Shafayet

    The physical and mechanical properties of cell walls, their shape, how they are arranged and interact with each other determine the architecture of plant organs and how they mechanically respond to different environmental and loading conditions. Due to the distinctive hierarchy from subcellular to tissue scale, plant materials can exhibit remarkably different mechanical properties. To date, how the subcellular scale arrangement and the mechanical properties of plant cell wall structural constituents give rise to macro or tissue scale mechanical responses is not yet well understood. Although the tissue scale plant cell wall samples are easy to prepare and put to different types of mechanical tests, the hierarchical features that emerge when moving towards a higher scale make it complicated to link the macro scale results to micro or subcellular scale structural components. On the other hand, the microscale size of cell brings formidable challenges to prepare and grip samples and carry mechanical tests under tensile loading at subcellular scale. This study attempted to develop a set of test protocols based on microelectromechanical system (MEMS) tensile testing devices for characterizing plant cell wall materials at different length scales. For the ease of sample preparation and well established database of the composition and conformation of its structural constituents, onion epidermal cell wall profile was chosen as the study material. Based on the results and findings of multiscale mechanical characterization, a framework of architecture-based finite element method (FEM) computational model was developed. The computational model laid the foundation of bridging the subcellular or microscale to the tissue or macroscale mechanical properties. This study suggests that there are important insights of cell wall mechanics and structural features that can only be investigated by carrying tensile characterization of samples not confounded by extracellular parameters. To the best of our knowledge, the plant cell wall at subcellular scale was never characterized under tensile loading. By coupling the structure based multiscale modeling and mechanical characterizations at different length scales, an attempt was made to provide novel insights towards understanding the mechanics and architecture of cell wall. This study also suggests that a multiscale investigation is essential for garnering fundamental insights into the hierarchical deformation of biological systems.

  16. Mechanical characterization of soft materials using transparent indenter testing system and finite element simulation

    NASA Astrophysics Data System (ADS)

    Xuan, Yue

    Background. Soft materials such as polymers and soft tissues have diverse applications in bioengineering, medical care, and industry. Quantitative mechanical characterization of soft materials at multiscales is required to assure that appropriate mechanical properties are presented to support the normal material function. Indentation test has been widely used to characterize soft material. However, the measurement of in situ contact area is always difficult. Method of Approach. A transparent indenter method was introduced to characterize the nonlinear behaviors of soft materials under large deformation. This approach made the direct measurement of contact area and local deformation possible. A microscope was used to capture the contact area evolution as well as the surface deformation. Based on this transparent indenter method, a novel transparent indentation measurement systems has been built and multiple soft materials including polymers and pericardial tissue have been characterized. Seven different indenters have been used to study the strain distribution on the contact surface, inner layer and vertical layer. Finite element models have been built to simulate the hyperelastic and anisotropic material behaviors. Proper material constants were obtained by fitting the experimental results. Results.Homogeneous and anisotropic silicone rubber and porcine pericardial tissue have been examined. Contact area and local deformation were measured by real time imaging the contact interface. The experimental results were compared with the predictions from the Hertzian equations. The accurate measurement of contact area results in more reliable Young's modulus, which is critical for soft materials. For the fiber reinforced anisotropic silicone rubber, the projected contact area under a hemispherical indenter exhibited elliptical shape. The local surface deformation under indenter was mapped using digital image correlation program. Punch test has been applied to thin films of silicone rubber and porcine pericardial tissue and results were analyzed using the same method. Conclusions. The transparent indenter testing system can effectively reduce the material properties measurement error by directly measuring the contact radii. The contact shape can provide valuable information for the anisotropic property of the material. Local surface deformation including contact surface, inner layer and vertical plane can be accurately tracked and mapped to study the strain distribution. The potential usage of the transparent indenter measurement system to investigate biological and biomaterials was verified. The experimental data including the real-time contact area combined with the finite element simulation would be powerful tool to study mechanical properties of soft materials and their relation to microstructure, which has potential in pathologies study such as tissue repair and surgery plan. Key words: transparent indenter, large deformation, soft material, anisotropic.

  17. Thermal Barrier Coating Workshop, 1997

    NASA Technical Reports Server (NTRS)

    Brindley, William J. (Compiler)

    1998-01-01

    This document contains papers from the 1997 Thermal Barrier Coatings Workshop, sponsored by the TBC Interagency Coordination Committee. The Workshop was held in Fort Mitchell, Kentucky, May 19-21, 1997. The papers cover the topics of heat transfer and conductivity of thermal barrier coatings, failure mechanisms and characterization of the coatings as well as characterization of coating deposition methods. Speakers included research, development and user groups in academia, industry and government.

  18. 2012 NRL Review: Building a Workforce and Assembling Scientific Tools for the Future

    DTIC Science & Technology

    2012-01-01

    fiber optics, electro-optics, microelectronics, fracture mechan ics, vacuum science, laser phys ics and joining technol ogy, and radio frequen cy...ics, elastic/plastic fracture mechanics , materials, finite-element methods, nondestruc tive evalua tion, characterization of fracture resistance of...NRL Review chapter entitled “Programs for Professional Development.” For additional information about NRL, the NRL Fact Book lists the organizations

  19. Determining shear modulus of thin wood composite materials using a cantilever beam vibration method

    Treesearch

    Cheng Guan; Houjiang Zhang; John F. Hunt; Haicheng Yan

    2016-01-01

    Shear modulus (G) of thin wood composite materials is one of several important indicators that characterizes mechanical properties. However, there is not an easy method to obtain this value. This study presents the use of a newly developed cantilever beam free vibration test apparatus to detect in-plane G of thin wood composite...

  20. Using the Experience Sampling Method in the Context of Contingency Management for Substance Abuse Treatment

    ERIC Educational Resources Information Center

    Husky, Mathilde M.; Mazure, Carolyn M.; Carroll, Kathleen M.; Barry, Danielle; Petry, Nancy M.

    2008-01-01

    Contingency management (CM) treatments have been shown to be effective in reducing substance use. This manuscript illustrates how the experience sampling method (ESM) can depict behavior and behavior change and can be used to explore CM treatment mechanisms. ESM characterizes idiosyncratic patterns of behavior and offers the potential to determine…

  1. Characterization of Nanocomposites by Thermal Analysis

    PubMed Central

    Corcione, Carola Esposito; Frigione, Mariaenrica

    2012-01-01

    In materials research, the development of polymer nanocomposites (PN) is rapidly emerging as a multidisciplinary research field with results that could broaden the applications of polymers to many different industries. PN are polymer matrices (thermoplastics, thermosets or elastomers) that have been reinforced with small quantities of nano-sized particles, preferably characterized by high aspect ratios, such as layered silicates and carbon nanotubes. Thermal analysis (TA) is a useful tool to investigate a wide variety of properties of polymers and it can be also applied to PN in order to gain further insight into their structure. This review illustrates the versatile applications of TA methods in the emerging field of polymer nanomaterial research, presenting some examples of applications of differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical thermal analysis (DMTA) and thermal mechanical analysis (TMA) for the characterization of nanocomposite materials.

  2. Atomic Force Microscopy Techniques for Nanomechanical Characterization: A Polymeric Case Study

    NASA Astrophysics Data System (ADS)

    Reggente, Melania; Rossi, Marco; Angeloni, Livia; Tamburri, Emanuela; Lucci, Massimiliano; Davoli, Ivan; Terranova, Maria Letizia; Passeri, Daniele

    2015-04-01

    Atomic force microscopy (AFM) is a versatile tool to perform mechanical characterization of surface samples at the nanoscale. In this work, we review two of such methods, namely contact resonance AFM (CR-AFM) and torsional harmonics AFM (TH-AFM). First, such techniques are illustrated and their applicability on materials with elastic moduli in different ranges are discussed, together with their main advantages and limitations. Then, a case study is presented in which we report the mechanical characterization using both CR-AFM and TH-AFM of polyaniline and polyaniniline doped with nanodiamond particles tablets prepared by a pressing process. We determined the indentation modulus values of their surfaces, which were found in fairly good agreement, thus demonstrating the accuracy of the techniques. Finally, the determined surface elastic moduli have been compared with the bulk ones measured through standard indentation testing.

  3. Characterization of cell mechanical properties by computational modeling of parallel plate compression.

    PubMed

    McGarry, J P

    2009-11-01

    A substantial body of work has been reported in which the mechanical properties of adherent cells were characterized using compression testing in tandem with computational modeling. However, a number of important issues remain to be addressed. In the current study, using computational analyses, the effect of cell compressibility on the force required to deform spread cells is investigated and the possibility that stiffening of the cell cytoplasm occurs during spreading is examined based on published experimental compression test data. The effect of viscoelasticity on cell compression is considered and difficulties in performing a complete characterization of the viscoelastic properties of a cell nucleus and cytoplasm by this method are highlighted. Finally, a non-linear force-deformation response is simulated using differing linear viscoelastic properties for the cell nucleus and the cell cytoplasm.

  4. Characterizations of additive manufactured porous titanium implants.

    PubMed

    Basalah, Ahmad; Shanjani, Yaser; Esmaeili, Shahrzad; Toyserkani, Ehsan

    2012-10-01

    This article describes physical, chemical, and mechanical characterizations of porous titanium implants made by an additive manufacturing method to gain insight into the correlation of process parameters and final physical properties of implants used in orthopedics. For the manufacturing chain, the powder metallurgy technology was combined with the additive manufacturing to fabricate the porous structure from the pure tanium powder. A 3D printing machine was employed in this study to produce porous bar samples. A number of physical parameters such as titanium powder size, polyvinyl alcohol (PVA) amount, sintering temperature and time were investigated to control the mechanical properties and porosity of the structures. The produced samples were characterized through porosity and shrinkage measurements, mechanical compression test and scanning electron microscopy (SEM). The results showed a level of porosity in the samples in the range of 31-43%, which is within the range of the porosity of the cancelluous bone and approaches the range of the porosity of the cortical bone. The results of the mechanical test showed that the compressive strength is in the wide range of 56-509 MPa implying the effect of the process parameters on the mechanical strengths. This technique of manufacturing of Ti porous structures demonstrated a low level of shrinkage with the shrinkage percentage ranging from 1.5 to 5%. Copyright © 2012 Wiley Periodicals, Inc.

  5. Mechanical phenotyping of tumor cells using a microfluidic cell squeezer device

    NASA Astrophysics Data System (ADS)

    Khan, Zeina S.; Kamyabi, Nabiollah; Vanapalli, Siva A.

    2013-03-01

    Studies have indicated that cancer cells have distinct mechanical properties compared to healthy cells. We are investigating the potential of cell mechanics as a biophysical marker for diagnostics and prognosis of cancer. To establish the significance of mechanical properties for cancer diagnostics, a high throughput method is desired. Although techniques such as atomic force microscopy are very precise, they are limited in throughput for cellular mechanical property measurements. To develop a device for high throughput mechanical characterization of tumor cells, we have fabricated a microfludic cell squeezer device that contains narrow micrometer-scale pores. Fluid flow is used to drive cells into these pores mimicking the flow-induced passage of circulating tumor cells through microvasculature. By integrating high speed imaging, the device allows for the simultaneous characterization of five different parameters including the blockage pressure, cell velocity, cell size, elongation and the entry time into squeezer. We have tested a variety of in vitro cell lines, including brain and prostate cancer cell lines, and have found that the entry time is the most sensitive measurement capable of differentiating between cell lines with differing invasiveness.

  6. Preparation, characterization and dynamical mechanical properties of dextran-coated iron oxide nanoparticles (DIONPs).

    PubMed

    Can, Hatice Kaplan; Kavlak, Serap; ParviziKhosroshahi, Shahed; Güner, Ali

    2018-03-01

    Dextran-coated iron oxide nanoparticles (DIONPs) with appropriate surface chemistry exhibit many interesting properties that can be exploited in a variety of biomedical applications such as magnetic resonance imaging (MRI) contrast enhancement, tissue repair, hyperthermia, drug delivery and in cell separation. This paper reports the experimental detail for preparation, characterization and investigation of thermal and dynamical mechanical characteristics of the dextran-coated Fe 3 O 4 magnetic nanoparticles. In our work, DIONPs were prepared in a 1:2 ratio of Fe(II) and Fe(III) salt in the HCl solution with NaOH at given temperature. The obtained dextran-coated iron-oxide nanoparticles structure-property correlation was characterized by spectroscopic methods; attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and XRD. Coating dextran on the iron-oxide proof of important peaks can be seen from the ATR-FTIR. Dramatic crystallinity increment can be observed from the XRD pattern of the iron-oxide dextran nanoparticles. The thermal analysis was examined by differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and differential thermal analysis (DTA). Dynamical mechanical properties of dextran nanoparticles were analysed by dynamic mechanical analysis (DMA). Thermal stability of the iron oxide dextran nanoparticles is higher than that of the dextran.

  7. Reflexion measurements for inverse characterization of steel diffusion bond mechanical properties

    NASA Astrophysics Data System (ADS)

    Le Bourdais, Florian; Cachon, Lionel; Rigal, Emmanuel

    2017-02-01

    The present work describes a non-destructive testing method aimed at securing high manufacturing quality of the innovative compact heat exchanger developed under the framework of the CEA R&D program dedicated to the Advanced Sodium Technological Reactor for Industrial Demonstration (ASTRID). The heat exchanger assembly procedure currently proposed involves high temperature and high pressure diffusion welding of stainless steel plates. The aim of the non-destructive method presented herein is to characterize the quality of the welds obtained through this assembly process. Based on a low-frequency model developed by Baik and Thompson [1], pulse-echo normal incidence measurements are calibrated according to a specific procedure and allow the determination of the welding interface stiffness using a nonlinear fitting procedure in the frequency domain. Performing the characterization of plates after diffusion welding using this method allows a useful assessment of the material state as a function of the diffusion bonding process.

  8. "METHOD": A tool for mechanical, electrical, thermal, and optical characterization of single lens module design

    NASA Astrophysics Data System (ADS)

    Besson, Pierre; Dominguez, Cesar; Voarino, Philippe; Garcia-Linares, Pablo; Weick, Clement; Lemiti, Mustapha; Baudrit, Mathieu

    2015-09-01

    The optical characterization and electrical performance evaluation are essential in the design and optimization of a concentrator photovoltaic system. The geometry, materials, and size of concentrator optics are diverse and different environmental conditions impact their performance. CEA has developed a new concentrator photovoltaic system characterization bench, METHOD, which enables multi-physics optimization studies. The lens and cell temperatures are controlled independently with the METHOD to study their isolated effects on the electrical and optical performance of the system. These influences can be studied in terms of their effect on optical efficiency, focal distance, spectral sensitivity, electrical efficiency, or cell current matching. Furthermore, the irradiance map of a concentrator optic can be mapped to study its variations versus the focal length or the lens temperature. The present work shows this application to analyze the performance of a Fresnel lens linking temperature to optical and electrical performance.

  9. Correlation Characterization of Particles in Volume Based on Peak-to-Basement Ratio

    PubMed Central

    Vovk, Tatiana A.; Petrov, Nikolay V.

    2017-01-01

    We propose a new express method of the correlation characterization of the particles suspended in the volume of optically transparent medium. It utilizes inline digital holography technique for obtaining two images of the adjacent layers from the investigated volume with subsequent matching of the cross-correlation function peak-to-basement ratio calculated for these images. After preliminary calibration via numerical simulation, the proposed method allows one to quickly distinguish parameters of the particle distribution and evaluate their concentration. The experimental verification was carried out for the two types of physical suspensions. Our method can be applied in environmental and biological research, which includes analyzing tools in flow cytometry devices, express characterization of particles and biological cells in air and water media, and various technical tasks, e.g. the study of scattering objects or rapid determination of cutting tool conditions in mechanisms. PMID:28252020

  10. Development of a micro-mechanical valve in a novel glaucoma implant.

    PubMed

    Siewert, Stefan; Schultze, Christine; Schmidt, Wolfram; Hinze, Ulf; Chichkov, Boris; Wree, Andreas; Sternberg, Katrin; Allemann, Reto; Guthoff, Rudolf; Schmitz, Klaus-Peter

    2012-10-01

    This paper describes methods for design, manufacturing and characterization of a micro-mechanical valve for a novel glaucoma implant. The implant is designed to drain aqueous humour from the anterior chamber of the eye into the suprachoroidal space in case of an elevated intraocular pressure (IOP). In contrast to any existing glaucoma drainage device (GDD), the valve mechanism is located in the anterior chamber and there, surrounded by aqueous humour, immune to fibrosis induced failure. For the prevention of hypotony the micro-mechanical valve is designed to open if the physiological pressure difference between the anterior chamber and the suprachoroidal space in the range of 0.8 mmHg to 3.7 mmHg is exceeded. In particular the work includes: (i) manufacturing and morphological characterization of polymer tubing, (ii) mechanical material testing as basis for (iii) the design of micro-mechanical valves using finite element analysis (FEA), (iv) manufacturing of microstent prototypes including micro-mechanical valves by femtosecond laser micromachining and (v) the experimental fluid-mechanical characterization of the manufactured microstent prototypes with regard to valve opening pressure. The considered materials polyurethane (PUR) and silicone (SIL) exhibit low elastic modulus and high extensibility. The unique valve design enables a low opening pressure of micro-mechanical valves. An ideal valve design for PUR and SIL with an experimentally determined opening pressure of 2 mmHg and 3.7 mmHg is identified. The presented valve approach is suitable for the inhibition of hypotony as a major limitation of today's GDD and will potentially improve the minimally invasive treatment of glaucoma.

  11. Evaluation of equipment and methods to map lost circulation zones in geothermal wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, W.J.; Leon, P.A.; Pittard, G.

    A study and evaluation of methods to locate, characterize, and quantify lost circulation zones are described. Twenty-five methods of mapping and quantifying lost circulation zones were evaluated, including electrical, acoustical, mechanical, radioactive, and optical systems. Each tool studied is described. The structured, numerical evaluation plan, used as the basis for comparing the 25 tools, and the resulting ranking among the tools is presented.

  12. Measurement of Mechanical Properties of Soft Tissue with Ultrasound Vibrometry

    NASA Astrophysics Data System (ADS)

    Nenadich, I.; Bernal, M.; Greenleaf, J. F.

    The cardiovascular diseases atherosclerosis, coronary artery disease, hypertension and heart failure have been related to stiffening of vessels and myocardium. Noninvasive measurements of mechanical properties of cardiovascular tissue would facilitate detection and treatment of disease in early stages, thus reducing mortality and possibly reducing cost of treatment. While techniques capable of measuring tissue elasticity have been reported, the knowledge of both elasticity and viscosity is necessary to fully characterize mechanical properties of soft tissues. In this article, we summarize the Shearwave Dispersion Ultrasound Vibrometry (SDUV) method developed by our group and report on advances made in characterizing stiffness of large vessels and myocardium. The method uses radiation forceFadiation force to excite shear waves in soft tissue and pulse echo ultrasound to measure the motion. The speed of propagation of shear waves at different frequencies is used to generate dispersions curves for excised porcine left-ventricular free-wall myocardium and carotid arteries. An antisymmetric Lamb wave model was fitted to the LV myocardium dispersion curves to obtain elasticity and viscosity moduli. The results suggest that the speed of shear wave propagation in four orthogonal directions on the surface of the excised myocardium is similar. These studies show that the SDUV method has potential for clinical application in noninvasive quantification of elasticity and viscosity of vessels and myocardium.

  13. Numerical Characterization of Piezoceramics Using Resonance Curves

    PubMed Central

    Pérez, Nicolás; Buiochi, Flávio; Brizzotti Andrade, Marco Aurélio; Adamowski, Julio Cezar

    2016-01-01

    Piezoelectric materials characterization is a challenging problem involving physical concepts, electrical and mechanical measurements and numerical optimization techniques. Piezoelectric ceramics such as Lead Zirconate Titanate (PZT) belong to the 6 mm symmetry class, which requires five elastic, three piezoelectric and two dielectric constants to fully represent the material properties. If losses are considered, the material properties can be represented by complex numbers. In this case, 20 independent material constants are required to obtain the full model. Several numerical methods have been used to adjust the theoretical models to the experimental results. The continuous improvement of the computer processing ability has allowed the use of a specific numerical method, the Finite Element Method (FEM), to iteratively solve the problem of finding the piezoelectric constants. This review presents the recent advances in the numerical characterization of 6 mm piezoelectric materials from experimental electrical impedance curves. The basic strategy consists in measuring the electrical impedance curve of a piezoelectric disk, and then combining the Finite Element Method with an iterative algorithm to find a set of material properties that minimizes the difference between the numerical impedance curve and the experimental one. Different methods to validate the results are also discussed. Examples of characterization of some common piezoelectric ceramics are presented to show the practical application of the described methods. PMID:28787875

  14. Numerical Characterization of Piezoceramics Using Resonance Curves.

    PubMed

    Pérez, Nicolás; Buiochi, Flávio; Brizzotti Andrade, Marco Aurélio; Adamowski, Julio Cezar

    2016-01-27

    Piezoelectric materials characterization is a challenging problem involving physical concepts, electrical and mechanical measurements and numerical optimization techniques. Piezoelectric ceramics such as Lead Zirconate Titanate (PZT) belong to the 6 mm symmetry class, which requires five elastic, three piezoelectric and two dielectric constants to fully represent the material properties. If losses are considered, the material properties can be represented by complex numbers. In this case, 20 independent material constants are required to obtain the full model. Several numerical methods have been used to adjust the theoretical models to the experimental results. The continuous improvement of the computer processing ability has allowed the use of a specific numerical method, the Finite Element Method (FEM), to iteratively solve the problem of finding the piezoelectric constants. This review presents the recent advances in the numerical characterization of 6 mm piezoelectric materials from experimental electrical impedance curves. The basic strategy consists in measuring the electrical impedance curve of a piezoelectric disk, and then combining the Finite Element Method with an iterative algorithm to find a set of material properties that minimizes the difference between the numerical impedance curve and the experimental one. Different methods to validate the results are also discussed. Examples of characterization of some common piezoelectric ceramics are presented to show the practical application of the described methods.

  15. Multi-layer plastic/glass microfluidic systems containing electrical and mechanical functionality.

    PubMed

    Han, Arum; Wang, Olivia; Graff, Mason; Mohanty, Swomitra K; Edwards, Thayne L; Han, Ki-Ho; Bruno Frazier, A

    2003-08-01

    This paper describes an approach for fabricating multi-layer microfluidic systems from a combination of glass and plastic materials. Methods and characterization results for the microfabrication technologies underlying the process flow are presented. The approach is used to fabricate and characterize multi-layer plastic/glass microfluidic systems containing electrical and mechanical functionality. Hot embossing, heat staking of plastics, injection molding, microstenciling of electrodes, and stereolithography were combined with conventional MEMS fabrication techniques to realize the multi-layer systems. The approach enabled the integration of multiple plastic/glass materials into a single monolithic system, provided a solution for the integration of electrical functionality throughout the system, provided a mechanism for the inclusion of microactuators such as micropumps/valves, and provided an interconnect technology for interfacing fluids and electrical components between the micro system and the macro world.

  16. Characterization of Infrastructure Materials using Nonlinear Ultrasonics

    NASA Astrophysics Data System (ADS)

    Liu, Minghe

    In order to improve the safety, reliability, cost, and performance of civil and mechanical structures/components, it is necessary to develop techniques that are capable of characterizing and quantifying the amount of distributed damage in engineering materials before any detectable discontinuities (cracks, delaminations, voids, etc.) appear. In this dissertation, novel nonlinear ultrasonic NDE methods are developed and applied to characterize cumulative damage such as fatigue damage in metallic materials and degradation of cement-based materials due to chemical reactions. First, nonlinear Rayleigh surface waves are used to measure the near-surface residual stresses in shot-peened aluminum alloy (AA 7075) samples. Results show that the nonlinear Rayleigh wave is very sensitive to near-surface residual stresses, and has the potential to quantitatively detect them. Second, a novel two-wave mixing method is theoretically developed and numerically verified. This method is then successfully applied to detect the fatigue damage in aluminum alloy (AA 6061) samples subjected to monotonic compression. In addition to its high sensitivity to fatigue damage, this collinear wave mixing method allows the measurement over a specific region of interest in the specimen, and this capability makes it possible to obtain spatial distribution of fatigue damage through the thickness direction of the sample by simply timing the transducers. Third, the nonlinear wave mixing method is used to characterize the degradation of cement-based materials caused by alkali-silica reaction (ASR). It is found that the nonlinear ultrasonic method is sensitive to detect ASR damage at very early stage, and has the potential to identify the different damage stages. Finally, a micromechanics-based chemo-mechanical model is developed which relates the acoustic nonlinearity parameter to ASR damage. This model provides a way to quantitatively predict the changes in the acoustic nonlinearity parameter due to ASR damage, which can be used to guide experimental measurements for nondestructive evaluation of ASR damage.

  17. Size-dependent Young’s modulus in ZnO nanowires with strong surface atomic bonds

    NASA Astrophysics Data System (ADS)

    Fan, Shiwen; Bi, Sheng; Li, Qikun; Guo, Qinglei; Liu, Junshan; Ouyang, Zhongliang; Jiang, Chengming; Song, Jinhui

    2018-03-01

    The mechanical properties of size-dependent nanowires are important in nano-electro-mechanical systems (NEMSs), and have attracted much research interest. Characterization of the size effect of nanowires in atmosphere directly to broaden their practical application instead of just in high vacuum situations, as reported previously, is desperately needed. In this study, we systematically studied the Young’s modulus of vertical ZnO nanowires in atmosphere. The diameters ranged from 48 nm to 239 nm with a resonance method using non-contact atomic force microscopy. The values of Young’s modulus in atmosphere present extremely strong increasing tendency with decreasing diameter of nanowire due to stronger surface atomic bonds compared with that in vacuum. A core-shell model for nanowires is proposed to explore the Young’s modulus enhancement in atmosphere, which is correlated with atoms of oxygen occurring near the nanowire surface. The modified model is more accurate for analyzing the mechanical behavior of nanowires in atmosphere compared with the model in vacuum. Furthermore, it is possible to use this characterization method to measure the size-related elastic properties of similar wire-sharp nanomaterials in atmosphere and estimate the corresponding mechanical behavior. The study of the size-dependent Young’s modulus in ZnO nanowires in atmosphere will improve the understanding of the mechanical properties of nanomaterials as well as providing guidance for applications in NEMSs, nanogenerators, biosensors and other related areas.

  18. Advances in mechanistic understanding of release rate control mechanisms of extended-release hydrophilic matrix tablets.

    PubMed

    Timmins, Peter; Desai, Divyakant; Chen, Wei; Wray, Patrick; Brown, Jonathan; Hanley, Sarah

    2016-08-01

    Approaches to characterizing and developing understanding around the mechanisms that control the release of drugs from hydrophilic matrix tablets are reviewed. While historical context is provided and direct physical characterization methods are described, recent advances including the role of percolation thresholds, the application on magnetic resonance and other spectroscopic imaging techniques are considered. The influence of polymer and dosage form characteristics are reviewed. The utility of mathematical modeling is described. Finally, how all the information derived from applying the developed mechanistic understanding from all of these tools can be brought together to develop a robust and reliable hydrophilic matrix extended-release tablet formulation is proposed.

  19. Very large scale characterization of graphene mechanical devices using a colorimetry technique.

    PubMed

    Cartamil-Bueno, Santiago Jose; Centeno, Alba; Zurutuza, Amaia; Steeneken, Peter Gerard; van der Zant, Herre Sjoerd Jan; Houri, Samer

    2017-06-08

    We use a scalable optical technique to characterize more than 21 000 circular nanomechanical devices made of suspended single- and double-layer graphene on cavities with different diameters (D) and depths (g). To maximize the contrast between suspended and broken membranes we used a model for selecting the optimal color filter. The method enables parallel and automatized image processing for yield statistics. We find the survival probability to be correlated with a structural mechanics scaling parameter given by D 4 /g 3 . Moreover, we extract a median adhesion energy of Γ = 0.9 J m -2 between the membrane and the native SiO 2 at the bottom of the cavities.

  20. Mechanical characterization of composite materials by optical techniques: A review

    NASA Astrophysics Data System (ADS)

    Bruno, Luigi

    2018-05-01

    The present review provides an overview of work published in recent years dealing with the mechanical characterization of composite materials performed by optical techniques. The paper emphasizes the strengths derived from the employment of full-field methods when the strain field of an anisotropic material must be evaluated. This is framed in contrast to the use of conventional measurement techniques, which provide single values of the measured quantities unable to offer thorough descriptions of deformation distribution. The review outlines the intensity and articulation of work in this research field to date and its ongoing importance not only in the academy, but also in industrial sectors where composite materials represent a strategic resource for development.

  1. Thermal, mechanical, optical and dielectric properties of piperazinium hydrogen phosphite monohydrate NLO single crystal

    NASA Astrophysics Data System (ADS)

    Rajkumar, R.; Praveen Kumar, P.

    2018-05-01

    Optical transparent crystal of piperazinium hydrogen phosphite monohydrate (PHPM) was grown by slow evaporation method. The grown crystal was characterized by single crystal X-ray diffraction analysis and the crystal belongs to monoclinic system. The functional groups present in PHPM crystal were confirmed by FTIR analysis. UV-Visible spectrum shows that the PHPM crystal is transparent in the visible region. The mechanical behavior of PHPM crystal was characterized by Vickers hardness test. Thermal stability of PHPM crystal was analyzed by thermogravimetric analysis. Dielectric studies were also carried out for the grown crystal. The third-order nonlinear parameters such as nonlinear refractive index and nonlinear absorption coefficient have been calculated using Z scan technique.

  2. Voltage-gated sodium channels

    PubMed Central

    Abdelsayed, Mena; Sokolov, Stanislav

    2013-01-01

    Epilepsy is a brain disorder characterized by seizures and convulsions. The basis of epilepsy is an increase in neuronal excitability that, in some cases, may be caused by functional defects in neuronal voltage gated sodium channels, Nav1.1 and Nav1.2. The effects of antiepileptic drugs (AEDs) as effective therapies for epilepsy have been characterized by extensive research. Most of the classic AEDs targeting Nav share a common mechanism of action by stabilizing the channel’s fast-inactivated state. In contrast, novel AEDs, such as lacosamide, stabilize the slow-inactivated state in neuronal Nav1.1 and Nav1.7 isoforms. This paper reviews the different mechanisms by which this stabilization occurs to determine new methods for treatment. PMID:23531742

  3. Evaluation of glass transition temperature and dynamic mechanical properties of autopolymerized hard direct denture reline resins.

    PubMed

    Takase, Kazuma; Watanabe, Ikuya; Kurogi, Tadafumi; Murata, Hiroshi

    2015-01-01

    This study assessed methods for evaluation of glass transition temperature (Tg) of autopolymerized hard direct denture reline resins using dynamic mechanical analysis and differential scanning calorimetry in addition to the dynamic mechanical properties. The Tg values of 3 different reline resins were determined using a dynamic viscoelastometer and differential scanning calorimeter, and rheological parameters were also determined. Although all materials exhibited higher storage modulus and loss modulus values, and a lower loss tangent at 37˚C with a higher frequency, the frequency dependence was not large. Tg values obtained by dynamic mechanical analysis were higher than those by differential scanning calorimetry and higher frequency led to higher Tg, while more stable Tg values were also obtained by that method. These results suggest that dynamic mechanical analysis is more advantageous for characterization of autopolymerized hard direct denture reline resins than differential scanning calorimetry.

  4. X-ray characterization techniques for the assessment of surface damage in crystalline wafers: A model study in AlN

    NASA Astrophysics Data System (ADS)

    Bobea, M.; Tweedie, J.; Bryan, I.; Bryan, Z.; Rice, A.; Dalmau, R.; Xie, J.; Collazo, R.; Sitar, Z.

    2013-03-01

    A high-resolution X-ray diffraction method with enhanced surface sensitivity has been used to investigate the effects of various polishing steps on the near-surface region of single crystal substrates. The method involves the study of a highly asymmetric reflection, observable under grazing incidence conditions. Analysis of rocking curve measurements and reciprocal space maps (RSMs) revealed subtle structural differences between the polished substrates. For aluminum nitride wafers, damage induced from diamond sawing and mechanical polishing was readily identifiable by on-axis rocking curves, but this method was unable to distinguish between sample surfaces subjected to various degrees of chemical mechanical polishing (CMP). To characterize sufficiently these surfaces, (10.3) RSMs were measured to provide both qualitative and quantitative information about the near-surface region. Two features present in the RSMs were utilized to quantitatively assess the polished wafers: the magnitude of the diffuse scatter in the omega-scans and the elongation of the crystal truncation rod. The method is able to distinguish between different degrees of CMP surface preparation and provides metrics to quantify subsurface damage after this polishing step.

  5. How Accurate Are Transition States from Simulations of Enzymatic Reactions?

    PubMed Central

    2015-01-01

    The rate expression of traditional transition state theory (TST) assumes no recrossing of the transition state (TS) and thermal quasi-equilibrium between the ground state and the TS. Currently, it is not well understood to what extent these assumptions influence the nature of the activated complex obtained in traditional TST-based simulations of processes in the condensed phase in general and in enzymes in particular. Here we scrutinize these assumptions by characterizing the TSs for hydride transfer catalyzed by the enzyme Escherichia coli dihydrofolate reductase obtained using various simulation approaches. Specifically, we compare the TSs obtained with common TST-based methods and a dynamics-based method. Using a recently developed accurate hybrid quantum mechanics/molecular mechanics potential, we find that the TST-based and dynamics-based methods give considerably different TS ensembles. This discrepancy, which could be due equilibrium solvation effects and the nature of the reaction coordinate employed and its motion, raises major questions about how to interpret the TSs determined by common simulation methods. We conclude that further investigation is needed to characterize the impact of various TST assumptions on the TS phase-space ensemble and on the reaction kinetics. PMID:24860275

  6. Detection of Carbapenemase Production in a Collection of Enterobacteriaceae with Characterized Resistance Mechanisms from Clinical and Environmental Origins by Use of Both Carba NP and Blue-Carba Tests.

    PubMed

    García-Fernández, Sergio; Morosini, María-Isabel; Gijón, Desirèe; Beatobe, Lorena; Ruiz-Garbajosa, Patricia; Domínguez, Lucas; Cantón, Rafael; Valverde, Aránzazu

    2016-02-01

    Rapid-screening methods to confirm the presence of resistance mechanisms in multidrug-resistant bacteria are currently recommended. Carba NP and Blue-Carba tests were evaluated in carbapenemase-producing Enterobacteriaceae from hospital (n = 102) and environmental (n = 57) origins for detecting the different molecular classes among them. Both methods showed to be fast and cost-effective, with high sensitivity (98% to 100%) and specificity (100%), and may be easily introduced in the routine laboratory. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Method for determining damping properties of materials using a suspended mechanical oscillator

    NASA Astrophysics Data System (ADS)

    Biscans, S.; Gras, S.; Evans, M.; Fritschel, P.; Pezerat, C.; Picart, P.

    2018-06-01

    We present a new approach for characterizing the loss factor of materials, using a suspended mechanical oscillator. Compared to more standard techniques, this method offers freedom in terms of the size and shape of the tested samples. Using a finite element model and the vibration measurements, the loss factor is deduced from the oscillator's ring-down. In this way the loss factor can be estimated independently for shear and compression deformation of the sample over a range of frequencies. As a proof of concept, we present measurements for EPO-TEK 353ND epoxy samples.

  8. PREPARATION AND CHARACTERIZATION OF ORALLY DISINTEGRATING LORATADINE TABLETS MANUFACTURED WITH CO-PROCESSED MIXTURES.

    PubMed

    Amelian, Aleksandra; Szekalska, Marta; Wilczewska, Agnieszka Zofia; Basa, Anna; Winnicka, Katarzyna

    2016-01-01

    The aim of this study was to develop orally disintegrated tablets (ODT) with loratadine using Parteck ODT and Ludiflash--new commercially available tableting excipients based on co-processed mannitol. ODT containing loratadine were prepared with 3% addition of various superdisintegrants (AcDiSol, Kollidon CL-F and Kollidon CL-SF) by direct compression method. Obtained tablets were characterized for friability, pore structure, and wetting and disintegration time measured by four independents methods. In order to identify possible interactions between loratadine and the excipients, differential scanning calorimetry was used. The results showed that all formulated ODT were characterized by appropriate mechanical properties (friability < 1%), the uniform content of the drug substance and pleasant mouth feeling. Disintegration time below 30 s was observed in formulations with crospovidones as disintegrant.

  9. Integrated Surface and Mechanical Characterization of Freestanding Biological and Other Nano-Structures Using Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Xin

    This dissertation is focused on surface and mechanical characterization of freestanding biological and other nano-structures using atomic force microscopy including two parts: cell mechanics and nano-structure mechanics. The main purpose of this work is to investigate how the nano- / micro-scale mechanical properties affect macro-scale function. In cancer cells, efficacy of drug delivery is oftentimes declined due to the thick dendritic network of oligosaccharide mucin chains on the cell surface. AFM is used to measure the force needed to pierce the mucin layer to reach the cell surface. A pool of ovarian, pancreatic, lung, colorectal and breast cancer cells are characterized. The studies offer additional support for the development of clinical and pharmaceutical approaches to combat mucin over-expression in tumors during cancer chemotherapy. Macroscopic adhesion-aggregation and subsequent transportation of microorganisms in porous medium are closely related to the microscopic deformation and adhesion mechanical properties. The classical Tabor's parameter is modified. Multiple bacterial strains are characterized in terms of aggregates size, aggregation index and transportation kinetics. AFM is employed to obtain the microscopic coupled adhesion-deformation properties. The strong correlation between Tabor's parameter and aggregation-deposition-transportation suggests the AFM characterization is capable of making reliable predication of macroscopic behavior. A novel "nano-cheese-cutter" is fabricated on tipless AFM cantilever to measure elastic modulus and interfacial adhesion of a 1-D freestanding nano-structure. A single electrospun fiber is attached to the free end of AFM cantilever, while another fiber is similarly prepared on a mica substrate in an orthogonal direction. An external load is applied to deform the two fibers into complementary V-shapes. This work is extended to investigate the interfacial adhesion energy between dissimilar materials. SWCNT thin film promises a broad range of potential applications in electronic devices due to unique electrical and mechanical properties. SWCNT thin film is transferred onto micro-patterned SU-8 strips using wet contact print method, forming a freestanding nano-structure. AFM with tipless cantilever is used to deform the suspended thin film under mixed bending and stretching for mechanical and electromechanical characterization. The experiment helps to construct the base for next generation flexible electronic devices with fundamental understanding in morphology-property relation.

  10. Mechanisms of amyloid formation revealed by solution NMR

    PubMed Central

    Karamanos, Theodoros K.; Kalverda, Arnout P.; Thompson, Gary S.; Radford, Sheena E.

    2015-01-01

    Amyloid fibrils are proteinaceous elongated aggregates involved in more than fifty human diseases. Recent advances in electron microscopy and solid state NMR have allowed the characterization of fibril structures to different extents of refinement. However, structural details about the mechanism of fibril formation remain relatively poorly defined. This is mainly due to the complex, heterogeneous and transient nature of the species responsible for assembly; properties that make them difficult to detect and characterize in structural detail using biophysical techniques. The ability of solution NMR spectroscopy to investigate exchange between multiple protein states, to characterize transient and low-population species, and to study high molecular weight assemblies, render NMR an invaluable technique for studies of amyloid assembly. In this article we review state-of-the-art solution NMR methods for investigations of: (a) protein dynamics that lead to the formation of aggregation-prone species; (b) amyloidogenic intrinsically disordered proteins; and (c) protein–protein interactions on pathway to fibril formation. Together, these topics highlight the power and potential of NMR to provide atomic level information about the molecular mechanisms of one of the most fascinating problems in structural biology. PMID:26282197

  11. Ultrasonic assisted production of starch nanoparticles: Structural characterization and mechanism of disintegration.

    PubMed

    Boufi, Sami; Bel Haaj, Sihem; Magnin, Albert; Pignon, Frédéric; Impéror-Clerc, Marianne; Mortha, Gérard

    2018-03-01

    In this paper, the disintegration of starch (waxy and standard starch) granules into nanosized particles under the sole effect of high power ultrasonication treatment in water/isopropanol is investigated, by using wide methods of analysis. The present work aims at a fully characterization of the starch nanoparticles produced by ultrasonication, in terms of size, morphology and structural properties, and the proposition of a possible mechanism explaining the top-down generation of starch nanoparticles (SNPs) via high intensity ultrasonication. Dynamic light scattering measurements have indicated a leveling of the particle size to about 40nm after 75min of ultrasonication. The WAXD, DSC and Raman have revealed the amorphous character of the SNPs. FE-SEM. AFM observations have confirmed the size measured by DLS and suggested that SNPs exhibited 2D morphology of platelet-like shapes. This morphology is further supported by SAXS. On the basis of data collected from the different characterization techniques, a possible mechanism explaining the disintegration process of starch granules into NPs is proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Fabrication, Characterization and Cytotoxicity of Spherical-Shaped Conjugated Gold-Cockle Shell Derived Calcium Carbonate Nanoparticles for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Kiranda, Hanan Karimah; Mahmud, Rozi; Abubakar, Danmaigoro; Zakaria, Zuki Abubakar

    2018-01-01

    The evolution of nanomaterial in science has brought about a growing increase in nanotechnology, biomedicine, and engineering fields. This study was aimed at fabrication and characterization of conjugated gold-cockle shell-derived calcium carbonate nanoparticles (Au-CSCaCO3NPs) for biomedical application. The synthetic technique employed used gold nanoparticle citrate reduction method and a simple precipitation method coupled with mechanical use of a Programmable roller-ball mill. The synthesized conjugated nanomaterial was characterized for its physicochemical properties using transmission electron microscope (TEM), field emission scanning electron microscope (FESEM) equipped with energy dispersive X-ray (EDX) and Fourier transform infrared spectroscopy (FTIR). However, the intricacy of cellular mechanisms can prove challenging for nanomaterial like Au-CSCaCO3NPs and thus, the need for cytotoxicity assessment. The obtained spherical-shaped nanoparticles (light-green purplish) have an average diameter size of 35 ± 16 nm, high carbon and oxygen composition. The conjugated nanomaterial, also possesses a unique spectra for aragonite polymorph and carboxylic bond significantly supporting interactions between conjugated nanoparticles. The negative surface charge and spectra absorbance highlighted their stability. The resultant spherical shaped conjugated Au-CSCaCO3NPs could be a great nanomaterial for biomedical applications.

  13. Controlled synthesis, characterization and photoluminescence property of olive-like tetragonal α-Nd{sub 2}(MoO{sub 4}){sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Youjin, E-mail: zyj@ustc.edu.cn; Zheng, Ao; Yang, Xiaozhi

    2012-09-15

    Highlights: ► The olive-like tetragonal α-Nd{sub 2}(MoO{sub 4}){sub 3} was gained with EDTA assisted hydrothermal method. ► The product was characterized by XRD, XPS, FTIR, FESEM, and PL. ► The possible formation mechanism for olive-like α-Nd{sub 2}(MoO{sub 4}){sub 3} was proposed. ► The PL in visible region of the olive-like α-Nd{sub 2}(MoO{sub 4}){sub 3} was studied. -- Abstract: The olive-like tetragonal α-Nd{sub 2}(MoO{sub 4}){sub 3} was obtained by a convenient and facile complex agent assisted hydrothermal method. The product was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, field-emission scanning electron microscopy (FESEM) andmore » photoluminescence (PL). The possible formation mechanism of the olive-like α-Nd{sub 2}(MoO{sub 4}){sub 3} was proposed. The photoluminescence property in visible region of the olive-like tetragonal α-Nd{sub 2}(MoO{sub 4}){sub 3} was studied.« less

  14. System identification of closed-loop cardiovascular control mechanisms: diabetic autonomic neuropathy

    NASA Technical Reports Server (NTRS)

    Mukkamala, R.; Mathias, J. M.; Mullen, T. J.; Cohen, R. J.; Freeman, R.

    1999-01-01

    We applied cardiovascular system identification (CSI) to characterize closed-loop cardiovascular regulation in patients with diabetic autonomic neuropathy (DAN). The CSI method quantitatively analyzes beat-to-beat fluctuations in noninvasively measured heart rate, arterial blood pressure (ABP), and instantaneous lung volume (ILV) to characterize four physiological coupling mechanisms, two of which are autonomically mediated (the heart rate baroreflex and the coupling of respiration, measured in terms of ILV, to heart rate) and two of which are mechanically mediated (the coupling of ventricular contraction to the generation of the ABP wavelet and the coupling of respiration to ABP). We studied 37 control and 60 diabetic subjects who were classified as having minimal, moderate, or severe DAN on the basis of standard autonomic tests. The autonomically mediated couplings progressively decreased with increasing severity of DAN, whereas the mechanically mediated couplings were essentially unchanged. CSI identified differences between the minimal DAN and control groups, which were indistinguishable based on the standard autonomic tests. CSI may provide a powerful tool for assessing DAN.

  15. Assessment of upper airway mechanics during sleep.

    PubMed

    Farré, Ramon; Montserrat, Josep M; Navajas, Daniel

    2008-11-30

    Obstructive sleep apnea, which is the most prevalent sleep breathing disorder, is characterized by recurrent episodes of upper airway collapse and reopening. However, the mechanical properties of the upper airway are not directly measured in routine polysomnography because only qualitative sensors (thermistors for flow and thoraco-abdominal bands for pressure) are used. This review focuses on two techniques that quantify upper airway obstruction during sleep. A Starling model of collapsible conduit allows us to interpret the mechanics of the upper airway by means of two parameters: the critical pressure (Pcrit) and the upstream resistance (Rup). A simple technique to measure Pcrit and Rup involves the application of different levels of continuous positive airway pressure (CPAP) during sleep. The forced oscillation technique is another non-invasive procedure for quantifying upper airway impedance during the breathing cycle in sleep studies. The latest developments in these two methods allow them to be easily applied on a routine basis in order to more fully characterize upper airway mechanics in patients with sleep breathing disorders.

  16. Characterization of Mechanical Properties of Tissue Scaffolds by Phase Contrast Imaging and Finite Element Modeling.

    PubMed

    Bawolin, Nahshon K; Dolovich, Allan T; Chen, Daniel X B; Zhang, Chris W J

    2015-08-01

    In tissue engineering, the cell and scaffold approach has shown promise as a treatment to regenerate diseased and/or damaged tissue. In this treatment, an artificial construct (scaffold) is seeded with cells, which organize and proliferate into new tissue. The scaffold itself biodegrades with time, leaving behind only newly formed tissue. The degradation qualities of the scaffold are critical during the treatment period, since the change in the mechanical properties of the scaffold with time can influence cell behavior. To observe in time the scaffold's mechanical properties, a straightforward method is to deform the scaffold and then characterize scaffold deflection accordingly. However, experimentally observing the scaffold deflection is challenging. This paper presents a novel study on characterization of mechanical properties of scaffolds by phase contrast imaging and finite element modeling, which specifically includes scaffold fabrication, scaffold imaging, image analysis, and finite elements (FEs) modeling of the scaffold mechanical properties. The innovation of the work rests on the use of in-line phase contrast X-ray imaging at 20 KeV to characterize tissue scaffold deformation caused by ultrasound radiation forces and the use of the Fourier transform to identify movement. Once deformation has been determined experimentally, it is then compared with the predictions given by the forward solution of a finite element model. A consideration of the number of separate loading conditions necessary to uniquely identify the material properties of transversely isotropic and fully orthotropic scaffolds is also presented, along with the use of an FE as a form of regularization.

  17. Thermal stress characterization using the electro-mechanical impedance method

    NASA Astrophysics Data System (ADS)

    Zhu, Xuan; Lanza di Scalea, Francesco; Fateh, Mahmood

    2017-04-01

    This study examines the potential of the Electro-Mechanical Impedance (EMI) method to provide an estimation of the developed thermal stress in constrained bar-like structures. This non-invasive method features the easiness of implementation and interpretation, while it is notoriously known for being vulnerable to environmental variability. A comprehensive analytical model is proposed to relate the measured electric admittance signatures of the PZT element to temperature and uniaxial stress applied to the underlying structure. The model results compare favorably to the experimental ones, where the sensitivities of features extracted from the admittance signatures to the varying stress levels and temperatures are determined. Two temperature compensation frameworks are proposed to characterize the thermal stress states: (a) a regression model is established based on temperature-only tests, and the residuals from the thermal stress tests are then used to isolate the stress measurand; (b) the temperature-only tests are decomposed by Principle Components Analysis (PCA) and the feature vectors of the thermal stress tests are reconstructed after removal of the temperaturesensitive components. For both methods, the features were selected based on their performance in Receiver Operating Characteristic (ROC) curves. Experimental results on the Continuous Welded Rails (CWR) are shown to demonstrate the effectiveness of these temperature compensation methods.

  18. Modeling and Characterization of Near-Crack-Tip Plasticity from Micro- to Nano-Scales

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Saether, Erik; Hochhalter, Jacob; Smith, Stephen W.; Ransom, Jonathan B.; Yamakov, Vesselin; Gupta, Vipul

    2010-01-01

    Methodologies for understanding the plastic deformation mechanisms related to crack propagation at the nano-, meso- and micro-length scales are being developed. These efforts include the development and application of several computational methods including atomistic simulation, discrete dislocation plasticity, strain gradient plasticity and crystal plasticity; and experimental methods including electron backscattered diffraction and video image correlation. Additionally, methodologies for multi-scale modeling and characterization that can be used to bridge the relevant length scales from nanometers to millimeters are being developed. The paper focuses on the discussion of newly developed methodologies in these areas and their application to understanding damage processes in aluminum and its alloys.

  19. Modeling and Characterization of Near-Crack-Tip Plasticity from Micro- to Nano-Scales

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Saether, Erik; Hochhalter, Jacob; Smith, Stephen W.; Ransom, Jonathan B.; Yamakov, Vesselin; Gupta, Vipul

    2011-01-01

    Methodologies for understanding the plastic deformation mechanisms related 10 crack propagation at the nano, meso- and micro-length scales are being developed. These efforts include the development and application of several computational methods including atomistic simulation, discrete dislocation plasticity, strain gradient plasticity and crystal plasticity; and experimental methods including electron backscattered diffraction and video image correlation. Additionally, methodologies for multi-scale modeling and characterization that can be used to bridge the relevant length scales from nanometers to millimeters are being developed. The paper focuses on the discussion of newly developed methodologies in these areas and their application to understanding damage processes in aluminum and its alloys.

  20. MWM-Array Characterization of Mechanical Damage and Corrosion

    DOT National Transportation Integrated Search

    2011-02-09

    The MWM-Array is an inductive sensor that operates like a transformer in a plane. The MWMArray is based on the original MWM(R) (Meandering Winding Magnetometer) developed at MIT in the 1980s. A rapid multivariate inverse method converts impedance dat...

  1. Detection and Characterization of Streptococcus thermophilus Bacteriophages by Use of the Antireceptor Gene Sequence

    PubMed Central

    Binetti, Ana G.; Del Río, Beatriz; Martín, M. Cruz; Álvarez, Miguel A.

    2005-01-01

    In the dairy industry, the characterization of Streptococcus thermophilus phage types is very important for the selection and use of efficient starter cultures. The aim of this study was to develop a characterization system useful in phage control programs in dairy plants. A comparative study of phages of different origins was initially performed based on their morphology, DNA restriction profiles, DNA homology, structural proteins, packaging mechanisms, and lifestyles and on the presence of a highly conserved DNA fragment of the replication module. However, these traditional criteria were of limited industrial value, mainly because there appeared to be no correlation between these variables and host ranges. We therefore developed a PCR method to amplify VR2, a variable region of the antireceptor gene, which allowed rapid detection of S. thermophilus phages and classification of these phages. This method has a significant advantage over other grouping criteria since our results suggest that there is a correlation between typing profiles and host ranges. This association could be valuable for the dairy industry by allowing a rational starter rotation system to be established and by helping in the selection of more suitable starter culture resistance mechanisms. The method described here is also a useful tool for phage detection, since specific PCR amplification was possible when phage-contaminated milk was used as a template (detection limit, 105 PFU ml−1). PMID:16204526

  2. Challenges in Characterizing Low-Temperature Regolith Properties

    NASA Technical Reports Server (NTRS)

    Swanger, Adam Michael; Mantovani, James G.

    2014-01-01

    The success or failure of in-situ resource utilization for planetary surface exploration--be it for scientific, colonization or commercialization purposes--relies heavily on the ability to design and implement systems which effectively process the associated regolith and exploit its benefits. In most cases this challenge necessarily includes the characterization of low-temperature (cryogenic) properties; as many celestial destinations of interest, such as the moon, Mars and asteroids, have little or no atmosphere to help sustain the consistently "high" surface temperatures seen on planets such as Earth, and therefore can experience permanent cryogenic temperatures or dramatic cyclical changes. Characterization of physical properties (such as specific heat, thermal and electrical conductivity, etc.) over the entire temperature profile is undoubtedly an important piece of the puzzle; however, the impact on mechanical properties due to the introduction of icy deposit must also be explored in order to devise effective and robust excavation technologies. Currently the Granular Mechanics and Regolith Operations Lab and the Cryogenics Test Lab at NASA Kennedy Space Center are developing technologies and experimental methods to address these challenges and aid in the characterization of physical and mechanical properties of regolith at cryogenic temperatures. This presentation will review the current state of knowledge concerning lunar regolith at low temperature including that of icy regolith.

  3. Human skeletal muscle behavior in vivo: Finite element implementation, experiment, and passive mechanical characterization.

    PubMed

    Clemen, Christof B; Benderoth, Günther E K; Schmidt, Andreas; Hübner, Frank; Vogl, Thomas J; Silber, Gerhard

    2017-01-01

    In this study, useful methods for active human skeletal muscle material parameter determination are provided. First, a straightforward approach to the implementation of a transversely isotropic hyperelastic continuum mechanical material model in an invariant formulation is presented. This procedure is found to be feasible even if the strain energy is formulated in terms of invariants other than those predetermined by the software's requirements. Next, an appropriate experimental setup for the observation of activation-dependent material behavior, corresponding data acquisition, and evaluation is given. Geometry reconstruction based on magnetic resonance imaging of different deformation states is used to generate realistic, subject-specific finite element models of the upper arm. Using the deterministic SIMPLEX optimization strategy, a convenient quasi-static passive-elastic material characterization is pursued; the results of this approach used to characterize the behavior of human biceps in vivo indicate the feasibility of the illustrated methods to identify active material parameters comprising multiple loading modes. A comparison of a contact simulation incorporating the optimized parameters to a reconstructed deformed geometry of an indented upper arm shows the validity of the obtained results regarding deformation scenarios perpendicular to the effective direction of the nonactivated biceps. However, for a valid, activatable, general-purpose material characterization, the material model needs some modifications as well as a multicriteria optimization of the force-displacement data for different loading modes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Electrochemical capacitors: mechanism, materials, systems, characterization and applications.

    PubMed

    Wang, Yonggang; Song, Yanfang; Xia, Yongyao

    2016-10-24

    Electrochemical capacitors (i.e. supercapacitors) include electrochemical double-layer capacitors that depend on the charge storage of ion adsorption and pseudo-capacitors that are based on charge storage involving fast surface redox reactions. The energy storage capacities of supercapacitors are several orders of magnitude higher than those of conventional dielectric capacitors, but are much lower than those of secondary batteries. They typically have high power density, long cyclic stability and high safety, and thus can be considered as an alternative or complement to rechargeable batteries in applications that require high power delivery or fast energy harvesting. This article reviews the latest progress in supercapacitors in charge storage mechanisms, electrode materials, electrolyte materials, systems, characterization methods, and applications. In particular, the newly developed charge storage mechanism for intercalative pseudocapacitive behaviour, which bridges the gap between battery behaviour and conventional pseudocapacitive behaviour, is also clarified for comparison. Finally, the prospects and challenges associated with supercapacitors in practical applications are also discussed.

