Science.gov

Sample records for mechanical characterization method

  1. Methods for characterization of mechanical and electrical prosthetic vacuum pumps.

    PubMed

    Komolafe, Oluseeni; Wood, Sean; Caldwell, Ryan; Hansen, Andrew; Fatone, Stefania

    2013-01-01

    Despite increasingly widespread adoption of vacuum-assisted suspension systems in prosthetic clinical practices, there remain gaps in the body of scientific knowledge guiding clinicians' choices of existing products. In this study, we identified important pump-performance metrics and developed techniques to objectively characterize the evacuation performance of prosthetic vacuum pumps. The sensitivity of the proposed techniques was assessed by characterizing the evacuation performance of two electrical (Harmony e-Pulse [Ottobock; Duderstadt, Germany] and LimbLogic VS [Ohio Willow Wood; Mt. Sterling, Ohio]) and three mechanical (Harmony P2, Harmony HD, and Harmony P3 [Ottobock]) prosthetic pumps in bench-top testing. Five fixed volume chambers ranging from 33 cm(3) (2 in.(3)) to 197 cm(3) (12 in.(3)) were used to represent different air volume spaces between a prosthetic socket and a liner-clad residual limb. All measurements were obtained at a vacuum gauge pressure of 57.6 kPa (17 inHg). The proposed techniques demonstrated sensitivity to the different electrical and mechanical pumps and, to a lesser degree, to the different setting adjustments of each pump. The sensitivity was less pronounced for the mechanical pumps, and future improvements for testing of mechanical vacuum pumps were proposed. Overall, this study successfully offers techniques feasible as standards for assessing the evacuation performance of prosthetic vacuum pump devices.

  2. Mechanical characterization of unplasticised polyvinylchloride thick pipes by optical methods

    NASA Astrophysics Data System (ADS)

    Mihaylova, E.; Potelon, B.; Reddy, S.; Toal, V.; Smith, C.

    2004-06-01

    In this work a number of techniques (electronic speckle pattern interferometry, holographic interferometry, strain gauge and finite element method) are brought to bear in order to establish consistency in the results of strain measurement. This is necessary if optical non-destructive testing methods, such as those used here, are to gain acceptance for routine industrial use. The FE model provides a useful check. Furthermore, ESPI fringe data facilitates the extension of FE models, an approach that is of growing importance in component testing. The use of in-plane and out-of-plane sensitive electronic speckle pattern interferometry (ESPI) for non-destructive material characterization of thick unplasticised polyvinylchloride (uPVC) pipes is presented. A test rig has been designed for stressing pipes by internal pressure. ESPI gives a complete mapping of the displacement field over the area imaged by the video camera. The results for the strain of uPVC obtained from ESPI data and from strain gauges are in good agreement. The value of Young's modulus has been obtained from the fringe data and compared with results obtained using holographic interferometry and from strain gauge measurements. The FE model also produces fringe data that is consistent with the ESPI results.

  3. Assessment of Proper Bonding Methods and Mechanical Characterization FPGA CQFPs

    NASA Technical Reports Server (NTRS)

    Davis, Milton C.

    2008-01-01

    This presentation discusses fractured leads on field-programmable gate array (FPGA) during flight vibration. Actions taken to determine root cause and resolution of the failure include finite element analysis (FEA) and vibration testing and scanning electron microscopy (with X-ray microanalysis) and energy dispersive spectrometry (SEM/EDS) failure assessment. Bonding methods for surface mount parts is assessed, including critical analysis and assessment of random fatigue damage. Regarding ceramic quad flat pack (CQFP) lead fracture, after disassembling the attitude control electronics (ACE) configuration, photographs showed six leads cracked on FPGA RTSX72SU-1 CQ208B package located on the RWIC card. An identical package (FPGA RTSX32SU-1 CQ208B) mounted on the RWIC did not results in cracked pins due to vibration. FPGA lead failure theories include workmanship issues in the lead-forming, material defect in the leads of the FPGA packages, and the insecure mounting of the board in the card guides, among other theories. Studies were conducted using simple calculations to determine the response and fatigue life of the package. Shorter packages exhibited more response when loaded by out-of-plane displacement of PCB while taller packages exhibit more response when loaded by in-plane acceleration of PCB. Additionally, under-fill did not contribute to reducing stress in leads due to out-of-plane PCB loading or from component twisting, as much as corner bonding. The combination of corner bond and under-fill is best to address mechanical and thermal S/C environment. Test results of bonded parts showed reduced (dampened) amplitude and slightly shifted peaks at the un-bonded natural frequency and an additional response at the bonded frequency. Stress due to PCBB out-of-plane loading was decreased on in the corners when only a corner bond was used. Future work may address CQFP fatigue assessment, including the investigation of discrepancy in predicted fatigue damage, as well as

  4. Nondestructive Methods to Characterize Rock Mechanical Properties at Low-Temperature: Applications for Asteroid Capture Technologies

    NASA Astrophysics Data System (ADS)

    Savage, Kara A.

    Recent government initiatives and commercial activities have targeted asteroids for in situ material characterization, manipulation, and possible resource extraction. Most of these activities and missions have proposed significant robotic components, given the risks and costs associated with manned missions. To successfully execute these robotic activities, detailed mechanical characteristics of the target space bodies must be known prior to contact, in order to appropriately plan and direct the autonomous robotic protocols. Unfortunately, current estimates of asteroid mechanical properties are based on limited direct information, and significant uncertainty remains specifically concerning internal structures, strengths, and elastic properties of asteroids. One proposed method to elucidate this information is through in situ, nondestructive testing of asteroid material immediately after contact, but prior to any manipulation or resource extraction activities. While numerous nondestructive rock characterization techniques have been widely deployed for terrestrial applications, these methods must be adapted to account for unique properties of asteroid material and environmental conditions of space. For example, asteroid surface temperatures may range from -100°C to 30°C due to diurnal cycling, and these low temperatures are especially noteworthy due to their deleterious influence on non-destructive testing. As a result, this thesis investigates the effect of low temperature on the mechanical characteristics and nondestructive technique responses of rock material. Initially, a novel method to produce low temperature rock samples was developed. Dry ice and methanol cooling baths of specific formulations were used to decrease rock to temperatures ranging from -60°C to 0°C. At these temperatures, shale, chalk, and limestone rock samples were exposed to several nondestructive and conventional mechanical tests, including Schmidt hammer, ultrasonic pulse velocity, point

  5. Preparation and characterization of Ni-Zn ferrite + polymer nanocomposites using mechanical milling method

    NASA Astrophysics Data System (ADS)

    Raju, P.; Murthy, S. R.

    2013-12-01

    The insulating properties of Ni-Zn ferrites can be improved by the addition of various types of insulating materials such as polymers, ceramics, etc. In this connection, ferrite-polymer composites have been subjected to extensive research, because they have many applications: electromagnetic interference shielding, rechargeable battery, electrodes and sensors, and microwave absorption. Electrical and magnetic properties of such composites will depend on the size, shape and amount of filler addition. In this paper, we report the preparation and characterization of nanocomposites of Ni-Zn ferrite + paraformaldehyde. These nanocomposites were prepared by using mechanical milling method and characterized by X-ray powder diffraction, scanning electron microscopy (SEM) and Fourier transform infrared spectrometer. The particle size estimated from SEM pictures for composites varies from 36 to 60 nm. Magnetic properties were measured on nanocomposites at room temperature. The complex permittivity and permeability were measured over a wide frequency range from 1 MHz to 1.8 GHz at room temperature. From our studies, it is observed that both the values of permittivity and permeability decrease with an increase in polymer content.

  6. A new mechanical characterization method for microactuators applied to shape memory films

    SciTech Connect

    Ackler, H D; Krulevitch, P; Ramsey, P B; Seward, K P

    1999-03-01

    We present a new technique for the mechanical characterization of microactuators and apply it to shape memory alloy (SMA) thin films. A test instrument was designed which utilizes a spring-loaded transducer to measure displacements with resolution of 1.5 mm and forces with resolution of 0.2 mN. Employing an out- of-plane loading method for SMA thin films, strain resolution of 30 me and stress resolution of 2.5 MPa were achieved. Four mm long, 2 {micro}m thick NiTiCu ligaments suspended across open windows were bulk micromachined for use in the out-of-plane stress and strain measurements. Static analysis showed that 63% of the applied strain was recovered while ligaments were subjected to tensile stresses of 870 MPa. This corresponds to 280 mm of actual displacement against a load of 52 mN. Fatigue analysis of the ligaments showed 33% degradation in recoverable strain (from 0.3% to 0.2%) with 2 {+-} 10{sup 4} cycles for an initial strain of 2.8%.

  7. Large amplitude oscillatory measurements as mechanical characterization methods for soft elastomers

    NASA Astrophysics Data System (ADS)

    Skov, Anne L.

    2012-04-01

    Mechanical characterization of soft elastomers is usually done either by traditional shear rheometry in the linear viscoelastic (LVE) regime (i.e. low strains) or by extensional rheology in the nonlinear regime. However, in many commercially available rheometers for nonlinear extensions the measurements rely on certain assumptions such as a predefined shape alteration and are very hard to perform on soft elastomers in most cases. The LVE data provides information on important parameters for DEAP purposes such as the Young's modulus and the tendency to viscous dissipation (at low strains only) but provides no information on the strain hardening or softening effects at larger strains, and the mechanical breakdown strength. Therefore it is obvious that LVE can not be used as the single mechanical characterization tool in large strain applications. We show how the data set of LVE, and large amplitude oscillating elongation (LAOE)1 and planar elongation2,3 make the ideal set of experiments to evaluate the mechanical performance of DEAPs. We evaluate the mechanical performance of several soft elastomers applicable for DEAP purposes such as poly(propyleneoxide) (PPO) networks3,4 and traditional unfilled silicone (PDMS) networks5.

  8. Inverse methods for the mechanical characterization of materials at high strain rates

    NASA Astrophysics Data System (ADS)

    Hernandez, C.; Maranon, A.; Ashcroft, I. A.; Casas-Rodriguez, J. P.

    2012-08-01

    Mechanical material characterization represents a research challenge. Furthermore, special attention is directed to material characterization at high strain rates as the mechanical properties of some materials are influenced by the rate of loading. Diverse experimental techniques at high strain rates are available, such as the drop-test, the Taylor impact test or the Split Hopkinson pressure bar among others. However, the determination of the material parameters associated to a given mathematical constitutive model from the experimental data is a complex and indirect problem. This paper presents a material characterization methodology to determine the material parameters of a given material constitutive model from a given high strain rate experiment. The characterization methodology is based on an inverse technique in which an inverse problem is formulated and solved as an optimization procedure. The input of the optimization procedure is the characteristic signal from the high strain rate experiment. The output of the procedure is the optimum set of material parameters determined by fitting a numerical simulation to the high strain rate experimental signal.

  9. Characterization methods

    SciTech Connect

    Glass, J.T.

    1993-01-01

    Methods discussed in this compilation of notes and diagrams are Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and other surface analysis techniques (auger electron spectroscopy, x-ray photoelectron spectroscopy, electron energy loss spectroscopy, and scanning tunnelling microscopy). A comparative evaluation of different techniques is performed. In-vacuo and in-situ analyses are described.

  10. "METHOD": A tool for mechanical, electrical, thermal, and optical characterization of single lens module design

    NASA Astrophysics Data System (ADS)

    Besson, Pierre; Dominguez, Cesar; Voarino, Philippe; Garcia-Linares, Pablo; Weick, Clement; Lemiti, Mustapha; Baudrit, Mathieu

    2015-09-01

    The optical characterization and electrical performance evaluation are essential in the design and optimization of a concentrator photovoltaic system. The geometry, materials, and size of concentrator optics are diverse and different environmental conditions impact their performance. CEA has developed a new concentrator photovoltaic system characterization bench, METHOD, which enables multi-physics optimization studies. The lens and cell temperatures are controlled independently with the METHOD to study their isolated effects on the electrical and optical performance of the system. These influences can be studied in terms of their effect on optical efficiency, focal distance, spectral sensitivity, electrical efficiency, or cell current matching. Furthermore, the irradiance map of a concentrator optic can be mapped to study its variations versus the focal length or the lens temperature. The present work shows this application to analyze the performance of a Fresnel lens linking temperature to optical and electrical performance.

  11. New Method for Characterizing the State of Optical and Opto-Mechanical Systems

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, Ritva; Saif, Babak; Feinberg, Lee; Chaney, David; Bluth, Marcel; Greenfield, Perry; Hack, Warren; Smith, Scott; Sanders, James

    2014-01-01

    James Webb Space Telescope Optical Telescope Element (OTE) is a three mirror anastigmat consisting of a 6.5 m primary mirror (PM), secondary mirror (SM) and a tertiary mirror. The primary mirror is made out of 18 segments. The telescope and instruments will be assembled at Goddard Space Flight Center (GSFC) to make it the Optical Telescope Element-Integrated Science Instrument Module (OTIS). The OTIS will go through environmental testing at GSFC before being transported to Johnson Space Center for testing at cryogenic temperature. The objective of the primary mirror Center of Curvature test (CoC) is to characterize the PM before and after the environmental testing for workmanship. This paper discusses the CoC test including both a surface figure test and a new method for characterizing the state of the primary mirror using high speed dynamics interferometry.

  12. Mechanical properties of polycrystalline translucent cubic boron nitride as characterized by the Vickers indentation method

    SciTech Connect

    Taniguchi, Takashi; Akaishi, Minoru; Yamaoka, Shinobu

    1996-02-01

    Mechanical properties of polycrystalline translucent cubic boron nitride (cBN) were characterized by Vickers indentation measurement. The calculated hardness decreased from 54 to 49 GPa as the load increased to 39 N, and then remained constant for values above this load. According to the relationship between crack length and applied indentation load, the formation of the median/radial type of cracks seems to take place at an applied load above 29 N. Assuming that the ratio of hardness and Young`s modulus is constant in the polycrystalline cBN, the fracture toughness, K{sub IC}, of cBN was estimated to be 5.0 {+-} 0.5 MPa {center_dot} m{sup 1/2}.

  13. A miniaturized test method for the mechanical characterization of structural materials for fusion reactors

    NASA Astrophysics Data System (ADS)

    Gondi, P.; Donato, A.; Montanari, R.; Sili, A.

    1996-10-01

    This work deals with a non-destructive method for mechanical tests which is based on the indentation of materials at a constant rate by means of a cylinder with a small radius and penetrating flat surface. The load versus penetration depth curves obtained using this method have shown correspondences with those of tensile tests and have given indications about the mechanical properties on a reduced scale. In this work penetration tests have been carried out on various kinds of Cr martensitic steels (MANET-2, BATMAN and modified F82H) which are of interest for first wall and structural applications in future fusion reactors. The load versus penetration depth curves have been examined with reference to data obtained in tensile tests and to microhardness measurements. Penetration tests have been performed at various temperature (from -180 to 100°C). Conclusions, which can be drawn for the ductile to brittle transition, are discussed for MANET-2 steel. Preliminary results obtained on BATMAN and modified F82H steels are reported. The characteristics of the indenter imprints have been studied by scanning electron microscopy.

  14. Nanomechanical Pyrolytic Carbon Resonators: Novel Fabrication Method and Characterization of Mechanical Properties.

    PubMed

    Kurek, Maksymilian; Larsen, Frederik K; Larsen, Peter E; Schmid, Silvan; Boisen, Anja; Keller, Stephan S

    2016-01-01

    Micro- and nanomechanical string resonators, which essentially are highly stressed bridges, are of particular interest for micro- and nanomechanical sensing because they exhibit resonant behavior with exceptionally high quality factors. Here, we fabricated and characterized nanomechanical pyrolytic carbon resonators (strings and cantilevers) obtained through pyrolysis of photoresist precursors. The developed fabrication process consists of only three processing steps: photolithography, dry etching and pyrolysis. Two different fabrication strategies with two different photoresists, namely SU-8 2005 (negative) and AZ 5214e (positive), were compared. The resonant behavior of the pyrolytic resonators was characterized at room temperature and in high vacuum using a laser Doppler vibrometer. The experimental data was used to estimate the Young's modulus of pyrolytic carbon and the tensile stress in the string resonators. The Young's moduli were calculated to be 74 ± 8 GPa with SU-8 and 115 ± 8 GPa with AZ 5214e as the precursor. The tensile stress in the string resonators was 33 ± 7 MPa with AZ 5214e as the precursor. The string resonators displayed maximal quality factor values of up to 3000 for 525-µm-long structures. PMID:27428980

  15. Nanomechanical Pyrolytic Carbon Resonators: Novel Fabrication Method and Characterization of Mechanical Properties

    PubMed Central

    Kurek, Maksymilian; Larsen, Frederik K.; Larsen, Peter E.; Schmid, Silvan; Boisen, Anja; Keller, Stephan S.

    2016-01-01

    Micro- and nanomechanical string resonators, which essentially are highly stressed bridges, are of particular interest for micro- and nanomechanical sensing because they exhibit resonant behavior with exceptionally high quality factors. Here, we fabricated and characterized nanomechanical pyrolytic carbon resonators (strings and cantilevers) obtained through pyrolysis of photoresist precursors. The developed fabrication process consists of only three processing steps: photolithography, dry etching and pyrolysis. Two different fabrication strategies with two different photoresists, namely SU-8 2005 (negative) and AZ 5214e (positive), were compared. The resonant behavior of the pyrolytic resonators was characterized at room temperature and in high vacuum using a laser Doppler vibrometer. The experimental data was used to estimate the Young’s modulus of pyrolytic carbon and the tensile stress in the string resonators. The Young’s moduli were calculated to be 74 ± 8 GPa with SU-8 and 115 ± 8 GPa with AZ 5214e as the precursor. The tensile stress in the string resonators was 33 ± 7 MPa with AZ 5214e as the precursor. The string resonators displayed maximal quality factor values of up to 3000 for 525-µm-long structures. PMID:27428980

  16. Characterization Methods of Encapsulates

    NASA Astrophysics Data System (ADS)

    Zhang, Zhibing; Law, Daniel; Lian, Guoping

    , reliable methods which can be used to characterize these properties of encapsulates are vital. In this chapter, the state-of-art of these methods, their principles and applications, and release mechanisms are described as follows.

  17. A new mechanical characterization method for thin film microactuators and its application to NiTiCi shape memory alloy

    SciTech Connect

    Seward, K P

    1999-06-01

    In an effort to develop a more full characterization tool of shape memory alloys, a new technique is presented for the mechanical characterization of microactuators and applied to SMA thin films. A test instrument was designed to utilize a spring-loaded transducer in measuring displacements with resolution of 1.5 pm and forces with resolution of 0.2 mN. Employing an out-of-plane loading method for freestanding SMA thin films, strain resolution of 30{mu}{epsilon} and stress resolution of 2.5 MPa were achieved. This new testing method is presented against previous SMA characterization methods for purposes of comparison. Four mm long, 2 {micro}m thick NiTiCu ligaments suspended across open windows were bulk micromachined for use in the out-of-plane stress and strain measurements. The fabrication process used to micromachine the ligaments is presented step-by-step, alongside methods of fabrication that failed to produce testable ligaments. Static analysis showed that 63% of the applied strain was recovered while ligaments were subjected to tensile stresses of 870 MPa. In terms of recoverable stress and recoverable strain, the ligaments achieved maximum recovery of 700 MPa and 3.0% strain. No permanent deformations were seen in any ligament during deflection measurements. Maximum actuation forces and displacements produced by the 4 mm ligaments situated on 1 cm square test chips were 56 mN and 300 {micro}m, respectively. Fatigue analysis of the ligaments showed degradation in recoverable strain from 0.33% to 0.24% with 200,000 cycles, corresponding to deflections of 90 {micro}m and forces of 25 mN. Cycling also produced a wavering shape memory effect late in ligament life, leading to broad inconsistencies of as much as 35% deviation from average. Unexpected phenomena like stress-induced martensitic twinning that leads to less recoverable stress and the shape memory behavior of long life devices are addressed. Finally, a model for design of microactuators using shape

  18. Characterization of freshly retrieved preantral follicles using a low-invasive, mechanical isolation method extended to different ruminant species.

    PubMed

    Langbeen, A; Jorssen, E P A; Fransen, E; Rodriguez, A P A; García, M Chong; Leroy, J L M R; Bols, P E J

    2015-10-01

    Due to the increased interest in preantral follicular physiology, non-invasive retrieval and morphological classification are crucial. Therefore, this study aimed: (1) to standardize a minimally invasive isolation protocol, applicable to three ruminant species; (2) to morphologically classify preantral follicles upon retrieval; and (3) to describe morphological features of freshly retrieved follicles compared with follicle characteristics using invasive methods. Bovine, caprine and ovine ovarian cortex strips were retrieved from slaughterhouse ovaries and dispersed. This suspension was filtered, centrifuged, re-suspended and transferred to a Petri dish, to which 0.025 mg/ml neutral red (NR) was added to assess the viability of the isolated follicles. Between 59 and 191 follicles per follicle class and per species were collected and classified by light microscopy, based on follicular cell morphology. Subsequently, follicle diameters were measured. The proposed isolation protocol was applicable to all three species and showed a significant, expected increase in diameter with developmental stage. With an average diameter of 37 ± 5 μm for primordial follicles, 47 ± 6.3 μm for primary follicles and 67.1 ± 13.1 μm for secondary follicles, no significant difference in diameter among the three species was observed. Bovine, caprine and ovine follicles (63, 59 and 50% respectively) were graded as viable upon retrieval. Using the same morphological characteristics as determined by invasive techniques [e.g. haematoxylin-eosin (HE) sections], cumulus cell morphology and follicle diameter could be used routinely to classify freshly retrieved follicles. Finally, we applied a mechanical, minimally invasive, follicle isolation protocol and extended it to three ruminant species, yielding viable preantral follicles without compromising further in vitro processing and allowing routine follicle characterization upon retrieval.

  19. Characterization and mechanical separation of metals from computer Printed Circuit Boards (PCBs) based on mineral processing methods.

    PubMed

    Sarvar, Mojtaba; Salarirad, Mohammad Mehdi; Shabani, Mohammad Amin

    2015-11-01

    In this paper, a novel mechanical process is proposed for enriching metal content of computer Printed Circuit Boards (PCBs). The PCBs are crushed and divided into three different size fractions namely: -0.59, +0.59 to 1.68 and +1.68 mm. Wet jigging and froth flotation methods are selected for metal enrichment. The coarse size fraction (+1.68 mm) is processed by jigging. The plastic free product is grinded and screened. The oversized product is separated as the first concentrate. It was rich of metal because the grinding process was selective. The undersized product is processed by froth flotation. Based on the obtained results, the middle size fraction (+0.59 to 1.68 mm) and the small size fraction (-0.59 mm) are processed by wet jigging and froth flotation respectively. The wet jigging process is optimized by investigating the effect of pulsation frequency and water flow rate. The results of examining the effect of particle size, solid to liquid ratio, conditioning time and using apolar collector showed that collectorless flotation is a promising method for separating nonmetals of PCBs. 95.6%, 97.5% and 85% of metal content of coarse size, middle size and small size fraction are recovered. The grades of obtained concentrates were 63.3%, 92.5% and 75% respectively. The total recovery is calculated as 95.64% and the grade of the final concentrate was 71.26%. Determining the grade of copper and gold in the final product reveals that 4.95% of copper and 24.46% of gold are lost during the concentration. The major part of the lost gold is accumulated in froth flotation tail.

  20. Characterization of mechanical properties of aluminized coatings in advanced gas turbine blades using a small punch method

    SciTech Connect

    Sugita, Y.; Ito, M.; Sakurai, S.; Bloomer, T.E.; Kameda, J. |

    1997-04-01

    Advanced technologies of superalloy casting and coatings enable one to enhance the performance of combined cycle gas turbines for electric power generation by increasing the firing temperature. This paper describes examination of the microstructure/composition and mechanical properties (22--950 C) in aluminized CoCrAlY coatings of advanced gas turbine blades using scanning Auger microprobe and a small punch (SP) testing method. Aluminized coatings consisted of layered structure divided into four regimes: (1) Al enriched and Cr depleted region, (2) Al and Cr graded region, (3) fine grained microstructure with a mixture of Al and Cr enriched phases and (4) Ni/Co interdiffusion zone adjacent to the interface. SP specimens were prepared in order that the specimen surface would be located in the various coating regions. SP tests indicated strong dependence of the fracture properties on the various coatings regimes. Coatings 1 and 2 with very high microhardness showed much easier formation of brittle cracks in a wide temperature range, compared to coatings 3 and 4 although the coating 2 had ductility improvement at 950 C. The coating 3 had lower room temperature ductility than the coating 4. However, the ductility in the coating 3 exceeded that in the region 4 above 730 C due to a precipitous ductility increase. The integrity of aluminized coatings while in-service is discussed in light of the variation of the low cycle fatigue life as well as the ductility in the layered structure.

  1. A novel inorganic precipitation-peptization method for VO2 sol and VO2 nanoparticles preparation: Synthesis, characterization and mechanism.

    PubMed

    Li, Yao; Jiang, Peng; Xiang, Wei; Ran, Fanyong; Cao, Wenbin

    2016-01-15

    In this paper, a simple, safe and cost-saving precipitation-peptization method was proposed to prepare VO2 sol by using inorganic VOSO4-NH3⋅H2O-H2O2 reactants system in air under room temperature. In this process, VOSO4 was firstly precipitated to form VO(OH)2, then monometallic species of VO(O2)(OH)(-) were formed through the coordination between VO(OH)2 and H2O2. The rearrangement of VO(O2)(OH)(-) in a nonplanar pattern and intermolecular condensation reactions result in multinuclear species. Finally, VO2 sol is prepared through the condensation reactions between the multinuclear species. After drying the obtained sol at 40°C, VO2 xerogel exhibiting monoclinic crystal structure with the space group of C2/m was prepared. The crystal structure of VO2 nanoparticles was transferred to monoclinic crystal structure with the space group of P21/c (VO2(M)) by annealing the xerogel at 550°C. Both XRD and TEM analysis indicated that the nanoparticles possess good crystallinity with crystallite size of 34.5nm as estimated by Scherrer's method. These results suggest that the VO2 sol has been prepared successfully through the proposed simple method.

  2. Advanced Fine Particulate Characterization Methods

    SciTech Connect

    Steven Benson; Lingbu Kong; Alexander Azenkeng; Jason Laumb; Robert Jensen; Edwin Olson; Jill MacKenzie; A.M. Rokanuzzaman

    2007-01-31

    The characterization and control of emissions from combustion sources are of significant importance in improving local and regional air quality. Such emissions include fine particulate matter, organic carbon compounds, and NO{sub x} and SO{sub 2} gases, along with mercury and other toxic metals. This project involved four activities including Further Development of Analytical Techniques for PM{sub 10} and PM{sub 2.5} Characterization and Source Apportionment and Management, Organic Carbonaceous Particulate and Metal Speciation for Source Apportionment Studies, Quantum Modeling, and High-Potassium Carbon Production with Biomass-Coal Blending. The key accomplishments included the development of improved automated methods to characterize the inorganic and organic components particulate matter. The methods involved the use of scanning electron microscopy and x-ray microanalysis for the inorganic fraction and a combination of extractive methods combined with near-edge x-ray absorption fine structure to characterize the organic fraction. These methods have direction application for source apportionment studies of PM because they provide detailed inorganic analysis along with total organic and elemental carbon (OC/EC) quantification. Quantum modeling using density functional theory (DFT) calculations was used to further elucidate a recently developed mechanistic model for mercury speciation in coal combustion systems and interactions on activated carbon. Reaction energies, enthalpies, free energies and binding energies of Hg species to the prototype molecules were derived from the data obtained in these calculations. Bimolecular rate constants for the various elementary steps in the mechanism have been estimated using the hard-sphere collision theory approximation, and the results seem to indicate that extremely fast kinetics could be involved in these surface reactions. Activated carbon was produced from a blend of lignite coal from the Center Mine in North Dakota and

  3. Mechanical Characterization of Mancos Shale

    NASA Astrophysics Data System (ADS)

    Broome, S.; Ingraham, M. D.; Dewers, T. A.

    2015-12-01

    A series of tests on Mancos shale have been undertaken to determine the failure surface and to characterize anisotropy. This work supports additional studies which are being performed on the same block of shale; fracture toughness, permeability, and chemical analysis. Mechanical tests are being conducted after specimens were conditioned for at least two weeks at 70% constant relative humidity conditions. Specimens are tested under drained conditions, with the constant relative humidity condition maintained on the downstream side of the specimen. The upstream is sealed. Anisotropy is determined through testing specimens that have been cored parallel and perpendicular to the bedding plane. Preliminary results show that when loaded parallel to bedding the shale is roughly 50% weaker. Test are run under constant mean stress conditions when possible (excepting indirect tension, unconfined compression, and hydrostatic). Tests are run in hydrostatic compaction to the desired mean stress, then differential stress is applied axially in displacement control to failure. The constant mean stress condition is maintained by decreasing the confining pressure by half of the increase in the axial stress. Results will be compared to typical failure criteria to investigate the effectiveness of capturing the behavior of the shale with traditional failure theory. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-6107 A.

  4. Mechanical and Thermal Characterization of Silica Nanocomposites

    NASA Astrophysics Data System (ADS)

    Cunningham, Anthony Lamar

    Polymer nanocomposites are a class of materials containing nanoparticles with a large interfacial surface area. Only a small quantity of nanoparticles are needed to provide superior multifunctional properties; such as mechanical, thermal, electrical, and moisture absorption properties in polymers. Nanoparticles tend to agglomerate, so special techniques are required for homogeneous distribution. Nanosilica is now readily available as colloidal sols, for example; Nanopox RTM F400 (supplied by Evonik Nanoresins AG, Germany). The nanoparticles are first synthesized from aqueous sodium silicate solution, and then undergo a surface modification process with organosilane and matrix exchange. F400 contains 40%wt silica nanoparticles colloidally dispersed in a DGEBA epoxy resin. The mean particle diameter is about 20 nm with a narrow distribution range of about 5 to 35 nm. The objectives of this study are to develop a reproducible processing method for nanosilica enhanced resin systems used in the manufacturing of fiber reinforced composites that will be characterized for mechanical and thermal properties. Research has concluded that shows improvements in the properties of the matrix material when processed in loading variations of 0 to 25%wt silica nanoparticles. The loadings were also used to manufacture fiberglass reinforced nanocomposite laminates and also tested for mechanical and thermal properties.

  5. Aerosol characterization with lidar methods

    NASA Astrophysics Data System (ADS)

    Sugimoto, Nobuo; Nishizawa, Tomoaki; Shimizu, Atsushi; Matsui, Ichiro

    2014-08-01

    Aerosol component analysis methods for characterizing aerosols were developed for various types of lidars including polarization-sensitive Mie scattering lidars, multi-wavelength Raman scattering lidars, and multi-wavelength highspectral- resolution lidars. From the multi-parameter lidar data, the extinction coefficients for four aerosol components can be derived. The microphysical parameters such as single scattering albedo and effective radius can be also estimated from the derived aerosol component distributions.

  6. Comparison of the direct burst pressure and the ring tensile test methods for mechanical characterization of tissue-engineered vascular substitutes.

    PubMed

    Laterreur, Véronique; Ruel, Jean; Auger, François A; Vallières, Karine; Tremblay, Catherine; Lacroix, Dan; Tondreau, Maxime; Bourget, Jean-Michel; Germain, Lucie

    2014-06-01

    Tissue engineering provides a promising alternative for small diameter vascular grafts, especially with the self-assembly method. It is crucial that these grafts possess mechanical properties that allow them to withstand physiological flow and pressure without being damaged. Therefore, an accurate assessment of their mechanical properties, especially the burst pressure, is essential prior to clinical release. In this study, the burst pressure of self-assembled tissue-engineered vascular substitutes was first measured by the direct method, which consists in pressurizing the construct with fluid until tissue failure. It was then compared to the burst pressure estimated by Laplace׳s law using data from a ring tensile test. The major advantage of this last method is that it requires a significantly smaller tissue sample. However, it has been reported as overestimating the burst pressure compared to a direct measurement. In the present report, it was found that an accurate estimation of the burst pressure may be obtained from a ring tensile test when failure internal diameter is used as the diameter parameter in Laplace׳s law. Overestimation occurs with the method previously reported, i.e. when the unloaded internal diameter is used for calculations. The estimation of other mechanical properties was also investigated. It was demonstrated that data from a ring tensile test provide an accurate estimate of the failure strain and the stiffness of the constructs when compared to measurements with the direct method.

  7. Mechanical Properties Characterization at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Fong, Hanson; Sopp, Jeffery; Sarikaya, Mehmet

    2001-05-01

    Nanoindentation is an unique technique that characterizes mechanical properties of materials down to the nanometer scale. With a force range from nanoNewtons to milliNewtons, unique properties of surface structures and thin films in the mesoscale can be routinely quantifieds. With technology continually pushing toward smaller feature size in electronic and mechanical devices as well as biomaterials applications, nanoindentation has become an invaluable method to measure these characteristic features. Here, we report its application in the study the biological hard tissues. For example, using engineered metallic indentation tips, the elastic properties of the 20 nm protein layer in the biocomposite of the abalone shell was measured. The elastic modulus was found to be exceptionally high compared to most synthetic polymers. With the combination of AFM imaging nanoindentation, we were able to measure the difference in deformation behavior at the mesoscale between normal and genetically altered mouse enamel. These measurements were complementary in determining the growth defects resulting from genetically modified enamel proteins. Details of these results and future prospects will be discussed.