  5. Mechanism of Rifampicin Inactivation in Nocardia farcinica

    PubMed Central

    Abdelwahab, Heba; Martin Del Campo, Julia S.; Dai, Yumin; Adly, Camelia; El-Sohaimy, Sohby; Sobrado, Pablo

    2016-01-01

    A novel mechanism of rifampicin (Rif) resistance has recently been reported in Nocardia farcinica. This new mechanism involves the activity of rifampicin monooxygenase (RifMO), a flavin-dependent monooxygenase that catalyzes the hydroxylation of Rif, which is the first step in the degradation pathway. Recombinant RifMO was overexpressed and purified for biochemical analysis. Kinetic characterization revealed that Rif binding is necessary for effective FAD reduction. RifMO exhibits only a 3-fold coenzyme preference for NADPH over NADH. RifMO catalyzes the incorporation of a single oxygen atom forming an unstable intermediate that eventually is converted to 2′-N-hydroxy-4-oxo-Rif. Stable C4a-hydroperoxyflavin was not detected by rapid kinetics methods, which is consistent with only 30% of the activated oxygen leading to product formation. These findings represent the first reported detailed biochemical characterization of a flavin-monooxygenase involved in antibiotic resistance. PMID:27706151

  6. Performance and Reliability of Bonded Interfaces for High-Temperature Packaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paret, Paul P

    2017-08-02

    Sintered silver has proven to be a promising candidate for use as a die-attach and substrate-attach material in automotive power electronics components. It holds promise of greater reliability than lead-based and lead-free solders, especially at higher temperatures (>200 degrees C). Accurate predictive lifetime models of sintered silver need to be developed and its failure mechanisms thoroughly characterized before it can be deployed as a die-attach or substrate-attach material in wide-bandgap device-based packages. Mechanical characterization tests that result in stress-strain curves and accelerated tests that produce cycles-to-failure result will be conducted. Also, we present a finite element method (FEM) modeling methodologymore » that can offer greater accuracy in predicting the failure of sintered silver under accelerated thermal cycling. A fracture mechanics-based approach is adopted in the FEM model, and J-integral/thermal cycle values are computed.« less

  7. Characterization Methods of Encapsulates

    NASA Astrophysics Data System (ADS)

    Zhang, Zhibing; Law, Daniel; Lian, Guoping

    Food active ingredients can be encapsulated by different processes, including spray drying, spray cooling, spray chilling, spinning disc and centrifugal co-extrusion, extrusion, fluidized bed coating and coacervation (see Chap. 2 of this book). The purpose of encapsulation is often to stabilize an active ingredient, control its release rate and/or convert a liquid formulation into a solid which is easier to handle. A range of edible materials can be used as shell materials of encapsulates, including polysaccharides, fats, waxes and proteins (see Chap. 3 of this book). Encapsulates for typical industrial applications can vary from several microns to several millimetres in diameter although there is an increasing interest in preparing nano-encapsulates. Encapsulates are basically particles with a core-shell structure, but some of them can have a more complex structure, e.g. in a form of multiple cores embedded in a matrix. Particles have physical, mechanical and structural properties, including particle size, size distribution, morphology, surface charge, wall thickness, mechanical strength, glass transition temperature, degree of crystallinity, flowability and permeability. Information about the properties of encapsulates is very important to understanding their behaviours in different environments, including their manufacturing processes and end-user applications. E.g. encapsulates for most industrial applications should have desirable mechanical strength, which should be strong enough to withstand various mechanical forces generated in manufacturing processes, such as mixing, pumping, extrusion, etc., and may be required to be weak enough in order to release the encapsulated active ingredients by mechanical forces at their end-user applications, such as release rate of flavour by chewing. The mechanical strength of encapsulates and release rate of their food actives are related to their size, morphology, wall thickness, chemical composition, structure etc. Hence, reliable methods which can be used to characterize these properties of encapsulates are vital. In this chapter, the state-of-art of these methods, their principles and applications, and release mechanisms are described as follows.

  8. Conception d'un système de mesure automatisé pour la caractérisation expérimentale des moteurs piézo-électriquesAn automated test system for piezoelectric motors

    NASA Astrophysics Data System (ADS)

    Ferreira, A.

    1996-04-01

    This paper describes an automated test system for piezoelectric motors allowing the experimental characterization of its electromechanical behaviour. In the first part, an experimental method is given for evaluation of losses generated in the different mechanisms of conversion: electric energy into ultrasonic vibrating energy and ultrasonic vibrating energy into mechanical energy of revolving motion. In the second part, the present method is experimentally validated on a travelling-wave-type rotary motor (Shinsei USR-60). The free stator vibration is analysed by a laser vibrometer which gives a picture both of amplitude and of phase vibration. This result allows one to obtain an identification of vibrations modes and an evaluation of ultrasonic vibrating energy and electromechanical efficiency. To characterize the working of the complete motor, the no-load working mode is first considered. The measurement of its maximal mechanical characteristics (maximal no-load rotating speed, maximal driving torque) with respect to axial load allows the choice of optimum axial load. For this optimum value, the load working mode is, finally, investigated for the evaluation of load characteristics and conversion losses.

  9. Automated air-void system characterization of hardened concrete: Helping computers to count air-voids like people count air-voids---Methods for flatbed scanner calibration

    NASA Astrophysics Data System (ADS)

    Peterson, Karl

    Since the discovery in the late 1930s that air entrainment can improve the durability of concrete, it has been important for people to know the quantity, spacial distribution, and size distribution of the air-voids in their concrete mixes in order to ensure a durable final product. The task of air-void system characterization has fallen on the microscopist, who, according to a standard test method laid forth by the American Society of Testing and Materials, must meticulously count or measure about a thousand air-voids per sample as exposed on a cut and polished cross-section of concrete. The equipment used to perform this task has traditionally included a stereomicroscope, a mechanical stage, and a tally counter. Over the past 30 years, with the availability of computers and digital imaging, automated methods have been introduced to perform the same task, but using the same basic equipment. The method described here replaces the microscope and mechanical stage with an ordinary flatbed desktop scanner, and replaces the microscopist and tally counter with a personal computer; two pieces of equipment much more readily available than a microscope with a mechanical stage, and certainly easier to find than a person willing to sit for extended periods of time counting air-voids. Most laboratories that perform air-void system characterization typically have cabinets full of prepared samples with corresponding results from manual operators. Proponents of automated methods often take advantage of this fact by analyzing the same samples and comparing the results. A similar iterative approach is described here where scanned images collected from a significant number of samples are analyzed, the results compared to those of the manual operator, and the settings optimized to best approximate the results of the manual operator. The results of this calibration procedure are compared to an alternative calibration procedure based on the more rigorous digital image accuracy assessment methods employed primarily by the remote sensing/satellite imaging community.

  10. Nuclear fuels status

    NASA Technical Reports Server (NTRS)

    Kania, Michael

    1991-01-01

    A discussion on coated particle fuel performance from a modular High Temperature Gas Reactor (HTGR) is presented along with experimental results. The following topics are covered: (1) the coated particle fuel concept; (2) the functional requirements; (3) performance limiting mechanisms; (4) fuel performance; and (5) methods/techniques for characterizing performance.

  11. Piezoresistive effect in p-type 3C-SiC at high temperatures characterized using Joule heating

    PubMed Central

    Phan, Hoang-Phuong; Dinh, Toan; Kozeki, Takahiro; Qamar, Afzaal; Namazu, Takahiro; Dimitrijev, Sima; Nguyen, Nam-Trung; Dao, Dzung Viet

    2016-01-01

    Cubic silicon carbide is a promising material for Micro Electro Mechanical Systems (MEMS) applications in harsh environ-ments and bioapplications thanks to its large band gap, chemical inertness, excellent corrosion tolerance and capability of growth on a Si substrate. This paper reports the piezoresistive effect of p-type single crystalline 3C-SiC characterized at high temperatures, using an in situ measurement method. The experimental results show that the highly doped p-type 3C-SiC possesses a relatively stable gauge factor of approximately 25 to 28 at temperatures varying from 300 K to 573 K. The in situ method proposed in this study also demonstrated that, the combination of the piezoresistive and thermoresistive effects can increase the gauge factor of p-type 3C-SiC to approximately 20% at 573 K. The increase in gauge factor based on the combination of these phenomena could enhance the sensitivity of SiC based MEMS mechanical sensors. PMID:27349378

  12. Piezoresistive effect in p-type 3C-SiC at high temperatures characterized using Joule heating

    NASA Astrophysics Data System (ADS)

    Phan, Hoang-Phuong; Dinh, Toan; Kozeki, Takahiro; Qamar, Afzaal; Namazu, Takahiro; Dimitrijev, Sima; Nguyen, Nam-Trung; Dao, Dzung Viet

    2016-06-01

    Cubic silicon carbide is a promising material for Micro Electro Mechanical Systems (MEMS) applications in harsh environ-ments and bioapplications thanks to its large band gap, chemical inertness, excellent corrosion tolerance and capability of growth on a Si substrate. This paper reports the piezoresistive effect of p-type single crystalline 3C-SiC characterized at high temperatures, using an in situ measurement method. The experimental results show that the highly doped p-type 3C-SiC possesses a relatively stable gauge factor of approximately 25 to 28 at temperatures varying from 300 K to 573 K. The in situ method proposed in this study also demonstrated that, the combination of the piezoresistive and thermoresistive effects can increase the gauge factor of p-type 3C-SiC to approximately 20% at 573 K. The increase in gauge factor based on the combination of these phenomena could enhance the sensitivity of SiC based MEMS mechanical sensors.

  13. Phosphine polymerization by nitric oxide: experimental characterization and theoretical predictions of mechanism.

    PubMed

    Zhao, Yi-Lei; Flora, Jason W; Thweatt, William David; Garrison, Stephen L; Gonzalez, Carlos; Houk, K N; Marquez, Manuel

    2009-02-02

    A yellow solid material [P(x)H(y)] has been obtained in the reaction of phosphine (PH(3)) and nitric oxide (NO) at room temperature and characterized by thermogravimetric analysis mass spectrometry (TGA-MS) and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. In this work using complete basis set (CBS-QB3) methods a plausible mechanism has been investigated for phosphine polymerization in the presence of nitric oxide (NO). Theoretical explorations with the ab initio method suggest (a) instead of the monomer the nitric oxide dimer acts as an initial oxidant, (b) the resulting phosphine oxides (H(3)P=O <--> H(3)P(+)O(-)) in the gas phase draw each other via strong dipolar interactions between the P-O groups, and (c) consequently an autocatalyzed polymerization occurs among the phosphine oxides, forming P-P chemical bonds and losing water. The possible structures of polyhydride phosphorus polymer were discussed. In the calculations a series of cluster models was computed to simulate polymerization.

  14. Development of a synchrotron biaxial tensile device for in situ characterization of thin films mechanical response.

    PubMed

    Geandier, G; Thiaudière, D; Randriamazaoro, R N; Chiron, R; Djaziri, S; Lamongie, B; Diot, Y; Le Bourhis, E; Renault, P O; Goudeau, P; Bouaffad, A; Castelnau, O; Faurie, D; Hild, F

    2010-10-01

    We have developed on the DIFFABS-SOLEIL beamline a biaxial tensile machine working in the synchrotron environment for in situ diffraction characterization of thin polycrystalline films mechanical response. The machine has been designed to test compliant substrates coated by the studied films under controlled, applied strain field. Technological challenges comprise the sample design including fixation of the substrate ends, the related generation of a uniform strain field in the studied (central) volume, and the operations from the beamline pilot. Preliminary tests on 150 nm thick W films deposited onto polyimide cruciform substrates are presented. The obtained results for applied strains using x-ray diffraction and digital image correlation methods clearly show the full potentialities of this new setup.

  15. The development and mechanical characterization of aluminium copper-carbon fiber metal matrix hybrid composite

    NASA Astrophysics Data System (ADS)

    Manzoor, M. U.; Feroze, M.; Ahmad, T.; Kamran, M.; Butt, M. T. Z.

    2018-04-01

    Metal matrix composites (MMCs) come under advanced materials that can be used for a wide range of industrial applications. MMCs contain a non-metallic reinforcement incorporated into a metallic matrix which can enhance properties over base metal alloys. Copper-Carbon fiber reinforced aluminium based hybrid composites were prepared by compo casting method. 4 weight % copper was used as alloying element with Al because of its precipitation hardened properties. Different weight compositions of composites were developed and characterized by mechanical testing. A significant improvement in tensile strength and micro hardness were found, before and after heat treatment of the composite. The SEM analysis of the fractured surfaces showed dispersed and embedded Carbon fibers within the network leading to the enhanced strength.

  16. Voltage-gated sodium channels: pharmaceutical targets via anticonvulsants to treat epileptic syndromes.

    PubMed

    Abdelsayed, Mena; Sokolov, Stanislav

    2013-01-01

    Epilepsy is a brain disorder characterized by seizures and convulsions. The basis of epilepsy is an increase in neuronal excitability that, in some cases, may be caused by functional defects in neuronal voltage gated sodium channels, Nav1.1 and Nav1.2. The effects of antiepileptic drugs (AEDs) as effective therapies for epilepsy have been characterized by extensive research. Most of the classic AEDs targeting Nav share a common mechanism of action by stabilizing the channel's fast-inactivated state. In contrast, novel AEDs, such as lacosamide, stabilize the slow-inactivated state in neuronal Nav1.1 and Nav1.7 isoforms. This paper reviews the different mechanisms by which this stabilization occurs to determine new methods for treatment.

  17. Characterization of iron surface modified by 2-mercaptobenzothiazole self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Feng, Yuanyuan; Chen, Shenhao; Zhang, Honglin; Li, Ping; Wu, Ling; Guo, Wenjuan

    2006-12-01

    A self-assembled monolayer of 2-mercaptobenzothiazole (MBT) adsorbed on the iron surface was prepared. The films were characterized by electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared reflection spectroscopy (FT-IR) and scanning electron microscopy (SEM). Besides, the microcalorimetry method was utilized to study the self-assembled process on iron surface and the adsorption mechanism was discussed from the power-time curve. The results indicated that MBT was able to form a film spontaneously on iron surface and the presence of it could protect iron from corrosion effectively. However, the assembling time and the concentration influence the protection efficiency. Quantum chemical calculations, according to which adsorption mechanism was discussed, could explain the experimental results to some extent.

  18. Eddy current characterization of magnetic treatment of nickel 200

    NASA Technical Reports Server (NTRS)

    Chern, E. J.

    1993-01-01

    Eddy current methods have been applied to characterize the effect of magnetic treatments on component service-life extension. Coil impedance measurements were acquired and analyzed on nickel 200 specimens that have been subjected to many mechanical and magnetic engineering processes: annealing, applied strain, magnetic field, shot peening, and magnetic field after peening. Experimental results have demonstrated a functional relationship between coil impedance, resistance and reactance, and specimens subjected to various engineering processes. It has shown that magnetic treatment does induce changes in electromagnetic properties of nickel 200 that then exhibit evidence of stress relief. However, further fundamental studies are necessary for a thorough understanding of the exact mechanism of the magnetic field processing effect on machine-tool service life.

  19. Allergoids for allergy treatment.

    PubMed

    Carnes, Jeronimo; Gallego, Maria T; Moya, Raquel; Iraola, Victor

    2018-02-21

    Background Chemically modified allergen extracts, known as allergoids, are commonly used for treating allergic patients. In general terms, the concept of allergoids implies allergen extracts with a reduction of their allergenicity maintaining their immunogenicity. Different methods to obtain allergoids have been developed in the past years, opening attractive lines of research. Objective To review the different approaches to allergoid development as well as their characterization, mechanism of action and efficacy and safety issues. Methods A revision and analysis of the different types of allergoids has been performed, with special attention to patents submitted and granted in the last years. Additionally, updated information about the mechanism of action and clinical evidence and safety of allergoids has been discussed. Results Principally, allergoids are obtained by the polymerization of native allergen extracts with aldehydes, including formaldehyde or glutaraldehyde. However, recent patents and publications about different chemical modifications have been presented, as well as about the use of new adjuvants with allergoids. Regarding the characterization, allergoids require more sophisticated analytical methods than native extracts, as a consequence of their properties and characteristics. Conclusion In the last years, the partial understanding of the mechanism of action and the generation of clinical evidence of different types of allergoids, linked to their excellent safety profile and their convenience for a quick build up phase, have made of allergoids an excellent product for allergy treatment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. New Method for Characterizing the State of Optical and Opto-Mechanical Systems

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, Ritva; Saif, Babak; Feinberg, Lee; Chaney, David; Bluth, Marcel; Greenfield, Perry; Hack, Warren; Smith, Scott; Sanders, James

    2014-01-01

    James Webb Space Telescope Optical Telescope Element (OTE) is a three mirror anastigmat consisting of a 6.5 m primary mirror (PM), secondary mirror (SM) and a tertiary mirror. The primary mirror is made out of 18 segments. The telescope and instruments will be assembled at Goddard Space Flight Center (GSFC) to make it the Optical Telescope Element-Integrated Science Instrument Module (OTIS). The OTIS will go through environmental testing at GSFC before being transported to Johnson Space Center for testing at cryogenic temperature. The objective of the primary mirror Center of Curvature test (CoC) is to characterize the PM before and after the environmental testing for workmanship. This paper discusses the CoC test including both a surface figure test and a new method for characterizing the state of the primary mirror using high speed dynamics interferometry.

  1. Note: Seesaw actuation of atomic force microscope probes for improved imaging bandwidth and displacement range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torun, H.; Torello, D.; Degertekin, F. L.

    2011-08-15

    The authors describe a method of actuation for atomic force microscope (AFM) probes to improve imaging speed and displacement range simultaneously. Unlike conventional piezoelectric tube actuation, the proposed method involves a lever and fulcrum ''seesaw'' like actuation mechanism that uses a small, fast piezoelectric transducer. The lever arm of the seesaw mechanism increases the apparent displacement range by an adjustable gain factor, overcoming the standard tradeoff between imaging speed and displacement range. Experimental characterization of a cantilever holder implementing the method is provided together with comparative line scans obtained with contact mode imaging. An imaging bandwidth of 30 kHz inmore » air with the current setup was demonstrated.« less

  2. High-Throughput and Cost-Effective Characterization of Induced Pluripotent Stem Cells.

    PubMed

    D'Antonio, Matteo; Woodruff, Grace; Nathanson, Jason L; D'Antonio-Chronowska, Agnieszka; Arias, Angelo; Matsui, Hiroko; Williams, Roy; Herrera, Cheryl; Reyna, Sol M; Yeo, Gene W; Goldstein, Lawrence S B; Panopoulos, Athanasia D; Frazer, Kelly A

    2017-04-11

    Reprogramming somatic cells to induced pluripotent stem cells (iPSCs) offers the possibility of studying the molecular mechanisms underlying human diseases in cell types difficult to extract from living patients, such as neurons and cardiomyocytes. To date, studies have been published that use small panels of iPSC-derived cell lines to study monogenic diseases. However, to study complex diseases, where the genetic variation underlying the disorder is unknown, a sizable number of patient-specific iPSC lines and controls need to be generated. Currently the methods for deriving and characterizing iPSCs are time consuming, expensive, and, in some cases, descriptive but not quantitative. Here we set out to develop a set of simple methods that reduce cost and increase throughput in the characterization of iPSC lines. Specifically, we outline methods for high-throughput quantification of surface markers, gene expression analysis of in vitro differentiation potential, and evaluation of karyotype with markedly reduced cost. Published by Elsevier Inc.

  3. Experimental methods of actuation, characterization and prototyping of hydrogels for bioMEMS/NEMS applications.

    PubMed

    Khaleque, T; Abu-Salih, S; Saunders, J R; Moussa, W

    2011-03-01

    As a member of the smart polymer material group, stimuli responsive hydrogels have achieved a wide range of applications in microfluidic devices, micro/nano bio and environmental sensors, biomechanics and drug delivery systems. To optimize the utilization of a hydrogel in various micro and nano applications it is essential to have a better understanding of its mechanical and electrical properties. This paper presents a review of the different techniques used to determine a hydrogel's mechanical properties, including tensile strength, compressive strength and shear modulus and the electrical properties including electrical conductivity and dielectric permittivity. Also explored the effect of various prototyping factors and the mechanisms by which these factors are used to alter the mechanical and electrical properties of a hydrogel. Finally, this review discusses a wide range of hydrogel fabrication techniques and methods used, to date, to actuate this family of smart polymer material.

  4. Source Characterization of the 2015 Collapse in Gypsum Mine in Shandong, China

    NASA Astrophysics Data System (ADS)

    Yang, H.; Chu, R.; Sheng, M.

    2016-12-01

    Source parameters of mining earthquakes are essential to investigating pressure redistribution and accumulation due to underground excavation. On 25 December 2015, a local magnitude 4.0 earthquake occurred at 07:56:12 BJT in Pingyi County, China (latitude: 35.5°N, longitude: 117.7°E) with a depth of 0 km. This earthquake is caused by underground cave collapse. In this paper, we used sliding-window cross-correlation method to detect aftershocks of this event. The result indicates there are at least six aftershocks within ten minutes after the earthquake. Then we inverted focal mechanisms and depths of the mainshock and the largest aftershock with three-component broadband seismic waveform data recorded by the National Seismic Network. We use the generalized Cut-and-Paste (gCAP) method to obtain their moment tensors, which allows for a characterization of the relative amounts of deviatoric and isotropic source components. This gCAP method divides three component waveforms into Pnl and surface wave segments, and allows adjustable time shifts between observed and synthetic data, so that it reduces the influence of uncertainties in the 1-D velocity model. The results show that both events have similar focal mechanisms, which contains obvious non-double-couple component with a large proportion of isotropic source component. The mechanisms are dominated by 80% implosive isotropic energy and 20% thrusting double couple energy. Such mechanisms might be explained by an asymmetric collapse of the mine cavity due to unevenly distributed in situ stresses, sympathetic shear on a roof fault, or between the roof and floor of the mine.

  5. Characterization and evaluation physical properties biodegradable plastic composite from seaweed (Eucheuma cottonii)

    NASA Astrophysics Data System (ADS)

    Deni, Glar Donia; Dhaningtyas, Shalihat Afifah; Fajar, Ibnu; Sudarno

    2015-12-01

    The characterization and evaluation of biodegradable plastic composed of a mixture PVA - carrageenan - chitosan was conducted in this study. Obtained data were then compared to commercial biodegradable plastic. Characteristic of plastic was mechanical tested such as tensile - strength and elongation. Plastic degradation was studied using composting method for 7 days and 14 days. The results showed that the increase carrageenan will decrease tensile-strength and elongation plastic composite. In addition, increase carrageenan would increase the degraded plastics composite.

  6. Micro structrual characterization and analysis of ball milled silicon carbide

    NASA Astrophysics Data System (ADS)

    Madhusudan, B. M.; Raju, H. P.; Ghanaraja., S.

    2018-04-01

    Mechanical alloying has been one of the prominent methods of powder synthesis technique in solid state involving cyclic deformation, cold welding and fracturing of powder particles. Powder particles in this method are subjected to greater mechanical deformation due to the impact of ball-powder-ball and ball-powder-container collisions that occurs during mechanical alloying. Strain hardening and fracture of particles decreases the size of the particles and creates new surfaces. The objective of this Present work is to use ball milling of SiC powder for different duration of 5, 10, 15 and 20 hours by High energy planetary ball milling machine and to evaluate the effect of ball milling on SiC powder. Micro structural Studies using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) and EDAX has been investigated.

  7. Characterization of mechanical properties of leather with airborne ultrasonics

    USDA-ARS?s Scientific Manuscript database

    A nondestructive method to accurately evaluate the quality of hides and leather is urgently needed by leather and hide industries. We previously reported the research results for airborne ultrasonic (AU) testing using non-contact transducers to evaluate the quality of hides and leather. The abilit...

  8. Characterization for elastic constants of fused deposition modelling-fabricated materials based on the virtual fields method and digital image correlation

    NASA Astrophysics Data System (ADS)

    Cao, Quankun; Xie, Huimin

    2017-12-01

    Fused deposition modelling (FDM), a widely used rapid prototyping process, is a promising technique in manufacturing engineering. In this work, a method for characterizing elastic constants of FDM-fabricated materials is proposed. First of all, according to the manufacturing process of FDM, orthotropic constitutive model is used to describe the mechanical behavior. Then the virtual fields method (VFM) is applied to characterize all the mechanical parameters (Q_{11}, Q_{22}, Q_{12}, Q_{66}) using the full-field strain, which is measured by digital image correlation (DIC). Since the principal axis of the FDM-fabricated structure is sometimes unknown due to the complexity of the manufacturing process, a disk in diametrical compression is used as the load configuration so that the loading angle can be changed conveniently. To verify the feasibility of the proposed method, finite element method (FEM) simulation is conducted to obtain the strain field of the disk. The simulation results show that higher accuracy can be achieved when the loading angle is close to 30°. Finally, a disk fabricated by FDM was used for the experiment. By rotating the disk, several tests with different loading angles were conducted. To determine the position of the principal axis in each test, two groups of parameters (Q_{11}, Q_{22}, Q_{12}, Q_{66}) are calculated by two different groups of virtual fields. Then the corresponding loading angle can be determined by minimizing the deviation between two groups of the parameters. After that, the four constants (Q_{11}, Q_{22}, Q_{12}, Q_{66}) were determined from the test with an angle of 27°.

  9. Mechanical excitation of rodlike particles by a vibrating plate.

    PubMed

    Trittel, Torsten; Harth, Kirsten; Stannarius, Ralf

    2017-06-01

    The experimental realization and investigation of granular gases usually require an initial or permanent excitation of ensembles of particles, either mechanically or electromagnetically. One typical method is the energy supply by a vibrating plate or container wall. We study the efficiency of such an excitation of cylindrical particles by a sinusoidally oscillating wall and characterize the distribution of kinetic energies of excited particles over their degrees of freedom. The influences of excitation frequency and amplitude are analyzed.

  10. Characterization and Evaluation of TiB2-AlN Composites for Armor Applications

    DTIC Science & Technology

    2013-09-01

    identified structural defects and studied the fracture mechanisms (15, 16). 2 2. Experimental One TiB2 powder was used for this study. The TiB2...on phase formation and grain size effects compounded with residual stress on the fracture mechanisms . However, it was determined that the composite...Temperature. Annu. Book ASTM Stand. 2002, Vol. 15.01. 18. ASTM C 1421-10. Standard Test Methods for Determination of Fracture Toughness of

  11. Composite ceramic superconducting wires for electric motor applications

    NASA Astrophysics Data System (ADS)

    Halloran, John W.

    1988-12-01

    This is the Second Quarterly report on a project to develop HTSC wire for an HTSC motor. The raw material for fiber production is an improved YBa2Cu3O(7-x) powder. Continuous spools of green YBa2Cu3O(7-x) fiber are being produced. The major effort in fiber spinning is aimed at improving fiber quality and reducing fiber. Binder burnout and sintering has been intensively investigated. Fiber sintering fibers is done by the rapid zone sintering method. A continuous furnace received near the end of this Quarter will be used for continuous sintering. Continuous silver coated green fiber are produced. We have made progress toward continuous cladding using the mechanical cladding concept. The melt spinning process was successfully applied to YBa2Cu3O(7-x) powders at 50 vol percent solids loadings. The cladding work centered on mechanical cladding of silver treated filaments by solder bonding to copper strips. Aluminum deposits on YBa2Cu3O(7-x) filament surfaces were produced by MOCVD at ATM, but the superconductivity was degraded. Electrical characterization work focused on methods of making low resistance contacts on YBa2Cu3O(7-x) filaments. Emerson Motor Division has begun work on DC heteropolar and homopolar motor designs. The mechanical stresses on conventional copper wires during winding have been characterized to determine the mechanical parameters of motor building.

  12. The synthesis and characterization of Mg-Zn-Ca alloy by powder metallurgy process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annur, Dhyah; Franciska, P.L.; Erryani, Aprilia

    Known for its biodegradation and biocompatible properties, magnesium alloys have gained many interests to be researched as implant material. In this study, Mg-3Zn-1Ca, Mg-29Zn-1Ca, and Mg-53Zn-4.3Ca (in wt%) were synthesized by means of powder metallurgy method. The compression strength and corrosion resistance of magnesium alloy were thoroughly examined. The microstructures of the alloy were characterized using optical microscopy, Scanning Electron Microscope, and also X-ray diffraction analysis. The corrosion resistance were evaluated using electrochemical analysis. The result indicated that Mg- Zn- Ca alloy could be synthesized using powder metallurgy method. This study showed that Mg-29Zn-1Ca would make the highest mechanical strengthmore » up to 159.81 MPa. Strengthening mechanism can be explained by precipitation hardening and grain refinement mechanism. Phase analysis had shown the formation of α Mg, MgO, and intermetallic phases: Mg2Zn11 and also Ca2Mg6Zn3. However, when the composition of Zn reach 53% weight, the mechanical strength will be decreasing. In addition, all of Mg-Zn-Ca alloy studied here had better corrosion resistance (Ecorr around -1.4 VSCE) than previous study of Mg. This study indicated that Mg- 29Zn- 1Ca alloy can be further analyzed to be a biodegradable implant material.« less

  13. Particle-based methods for multiscale modeling of blood flow in the circulation and in devices: challenges and future directions. Sixth International Bio-Fluid Mechanics Symposium and Workshop March 28-30, 2008 Pasadena, California.

    PubMed

    Yamaguchi, Takami; Ishikawa, Takuji; Imai, Y; Matsuki, N; Xenos, Mikhail; Deng, Yuefan; Bluestein, Danny

    2010-03-01

    A major computational challenge for a multiscale modeling is the coupling of disparate length and timescales between molecular mechanics and macroscopic transport, spanning the spatial and temporal scales characterizing the complex processes taking place in flow-induced blood clotting. Flow and pressure effects on a cell-like platelet can be well represented by a continuum mechanics model down to the order of the micrometer level. However, the molecular effects of adhesion/aggregation bonds are on the order of nanometer. A successful multiscale model of platelet response to flow stresses in devices and the ensuing clotting responses should be able to characterize the clotting reactions and their interactions with the flow. This paper attempts to describe a few of the computational methods that were developed in recent years and became available to researchers in the field. They differ from traditional approaches that dominate the field by expanding on prevailing continuum-based approaches, or by completely departing from them, yielding an expanding toolkit that may facilitate further elucidation of the underlying mechanisms of blood flow and the cellular response to it. We offer a paradigm shift by adopting a multidisciplinary approach with fluid dynamics simulations coupled to biophysical and biochemical transport.

  14. Anti-friction performance of FeS nanoparticle synthesized by biological method

    NASA Astrophysics Data System (ADS)

    Zhou, Lu Hai; Wei, Xi Cheng; Ma, Zi Jian; Mei, Bin

    2017-06-01

    FeS nanoparticle is prepared by a biological method. The size, morphology and structure of the FeS nanoparticle are characterized by the means of X-ray diffraction and transmission electron microscopy. The anti-friction behavior of the FeS nanoparticle as a lubricating oil additive is evaluated in the engine oil by using a face-to-face contact mode. The worn surface is characterized by using the scanning electron microscopy and secondary ion mass spectroscopy in order to find the reasons resulting in the reduction of friction coefficient due to the addition of the FeS nanoparticle. The anti-friction mechanism of the FeS nanoparticle is elucidated based on the experimental results.

  15. A facile approach towards synthesis, characterization, single crystal structure, and DFT study of 5-bromosalicylalcohol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rastogi, Rupali, E-mail: rastogirupali@ymail.com; Tarannum, Nazia; Butcher, R. J.

    2016-03-15

    5-Bromosalicylalcohol was prepared by the interaction of NaBH{sub 4} and 5-bromosalicylaldehyde. The use of sodium borohydride makes the reaction easy, facile, economic and does not require any toxic catalyst. The compound is characterized by FTIR, {sup 1}H NMR, {sup 13}C NMR, TEM and ESI-mass spectra. Crystal structure is determined by single crystal X-ray analysis. Quantum mechanical calculations of geometries, energies and thermodynamic parameters are carried out using density functional theory (DFT/B3LYP) method with 6-311G(d,p) basis set. The optimized geometrical parameters obtained by B3LYP method show good agreement with experimental data.

  16. Preparation of Stable Amyloid-β Oligomers Without Perturbative Methods.

    PubMed

    Kotler, Samuel A; Ramamoorthy, Ayyalusamy

    2018-01-01

    Soluble amyloid-β (Aβ) oligomers have become a focal point in the study of Alzheimer's disease due to their ability to elicit cytotoxicity. A number of recent studies have concentrated on the structural characterization of soluble Aβ oligomers to gain insight into their mechanism of toxicity. Consequently, providing reproducible protocols for the preparation of such oligomers is of utmost importance. The method presented in this chapter details a protocol for preparing an Aβ oligomer, with a primarily disordered secondary structure, without the need for chemical modification or amino acid substitution. Due to the stability of these disordered Aβ oligomers and the reproducibility with which they form, they are amenable for biophysical and high-resolution structural characterization.

  17. Annexin II-Dependent Mechanism of Breast Cancer Progression

    DTIC Science & Technology

    2008-06-01

    and migratory capacities of the annexin II-suppressed cells. Methods: We used antisense RNA technology to silence the annexin II gene in MDA...gene in mDA-MB231 cells using polymerase chain reaction-based short hairpin RNA (1–7 months) b) Characterize the proliferative, invasive, and...MB231 cells according to methods described by Li et al. (24). Briefly, three different diothionated antisense nucleotides (ODN) were synthesized

  18. New Imaging Methods for Non-invasive Assessment of Mechanical, Structural, and Biochemical Properties of Human Achilles Tendon: A Mini Review

    PubMed Central

    Fouré, Alexandre

    2016-01-01

    The mechanical properties of tendon play a fundamental role to passively transmit forces from muscle to bone, withstand sudden stretches, and act as a mechanical buffer allowing the muscle to work more efficiently. The use of non-invasive imaging methods for the assessment of human tendon's mechanical, structural, and biochemical properties in vivo is relatively young in sports medicine, clinical practice, and basic science. Non-invasive assessment of the tendon properties may enhance the diagnosis of tendon injury and the characterization of recovery treatments. While ultrasonographic imaging is the most popular tool to assess the tendon's structural and indirectly, mechanical properties, ultrasonographic elastography, and ultra-high field magnetic resonance imaging (UHF MRI) have recently emerged as potentially powerful techniques to explore tendon tissues. This paper highlights some methodological cautions associated with conventional ultrasonography and perspectives for in vivo human Achilles tendon assessment using ultrasonographic elastography and UHF MRI. PMID:27512376

  19. A novel 3D deformation measurement method under optical microscope for micro-scale bulge-test

    NASA Astrophysics Data System (ADS)

    Wu, Dan; Xie, Huimin

    2017-11-01

    A micro-scale 3D deformation measurement method combined with optical microscope is proposed in this paper. The method is based on gratings and phase shifting algorithm. By recording the grating images before and after deformation from two symmetrical angles and calculating the phases of the grating patterns, the 3D deformation field of the specimen can be extracted from the phases of the grating patterns. The proposed method was applied to the micro-scale bulge test. A micro-scale thermal/mechanical coupling bulge-test apparatus matched with the super-depth microscope was exploited. With the gratings fabricated onto the film, the deformed morphology of the bulged film was measured reliably. The experimental results show that the proposed method and the exploited bulge-test apparatus can be used to characterize the thermal/mechanical properties of the films at micro-scale successfully.

  20. Acoustic Radiation Force Elasticity Imaging in Diagnostic Ultrasound

    PubMed Central

    Doherty, Joshua R.; Trahey, Gregg E.; Nightingale, Kathryn R.; Palmeri, Mark L.

    2013-01-01

    The development of ultrasound-based elasticity imaging methods has been the focus of intense research activity since the mid-1990s. In characterizing the mechanical properties of soft tissues, these techniques image an entirely new subset of tissue properties that cannot be derived with conventional ultrasound techniques. Clinically, tissue elasticity is known to be associated with pathological condition and with the ability to image these features in vivo, elasticity imaging methods may prove to be invaluable tools for the diagnosis and/or monitoring of disease. This review focuses on ultrasound-based elasticity imaging methods that generate an acoustic radiation force to induce tissue displacements. These methods can be performed non-invasively during routine exams to provide either qualitative or quantitative metrics of tissue elasticity. A brief overview of soft tissue mechanics relevant to elasticity imaging is provided, including a derivation of acoustic radiation force, and an overview of the various acoustic radiation force elasticity imaging methods. PMID:23549529

  1. Acoustic radiation force elasticity imaging in diagnostic ultrasound.

    PubMed

    Doherty, Joshua R; Trahey, Gregg E; Nightingale, Kathryn R; Palmeri, Mark L

    2013-04-01

    The development of ultrasound-based elasticity imaging methods has been the focus of intense research activity since the mid-1990s. In characterizing the mechanical properties of soft tissues, these techniques image an entirely new subset of tissue properties that cannot be derived with conventional ultrasound techniques. Clinically, tissue elasticity is known to be associated with pathological condition and with the ability to image these features in vivo; elasticity imaging methods may prove to be invaluable tools for the diagnosis and/or monitoring of disease. This review focuses on ultrasound-based elasticity imaging methods that generate an acoustic radiation force to induce tissue displacements. These methods can be performed noninvasively during routine exams to provide either qualitative or quantitative metrics of tissue elasticity. A brief overview of soft tissue mechanics relevant to elasticity imaging is provided, including a derivation of acoustic radiation force, and an overview of the various acoustic radiation force elasticity imaging methods.

  2. Computational methods for 2D materials: discovery, property characterization, and application design.

    PubMed

    Paul, J T; Singh, A K; Dong, Z; Zhuang, H; Revard, B C; Rijal, B; Ashton, M; Linscheid, A; Blonsky, M; Gluhovic, D; Guo, J; Hennig, R G

    2017-11-29

    The discovery of two-dimensional (2D) materials comes at a time when computational methods are mature and can predict novel 2D materials, characterize their properties, and guide the design of 2D materials for applications. This article reviews the recent progress in computational approaches for 2D materials research. We discuss the computational techniques and provide an overview of the ongoing research in the field. We begin with an overview of known 2D materials, common computational methods, and available cyber infrastructures. We then move onto the discovery of novel 2D materials, discussing the stability criteria for 2D materials, computational methods for structure prediction, and interactions of monolayers with electrochemical and gaseous environments. Next, we describe the computational characterization of the 2D materials' electronic, optical, magnetic, and superconducting properties and the response of the properties under applied mechanical strain and electrical fields. From there, we move on to discuss the structure and properties of defects in 2D materials, and describe methods for 2D materials device simulations. We conclude by providing an outlook on the needs and challenges for future developments in the field of computational research for 2D materials.

  3. Computational methods for 2D materials: discovery, property characterization, and application design

    NASA Astrophysics Data System (ADS)

    Paul, J. T.; Singh, A. K.; Dong, Z.; Zhuang, H.; Revard, B. C.; Rijal, B.; Ashton, M.; Linscheid, A.; Blonsky, M.; Gluhovic, D.; Guo, J.; Hennig, R. G.

    2017-11-01

    The discovery of two-dimensional (2D) materials comes at a time when computational methods are mature and can predict novel 2D materials, characterize their properties, and guide the design of 2D materials for applications. This article reviews the recent progress in computational approaches for 2D materials research. We discuss the computational techniques and provide an overview of the ongoing research in the field. We begin with an overview of known 2D materials, common computational methods, and available cyber infrastructures. We then move onto the discovery of novel 2D materials, discussing the stability criteria for 2D materials, computational methods for structure prediction, and interactions of monolayers with electrochemical and gaseous environments. Next, we describe the computational characterization of the 2D materials’ electronic, optical, magnetic, and superconducting properties and the response of the properties under applied mechanical strain and electrical fields. From there, we move on to discuss the structure and properties of defects in 2D materials, and describe methods for 2D materials device simulations. We conclude by providing an outlook on the needs and challenges for future developments in the field of computational research for 2D materials.

  4. The effects of forcing on a single stream shear layer and its parent boundary layer

    NASA Technical Reports Server (NTRS)

    Haw, Richard C.; Foss, John F.

    1990-01-01

    Forcing and its effect on fluid flows has become an accepted tool in the study and control of flow systems. It has been used both as a diagnostic tool, to explore the development and interaction of coherent structures, and as a method of controlling the behavior of the flow. A number of forcing methods have been used in order to provide a perturbation to the flow; among these are the use of an oscillating trailing edge, acoustically driven slots, external acoustic forcing, and mechanical piston methods. The effect of a planar mechanical piston forcing on a single stream shear layer is presented; it can be noted that this is one of the lesser studied free shear layers. The single stream shear layer can be characterized by its primary flow velocity scale and the thickness of the separating boundary layer. The velocity scale is constant over the length of the flow field; theta (x) can be used as a width scale to characterize the unforced shear layer. In the case of the forced shear layer the velocity field is a function of phase time and definition of a width measure becomes somewhat problematic.

  5. Characterization of the Dynamics of Climate Systems and Identification of Missing Mechanisms Impacting the Long Term Predictive Capabilities of Global Climate Models Utilizing Dynamical Systems Approaches to the Analysis of Observed and Modeled Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatt, Uma S.; Wackerbauer, Renate; Polyakov, Igor V.

    The goal of this research was to apply fractional and non-linear analysis techniques in order to develop a more complete characterization of climate change and variability for the oceanic, sea ice and atmospheric components of the Earth System. This research applied two measures of dynamical characteristics of time series, the R/S method of calculating the Hurst exponent and Renyi entropy, to observational and modeled climate data in order to evaluate how well climate models capture the long-term dynamics evident in observations. Fractional diffusion analysis was applied to ARGO ocean buoy data to quantify ocean transport. Self organized maps were appliedmore » to North Pacific sea level pressure and analyzed in ways to improve seasonal predictability for Alaska fire weather. This body of research shows that these methods can be used to evaluate climate models and shed light on climate mechanisms (i.e., understanding why something happens). With further research, these methods show promise for improving seasonal to longer time scale forecasts of climate.« less

  6. A framework for discrete stochastic simulation on 3D moving boundary domains

    DOE PAGES

    Drawert, Brian; Hellander, Stefan; Trogdon, Michael; ...

    2016-11-14

    We have developed a method for modeling spatial stochastic biochemical reactions in complex, three-dimensional, and time-dependent domains using the reaction-diffusion master equation formalism. In particular, we look to address the fully coupled problems that arise in systems biology where the shape and mechanical properties of a cell are determined by the state of the biochemistry and vice versa. To validate our method and characterize the error involved, we compare our results for a carefully constructed test problem to those of a microscale implementation. Finally, we demonstrate the effectiveness of our method by simulating a model of polarization and shmoo formationmore » during the mating of yeast. The method is generally applicable to problems in systems biology where biochemistry and mechanics are coupled, and spatial stochastic effects are critical.« less

  7. Estimation of mechanical properties of nanomaterials using artificial intelligence methods

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, V.; Garg, A.; Wong, C. H.; Tai, K.

    2014-09-01

    Computational modeling tools such as molecular dynamics (MD), ab initio, finite element modeling or continuum mechanics models have been extensively applied to study the properties of carbon nanotubes (CNTs) based on given input variables such as temperature, geometry and defects. Artificial intelligence techniques can be used to further complement the application of numerical methods in characterizing the properties of CNTs. In this paper, we have introduced the application of multi-gene genetic programming (MGGP) and support vector regression to formulate the mathematical relationship between the compressive strength of CNTs and input variables such as temperature and diameter. The predictions of compressive strength of CNTs made by these models are compared to those generated using MD simulations. The results indicate that MGGP method can be deployed as a powerful method for predicting the compressive strength of the carbon nanotubes.

  8. Assessment of Technologies for the Space Shuttle External Tank Thermal Protection System and Recommendations for Technology Improvement - Part III: Material Property Characterization, Analysis, and Test Methods

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Johnson, Theodore F.; Whitley, Karen S.

    2005-01-01

    The objective of this report is to contribute to the independent assessment of the Space Shuttle External Tank Foam Material. This report specifically addresses material modeling, characterization testing, data reduction methods, and data pedigree. A brief description of the External Tank foam materials, locations, and standard failure modes is provided to develop suitable background information. A review of mechanics based analysis methods from the open literature is used to provide an assessment of the state-of-the-art in material modeling of closed cell foams. Further, this report assesses the existing material property database and investigates sources of material property variability. The report presents identified deficiencies in testing methods and procedures, recommendations for additional testing as required, identification of near-term improvements that should be pursued, and long-term capabilities or enhancements that should be developed.

  9. Remediation of uranium-contaminated groundwater by sorption onto hydoxyapatite derived from catfish bones

    USDA-ARS?s Scientific Manuscript database

    Hydroxyapatite was prepared from catfish bones, called catfish hydroxyapatite (CFHA), by mechanical and chemical treatment methods and was characterized by x-ray diffraction (X-RD) and scanning electron microscope (SEM) techniques to confirm the presence of hydroxyapatite. The ability of CFHA to rem...

  10. Biodegradable baked foam made with chayotextle starch mixed with plantain flour and wood fiber

    USDA-ARS?s Scientific Manuscript database

    New renewable materials are needed to reduce petroleum-based plastic packaging. The effect of plantain flour (PF) and wood fiber (WF) on the properties of starch-based foams (SBFs) were investigated. The SBFs were characterized using physical, thermal, and mechanical methods to better understand the...

  11. Laboratory Investigations Of Mechanisms For 1,4-Dioxane Destruction By Ozone In Water (Presentation)

    EPA Science Inventory

    Advances in analytical detection methods have made it possible to quantify 1,4-dioxane contamination in groundwater, even a well-characterized sites where it had not been previously detected. Although 1,4-dioxane is difficult to treat because of its chemical and physical propert...

  12. Laboratory Investigation Of Mechanisms For 1,4-Dioxane Destruction By Ozone In Water

    EPA Science Inventory

    Advances in analytical detection methods have made it possible to quantify 1,4-dioxane contamination in groundwater, even at well-characterized sites where it had not been previously detected. Although 1,4-dioxane is difficult to treat because of its chemical and physical proper...

  13. Research in nonlinear structural and solid mechanics

    NASA Technical Reports Server (NTRS)

    Mccomb, H. G., Jr. (Compiler); Noor, A. K. (Compiler)

    1980-01-01

    Nonlinear analysis of building structures and numerical solution of nonlinear algebraic equations and Newton's method are discussed. Other topics include: nonlinear interaction problems; solution procedures for nonlinear problems; crash dynamics and advanced nonlinear applications; material characterization, contact problems, and inelastic response; and formulation aspects and special software for nonlinear analysis.

  14. Integrating asthma hazard characterization methods for consumer products.

    PubMed

    Maier, A; Vincent, M J; Gadagbui, B; Patterson, J; Beckett, W; Dalton, P; Kimber, I; Selgrade, M J K

    2014-10-01

    Despite extensive study, definitive conclusions regarding the relationship between asthma and consumer products remain elusive. Uncertainties reflect the multi-faceted nature of asthma (i.e., contributions of immunologic and non-immunologic mechanisms). Many substances used in consumer products are associated with occupational asthma or asthma-like syndromes. However, risk assessment methods do not adequately predict the potential for consumer product exposures to trigger asthma and related syndromes under lower-level end-user conditions. A decision tree system is required to characterize asthma and respiratory-related hazards associated with consumer products. A system can be built to incorporate the best features of existing guidance, frameworks, and models using a weight-of-evidence (WoE) approach. With this goal in mind, we have evaluated chemical hazard characterization methods for asthma and asthma-like responses. Despite the wealth of information available, current hazard characterization methods do not definitively identify whether a particular ingredient will cause or exacerbate asthma, asthma-like responses, or sensitization of the respiratory tract at lower levels associated with consumer product use. Effective use of hierarchical lines of evidence relies on consideration of the relevance and potency of assays, organization of assays by mode of action, and better assay validation. It is anticipated that the analysis of existing methods will support the development of a refined WoE approach. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Hurst exponent: A Brownian approach to characterize the nonlinear behavior of red blood cells deformability

    NASA Astrophysics Data System (ADS)

    Mancilla Canales, M. A.; Leguto, A. J.; Riquelme, B. D.; León, P. Ponce de; Bortolato, S. A.; Korol, A. M.

    2017-12-01

    Ektacytometry techniques quantifies red blood cells (RBCs) deformability by measuring the elongation of suspended RBCs subjected to shear stress. Raw shear stress elongation plots are difficult to understand, thus most research papers apply data reduction methods characterizing the relationship between curve fitting. Our approach works with the naturally generated photometrically recorded time series of the diffraction pattern of several million of RBCs subjected to shear stress, and applies nonlinear quantifiers to study the fluctuations of these elongations. The development of new quantitative methods is crucial for restricting the subjectivity in the study of the cells behavior, mainly if they are capable of analyze at the same time biological and mechanical aspects of the cells in flowing conditions and compare their dynamics. A patented optical system called Erythrocyte Rheometer was used to evaluate viscoelastic properties of erythrocytes by Ektacytometry. To analyze cell dynamics we used the technique of Time Delay Coordinates, False Nearest Neighbors, the forecasting procedure proposed by Sugihara and May, and Hurst exponent. The results have expressive meaning on comparing healthy samples with parasite treated samples, suggesting that apparent noise associated with deterministic chaos can be used not only to distinguish but also to characterize biological and mechanical aspects of cells at the same time in flowing conditions.

  16. Measuring localized viscoelasticity of the vitreous body using intraocular microprobes.

    PubMed

    Pokki, Juho; Ergeneman, Olgaç; Sevim, Semih; Enzmann, Volker; Torun, Hamdi; Nelson, Bradley J

    2015-10-01

    Vitrectomy is a standard ophthalmic procedure to remove the vitreous body from the eye. The biomechanics of the vitreous affects its duration (by changing the removal rate) and the mechanical forces transmitted via the vitreous on the surrounding tissues during the procedure. Biomechanical characterization of the vitreous is essential for optimizing the design and control of instruments that operate within the vitreous for improved precision, safety, and efficacy. The measurements are carried out using a magnetic microprobe inserted into the vitreous, a method known as magnetic microrheology. The location of the probe is tracked by a microscope/camera while magnetic forces are exerted wirelessly by applied magnetic fields. In this work, in vitro artificial vitreous, ex vivo human vitreous and ex vivo porcine vitreous were characterized. In addition, in vivo rabbit measurements were performed using a suturelessly injected probe. Measurements indicate that viscoelasticity parameters of the ex vivo human vitreous are an order of magnitude different from those of the ex vivo porcine vitreous. The in vivo intra-operative measurements show typical viscoelastic behavior of the vitreous with a lower compliance than the ex vivo measurements. The results of the magnetic microrheology measurements were validated with those obtained by a standard atomic force microscopy (AFM) method and in vitro artificial vitreous. This method allows minimally-invasive characterization of localized mechanical properties of the vitreous in vitro, ex vivo, and in vivo. A better understanding of the characteristics of the vitreous can lead to improvements in treatments concerning vitreal manipulation such as vitrectomy.

  17. History, rare, and multiple events of mechanical unfolding of repeat proteins

    NASA Astrophysics Data System (ADS)

    Sumbul, Fidan; Marchesi, Arin; Rico, Felix

    2018-03-01

    Mechanical unfolding of proteins consisting of repeat domains is an excellent tool to obtain large statistics. Force spectroscopy experiments using atomic force microscopy on proteins presenting multiple domains have revealed that unfolding forces depend on the number of folded domains (history) and have reported intermediate states and rare events. However, the common use of unspecific attachment approaches to pull the protein of interest holds important limitations to study unfolding history and may lead to discarding rare and multiple probing events due to the presence of unspecific adhesion and uncertainty on the pulling site. Site-specific methods that have recently emerged minimize this uncertainty and would be excellent tools to probe unfolding history and rare events. However, detailed characterization of these approaches is required to identify their advantages and limitations. Here, we characterize a site-specific binding approach based on the ultrastable complex dockerin/cohesin III revealing its advantages and limitations to assess the unfolding history and to investigate rare and multiple events during the unfolding of repeated domains. We show that this approach is more robust, reproducible, and provides larger statistics than conventional unspecific methods. We show that the method is optimal to reveal the history of unfolding from the very first domain and to detect rare events, while being more limited to assess intermediate states. Finally, we quantify the forces required to unfold two molecules pulled in parallel, difficult when using unspecific approaches. The proposed method represents a step forward toward more reproducible measurements to probe protein unfolding history and opens the door to systematic probing of rare and multiple molecule unfolding mechanisms.

  18. Dynamic characterization of small fibers based on the flexural vibrations of a piezoelectric cantilever probe

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofei; Ye, Xuan; Li, Xide

    2016-08-01

    In this paper, we present a cantilever-probe system excited by a piezoelectric actuator, and use it to measure the dynamic mechanical properties of a micro- and nanoscale fiber. Coupling the fiber to the free end of the cantilever probe, we found the dynamic stiffness and damping coefficient of the fiber from the resonance frequency and the quality factor of the fiber-cantilever-probe system. The properties of Bacillus subtilis fibers measured using our proposed system agreed with tensile measurements, validating our method. Our measurements show that the piezoelectric actuator coupled to cantilever probe can be made equivalent to a clamped cantilever with an effective length, and calculated results show that the errors of measured natural frequency of the system can be ignored if the coupled fiber has an inclination angle of alignment of less than 10°. A sensitivity analysis indicates that the first or second resonant mode is the sensitive mode to test the sample’s dynamic stiffness, while the damping property has different sensitivities for the first four modes. Our theoretical analysis demonstrates that the double-cantilever probe is also an effective sensitive structure that can be used to perform dynamic loading and characterize dynamic response. Our method has the advantage of using amplitude-frequency curves to obtain the dynamic mechanical properties without directly measuring displacements and forces as in tensile tests, and it also avoids the effects of the complex surface structure and deformation presenting in contact resonance method. Our method is effective for measuring the dynamic mechanical properties of fiber-like one-dimensional (1D) materials.

  19. Characterizing the Physical and Thermal Properties of Planetary Regolith at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Mantovani, James G.; Swanger, Adam; Townsend, Ivan I., III; Sibille, Laurent; Galloway, Gregory

    2014-01-01

    The success or failure of in-situ resource utilization for planetary surface exploration-whether for science, colonization, or commercialization-relies heavily on the design and implementation of systems that can effectively process planetary regolith and exploit its potential benefits. In most cases, this challenge necessarily includes the characterization of regolith properties at low temperatures (cryogenic). None of the nearby solar system destinations of interest, such as the moon, Mars and asteroids, possess a sufficient atmosphere to sustain the consistently "high" surface temperatures found on Earth. Therefore, they can experience permanent cryogenic temperatures or dramatic cyclical changes in surface temperature. Characterization of physical properties (e.g., specific heat, thermal and electrical conductivity) over the entire temperature profile is important when planning a mission to a planetary surface; however, the impact on mechanical properties due to the introduction of icy deposits must also be explored in order to devise effective and robust excavation technologies. The Granular Mechanics and Regolith Operations Laboratory and the Cryogenics Test Laboratory at NASA Kennedy Space Center are developing technologies and experimental methods to address these challenges and to aid in the characterization of the physical and mechanical properties of regolith at cryogenic temperatures. This paper will review the current state of knowledge concerning planetary regolith at low temperature, including that of icy regolith, and describe efforts to manipulate icy regolith through novel penetration and excavation techniques.

  20. Collagen Organization in Facet Capsular Ligaments Varies With Spinal Region and With Ligament Deformation.

    PubMed

    Ban, Ehsan; Zhang, Sijia; Zarei, Vahhab; Barocas, Victor H; Winkelstein, Beth A; Picu, Catalin R

    2017-07-01

    The spinal facet capsular ligament (FCL) is primarily comprised of heterogeneous arrangements of collagen fibers. This complex fibrous structure and its evolution under loading play a critical role in determining the mechanical behavior of the FCL. A lack of analytical tools to characterize the spatial anisotropy and heterogeneity of the FCL's microstructure has limited the current understanding of its structure-function relationships. Here, the collagen organization was characterized using spatial correlation analysis of the FCL's optically obtained fiber orientation field. FCLs from the cervical and lumbar spinal regions were characterized in terms of their structure, as was the reorganization of collagen in stretched cervical FCLs. Higher degrees of intra- and intersample heterogeneity were found in cervical FCLs than in lumbar specimens. In the cervical FCLs, heterogeneity was manifested in the form of curvy patterns formed by collections of collagen fibers or fiber bundles. Tensile stretch, a common injury mechanism for the cervical FCL, significantly increased the spatial correlation length in the stretch direction, indicating an elongation of the observed structural features. Finally, an affine estimation for the change of correlation length under loading was performed which gave predictions very similar to the actual values. These findings provide structural insights for multiscale mechanical analyses of the FCLs from various spinal regions and also suggest methods for quantitative characterization of complex tissue patterns.