  8. New Methods of Celestial Mechanics

    NASA Astrophysics Data System (ADS)

    Poincare, Henri; Goroff, David

    Edited by Daniel Goroff, Harvard University This English-language edition of Poincare's landmark work is of interest not only to historians of science, but also to mathematicians. Beginning from an investigation of the three-body problem of Newtonian mechanics, Poincare lays the foundations of the qualitative solutions of differential equations. To investigate the long-unsolved problem of the stability of the Solar System, Poincare invented a number of new techniques including canonical transformations, asymptotic series expansions, and integral invariants. These "new methods" are even now finding applications in chaos and other contemporary disciplines. Contents: Volume I: Periodic and asymptotic solutions: Introduction by Daniel Goroff. Generalities and the Jacobi method. Series integration. Periodic solutions. Characteristic exponents. Nonexistence of uniform integrals. Approximate development of the perturbative function. Asymptotic solutions. Volume II: Approximations by series: Formal calculus. Methods of Newcomb and Lindstedt. Application to the study of secular variations. Application to the three-body problem. Application to orbits. Divergence of the Lindstedt series. Direct calculation of the series. Other methods of direct calculation. Gylden methods. Case of linear equations. Bohlin methods. Bohlin series. Extension of the Bohlin method. Volume III: Integral invariants and asymptotic properties of certain solutions: Integral invariants. Formation of invariants. Use of integral invariants. Integral invariants and asymptotic solutions. Poisson stability. Theory of consequents. Periodic solutions of the second kind. Different forms of the principle of least action.

  9. Finite element model of surface acoustic wave method for mechanical characterization of patterned thin films of the ultra-large scaled integrated interconnect.

    PubMed

    Xiao, Xia; Shan, Xingmeng; Tao, Ye; Sun, Yuan; Kikkawa, Takamaro

    2013-02-01

    Surface acoustic waves (SAWs) technique is a promising method to determine the mechanical properties of thin low dielectric constant (low-k) dielectrics by matching the experimental dispersion curve with the theoretical dispersion curves. However, it is difficult to calculate the dispersion curves when SAWs propagate along patterned structure. In this paper, finite element method (FEM) is applied to obtain the numerical dispersion results of SAWs propagating on patterned film. Periodic boundary condition and plane-strain model is used to improve the computation speed. Four structures of bulk silicon, single layered low-k film, two layered Cu and SiO2 film, and patterned film, are simulated in this paper. The dispersion curves of single low-k films derived from the FEM simulation agree very well with those calculated by traditional method, which verifies the correct employment of the FEM approach. Dispersion curves of two patterned film structure of Cu and SiO2 with difference metal wire width are obtained. Effective Young's moduli are achieved by fitting the FEM simulated results with those of traditional theoretical calculation through least square error method.

  10. Mechanical characterization of diesel particulate filter (DPF) substrates

    SciTech Connect

    Shyam, Amit; Lara-Curzio, Edgar; Watkins, Thomas R; Parten, Randy J

    2008-01-01

    Test procedures for the mechanical evaluation of diesel particulate filter (DPF) substrate materials have been developed and applied for the characterization of porous cordierite under ambient conditions. Specifically the double-torsion test method was employed to characterize fracture toughness and slow crack behavior while resonant ultrasound spectroscopy (RUS) was used to determine the elastic properties of the substrate walls. A dry grinding procedure was developed to fabricate test specimens for these tests. The fracture behavior of porous cordierite was related to the pore structure inside the filter wall. Implications of the test results on the mechanical reliability of DPFs are discussed.

  11. Biaxial mechanical characterization of bat wing skin.

    PubMed

    Skulborstad, A J; Swartz, S M; Goulbourne, N C

    2015-06-01

    The highly flexible and stretchable wing skin of bats, together with the skeletal structure and musculature, enables large changes in wing shape during flight. Such compliance distinguishes bat wings from those of all other flying animals. Although several studies have investigated the aerodynamics and kinematics of bats, few have examined the complex histology and mechanical response of the wing skin. This work presents the first biaxial characterization of the local deformation, mechanical properties, and fiber kinematics of bat wing skin. Analysis of these data has provided insight into the relationships among the structural morphology, mechanical properties, and functionality of wing skin. Large spatial variations in tissue deformation and non-negligible fiber strains in the cross-fiber direction for both chordwise and spanwise fibers indicate fibers should be modeled as two-dimensional elements. The macroscopic constitutive behavior was anisotropic and nonlinear, with very low spanwise and chordwise stiffness (hundreds of kilopascals) in the toe region of the stress-strain curve. The structural arrangement of the fibers and matrix facilitates a low energy mechanism for wing deployment and extension, and we fabricate examples of skins capturing this mechanism. We propose a comprehensive deformation map for the entire loading regime. The results of this work underscore the importance of biaxial field approaches for soft heterogeneous tissue, and provide a foundation for development of bio-inspired skins to probe the effects of the wing skin properties on aerodynamic performance. PMID:25895436

  12. Mechanical Characterization of Rigid Polyurethane Foams

    SciTech Connect

    Lu, Wei-Yang

    2014-12-01

    Foam materials are used to protect sensitive components from impact loading. In order to predict and simulate the foam performance under various loading conditions, a validated foam model is needed and the mechanical properties of foams need to be characterized. Uniaxial compression and tension tests were conducted for different densities of foams under various temperatures and loading rates. Crush stress, tensile strength, and elastic modulus were obtained. A newly developed confined compression experiment provided data for investigating the foam flow direction. A biaxial tension experiment was also developed to explore the damage surface of a rigid polyurethane foam.

  13. Experimental methods for identifying failure mechanisms

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.

    1983-01-01

    Experimental methods for identifying failure mechanisms in fibrous composites are studied. Methods to identify failure in composite materials includes interferometry, holography, fractography and ultrasonics.

  14. Battery Vent Mechanism And Method

    DOEpatents

    Ching, Larry K. W.

    2000-02-15

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

  15. Structural Embeddings: Mechanization with Method

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar; Rushby, John

    1999-01-01

    The most powerful tools for analysis of formal specifications are general-purpose theorem provers and model checkers, but these tools provide scant methodological support. Conversely, those approaches that do provide a well-developed method generally have less powerful automation. It is natural, therefore, to try to combine the better-developed methods with the more powerful general-purpose tools. An obstacle is that the methods and the tools often employ very different logics. We argue that methods are separable from their logics and are largely concerned with the structure and organization of specifications. We, propose a technique called structural embedding that allows the structural elements of a method to be supported by a general-purpose tool, while substituting the logic of the tool for that of the method. We have found this technique quite effective and we provide some examples of its application. We also suggest how general-purpose systems could be restructured to support this activity better.

  16. Thermo-mechanical characterization of silicone foams

    SciTech Connect

    Rangaswamy, Partha; Smith, Nickolaus A.; Cady, Carl M.; Lewis, Matthew W.

    2015-10-01

    Cellular solids such as elastomeric foams are used in many structural applications to absorb and dissipate energy, due to their light weight (low density) and high energy absorption capability. In this paper we will discuss foams derived from S5370, a silicone foam formulation developed by Dow Corning. In the application presented, the foam is consolidated into a cushion component of constant thickness but variable density. A mechanical material model developed by Lewis (2013), predicts material response, in part, as a function of relative density. To determine the required parameters for this model we have obtained the mechanical response in compression for ambient, cold and hot temperatures. The variable density cushion provided samples sufficient samples so that the effect of sample initial density on the mechanical response could be studied. The mechanical response data showed extreme sensitivity to relative density. We also observed at strains corresponding to 1 MPa a linear relationship between strain and initial density for all temperatures. Samples taken from parts with a history of thermal cycling demonstrated a stiffening response that was a function of temperature, with the trend of more stiffness as temperature increased above ambient. This observation is in agreement with the entropic effects on the thermo-mechanical behavior of silicone polymers. In this study, we present the experimental methods necessary for the development of a material model, the testing protocol, analysis of test data, and a discussion of load (stress) and gap (strain) as a function of sample initial densities and temperatures

  17. DYNAMIC MECHANICAL ANALYSIS CHARACTERIZATION OF GLOVEBOX GLOVES

    SciTech Connect

    Korinko, P.

    2012-02-29

    As part of the characterization of various glovebox glove material from four vendors, the permeability of gas through each type as a function of temperature was determined and a discontinuity in the permeability with temperature was revealed. A series of tests to determine the viscoelastic properties of the glove materials as a function of temperature using Dynamic Mechanical Analysis (DMA) was initiated. The glass transition temperature and the elastic and viscoelastic properties as a function of temperature up to maximum use temperature were determined for each glove material. The glass transition temperatures of the gloves were -60 C for butyl, -30 C for polyurethane, -16 C Hypalon{reg_sign}, - 16 C for Viton{reg_sign}, and -24 C for polyurethane-Hypalon{reg_sign}. The glass transition was too complex for the butyl-Hypalon{reg_sign} and butyl-Viton{reg_sign} composite gloves to be characterized by a single glass transition temperature. All of the glass transition temperatures exceed the vendor projected use temperatures.

  18. Characterization methods for fractured glacial tills

    USGS Publications Warehouse

    Haefner, R.J.

    2000-01-01

    This paper provides a literature review of methods successfully employed to characterize finegrained and fractured or unfractured glacial deposits. Descriptions and examples are given for four major categories of characterization methods: physical, hydraulic, chemical, and indirect. Characterization methods have evolved significantly within the past ten years; however, there still exists uncertainty about the reliability of individual characterization methods applied to till deposits. Therefore, a combination of methods is best, the choice of which depends on the objectives of the work. Sampling methods, sampling scales, and reporting methods are extremely important and should be considered when interpreting and comparing results between sites. Recognition of these issues is necessary to ensure that decisions regarding the transport of fluids in fractured tills are not based on the assumption that poorly permeable tills are always an inhibitor of subsurface flow.

  19. Jet methods in nonholonomic mechanics

    NASA Astrophysics Data System (ADS)

    Giachetta, Giovanni

    1992-05-01

    Classical nonholonomic mechanical systems are studied whose evolution space is a fiber bundle τ: M→R. The framework is that of jet spaces in which the geometrical meaning of the theory emerges clearly. For systems with linear constraints a new interpretation is given of Appell's equations as first-order differential equations associated with a suitable vector field. The d'Alembert principle is formulated in an appropriate way to be generalized to systems with nonlinear constraints. The equivalence between the equations of motion arising from this generalization, the ones set up on Gauss' principle of least constraint and Hertz's principle of least curvature is established.

  20. New method for the fabrication of highly osteoconductive β-1,3-glucan/HA scaffold for bone tissue engineering: Structural, mechanical, and biological characterization.

    PubMed

    Klimek, Katarzyna; Przekora, Agata; Pałka, Krzysztof; Ginalska, Grażyna

    2016-10-01

    Recent studies have shown that thermal method for β-1,3-glucan (curdlan) gelation performed at temperature above 80°C enables fabrication of biocompatible bone scaffolds. The aim of this study was to establish new method for fabrication of β-1,3-glucan/hydroxyapatite (glu/HA) scaffold using ion-exchanging dialysis for curdlan gelation that allows for the modifications of the glu/HA material with thermo-sensitive agents like growth factors or adhesive proteins. Obtained results reveal that fabricated scaffold appears to be highly osteoconductive as it is nontoxic, promotes osteoblast growth and proliferation as well as increases bone alkaline phosphatase level thereby enhancing cell differentiation. It was demonstrated that developed new method for the glu/HA scaffold fabrication allows to obtain material that not only can be modified with thermo-sensitive agents at the stage of production process but also is a promising candidate for bone tissue engineering applications to act as a framework for osteoblasts to spread and form new bone. It should be noted that dialysis method for curdlan gelation has never been used before to fabricate bone scaffold. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2528-2536, 2016.

  1. Methods for characterizing plant fibers.

    PubMed

    Cruthers, Natasha; Carr, Debra; Niven, Brian; Girvan, Elizabeth; Laing, Raechel

    2005-08-01

    The effectiveness of different microscopy techniques for measuring the dimensions of ultimate fibers from harakeke (Phormium tenax, New Zealand flax) was investigated using a factorial experimental design. Constant variables were geographical location, location of specimens along the leaf, season (winter), individual plant, a fourth leaf from a north-facing fan, age of plant, and cultivars (two). Experimental variables were microscopy techniques and measurement axis. Measurements of width and length of harakeke ultimate fibers depended on the microscopic preparation/technique used as well as the cultivar examined. The best methods were (i) transverse sections of leaf specimens 4 microm thick, embedded in Paraplast and observed using light microscopy, and (ii) nonfixed ultimate fibers observed using scanning electron microscopy.

  2. Evaluation of Electrochemical Methods for Electrolyte Characterization

    NASA Technical Reports Server (NTRS)

    Heidersbach, Robert H.

    2001-01-01

    This report documents summer research efforts in an attempt to develop an electrochemical method of characterizing electrolytes. The ultimate objective of the characterization would be to determine the composition and corrosivity of Martian soil. Results are presented using potentiodynamic scans, Tafel extrapolations, and resistivity tests in a variety of water-based electrolytes.

  3. Radical SAM, A Novel Protein Superfamily Linking Unresolved Steps in Familiar Biosynthetic Pathways with Radical Mechanisms: Functional Characterization Using New Analysis and Information Visualization Methods

    SciTech Connect

    Sofia, Heidi J.; Chen, Guang; Hetzler, Elizabeth G.; Reyes Spindola, Jorge F.; Miller, Nancy E.

    2001-03-01

    A large protein superfamily with over 500 members has been discovered and analyzed using powerful new bioinformatics and information visualization methods. Evidence exists that these proteins generate a 5?-deoxyadenosyl radical by reductive cleavage of S-adenosylmethionine (SAM) through an unusual Fe-S center. Radical SAM superfamily proteins function in DNA precursor, vitamin, cofactor, antibiotic, and herbicide biosynthesis in a collection of basic and familiar pathways. One of the members is interferon-inducible and is considered a candidate drug target for osteoporosis. The identification of this superfamily suggests that radical-based catalysis is important in a number of previously well-studied but unresolved biochemical pathways.

  4. Quantum Mechanical Methods for Enzyme Kinetics

    NASA Astrophysics Data System (ADS)

    Gao, Jiali; Truhlar, Donald G.

    2002-10-01

    This review discusses methods for the incorporation of quantum mechanical effects into enzyme kinetics simulations in which the enzyme is an explicit part of the model. We emphasize three aspects: (a) use of quantum mechanical electronic structure methods such as molecular orbital theory and density functional theory, usually in conjunction with molecular mechanics; (b) treating vibrational motions quantum mechanically, either in an instantaneous harmonic approximation, or by path integrals, or by a three-dimensional wave function coupled to classical nuclear motion; (c) incorporation of multidimensional tunneling approximations into reaction rate calculations.

  5. Overview of geotechnical methods to characterize rock masses

    SciTech Connect

    Heuze, F.E.

    1981-12-01

    The methods that are used to characterize discontinuous rock masses from a geotechnical point of view are summarized. Emphasis is put on providing key references on each subject. The topics of exploration, in-situ stresses, mechanical properties, thermal properties, and hydraulic properties are addressed.

  6. Characterization of Nanomaterials by Physical Methods

    NASA Astrophysics Data System (ADS)

    Rao, C. N. R.; Biswas, Kanishka

    2009-07-01

    Much progress in nanoscience and nanotechnology has been made in the past few years thanks to the increased availability of sophisticated physical methods to characterize nanomaterials. These techniques include electron microscopy and scanning probe microscopies, in addition to standard techniques such as X-ray and neutron diffraction, X-ray scattering, and various spectroscopies. Characterization of nanomaterials includes the determination not only of size and shape, but also of the atomic and electronic structures and other important properties. In this article we describe some of the important methods employed for characterization of nanostructures, describing a few case studies for illustrative purposes. These case studies include characterizations of Au, ReO3, and GaN nanocrystals; ZnO, Ni, and Co nanowires; inorganic and carbon nanotubes; and two-dimensional graphene.

  7. The Challenge of Characterizing Operations in the Mechanisms Underlying Behavior

    ERIC Educational Resources Information Center

    Bechtel, William

    2005-01-01

    Neuroscience and cognitive science seek to explain behavioral regularities in terms of underlying mechanisms. An important element of a mechanistic explanation is a characterization of the operations of the parts of the mechanism. The challenge in characterizing such operations is illustrated by an example from the history of physiological…

  8. Characterizing the mechanical behavior of the zebrafish germ layers

    NASA Astrophysics Data System (ADS)

    Kealhofer, David; Serwane, Friedhelm; Mongera, Alessandro; Rowghanian, Payam; Lucio, Adam; Campàs, Otger

    Organ morphogenesis and the development of the animal body plan involve complex spatial and temporal control of tissue- and cell-level mechanics. A prime example is the generation of stresses by individual cells to reorganize the tissue. These processes have remained poorly understood due to a lack of techniques to characterize the local constitutive law of the material, which relates local cellular forces to the resulting tissue flows. We have developed a method for quantitative, local in vivo study of material properties in living tissue using magnetic droplet probes. We use this technique to study the material properties of the different zebrafish germ layers using aggregates of zebrafish mesendodermal and ectodermal cells as a model system. These aggregates are ideal for controlled studies of the mechanics of individual germ layers because of the homogeneity of the cell type and the simple spherical geometry. Furthermore, the numerous molecular tools and transgenic lines already developed for this model organism can be applied to these aggregates, allowing us to characterize the contributions of cell cortex tension and cell adhesion to the mechanical properties of the zebrafish germ layers.

  9. Mechanical characterization of skeletal muscle myofibrils.

    PubMed Central

    Friedman, A L; Goldman, Y E

    1996-01-01

    A new instrument, based on a technique described previously, is presented for studying mechanics of micron-scale preparations of two to three myofibrils or single myofibrils from muscle. Forces in the nanonewton to micronewton range are measurable with 0.5-ms time resolution. Programmed quick (200-microseconds) steps or ramp length changes are applied to contracting myofibrils to test their mechanical properties. Individual striations can be monitored during force production and shortening. The active isometric force, force-velocity relationship, and force transients after rapid length steps were obtained from bundles of two to three myofibrils from rabbit psoas muscle. Contrary to some earlier reports on myofibrillar mechanics, these properties are generally similar to expectations from studies on intact and skinned muscle fibers. Our experiments provide strong evidence that the mechanical properties of a fiber result from a simple summation of the myofibrillar force and shortening of independently contracting sarcomeres. Images FIGURE 1 FIGURE 2 PMID:8913614

  10. Failure mechanism characterization of platinum alloy

    NASA Technical Reports Server (NTRS)

    Rosen, J. M.; Mcfarlen, W. T.

    1986-01-01

    This article describes procedures and results of testing performed on a platinum/10-percent rhodium, thin-wall tubular product. The purpose of the testing was to develop exemplar SEM fractographs to be used to characterize failures under various environmental conditions. Conditions evaluated for the platinum alloys included high temperature, hydrogen environment, braze metal contamination, and cyclic loading.

  11. Thermal-mechanical-noise-based CMUT characterization and sensing.

    PubMed

    Gurun, Gokce; Hochman, Michael; Hasler, Paul; Degertekin, F Levent

    2012-06-01

    When capacitive micromachined ultrasonic transducers (CMUTs) are monolithically integrated with custom-designed low-noise electronics, the output noise of the system can be dominated by the CMUT thermal-mechanical noise both in air and in immersion even for devices with low capacitance. Because the thermal-mechanical noise can be related to the electrical admittance of the CMUTs, this provides an effective means of device characterization. This approach yields a novel method to test the functionality and uniformity of CMUT arrays and the integrated electronics when a direct connection to CMUT array element terminals is not available. Because these measurements can be performed in air at the wafer level, the approach is suitable for batch manufacturing and testing. We demonstrate this method on the elements of an 800-μm-diameter CMUT-on-CMOS array designed for intravascular imaging in the 10 to 20 MHz range. Noise measurements in air show the expected resonance behavior and spring softening effects. Noise measurements in immersion for the same array provide useful information on both the acoustic cross talk and radiation properties of the CMUT array elements. The good agreement between a CMUT model based on finite difference and boundary element methods and the noise measurements validates the model and indicates that the output noise is indeed dominated by thermal-mechanical noise. The measurement method can be exploited to implement CMUT-based passive sensors to measure immersion medium properties, or other parameters affecting the electro-mechanics of the CMUT structure. PMID:22718877

  12. Microscale mechanical characterization of materials for extreme environments

    NASA Astrophysics Data System (ADS)

    Ozerinc, Sezer

    requirements of micron-sized specimens, muN-level force sensitivity, and nm-level displacement sensitivity. A recently developed mechanical characterization technique, micropillar compression, has enabled the testing of miniaturized specimens; however, there has been no demonstration of the application of this technique to irradiation induced creep measurements. This dissertation presents the development of an in situ measurement apparatus for compression testing of micron-sized cylindrical specimens under MeV-heavy ion bombardment. The apparatus has a force resolution of 1 muN and a displacement resolution of 1 nm. The apparatus measured irradiation induced creep in four different amorphous materials and the findings clarified the significance of different creep mechanisms in these materials. In amorphous metals and amorphous Si, the measured irradiation induced fluidity is ≈ 3 dpa-1GPa-1 (dpa: displacements per atom). The measured fluidity is in excellent agreement with previous molecular dynamics simulation predictions, providing experimental evidence for point defect mediated plastic flow under ion bombardment. For amorphous SiO2, stress relaxation through thermal spikes further contribute to the creep response, resulting in higher fluidities up to ≈ 83 dpa-1GPa -1. Finally, this dissertation presents the further development of the creep testing apparatus for high temperature measurements. The apparatus demonstrated good thermal and mechanical stability and measured irradiation induced creep of nanocrystalline Cu at 200°C. Resulting irradiation induced fluidity is ≈ 10% of the fluidity of the amorphous metals, in agreement with previous measurements on free-standing films. Understanding the creep behavior of nanostructured metals under heavy ion bombardment at elevated temperatures is important for identifying the governing creep mechanisms in these materials. The developed apparatus provides a new and effective method of accelerated mechanical characterization of

  13. Mechanical characterization of commercial biodegradable plastic films

    NASA Astrophysics Data System (ADS)

    Vanstrom, Joseph R.

    Polylactic acid (PLA) is a biodegradable plastic that is relatively new compared to other plastics in use throughout industry. The material is produced by the polymerization of lactic acid which is produced by the fermentation of starches derived from renewable feedstocks such as corn. Polylactic acid can be manufactured to fit a wide variety of applications. This study details the mechanical and morphological properties of selected commercially available PLA film products. Testing was conducted at Iowa State University and in conjunction with the United States Department of Agriculture (USDA) BioPreferred ProgramRTM. Results acquired by Iowa State were compared to a similar study performed by the Cortec Corporation in 2006. The PLA films tested at Iowa State were acquired in 2009 and 2010. In addition to these two studies at ISU, the films that were acquired in 2009 were aged for a year in a controlled environment and then re-tested to determine effects of time (ageing) on the mechanical properties. All films displayed anisotropic properties which were confirmed by inspection of the films with polarized light. The mechanical testing of the films followed American Society for Testing and Materials (ASTM) standards. Mechanical characteristics included: tensile strength (ASTM D882), elongation of material at failure (ASTM D882), impact resistance (ASTM D1922), and tear resistance (ASTM D4272). The observed values amongst all the films ranged as followed: tensile strength 33.65--8.54 MPa; elongation at failure 1,665.1%--47.2%; tear resistance 3.61--0.46 N; and puncture resistance 2.22--0.28 J. There were significant differences between the observed data for a number of films and the reported data published by the Cortec Corp. In addition, there were significant differences between the newly acquired material from 2009 and 2010, as well as the newly acquired materials in 2009 and the aged 2009 materials, suggesting that ageing and manufacturing date had an effect on

  14. Computational Methods for Structural Mechanics and Dynamics

    NASA Technical Reports Server (NTRS)

    Stroud, W. Jefferson (Editor); Housner, Jerrold M. (Editor); Tanner, John A. (Editor); Hayduk, Robert J. (Editor)

    1989-01-01

    Topics addressed include: transient dynamics; transient finite element method; transient analysis in impact and crash dynamic studies; multibody computer codes; dynamic analysis of space structures; multibody mechanics and manipulators; spatial and coplanar linkage systems; flexible body simulation; multibody dynamics; dynamical systems; and nonlinear characteristics of joints.

  15. Mechanical characterization and computational modeling of gels

    NASA Astrophysics Data System (ADS)

    Santos, Paulo Henrique da Silva

    Soft materials like gels have arisen as key component in a wide range of applications, ranging from rocket propellants to complex materials for biomedical devices and drug delivery. Experimental studies have focused on the characterization of a number of gels involving macromolecules such as proteins and polysaccharides; however the link between the microstructure of these systems with their resulting macroproperties is still lacking. From the experimental point of view, this research describes the rheological behavior of some complex systems using the appropriate rheological constitutive equations. Non-conventional rheological techniques are also considered to describe some fragile systems that are significantly disturbed during testing with conventional instruments. From the computational perspective, this research provides insights on how molecular conformation and interactions affect the rheological properties of colloidal and polymeric gels. Molecular and Brownian Dynamics simulation were performed to get a better understanding on gelation processes and to explore new applications for gelled materials.

  16. Microarchitectural and Mechanical Characterization of Sickle Bone

    PubMed Central

    Green, Mykel; Akinsami, Idowu; Lin, Angela; Banton, Shereka; Ghosh, Samit; Chen, Binbin; Platt, Manu; Osunkwo, Ifeyinwa; Ofori-Acquah, Solomon; Guldberg, Robert; Barabino, Gilda

    2015-01-01

    Individuals with sickle cell disease often experience acute and chronic bone pain due to occlusive events within the tissue vasculature that result in ischemia, necrosis, and organ degeneration. Macroscopically, sickle bone is identified in clinical radiographs by its reduced mineral density, widening of the marrow cavity, and thinning of the cortical bone due to the elevated erythroid hyperplasia accompanying the disease. However, the microstructural architecture of sickle bone and its role in mechanical functionality is largely unknown. This study utilized micro-CT and biomechanical testing to determine the relationship between the bone morphology, tissue mineral density, and trabecular and cortical microarchitecture of 10-and 21-week-old femurs from transgenic sickle male mice and littermates with sickle trait, as well as a wild-type control. While bone tissue mineral density did not vary among the genotypes at either age, variation in bone microstructure were observed. At 10 weeks, healthy and trait mice exhibited similar morphology within the cortical and trabecular bone, while sickle mice exhibited highly connected trabeculae. Within older femurs, sickle and trait specimens displayed significantly fewer trabeculae, and the remaining trabeculae had a more deteriorated geometry based on the structure model index. Thinning of the cortical region in sickle femurs contributed to the displayed flexibility with a significantly lower elastic modulus than the controls at both 10- and 21-weeks old. Wild-type and trait femurs generally demonstrated similar mechanical properties; however, trait femurs had a significantly higher modulus than sickle and wild-type control at 21-weeks. Overall, these data indicate that the progressive damage to the microvasculature caused by sickle cell disease, results in deleterious structural changes in the bone tissue's microarchitecture and mechanics. PMID:25957113

  17. Characterization methods for ultrasonic test systems

    SciTech Connect

    Busse, L.J.; Becker, F.L.; Bowey, R.E.; Doctor, S.R.; Gribble, R.P.; Posakony, G.J.

    1982-07-01

    Methods for the characterization of ultrasonic transducers (search units) and instruments are presented. The instrument system is considered as three separate components consisting of a transducer, a receiver-display, and a pulser. The operation of each component is assessed independently. The methods presented were chosen because they provide the greatest amount of information about component operation and were not chosen based upon such conditions as cost, ease of operation, field implementation, etc. The results of evaluating a number of commercially available ultrasonic test instruments are presented.

  18. Mechanical diode: Comparing numerical and experimental characterizations

    SciTech Connect

    Sagartz, M.J.; Segalman, D.; Simmermacher, T.

    1998-02-01

    In this introductory work, joint compliance is studied in both a numerical and experimental setting. A simple bolted interface is used as the test article and compliance is measured for the joint in both compression and in tension. This simple interface is shown to exhibit a strong non-linearity near the transition from compression to tension (or vice-versa). Modeling issues pertaining to numerically solving for the compliance are addressed. It is shown that the model predictions, in spite of convergence being very sensitive to numerical artifacts of the interface model, are in good agreement with experimentally measured strains and joint compliances. The joint behavior is a mechanical analogy to a diode, i.e., in compression, the joint is very stiff, acting almost as a rigid link, while in tension the joint is relatively soft, acting as a spring.

  19. Characterizing mechanical effects of aging damage

    SciTech Connect

    Sewell, T.D.; Chen, S.P.; Schoonover, J.R.; Trent, B.C.; Howe, P.M.; Hjelm, R.P.; Browning, R.V.

    1998-12-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal was to develop and apply several different experimental and theoretical/computational tools to better understand physical and chemical aging phenomena in plastic-bonded high explosives, and to develop a methodology for predicting the likely effects of aging on the mechanical properties of the composite based on input from these fundamental studies. Initial comparisons were done for spectra of fresh and aged Esane, as well as PBX-9501, and the authors found differences in the carbonyl region of the spectrum, which possibly reflect differences in hydrogen bonding due to aging phenomena. The micromechanical model of composites was extended to study various volume fractions of HMX with binders. The results showed that, as the binder fraction increases, there is a decrease in the maximum stress that can be supported but an increase in the percent strain at final fracture. A more realistic microstructural model was obtained through the use of a phase field model. Using this model, the authors have studied the microstructural evolution as a function of the grain boundary energy vs. misorientation relationship. The initial results indicate that there are some changes in the grain growth rate when the grain-boundary energy dependence on the angle is not constant. They also find that solute tends to segregate at the grain boundary and slows the grain growth kinetics.

  20. Mechanical Characterization of Nodular Ductile Iron

    SciTech Connect

    Springer, H K

    2012-01-03

    The objective of this study is to characterize the strength and fracture response of nodular ductile iron (NDI) and its underlying ferritic matrix phase. Quasistatic and split Hopkinson pressure bar (SHPB) compression tests were performed on NDI and a model material for the NDI matrix phase (Fe-Si alloy). Smooth and notch round bar (NRB) samples were loaded in tension until fracture to determine strain-at-failure with varying stress triaxiality. Multiple tests were performed on each small and large smooth bar samples to obtain fracture statistics with sample size. Fracture statistics are important for initializing simulations of fragmentation events. Johnson-Cook strength models were developed for the NDI and the Fe-Si alloy. NDI strength model parameters are: A = 525 MPa, B = 650 MPa, n = 0.6, and C = 0.0205. The average SHPB experimental strain-rate of 2312/s was used for the reference strain-rate in this model. Fe-Si alloy strength model parameters are: A=560 MPa, B = 625 MPa, n = 0.5, and C = 0.02. The average SHPB experimental strain-rate of 2850/s was used for the reference strain-rate in this model. A Johnson-Cook failure model was developed for NDI with model parameters: D{sub 1} = 0.029, D{sub 2} = 0.44, D{sub 3} = -1.5, and D{sub 4} = D{sub 5} = 0. An exponential relationship was developed for the elongation-at-failure statistics as a function of length-scale with model parameters: S{sub f1} = 0.108, S{sub f2} = -0.00169, and L{sub m} = 32.4 {mu}m. NDI strength and failure models, including failure statistics, will be used in continuum-scale simulations of explosively-driven ring fragmentation. The Fe-Si alloy strength model will be used in mesoscale simulations of spall fracture in NDI, where the NDI matrix phase is captured explicitly.

  1. Physico-mechanical characterization of adobe bricks from Cyprus

    NASA Astrophysics Data System (ADS)

    Ioannou, I.; Illampas, R.; Charmpis, D. C.

    2012-04-01

    Adobe bricks have been used in the construction of buildings for thousands of years. In our days, adobe masonry is no longer a prevailing form of construction. However, a great number of earthen buildings still survives in most regions of the world and constitutes an essential part of the international architectural and cultural heritage. Furthermore, efforts are currently being made to reintroduce adobes as an environmentally-friendly building material to contemporary architecture within the context of sustainable development. Despite the long-term use of adobes and their importance for the society, our knowledge of many aspects of this material is still rather limited. As a result, there are many ongoing research initiatives worldwide aiming to investigate the physicochemical and mechanical properties of adobe bricks and related durability problems. In this paper, we present our work (which is funded by the Cyprus Research Promotion Foundation Project EΠIXEIPHΣEIΣ/ΠPOION/0609/41, the Republic of Cyprus and the European Regional Development Fund) on the physico-mechanical characterization of adobes from Cyprus. In the absence of standardized procedures for most of the tests carried out, testing methodologies that either refer to other types of masonry materials and/or are encountered in the literature are adopted. The results show that adobes are mostly composed of random quantities of silt and clay. Calcite is also predominant in the X-ray diffraction analyses patterns. The average capillary water absorption coefficient of the test specimens rarely exceeds 1 mm/min1/2 (when measured against a saturated sponge surface), while their thermal conductivity is around 0.55 W/mK. Extensive experimental data on the material's mechanical behaviour show that adobes' response to compression is characterized by intense deformability. The average value of compressive strength depends greatly on the form of specimen examined (cube, cylinder, prism) and the failure criterion

  2. Method Of Characterizing An Electrode Binder

    DOEpatents

    Cocciantelli, Jean-Michel; Coco, Isabelle; Villenave, Jean-Jacques

    1999-05-11

    In a method of characterizing a polymer binder for cell electrodes in contact with an electrolyte and including a current collector and a paste containing an electrochemically active material and said binder, a spreading coefficient of the binder on the active material is calculated from the measured angle of contact between standard liquids and the active material and the binder, respectively. An interaction energy of the binder with the electrolyte is calculated from the measured angle of contact between the electrolyte and the binder. The binder is selected such that the spreading coefficient is less than zero and the interaction energy is at least 60 mJ/m.sup.2.

  3. Characterization of submicron systems via optical methods.

    PubMed

    Haskell, R J

    1998-02-01

    As a means of addressing the issues of drug delivery, submicron colloidal systems have become increasingly used as pharmaceutical formulations. Accurately characterizing physical properties of the constituent particulates present in these systems is an indispensable activity. However, measuring descriptors such as particle size distribution and surface potential presents an experimental challenge. This paper describes the physical basis for a number of optically based techniques that are useful in this task. In addition, the caveats and benefits of these methods are discussed and reference is made to their use in the examination of various multiphase systems such as liposomes, nanoparticles, and emulsions.

  4. Automated Weld Characterization Using the Thermoelectric Method

    NASA Technical Reports Server (NTRS)

    Fulton, J. P.; Wincheski, B.; Namkung, M.

    1992-01-01

    The effective assessment of the integrity of welds is a complicated NDE problem that continues to be a challenge. To be able to completely characterize a weld, detailed knowledge of its tensile strength, ductility, hardness, microstructure, macrostructure, and chemical composition is needed. NDE techniques which can provide information on any of these features are extremely important. In this paper, we examine a seldom used approach based on the thermoelectric (TE) effect for characterizing welds and their associated heat affected zone (HAZ). The thermoelectric method monitors the thermoelectric power which is sensitive to small changes in the kinetics of the conduction electrons near the Fermi surface that can be caused by changes in the local microstructure. The technique has been applied to metal sorting, quality testing, flaw detection, thickness gauging of layers, and microscopic structural analysis. To demonstrate the effectiveness of the technique for characterizing welds, a series of tungsten-inert-gas welded Inconel-718 samples were scanned with a computer controlled TE probe. The samples were then analyzed using a scanning electron microscope and Rockwell hardness tests to characterize the weld and the associated HAZ. We then correlated the results with the TE measurements to provide quantitative information on the size of the HAZ and the degree of hardness of the material in the weld region. This provides potentially valuable information on the strength and fatigue life of the weld. We begin the paper by providing a brief review of the TE technique and then highlight some of the factors that can effect the measurements. Next, we provide an overview of the experimental procedure and discuss the results. Finally, we summarize our findings and consider areas for future research.

  5. A method for characterizing photon radiation fields

    SciTech Connect

    Whicker, J.J.; Hsu, H.H.; Hsieh, F.H.; Borak, T.B.

    1999-04-01

    Uncertainty in dosimetric and exposure rate measurements can increase in areas where multi-directional and low-energy photons (< 100 keV) exist because of variations in energy and angular measurement response. Also, accurate measurement of external exposures in spatially non-uniform fields may require multiple dosimetry. Therefore, knowledge of the photon fields in the workplace is required for full understanding of the accuracy of dosimeters and instruments, and for determining the need for multiple dosimeters. This project was designed to develop methods to characterize photon radiation fields in the workplace, and to test the methods in a plutonium facility. The photon field at selected work locations was characterized using TLDs and a collimated NaI(Tl) detector from which spatial variations in photon energy distributions were calculated from measured spectra. Laboratory results showed the accuracy and utility of the method. Field measurement results combined with observed work patterns suggested the following: (1) workers are exposed from all directions, but not isotropically, (2) photon energy distributions were directionally dependent, (3) stuffing nearby gloves into the glovebox reduced exposure rates significantly, (4) dosimeter placement on the front of the chest provided for a reasonable estimate of the average dose equivalent to workers` torsos, (5) justifiable conclusions regarding the need for multiple dosimetry can be made using this quantitative method, and (6) measurements of the exposure rates with ionization chambers pointed with open beta windows toward the glovebox provided the highest measured rates, although absolute accuracy of the field measurements still needs to be assessed.

  6. Multiscale Approach to Characterize Mechanical Properties of Tissue Engineered Skin.

    PubMed

    Tupin, S; Molimard, J; Cenizo, V; Hoc, T; Sohm, B; Zahouani, H

    2016-09-01

    Tissue engineered skin usually consist of a multi-layered visco-elastic material composed of a fibrillar matrix and cells. The complete mechanical characterization of these tissues has not yet been accomplished. The purpose of this study was to develop a multiscale approach to perform this characterization in order to link the development process of a cultured skin to the mechanical properties. As a proof-of-concept, tissue engineered skin samples were characterized at different stages of manufacturing (acellular matrix, reconstructed dermis and reconstructed skin) for two different aging models (using cells from an 18- and a 61-year-old man). To assess structural variations, bi-photonic confocal microscopy was used. To characterize mechanical properties at a macroscopic scale, a light-load micro-mechanical device that performs indentation and relaxation tests was designed. Finally, images of the internal network of the samples under stretching were acquired by combining confocal microscopy with a tensile device. Mechanical properties at microscopic scale were assessed. Results revealed that adding cells during manufacturing induced structural changes, which provided higher elastic modulus and viscosity. Moreover, senescence models exhibited lower elastic modulus and viscosity. This multiscale approach was efficient to characterize and compare skin equivalent samples and permitted the first experimental assessment of the Poisson's ratio for such tissues.

  7. Mesh deployable antenna mechanics testing method

    NASA Astrophysics Data System (ADS)

    Jiang, Li

    Rapid development in spatial technologies and continuous expansion of astronautics applications require stricter and stricter standards in spatial structure. Deployable space structure as a newly invented structural form is being extensively adopted because of its characteristic (i.e. deployability). Deployable mesh reflector antenna is a kind of common deployable antennas. Its reflector consists in a kind of metal mesh. Its electrical properties are highly dependent on its mechanics parameters (including surface accuracy, angle, and position). Therefore, these mechanics parameters have to be calibrated. This paper presents a mesh antenna mechanics testing method that employs both an electronic theodolite and a laser tracker. The laser tracker is firstly used to measure the shape of radial rib deployable antenna. The measurement data are then fitted to a paraboloid by means of error compensation. Accordingly, the focus and the focal axis of the paraboloid are obtained. The following step is to synchronize the coordinate systems of the electronic theodolite and the measured antenna. Finally, in a microwave anechoic chamber environment, the electromechanical axis is calibrated. Testing results verify the effectiveness of the presented method.

  8. Smart Optical Material Characterization System and Method

    NASA Technical Reports Server (NTRS)

    Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor)

    2015-01-01

    Disclosed is a system and method for characterizing optical materials, using steps and equipment for generating a coherent laser light, filtering the light to remove high order spatial components, collecting the filtered light and forming a parallel light beam, splitting the parallel beam into a first direction and a second direction wherein the parallel beam travelling in the second direction travels toward the material sample so that the parallel beam passes through the sample, applying various physical quantities to the sample, reflecting the beam travelling in the first direction to produce a first reflected beam, reflecting the beam that passes through the sample to produce a second reflected beam that travels back through the sample, combining the second reflected beam after it travels back though the sample with the first reflected beam, sensing the light beam produced by combining the first and second reflected beams, and processing the sensed beam to determine sample characteristics and properties.

  9. HEFF---A user`s manual and guide for the HEFF code for thermal-mechanical analysis using the boundary-element method; Version 4.1: Yucca Mountain Site Characterization Project

    SciTech Connect

    St. John, C.M.; Sanjeevan, K.

    1991-12-01

    The HEFF Code combines a simple boundary-element method of stress analysis with the closed form solutions for constant or exponentially decaying heat sources in an infinite elastic body to obtain an approximate method for analysis of underground excavations in a rock mass with heat generation. This manual describes the theoretical basis for the code, the code structure, model preparation, and step taken to assure that the code correctly performs its intended functions. The material contained within the report addresses the Software Quality Assurance Requirements for the Yucca Mountain Site Characterization Project. 13 refs., 26 figs., 14 tabs.

  10. Integrating asthma hazard characterization methods for consumer products.

    PubMed

    Maier, A; Vincent, M J; Gadagbui, B; Patterson, J; Beckett, W; Dalton, P; Kimber, I; Selgrade, M J K

    2014-10-01

    Despite extensive study, definitive conclusions regarding the relationship between asthma and consumer products remain elusive. Uncertainties reflect the multi-faceted nature of asthma (i.e., contributions of immunologic and non-immunologic mechanisms). Many substances used in consumer products are associated with occupational asthma or asthma-like syndromes. However, risk assessment methods do not adequately predict the potential for consumer product exposures to trigger asthma and related syndromes under lower-level end-user conditions. A decision tree system is required to characterize asthma and respiratory-related hazards associated with consumer products. A system can be built to incorporate the best features of existing guidance, frameworks, and models using a weight-of-evidence (WoE) approach. With this goal in mind, we have evaluated chemical hazard characterization methods for asthma and asthma-like responses. Despite the wealth of information available, current hazard characterization methods do not definitively identify whether a particular ingredient will cause or exacerbate asthma, asthma-like responses, or sensitization of the respiratory tract at lower levels associated with consumer product use. Effective use of hierarchical lines of evidence relies on consideration of the relevance and potency of assays, organization of assays by mode of action, and better assay validation. It is anticipated that the analysis of existing methods will support the development of a refined WoE approach.

  11. A method for characterizing volcanic ash

    SciTech Connect

    Bayhurst, G.K.; Wohletz, K.H.; Mason, A.S.

    1991-01-01

    The development of an automated program for characterization of particles using a scanning electron microscope (SEM) with an energy dispersive X-ray detector (EDS) has greatly reduced the time required for analysis of particulate samples. The SEM system provides a digital representation of all particles scanned such that further measurement of the size, shape, and area are a product of image processing. The EDS and associated software provides information as to the particles' chemical composition. The data obtained from the SEM by this method are reduced by computer to obtain distribution graphs for size, density, shape, and mineralogy. These SEM results have been tested by comparisons with results obtained by traditional optical microscopy, which supports the results and provide details concerning crystallinity and glass content. This method was applied to the ash that damaged the engines from the KLM 747 flight of December 15, 1989 while encountering the ash cloud from Redoubt Volcano. The sample was collected from the pitot-static system and had not been exposed to any engine parts that might have changed its characteristics. The sample analysis presented here demonstrates the capabilities and information obtainable from out automated SEM technique. 5 refs., 7 figs., 3 tabs.

  12. Herbicide resistance in weeds: Survey, characterization, and mechanisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of this paper is to present a systematic diagnostic approach towards the characterization of herbicide resistance in a given weed population with regards to profile (single, multiple, cross resistance), magnitude (fold level), mechanism, and related bio-physiological aspects. Diagnosing her...

  13. Frequency-Domain Methods for Characterization of Pulsed Power Diagnostics

    SciTech Connect

    White, A D; Anderson, R A; Ferriera, T J; Goerz, D A

    2009-07-27

    This paper discusses methods of frequency-domain characterization of pulsed power sensors using vector network analyzer and spectrum analyzer techniques that offer significant simplification over time-domain methods, while mitigating or minimizing the effect of the difficulties present in time domain characterization. These methods are applicable to characterization of a wide variety of sensors.

  14. Methods for Studying Ciliary Import Mechanisms.

    PubMed

    Takao, Daisuke; Verhey, Kristen J

    2016-01-01

    Cilia and flagella are microtubule-based organelles that play important roles in human health by contributing to cellular motility as well as sensing and responding to environmental cues. Defects in cilia formation and function cause a broad class of human genetic diseases called ciliopathies. To carry out their specialized functions, cilia contain a unique complement of proteins that must be imported into the ciliary compartment. In this chapter, we describe methods to measure the permeability barrier of the ciliary gate by microinjection of fluorescent proteins and dextrans of different sizes into ciliated cells. We also describe a fluorescence recovery after photobleaching (FRAP) assay to measure the entry of ciliary proteins into the ciliary compartment. These assays can be used to determine the molecular mechanisms that regulate the formation and function of cilia in mammalian cells. PMID:27514912

  15. Computational simulation methods for composite fracture mechanics

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.

    1988-01-01

    Structural integrity, durability, and damage tolerance of advanced composites are assessed by studying damage initiation at various scales (micro, macro, and global) and accumulation and growth leading to global failure, quantitatively and qualitatively. In addition, various fracture toughness parameters associated with a typical damage and its growth must be determined. Computational structural analysis codes to aid the composite design engineer in performing these tasks were developed. CODSTRAN (COmposite Durability STRuctural ANalysis) is used to qualitatively and quantitatively assess the progressive damage occurring in composite structures due to mechanical and environmental loads. Next, methods are covered that are currently being developed and used at Lewis to predict interlaminar fracture toughness and related parameters of fiber composites given a prescribed damage. The general purpose finite element code MSC/NASTRAN was used to simulate the interlaminar fracture and the associated individual as well as mixed-mode strain energy release rates in fiber composites.

  16. Characterization and redox mechanism of asthma in the elderly

    PubMed Central

    Zuo, Li; Pannell, Benjamin K.; Liu, Zewen

    2016-01-01

    Asthma is a chronic disease characterized by reversible airflow limitation, coughing, bronchial constriction, and an inflammatory immune response. While asthma has frequently been categorized as emerging in childhood, evidence has begun to reveal that the elderly population is certainly susceptible to late-onset, or even long-standing asthma. Non-atopic asthma, most commonly found in elderly patients is associated with elevated levels of serum and sputum neutrophils and may be more detrimental than atopic asthma. The mortality of asthma is high in the elderly since these patients often possess more severe symptoms than younger populations. The redox mechanisms that mediate inflammatory reactions during asthma have not been thoroughly interpreted in the context of aging. Thus, we review the asthmatic symptoms related to reactive oxygen species (ROS) and reactive nitrogen species (RNS) in seniors. Moreover, immune status in the elderly is weakened in part by immunosenescence, which is broadly defined as the decline in functionality of the immune system that corresponds with increasing age. The effects of immunosenescence on the expression of biomarkers potentially utilized in the clinical diagnosis of asthma remain unclear. It has also been shown that existing asthma treatments are less effective in the elderly. Thus, it is necessary that clinicians approach the diagnosis and treatment of asthmatic senior patients using innovative methods. Asthma in the elderly demands more intentional diagnostic and therapeutic research since it is potentially one of the few causes of mortality and morbidity in the elderly that is largely reversible. PMID:26843624

  17. A Practical Quantum Mechanics Molecular Mechanics Method for the Dynamical Study of Reactions in Biomolecules.

    PubMed

    Mendieta-Moreno, Jesús I; Marcos-Alcalde, Iñigo; Trabada, Daniel G; Gómez-Puertas, Paulino; Ortega, José; Mendieta, Jesús

    2015-01-01

    Quantum mechanics/molecular mechanics (QM/MM) methods are excellent tools for the modeling of biomolecular reactions. Recently, we have implemented a new QM/MM method (Fireball/Amber), which combines an efficient density functional theory method (Fireball) and a well-recognized molecular dynamics package (Amber), offering an excellent balance between accuracy and sampling capabilities. Here, we present a detailed explanation of the Fireball method and Fireball/Amber implementation. We also discuss how this tool can be used to analyze reactions in biomolecules using steered molecular dynamics simulations. The potential of this approach is shown by the analysis of a reaction catalyzed by the enzyme triose-phosphate isomerase (TIM). The conformational space and energetic landscape for this reaction are analyzed without a priori assumptions about the protonation states of the different residues during the reaction. The results offer a detailed description of the reaction and reveal some new features of the catalytic mechanism. In particular, we find a new reaction mechanism that is characterized by the intramolecular proton transfer from O1 to O2 and the simultaneous proton transfer from Glu 165 to C2.

  18. Estimation of mechanical properties of nanomaterials using artificial intelligence methods

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, V.; Garg, A.; Wong, C. H.; Tai, K.

    2014-09-01

    Computational modeling tools such as molecular dynamics (MD), ab initio, finite element modeling or continuum mechanics models have been extensively applied to study the properties of carbon nanotubes (CNTs) based on given input variables such as temperature, geometry and defects. Artificial intelligence techniques can be used to further complement the application of numerical methods in characterizing the properties of CNTs. In this paper, we have introduced the application of multi-gene genetic programming (MGGP) and support vector regression to formulate the mathematical relationship between the compressive strength of CNTs and input variables such as temperature and diameter. The predictions of compressive strength of CNTs made by these models are compared to those generated using MD simulations. The results indicate that MGGP method can be deployed as a powerful method for predicting the compressive strength of the carbon nanotubes.

  19. Apparatus and method for generating mechanical waves

    DOEpatents

    Allensworth, D.L.; Chen, P.J.

    1982-10-25

    Mechanical waves are generated in a medium by subjecting an electromechanical element to an alternating electric field having a frequency which induces mechanical resonance therein and is below any electrical resonance frequency thereof.

  20. Apparatus and method for generating mechanical waves

    DOEpatents

    Allensworth, Dwight L.; Chen, Peter J.

    1985-01-01

    Mechanical waves are generated in a medium by subjecting an electromechanical element to an alternating electric field having a frequency which induces mechanical resonance therein and is below any electrical resonance frequency thereof.

  1. Mechanical and Thermal Characterization of Ultrasonic Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Foster, Daniel R.

    Additive manufacturing is an emerging production technology used to create net shaped 3-D objects from a digital model. Ultrasonic Additive Manufacturing (UAM) is a relatively new type of additive manufacturing that uses ultrasonic energy to sequentially bond layers of metal foils at temperatures much lower than the melting temperature of the material. Constructing metal structures without melting allows UAM to have distinct advantages over beam based additive manufacturing and other traditional manufacturing processes. This is because solidification defects can be avoided, structures can be composed of dissimilar material and secondary materials (both metallic and non-metallic) can be successfully embedded into the metal matrix. These advantages allow UAM to have tremendous potential to create metal matrix composite structures that cannot be built using any other manufacturing technique. Although UAM has tremendous engineering potential, the effect of interfacial bonding defects on the mechanical and thermal properties have not be characterized. Incomplete interfacial bonding at the laminar surfaces due to insufficient welding energy can result in interfacial voids. Voids create discontinuities in the structure which change the mechanical and thermal properties of the component, resulting in a structure that has different properties than the monolithic material used to create it. In-situ thermal experiments and thermal modeling demonstrates that voids at partially bonded interfaces significantly affected heat generation and thermal conductivity in. UAM parts during consolidation as well as in the final components. Using ultrasonic testing, elastic properties of UAM structures were found to be significantly reduced due to the presence of voids, with the reduction being the most severe in the transverse (foil staking) direction. Elastic constants in all three material directions decreased linearly with a reduction in the interfacial bonded area. The linear trend

  2. Progress of Stirling cycle analysis and loss mechanism characterization

    NASA Technical Reports Server (NTRS)

    Tew, R. C., Jr.

    1986-01-01

    An assessment of Stirling engine thermodynamic modeling and design codes shows a general deficiency; this deficiency is due to poor understanding of the fluid flow and heat transfer phenomena that occur in the oscillating flow and pressure level environment within the engines. Stirling engine thermodynamic loss mechanisms are listed. Several experimental and computational research efforts now underway to characterize various loss mechanisms are reviewed. The need for additional experimental rigs and rig upgrades is discussed. Recent developments and current efforts in Stirling engine thermodynamic modeling are also reviewed.

  3. Quantitative Characterization of Mechanical Property of Annealed Monolayer Colloidal Crystal.

    PubMed

    Zhang, Lijing; Wang, Weiqi; Zheng, Lu; Wang, Xiuyu; Yan, Qingfeng

    2016-01-19

    Quantitative characterization of the mechanical properties of a polystyrene (PS) monolayer colloidal crystal (MCC) annealed with solvent vapor has been performed for the first time by means of atomic force microscopy nanoindentation. The results showed that both the compressive and bending elastic modulus of PS MCC increased with the prolongation of annealing time from initial to 13 min. When the annealing time reached 15 min or even more, the PS MCC almost deformed to a planar film, and the elastic modulus of the PS MCC presented a drastic increase. These results provide a basis for tailoring the mechanical properties of a polymer colloidal monolayer via solvent vapor annealing. Such self-supported and high-mechanical-strength colloidal monolayers can be transferred to other surfaces for potential and promising applications in the bottom-up fabrication of highly ordered nanostructured materials such as nano dot arrays, photonic crystals, and many others.

  4. Quantitative Characterization of Mechanical Property of Annealed Monolayer Colloidal Crystal.

    PubMed

    Zhang, Lijing; Wang, Weiqi; Zheng, Lu; Wang, Xiuyu; Yan, Qingfeng

    2016-01-19

    Quantitative characterization of the mechanical properties of a polystyrene (PS) monolayer colloidal crystal (MCC) annealed with solvent vapor has been performed for the first time by means of atomic force microscopy nanoindentation. The results showed that both the compressive and bending elastic modulus of PS MCC increased with the prolongation of annealing time from initial to 13 min. When the annealing time reached 15 min or even more, the PS MCC almost deformed to a planar film, and the elastic modulus of the PS MCC presented a drastic increase. These results provide a basis for tailoring the mechanical properties of a polymer colloidal monolayer via solvent vapor annealing. Such self-supported and high-mechanical-strength colloidal monolayers can be transferred to other surfaces for potential and promising applications in the bottom-up fabrication of highly ordered nanostructured materials such as nano dot arrays, photonic crystals, and many others. PMID:26700374

  5. Experimental characterization of composites. [load test methods

    NASA Technical Reports Server (NTRS)

    Bert, C. W.

    1975-01-01

    The experimental characterization for composite materials is generally more complicated than for ordinary homogeneous, isotropic materials because composites behave in a much more complex fashion, due to macroscopic anisotropic effects and lamination effects. Problems concerning the static uniaxial tension test for composite materials are considered along with approaches for conducting static uniaxial compression tests and static uniaxial bending tests. Studies of static shear properties are discussed, taking into account in-plane shear, twisting shear, and thickness shear. Attention is given to static multiaxial loading, systematized experimental programs for the complete characterization of static properties, and dynamic properties.

  6. The Challenge of Characterizing Operations in the Mechanisms Underlying Behavior

    PubMed Central

    Bechtel, William

    2005-01-01

    Neuroscience and cognitive science seek to explain behavioral regularities in terms of underlying mechanisms. An important element of a mechanistic explanation is a characterization of the operations of the parts of the mechanism. The challenge in characterizing such operations is illustrated by an example from the history of physiological chemistry in which some investigators tried to characterize the internal operations in the same terms as the overall physiological system while others appealed to elemental chemistry. In order for biochemistry to become successful, researchers had to identify a new level of operations involving operations over molecular groups. Existing attempts at mechanistic explanation of behavior are in a situation comparable to earlier approaches to physiological chemistry, drawing their inspiration either from overall psychology activities or from low-level neural processes. Successful mechanistic explanations of behavior require the discovery of the appropriate component operations. Such discovery is a daunting challenge but one on which success will be beneficial to both behavioral scientists and cognitive and neuroscientists. PMID:16596967

  7. Characterization of Solder Joint Reliability Using Cyclic Mechanical Fatigue Testing

    NASA Astrophysics Data System (ADS)

    Kim, Choong-Un; Bang, Woong-Ho; Xu, Huili; Lee, Tae-Kyu

    2013-10-01

    This article summarizes the mechanics of two mechanical fatigue methods, cyclic bending fatigue and shear fatigue, in inducing failure in solder joints in package assemblies, and it presents the characteristics of fatigue failures resulting from these methods using example cases of Sn-Pb eutectic and Sn-rich Pb-free solder alloys. Numerical simulation suggests that both testing configurations induce fatigue failure by the crack-opening mode. In the case of bending fatigue, the strain induced by the bending displacement is found to be sensitive to chip geometry, and it induces fatigue cracks mainly at the solder matrix adjacent to the printed circuit board interface. In case of shear fatigue, the failure location is firmly fixed at the solder neck, created by solder mask, where an abrupt change in the solder geometry occurs. Both methods conclude that the Coffin-Manson model is the most appropriate model for the isothermal mechanical fatigue of solder alloys. An analysis of fatigue characteristics using the frame of the Coffin-Manson model produces several insightful results, such as the reason why Pb-free alloys show higher fatigue resistance than Sn-Pb alloys even if they are generally more brittle. Our analysis suggests that it is related to higher work hardening. All these results indicate that mechanical fatigue can be an extremely useful method for fast screening of defective package structures and also in gaining a better understanding of fatigue failure mechanism and prediction of reliability in solder joints.

  8. Development and mechanical characterization of porous titanium bone substitutes.

    PubMed

    Barbas, A; Bonnet, A-S; Lipinski, P; Pesci, R; Dubois, G

    2012-05-01

    Commercially Pure Porous Titanium (CPPTi) can be used for surgical implants to avoid the stress shielding effect due to the mismatch between the mechanical properties of titanium and bone. Most researchers in this area deal with randomly distributed pores or simple architectures in titanium alloys. The control of porosity, pore size and distribution is necessary to obtain implants with mechanical properties close to those of bone and to ensure their osseointegration. The aim of the present work was therefore to develop and characterize such a specific porous structure. First of all, the properties of titanium made by Selective Laser Melting (SLM) were characterized through experimental testing on bulk specimens. An elementary pattern of the porous structure was then designed to mimic the orthotropic properties of the human bone following several mechanical and geometrical criteria. Finite Element Analysis (FEA) was used to optimize the pattern. A porosity of 53% and pore sizes in the range of 860 to 1500 μm were finally adopted. Tensile tests on porous samples were then carried out to validate the properties obtained numerically and identify the failure modes of the samples. Finally, FE elastoplastic analyses were performed on the porous samples in order to propose a failure criterion for the design of porous substitutes.

  9. Development and mechanical characterization of porous titanium bone substitutes.

    PubMed

    Barbas, A; Bonnet, A-S; Lipinski, P; Pesci, R; Dubois, G

    2012-05-01

    Commercially Pure Porous Titanium (CPPTi) can be used for surgical implants to avoid the stress shielding effect due to the mismatch between the mechanical properties of titanium and bone. Most researchers in this area deal with randomly distributed pores or simple architectures in titanium alloys. The control of porosity, pore size and distribution is necessary to obtain implants with mechanical properties close to those of bone and to ensure their osseointegration. The aim of the present work was therefore to develop and characterize such a specific porous structure. First of all, the properties of titanium made by Selective Laser Melting (SLM) were characterized through experimental testing on bulk specimens. An elementary pattern of the porous structure was then designed to mimic the orthotropic properties of the human bone following several mechanical and geometrical criteria. Finite Element Analysis (FEA) was used to optimize the pattern. A porosity of 53% and pore sizes in the range of 860 to 1500 μm were finally adopted. Tensile tests on porous samples were then carried out to validate the properties obtained numerically and identify the failure modes of the samples. Finally, FE elastoplastic analyses were performed on the porous samples in order to propose a failure criterion for the design of porous substitutes. PMID:22498281

  10. Fabrication and Mechanical Characterization of Hydrogel Infused Network Silk Scaffolds

    PubMed Central

    Kundanati, Lakshminath; Singh, Saket K.; Mandal, Biman B.; Murthy, Tejas G.; Gundiah, Namrata; Pugno, Nicola M.

    2016-01-01

    Development and characterization of porous scaffolds for tissue engineering and regenerative medicine is of great importance. In recent times, silk scaffolds were developed and successfully tested in tissue engineering and drug release applications. We developed a novel composite scaffold by mechanical infusion of silk hydrogel matrix into a highly porous network silk scaffold. The mechanical behaviour of these scaffolds was thoroughly examined for their possible use in load bearing applications. Firstly, unconfined compression experiments show that the denser composite scaffolds displayed significant enhancement in the elastic modulus as compared to either of the components. This effect was examined and further explained with the help of foam mechanics principles. Secondly, results from confined compression experiments that resemble loading of cartilage in confinement, showed nonlinear material responses for all scaffolds. Finally, the confined creep experiments were performed to calculate the hydraulic permeability of the scaffolds using soil mechanics principles. Our results show that composite scaffolds with some modifications can be a potential candidate for use of cartilage like applications. We hope such approaches help in developing novel scaffolds for tissue engineering by providing an understanding of the mechanics and can further be used to develop graded scaffolds by targeted infusion in specific regions. PMID:27681725

  11. Developing LIGO Detector Characterization Tools and Methods

    NASA Astrophysics Data System (ADS)

    Costa, Cesar

    2010-10-01

    Laser Interferometric Gravitational-Wave Observatory (LIGO) has been in constant process of improvement to achieve its main goal: the detection of gravitational waves (GWs). For the current science run (S6), improved control systems have been installed in order to increase the instrument sensitivity. The LIGO Detector Characterization (DetChar) Group works to understand how such devices and environmental sources could affect the GW channel, specially when they contaminate measurements by introducing spurious signals. To decrease false alarm rates DetChar monitors several auxiliary channels in order to diagnose environmental and instrumental glitches which can produce GW signal-like events. This improves the data quality for GW searches, and also informs commissioners about instrumental issues. This talk describes the methodology that we have been applying to LIGO Detector Characterization, specially glitch hunting and monitoring tools.

  12. Mechanical properties characterization and modeling of active polymer gels

    NASA Astrophysics Data System (ADS)

    Marra, Steven Paul

    Active polymer gels expand and contract in response to certain environmental stimuli, such as the application of an electric field or a change in the pH level of the surroundings. This ability to achieve large, reversible deformations with no external mechanical loading has generated much interest in the use of these gels as actuators and "artificial muscles." While much work has been done to study the behavior and properties of these gels, little information is available regarding the full constitutive description of the mechanical and actuation properties. This work focuses on developing a means of characterizing the mechanical properties of active polymer gels and describing how these properties evolve as the gel actuates. Poly(vinyl alcohol)-poly(acrylic acid) (PVA-PAA) gel was chosen as the model material for this work because it is relatively simple and safe to both fabricate and actuate. PVA-PAA gels are fabricated on-site using a solvent-casting technique. These gels expand when moved from acidic to basic solutions, and contract when moved from basic to acidic solutions. Citric acid and sodium bicarbonate were used as the testing solutions for this work. The mechanical properties of the gel were characterized by conducting uniaxial and biaxial tests on thin PVA-PAA gel films. A biaxial testing system has been developed which can measure stresses and deformations of these films in a variety of liquid environments. The experimental results on PVA-PAA gels show these materials to be relatively compliant, and slightly viscoelastic and compressible. These gels are also capable of large recoverable deformations in both acidic and basic environments. A thermodynamically consistent finite-elastic constitutive model was developed to describe the mechanical and actuation behaviors of active polymer gels. The mechanical properties of the gel are characterized by a free-energy function, and the model utilizes an evolving internal variable to describe the actuation

  13. Review of characterization methods for supercapacitor modelling

    NASA Astrophysics Data System (ADS)

    Devillers, Nathalie; Jemei, Samir; Péra, Marie-Cécile; Bienaimé, Daniel; Gustin, Frédéric

    2014-01-01

    To manage an electrical network in a stationary application or in an embedded application such as hybrid or electrical vehicles, it is necessary to understand and to model the electrical behaviour of the sources on board. This paper deals with the characterization of supercapacitors as electrical power sources, in order to model them. Three equivalent electrical circuit models of supercapacitor are proposed, corresponding to different levels of modelling. The identification of these model parameters is carried out with adapted characterization tests, such as charge and discharge test at constant current and Electrochemical Impedance Spectroscopy in environmental constraints. The experimental results are compared and analysed, for many characterizations in different test conditions in terms of voltage (from 0.5 to 2.7 V), temperature (from -20 to 55 °C), frequency (from 50 mHz to 20 kHz) and on many supercapacitor cells of several capacitances (650 F, 1200 F and 3000 F) and from two suppliers (Maxwell and Batscap).

  14. Methods for LWIR Radiometric Calibration and Characterization

    NASA Technical Reports Server (NTRS)

    Ryan, Robert; Harrington, Gary; Howell, Dane; Pagnutti, Mary; Zanoni, Vicki

    2002-01-01

    The utility of a remote sensing system increases with its ability to retrieve surface temperature or radiance accurately. Research applications, such as sea temperature and power plant discharge, require a 0.2 C resolution or better for absolute temperature retrievals. Other applications, including agriculture water stress detection, require at least a 1 C resolution. To achieve these levels of accuracy routinely, scientists must perform laboratory and onboard calibration, as well as in-flight vicarious radiometric characterization. A common approach used for in-flight radiometric characterization incorporates a well-calibrated infrared radiometer that is mounted on a bouy and placed on a uniform water body. The radiometer monitors radiant temperature along with pressure, humidity, and temperature measurements of an associated column of atmosphere. On very still waters, however, a buoy can significantly distrub these measurements. Researchers at NASA's Stennis Space Center (SSC) have developed a novel approach of using an uncooled infrared camera mounted on a boom to quantify buoy effects. Another critical aspect of using buoy-mounted infrared radiometers is the need for extensive laboratory characterization of the instruments' radiometric sensitivity, field of view, and spectral response. Proper surface temperature retrieval also requires detailed knowledge of both the upward emission and the reflected sky emission. Recent work at SSC has demonstrated that the use of a polarization-based radiometer operating at the Brewster angle can greatly simplify temperature retrieval as well as improve overall accuracy.

  15. Towards a method to characterize temporary groundwater dynamics during droughts

    NASA Astrophysics Data System (ADS)

    Heudorfer, Benedikt; Stahl, Kerstin

    2016-04-01

    In order to improve our understanding of the complex mechanisms involved in the development, propagation and termination of drought events, a major challenge is to grasp the role of groundwater systems. Research on how groundwater responds to meteorological drought events (i.e. short-term climate anomalies) is still limited. Part of the problem is that there is as yet no generic method to characterize the response of different groundwater systems to extreme climate anomalies. In order to explore possibilities for such a methodology, we evaluate two statistical approaches to characterize groundwater dynamics on short time scales by applying them on observed groundwater head data from different pre- and peri-mountainous groundwater systems in humid central Europe (Germany). The first method is based on the coefficient of variation in moving windows of various lengths, the second method is based on streamflow recession characteristics applied on groundwater data. With these methods, the gauges behavior during low head events and its response to precipitation was explored. Findings regarding the behavior of the gauges make it possible to distinguish between gauges with a dominance of cyclic patterns, and gauges with a dominance of patterns on seasonal or event scale (commonly referred to as slow/fast responding gauges, respectively). While some clues on what factors that might control these patterns are present, the specific controls are general unclear for the gauges in this study. However as the key conclusion stands the question if the variety of manifestations of groundwater dynamics, as they occur in real systems, is subsumable with one unique method. Further studies on the topic are in progress.

  16. In situ mechanical characterization of the cell nucleus by atomic force microscopy.

    PubMed

    Liu, Haijiao; Wen, Jun; Xiao, Yun; Liu, Jun; Hopyan, Sevan; Radisic, Milica; Simmons, Craig A; Sun, Yu

    2014-04-22

    The study of nuclear mechanical properties can provide insights into nuclear dynamics and its role in cellular mechanotransduction. While several methods have been developed to characterize nuclear mechanical properties, direct intracellular probing of the nucleus in situ is challenging. Here, a modified AFM (atomic force microscopy) needle penetration technique is demonstrated to mechanically characterize cell nuclei in situ. Cytoplasmic and nuclear stiffness were determined based on two different segments on the AFM indentation curves and were correlated with simultaneous confocal Z-stack microscopy reconstructions. On the basis of direct intracellular measurement, we show that the isolated nuclei from fibroblast-like cells exhibited significantly lower Young's moduli than intact nuclei in situ. We also show that there is in situ nucleus softening in the highly metastatic bladder cancer cell line T24 when compared to its less metastatic counterpart RT4. This technique has potential to become a reliable quantitative measurement tool for intracellular mechanics studies.