  1. Circulating Tumor Cells: Moving Biological Insights into Detection

    PubMed Central

    Chen, Lichan; Bode, Ann M; Dong, Zigang

    2017-01-01

    Circulating tumor cells (CTCs) have shown promising potential as liquid biopsies that facilitate early detection, prognosis, therapeutic target selection and monitoring treatment response. CTCs in most cancer patients are low in abundance and heterogeneous in morphological and phenotypic profiles, which complicate their enrichment and subsequent characterization. Several methodologies for CTC enrichment and characterization have been developed over the past few years. However, integrating recent advances in CTC biology into these methodologies and the selection of appropriate enrichment and characterization methods for specific applications are needed to improve the reliability of CTC biopsies. In this review, we summarize recent advances in the studies of CTC biology, including the mechanisms of their generation and their potential forms of existence in blood, as well as the current CTC enrichment technologies. We then critically examine the selection of methods for appropriately enriching CTCs for further investigation of their clinical applications. PMID:28819450

  2. Morphology and properties of poly vinyl alcohol (PVA) scaffolds: impact of process variables.

    PubMed

    Ye, Mao; Mohanty, Pravansu; Ghosh, Gargi

    2014-09-01

    Successful engineering of functional biological substitutes requires scaffolds with three-dimensional interconnected porous structure, controllable rate of biodegradation, and ideal mechanical strength. In this study, we report the development and characterization of micro-porous PVA scaffolds fabricated by freeze drying method. The impact of molecular weight of PVA, surfactant concentration, foaming time, and stirring speed on pore characteristics, mechanical properties, swelling ratio, and rate of degradation of the scaffolds was characterized. Results show that a foaming time of 60s, a stirring speed of 1,000 rpm, and a surfactant concentration of 5% yielded scaffolds with rigid structure but with interconnected pores. Study also demonstrated that increased foaming time increased porosity and swelling ratio and reduced the rigidity of the samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Development of a synchrotron biaxial tensile device for in situ characterization of thin films mechanical response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geandier, G.; Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, 91192 Gif sur Yvette; LPMTM, UPR 9001 CNRS, Universite Paris-Nord, 93430 Villetaneuse

    2010-10-15

    We have developed on the DIFFABS-SOLEIL beamline a biaxial tensile machine working in the synchrotron environment for in situ diffraction characterization of thin polycrystalline films mechanical response. The machine has been designed to test compliant substrates coated by the studied films under controlled, applied strain field. Technological challenges comprise the sample design including fixation of the substrate ends, the related generation of a uniform strain field in the studied (central) volume, and the operations from the beamline pilot. Preliminary tests on 150 nm thick W films deposited onto polyimide cruciform substrates are presented. The obtained results for applied strains usingmore » x-ray diffraction and digital image correlation methods clearly show the full potentialities of this new setup.« less

  4. Pre-clinical MR elastography: Principles, techniques, and applications

    NASA Astrophysics Data System (ADS)

    Bayly, P. V.; Garbow, J. R.

    2018-06-01

    Magnetic resonance elastography (MRE) is a method for measuring the mechanical properties of soft tissue in vivo, non-invasively, by imaging propagating shear waves in the tissue. The speed and attenuation of waves depends on the elastic and dissipative properties of the underlying material. Tissue mechanical properties are essential for biomechanical models and simulations, and may serve as markers of disease, injury, development, or recovery. MRE is already established as a clinical technique for detecting and characterizing liver disease. The potential of MRE for diagnosing or characterizing disease in other organs, including brain, breast, and heart is an active research area. Studies involving MRE in the pre-clinical setting, in phantoms and artificial biomaterials, in the mouse, and in other mammals, are critical to the development of MRE as a robust, reliable, and useful modality.

  5. Effect of tow alignment on the mechanical performance of 3D woven textile composites

    NASA Technical Reports Server (NTRS)

    Norman, Timothy L.; Allison, Patti; Baldwin, Jack W.; Gracias, Brian K.; Seesdorf, Dave

    1993-01-01

    Three-dimensional (3D) woven preforms are currently being considered for use as primary structural components. Lack of technology to properly manufacture, characterize and predict mechanical properties, and predict damage mechanisms leading to failure are problems facing designers of textile composite materials. Two material systems with identical specifications but different manufacturing approaches are investigated. One manufacturing approach resulted in an irregular (nonuniform) preform geometry. The other approach yielded the expected preform geometry (uniform). The objectives are to compare the mechanical properties of the uniform and nonuniform angle interlock 3D weave constructions. The effect of adding layers of laminated tape to the outer surfaces of the textile preform is also examined. Damage mechanisms are investigated and test methods are evaluated.

  6. Rate Constants and Mechanisms of Protein–Ligand Binding

    PubMed Central

    Pang, Xiaodong; Zhou, Huan-Xiang

    2017-01-01

    Whereas protein–ligand binding affinities have long-established prominence, binding rate constants and binding mechanisms have gained increasing attention in recent years. Both new computational methods and new experimental techniques have been developed to characterize the latter properties. It is now realized that binding mechanisms, like binding rate constants, can and should be quantitatively determined. In this review, we summarize studies and synthesize ideas on several topics in the hope of providing a coherent picture of and physical insight into binding kinetics. The topics include microscopic formulation of the kinetic problem and its reduction to simple rate equations; computation of binding rate constants; quantitative determination of binding mechanisms; and elucidation of physical factors that control binding rate constants and mechanisms. PMID:28375732

  7. Design Concepts, Fabrication and Advanced Characterization Methods of Innovative Piezoelectric Sensors Based on ZnO Nanowires.

    PubMed

    Araneo, Rodolfo; Rinaldi, Antonio; Notargiacomo, Andrea; Bini, Fabiano; Pea, Marialilia; Celozzi, Salvatore; Marinozzi, Franco; Lovat, Giampiero

    2014-12-08

    Micro- and nano-scale materials and systems based on zinc oxide are expected to explode in their applications in the electronics and photonics, including nano-arrays of addressable optoelectronic devices and sensors, due to their outstanding properties, including semiconductivity and the presence of a direct bandgap, piezoelectricity, pyroelectricity and biocompatibility. Most applications are based on the cooperative and average response of a large number of ZnO micro/nanostructures. However, in order to assess the quality of the materials and their performance, it is fundamental to characterize and then accurately model the specific electrical and piezoelectric properties of single ZnO structures. In this paper, we report on focused ion beam machined high aspect ratio nanowires and their mechanical and electrical (by means of conductive atomic force microscopy) characterization. Then, we investigate the suitability of new power-law design concepts to accurately model the relevant electrical and mechanical size-effects, whose existence has been emphasized in recent reviews.

  8. Design Concepts, Fabrication and Advanced Characterization Methods of Innovative Piezoelectric Sensors Based on ZnO Nanowires

    PubMed Central

    Araneo, Rodolfo; Rinaldi, Antonio; Notargiacomo, Andrea; Bini, Fabiano; Pea, Marialilia; Celozzi, Salvatore; Marinozzi, Franco; Lovat, Giampiero

    2014-01-01

    Micro- and nano-scale materials and systems based on zinc oxide are expected to explode in their applications in the electronics and photonics, including nano-arrays of addressable optoelectronic devices and sensors, due to their outstanding properties, including semiconductivity and the presence of a direct bandgap, piezoelectricity, pyroelectricity and biocompatibility. Most applications are based on the cooperative and average response of a large number of ZnO micro/nanostructures. However, in order to assess the quality of the materials and their performance, it is fundamental to characterize and then accurately model the specific electrical and piezoelectric properties of single ZnO structures. In this paper, we report on focused ion beam machined high aspect ratio nanowires and their mechanical and electrical (by means of conductive atomic force microscopy) characterization. Then, we investigate the suitability of new power-law design concepts to accurately model the relevant electrical and mechanical size-effects, whose existence has been emphasized in recent reviews. PMID:25494351

  9. Unfolding single RNA molecules: bridging the gap between equilibrium and non-equilibrium statistical thermodynamics.

    PubMed

    Bustamante, Carlos

    2005-11-01

    During the last 15 years, scientists have developed methods that permit the direct mechanical manipulation of individual molecules. Using this approach, they have begun to investigate the effect of force and torque in chemical and biochemical reactions. These studies span from the study of the mechanical properties of macromolecules, to the characterization of molecular motors, to the mechanical unfolding of individual proteins and RNA. Here I present a review of some of our most recent results using mechanical force to unfold individual molecules of RNA. These studies make it possible to follow in real time the trajectory of each molecule as it unfolds and characterize the various intermediates of the reaction. Moreover, if the process takes place reversibly it is possible to extract both kinetic and thermodynamic information from these experiments at the same time that we characterize the forces that maintain the three-dimensional structure of the molecule in solution. These studies bring us closer to the biological unfolding processes in the cell as they simulate in vitro, the mechanical unfolding of RNAs carried out in the cell by helicases. If the unfolding process occurs irreversibly, I show here that single-molecule experiments can still provide equilibrium, thermodynamic information from non-equilibrium data by using recently discovered fluctuation theorems. Such theorems represent a bridge between equilibrium and non-equilibrium statistical mechanics. In fact, first derived in 1997, the first experimental demonstration of the validity of fluctuation theorems was obtained by unfolding mechanically a single molecule of RNA. It is perhaps a sign of the times that important physical results are these days used to extract information about biological systems and that biological systems are being used to test and confirm fundamental new laws in physics.

  10. Preparation, Characterization, and Enhanced Thermal and Mechanical Properties of Epoxy-Titania Composites

    PubMed Central

    Rubab, Zakya; Siddiqi, Humaira M.; Saeed, Shaukat

    2014-01-01

    This paper presents the synthesis and thermal and mechanical properties of epoxy-titania composites. First, submicron titania particles are prepared via surfactant-free sol-gel method using TiCl4 as precursor. These particles are subsequently used as inorganic fillers (or reinforcement) for thermally cured epoxy polymers. Epoxy-titania composites are prepared via mechanical mixing of titania particles with liquid epoxy resin and subsequently curing the mixture with an aliphatic diamine. The amount of titania particles integrated into epoxy matrix is varied between 2.5 and 10.0 wt.% to investigate the effect of sub-micron titania particles on thermal and mechanical properties of epoxy-titania composites. These composites are characterized by X-ray photoelectron (XPS) spectroscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric (TG), and mechanical analyses. It is found that sub-micron titania particles significantly enhance the glass transition temperature (>6.7%), thermal oxidative stability (>12.0%), tensile strength (>21.8%), and Young's modulus (>16.8%) of epoxy polymers. Epoxy-titania composites with 5.0 wt.% sub-micron titania particles perform best at elevated temperatures as well as under high stress. PMID:24578638

  11. Structural mechanical and antibacterial properties of HPMC/SF-AgNPs nanocomposite films

    NASA Astrophysics Data System (ADS)

    Harish, K. V.; Rao, B. Lakshmeesha; Asha, S.; Vipin, C.; Sangappa, Y.

    2018-04-01

    In the present study, Hydroxypropyl Methylcellulose (HPMC) pure and HPMC/SF-AgNPs biopolymer nanocomposite films were prepared by simple solution casting method. The prepared nanocomposite films were characterized using UV-Visible spectroscopy(UV-Vis), X-ray diffraction (XRD) measurements. The mechanical properties of HPMC/SF-AgNPs nanocomposites were found to be decrease with increase in the AgNP's concentrations. The HPMC/SF-AgNPs nanocomposites showed very good antibacterial activity against human pathogens P. aeruginosa, E.coli, and S.aureus.

  12. The Use of End-to-End Multicast Measurements for Characterizing Internal Network Behavior

    DTIC Science & Technology

    2002-08-01

    dropping on the basis Random Early Detection ( RED ) [17] is another mechanism by which packet loss may become decorrelated. It remains to be seen whether...this mechanism will be widely deployed in communications networks. On the other hand, the use of RED to merely mark packets will not break correlations...Tail and Random Early Detection ( RED ) buffer discard methods, [17]. We compared the inferred loss and delay with actual probe loss and delay. We found

  13. From inverse problems to learning: a Statistical Mechanics approach

    NASA Astrophysics Data System (ADS)

    Baldassi, Carlo; Gerace, Federica; Saglietti, Luca; Zecchina, Riccardo

    2018-01-01

    We present a brief introduction to the statistical mechanics approaches for the study of inverse problems in data science. We then provide concrete new results on inferring couplings from sampled configurations in systems characterized by an extensive number of stable attractors in the low temperature regime. We also show how these result are connected to the problem of learning with realistic weak signals in computational neuroscience. Our techniques and algorithms rely on advanced mean-field methods developed in the context of disordered systems.

  14. Machining and characterization of self-reinforced polymers

    NASA Astrophysics Data System (ADS)

    Deepa, A.; Padmanabhan, K.; Kuppan, P.

    2017-11-01

    This Paper focuses on obtaining the mechanical properties and the effect of the different machining techniques on self-reinforced composites sample and to derive the best machining method with remarkable properties. Each sample was tested by the Tensile and Flexural tests, fabricated using hot compaction test and those loads were calculated. These composites are machined using conventional methods because of lack of advanced machinery in most of the industries. The advanced non-conventional methods like Abrasive water jet machining were used. These machining techniques are used to get the better output for the composite materials with good mechanical properties compared to conventional methods. But the use of non-conventional methods causes the changes in the work piece, tool properties and more economical compared to the conventional methods. Finding out the best method ideal for the designing of these Self Reinforced Composites with and without defects and the use of Scanning Electron Microscope (SEM) analysis for the comparing the microstructure of the PP and PE samples concludes our process.

  15. Mechanical characterization of structurally porous biomaterials built via additive manufacturing: experiments, predictive models, and design maps for load-bearing bone replacement implants.

    PubMed

    Melancon, D; Bagheri, Z S; Johnston, R B; Liu, L; Tanzer, M; Pasini, D

    2017-11-01

    Porous biomaterials can be additively manufactured with micro-architecture tailored to satisfy the stringent mechano-biological requirements imposed by bone replacement implants. In a previous investigation, we introduced structurally porous biomaterials, featuring strength five times stronger than commercially available porous materials, and confirmed their bone ingrowth capability in an in vivo canine model. While encouraging, the manufactured biomaterials showed geometric mismatches between their internal porous architecture and that of its as-designed counterpart, as well as discrepancies between predicted and tested mechanical properties, issues not fully elucidated. In this work, we propose a systematic approach integrating computed tomography, mechanical testing, and statistical analysis of geometric imperfections to generate statistical based numerical models of high-strength additively manufactured porous biomaterials. The method is used to develop morphology and mechanical maps that illustrate the role played by pore size, porosity, strut thickness, and topology on the relations governing their elastic modulus and compressive yield strength. Overall, there are mismatches between the mechanical properties of ideal-geometry models and as-manufactured porous biomaterials with average errors of 49% and 41% respectively for compressive elastic modulus and yield strength. The proposed methodology gives more accurate predictions for the compressive stiffness and the compressive strength properties with a reduction of the average error to 11% and 7.6%. The implications of the results and the methodology here introduced are discussed in the relevant biomechanical and clinical context, with insight that highlights promises and limitations of additively manufactured porous biomaterials for load-bearing bone replacement implants. In this work, we perform mechanical characterization of load-bearing porous biomaterials for bone replacement over their entire design space. Results capture the shift in geometry and mechanical properties between as-designed and as-manufactured biomaterials induced by additive manufacturing. Characterization of this shift is crucial to ensure appropriate manufacturing of bone replacement implants that enable biological fixation through bone ingrowth as well as mechanical property harmonization with the native bone tissue. In addition, we propose a method to include manufacturing imperfections in the numerical models that can reduce the discrepancy between predicted and tested properties. The results give insight into the use of structurally porous biomaterials for the design and additive fabrication of load-bearing implants for bone replacement. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. The John Charnley Award: an accurate and sensitive method to separate, display, and characterize wear debris: part 1: polyethylene particles.

    PubMed

    Billi, Fabrizio; Benya, Paul; Kavanaugh, Aaron; Adams, John; Ebramzadeh, Edward; McKellop, Harry

    2012-02-01

    Numerous studies indicate highly crosslinked polyethylenes reduce the wear debris volume generated by hip arthroplasty acetabular liners. This, in turns, requires new methods to isolate and characterize them. We describe a method for extracting polyethylene wear particles from bovine serum typically used in wear tests and for characterizing their size, distribution, and morphology. Serum proteins were completely digested using an optimized enzymatic digestion method that prevented the loss of the smallest particles and minimized their clumping. Density-gradient ultracentrifugation was designed to remove contaminants and recover the particles without filtration, depositing them directly onto a silicon wafer. This provided uniform distribution of the particles and high contrast against the background, facilitating accurate, automated, morphometric image analysis. The accuracy and precision of the new protocol were assessed by recovering and characterizing particles from wear tests of three types of polyethylene acetabular cups (no crosslinking and 5 Mrads and 7.5 Mrads of gamma irradiation crosslinking). The new method demonstrated important differences in the particle size distributions and morphologic parameters among the three types of polyethylene that could not be detected using prior isolation methods. The new protocol overcomes a number of limitations, such as loss of nanometer-sized particles and artifactual clumping, among others. The analysis of polyethylene wear particles produced in joint simulator wear tests of prosthetic joints is a key tool to identify the wear mechanisms that produce the particles and predict and evaluate their effects on periprosthetic tissues.

  17. Mechanical property characterization of intraply hybrid composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F.; Sinclair, J. H.

    1979-01-01

    An investigation of the mechanical properties of intraply hybrids made from graphite fiber/epoxy matrix hybridized with secondary S-glass or Kevlar 49 fiber composites is presented. The specimen stress-strain behavior was determined, showing that mechanical properties of intraply hybrid composites can be measured with available methods such as the ten-degree off-axis test for intralaminar shear, and conventional tests for tensile, flexure, and Izod impact properties. The results also showed that combinations of high modulus graphite/S-glass/epoxy matrix composites exist which yield intraply hybrid laminates with the best 'balanced' properties, and that the translation efficiency of mechanical properties from the constituent composites to intraply hybrids may be assessed with a simple equation.

  18. Polyaryl ethers and related polysiloxane copolymer molecular coatings preparation and radiation degrdation

    NASA Technical Reports Server (NTRS)

    Mcgrath, J. E.; Hedrick, J. L.; Webster, D. C.; Johnson, B. C.; Mohanty, D. K.; Yilgor, I.

    1983-01-01

    Poly(arylene ether sulfones) comprise a class of materials known as engineering thermoplastics which have a variety of important applications. These polymers are tough, rigid materials with good mechanical properties over a wide temperature range, and they are processed by conventional methods into products typically having excellent hydrolytic, thermal, oxidative and dimensional stability. Wholly aromatic random copolymers of hydroquinone and biphenol with 4.4 prime dichlorodiphenyl sulfone were synthesized via mechanical nucleophilic displacement. Their structures were characterized and mechanical behavior studied. These tough, ductile copolymers show excellent radiation resistance to electron beam treatment and retain much of the mechanical properties up to at least 700 Mrads under argon.

  19. Laryngeal vibratory mechanisms: the notion of vocal register revisited.

    PubMed

    Roubeau, Bernard; Henrich, Nathalie; Castellengo, Michèle

    2009-07-01

    This study, focused on the laryngeal source level, introduces the concept of laryngeal vibratory mechanism. Human phonation is characterized by the use of four laryngeal mechanisms, labeled M0-M3, as evidenced by the electroglottographic (EGG) study of the transition phenomena between mechanisms with a population of men and women, trained and untrained singers. Macroscopic and local descriptions of the EGG signal are analyzed during the production of glissandos and held notes with different mechanisms. The transition from one mechanism to another of higher rank is characterized by a jump in frequency, a reduction of EGG amplitude, and a change in the shape of the derivative of the EGG (which may correspond to a reduction of the vibratory mass). These characteristics are used to identify a transition between two mechanisms, in complement with acoustic spectrographic analyses. The pitches of transitions between the two main mechanisms M1 and M2 and the range of the frequency-overlap region are described in detail. The notion of vocal register is revisited in the light of these concepts of laryngeal mechanism. The literature on vocal registers is reviewed, and it is shown that the confusion often cited with respect to this notion may be related to the heterogeneity of the approaches and methods used to describe the phenomena and to the multiplicity of descriptors. Therefore, the terminology of the registers is organized depending on their relation to the four laryngeal vibratory mechanisms.

  20. Morphology and characterization of 3D micro-porous structured chitosan scaffolds for tissue engineering.

    PubMed

    Hsieh, Wen-Chuan; Chang, Chih-Pong; Lin, Shang-Ming

    2007-06-15

    This research studies the morphology and characterization of three-dimensional (3D) micro-porous structures produced from biodegradable chitosan for use as scaffolds for cells culture. The chitosan 3D micro-porous structures were produced by a simple liquid hardening method, which includes the processes of foaming by mechanical stirring without any chemical foaming agent added, and hardening by NaOH cross linking. The pore size and porosity were controlled with mechanical stirring strength. This study includes the morphology of chitosan scaffolds, the characterization of mechanical properties, water absorption properties and in vitro enzymatic degradation of the 3D micro-porous structures. The results show that chitosan 3D micro-porous structures were successfully produced. Better formation samples were obtained when chitosan concentration is at 1-3%, and concentration of NaOH is at 5%. Faster stirring rate would produce samples of smaller pore diameter, but when rotation speed reaches 4000 rpm and higher the changes in pore size is minimal. Water absorption would reduce along with the decrease of chitosan scaffolds' pore diameter. From stress-strain analysis, chitosan scaffolds' mechanical properties are improved when it has smaller pore diameter. From in vitro enzymatic degradation results, it shows that the disintegration rate of chitosan scaffolds would increase along with the processing time increase, but approaching equilibrium when the disintegration rate reaches about 20%.

  1. The inverse problem of acoustic wave scattering by an air-saturated poroelastic cylinder.

    PubMed

    Ogam, Erick; Fellah, Z E A; Baki, Paul

    2013-03-01

    The efficient use of plastic foams in a diverse range of structural applications like in noise reduction, cushioning, and sleeping mattresses requires detailed characterization of their permeability and deformation (load-bearing) behavior. The elastic moduli and airflow resistance properties of foams are often measured using two separate techniques, one employing mechanical vibration methods and the other, flow rates of fluids based on fluid mechanics technology, respectively. A multi-parameter inverse acoustic scattering problem to recover airflow resistivity (AR) and mechanical properties of an air-saturated foam cylinder is solved. A wave-fluid saturated poroelastic structure interaction model based on the modified Biot theory and plane-wave decomposition using orthogonal cylindrical functions is employed to solve the inverse problem. The solutions to the inverse problem are obtained by constructing the objective functional given by the total square of the difference between predictions from the model and scattered acoustic field data acquired in an anechoic chamber. The value of the recovered AR is in good agreement with that of a slab sample cut from the cylinder and characterized using a method employing low frequency transmitted and reflected acoustic waves in a long waveguide developed by Fellah et al. [Rev. Sci. Instrum. 78(11), 114902 (2007)].

  2. The toxicology and immunology of detergent enzymes.

    PubMed

    Basketter, David; Berg, Ninna; Kruszewski, Francis H; Sarlo, Katherine; Concoby, Beth

    2012-01-01

    Detergent enzymes have a very good safety profile, with almost no capacity to generate adverse acute or chronic responses in humans. The exceptions are the limited ability of some proteases to produce irritating effects at high concentrations, and the intrinsic potential of these bacterial and fungal proteins to act as respiratory sensitizers, demonstrated in humans during the early phase of the industrial use of enzymes during the 1960s and 1970s. How enzymes generate these responses are beginning to become a little clearer, with a developing appreciation of the cell surface mechanism(s) by which the enzymatic activity promotes the T-helper (T(H))-2 cell responses, leading to the generation of IgE. It is a reasonable assumption that the majority of enzyme proteins possess this intrinsic hazard. However, toxicological methods for characterizing further the respiratory sensitization hazard of individual enzymes remains a problematic area, with the consequence that the information feeding into risk assessment/management, although sufficient, is limited. Most of this information was in the past generated in animal models and in vitro immunoassays that assess immunological cross-reactivity. Ultimately, by understanding more fully the mechanisms which drive the IgE response to enzymes, it will be possible to develop better methods for hazard characterization and consequently for risk assessment and management.

  3. Particle-Based Methods for Multiscale Modeling of Blood Flow in the Circulation and in Devices: Challenges and Future Directions

    PubMed Central

    Yamaguchi, Takami; Ishikawa, Takuji; Imai, Y.; Matsuki, N.; Xenos, Mikhail; Deng, Yuefan; Bluestein, Danny

    2010-01-01

    A major computational challenge for a multiscale modeling is the coupling of disparate length and timescales between molecular mechanics and macroscopic transport, spanning the spatial and temporal scales characterizing the complex processes taking place in flow-induced blood clotting. Flow and pressure effects on a cell-like platelet can be well represented by a continuum mechanics model down to the order of the micrometer level. However, the molecular effects of adhesion/aggregation bonds are on the order of nanometer. A successful multiscale model of platelet response to flow stresses in devices and the ensuing clotting responses should be able to characterize the clotting reactions and their interactions with the flow. This paper attempts to describe a few of the computational methods that were developed in recent years and became available to researchers in the field. They differ from traditional approaches that dominate the field by expanding on prevailing continuum-based approaches, or by completely departing from them, yielding an expanding toolkit that may facilitate further elucidation of the underlying mechanisms of blood flow and the cellular response to it. We offer a paradigm shift by adopting a multidisciplinary approach with fluid dynamics simulations coupled to biophysical and biochemical transport. PMID:20336827

  4. Investigation on the Crack Behaviour in Kevlar 49 Based Composite Materials using Extended Finite Element Method for Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Handa, Danish; Sekhar Dondapati, Raja; Kumar, Abhinav

    2017-08-01

    Ductile to brittle transition (DTBT) is extensively observed in materials under cryogenic temperatures, thereby observing brittle failure due to the non-resistance of crack propagation. Owing to its outstanding mechanical and thermal properties, Kevlar 49 composites are widely used in aerospace applications under cryogenic temperatures. Therefore, in this paper, involving the assumption of linear elastic fracture mechanics (LEFM), mechanical characterization of Kevlar 49 composite is done using Extended Finite Element Method (X-FEM) technique in Abaqus/CAE software. Further, the failure of Kevlar 49 composites due to the propagation of crack at room temperature and the cryogenic temperature is investigated. Stress, strain and strain energy density as a function of the width of the Kevlar specimen is predicted, indicates that Kevlar 49 composites are suitable for use under cryogenic temperatures.

  5. Extraction and characterization of bound extracellular polymeric substances from cultured pure cyanobacterium (Microcystis wesenbergii).

    PubMed

    Liu, Lizhen; Qin, Boqiang; Zhang, Yunlin; Zhu, Guangwei; Gao, Guang; Huang, Qi; Yao, Xin

    2014-08-01

    Preliminary characterization of bound extracellular polymeric substances (bEPS) of cyanobacteria is crucial to obtain a better understanding of the formation mechanism of cyanobacterial bloom. However, the characterization of bEPS can be affected by extraction methods. Five sets (including the control) of bEPS from Microcystis extracted by different methods were characterized using three-dimensional excitation and emission matrix (3DEEM) fluorescence spectroscopy combined chemical spectrophotometry; and the characterization results of bEPS samples were further compared. The agents used for extraction were NaOH, pure water and phosphate buffered saline (PBS) containing cationic exchange resins, and hot water. Extraction methods affected the fluorescence signals and intensities in the bEPS. Five fluorescence peaks were observed in the excitation and emission matrix fluorescence spectra of bEPS samples. Two peaks (peaks T₁ and T₂) present in all extractions were identified as protein-like fluorophores, two (peaks A and C) as humic-like fluorophores, and one (peak E) as a fulvic-like substance. Among these substances, the humic-like and fulvic-like fluorescences were only seen in the bEPS extracted with hot water. Also, NaOH solution extraction could result in strong fluorescence intensities compared to the other extraction methods. It was suggested that NaOH at pH10.0 was the most appropriate method to extract bEPS from Microcystis. In addition, dialysis could affect the yields and characteristics of extracted bEPS during the determination process. These results will help us to explore the issues of cyanobacterial blooms. Copyright © 2014. Published by Elsevier B.V.

  6. Cell mechanics and human disease states

    NASA Astrophysics Data System (ADS)

    Suresh, Subra

    2006-03-01

    This presentation will provide summary of our very recent studies exploring the effects of biochemical factors, influenced by foreign organisms or in vivo processes, on intracellular structural reorganization, single-cell mechanical response and motility of a population of cells in the context of two human diseases: malaria induced by Plasmodium falciparum merozoites that invade red blood cells, and gastrointestinal cancer metastasis involving epithelial cells. In both cases, particular attention will be devoted to systematic changes induced in specific molecular species in response to controlled alterations in disease state. The role of critical proteins in influencing the mechanical response of human red bloods during the intra-erythrocytic development of P. falciparum merozoites has also been assessed quantitatively using specific protein knock-out experiments by recourse to gene inactivation methods. Single-cell mechanical response characterization entails such tools as optical tweezers and mechanical plate stretchers whereas cell motility assays and cell-population biorheology characterization involves microfluidic channels. The experimental studies are accompanied by three-dimensional computational simulations at the continuum and mesoscopic scales of cell deformation. An outcome of such combined experimental and computational biophysical studies is the realization of how chemical factors influence single-cell mechanical response, cytoadherence, the biorheology of a large population of cells through microchannels representative of in vivo conditions, and the onset and progression of disease states.

  7. Characterization of Etch Pit Formation via the Everson-Etching Method on CdZnTe Crystal Surfaces from the Bulk to the Nano-Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teague, L.; Duff, M.; Cadieux, J.

    2010-09-24

    A combination of atomic force microscopy, optical microscopy, and mass spectrometry was employed to study CdZnTe crystal surface and used etchant solution following exposure of the CdZnTe crystal to the Everson etch solution. We discuss the results of these studies in relationship to the initial surface preparation methods, the performance of the crystals as radiation spectrometers, the observed etch pit densities, and the chemical mechanism of surface etching. Our results show that the surface features that are exposed to etchants result from interactions with the chemical components of the etchants as well as pre-existing mechanical polishing.

  8. Effects of pore forming agents of potassium bicarbonate and drug loading method against dissolution mechanisms of amoxicillin drugs encapsulated in hydrogel full-Ipn chitosan-poly(N-vinylcaprolactam) as a floating drug delivery system

    NASA Astrophysics Data System (ADS)

    Aini, Nurul; Rahayu, Dyah Utami Cahyaning; Budianto, Emil

    2018-04-01

    The limitation of amoxicillin trihydrate in the treatment of H. pylori bacteria is relatively short retention time in the stomach. The FDDS (Floating Drug Delivery System) amoxicillin trihydrate into a chitosan-poly(N-vinylcaprolactam) full-Ipn hydrogel matrix using a pore-forming agent KHCO3 is expected to overcome these limitations. The pore-forming agent to be used is 15% KHCO3 compound. Chemical kinetics approach is performed to determine the dissolution mechanism of amoxicillin trihydrate from K-PNVCL hydrogel in vitro on gastric pH and characterization using SEM performed to confirm the dissolution mechanism. Hydrogels with the addition of pore-forming agents will be loading in situ loading and post loading. Fourier Transform Infra Red (FTIR) spectroscopy was used to characterize K-PNVCL and UV-Vis hydrogels used to calculate the efficiency of encapsulation and drug dissolution rate in K-PNVCL hydrogel. Hydrogel K-PNVCL / KHCO3 that encapsulated by in situ loading method resulted in an encapsulation efficiency of 93.5% and dissolution of 93.4%. While the Hydrogel K-PNVCL / KHCO3 which is drug encapsulation resulted in an encapsulation efficiency of 87.2% with dissolution of 81.5%. Chemical kinetics approach to in situ encapsulation of loading and post loading shows the dissolution mechanism occurring in the K-PNVCL / KHCO3 hydrogel matrix occurs by diffusion. Observation using optical microscope and SEM showed the mechanism of drug dissolution in Hydrogel K-PNVCL occurred by diffusion.

  9. Synthesis characterization and in vitro drug release from acrylamide and sodium alginate based superporous hydrogel devices

    PubMed Central

    Nagpal, Manju; Singh, Shailendra Kumar; Mishra, Dinanath

    2013-01-01

    Objective: Present investigation was aimed at developing gastroretentive superporous hydrogels (SPHs) having desired mechanical characteristics with sustained release. Materials and Methods: The acrylamide based SPHs of various generations (1st, 2nd and 3rd) were synthesized by gas blowing technique. The prepared SPHs were evaluated for swelling, mechanical strength studies and scanning electron microscopy studies. Verapamil hydrochloride was loaded into selected SPHs by aqueous drug loading method and characterized via Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (X-RD), differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR) and in vitro drug release studies. Results: SPHs of third generation were observed to have desired mechanical strength with sufficient swelling properties. Integrity of the drug was maintained in hydrogel polymeric network as indicated by FTIR, X-RD, and DSC and NMR studies. Initially, fast drug release (up to 60%) was observed in 30 min in formulation batches containing pure drug only (A, C and E), which was further sustained untill 24 h. Discussion: The increase in mechanical strength was due to the chemical cross-linking of secondary polymer in hydrogel network. The initial burst release was due to the presence of free drug at the surface and later sustained drug release was due to diffusion of entrapped drug in polymeric network. Significant decrease in drug release was observed by the addition of hydroxypropyl methyl cellulose. Conclusion: SPH interpenetrating networks with fast swelling and sufficient mechanical strength were prepared, which can be potentially exploited for designing gastroretentive drug delivery devices. PMID:24167785

  10. Quantitative characterization of viscoelastic behavior in tissue-mimicking phantoms and ex vivo animal tissues.

    PubMed

    Maccabi, Ashkan; Shin, Andrew; Namiri, Nikan K; Bajwa, Neha; St John, Maie; Taylor, Zachary D; Grundfest, Warren; Saddik, George N

    2018-01-01

    Viscoelasticity of soft tissue is often related to pathology, and therefore, has become an important diagnostic indicator in the clinical assessment of suspect tissue. Surgeons, particularly within head and neck subsites, typically use palpation techniques for intra-operative tumor detection. This detection method, however, is highly subjective and often fails to detect small or deep abnormalities. Vibroacoustography (VA) and similar methods have previously been used to distinguish tissue with high-contrast, but a firm understanding of the main contrast mechanism has yet to be verified. The contributions of tissue mechanical properties in VA images have been difficult to verify given the limited literature on viscoelastic properties of various normal and diseased tissue. This paper aims to investigate viscoelasticity theory and present a detailed description of viscoelastic experimental results obtained in tissue-mimicking phantoms (TMPs) and ex vivo tissues to verify the main contrast mechanism in VA and similar imaging modalities. A spherical-tip micro-indentation technique was employed with the Hertzian model to acquire absolute, quantitative, point measurements of the elastic modulus (E), long term shear modulus (η), and time constant (τ) in homogeneous TMPs and ex vivo tissue in rat liver and porcine liver and gallbladder. Viscoelastic differences observed between porcine liver and gallbladder tissue suggest that imaging modalities which utilize the mechanical properties of tissue as a primary contrast mechanism can potentially be used to quantitatively differentiate between proximate organs in a clinical setting. These results may facilitate more accurate tissue modeling and add information not currently available to the field of systems characterization and biomedical research.

  11. Quantitative characterization of viscoelastic behavior in tissue-mimicking phantoms and ex vivo animal tissues

    PubMed Central

    Shin, Andrew; Namiri, Nikan K.; Bajwa, Neha; St. John, Maie; Taylor, Zachary D.; Grundfest, Warren; Saddik, George N.

    2018-01-01

    Viscoelasticity of soft tissue is often related to pathology, and therefore, has become an important diagnostic indicator in the clinical assessment of suspect tissue. Surgeons, particularly within head and neck subsites, typically use palpation techniques for intra-operative tumor detection. This detection method, however, is highly subjective and often fails to detect small or deep abnormalities. Vibroacoustography (VA) and similar methods have previously been used to distinguish tissue with high-contrast, but a firm understanding of the main contrast mechanism has yet to be verified. The contributions of tissue mechanical properties in VA images have been difficult to verify given the limited literature on viscoelastic properties of various normal and diseased tissue. This paper aims to investigate viscoelasticity theory and present a detailed description of viscoelastic experimental results obtained in tissue-mimicking phantoms (TMPs) and ex vivo tissues to verify the main contrast mechanism in VA and similar imaging modalities. A spherical-tip micro-indentation technique was employed with the Hertzian model to acquire absolute, quantitative, point measurements of the elastic modulus (E), long term shear modulus (η), and time constant (τ) in homogeneous TMPs and ex vivo tissue in rat liver and porcine liver and gallbladder. Viscoelastic differences observed between porcine liver and gallbladder tissue suggest that imaging modalities which utilize the mechanical properties of tissue as a primary contrast mechanism can potentially be used to quantitatively differentiate between proximate organs in a clinical setting. These results may facilitate more accurate tissue modeling and add information not currently available to the field of systems characterization and biomedical research. PMID:29373598

  12. Utilization of FEM model for steel microstructure determination

    NASA Astrophysics Data System (ADS)

    Kešner, A.; Chotěborský, R.; Linda, M.; Hromasová, M.

    2018-02-01

    Agricultural tools which are used in soil processing, they are worn by abrasive wear mechanism cases by hard minerals particles in the soil. The wear rate is influenced by mechanical characterization of tools material and wear rate is influenced also by soil mineral particle contents. Mechanical properties of steel can be affected by a technology of heat treatment that it leads to a different microstructures. Experimental work how to do it is very expensive and thanks to numerical methods like FEM we can assumed microstructure at low cost but each of numerical model is necessary to be verified. The aim of this work has shown a procedure of prediction microstructure of steel for agricultural tools. The material characterizations of 51CrV4 grade steel were used for numerical simulation like TTT diagram, heat capacity, heat conduction and other physical properties of material. A relationship between predicted microstructure by FEM and real microstructure after heat treatment shows a good correlation.

  13. Mechanical characterization of atherosclerotic arteries using finite-element modeling: feasibility study on mock arteries.

    PubMed

    Pazos, Valérie; Mongrain, Rosaire; Tardif, Jean-Claude

    2010-06-01

    Clinical studies on lipid-lowering therapy have shown that changing the composition of lipid pools reduced significantly the risk of cardiac events associated with plaque rupture. It has been shown also that changing the composition of the lipid pool affects its mechanical properties. However, knowledge about the mechanical properties of human atherosclerotic lesions remains limited due to the difficulty of the experiments. This paper aims to assess the feasibility of characterizing a lipid pool embedded in the wall of a pressurized vessel using finite-element simulations and an optimization algorithm. Finite-element simulations of inflation experiments were used together with nonlinear least squares algorithm to estimate the material model parameters of the wall and of the inclusion. An optimal fit of the simulated experiment and the real experiment was sought with the parameter estimation algorithm. The method was first tested on a single-layer polyvinyl alcohol (PVA) cryogel stenotic vessel, and then, applied on a double-layered PVA cryogel stenotic vessel with a lipid inclusion.

  14. Montmorillonite/graphene oxide/chitosan composite: Synthesis, characterization and properties.

    PubMed

    Yadav, Mithilesh; Ahmad, Sharif

    2015-08-01

    The present work reports the successful preparation, thermal and mechanical characterization of high performance films of Na(+) montmorillonite (MMT)/graphene oxide (GO)/chitosan (CS) composite using simple solution mixing evaporation method. The formations of films were verified by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy. The thermal stability and mechanical properties of these films were investigated by thermogravimetric analysis (TGA) and mechanical testing (Instron 8871). The results obtained from these studies revealed that the composites of chitosan, MMT, and graphene oxide were homogeneous in nature. A synergistic effect of MMT and GO reinforcing on chitosan matrix was observed for the first time, in case of 5 wt.% MMT and 1 wt.% GO. The tensile strength of (5 wt.%) MMT/(1 wt.%) GO/CS composite was formed 9±0.23% and 27±0.25% higher than that of the (1 wt.%) GO/CS composite and chitosan, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Function and regulation of the Mediator complex.

    PubMed

    Conaway, Ronald C; Conaway, Joan Weliky

    2011-04-01

    Over the past few years, advances in biochemical and genetic studies of the structure and function of the Mediator complex have shed new light on its subunit architecture and its mechanism of action in transcription by RNA polymerase II (pol II). The development of improved methods for reconstitution of recombinant Mediator subassemblies is enabling more in-depth analyses of basic features of the mechanisms by which Mediator interacts with and controls the activity of pol II and the general initiation factors. The discovery and characterization of multiple, functionally distinct forms of Mediator characterized by the presence or absence of the Cdk8 kinase module have led to new insights into how Mediator functions in both Pol II transcription activation and repression. Finally, progress in studies of the mechanisms by which the transcriptional activation domains (ADs) of DNA binding transcription factors target Mediator have brought to light unexpected complexities in the way Mediator participates in signal transduction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Injectable Biodegradable Polyurethane Scaffolds with Release of Platelet-derived Growth Factor for Tissue Repair and Regeneration

    PubMed Central

    Hafeman, Andrea E.; Li, Bing; Yoshii, Toshitaka; Zienkiewicz, Katarzyna; Davidson, Jeffrey M.; Guelcher, Scott A.

    2013-01-01

    Purpose The purpose of this work was to investigate the effects of triisocyanate composition on the biological and mechanical properties of biodegradable, injectable polyurethane scaffolds for bone and soft tissue engineering. Methods Scaffolds were synthesized using reactive liquid molding techniques, and were characterized in vivo in a rat subcutaneous model. Porosity, dynamic mechanical properties, degradation rate, and release of growth factors were also measured. Results Polyurethane scaffolds were elastomers with tunable damping properties and degradation rates, and they supported cellular infiltration and generation of new tissue. The scaffolds showed a two-stage release profile of platelet-derived growth factor, characterized by a 75% burst release within the first 24 h and slower release thereafter. Conclusions Biodegradable polyurethanes synthesized from triisocyanates exhibited tunable and superior mechanical properties compared to materials synthesized from lysine diisocyanates. Due to their injectability, biocompatibility, tunable degradation, and potential for release of growth factors, these materials are potentially promising therapies for tissue engineering. PMID:18516665

  17. High-throughput methods for characterizing the mechanical properties of coatings

    NASA Astrophysics Data System (ADS)

    Siripirom, Chavanin

    The characterization of mechanical properties in a combinatorial and high-throughput workflow has been a bottleneck that reduced the speed of the materials development process. High-throughput characterization of the mechanical properties was applied in this research in order to reduce the amount of sample handling and to accelerate the output. A puncture tester was designed and built to evaluate the toughness of materials using an innovative template design coupled with automation. The test is in the form of a circular free-film indentation. A single template contains 12 samples which are tested in a rapid serial approach. Next, the operational principles of a novel parallel dynamic mechanical-thermal analysis instrument were analyzed in detail for potential sources of errors. The test uses a model of a circular bilayer fixed-edge plate deformation. A total of 96 samples can be analyzed simultaneously which provides a tremendous increase in efficiency compared with a conventional dynamic test. The modulus values determined by the system had considerable variation. The errors were observed and improvements to the system were made. A finite element analysis was used to analyze the accuracy given by the closed-form solution with respect to testing geometries, such as thicknesses of the samples. A good control of the thickness of the sample was proven to be crucial to the accuracy and precision of the output. Then, the attempt to correlate the high-throughput experiments and conventional coating testing methods was made. Automated nanoindentation in dynamic mode was found to provide information on the near-surface modulus and could potentially correlate with the pendulum hardness test using the loss tangent component. Lastly, surface characterization of stratified siloxane-polyurethane coatings was carried out with X-ray photoelectron spectroscopy, Rutherford backscattering spectroscopy, transmission electron microscopy, and nanoindentation. The siloxane component segregates to the surface during curing. The distribution of siloxane as a function of thickness into the sample showed differences depending on the formulation parameters. The coatings which had higher siloxane content near the surface were those coatings found to perform well in field tests.

  18. Cellular and molecular investigations of the adhesion and mechanics of Listeria monocytogenes

    NASA Astrophysics Data System (ADS)

    Eskhan, Asma Omar

    Atomic force microscopy has been used to quantify the adherence and mechanical properties of an array of L. monocytogenes strains and their surface biopolymers. First, eight L. monocytogenes strains that represented the two major lineages of the species were compared for their adherence and mechanics at cellular and molecular levels. Our results indicated that strains of lineage' II were characterized by higher adhesion and Young's moduli, longer and more rigid surface biopolymers and lower specific and nonspecific forces when compared to lineage' I strains. Additionally, adherence and mechanical properties of eight L. monocytogenes epidemic and environmental strains were probed. Our results pointed to that environmental and epidemic strains representative of a given lineage were similar in their adherence and mechanical properties when investigated at a cellular level. However, when the molecular properties of the strains were considered, epidemic strains were characterized by higher specific and nonspecific forces, shorter, denser and more flexible biopolymers compared to environmental strains. Second, the role of environmental pH conditions of growth on the adhesion and mechanics of a pathogenic L. monocytogenes EGDe was investigated. Our results pointed to a transition in the adhesion energies for cells cultured at pH 7. In addition, when the types of molecular forces that govern the adhesion were quantified using Poisson statistical approach and using a new proposed method, specific hydrogen-bond energies dominated the bacterial adhesion process. Such a finding is instrumental to researchers designing methods to control bacterial adhesion. Similarly, bacterial cells underwent a transition in their mechanical properties. We have shown that cells cultured at pH 7 were the most rigid compared to those cultured in lower or higher pH conditions of growth. Due to transitions observed in adherence and mechanics when cells were cultured at pH 7, we hypothesized that adhesion and mechanics are correlated. To test this hypothesis, nonadhesive and adhesive models of contact mechanics were used to estimate Young's moduli. Our results indicated that the nonadhesive model of contact mechanics estimated 18 % more rigid bacterial cells. Our results thus point to the importance of considering molecular details when investigating bacterial adhesion and mechanics.

  19. High-resolution remotely sensed small target detection by imitating fly visual perception mechanism.

    PubMed

    Huang, Fengchen; Xu, Lizhong; Li, Min; Tang, Min

    2012-01-01

    The difficulty and limitation of small target detection methods for high-resolution remote sensing data have been a recent research hot spot. Inspired by the information capture and processing theory of fly visual system, this paper endeavors to construct a characterized model of information perception and make use of the advantages of fast and accurate small target detection under complex varied nature environment. The proposed model forms a theoretical basis of small target detection for high-resolution remote sensing data. After the comparison of prevailing simulation mechanism behind fly visual systems, we propose a fly-imitated visual system method of information processing for high-resolution remote sensing data. A small target detector and corresponding detection algorithm are designed by simulating the mechanism of information acquisition, compression, and fusion of fly visual system and the function of pool cell and the character of nonlinear self-adaption. Experiments verify the feasibility and rationality of the proposed small target detection model and fly-imitated visual perception method.

  20. Investigation of Iso-octane Ignition and Validation of a Multizone Modeling Method in an Ignition Quality Tester

    DOE PAGES

    Osecky, Eric M.; Bogin, Gregory E.; Villano, Stephanie M.; ...

    2016-08-18

    An ignition quality tester was used to characterize the autoignition delay times of iso-octane. The experimental data were characterized between temperatures of 653 and 996 K, pressures of 1.0 and 1.5 MPa, and global equivalence ratios of 0.7 and 1.05. A clear negative temperature coefficient behavior was seen at both pressures in the experimental data. These data were used to characterize the effectiveness of three modeling methods: a single-zone homogeneous batch reactor, a multizone engine model, and a three-dimensional computational fluid dynamics (CFD) model. A detailed 874 species iso-octane ignition mechanism (Mehl, M.; Curran, H. J.; Pitz, W. J.; Westbrook,more » C. K.Chemical kinetic modeling of component mixtures relevant to gasoline. Proceedings of the European Combustion Meeting; Vienna, Austria, April 14-17, 2009) was reduced to 89 species for use in these models, and the predictions of the reduced mechanism were consistent with ignition delay times predicted by the detailed chemical mechanism across a broad range of temperatures, pressures, and equivalence ratios. The CFD model was also run without chemistry to characterize the extent of mixing of fuel and air in the chamber. The calculations predicted that the main part of the combustion chamber was fairly well-mixed at longer times (> ~30 ms), suggesting that the simpler models might be applicable in this quasi-homogeneous region. The multizone predictions, where the combustion chamber was divided into 20 zones of temperature and equivalence ratio, were quite close to the coupled CFD-kinetics results, but the calculation time was ~11 times faster than the coupled CFD-kinetics model. Although the coupled CFD-kinetics model captured the observed negative temperature coefficient behavior and pressure dependence, discrepancies remain between the predictions and the observed ignition time delays, suggesting improvements are still needed in the kinetic mechanism and/or the CFD model. This approach suggests a combined modeling approach, wherein the CFD calculations (without chemistry) can be used to examine the sensitivity of various model inputs to in-cylinder temperature and equivalence ratios. In conclusion, these values can be used as inputs to the multizone model to examine the impact on ignition delay. Additionally, the speed of the multizone model also makes it feasible to quickly test more detailed kinetic mechanisms for comparison to experimental data and sensitivity analysis.« less

  1. Investigation of Iso-octane Ignition and Validation of a Multizone Modeling Method in an Ignition Quality Tester

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osecky, Eric M.; Bogin, Gregory E.; Villano, Stephanie M.

    An ignition quality tester was used to characterize the autoignition delay times of iso-octane. The experimental data were characterized between temperatures of 653 and 996 K, pressures of 1.0 and 1.5 MPa, and global equivalence ratios of 0.7 and 1.05. A clear negative temperature coefficient behavior was seen at both pressures in the experimental data. These data were used to characterize the effectiveness of three modeling methods: a single-zone homogeneous batch reactor, a multizone engine model, and a three-dimensional computational fluid dynamics (CFD) model. A detailed 874 species iso-octane ignition mechanism (Mehl, M.; Curran, H. J.; Pitz, W. J.; Westbrook,more » C. K.Chemical kinetic modeling of component mixtures relevant to gasoline. Proceedings of the European Combustion Meeting; Vienna, Austria, April 14-17, 2009) was reduced to 89 species for use in these models, and the predictions of the reduced mechanism were consistent with ignition delay times predicted by the detailed chemical mechanism across a broad range of temperatures, pressures, and equivalence ratios. The CFD model was also run without chemistry to characterize the extent of mixing of fuel and air in the chamber. The calculations predicted that the main part of the combustion chamber was fairly well-mixed at longer times (> ~30 ms), suggesting that the simpler models might be applicable in this quasi-homogeneous region. The multizone predictions, where the combustion chamber was divided into 20 zones of temperature and equivalence ratio, were quite close to the coupled CFD-kinetics results, but the calculation time was ~11 times faster than the coupled CFD-kinetics model. Although the coupled CFD-kinetics model captured the observed negative temperature coefficient behavior and pressure dependence, discrepancies remain between the predictions and the observed ignition time delays, suggesting improvements are still needed in the kinetic mechanism and/or the CFD model. This approach suggests a combined modeling approach, wherein the CFD calculations (without chemistry) can be used to examine the sensitivity of various model inputs to in-cylinder temperature and equivalence ratios. In conclusion, these values can be used as inputs to the multizone model to examine the impact on ignition delay. Additionally, the speed of the multizone model also makes it feasible to quickly test more detailed kinetic mechanisms for comparison to experimental data and sensitivity analysis.« less

  2. Use of comparative genomics approaches to characterize interspecies differences in response to environmental chemicals: Challenges, opportunities, and research needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgess-Herbert, Sarah L., E-mail: sarah.burgess@alum.mit.edu; Euling, Susan Y.

    A critical challenge for environmental chemical risk assessment is the characterization and reduction of uncertainties introduced when extrapolating inferences from one species to another. The purpose of this article is to explore the challenges, opportunities, and research needs surrounding the issue of how genomics data and computational and systems level approaches can be applied to inform differences in response to environmental chemical exposure across species. We propose that the data, tools, and evolutionary framework of comparative genomics be adapted to inform interspecies differences in chemical mechanisms of action. We compare and contrast existing approaches, from disciplines as varied as evolutionarymore » biology, systems biology, mathematics, and computer science, that can be used, modified, and combined in new ways to discover and characterize interspecies differences in chemical mechanism of action which, in turn, can be explored for application to risk assessment. We consider how genetic, protein, pathway, and network information can be interrogated from an evolutionary biology perspective to effectively characterize variations in biological processes of toxicological relevance among organisms. We conclude that comparative genomics approaches show promise for characterizing interspecies differences in mechanisms of action, and further, for improving our understanding of the uncertainties inherent in extrapolating inferences across species in both ecological and human health risk assessment. To achieve long-term relevance and consistent use in environmental chemical risk assessment, improved bioinformatics tools, computational methods robust to data gaps, and quantitative approaches for conducting extrapolations across species are critically needed. Specific areas ripe for research to address these needs are recommended.« less

  3. Predicting links based on knowledge dissemination in complex network

    NASA Astrophysics Data System (ADS)

    Zhou, Wen; Jia, Yifan

    2017-04-01

    Link prediction is the task of mining the missing links in networks or predicting the next vertex pair to be connected by a link. A lot of link prediction methods were inspired by evolutionary processes of networks. In this paper, a new mechanism for the formation of complex networks called knowledge dissemination (KD) is proposed with the assumption of knowledge disseminating through the paths of a network. Accordingly, a new link prediction method-knowledge dissemination based link prediction (KDLP)-is proposed to test KD. KDLP characterizes vertex similarity based on knowledge quantity (KQ) which measures the importance of a vertex through H-index. Extensive numerical simulations on six real-world networks demonstrate that KDLP is a strong link prediction method which performs at a higher prediction accuracy than four well-known similarity measures including common neighbors, local path index, average commute time and matrix forest index. Furthermore, based on the common conclusion that an excellent link prediction method reveals a good evolving mechanism, the experiment results suggest that KD is a considerable network evolving mechanism for the formation of complex networks.

  4. Methods and apparatus for non-acoustic speech characterization and recognition

    DOEpatents

    Holzrichter, John F.

    1999-01-01

    By simultaneously recording EM wave reflections and acoustic speech information, the positions and velocities of the speech organs as speech is articulated can be defined for each acoustic speech unit. Well defined time frames and feature vectors describing the speech, to the degree required, can be formed. Such feature vectors can uniquely characterize the speech unit being articulated each time frame. The onset of speech, rejection of external noise, vocalized pitch periods, articulator conditions, accurate timing, the identification of the speaker, acoustic speech unit recognition, and organ mechanical parameters can be determined.

  5. Methods and apparatus for non-acoustic speech characterization and recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holzrichter, J.F.

    By simultaneously recording EM wave reflections and acoustic speech information, the positions and velocities of the speech organs as speech is articulated can be defined for each acoustic speech unit. Well defined time frames and feature vectors describing the speech, to the degree required, can be formed. Such feature vectors can uniquely characterize the speech unit being articulated each time frame. The onset of speech, rejection of external noise, vocalized pitch periods, articulator conditions, accurate timing, the identification of the speaker, acoustic speech unit recognition, and organ mechanical parameters can be determined.

  6. Characterization of nanodimensional Ni-Zn ferrite prepared by mechanochemical and thermal methods

    NASA Astrophysics Data System (ADS)

    Manova, E.; Paneva, D.; Kunev, B.; Rivière, E.; Estournès, C.; Mitov, I.

    2010-03-01

    Nickel zinc ferrite nanoparticles, Ni1-xZnxFe2O4 (x = 0, 0.2, 0.5, 0.8, 1.0), with dimensions below 10 nm have been prepared by combining chemical precipitation with high-energy ball milling. For comparison, their analogues obtained by thermal synthesis have also been studied. Mössbauer spectroscopy, X-ray diffraction, and magnetic measurements are used for the characterization of the obtained materials. X-ray diffraction shows that after 3h of mechanical treatment ferrites containing zinc are formed, while 6h of treatment is needed to obtain NiFe2O4. The magnetic properties of the samples exhibit a strong dependence on the phase composition, particle size and preparation method.