  17. Mechanical property characterization of polymeric composites reinforced by continuous microfibers

    NASA Astrophysics Data System (ADS)

    Zubayar, Ali

    Innumerable experimental works have been conducted to study the effect of polymerization on the potential properties of the composites. Experimental techniques are employed to understand the effects of various fibers, their volume fractions and matrix properties in polymer composites. However, these experiments require fabrication of various composites which are time consuming and cost prohibitive. Advances in computational micromechanics allow us to study the various polymer based composites by using finite element simulations. The mechanical properties of continuous fiber composite strands are directional. In traditional continuous fiber laminated composites, all fibers lie in the same plane. This provides very desirable increases in the in-plane mechanical properties, but little in the transverse mechanical properties. The effect of different fiber/matrix combinations with various orientations is also available. Overall mechanical properties of different micro continuous fiber reinforced composites with orthogonal geometry are still unavailable in the contemporary research field. In this research, the mechanical properties of advanced polymeric composite reinforced by continuous micro fiber will be characterized based on analytical investigation and FE computational modeling. Initially, we have chosen IM7/PEEK, Carbon Fiber/Nylon 6, and Carbon Fiber/Epoxy as three different case study materials for analysis. To obtain the equivalent properties of the micro-hetero structures, a concept of micro-scale representative volume elements (RVEs) is introduced. Five types of micro scale RVEs (3 square and 2 hexagonal) containing a continuous micro fiber in the polymer matrix were designed. Uniaxial tensile, lateral expansion and transverse shear tests on each RVE were designed and conducted by the finite element computer modeling software ANSYS. The formulae based on elasticity theory were derived for extracting the equivalent mechanical properties (Young's moduli, shear

  18. Microstructural and mechanical characterization of Al–Zn–Si nanocomposites

    SciTech Connect

    García-Villarreal, S.; Chávez-Valdez, A.; Moreno, K.J.; Leyva, C.; Aguilar-Martínez, J.A.; Hurtado, A.; Arizmendi-Morquecho, A.

    2013-09-15

    In this paper the addition of silicon nanoparticles into Al–Zn alloys to form metallic matrix nanocomposites by mechanical alloying process was investigated. The influence of various process parameters such as milling time and Si concentration in the Al–Zn matrix has an interesting effect on the microstructure and mechanical properties of the synthesized nanocomposites. The microstructural characterization of the nanocomposites was evaluated by transmission electron microscopy and energy dispersive X-ray spectroscopy (TEM–EDXS) and the mechanical properties were measured by nanoindentation and micro-hardness tests. The results showed that during mechanical milling Si is added to the Al–Zn matrix achieving a uniform and homogeneous dispersion. After solidification, it forms small particles of AlZnSi with blocky morphology in interdendritic regions. The nanoindentation profiles showed that the elastic modulus and hardness properties increase with increasing milling time. However, a high concentration of Si (> 1.2 wt.%) results in a saturation of Si in the Al–Zn matrix, which adversely affects the mechanical properties. Thus, it is important to tune the milling time and concentration of Si added to the Al–Zn alloys to control the growth of brittle phases that result in reduction of the mechanical properties of the material. - Highlights: • A novel technique for addition of Si nanocomposites into Al–Zn liquid alloy is reported. • Good dispersion and homogeneity of Si in the Al–Zn matrix are obtained. • Increasing Si content above 1.2 wt.% decreases the mechanical properties of Al–Zn alloy. • The saturation point of Si in 1.2 wt.% differs from Galvalume® composition. • The Al–Zn–1.5Si alloy with addition of nanocomposite shows 5.7 GPa of hardness.

  19. Superconvergent perturbation method in quantum mechanics

    SciTech Connect

    Scherer, W. )

    1995-02-27

    An analog of Kolmogorov's superconvergent perturbation theory in classical mechanics is constructed for self-adjoint operators. It is different from the usual Rayleigh-Schroedinger perturbation theory and yields expansions for eigenvalues and eigenvectors in terms of functions of the perturbation parameter.

  20. Characterization of shape memory alloys for safety mechanisms.

    SciTech Connect

    McLaughlin, Jarred T.; Buchheit, Thomas Edward; Massad, Jordan Elias

    2008-03-01

    Shape memory alloys (SMAs) are metals that exhibit large recoverable strains and exert large forces with tremendous energy densities. The behavior of SMAs is thermomechanically coupled. Their response to temperature is sensitive to their loading condition and their response to loading is sensitive to their thermal condition. This coupled behavior is not to be circumvented, but to be confronted and understood, since it is what manifests SMA's superior clamping performance. To reasonably characterize the coupled behavior of SMA clamping rings used in safety mechanisms, we conduct a series of experiments on SMA samples. The results of the tests will allow increased fidelity in modeling and failure analysis of parts.

  1. Characterization of Thermal and Mechanical Impact on Aluminum Honeycomb Structures

    NASA Technical Reports Server (NTRS)

    Robinson, Christen M.

    2013-01-01

    This study supports NASA Kennedy Space Center's research in the area of intelligent thermal management systems and multifunctional thermal systems. This project addresses the evaluation of the mechanical and thermal properties of metallic cellular solid (MCS) materials; those that are lightweight; high strength, tunable, multifunctional and affordable. A portion of the work includes understanding the mechanical properties of honeycomb structured cellular solids upon impact testing under ambient, water-immersed, liquid nitrogen-cooled, and liquid nitrogen-immersed conditions. Additionally, this study will address characterization techniques of the aluminum honeycomb's ability to resist multiple high-rate loadings or impacts in varying environmental conditions, using various techniques for the quantitative and qualitative determination for commercial applicability.

  2. Statistical methods for material characterization and qualification

    SciTech Connect

    Hunn, John D; Kercher, Andrew K

    2005-01-01

    This document describes a suite of statistical methods that can be used to infer lot parameters from the data obtained from inspection/testing of random samples taken from that lot. Some of these methods will be needed to perform the statistical acceptance tests required by the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program. Special focus has been placed on proper interpretation of acceptance criteria and unambiguous methods of reporting the statistical results. In addition, modified statistical methods are described that can provide valuable measures of quality for different lots of material. This document has been written for use as a reference and a guide for performing these statistical calculations. Examples of each method are provided. Uncertainty analysis (e.g., measurement uncertainty due to instrumental bias) is not included in this document, but should be considered when reporting statistical results.

  3. Statistical Methods for Material Characterization and Qualification

    SciTech Connect

    Kercher, A.K.

    2005-04-01

    This document describes a suite of statistical methods that can be used to infer lot parameters from the data obtained from inspection/testing of random samples taken from that lot. Some of these methods will be needed to perform the statistical acceptance tests required by the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program. Special focus has been placed on proper interpretation of acceptance criteria and unambiguous methods of reporting the statistical results. In addition, modified statistical methods are described that can provide valuable measures of quality for different lots of material. This document has been written for use as a reference and a guide for performing these statistical calculations. Examples of each method are provided. Uncertainty analysis (e.g., measurement uncertainty due to instrumental bias) is not included in this document, but should be considered when reporting statistical results.

  4. Stirling engine control mechanism and method

    DOEpatents

    Dineen, John J.

    1983-01-01

    A reciprocating-to-rotating motion conversion and power control device for a Stirling engine includes a hub mounted on an offset portion of the output shaft for rotation relative to the shaft and for sliding motion therealong which causes the hub to tilt relative to the axis of rotation of the shaft. This changes the angle of inclination of the hub relative to the shaft axis and changes the axial stroke of a set of arms connected to the hub and nutating therewith. A hydraulic actuating mechanism is connected to the hub for moving its axial position along the shaft. A balancing wheel is linked to the hub and changes its angle of inclination as the angle of inclination of the hub changes to maintain the mechanism in perfect balance throughout its range of motion.

  5. Finite element methods in fracture mechanics

    NASA Technical Reports Server (NTRS)

    Liebowitz, H.; Moyer, E. T., Jr.

    1989-01-01

    Finite-element methodology specific to the analysis of fracture mechanics problems is reviewed. Primary emphasis is on the important algorithmic developments which have enhanced the numerical modeling of fracture processes. Methodologies to address elastostatic problems in two and three dimensions, elastodynamic problems, elastoplastic problems, special considerations for three-dimensional nonlinear problems, and the modeling of stable crack growth are reviewed. In addition, the future needs of the fracture community are discussed and open questions are identified.

  6. Collocation method for fractional quantum mechanics

    SciTech Connect

    Amore, Paolo; Hofmann, Christoph P.; Saenz, Ricardo A.; Fernandez, Francisco M.

    2010-12-15

    We show that it is possible to obtain numerical solutions to quantum mechanical problems involving a fractional Laplacian, using a collocation approach based on little sinc functions, which discretizes the Schroedinger equation on a uniform grid. The different boundary conditions are naturally implemented using sets of functions with the appropriate behavior. Good convergence properties are observed. A comparison with results based on a Wentzel-Kramers-Brillouin analysis is performed.

  7. Characterizing Multiscale Mechanical Properties of Brain Tissue Using Atomic Force Microscopy, Impact Indentation, and Rheometry.

    PubMed

    Canovic, Elizabeth Peruski; Qing, Bo; Mijailovic, Aleksandar S; Jagielska, Anna; Whitfield, Matthew J; Kelly, Elyza; Turner, Daria; Sahin, Mustafa; Van Vliet, Krystyn J

    2016-01-01

    To design and engineer materials inspired by the properties of the brain, whether for mechanical simulants or for tissue regeneration studies, the brain tissue itself must be well characterized at various length and time scales. Like many biological tissues, brain tissue exhibits a complex, hierarchical structure. However, in contrast to most other tissues, brain is of very low mechanical stiffness, with Young's elastic moduli E on the order of 100s of Pa. This low stiffness can present challenges to experimental characterization of key mechanical properties. Here, we demonstrate several mechanical characterization techniques that have been adapted to measure the elastic and viscoelastic properties of hydrated, compliant biological materials such as brain tissue, at different length scales and loading rates. At the microscale, we conduct creep-compliance and force relaxation experiments using atomic force microscope-enabled indentation. At the mesoscale, we perform impact indentation experiments using a pendulum-based instrumented indenter. At the macroscale, we conduct parallel plate rheometry to quantify the frequency dependent shear elastic moduli. We also discuss the challenges and limitations associated with each method. Together these techniques enable an in-depth mechanical characterization of brain tissue that can be used to better understand the structure of brain and to engineer bio-inspired materials. PMID:27684097

  8. Characterization of the mechanical properties of freestanding platinum thin films

    NASA Astrophysics Data System (ADS)

    Abbas, Khawar

    Many MEMS devices utilize nanocrystalline thin metallic films as mechanical structures, in particular, micro switching devices where these films are used as Ohmic contacts. But the elastic and plastic properties of these thin films (thickness < 1mum) are significantly different from those of the bulk material. At these scales the volume fraction of material defects such as: grain boundaries, dislocations and interstitials become quite significant and become a chief contributor to the physical and mechanical material properties. In order to effectively design MEMS devices it is important that these material properties are explored and mechanical behavior of the structure they form be characterized. Popular thin film materials used in MEMS devices are Aluminum (Al), Copper (Cu), Nickel (Ni) and Gold (Au). Platinum has traditionally gained acceptance into the MEMS industry because of its chemical inertness and high temperature stability. However the mechanical properties of platinum remains the least exploited. Platinum has a high Young's Modulus (164 GPa, for bulk) and high melting temperature (1768 °C) and therefore can be used as a 'thin film' structure (cantilever, a bridge or a membrane) in high temperature environments with high resistance to mechanical failure. The physical size of these thin film structure make it very difficult to handle them and employ traditional mechanical testing methodologies and techniques and therefore require custom test platforms. One such recently developed platform is presented in this dissertation. The test platform is comprised of a microfabricated cascaded thermal actuator system and test specimen. The cascaded thermal actuator system is capable of providing tens of microns of displacement and tens of milli-Newton forces simultaneously while applying a relatively low temperature gradient across the test specimen. The dimensions of the platform make its use possible in both the SEM/TEM environments and on a probe station under

  9. General Characterization Methods for Photoelectrochemical Cells for Solar Water Splitting.

    PubMed

    Shi, Xinjian; Cai, Lili; Ma, Ming; Zheng, Xiaolin; Park, Jong Hyeok

    2015-10-12

    Photoelectrochemical (PEC) water splitting is a very promising technology that converts water into clean hydrogen fuel and oxygen by using solar light. However, the characterization methods for PEC cells are diverse and a systematic introduction to characterization methods for PEC cells has rarely been attempted. Unlike most other review articles that focus mainly on the material used for the working electrodes of PEC cells, this review introduces general characterization methods for PEC cells, including their basic configurations and methods for characterizing their performance under various conditions, regardless of the materials used. Detailed experimental operation procedures with theoretical information are provided for each characterization method. The PEC research area is rapidly expanding and more researchers are beginning to devote themselves to related work. Therefore, the content of this Minireview can provide entry-level knowledge to beginners in the area of PEC, which might accelerate progress in this area.

  10. General Characterization Methods for Photoelectrochemical Cells for Solar Water Splitting.

    PubMed

    Shi, Xinjian; Cai, Lili; Ma, Ming; Zheng, Xiaolin; Park, Jong Hyeok

    2015-10-12

    Photoelectrochemical (PEC) water splitting is a very promising technology that converts water into clean hydrogen fuel and oxygen by using solar light. However, the characterization methods for PEC cells are diverse and a systematic introduction to characterization methods for PEC cells has rarely been attempted. Unlike most other review articles that focus mainly on the material used for the working electrodes of PEC cells, this review introduces general characterization methods for PEC cells, including their basic configurations and methods for characterizing their performance under various conditions, regardless of the materials used. Detailed experimental operation procedures with theoretical information are provided for each characterization method. The PEC research area is rapidly expanding and more researchers are beginning to devote themselves to related work. Therefore, the content of this Minireview can provide entry-level knowledge to beginners in the area of PEC, which might accelerate progress in this area. PMID:26365789

  11. Methods for Characterization of Alternative RNA Splicing.

    PubMed

    Harvey, Samuel E; Cheng, Chonghui

    2016-01-01

    Quantification of alternative splicing to detect the abundance of differentially spliced isoforms of a gene in total RNA can be accomplished via RT-PCR using both quantitative real-time and semi-quantitative PCR methods. These methods require careful PCR primer design to ensure specific detection of particular splice isoforms. We also describe analysis of alternative splicing using a splicing "minigene" in mammalian cell tissue culture to facilitate investigation of the regulation of alternative splicing of a particular exon of interest.

  12. Mechanical characterization of low-K dielectric materials

    NASA Astrophysics Data System (ADS)

    Moore, Thomas M.; Hartfield, Cheryl D.; Anthony, J. Mark; Ahlburn, Byron T.; Ho, Paul S.; Miller, Mikel R.

    2001-01-01

    The implementation of materials in device interconnect structure is being driven by shrinking device geometries. In order to meet customer demands for increasing electrical performance, the industry is adopting a solution that provides both lower resistance and lower capacitance. Lower resistance is accomplished by switching from Al(Cu) to Cu interconnect and the capacitance is reduced by replacing SiO2 in the inter-level and inter-metal dielectric layers with lower dielectric constant materials (low-K materials) [1,2]. A change in materials in a process as complex as IC manufacturing is inherently accompanied by an increase in reliability risk. A thorough understanding of the low-K dielectric candidates is necessary for selection of the best candidate that has sufficient mechanical integrity to survive thermal stresses, CMP, packaging, and test, as well as allows for maximum extendibility to next generation devices. Towards this end, the industry has adopted methods and tools to measure mechanical properties and adhesion energies associated with low-K films. It is expected that porosity will significantly deteriorate the mechanical strength of ILD films compared to non-porous films and the effect on mechanical strength may be markedly different if the pores percolate together to form channels rather than remain isolated. Understanding the mechanical properties of these thin films and choice of appropriate mechanical performance metrics is necessary for successful full-scale integration into a reliable packaged product.

  13. Characterization of mechanical properties of materials using ultrasound broadband spectroscopy.

    PubMed

    Agrawal, Megha; Prasad, Abhinav; Bellare, Jayesh R; Seshia, Ashwin A

    2016-01-01

    This article explores the characterization of homogenous materials (metals, alloys, glass and polymers) by a simple broadband ultrasonic interrogation method. The novelty lies in the use of ultrasound in a continuous way with very low input power (0 dBm or less) and analysis of the transmitted acoustic wave spectrum for material property characterization like speed of sound, density and dimensions of a material. Measurements were conducted on various thicknesses of samples immersed in liquid where continuous-wave, frequency swept ultrasonic energy was incident normal to the sample surface. The electro-acoustic transmission response is analyzed in the frequency domain with respect to a specifically constructed multi-layered analytical model. From the acoustic signature of the sample materials, material properties such as speed of sound and acoustic impedance can be calculated with experimentally derived values found to be in general agreement with the literature and with pulse-echo technique establishing the basis for a non-contact and non-destructive technique for material characterization. Further, by looking at the frequency spacing of the peaks of water when the sample is immersed, the thickness of the sample can be calculated independently from the acoustic response. This technique can prove to be an effective non-contact, non-destructive and fast material characterization technique for a wide variety of materials.

  14. Characterization of bulk superconductors through EBSD methods

    NASA Astrophysics Data System (ADS)

    Koblischka, M. R.; Koblischka-Veneva, A.

    2003-10-01

    The application of electron backscatter diffraction (EBSD) technique to bulk high- Tc superconductors is presented and reviewed. Due to the ceramic nature and the complex crystallographic unit cells of the perovskite-type high- Tc superconductors, the EBSD analysis is not yet as common as it deserves. We have successfully performed EBSD analysis on a variety of high- Tc compounds and samples including polycrystalline YBCO (pure and doped by alkali metals), melt-textured YBCO, thin and thick films of YBCO; the “green phase” Y 2BaCuO 5, thin film and melt-textured NdBa 2Cu 3O x and Bi-2212 single crystals and tapes. It is shown that the surface preparation of the samples is crucial due to the small information depth (up to 100 nm) of the EBSD technique. High quality Kikuchi patterns are the requirement in order to enable the automated EBSD mapping, which yields phase distributions, individual grain orientations and the misorientation angle distribution. The results can be presented in form of mappings, as charts, and as pole figures. These informations are required for a better understanding of the growth mechanism(s) of bulk high- Tc superconductors intended for applications.

  15. Biochemical and mechanical characterization of Nereis worm jaws

    NASA Astrophysics Data System (ADS)

    Broomell, Christopher C.

    The ultimate goal of biomimetics is to elucidate the design principles governing performance in biological materials and apply them to engineering systems. Successful transfer of these principles will require a thorough understanding of the complex interplay between molecular composition, organization and mechanical properties of the material. This dissertation describes the mechanical and biochemical characterization of jaws from the marine polychaete Nereis virens. Nereid jaws possess remarkable mechanical properties considering their predominantly organic composition. Hardness and stiffness are comparable to human dentin. However, in stark contrast to dentin, in Nereis these properties are achieved without mineralization. The role of metal ions in jaw sclerotization is addressed. In the pristine state, Zn ions are concentrated at the tip and toothed-edge of the jaw and are critical for hardness and modulus; both properties are reduced by ˜70% following Zn removal by treatment with EDTA. Furthermore, metal content in the jaw can be manipulated by soaking Zn-depleted samples in metal solutions; the comparative effects of treatment with alternative transition metals under both dry and hydrated conditions are described. The molecular composition of the jaw is also addressed. Protein comprises ˜90% of the jaw mass; amino acid analysis indicates that histidine is increased in the hardened, Zn-rich tip. The major protein component in Nereid jaw extracts is purified and characterized by partial peptide mapping and isolation of a partial clone from a jaw pulp cDNA library. Nvjp-1 is a 38 kDa glycine- histidine-rich protein and is believed to be the principle structural protein in the hardened jaw tip. The effects of selected environmental factors on Nvjp-1 structure and assembly are described. Transition from low to high pH is accompanied by changes in secondary structure and a significant molecular elongation. Furthermore, exposure to transition metals, notably Zn and

  16. A thermoluminescent method for aerosol characterization

    NASA Technical Reports Server (NTRS)

    Long, E. R., Jr.; Rogowski, R. S.

    1976-01-01

    A thermoluminescent method has been used to study the interactions of aerosols with ozone. The preliminary results show that ozone reacts with many compounds found in aerosols, and that the thermoluminescence curves obtained from ozonated aerosols are characteristic of the aerosol. The results suggest several important applications of the thermoluminescent method: development of a detector for identification of effluent sources; a sensitive experimental tool for study of heterogeneous chemistry; evaluation of importance of aerosols in atmospheric chemistry; and study of formation of toxic, electronically excited species in airborne particles.

  17. Analytical Methods for Characterizing Magnetic Resonance Probes

    PubMed Central

    Manus, Lisa M.; Strauch, Renee C.; Hung, Andy H.; Eckermann, Amanda L.; Meade, Thomas J.

    2012-01-01

    SUMMARY The efficiency of Gd(III) contrast agents in magnetic resonance image enhancement is governed by a set of tunable structural parameters. Understanding and measuring these parameters requires specific analytical techniques. This Feature describes strategies to optimize each of the critical Gd(III) relaxation parameters for molecular imaging applications and the methods employed for their evaluation. PMID:22624599

  18. Methods of characterization of synthetic opal films

    NASA Astrophysics Data System (ADS)

    Koryukin, A. V.; Akhmadeev, A. A.; Salakhov, M. Kh

    2013-12-01

    We developed methods for determination of thickness, number of layers and filling fraction of silica particles for synthetic opals. We show that the filling fraction is considerably less than for ideal close-packed structure, which is important for practical and theoretical applications.

  19. Characterizing Cardiac Molecular Mechanisms of Mammalian Hibernation via Quantitative Proteogenomics.

    PubMed

    Vermillion, Katie L; Jagtap, Pratik; Johnson, James E; Griffin, Timothy J; Andrews, Matthew T

    2015-11-01

    This study uses advanced proteogenomic approaches in a nonmodel organism to elucidate cardioprotective mechanisms used during mammalian hibernation. Mammalian hibernation is characterized by drastic reductions in body temperature, heart rate, metabolism, and oxygen consumption. These changes pose significant challenges to the physiology of hibernators, especially for the heart, which maintains function throughout the extreme conditions, resembling ischemia and reperfusion. To identify novel cardioadaptive strategies, we merged large-scale RNA-seq data with large-scale iTRAQ-based proteomic data in heart tissue from 13-lined ground squirrels (Ictidomys tridecemlineatus) throughout the circannual cycle. Protein identification and data analysis were run through Galaxy-P, a new multiomic data analysis platform enabling effective integration of RNA-seq and MS/MS proteomic data. Galaxy-P uses flexible, modular workflows that combine customized sequence database searching and iTRAQ quantification to identify novel ground squirrel-specific protein sequences and provide insight into molecular mechanisms of hibernation. This study allowed for the quantification of 2007 identified cardiac proteins, including over 350 peptide sequences derived from previously uncharacterized protein products. Identification of these peptides allows for improved genomic annotation of this nonmodel organism, as well as identification of potential splice variants, mutations, and genome reorganizations that provides insights into novel cardioprotective mechanisms used during hibernation.

  20. Hydroxyapatite nanocrystals: simple preparation, characterization and formation mechanism.

    PubMed

    Mohandes, Fatemeh; Salavati-Niasari, Masoud; Fathi, Mohammadhossein; Fereshteh, Zeinab

    2014-12-01

    Crystalline hydroxyapatite (HAP) nanoparticles and nanorods have been successfully synthesized via a simple precipitation method. To control the shape and particle size of HAP nanocrystals, coordination ligands derived from 2-hydroxy-1-naphthaldehyde were first prepared, characterized by Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance ((1)H-NMR) spectroscopies, and finally applied in the synthesis process of HAP. On the other hand, the HAP nanocrystals were also characterized by several techniques including powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). According to the FE-SEM and TEM micrographs, it was found that the morphology and crystallinity of the HAP powders depended on the coordination mode of the ligands. PMID:25491798

  1. Preparation of nano fluids by mechanical method

    NASA Astrophysics Data System (ADS)

    Boopathy, J.; Pari, R.; Kavitha, M.; Angelo, P. C.

    2012-07-01

    Nanofluids are conventional heat transfer fluids that contain nano particles of metals, oxides, carbides, nitrides, or nanotubes. Nanofluids exhibit enhanced thermal conductivity and heat transfer coefficients compared to the base fluids. This paper presents the procedure for preparing nanofluids consisting of Copper and Aluminium nano powders in base fluids. Copper and Aluminium nano powders were produced by planetary ball wet milling at 300rpm for 50hrs. Toluene was added to ensure wet milling. These powders were characterized in XRD and SEM for their purity, particle size and shape. The XRD results confirmed the final particle sizes of Copper and Aluminium in the nano range. Then the 0.01 gm of nano metal powders was added in 150 ml of double distilled water and magnetic stirring was done at 1500 rpm for 15 minutes. Sodium lauryl sulphate (0.05%) was added in water as surfactant to ensure the stability of the dispersion. Ultrasonication in the 3000 watts bath was done for 10 minutes to enhance the uniform dispersion of metal powders in water. The pH, dynamic viscosity, ionic conductivity and the stability of the fluids were determined for further usage of synthesized nanofluids as coolant during grinding operation.

  2. Phenomenological and mechanics aspects of nondestructive evaluation and characterization by sound and ultrasound of material and fracture properties

    NASA Technical Reports Server (NTRS)

    Fu, L. S. W.

    1982-01-01

    Developments in fracture mechanics and elastic wave theory enhance the understanding of many physical phenomena in a mathematical context. Available literature in the material, and fracture characterization by NDT, and the related mathematical methods in mechanics that provide fundamental underlying principles for its interpretation and evaluation are reviewed. Information on the energy release mechanism of defects and the interaction of microstructures within the material is basic in the formulation of the mechanics problems that supply guidance for nondestructive evaluation (NDE).

  3. Semi-automated potentiometric titration method for uranium characterization.

    PubMed

    Cristiano, B F G; Delgado, J U; da Silva, J W S; de Barros, P D; de Araújo, R M S; Lopes, R T

    2012-07-01

    The manual version of the potentiometric titration method has been used for certification and characterization of uranium compounds. In order to reduce the analysis time and the influence of the analyst, a semi-automatic version of the method was developed in the Brazilian Nuclear Energy Commission. The method was applied with traceability assured by using a potassium dichromate primary standard. The combined standard uncertainty in determining the total concentration of uranium was around 0.01%, which is suitable for uranium characterization.

  4. Method For Characterizing Residual Stress In Metals

    DOEpatents

    Jacobson, Loren A.; Michel, David J.; Wyatt, Jeffrey R.

    2002-12-03

    A method is provided for measuring the residual stress in metals. The method includes the steps of drilling one or more holes in a metal workpiece to a preselected depth and mounting one or more acoustic sensors on the metal workpiece and connecting the sensors to an electronic detecting and recording device. A liquid metal capable of penetrating into the metal workpiece placed at the bottom of the hole or holes. A recording is made over a period of time (typically within about two hours) of the magnitude and number of noise events which occur as the liquid metal penetrates into the metal workpiece. The magnitude and number of noise events are then correlated to the internal stress in the region of the workpiece at the bottom of the hole.

  5. A method for rapid characterization of diffusion.

    PubMed

    Song, Y-Q; Hürlimann, M D; Flaum, C

    2003-04-01

    This paper describes a method to determine molecular displacements as a function of time in just two scans: one reference scan using the Carr-Purcell-Meiboom-Gill (CPMG) sequence, a second scan using a modified CPMG sequence (KCPMG). Measurements on free diffusion in bulk fluids, and on restricted diffusion in porous rock samples are reported. This technique can also be used for rapid measurement of flow and chemical exchange. PMID:12713974

  6. Mechanical biocompatibility of prosthetic meshes: a comprehensive protocol for mechanical characterization.

    PubMed

    Maurer, M M; Röhrnbauer, B; Feola, A; Deprest, J; Mazza, E

    2014-12-01

    This study is aimed at a comprehensive and extensive characterization of the mechanical biocompatibility of mesh prostheses. A robust and simple experimental protocol and a set of parameters is proposed, addressing stiffness under uniaxial and biaxial loading conditions, anisotropy, influence of prior deformation history, local mismatch of deformation mechanisms, and changes in mechanical properties when embedded in a homogeneous matrix. These parameters can form the basis for comparison of different mesh types and for evaluation of their mechanical biocompatibility. Measurements were performed on nine mesh types used for hernia and/or pelvic repair, including heavier as well as lighter implants and covering a wide range of mechanical responses. A total of 93 experiments were performed and all parameters are represented for each mesh in a single diagram to facilitate the quantitative assessment of implant characteristics and their comparison. The mechanics of implants is a critical factor determining clinical performance which should be accounted for in mesh selection and for development of future implants.

  7. Mechanical characterization of temperature-sensitive objects using picosecond ultrasonics

    NASA Astrophysics Data System (ADS)

    Dehoux, T.; Audoin, B.; Zouani, O.; Durrieu, M. C.

    2011-01-01

    Biological objects are exquisitely sensitive to temperature variations and their mechanical characterization is often a challenge when using the picosecond ultrasonics technique. To reduce the laser-induced temperature rise, we place single biological cells on a thin metal transducer and we focus the laser beam that generates the acoustic waves at frequencies <= 150 GHz on the rear side of the transducer. The acoustic waves propagate through the transducer and are partially transmitted to the cell to create the so-called Brillouin oscillations. The frequency of these oscillations provides a direct measurement of the sound velocity. The simultaneous measurement of the acoustic reflection coefficient at the transducer/cell interface allows the determination of both the density and the compressibility of the cell.

  8. Mechanical Characterization of Photo-crosslinkable Hydrogels with AFM

    NASA Astrophysics Data System (ADS)

    McKenna, Alyssa; Byun, Myunghwan; Hayward, Ryan; Aidala, Katherine

    2012-02-01

    Stimuli-responsive hydrogel films formed from photo-crosslinkable polymers are versatile materials for controlled drug delivery devices, three-dimensional micro-assemblies, and components in microfluidic systems. For such applications, it is important to understand both the mechanical properties and the dynamics responses of these materials. We describe the use of atomic force microscope (AFM) based indentation experiments to characterize the properties of poly(N-isopropylacrylamide) copolymer films, crosslinked by activation of pendent benzophenone units using ultraviolet light. In particular, we study how the elastic modulus of the material, determined using the Johnson, Kendall, and Roberts model, depends on UV dose, and simultaneously investigate stress relaxation in these materials in the context of viscoelastic and poroelastic relaxation models.

  9. Standard method for characterizing SERS substrates

    NASA Astrophysics Data System (ADS)

    Guicheteau, Jason A.; Hankus, Mikella E.; Christesen, Steven D.; Fountain, Augustus W., III; Pellegrino, Paul M.; Emmons, Erik D.; Tripathi, Ashish; Wilcox, Phillip; Emge, Darren

    2012-06-01

    We present the methodology and results of a standard assessment protocol to evaluate disparate SERS substrates that were developed for the Defense Advanced Research Programs Agency (DARPA) SERS Science and Technology Fundamentals Program. The results presented are a snapshot of a collaborative effort between the US Army Edgewood Chemical Biological Center, and the US Army Research Laboratory-Aldelphi Laboratory Center to develop a quantitative analytical method with spectroscopic figures of merit to unambiguously compare the sensitivity and reproducibility of various SERS substrates submitted by the program participants. We present the design of a common assessment protocol and the definition of a SERS enhancement value (SEV) in order to effectively compare SERS active surfaces.

  10. In Situ Mechanical Testing Techniques for Real-Time Materials Deformation Characterization

    NASA Astrophysics Data System (ADS)

    Rudolf, Chris; Boesl, Benjamin; Agarwal, Arvind

    2016-01-01

    In situ mechanical property testing has the ability to enhance quantitative characterization of materials by revealing the occurring deformation behavior in real time. This article will summarize select recent testing performed inside a scanning electron microscope on various materials including metals, ceramics, composites, coatings, and 3-Dimensional graphene foam. Tensile and indentation testing methods are outlined with case studies and preliminary data. The benefits of performing a novel double-torsion testing technique in situ are also proposed.

  11. Fracture mechanics life analytical methods verification testing

    NASA Technical Reports Server (NTRS)

    Favenesi, J. A.; Clemons, T. G.; Riddell, W. T.; Ingraffea, A. R.; Wawrzynek, P. A.

    1994-01-01

    The objective was to evaluate NASCRAC (trademark) version 2.0, a second generation fracture analysis code, for verification and validity. NASCRAC was evaluated using a combination of comparisons to the literature, closed-form solutions, numerical analyses, and tests. Several limitations and minor errors were detected. Additionally, a number of major flaws were discovered. These major flaws were generally due to application of a specific method or theory, not due to programming logic. Results are presented for the following program capabilities: K versus a, J versus a, crack opening area, life calculation due to fatigue crack growth, tolerable crack size, proof test logic, tearing instability, creep crack growth, crack transitioning, crack retardation due to overloads, and elastic-plastic stress redistribution. It is concluded that the code is an acceptable fracture tool for K solutions of simplified geometries, for a limited number of J and crack opening area solutions, and for fatigue crack propagation with the Paris equation and constant amplitude loads when the Paris equation is applicable.