  7. Characterizing mesh size distributions (MSDs) in thermosetting materials using a high-pressure system.

    PubMed

    Larché, J-F; Seynaeve, J-M; Voyard, G; Bussière, P-O; Gardette, J-L

    2011-04-21

    The thermoporosimetry method was adapted to determine the mesh size distribution of an acrylate thermoset clearcoat. This goal was achieved by increasing the solvent rate transfer by increasing the pressure and temperature. A comparison of the results obtained using this approach with those obtained by DMA (dynamic mechanical analysis) underlined the accuracy of thermoporosimetry in characterizing the macromolecular architecture of thermosets. The thermoporosimetry method was also used to analyze the effects of photoaging on cross-linking, which result from the photodegradation of the acrylate thermoset. It was found that the formation of a three-dimensional network followed by densification generates a modification of the average mesh size that leads to a dramatic decrease of the meshes of the polymer.

  8. Damage Precursor Identification via Microstructure-Sensitive Nondestructive Evaluation

    NASA Astrophysics Data System (ADS)

    Wisner, Brian John

    Damage in materials is a complex and stochastic process bridging several time and length scales. This dissertation focuses on investigating the damage process in a particular class of precipitate-hardened aluminum alloys which is widely used in automotive and aerospace applications. Most emphasis in the literature has been given either on their ductility for manufacturing purposes or fracture for performance considerations. In this dissertation, emphasis is placed on using nondestructive evaluation (NDE) combined with mechanical testing and characterization methods applied at a scale where damage incubation and initiation is occurring. Specifically, a novel setup built inside a Scanning Electron Microscope (SEM) and retrofitted to be combined with characterization and NDE capabilities was developed with the goal to track the early stages of the damage process in this type of material. The characterization capabilities include Electron Backscatter Diffraction (EBSD) and Energy Dispersive Spectroscopy (EDS) in addition to X-ray micro-computed tomography (μ-CT) and nanoindentation, in addition to microscopy achieved by the Secondary Electron (SE) and Back Scatter Electron (BSE) detectors. The mechanical testing inside the SEM was achieved with the use of an appropriate stage that fitted within its chamber and is capable of applying both axial and bending monotonic and cyclic loads. The NDE capabilities, beyond the microscopy and μ-CT, include the methods of Acoustic Emission and Digital Image Correlation (DIC). This setup was used to identify damage precursors in this material system and their evolution over time and space. The experimental results were analyzed by a custom signal processing scheme that involves both feature-based analyses as well as a machine learning method to relate recorded microstructural data to damage in this material. Extensions of the presented approach to include information from computational methods as well as its applicability to other material systems are discussed.

  9. Sterically Hindered Square-Planar Nickel(II) Organometallic Complexes: Preparation, Characterization, and Substitution Behavior

    ERIC Educational Resources Information Center

    Martinez, Manuel; Muller, Guillermo; Rocamora, Merce; Rodriguez, Carlos

    2007-01-01

    The series of experiments proposed for advanced undergraduate students deal with both standard organometallic preparative methods in dry anaerobic conditions and with a kinetic study of the mechanisms operating in the substitution of square-planar complexes. The preparation of organometallic compounds is carried out by transmetallation or…

  10. Effect of particle Alignment on mechanical properties of neat cellulose nanocrystal films

    Treesearch

    Alexander B. Reising; Robert J. Moon; Jeffrey P. Youngblood

    2012-01-01

    Shear-based film casting methods were used to cast neat films from wood-based cellulose nanocrystal (CNC) suspensions. The degree of CNC alignment in dried films was characterized using the Hermans order parameter (S), and the film elastic modulus (E), ultimate tensile strength (σf ), elongation at failure (εf...

  11. Characterization of a polymer-infiltrated ceramic-network material

    PubMed Central

    Corazza, Pedro H.; Zhang, Yu

    2015-01-01

    Objectives To characterize the microstructure and determine some mechanical properties of a polymer-ingfiltrated ceramic-network (PICN) material (Vita Enamic, Vita Zahnfabrik) available for CAD–CAM systems. Methods Specimens were fabricated to perform quantitative and qualitative analyses of the material’s microstructure and to determine the fracture toughness (KIc), density (ρ), Poisson’s ratio (v) and Young’s modulus (E). KIc was determined using V-notched specimens and the short beam toughness method, where bar-shaped specimens were notched and 3-point loaded to fracture. ρ was calculated using Archimedes principle, and v and E were measured using an ultrasonic thickness gauge with a combination of a pulse generator and an oscilloscope. Results Microstructural analyses showed a ceramic- and a polymer-based interpenetrating network. Mean and standard deviation values for the properties evaluated were: KIc = 1.09 ± 0.05 MPa m1/2, ρ = 2.09 ± 0.01 g/cm3, v = 0.23 ± 0.002 and E = 37.95 ± 0.34 GPa. Significance The PICN material showed mechanical properties between porcelains and resin-based composites, reflecting its microstructural components. PMID:24656471

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandraboss, V.L.; Natanapatham, L.; Karthikeyan, B.

    Graphical abstract: The hetero-junctions that are formed between the ZnO and the Bi provide an internal electric field that facilitates separation of the electron-hole pairs and induces faster carrier migration. Thus they often enhanced photocatalytic reaction. - Highlights: • Bi-doped ZnO nanocomposite material was prepared by precipitation method. • Characterized by XRD, HR-SEM with EDX, UV–visible DRS and FT-RAMAN analysis. • Bi-doped ZnO nanocomposite material was used to photodegradation of Congo red. • Mechanism and photocatalytic effect of nanocomposite material have been discussed. - Abstract: Bismuth (Bi)-doped ZnO nanocomposite material was prepared by precipitation method with doping precursors of bismuthmore » nitrate pentahydrate and oxalic acid, characterized by X-ray diffraction (XRD), High Resolution-Scanning Electron Microscopy (HR-SEM) with Energy Dispersive X-ray (EDX) analysis, UV–visible Diffuse Reflectance Spectroscopy (UV–visible DRS) and Fourier Transform-Raman (FT-RAMAN) analysis. The enhanced photocatalytic activity of the Bi-doped ZnO is demonstrated through photodegradation of Congo red under UV-light irradiation. The mechanism of photocatalytic effect of Bi-doped ZnO nanocomposite material has been discussed.« less

  13. Probing the oxidation kinetics of small permalloy particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Xiaolei; Song, Xiao; Yin, Shiliu

    2017-02-15

    The oxidation of permalloys is important to apply in a wide range. The oxidation and diffusion mechanisms of small permalloy particles with different Fe content are studied by using thermal gravimetric analysis (TGA) and microstructure characterizations. Fe{sub 2}O{sub 3}/(Ni, Fe){sub 3}O{sub 4} plays a key role in the morphology evolution and diffusion mechanisms of small NiFe particles upon oxidation. The activation energies of grain boundary diffusion for the NiFe alloys increase from 141 kJ/mol to 208 kJ/mol as the Fe content increases from 0 to ~50 wt%. We have developed a diffusion process resolved temperature programed oxidation (PR-TPO) analysis method.more » Three diffusion mechanisms have been recognized by using this method: In addition to the grain boundary diffusion and lattice diffusion, our TGA analysis suggests that the phase conversion from Fe{sub 2}O{sub 3} to (Ni, Fe){sub 3}O{sub 4} induces diffusion change and affects the diffusion process at the intermediate temperature. Relevant oxidation kinetics and diffusion mechanisms are discussed. - Graphical abstract: The oxidation mechanisms of small Permalloy particles with different Fe content is studied by using thermal gravimetric analysis (TGA) and microstructure characterizations. The activation energies of grain boundary diffusion for the NiFe alloys increases from 140 kJ/mol to 208 kJ/mol as the Fe content increases from 0 to 50 wt% as determined by TGA. We have developed a diffusion process resolved temperature programed oxidation (DPR-TPO) analysis method, and three diffusion mechanisms have been recognized by using this method: In addition to the well-known grain boundary diffusion and lattice diffusion, we found that the phase conversion from Fe{sub 2}O{sub 3} to (Ni, Fe){sub 3}O{sub 4} will induce diffusion changes and affect the diffusion process at the intermediate temperature. The diffusion processes can be characterized by the corresponding characteristic peak temperatures in temperature programmed oxidation (TPO) analysis. This work not only give insight knowledge about the oxidation and diffusion processes of small permalloy particles, but also, provides a useful tool for analyzing solid-gas reactions of other materials. - Highlights: • The oxidation kinetics of small NiFe particles were studied by using thermoanalysis. • Grain boundary, lattice, and phase conversion induced diffusions were recognized. • The activation energy of oxidation increases with the Fe content in the alloy. • Each diffusion process corresponds to a characteristic temperature in TPO analysis. • NiFe alloys with ~5–10 wt% Fe content have the lowest oxidation rates.« less

  14. Modulation of bone remodeling via mechanically activated ion channels

    NASA Technical Reports Server (NTRS)

    Duncan, Randall L. (Principal Investigator)

    1996-01-01

    A critical factor in the maintenance of bone mass is the physical forces imposed upon the skeleton. Removal of these forces, such as in a weightless environment, results in a rapid loss of bone, whereas application of exogenous mechanical strain has been shown to increase bone formation. Numerous flight and ground-based experiments indicate that the osteoblast is the key bone cell influenced by mechanical stimulation. Aside from early transient fluctuations in response to unloading, osteoclast number and activity seem unaffected by removal of strain. However, bone formation is drastically reduced in weightlessness and osteoblasts respond to mechanical strain with an increase in the activity of a number of second messenger pathways resulting in increased anabolic activity. Unfortunately, the mechanism by which the osteoblast converts physical stimuli into a biochemical message, a process we have termed biochemical coupling, remains elusive. Prior to the application of this grant, we had characterized a mechanosensitive, cation nonselective channel (SA-cat) in osteoblast-like osteosarcoma cells that we proposed is the initial signalling mechanism for mechanotransduction. During the execution of this grant, we have made considerable progress to further characterize this channel as well as to determine its role in the osteoblastic response to mechanical strain. To achieve these goals, we combined electrophysiologic techniques with cellular and molecular biology methods to examine the role of these channels in the normal function of the osteoblast in vitro.

  15. Physicochemical characterization of discrete weapons grade plutonium metal particles originating from the 1960 BOMARC incident

    NASA Astrophysics Data System (ADS)

    Bowen, James M.

    The goal of this research was to investigate the physicochemical properties of weapons grade plutonium particles originating from the 1960 BOMARC incident for the purpose of predicting their fate in the environment and to address radiation protection and nuclear security concerns. Methods were developed to locate and isolate the particles in order to characterize them. Physical, chemical, and radiological characterization was performed using a variety of techniques. And finally, the particles were subjected to a sequential extraction procedure, a series of increasingly aggressive reagents, to simulate an accelerated environmental exposure. A link between the morphology of the particles and their partitioning amongst environmental mechanisms was established.

  16. Genetic characterization, species differentiation and detection of Fasciola spp. by molecular approaches.

    PubMed

    Ai, Lin; Chen, Mu-Xin; Alasaad, Samer; Elsheikha, Hany M; Li, Juan; Li, Hai-Long; Lin, Rui-Qing; Zou, Feng-Cai; Zhu, Xing-Quan; Chen, Jia-Xu

    2011-06-10

    Liver flukes belonging to the genus Fasciola are among the causes of foodborne diseases of parasitic etiology. These parasites cause significant public health problems and substantial economic losses to the livestock industry. Therefore, it is important to definitively characterize the Fasciola species. Current phenotypic techniques fail to reflect the full extent of the diversity of Fasciola spp. In this respect, the use of molecular techniques to identify and differentiate Fasciola spp. offer considerable advantages. The advent of a variety of molecular genetic techniques also provides a powerful method to elucidate many aspects of Fasciola biology, epidemiology, and genetics. However, the discriminatory power of these molecular methods varies, as does the speed and ease of performance and cost. There is a need for the development of new methods to identify the mechanisms underpinning the origin and maintenance of genetic variation within and among Fasciola populations. The increasing application of the current and new methods will yield a much improved understanding of Fasciola epidemiology and evolution as well as more effective means of parasite control. Herein, we provide an overview of the molecular techniques that are being used for the genetic characterization, detection and genotyping of Fasciola spp..

  17. Genetic characterization, species differentiation and detection of Fasciola spp. by molecular approaches

    PubMed Central

    2011-01-01

    Liver flukes belonging to the genus Fasciola are among the causes of foodborne diseases of parasitic etiology. These parasites cause significant public health problems and substantial economic losses to the livestock industry. Therefore, it is important to definitively characterize the Fasciola species. Current phenotypic techniques fail to reflect the full extent of the diversity of Fasciola spp. In this respect, the use of molecular techniques to identify and differentiate Fasciola spp. offer considerable advantages. The advent of a variety of molecular genetic techniques also provides a powerful method to elucidate many aspects of Fasciola biology, epidemiology, and genetics. However, the discriminatory power of these molecular methods varies, as does the speed and ease of performance and cost. There is a need for the development of new methods to identify the mechanisms underpinning the origin and maintenance of genetic variation within and among Fasciola populations. The increasing application of the current and new methods will yield a much improved understanding of Fasciola epidemiology and evolution as well as more effective means of parasite control. Herein, we provide an overview of the molecular techniques that are being used for the genetic characterization, detection and genotyping of Fasciola spp.. PMID:21658284

  18. Rapid measurement of protein osmotic second virial coefficients by self-interaction chromatography.

    PubMed Central

    Tessier, Peter M; Lenhoff, Abraham M; Sandler, Stanley I

    2002-01-01

    Weak protein interactions are often characterized in terms of the osmotic second virial coefficient (B(22)), which has been shown to correlate with protein phase behavior, such as crystallization. Traditional methods for measuring B(22), such as static light scattering, are too expensive in terms of both time and protein to allow extensive exploration of the effects of solution conditions on B(22). In this work we have measured protein interactions using self-interaction chromatography, in which protein is immobilized on chromatographic particles and the retention of the same protein is measured in isocratic elution. The relative retention of the protein reflects the average protein interactions, which we have related to the second virial coefficient via statistical mechanics. We obtain quantitative agreement between virial coefficients measured by self-interaction chromatography and traditional characterization methods for both lysozyme and chymotrypsinogen over a wide range of pH and ionic strengths, yet self-interaction chromatography requires at least an order of magnitude less time and protein than other methods. The method thus holds significant promise for the characterization of protein interactions requiring only commonly available laboratory equipment, little specialized expertise, and relatively small investments of both time and protein. PMID:11867474

  19. Characterization of 4H <000-1> Silicon Carbide Films Grown by Solvent-Laser Heated Floating Zone

    NASA Technical Reports Server (NTRS)

    Woodworth, Andrew, A; Sayir, Ali; Neudeck, Philip, G; Raghothamachar, Balaji; Dudley, Michael

    2012-01-01

    Commercially available bulk silicon carbide (SiC) has a high number (>2000/sq cm) of screw dislocations (SD) that have been linked to degradation of high-field power device electrical performance properties. Researchers at the NASA Glenn Research Center have proposed a method to mass-produce significantly higher quality bulk SiC. In order for this bulk growth method to become reality, growth of long single crystal SiC fibers must first be achieved. Therefore, a new growth method, Solvent-Laser Heated Floating Zone (Solvent-LHFZ), has been implemented. While some of the initial Solvent-LHFZ results have recently been reported, this paper focuses on further characterization of grown crystals and their growth fronts. To this end, secondary ion mass spectroscopy (SIMS) depth profiles, cross section analysis by focused ion beam (FIB) milling and mechanical polishing, and orientation and structural characterization by x-ray transmission Laue diffraction patterns and x-ray topography were used. Results paint a picture of a chaotic growth front, with Fe incorporation dependant on C concentration.

  20. Geometric errors in 3D optical metrology systems

    NASA Astrophysics Data System (ADS)

    Harding, Kevin; Nafis, Chris

    2008-08-01

    The field of 3D optical metrology has seen significant growth in the commercial market in recent years. The methods of using structured light to obtain 3D range data is well documented in the literature, and continues to be an area of development in universities. However, the step between getting 3D data, and getting geometrically correct 3D data that can be used for metrology is not nearly as well developed. Mechanical metrology systems such as CMMs have long established standard means of verifying the geometric accuracies of their systems. Both local and volumentric measurments are characterized on such system using tooling balls, grid plates, and ball bars. This paper will explore the tools needed to characterize and calibrate an optical metrology system, and discuss the nature of the geometric errors often found in such systems, and suggest what may be a viable standard method of doing characterization of 3D optical systems. Finally, we will present a tradeoff analysis of ways to correct geometric errors in an optical systems considering what can be gained by hardware methods versus software corrections.

  1. Effects of Graphene Oxide Addition on Mechanical and Thermal Properties of Evoh Films

    NASA Astrophysics Data System (ADS)

    González-Ruiz, Jesús; Yataco-Lazaro, Lourde; Virginio, Sueli; das Graças da Silva-Valenzuela, Maria; Moura, Esperidiana; Valenzuela-Díaz, Francisco

    Currently, ethylene vinyl alcohol (EVOH) is one of the oxygen barrier materials most used for food packaging. The addition of graphene oxide nanosheets to the EVOH matrix is employed to improve their mechanic al and barrier properties. In this work, films of EVOH-based composites reinforced with graphene oxide were prepared by melt extrusion, using a twin screw extruder machine and blown extrusion process. The graphene oxide was prepared via chemical oxidation of natural graphite and then was exfoliated into nanosheets using the sonochemical method. The composite films samples were characterized using FTIR and DSC analysis. In addition, their mechanical properties were also determined.

  2. Concepts and techniques for ultrasonic evaluation of material mechanical properties

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1980-01-01

    Ultrasonic methods that can be used for material strength are reviewed. Emergency technology involving advanced ultrasonic techniques and associated measurements is described. It is shown that ultrasonic NDE is particularly useful in this area because it involves mechanical elastic waves that are strongly modulated by morphological factors that govern mechanical strength and also dynamic failure modes. These aspects of ultrasonic NDE are described in conjunction with advanced approaches and theoretical concepts for signal acquisition and analysis for materials characterization. It is emphasized that the technology is in its infancy and that much effort is still required before the techniques and concepts can be transferred from laboratory to field conditions.

  3. Formation of an amorphous phase and its crystallization in the immiscible Nb-Zr system by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Al-Aqeeli, N.; Suryanarayana, C.; Hussein, M. A.

    2013-10-01

    Mechanical alloying of binary Nb-Zr powder mixtures was carried out to evaluate the formation of metastable phases in this immiscible system. The milled powders were characterized for their constitution and structure by X-ray diffraction and transmission electron microscopy methods. It was shown that an amorphous phase had formed on milling the binary powder mixture for about 10 h and that it had crystallized on subsequent milling up to 50-70 h, referred to as mechanical crystallization. Thermodynamic and structural arguments have been presented to explain the formation of the amorphous phase and its subsequent crystallization.

  4. Modeling and evaluating of surface roughness prediction in micro-grinding on soda-lime glass considering tool characterization

    NASA Astrophysics Data System (ADS)

    Cheng, Jun; Gong, Yadong; Wang, Jinsheng

    2013-11-01

    The current research of micro-grinding mainly focuses on the optimal processing technology for different materials. However, the material removal mechanism in micro-grinding is the base of achieving high quality processing surface. Therefore, a novel method for predicting surface roughness in micro-grinding of hard brittle materials considering micro-grinding tool grains protrusion topography is proposed in this paper. The differences of material removal mechanism between convention grinding process and micro-grinding process are analyzed. Topography characterization has been done on micro-grinding tools which are fabricated by electroplating. Models of grain density generation and grain interval are built, and new predicting model of micro-grinding surface roughness is developed. In order to verify the precision and application effect of the surface roughness prediction model proposed, a micro-grinding orthogonally experiment on soda-lime glass is designed and conducted. A series of micro-machining surfaces which are 78 nm to 0.98 μm roughness of brittle material is achieved. It is found that experimental roughness results and the predicting roughness data have an evident coincidence, and the component variable of describing the size effects in predicting model is calculated to be 1.5×107 by reverse method based on the experimental results. The proposed model builds a set of distribution to consider grains distribution densities in different protrusion heights. Finally, the characterization of micro-grinding tools which are used in the experiment has been done based on the distribution set. It is concluded that there is a significant coincidence between surface prediction data from the proposed model and measurements from experiment results. Therefore, the effectiveness of the model is demonstrated. This paper proposes a novel method for predicting surface roughness in micro-grinding of hard brittle materials considering micro-grinding tool grains protrusion topography, which would provide significant research theory and experimental reference of material removal mechanism in micro-grinding of soda-lime glass.

  5. Variable viscosity and density biofilm simulations using an immersed boundary method, part II: Experimental validation and the heterogeneous rheology-IBM

    NASA Astrophysics Data System (ADS)

    Stotsky, Jay A.; Hammond, Jason F.; Pavlovsky, Leonid; Stewart, Elizabeth J.; Younger, John G.; Solomon, Michael J.; Bortz, David M.

    2016-07-01

    The goal of this work is to develop a numerical simulation that accurately captures the biomechanical response of bacterial biofilms and their associated extracellular matrix (ECM). In this, the second of a two-part effort, the primary focus is on formally presenting the heterogeneous rheology Immersed Boundary Method (hrIBM) and validating our model by comparison to experimental results. With this extension of the Immersed Boundary Method (IBM), we use the techniques originally developed in Part I ([19]) to treat biofilms as viscoelastic fluids possessing variable rheological properties anchored to a set of moving locations (i.e., the bacteria locations). In particular, we incorporate spatially continuous variable viscosity and density fields into our model. Although in [14,15], variable viscosity is used in an IBM context to model discrete viscosity changes across interfaces, to our knowledge this work and Part I are the first to apply the IBM to model a continuously variable viscosity field. We validate our modeling approach from Part I by comparing dynamic moduli and compliance moduli computed from our model to data from mechanical characterization experiments on Staphylococcus epidermidis biofilms. The experimental setup is described in [26] in which biofilms are grown and tested in a parallel plate rheometer. In order to initialize the positions of bacteria in the biofilm, experimentally obtained three dimensional coordinate data was used. One of the major conclusions of this effort is that treating the spring-like connections between bacteria as Maxwell or Zener elements provides good agreement with the mechanical characterization data. We also found that initializing the simulations with different coordinate data sets only led to small changes in the mechanical characterization results. Matlab code used to produce results in this paper will be available at https://github.com/MathBioCU/BiofilmSim.

  6. Trade-off between the Mechanical Strength and Microwave Electrical Properties of Functionalized and Irradiated Carbon Nanotube Sheets.

    PubMed

    Williams, Tiffany S; Orloff, Nathan D; Baker, James S; Miller, Sandi G; Natarajan, Bharath; Obrzut, Jan; McCorkle, Linda S; Lebron-Colón, Marisabel; Gaier, James; Meador, Michael A; Liddle, J Alexander

    2016-04-13

    Carbon nanotube (CNT) sheets represent a novel implementation of CNTs that enable the tailoring of electrical and mechanical properties for applications in the automotive and aerospace industries. Small molecule functionalization and postprocessing techniques, such as irradiation with high-energy particles, are methods that can enhance the mechanical properties of CNTs. However, the effect that these modifications have on the electrical conduction mechanisms has not been extensively explored. By characterizing the mechanical and electrical properties of multiwalled carbon nanotube (MWCNT) sheets with different functional groups and irradiation doses, we can expand our insights into the extent of the trade-off that exists between mechanical strength and electrical conductivity for commercially available CNT sheets. Such insights allow for the optimization of design pathways for engineering applications that require a balance of material property enhancements.

  7. Three-Dimensional Reflectance Traction Microscopy

    PubMed Central

    Jones, Christopher A. R.; Groves, Nicholas Scott; Sun, Bo

    2016-01-01

    Cells in three-dimensional (3D) environments exhibit very different biochemical and biophysical phenotypes compared to the behavior of cells in two-dimensional (2D) environments. As an important biomechanical measurement, 2D traction force microscopy can not be directly extended into 3D cases. In order to quantitatively characterize the contraction field, we have developed 3D reflectance traction microscopy which combines confocal reflection imaging and partial volume correlation postprocessing. We have measured the deformation field of collagen gel under controlled mechanical stress. We have also characterized the deformation field generated by invasive breast cancer cells of different morphologies in 3D collagen matrix. In contrast to employ dispersed tracing particles or fluorescently-tagged matrix proteins, our methods provide a label-free, computationally effective strategy to study the cell mechanics in native 3D extracellular matrix. PMID:27304456

  8. Robust Derivation of Risk Reduction Strategies

    NASA Technical Reports Server (NTRS)

    Richardson, Julian; Port, Daniel; Feather, Martin

    2007-01-01

    Effective risk reduction strategies can be derived mechanically given sufficient characterization of the risks present in the system and the effectiveness of available risk reduction techniques. In this paper, we address an important question: can we reliably expect mechanically derived risk reduction strategies to be better than fixed or hand-selected risk reduction strategies, given that the quantitative assessment of risks and risk reduction techniques upon which mechanical derivation is based is difficult and likely to be inaccurate? We consider this question relative to two methods for deriving effective risk reduction strategies: the strategic method defined by Kazman, Port et al [Port et al, 2005], and the Defect Detection and Prevention (DDP) tool [Feather & Cornford, 2003]. We performed a number of sensitivity experiments to evaluate how inaccurate knowledge of risk and risk reduction techniques affect the performance of the strategies computed by the Strategic Method compared to a variety of alternative strategies. The experimental results indicate that strategies computed by the Strategic Method were significantly more effective than the alternative risk reduction strategies, even when knowledge of risk and risk reduction techniques was very inaccurate. The robustness of the Strategic Method suggests that its use should be considered in a wide range of projects.

  9. A new approach to characterize very-low-level radioactive waste produced at hadron accelerators.

    PubMed

    Zaffora, Biagio; Magistris, Matteo; Chevalier, Jean-Pierre; Luccioni, Catherine; Saporta, Gilbert; Ulrici, Luisa

    2017-04-01

    Radioactive waste is produced as a consequence of preventive and corrective maintenance during the operation of high-energy particle accelerators or associated dismantling campaigns. Their radiological characterization must be performed to ensure an appropriate disposal in the disposal facilities. The radiological characterization of waste includes the establishment of the list of produced radionuclides, called "radionuclide inventory", and the estimation of their activity. The present paper describes the process adopted at CERN to characterize very-low-level radioactive waste with a focus on activated metals. The characterization method consists of measuring and estimating the activity of produced radionuclides either by experimental methods or statistical and numerical approaches. We adapted the so-called Scaling Factor (SF) and Correlation Factor (CF) techniques to the needs of hadron accelerators, and applied them to very-low-level metallic waste produced at CERN. For each type of metal we calculated the radionuclide inventory and identified the radionuclides that most contribute to hazard factors. The methodology proposed is of general validity, can be extended to other activated materials and can be used for the characterization of waste produced in particle accelerators and research centres, where the activation mechanisms are comparable to the ones occurring at CERN. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A comprehensive review on self-healing of asphalt materials: Mechanism, model, characterization and enhancement.

    PubMed

    Sun, Daquan; Sun, Guoqiang; Zhu, Xingyi; Guarin, Alvaro; Li, Bin; Dai, Ziwei; Ling, Jianming

    2018-06-01

    Self-healing has great potential to extend the service life of asphalt pavement, and this capability has been regarded as an important strategy when designing a sustainable infrastructure. This review presents a comprehensive summary of the state-of-the-art investigations concerning the self-healing mechanism, model, characterization and enhancement, ranging from asphalt to asphalt pavement. Firstly, the self-healing phenomenon as a general concept in asphalt materials is analyzed including its definition and the differences among self-healing and some viscoelastic responses. Additionally, the development of self-healing in asphalt pavement design is introduced. Next, four kinds of possible self-healing mechanism and corresponding models are presented. It is pointed out that the continuum thermodynamic model, considering the whole process from damage initiation to healing recovery, can be a promising study field. Further, a set of self-healing multiscale characterization methods from microscale to macroscale as well as computational simulation scale, are summed up. Thereinto, the computational simulation shows great potential in simulating the self-healing behavior of asphalt materials from mechanical and molecular level. Moreover, the factors influencing self-healing capability are discussed, but the action mechanisms of some factors remain unclear and need to be investigated. Finally, two extrinsic self-healing technologies, induction heating and capsule healing, are recommended as preventive maintenance applications in asphalt pavement. In future, more effective energy-based healing systems or novel material-based healing systems are expected to be developed towards designing sustainable long-life asphalt pavement. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Functionalization of carbon nanotubes: Characterization, modeling and composite applications

    NASA Astrophysics Data System (ADS)

    Wang, Shiren

    Carbon nanotubes have demonstrated exceptional mechanical, thermal and electrical properties, and are regarded as one of the most promising reinforcement materials for the next generation of high performance structural and multifunctional composites. However, to date, most application attempts have been hindered by several technical roadblocks, such as poor dispersion and weak interfacial bonding. In this dissertation, several innovative functionalization methods were proposed, studied to overcome these technical issues in order to realize the full potential of nanotubes as reinforcement. These functionalization methods included precision sectioning of nanotubes using an ultra-microtome, electron-beam irradiation, amino and epoxide group grafting. The characterization results of atomic force microscope, transmission electronic microscope and Raman suggested that aligned carbon nanotubes can be precisely sectioned with controlled length and minimum sidewall damage. This study also designed and demonstrated new covalent functionalization approaches through unique epoxy-grafting and one-step amino-grafting, which have potential of scale-up for composite applications. In addition, the dissertation also successfully tailored the structure and properties of the thin nanotube film through electron beam irradiation. Significant improvement of both mechanical and electrical conducting properties of the irradiated nanotube films or buckypapers was achieved. All these methods demonstrated effectiveness in improving dispersion and interfacial bonding in the epoxy resin, resulting in considerable improvements in composite mechanical properties. Modeling of functionalization methods also provided further understanding and offered the reasonable explanations of SWNTs length distribution as well as carbon nanostructure transformation upon electron-beam irradiation. Both experimental and modeling results provide important foundations for the further comprehensively investigation of nanotube functionalization, and hence facilitate realization of the full potential of nanotube-reinforced nanocomposites.

  12. Assessment of Mudrock Brittleness with Micro-scratch Testing

    NASA Astrophysics Data System (ADS)

    Hernandez-Uribe, Luis Alberto; Aman, Michael; Espinoza, D. Nicolas

    2017-11-01

    Mechanical properties are essential for understanding natural and induced deformational behavior of geological formations. Brittleness characterizes energy dissipation rate and strain localization at failure. Brittleness has been investigated in hydrocarbon-bearing mudrocks in order to quantify the impact of hydraulic fracturing on the creation of complex fracture networks and surface area for reservoir drainage. Typical well logging correlations associate brittleness with carbonate content or dynamic elastic properties. However, an index of rock brittleness should involve actual rock failure and have a consistent method to quantify it. Here, we present a systematic method to quantify mudrock brittleness based on micro-mechanical measurements from the scratch test. Brittleness is formulated as the ratio of energy associated with brittle failure to the total energy required to perform a scratch. Soda lime glass and polycarbonate are used for comparison to identify failure in brittle and ductile mode and validate the developed method. Scratch testing results on mudrocks indicate that it is possible to use the recorded transverse force to estimate brittleness. Results show that tested samples rank as follows in increasing degree of brittleness: Woodford, Eagle Ford, Marcellus, Mancos, and Vaca Muerta. Eagle Ford samples show mixed ductile/brittle failure characteristics. There appears to be no definite correlation between micro-scratch brittleness and quartz or total carbonate content. Dolomite content shows a stronger correlation with brittleness than any other major mineral group. The scratch brittleness index correlates positively with increasing Young's modulus and decreasing Poisson's ratio, but shows deviations in rocks with distinct porosity and with stress-sensitive brittle/ductile behavior (Eagle Ford). The results of our study demonstrate that the micro-scratch test method can be used to investigate mudrock brittleness. The method is particularly useful for reservoir characterization methods that take advantage of drill cuttings or whenever large samples for triaxial testing or fracture mechanics testing cannot be recovered.

  13. The mechanics of delamination in fiber-reinforced composite materials. Part 2: Delamination behavior and fracture mechanics parameters

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Choi, I.

    1983-01-01

    Based on theories of laminate anisotropic elasticity and interlaminar fracture, the complete solution structure associated with a composite delamination is determined. Fracture mechanics parameters characterizing the interlaminar crack behavior are defined from asymptotic stress solutions for delaminations with different crack-tip deformation configurations. A numerical method employing singular finite elements is developed to study delaminations in fiber composites with any arbitrary combinations of lamination, material, geometric, and crack variables. The special finite elements include the exact delamination stress singularity in its formulation. The method is shown to be computationally accurate and efficient, and operationally simple. To illustrate the basic nature of composite delamination, solutions are shown for edge-delaminated (0/-0/-0/0) and (+ or - 0/+ or - 0/90/90 deg) graphite-epoxy systems under uniform axial extenstion. Three-dimensional crack-tip stress intensity factors, associated energy release rates, and delamination crack-closure are determined for each individual case. The basic mechanics and mechanisms of composite delamination are studied, and fundamental characteristics unique to recently proposed tests for interlaminar fracture toughness of fiber composite laminates are examined.

  14. NASA Formal Methods Workshop, 1990

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W. (Compiler)

    1990-01-01

    The workshop brought together researchers involved in the NASA formal methods research effort for detailed technical interchange and provided a mechanism for interaction with representatives from the FAA and the aerospace industry. The workshop also included speakers from industry to debrief the formal methods researchers on the current state of practice in flight critical system design, verification, and certification. The goals were: define and characterize the verification problem for ultra-reliable life critical flight control systems and the current state of practice in industry today; determine the proper role of formal methods in addressing these problems, and assess the state of the art and recent progress toward applying formal methods to this area.

  15. Evolution of the Deformation Behavior of Sn-Rich Solders during Cyclic Fatigue

    NASA Astrophysics Data System (ADS)

    Wentlent, Luke Arthur

    Continuous developments in the electronics industry have provided a critical need for a quantitative, fundamental understanding of the behavior of SnAgCu (SAC) solders in both isothermal and thermal fatigue conditions. This study examines the damage behavior of Sn-based solders in a constant amplitude and variable amplitude environment. In addition, damage properties are correlated with crystal orientation and slip behavior. Select solder joints were continuously characterized and tested repeatedly in order to eliminate the joint to joint variation due to the anisotropy of beta-Sn. Characterization was partitioned into three different categories: effective properties and slip behavior, creep mechanisms and crystal morphology development, and atomic behavior and evolution. Active slip systems were correlated with measured properties. Characterization of the mechanical behavior was performed by the calculation and extrapolation of the elastic modulus, work, effective stiffness, Schmid factors, and time-dependent plasticity (creep). Electron microscopy based characterization methods included Scanning Electron Microscopy (SEM), Electron Backscattering Diffraction (EBSD), and Transmission Electron Microscopy (TEM). Testing showed a clear evolution of the steady-state creep mechanism when the cycling amplitudes were varied, from dislocation controlled to diffusion controlled creep. Dislocation behavior was examined and shown to evolve differently in single amplitude vs. variable amplitude testing. Finally, the mechanism of the recrystallization behavior of the beta-Sn was observed. This work fills a gap in the literature, providing a systematic study which identifies how the damage behavior in Sn-alloys depends upon the previous damage. A link is made between the observed creep behavior and the dislocation observations, providing a unified picture. Information developed in this work lays a stepping stone to future fundamental analyses as well as clarifying aspects of the mechanistic behavior of Sn and Sn-based alloys.

  16. Characterization of the mechanical properties of tough biopolymer fibres from the mussel byssus of Aulacomya ater.

    PubMed

    Troncoso, O P; Torres, F G; Grande, C J

    2008-07-01

    Byssus fibres are tough biopolymer fibres produced by mussels to attach themselves to rocks. In this communication, we present the mechanical properties of the byssus from the South American mussel Aulacomya ater which have not been previously reported in the literature. The mechanical properties of the whole threads were assessed by uniaxial tensile tests of dry and hydrated specimens. Elastoplastic and elastomeric stress-strain curves were found for byssal threads from A. ater in the dry and hydrated state, respectively. The results obtained from mechanical tests were modelled using linear, power-law-type and Mooney-Rivlin relationships. These methods for dealing with tensile measurements of mussel byssus have the potential to be used with other stretchy biomaterials.

  17. Elastic Moduli of Nanoparticle-Polymer Composite Thin Films via Buckling on Elastomeric Substrates

    NASA Astrophysics Data System (ADS)

    Yuan, Hongyi; Karim, Alamgir; University of Akron Team

    2011-03-01

    Polymeric thin films find applications in diverse areas such as coatings, barriers and packaging. The dispersion of nanoparticles into the films was proven to be an effective method to generate tunable properties, particularly mechanical strength. However, there are very few methods for mechanical characterization of the composite thin films with high accuracy. In this study, nanometric polystyrene and polyvinyl alcohol films with uniformly dispersed cobalt and Cloisite nanoparticles at varying concentrations were synthesized via flow-coating and then transferred to crosslinked polydimethylsiloxane (PDMS) flexible substrates. The technique of Strain-Induced Elastic Buckling Instability for Mechanical Measurements (SIEBIMM) was employed to determine the elastic moduli of the films, which were calculated from the buckling patterns generated by applying compressive stresses. Results on moduli of films as a function of the concentrations of nanoparticles and the thicknesses of the composite films will be presented. *Corresponding author: alamgir@uakron.edu

  18. Self-Assembly Behavior of Amphiphilic Janus Dendrimers in Water: A Combined Experimental and Coarse-Grained Molecular Dynamics Simulation Approach.

    PubMed

    Elizondo-García, Mariana E; Márquez-Miranda, Valeria; Araya-Durán, Ingrid; Valencia-Gallegos, Jesús A; González-Nilo, Fernando D

    2018-04-21

    Amphiphilic Janus dendrimers (JDs) are repetitively branched molecules with hydrophilic and hydrophobic components that self-assemble in water to form a variety of morphologies, including vesicles analogous to liposomes with potential pharmaceutical and medical application. To date, the self-assembly of JDs has not been fully investigated thus it is important to gain insight into its mechanism and dependence on JDs’ molecular structure. In this study, the aggregation behavior in water of a second-generation bis-MPA JD was evaluated using experimental and computational methods. Dispersions of JDs in water were carried out using the thin-film hydration and ethanol injection methods. Resulting assemblies were characterized by dynamic light scattering, confocal microscopy, and atomic force microscopy. Furthermore, a coarse-grained molecular dynamics (CG-MD) simulation was performed to study the mechanism of JDs aggregation. The obtaining of assemblies in water with no interdigitated bilayers was confirmed by the experimental characterization and CG-MD simulation. Assemblies with dendrimersome characteristics were obtained using the ethanol injection method. The results of this study establish a relationship between the molecular structure of the JD and the properties of its aggregates in water. Thus, our findings could be relevant for the design of novel JDs with tailored assemblies suitable for drug delivery systems.

  19. Does the liposuction method influence the phenotypic characteristic of human adipose-derived stem cells?

    PubMed

    Bajek, Anna; Gurtowska, Natalia; Gackowska, Lidia; Kubiszewska, Izabela; Bodnar, Magdalena; Marszałek, Andrzej; Januszewski, Rafał; Michalkiewicz, Jacek; Drewa, Tomasz

    2015-05-14

    Adipose-derived stem cells (ASCs) possess a high differentiation and proliferation potential. However, the phenotypic characterization of ASCs is still difficult. Until now, there is no extensive analysis of ASCs markers depending on different liposuction methods. Therefore, the aim of the present study was to analyse 242 surface markers and determine the differences in the phenotypic pattern between ASCs obtained during mechanical and ultrasound-assisted liposuction. ASCs were isolated from healthy donors, due to mechanical and ultrasound-assisted liposuction and cultured in standard medium to the second passage. Differentiation potential and markers expression was evaluated to confirm the mesenchymal nature of cells. Then, the BD LyoplateTM Human Cell Surface Marker Screening Panel was used. Results shown that both population of ASCs are characterized by high expression of markers specific for ASCs: cluster of differentiation (CD)9, CD10, CD34, CD44, CD49d, CD54, CD55, CD59, CD71 and low expression of CD11a, CD11c and CD144. Moreover, we have noticed significant differences in antigen expression in 58 markers from the 242 studied. Presented study shows for the first time that different liposuction methods are not a significant factor which can influence the expression of human ASCs surface markers. © 2015 The Authors.

  20. Nonclinical safety biomarkers of drug-induced vascular injury: current status and blueprint for the future.

    PubMed

    Mikaelian, Igor; Cameron, Mark; Dalmas, Deidre A; Enerson, Bradley E; Gonzalez, Raymond J; Guionaud, Silvia; Hoffmann, Peter K; King, Nicholas M P; Lawton, Michael P; Scicchitano, Marshall S; Smith, Holly W; Thomas, Roberta A; Weaver, James L; Zabka, Tanja S

    2014-06-01

    Better biomarkers are needed to identify, characterize, and/or monitor drug-induced vascular injury (DIVI) in nonclinical species and patients. The Predictive Safety Testing Consortium (PSTC), a precompetitive collaboration of pharmaceutical companies and the U.S. Food and Drug Administration (FDA), formed the Vascular Injury Working Group (VIWG) to develop and qualify translatable biomarkers of DIVI. The VIWG focused its research on acute DIVI because early detection for clinical and nonclinical safety monitoring is desirable. The VIWG developed a strategy based on the premise that biomarkers of DIVI in rat would be translatable to humans due to the morphologic similarity of vascular injury between species regardless of mechanism. The histomorphologic lexicon for DIVI in rat defines degenerative and adaptive findings of the vascular endothelium and smooth muscles, and characterizes inflammatory components. We describe the mechanisms of these changes and their associations with candidate biomarkers for which advanced analytical method validation was completed. Further development is recommended for circulating microRNAs, endothelial microparticles, and imaging techniques. Recommendations for sample collection and processing, analytical methods, and confirmation of target localization using immunohistochemistry and in situ hybridization are described. The methods described are anticipated to aid in the identification and qualification of translational biomarkers for DIVI. © 2014 by The Author(s).

  1. Chairside CAD/CAM materials. Part 1: Measurement of elastic constants and microstructural characterization.

    PubMed

    Belli, Renan; Wendler, Michael; de Ligny, Dominique; Cicconi, Maria Rita; Petschelt, Anselm; Peterlik, Herwig; Lohbauer, Ulrich

    2017-01-01

    A deeper understanding of the mechanical behavior of dental restorative materials requires an insight into the materials elastic constants and microstructure. Here we aim to use complementary methodologies to thoroughly characterize chairside CAD/CAM materials and discuss the benefits and limitations of different analytical strategies. Eight commercial CAM/CAM materials, ranging from polycrystalline zirconia (e.max ZirCAD, Ivoclar-Vivadent), reinforced glasses (Vitablocs Mark II, VITA; Empress CAD, Ivoclar-Vivadent) and glass-ceramics (e.max CAD, Ivoclar-Vivadent; Suprinity, VITA; Celtra Duo, Dentsply) to hybrid materials (Enamic, VITA; Lava Ultimate, 3M ESPE) have been selected. Elastic constants were evaluated using three methods: Resonant Ultrasound Spectroscopy (RUS), Resonant Beam Technique (RBT) and Ultrasonic Pulse-Echo (PE). The microstructures were characterized using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), Raman Spectroscopy and X-ray Diffraction (XRD). Young's modulus (E), Shear modulus (G), Bulk modulus (B) and Poisson's ratio (ν) were obtained for each material. E and ν reached values ranging from 10.9 (Lava Ultimate) to 201.4 (e.max ZirCAD) and 0.173 (Empress CAD) to 0.47 (Lava Ultimate), respectively. RUS showed to be the most complex and reliable method, while the PE method the easiest to perform but most unreliable. All dynamic methods have shown limitations in measuring the elastic constants of materials showing high damping behavior (hybrid materials). SEM images, Raman spectra and XRD patterns were made available for each material, showing to be complementary tools in the characterization of their crystal phases. Here different methodologies are compared for the measurement of elastic constants and microstructural characterization of CAD/CAM restorative materials. The elastic properties and crystal phases of eight materials are herein fully characterized. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Application of CFCC technology to hot gas filtration applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richlen, S.

    1995-06-01

    Discussion will feature high temperature filter development under the DOE`s Office of Industrial Technologies Continuous Fiber Ceramic Composite (CFCC) Program. Within the CFCC Program there are four industry projects and a national laboratory technology support project. Atlantic Research, Babcock & Wilcox, DuPont Lanxide Composites, and Textron are developing processing methods to produce CFCC Components with various types of matrices and composites, along with the manufacturing methods to produce industrial components, including high temperature gas filters. The Oak Ridge National Laboratory is leading a National Laboratory/University effort to increase knowledge of such generic and supportive technology areas as environmental degradation, measurementmore » of mechanical properties, long-term performance, thermal shock and thermal cycling, creep and fatigue, and non-destructive characterization. Tasks include composite design, materials characterization, test methods, and performance-related phenomena, that will support the high temperature filter activities of industry and government.« less

  3. Wet formation and structural characterization of quasi-hexagonal monolayers.

    PubMed

    Batys, Piotr; Weroński, Paweł; Nosek, Magdalena

    2016-01-01

    We have presented a simple and efficient method for producing dense particle monolayers with controlled surface coverage. The method is based on particle sedimentation, manipulation of the particle-substrate electrostatic interaction, and gentle mechanical vibration of the system. It allows for obtaining quasi-hexagonal structures under wet conditions. Using this method, we have produced a monolayer of 3 μm silica particles on a glassy carbon substrate. By optical microscopy, we have determined the coordinates of the particles and surface coverage of the obtained structure to be 0.82. We have characterized the monolayer structure by means of the pair-correlation function and power spectrum. We have also compared the results with those for a 2D hexagonal monolayer and monolayer generated by random sequential adsorption at the coverage 0.50. We have found the surface fractal dimension to be 2.5, independently of the monolayer surface coverage. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Direct Observation of Markovian Behavior of the Mechanical Unfolding of Individual Proteins

    PubMed Central

    Cao, Yi; Kuske, Rachel; Li, Hongbin

    2008-01-01

    Single-molecule force-clamp spectroscopy is a valuable tool to analyze unfolding kinetics of proteins. Previous force-clamp spectroscopy experiments have demonstrated that the mechanical unfolding of ubiquitin deviates from the generally assumed Markovian behavior and involves the features of glassy dynamics. Here we use single molecule force-clamp spectroscopy to study the unfolding kinetics of a computationally designed fast-folding mutant of the small protein GB1, which shares a similar β-grasp fold as ubiquitin. By treating the mechanical unfolding of polyproteins as the superposition of multiple identical Poisson processes, we developed a simple stochastic analysis approach to analyze the dwell time distribution of individual unfolding events in polyprotein unfolding trajectories. Our results unambiguously demonstrate that the mechanical unfolding of NuG2 fulfills all criteria of a memoryless Markovian process. This result, in contrast with the complex mechanical unfolding behaviors observed for ubiquitin, serves as a direct experimental demonstration of the Markovian behavior for the mechanical unfolding of a protein and reveals the complexity of the unfolding dynamics among structurally similar proteins. Furthermore, we extended our method into a robust and efficient pseudo-dwell-time analysis method, which allows one to make full use of all the unfolding events obtained in force-clamp experiments without categorizing the unfolding events. This method enabled us to measure the key parameters characterizing the mechanical unfolding energy landscape of NuG2 with improved precision. We anticipate that the methods demonstrated here will find broad applications in single-molecule force-clamp spectroscopy studies for a wide range of proteins. PMID:18375518

  5. Detailed characterizations of a Comparative Reactivity Method (CRM) instrument: experiments vs. modelling

    NASA Astrophysics Data System (ADS)

    Michoud, V.; Hansen, R. F.; Locoge, N.; Stevens, P. S.; Dusanter, S.

    2015-04-01

    The Hydroxyl radical (OH) is an important oxidant in the daytime troposphere that controls the lifetime of most trace gases, whose oxidation leads to the formation of harmful secondary pollutants such as ozone (O3) and Secondary Organic Aerosols (SOA). In spite of the importance of OH, uncertainties remain concerning its atmospheric budget and integrated measurements of the total sink of OH can help reducing these uncertainties. In this context, several methods have been developed to measure the first-order loss rate of ambient OH, called total OH reactivity. Among these techniques, the Comparative Reactivity Method (CRM) is promising and has already been widely used in the field and in atmospheric simulation chambers. This technique relies on monitoring competitive OH reactions between a reference molecule (pyrrole) and compounds present in ambient air inside a sampling reactor. However, artefacts and interferences exist for this method and a thorough characterization of the CRM technique is needed. In this study, we present a detailed characterization of a CRM instrument, assessing the corrections that need to be applied on ambient measurements. The main corrections are, in the order of their integration in the data processing: (1) a correction for a change in relative humidity between zero air and ambient air, (2) a correction for the formation of spurious OH when artificially produced HO2 react with NO in the sampling reactor, and (3) a correction for a deviation from pseudo first-order kinetics. The dependences of these artefacts to various measurable parameters, such as the pyrrole-to-OH ratio or the bimolecular reaction rate constants of ambient trace gases with OH are also studied. From these dependences, parameterizations are proposed to correct the OH reactivity measurements from the abovementioned artefacts. A comparison of experimental and simulation results is then discussed. The simulations were performed using a 0-D box model including either (1) a simple chemical mechanism, taking into account the inorganic chemistry from IUPAC 2001 and a simple organic chemistry scheme including only a generic RO2 compounds for all oxidized organic trace gases; and (2) a more exhaustive chemical mechanism, based on the Master Chemical Mechanism (MCM), including the chemistry of the different trace gases used during laboratory experiments. Both mechanisms take into account self- and cross-reactions of radical species. The simulations using these mechanisms allow reproducing the magnitude of the corrections needed to account for NO interferences and a deviation from pseudo first-order kinetics, as well as their dependence on the Pyrrole-to-OH ratio and on bimolecular reaction rate constants of trace gases. The reasonable agreement found between laboratory experiments and model simulations gives confidence in the parameterizations proposed to correct the Total OH reactivity measured by CRM. However, it must be noted that the parameterizations presented in this paper are suitable for the CRM instrument used during the laboratory characterization and may be not appropriate for other CRM instruments, even if similar behaviours should be observed. It is therefore recommended that each group characterizes its own instrument following the recommendations given in this study. Finally, the assessment of the limit of detection and total uncertainties is discussed and an example of field deployment of this CRM instrument is presented.

  6. Synthesis and Mechanical Characterization of Binary and Ternary Intermetallic Alloys Based on Fe-Ti-Al by Resonant Ultrasound Vibrational Methods.

    PubMed

    Chanbi, Daoud; Ogam, Erick; Amara, Sif Eddine; Fellah, Z E A

    2018-05-07

    Precise but simple experimental and inverse methods allowing the recovery of mechanical material parameters are necessary for the exploration of materials with novel crystallographic structures and elastic properties, particularly for new materials and those existing only in theory. The alloys studied herein are of new atomic compositions. This paper reports an experimental study involving the synthesis and development of methods for the determination of the elastic properties of binary (Fe-Al, Fe-Ti and Ti-Al) and ternary (Fe-Ti-Al) intermetallic alloys with different concentrations of their individual constituents. The alloys studied were synthesized from high purity metals using an arc furnace with argon flow to ensure their uniformity and homogeneity. Precise but simple methods for the recovery of the elastic constants of the isotropic metals from resonant ultrasound vibration data were developed. These methods allowed the fine analysis of the relationships between the atomic concentration of a given constituent and the Young’s modulus or alloy density.

  7. Synthesis and Mechanical Characterization of Binary and Ternary Intermetallic Alloys Based on Fe-Ti-Al by Resonant Ultrasound Vibrational Methods

    PubMed Central

    Chanbi, Daoud; Amara, Sif Eddine; Fellah, Z. E. A.

    2018-01-01

    Precise but simple experimental and inverse methods allowing the recovery of mechanical material parameters are necessary for the exploration of materials with novel crystallographic structures and elastic properties, particularly for new materials and those existing only in theory. The alloys studied herein are of new atomic compositions. This paper reports an experimental study involving the synthesis and development of methods for the determination of the elastic properties of binary (Fe-Al, Fe-Ti and Ti-Al) and ternary (Fe-Ti-Al) intermetallic alloys with different concentrations of their individual constituents. The alloys studied were synthesized from high purity metals using an arc furnace with argon flow to ensure their uniformity and homogeneity. Precise but simple methods for the recovery of the elastic constants of the isotropic metals from resonant ultrasound vibration data were developed. These methods allowed the fine analysis of the relationships between the atomic concentration of a given constituent and the Young’s modulus or alloy density. PMID:29735946

  8. Microfluidic device for chemical and mechanical manipulation of suspended cells

    NASA Astrophysics Data System (ADS)

    Rezvani, Samaneh; Shi, Nan; Squires, Todd M.; Schmidt, Christoph F.

    2018-01-01

    Microfluidic devices have proven to be useful and versatile for cell studies. We here report on a method to adapt microfluidic stickers made from UV-curable optical adhesive with inserted permeable hydrogel membrane micro-windows for mechanical studies of suspended cells. The windows were fabricated by optical projection lithography using scanning confocal microscopy. The device allows us to rapidly exchange embedding medium while observing and probing the cells. We characterize the device and demonstrate the function by exposing cultured fibroblasts to varying osmotic conditions. Cells can be shrunk reversibly under osmotic compression.

  9. Method and system for measurement of mechanical properties of molecules and cells

    NASA Technical Reports Server (NTRS)

    Fredberg, Jeffrey J. (Inventor); Butler, James P. (Inventor); Ingber, Donald E. (Inventor); Wang, Ning (Inventor)

    1996-01-01

    Mechanical stresses and deformations are applied directly to cell surface receptors or molecules and measured using a system including a magnetic twisting device in combination with ferromagnetic microbeads coated with ligands for integrins or any other surface receptors. The system can be used diagnostically to characterize cells and molecules and to determine the effect of transformation and compounds, including drugs, on the cells and molecules. The system can also be used to induce cells to grow or alter production of molecules by the cells.

  10. Quantitative ultrasonic evaluation of engineering properties in metals, composites and ceramics

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1980-01-01

    Ultrasonic technology from the perspective of nondestructive evaluation approaches to material strength prediction and property verification is reviewed. Emergent advanced technology involving quantitative ultrasonic techniques for materials characterization is described. Ultrasonic methods are particularly useful in this area because they involve mechanical elastic waves that are strongly modulated by the same morphological factors that govern mechanical strength and dynamic failure processes. It is emphasized that the technology is in its infancy and that much effort is still required before all the available techniques can be transferred from laboratory to industrial environments.

  11. Processing and Mechanical Characterization of Polyurea Aerogels

    DTIC Science & Technology

    2011-01-01

    PROCESSING AND MECHANICAL CHARACTERIZATION OF POLYUREA AEROGELS by JARED MICHAEL LOEBS A THESIS Presented to the Faculty of the Graduate School of...SUBTITLE Processing and Mechanical Characterization of Polyurea Aerogels 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...suggest otherwise. This thesis outlines the processing and major mechanical properties of a relatively new type of aerogel, polyurea aerogel, that shows

  12. Interdiffusion of Polycarbonate in Fused Deposition Modeling Welds

    NASA Astrophysics Data System (ADS)

    Seppala, Jonathan; Forster, Aaron; Satija, Sushil; Jones, Ronald; Migler, Kalman

    2015-03-01

    Fused deposition modeling (FDM), a now common and inexpensive additive manufacturing method, produces 3D objects by extruding molten polymer layer-by-layer. Compared to traditional polymer processing methods (injection, vacuum, and blow molding), FDM parts have inferior mechanical properties, surface finish, and dimensional stability. From a polymer processing point of view the polymer-polymer weld between each layer limits the mechanical strength of the final part. Unlike traditional processing methods, where the polymer is uniformly melted and entangled, FDM welds are typically weaker due to the short time available for polymer interdiffusion and entanglement. To emulate the FDM process thin film bilayers of polycarbonate/d-polycarbonate were annealed using scaled times and temperatures accessible in FDM. Shift factors from Time-Temperature Superposition, measured by small amplitude oscillatory shear, were used to calculate reasonable annealing times (min) at temperatures below the actual extrusion temperature. The extent of interdiffusion was then measured using neutron reflectivity. Analogous specimens were prepared to characterize the mechanical properties. FDM build parameters were then related to interdiffusion between welded layers and mechanical properties. Understating the relationship between build parameters, interdiffusion, and mechanical strength will allow FDM users to print stronger parts in an intelligent manner rather than using trial-and-error and build parameter lock-in.