  12. Characterization of reward and effort mechanisms in apathy

    PubMed Central

    Bonnelle, Valerie; Veromann, Kai-Riin; Burnett Heyes, Stephanie; Lo Sterzo, Elena; Manohar, Sanjay; Husain, Masud

    2015-01-01

    Apathy is a common but poorly understood condition with a wide societal impact observed in several brain disorders as well as, to some extent, in the normal population. Hence the need for better characterization of the underlying mechanisms. The processes by which individuals decide to attribute physical effort to obtain rewards might be particularly relevant to relate to apathy traits. Here, we designed two paradigms to assess individual differences in physical effort production and effort-based decision-making and their relation to apathy in healthy people. Apathy scores were measured using a modified version of the Lille Apathy Rating Scale, suitable for use in a non-clinical population. In the first study, apathy scores were correlated with the degree to which stake (reward on offer) and difficulty level impacts on physical effort production. Individuals with relatively high apathy traits showed an increased modulation of effort while more motivated individuals generally exerted greater force across different levels of stake. To clarify the underlying mechanisms for this behavior, we designed a second task that allows independent titration of stake and effort levels for which subjects are willing to engage in an effortful response to obtain a reward. Our results suggest that apathy traits in the normal population are related to the way reward subjectively affects the estimation of effort costs, and more particularly manifest as decreased willingness to exert effort when rewards are small, or below threshold. The tasks we introduce here may provide useful tools to further investigate apathy in clinical populations. PMID:24747776

  13. Characterizing the intensity of changes made to reduce mechanical exposure.

    PubMed

    Wells, Richard; Laing, Andrew; Cole, Donald

    2009-01-01

    Interventions to prevent musculoskeletal disorders by reducing mechanical exposures may range from equipment adjustments, through changing workstations and equipment or implementing administrative controls, to the design and redesign of work processes. Although generally positive, the literature reports mixed results for the effects of such workplace interventions on musculoskeletal disorders. We propose that an important factor which influences these results is the change intensity. This construct includes: the body part(s) affected, the size of exposure magnitude reduction in the particular task or tasks involved in the change, the time fraction of the job to which the change applies, the coverage of the change (proportion of the workforce affected), and the adherence (if applicable) by the workforce to the change. The intensities of changes recently completed as part of a participatory ergonomics research program were characterized using this approach. Intensity scores were estimated based upon these parameters for peak and cumulative mechanical exposures. Changes affecting a production system re-design and re-configuration were judged to have medium to high intensity, while most other changes were judged to be of small intensity. Comparisons are made to the intensity of changes determined from reports in the published literature. Factors which maximize intensity as well as potential barriers to achieving higher intensities are described. PMID:20037230

  14. ASTM test methods for composite characterization and evaluation

    NASA Technical Reports Server (NTRS)

    Masters, John E.

    1994-01-01

    A discussion of the American Society for Testing and Materials is given. Under the topic of composite materials characterization and evaluation, general industry practice and test methods for textile composites are presented.

  15. A computational method for automated characterization of genetic components.

    PubMed

    Yordanov, Boyan; Dalchau, Neil; Grant, Paul K; Pedersen, Michael; Emmott, Stephen; Haseloff, Jim; Phillips, Andrew

    2014-08-15

    The ability to design and construct synthetic biological systems with predictable behavior could enable significant advances in medical treatment, agricultural sustainability, and bioenergy production. However, to reach a stage where such systems can be reliably designed from biological components, integrated experimental and computational techniques that enable robust component characterization are needed. In this paper we present a computational method for the automated characterization of genetic components. Our method exploits a recently developed multichannel experimental protocol and integrates bacterial growth modeling, Bayesian parameter estimation, and model selection, together with data processing steps that are amenable to automation. We implement the method within the Genetic Engineering of Cells modeling and design environment, which enables both characterization and design to be integrated within a common software framework. To demonstrate the application of the method, we quantitatively characterize a synthetic receiver device that responds to the 3-oxohexanoyl-homoserine lactone signal, across a range of experimental conditions.

  16. Baroreflex sensitivity: methods, mechanisms, and prognostic value.

    PubMed

    Vanoli, E; Adamson, P B

    1994-03-01

    simultaneous recording from an intraarterial line and from FINAPRES indicated a strong correlation (r = 0.9) between the two methods. ATRAMI is expected to close the enrollment in the near future. To data, baroreflex sensitivity appears to be a safe and non-invasive test likely to provide meaningful information on autonomic balance and consequently on risk profile of patients with a prior myocardial infarction.

  17. Solution-adaptive finite element method in computational fracture mechanics

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Bass, J. M.; Spradley, L. W.

    1993-01-01

    Some recent results obtained using solution-adaptive finite element method in linear elastic two-dimensional fracture mechanics problems are presented. The focus is on the basic issue of adaptive finite element method for validating the applications of new methodology to fracture mechanics problems by computing demonstration problems and comparing the stress intensity factors to analytical results.

  18. Mechanical characterization of TiO{sub 2} nanofibers produced by different electrospinning techniques

    SciTech Connect

    Vahtrus, Mikk; Šutka, Andris; Vlassov, Sergei; Šutka, Anna; Polyakov, Boris; Saar, Rando; Dorogin, Leonid; Lõhmus, Rünno

    2015-02-15

    In this work TiO{sub 2} nanofibers produced by needle and needleless electrospinning processes from the same precursor were characterized and compared using Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and in situ SEM nanomechanical testing. Phase composition, morphology, Young's modulus and bending strength values were found. Weibull statistics was used to evaluate and compare uniformity of mechanical properties of nanofibers produced by two different methods. It is shown that both methods yield nanofibers with very similar properties. - Graphical abstract: Display Omitted - Highlights: • TiO{sub 2} nanofibers were produced by needle and needleless electrospinning processes. • Structure was studied by Raman spectroscopy and electron microscopy methods. • Mechanical properties were measured using advanced in situ SEM cantilevered beam bending technique. • Both methods yield nanofibers with very similar properties.

  19. Other mechanical methods for pre-induction cervical ripening.

    PubMed

    Durie, Danielle; Lawal, Aminatu; Zegelbone, Phillip

    2015-10-01

    Pre-induction cervical ripening is an important part of the labor induction process in women with an unfavorable cervix. This can be achieved either by pharmacologic or mechanical methods of cervical ripening. While the Foley catheter is the most commonly used mechanical method for labor induction, other mechanical methods are also available. This article reviews the safety profiles of osmotic dilators, extra-amniotic saline infusion, double-balloon catheters, and also compares their efficacy to that of other mechanical and pharmacologic cervical ripening methods. While mechanical methods have been shown to be safe and effective for cervical ripening, none of these alternatives has been shown to be superior to the Foley catheter.

  20. Method for material characterization in a non-anechoic environment

    NASA Astrophysics Data System (ADS)

    Pometcu, L.; Sharaiha, A.; Benzerga, R.; Tamas, R. D.; Pouliguen, P.

    2016-04-01

    This paper presents a characterization method for extracting the reflection coefficient of materials and the real part of their permittivity. The characterization is performed in a real environment, as opposed to the classical measurement methods that require an anechoic chamber. In order to reduce the effects of the multipath propagation, a free space bistatic measurement was performed at different distances material-antennas in far field. By using a Teflon sample and a commercial absorbing material sample, measurements have been performed in order to validate the characterization technique.

  1. A novel optical coherence tomography-based micro-indentation technique for mechanical characterization of hydrogels.

    PubMed

    Yang, Ying; Bagnaninchi, Pierre O; Ahearne, Mark; Wang, Ruikang K; Liu, Kuo-Kang

    2007-12-22

    Depth-sensing micro-indentation has been well recognized as a powerful tool for characterizing mechanical properties of solid materials due to its non-destructive approach. Based on the depth-sensing principle, we have developed a new indentation method combined with a high-resolution imaging technique, optical coherence tomography, which can accurately measure the deformation of hydrogels under a spherical indenter at constant force. The Hertz contact theory has been applied for quantitatively correlating the indentation force and the deformation with the mechanical properties of the materials. Young's moduli of hydrogels estimated by the new method are comparable with those measured by conventional depth-sensing micro-indentation. The advantages of this new method include its capability to characterize mechanical properties of bulk soft materials and amenability to perform creeping tests. More importantly, the measurement can be performed under sterile conditions allowing non-destructive, in situ and real-time investigations on the changes in mechanical properties of soft materials (e.g. hydrogel). This unique character can be applied for various biomechanical investigations such as monitoring reconstruction of engineered tissues.

  2. Mechanical and structural characterizations of gamma- and alpha-alumina nanofibers

    SciTech Connect

    Vahtrus, Mikk; Umalas, Madis; Polyakov, Boris; Dorogin, Leonid; Saar, Rando; Tamme, Maret; Saal, Kristjan; Lõhmus, Rünno; Vlassov, Sergei

    2015-09-15

    We investigate the applicability of alumina nanofibers as a potential reinforcement material in ceramic matrix compounds by comparing the mechanical properties of individual nanofibers before and after annealing at 1400 °C. Mechanical testing is performed inside a scanning electron microscope (SEM), which enables observation in real time of the deformation and fracture of the fibers under loading, thereby providing a close-up inspection of the freshly fractured area in vacuum. Improvement of both the Young's modulus and the breaking strength for annealed nanofibers is demonstrated. Mechanical testing is supplemented with the structural characterization of the fibers before and after annealing using SEM, transmission electron microscopy and X-ray diffraction methods. - Highlights: • Mechanical properties of individual alumina nanofibers were measured using in situ SEM cantilevered beam bending technique. • Improvement of mechanical properties of the alumina fibers after annealing at 1400 °C is demonstrated. • Formation of branched structures is demonstrated and their mechanical properties are studied. • XRD and electron microscopy were used for structural characterization of untreated and annealed nanofibers.

  3. Characterization of anomalies by applying methods of fractal analysis

    SciTech Connect

    Sakuma, M.; Kozma, R.; Kitamura, M.

    1996-01-01

    Fractal analysis is applied in a variety of research fields to characterize nonstationary data. Here, fractal analysis is used as a tool of characterization in time series. The fractal dimension is calculated by Higuchi`s method, and the effect of small data size on accuracy is studied in detail. Three types of fractal-based anomaly indicators are adopted: (a) the fractal dimension, (b) the error of the fractal dimension, and (c) the chi-square value of the linear fitting of the fractal curve in the wave number domain. Fractal features of time series can be characterized by introducing these three measures. The proposed method is applied to various simulated fractal time series with ramp, random, and periodic noise anomalies and also to neutron detector signals acquired in a nuclear reactor. Fractal characterization can successfully supplement conventional signal analysis methods especially if nonstationary and non-Gaussian features of the signal become important.

  4. Simulated scaling method for localized enhanced sampling and simultaneous "alchemical" free energy simulations: a general method for molecular mechanical, quantum mechanical, and quantum mechanical/molecular mechanical simulations.

    PubMed

    Li, Hongzhi; Fajer, Mikolai; Yang, Wei

    2007-01-14

    A potential scaling version of simulated tempering is presented to efficiently sample configuration space in a localized region. The present "simulated scaling" method is developed with a Wang-Landau type of updating scheme in order to quickly flatten the distributions in the scaling parameter lambdam space. This proposal is meaningful for a broad range of biophysical problems, in which localized sampling is required. Besides its superior capability and robustness in localized conformational sampling, this simulated scaling method can also naturally lead to efficient "alchemical" free energy predictions when dual-topology alchemical hybrid potential is applied; thereby simultaneously, both of the chemically and conformationally distinct portions of two end point chemical states can be efficiently sampled. As demonstrated in this work, the present method is also feasible for the quantum mechanical and quantum mechanical/molecular mechanical simulations.

  5. Transuranic waste characterization sampling and analysis methods manual. Revision 1

    SciTech Connect

    Suermann, J.F.

    1996-04-01

    This Methods Manual provides a unified source of information on the sampling and analytical techniques that enable Department of Energy (DOE) facilities to comply with the requirements established in the current revision of the Transuranic Waste Characterization Quality Assurance Program Plan (QAPP) for the Waste Isolation Pilot Plant (WIPP) Transuranic (TRU) Waste Characterization Program (the Program) and the WIPP Waste Analysis Plan. This Methods Manual includes all of the testing, sampling, and analytical methodologies accepted by DOE for use in implementing the Program requirements specified in the QAPP and the WIPP Waste Analysis Plan. The procedures in this Methods Manual are comprehensive and detailed and are designed to provide the necessary guidance for the preparation of site-specific procedures. With some analytical methods, such as Gas Chromatography/Mass Spectrometry, the Methods Manual procedures may be used directly. With other methods, such as nondestructive characterization, the Methods Manual provides guidance rather than a step-by-step procedure. Sites must meet all of the specified quality control requirements of the applicable procedure. Each DOE site must document the details of the procedures it will use and demonstrate the efficacy of such procedures to the Manager, National TRU Program Waste Characterization, during Waste Characterization and Certification audits.

  6. Generating and characterizing the mechanical properties of cell-derived matrices using atomic force microscopy.

    PubMed

    Tello, Marta; Spenlé, Caroline; Hemmerlé, Joseph; Mercier, Luc; Fabre, Roxane; Allio, Guillaume; Simon-Assmann, Patricia; Goetz, Jacky G

    2016-02-01

    Mechanical interaction between cells and their surrounding extracellular matrix (ECM) controls key processes such as proliferation, differentiation and motility. For many years, two-dimensional (2D) models were used to better understand the interactions between cells and their surrounding ECM. More recently, variation of the mechanical properties of tissues has been reported to play a major role in physiological and pathological scenarios such as cancer progression. The 3D architecture of the ECM finely tunes cellular behavior to perform physiologically relevant tasks. Technical limitations prevented scientists from obtaining accurate assessment of the mechanical properties of physiologically realistic matrices. There is therefore a need for combining the production of high-quality cell-derived 3D matrices (CDMs) and the characterization of their topographical and mechanical properties. Here, we describe methods that allow to accurately measure the young modulus of matrices produced by various cellular types. In the first part, we will describe and review several protocols for generating CDMs matrices from endothelial, epithelial, fibroblastic, muscle and mesenchymal stem cells. We will discuss tools allowing the characterization of the topographical details as well as of the protein content of such CDMs. In a second part, we will report the methodologies that can be used, based on atomic force microscopy, to accurately evaluate the stiffness properties of the CDMs through the quantification of their young modulus. Altogether, such methodologies allow characterizing the stiffness and topography of matrices deposited by the cells, which is key for the understanding of cellular behavior in physiological conditions.

  7. Generating and characterizing the mechanical properties of cell-derived matrices using atomic force microscopy.

    PubMed

    Tello, Marta; Spenlé, Caroline; Hemmerlé, Joseph; Mercier, Luc; Fabre, Roxane; Allio, Guillaume; Simon-Assmann, Patricia; Goetz, Jacky G

    2016-02-01

    Mechanical interaction between cells and their surrounding extracellular matrix (ECM) controls key processes such as proliferation, differentiation and motility. For many years, two-dimensional (2D) models were used to better understand the interactions between cells and their surrounding ECM. More recently, variation of the mechanical properties of tissues has been reported to play a major role in physiological and pathological scenarios such as cancer progression. The 3D architecture of the ECM finely tunes cellular behavior to perform physiologically relevant tasks. Technical limitations prevented scientists from obtaining accurate assessment of the mechanical properties of physiologically realistic matrices. There is therefore a need for combining the production of high-quality cell-derived 3D matrices (CDMs) and the characterization of their topographical and mechanical properties. Here, we describe methods that allow to accurately measure the young modulus of matrices produced by various cellular types. In the first part, we will describe and review several protocols for generating CDMs matrices from endothelial, epithelial, fibroblastic, muscle and mesenchymal stem cells. We will discuss tools allowing the characterization of the topographical details as well as of the protein content of such CDMs. In a second part, we will report the methodologies that can be used, based on atomic force microscopy, to accurately evaluate the stiffness properties of the CDMs through the quantification of their young modulus. Altogether, such methodologies allow characterizing the stiffness and topography of matrices deposited by the cells, which is key for the understanding of cellular behavior in physiological conditions. PMID:26439175

  8. Shear wave elastography plaque characterization with mechanical testing validation: a phantom study

    NASA Astrophysics Data System (ADS)

    Widman, E.; Maksuti, E.; Larsson, D.; Urban, M. W.; Bjällmark, A.; Larsson, M.

    2015-04-01

    Determining plaque vulnerability is critical when selecting the most suitable treatment for patients with atherosclerotic plaque. Currently, clinical non-invasive ultrasound-based methods for plaque characterization are limited to visual assessment of plaque morphology and new quantitative methods are needed. In this study, shear wave elastography (SWE) was used to characterize hard and soft plaque mimicking inclusions in six common carotid artery phantoms by using phase velocity analysis in static and dynamic environments. The results were validated with mechanical tensile testing. In the static environment, SWE measured a mean shear modulus of 5.8  ±  0.3 kPa and 106.2  ±  17.2 kPa versus 3.3  ±  0.5 kPa and 98.3  ±  3.4 kPa measured by mechanical testing in the soft and hard plaques respectively. Furthermore, it was possible to measure the plaques’ shear moduli throughout a simulated cardiac cycle. The results show good agreement between SWE and mechanical testing and indicate the possibility for in vivo arterial plaque characterization using SWE.

  9. Mechanical force characterization in manipulating live cells with optical tweezers.

    PubMed

    Wu, Yanhua; Sun, Dong; Huang, Wenhao

    2011-02-24

    Laser trapping with optical tweezers is a noninvasive manipulation technique and has received increasing attentions in biological applications. Understanding forces exerted on live cells is essential to cell biomechanical characterizations. Traditional numerical or experimental force measurement assumes live cells as ideal objects, ignoring their complicated inner structures and rough membranes. In this paper, we propose a new experimental method to calibrate the trapping and drag forces acted on live cells. Binding a micro polystyrene sphere to a live cell and moving the mixture with optical tweezers, we can obtain the drag force on the cell by subtracting the drag force on the sphere from the total drag force on the mixture, under the condition of extremely low Reynolds number. The trapping force on the cell is then obtained from the drag force when the cell is in force equilibrium state. Experiments on numerous live cells demonstrate the effectiveness of the proposed force calibration approach.

  10. Magneto-thermo-mechanical characterization of magnetostrictive composites

    NASA Astrophysics Data System (ADS)

    Nersessian, Nersesse; Carman, Gregory P.

    2001-07-01

    This paper describes magneto-thermo-mechanical characterization of magnetostrictive composites. The purpose of this study is to evaluate the behavior of magnetostrictive composites under combined magnetic, thermal and mechanical loading, and to determine fundamental properties used for design of actuator and sensor systems that incorporate these materials. Currently the composites are being used in sonar transducers. The magnetostrictive composite contains Terfenol-D (Tb0.3Dy0.7Fe2) particulate embedded into an epoxy binder. Composite form is used due to the relative brittleness and limited operational frequencies of monolithic Terfenol-D. Two different tests were performed both at room temperature and under thermal loading: 1) constant magnetic field with cyclically varying load around a bias load and 2) constant pre-load with varying magnetic field. Testing was performed on five different volume fraction composites, namely, 10%, 20%, 30%, 40% and 50%. Parameters that were evaluated include strain output, magnetic field, magnetization and elastic modulus. Results for the constant magnetic field tests indicate that modulus generally increases with increasing volume fraction and increasing magnetic field. However, for low fields, an initial dip is noticed in modulus (i.e. (Delta) E effect) attributed to domains becoming more mobile at lower magnetic field levels. Results also indicate an increase in modulus with decrease in temperature. Results for the constant load test indicate a strong dependence of strain output on applied pre-stress. Results indicate that max strain peaks at a certain value of the pre-stress and then decreases for increasing pre-stress. Results also indicate that strain output peaks between 0 degree(s)C and +10 degree(s)C and that strain generally increases with increasing volume fraction.

  11. Mechanical characterization of stomach tissue under uniaxial tensile action.

    PubMed

    Jia, Z G; Li, W; Zhou, Z R

    2015-02-26

    In this article, the tensile properties of gastric wall were investigated by using biomechanical test and theoretical analysis. The samples of porcine stomach strips from smaller and greater curvature of the stomach were cut in longitudinal and circumferential direction, respectively. The loading-unloading, stress relaxation, strain creep, tensile fracture tests were performed at mucosa-submucosa, serosa-muscle and intact layer, respectively. Results showed that the biomechanical properties of the porcine stomach depended on the layers, orientations and locations of the gastric wall and presented typical viscoelastic, nonlinear and anisotropic mechanical properties. During loading-unloading test, the stress of serosa-muscle layer in the longitudinal direction was 15-20% more than that in the circumferential direction at 12% stretch ratio, while it could reach about 40% for the intact layer and 50% for the mucosa-submucosa layer. The results of stress relaxation and strain creep showed that the variation degree was obviously faster in the circumferential direction than that in the longitudinal direction, and the ultimate residual values were also different for the different layers, orientations and locations. In the process of fracture test, the serosa-muscle layer fractured firstly followed by the mucosa-submucosa layer when the intact layer was tested, the longitudinal strips firstly began to fracture and the required stress value was about twice as much as that in the circumferential strips. The anisotropy and heterogeneity of mechanical characterization of the porcine stomach were related to its complicated geometry, structure and functions. The results would help us to understand the biomechanics of soft organ tissue.

  12. Mechanical and electrochemical characterization of vanadium nitride (VN) thin films

    NASA Astrophysics Data System (ADS)

    Caicedo, J. C.; Zambrano, G.; Aperador, W.; Escobar-Alarcon, L.; Camps, E.

    2011-10-01

    Vanadium nitride (V-N) thin films were grown using a reactive d.c. magnetron sputtering process, from a vanadium target (99.999%) in an Ar/N 2 gas mixture at different deposition bias voltage. Films were deposited onto silicon (1 0 0) and RUS-3 steel substrates at 400 °C. Structural, compositional, mechanical and electrochemical characterizations were performed by X-ray diffraction (XRD), elastic forward analysis (EFA), nanoindentation, electrochemical impedance spectroscopy (EIS), and Tafel polarization curves, respectively. X-ray diffraction patterns show the presence of (1 1 1) and (2 0 0) crystallographic orientations associated to the V-N cubic phase. Nanoindentation measurements revealed that when the bias voltage increases from 0 V to -150 V the hardness and elastic modulus are increased from 11 GPa to 20 GPa and from 187 GPa to 221 GPa, respectively. EIS and Tafel curves showed that the corrosion rate of steel, coated with V-N single layer films deposited without bias voltage, diminishes 90% compared to the steel without this coating. On the other hand, when the V-N coating was deposited at the highest d.c. bias voltage (-150 V), the corrosion rate was greater than in the steel coated with zero-voltage (0 V) V-N films. This last result could be attributed to the formation of porosities produced by the ion bombardment during the deposition process.

  13. Characterization and development mechanism of Apios americana tuber starch.

    PubMed

    Yangcheng, Hanyu; Belamkar, Vikas; Cannon, Steven B; Jane, Jay-Lin

    2016-10-20

    Apios americana is a wild legume-bearing plant with edible tubers. Domestication of Apios is in progress because of the superior nutritional value and health benefits of the tuber. Objectives of this study were to: (1) characterize physicochemical properties of the Apios tuber starch; and (2) understand differences in starch structures and properties between the mother (seed) and child (progeny) tubers and the mechanism of starch development. Granules of the Apios tuber starch displayed ellipsoidal, rod, or kidney shape with diameter ranges of 1-30μm. The mother tuber starches displayed greater percentage crystallinity, larger gelatinization enthalpy-changes, longer branch-chain lengths of amylopectin, and lower pasting viscosity than their counterpart child tuber starches. The mother tuber starch of Apios 2127 displayed distinct two peaks of gelatinization, which were attributed to starch granules located at different regions of the tuber having different structures and properties. The mother tuber displayed more active starch biosynthesis in the periphery than in the center of the tuber.

  14. Characterization and development mechanism of Apios americana tuber starch.

    PubMed

    Yangcheng, Hanyu; Belamkar, Vikas; Cannon, Steven B; Jane, Jay-Lin

    2016-10-20

    Apios americana is a wild legume-bearing plant with edible tubers. Domestication of Apios is in progress because of the superior nutritional value and health benefits of the tuber. Objectives of this study were to: (1) characterize physicochemical properties of the Apios tuber starch; and (2) understand differences in starch structures and properties between the mother (seed) and child (progeny) tubers and the mechanism of starch development. Granules of the Apios tuber starch displayed ellipsoidal, rod, or kidney shape with diameter ranges of 1-30μm. The mother tuber starches displayed greater percentage crystallinity, larger gelatinization enthalpy-changes, longer branch-chain lengths of amylopectin, and lower pasting viscosity than their counterpart child tuber starches. The mother tuber starch of Apios 2127 displayed distinct two peaks of gelatinization, which were attributed to starch granules located at different regions of the tuber having different structures and properties. The mother tuber displayed more active starch biosynthesis in the periphery than in the center of the tuber. PMID:27474558

  15. Flexible microfluidic device for mechanical property characterization of soft viscoelastic solids such as bacterial biofilms.

    PubMed

    Hohne, Danial N; Younger, John G; Solomon, Michael J

    2009-07-01

    We introduce a flexible microfluidic device to characterize the mechanical properties of soft viscoelastic solids such as bacterial biofilms. In the device, stress is imposed on a test specimen by the application of a fixed pressure to a thin, flexible poly(dimethyl siloxane) (PDMS) membrane that is in contact with the specimen. The stress is applied by pressurizing a microfabricated air channel located above the test area. The strain resulting from the applied stress is quantified by measuring the membrane deflection with a confocal laser scanning microscope. The deflection is governed by the viscoelastic properties of the PDMS membrane and of the test specimen. The relative contributions of the membrane and test material to the measured deformation are quantified by comparing a finite element analysis with an independent (control) measurement of the PDMS membrane mechanical properties. The flexible microfluidic rheometer was used to characterize both the steady-state elastic modulus and the transient strain recoil of two soft materials: gellan gums and bacterial biofilms. The measured linear elastic moduli and viscoelastic relaxation times of gellan gum solutions were in good agreement with the results of conventional mechanical rheometry. The linear Young's moduli of biofilms of Staphylococcus epidermidis and Klebsiella pneumoniae, which could not be measured using conventional methods, were found to be 3.2 and 1.1 kPa, respectively, and the relaxation time of the S. epidermidis biofilm was 13.8 s. Additionally, strain hardening was observed in all the biofilms studied. Finally, design parameters and detection limits of the method show that the device is capable of characterizing soft viscoelastic solids with elastic moduli in the range of 102-105 Pa. The flexible microfluidic rheometer addresses the need for mechanical property characterization of soft viscoelastic solids common in fields such as biomaterials, food, and consumer products. It requires only 200 p

  16. Flexible microfluidic device for mechanical property characterization of soft viscoelastic solids such as bacterial biofilms

    PubMed Central

    Hohne, Danial N.; Younger, John G.; Solomon, Michael J.

    2009-01-01

    We introduce a flexible microfluidic device to characterize the mechanical properties of soft viscoelastic solids such as bacterial biofilms. In the device, stress is imposed on a test specimen by application of a fixed pressure to a thin, flexible poly(dimethyl siloxane) (PDMS) membrane that is in contact with the specimen. The stress is applied by pressurizing a microfabricated air channel located above the test area. The strain resulting from the applied stress is quantified by measuring the membrane deflection with a confocal laser-scanning microscope. The deflection is governed by the viscoelastic properties of the PDMS membrane and of the test specimen. The relative contributions of the membrane and test material to the measured deformation are quantified by comparing a finite element analysis and an independent (control) measurement of the PDMS membrane mechanical properties. The flexible microfluidic rheometer was used to characterize both the steady-state elastic modulus and transient strain recoil of two soft materials: gellan gums and bacterial biofilms. The measured linear elastic moduli and viscoelastic relaxation times of gellan gum solutions were in good agreement with the results of conventional mechanical rheometry. The linear Young’s moduli of biofilms of Staphylococcus epidermidis and Klebsiella pneumoniae, which could not be measured using conventional methods, were found to be 3.2 kPa and 1.1 kPa, respectively, and the relaxation time of the S. epidermidis biofilm was 13.8 s. Additionally, strain hardening was observed in all the biofilms studied. Finally, design parameters and detection limits of the method show that the device is capable of characterizing soft viscoelastic solids with elastic moduli in the range of 102 – 105 Pa. The flexible microfluidic rheometer addresses a need for mechanical property characterization of soft viscoelastic solids common in fields such as biomaterials, food and consumer products. It requires only ~ 200 p

  17. Flexible microfluidic device for mechanical property characterization of soft viscoelastic solids such as bacterial biofilms.

    PubMed

    Hohne, Danial N; Younger, John G; Solomon, Michael J

    2009-07-01

    We introduce a flexible microfluidic device to characterize the mechanical properties of soft viscoelastic solids such as bacterial biofilms. In the device, stress is imposed on a test specimen by the application of a fixed pressure to a thin, flexible poly(dimethyl siloxane) (PDMS) membrane that is in contact with the specimen. The stress is applied by pressurizing a microfabricated air channel located above the test area. The strain resulting from the applied stress is quantified by measuring the membrane deflection with a confocal laser scanning microscope. The deflection is governed by the viscoelastic properties of the PDMS membrane and of the test specimen. The relative contributions of the membrane and test material to the measured deformation are quantified by comparing a finite element analysis with an independent (control) measurement of the PDMS membrane mechanical properties. The flexible microfluidic rheometer was used to characterize both the steady-state elastic modulus and the transient strain recoil of two soft materials: gellan gums and bacterial biofilms. The measured linear elastic moduli and viscoelastic relaxation times of gellan gum solutions were in good agreement with the results of conventional mechanical rheometry. The linear Young's moduli of biofilms of Staphylococcus epidermidis and Klebsiella pneumoniae, which could not be measured using conventional methods, were found to be 3.2 and 1.1 kPa, respectively, and the relaxation time of the S. epidermidis biofilm was 13.8 s. Additionally, strain hardening was observed in all the biofilms studied. Finally, design parameters and detection limits of the method show that the device is capable of characterizing soft viscoelastic solids with elastic moduli in the range of 102-105 Pa. The flexible microfluidic rheometer addresses the need for mechanical property characterization of soft viscoelastic solids common in fields such as biomaterials, food, and consumer products. It requires only 200 p

  18. High Temperature Mechanical Characterization of Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.

    1998-01-01

    A high temperature mechanical characterization laboratory has been assembled at NASA Lewis Research Center. One contribution of this work is to test ceramic matrix composite specimens in tension in environmental extremes. Two high temperature tensile testing systems were assembled. The systems were assembled based on the performance and experience of other laboratories and meeting projected service conditions for the materials in question. The systems use frames with an electric actuator and a center screw. A PC based data acquisition and analysis system is used to collect and analyze the data. Mechanical extensometers are used to measure specimen strain. Thermocouples, placed near the specimen, are used to measure the specimen gage section temperature. The system for testing in air has a resistance element furnace with molybdenum disilicide elements and pneumatic grips with water cooling attached to hydraulic alignment devices. The system for testing in an inert gas has a graphite resistance element furnace in a chamber with rigidly mounted, water cooled, hydraulically actuated grips. Unidirectional SiC fiber reinforced reaction bonded Si3N4 and triaxially woven, two dimensional, SiC fiber reinforced enhanced SiC composites were tested in unidirectional tension. Theories for predicting the Young's modulus, modulus near the ultimate strength, first matrix cracking stress, and ultimate strength were applied and evaluated for suitability in predicting the mechanical behavior of SiC/RBSN and enhanced SiC/SiC composites. The SiC/RBSN composite exhibited pseudo tough behavior (increased area under the stress/strain curve) from 22 C to 1500 C. The rule of mixtures provides a good estimate of the Young's modulus of the SiC/RBSN composite using the constituent properties from room temperature to 1440 C for short term static tensile tests in air or nitrogen. The rule of mixtures significantly overestimates the secondary modulus near the ultimate strength. The ACK theory

  19. Semi-automated potentiometric titration method for uranium characterization.

    PubMed

    Cristiano, B F G; Delgado, J U; da Silva, J W S; de Barros, P D; de Araújo, R M S; Lopes, R T

    2012-07-01

    The manual version of the potentiometric titration method has been used for certification and characterization of uranium compounds. In order to reduce the analysis time and the influence of the analyst, a semi-automatic version of the method was developed in the Brazilian Nuclear Energy Commission. The method was applied with traceability assured by using a potassium dichromate primary standard. The combined standard uncertainty in determining the total concentration of uranium was around 0.01%, which is suitable for uranium characterization. PMID:22154105

  20. Food powders flowability characterization: theory, methods, and applications.

    PubMed

    Juliano, Pablo; Barbosa-Cánovas, Gustavo V

    2010-01-01

    Characterization of food powders flowability is required for predicting powder flow from hoppers in small-scale systems such as vending machines or at the industrial scale from storage silos or bins dispensing into powder mixing systems or packaging machines. This review covers conventional and new methods used to measure flowability in food powders. The method developed by Jenike (1964) for determining hopper outlet diameter and hopper angle has become a standard for the design of bins and is regarded as a standard method to characterize flowability. Moreover, there are a number of shear cells that can be used to determine failure properties defined by Jenike's theory. Other classic methods (compression, angle of repose) and nonconventional methods (Hall flowmeter, Johanson Indicizer, Hosokawa powder tester, tensile strength tester, powder rheometer), used mainly for the characterization of food powder cohesiveness, are described. The effect of some factors preventing flow, such as water content, temperature, time consolidation, particle composition and size distribution, is summarized for the characterization of specific food powders with conventional and other methods. Whereas time-consuming standard methods established for hopper design provide flow properties, there is yet little comparative evidence demonstrating that other rapid methods may provide similar flow prediction.

  1. New Laboratory Methods for Characterizing the Immersion Factors for Irradiance

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Zibordi, Giuseppe; DAlimonte, Davide; vaderLinde, Dirk; Brown, James W.