  13. The Challenge of Characterizing Operations in the Mechanisms Underlying Behavior

    ERIC Educational Resources Information Center

    Bechtel, William

    2005-01-01

    Neuroscience and cognitive science seek to explain behavioral regularities in terms of underlying mechanisms. An important element of a mechanistic explanation is a characterization of the operations of the parts of the mechanism. The challenge in characterizing such operations is illustrated by an example from the history of physiological…

  14. Mechanical, thermal and morphological characterization of polycarbonate/oxidized carbon nanofiber composites produced with a lean 2-step manufacturing process.

    PubMed

    Lively, Brooks; Kumar, Sandeep; Tian, Liu; Li, Bin; Zhong, Wei-Hong

    2011-05-01

    In this study we report the advantages of a 2-step method that incorporates an additional process pre-conditioning step for rapid and precise blending of the constituents prior to the commonly used melt compounding method for preparing polycarbonate/oxidized carbon nanofiber composites. This additional step (equivalent to a manufacturing cell) involves the formation of a highly concentrated solid nano-nectar of polycarbonate/carbon nanofiber composite using a solution mixing process followed by melt mixing with pure polycarbonate. This combined method yields excellent dispersion and improved mechanical and thermal properties as compared to the 1-step melt mixing method. The test results indicated that inclusion of carbon nanofibers into composites via the 2-step method resulted in dramatically reduced ( 48% lower) coefficient of thermal expansion compared to that of pure polycarbonate and 30% lower than that from the 1-step processing, at the same loading of 1.0 wt%. Improvements were also found in dynamic mechanical analysis and flexural mechanical properties. The 2-step approach is more precise and leads to better dispersion, higher quality, consistency, and improved performance in critical application areas. It is also consistent with Lean Manufacturing principles in which manufacturing cells are linked together using less of the key resources and creates a smoother production flow. Therefore, this 2-step process can be more attractive for industry.

  15. Animal models of fibromyalgia

    PubMed Central

    2013-01-01

    Animal models of disease states are valuable tools for developing new treatments and investigating underlying mechanisms. They should mimic the symptoms and pathology of the disease and importantly be predictive of effective treatments. Fibromyalgia is characterized by chronic widespread pain with associated co-morbid symptoms that include fatigue, depression, anxiety and sleep dysfunction. In this review, we present different animal models that mimic the signs and symptoms of fibromyalgia. These models are induced by a wide variety of methods that include repeated muscle insults, depletion of biogenic amines, and stress. All potential models produce widespread and long-lasting hyperalgesia without overt peripheral tissue damage and thus mimic the clinical presentation of fibromyalgia. We describe the methods for induction of the model, pathophysiological mechanisms for each model, and treatment profiles. PMID:24314231

  16. Local mechanical properties of LFT injection molded parts: Numerical simulations versus experiments

    NASA Astrophysics Data System (ADS)

    Desplentere, F.; Soete, K.; Bonte, H.; Debrabandere, E.

    2014-05-01

    In predictive engineering for polymer processes, the proper prediction of material microstructure from known processing conditions and constituent material properties is a critical step forward properly predicting bulk properties in the finished composite. Operating within the context of long-fiber thermoplastics (LFT, length < 15mm) this investigation concentrates on the prediction of the local mechanical properties of an injection molded part. To realize this, the Autodesk Simulation Moldflow Insight 2014 software has been used. In this software, a fiber breakage algorithm for the polymer flow inside the mold is available. Using well known micro mechanic formulas allow to combine the local fiber length with the local orientation into local mechanical properties. Different experiments were performed using a commercially available glass fiber filled compound to compare the measured data with the numerical simulation results. In this investigation, tensile tests and 3 point bending tests are considered. To characterize the fiber length distribution of the polymer melt entering the mold (necessary for the numerical simulations), air shots were performed. For those air shots, similar homogenization conditions were used as during the injection molding tests. The fiber length distribution is characterized using automated optical method on samples for which the matrix material is burned away. Using the appropriate settings for the different experiments, good predictions of the local mechanical properties are obtained.

  17. Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding.

    PubMed

    Mi, Hao-Yang; Salick, Max R; Jing, Xin; Jacques, Brianna R; Crone, Wendy C; Peng, Xiang-Fang; Turng, Lih-Sheng

    2013-12-01

    Polylactic acid (PLA) and thermoplastic polyurethane (TPU) are two kinds of biocompatible and biodegradable polymers that can be used in biomedical applications. PLA has rigid mechanical properties while TPU possesses flexible mechanical properties. Blended TPU/PLA tissue engineering scaffolds at different ratios for tunable properties were fabricated via twin screw extrusion and microcellular injection molding techniques for the first time. Multiple test methods were used to characterize these materials. Fourier transform infrared spectroscopy (FTIR) confirmed the existence of the two components in the blends; differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) confirmed the immiscibility between the TPU and PLA. Scanning electron microscopy (SEM) images verified that, at the composition ratios studied, PLA was dispersed as spheres or islands inside the TPU matrix and that this phase morphology further influenced the scaffold's microstructure and surface roughness. The blends exhibited a large range of mechanical properties that covered several human tissue requirements. 3T3 fibroblast cell culture showed that the scaffolds supported cell proliferation and migration properly. Most importantly, this study demonstrated the feasibility of mass producing biocompatible PLA/TPU scaffolds with tunable microstructures, surface roughnesses, and mechanical properties that have the potential to be used as artificial scaffolds in multiple tissue engineering applications. © 2013.

  18. Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding

    PubMed Central

    Mi, Hao-Yang; Salick, Max R.; Jing, Xin; Jacques, Brianna R.; Crone, Wendy C.; Peng, Xiang-Fang; Turng, Lih-Sheng

    2015-01-01

    Polylactic acid (PLA) and thermoplastic polyurethane (TPU) are two kinds of biocompatible and biodegradable polymers that can be used in biomedical applications. PLA has rigid mechanical properties while TPU possesses flexible mechanical properties. Blended TPU/PLA tissue engineering scaffolds at different ratios for tunable properties were fabricated via twin screw extrusion and microcellular injection molding techniques for the first time. Multiple test methods were used to characterize these materials. Fourier transform infrared spectroscopy (FTIR) confirmed the existence of the two components in the blends; differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) confirmed the immiscibility between the TPU and PLA. Scanning electron microscopy (SEM) images verified that, at the composition ratios studied, PLA was dispersed as spheres or islands inside the TPU matrix and that this phase morphology further influenced the scaffold’s microstructure and surface roughness. The blends exhibited a large range of mechanical properties that covered several human tissue requirements. 3T3 fibroblast cell culture showed that the scaffolds supported cell proliferation and migration properly. Most importantly, this study demonstrated the feasibility of mass producing biocompatible PLA/TPU scaffolds with tunable microstructures, surface roughnesses, and mechanical properties that have the potential to be used as artificial scaffolds in multiple tissue engineering applications. PMID:24094186

  19. Recent advances in small-scale mechanical property measurement by nanoindentation

    DOE PAGES

    Pharr, George Mathews

    2015-08-25

    Since its initial development in the early 1980’s [1], nanoindentation has matured into one of the premier testing techniques for measuring mechanical properties at the micrometer and sub-micrometer scales and has emerged as a critical tool that has helped to shape the nanotechnology revolution. At the heart of the technique are testing systems with simple but precise force actuators and displacement measuring devices that record the force–displacement record as a diamond indenter, usually the form of a pyramid or a sphere, is pressed into and withdrawn from a small region in the surface of a material of interest. The nano-scalemore » force–displacement data, which can be obtained with a spatial resolution as small as a few nanometers, contains a wealth of information about the local mechanical properties [2], [3] and [4]. This enables the mechanical characterization of very thin films, like those used in the semiconductor, magnetic storage, and hard coatings industries, as well as very small precipitates, particles and second phases, many of which may not exist in bulk form and cannot be characterized by traditional mechanical testing methods. Here, computer automation of nanoindentation testing systems now routinely provides for complete two-dimensional mapping of properties over regions stretching from sub-micron to millimeters in scale.« less

  20. Mechanical and Thermal Characterization of Silica Nanocomposites

    NASA Astrophysics Data System (ADS)

    Cunningham, Anthony Lamar

    Polymer nanocomposites are a class of materials containing nanoparticles with a large interfacial surface area. Only a small quantity of nanoparticles are needed to provide superior multifunctional properties; such as mechanical, thermal, electrical, and moisture absorption properties in polymers. Nanoparticles tend to agglomerate, so special techniques are required for homogeneous distribution. Nanosilica is now readily available as colloidal sols, for example; Nanopox RTM F400 (supplied by Evonik Nanoresins AG, Germany). The nanoparticles are first synthesized from aqueous sodium silicate solution, and then undergo a surface modification process with organosilane and matrix exchange. F400 contains 40%wt silica nanoparticles colloidally dispersed in a DGEBA epoxy resin. The mean particle diameter is about 20 nm with a narrow distribution range of about 5 to 35 nm. The objectives of this study are to develop a reproducible processing method for nanosilica enhanced resin systems used in the manufacturing of fiber reinforced composites that will be characterized for mechanical and thermal properties. Research has concluded that shows improvements in the properties of the matrix material when processed in loading variations of 0 to 25%wt silica nanoparticles. The loadings were also used to manufacture fiberglass reinforced nanocomposite laminates and also tested for mechanical and thermal properties.

  1. A high throughput array microscope for the mechanical characterization of biomaterials

    NASA Astrophysics Data System (ADS)

    Cribb, Jeremy; Osborne, Lukas D.; Hsiao, Joe Ping-Lin; Vicci, Leandra; Meshram, Alok; O'Brien, E. Tim; Spero, Richard Chasen; Taylor, Russell; Superfine, Richard

    2015-02-01

    In the last decade, the emergence of high throughput screening has enabled the development of novel drug therapies and elucidated many complex cellular processes. Concurrently, the mechanobiology community has developed tools and methods to show that the dysregulation of biophysical properties and the biochemical mechanisms controlling those properties contribute significantly to many human diseases. Despite these advances, a complete understanding of the connection between biomechanics and disease will require advances in instrumentation that enable parallelized, high throughput assays capable of probing complex signaling pathways, studying biology in physiologically relevant conditions, and capturing specimen and mechanical heterogeneity. Traditional biophysical instruments are unable to meet this need. To address the challenge of large-scale, parallelized biophysical measurements, we have developed an automated array high-throughput microscope system that utilizes passive microbead diffusion to characterize mechanical properties of biomaterials. The instrument is capable of acquiring data on twelve-channels simultaneously, where each channel in the system can independently drive two-channel fluorescence imaging at up to 50 frames per second. We employ this system to measure the concentration-dependent apparent viscosity of hyaluronan, an essential polymer found in connective tissue and whose expression has been implicated in cancer progression.

  2. Brillouin light scattering studies of the mechanical properties of ultrathin low-k dielectric films

    NASA Astrophysics Data System (ADS)

    Link, A.; Sooryakumar, R.; Bandhu, R. S.; Antonelli, G. A.

    2006-07-01

    In an effort to reduce RC time delays that accompany decreasing feature sizes, low-k dielectric films are rapidly emerging as potential replacements for silicon dioxide (SiO2) at the interconnect level in integrated circuits. The main challenge in low-k materials is their substantially weaker mechanical properties that accompany the increasing pore volume content needed to reduce k. We show that Brillouin light scattering is an excellent nondestructive technique to monitor and characterize the mechanical properties of these porous films at thicknesses well below 200nm that are pertinent to present applications. Observation of longitudinal and transverse standing wave acoustic resonances and the dispersion that accompany their transformation into traveling waves with finite in-plane wave vectors provides for a direct measure of the principal elastic constants that completely characterize the mechanical properties of these ultrathin films. The mode amplitudes of the standing waves, their variation within the film, and the calculated Brillouin intensities account for most aspects of the spectra. We further show that the values obtained by this method agree well with other experimental techniques such as nanoindentation and picosecond laser ultrasonics.

  3. Characterization of Olive Oil by Ultrasonic and Physico-chemical Methods

    NASA Astrophysics Data System (ADS)

    Alouache, B.; Khechena, F. K.; Lecheb, F.; Boutkedjirt, T.

    Olive oil excels by its nutritional and medicinal benefits. It can be consumed without any treatment. However, its quality can be altered by inadequate storage conditions or if it is mixed with other kinds of oils. The objective of this work is to demonstrate the ability of ultrasonic methods to characterize and control olive oil quality. By using of a transducer of 2.25 MHz nominal frequency, in pulse echo mode, ultrasonic parameters, such as propagation velocity and attenuation,have been measured for pure olive oil and for its mixtures with sunflower oil at different proportions. Mechanical properties, such as density and viscosity, have also been determined. The results of ultrasonic measurements are consistent with those obtained by physico-chemical methods, such as rancidity degree, acid index, UV specific extinction coefficient and viscosity. They show that the ultrasonic method allows to distinguish between mixtures at different proportions. The study allows concluding that ultrasound techniques can be considered as a useful complement to existing physico-chemical analysis techniques.

  4. Development, characterization, and applications of self-assembling, photocrosslinkable collagen-based hydrogels

    NASA Astrophysics Data System (ADS)

    Gaudet, Ian Daniel

    Development of functional soft-tissue engineered constructs for use in regenerative medicine is currently limited by homogeneity within scaffolds that fails to recapitulate the complex architecture that supports normal function in healthy tissues. Additionally, recent breakthroughs in our understanding the biomechanical cell-matrix interface have provided insight into the role of substrate compliance during development and in the pathophysiological environment. This thesis is the result of investigation into using type-I collagen as a base material for creating dynamic, self-assembling, mechanically and biochemically tunable 3D hydrogel scaffolds into which instructive cellular cues can be imparted anisotropically via the directed application of light. This overarching goal was approached by (1) evaluating extant methods for photonically manipulating type I collagen mechanical properties, which led us to the conclusion that published methods were inadequate for our purposes. Following this realization, we (2) developed a novel process for derivatizing free amines on collagen amino acid residues to reactive methacrylamide moieties, allowing robust spatiotemporal control of mechanical properties through photocrosslinking with long-wave UV light and the water-soluble photoinitiator Irgacure 2959. Thorough characterization of this material, collagen methacrylamide (CMA), provided the basis for multiple applications in the field of soft tissue engineering. Additionally, (3) CMA was used in conjunction with synthetic photopolymers in an effort to create a hybrid natural/synthetic hydrogel material. CMA was also (4) employed as a dynamic hydrogel scaffold which we showed could be used to culture a number of neurogenic stem and progenitor cell types with a focus on using photomodulation to impart instructive heterogeneity to the mechanical and biochemical microenvironment. Finally, (5) we used a computational modeling approach to explain interesting yet poorly understood material phenomena exhibited by CMA observed during characterization. Using sequence and structure based models of an optimized triple helical segment of type-I collagen, we obtained valuable insight into the role of amino acid electrostatic interactions in CMA thermodynamic behavior as well as in the context of understanding the biophysical mechanisms of native type I collagen self-assembly and stability.

  5. Characterization and identification of ubiquitin conjugation sites with E3 ligase recognition specificities.

    PubMed

    Nguyen, Van-Nui; Huang, Kai-Yao; Huang, Chien-Hsun; Chang, Tzu-Hao; Bretaña, Neil; Lai, K; Weng, Julia; Lee, Tzong-Yi

    2015-01-01

    In eukaryotes, ubiquitin-conjugation is an important mechanism underlying proteasome-mediated degradation of proteins, and as such, plays an essential role in the regulation of many cellular processes. In the ubiquitin-proteasome pathway, E3 ligases play important roles by recognizing a specific protein substrate and catalyzing the attachment of ubiquitin to a lysine (K) residue. As more and more experimental data on ubiquitin conjugation sites become available, it becomes possible to develop prediction models that can be scaled to big data. However, no development that focuses on the investigation of ubiquitinated substrate specificities has existed. Herein, we present an approach that exploits an iteratively statistical method to identify ubiquitin conjugation sites with substrate site specificities. In this investigation, totally 6259 experimentally validated ubiquitinated proteins were obtained from dbPTM. After having filtered out homologous fragments with 40% sequence identity, the training data set contained 2658 ubiquitination sites (positive data) and 5532 non-ubiquitinated sites (negative data). Due to the difficulty in characterizing the substrate site specificities of E3 ligases by conventional sequence logo analysis, a recursively statistical method has been applied to obtain significant conserved motifs. The profile hidden Markov model (profile HMM) was adopted to construct the predictive models learned from the identified substrate motifs. A five-fold cross validation was then used to evaluate the predictive model, achieving sensitivity, specificity, and accuracy of 73.07%, 65.46%, and 67.93%, respectively. Additionally, an independent testing set, completely blind to the training data of the predictive model, was used to demonstrate that the proposed method could provide a promising accuracy (76.13%) and outperform other ubiquitination site prediction tool. A case study demonstrated the effectiveness of the characterized substrate motifs for identifying ubiquitination sites. The proposed method presents a practical means of preliminary analysis and greatly diminishes the total number of potential targets required for further experimental confirmation. This method may help unravel their mechanisms and roles in E3 recognition and ubiquitin-mediated protein degradation.

  6. Establishing the validity of different susceptibility testing methods to evaluate the in vitro activity of amoxicillin-clavulanate against Escherichia coli.

    PubMed

    María, Díez-Aguilar; María-Isabel, Morosini; María-Carmen, Conejo; Álvaro, Pascual; Jorge, Calvo; Luis, Martínez-Martínez; Francesc, Marco; Jordi, Vila; Adriana, Ortega; Jesús, Oteo; Rafael, Cantón

    2016-04-01

    Amoxicillin-clavulanate MICs of 160 Escherichia coli isolates with characterized resistance mechanisms were obtained by 2 MIC gradient strip brands, 3 automated systems, and reference ISO microdilution method using EUCAST (fixed 2μg/mL clavulanate) and CLSI (2:1 ratio) criteria. Discrepancies, mainly obtained with gradient strips, lead to an essential agreement range of 76.2-92.5. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Investigation of Post-mortem Tissue Effects Using Long-time Decorrelation Ultrasound

    NASA Astrophysics Data System (ADS)

    Csány, Gergely; Balogh, Lajos; Gyöngy, Miklós

    Decorrelation ultrasound is being increasingly used to investigate long-term biological phenomena. In the current work, ultrasound image sequences of mice who did not survive anesthesia (in a separate investigation) were analyzed and post-mortem tissue effects were observed via decorrelation calculation. A method was developed to obtain a quantitative parameter characterizing the rate of decorrelation. The results show that ultrasound decorrelation imaging is an effective method of observing post-mortem tissue effects and point to further studies elucidating the mechanism behind these effects.

  8. Biosynthesized iron nanoparticles in aqueous extracts of Eichhornia crassipes and its mechanism in the hexavalent chromium removal

    NASA Astrophysics Data System (ADS)

    Wei, Yufen; Fang, Zhanqiang; Zheng, Liuchun; Tsang, Eric Pokeung

    2017-03-01

    Eichhornia crassipes (water hyacinth), a species of invasive weeds has caused serious ecological damage due to its extraordinary fertility and growth rate. However, it has not yet been exploited for use as a resource. This paper reported the synthesis and characterization of amorphous iron nanoparticles (Ec-Fe-NPs) from Fe(III) salts in aqueous extracts of Eichhornia crassipes. The nanoparticles were characterized by SEM, EDS, TEM, XPS, FTIR, DLS and the zeta potential methods. The characterization results confirmed the successful synthesis of amorphous iron nanoparticles with diameters of 20-80 nm. Moreover, the nanoparticles were mainly composed of zero valent iron nanoparticles which were coated with various organic matters in the extracts as a capping or stabilizing agents. Batch experiments showed that 89.9% of Cr(VI) was removed by the Ec-Fe-NPs much higher than by the extracts alone (20.4%) and Fe3O4 nanoparticles (47.3%). Based on the kinetics study and the XPS analysis, a removal mechanism dominated by adsorption and reduction with subsequently co-precipitation was proposed.

  9. A review of the application Acoustic Emission (AE) incorporating mechanical approach to monitor Reinforced concrete (RC) strengthened with Fiber Reinforced Polymer (FRP) properties under fracture

    NASA Astrophysics Data System (ADS)

    Syed Mazlan, S. M. S.; Abdullah, S. R.; Shahidan, S.; Noor, S. R. Mohd

    2017-11-01

    Concrete durability may be affected by so many factors such as chemical attack and weathering action that reduce the performance and the service life of concrete structures. Low durability Reinforced concrete (RC) can be greatly improved by using Fiber Reinforce Polymer (FRP). FRP is a commonly used composite material for repairing and strengthening RC structures. A review on application of Acoustic Emission (AE) techniques of real time monitoring for various mechanical tests for RC strengthened with FRP involving four-point bending, three-point bending and cyclic loading was carried out and discussed in this paper. Correlations between each AE analyses namely b-value, sentry and intensity analysis on damage characterization also been critically reviewed. From the review, AE monitoring involving RC strengthened with FRP using b-value, sentry and intensity analysis are proven to be successful and efficient method in determining damage characterization. However, application of AE analysis using sentry analysis is still limited compared to b-value and intensity analysis in characterizing damages especially for RC strengthened with FRP specimen.

  10. Metrological characterization methods for confocal chromatic line sensors and optical topography sensors

    NASA Astrophysics Data System (ADS)

    Seppä, Jeremias; Niemelä, Karri; Lassila, Antti

    2018-05-01

    The increasing use of chromatic confocal technology for, e.g. fast, in-line optical topography, and measuring thickness, roughness and profiles implies a need for the characterization of various aspects of the sensors. Single-point, line and matrix versions of chromatic confocal technology, encoding depth information into wavelength, have been developed. Of these, line sensors are particularly suitable for in-line process measurement. Metrological characterization and development of practical methods for calibration and checking is needed for new optical methods and devices. Compared to, e.g. tactile methods, optical topography measurement techniques have limitations related to light wavelength and coherence, optical properties of the sample including reflectivity, specularity, roughness and colour, and definition of optical versus mechanical surfaces. In this work, metrological characterization methods for optical line sensors were developed for scale magnification and linearity, sensitivity to sample properties, and dynamic characteristics. An accurate depth scale calibration method using a single prototype groove depth sample was developed for a line sensor and validated with laser-interferometric sample tracking, attaining (sub)micrometre level or better than 0.1% scale accuracy. Furthermore, the effect of different surfaces and materials on the measurement and depth scale was studied, in particular slope angle, specularity and colour. In addition, dynamic performance, noise, lateral scale and resolution were measured using the developed methods. In the case of the LCI1200 sensor used in this study, which has a 11.3 mm  ×  2.8 mm measurement range, the instrument depth scale was found to depend only minimally on sample colour, whereas measuring steeply sloped specular surfaces in the peripheral measurement area, in the worst case, caused a somewhat larger relative sample-dependent change (1%) in scale.

  11. Novel characterization method for fibrous materials using non-contact acoustics: material properties revealed by ultrasonic perturbations.

    PubMed

    Periyaswamy, Thamizhisai; Balasubramanian, Karthikeyan; Pastore, Christopher

    2015-02-01

    Fibrous materials are unique hierarchical complex structures exhibiting a range of mechanical, thermal, optical and electrical properties. The inherent discontinuity at micro and macro levels, heterogeneity and multi-scale porosity differentiates fibrous materials from other engineering materials that are typically continuum in nature. These structural complexities greatly influence the techniques and modalities that can be applied to characterize fibrous materials. Typically, the material response to an applied external force is measured and used as a characteristic number of the specimen. In general, a range of equipment is in use to obtain these numbers to signify the material properties. Nevertheless, obtaining these numbers for materials like fiber ensembles is often time consuming, destructive, and requires multiple modalities. It is hypothesized that the material response to an applied acoustic frequency would provide a robust alternative characterization mode for rapid and non-destructive material analysis. This research proposes applying air-coupled ultrasonic acoustics to characterize fibrous materials. Ultrasonic frequency waves transmitted through fibrous assemblies were feature extracted to understand the correlation between the applied frequency and the material properties. Mechanical and thermal characteristics were analyzed using ultrasonic features such as time of flight, signal velocity, power and the rate of attenuation of signal amplitude. Subsequently, these temporal and spectral characteristics were mapped with the standard low-stress mechanical and thermal properties via an empirical artificial intelligence engine. A high correlation of >0.92 (S.D. 0.06) was observed between the ultrasonic features and the standard measurements. The proposed ultrasonic technique can be used toward rapid characterization of dynamic behavior of flexible fibrous assemblies. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. L-Arginine modified multi-walled carbon nanotube/sulfonated poly(ether ether ketone) nanocomposite films for biomedical applications

    NASA Astrophysics Data System (ADS)

    Kaya, Hatice; Bulut, Osman; Kamali, Ali Reza; Ege, Duygu

    2018-06-01

    Favorable implant-tissue interactions are crucial to achieve successful osseointegration of the implants. Poly(ether ether ketone) (PEEK) is an interesting alternative to titanium in orthopedics because of its low cost, high biocompatibility and comparable mechanical properties with cancellous bone. Despite these advantages; however, the untreated surface of PEEK fails to osseointegrate due to its bioinert and hydrophobic behavior. This paper deals with the surface modification of PEEK with a novel method. For this, PEEK was first treated with concentrated sulfuric acid to prepare sulfonated PEEK (SPEEK) films using a solvent casting method. Then, 1 and 2 wt% multi-walled carbon nanotube was incorporated into SPEEK to form nanocomposite films. The samples were characterized with Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy. After successful preparation of the nanocomposite films, L-arginine was covalently conjugated on the nanocomposite films to further improve their surface properties. Subsequently, the samples were characterized using X-ray Photoemission Spectroscopy (XPS), water contact angle measurements and Atomic Force Microscopy (AFM) and Dynamic Mechanical Thermal Analysis (DMTA). Finally, cell culture studies were carried out by using Alamar Blue assay to evaluate the biocompatibility of the films. The results obtained indicate the successful preparation of L-arginine-conjugated MWCNT/SPEEK nanocomposite films. The modified surface shows potential to improve implants' mechanical and biological performances.

  13. 3D-printed phantom for the characterization of non-uniform rotational distortion (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hohert, Geoffrey; Pahlevaninezhad, Hamid; Lee, Anthony; Lane, Pierre M.

    2016-03-01

    Endoscopic catheter-based imaging systems that employ a 2-dimensional rotary or 3-dimensional rotary-pullback scanning mechanism require constant angular velocity at the distal tip to ensure correct angular registration of the collected signal. Non-uniform rotational distortion (NURD) - often present due to a variety of mechanical issues - can result in inconsistent position and velocity profiles at the tip, limiting the accuracy of any measurements. Since artifacts like NURD are difficult to identify and characterize during tissue imaging, phantoms with well-defined patterns have been used to quantify position and/or velocity error. In this work we present a fast, versatile, and cost-effective method for making fused deposition modeling 3D printed phantoms for identifying and quantifying NURD errors along an arbitrary user-defined pullback path. Eight evenly-spaced features are present at the same orientation at all points on the path such that deviations from expected geometry can be quantified for the imaging catheter. The features are printed vertically and then folded together around the path to avoid issues with printer head resolution. This method can be adapted for probes of various diameters and for complex imaging paths with multiple bends. We demonstrate imaging using the 3D printed phantoms with a 1mm diameter rotary-pullback OCT catheter and system as a means of objectively evaluating the mechanical performance of similarly constructed probes.

  14. Mechanical Interferometry Imaging for Creep Modeling of the Cornea

    PubMed Central

    Yoo, Lawrence; Reed, Jason; Gimzewski, James K.

    2011-01-01

    Purpose. A novel nanoindentation technique was used to biomechanically characterize each of three main layers of the cornea by using Hertzian viscoelastic formulation of creep, the deformation resulting from sustained-force application. Methods. The nanoindentation method known as mechanical interferometry imaging (MII) with <1-nm displacement precision was used to observe indentation of bovine corneal epithelium, endothelium, and stroma by a spherical ferrous probe in a calibrated magnetic field. For each specimen, creep testing was performed using two different forces for 200 seconds. Measurements for single force were used to build a quantitative Hertzian model that was then used to predict creep behavior for another imposed force. Results. For all three layers, displacement measurements were highly repeatable and were well predicted by Hertzian models. Although short- and long-term stiffnesses of the endothelium were highest of the three layers at 339.2 and 20.2 kPa, respectively, both stromal stiffnesses were lowest at 100.4 and 3.6 kPa, respectively. Stiffnesses for the epithelium were intermediate at 264.6 and 12.2 kPa, respectively. Conclusions. Precise, repeatable measurements of corneal creep behavior can be conveniently obtained using MII at mechanical scale as small as one cell thickness. When interpreted in analytical context of Hertzian viscoelasticity, MII technique proved to be a powerful tool for biomechanical characterization of time-dependent biomechanics of corneal regions. PMID:21969299

  15. Synthesis and characterization of Chitosan-CuO-MgO polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Praffulla, S. R.; Bubbly, S. G.

    2018-05-01

    In the present work, we have synthesized Chitosan-CuO-MgO nanocomposites by incorporating CuO and MgO nanoparticles in chitosan matrix. Copper oxide and magnesium oxide nanoparticles synthesized by precipitation method were characterized by X-ray diffraction and the diffraction patterns confirmed the monoclinic and cubic crystalline structures of CuO and MgO nanoparticles respectively. Chitosan-CuO-MgO composite films were prepared using solution- cast method with different concentrations of CuO and MgO nanoparticles (15 - 50 wt % with respect to chitosan) and characterized by XRD, FTIR and UV-Vis spectroscopy. The X-ray diffraction pattern shows that the crystallinity of the chitosan composite increases with increase in nanoparticle concentration. FTIR spectra confirm the chemical interaction between chitosan and metal oxide nanoparticles (CuO and MgO). UV absorbance of chitosan nanocomposites were up to 17% better than pure chitosan, thus confirming its UV shielding properties. The mechanical and electrical properties of the prepared composites are in progress.

  16. Nondestructive ultrasonic characterization of engineering materials

    NASA Technical Reports Server (NTRS)

    Salama, K.

    1985-01-01

    The development of an ultrasonic method for the nondestructive characterization of mechanical properties of engineering material is described. The method utilizes the nonlinearity parameter measurement which describes the anharmonic behavior of the solid through measurements of amplitudes of the fundamental and of the generated second harmonic ultrasonic waves. The nonlinearity parameter is also directly related to the acoustoelastic constant of the solid which can be determined by measuring the linear dependence of ultrasonic velocity on stress. A major advantage of measurements of the nonlinearity parameter over that of the acoustoelastic constant is that it may be determined without the application of stress on the material, which makes it more applicable for in-service nondestructive characterization. The relationships between the nonlinearity parameter of second-harmonic generation and the percentage of solid solution phase in engineering materials such as heat treatable aluminum alloys was established. The acoustoelastic constants are measured on these alloys for comparison and confirmation. A linear relationship between the nonlinearity parameter and the volume fraction of second phase precipitates in the alloys is indicated.

  17. Characterization of Bacterial Cellulose by Gluconacetobacter hansenii CGMCC 3917.

    PubMed

    Feng, Xianchao; Ullah, Niamat; Wang, Xuejiao; Sun, Xuchun; Li, Chenyi; Bai, Yun; Chen, Lin; Li, Zhixi

    2015-10-01

    In this study, comprehensive characterization and drying methods on properties of bacterial cellulose were analyzed. Bacterial cellulose was prepared by Gluconacetobacter hansenii CGMCC 3917, which was mutated by high hydrostatic pressure (HHP) treatment. Bacterial cellulose is mainly comprised of cellulose Iα with high crystallinity and purity. High-water holding and absorption capacity were examined by reticulated structure. Thermogravimetric analysis showed high thermal stability. High tensile strength and Young's modulus indicated its mechanical properties. The rheological analysis showed that bacterial cellulose had good consistency and viscosity. These results indicated that bacterial cellulose is a potential food additive and also could be used for a food packaging material. The high textural stability during freeze-thaw cycles makes bacterial cellulose an effective additive for frozen food products. In addition, the properties of bacterial cellulose can be affected by drying methods. Our results suggest that the bacterial cellulose produced from HHP-mutant strain has an effective characterization, which can be used for a wide range of applications in food industry. © 2015 Institute of Food Technologists®

  18. Non-linear mechanical behavior of a sintered material for braking application using digital image correlation

    NASA Astrophysics Data System (ADS)

    Mann, Ruddy; Magnier, Vincent; Serrano-Munoz, Itziar; Brunel, Jean-Francois; Brunel, Florent; Dufrenoy, Philippe; Henrion, Michele

    2017-12-01

    Friction materials for braking applications are complex composites made of many components to ensure the various performances required (friction coefficient level, low wear, mechanical strength, thermal resistance, etc.). The material is developed empirically by a trial and error approach. With the solicitation, the material evolves and probably also its properties. In the literature, the mechanical behavior of such materials is generally considered as linear elastic and independent of the loading history. This paper describes a methodology to characterize the mechanical behavior of such a heterogeneous material in order to investigate its non-linear mechanical behavior. Results from mechanical tests are implemented into material laws for numerical simulations. Thanks to the instrumentation, some links with the microstructure can also be proposed. The material is made of a metallic matrix embedding graphite and ceramic particles and is manufactured by sintering. It is used for dry friction applications such as high-energy brake for trains, cars and motorcycles. Compression tests are done with digital image correlation to measure full-filled displacement. It allows to calculate strain fields with enough resolution to identify the material heterogeneity and the role of some of the components of the formulation. A behavior model of the material with plasticity and damage is proposed to simulate the non-linear mechanical behavior and is implemented in an FEM code. Results of mechanical test simulations are compared with two types of experiments showing good agreement. This method thus makes it possible to determine mechanical properties at a virgin state but is extensible for characterizing a material having been submitted to braking solicitations.

  19. Numerical Modelling of Femur Fracture and Experimental Validation Using Bone Simulant.

    PubMed

    Marco, Miguel; Giner, Eugenio; Larraínzar-Garijo, Ricardo; Caeiro, José Ramón; Miguélez, María Henar

    2017-10-01

    Bone fracture pattern prediction is still a challenge and an active field of research. The main goal of this article is to present a combined methodology (experimental and numerical) for femur fracture onset analysis. Experimental work includes the characterization of the mechanical properties and fracture testing on a bone simulant. The numerical work focuses on the development of a model whose material properties are provided by the characterization tests. The fracture location and the early stages of the crack propagation are modelled using the extended finite element method and the model is validated by fracture tests developed in the experimental work. It is shown that the accuracy of the numerical results strongly depends on a proper bone behaviour characterization.

  20. Diluted magnetic oxides

    NASA Astrophysics Data System (ADS)

    Li, XiaoLi; Qi, ShiFei; Jiang, FengXian; Quan, ZhiYong; Xu, XiaoHong

    2013-01-01

    In this review, we review the progress of research on ZnO- and In2O3-based diluted magnetic oxides (DMOs). Firstly, we present the preparation and characterization of DMOs. The former includes the preparation methods and conditions, and the latter includes the characterization techniques for measuring microstructures. Secondly, we introduce the magnetic and transport properties of DMOs, as well as the relationship between them. Thirdly, the origin and mechanism of the ferromagnetism are discussed. Fourthly, we introduce other related work, including computational work and pertinent heterogeneous structures, such as multilayers and magnetic tunnel junctions. Finally, we provide an overview and outlook for DMOs.

  1. Vibration environment - Acceleration mapping strategy and microgravity requirements for Spacelab and Space Station

    NASA Technical Reports Server (NTRS)

    Martin, Gary L.; Baugher, Charles R.; Delombard, Richard

    1990-01-01

    In order to define the acceleration requirements for future Shuttle and Space Station Freedom payloads, methods and hardware characterizing accelerations on microgravity experiment carriers are discussed. The different aspects of the acceleration environment and the acceptable disturbance levels are identified. The space acceleration measurement system features an adjustable bandwidth, wide dynamic range, data storage, and ability to be easily reconfigured and is expected to fly on the Spacelab Life Sciences-1. The acceleration characterization and analysis project describes the Shuttle acceleration environment and disturbance mechanisms, and facilitates the implementation of the microgravity research program.

  2. Determination of prestress and elastic properties of virus capsids

    NASA Astrophysics Data System (ADS)

    Aggarwal, Ankush

    2018-03-01

    Virus capsids are protein shells that protect the virus genome, and determination of their mechanical properties has been a topic of interest because of their potential use in nanotechnology and therapeutics. It has been demonstrated that stresses exist in virus capsids, even in their equilibrium state, due to their construction. These stresses, termed "prestresses" in this study, closely affect the capsid's mechanical behavior. Three methods—shape-based metric, atomic force microscope indentation, and molecular dynamics—have been proposed to determine the capsid elastic properties without fully accounting for prestresses. In this paper, we theoretically analyze the three methods used for mechanical characterization of virus capsids and numerically investigate how prestresses affect the capsid's mechanical properties. We consolidate all the results and propose that by using these techniques collectively, it is possible to accurately determine both the mechanical properties and prestresses in capsids.

  3. Real-Time Assessment of Mechanical Tissue Trauma in Surgery.

    PubMed

    Chandler, James H; Mushtaq, Faisal; Moxley-Wyles, Benjamin; West, Nicholas P; Taylor, Gregory W; Culmer, Peter R

    2017-10-01

    This work presents a method to assess and prevent tissue trauma in real-time during surgery. Tissue trauma occurs routinely during laparoscopic surgery with potentially severe consequences. As such, it is crucial that a surgeon is able to regulate the pressure exerted by surgical instruments. We propose a novel method to assess the onset of tissue trauma by considering the mechanical response of tissue as it is loaded in real-time. We conducted a parametric study using a lab-based grasping model and differing load conditions. Mechanical stress-time data were analyzed to characterize the tissue response to grasps. Qualitative and quantitative histological analyses were performed to inspect damage characteristics of the tissue under different load conditions. These were correlated against the mechanical measures to identify the nature of trauma onset with respect to our predictive metric. Results showed increasing tissue trauma with load and a strong correlation with the mechanical response of the tissue. Load rate and load history also showed a clear effect on tissue response. The proposed method for trauma assessment was effective in identifying damage. The metric can be normalized with respect to loading rate and history, making it feasible in the unconstrained environment of intraoperative surgery. This work demonstrates that tissue trauma can be predicted using mechanical measures in real-time. Applying this technique to laparoscopic tools has the potential to reduce unnecessary tissue trauma and its associated complications by indicating through user feedback or actively regulating the mechanical impact of surgical instruments.

  4. Characterization of Heat Treated Titanium-Based Implants by Nondestructive Eddy Current and Ultrasonic Tests

    NASA Astrophysics Data System (ADS)

    Mutlu, Ilven; Ekinci, Sinasi; Oktay, Enver

    2014-06-01

    This study presents nondestructive characterization of microstructure and mechanical properties of heat treated Ti, Ti-Cu, and Ti-6Al-4V titanium-based alloys and 17-4 PH stainless steel alloy for biomedical implant applications. Ti, Ti-Cu, and 17-4 PH stainless steel based implants were produced by powder metallurgy. Ti-6Al-4V alloy was investigated as bulk wrought specimens. Effects of sintering temperature, aging, and grain size on mechanical properties were investigated by nondestructive and destructive tests comparatively. Ultrasonic velocity in specimens was measured by using pulse-echo and transmission methods. Electrical conductivity of specimens was determined by eddy current tests. Determination of Young's modulus and strength is important in biomedical implants. Young's modulus of specimens was calculated by using ultrasonic velocities. Calculated Young's modulus values were compared and correlated with experimental values.

  5. Elucidating PID Degradation Mechanisms and In Situ Dark I–V Monitoring for Modeling Degradation Rate in CdTe Thin-Film Modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hacke, Peter; Spataru, Sergiu; Johnston, Steve

    A progression of potential-induced degradation (PID) mechanisms are observed in CdTe modules, including shunting/junction degradation and two different manifestations of series resistance depending on the stress level and water ingress. The dark I-V method for in-situ characterization of Pmax based on superposition was adapted for the thin-film modules undergoing PID in view of the degradation mechanisms observed. An exponential model based on module temperature and relative humidity was fit to the PID rate for multiple stress levels in chamber tests and validated by predicting the observed degradation of the module type in the field.

  6. Rule-based mechanisms of learning for intelligent adaptive flight control

    NASA Technical Reports Server (NTRS)

    Handelman, David A.; Stengel, Robert F.

    1990-01-01

    How certain aspects of human learning can be used to characterize learning in intelligent adaptive control systems is investigated. Reflexive and declarative memory and learning are described. It is shown that model-based systems-theoretic adaptive control methods exhibit attributes of reflexive learning, whereas the problem-solving capabilities of knowledge-based systems of artificial intelligence are naturally suited for implementing declarative learning. Issues related to learning in knowledge-based control systems are addressed, with particular attention given to rule-based systems. A mechanism for real-time rule-based knowledge acquisition is suggested, and utilization of this mechanism within the context of failure diagnosis for fault-tolerant flight control is demonstrated.

  7. Characterizing the mechanics of cultured cell monolayers

    PubMed Central

    Peter, Loic; Bellis, Julien; Baum, Buzz; Kabla, Alexandre J.; Charras, Guillaume T.

    2012-01-01

    One-cell-thick monolayers are the simplest tissues in multicellular organisms, yet they fulfill critical roles in development and normal physiology. In early development, embryonic morphogenesis results largely from monolayer rearrangement and deformation due to internally generated forces. Later, monolayers act as physical barriers separating the internal environment from the exterior and must withstand externally applied forces. Though resisting and generating mechanical forces is an essential part of monolayer function, simple experimental methods to characterize monolayer mechanical properties are lacking. Here, we describe a system for tensile testing of freely suspended cultured monolayers that enables the examination of their mechanical behavior at multi-, uni-, and subcellular scales. Using this system, we provide measurements of monolayer elasticity and show that this is two orders of magnitude larger than the elasticity of their isolated cellular components. Monolayers could withstand more than a doubling in length before failing through rupture of intercellular junctions. Measurement of stress at fracture enabled a first estimation of the average force needed to separate cells within truly mature monolayers, approximately ninefold larger than measured in pairs of isolated cells. As in single cells, monolayer mechanical properties were strongly dependent on the integrity of the actin cytoskeleton, myosin, and intercellular adhesions interfacing adjacent cells. High magnification imaging revealed that keratin filaments became progressively stretched during extension, suggesting they participate in monolayer mechanics. This multiscale study of monolayer response to deformation enabled by our device provides the first quantitative investigation of the link between monolayer biology and mechanics. PMID:22991459

  8. Viscoelastic characterization of soft biological materials

    NASA Astrophysics Data System (ADS)

    Nayar, Vinod Timothy

    Progressive and irreversible retinal diseases are among the primary causes of blindness in the United States, attacking the cells in the eye that transform environmental light into neural signals for the optic pathway. Medical implants designed to restore visual function to afflicted patients can cause mechanical stress and ultimately damage to the host tissues. Research shows that an accurate understanding of the mechanical properties of the biological tissues can reduce damage and lead to designs with improved safety and efficacy. Prior studies on the mechanical properties of biological tissues show characterization of these materials can be affected by environmental, length-scale, time, mounting, stiffness, size, viscoelastic, and methodological conditions. Using porcine sclera tissue, the effects of environmental, time, and mounting conditions are evaluated when using nanoindentation. Quasi-static tests are used to measure reduced modulus during extended exposure to phosphate-buffered saline (PBS), as well as the chemical and mechanical analysis of mounting the sample to a solid substrate using cyanoacrylate. The less destructive nature of nanoindentation tests allows for variance of tests within a single sample to be compared to the variance between samples. The results indicate that the environmental, time, and mounting conditions can be controlled for using modified nanoindentation procedures for biological samples and are in line with averages modulus values from previous studies but with increased precision. By using the quasi-static and dynamic characterization capabilities of the nanoindentation setup, the additional stiffness and viscoelastic variables are measured. Different quasi-static control methods were evaluated along with maximum load parameters and produced no significant difference in reported reduced modulus values. Dynamic characterization tests varied frequency and quasi-static load, showing that the agar could be modeled as a linearly elastic material. The effects of sample stiffness were evaluated by testing both the quasi-static and dynamic mechanical properties of different concentration agar samples, ranging from 0.5% to 5.0%. The dynamic nanoindentation protocol showed some sensitivity to sample stiffness, but characterization remained consistently applicable to soft biological materials. Comparative experiments were performed on both 0.5% and 5.0% agar as well as porcine eye tissue samples using published dynamic macrocompression standards. By comparing these new tests to those obtained with nanoindentation, the effects due to length-scale, stiffness, size, viscoelastic, and methodological conditions are evaluated. Both testing methodologies can be adapted for the environmental and mounting conditions, but the limitations of standardized macro-scale tests are explored. The factors affecting mechanical characterization of soft and thin viscoelastic biological materials are researched and a comprehensive protocol is presented. This work produces material mechanical properties for use in improving future medical implant designs on a wide variety of biological tissue and materials.

  9. Towards 3D printed multifunctional immobilization for proton therapy: Initial materials characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michiels, Steven, E-mail: michiels.steven@kuleuven

    Purpose: 3D printing technology is investigated for the purpose of patient immobilization during proton therapy. It potentially enables a merge of patient immobilization, bolus range shifting, and other functions into one single patient-specific structure. In this first step, a set of 3D printed materials is characterized in detail, in terms of structural and radiological properties, elemental composition, directional dependence, and structural changes induced by radiation damage. These data will serve as inputs for the design of 3D printed immobilization structure prototypes. Methods: Using four different 3D printing techniques, in total eight materials were subjected to testing. Samples with a nominalmore » dimension of 20 × 20 × 80 mm{sup 3} were 3D printed. The geometrical printing accuracy of each test sample was measured with a dial gage. To assess the mechanical response of the samples, standardized compression tests were performed to determine the Young’s modulus. To investigate the effect of radiation on the mechanical response, the mechanical tests were performed both prior and after the administration of clinically relevant dose levels (70 Gy), multiplied with a safety factor of 1.4. Dual energy computed tomography (DECT) methods were used to calculate the relative electron density to water ρ{sub e}, the effective atomic number Z{sub eff}, and the proton stopping power ratio (SPR) to water SPR. In order to validate the DECT based calculation of radiological properties, beam measurements were performed on the 3D printed samples as well. Photon irradiations were performed to measure the photon linear attenuation coefficients, while proton irradiations were performed to measure the proton range shift of the samples. The directional dependence of these properties was investigated by performing the irradiations for different orientations of the samples. Results: The printed test objects showed reduced geometric printing accuracy for 2 materials (deviation > 0.25 mm). Compression tests yielded Young’s moduli ranging from 0.6 to 2940 MPa. No deterioration in the mechanical response was observed after exposure of the samples to 100 Gy in a therapeutic MV photon beam. The DECT-based characterization yielded Z{sub eff} ranging from 5.91 to 10.43. The SPR and ρ{sub e} both ranged from 0.6 to 1.22. The measured photon attenuation coefficients at clinical energies scaled linearly with ρ{sub e}. Good agreement was seen between the DECT estimated SPR and the measured range shift, except for the higher Z{sub eff}. As opposed to the photon attenuation, the proton range shifting appeared to be printing orientation dependent for certain materials. Conclusions: In this study, the first step toward 3D printed, multifunctional immobilization was performed, by going through a candidate clinical workflow for the first time: from the material printing to DECT characterization with a verification through beam measurements. Besides a proof of concept for beam modification, the mechanical response of printed materials was also investigated to assess their capabilities for positioning functionality. For the studied set of printing techniques and materials, a wide variety of mechanical and radiological properties can be selected from for the intended purpose. Moreover the elaborated hybrid DECT methods aid in performing in-house quality assurance of 3D printed components, as these methods enable the estimation of the radiological properties relevant for use in radiation therapy.« less

  10. Reaction Mechanisms on Multiwell Potential Energy Surfaces in Combustion (and Atmospheric) Chemistry

    DOE PAGES

    Osborn, David L.

    2017-03-15

    Chemical reactions occurring on a potential energy surface with multiple wells are ubiquitous in low temperature combustion and the oxidation of volatile organic compounds in earth’s atmosphere. The rich variety of structural isomerizations that compete with collisional stabilization make characterizing such complex-forming reactions challenging. This review describes recent experimental and theoretical advances that deliver increasingly complete views of their reaction mechanisms. New methods for creating reactive intermediates coupled with multiplexed measurements provide many experimental observables simultaneously. Automated methods to explore potential energy surfaces can uncover hidden reactive pathways, while master equation methods enable a holistic treatment of both sequential andmore » well-skipping pathways. Our ability to probe and understand nonequilibrium effects and reaction sequences is increasing. These advances provide the fundamental science base for predictive models of combustion and the atmosphere that are crucial to address global challenges.« less

  11. Apparatus and method for sensing motion in a microelectro-mechanical system

    DOEpatents

    Dickey, Fred M.; Holswade, Scott C.

    1999-01-01

    An apparatus and method are disclosed for optically sensing motion in a microelectromechanical system (also termed a MEMS device) formed by surface micromachining or LIGA. The apparatus operates by reflecting or scattering a light beam off a corrugated surface (e.g. gear teeth or a reference feature) of a moveable member (e.g. a gear, rack or linkage) within the MEMS device and detecting the reflected or scattered light. The apparatus can be used to characterize a MEMS device, measuring one or more performance characteristic such as spring and damping coefficients, torque and friction, or uniformity of motion of the moveable member. The apparatus can also be used to determine the direction and extent of motion of the moveable member; or to determine a particular mechanical state that a MEMS device is in. Finally, the apparatus and method can be used for providing feedback to the MEMS device to improve performance and reliability.

  12. Reaction Mechanisms on Multiwell Potential Energy Surfaces in Combustion (and Atmospheric) Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osborn, David L.

    Chemical reactions occurring on a potential energy surface with multiple wells are ubiquitous in low temperature combustion and the oxidation of volatile organic compounds in earth’s atmosphere. The rich variety of structural isomerizations that compete with collisional stabilization make characterizing such complex-forming reactions challenging. This review describes recent experimental and theoretical advances that deliver increasingly complete views of their reaction mechanisms. New methods for creating reactive intermediates coupled with multiplexed measurements provide many experimental observables simultaneously. Automated methods to explore potential energy surfaces can uncover hidden reactive pathways, while master equation methods enable a holistic treatment of both sequential andmore » well-skipping pathways. Our ability to probe and understand nonequilibrium effects and reaction sequences is increasing. These advances provide the fundamental science base for predictive models of combustion and the atmosphere that are crucial to address global challenges.« less

  13. Development and Implementation of an Ultrasonic Method to Characterize Acoustic and Mechanical Fingernail Properties

    NASA Astrophysics Data System (ADS)

    Vacarescu, Rares Anthony

    The human fingernail is a vital organ used by humans on a daily basis and can provide an immense supply of information based on the biological feedback of the body. By studying the quantitative mechanical and acoustic properties of fingernails, a better understanding of the scarcely-investigated field of ungual research can be explored. Investigating fingernail properties with the use of pulse-echo ultrasound is the aim of this thesis. This thesis involves the application of a developed portable ultrasonic device in a hospital-based data collection and the advancement of ultrasonic methodology to include the calculation of acoustic impedance, density and elasticity. The results of the thesis show that the reflectance method can be utilized to determine fingernail properties with a maximum 17% deviation from literature. Repeatability of measurements fell within a 95% confidence interval. Thus, the ultrasonic reflectance method was validated and may have potential clinical and cosmetic applications.

  14. Simulated Hail Ice Mechanical Properties and Failure Mechanism at Quasi-Static Strain Rates

    NASA Astrophysics Data System (ADS)

    Swift, Jonathan M.

    Hail is a significant threat to aircraft both on the ground and in the air. Aeronautical engineers are interested in better understanding the properties of hail to improve the safety of new aircraft. However, the failure mechanism and mechanical properties of hail, as opposed to clear ice, are not well understood. A literature review identifies basic mechanical properties of ice and a failure mechanism based upon the state of stress within an ice sphere is proposed. To better understand the properties of Simulated Hail Ice (SHI), several tests were conducted using both clear and cotton fiber reinforced ice. Pictures were taken to show the internal crystal structure of SHI. SHI crush tests were conducted to identify the overall force-displacement trends at various quasi-static strain rates. High speed photography was also used to visually track the failure mechanism of spherical SHI. Compression tests were done to measure the compression strength of SHI and results were compared to literature data. Fracture toughness tests were conducted to identify the crack resistance of SHI. Results from testing clear ice samples were successfully compared to previously published literature data to instill confidence in the testing methods. The methods were subsequently used to test and characterize the cotton fiber reinforced ice.

  15. Efficient Pb(II) removal using sodium alginate-carboxymethyl cellulose gel beads: Preparation, characterization, and adsorption mechanism.

    PubMed

    Ren, Huixue; Gao, Zhimin; Wu, Daoji; Jiang, Jiahui; Sun, Youmin; Luo, Congwei

    2016-02-10

    Alginate-carboxymethyl cellulose (CMC) gel beads were prepared in this study using sodium alginate (SA) and sodium CMC through blending and cross-linking. The specific surface area and aperture of the prepared SA-CMC gel beads were tested. The SA-CMC structure was characterized and analyzed via infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Static adsorption experiment demonstrated that Pb(II) adsorption of SA-CMC exceeded 99% under the optimized conditions. In addition, experiments conducted under the same experimental conditions showed that the lead ion removal efficiency of SA-CMC was significantly higher than that of conventional adsorbents. The Pb(II) adsorption process of SA-CMC followed the Langmuir adsorption isotherm, and the dynamic adsorption model could be described through a pseudo-second-order rate equation. Pb(II) removal mechanisms of SA-CMC, including physical, chemical, and electrostatic adsorptions, were discussed based on microstructure analysis and adsorption kinetics. Chemical adsorption was the main adsorption method among these mechanisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Nonlinear viscoelastic characterization of polymer materials using a dynamic-mechanical methodology

    NASA Technical Reports Server (NTRS)

    Strganac, Thomas W.; Payne, Debbie Flowers; Biskup, Bruce A.; Letton, Alan

    1995-01-01

    Polymer materials retrieved from LDEF exhibit nonlinear constitutive behavior; thus the authors present a method to characterize nonlinear viscoelastic behavior using measurements from dynamic (oscillatory) mechanical tests. Frequency-derived measurements are transformed into time-domain properties providing the capability to predict long term material performance without a lengthy experimentation program. Results are presented for thin-film high-performance polymer materials used in the fabrication of high-altitude scientific balloons. Predictions based upon a linear test and analysis approach are shown to deteriorate for moderate to high stress levels expected for extended applications. Tests verify that nonlinear viscoelastic response is induced by large stresses. Hence, an approach is developed in which the stress-dependent behavior is examined in a manner analogous to modeling temperature-dependent behavior with time-temperature correspondence and superposition principles. The development leads to time-stress correspondence and superposition of measurements obtained through dynamic mechanical tests. Predictions of material behavior using measurements based upon linear and nonlinear approaches are compared with experimental results obtained from traditional creep tests. Excellent agreement is shown for the nonlinear model.

  17. Characterizing depth-dependent refractive index of articular cartilage subjected to mechanical wear or enzymic degeneration

    NASA Astrophysics Data System (ADS)

    Wang, Kuyu; Wu, Jianping; Day, Robert; Kirk, Thomas Brett; Hu, Xiaozhi

    2016-09-01

    Utilizing a laser scanning confocal microscope system, the refractive indices of articular cartilage (AC) with mechanical or biochemical degenerations were characterized to investigate whether potential correlations exist between refractive index (RI) and cartilage degeneration. The cartilage samples collected from the medial femoral condyles of kangaroo knees were mechanically degenerated under different loading patterns or digested in trypsin solution with different concentrations. The sequences of RI were then measured from cartilage surface to deep region and the fluctuations of RI were quantified considering combined effects of fluctuating frequency and amplitude. The compositional and microstructural alterations of cartilage samples were assessed with histological methods. Along with the loss of proteoglycans, the average RI of cartilage increased and the local fluctuation of RI became stronger. Short-term high-speed test induced little influence to both the depth fluctuation and overall level of RI. Long-term low-speed test increased the fluctuation of RI but the average RI was barely changed. The results substantially demonstrate that RI of AC varies with both compositional and structural alterations and is potentially an indicator for the degeneration of AC.

  18. Surface modifications with Lissajous trajectories using atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Wei; Yao, Nan, E-mail: nyao@princeton.edu

    2015-09-14

    In this paper, we report a method for atomic force microscopy surface modifications with single-tone and multiple-resolution Lissajous trajectories. The tip mechanical scratching experiments with two series of Lissajous trajectories were carried out on monolayer films. The scratching processes with two scan methods have been illustrated. As an application, the tip-based triboelectrification phenomenon on the silicon dioxide surface with Lissajous trajectories was investigated. The triboelectric charges generated within the tip rubbed area on the surface were characterized in-situ by scanning Kelvin force microscopy. This method would provide a promising and cost-effective approach for surface modifications and nanofabrication.

  19. An improved method for piezoelectric characterization of polymers for energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Gusarova, E.; Gusarov, B.; Zakharov, D.; Bousquet, M.; Viala, B.; Cugat, O.; Delamare, J.; Gimeno, L.

    2013-12-01

    This work presents an improved method for measuring the direct piezoelectric voltage and energy of flexible polymers. Well-controlled stress is applied with a four-point bending system and voltage is measured in real open-circuit conditions. The presented method separates the piezoelectric part from the measurement part by introducing a mechanical switch, allowing instantaneous post-deformation discharge measurements. Oscilloscope and contact-less electrostatic voltmeter are compared. Direct piezoelectric measurements under open-circuit conditions have been performed on commercial PVDF (polyvinylidene fluoride) and its copolymers. Significant differences to data sheet values (close-circuit conditions) are reported and commented.

  20. Characterization of nanoporous shales with gas sorption

    NASA Astrophysics Data System (ADS)

    Joewondo, N.; Prasad, M.

    2017-12-01

    The understanding of the fluid flow in porous media requires the knowledge of the pore system involved. Fluid flow in fine grained shales falls under different regime than transport regime in conventional reservoir due to the different average pore sizes in the two materials; the average pore diameter of conventional sandstones is on the micrometer scale, while of shales can be as small as several nanometers. Mercury intrusion porosimetry is normally used to characterize the pores of conventional reservoir, however with increasingly small pores, the injection pressure required to imbibe the pores becomes infinitely large due to surface tension. Characterization of pores can be expressed by a pore size distribution (PSD) plot, which reflects distribution of pore volume or surface area with respect to pore size. For the case of nanoporous materials, the surface area, which serves as the interface between the rock matrix and fluid, becomes increasingly large and important. Physisorption of gas has been extensively studied as a method of nanoporous solid characterization (particularly for the application of catalysis, metal organic frameworks, etc). The PSD is obtained by matching the experimental result to the calculated theoretical result (using Density Functional Theory (DFT), a quantum mechanics based modelling method for molecular scale interactions). We present the challenges and experimental result of Nitrogen and CO2 gas sorption on shales with various mineralogy and the interpreted PSD obtained by DFT method. Our result shows significant surface area contributed by the nanopores of shales, hence the importance of surface area measurements for the characterization of shales.

  1. Mechanical stability of heat-treated nanoporous anodic alumina subjected to repetitive mechanical deformation

    NASA Astrophysics Data System (ADS)

    Bankova, A.; Videkov, V.; Tzaneva, B.; Mitov, M.

    2018-03-01

    We report studies on the mechanical response and deformation behavior of heat-treated nanoporous anodic alumina using a micro-balance test and experimental test equipment especially designed for this purpose. AAO samples were characterized mechanically by a three-point bending test using a micro-analytical balance. The deformation behavior was studied by repetitive mechanical bending of the AAO membranes using an electronically controlled system. The nanoporous AAO structures were prepared electrochemically from Al sheet substrates using a two-step anodizing technique in oxalic acid followed by heat treatment at 700 °C in air. The morphological study of the aluminum oxide layer after the mechanical tests and mechanical deformation was conducted using scanning electron and optical microscopy, respectively. The experimental results showed that the techniques proposed are simple and accurate; they could, therefore, be combined to constitute a method for mechanical stability assessment of nanostructured AAO films, which are important structural components in the design of MEMS devices and sensors.

  2. A miniaturized test method for the mechanical characterization of structural materials for fusion reactors

    NASA Astrophysics Data System (ADS)

    Gondi, P.; Donato, A.; Montanari, R.; Sili, A.

    1996-10-01

    This work deals with a non-destructive method for mechanical tests which is based on the indentation of materials at a constant rate by means of a cylinder with a small radius and penetrating flat surface. The load versus penetration depth curves obtained using this method have shown correspondences with those of tensile tests and have given indications about the mechanical properties on a reduced scale. In this work penetration tests have been carried out on various kinds of Cr martensitic steels (MANET-2, BATMAN and modified F82H) which are of interest for first wall and structural applications in future fusion reactors. The load versus penetration depth curves have been examined with reference to data obtained in tensile tests and to microhardness measurements. Penetration tests have been performed at various temperature (from -180 to 100°C). Conclusions, which can be drawn for the ductile to brittle transition, are discussed for MANET-2 steel. Preliminary results obtained on BATMAN and modified F82H steels are reported. The characteristics of the indenter imprints have been studied by scanning electron microscopy.

  3. Fabrication and mechanical properties of aluminum composite reinforced with functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Alavijeh, Elham Zamani; Kokhaei, Saeed; Dehghani, Kamran

    2018-01-01

    Composite aluminum alloy (5000 series) and multi-walled carbon nanotubes (MWCNTs) were made using mechanical alloying, cold press and sintering. The quality of interactions between Al powders and CNTs in the metal matrix composite has a significant effect on mechanical properties. Motivated from the properties of functionalized CNTs, the current study use this material rather than the raw type, because of its reactivity. Besides, a poly-vinyl-alcohol pre-mixing is done, the aim of which is to enhance mixing process. The functionalized carbon nanotubes ware made by chemically method through refluxing with nitric acid. By this method functional groups have been created on CNTs surfaces. 1% and 3% functionalized carbon nanotubes were manufactured using the aforementioned method. To provide unbiased comparisons, 1% and 3% with raw CNTs and pure aluminum is produced with same manner. The numerical experiments affirm the superiority of the functionalized carbon nano-tubes in terms of the relative density and hardness of nanocomposites. As a final activity, the Fourier transformation infrared spectroscopy and field emission scanning electron microscopy techniques were used to characterize the carbon nanotubes and the powders.

  4. Monitoring the effect of mechanical stress on mesenchymal stem cell collagen production by multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Liang; Chang, Chia-Cheng; Chiou, Ling-Ling; Li, Tsung-Hsien; Liu, Yuan; Lee, Hsuan-Shu; Dong, Chen-Yuan

    2008-02-01

    Tissue engineering is emerging as a promising method for repairing damaged tissues. Due to cartilage's common wear and injury, in vitro production of cartilage replacements have been an active area of research. Finding the optimal condition for the generation of the collagen matrix is crucial in reproducing cartilages that closely match those found in human. Using multiphoton autofluorescence and second-harmonic generation (SHG) microscopy we monitored the effect of mechanical stress on mesenchymal stem cell collagen production. Bone marrow mesenchymal stem cells in the form of pellets were cultured and periodically placed under different mechanical stress by centrifugation over a period of four weeks. The differently stressed samples were imaged several times during the four week period, and the collagen production under different mechanical stress is characterized.

  5. Effects of Microstructural Variability on Thermo-Mechanical Properties of a Woven Ceramic Matrix Composite

    NASA Technical Reports Server (NTRS)

    Goldsmith, Marlana B.; Sankar, Bhavani V.; Haftka, Raphael T.; Goldberg, Robert K.

    2013-01-01

    The objectives of this paper include identifying important architectural parameters that describe the SiC/SiC five-harness satin weave composite and characterizing the statistical distributions and correlations of those parameters from photomicrographs of various cross sections. In addition, realistic artificial cross sections of a 2D representative volume element (RVE) are generated reflecting the variability found in the photomicrographs, which are used to determine the effects of architectural variability on the thermo-mechanical properties. Lastly, preliminary information is obtained on the sensitivity of thermo-mechanical properties to architectural variations. Finite element analysis is used in combination with a response surface and it is shown that the present method is effective in determining the effects of architectural variability on thermo-mechanical properties.

  6. Preparation and Characterization of Microencapsulated Phase Change Materials for Use in Building Applications.

    PubMed

    Giro-Paloma, Jessica; Al-Shannaq, Refat; Fernández, Ana Inés; Farid, Mohammed M

    2015-12-26

    A method for preparing and characterizing microencapsulated phase change materials (MPCM) was developed. A comparison with a commercial MPCM is also presented. Both MPCM contained paraffin wax as PCM with acrylic shell. The melting temperature of the PCM was around 21 °C, suitable for building applications. The M-2 (our laboratory made sample) and Micronal ® DS 5008 X (BASF) samples were characterized using SEM, DSC, nano-indentation technique, and Gas Chromatography/Mass spectrometry (GC-MS). Both samples presented a 6 μm average size and a spherical shape. Thermal energy storage (TES) capacities were 111.73 J·g -1 and 99.3 J·g -1 for M-2 and Micronal ® DS 5008 X, respectively. Mechanical characterization of the samples was performed by nano-indentation technique in order to determine the elastic modulus ( E ), load at maximum displacement ( P m ), and displacement at maximum load ( h m ), concluding that M-2 presented slightly better mechanical properties. Finally, an important parameter for considering use in buildings is the release of volatile organic compounds (VOC's). This characteristic was studied at 65 °C by CG-MS. Both samples showed VOC's emission after 10 min of heating, however peaks intensity of VOC's generated from M-2 microcapsules showed a lower concentration than Micronal ® DS 5008 X.

  7. Characterization and modeling of a highly-oriented thin film for composite forming

    NASA Astrophysics Data System (ADS)

    White, K. D.; Sherwood, J. A.

    2018-05-01

    Ultra High Molecular Weight Polyethylene (UHMWPE) materials exhibit high impact strength, excellent abrasion resistance and high chemical resistance, making them attractive for a number of impact applications for automotive, marine and medical industries. One format of this class of materials that is being considered for the thermoforming process is a highly-oriented extruded thin film. Parts are made using a two-step manufacturing process that involves first producing a set of preforms and then consolidating these preforms into a final shaped part. To assist in the design of the processing parameters, simulations of the preforming and compression molding steps can be completed using the finite element method. Such simulations require material input data as developed through a comprehensive characterization test program, e.g. shear, tensile and bending, over the range of potential processing temperatures. The current research investigates the challenges associated with the characterization of thin, highly-oriented UHMWPE films. Variations in grip type, sample size and testing rates are explored to achieve convergence of the characterization data. Material characterization results are then used in finite element simulations of the tension test to explore element formulations that work well with the mechanical behavior. Comparisons of the results from the material characterization tests to results of simulations of the same test are performed to validate the finite element method parameters and the credibility of the user-defined material model.

  8. On-Orbit System Identification

    NASA Technical Reports Server (NTRS)

    Mettler, E.; Milman, M. H.; Bayard, D.; Eldred, D. B.

    1987-01-01

    Information derived from accelerometer readings benefits important engineering and control functions. Report discusses methodology for detection, identification, and analysis of motions within space station. Techniques of vibration and rotation analyses, control theory, statistics, filter theory, and transform methods integrated to form system for generating models and model parameters that characterize total motion of complicated space station, with respect to both control-induced and random mechanical disturbances.

  9. Synthesis and Characterization of Antimicrobial Nanomaterials

    DTIC Science & Technology

    2013-01-01

    coatings have broad application in medical and food processing fields. Additional potential exists for active disinfection/decontamination processes as well...technique to form homogenous silica nanoparticles. The reaction also provides a method to entrap additional enzyme in silica matrices. When additional ...elucidate the mechanism of lysozyme-mediated silica formation.22 The biocidal spectrum of the material can be broadened by addition of other

  10. Computational chemistry calculations of stability for bismuth nanotubes, fullerene-like structures and hydrogen-containing nanostructures.

    PubMed

    Kharissova, Oxana V; Osorio, Mario; Vázquez, Mario Sánchez; Kharisov, Boris I

    2012-08-01

    Using molecular mechanics (MM+), semi-empirical (PM6) and density functional theory (DFT) (B3LYP) methods we characterized bismuth nanotubes. In addition, we predicted the bismuth clusters {Bi(20)(C(5V)), Bi(24)(C(6v)), Bi(28)(C(1)), B(32)(D(3H)), Bi(60)(C(I))} and calculated their conductor properties.

  11. Increased Response to Altered Auditory Feedback in Dyslexia: A Weaker Sensorimotor Magnet Implied in the Phonological Deficit

    ERIC Educational Resources Information Center

    van den Bunt, Mark R.; Groen, Margriet A.; Ito, Takayuki; Francisco, Ana A.; Gracco, Vincent L.; Pugh, Ken R.; Verhoeven, Ludo

    2017-01-01

    Purpose: The purpose of this study was to examine whether developmental dyslexia (DD) is characterized by deficiencies in speech sensory and motor feedforward and feedback mechanisms, which are involved in the modulation of phonological representations. Method: A total of 42 adult native speakers of Dutch (22 adults with DD; 20 participants who…

  12. Development of a Hopkinson Bar Apparatus for Testing Soft Materials: Application to a Closed-Cell Aluminum Foam.

    PubMed

    Peroni, Marco; Solomos, George; Babcsan, Norbert

    2016-01-05

    An increasing interest in lightweight metallic foams for automotive, aerospace, and other applications has been observed in recent years. This is mainly due to the weight reduction that can be achieved using foams and for their mechanical energy absorption and acoustic damping capabilities. An accurate knowledge of the mechanical behavior of these materials, especially under dynamic loadings, is thus necessary. Unfortunately, metal foams and in general "soft" materials exhibit a series of peculiarities that make difficult the adoption of standard testing techniques for their high strain-rate characterization. This paper presents an innovative apparatus, where high strain-rate tests of metal foams or other soft materials can be performed by exploiting the operating principle of the Hopkinson bar methods. Using the pre-stress method to generate directly a long compression pulse (compared with traditional SHPB), a displacement of about 20 mm can be applied to the specimen with a single propagating wave, suitable for evaluating the whole stress-strain curve of medium-sized cell foams (pores of about 1-2 mm). The potential of this testing rig is shown in the characterization of a closed-cell aluminum foam, where all the above features are amply demonstrated.

  13. A direct vulnerable atherosclerotic plaque elasticity reconstruction method based on an original material-finite element formulation: theoretical framework

    PubMed Central

    Bouvier, Adeline; Deleaval, Flavien; Doyley, Marvin M; Yazdani, Saami K; Finet, Gérard; Le Floc'h, Simon; Cloutier, Guy; Pettigrew, Roderic I; Ohayon, Jacques

    2016-01-01

    The peak cap stress (PCS) amplitude is recognized as a biomechanical predictor of vulnerable plaque (VP) rupture. However, quantifying PCS in vivo remains a challenge since the stress depends on the plaque mechanical properties. In response, an iterative material finite element (FE) elasticity reconstruction method using strain measurements has been implemented for the solution of these inverse problems. Although this approach could resolve the mechanical characterization of VPs, it suffers from major limitations since (i) it is not adapted to characterize VPs exhibiting high material discontinuities between inclusions, and (ii) does not permit real time elasticity reconstruction for clinical use. The present theoretical study was therefore designed to develop a direct material-FE algorithm for elasticity reconstruction problems which accounts for material heterogeneities. We originally modified and adapted the extended FE method (Xfem), used mainly in crack analysis, to model material heterogeneities. This new algorithm was successfully applied to six coronary lesions of patients imaged in vivo with intravascular ultrasound. The results demonstrated that the mean relative absolute errors of the reconstructed Young's moduli obtained for the arterial wall, fibrosis, necrotic core, and calcified regions of the VPs decreased from 95.3±15.56%, 98.85±72.42%, 103.29±111.86% and 95.3±10.49%, respectively, to values smaller than 2.6 × 10−8±5.7 × 10−8% (i.e. close to the exact solutions) when including modified-Xfem method into our direct elasticity reconstruction method. PMID:24240392

  14. A method to characterize average cervical spine ligament response based on raw data sets for implementation into injury biomechanics models.

    PubMed

    Mattucci, Stephen F E; Cronin, Duane S

    2015-01-01

    Experimental testing on cervical spine ligaments provides important data for advanced numerical modeling and injury prediction; however, accurate characterization of individual ligament response and determination of average mechanical properties for specific ligaments has not been adequately addressed in the literature. Existing methods are limited by a number of arbitrary choices made during the curve fits that often misrepresent the characteristic shape response of the ligaments, which is important for incorporation into numerical models to produce a biofidelic response. A method was developed to represent the mechanical properties of individual ligaments using a piece-wise curve fit with first derivative continuity between adjacent regions. The method was applied to published data for cervical spine ligaments and preserved the shape response (toe, linear, and traumatic regions) up to failure, for strain rates of 0.5s(-1), 20s(-1), and 150-250s(-1), to determine the average force-displacement curves. Individual ligament coefficients of determination were 0.989 to 1.000 demonstrating excellent fit. This study produced a novel method in which a set of experimental ligament material property data exhibiting scatter was fit using a characteristic curve approach with a toe, linear, and traumatic region, as often observed in ligaments and tendons, and could be applied to other biological material data with a similar characteristic shape. The resultant average cervical spine ligament curves provide an accurate representation of the raw test data and the expected material property effects corresponding to varying deformation rates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Characterization of high-intensity, long-duration continuous auroral activity (HILDCAA) events using recurrence quantification analysis

    NASA Astrophysics Data System (ADS)

    Mendes, Odim; Oliveira Domingues, Margarete; Echer, Ezequiel; Hajra, Rajkumar; Everton Menconi, Varlei

    2017-08-01

    Considering the magnetic reconnection and the viscous interaction as the fundamental mechanisms for transfer particles and energy into the magnetosphere, we study the dynamical characteristics of auroral electrojet (AE) index during high-intensity, long-duration continuous auroral activity (HILDCAA) events, using a long-term geomagnetic database (1975-2012), and other distinct interplanetary conditions (geomagnetically quiet intervals, co-rotating interaction regions (CIRs)/high-speed streams (HSSs) not followed by HILDCAAs, and events of AE comprised in global intense geomagnetic disturbances). It is worth noting that we also study active but non-HILDCAA intervals. Examining the geomagnetic AE index, we apply a dynamics analysis composed of the phase space, the recurrence plot (RP), and the recurrence quantification analysis (RQA) methods. As a result, the quantification finds two distinct clusterings of the dynamical behaviours occurring in the interplanetary medium: one regarding a geomagnetically quiet condition regime and the other regarding an interplanetary activity regime. Furthermore, the HILDCAAs seem unique events regarding a visible, intense manifestations of interplanetary Alfvénic waves; however, they are similar to the other kinds of conditions regarding a dynamical signature (based on RQA), because it is involved in the same complex mechanism of generating geomagnetic disturbances. Also, by characterizing the proper conditions of transitions from quiescent conditions to weaker geomagnetic disturbances inside the magnetosphere and ionosphere system, the RQA method indicates clearly the two fundamental dynamics (geomagnetically quiet intervals and HILDCAA events) to be evaluated with magneto-hydrodynamics simulations to understand better the critical processes related to energy and particle transfer into the magnetosphere-ionosphere system. Finally, with this work, we have also reinforced the potential applicability of the RQA method for characterizing nonlinear geomagnetic processes related to the magnetic reconnection and the viscous interaction affecting the magnetosphere.

  16. Mechanical characterization of metallic nanowires by using a customized atomic microscope

    NASA Astrophysics Data System (ADS)

    Celik, Emrah

    A new experimental method to characterize the mechanical properties of metallic nanowires is introduced. An accurate and fast mechanical characterization of nanowires requires simultaneous imaging and testing of nanowires. However, there exists no practical experimental procedure in the literature that provides a quantitative mechanical analysis and imaging of the nanowire specimens during mechanical testing. In this study, a customized atomic force microscope (AFM) is placed inside a scanning electron microscope (SEM) in order to locate the position of the nanowires. The tip of the atomic force microscope cantilever is utilized to bend and break the nanowires. The nanowires are prepared by electroplating of nickel ions into the nanoscale pores of the alumina membranes. Force versus bending displacement responses of these nanowires are measured experimentally and then compared against those of the finite element analysis and peridynamic simulations to extract their mechanical properties through an inverse approach. The average elastic modulus of nickel nanowires, which are extracted using finite element analysis and peridynamic simulations, varies between 220 GPa and 225 GPa. The elastic modulus of bulk nickel published in the literature is comparable to that of nickel nanowires. This observation agrees well with the previous findings on nanowires stating that the elastic modulus of nanowires with diameters over 100nm is similar to that of bulk counterparts. The average yield stress of nickel nanowires, which are extracted using finite element analysis and peridynamic simulations, is found to be between 3.6 GPa to 4.1 GPa. The average value of yield stress of nickel nanowires with 250nm diameter is significantly higher than that of bulk nickel. Higher yield stress of nickel nanowires observed in this study can be explained by the lower defect density of nickel nanowires when compared to their bulk counterparts. Deviation in the extracted mechanical properties is investigated by analyzing the major sources of uncertainty in the experimental procedure. The effects of the nanowire orientation, the loading position and the nanowire diameter on the mechanical test results are quantified using ANSYS simulations. Among all of these three sources of uncertainty investigated, the nanowire diameter has been found to have the most significant effect on the extracted mechanical properties.

  17. Nondestructive testing and characterization of residual stress field using an ultrasonic method

    NASA Astrophysics Data System (ADS)

    Song, Wentao; Xu, Chunguang; Pan, Qinxue; Song, Jianfeng

    2016-03-01

    To address the difficulty in testing and calibrating the stress gradient in the depth direction of mechanical components, a new technology of nondestructive testing and characterization of the residual stress gradient field by ultrasonic method is proposed based on acoustoelasticity theory. By carrying out theoretical analysis, the sensitivity coefficients of different types of ultrasonic are obtained by taking the low carbon steel(12%C) as a research object. By fixing the interval distance between sending and receiving transducers, the mathematical expressions of the change of stress and the variation of time are established. To design one sending-one receiving and oblique incidence ultrasonic detection probes, according to Snell law, the critically refracted longitudinal wave (LCR wave) is excited at a certain depth of the fixed distance of the tested components. Then, the relationship between the depth of LCR wave detection and the center frequency of the probe in Q235 steel is obtained through experimental study. To detect the stress gradient in the depth direction, a stress gradient LCR wave detection model is established, through which the stress gradient formula is derived by the relationship between center frequency and detecting depth. A C-shaped stress specimen of Q235 steel is designed to conduct stress loading tests, and the stress is measured with the five group probes at different center frequencies. The accuracy of ultrasonic testing is verified by X-ray stress analyzer. The stress value of each specific depth is calculated using the stress gradient formula. Accordingly, the ultrasonic characterization of residual stress field is realized. Characterization results show that the stress gradient distribution is consistent with the simulation in ANSYS. The new technology can be widely applied in the detection of the residual stress gradient field caused by mechanical processing, such as welding and shot peening.

  18. Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting

    PubMed Central

    Anbukarasu, Preetam; Sauvageau, Dominic; Elias, Anastasia

    2015-01-01

    Biodegradable polyhydroxybutyrate (PHB) films were fabricated using acetic acid as an alternative to common solvents such as chloroform. The PHB films were prepared using a solvent casting process at temperatures ranging from 80 °C to 160 °C. The crystallinity, mechanical properties and surface morphology of the films cast at different temperatures were characterized and compared to PHB films cast using chloroform as a solvent. Results revealed that the properties of the PHB film varied considerably with solvent casting temperature. In general, samples processed with acetic acid at low temperatures had comparable mechanical properties to PHB cast using chloroform. This acetic acid based method is environmentally friendly, cost efficient and allows more flexible processing conditions and broader ranges of polymer properties than traditional methods. PMID:26640089

  19. Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting

    NASA Astrophysics Data System (ADS)

    Anbukarasu, Preetam; Sauvageau, Dominic; Elias, Anastasia

    2015-12-01

    Biodegradable polyhydroxybutyrate (PHB) films were fabricated using acetic acid as an alternative to common solvents such as chloroform. The PHB films were prepared using a solvent casting process at temperatures ranging from 80 °C to 160 °C. The crystallinity, mechanical properties and surface morphology of the films cast at different temperatures were characterized and compared to PHB films cast using chloroform as a solvent. Results revealed that the properties of the PHB film varied considerably with solvent casting temperature. In general, samples processed with acetic acid at low temperatures had comparable mechanical properties to PHB cast using chloroform. This acetic acid based method is environmentally friendly, cost efficient and allows more flexible processing conditions and broader ranges of polymer properties than traditional methods.

  20. Experimental and numerical characterization of expanded glass granules

    NASA Astrophysics Data System (ADS)

    Chaudry, Mohsin Ali; Woitzik, Christian; Düster, Alexander; Wriggers, Peter

    2018-07-01

    In this paper, the material response of expanded glass granules at different scales and under different boundary conditions is investigated. At grain scale, single particle tests can be used to determine properties like Young's modulus or crushing strength. With experiments like triaxial and oedometer tests, it is possible to examine the bulk mechanical behaviour of the granular material. Our experimental investigation is complemented by a numerical simulation where the discrete element method is used to compute the mechanical behaviour of such materials. In order to improve the simulation quality, effects such as rolling resistance, inelastic behaviour, damage, and crushing are also included in the discrete element method. Furthermore, the variation of the material properties of granules is modelled by a statistical distribution and included in our numerical simulation.

  1. Measuring shear modulus of individual fibers

    NASA Astrophysics Data System (ADS)

    Behlow, Herbert; Saini, Deepika; Oliviera, Luciana; Skove, Malcolm; Rao, Apparao

    2014-03-01

    Fiber technology has advanced to new heights enabling tailored mechanical properties. For reliable fiber applications their mechanical properties must be well characterized at the individual fiber level. Unlike the tensile modulus, which can be well studied in a single fiber, the present indirect and dynamic methods of measuring the shear properties of fibers suffer from various disadvantages such as the interaction between fibers and the influence of damping. In this talk, we introduce a quasi-static method to directly measure the shear modulus of a single micron-sized fiber. Our simple and inexpensive setup yields a shear modulus of 16 and 2 GPa for a single IM7 carbon fiber and a Kevlar fiber, respectively. Furthermore, our setup is also capable of measuring the creep, hysteresis and the torsion coefficient, and examples of these will be presented.

  2. Characterizing fluid dynamics in a bubble column aimed for the determination of reactive mass transfer

    NASA Astrophysics Data System (ADS)

    Kováts, Péter; Thévenin, Dominique; Zähringer, Katharina

    2018-02-01

    Bubble column reactors are multiphase reactors that are used in many process engineering applications. In these reactors a gas phase comes into contact with a fluid phase to initiate or support reactions. The transport process from the gas to the liquid phase is often the limiting factor. Characterizing this process is therefore essential for the optimization of multiphase reactors. For a better understanding of the transfer mechanisms and subsequent chemical reactions, a laboratory-scale bubble column reactor was investigated. First, to characterize the flow field in the reactor, two different methods have been applied. The shadowgraphy technique is used for the characterisation of the bubbles (bubble diameter, velocity, shape or position) for various process conditions. This technique is based on particle recognition with backlight illumination, combined with particle tracking velocimetry (PTV). The bubble trajectories in the column can also be obtained in this manner. Secondly, the liquid phase flow has been analysed by particle image velocimetry (PIV). The combination of both methods, delivering relevant information concerning disperse (bubbles) and continuous (liquid) phases, leads to a complete fluid dynamical characterization of the reactor, which is the pre-condition for the analysis of mass transfer between both phases.

  3. Technologies and methods used for the detection, enrichment and characterization of cancer stem cells.

    PubMed

    Williams, Anthony; Datar, Ram; Cote, Richard

    2010-01-01

    Cancer stem cells (CSCs) represent a subclass of tumour cells with the ability for self-renewal, production of differentiated progeny, prolonged survival, resistance to damaging therapeutic agents, and anchorage-independent survival, which together make this population effectively equipped to metastasize, invade and colonize secondary tissues in the face of therapeutic intervention. In recent years, investigators have increasingly focused on the characterization of CSCs to better understand the mechanisms that govern malignant disease progression in an effort to develop more effective, targeted therapeutic agents. The primary obstacle to the study of CSCs, however, is their rarity. Thus, the study of CSCs requires the use of sensitive and efficient technologies for their enrichment and detection. This review discusses technologies and methods that have been adapted and used to isolate and characterize CSCs to date, as well as new potential directions for the enhanced enrichment and detection of CSCs. While the technologies used for CSC enrichment and detection have been useful thus far for their characterization, each approach is not without limitations. Future studies of CSCs will depend on the enhanced sensitivity and specificity of currently available technologies, and the development of novel technologies for increased detection and enrichment of CSCs.

  4. MEMS tactile display: from fabrication to characterization

    NASA Astrophysics Data System (ADS)

    Miki, Norihisa; Kosemura, Yumi; Watanabe, Junpei; Ishikawa, Hiroaki

    2014-03-01

    We report fabrication and characterization of MEMS-based tactile display that can display users various tactile information, such as Braille codes and surface textures. The display consists of 9 micro-actuators that are equipped with hydraulic displacement amplification mechanism (HDAM) to achieve large enough displacement to stimulate the human tactile receptors. HDAM encapsulates incompressible liquids. We developed a liquid encapsulation process, which we termed as Bonding-in-Liquid Technique, where bonding with a UV-curable resin in glycerin is conducted in the liquid, which prevented interfusion of air bubbles and deformation of the membrane during the bonding. HDAM successfully amplified the displacement generated by piezoelectric actuators by a factor of 6. The display could virtually produce "rough" and "smooth" surfaces, by controlling the vibration frequency, displacement, and the actuation periods of an actuator until the adjacent actuator was driven. We introduced a sample comparison method to characterize the surfaces, which involves human tactile sensation. First, we prepared samples whose mechanical properties are known. We displayed a surface texture to the user by controlling the parameters and then, the user selects a sample that has the most similar surface texture. By doing so, we can correlate the parameters with the mechanical properties of the sample as well as find the sets of the parameters that can provide similar tactile information to many users. The preliminary results with respect to roughness and hardness is presented.

  5. Hydrogen Sensors Using Nitride-Based Semiconductor Diodes: The Role of Metal/Semiconductor Interfaces

    PubMed Central

    Irokawa, Yoshihiro

    2011-01-01

    In this paper, I review my recent results in investigating hydrogen sensors using nitride-based semiconductor diodes, focusing on the interaction mechanism of hydrogen with the devices. Firstly, effects of interfacial modification in the devices on hydrogen detection sensitivity are discussed. Surface defects of GaN under Schottky electrodes do not play a critical role in hydrogen sensing characteristics. However, dielectric layers inserted in metal/semiconductor interfaces are found to cause dramatic changes in hydrogen sensing performance, implying that chemical selectivity to hydrogen could be realized. The capacitance-voltage (C–V) characteristics reveal that the work function change in the Schottky metal is not responsible mechanism for hydrogen sensitivity. The interface between the metal and the semiconductor plays a critical role in the interaction of hydrogen with semiconductor devises. Secondly, low-frequency C–V characterization is employed to investigate the interaction mechanism of hydrogen with diodes. As a result, it is suggested that the formation of a metal/semiconductor interfacial polarization could be attributed to hydrogen-related dipoles. In addition, using low-frequency C–V characterization leads to clear detection of 100 ppm hydrogen even at room temperature where it is hard to detect hydrogen by using conventional current-voltage (I–V) characterization, suggesting that low-frequency C–V method would be effective in detecting very low hydrogen concentrations. PMID:22346597

  6. Characterization of individual mouse cerebrospinal fluid proteomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Jeffrey S.; Angel, Thomas E.; Chavkin, Charles

    2014-03-20

    Analysis of cerebrospinal fluid (CSF) offers key insight into the status of the central nervous system. Characterization of murine CSF proteomes can provide a valuable resource for studying central nervous system injury and disease in animal models. However, the small volume of CSF in mice has thus far limited individual mouse proteome characterization. Through non-terminal CSF extractions in C57Bl/6 mice and high-resolution liquid chromatography-mass spectrometry analysis of individual murine samples, we report the most comprehensive proteome characterization of individual murine CSF to date. Utilizing stringent protein inclusion criteria that required the identification of at least two unique peptides (1% falsemore » discovery rate at the peptide level) we identified a total of 566 unique proteins, including 128 proteins from three individual CSF samples that have been previously identified in brain tissue. Our methods and analysis provide a mechanism for individual murine CSF proteome analysis.« less

  7. A review of fracture mechanics life technology

    NASA Technical Reports Server (NTRS)

    Besuner, P. M.; Harris, D. O.; Thomas, J. M.

    1986-01-01

    Lifetime prediction technology for structural components subjected to cyclic loads is examined. The central objectives of the project are: (1) to report the current state of the art, and (2) recommend future development of fracture mechanics-based analytical tools for modeling subcritical fatigue crack growth in structures. Of special interest is the ability to apply these tools to practical engineering problems and the developmental steps necessary to bring vital technologies to this stage. The authors conducted a survey of published literature and numerous discussions with experts in the field of fracture mechanics life technology. One of the key points made is that fracture mechanics analyses of crack growth often involve consideration of fatigue and fracture under extreme conditions. Therefore, inaccuracies in predicting component lifetime will be dominated by inaccuracies in environment and fatigue crack growth relations, stress intensity factor solutions, and methods used to model given loads and stresses. Suggestions made for reducing these inaccuracies include development of improved models of subcritical crack growth, research efforts aimed at better characterizing residual and assembly stresses that can be introduced during fabrication, and more widespread and uniform use of the best existing methods.

  8. Identification of Characteristic Macromolecules of Escherichia coli Genotypes by Atomic Force Microscope Nanoscale Mechanical Mapping

    NASA Astrophysics Data System (ADS)

    Chang, Alice Chinghsuan; Liu, Bernard Haochih

    2018-02-01

    The categorization of microbial strains is conventionally based on the molecular method, and seldom are the morphological characteristics in the bacterial strains studied. In this research, we revealed the macromolecular structures of the bacterial surface via AFM mechanical mapping, whose resolution was not only determined by the nanoscale tip size but also the mechanical properties of the specimen. This technique enabled the nanoscale study of membranous structures of microbial strains with simple specimen preparation and flexible working environments, which overcame the multiple restrictions in electron microscopy and label-enable biochemical analytical methods. The characteristic macromolecules located among cellular surface were considered as surface layer proteins and were found to be specific to the Escherichia coli genotypes, from which the averaged molecular sizes were characterized with diameters ranging from 38 to 66 nm, and the molecular shapes were kidney-like or round. In conclusion, the surface macromolecular structures have unique characteristics that link to the E. coli genotype, which suggests that the genomic effects on cellular morphologies can be rapidly identified using AFM mechanical mapping. [Figure not available: see fulltext.

  9. A review of fracture mechanics life technology

    NASA Technical Reports Server (NTRS)

    Thomas, J. M.; Besuner, P. M.; Harris, D. O.

    1985-01-01

    Current lifetime prediction technology for structural components subjected to cyclic loads was reviewed. The central objectives of the project were to report the current state of and recommend future development of fracture mechanics-based analytical tools for modeling and forecasting subcritical fatigue crack growth in structures. Of special interest to NASA was the ability to apply these tools to practical engineering problems and the developmental steps necessary to bring vital technologies to this stage. A survey of published literature and numerous discussions with experts in the field of fracture mechanics life technology were conducted. One of the key points made is that fracture mechanics analyses of crack growth often involve consideration of fatigue and fracture under extreme conditions. Therefore, inaccuracies in predicting component lifetime will be dominated by inaccuracies in environment and fatigue crack growth relations, stress intensity factor solutions, and methods used to model given loads and stresses. Suggestions made for reducing these inaccuracies include: development of improved models of subcritical crack growth, research efforts aimed at better characterizing residual and assembly stresses that can be introduced during fabrication, and more widespread and uniform use of the best existing methods.

  10. Characterizing fiber-reinforced composite structures using AC-impedance spectroscopy (AC-IS)

    NASA Astrophysics Data System (ADS)

    Woo, Leta Y.

    Property enhancement in composites depends largely on the reinforcement. For fiber-reinforced composites, the distribution of fibers is crucial in determining the electrical and mechanical performance. Image analysis methods for characterization can be time-consuming and/or destructive. This work explores the capability of AC-impedance spectroscopy (AC-IS), an electrical measurement technique, to serve as a rapid, non-destructive tool for characterizing composite microstructure. The composite requirements include a filler that is electrically conducting or semi-conducting with higher conductivity than the matrix, and a high-impedance interface or coating between the filler and the matrix. To establish an AC-IS characterization method, cement-matrix composites with steel reinforcement were employed as both a technologically important and a model system to investigate how fibers affect the electrical response. Beginning with spherical particulates and then fibers, composites were examined using composite theory and an "intrinsic conductivity" approach. The intrinsic conductivity approach applies to composites with low volume fractions of fibers (i.e., in the dilute regime) and relates how the composite conductivity varies relative to the matrix as a function of volume fraction. A universal equivalent circuit model was created to understand the AC-IS response of composites based on the geometry and volume fraction of the filler. Deviation from predicted behavior was assessed using a developed f-function, which quantifies how fibers contribute to the overall electrical response of the composite. Using the f-function, an AC-IS method for investigating fiber dispersion was established to characterize alignment, settling/segregation, and aggregation. Alignment was investigated using measurements made in three directions. A point-probe technique characterized settling and/or large-scale inhomogeneous mixing in samples. Aggregation was quantified using a "dispersion factor" that compared theoretical with measured values and served as an upper limit for how well the fibers were dispersed. The AC-IS method was then extended to two different cement-matrix composite systems, low resistivity fresh-paste cement composites (confirmed by time domain reflectometry) and high resistivity cement composites, both of which required additional analysis to apply the AC-IS characterization method.

  11. Evaluation of structural and mechanical properties of electrospun nano-micro hybrid of poly hydroxybutyrate-chitosan/silk scaffold for cartilage tissue engineering

    PubMed Central

    Karbasi, Saeed; Fekrat, Farnoosh; Semnani, Daryoush; Razavi, Shahnaz; Zargar, Elham Naghash

    2016-01-01

    Background: One of the new methods of scaffold fabrication is a nano-micro hybrid structure in which the properties of the scaffold are improved by introducing nanometer and micrometer structures. This method could be suitable for scaffold designing if some features improve. Materials and Methods: In this study, electrospun nanofibers of 9% weight solution of poly (3-hydroxybutyrate) (P3HB) and a 15% weight of chitosan by trifluoroacetic acid were coated on both the surface of a silk knitted substrate in the optimum condition to improve the mechanical properties of scaffolds for cartilage tissue engineering application. These hybrid nano-micro fibrous scaffolds were characterized by structural and mechanical evaluation methods. Results: Scanning electron microscopy values and porosity analysis showed that average diameter of nanofibers was 584.94 nm in electrospinning part and general porosity was more than 80%. Fourier transform infrared spectroscopy results indicated the presence of all elements without pollution. The tensile test also stated that by electrospinning, as well as adding chitosan, both maximum strength and maximum elongation increased to 187 N and 10 mm. It means that the microfibrous part of scaffold could affect mechanical properties of nano part of the hybrid scaffold, significantly. Conclusions: It could be concluded that P3HB-chitosan/silk hybrid scaffolds can be a good candidate for cartilage tissue engineering. PMID:28028520

  12. FW/CADIS-O: An Angle-Informed Hybrid Method for Neutron Transport

    NASA Astrophysics Data System (ADS)

    Munk, Madicken

    The development of methods for deep-penetration radiation transport is of continued importance for radiation shielding, nonproliferation, nuclear threat reduction, and medical applications. As these applications become more ubiquitous, the need for transport methods that can accurately and reliably model the systems' behavior will persist. For these types of systems, hybrid methods are often the best choice to obtain a reliable answer in a short amount of time. Hybrid methods leverage the speed and uniform uncertainty distribution of a deterministic solution to bias Monte Carlo transport to reduce the variance in the solution. At present, the Consistent Adjoint-Driven Importance Sampling (CADIS) and Forward-Weighted CADIS (FW-CADIS) hybrid methods are the gold standard by which to model systems that have deeply-penetrating radiation. They use an adjoint scalar flux to generate variance reduction parameters for Monte Carlo. However, in problems where there exists strong anisotropy in the flux, CADIS and FW-CADIS are not as effective at reducing the problem variance as isotropic problems. This dissertation covers the theoretical background, implementation of, and characteri- zation of a set of angle-informed hybrid methods that can be applied to strongly anisotropic deep-penetration radiation transport problems. These methods use a forward-weighted adjoint angular flux to generate variance reduction parameters for Monte Carlo. As a result, they leverage both adjoint and contributon theory for variance reduction. They have been named CADIS-O and FW-CADIS-O. To characterize CADIS-O, several characterization problems with flux anisotropies were devised. These problems contain different physical mechanisms by which flux anisotropy is induced. Additionally, a series of novel anisotropy metrics by which to quantify flux anisotropy are used to characterize the methods beyond standard Figure of Merit (FOM) and relative error metrics. As a result, a more thorough investigation into the effects of anisotropy and the degree of anisotropy on Monte Carlo convergence is possible. The results from the characterization of CADIS-O show that it performs best in strongly anisotropic problems that have preferential particle flowpaths, but only if the flowpaths are not comprised of air. Further, the characterization of the method's sensitivity to deterministic angular discretization showed that CADIS-O has less sensitivity to discretization than CADIS for both quadrature order and PN order. However, more variation in the results were observed in response to changing quadrature order than PN order. Further, as a result of the forward-normalization in the O-methods, ray effect mitigation was observed in many of the characterization problems. The characterization of the CADIS-O-method in this dissertation serves to outline a path forward for further hybrid methods development. In particular, the response that the O-method has with changes in quadrature order, PN order, and on ray effect mitigation are strong indicators that the method is more resilient than its predecessors to strong anisotropies in the flux. With further method characterization, the full potential of the O-methods can be realized. The method can then be applied to geometrically complex, materially diverse problems and help to advance system modelling in deep-penetration radiation transport problems with strong anisotropies in the flux.

  13. The mechanics of delamination in fiber-reinforced composite materials. II - The delamination behavior and fracture mechanics parameters

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Choi, I.

    1983-01-01

    Based on theories of laminate anisotropic elasticity and interlaminar fracture, the complete solution structure associated with a composite delamination is determined. Fracture mechanics parameters characterizing the interlaminar crack behavior are defined from asymptotic stress solutions for delaminations with different crack-tip deformation configurations. A numerical method employing singular finite elements is developed to study delaminations in fiber composites with any arbitrary combinations of lamination, material, geometric, and crack variables. The special finite elements include the exact delamination stress singularity in its formulation. The method is shown to be computationally accurate and efficient, and operationally simple. To illustrate the basic nature of composite delamination, solutions are shown for edge-delaminated (0/-0/-0/0) and (+ or - 0/+ or - 0/90/90 deg) graphite-epoxy systems under uniform axial extension. Three-dimensional crack-tip stress intensity factors, associated energy release rates, and delamination crack-closure are determined for each individual case. The basic mechanics and mechanisms of composite delamination are studied, and fundamental characteristics unique to recently proposed tests for interlaminar fracture toughness of fiber composite laminates are examined. Previously announced in STAR as N84-13222

  14. Thermomagnetic processing of liquid-crystalline epoxy resins and their mechanical characterization using nanoindentation.

    PubMed

    Li, Yuzhan; Rios, Orlando; Kessler, Michael R

    2014-11-12

    A thermomagnetic processing method was used to produce a biphenyl-based liquid-crystalline epoxy resin (LCER) with oriented liquid-crystalline (LC) domains. The orientation of the LCER was confirmed and quantified using two-dimensional X-ray diffraction. The effect of molecular alignment on the mechanical and thermomechanical properties of the LCER was investigated using nanoindentation and thermomechanical analysis, respectively. The effect of the orientation on the fracture behavior was also examined. The results showed that macroscopic orientation of the LC domains was achieved, resulting in an epoxy network with an anisotropic modulus, hardness, creep behavior, and thermal expansion.

  15. Growth, structural, optical, thermal and mechanical properties of ammonium pentaborate single crystal.

    PubMed

    Balakrishnan, T; Bhagavannarayana, G; Ramamurthi, K

    2008-11-15

    Nonlinear optical single crystals of ammonium pentaborate (APB) were grown by the slow cooling method from aqueous solution. Grown crystal was characterized by powder X-ray diffraction (PXRD) and FT-IR spectral analysis. Perfection of the grown crystal was evaluated by high-resolution X-ray diffractometry (HRXRD). The effect of nylon threading on the perfection of the grown bigger crystal was also studied by HRXRD. The range and percentage of optical transmission was ascertained by recording UV-vis-NIR spectrum. Thermal properties were investigated by TG-DTA and DSC analyses. Its mechanical hardness was estimated by Vickers microhardness tester.

  16. Quantum Mechanical Calculations of Cytosine, Thiocytosine and Their Radical Ions

    NASA Astrophysics Data System (ADS)

    Singh, Rashmi

    2010-08-01

    The RNA and DNA are polymer that share some interesting similarities, for instance it is well known that cytosine is the one of the common nucleic acid base. The sulfur is characterized as a very reactive element and it has been used, in chemical warfare agents. Since the genetic information is based on the sequence of the nucleic acid bases. The quantum mechanical calculations of the energies, geometries, charges and vibrational characteristics of the cytosine and thiocytosine. and their corresponding radicals were carried out by using DFT method with b3lyp/6-311++g** basis set.

  17. Single-crystalline monolayer and multilayer graphene nano switches

    NASA Astrophysics Data System (ADS)

    Li, Peng; Jing, Gaoshan; Zhang, Bo; Sando, Shota; Cui, Tianhong

    2014-03-01

    Growth of monolayer, bi-layer, and tri-layer single-crystalline graphene (SCG) using chemical vapor deposition method is reported. SCG's mechanical properties and single-crystalline nature were characterized and verified by atomic force microscope and Raman spectroscopy. Electro-mechanical switches based on mono- and bi-layer SCG were fabricated, and the superb properties of SCG enable the switches to operate at pull-in voltage as low as 1 V, and high switching speed about 100 ns. These devices exhibit lifetime without a breakdown of over 5000 cycles, far more durable than any other graphene nanoelectromechanical system switches reported.

  18. Single-crystalline monolayer and multilayer graphene nano switches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Peng; Cui, Tianhong, E-mail: tcui@me.umn.edu; Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455

    2014-03-17

    Growth of monolayer, bi-layer, and tri-layer single-crystalline graphene (SCG) using chemical vapor deposition method is reported. SCG's mechanical properties and single-crystalline nature were characterized and verified by atomic force microscope and Raman spectroscopy. Electro-mechanical switches based on mono- and bi-layer SCG were fabricated, and the superb properties of SCG enable the switches to operate at pull-in voltage as low as 1 V, and high switching speed about 100 ns. These devices exhibit lifetime without a breakdown of over 5000 cycles, far more durable than any other graphene nanoelectromechanical system switches reported.

  19. Breast tissue stiffness estimation for surgical guidance using gravity-induced excitation

    NASA Astrophysics Data System (ADS)

    Griesenauer, Rebekah H.; Weis, Jared A.; Arlinghaus, Lori R.; Meszoely, Ingrid M.; Miga, Michael I.

    2017-06-01

    Tissue stiffness interrogation is fundamental in breast cancer diagnosis and treatment. Furthermore, biomechanical models for predicting breast deformations have been created for several breast cancer applications. Within these applications, constitutive mechanical properties must be defined and the accuracy of this estimation directly impacts the overall performance of the model. In this study, we present an image-derived computational framework to obtain quantitative, patient specific stiffness properties for application in image-guided breast cancer surgery and interventions. The method uses two MR acquisitions of the breast in different supine gravity-loaded configurations to fit mechanical properties to a biomechanical breast model. A reproducibility assessment of the method was performed in a test-retest study using healthy volunteers and was further characterized in simulation. In five human data sets, the within subject coefficient of variation ranged from 10.7% to 27% and the intraclass correlation coefficient ranged from 0.91-0.944 for assessment of fibroglandular and adipose tissue stiffness. In simulation, fibroglandular content and deformation magnitude were shown to have significant effects on the shape and convexity of the objective function defined by image similarity. These observations provide an important step forward in characterizing the use of nonrigid image registration methodologies in conjunction with biomechanical models to estimate tissue stiffness. In addition, the results suggest that stiffness estimation methods using gravity-induced excitation can reliably and feasibly be implemented in breast cancer surgery/intervention workflows.

  20. Breast tissue stiffness estimation for surgical guidance using gravity-induced excitation.

    PubMed

    Griesenauer, Rebekah H; Weis, Jared A; Arlinghaus, Lori R; Meszoely, Ingrid M; Miga, Michael I

    2017-06-21

    Tissue stiffness interrogation is fundamental in breast cancer diagnosis and treatment. Furthermore, biomechanical models for predicting breast deformations have been created for several breast cancer applications. Within these applications, constitutive mechanical properties must be defined and the accuracy of this estimation directly impacts the overall performance of the model. In this study, we present an image-derived computational framework to obtain quantitative, patient specific stiffness properties for application in image-guided breast cancer surgery and interventions. The method uses two MR acquisitions of the breast in different supine gravity-loaded configurations to fit mechanical properties to a biomechanical breast model. A reproducibility assessment of the method was performed in a test-retest study using healthy volunteers and was further characterized in simulation. In five human data sets, the within subject coefficient of variation ranged from 10.7% to 27% and the intraclass correlation coefficient ranged from 0.91-0.944 for assessment of fibroglandular and adipose tissue stiffness. In simulation, fibroglandular content and deformation magnitude were shown to have significant effects on the shape and convexity of the objective function defined by image similarity. These observations provide an important step forward in characterizing the use of nonrigid image registration methodologies in conjunction with biomechanical models to estimate tissue stiffness. In addition, the results suggest that stiffness estimation methods using gravity-induced excitation can reliably and feasibly be implemented in breast cancer surgery/intervention workflows.

  1. Tools and methods for experimental in-vivo measurement and biomechanical characterization of an Octopus vulgaris arm.

    PubMed

    Margheri, Laura; Mazzolai, Barbara; Cianchetti, Matteo; Dario, Paolo; Laschi, Cecilia

    2009-01-01

    This work illustrates new tools and methods for an in vivo and direct, but non-invasive, measurement of an octopus arm mechanical properties. The active elongation (longitudinal stretch) and the pulling force capability are measured on a specimen of Octopus vulgaris in order to quantitatively characterize the parameters describing the arm mechanics, for biomimetic design purposes. The novel approach consists of observing and measuring a living octopus with minimally invasive methods, which allow the animal to move with its complete ability. All tools are conceived in order to create a collaborative interaction with the animal for the acquisition of active measures. The data analysis is executed taking into account the presence of an intrinsic error due to the mobility of the subject and the aquatic environment. Using a system of two synchronized high-speed high-resolution cameras and purpose-made instruments, the maximum elongation of an arm and its rest length (when all muscles fibres are relaxed during propulsion movement) are measured and compared to define the longitudinal stretch, with the impressive average result of 194%. With a similar setup integrated with a force sensor, the pulling force capability is measured as a function of grasp point position along the arm. The measured parameters are used as real specifications for the design of an octopus-like arm with a biomimetic approach.

  2. Mechanical response of unidirectional boron/aluminum under combined loading

    NASA Technical Reports Server (NTRS)

    Becker, Wolfgang; Pindera, Marek-Jerzy; Herakovich, Carl T.

    1987-01-01

    Three test methods were employed to characterize the response of unidirectional Boron/Aluminum metal matrix composite material under monotonic and cyclic loading conditions, namely, losipescu shear, off-axis tension and compression. The characterization of the elastic and plastic response includes the elastic material properties, yielding and subsequent hardening of the unidirectional composite under different stress ratios in the material principal coordinate system. Yield loci generated for different stress ratios are compared for the three different test methods, taking into account residual stresses and specimen geometry. Subsequently, the yield locus for in-plane shear is compared with the prediction of an analytical, micromechanical model. The influence of the scatter in the experimental data on the predicted yield surface is also analyzed. Lastly, the experimental material strengths in tension and compression are correlated with the maximum stress and the Tsai-Wu failure criterion.

  3. Mechanics of fiber reinforced materials

    NASA Astrophysics Data System (ADS)

    Sun, Huiyu

    This dissertation is dedicated to mechanics of fiber reinforced materials and the woven reinforcement and composed of four parts of research: analytical characterization of the interfaces in laminated composites; micromechanics of braided composites; shear deformation, and Poisson's ratios of woven fabric reinforcements. A new approach to evaluate the mechanical characteristics of interfaces between composite laminae based on a modified laminate theory is proposed. By including an interface as a special lamina termed the "bonding-layer" in the analysis, the mechanical properties of the interfaces are obtained. A numerical illustration is given. For micro-mechanical properties of three-dimensionally braided composite materials, a new method via homogenization theory and incompatible multivariable FEM is developed. Results from the hybrid stress element approach compare more favorably with the experimental data than other existing numerical methods widely used. To evaluate the shearing properties for woven fabrics, a new mechanical model is proposed during the initial slip region. Analytical results show that this model provides better agreement with the experiments for both the initial shear modulus and the slipping angle than the existing models. Finally, another mechanical model for a woven fabric made of extensible yarns is employed to calculate the fabric Poisson's ratios. Theoretical results are compared with the available experimental data. A thorough examination on the influences of various mechanical properties of yarns and structural parameters of fabrics on the Poisson's ratios of a woven fabric is given at the end.

  4. The coupled bio-chemo-electro-mechanical behavior of glucose exposed arterial elastin

    NASA Astrophysics Data System (ADS)

    Zhang, Yanhang; Li, Jiangyu; Boutis, Gregory S.

    2017-04-01

    Elastin, the principle protein component of the elastic fiber, is a critical extracellular matrix (ECM) component of the arterial wall providing structural resilience and biological signaling essential in vascular morphogenesis and maintenance of mechanical homeostasis. Pathogenesis of many cardiovascular diseases have been associated with alterations of elastin. As a long-lived ECM protein that is deposited and organized before adulthood, elastic fibers can suffer from cumulative effects of biochemical exposure encountered during aging and/or disease, which greatly compromise their mechanical function. This review article covers findings from recent studies of the mechanical and structural contribution of elastin to vascular function, and the effects of biochemical degradation. Results from diverse experimental methods including tissue-level mechanical characterization, fiber-level nonlinear optical imaging, piezoelectric force microscopy, and nuclear magnetic resonance are reviewed. The intriguing coupled bio-chemo-electro-mechanical behavior of elastin calls for a multi-scale and multi-physical understanding of ECM mechanics and mechanobiology in vascular remodeling.

  5. Multivariable Dynamic Ankle Mechanical Impedance With Relaxed Muscles

    PubMed Central

    Lee, Hyunglae; Krebs, Hermano Igo; Hogan, Neville

    2015-01-01

    Neurological or biomechanical disorders may distort ankle mechanical impedance and thereby impair locomotor function. This paper presents a quantitative characterization of multivariable ankle mechanical impedance of young healthy subjects when their muscles were relaxed, to serve as a baseline to compare with pathophysiological ankle properties of biomechanically and/or neurologically impaired patients. Measurements using a highly backdrivable wearable ankle robot combined with multi-input multi-output stochastic system identification methods enabled reliable characterization of ankle mechanical impedance in two degrees-of-freedom (DOFs) simultaneously, the sagittal and frontal planes. The characterization included important ankle properties unavailable from single DOF studies: coupling between DOFs and anisotropy as a function of frequency. Ankle impedance in joint coordinates showed responses largely consistent with a second-order system consisting of inertia, viscosity, and stiffness in both seated (knee flexed) and standing (knee straightened) postures. Stiffness in the sagittal plane was greater than in the frontal plane and furthermore, was greater when standing than when seated, most likely due to the stretch of bi-articular muscles (medial and lateral gastrocnemius). Very low off-diagonal partial coherences implied negligible coupling between dorsiflexion-plantarflexion and inversion-eversion. The directions of principal axes were tilted slightly counterclockwise from the original joint coordinates. The directional variation (anisotropy) of ankle impedance in the 2-D space formed by rotations in the sagittal and frontal planes exhibited a characteristic “peanut” shape, weak in inversion-eversion over a wide range of frequencies from the stiffness dominated region up to the inertia dominated region. Implications for the assessment of neurological and biomechanical impairments are discussed. PMID:24686292

  6. Multivariable dynamic ankle mechanical impedance with relaxed muscles.

    PubMed

    Lee, Hyunglae; Krebs, Hermano Igo; Hogan, Neville

    2014-11-01

    Neurological or biomechanical disorders may distort ankle mechanical impedance and thereby impair locomotor function. This paper presents a quantitative characterization of multivariable ankle mechanical impedance of young healthy subjects when their muscles were relaxed, to serve as a baseline to compare with pathophysiological ankle properties of biomechanically and/or neurologically impaired patients. Measurements using a highly backdrivable wearable ankle robot combined with multi-input multi-output stochastic system identification methods enabled reliable characterization of ankle mechanical impedance in two degrees-of-freedom (DOFs) simultaneously, the sagittal and frontal planes. The characterization included important ankle properties unavailable from single DOF studies: coupling between DOFs and anisotropy as a function of frequency. Ankle impedance in joint coordinates showed responses largely consistent with a second-order system consisting of inertia, viscosity, and stiffness in both seated (knee flexed) and standing (knee straightened) postures. Stiffness in the sagittal plane was greater than in the frontal plane and furthermore, was greater when standing than when seated, most likely due to the stretch of bi-articular muscles (medial and lateral gastrocnemius). Very low off-diagonal partial coherences implied negligible coupling between dorsiflexion-plantarflexion and inversion-eversion. The directions of principal axes were tilted slightly counterclockwise from the original joint coordinates. The directional variation (anisotropy) of ankle impedance in the 2-D space formed by rotations in the sagittal and frontal planes exhibited a characteristic "peanut" shape, weak in inversion-eversion over a wide range of frequencies from the stiffness dominated region up to the inertia dominated region. Implications for the assessment of neurological and biomechanical impairments are discussed.