    2003-01-01

    The experimental determination of the immersion factor, I(sub f)(lambda), of irradiance collectors is a requirement of any in-water radiometer. The eighth SeaWiFS Intercalibration Round-Robin Experiment (SIRREX-8) showed different implementations, at different laboratories, of the same I(sub f)(lambda) measurement protocol. The different implementations make use of different setups, volumes, and water types. Consequently, they exhibit different accuracies and require different execution times for characterizing an irradiance sensor. In view of standardizing the characterization of I(sub f)(lambda) values for in-water radiometers, together with an increase in the accuracy of methods and a decrease in the execution time, alternative methods are presented, and assessed versus the traditional method. The proposed new laboratory methods include: a) the continuous method, in which optical measurements taken with discrete water depths are substituted by continuous profiles created by removing the water from the water vessel at a constant flow rate (which significantly reduces the time required for the characterization of a single radiometer); and b) the Compact Portable Advanced Characterization Tank (ComPACT) method, in which the commonly used large tanks are replaced by a small water vessel, thereby allowing the determination of I(sub f)(lambda) values with a small water volume, and more importantly, permitting I(sub f)(lambda) characterizations with pure water. Intercomparisons between the continuous and the traditional method showed results within the variance of I(sub f) (lambda) determinations. The use of the continuous method, however, showed a much shorter realization time. Intercomparisons between the ComPACT and the traditional method showed generally higher I(sub f)(lambda) values for the former. This is in agreement with the generalized expectations of a reduction in scattering effects, because of the use of pure water with the ComPACT method versus the use of

  2. Methods for Characterization of Batteries Using Acoustic Interrogation

    NASA Astrophysics Data System (ADS)

    Bhadra, Shoham

    Batteries are a ubiquitous form of electrochemical energy storage, but thus far the methods for measuring the mechanical properties of batteries and their component materials in operando have lagged far behind the methods for measuring the corresponding electrical properties. In this thesis, I demonstrate methods for determining the changes in materials properties of an electrochemical energy storage cell both ex situ and in operando.. I begin by establishing the impact of micro-scale morphology changes on the macro-scale dynamic mechanical response in commercial alkaline AA cells. Using a bounce test, the coefficient of restitution (COR) of the cell is shown to increase non-linearly as a function of state of charge (SOC). I show that the reason for the increase in the COR stems from the spatially-dependent oxidation of the Zn anode, with an initial increase corresponding to the formation of a percolation pathway of ZnO-clad Zn particles spanning the radius of the anode. The subsequent saturation of the COR is shown to result from the ultimate solidification and desiccation of the Zn anode. Building from this, I present a generalized in operando solution for materials characterization in batteries using ultrasonic interrogation. The materials properties of battery components change during charge and discharge, resulting in a change in the sound speed of the materials. By attaching transducers to a battery during cycling and sending ultrasonic pulses through each cell I observe the changes in the time of flight (ToF) of the pulses, both in reflection and transmission. I show that the changes in ToF correspond to both SOC and state of health (SOH) in a variety of battery chemistries and geometries, and detail a corresponding acoustic conservation law model framework. Finally, I perform these electrochemical acoustic time of flight (EAToF) experiments on commercial alkaline AA cells. By correlating the results with energy dispersive x-ray diffraction (EDXRD) data and

  3. Atomistic insight into the catalytic mechanism of glycosyltransferases by combined quantum mechanics/molecular mechanics (QM/MM) methods.

    PubMed

    Tvaroška, Igor

    2015-02-11

    Glycosyltransferases catalyze the formation of glycosidic bonds by assisting the transfer of a sugar residue from donors to specific acceptor molecules. Although structural and kinetic data have provided insight into mechanistic strategies employed by these enzymes, molecular modeling studies are essential for the understanding of glycosyltransferase catalyzed reactions at the atomistic level. For such modeling, combined quantum mechanics/molecular mechanics (QM/MM) methods have emerged as crucial. These methods allow the modeling of enzymatic reactions by using quantum mechanical methods for the calculation of the electronic structure of the active site models and treating the remaining enzyme environment by faster molecular mechanics methods. Herein, the application of QM/MM methods to glycosyltransferase catalyzed reactions is reviewed, and the insight from modeling of glycosyl transfer into the mechanisms and transition states structures of both inverting and retaining glycosyltransferases are discussed.

  4. Methods for modeling contact dynamics of capture mechanisms

    NASA Technical Reports Server (NTRS)

    Williams, Philip J.; Tobbe, Patrick A.; Glaese, John

    1991-01-01

    In this paper, an analytical approach for studying the contact dynamics of space-based vehicles during docking/berthing maneuvers is presented. Methods for modeling physical contact between docking/berthing mechanisms, examples of how these models have been used to evaluate the dynamic behavior of automated capture mechanisms, and experimental verification of predicted results are shown.

  5. Molecular Mechanics: The Method and Its Underlying Philosophy.

    ERIC Educational Resources Information Center

    Boyd, Donald B.; Lipkowitz, Kenny B.

    1982-01-01

    Molecular mechanics is a nonquantum mechanical method for solving problems concerning molecular geometries and energy. Methodology based on: the principle of combining potential energy functions of all structural features of a particular molecule into a total force field; derivation of basic equations; and use of available computer programs is…

  6. Simultaneous spectrophotometric and mechanical property characterization of skin

    NASA Astrophysics Data System (ADS)

    Bunegin, Leonid; Moore, Jeffery B.

    2006-02-01

    Both reflectance spectroscopy and the determination Young's Modulus of skin have shown promise for identifying skin pathology. At present, these determinations are carried out using separate methodologies. This study demonstrates a new technology combining digital UV/VIS reflectance spectroscopy and vacuum aspiration for simultaneously determining the reflectance spectrum and mechanical properties of human skin tissue. A small hand held prototype device incorporating fiber-optic light guides into a vacuum channel was calibrated using various elastic materials subjected to increments of stress by vacuum from 0 to 25 in Hg. The intensity of a UV/VIS light beam reflected from the material at each vacuum increment was compared to the resulting material strain. The reflected beam was also spectrophotometrically analyzed. Skin types were similarly evaluated comparing normal and scar tissue and skin of various ages and coloration. An exponential relationship between reflected beam intensity and the amount of strain resulting from vacuum increments was observed. Young's Modulus (calculated from Aoki et. al equation) and spectra from normal skin and scar tissue were in agreement with previously published observations. Age related decreases in skin elasticity were also demonstrated. In the reflectance spectra, oxy and deoxy-hemoglobin absorbance bands were detected, becoming significantly enhanced at increased levels of vacuum. Melanin absorbance was also easily detected and appeared to correlate with skin coloration. Since superficial skin pathologies have characteristic spectroscopic and mechanical properties, this technique may provide a promising new approach for rapid, non-invasive method for the evaluation of skin lesions.

  7. Thermo-mechanically coupled deformation with the finite difference method

    NASA Astrophysics Data System (ADS)

    Duretz, Thibault; Raess, Ludovic; Podladchikov, Yury; Schmalholz, Stefan

    2016-04-01

    Numerous geological observations are the result of thermo-mechanical processes. In particular, tectonic processes such as ductile shear localization can be induced by the intrinsic coupling that exists between deformation, energy and rheology. In order to study these processes, we have designed two-dimensional implicit and explicit finite difference models. These models take into account a temperature-dependent power-law rheology as well as diffusion, advection, and conversion of mechanical work into heat. For implicit models, different non-linear solving strategies were implemented (implicit/explicit thermo-mechanical coupling, Picard/Newton linearisations). We model thermo-mechanically activated shear localization in lower crustal conditions using these different numerical methods. We show that all methods capture the thermo-mechanical instability and exhibit similar temporal evolution. We perform quantitative comparisons with specifically designed tests (conservation of energy, analytical solution, scaling law). For implicit approaches, we discuss the treatment of thermo-mechanical coupling (implicit/explicit) and the impact of the imposed accuracy (tolerance) of the non-linear solvers. We compare the accuracy of the explicit method with the one of the implicit methods. Numerical algorithms based on explicit methods to study thermo-mechanical shear localisation are attractive because they are easy to program and very comprehensible.

  8. Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology.

    PubMed

    van der Kamp, Marc W; Mulholland, Adrian J

    2013-04-23

    Computational enzymology is a rapidly maturing field that is increasingly integral to understanding mechanisms of enzyme-catalyzed reactions and their practical applications. Combined quantum mechanics/molecular mechanics (QM/MM) methods are important in this field. By treating the reacting species with a quantum mechanical method (i.e., a method that calculates the electronic structure of the active site) and including the enzyme environment with simpler molecular mechanical methods, enzyme reactions can be modeled. Here, we review QM/MM methods and their application to enzyme-catalyzed reactions to investigate fundamental and practical problems in enzymology. A range of QM/MM methods is available, from cheaper and more approximate methods, which can be used for molecular dynamics simulations, to highly accurate electronic structure methods. We discuss how modeling of reactions using such methods can provide detailed insight into enzyme mechanisms and illustrate this by reviewing some recent applications. We outline some practical considerations for such simulations. Further, we highlight applications that show how QM/MM methods can contribute to the practical development and application of enzymology, e.g., in the interpretation and prediction of the effects of mutagenesis and in drug and catalyst design.

  9. Characterization of Heat Waves in the Sahel and associated mechanisms

    NASA Astrophysics Data System (ADS)

    Oueslati, Boutheina; Pohl, Benjamin; Moron, Vincent; Rome, Sandra

    2016-04-01

    Large efforts are made to investigate the heat waves (HW) in developed countries because of their devastating impacts on society, economy and environment. This interest increased after the intense event over Europe during summer 2003. However, HWs are still understudied over developing countries. This is particularly true in West Africa, and especially in the Sahel, where temperatures recurrently reach critical values, such as during the 2010 HW event. Understanding the Sahelian HWs and associated health risks constitute the main objective of ACASIS, a 4-year project funded by the French Agence Nationale de la Recherche. Our work contributes to this project and aims at characterizing the Sahelian HWs and understanding the mechanisms associated with such extreme events. There is no universal definition of a HW event, since it is highly dependent on the sector (human health, agriculture, transport...) and region of interest. In our case, a HW is defined when the heat index of the day and of the night exceeds the 90th percentile for at least 3 consecutive days (Rome et al. 2016, in preparation). This index combines temperature and relative humidity in order to determine the human-perceived equivalent temperature (definition adapted from Steadman, 1979). Intrinsic properties of Sahelian HW are analyzed from the Global Summary of the Day (GSOD) synoptic observations and ERA-interim reanalyses over 1979-2014 during boreal spring seasons (April-May-June), the warmest period of the year in the Central Sahel. ERA-interim captures well the observed interannual variability and seasonal cycle at the regional scale, as well as the 1979-2014 increasing linear trend of springtime HW occurrences in the Sahel. Reanalyses, however, overestimate the duration, spatial extent of HW, and underestimate their intensity. For both GSOD and ERA-interim, we show that, over the last three decades, Sahelian HWs tend to become more frequent, last longer, cover larger areas and reach higher

  10. Computational structural mechanics methods research using an evolving framework

    NASA Technical Reports Server (NTRS)

    Knight, N. F., Jr.; Lotts, C. G.; Gillian, R. E.

    1990-01-01

    Advanced structural analysis and computational methods that exploit high-performance computers are being developed in a computational structural mechanics research activity sponsored by the NASA Langley Research Center. These new methods are developed in an evolving framework and applied to representative complex structural analysis problems from the aerospace industry. An overview of the methods development environment is presented, and methods research areas are described. Selected application studies are also summarized.

  11. Analysing seismic-source mechanisms by linear-programming methods.

    USGS Publications Warehouse

    Julian, B.R.

    1986-01-01

    Linear-programming methods are powerful and efficient tools for objectively analysing seismic focal mechanisms and are applicable to a wide range of problems, including tsunami warning and nuclear explosion identification. The source mechanism is represented as a point in the 6-D space of moment-tensor components. The present method can easily be extended to fit observed seismic-wave amplitudes (either signed or absolute) subject to polarity constraints, and to assess the range of mechanisms consistent with a set of measured amplitudes. -from Author

  12. APPLICATIONS OF BOREHOLE-ACOUSTIC METHODS IN ROCK MECHANICS.

    USGS Publications Warehouse

    Paillet, Frederick L.

    1985-01-01

    Acoustic-logging methods using a considerable range of wavelengths and frequencies have proven very useful in the in situ characterization of deeply buried crystalline rocks. Seismic velocities are useful in investigating the moduli of unfractured rock, and in producing a continuous record of rock quality for comparison with discontinuous intervals of core. The considerable range of frequencies makes the investigation of scale effects possible in both fractured and unfractured rock. Several specific methods for the characterization of in situ permeability have been developed and verified in the field.

  13. Elucidating diversity of exosomes: biophysical and molecular characterization methods.

    PubMed

    Khatun, Zamila; Bhat, Anjali; Sharma, Shivani; Sharma, Aman

    2016-09-01

    Exosomes are cell-secreted nanovesicles present in biological fluids in normal and diseased conditions. Owing to their seminal role in cell-cell communication, emerging evidences suggest that exosomes are fundamental regulators of various diseases. Due to their potential usefulness in disease diagnosis, robust isolation and characterization of exosomes is critical in developing exosome-based assays. In the last few years, different exosome characterization methods, both biophysical and molecular, have been developed to characterize these tiny vesicles. Here, in this review we summarize: first, biophysical techniques based on spectroscopy (e.g., Raman spectroscopy, dynamic light scattering) and other principles, for example, scanning electron microscopy, atomic force microscopy; second, antibody-based molecular techniques including flow cytometry, transmission electron microscopy and third, nanotechnology-dependent exosome characterization methodologies. PMID:27488053

  14. Characterization of IPMC actuators using standard testing methods

    NASA Astrophysics Data System (ADS)

    Fernández, D.; Espinosa, R.; Moreno, L.; Baselga, J.

    2006-03-01

    In response to a clear need, the research community on EAP (Electroactive Polymer) has just started to work on a standard test methodology to characterize EAP actuators. A very general test methodology for EAPs, covering the characterization procedures for extensional and bending actuators was recently presented. In the present work, well known IPMC samples are characterized following such test methodology. Also, additional tests, not covered by the preliminary standard are included. These tests are conducted using the EAP Unit Tester, a test bench specifically designed for the characterization of EAP actuators. Rather than presenting new material's results, the paper focuses on the instrumentation, procedures and form of presenting results. Although the paper is focused on IPMC the method can be extrapolated to other bending actuators.

  15. Soil characterization methods for unsaturated low-level waste sites

    SciTech Connect

    Wierenga, P.J.; Young, M.H. . Dept. of Soil and Water Science); Gee, G.W.; Kincaid, C.T. ); Hills, R.G. . Dept. of Mechanical Engineering); Nicholson, T.J.; Cady, R.E. )

    1993-01-01

    To support a license application for the disposal of low-level radioactive waste (LLW), applicants must characterize the unsaturated zone and demonstrate that waste will not migrate from the facility boundary. This document provides a strategy for developing this characterization plan. It describes principles of contaminant flow and transport, site characterization and monitoring strategies, and data management. It also discusses methods and practices that are currently used to monitor properties and conditions in the soil profile, how these properties influence water and waste migration, and why they are important to the license application. The methods part of the document is divided into sections on laboratory and field-based properties, then further subdivided into the description of methods for determining 18 physical, flow, and transport properties. Because of the availability of detailed procedures in many texts and journal articles, the reader is often directed for details to the available literature. References are made to experiments performed at the Las Cruces Trench site, New Mexico, that support LLW site characterization activities. A major contribution from the Las Cruces study is the experience gained in handling data sets for site characterization and the subsequent use of these data sets in modeling studies.

  16. An Evaluation of Three Methods for Characterizing Media Heterogeneity

    NASA Astrophysics Data System (ADS)

    Ye, M.; Khaleel, R.

    2008-12-01

    Accurate simulation of flow and contaminant transport in heterogeneous media is often hampered by difficulty in characterizing media heterogeneity due to lack of data. Based on the availability of "soft" data (i.e., initial moisture content), three methods were developed for characterizing soil hydraulic parameters for a vadose zone field experiment site. Each one of the three methods utilized the initial moisture content data differently. The three methods are: (a) an upscaling method for estimating effective soil hydraulic conductivity, (b) an artificial neural network and cokriging method for estimating soil hydraulic parameters (i.e., saturated hydraulic conductivity and moisture retention parameters), and (c) a Transition Probability Markov Chain (TP/MC) method for estimating geometry of soil classes. All three methods were developed for the same site, and were used to simulate the same field injection experiment. Application of different methods resulted in varying levels of success in simulating the field observed moisture content. The effective soil hydraulic conductivity captures the overall movement pattern of the injected water, but cannot simulate the detailed distribution of the moisture plume, e. g., the split of the plume within a coarse sand unit sandwiched between two fine-textured units. The ANN and cokriging method can simulate the moisture plume, but the layering structure at the site cannot be characterized well due to the smoothing effect of the cokriging. As a result, the simulated vertical moisture movement is faster than the observed movement. The TP/MC method appears to produce an improved comparison to field data, because it can best reproduce media heterogeneity and the contrast that exists between the coarse- and fine-horizon. The development of three different methods is possible because of the presence of an extensive dataset on initial moisture content which carry signature of the media heterogeneity. The TP/MC method uses the soft

  17. Bayesian methods for characterizing unknown parameters of material models

    DOE PAGES

    Emery, J. M.; Grigoriu, M. D.; Field Jr., R. V.

    2016-02-04

    A Bayesian framework is developed for characterizing the unknown parameters of probabilistic models for material properties. In this framework, the unknown parameters are viewed as random and described by their posterior distributions obtained from prior information and measurements of quantities of interest that are observable and depend on the unknown parameters. The proposed Bayesian method is applied to characterize an unknown spatial correlation of the conductivity field in the definition of a stochastic transport equation and to solve this equation by Monte Carlo simulation and stochastic reduced order models (SROMs). As a result, the Bayesian method is also employed tomore » characterize unknown parameters of material properties for laser welds from measurements of peak forces sustained by these welds.« less

  18. Fast on-wafer electrical, mechanical, and electromechanical characterization of piezoresistive cantilever force sensors.

    PubMed

    Tosolini, G; Villanueva, L G; Perez-Murano, F; Bausells, J

    2012-01-01

    Validation of a technological process requires an intensive characterization of the performance of the resulting devices, circuits, or systems. The technology for the fabrication of micro and nanoelectromechanical systems (MEMS and NEMS) is evolving rapidly, with new kind of device concepts for applications like sensing or harvesting are being proposed and demonstrated. However, the characterization tools and methods for these new devices are still not fully developed. Here, we present an on-wafer, highly precise, and rapid characterization method to measure the mechanical, electrical, and electromechanical properties of piezoresistive cantilevers. The setup is based on a combination of probe-card and atomic force microscopy technology, it allows accessing many devices across a wafer and it can be applied to a broad range of MEMS and NEMS. Using this setup we have characterized the performance of multiple submicron thick piezoresistive cantilever force sensors. For the best design we have obtained a force sensitivity Re(F) = 158μV/nN, a noise of 5.8 μV (1 Hz-1 kHz) and a minimum detectable force of 37 pN with a relative standard deviation of σ(r) ≈ 8%. This small value of σ(r), together with a high fabrication yield >95%, validates our fabrication technology. These devices are intended to be used as bio-molecular detectors for the measurement of intermolecular forces between ligand and receptor molecule pairs.

  19. Method of predicting mechanical properties of decayed wood

    DOEpatents

    Kelley, Stephen S.

    2003-07-15

    A method for determining the mechanical properties of decayed wood that has been exposed to wood decay microorganisms, comprising: a) illuminating a surface of decayed wood that has been exposed to wood decay microorganisms with wavelengths from visible and near infrared (VIS-NIR) spectra; b) analyzing the surface of the decayed wood using a spectrometric method, the method generating a first spectral data of wavelengths in VIS-NIR spectra region; and c) using a multivariate analysis to predict mechanical properties of decayed wood by comparing the first spectral data with a calibration model, the calibration model comprising a second spectrometric method of spectral data of wavelengths in VIS-NIR spectra obtained from a reference decay wood, the second spectral data being correlated with a known mechanical property analytical result obtained from the reference decayed wood.

  20. Comparison of Module Performance Characterization Methods for Energy Production

    SciTech Connect

    Kroposki, B.; Marion, W.; King, D.; Boyson, W.; Kratochvil, J.

    2000-12-04

    This report compares the two methods of determining the performance of PV modules. The methods translate module performance characterized in a laboratory to actual or reference conditions using slightly different approaches. The accuracy of both methods is compared for both hourly and daily energy production over a year of data recorded at NREL in Golden, CO. The comparison of the two methods will be presented for five different PV module technologies: multicrystalline silicon (mc-Si), dual-junction amorphous silicon (a-Si/a-Si:Ge), triple-junction amorphous silicon (a-Si/a-Si/a-Si:Ge), cadmium telluride (CdTe), and copper indium diselenide (CIGSS).

  1. A Characterization of the Mechanical Behavior of Resin-Infiltrated Dentin Using Nanoscopic Dynamic Mechanical Analysis

    PubMed Central

    Ryou, Heonjune; Pashley, David H.; Tay, Franklin R.; Arola, Dwayne

    2013-01-01

    This study explored the spatial variations in mechanical behavior of resin-infiltrated dentin using nanoscopic Dynamic Mechanical Analysis (DMA). Objective The objectives were to: 1) evaluate the mechanical behavior of resin-infiltrated dentin using a scanning-based approach to nanoindentation, 2) identify contributions of the collagen matrix to time-dependent deformation of the hybrid layer, and 3) assess the importance of specimen hydration on the nanoDMA response. Methods Specimens of completely demineralized dentin infiltrated with commercial resin adhesive and control samples of resin adhesive were evaluated using a nanoindenter in scanning mode. The load and displacement responses were used to perform DMA and to estimate the complex (E*), storage (E’) and loss (E”) moduli over selected regions of evaluation. The importance of hydration on the mechanical behavior was also examined from a comparison of responses in the hydrated and dehydrated conditions. Results In the hydrated state the apparent complex, storage and loss moduli for the resin-infiltrated dentin samples were 3.5±0.3 GPa, 3.4±0.2 GPa and 0.9±0.3 GPa, respectively. Those values for the resin adhesive control were 2.7±0.3 GPa, 2.7±0.3 GPa and 0.2±0.02 GPa, respectively. Viscoelastic deformation of the resin-infiltrated collagen exceeded that occurring in regions of uniform resin adhesive. Though dehydration resulted in a significant increase in both the complex and storage moduli of the macro hybrid layer, the largest changes occurred to the resin adhesive. Significance The microstructure and hydration play critical roles on the mechanical behavior of the hybrid layer and nanoDMA provides a potent measurement tool for identifying the spatial variations. PMID:23639453

  2. Methods And Devices For Characterizing Duplex Nucleic Acid Molecules

    DOEpatents

    Akeson, Mark; Vercoutere, Wenonah; Haussler, David; Winters-Hilt, Stephen

    2005-08-30

    Methods and devices are provided for characterizing a duplex nucleic acid, e.g., a duplex DNA molecule. In the subject methods, a fluid conducting medium that includes a duplex nucleic acid molecule is contacted with a nanopore under the influence of an applied electric field and the resulting changes in current through the nanopore caused by the duplex nucleic acid molecule are monitored. The observed changes in current through the nanopore are then employed as a set of data values to characterize the duplex nucleic acid, where the set of data values may be employed in raw form or manipulated, e.g., into a current blockade profile. Also provided are nanopore devices for practicing the subject methods, where the subject nanopore devices are characterized by the presence of an algorithm which directs a processing means to employ monitored changes in current through a nanopore to characterize a duplex nucleic acid molecule responsible for the current changes. The subject methods and devices find use in a variety of applications, including, among other applications, the identification of an analyte duplex DNA molecule in a sample, the specific base sequence at a single nulceotide polymorphism (SNP), and the sequencing of duplex DNA molecules.

  3. Suction based mechanical characterization of superficial facial soft tissues.

    PubMed

    Weickenmeier, J; Jabareen, M; Mazza, E

    2015-12-16

    The present study is aimed at a combined experimental and numerical investigation of the mechanical response of superficial facial tissues. Suction based experiments provide the location, time, and history dependent behavior of skin and SMAS (superficial musculoaponeurotic system) by means of Cutometer and Aspiration measurements. The suction method is particularly suitable for in vivo, multi-axial testing of soft biological tissue including a high repeatability in subsequent tests. The campaign comprises three measurement sites in the face, i.e. jaw, parotid, and forehead, using two different loading profiles (instantaneous loading and a linearly increasing and decreasing loading curve), multiple loading magnitudes, and cyclic loading cases to quantify history dependent behavior. In an inverse finite element analysis based on anatomically detailed models an optimized set of material parameters for the implementation of an elastic-viscoplastic material model was determined, yielding an initial shear modulus of 2.32kPa for skin and 0.05kPa for SMAS, respectively. Apex displacements at maximum instantaneous and linear loading showed significant location specificity with variations of up to 18% with respect to the facial average response while observing variations in repeated measurements in the same location of less than 12%. In summary, the proposed parameter sets for skin and SMAS are shown to provide remarkable agreement between the experimentally observed and numerically predicted tissue response under all loading conditions considered in the present study, including cyclic tests. PMID:26584965

  4. Ultrasonic Method for Deployment Mechanism Bolt Element Preload Verification

    NASA Technical Reports Server (NTRS)

    Johnson, Eric C.; Kim, Yong M.; Morris, Fred A.; Mitchell, Joel; Pan, Robert B.

    2014-01-01

    Deployment mechanisms play a pivotal role in mission success. These mechanisms often incorporate bolt elements for which a preload within a specified range is essential for proper operation. A common practice is to torque these bolt elements to a specified value during installation. The resulting preload, however, can vary significantly with applied torque for a number of reasons. The goal of this effort was to investigate ultrasonic methods as an alternative for bolt preload verification in such deployment mechanisms. A family of non-explosive release mechanisms widely used by satellite manufacturers was chosen for the work. A willing contractor permitted measurements on a sampling of bolt elements for these release mechanisms that were installed by a technician following a standard practice. A variation of approximately 50% (+/- 25%) in the resultant preloads was observed. An alternative ultrasonic method to set the preloads was then developed and calibration data was accumulated. The method was demonstrated on bolt elements installed in a fixture instrumented with a calibrated load cell and designed to mimic production practice. The ultrasonic method yielded results within +/- 3% of the load cell reading. The contractor has since adopted the alternative method for its future production. Introduction

  5. Impetus of composite mechanics on test methods for fiber composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1978-01-01

    Significant contributions of the three major areas of composite mechanics to the development of test methods are illustrated with selected examples. The areas of composite mechanics include composite micromechanics, composite macromechanics, and laminate theory. The examples can be considered to be representative of the contribution of composite mechanics to the development of composite test methods. The specific examples describe contributions such as criteria for selecting resin matrices for improved composite strength, the 10 deg off-axis tensile test, procedures for configuring hybrids, and the concept of 'reduced bending rigidities'. The pertinent composite mechanics equations associated with each contribution are given and supplemented by tabular and/or graphical data which illustrate the significance of the contribution.

  6. Mechanical characterization and structural assessment of biocomposites for construction

    NASA Astrophysics Data System (ADS)

    Christian, Sarah Jane

    The objective of this dissertation is to assess whether or not two particular biocomposite materials, made from hemp fabric and cellulose acetate or polyhydroxybutyrate matrices, are capable of being used for structural and/or construction purposes within in the construction and building industry. The objective of this dissertation was addressed by conducting research to meet the following three goals: (1) to measure the basic mechanical properties of hemp/cellulose acetate and hemp/PHB biocomposites and evaluate if they suitable for use in construction applications, (2) to determine how quickly moisture diffuses into the biocomposite materials and how the moisture affects the mechanical behavior, and (3) to determine how well simple models can predict behavior of structural scale laminates in tension and flexure using biocomposite ply behavior. Compression molding was used to manufacturing the biocomposites from hemp fabric and the themoplastic matrices: cellulose acetate and polyhydroxybutyrate. Four methods for determining the fiber volume fraction were evaluated, and the dissolution method, using different solvents for each matrix type, was used to determine the fiber volume fraction for each composite plate manufactured. Both types of biocomposite were tested in tension, compression, shear, and flexure and the measured properties were compared to wood and engineered wood products to assess whether the biocomposite properties are suitable for use in the construction industry. The biocomposites were conditioned in a humid environment to determine the rate of moisture diffusion into the materials. Then saturated specimens and specimens that were saturated and then dried were tested in tension to evaluate how moisture absorption affects the mechanical behavior of the biocomposites. Finally, simple models of laminate behavior based on laminate plate theory were evaluated to determine if ply level behavior could be used to predict structural scale laminate behavior

  7. Microemboli Characterization in Whole Blood Medium by Laser Scattering Method

    NASA Astrophysics Data System (ADS)

    Kim, Jungkuk

    The current light scattering method to detect the thromboemboli generated inside blood vessels or by direct contact of biomaterials has been a powerful method because of its advantages: continuous real time measurement, non-ionizing radiation, practically unlimited aggregate size distribution, no disturbance of blood flow, and low cost. But this method only detects the number and size of thromboemboli that is assumed to be known. If there are air bubbles or foreign particles, this method can not distinguish them from the thromboemboli. An improved light scattering detection method that can characterize emboli, air bubbles, or any foreign particles, their number and size and also their nature, will be proposed by finding coefficients of a Legendre polynomial expansion of phase functions for a microembolus, air bubble, or a foreign particle. The scattered light distribution in whole blood medium is obtained by deriving and solving a multiple order scattering transport approximation of the radiative transport equation. This approximation will be derived on the basis of the fact that blood cells are highly anisotropic scatterers and applied to detect and characterize the microemboli mentioned above. Also a more practical method is devised. This method uses three different scattering angles that produce maximum differences in scattering phase function of microemboli according to their nature. This method is tested for a cylindrical whole blood medium with several kinds of known inhomogeneous particles: polystyrene spheres, air bubbies, and clots. The results produced an excellent agreement with theoretical calculations.

  8. Material mechanical characterization method for multiple strains and strain rates

    DOEpatents

    Erdmand, III, Donald L.; Kunc, Vlastimil; Simunovic, Srdjan; Wang, Yanli

    2016-01-19

    A specimen for measuring a material under multiple strains and strain rates. The specimen including a body having first and second ends and a gage region disposed between the first and second ends, wherein the body has a central, longitudinal axis passing through the first and second ends. The gage region includes a first gage section and a second gage section, wherein the first gage section defines a first cross-sectional area that is defined by a first plane that extends through the first gage section and is perpendicular to the central, longitudinal axis. The second gage section defines a second cross-sectional area that is defined by a second plane that extends through the second gage section and is perpendicular to the central, longitudinal axis and wherein the first cross-sectional area is different in size than the second cross-sectional area.

  9. Characterization of structure and properties of bone by spectral measure method.

    PubMed

    Cherkaev, Elena; Bonifasi-Lista, Carlos

    2011-01-11

    Novel mathematical method called spectral measure method (SMM) is developed for characterization of bone structure and indirect estimation of bone properties. The spectral measure method is based on an inverse homogenization technique which allows to derive information about the structure of composite material from measured effective electric or viscoelastic properties. The mechanical properties and ability to withstand fracture depend on the structural organization of bone as a hierarchical composite. Information about the bone structural parameters is contained in the spectral measure in the Stieltjes integral representation of the effective properties. The method is based on constructing the spectral measure either by calculating it directly from micro-CT images or using measurements of electric or viscoelastic properties over a frequency range. In the present paper, we generalize the Stieltjes representation to the viscoelastic case and show how bone microstructure, in particular, bone volume or porosity, can be characterized by the spectral function calculated using measurements of complex permittivity or viscoelastic modulus. For validation purposes, we numerically simulated measured data using micro-CT images of cancellous bone. Recovered values of bone porosity are in excellent agreement with true porosity estimated from the micro-CT images. We also discuss another application of this method, which allows to estimate properties difficult to measure directly. The spectral measure method based on the derived Stieltjes representation for viscoelastic composites, has a potential for non-invasive characterization of bone structure using electric or mechanical measurements. The method is applicable to sea ice, porous rock, and other composite materials.

  10. Damage mechanics characterization on fatigue behavior of a solder joint material

    SciTech Connect

    Chow, C.L.; Yang, F.; Fang, H.E.

    1998-08-01

    This paper presents the first part of a comprehensive mechanics approach capable of predicting the integrity and reliability of solder joint material under fatigue loading without viscoplastic damage considerations. A separate report will be made to present a comprehensive damage model describing life prediction of the solder material under thermomechanical fatigue loading. The method is based on a theory of damage mechanics which makes possible a macroscopic description of the successive material deterioration caused by the presence of microcracks/voids in engineering materials. A damage mechanics model based on the thermodynamic theory of irreversible processes with internal state variables is proposed and used to provide a unified approach in characterizing the cyclic behavior of a typical solder material. With the introduction of a damage effect tensor, the constitutive equations are derived to enable the formulation of a fatigue damage dissipative potential function and a fatigue damage criterion. The fatigue evolution is subsequently developed based on the hypothesis that the overall damage is induced by the accumulation of fatigue and plastic damage. This damage mechanics approach offers a systematic and versatile means that is effective in modeling the entire process of material failure ranging from damage initiation and propagation leading eventually to macro-crack initiation and growth. As the model takes into account the load history effect and the interaction between plasticity damage and fatigue damage, with the aid of a modified general purpose finite element program, the method can readily be applied to estimate the fatigue life of solder joints under different loading conditions.

  11. Fifty years of development of opium characterization methods.

    PubMed

    Remberg, B; Nikiforov, A; Buchbauer, G

    1994-01-01

    In view of the recent call by the Sub-Commission on Illicit Drug Traffic and Related Matters in the Near and Middle East, for the "development of mechanisms to identify, with more precision and through laboratory analysis, the sources of opium seized from the illicit traffic" [1], the present paper reviews the rationale and preconditions for any practical and reliable characterization and origin-correlated classification of opium. In that context, the results of the early international efforts under the aegis of the United Nations from 1951 to 1967, as well as the rather sporadic investigations in this direction since 1968, are described. Finally, it is demonstrated that in spite of the application of modern computer-based technology, the main obstacle to comprehensive opium characterization and typology is still the lack of an extensive reference collection of opium samples of known origin.