  7. Toxicity and Detoxification Effects of Herbal Caowu via Ultra Performance Liquid Chromatography/Mass Spectrometry Metabolomics Analyzed using Pattern Recognition Method

    PubMed Central

    Yan, Yan; Zhang, Aihua; Dong, Hui; Yan, Guangli; Sun, Hui; Wu, Xiuhong; Han, Ying; Wang, Xijun

    2017-01-01

    Background: Caowu (Radix Aconiti kusnezoffii, CW), the root of Aconitum kusnezoffii Reichb., has widely used clinically in rheumatic arthritis, painful joints, and tumors for thousands of years. However, the toxicity of heart and central nervous system induced by CW still limited the application. Materials and Methods: Metabolomics was performed to identify the sensitive and reliable biomarkers and to characterize the phenotypically biochemical perturbations and potential mechanisms of CW-induced toxicity, and the detoxification by combinatorial intervention of CW with Gancao (Radix Glycyrrhizae) (CG), Baishao (Radix Paeoniae Alba) (CB), and Renshen (Radix Ginseng) (CR) was also analyzed by pattern recognition methods. Results: As a result, the metabolites were characterized and responsible for pentose and glucuronate interconversions, tryptophan metabolism, amino sugar and nucleotide sugar metabolism, taurine and hypotaurine metabolism, fructose and mannose metabolism, and starch and sucrose metabolism, six networks of which were the same to the metabolic pathways of Chuanwu (Radix Aconiti, CHW) group. The ascorbate and aldarate metabolism was also characterized by CW group. The urinary metabolomics also revealed CW-induced serious toxicity to heart and liver. Thirteen significant metabolites were identified and had validated as phenotypic toxicity biomarkers of CW, five biomarkers of which were commonly owned in Aconitum. The changes of toxicity metabolites obtained from combinatorial intervention of CG, CB, and CR also were analyzed to investigate the regulation degree of toxicity biomarkers adjusted by different combinatorial interventions at 6th month. Conclusion: Metabolomics analyses coupled with pattern recognition methods in the evaluation of drug toxicity and finding detoxification methods were highlighted in this work. SUMMARY Metabolomics was performed to characterize the biochemical potential mechanisms of Caowu toxicityThirteen significant metabolites were identified and validated as phenotypic toxicity biomarkers of CaowuMetabolite changes of toxicity obtained can be adjusted by different combinatorial interventions.Pattern recognition plot reflects the toxicity effects tendency of the urine metabolic fluctuations according to time after treatment of herbal Caowu. Abbreviations used: CW: Caowu (Radix Aconiti kusnezoffii); CHW: Chuanwu (Radix Aconiti); TCM: Traditional Chinese Medicine; CG: Caowu and Gancao; CB: Caowu and Baishao; CR: Caowu and Renshen; QC: Quality control; UPLC: Ultra performance liquid chromatography; MS: Mass spectrometry; PCA: Principal component analysis; PLS-DA: Partial least squares-discriminant analysis; OPLS: Orthogonal projection to latent structures analysis. PMID:29200734

  8. Mechanical characterization of SiC particulate & E-glass fiber reinforced Al 3003 hybrid metal matrix composites

    NASA Astrophysics Data System (ADS)

    Narayana, K. S. Lakshmi; Shivanand, H. K.

    2018-04-01

    Metal matrix composites constitute a class of low cost high quality materials which offer high performance for various industrial applications. The orientation of this research is towards the study of mechanical properties of as cast silicon carbide (SiC) particulates and Short E-Glass fibers reinforced Aluminum matrix composites (AMCs). The Hybrid metal matrix composite is developed by reinforcing SiC particulates of 100 microns and short E-Glass fibers of 2-3 mm length with Al 3003 in different compositions. The vortex method of stir casting was employed, in which the reinforcements were introduced into the vortex created by the molten metal by means of mechanical stirrer. The mechanical properties of the prepared metal matrix composites were analyzed. From the studies it was noticed that an improvement in mechanical properties of the reinforced alloys compared to unreinforced alloys.

  9. Complete mechanical characterization of an external hexagonal implant connection: in vitro study, 3D FEM, and probabilistic fatigue.

    PubMed

    Prados-Privado, María; Gehrke, Sérgio A; Rojo, Rosa; Prados-Frutos, Juan Carlos

    2018-06-11

    The aim of this study was to fully characterize the mechanical behavior of an external hexagonal implant connection (ø3.5 mm, 10-mm length) with an in vitro study, a three-dimensional finite element analysis, and a probabilistic fatigue study. Ten implant-abutment assemblies were randomly divided into two groups, five were subjected to a fracture test to obtain the maximum fracture load, and the remaining were exposed to a fatigue test with 360,000 cycles of 150 ± 10 N. After mechanical cycling, all samples were attached to the torque-testing machine and the removal torque was measured in Newton centimeters. A finite element analysis (FEA) was then executed in ANSYS® to verify all results obtained in the mechanical tests. Finally, due to the randomness of the fatigue phenomenon, a probabilistic fatigue model was computed to obtain the probability of failure associated with each cycle load. FEA demonstrated that the fracture corresponded with a maximum stress of 2454 MPa obtained in the in vitro fracture test. Mean life was verified by the three methods. Results obtained by the FEA, the in vitro test, and the probabilistic approaches were in accordance. Under these conditions, no mechanical etiology failure is expected to occur up to 100,000 cycles. Graphical abstract ᅟ.

  10. Fabrication and characterization of compositionally-graded shape memory alloy films

    NASA Astrophysics Data System (ADS)

    Cole, Daniel Paul

    2009-12-01

    The miniaturization of engineering devices has created interest in new actuation methods capable of high power and high frequency responses. Shape memory alloy (SMA) thin films have exhibited one of the highest power densities of any material used in these actuation schemes. However, they currently require complex thermomechanical training in order to be actuated, which becomes more difficult as devices approach the microscale. Previous studies have indicated that SMA films with compositional gradients have the added feature of an intrinsic two-way shape memory effect (SME). In this work, a new method for processing and characterizing compositionally-graded transformable thin films is presented. Graded NiTi SMA films were processed using magnetron sputtering. Single and multilayer graded films were deposited onto bulk NiTi substrates and single crystal silicon substrates, respectively. Annealing the films naturally produced a compositional gradient across the film-substrate or film-film interface through diffusion modification. The films were directly characterized using a combination of atomic force microscopy (AFM), x-ray diffraction and Auger electron spectroscopy. The compositional gradient was indirectly characterized by measuring the variation in mechanical properties as a function of depth using nanoindentation. The similarity of the indentation response on graded films of varying thickness was used to estimate the width of the graded interface. The nanoindentation response was predicted using an analysis that accounted for the transformation effects occurring under the tip during loading and the variation of elastic modulus resulting from the compositional gradient. The recovery mechanisms of the graded films are compared with homogeneous films using a new nanoscale technique. An AFM integrated with a heating and cooling stage was used to observe the recovery of inelastic deformation caused through nanoindentation. The graded films exhibited a two-way SME with a reduced hysteresis, while the homogeneous films exhibited the classical one-way SME. The fabrication and characterization techniques developed in this work have the potential to be applied to general graded and multi-layer film systems.

  11. Spectral (optical) and mechanical responses of fresh and cryopreserved issued arteries

    NASA Astrophysics Data System (ADS)

    Pery, Emilie; Blondel, Walter C.; Goebel, Jean-Christophe; Didelon, Jacques; Guillemin, Francois

    2005-04-01

    Cryopreservation is the only method for conserving blood vessels as future allografts with biological immunity controls. Although it affects vessels mechanical structure, no biomechanical integrity simple test is available today. Biological tissues optical properties characterization by spectroscopic methods is of interest due to their types or natures variations. Collected data complementarity contributes to "photodiagnosis" applicative prospects (cancer, vascular...). Pig carotid artery rings were tested after excision and after one month cryopreservation. An uniaxial mechanical testing device was used for ring stretching, and elongation and axial forces measurement. Circumferential large strains and stresses were calculated. Simultaneously, each artery ring optical characteristics was measured using fibered autofluorescence and elastic scattering spectrometers. Mechanical results showed nonlinear strain/stress curves and large deformations in good agreement with other referenced works. Significant differences (p<0.05) between fresh and cryopreserved rings mechanical properties were noticed. Elastic scattering spectra intensity variations were well correlated with artery mechanical properties. The standardized autofluorescence spectra were more clearly correlated with anatomo-histological changes due to cryopreservation, providing rather accurate differentiation between fresh and cryopreserved samples. This study offers a new perspective to detect changes of cryopreserved arterial samples mechanical properties. Coupling mechanical tests (uniaxial traction of arterial rings) and optical spectroscopic measurements (autofluorescence, elastic scattering) is the driving point: it allows correlating mechanical modifications and spectral variations of artery rings before and after cryopreservation. Ultimately, this new approach could help developping a device allowing non-invasive, atraumatic and contactless optical examinations of arterial graft to assess its mechanical state before reimplantation.

  12. Hydroxyapatite nanocrystals: simple preparation, characterization and formation mechanism.

    PubMed

    Mohandes, Fatemeh; Salavati-Niasari, Masoud; Fathi, Mohammadhossein; Fereshteh, Zeinab

    2014-12-01

    Crystalline hydroxyapatite (HAP) nanoparticles and nanorods have been successfully synthesized via a simple precipitation method. To control the shape and particle size of HAP nanocrystals, coordination ligands derived from 2-hydroxy-1-naphthaldehyde were first prepared, characterized by Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance ((1)H-NMR) spectroscopies, and finally applied in the synthesis process of HAP. On the other hand, the HAP nanocrystals were also characterized by several techniques including powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). According to the FE-SEM and TEM micrographs, it was found that the morphology and crystallinity of the HAP powders depended on the coordination mode of the ligands. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. A review of microelectromechanical systems for nanoscale mechanical characterization

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; Chang, Tzu-Hsuan

    2015-09-01

    A plethora of nanostructures with outstanding properties have emerged over the past decades. Measuring their mechanical properties and understanding their deformation mechanisms is of paramount importance for many of their device applications. To address this need innovative experimental techniques have been developed, among which a promising one is based upon microelectromechanical systems (MEMS). This article reviews the recent advances in MEMS platforms for the mechanical characterization of one-dimensional (1D) nanostructures over the past decade. A large number of MEMS platforms and related nanomechanics studies are presented to demonstrate the unprecedented capabilities of MEMS for nanoscale mechanical characterization. Focusing on key design considerations, this article aims to provide useful guidelines for developing MEMS platforms. Finally, some of the challenges and future directions in the area of MEMS-enabled nanomechanical characterization are discussed.

  14. Investigation of translaminar fracture in fibrereinforced composite laminates---applicability of linear elastic fracture mechanics and cohesive-zone model

    NASA Astrophysics Data System (ADS)

    Hou, Fang

    With the extensive application of fiber-reinforced composite laminates in industry, research on the fracture mechanisms of this type of materials have drawn more and more attentions. A variety of fracture theories and models have been developed. Among them, the linear elastic fracture mechanics (LEFM) and cohesive-zone model (CZM) are two widely-accepted fracture models, which have already shown applicability in the fracture analysis of fiber-reinforced composite laminates. However, there remain challenges which prevent further applications of the two fracture models, such as the experimental measurement of fracture resistance. This dissertation primarily focused on the study of the applicability of LEFM and CZM for the fracture analysis of translaminar fracture in fibre-reinforced composite laminates. The research for each fracture model consisted of two sections: the analytical characterization of crack-tip fields and the experimental measurement of fracture resistance parameters. In the study of LEFM, an experimental investigation based on full-field crack-tip displacement measurements was carried out as a way to characterize the subcritical and steady-state crack advances in translaminar fracture of fiber-reinforced composite laminates. Here, the fiber-reinforced composite laminates were approximated as anisotropic solids. The experimental investigation relied on the LEFM theory with a modification with respect to the material anisotropy. Firstly, the full-field crack-tip displacement fields were measured by Digital Image Correlation (DIC). Then two methods, separately based on the stress intensity approach and the energy approach, were developed to measure the crack-tip field parameters from crack-tip displacement fields. The studied crack-tip field parameters included the stress intensity factor, energy release rate and effective crack length. Moreover, the crack-growth resistance curves (R-curves) were constructed with the measured crack-tip field parameters. In addition, an error analysis was carried out with an emphasis on the influence of out-of-plane rotation of specimen. In the study of CZM, two analytical inverse methods, namely the field projection method (FPM) and the separable nonlinear least-squares method, were developed for the extraction of cohesive fracture properties from crack-tip full-field displacements. Firstly, analytical characterizations of the elastic fields around a crack-tip cohesive zone and the cohesive variables within the cohesive zone were derived in terms of an eigenfunction expansion. Then both of the inverse methods were developed based on the analytical characterization. With the analytical inverse methods, the cohesive-zone law (CZL), cohesive-zone size and position can be inversely computed from the cohesive-crack-tip displacement fields. In the study, comprehensive numerical tests were carried out to investigate the applicability and robustness of two inverse methods. From the numerical tests, it was found that the field projection method was very sensitive to noise and thus had limited applicability in practice. On the other hand, the separable nonlinear least-squares method was found to be more noise-resistant and less ill-conditioned. Subsequently, the applicability of separable nonlinear least-squares method was validated with the same translaminar fracture experiment for the study of LEFM. Eventually, it was found that the experimental measurements of R-curves and CZL showed a great agreement, in both of the fracture energy and the predicted load carrying capability. It thus demonstrated the validity of present research for the translaminar fracture of fiber-reinforced composite laminates.

  15. Mechanisms of small molecule–DNA interactions probed by single-molecule force spectroscopy

    PubMed Central

    Almaqwashi, Ali A.; Paramanathan, Thayaparan; Rouzina, Ioulia; Williams, Mark C.

    2016-01-01

    There is a wide range of applications for non-covalent DNA binding ligands, and optimization of such interactions requires detailed understanding of the binding mechanisms. One important class of these ligands is that of intercalators, which bind DNA by inserting aromatic moieties between adjacent DNA base pairs. Characterizing the dynamic and equilibrium aspects of DNA-intercalator complex assembly may allow optimization of DNA binding for specific functions. Single-molecule force spectroscopy studies have recently revealed new details about the molecular mechanisms governing DNA intercalation. These studies can provide the binding kinetics and affinity as well as determining the magnitude of the double helix structural deformations during the dynamic assembly of DNA–ligand complexes. These results may in turn guide the rational design of intercalators synthesized for DNA-targeted drugs, optical probes, or integrated biological self-assembly processes. Herein, we survey the progress in experimental methods as well as the corresponding analysis framework for understanding single molecule DNA binding mechanisms. We discuss briefly minor and major groove binding ligands, and then focus on intercalators, which have been probed extensively with these methods. Conventional mono-intercalators and bis-intercalators are discussed, followed by unconventional DNA intercalation. We then consider the prospects for using these methods in optimizing conventional and unconventional DNA-intercalating small molecules. PMID:27085806

  16. Setting Mechanical Properties of High Strength Steels for Rapid Hot Forming Processes

    PubMed Central

    Löbbe, Christian; Hering, Oliver; Hiegemann, Lars; Tekkaya, A. Erman

    2016-01-01

    Hot stamping of sheet metal is an established method for the manufacturing of light weight products with tailored properties. However, the generally-applied continuous roller furnace manifests two crucial disadvantages: the overall process time is long and a local setting of mechanical properties is only feasible through special cooling techniques. Hot forming with rapid heating directly before shaping is a new approach, which not only reduces the thermal intervention in the zones of critical formability and requested properties, but also allows the processing of an advantageous microstructure characterized by less grain growth, additional fractions (e.g., retained austenite), and undissolved carbides. Since the austenitization and homogenization process is strongly dependent on the microstructure constitution, the general applicability for the process relevant parameters is unknown. Thus, different austenitization parameters are analyzed for the conventional high strength steels 22MnB5, Docol 1400M, and DP1000 in respect of the mechanical properties. In order to characterize the resulting microstructure, the light optical and scanning electron microscopy, micro and macro hardness measurements, and the X-ray diffraction are conducted subsequent to tensile tests. The investigation proves not only the feasibility to adjust the strength and ductility flexibly, unique microstructures are also observed and the governing mechanisms are clarified. PMID:28773354

  17. Effects of coordination agents on the morphology of CdS nanocrystallites synthesized by the hydrothermal method

    NASA Astrophysics Data System (ADS)

    Nie, Qiulin; Yuan, Qiuli; Chen, Weixiang; Xu, Zhude

    2004-05-01

    CdS nanocrystallites were synthesized by the hydrothermal method and characterized by XRD, TEM, and XPS, respectively. Different coordination agents were chosen as the template to investigate their effects on the product morphology. It was found that the CdS nanocrystallites displayed a rod-like shape when ethylenediamine or methylamine were employed as the template. In contrast, only nanoparticles of CdS were observed when ammonia or pyridine were used. Based on our experimental results, a complex structure-controlling mechanism is proposed.

  18. The physics of proton therapy.

    PubMed

    Newhauser, Wayne D; Zhang, Rui

    2015-04-21

    The physics of proton therapy has advanced considerably since it was proposed in 1946. Today analytical equations and numerical simulation methods are available to predict and characterize many aspects of proton therapy. This article reviews the basic aspects of the physics of proton therapy, including proton interaction mechanisms, proton transport calculations, the determination of dose from therapeutic and stray radiations, and shielding design. The article discusses underlying processes as well as selected practical experimental and theoretical methods. We conclude by briefly speculating on possible future areas of research of relevance to the physics of proton therapy.

  19. Assessing the Role of Anhydrite in the KT Mass Extinction: Hints from Shock-loading Experiments

    NASA Technical Reports Server (NTRS)

    Skala, R.; Lnagenhorst, F.; Hoerz, F.

    2004-01-01

    Various killing mechanisms have been suggested to contribute to the mass extinctions at the KT boundary, including severe, global deterioration of the atmosphere and hydrosphere due to SO(x) released from heavily shocked, sulfate-bearing target rocks. The devolatilization of anhydrite is predominantly inferred from thermodynamic considerations and lacks experimental confirmation. To date, the experimentally determined shock behavior of anhydrite is limited to solid-state effects employing X-ray diffraction methods. The present report employs additional methods to characterize experimentally shocked anhydrite.

  20. The physics of proton therapy

    PubMed Central

    Newhauser, Wayne D; Zhang, Rui

    2015-01-01

    The physics of proton therapy has advanced considerably since it was proposed in 1946. Today analytical equations and numerical simulation methods are available to predict and characterize many aspects of proton therapy. This article reviews the basic aspects of the physics of proton therapy, including proton interaction mechanisms, proton transport calculations, the determination of dose from therapeutic and stray radiations, and shielding design. The article discusses underlying processes as well as selected practical experimental and theoretical methods. We conclude by briefly speculating on possible future areas of research of relevance to the physics of proton therapy. PMID:25803097

  1. Characterization of some selected vulcanized and raw silicon rubber materials

    NASA Astrophysics Data System (ADS)

    Sasikala, A.; Kala, A.

    2017-06-01

    Silicone Rubber is a high need of importance of Medical devices, Implants, Aviation and Aerospace wiring applications. Silicone rubbers are widely used in industry, and there are in multiple formulations. A raw and vulcanized silicone rubber Chemical and Physical structures of particles was confirmed and mechanical strength has been analyzed by FTIR spectroscopy. Thermal properties studied from Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) analysis. Activation energy of the rubber materials were calculated using Broido method, Piloyon-Novikova relation and coats-Red fern methods.

  2. Affinity purification combined with mass spectrometry to identify herpes simplex virus protein-protein interactions.

    PubMed

    Meckes, David G

    2014-01-01

    The identification and characterization of herpes simplex virus protein interaction complexes are fundamental to understanding the molecular mechanisms governing the replication and pathogenesis of the virus. Recent advances in affinity-based methods, mass spectrometry configurations, and bioinformatics tools have greatly increased the quantity and quality of protein-protein interaction datasets. In this chapter, detailed and reliable methods that can easily be implemented are presented for the identification of protein-protein interactions using cryogenic cell lysis, affinity purification, trypsin digestion, and mass spectrometry.

  3. Subcritical fracture propagation in rocks: An examination using the methods of fracture mechanics and non-destructive testing. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Swanson, P. L.

    1984-01-01

    An experimental investigation of tensile rock fracture is presented with an emphasis on characterizing time dependent crack growth using the methods of fracture mechanics. Subcritical fracture experiments were performed in moist air on glass and five different rock types at crack velocities using the double torsion technique. The experimental results suggest that subcritical fracture resistance in polycrystals is dominated by microstructural effects. Evidence for gross violations of the assumptions of linear elastic fracture mechanics and double torsion theory was found in the tests on rocks. In an effort to obtain a better understanding of the physical breakdown processes associated with rock fracture, a series of nondestructive evaluation tests were performed during subcritical fracture experiments on glass and granite. Comparison of the observed process zone shape with that expected on the basis of a critical normal principal tensile stress criterion shows that the zone is much more elongated in the crack propagation direction than predicted by the continuum based microcracking model alone.

  4. Effect of reduced graphene oxide-carbon nanotubes hybrid nanofillers in mechanical properties of polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Sa, Kadambinee; Mahakul, Prakash C.; Subramanyam, B. V. R. S.; Raiguru, Jagatpati; Das, Sonali; Alam, Injamul; Mahanandia, Pitamber

    2018-03-01

    Graphene and carbon nanotubes (CNTs) have tremendous interest as reinforcing fillers due to their excellent physical properties. However, their reinforcing effect in polymer matrix is limited due to agglomeration of graphene and CNTs within the polymer matrix. Mechanical properties by the admixture of reduced graphene oxide (rGO) and CNTs in Poly (methyl methacrylate) (PMMA) prepared by solution mixing method has been investigated. The prepared samples are characterized using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and Raman spectroscopy. The hybrid composite shows improvement in the mechanical properties compared to rGO/PMMA and MWCNTs/PMMA composites due to better interaction between rGO-MWCNTs and polymer matrix.

  5. Effects of Porosity on Ultrasonic Characteristic Parameters and Mechanical Properties of Glass Fiber Reinforced Composites

    NASA Astrophysics Data System (ADS)

    Ma, Wen; Liu, Fushun

    Voids are inevitable in the fabrication of fiber reinforced composites and have a detrimental impact on mechanical properties of composites. Different void contents were acquired by applying different vacuum bag pressures. Ultrasonic inspection and ablation density method were adopted to measure the ultrasonic characteristic parameters and average porosity, the characterization of voids' distribution, shape and size were carried out through metallographic analysis. Effects of void content on the tensile, flexural and interlaminar shear properties and the ultrasonic characteristic parameters were discussed. The results showed that, as vacuum bag pressure went from -50kPa to -98kPa, the voids content decreased from 4.36 to 0.34, the ultrasonic attenuation coefficient decreased, but the mechanical strengths all increased.

  6. Nanostructured materials: A novel approach to enhanced performance. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korth, G.E.; Froes, F.H.; Suryanarayana, C.

    Nanostuctured materials are an emerging class of materials that can exhibit physical and mechanical characteristics often exceeding those exhibited by conventional course grained materials. A number of different techniques can be employed to produce these materials. In this program, the synthesis methods were (a) mechanical alloying , (b) physical vapor deposition, and (c) plasma processing. The physical vapor deposition and plasma processing were discontinued after initial testing with subsequent efforts focused on mechanical alloying. The major emphasis of the program was on the synthesis, consolidation, and characterization of nanostructured Al-Fe, Ti-Al, Ti-Al-Nb, and Fe-Al by alloying intermetallics with a viewmore » to increase their ductilities. The major findings of this project are reported.« less

  7. Multiparameter thermo-mechanical OCT-based characterization of laser-induced cornea reshaping

    NASA Astrophysics Data System (ADS)

    Zaitsev, Vladimir Yu.; Matveyev, Alexandr L.; Matveev, Lev A.; Gelikonov, Grigory V.; Vitkin, Alex; Omelchenko, Alexander I.; Baum, Olga I.; Shabanov, Dmitry V.; Sovetsky, Alexander A.; Sobol, Emil N.

    2017-02-01

    Phase-sensitive optical coherence tomography (OCT) is used for visualizing dynamic and cumulative strains and corneashape changes during laser-produced tissue heating. Such non-destructive (non-ablative) cornea reshaping can be used as a basis of emerging technologies of laser vision correction. In experiments with cartilaginous samples, polyacrilamide phantoms and excised rabbit eyes we demonstrate ability of the developed OCT system to simultaneously characterize transient and cumulated strain distributions, surface displacements, scattering tissue properties and possibility of temperature estimation via thermal-expansion measurements. The proposed approach can be implemented in perspective real-time OCT systems for ensuring safety of new methods of laser reshaping of cornea.

  8. Gun muzzle blast and flash

    NASA Astrophysics Data System (ADS)

    Klingenberg, Guenter; Heimerl, Joseph M.

    A repository of fundamental experimental and analytical data concerning the complex phenomena associated with gun-muzzle blast and flash effects is presented, proceeding from gun muzzle signatures to modern gun-propulsion concepts, interior and transitional ballistics, and characterizations of blast-wave research and muzzle flash. Data are presented in support of a novel hypothesis which explains the ignition of secondary flash and elucidates the means for its suppression. Both chemical and mechanical (often competing) methods of flash suppression are treated. The historical work of Kesslau and Ladenburg is noted, together with French, British, Japanese and American research efforts and current techniques of experimental characterization for gun muzzle phenomena.

  9. Chemical Mechanisms of Toxic Solute Interactions with Soil Constituents

    DTIC Science & Technology

    1993-04-01

    been widely reported (References 125-127). However, in days such as montmorillonite and kaolinite , whose cations have been (partially) exchanged with...matrix-isolation methods were used to characterize the sorption of water and fuel compounds on a model soil consisting of montmorillonite clay. The...only under very dry conditions. 14. SUBJECT TERMS Montmorillonite clay, fuels, infrared 15 NUMBER Of PAGES spectroscopy, ultraviolet-visible

  10. Reduced-Volume Fracture Toughness Characterization for Transparent Polymers

    DTIC Science & Technology

    2015-03-21

    Caruthers et al. (2004) developed a thermodynamically consistent, nonlinear viscoelastic bulk constitutive model based on a potential energy clock ( PEC ...except that relaxation times change. Because of its formulation, the PEC model predicts mechanical yield as a natural consequence of relaxation...softening type of behavior, but hysteresis effects are not naturally accounted for. Adolf et al. (2009) developed a method of simplifying the PEC model

  11. Viscoelastic characterization of dispersive media by inversion of a general wave propagation model in optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Zvietcovich, Fernando; Rolland, Jannick P.; Grygotis, Emma; Wayson, Sarah; Helguera, Maria; Dalecki, Diane; Parker, Kevin J.

    2018-02-01

    Determining the mechanical properties of tissue such as elasticity and viscosity is fundamental for better understanding and assessment of pathological and physiological processes. Dynamic optical coherence elastography uses shear/surface wave propagation to estimate frequency-dependent wave speed and Young's modulus. However, for dispersive tissues, the displacement pulse is highly damped and distorted during propagation, diminishing the effectiveness of peak tracking approaches. The majority of methods used to determine mechanical properties assume a rheological model of tissue for the calculation of viscoelastic parameters. Further, plane wave propagation is sometimes assumed which contributes to estimation errors. To overcome these limitations, we invert a general wave propagation model which incorporates (1) the initial force shape of the excitation pulse in the space-time field, (2) wave speed dispersion, (3) wave attenuation caused by the material properties of the sample, (4) wave spreading caused by the outward cylindrical propagation of the wavefronts, and (5) the rheological-independent estimation of the dispersive medium. Experiments were conducted in elastic and viscous tissue-mimicking phantoms by producing a Gaussian push using acoustic radiation force excitation, and measuring the wave propagation using a swept-source frequency domain optical coherence tomography system. Results confirm the effectiveness of the inversion method in estimating viscoelasticity in both the viscous and elastic phantoms when compared to mechanical measurements. Finally, the viscoelastic characterization of collagen hydrogels was conducted. Preliminary results indicate a relationship between collagen concentration and viscoelastic parameters which is important for tissue engineering applications.

  12. Simultaneous measurement of the Young's modulus and the Poisson ratio of thin elastic layers.

    PubMed

    Gross, Wolfgang; Kress, Holger

    2017-02-07

    The behavior of cells and tissue is greatly influenced by the mechanical properties of their environment. For studies on the interactions between cells and soft matrices, especially those applying traction force microscopy the characterization of the mechanical properties of thin substrate layers is essential. Various techniques to measure the elastic modulus are available. Methods to accurately measure the Poisson ratio of such substrates are rare and often imply either a combination of multiple techniques or additional equipment which is not needed for the actual biological studies. Here we describe a novel technique to measure both parameters, the Youngs's modulus and the Poisson ratio in a single experiment. The technique requires only a standard inverted epifluorescence microscope. As a model system, we chose cross-linked polyacrylamide and poly-N-isopropylacrylamide hydrogels which are known to obey Hooke's law. We place millimeter-sized steel spheres on the substrates which indent the surface. The data are evaluated using a previously published model which takes finite thickness effects of the substrate layer into account. We demonstrate experimentally for the first time that the application of the model allows the simultaneous determination of both the Young's modulus and the Poisson ratio. Since the method is easy to adapt and comes without the need of special equipment, we envision the technique to become a standard tool for the characterization of substrates for a wide range of investigations of cell and tissue behavior in various mechanical environments as well as other samples, including biological materials.

  13. Size Dependent Mechanical Properties of Monolayer Densely Arranged Polystyrene Nanospheres.

    PubMed

    Huang, Peng; Zhang, Lijing; Yan, Qingfeng; Guo, Dan; Xie, Guoxin

    2016-12-13

    In contrast to macroscopic materials, the mechanical properties of polymer nanospheres show fascinating scientific and application values. However, the experimental measurements of individual nanospheres and quantitative analysis of theoretical mechanisms remain less well performed and understood. We provide a highly efficient and accurate method with monolayer densely arranged honeycomb polystyrene (PS) nanospheres for the quantitatively mechanical characterization of individual nanospheres on the basis of atomic force microscopy (AFM) nanoindentation. The efficiency is improved by 1-2 orders, and the accuracy is also enhanced almost by half-order. The elastic modulus measured in the experiments increases with decreasing radius to the smallest nanospheres (25-35 nm in radius). A core-shell model is introduced to predict the size dependent elasticity of PS nanospheres, and the theoretical prediction agrees reasonably well with the experimental results and also shows a peak modulus value.

  14. Mechanical properties of water desalination and wastewater treatment membranes

    DOE PAGES

    Wang, Kui; Abdalla, Ahmed A.; Khaleel, Mohammad A.; ...

    2017-07-13

    Applications of membrane technology in water desalination and wastewater treatment have increased significantly in the past fewdecades due to itsmany advantages over otherwater treatment technologies.Water treatment membranes provide high flux and contaminant rejection ability and require good mechanical strength and durability. Thus, assessing the mechanical properties of water treatment membranes is critical not only to their design, but also for studying their failure mechanisms, including the surface damage, mechanical and chemical ageing, delamination and loss of dimensional stability of the membranes. The various experimental techniques to assess themechanical properties ofwastewater treatment and desalinationmembranes are reviewed. Uniaxial tensile test, bending test,more » dynamic mechanical analysis, nanoindentation and bursting tests are the most widely used mechanical characterization methods for water treatment membranes. Mechanical degradations induced by fouling, chemical cleaning as well as membrane delamination are then discussed. Moreover, in order to study the membranesmechanical responses under similar loading conditions, the stress-state of the membranes are analyzed and advanced mechanical testing approaches are proposed. Lastly, some perspectives are highlighted to study the structure-properties relationship for wastewater treatment and water desalination membranes.« less

  15. Mechanical properties of water desalination and wastewater treatment membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Kui; Abdalla, Ahmed A.; Khaleel, Mohammad A.

    Applications of membrane technology in water desalination and wastewater treatment have increased significantly in the past fewdecades due to itsmany advantages over otherwater treatment technologies.Water treatment membranes provide high flux and contaminant rejection ability and require good mechanical strength and durability. Thus, assessing the mechanical properties of water treatment membranes is critical not only to their design, but also for studying their failure mechanisms, including the surface damage, mechanical and chemical ageing, delamination and loss of dimensional stability of the membranes. The various experimental techniques to assess themechanical properties ofwastewater treatment and desalinationmembranes are reviewed. Uniaxial tensile test, bending test,more » dynamic mechanical analysis, nanoindentation and bursting tests are the most widely used mechanical characterization methods for water treatment membranes. Mechanical degradations induced by fouling, chemical cleaning as well as membrane delamination are then discussed. Moreover, in order to study the membranesmechanical responses under similar loading conditions, the stress-state of the membranes are analyzed and advanced mechanical testing approaches are proposed. Lastly, some perspectives are highlighted to study the structure-properties relationship for wastewater treatment and water desalination membranes.« less

  16. Characterizing and Managing Missing Structured Data in Electronic Health Records: Data Analysis.

    PubMed

    Beaulieu-Jones, Brett K; Lavage, Daniel R; Snyder, John W; Moore, Jason H; Pendergrass, Sarah A; Bauer, Christopher R

    2018-02-23

    Missing data is a challenge for all studies; however, this is especially true for electronic health record (EHR)-based analyses. Failure to appropriately consider missing data can lead to biased results. While there has been extensive theoretical work on imputation, and many sophisticated methods are now available, it remains quite challenging for researchers to implement these methods appropriately. Here, we provide detailed procedures for when and how to conduct imputation of EHR laboratory results. The objective of this study was to demonstrate how the mechanism of missingness can be assessed, evaluate the performance of a variety of imputation methods, and describe some of the most frequent problems that can be encountered. We analyzed clinical laboratory measures from 602,366 patients in the EHR of Geisinger Health System in Pennsylvania, USA. Using these data, we constructed a representative set of complete cases and assessed the performance of 12 different imputation methods for missing data that was simulated based on 4 mechanisms of missingness (missing completely at random, missing not at random, missing at random, and real data modelling). Our results showed that several methods, including variations of Multivariate Imputation by Chained Equations (MICE) and softImpute, consistently imputed missing values with low error; however, only a subset of the MICE methods was suitable for multiple imputation. The analyses we describe provide an outline of considerations for dealing with missing EHR data, steps that researchers can perform to characterize missingness within their own data, and an evaluation of methods that can be applied to impute clinical data. While the performance of methods may vary between datasets, the process we describe can be generalized to the majority of structured data types that exist in EHRs, and all of our methods and code are publicly available. ©Brett K Beaulieu-Jones, Daniel R Lavage, John W Snyder, Jason H Moore, Sarah A Pendergrass, Christopher R Bauer. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 23.02.2018.

  17. Characterization of 3D Voronoi Tessellation Nearest Neighbor Lipid Shells Provides Atomistic Lipid Disruption Profile of Protein Containing Lipid Membranes

    PubMed Central

    Cheng, Sara Y.; Duong, Hai V.; Compton, Campbell; Vaughn, Mark W.; Nguyen, Hoa; Cheng, Kwan H.

    2015-01-01

    Quantifying protein-induced lipid disruptions at the atomistic level is a challenging problem in membrane biophysics. Here we propose a novel 3D Voronoi tessellation nearest-atom-neighbor shell method to classify and characterize lipid domains into discrete concentric lipid shells surrounding membrane proteins in structurally heterogeneous lipid membranes. This method needs only the coordinates of the system and is independent of force fields and simulation conditions. As a proof-of-principle, we use this multiple lipid shell method to analyze the lipid disruption profiles of three simulated membrane systems: phosphatidylcholine, phosphatidylcholine/cholesterol, and beta-amyloid/phosphatidylcholine/cholesterol. We observed different atomic volume disruption mechanisms due to cholesterol and beta-amyloid Additionally, several lipid fractional groups and lipid-interfacial water did not converge to their control values with increasing distance or shell order from the protein. This volume divergent behavior was confirmed by bilayer thickness and chain orientational order calculations. Our method can also be used to analyze high-resolution structural experimental data. PMID:25637891

  18. In situ thermomechanical testing methods for micro/nano-scale materials.

    PubMed

    Kang, Wonmo; Merrill, Marriner; Wheeler, Jeffrey M

    2017-02-23

    The advance of micro/nanotechnology in energy-harvesting, micropower, electronic devices, and transducers for automobile and aerospace applications has led to the need for accurate thermomechanical characterization of micro/nano-scale materials to ensure their reliability and performance. This persistent need has driven various efforts to develop innovative experimental techniques that overcome the critical challenges associated with precise mechanical and thermal control of micro/nano-scale specimens during material characterization. Here we review recent progress in the development of thermomechanical testing methods from miniaturized versions of conventional macroscopic test systems to the current state of the art of in situ uniaxial testing capabilities in electron microscopes utilizing either indentation-based microcompression or integrated microsystems. We discuss the major advantages/disadvantages of these methods with respect to specimen size, range of temperature control, ease of experimentation and resolution of the measurements. We also identify key challenges in each method. Finally, we summarize some of the important discoveries that have been made using in situ thermomechanical testing and the exciting research opportunities still to come in micro/nano-scale materials.

  19. Experimental and Numerical Study on the Cracked Chevron Notched Semi-Circular Bend Method for Characterizing the Mode I Fracture Toughness of Rocks

    NASA Astrophysics Data System (ADS)

    Wei, Ming-Dong; Dai, Feng; Xu, Nu-Wen; Liu, Jian-Feng; Xu, Yuan

    2016-05-01

    The cracked chevron notched semi-circular bending (CCNSCB) method for measuring the mode I fracture toughness of rocks combines the merits (e.g., avoidance of tedious pre-cracking of notch tips, ease of sample preparation and loading accommodation) of both methods suggested by the International Society for Rock Mechanics, which are the cracked chevron notched Brazilian disc (CCNBD) method and the notched semi-circular bend (NSCB) method. However, the limited availability of the critical dimensionless stress intensity factor (SIF) values severely hinders the widespread usage of the CCNSCB method. In this study, the critical SIFs are determined for a wide range of CCNSCB specimen geometries via three-dimensional finite element analysis. A relatively large support span in the three point bending configuration was considered because the fracture of the CCNSCB specimen in that situation is finely restricted in the notch ligament, which has been commonly assumed for mode I fracture toughness measurements using chevron notched rock specimens. Both CCNSCB and NSCB tests were conducted to measure the fracture toughness of two different rock types; for each rock type, the two methods produce similar toughness values. Given the reported experimental results, the CCNSCB method can be reliable for characterizing the mode I fracture toughness of rocks.

  20. [BIOLOGICAL ACTIVITY OF ANTIMICROBIAL PEPTIDES OF ENTEROCOCCUS FAECIUM].

    PubMed

    Vasilchenko, A S; Rogozhin, E A; Valyshev, A V

    2015-01-01

    Isolate bacteriocins from Enterococcus faecium metabolites and characterize their effect on cells of Gram positive (Listeria monocytogenes) and Gram negative (Escherichia coli) bacteria. Methods of solid-phase extraction, ion-exchange and reversed phase chromatography were applied for isolation of bacteriocins from cultural medium of bacteria MALDI time-of-flight mass-spectrometry was used for characterization of the obtained preparations. The mechanism of biological effect of peptides was evaluated using DNA-tropic dyes (SYTO 9 and PI) with subsequent registration of fluorescence spectra: Atomic-force microscopy (AFM) was used for characterization of morpho-functional reaction of target cells. Peptide fractions with mass of 1.0 - 3.0 kDa were isolated from enterococci metabolites, that inhibit the growth of indicator microorganisms. E. faecium strain exoproducts were shown to increase membrane permeability during interaction with L. monocytogenes, that results in subsequent detectable disturbance of normal cell morphology of listeria. Alterations of E. coli surface during the effect of purified peptide fraction was detected using AFM. The studies carried out have revealed the effect of bacteriocins of enterococci on microorganisms with various types of cell wall composition and have confirmed the importance of bacterial barrier structure permeability disturbance in the mechanism of antimicrobial effect of enterocins.

  1. Characterizing the graded structure of false killer whale (Pseudorca crassidens) vocalizations.

    PubMed

    Murray, S O; Mercado, E; Roitblat, H L

    1998-09-01

    The vocalizations from two, captive false killer whales (Pseudorca crassidens) were analyzed. The structure of the vocalizations was best modeled as lying along a continuum with trains of discrete, exponentially damped sinusoidal pulses at one end and continuous sinusoidal signals at the other end. Pulse trains were graded as a function of the interval between pulses where the minimum interval between pulses could be zero milliseconds. The transition from a pulse train with no inter-pulse interval to a whistle could be modeled by gradations in the degree of damping. There were many examples of vocalizations that were gradually modulated from pulse trains to whistles. There were also vocalizations that showed rapid shifts in signal type--for example, switching immediately from a whistle to a pulse train. These data have implications when considering both the possible function(s) of the vocalizations and the potential sound production mechanism(s). A short-time duty cycle measure was developed to characterize the graded structure of the vocalizations. A random sample of 500 vocalizations was characterized by combining the duty cycle measure with peak frequency measurements. The analysis method proved to be an effective metric for describing the graded structure of false killer whale vocalizations.

  2. Reduced graphene oxide-induced recrystallization of NiS nanorods to nanosheets and the improved Na-storage properties.

    PubMed

    Pan, Qin; Xie, Jian; Zhu, Tiejun; Cao, Gaoshao; Zhao, Xinbing; Zhang, Shichao

    2014-04-07

    Preparation of two-dimensional (2D) graphene-like materials is currently an emerging field in materials science since the discovery of single-atom-thick graphene prepared by mechanical cleavage. In this work, we proposed a new method to prepare 2D NiS, where reduced graphene oxide (rGO) was found to induce the recrystallization of NiS from nanorods to nanosheets in a hydrothermal process. The process and mechanism of recrystallization have been clarified by various characterization techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) mapping, and X-ray photoelectron spectroscopy (XPS). The characterization of ex situ NiS/rGO products by SEM and EDS mapping indicates that the recrystallization of NiS from nanorods to nanosheets is realized actually through an exfoliation process, while the characterization of in situ NiS/rGO products by SEM, TEM, and EDS mapping reveals the exfoliation process. The XPS result demonstrates that hydrothermally assisted chemical bonding occurs between NiS and rGO, which induces the exfoliation of NiS nanorods into nanosheets. The obtained NiS/rGO composite shows promising Na-storage properties.

  3. Accelerated aging studies of UHMWPE. I. Effect of resin, processing, and radiation environment on resistance to mechanical degradation.

    PubMed

    Edidin, A A; Herr, M P; Villarraga, M L; Muth, J; Yau, S S; Kurtz, S M

    2002-08-01

    The resin and processing route have been identified as potential variables influencing the mechanical behavior, and hence the clinical performance, of ultra-high molecular weight polyethylene (UHMWPE) orthopedic components. Researchers have reported that components fabricated from 1900 resin may oxidize to a lesser extent than components fabricated from GUR resin during shelf aging after gamma sterilization in air. Conflicting reports on the oxidation resistance for 1900 raise the question of whether resin or manufacturing method, or an interaction between resin and manufacturing method, influences the mechanical behavior of UHMWPE. We conducted a series of accelerated aging studies (no aging, aging in oxygen or in nitrogen) to systematically examine the influence of resin (GUR or 1900), manufacturing method (bulk compression molding or extrusion), and sterilization method (none, in air, or in nitrogen) on the mechanical behavior of UHMWPE. The small punch testing technique was used to evaluate the mechanical behavior of the materials, and Fourier transform infrared spectroscopy was used to characterize the oxidation in selected samples. Our study showed that the sterilization environment, aging condition, and specimen location (surface or subsurface) significantly affected the mechanical behavior of UHMWPE. Each of the three polyethylenes evaluated seem to degrade according to a similar pathway after artificial aging in oxygen and gamma irradiation in air. The initial ability of the materials to exhibit post-yield strain hardening was significantly compromised by degradation. In general, there were only minor differences in the aging behavior of molded and extruded GUR 1050, whereas the molded 1900 material seemed to degrade slightly faster than either of the 1050 materials. Copyright 2002 Wiley Periodicals, Inc.

  4. Curcumin drug delivery by vanillin-chitosan coated with calcium ferrite hybrid nanoparticles as carrier.

    PubMed

    Kamaraj, Sriram; Palanisamy, Uma Maheswari; Kadhar Mohamed, Meera Sheriffa Begum; Gangasalam, Arthanareeswaran; Maria, Gover Antoniraj; Kandasamy, Ruckmani

    2018-04-30

    The aim of the present investigation is the development, optimization and characterization of curcumin-loaded hybrid nanoparticles of vanillin-chitosan coated with super paramagnetic calcium ferrite. The functionally modified vanillin-chitosan was prepared by the Schiff base reaction to enhance the hydrophobic drug encapsulation efficiency. Calcium ferrite (CFNP) nano particles were added to the vanillin modified chitosan to improve the biocompatibility. The vanillin-chitosan-CFNP, hybrid nanoparticle carrier was obtained by ionic gelation method. Characterizations of the hybrid materials were performed by XRD, FTIR, 1 H NMR, TGA, AFM and SEM techniques to ensure the modifications on the chitosan material. Taguchi method was applied to optimize the drug (curcumin) encapsulation efficiency by varying the drug to chitosan-vanillin, CFNP to chitosan-vanillin and TPP (sodium tripolyphospate) to chitosan-vanillin ratios. The maximum encapsulation efficiency was obtained as 98.3% under the conditions of 0.1, 0.75 and 1.0 for the drug to chitosan-vanillin, CFNP to chitosan-vanillin and TPP to chitosan-vanillin ratios, respectively. The curcumin release was performed at various pH, initial drug loading concentrations and magnetic fields. The drug release mechanism was predicted by fitting the experimental kinetic data with various drug release models. The drug release profiles showed the best fit with Higuchi model under the most of conditions. The drug release mechanism followed both non-Fickian diffusion and case II transport mechanism for chitosan, however the non-Fickian diffusion mechanism was followed for the vanillin modified chitosan. The biocompatibility of the hybrid material was tested using L929 fibroblast cells. The cytotoxicity test was performed against MCF-7 breast cancer cell line to check the anticancer property of the hybrid nano carrier with the curcumin drug. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Assessment of NASA Dual Microstructure Heat Treatment Method Utilizing Ladis SuperCooler(trademark) Cooling Technology

    NASA Technical Reports Server (NTRS)

    Lemsky, Joe; Gayda, John (Technical Monitor)

    2005-01-01

    The intent of this investigation was to demonstrate the NASA DMHT method with a tailored Ladish SuperCool(Trademark) cooling method on a Rolls-Royce AE2100, stage 3 disk shape. One disk each of two alloys, LSHR and ME3, were successfully converted as shown by macrostructure. DMHT heating time selection and cooling rate was aided by finite element modeling analysis. Residual stresses were also predicted and reported. Detailed microstructural analysis was performed by NASA and included in this report. Mechanical property characterization, also planned by NASA, is incomplete at this time and not part of this report.

  6. Integrated workflow for characterizing and modeling fracture network in unconventional reservoirs using microseismic data

    NASA Astrophysics Data System (ADS)

    Ayatollahy Tafti, Tayeb

    We develop a new method for integrating information and data from different sources. We also construct a comprehensive workflow for characterizing and modeling a fracture network in unconventional reservoirs, using microseismic data. The methodology is based on combination of several mathematical and artificial intelligent techniques, including geostatistics, fractal analysis, fuzzy logic, and neural networks. The study contributes to scholarly knowledge base on the characterization and modeling fractured reservoirs in several ways; including a versatile workflow with a novel objective functions. Some the characteristics of the methods are listed below: 1. The new method is an effective fracture characterization procedure estimates different fracture properties. Unlike the existing methods, the new approach is not dependent on the location of events. It is able to integrate all multi-scaled and diverse fracture information from different methodologies. 2. It offers an improved procedure to create compressional and shear velocity models as a preamble for delineating anomalies and map structures of interest and to correlate velocity anomalies with fracture swarms and other reservoir properties of interest. 3. It offers an effective way to obtain the fractal dimension of microseismic events and identify the pattern complexity, connectivity, and mechanism of the created fracture network. 4. It offers an innovative method for monitoring the fracture movement in different stages of stimulation that can be used to optimize the process. 5. Our newly developed MDFN approach allows to create a discrete fracture network model using only microseismic data with potential cost reduction. It also imposes fractal dimension as a constraint on other fracture modeling approaches, which increases the visual similarity between the modeled networks and the real network over the simulated volume.

  7. Structural characterization and mechanical performance of calcium phosphate scaffolds and natural bones: a comparative study.

    PubMed

    Fuentes, Elena; Sáenz de Viteri, Virginia; Igartua, Amaya; Martinetti, Roberta; Dolcini, Laura; Barandika, Gotzone

    2010-01-01

    The knowledge of the mechanical response of bones and their substitutes is pertinent to numerous medical problems. Understanding the effects of mechanical influence on the body is the first step toward developing innovative treatment and rehabilitation concepts for orthopedic disorders. This was a comparative study of 5 synthetic scaffolds based on porous calcium phosphates and natural bones, with regard to their microstructural, chemical, and mechanical characterizations. The structural and chemical characterizations of the scaffolds were examined by means of X-ray diffraction, scanning electron microscopy, and X-ray spectroscopy analysis. The mechanical characterization of bones and bone graft biomaterials was carried out through compression tests using samples with noncomplex geometry. Analysis of the chemical composition, surface features, porosity, and compressive strength indicates that hydroxyapatite-based materials and trabecular bone have similar properties.

  8. Characterization of Sodium Thermal Hydraulics with Optical Fiber Temperature Sensors

    NASA Astrophysics Data System (ADS)

    Weathered, Matthew Thomas

    The thermal hydraulic properties of liquid sodium make it an attractive coolant for use in Generation IV reactors. The liquid metal's high thermal conductivity and low Prandtl number increases efficiency in heat transfer at fuel rods and heat exchangers, but can also cause features such as high magnitude temperature oscillations and gradients in the coolant. Currently, there exists a knowledge gap in the mechanisms which may create these features and their effect on mechanical structures in a sodium fast reactor. Two of these mechanisms include thermal striping and thermal stratification. Thermal striping is the oscillating temperature field created by the turbulent mixing of non-isothermal flows. Usually this occurs at the reactor core outlet or in piping junctions and can cause thermal fatigue in mechanical structures. Meanwhile, thermal stratification results from large volumes of non-isothermal sodium in a pool type reactor, usually caused by a loss of coolant flow accident. This stratification creates buoyancy driven flow transients and high temperature gradients which can also lead to thermal fatigue in reactor structures. In order to study these phenomena in sodium, a novel method for the deployment of optical fiber temperature sensors was developed. This method promotes rapid thermal response time and high spatial temperature resolution in the fluid. The thermal striping and stratification behavior in sodium may be experimentally analyzed with these sensors with greater fidelity than ever before. Thermal striping behavior at a junction of non-isothermal sodium was fully characterized with optical fibers. An experimental vessel was hydrodynamically scaled to model thermal stratification in a prototypical sodium reactor pool. Novel auxiliary applications of the optical fiber temperature sensors were developed throughout the course of this work. One such application includes local convection coefficient determination in a vessel with the corollary application of level sensing. Other applications were cross correlation velocimetry to determine bulk sodium flow rate and the characterization of coherent vortical structures in sodium with temperature frequency data. The data harvested, instrumentation developed and techniques refined in this work will help in the design of more robust reactors as well as validate computational models for licensing sodium fast reactors.

  9. Picosecond Pulsed Laser Ablation for the Surface Preparation of Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Palmieri, Frank; Ledesma, Rodolfo; Fulton, Tayler; Arthur, Alexandria; Eldridge, Keishara; Thibeault, Sheila; Lin, Yi; Wohl, Chris; Connell, John

    2017-01-01

    As part of a technical challenge under the Advanced Composites Program, methods for improving pre-bond process control for aerospace composite surface treatments and inspections, in conjunction with Federal Aviation Administration guidelines, are under investigation. The overall goal is to demonstrate high fidelity, rapid and reproducible surface treatment and surface characterization methods to reduce uncertainty associated with the bonding process. The desired outcomes are reliable bonded airframe structure, and reduced timeline to certification. In this work, laser ablation was conducted using a q-switched Nd:YVO4 laser capable of nominal pulse durations of 8 picoseconds (ps). Aerospace structural carbon fiber reinforced composites with an epoxy resin matrix were laser treated, characterized, processed into bonded assemblies and mechanically tested. The characterization of ablated surfaces were conducted using scanning electron microscopy (SEM), water contact angle (WCA) goniometry, micro laser induced breakdown spectroscopy (uLIBS), and electron spin resonance (ESR). The bond performance was assessed using a double cantilever beam (DCB) test with an epoxy adhesive. The surface characteristics and bond performance obtained from picosecond ablated carbon fiber reinforced plastics (CFRPs) are presented herein.

  10. A novel image-based quantitative method for the characterization of NETosis

    PubMed Central

    Zhao, Wenpu; Fogg, Darin K.; Kaplan, Mariana J.

    2015-01-01

    NETosis is a newly recognized mechanism of programmed neutrophil death. It is characterized by a stepwise progression of chromatin decondensation, membrane rupture, and release of bactericidal DNA-based structures called neutrophil extracellular traps (NETs). Conventional ‘suicidal’ NETosis has been described in pathogenic models of systemic autoimmune disorders. Recent in vivo studies suggest that a process of ‘vital’ NETosis also exists, in which chromatin is condensed and membrane integrity is preserved. Techniques to assess ‘suicidal’ or ‘vital’ NET formation in a specific, quantitative, rapid and semiautomated way have been lacking, hindering the characterization of this process. Here we have developed a new method to simultaneously assess both ‘suicidal’ and ‘vital’ NETosis, using high-speed multi-spectral imaging coupled to morphometric image analysis, to quantify spontaneous NET formation observed ex-vivo or stimulus-induced NET formation triggered in vitro. Use of imaging flow cytometry allows automated, quantitative and rapid analysis of subcellular morphology and texture, and introduces the potential for further investigation using NETosis as a biomarker in pre-clinical and clinical studies. PMID:26003624

  11. Hybrid parameter identification of a multi-modal underwater soft robot.

    PubMed

    Giorgio-Serchi, F; Arienti, A; Corucci, F; Giorelli, M; Laschi, C

    2017-02-28

    We introduce an octopus-inspired, underwater, soft-bodied robot capable of performing waterborne pulsed-jet propulsion and benthic legged-locomotion. This vehicle consists for as much as 80% of its volume of rubber-like materials so that structural flexibility is exploited as a key element during both modes of locomotion. The high bodily softness, the unconventional morphology and the non-stationary nature of its propulsion mechanisms require dynamic characterization of this robot to be dealt with by ad hoc techniques. We perform parameter identification by resorting to a hybrid optimization approach where the characterization of the dual ambulatory strategies of the robot is performed in a segregated fashion. A least squares-based method coupled with a genetic algorithm-based method is employed for the swimming and the crawling phases, respectively. The outcomes bring evidence that compartmentalized parameter identification represents a viable protocol for multi-modal vehicles characterization. However, the use of static thrust recordings as the input signal in the dynamic determination of shape-changing self-propelled vehicles is responsible for the critical underestimation of the quadratic drag coefficient.