  12. Histotripsy Methods in Mechanical Disintegration of Tissue: Toward Clinical Applications

    PubMed Central

    Khokhlova, VA; Fowlkes, JB; Roberts, WW; Schade, GR; Xu, Z; Khokhlova, TD; Hall, TL; Maxwell, AD; Wang, YN; Cain, CA

    2015-01-01

    Purpose In high intensity focused ultrasound (HIFU) therapy, an ultrasound beam is focused within the body to locally affect the targeted site without damaging intervening tissues. The most common HIFU regime is thermal ablation. Recently, there has been increasing interest in generating purely mechanical lesions in tissue (histotripsy). This paper provides an overview of several studies on the development of histotripsy methods toward clinical applications. Material and Methods Two histotripsy approaches and examples of their applications are presented. In one approach, sequences of high-amplitude, short (microsecond-long), focused ultrasound pulses periodically produce dense, energetic bubble clouds that mechanically disintegrate tissue. In an alternative approach, longer (millisecond-long) pulses with shock fronts generate boiling bubbles and the interaction of shock fronts with the resulting vapor cavity causes tissue disintegration. Results Recent pre-clinical studies on histotripsy are reviewed for treating benign prostatic hyperplasia (BPH), liver and kidney tumors, kidney stone fragmentation, enhancing antitumor immune response, and tissue decellularization for regenerative medicine applications. Potential clinical advantages of the histotripsy methods are discussed. Conclusions Histotripsy methods can be used to mechanically ablate a wide variety of tissues, whilst selectivity sparing structures such as large vessels. Both ultrasound and MR imaging can be used for targeting and monitoring the treatment in real time. Although the two approaches utilize different mechanisms for tissue disintegration, both have many of the same advantages and offer a promising alternative method of noninvasive surgery. PMID:25707817

  13. Integral structural-functional method for characterizing microbial populations

    NASA Astrophysics Data System (ADS)

    Yakushev, A. V.

    2015-04-01

    An original integral structural-functional method has been proposed for characterizing microbial communities. The novelty of the approach is the in situ study of microorganisms based on the growth kinetics of microbial associations in liquid nutrient broth media under selective conditions rather than on the level of taxa or large functional groups. The method involves the analysis of the integral growth model of a periodic culture. The kinetic parameters of such associations reflect their capacity of growing on different media, i.e., their physiological diversity, and the metabolic capacity of the microorganisms for growth on a nutrient medium. Therefore, the obtained parameters are determined by the features of the microbial ecological strategies. The inoculation of a dense medium from the original inoculate allows characterizing the taxonomic composition of the dominants in the soil community. The inoculation from the associations developed on selective media characterizes the composition of syntrophic groups, which fulfill a specific function in nature. This method is of greater information value than the classical methods of inoculation on selective media.

  14. Mechanical characterization of soft materials using transparent indenter testing system and finite element simulation

    NASA Astrophysics Data System (ADS)

    Xuan, Yue

    Background. Soft materials such as polymers and soft tissues have diverse applications in bioengineering, medical care, and industry. Quantitative mechanical characterization of soft materials at multiscales is required to assure that appropriate mechanical properties are presented to support the normal material function. Indentation test has been widely used to characterize soft material. However, the measurement of in situ contact area is always difficult. Method of Approach. A transparent indenter method was introduced to characterize the nonlinear behaviors of soft materials under large deformation. This approach made the direct measurement of contact area and local deformation possible. A microscope was used to capture the contact area evolution as well as the surface deformation. Based on this transparent indenter method, a novel transparent indentation measurement systems has been built and multiple soft materials including polymers and pericardial tissue have been characterized. Seven different indenters have been used to study the strain distribution on the contact surface, inner layer and vertical layer. Finite element models have been built to simulate the hyperelastic and anisotropic material behaviors. Proper material constants were obtained by fitting the experimental results. Results.Homogeneous and anisotropic silicone rubber and porcine pericardial tissue have been examined. Contact area and local deformation were measured by real time imaging the contact interface. The experimental results were compared with the predictions from the Hertzian equations. The accurate measurement of contact area results in more reliable Young's modulus, which is critical for soft materials. For the fiber reinforced anisotropic silicone rubber, the projected contact area under a hemispherical indenter exhibited elliptical shape. The local surface deformation under indenter was mapped using digital image correlation program. Punch test has been applied to thin films of

  15. Characterization of wafer charging mechanisms and oxide survival prediction methodology

    SciTech Connect

    Lukaszek, W.; Dixon, W.; Vella, M.; Messick, C.; Reno, S.; Shideler, J.

    1994-04-01

    Unipolar, EEPROM-based peak potential sensors and current sensors have been used to characterize the I-V relationship of charging transients which devices normally experience during the course of ion implantation. The results indicate that the charging sources may appear to behave like current-sources or voltage-sources, depending on the impedance of the load. This behavior may be understood in terms of plasma concepts. The ability to empirically characterize the I-V characteristics of charging sources using the CHARM-2 monitor wafers opens the way for prediction of failure rates of oxides subjected to specific processes, if the oxide Q{sub bd} distributions are known.

  16. Peripapillary and posterior scleral mechanics--part II: experimental and inverse finite element characterization.

    PubMed

    Girard, Michaël J A; Downs, J Crawford; Bottlang, Michael; Burgoyne, Claude F; Suh, J-K Francis

    2009-05-01

    The posterior sclera likely plays an important role in the development of glaucoma, and accurate characterization of its mechanical properties is needed to understand its impact on the more delicate optic nerve head--the primary site of damage in the disease. The posterior scleral shells from both eyes of one rhesus monkey were individually mounted on a custom-built pressurization apparatus. Intraocular pressure was incrementally increased from 5 mm Hg to 45 mm Hg, and the 3D displacements were measured using electronic speckle pattern interferometry. Finite element meshes of each posterior scleral shell were reconstructed from data generated by a 3D digitizer arm (shape) and a 20 MHz ultrasound transducer (thickness). An anisotropic hyperelastic constitutive model described in a companion paper (Girard, Downs, Burgoyne, and Suh, 2009, "Peripapillary and Posterior Scleral Mechanics--Part I: Development of an Anisotropic Hyperelastic Constitutive Model," ASME J. Biomech. Eng., 131, p. 051011), which includes stretch-induced stiffening and multidirectional alignment of the collagen fibers, was applied to each reconstructed mesh. Surface node displacements of each model were fitted to the experimental displacements using an inverse finite element method, which estimated a unique set of 13 model parameters. The predictions of the proposed constitutive model matched the 3D experimental displacements well. In both eyes, the tangent modulus increased dramatically with IOP, which indicates that the sclera is mechanically nonlinear. The sclera adjacent to the optic nerve head, known as the peripapillary sclera, was thickest and exhibited the lowest tangent modulus, which might have contributed to the uniform distribution of the structural stiffness for each entire scleral shell. Posterior scleral deformation following acute IOP elevations appears to be nonlinear and governed by the underlying scleral collagen microstructure as predicted by finite element modeling. The

  17. Characterization of Tensile Mechanical Behavior of MSCs/PLCL Hybrid Layered Sheet.

    PubMed

    Pangesty, Azizah Intan; Arahira, Takaaki; Todo, Mitsugu

    2016-01-01

    A layered construct was developed by combining a porous polymer sheet and a cell sheet as a tissue engineered vascular patch. The primary objective of this study is to investigate the influence of mesenchymal stem cells (MSCs) sheet on the tensile mechanical properties of porous poly-(l-lactide-co-ε-caprolactone) (PLCL) sheet. The porous PLCL sheet was fabricated by the solid-liquid phase separation method and the following freeze-drying method. The MSCs sheet, prepared by the temperature-responsive dish, was then layered on the top of the PLCL sheet and cultured for 2 weeks. During the in vitro study, cellular properties such as cell infiltration, spreading and proliferation were evaluated. Tensile test of the layered construct was performed periodically to characterize the tensile mechanical behavior. The tensile properties were then correlated with the cellular properties to understand the effect of MSCs sheet on the variation of the mechanical behavior during the in vitro study. It was found that MSCs from the cell sheet were able to migrate into the PLCL sheet and actively proliferated into the porous structure then formed a new layer of MSCs on the opposite surface of the PLCL sheet. Mechanical evaluation revealed that the PLCL sheet with MSCs showed enhancement of tensile strength and strain energy density at the first week of culture which is characterized as the effect of MSCs proliferation and its infiltration into the porous structure of the PLCL sheet. New technique was presented to develop tissue engineered patch by combining MSCs sheet and porous PLCL sheet, and it is expected that the layered patch may prolong biomechanical stability when implanted in vivo. PMID:27271675

  18. Characterization of Tensile Mechanical Behavior of MSCs/PLCL Hybrid Layered Sheet

    PubMed Central

    Pangesty, Azizah Intan; Arahira, Takaaki; Todo, Mitsugu

    2016-01-01

    A layered construct was developed by combining a porous polymer sheet and a cell sheet as a tissue engineered vascular patch. The primary objective of this study is to investigate the influence of mesenchymal stem cells (MSCs) sheet on the tensile mechanical properties of porous poly-(l-lactide-co-ε-caprolactone) (PLCL) sheet. The porous PLCL sheet was fabricated by the solid-liquid phase separation method and the following freeze-drying method. The MSCs sheet, prepared by the temperature-responsive dish, was then layered on the top of the PLCL sheet and cultured for 2 weeks. During the in vitro study, cellular properties such as cell infiltration, spreading and proliferation were evaluated. Tensile test of the layered construct was performed periodically to characterize the tensile mechanical behavior. The tensile properties were then correlated with the cellular properties to understand the effect of MSCs sheet on the variation of the mechanical behavior during the in vitro study. It was found that MSCs from the cell sheet were able to migrate into the PLCL sheet and actively proliferated into the porous structure then formed a new layer of MSCs on the opposite surface of the PLCL sheet. Mechanical evaluation revealed that the PLCL sheet with MSCs showed enhancement of tensile strength and strain energy density at the first week of culture which is characterized as the effect of MSCs proliferation and its infiltration into the porous structure of the PLCL sheet. New technique was presented to develop tissue engineered patch by combining MSCs sheet and porous PLCL sheet, and it is expected that the layered patch may prolong biomechanical stability when implanted in vivo. PMID:27271675

  19. The contour method: a new approach in experimental mechanics

    SciTech Connect

    Prime, Michael B

    2009-01-01

    The recently developed contour method can measure complex residual-stress maps in situations where other measurement methods cannot. This talk first describes the principle of the contour method. A part is cut in two using a precise and low-stress cutting technique such as electric discharge machining. The contour of the resulting new surface, which will not be flat if residual stresses are relaxed by the cutting, is then measured. Finally, a conceptually simple finite element analysis determines the original residual stresses from the measured contour. Next, this talk gives several examples of applications. The method is validated by comparing with neutron diffraction measurements in an indented steel disk and in a friction stir weld between dissimilar aluminum alloys. Several applications are shown that demonstrate the power of the contour method: large aluminum forgings, railroad rails, and welds. Finally, this talk discusses why the contour method is significant departure from conventional experimental mechanics. Other relaxation method, for example hole-drilling, can only measure a 1-D profile of residual stresses, and yet they require a complicated inverse calculation to determine the stresses from the strain data. The contour method gives a 2-D stress map over a full cross-section, yet a direct calculation is all that is needed to reduce the data. The reason for these advantages lies in a subtle but fundamental departure from conventional experimental mechanics. Applying new technology to old methods like will not give similar advances, but the new approach also introduces new errors.

  20. Analytical methods for physicochemical characterization of antibody drug conjugates

    PubMed Central

    Wakankar, Aditya; Chen, Yan; Gokarn, Yatin

    2011-01-01

    Antibody-drug conjugates (ADCs), produced through the chemical linkage of a potent small molecule cytotoxin (drug) to a monoclonal antibody, have more complex and heterogeneous structures than the corresponding antibodies. This review describes the analytical methods that have been used in their physicochemical characterization. The selection of the most appropriate methods for a specific ADC is heavily dependent on the properties of the linker, the drug and the choice of attachment sites (lysines, inter-chain cysteines, Fc glycans). Improvements in analytical techniques such as protein mass spectrometry and capillary electrophoresis have significantly increased the quality of information that can be obtained for use in product and process characterization and for routine lot release and stability testing. PMID:21441786

  1. Design and Characterization of a Novel Knee Articulation Mechanism

    NASA Astrophysics Data System (ADS)

    Olinski, M.; Gronowicz, A.; Handke, A.; Ceccarelli, M.

    2016-08-01

    The paper is focused on designing a novel controllable and adjustable mechanism for reproducing human knee joint's complex motion by taking into account the flexion/extension movement in the sagittal plane, in combination with roll and slide. Main requirements for a knee rehabilitation supporting device are specified by researching the knee's anatomy and already existing mechanisms. A three degree of freedom (3 DOF) system (four-bar like linkage with controlled variable lengths of rockers) is synthesised to perform the reference path of instantaneous centre of rotation (ICR). Finally, a preliminary design of the adaptive mechanism is elaborated and a numerical model is built in Adams. Numerical results are derived from simulations that are presented to evaluate the accuracy of the reproduced movement and the mechanism's capabilities.

  2. Feed mechanism and method for feeding minute items

    DOEpatents

    Stringer, Timothy Kent; Yerganian, Simon Scott

    2009-10-20

    A feeding mechanism and method for feeding minute items, such as capacitors, resistors, or solder preforms. The mechanism is adapted to receive a plurality of the randomly-positioned and randomly-oriented extremely small or minute items, and to isolate, orient, and position one or more of the items in a specific repeatable pickup location wherefrom they may be removed for use by, for example, a computer-controlled automated assembly machine. The mechanism comprises a sliding shelf adapted to receive and support the items; a wiper arm adapted to achieve a single even layer of the items; and a pushing arm adapted to push the items into the pickup location. The mechanism can be adapted for providing the items with a more exact orientation, and can also be adapted for use in a liquid environment.

  3. Feed mechanism and method for feeding minute items

    DOEpatents

    Stringer, Timothy Kent; Yerganian, Simon Scott

    2012-11-06

    A feeding mechanism and method for feeding minute items, such as capacitors, resistors, or solder preforms. The mechanism is adapted to receive a plurality of the randomly-positioned and randomly-oriented extremely small or minute items, and to isolate, orient, and position the items in a specific repeatable pickup location wherefrom they may be removed for use by, for example, a computer-controlled automated assembly machine. The mechanism comprises a sliding shelf adapted to receive and support the items; a wiper arm adapted to achieve a single even layer of the items; and a pushing arm adapted to push the items into the pickup location. The mechanism can be adapted for providing the items with a more exact orientation, and can also be adapted for use in a liquid environment.

  4. Method for loading shape memory polymer gripper mechanisms

    DOEpatents

    Lee, Abraham P.; Benett, William J.; Schumann, Daniel L.; Krulevitch, Peter A.; Fitch, Joseph P.

    2002-01-01

    A method and apparatus for loading deposit material, such as an embolic coil, into a shape memory polymer (SMP) gripping/release mechanism. The apparatus enables the application of uniform pressure to secure a grip by the SMP mechanism on the deposit material via differential pressure between, for example, vacuum within the SMP mechanism and hydrostatic water pressure on the exterior of the SMP mechanism. The SMP tubing material of the mechanism is heated to above the glass transformation temperature (Tg) while reshaping, and subsequently cooled to below Tg to freeze the shape. The heating and/or cooling may, for example, be provided by the same water applied for pressurization or the heating can be applied by optical fibers packaged to the SMP mechanism for directing a laser beam, for example, thereunto. At a point of use, the deposit material is released from the SMP mechanism by reheating the SMP material to above the temperature Tg whereby it returns to its initial shape. The reheating of the SMP material may be carried out by injecting heated fluid (water) through an associated catheter or by optical fibers and an associated beam of laser light, for example.

  5. Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering

    NASA Astrophysics Data System (ADS)

    Johnston, I. D.; McCluskey, D. K.; Tan, C. K. L.; Tracey, M. C.

    2014-03-01

    Polydimethylsiloxane (PDMS) elastomers are extensively used for soft lithographic replication of microstructures in microfluidic and micro-engineering applications. Elastomeric microstructures are commonly required to fulfil an explicit mechanical role and accordingly their mechanical properties can critically affect device performance. The mechanical properties of elastomers are known to vary with both curing and operational temperatures. However, even for the elastomer most commonly employed in microfluidic applications, Sylgard 184, only a very limited range of data exists regarding the variation in mechanical properties of bulk PDMS with curing temperature. We report an investigation of the variation in the mechanical properties of bulk Sylgard 184 with curing temperature, over the range 25 °C to 200 °C. PDMS samples for tensile and compressive testing were fabricated according to ASTM standards. Data obtained indicates variation in mechanical properties due to curing temperature for Young's modulus of 1.32-2.97 MPa, ultimate tensile strength of 3.51-7.65 MPa, compressive modulus of 117.8-186.9 MPa and ultimate compressive strength of 28.4-51.7 GPa in a range up to 40% strain and hardness of 44-54 ShA.

  6. A multiscale quantum mechanics/electromagnetics method for device simulations.

    PubMed

    Yam, ChiYung; Meng, Lingyi; Zhang, Yu; Chen, GuanHua

    2015-04-01

    Multiscale modeling has become a popular tool for research applying to different areas including materials science, microelectronics, biology, chemistry, etc. In this tutorial review, we describe a newly developed multiscale computational method, incorporating quantum mechanics into electronic device modeling with the electromagnetic environment included through classical electrodynamics. In the quantum mechanics/electromagnetics (QM/EM) method, the regions of the system where active electron scattering processes take place are treated quantum mechanically, while the surroundings are described by Maxwell's equations and a semiclassical drift-diffusion model. The QM model and the EM model are solved, respectively, in different regions of the system in a self-consistent manner. Potential distributions and current densities at the interface between QM and EM regions are employed as the boundary conditions for the quantum mechanical and electromagnetic simulations, respectively. The method is illustrated in the simulation of several realistic systems. In the case of junctionless field-effect transistors, transfer characteristics are obtained and a good agreement between experiments and simulations is achieved. Optical properties of a tandem photovoltaic cell are studied and the simulations demonstrate that multiple QM regions are coupled through the classical EM model. Finally, the study of a carbon nanotube-based molecular device shows the accuracy and efficiency of the QM/EM method.

  7. Histotripsy methods in mechanical disintegration of tissue: towards clinical applications.

    PubMed

    Khokhlova, Vera A; Fowlkes, J Brian; Roberts, William W; Schade, George R; Xu, Zhen; Khokhlova, Tatiana D; Hall, Timothy L; Maxwell, Adam D; Wang, Yak-Nam; Cain, Charles A

    2015-03-01

    In high intensity focused ultrasound (HIFU) therapy, an ultrasound beam is focused within the body to locally affect the targeted site without damaging intervening tissues. The most common HIFU regime is thermal ablation. Recently there has been increasing interest in generating purely mechanical lesions in tissue (histotripsy). This paper provides an overview of several studies on the development of histotripsy methods toward clinical applications. Two histotripsy approaches and examples of their applications are presented. In one approach, sequences of high-amplitude, short (microsecond-long), focused ultrasound pulses periodically produce dense, energetic bubble clouds that mechanically disintegrate tissue. In an alternative approach, longer (millisecond-long) pulses with shock fronts generate boiling bubbles and the interaction of shock fronts with the resulting vapour cavity causes tissue disintegration. Recent preclinical studies on histotripsy are reviewed for treating benign prostatic hyperplasia (BPH), liver and kidney tumours, kidney stone fragmentation, enhancing anti-tumour immune response, and tissue decellularisation for regenerative medicine applications. Potential clinical advantages of the histotripsy methods are discussed. Histotripsy methods can be used to mechanically ablate a wide variety of tissues, whilst selectivity sparing structures such as large vessels. Both ultrasound and MR imaging can be used for targeting and monitoring the treatment in real time. Although the two approaches utilise different mechanisms for tissue disintegration, both have many of the same advantages and offer a promising alternative method of non-invasive surgery.

  8. Characterization and development mechanism of Apios americana tuber starch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apios americana is a wild legume-bearing plant with edible tubers. Domestication of Apios is in progress because of the superior nutritional value and health benefits of the tuber. Objectives of this study were to: 1) characterize physicochemical properties of Apios-tuber starch; and 2) understand d...

  9. Environmentally-controlled microtensile testing of mechanically-adaptive polymer nanocomposites for ex vivo characterization.

    PubMed

    Hess, Allison E; Potter, Kelsey A; Tyler, Dustin J; Zorman, Christian A; Capadona, Jeffrey R

    2013-08-20

    Implantable microdevices are gaining significant attention for several biomedical applications. Such devices have been made from a range of materials, each offering its own advantages and shortcomings. Most prominently, due to the microscale device dimensions, a high modulus is required to facilitate implantation into living tissue. Conversely, the stiffness of the device should match the surrounding tissue to minimize induced local strain. Therefore, we recently developed a new class of bio-inspired materials to meet these requirements by responding to environmental stimuli with a change in mechanical properties. Specifically, our poly(vinyl acetate)-based nanocomposite (PVAc-NC) displays a reduction in stiffness when exposed to water and elevated temperatures (e.g. body temperature). Unfortunately, few methods exist to quantify the stiffness of materials in vivo, and mechanical testing outside of the physiological environment often requires large samples inappropriate for implantation. Further, stimuli-responsive materials may quickly recover their initial stiffness after explantation. Therefore, we have developed a method by which the mechanical properties of implanted microsamples can be measured ex vivo, with simulated physiological conditions maintained using moisture and temperature control. To this end, a custom microtensile tester was designed to accommodate microscale samples with widely-varying Young's moduli (range of 10 MPa to 5 GPa). As our interests are in the application of PVAc-NC as a biologically-adaptable neural probe substrate, a tool capable of mechanical characterization of samples at the microscale was necessary. This tool was adapted to provide humidity and temperature control, which minimized sample drying and cooling. As a result, the mechanical characteristics of the explanted sample closely reflect those of the sample just prior to explantation. The overall goal of this method is to quantitatively assess the in vivo mechanical

  10. Analytical Methods for Biomass Characterization during Pretreatment and Bioconversion

    SciTech Connect

    Pu, Yunqiao; Meng, Xianzhi; Yoo, Chang Geun; Li, Mi; Ragauskas, Arthur J

    2016-01-01

    Lignocellulosic biomass has been introduced as a promising resource for alternative fuels and chemicals because of its abundance and complement for petroleum resources. Biomass is a complex biopolymer and its compositional and structural characteristics largely vary depending on its species as well as growth environments. Because of complexity and variety of biomass, understanding its physicochemical characteristics is a key for effective biomass utilization. Characterization of biomass does not only provide critical information of biomass during pretreatment and bioconversion, but also give valuable insights on how to utilize the biomass. For better understanding biomass characteristics, good grasp and proper selection of analytical methods are necessary. This chapter introduces existing analytical approaches that are widely employed for biomass characterization during biomass pretreatment and conversion process. Diverse analytical methods using Fourier transform infrared (FTIR) spectroscopy, gel permeation chromatography (GPC), and nuclear magnetic resonance (NMR) spectroscopy for biomass characterization are reviewed. In addition, biomass accessibility methods by analyzing surface properties of biomass are also summarized in this chapter.

  11. Spectroscopic characterization of nanohydroxyapatite synthesized by molten salt method.

    PubMed

    Gopi, D; Indira, J; Kavitha, L; Kannan, S; Ferreira, J M F

    2010-10-01

    Hydroxyapatite (HAP) nanopowders were synthesized by molten salt method at 260 degrees C. The as-prepared powders were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM) and thermo gravimetric analysis (TGA). With the aid of the obtained results the effect of calcining time on the crystallinity, size and morphology of HAP nanopowders is presented. The HAP nanopowders synthesized by molten salt method consist of pure phase of HAP without any impurities and showed the rod-like morphology without detectable decomposition up to 1100 degrees C.

  12. Cotton functionalized with peptides: characterization and synthetic methods.

    PubMed

    Orlandin, Andrea; Formaggio, Fernando; Toffoletti, Antonio; Peggion, Cristina

    2014-07-01

    Three approaches for the chemical ligation of peptides to cotton fibers are described and compared. This investigation was encouraged by the need to create peptide-decorated natural textiles, furnished with useful properties (e.g. antimicrobial activity). IR absorption spectroscopy is proved to be an easy and fast method to check the covalent anchorage of a peptide to cotton, whereas for a quantitative determination, a UV absorption method was employed. We also analyzed the usefulness of electron paramagnetic resonance spectroscopy to characterize our peptide-cotton conjugates.

  13. Perspective: Quantum mechanical methods in biochemistry and biophysics

    NASA Astrophysics Data System (ADS)

    Cui, Qiang

    2016-10-01

    In this perspective article, I discuss several research topics relevant to quantum mechanical (QM) methods in biophysical and biochemical applications. Due to the immense complexity of biological problems, the key is to develop methods that are able to strike the proper balance of computational efficiency and accuracy for the problem of interest. Therefore, in addition to the development of novel ab initio and density functional theory based QM methods for the study of reactive events that involve complex motifs such as transition metal clusters in metalloenzymes, it is equally important to develop inexpensive QM methods and advanced classical or quantal force fields to describe different physicochemical properties of biomolecules and their behaviors in complex environments. Maintaining a solid connection of these more approximate methods with rigorous QM methods is essential to their transferability and robustness. Comparison to diverse experimental observables helps validate computational models and mechanistic hypotheses as well as driving further development of computational methodologies.

  14. Perspective: Quantum mechanical methods in biochemistry and biophysics

    PubMed Central

    Cui, Qiang

    2016-01-01

    In this perspective article, I discuss several research topics relevant to quantum mechanical (QM) methods in biophysical and biochemical applications. Due to the immense complexity of biological problems, the key is to develop methods that are able to strike the proper balance of computational efficiency and accuracy for the problem of interest. Therefore, in addition to the development of novel ab initio and density functional theory based QM methods for the study of reactive events that involve complex motifs such as transition metal clusters in metalloenzymes, it is equally important to develop inexpensive QM methods and advanced classical or quantal force fields to describe different physicochemical properties of biomolecules and their behaviors in complex environments. Maintaining a solid connection of these more approximate methods with rigorous QM methods is essential to their transferability and robustness. Comparison to diverse experimental observables helps validate computational models and mechanistic hypotheses as well as driving further development of computational methodologies. PMID:27782516

  15. Characterization of High Temperature Mechanical Properties Using Laser Ultrasound

    SciTech Connect

    David Hurley; Stephen Reese; Farhad Farzbod; Rory Kennedy

    2012-05-01

    Mechanical properties are controlled to a large degree by defect structures such as dislocations and grain boundaries. These microstructural features involve a perturbation of the perfect crystal lattice (i.e. strain fields). Viewed in this context, high frequency strain waves (i.e. ultrasound) provide a natural choice to study microstructure mediated mechanical properties. In this presentation we use laser ultrasound to probe mechanical properties of materials. This approach utilizes lasers to excite and detect ultrasonic waves, and as a consequence has unique advantages over other methods—it is noncontacting, requires no couplant or invasive sample preparation (other than that used in metallurgical analysis), and has the demonstrated capability to probe microstructure on a micron scale. Laser techniques are highly reproducible enabling sophisticated, microstructurally informed data analysis. Since light is being used for generation and detection of the ultrasonic wave, the specimen being examined is not mechanically coupled to the transducer. As a result, laser ultrasound can be carried out remotely, an especially attractive characteristic for in situ measurements in severe environments. Several examples involving laser ultrasound to measure mechanical properties in high temperature environments will be presented. Emphasis will be place on understanding the role of grain microstructure.

  16. Measurements and Characterizations of Mechanical Properties of Human Skins

    NASA Astrophysics Data System (ADS)

    Song, Han Wook; Park, Yon Kyu

    A skin is an indispensible organ for humans because it contributes to metabolism using its own biochemical functions and protects the human body from external stimuli. Recently, mechanical properties such as a thickness, a friction and an elastic coefficient have been used as a decision index in the skin physiology and in the skin care market due to the increased awareness of wellbeing issues. In addition, the use of mechanical properties is known to have good discrimination ability in the classification of human constitutions, which are used in the field of an alternative medicine. In this study, a system that measures mechanical properties such as a friction and an elastic coefficient is designed. The equipment consists of a load cell type (manufactured by the authors) for the measurements of a friction coefficient, a decompression tube for the measurement of an elastic coefficient. Using the proposed system, the mechanical properties of human skins from different constitutions were compared, and the relative repeatability error for measurements of mechanical properties was determined to be less than 2%. Combining the inspection results of medical doctors in the field of an alternative medicine, we could conclude that the proposed system might be applicable to a quantitative constitutional diagnosis between human constitutions within an acceptable level of uncertainty.

  17. Control of chaos: methods and applications in mechanics.

    PubMed

    Fradkov, Alexander L; Evans, Robin J; Andrievsky, Boris R

    2006-09-15

    A survey of the field related to control of chaotic systems is presented. Several major branches of research that are discussed are feed-forward ('non-feedback') control (based on periodic excitation of the system), the 'Ott-Grebogi-Yorke method' (based on the linearization of the Poincaré map), the 'Pyragas method' (based on a time-delayed feedback), traditional for control-engineering methods including linear, nonlinear and adaptive control. Other areas of research such as control of distributed (spatio-temporal and delayed) systems, chaotic mixing are outlined. Applications to control of chaotic mechanical systems are discussed.

  18. Photothermal method using a pyroelectric sensor for thermophysical characterization of agricultural and biological samples

    NASA Astrophysics Data System (ADS)

    Frandas, A.; Dadarlat, Dorin; Chirtoc, Mihai; Jalink, Henk; Bicanic, Dane D.; Paris, D.; Antoniow, Jean S.; Egee, Michel; Ungureanu, Costica

    1998-07-01

    The photopyroelectric method in different experimental configurations was used for thermophysical characterization of agricultural and biological samples. The study appears important due to the relation of thermal parameters to the quality of foodstuffs (connected to their preservation, storage and adulteration), migration profiles in biodegradable packages, and the mechanism of desiccation tolerance of seeds. Results are presented on the thermal parameters measurement and their dependence on temperature and water content for samples such as: honey, starch, seeds.

  19. Geostatistical methods for hazard assessment and site characterization in mining

    SciTech Connect

    Riefenberg, J.

    1996-12-01

    Ground control hazards, coal quality, ore reserve estimation, and pollution modeling seem unrelated topics from most mining perspectives. However, geostatistical methods can be used to characterize each of these, and more topics. Exploratory drill core data, and continued drilling and field measurements, can provide a wealth of information related to each of the above areas and are often severely underutilized. Recent studies have led to the development of the Multiple Parameter Mapping (MPM) technology, which utilizes geostatistics and other numerical modeling methods, to generate a {open_quotes}hazard index{close_quotes} map, often from exploratory drill core data. This mapping has been presented for ground control hazards relating roof quality, floor quality, numerically modelled stresses due to mining geometry, and geologic features. A review of the MPM method, future directions with the MPM, and a discussion of using these and other geostatistical methods to quantify coal quality, ore reserve estimation, and pollutant modeling are presented in this paper.

  20. Evaluation of field methods for vertical high resolution aquifer characterization

    NASA Astrophysics Data System (ADS)

    Vienken, T.; Tinter, M.; Rogiers, B.; Leven, C.; Dietrich, P.

    2012-12-01

    The delineation and characterization of subsurface (hydro)-stratigraphic structures is one of the challenging tasks of hydrogeological site investigations. The knowledge about the spatial distribution of soil specific properties and hydraulic conductivity (K) is the prerequisite for understanding flow and fluid transport processes. This is especially true for heterogeneous unconsolidated sedimentary deposits with a complex sedimentary architecture. One commonly used approach to investigate and characterize sediment heterogeneity is soil sampling and lab analyses, e.g. grain size distribution. Tests conducted on 108 samples show that calculation of K based on grain size distribution is not suitable for high resolution aquifer characterization of highly heterogeneous sediments due to sampling effects and large differences of calculated K values between applied formulas (Vienken & Dietrich 2011). Therefore, extensive tests were conducted at two test sites under different geological conditions to evaluate the performance of innovative Direct Push (DP) based approaches for the vertical high resolution determination of K. Different DP based sensor probes for the in-situ subsurface characterization based on electrical, hydraulic, and textural soil properties were used to obtain high resolution vertical profiles. The applied DP based tools proved to be a suitable and efficient alternative to traditional approaches. Despite resolution differences, all of the applied methods captured the main aquifer structure. Correlation of the DP based K estimates and proxies with DP based slug tests show that it is possible to describe the aquifer hydraulic structure on less than a meter scale by combining DP slug test data and continuous DP measurements. Even though correlations are site specific and appropriate DP tools must be chosen, DP is reliable and efficient alternative for characterizing even strongly heterogeneous sites with complex structured sedimentary aquifers (Vienken et

  1. Methods to study the mechanism of the Neurospora Circadian Clock

    PubMed Central

    Cha, Joonseok; Zhou, Mian; Liu, Yi

    2015-01-01

    Eukaryotic circadian clocks are comprised of interlocked auto-regulatory feedback loops that control gene expression at the levels of transcription and translation. The filamentous fungus Neurospora crassa is an excellent model for the complex molecular network of regulatory mechanisms that are common to all eukaryotes. In the heart of the network, post-translational regulations and functions of the core clock elements are of major interest. This chapter will discuss the methods that were recently used to study the Neurospora circadian oscillator mechanisms at the molecular level. PMID:25662455

  2. Characterization of molecular mechanisms of in vivo UVR induced cataract.

    PubMed

    Galichanin, Konstantin; Talebizadeh, Nooshin; Söderberg, Per

    2012-01-01

    Cataract is the leading cause of blindness in the world (1). The World Health Organization defines cataract as a clouding of the lens of the eye which impedes the transfer of light. Cataract is a multi-factorial disease associated with diabetes, smoking, ultraviolet radiation (UVR), alcohol, ionizing radiation, steroids and hypertension. There is strong experimental (2-4) and epidemiological evidence (5,6) that UVR causes cataract. We developed an animal model for UVR B induced cataract in both anesthetized (7) and non-anesthetized animals (8). The only cure for cataract is surgery but this treatment is not accessible to all. It has been estimated that a delay of onset of cataract for 10 years could reduce the need for cataract surgery by 50% (9). To delay the incidence of cataract, it is needed to understand the mechanisms of cataract formation and find effective prevention strategies. Among the mechanisms for cataract development, apoptosis plays a crucial role in initiation of cataract in humans and animals (10). Our focus has recently been apoptosis in the lens as the mechanism for cataract development (8,11,12). It is anticipated that a better understanding of the effect of UVR on the apoptosis pathway will provide possibilities for discovery of new pharmaceuticals to prevent cataract. In this article, we describe how cataract can be experimentally induced by in vivo exposure to UVR-B. Further RT-PCR and immunohistochemistry are presented as tools to study molecular mechanisms of UVR-B induced cataract. PMID:23222480

  3. Focal Mechanism Characterization of Microseismicity Near the Alpine Fault, Southern Alps, New Zealand

    NASA Astrophysics Data System (ADS)

    Rawles, C.; Thurber, C. H.; Roecker, S. W.; Feenstra, J. P.; Townend, J.; Bannister, S. C.