  12. Electro-mechanical properties of hydrogel composites with micro- and nano-cellulose fillers

    NASA Astrophysics Data System (ADS)

    N, Mohamed Shahid U.; Deshpande, Abhijit P.; Lakshmana Rao, C.

    2015-09-01

    Stimuli responsive cross-linked hydrogels are of great interest for applications in diverse fields such as sensors and biomaterials. In this study, we investigate polymer composites filled with cellulose fillers. The celluloses used in making the composites were a microcrystalline cellulose of commercial grade and cellulose nano-whiskers obtained through acid hydrolysis of microcrystalline cellulose. The filler concentration was varied and corresponding physical, mechanical and electro-mechanical characterization was carried out. The electro-mechanical properties were determined using a quasi-static method. The fillers not only enhance the mechanical properties of the composite by providing better reinforcement but also provide a quantitative electric potential in the composite. The measurements reveal that the polymer composites prepared from two different cellulose fillers possess a quantitative electric potential which can be utilized in biomedical applications. It is argued that the mechanism behind the quantitative electric potential in the composites is due to streaming potentials arising due to electrical double layer formation.

  13. The fluid mechanics of the inner-ear disorder BPPV

    NASA Astrophysics Data System (ADS)

    Weidman, Michael; Squires, Todd; Stone, Howard

    2001-11-01

    The inner ear of mammals contains fluid-filled semi-circular canals with a flexible sensory membrane (called a cupula) which detects rotational acceleration. Benign Paroxysmal Positional Vertigo (BPPV) is one of the most common disorders of this system diagnosed today, and is characterized by symptoms of dizziness and nausea brought on by sudden changes in head orientation. BPPV is believed to have a mechanical (rather than nervous) origin, in which dense particles called otoconia settle into the canals and trigger false sensations of rotational acceleration. Several qualitative mechanisms have been proposed by the medical community, which we examine from a fluid mechanical standpoint. Traditionally, the semicircular canal and the cupula are modeled as an over-damped torsional pendulum with a driving force provided by rotational acceleration. We extend this model to include the time-dependent mechanical response owing to sedimentation of the otoconia. We make qualitative and quantitative predictions associated with the proposed mechanisms, with an eye towards differentiating between them and perhaps towards more effective diagnostic and therapeutic methods.

  14. Materials and Manufacturing Technology Directorate Thermal Sciences and Materials Branch (Overview)

    DTIC Science & Technology

    2010-09-01

    Molecular Mechanics for thermo-mechanical response Materials Characterization • CNT modified durable thermal interface ( DTI ) • MEMS-based RTD micro...stabilization. Surface Characterization by Atomic Force Microscopy: Probing Thermal, Electrical, and Mechanical Properties Heater Current Path Anchor Leg 50 µm

  15. Kinetic study and mechanism of Niclosamide degradation.

    PubMed

    Zaazaa, Hala E; Abdelrahman, Maha M; Ali, Nouruddin W; Magdy, Maimana A; Abdelkawy, M

    2014-11-11

    A spectrophotometric kinetic study of Niclosamide alkaline degradation as a function of drug concentration, alkaline concentration and temperature has been established utilizing double divisor-ratio spectra spectrophotometric method. The developed method allowed determination of Niclosamide in presence of its alkaline degradation products; namely; 2-chloro-4-nitro aniline (DEG I) and 5-chloro salicylic acid (DEG II) with characterization of its degradation mechanism. It was found that degradation kinetic of Niclosamide followed pseudo-first order under the established experimental conditions with a degradation rate constant (k) of 0.0829 mol/h and half life (t1/2) of 8.35 h. The overall degradation rate constant as a function of the temperature under the given conditions obeyed Arrhenius equation where the activation energy was calculated to be 3.41 kcal/mol. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Interactive Social Neuroscience to Study Autism Spectrum Disorder

    PubMed Central

    Rolison, Max J.; Naples, Adam J.; McPartland, James C.

    2015-01-01

    Individuals with autism spectrum disorder (ASD) demonstrate difficulty with social interactions and relationships, but the neural mechanisms underlying these difficulties remain largely unknown. While social difficulties in ASD are most apparent in the context of interactions with other people, most neuroscience research investigating ASD have provided limited insight into the complex dynamics of these interactions. The development of novel, innovative “interactive social neuroscience” methods to study the brain in contexts with two interacting humans is a necessary advance for ASD research. Studies applying an interactive neuroscience approach to study two brains engaging with one another have revealed significant differences in neural processes during interaction compared to observation in brain regions that are implicated in the neuropathology of ASD. Interactive social neuroscience methods are crucial in clarifying the mechanisms underlying the social and communication deficits that characterize ASD. PMID:25745371

  17. Interactive social neuroscience to study autism spectrum disorder.

    PubMed

    Rolison, Max J; Naples, Adam J; McPartland, James C

    2015-03-01

    Individuals with autism spectrum disorder (ASD) demonstrate difficulty with social interactions and relationships, but the neural mechanisms underlying these difficulties remain largely unknown. While social difficulties in ASD are most apparent in the context of interactions with other people, most neuroscience research investigating ASD have provided limited insight into the complex dynamics of these interactions. The development of novel, innovative "interactive social neuroscience" methods to study the brain in contexts with two interacting humans is a necessary advance for ASD research. Studies applying an interactive neuroscience approach to study two brains engaging with one another have revealed significant differences in neural processes during interaction compared to observation in brain regions that are implicated in the neuropathology of ASD. Interactive social neuroscience methods are crucial in clarifying the mechanisms underlying the social and communication deficits that characterize ASD.

  18. Development and pharmacological characterization of a model of sleep disruption-induced hypersensitivity in the rat.

    PubMed

    Wodarski, R; Schuh-Hofer, S; Yurek, D A; Wafford, K A; Gilmour, G; Treede, R-D; Kennedy, J D

    2015-04-01

    Sleep disturbance is a commonly reported co-morbidity in chronic pain patients, and conversely, disruption of sleep can cause acute and long-lasting hypersensitivity to painful stimuli. The underlying mechanisms of sleep disruption-induced pain hypersensitivity are poorly understood. Confounding factors of previous studies have been the sleep disruption protocols, such as the 'pedestal over water' or 'inverted flower pot' methods, that can cause large stress responses and therefore may significantly affect pain outcome measures. Sleep disruption was induced by placing rats for 8 h in a slowly rotating cylindrical cage causing arousal via the righting reflex. Mechanical (Von Frey filaments) and thermal (Hargreaves) nociceptive thresholds were assessed, and plasma corticosterone levels were measured (mass spectroscopy). Sleep disruption-induced hypersensitivity was pharmacologically characterized with drugs relevant for pain treatment, including gabapentin (30 mg/kg and 50 mg/kg), Ica-6p (Kv7.2/7.3 potassium channel opener; 10 mg/kg), ibuprofen (30 mg/kg and 100 mg/kg) and amitriptyline (10 mg/kg). Eight hours of sleep disruption caused robust mechanical and heat hypersensitivity in the absence of a measurable change in plasma corticosterone levels. Gabapentin had no effect on reduced nociceptive thresholds. Ibuprofen attenuated mechanical thresholds, while Ica-6p and amitriptyline attenuated only reduced thermal nociceptive thresholds. These results show that acute and low-stress sleep disruption causes mechanical and heat hypersensitivity in rats. Mechanical and heat hypersensitivity exhibited differential sensitivity to pharmacological agents, thus suggesting dissociable mechanisms for those two modalities. Ultimately, this model could help identify underlying mechanisms linking sleep disruption and hypersensitivity. © 2014 European Pain Federation - EFIC®

  19. PHARYNGEAL SWALLOWING MECHANICS SECONDARY TO HEMISPHERIC STROKE

    PubMed Central

    May, Nelson H; Pisegna, Jessica M; Marchina, Sarah; Langmore, Susan E; Kumar, Sandeep; Pearson, William G

    2016-01-01

    Goals Computational Analysis of Swallowing Mechanics is a method that utilizes multivariate shape change analysis to uncover covariant elements of pharyngeal swallowing mechanics associated with impairment using videofluoroscopic swallowing studies. The goals of this preliminary study were to (1) characterize swallowing mechanics underlying stroke related dysphagia, (2) decipher the impact of left and right hemispheric stroke on pharyngeal swallowing mechanics, and (3) determine pharyngeal swallowing mechanics associated with penetration-aspiration status. Materials and Methods Videofluoroscopic swallowing studies of 18 dysphagic patients with hemispheric infarcts and age and gender matched controls were selected from well-controlled data sets. Patient data including laterality, and penetration-aspiration status was collected. Coordinates mapping muscle group action during swallowing were collected from videos. Multivariate morphometric analyses of coordinates associated with stroke, affected hemisphere, and penetration-aspiration status were performed. Findings Pharyngeal swallowing mechanics differed significantly in the following comparisons: stroke vs. controls (D=2.19, p<.0001); right hemispheric stroke vs. controls (D=3.64, p<.0001); left hemispheric stroke vs. controls (D=2.06, p<.0001); right hemispheric stroke vs. left hemispheric stroke (D=2.89, p<.0001); and penetration-aspiration vs. within normal limits (D=2.25, p<.0001). Differences in pharyngeal swallowing mechanics associated with each comparison were visualized using eigenvectors. Conclusion While current literature focuses on timing changes in stroke-related dysphagia, this data suggests that mechanical changes are also functionally important. Pharyngeal swallowing mechanics differed by affected hemisphere and penetration-aspiration status. Computational Analysis of Swallowing Mechanics can be used to identify patient specific swallowing impairment associated with stroke injury that could help guide rehabilitation strategies to improve swallowing outcomes. PMID:27913200

  20. Environmentally-controlled Microtensile Testing of Mechanically-adaptive Polymer Nanocomposites for ex vivo Characterization

    PubMed Central

    Hess, Allison E.; Potter, Kelsey A.; Tyler, Dustin J.; Zorman, Christian A.; Capadona, Jeffrey R.

    2013-01-01

    Implantable microdevices are gaining significant attention for several biomedical applications1-4. Such devices have been made from a range of materials, each offering its own advantages and shortcomings5,6. Most prominently, due to the microscale device dimensions, a high modulus is required to facilitate implantation into living tissue. Conversely, the stiffness of the device should match the surrounding tissue to minimize induced local strain7-9. Therefore, we recently developed a new class of bio-inspired materials to meet these requirements by responding to environmental stimuli with a change in mechanical properties10-14. Specifically, our poly(vinyl acetate)-based nanocomposite (PVAc-NC) displays a reduction in stiffness when exposed to water and elevated temperatures (e.g. body temperature). Unfortunately, few methods exist to quantify the stiffness of materials in vivo15, and mechanical testing outside of the physiological environment often requires large samples inappropriate for implantation. Further, stimuli-responsive materials may quickly recover their initial stiffness after explantation. Therefore, we have developed a method by which the mechanical properties of implanted microsamples can be measured ex vivo, with simulated physiological conditions maintained using moisture and temperature control13,16,17. To this end, a custom microtensile tester was designed to accommodate microscale samples13,17 with widely-varying Young's moduli (range of 10 MPa to 5 GPa). As our interests are in the application of PVAc-NC as a biologically-adaptable neural probe substrate, a tool capable of mechanical characterization of samples at the microscale was necessary. This tool was adapted to provide humidity and temperature control, which minimized sample drying and cooling17. As a result, the mechanical characteristics of the explanted sample closely reflect those of the sample just prior to explantation. The overall goal of this method is to quantitatively assess the in vivo mechanical properties, specifically the Young's modulus, of stimuli-responsive, mechanically-adaptive polymer-based materials. This is accomplished by first establishing the environmental conditions that will minimize a change in sample mechanical properties after explantation without contributing to a reduction in stiffness independent of that resulting from implantation. Samples are then prepared for implantation, handling, and testing (Figure 1A). Each sample is implanted into the cerebral cortex of rats, which is represented here as an explanted rat brain, for a specified duration (Figure 1B). At this point, the sample is explanted and immediately loaded into the microtensile tester, and then subjected to tensile testing (Figure 1C). Subsequent data analysis provides insight into the mechanical behavior of these innovative materials in the environment of the cerebral cortex. PMID:23995288

  1. Acquisition of Dynamic Mechanical Analyzer and Stress-Controlled Rheometer for the Mechanical Characterization of Advanced Materials

    DTIC Science & Technology

    2017-06-27

    Distribution Unlimited UU UU UU UU 27-06-2017 1-May-2016 30-Apr-2017 Final Report: Acquisition of Dynamic Mechanical Analyzer and Stress -ControlledRheometer...and Stress -Controlled Rheometer for the Mechanical Characterization of Advanced Materials ARO Grant # W911NF-16-1-0205 K. Wagener (PI) Chemistry

  2. Preparation and Characterization of Microencapsulated Phase Change Materials for Use in Building Applications

    PubMed Central

    Giro-Paloma, Jessica; Al-Shannaq, Refat; Fernández, Ana Inés; Farid, Mohammed M.

    2015-01-01

    A method for preparing and characterizing microencapsulated phase change materials (MPCM) was developed. A comparison with a commercial MPCM is also presented. Both MPCM contained paraffin wax as PCM with acrylic shell. The melting temperature of the PCM was around 21 °C, suitable for building applications. The M-2 (our laboratory made sample) and Micronal® DS 5008 X (BASF) samples were characterized using SEM, DSC, nano-indentation technique, and Gas Chromatography/Mass spectrometry (GC-MS). Both samples presented a 6 μm average size and a spherical shape. Thermal energy storage (TES) capacities were 111.73 J·g−1 and 99.3 J·g−1 for M-2 and Micronal® DS 5008 X, respectively. Mechanical characterization of the samples was performed by nano-indentation technique in order to determine the elastic modulus (E), load at maximum displacement (Pm), and displacement at maximum load (hm), concluding that M-2 presented slightly better mechanical properties. Finally, an important parameter for considering use in buildings is the release of volatile organic compounds (VOC’s). This characteristic was studied at 65 °C by CG-MS. Both samples showed VOC’s emission after 10 min of heating, however peaks intensity of VOC’s generated from M-2 microcapsules showed a lower concentration than Micronal® DS 5008 X. PMID:28787812

  3. Unraveling Deformation Mechanisms in Gradient Structured Metals

    NASA Astrophysics Data System (ADS)

    Moering, Jordan Alexander

    Gradient structures have demonstrated high strength and high ductility, introducing new mechanisms to challenge conventional mechanics. This work develops a method for characterizing the shear strain in gradient structured steel and presents evidence of a texture gradient that develops in Surface Mechanical Attrition Treatment (SMAT). Mechanics underlying some theories of the strengthening mechanisms in gradient structured metals are introduced, followed by the fabrication and testing of gradient structured aluminum rod. The round geometry is intrinsically different from its flat counterparts, which leads to a multiaxial stress state evolving in tension. The aluminum exhibits strengthening beyond rule of mixtures, and texture evolution in the post-mortem sample indicates that out of plane stresses operate within the gradient. Finally, another gradient structured aluminum rod is shown to exhibit higher strength and higher elongation to failure in a variety of sample diameters and processing conditions. The GND density and microstructural evolution showed no significant changes during mechanical testing, and high resolution strain mapping was successfully completed within the core of the material. These discoveries and contributions to the field should help continue unraveling the deformation mechanisms of gradient structured metals.

  4. Characterizing the Temporal and Spatial Distribution of Earthquake Swarms in the Puerto Rico - Virgin Island Block

    NASA Astrophysics Data System (ADS)

    Hernandez, F. J.; Lopez, A. M.; Vanacore, E. A.

    2017-12-01

    The presence of earthquake swarms and clusters in the north and northeast of the island of Puerto Rico in the northeastern Caribbean have been recorded by the Puerto Rico Seismic Network (PRSN) since it started operations in 1974. Although clusters in the Puerto Rico-Virgin Island (PRVI) block have been observed for over forty years, the nature of their enigmatic occurrence is still poorly understood. In this study, the entire seismic catalog of the PRSN, of approximately 31,000 seismic events, has been limited to a sub-set of 18,000 events located all along north of Puerto Rico in an effort to characterize and understand the underlying mechanism of these clusters. This research uses two de-clustering methods to identify cluster events in the PRVI block. The first method, known as Model Independent Stochastic Declustering (MISD), filters the catalog sub-set into cluster and background seismic events, while the second method uses a spatio-temporal algorithm applied to the catalog in order to link the separate seismic events into clusters. After using these two methods, identified clusters were classified into either earthquake swarms or seismic sequences. Once identified, each cluster was analyzed to identify correlations against other clusters in their geographic region. Results from this research seek to : (1) unravel their earthquake clustering behavior through the use of different statistical methods and (2) better understand the mechanism for these clustering of earthquakes. Preliminary results have allowed to identify and classify 128 clusters categorized in 11 distinctive regions based on their centers, and their spatio-temporal distribution have been used to determine intra- and interplate dynamics.

  5. Fabrication and electrical characterization of partially metallized vias fabricated by inkjet

    NASA Astrophysics Data System (ADS)

    Khorramdel, B.; Mäntysalo, M.

    2016-04-01

    Through silicon vias (TSVs), acting as vertical interconnections, play an important role in micro-electro-mechanical systems (MEMS) 3D wafer level packaging. Today, taking advantage of nanoparticle inks, inkjet technologies as local filling methods could be used to plate the inside the vias with a conductive material, rather than using a current method, such as chemical vapor deposition or electrolytic growth. This could decrease the processing time, cost and waste material produced. In this work, we have fabricated and demonstrated electrical characterization of TSVs with a top diameter of 85 μm, and partially metallized on their inside walls using silver nanoparticle ink and drop-on-demand inkjet printing. Electrical measurement showed that the resistance of a single via with a void free coverage from top to bottom could be less than 4 Ω, which is still acceptable for MEMS applications.

  6. On the role of self-adjointness in the continuum formulation of topological quantum phases

    NASA Astrophysics Data System (ADS)

    Tanhayi Ahari, Mostafa; Ortiz, Gerardo; Seradjeh, Babak

    2016-11-01

    Topological quantum phases of matter are characterized by an intimate relationship between the Hamiltonian dynamics away from the edges and the appearance of bound states localized at the edges of the system. Elucidating this correspondence in the continuum formulation of topological phases, even in the simplest case of a one-dimensional system, touches upon fundamental concepts and methods in quantum mechanics that are not commonly discussed in textbooks, in particular the self-adjoint extensions of a Hermitian operator. We show how such topological bound states can be derived in a prototypical one-dimensional system. Along the way, we provide a pedagogical exposition of the self-adjoint extension method as well as the role of symmetries in correctly formulating the continuum, field-theory description of topological matter with boundaries. Moreover, we show that self-adjoint extensions can be characterized generally in terms of a conserved local current associated with the self-adjoint operator.

  7. Optical stress generator and detector

    DOEpatents

    Maris, Humphrey J.; Stoner, Robert J

    2001-01-01

    Disclosed is a system for the characterization of thin films and interfaces between thin films through measurements of their mechanical and thermal properties. In the system light is absorbed in a thin film or in a structure made up of several thin films, and the change in optical transmission or reflection is measured and analyzed. The change in reflection or transmission is used to give information about the ultrasonic waves that are produced in the structure. The information that is obtained from the use of the measurement methods and apparatus of this invention can include: (a) a determination of the thickness of thin films with a speed and accuracy that is improved compared to earlier methods; (b) a determination of the thermal, elastic, and optical properties of thin films; (c) a determination of the stress in thin films; and (d) a characterization of the properties of interfaces, including the presence of roughness and defects.

  8. Optical stress generator and detector

    DOEpatents

    Maris, Humphrey J.; Stoner, Robert J.

    1998-01-01

    Disclosed is a system for the characterization of thin films and interfaces between thin films through measurements of their mechanical and thermal properties. In the system light is absorbed in a thin film or in a structure made up of several thin films, and the change in optical transmission or reflection is measured and analyzed. The change in reflection or transmission is used to give information about the ultrasonic waves that are produced in the structure. The information that is obtained from the use of the measurement methods and apparatus of this invention can include: (a) a determination of the thickness of thin films with a speed and accuracy that is improved compared to earlier methods; (b) a determination of the thermal, elastic, and optical properties of thin films; (c) a determination of the stress in thin films; and (d) a characterization of the properties of interfaces, including the presence of roughness and defects.

  9. Optical stress generator and detector

    DOEpatents

    Maris, H.J.; Stoner, R.J.

    1998-05-05

    Disclosed is a system for the characterization of thin films and interfaces between thin films through measurements of their mechanical and thermal properties. In the system light is absorbed in a thin film or in a structure made up of several thin films, and the change in optical transmission or reflection is measured and analyzed. The change in reflection or transmission is used to give information about the ultrasonic waves that are produced in the structure. The information that is obtained from the use of the measurement methods and apparatus of this invention can include: (a) a determination of the thickness of thin films with a speed and accuracy that is improved compared to earlier methods; (b) a determination of the thermal, elastic, and optical properties of thin films; (c) a determination of the stress in thin films; and (d) a characterization of the properties of interfaces, including the presence of roughness and defects. 32 figs.

  10. Optical stress generator and detector

    DOEpatents

    Maris, Humphrey J.; Stoner, Robert J

    2002-01-01

    Disclosed is a system for the characterization of thin films and interfaces between thin films through measurements of their mechanical and thermal properties. In the system light is absorbed in a thin film or in a structure made up of several thin films, and the change in optical transmission or reflection is measured and analyzed. The change in reflection or transmission is used to give information about the ultrasonic waves that are produced in the structure. The information that is obtained from the use of the measurement methods and apparatus of this invention can include: (a) a determination of the thickness of thin films with a speed and accuracy that is improved compared to earlier methods; (b) a determination of the thermal, elastic, and optical properties of thin films; (c) a determination of the stress in thin films; and (d) a characterization of the properties of interfaces, including the presence of roughness and defects.

  11. Optical stress generator and detector

    DOEpatents

    Maris, Humphrey J.; Stoner, Robert J

    1999-01-01

    Disclosed is a system for the characterization of thin films and interfaces between thin films through measurements of their mechanical and thermal properties. In the system light is absorbed in a thin film or in a structure made up of several thin films, and the change in optical transmission or reflection is measured and analyzed. The change in reflection or transmission is used to give information about the ultrasonic waves that are produced in the structure. The information that is obtained from the use of the measurement methods and apparatus of this invention can include: (a) a determination of the thickness of thin films with a speed and accuracy that is improved compared to earlier methods; (b) a determination of the thermal, elastic, and optical properties of thin films; (c) a determination of the stress in thin films; and (d) a characterization of the properties of interfaces, including the presence of roughness and defects.

  12. Multifractal Fluctuations of Jiuzhaigou Tourists Before and after Wenchuan Earthquake

    NASA Astrophysics Data System (ADS)

    Shi, Kai; Li, Wen-Yong; Liu, Chun-Qiong; Huang, Zheng-Wen

    2013-03-01

    In this work, multifractal methods have been successfully used to characterize the temporal fluctuations of daily Jiuzhai Valley domestic and foreign tourists before and after Wenchuan earthquake in China. We used multifractal detrending moving average method (MF-DMA). It showed that Jiuzhai Valley tourism markets are characterized by long-term memory and multifractal nature in. Moreover, the major sources of multifractality are studied. Based on the concept of sliding window, the time evolutions of the multifractal behavior of domestic and foreign tourists were analyzed and the influence of Wenchuan earthquake on Jiuzhai Valley tourism system dynamics were evaluated quantitatively. The study indicates that the inherent dynamical mechanism of Jiuzhai Valley tourism system has not been fundamentally changed from long views, although Jiuzhai Valley tourism system was seriously affected by the Wenchuan earthquake. Jiuzhai Valley tourism system has the ability to restore to its previous state in the short term.

  13. Novel Intrinsic Ignition Method Measuring Local-Global Integration Characterizes Wakefulness and Deep Sleep

    PubMed Central

    Tagliazucchi, Enzo; Sanjuán, Ana

    2017-01-01

    Abstract A precise definition of a brain state has proven elusive. Here, we introduce the novel local-global concept of intrinsic ignition characterizing the dynamical complexity of different brain states. Naturally occurring intrinsic ignition events reflect the capability of a given brain area to propagate neuronal activity to other regions, giving rise to different levels of integration. The ignitory capability of brain regions is computed by the elicited level of integration for each intrinsic ignition event in each brain region, averaged over all events. This intrinsic ignition method is shown to clearly distinguish human neuroimaging data of two fundamental brain states (wakefulness and deep sleep). Importantly, whole-brain computational modelling of this data shows that at the optimal working point is found where there is maximal variability of the intrinsic ignition across brain regions. Thus, combining whole brain models with intrinsic ignition can provide novel insights into underlying mechanisms of brain states. PMID:28966977

  14. Molecular diagnostics for the detection and characterization of microbial pathogens.

    PubMed

    Procop, Gary W

    2007-09-01

    New and advanced methods of molecular diagnostics are changing the way we practice clinical microbiology, which affects the practice of medicine. Signal amplification and real-time nucleic acid amplification technologies offer a sensitive and specific result with a more rapid turnaround time than has ever before been possible. Numerous methods of postamplification analysis afford the simultaneous detection and differentiation of numerous microbial pathogens, their mechanisms of resistance, and the construction of disease-specific assays. The technical feasibility of these assays has already been demonstrated. How these new, often more expensive tests will be incorporated into routine practice and the impact they will have on patient care remain to be determined. One of the most attractive uses for such techniques is to achieve a more rapid characterization of the infectious agent so that a narrower-spectrum antimicrobial agent may be used, which should have an impact on resistance patterns.

  15. Protein vivisection reveals elusive intermediates in folding

    PubMed Central

    Zheng, Zhongzhou; Sosnick, Tobin R.

    2010-01-01

    Although most folding intermediates escape detection, their characterization is crucial to the elucidation of folding mechanisms. Here we outline a powerful strategy to populate partially unfolded intermediates: A buried aliphatic residue is substituted with a charged residue (e.g., Leu→Glu−) to destabilize and unfold a specific region of the protein. We apply this strategy to Ubiquitin, reversibly trapping a folding intermediate in which the β5 strand is unfolded. The intermediate refolds to a native-like structure upon charge neutralization under mildly acidic conditions. Characterization of the trapped intermediate using NMR and hydrogen exchange methods identifies a second folding intermediate and reveals the order and free energies of the two major folding events on the native side of the rate-limiting step. This general strategy may be combined with other methods and have broad applications in the study of protein folding and other reactions that require trapping of high energy states. PMID:20144618

  16. Novel Intrinsic Ignition Method Measuring Local-Global Integration Characterizes Wakefulness and Deep Sleep.

    PubMed

    Deco, Gustavo; Tagliazucchi, Enzo; Laufs, Helmut; Sanjuán, Ana; Kringelbach, Morten L

    2017-01-01

    A precise definition of a brain state has proven elusive. Here, we introduce the novel local-global concept of intrinsic ignition characterizing the dynamical complexity of different brain states. Naturally occurring intrinsic ignition events reflect the capability of a given brain area to propagate neuronal activity to other regions, giving rise to different levels of integration. The ignitory capability of brain regions is computed by the elicited level of integration for each intrinsic ignition event in each brain region, averaged over all events. This intrinsic ignition method is shown to clearly distinguish human neuroimaging data of two fundamental brain states (wakefulness and deep sleep). Importantly, whole-brain computational modelling of this data shows that at the optimal working point is found where there is maximal variability of the intrinsic ignition across brain regions. Thus, combining whole brain models with intrinsic ignition can provide novel insights into underlying mechanisms of brain states.

  17. Preparation and Characterization of Ato Nanoparticles by Coprecipitation with Modified Drying Method

    NASA Astrophysics Data System (ADS)

    Liu, Shimin; Liang, Dongdong; Liu, Jindong; Jiang, Weiwei; Liu, Chaoqian; Ding, Wanyu; Wang, Hualin; Wang, Nan

    Antimony-doped tin oxide (ATO) nanoparticles were prepared by coprecipitation by packing drying and traditional direct drying (for comparison) methods. The as-prepared ATO nanoparticles were characterized by TG, XRD, EDS, TEM, HRTEM, BET, bulk density and electrical resistivity measurements. Results indicated that the ATO nanoparticles obtained by coprecipitation with direct drying method featured hard-agglomerated morphology, high bulk density, low surface area and low electrical resistivity, probably due to the direct liquid evaporation during drying, the fast shrinkage of the precipitate, the poor removal efficiency of liquid molecules and the hard agglomerate formation after calcination. Very differently, the ATO product obtained by the packing and drying method featured free-agglomerated morphology, low bulk density, high surface area and high electrical resistivity ascribed probably to the formed vapor cyclone environment and liquid evaporation-resistance, avoiding fast liquid removal and improving the removal efficiency of liquid molecules. The intrinsic formation mechanism of ATO nanoparticles from different drying methods was illustrated based on the dehydration process of ATO precipitates. Additionally, the packing and drying time played key roles in determining the bulk density, morphology and electrical conductivity of ATO nanoparticles.

  18. A material-sparing method for assessment of powder deformation characteristics using data collected during a single compression-decompression cycle.

    PubMed

    Katz, Jeffrey M; Roopwani, Rahul; Buckner, Ira S

    2013-10-01

    Compressibility profiles, or functions of solid fraction versus applied pressure, are used to provide insight into the fundamental mechanical behavior of powders during compaction. These functions, collected during compression (in-die) or post ejection (out-of-die), indicate the amount of pressure that a given powder formulation requires to be compressed to a given density or thickness. To take advantage of the benefits offered by both methods, the data collected in-die during a single compression-decompression cycle will be used to generate the equivalent of a complete out-of-die compressibility profile that has been corrected for both elastic and viscoelastic recovery of the powder. This method has been found to be both a precise and accurate means of evaluating out-of-die compressibility for four common tableting excipients. Using this method, a comprehensive characterization of powder compaction behavior, specifically in relation to plastic/brittle, elastic and viscoelastic deformation, can be obtained. Not only is the method computationally simple, but it is also material-sparing. The ability to characterize powder compressibility using this approach can improve productivity and streamline tablet development studies. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  19. A Method for Whole Protein Isolation from Human Cranial Bone

    PubMed Central

    Lyon, Sarah M.; Mayampurath, Anoop; Rogers, M. Rose; Wolfgeher, Donald J.; Fisher, Sean M.; Volchenboum, Samuel L.; He, Tong-Chuan; Reid, Russell R.

    2016-01-01

    The presence of the dense hydroxyapatite matrix within human bone limits the applicability of conventional protocols for protein extraction. This has hindered the complete and accurate characterization of the human bone proteome thus far, leaving many bone-related disorders poorly understood. We sought to refine an existing method of protein extraction from mouse bone to extract whole proteins of varying molecular weights from human cranial bone. Whole protein was extracted from human cranial suture by mechanically processing samples using a method that limits protein degradation by minimizing heat introduction to proteins. The presence of whole protein was confirmed by western blotting. Mass spectrometry was used to sequence peptides and identify isolated proteins. The data have been deposited to the ProteomeXchange with identifier PXD003215. Extracted proteins were characterized as both intra- and extracellular and had molecular weights ranging from 9.4-629 kDa. High correlation scores among suture protein spectral counts support the reproducibility of the method. Ontology analytics revealed proteins of myriad functions including mediators of metabolic processes and cell organelles. These results demonstrate a reproducible method for isolation of whole protein from human cranial bone, representing a large range of molecular weights, origins and functions. PMID:27677936

  20. Numerical emulation of Thru-Reflection-Line calibration for the de-embedding of Surface Acoustic Wave devices.

    PubMed

    Mencarelli, D; Djafari-Rouhani, B; Pennec, Y; Pitanti, A; Zanotto, S; Stocchi, M; Pierantoni, L

    2018-06-18

    In this contribution, a rigorous numerical calibration is proposed to characterize the excitation of propagating mechanical waves by interdigitated transducers (IDTs). The transition from IDT terminals to phonon waveguides is modeled by means of a general circuit representation that makes use of Scattering Matrix (SM) formalism. In particular, the three-step calibration approach called the Thru-Reflection-Line (TRL), that is a well-established technique in microwave engineering, has been successfully applied to emulate typical experimental conditions. The proposed procedure is suitable for the synthesis/optimization of surface-acoustic-wave (SAW) based devices: the TRL calibration allows to extract/de-embed the acoustic component, namely resonator or filter, from the outer IDT structure, regardless of complexity and size of the letter. We report, as a result, the hybrid scattering parameters of the IDT transition to a mechanical waveguide formed by a phononic crystal patterned on a piezoelectric AlN membrane, where the effect of a discontinuity from periodic to uniform mechanical waveguide is also characterized. In addition, to ensure the correctness of our numerical calculations, the proposed method has been validated by independent calculations.

  1. Decrease of Fisher information and the information geometry of evolution equations for quantum mechanical probability amplitudes.

    PubMed

    Cafaro, Carlo; Alsing, Paul M

    2018-04-01

    The relevance of the concept of Fisher information is increasing in both statistical physics and quantum computing. From a statistical mechanical standpoint, the application of Fisher information in the kinetic theory of gases is characterized by its decrease along the solutions of the Boltzmann equation for Maxwellian molecules in the two-dimensional case. From a quantum mechanical standpoint, the output state in Grover's quantum search algorithm follows a geodesic path obtained from the Fubini-Study metric on the manifold of Hilbert-space rays. Additionally, Grover's algorithm is specified by constant Fisher information. In this paper, we present an information geometric characterization of the oscillatory or monotonic behavior of statistically parametrized squared probability amplitudes originating from special functional forms of the Fisher information function: constant, exponential decay, and power-law decay. Furthermore, for each case, we compute both the computational speed and the availability loss of the corresponding physical processes by exploiting a convenient Riemannian geometrization of useful thermodynamical concepts. Finally, we briefly comment on the possibility of using the proposed methods of information geometry to help identify a suitable trade-off between speed and thermodynamic efficiency in quantum search algorithms.

  2. Decrease of Fisher information and the information geometry of evolution equations for quantum mechanical probability amplitudes

    NASA Astrophysics Data System (ADS)

    Cafaro, Carlo; Alsing, Paul M.

    2018-04-01

    The relevance of the concept of Fisher information is increasing in both statistical physics and quantum computing. From a statistical mechanical standpoint, the application of Fisher information in the kinetic theory of gases is characterized by its decrease along the solutions of the Boltzmann equation for Maxwellian molecules in the two-dimensional case. From a quantum mechanical standpoint, the output state in Grover's quantum search algorithm follows a geodesic path obtained from the Fubini-Study metric on the manifold of Hilbert-space rays. Additionally, Grover's algorithm is specified by constant Fisher information. In this paper, we present an information geometric characterization of the oscillatory or monotonic behavior of statistically parametrized squared probability amplitudes originating from special functional forms of the Fisher information function: constant, exponential decay, and power-law decay. Furthermore, for each case, we compute both the computational speed and the availability loss of the corresponding physical processes by exploiting a convenient Riemannian geometrization of useful thermodynamical concepts. Finally, we briefly comment on the possibility of using the proposed methods of information geometry to help identify a suitable trade-off between speed and thermodynamic efficiency in quantum search algorithms.

  3. Recurrence networks from multivariate signals for uncovering dynamic transitions of horizontal oil-water stratified flows

    NASA Astrophysics Data System (ADS)

    Gao, Zhong-Ke; Zhang, Xin-Wang; Jin, Ning-De; Donner, Reik V.; Marwan, Norbert; Kurths, Jürgen

    2013-09-01

    Characterizing the mechanism of drop formation at the interface of horizontal oil-water stratified flows is a fundamental problem eliciting a great deal of attention from different disciplines. We experimentally and theoretically investigate the formation and transition of horizontal oil-water stratified flows. We design a new multi-sector conductance sensor and measure multivariate signals from two different stratified flow patterns. Using the Adaptive Optimal Kernel Time-Frequency Representation (AOK TFR) we first characterize the flow behavior from an energy and frequency point of view. Then, we infer multivariate recurrence networks from the experimental data and investigate the cross-transitivity for each constructed network. We find that the cross-transitivity allows quantitatively uncovering the flow behavior when the stratified flow evolves from a stable state to an unstable one and recovers deeper insights into the mechanism governing the formation of droplets at the interface of stratified flows, a task that existing methods based on AOK TFR fail to work. These findings present a first step towards an improved understanding of the dynamic mechanism leading to the transition of horizontal oil-water stratified flows from a complex-network perspective.

  4. Characterizing the Collagen Fiber Orientation in Pericardial Leaflets Under Mechanical Loading Conditions

    PubMed Central

    Alavi, S. Hamed; Ruiz, Victor; Krasieva, Tatiana; Botvinick, Elliot L.; Kheradvar, Arash

    2014-01-01

    When implanted inside the body, bioprosthetic heart valve leaflets experience a variety of cyclic mechanical stresses such as shear stress due to blood flow when the valve is open, flexural stress due to cyclic opening and closure of the valve, and tensile stress when the valve is closed. These types of stress lead to a variety of failure modes. In either a natural valve leaflet or a processed pericardial tissue leaflet, collagen fibers reinforce the tissue and provide structural integrity such that the very thin leaflet can stand enormous loads related to cyclic pressure changes. The mechanical response of the leaflet tissue greatly depends on collagen fiber concentration, characteristics, and orientation. Thus, understating the microstructure of pericardial tissue and its response to dynamic loading is crucial for the development of more durable heart valve, and computational models to predict heart valves’ behavior. In this work, we have characterized the 3D collagen fiber arrangement of bovine pericardial tissue leaflets in response to a variety of different loading conditions under Second-Harmonic Generation Microscopy. This real-time visualization method assists in better understanding of the effect of cyclic load on collagen fiber orientation in time and space. PMID:23180029

  5. Modeling and measurement of tissue elastic moduli using optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Liang, Xing; Oldenburg, Amy L.; Crecea, Vasilica; Kalyanam, Sureshkumar; Insana, Michael F.; Boppart, Stephen A.

    2008-02-01

    Mechanical forces play crucial roles in tissue growth, patterning and development. To understand the role of mechanical stimuli, biomechanical properties are of great importance, as well as our ability to measure biomechanical properties of developing and engineered tissues. To enable these measurements, a novel non-invasive, micron-scale and high-speed Optical Coherence Elastography (OCE) system has been developed utilizing a titanium:sapphire based spectral-domain Optical Coherence Tomography (OCT) system and a mechanical wave driver. This system provides axial resolution of 3 microns, transverse resolution of 13 microns, and an acquisition rate as high as 25,000 lines per second. External lowfrequency vibrations are applied to the samples in the system. Step and sinusoidal steady-state responses are obtained to first characterize the OCE system and then characterize samples. Experimental results of M-mode OCE on silicone phantoms and human breast tissues are obtained, which correspond to biomechanical models developed for this analysis. Quantified results from the OCE system correspond directly with results from an indentation method from a commercial. With micron-scale resolution and a high-speed acquisition rate, our OCE system also has the potential to rapidly measure dynamic 3-D tissue biomechanical properties.

  6. Nonlinear Viscoelastic Characterization of the Porcine Spinal Cord

    PubMed Central

    Shetye, Snehal; Troyer, Kevin; Streijger, Femke; Lee, Jae H. T.; Kwon, Brian K.; Cripton, Peter; Puttlitz, Christian M.

    2014-01-01

    Although quasi-static and quasi-linear viscoelastic properties of the spinal cord have been reported previously, there are no published studies that have investigated the fully (strain-dependent) nonlinear viscoelastic properties of the spinal cord. In this study, stress relaxation experiments and dynamic cycling were performed on six fresh porcine lumbar cord specimens to examine their viscoelastic mechanical properties. The stress relaxation data were fitted to a modified superposition formulation and a novel finite ramp time correction technique was applied. The parameters obtained from this fitting methodology were used to predict the average dynamic cyclic viscoelastic behavior of the porcine cord. The data indicate that the porcine spinal cord exhibited fully nonlinear viscoelastic behavior. The average weighted RMSE for a Heaviside ramp fit was 2.8kPa, which was significantly greater (p < 0.001) than that of the nonlinear (comprehensive viscoelastic characterization (CVC) method) fit (0.365kPa). Further, the nonlinear mechanical parameters obtained were able to accurately predict the dynamic behavior, thus exemplifying the reliability of the obtained nonlinear parameters. These parameters will be important for future studies investigating various damage mechanisms of the spinal cord and studies developing high resolution finite elements models of the spine. PMID:24211612

  7. Fabrication and mechanical characterization of long and different penetrating length neural microelectrode arrays

    NASA Astrophysics Data System (ADS)

    Goncalves, S. B.; Peixoto, A. C.; Silva, A. F.; Correia, J. H.

    2015-05-01

    This paper presents a detailed description of the design, fabrication and mechanical characterization of 3D microelectrode arrays (MEA) that comprise high aspect-ratio shafts and different penetrating lengths of electrodes (from 3 mm to 4 mm). The array’s design relies only on a bulk silicon substrate dicing saw technology. The encapsulation process is accomplished by a medical epoxy resin and platinum is used as the transduction layer between the probe and neural tissue. The probe’s mechanical behaviour can significantly affect the neural tissue during implantation time. Thus, we measured the MEA maximum insertion force in an agar gel phantom and a porcine cadaver brain. Successful 3D MEA were produced with shafts of 3 mm, 3.5 mm and 4 mm in length. At a speed of 180 mm min-1, the MEA show maximum penetrating forces per electrode of 2.65 mN and 12.5 mN for agar and brain tissue, respectively. A simple and reproducible fabrication method was demonstrated, capable of producing longer penetrating shafts than previously reported arrays using the same fabrication technology. Furthermore, shafts with sharp tips were achieved in the fabrication process simply by using a V-shaped blade.

  8. 3D scan line method for identifying void fabric of granular materials

    NASA Astrophysics Data System (ADS)

    Theocharis, Alexandros I.; Vairaktaris, Emmanouil; Dafalias, Yannis F.

    2017-06-01

    Among other processes measuring the void phase of porous or fractured media, scan line approach is a simplified "graphical" method, mainly used in image processing related procedures. In soil mechanics, the application of scan line method is related to the soil fabric, which is important in characterizing the anisotropic mechanical response of soils. Void fabric is of particular interest, since graphical approaches are well defined experimentally and most of them can also be easily used in numerical experiments, like the scan line method. This is in contrast to the definition of fabric based on contact normal vectors that are extremely difficult to determine, especially considering physical experiments. The scan line method has been proposed by Oda et al [1] and implemented again by Ghedia and O'Sullivan [2]. A modified method based on DEM analysis instead of image measurements of fabric has been previously proposed and implemented by the authors in a 2D scheme [3-4]. In this work, a 3D extension of the modified scan line definition is presented using PFC 3D®. The results show clearly similar trends with the 2D case and the same behaviour of fabric anisotropy is presented.

  9. Bioengineered anterior cruciate ligament

    NASA Technical Reports Server (NTRS)

    Martin, Ivan (Inventor); Altman, Gregory (Inventor); Kaplan, David (Inventor); Vunjak-Novakovic, Gordana (Inventor)

    2001-01-01

    The present invention provides a method for producing an anterior cruciate ligament ex vivo. The method comprises seeding pluripotent stem cells in a three dimensional matrix, anchoring the seeded matrix by attachment to two anchors, and culturing the cells within the matrix under conditions appropriate for cell growth and regeneration, while subjecting the matrix to one or more mechanical forces via movement of one or both of the attached anchors. Bone marrow stromal cells are preferably used as the pluripotent cells in the method. Suitable matrix materials are materials to which cells can adhere, such as a gel made from collagen type I. Suitable anchor materials are materials to which the matrix can attach, such as Goinopra coral and also demineralized bone. Optimally, the mechanical forces to which the matrix is subjected mimic mechanical stimuli experienced by an anterior cruciate ligament in vivo. This is accomplished by delivering the appropriate combination of tension, compression, torsion, and shear, to the matrix. The bioengineered ligament which is produced by this method is characterized by a cellular orientation and/or matrix crimp pattern in the direction of the applied mechanical forces, and also by the production of collagen type I, collagen type III, and fibronectin proteins along the axis of mechanical load produced by the mechanical forces. Optimally, the ligament produced has fiber bundles which are arranged into a helical organization. The method for producing an anterior cruciate ligament can be adapted to produce a wide range of tissue types ex vivo by adapting the anchor size and attachment sites to reflect the size of the specific type of tissue to be produced, and also adapting the specific combination of forces applied, to mimic the mechanical stimuli experienced in vivo by the specific type of tissue to be produced. The methods of the present invention can be further modified to incorporate other stimuli experienced in vivo by the particular developing tissue, some examples of the stimuli being chemical stimuli, and electro-magnetic stimuli. Some examples of tissue which can be produced include other ligaments in the body (hand, wrist, elbow, knee), tendon, cartilage, bone, muscle, and blood vessels.

  10. NASA Astrophysics Data System (ADS)

    Scapin, M.; Peroni, L.; Fichera, C.; Cambriani, A.

    2014-08-01

    High chromium ferritic/martensitic steel T91 (9% Cr, 1% Mo), on account of its radiation resistance, is a candidate material for nuclear reactor applications. Its joining by an impact method to create a cold joint is tested in the realm of scoping tests toward the safe operation of nuclear fuels, encapsulated in representative T91 materials. Hitherto, T91 mechanical characterization at high strain rates is relatively unknown, particularly, in relation to impact joining and also to nuclear accidents. In this study, the mechanical characterization of T91 steel was performed in tension by varying the strain-rate (10-3 up to 104 s-1) and temperature (20-800°C) on dog-bone specimens, using standard testing machines or Hopkinson Bar apparati. As expected, the material is both temperature and strain-rate sensitive and different sets of parameters for the Johnson-Cook strength model were extracted via a numerical inverse procedure, in order to obtain the most suitable set to be used in this field of applications.

  11. Characterization of phenol and cresol biodegradation by compound-specific stable isotope analysis.

    PubMed

    Wei, Xi; Gilevska, Tetyana; Wetzig, Felix; Dorer, Conrad; Richnow, Hans-Hermann; Vogt, Carsten

    2016-03-01

    Microbial degradation of phenol and cresols can occur under oxic and anoxic conditions by different degradation pathways. One recent technique to take insight into reaction mechanisms is compound-specific isotope analysis (CSIA). While enzymes and reaction mechanisms of several degradation pathways have been characterized in (bio)chemical studies, associated isotope fractionation patterns have been rarely reported, possibly due to constraints in current analytical methods. In this study, carbon enrichment factors and apparent kinetic isotope effects (AKIEc) of the initial steps of different aerobic and anaerobic phenol and cresols degradation pathways were analyzed by isotope ratio mass spectrometry connected with liquid chromatography (LC-IRMS). Significant isotope fractionation was detected for aerobic ring hydroxylation, anoxic side chain hydroxylation, and anoxic fumarate addition, while anoxic carboxylation reactions produced small and inconsistent fractionation. The results suggest that several microbial degradation pathways of phenol and cresols are detectable in the environment by CSIA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Mechanical strength of welding zones produced by material extrusion additive manufacturing.

    PubMed

    Davis, Chelsea S; Hillgartner, Kaitlyn E; Han, Seung Hoon; Seppala, Jonathan E

    2017-08-01

    As more manufacturing processes and research institutions adopt customized manufacturing as a key element in their design strategies and finished products, the resulting mechanical properties of parts produced through additive manufacturing (AM) must be characterized and understood. In material extrusion (MatEx), the most recently extruded polymer filament must bond to the previously extruded filament via polymer diffusion to form a "weld". The strength of the weld limits the performance of the manufactured part and is controlled through processing conditions. Under-standing the role of processing conditions, specifically extruder velocity and extruder temperature, on the overall strength of the weld will allow optimization of MatEx-AM parts. Here, the fracture toughness of a single weld is determined through a facile "trouser tear" Mode III fracture experiment. The actual weld thickness is observed directly by optical microscopy characterization of cross sections of MatEx-AM samples. Representative data of weld strength as a function of printing parameters on a commercial 3D printer demonstrates the robustness of the method.

  13. Geometry and mechanics of two-dimensional defects in amorphous materials

    PubMed Central

    Moshe, Michael; Levin, Ido; Aharoni, Hillel; Kupferman, Raz; Sharon, Eran

    2015-01-01

    We study the geometry of defects in amorphous materials and their elastic interactions. Defects are defined and characterized by deviations of the material’s intrinsic metric from a Euclidian metric. This characterization makes possible the identification of localized defects in amorphous materials, the formulation of a corresponding elastic problem, and its solution in various cases of physical interest. We present a multipole expansion that covers a large family of localized 2D defects. The dipole term, which represents a dislocation, is studied analytically and experimentally. Quadrupoles and higher multipoles correspond to fundamental strain-carrying entities. The interactions between those entities, as well as their interaction with external stress fields, are fundamental to the inelastic behavior of solids. We develop analytical tools to study those interactions. The model, methods, and results presented in this work are all relevant to the study of systems that involve a distribution of localized sources of strain. Examples are plasticity in amorphous materials and mechanical interactions between cells on a flexible substrate. PMID:26261331

  14. Recent Developments of Graphene Oxide-Based Membranes: A Review

    PubMed Central

    Ma, Jinxia; Ping, Dan; Dong, Xinfa

    2017-01-01

    Membrane-based separation technology has attracted great interest in many separation fields due to its advantages of easy-operation, energy-efficiency, easy scale-up, and environmental friendliness. The development of novel membrane materials and membrane structures is an urgent demand to promote membrane-based separation technology. Graphene oxide (GO), as an emerging star nano-building material, has showed great potential in the membrane-based separation field. In this review paper, the latest research progress in GO-based membranes focused on adjusting membrane structure and enhancing their mechanical strength as well as structural stability in aqueous environment is highlighted and discussed in detail. First, we briefly reviewed the preparation and characterization of GO. Then, the preparation method, characterization, and type of GO-based membrane are summarized. Finally, the advancements of GO-based membrane in adjusting membrane structure and enhancing their mechanical strength, as well as structural stability in aqueous environment, are particularly discussed. This review hopefully provides a new avenue for the innovative developments of GO-based membrane in various membrane applications. PMID:28895877

  15. COTARD SYNDROME IN SEMANTIC DEMENTIA

    PubMed Central

    Mendez, Mario F.; Ramírez-Bermúdez, Jesús

    2011-01-01

    Background Semantic dementia is a neurodegenerative disorder characterized by the loss of meaning of words or concepts. semantic dementia can offer potential insights into the mechanisms of content-specific delusions. Objective The authors present a rare case of semantic dementia with Cotard syndrome, a delusion characterized by nihilism or self-negation. Method The semantic deficits and other features of semantic dementia were evaluated in relation to the patient's Cotard syndrome. Results Mrs. A developed the delusional belief that she was wasting and dying. This occurred after she lost knowledge for her somatic discomforts and sensations and for the organs that were the source of these sensations. Her nihilistic beliefs appeared to emerge from her misunderstanding of her somatic sensations. Conclusion This unique patient suggests that a mechanism for Cotard syndrome is difficulty interpreting the nature and source of internal pains and sensations. We propose that loss of semantic knowledge about one's own body may lead to the delusion of nihilism or death. PMID:22054629

  16. TiO2 nanocomposites: Preparation, characterization, mechanical and biological properties

    NASA Astrophysics Data System (ADS)

    Koşarsoy, Gözde; Şen, Elif Hilal; Aksöz, Nilüfer; İde, Semra; Aksoy, Hüsnü

    2014-11-01

    Some novel nanocomposites, which contain different concentrations of TiO2 nanopowders, were firstly prepared by using marble dust with convenient chemical components. Their nano structures characterized and distributions of the nano-aggregations related with internal structural content of the samples have been determined by X-ray Scattering Methods (SAXS and WAXS) and mechanical properties were determined by using strain-stress measurements to increase their potential usage possibility as building materials in health and research centers. In the last and important part of the study, Candida albicans and Aspergillus niger which are a significant risk to medical patients were used to investigate originally prepared nanostructured samples' photocatalyst effect. During the last part of the study, effect of UV and visible light on photocatalyst nanocomposites were also researched. Heterogeneous photocatalysts can carry out advanced oxidation processes used for an antimicrobial effect on microorganisms. TiO2 nanoparticles as one of heterogeneous photocatalysts have been shown to exhibit strong cytotoxicity when exposed to UV and visible light.

  17. Gram's Stain Does Not Cross the Bacterial Cytoplasmic Membrane.

    PubMed

    Wilhelm, Michael J; Sheffield, Joel B; Sharifian Gh, Mohammad; Wu, Yajing; Spahr, Christian; Gonella, Grazia; Xu, Bolei; Dai, Hai-Lung

    2015-07-17

    For well over a century, Hans Christian Gram's famous staining protocol has been the standard go-to diagnostic for characterizing unknown bacteria. Despite continuous and ubiquitous use, we now demonstrate that the current understanding of the molecular mechanism for this differential stain is largely incorrect. Using the fully complementary time-resolved methods: second-harmonic light-scattering and bright-field transmission microscopy, we present a real-time and membrane specific quantitative characterization of the bacterial uptake of crystal-violet (CV), the dye used in Gram's protocol. Our observations contradict the currently accepted mechanism which depicts that, for both Gram-negative and Gram-positive bacteria, CV readily traverses the peptidoglycan mesh (PM) and cytoplasmic membrane (CM) before equilibrating within the cytosol. We find that not only is CV unable to traverse the CM but, on the time-scale of the Gram-stain procedure, CV is kinetically trapped within the PM. Our results indicate that CV, rather than dyes which rapidly traverse the PM, is uniquely suited as the Gram stain.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finegan, Donal P.; Tjaden, Bernhard; M. M. Heenan, Thomas

    Mechanical abuse of lithium-ion batteries is widely used during testing to induce thermal runaway, characterize associated risks, and expose cell and module vulnerabilities. But, the repeatability of puncture or 'nail penetration' tests is a key issue as there is often a high degree of variability in the resulting thermal runaway process. Here, the failure mechanisms of 18650 cells punctured at different locations and orientations are characterized with respect to their internal structural degradation, and both their internal and surface temperature, all of which are monitored in real time. The initiation and propagation of thermal runaway is visualized via high-speed synchrotronmore » X-ray radiography at 2000 frames per second, and the surface and internal temperatures are recorded via infrared imaging and a thermocouple embedded in the tip of the penetrating nail, respectively. The influence of the nail, as well as how and where it penetrates the cell, on the initiation and propagation of thermal runaway is described and the suitability of this test method for representing in-field failures is discussed.« less

  19. Elastic plastic fracture mechanics methodology for surface cracks

    NASA Astrophysics Data System (ADS)

    Ernst, Hugo A.; Boatwright, D. W.; Curtin, W. J.; Lambert, D. M.

    1993-08-01

    The Elastic Plastic Fracture Mechanics (EPFM) Methodology has evolved significantly in the last several years. Nevertheless, some of these concepts need to be extended further before the whole methodology can be safely applied to structural parts. Specifically, there is a need to include the effect of constraint in the characterization of material resistance to crack growth and also to extend these methods to the case of 3D defects. As a consequence, this project was started as a 36 month research program with the general objective of developing an EPFM methodology to assess the structural reliability of pressure vessels and other parts of interest to NASA containing defects. This report covers a computer modelling algorithm used to simulate the growth of a semi-elliptical surface crack; the presentation of a finite element investigation that compared the theoretical (HRR) stress field to that produced by elastic and elastic-plastic models; and experimental efforts to characterize three dimensional aspects of fracture present in 'two dimensional', or planar configuration specimens.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye

    Strain engineering is a promising method for next-generation materials processing techniques. Here, we use mechanical milling and annealing followed by compression in diamond anvil cell to tailor the intrinsic and extrinsic strain in pyrochlore, Dy 2Ti 2O 7 and Dy 2Zr 2O 7. Raman spectroscopy, X-ray pair distribution function analysis, and X-ray diffraction were used to characterize atomic order over short-, medium-, and long-range spatial scales, respectively, under ambient conditions. Raman spectroscopy and X-ray diffraction were further employed to interrogate the material in situ at high pressure. High-pressure behavior is found to depend on the species and concentration of defectsmore » in the sample at ambient conditions. Overall, we show that defects can be engineered to lower the phase transformation onset pressure by ~50% in the ordered pyrochlore Dy 2Ti 2O 7, and lower the phase transformation completion pressure by ~20% in the disordered pyrochlore Dy 2Zr 2O 7. Lastly, these improvements are achieved without significantly sacrificing mechanical integrity, as characterized by bulk modulus.« less

Top