    2013-12-01

    Focal mechanisms are determined for earthquakes in the vicinity of the Alpine Fault in the South Island of New Zealand using the P-wave first motion method of Hardebeck and Shearer [2002] and the probabilistic (Bayesian) algorithm of Walsh et al. [2009]. Our results are obtained using data collected from about 40 temporary and permanent stations deployed in a region spanning over a 100 km along-strike portion of the Alpine Fault, roughly centered on the Deep Faulting Drilling Project DFDP-2 drill site near Whataroa. Focal mechanisms and the distribution of seismic activity enable us to address key hypotheses pertaining to the geometry and kinematics of the central Alpine Fault including: 1) the Alpine Fault dip remains close to 50° to the base of the seismogenic zone; 2) the complex surface fault trace, with alternating strike-slip and thrust segments, does not reflect a simpler oblique fault geometry at depth; and 3) the depth to the base of the seismogenic zone is shallower (<15 km) in the Whataroa region than to the northeast. Our focal mechanism results will also provide valuable inputs to stress inversion calculations to be used in determining the principal stress orientations adjacent to the Alpine Fault, which has important ramifications regarding the strength of the Alpine Fault. Such information has obvious implications for understanding the current mechanical state of the Alpine Fault and thereby further characterizing the hazard posed by future large earthquakes.

  4. Preparation, characterization, and enhanced thermal and mechanical properties of epoxy-titania composites.

    PubMed

    Rubab, Zakya; Afzal, Adeel; Siddiqi, Humaira M; Saeed, Shaukat

    2014-01-01

    This paper presents the synthesis and thermal and mechanical properties of epoxy-titania composites. First, submicron titania particles are prepared via surfactant-free sol-gel method using TiCl₄ as precursor. These particles are subsequently used as inorganic fillers (or reinforcement) for thermally cured epoxy polymers. Epoxy-titania composites are prepared via mechanical mixing of titania particles with liquid epoxy resin and subsequently curing the mixture with an aliphatic diamine. The amount of titania particles integrated into epoxy matrix is varied between 2.5 and 10.0 wt.% to investigate the effect of sub-micron titania particles on thermal and mechanical properties of epoxy-titania composites. These composites are characterized by X-ray photoelectron (XPS) spectroscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric (TG), and mechanical analyses. It is found that sub-micron titania particles significantly enhance the glass transition temperature (>6.7%), thermal oxidative stability (>12.0%), tensile strength (>21.8%), and Young's modulus (>16.8%) of epoxy polymers. Epoxy-titania composites with 5.0 wt.% sub-micron titania particles perform best at elevated temperatures as well as under high stress.

  5. Magnetic microposts for mechanical stimulation of biological cells: Fabrication, characterization, and analysis

    NASA Astrophysics Data System (ADS)

    Sniadecki, Nathan J.; Lamb, Corinne M.; Liu, Yaohua; Chen, Christopher S.; Reich, Daniel H.

    2008-04-01

    Cells use force as a mechanical signal to sense and respond to their microenvironment. Understanding how mechanical forces affect living cells requires the development of tool sets that can apply nanoscale forces and also measure cellular traction forces. However, there has been a lack of techniques that integrate actuation and sensing components to study force as a mechanical signal. Here, we describe a system that uses an array of elastomeric microposts to apply external forces to cells through cobalt nanowires embedded inside the microposts. We first biochemically treat the posts' surfaces to restrict cell adhesion to the posts' tips. Then by applying a uniform magnetic field (B<0.3T), we induce magnetic torque on the nanowires that is transmitted to a cell's adhesion site as an external force. We have achieved external forces of up to 45nN, which is in the upper range of current nanoscale force-probing techniques. Nonmagnetic microposts, similarly prepared but without nanowires, surround the magnetic microposts and are used to measure the traction forces and changes in cell mechanics. We record the magnitude and direction of the external force and the traction forces by optically measuring the deflection of the microposts, which linearly deflect as cantilever springs. With this approach, we can measure traction forces before and after force stimulation in order to monitor cellular response to forces. We present the fabrication methods, magnetic force characterization, and image analysis techniques used to achieve the measurements.

  6. Finite element simulation for the mechanical characterization of soft biological materials by atomic force microscopy.

    PubMed

    Valero, C; Navarro, B; Navajas, D; García-Aznar, J M

    2016-09-01

    The characterization of the mechanical properties of soft materials has been traditionally performed through uniaxial tensile tests. Nevertheless, this method cannot be applied to certain extremely soft materials, such as biological tissues or cells that cannot be properly subjected to these tests. Alternative non-destructive tests have been designed in recent years to determine the mechanical properties of soft biological tissues. One of these techniques is based on the use of atomic force microscopy (AFM) to perform nanoindentation tests. In this work, we investigated the mechanical response of soft biological materials to nanoindentation with spherical indenters using finite element simulations. We studied the responses of three different material constitutive laws (elastic, isotropic hyperelastic and anisotropic hyperelastic) under the same process and analyzed the differences thereof. Whereas linear elastic and isotropic hyperelastic materials can be studied using an axisymmetric simplification, anisotropic hyperelastic materials require three-dimensional analyses. Moreover, we established the limiting sample size required to determine the mechanical properties of soft materials while avoiding boundary effects. Finally, we compared the results obtained by simulation with an estimate obtained from Hertz theory. Hertz theory does not distinguish between the different material constitutive laws, and thus, we proposed corrections to improve the quantitative measurement of specific material properties by nanoindentation experiments. PMID:27214690

  7. Finite element simulation for the mechanical characterization of soft biological materials by atomic force microscopy.

    PubMed

    Valero, C; Navarro, B; Navajas, D; García-Aznar, J M

    2016-09-01

    The characterization of the mechanical properties of soft materials has been traditionally performed through uniaxial tensile tests. Nevertheless, this method cannot be applied to certain extremely soft materials, such as biological tissues or cells that cannot be properly subjected to these tests. Alternative non-destructive tests have been designed in recent years to determine the mechanical properties of soft biological tissues. One of these techniques is based on the use of atomic force microscopy (AFM) to perform nanoindentation tests. In this work, we investigated the mechanical response of soft biological materials to nanoindentation with spherical indenters using finite element simulations. We studied the responses of three different material constitutive laws (elastic, isotropic hyperelastic and anisotropic hyperelastic) under the same process and analyzed the differences thereof. Whereas linear elastic and isotropic hyperelastic materials can be studied using an axisymmetric simplification, anisotropic hyperelastic materials require three-dimensional analyses. Moreover, we established the limiting sample size required to determine the mechanical properties of soft materials while avoiding boundary effects. Finally, we compared the results obtained by simulation with an estimate obtained from Hertz theory. Hertz theory does not distinguish between the different material constitutive laws, and thus, we proposed corrections to improve the quantitative measurement of specific material properties by nanoindentation experiments.

  8. The contact density to characterize the mechanics of cohesive granular materials: application to snow microstructure modeling.

    NASA Astrophysics Data System (ADS)

    Gaume, Johan; Löwe, Henning

    2016-04-01

    Microstructural properties are essential to characterize the mechanics of loose and cohesive granular materials such as snow. In particular, mechanical properties and physical processes of porous media are often related to the volume fraction ν. Low-density microstructures typically allow for considerable structural diversity at a given volume fraction, leading to uncertainties in modeling approaches using ν-based parametrizations only. We have conducted discrete element simulations of cohesive granular materials with initial configurations which are drawn from Baxter's sticky hard sphere (SHS) model. This method allows to control independently the initial volume fraction ν and the average coordination number Z. We show that variations in elasticity and strength of the samples can be fully explained by the initial contact density C = νZ over a wide range of volume fractions and coordination numbers. Hence, accounting for the contact density C allows to resolve the discrepancies in particle based modeling between samples with similar volume fractions but different microstructures. As an application, we applied our method to the microstructure of real snow samples which have been imaged by micro-computed tomography and reconstructed using the SHS model. Our new approach opens a promising route to evaluate snow physical and mechanical properties from field measurements, for instance using the Snow Micro Penetrometer (SMP), by linking the penetration resistance to the contact density.

  9. Mechanical properties and material characterization of polysialate structural composites

    NASA Astrophysics Data System (ADS)

    Foden, Andrew James

    One of the major concerns in using Fiber Reinforced Composites in applications that are subjected to fire is their resistance to high temperature. Some of the fabrics used in FRC, such as carbon, are fire resistant. However, almost all the resins used cannot withstand temperatures higher than 200°C. This dissertation deals with the development and use of a potassium aluminosilicate (GEOPOLYMER) resin that is inorganic and can sustain more than 1000°C. The results presented include the mechanical properties of the unreinforced polysialate matrix in tension, flexure, and compression as well as the strain capacities and surface energy. The mechanical properties of the matrix reinforced with several different fabrics were obtained in flexure, tension, compression and shear. The strength and stiffness of the composite was evaluated for each loading condition. Tests were conducted on unexposed samples as well as samples exposed to temperatures from 200 to 1000°C. Fatigue properties were determined using flexural loading. A study of the effect of several processing variables on the properties of the composite was undertaken to determine the optimum procedure for manufacturing composite plates. The processing variables studied were the curing temperature and pressure, and the post cure drying time required to remove any residual water. The optimum manufacturing conditions were determined using the void content, density, fiber volume fraction, and flexural strength. Analytical models are presented based on both micro and macro mechanical analysis of the composite. Classic laminate theory is used to evaluate the state of the composite as it is being loaded to determine the failure mechanisms. Several failure criteria theories are considered. The analysis is then used to explain the mechanical behavior of the composite that was observed during the experimental study.

  10. Direct simulation Monte Carlo method with a focal mechanism algorithm

    NASA Astrophysics Data System (ADS)

    Rachman, Asep Nur; Chung, Tae Woong; Yoshimoto, Kazuo; Yun, Sukyoung

    2015-01-01

    To simulate the observation of the radiation pattern of an earthquake, the direct simulation Monte Carlo (DSMC) method is modified by implanting a focal mechanism algorithm. We compare the results of the modified DSMC method (DSMC-2) with those of the original DSMC method (DSMC-1). DSMC-2 shows more or similarly reliable results compared to those of DSMC-1, for events with 12 or more recorded stations, by weighting twice for hypocentral distance of less than 80 km. Not only the number of stations, but also other factors such as rough topography, magnitude of event, and the analysis method influence the reliability of DSMC-2. The most reliable result by DSMC-2 is obtained by the best azimuthal coverage by the largest number of stations. The DSMC-2 method requires shorter time steps and a larger number of particles than those of DSMC-1 to capture a sufficient number of arrived particles in the small-sized receiver.

  11. Microfluidic-assisted atomic force microscopy for the mechanical characterization of soft biological materials

    NASA Astrophysics Data System (ADS)

    Mosier, Aaron P.

    Viable methods for bacterial biofilm remediation require a fundamental understanding of biofilm mechanical properties and their dependence on dynamic environmental conditions. Mechanical test data, quantifying elasticity or adhesion, may be used to perform physical modeling of biofilm behavior, thus enabling the development of novel remediation strategies. To achieve real-time, dynamic measurements of these properties, a novel analysis platform consisting of a microfluidic flowcell device has been designed and fabricated for in situ analysis using atomic force microscopy (AFM) and confocal laser scanning microscopy (CLSM). The flowcell consists of microfluidic channels for biofilm establishment that are then converted into an open architecture, laminar flow channel for AFM measurement in a liquid environment. Computational fluid dynamics (CFD) was used to profile fluid conditions within the device during biofilm establishment. The validity of the AFM nanoindentation measurement mechanism was confirmed in the context of the system through the elastic characterization of several non-living reference materials. Force-mode AFM was used to measure the elastic properties of mature Pseudomonas aeruginosa PAO1 biofilms and observe a dynamic response to a chemical antagonist. Elastic moduli ranging from 0.58 to 2.61 kPa were determined for the mature biofilm, which fall within the range of moduli previously reported by optical, rheometric, and microindentation techniques. A modified version of the flowcell was employed to perform similar elastic characterization of mouse submandibular glands (SMGs), demonstrating the adaptability of the system to perform ex situ analyses of a broader set of biological materials. These results demonstrate the validity of the microfluidic flowcell system as an effective platform for future investigations of the mechanical and morphological response of biofilms and other soft biomaterials to dynamic environmental conditions.

  12. Characterizing lentic freshwater fish assemblages using multiple sampling methods

    USGS Publications Warehouse

    Fischer, Jesse R.; Quist, Michael

    2014-01-01

    Characterizing fish assemblages in lentic ecosystems is difficult, and multiple sampling methods are almost always necessary to gain reliable estimates of indices such as species richness. However, most research focused on lentic fish sampling methodology has targeted recreationally important species, and little to no information is available regarding the influence of multiple methods and timing (i.e., temporal variation) on characterizing entire fish assemblages. Therefore, six lakes and impoundments (48–1,557 ha surface area) were sampled seasonally with seven gear types to evaluate the combined influence of sampling methods and timing on the number of species and individuals sampled. Probabilities of detection for species indicated strong selectivities and seasonal trends that provide guidance on optimal seasons to use gears when targeting multiple species. The evaluation of species richness and number of individuals sampled using multiple gear combinations demonstrated that appreciable benefits over relatively few gears (e.g., to four) used in optimal seasons were not present. Specifically, over 90 % of the species encountered with all gear types and season combinations (N = 19) from six lakes and reservoirs were sampled with nighttime boat electrofishing in the fall and benthic trawling, modified-fyke, and mini-fyke netting during the summer. Our results indicated that the characterization of lentic fish assemblages was highly influenced by the selection of sampling gears and seasons, but did not appear to be influenced by waterbody type (i.e., natural lake, impoundment). The standardization of data collected with multiple methods and seasons to account for bias is imperative to monitoring of lentic ecosystems and will provide researchers with increased reliability in their interpretations and decisions made using information on lentic fish assemblages.

  13. A Novel Method for Characterizing Spacesuit Mobility Through Metabolic Cost

    NASA Technical Reports Server (NTRS)

    McFarland, Shane M.; Norcross, Jason R.

    2014-01-01

    Historically, spacesuit mobility has been characterized by directly measuring both range of motion and joint torque of individual anatomic joints. The work detailed herein aims to improve on this method, which is often prone to uncertainly, lack of repeatability, and a general lack of applicability to real-world functional tasks. Specifically, the goal of this work is to characterize suited mobility performance by directly measuring the metabolic performance of the occupant. Pilot testing was conducted in 2013, employing three subjects performing a range of functional tasks in two different suits prototypes, the Mark III and Z-1. Cursory analysis of the results shows the approach has merit, with consistent performance trends toward one suit over the other. Forward work includes the need to look at more subjects, a refined task set, and another suit in a different mass/mobility regime to validate the approach.

  14. Mechanical and Microstructural Characterization of an Aluminum Bearing Trip Steel

    NASA Astrophysics Data System (ADS)

    Monsalve, Alberto; Guzmán, Alexis; De Barbieri, Flavio; Artigas, Alfredo; Carvajal, Linton; Bustos, Oscar; Garza-Montes-de Oca, Nelson F.; Colás, Rafael

    2016-06-01

    The mechanical properties and microstructural characteristics of a steel able to sustain the TRIP-effect were studied. The material was prepared by taking in mind the partial substitution of silicon by aluminum following a processing route that included hot forging, hot and cold rolling, intercritical annealing, and a final bainitic isothermal treatment. The mechanical properties that were obtained resulted to be above those of commercial a 780 TRIP steel. The TRIP phenomenon was confirmed by the change in retained austenite before and after deforming the steel; X-ray diffraction was used to evaluate the volume content of retained austenite. Formability of the steel under study can be rationalized in terms of the texture developed in the material.

  15. Characterization of mechanical and biochemical properties of developing embryonic tendon.

    PubMed

    Marturano, Joseph E; Arena, Jeffrey D; Schiller, Zachary A; Georgakoudi, Irene; Kuo, Catherine K

    2013-04-16

    Tendons have uniquely high tensile strength, critical to their function to transfer force from muscle to bone. When injured, their innate healing response results in aberrant matrix organization and functional properties. Efforts to regenerate tendon are challenged by limited understanding of its normal development. Consequently, there are few known markers to assess tendon formation and parameters to design tissue engineering scaffolds. We profiled mechanical and biological properties of embryonic tendon and demonstrated functional properties of developing tendon are not wholly reflected by protein expression and tissue morphology. Using force volume-atomic force microscopy, we found that nano- and microscale tendon elastic moduli increase nonlinearly and become increasingly spatially heterogeneous during embryonic development. When we analyzed potential biochemical contributors to modulus, we found statistically significant but weak correlation between elastic modulus and collagen content, and no correlation with DNA or glycosaminoglycan content, indicating there are additional contributors to mechanical properties. To investigate collagen cross-linking as a potential contributor, we inhibited lysyl oxidase-mediated collagen cross-linking, which significantly reduced tendon elastic modulus without affecting collagen morphology or DNA, glycosaminoglycan, and collagen content. This suggests that lysyl oxidase-mediated cross-linking plays a significant role in the development of embryonic tendon functional properties and demonstrates that changes in cross-links alter mechanical properties without affecting matrix content and organization. Taken together, these data demonstrate the importance of functional markers to assess tendon development and provide a profile of tenogenic mechanical properties that may be implemented in tissue engineering scaffold design to mechanoregulate new tendon regeneration.

  16. In situ mechanical characterization of square microfabricated elastomeric membranes using an improved microindentation

    NASA Astrophysics Data System (ADS)

    Liu, Kuo-Kang; Khoo, Hwa Seng; Tseng, Fan-Gang

    2004-02-01

    A testing method has been developed for in situ mechanical characterizations of square microfabricated elastomeric membranes, using a tailored microindentation instrument. Such a depth-sensing microindentation system, incorporated with a long-focal microscope for capturing the side view image, provides accurate load-displacement measurements and complete profiles of deformed membranes. The deformations of square silicon rubber membranes with various thicknesses were examined under different degrees of external central microindentation forces. These membranes were integrated and supported by SU-8 photoresist frames, with openings of 2 mm×2 mm. A theoretical model was applied to quantitatively correlate the membrane elasticity to the measured compliance under such indentation. Through comparing the simulated and experimental results, the average values of Young's modulus for these membranes were reasonably extracted and determined. Viscoelasticity of the membranes used was acknowledged; however, it showed no significant effect on the determination of the Young's modulus of the membranes in the current work. The good agreement between the experimental results and the theoretical analyses demonstrates the successful in situ mechanical characterizations of microfabricated elastomeric films, particularly for the square shape membrane, which is the most common structure or component for microfabricated devices.

  17. Total Gamma Count Rate Analysis Method for Nondestructive Assay Characterization

    SciTech Connect

    Cecilia R. Hoffman; Yale D. Harker

    2006-03-01

    A new approach to nondestructively characterize waste for disposal, based on total gamma response, has been developed at the Idaho Cleanup Project by CH2M-WG Idaho, LLC and Idaho State University, and is called the total gamma count rate analysis method. The total gamma count rate analysis method measures gamma interactions that produce energetic electrons or positrons in a detector. Based on previous experience with waste assays, the radionuclide content of the waste container is then determined. This approach potentially can yield minimum detection limits of less than 10 nCi/g. The importance of this method is twofold. First, determination of transuranic activity can be made for waste containers that are below the traditional minimum detection limits. Second, waste above 10 nCi/g and below 100 nCi/g can be identified, and a potential path for disposal resolved.

  18. Characterization of nutraceuticals and functional foods by innovative HPLC methods.

    PubMed

    Corradini, Claudio; Galanti, Roberta; Nicoletti, Isabella

    2002-04-01

    In recent years there is a growing interest in food and food ingredient which may provide health benefits. Food as well as food ingredients containing health-preserving components, are not considered conventional food, but can be defined as functional food. To characterise such foods, as well as nutraceuticals specific, high sensitive and reproducible analytical methodologies are needed. In light of this importance we set out to develop innovative HPLC methods employing reversed phase narrow bore column and high-performance anion-exchange chromatographic methods coupled with pulsed amperometric detection (HPAEC-PAD), which are specific for carbohydrate analysis. The developed methods were applied for the separation and quantification of citrus flavonoids and to characterize fructooligosaccharide (FOS) and fructans added to functional foods and nutraceuticals.

  19. Molecular Diagnostic Methods for Detection and Characterization of Human Noroviruses

    PubMed Central

    Chen, Haifeng; Hu, Yuan

    2016-01-01

    Human noroviruses are a group of viral agents that afflict people of all age groups. The viruses are now recognized as the most common causative agent of nonbacterial acute gastroenteritis and foodborne viral illness worldwide. However, they have been considered to play insignificant roles in the disease burden of acute gastroenteritis for the past decades until the recent advent of new and more sensitive molecular diagnostic methods. The availability and application of the molecular diagnostic methods have led to enhanced detection of noroviruses in clinical, food and environmental samples, significantly increasing the recognition of noroviruses as an etiologic agent of epidemic and sporadic acute gastroenteritis. This article aims to summarize recent efforts made for the development of molecular methods for the detection and characterization of human noroviruses. PMID:27335620

  20. Mechanics of F-actin characterized with microfabricated cantilevers.

    PubMed

    Liu, Xiumei; Pollack, Gerald H

    2002-11-01

    In this report we characterized the longitudinal elasticity of single actin filaments manipulated by novel silicon-nitride microfabricated levers. Single actin filaments were stretched from zero tension to maximal physiological tension, P(0). The obtained length-tension relation was nonlinear in the low-tension range (0-50 pN) with a resultant strain of approximately 0.4-0.6% and then became linear at moderate to high tensions (approximately 50-230 pN). In this region, the stretching stiffness of a single rhodamine-phalloidin-labeled, 1-microm-long F-actin is 34.5 +/- 3.5 pN/nm. Such a length-tension relation could be characterized by an entropic-enthalpic worm-like chain model, which ascribes most of the energy consumed in the nonlinear portion to overcoming thermal undulations arising from the filament's interaction with surrounding solution and the linear portion to the intrinsic stretching elasticity. By fitting the experimental data with such a worm-like chain model, an estimation of persistence length of approximately 8.75 microm was derived. These results suggest that F-actin is more compliant than previously thought and that thin filament compliance may account for a substantial fraction of the sarcomere's elasticity.

  1. Impetus of composite mechanics on test methods for fiber composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1978-01-01

    The impetus of composite mechanics on composite test methods and/or on interpreting test results is described by using examples from composite micromechanics, composite macromechanics and laminate theory. The specific examples included contributions such as criteria for selecting resin matrices for improved composite strength, the 10 deg off-axis tensile test, criteria for configuring hybrids and superhybrids for improved impact resistance and the reduced bending rigidities concept for buckling and vibration analyses.

  2. (Environmental and geophysical modeling, fracture mechanics, and boundary element methods)

    SciTech Connect

    Gray, L.J.

    1990-11-09

    Technical discussions at the various sites visited centered on application of boundary integral methods for environmental modeling, seismic analysis, and computational fracture mechanics in composite and smart'' materials. The traveler also attended the International Association for Boundary Element Methods Conference at Rome, Italy. While many aspects of boundary element theory and applications were discussed in the papers, the dominant topic was the analysis and application of hypersingular equations. This has been the focus of recent work by the author, and thus the conference was highly relevant to research at ORNL.

  3. a Numerical Method for Stability Analysis of Pinned Flexible Mechanisms

    NASA Astrophysics Data System (ADS)

    Beale, D. G.; Lee, S. W.

    1996-05-01

    A technique is presented to investigate the stability of mechanisms with pin-jointed flexible members. The method relies on a special floating frame from which elastic link co-ordinates are defined. Energies are easily developed for use in a Lagrange equation formulation, leading to a set of non-linear and mixed ordinary differential-algebraic equations of motion with constraints. Stability and bifurcation analysis is handled using a numerical procedure (generalized co-ordinate partitioning) that avoids the tedious and difficult task of analytically reducing the system of equations to a number equalling the system degrees of freedom. The proposed method was then applied to (1) a slider-crank mechanism with a flexible connecting rod and crank of constant rotational speed, and (2) a four-bar linkage with a flexible coupler with a constant speed crank. In both cases, a single pinned-pinned beam bending mode is employed to develop resonance curves and stability boundaries in the crank length-crank speed parameter plane. Flip and fold bifurcations are common occurrences in both mechanisms. The accuracy of the proposed method was also verified by comparison with previous experimental results [1].

  4. A novel method for material characterization of reusable products.

    PubMed

    Fortuna, Lorena M; Diyamandoglu, Vasil

    2016-06-01

    Product reuse contributes favorably to waste management and resource recovery by diverting products from terminal disposal to second-hand urban markets. Many organizations with social mission incorporate in their activities the process of reuse, thus making valuable products available to second-hand customers through their thrift stores. Data management and product classification are an important aspect of quantitative analysis of second-hand products circulating through reuse organizations. The New York City Center for Materials Reuse has, for the last 10years, organized the reuse activities of most not for profit organizations, and collected valuable information on the strengths and weaknesses of their operations. One such finding is the casual, and inconsistent approach used by these organizations to keep a record of the level and value of the reuse efforts they undertake. This paper describes a novel methodology developed to standardize record keeping and characterize commonly reused post-consumer products by assessing the outgoing product flow from reuse organizations. The approach groups material composition of individual products into main product categories, creating a simplified method to characterize products. Furthermore, by linking product categories and material composition, the method creates a matrix to help identify the material composition of products handled by reuse organizations. As part of the methodology, whenever adequate data are not available about certain types of products, a process identified as "field characterization study" is proposed and incorporated in the implementation to develop meaningful and useful data on the weight and material composition. Finally, the method incorporates the estimation of the environmental impact of reuse using standard models available through the U.S. Environmental Protection Agency and other worldwide entities. The diversified weight and size of products poses a challenge to the statistical significance

  5. Non-contact method for characterization of a rotational table

    NASA Astrophysics Data System (ADS)

    La Moure Shattuck, Judson, III; Parisi, Vincent M.; Smerdon, Arryn J.

    2007-04-01

    The United States Air Force (USAF) uses and evaluates a variety of helmet-mounted trackers for incorporation into their high performance aircraft. The primary head tracker technologies commercially available are magnetic trackers, inertial trackers, and optical trackers. Each head tracker has a unique method of determining the pilot's head position within the cockpit of the aircraft. Magnetic trackers generally have a small head mounted size and minimal head weight. Because they sense a generated magnetic field, their accuracy can be affected by other magnetic fields or ferrous components within the cockpit. Inertial trackers cover the entire head motion box but require constant motion in order to accommodate drifting of the inertial sensors or a secondary system that updates the inertial system, often referred to as a hybrid system. Although optical head trackers (OHT) are immune to magnetic fields some of their limitations may be daylight/night vision goggle (NVG) compatibility issues and, depending on system configuration, may require numerous emitters and/or receivers to cover a large head motion box and provide a wide field of regard. The Dynamic Tracker Test Fixture (DTTF) was designed by the Helmet Mounted Sensory Technology (HMST) laboratory to accurately measure azimuth rotation in both static and dynamic conditions for the purpose of determining the accuracy of a variety of head trackers. Before the DTTF could be used as an evaluation tool, it required characterization to determine the amount and location of any induced elevation or roll as the table rotated in azimuth. Optimally, the characterization method would not affect the DTTF's movement so a non-contact method was devised. This paper describes the characterization process and its results.

  6. A novel method for material characterization of reusable products.

    PubMed

    Fortuna, Lorena M; Diyamandoglu, Vasil

    2016-06-01

    Product reuse contributes favorably to waste management and resource recovery by diverting products from terminal disposal to second-hand urban markets. Many organizations with social mission incorporate in their activities the process of reuse, thus making valuable products available to second-hand customers through their thrift stores. Data management and product classification are an important aspect of quantitative analysis of second-hand products circulating through reuse organizations. The New York City Center for Materials Reuse has, for the last 10years, organized the reuse activities of most not for profit organizations, and collected valuable information on the strengths and weaknesses of their operations. One such finding is the casual, and inconsistent approach used by these organizations to keep a record of the level and value of the reuse efforts they undertake. This paper describes a novel methodology developed to standardize record keeping and characterize commonly reused post-consumer products by assessing the outgoing product flow from reuse organizations. The approach groups material composition of individual products into main product categories, creating a simplified method to characterize products. Furthermore, by linking product categories and material composition, the method creates a matrix to help identify the material composition of products handled by reuse organizations. As part of the methodology, whenever adequate data are not available about certain types of products, a process identified as "field characterization study" is proposed and incorporated in the implementation to develop meaningful and useful data on the weight and material composition. Finally, the method incorporates the estimation of the environmental impact of reuse using standard models available through the U.S. Environmental Protection Agency and other worldwide entities. The diversified weight and size of products poses a challenge to the statistical significance

  7. A mechanical diode: Comparing numerical and experimental characterizations

    SciTech Connect

    Simmermacher, T.; Segalman, D.; Sagartz, M.

    1997-12-01

    The predictive modeling of vibration of many structural systems is crippled by an inability to predictively model the mechanics of joints. The lack of understanding of joint dynamics is evidenced by the substantial uncertainty of joint compliances in the numerical models and by the complete inability to predict joint damping. The lore is that at low amplitudes, joint mechanics are associated with Coulomb friction and stick-slip phenomena and that at high amplitudes, impact processes result in dissipation as well as shift of energy to other frequencies. Inadequate understanding of the physics precludes reliable predictions. In this introductory work, joint compliance is studied in both a numerical and experimental setting. A simple bolted interface is used as the test article and compliance is measured for the joint in both compression and in tension. This simple interface is shown to exhibit a strong non-linearity near the transition from compression to tension (or vice-versa). Modeling issues pertaining to numerically solving for the compliance are addressed. It is shown that the model predicts the experimental strains and compliance fairly well. It will be seen that the joint behavior is a mechanical analogy to a diode. In compression, the joint is very stiff, acting almost as a rigid link, while in tension the joint is soft, acting as a soft spring. Although there have been many other studies performed on bolted joints, the variety of joint geometries has demonstrated large variations in behavior. This study is an attempt to quantify the behavior of typical joints found in today`s weapon systems.

  8. Precise opto-mechanical characterization of assembled infrared optics

    NASA Astrophysics Data System (ADS)

    Winters, Daniel; Langehanenberg, Patrik; Heinisch, Josef; Dumitrescu, Eugen

    2013-06-01

    The imaging quality of assembled optical systems is strongly influenced by the alignment errors of the individual lenses in the assembly. Although instrumentation for characterizing centering errors for the visual spectral range existed for some time, the technology to include the LWIR (8-12µm) and the MWIR (3-5µm) spectral ranges was only recently developed. Here, we report on the development and performance of such a measurement system that is capable of fully characterizing the alignment of all individual elements of an IR lens assembly in a non-contact and non-destructive fashion. The main component of the new instrument is an autocollimator working in the LWIR that determines the position of the center of curvature of each individual IR lens surface with respect to the instruments reference axis. This position data are used to calculate the shift and tilt of the individual lenses with respect to each other or a user-defined reference axis like e.g. the assembly housing. Finally, to complete the whole picture, the thicknesses and air gaps between individual lenses are measured with a low coherence interferometer built into the instrument. In order to obtain precise data, the instrument software takes the measured real centering error into account and directs the user to optimally align the assembly with respect of the interferometer reference axis, which then determines the position of the vertex positions along the optical axis and from these the center thicknesses of each lens and the air gaps between lenses with an accuracy below one micrometer.

  9. Method and apparatus for characterizing reflected ultrasonic pulses

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor)

    1991-01-01

    The invention is a method of and apparatus for characterizing the amplitudes of a sequence of reflected pulses R1, R2, and R3 by converting them into corresponding electric signals E1, E2, and E3 to substantially the same value during each sequence thereby restoring the reflected pulses R1, R2, and R3 to their initial reflection values by timing means, an exponential generator, and a time gain compensator. Envelope and baseline reject circuits permit the display and accurate location of the time spaced sequence of electric signals having substantially the same amplitude on a measurement scale on a suitable video display or oscilloscope.

  10. Apparatus and method for characterizing conductivity of materials

    DOEpatents

    Doss, J.D.

    1988-04-13

    Apparatus and method for noncontact, radio-frequency shielding current characterization of materials. Self- or mutual inductance changes in one or more inductive elements, respectively, occur when materials capable of supporting shielding currents are placed in proximity thereto, or undergo change in resistivity while in place. Such changes can be observed by incorporating the inductor(s) in a resonant circuit and determining the frequency of oscillation or by measuring the voltage induced on a coupled inductive element. The present invention is useful for determining the critical temperature and superconducting transition width for superconducting samples. 8 figs.

  11. Soft ionization device with characterization systems and methods of manufacture

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    2004-01-01

    Various configurations of characterization systems such as ion mobility spectrometers and mass spectrometers are disclosed that are coupled to an ionization device. The ionization device is formed of a membrane that houses electrodes therein that are located closer to one another than the mean free path of the gas being ionized. Small voltages across the electrodes generate large electric fields which act to ionize substantially all molecules passing therethrough without fracture. Methods to manufacture the mass spectrometer and ion mobility spectrometer systems are also described.

  12. Tensor analysis methods for activity characterization in spatiotemporal data

    SciTech Connect

    Haass, Michael Joseph; Van Benthem, Mark Hilary; Ochoa, Edward M.

    2014-03-01

    Tensor (multiway array) factorization and decomposition offers unique advantages for activity characterization in spatio-temporal datasets because these methods are compatible with sparse matrices and maintain multiway structure that is otherwise lost in collapsing for regular matrix factorization. This report describes our research as part of the PANTHER LDRD Grand Challenge to develop a foundational basis of mathematical techniques and visualizations that enable unsophisticated users (e.g. users who are not steeped in the mathematical details of matrix algebra and mulitway computations) to discover hidden patterns in large spatiotemporal data sets.

  13. Dynamic Mechanical Characterization of Thin Film Polymer Nanocomposites

    NASA Technical Reports Server (NTRS)

    Herring, Helen M.; Gates, Thomas S. (Technical Monitor)

    2003-01-01

    Many new materials are being produced for aerospace applications with the objective of maximizing certain ideal properties without sacrificing others. Polymer composites in various forms and configurations are being developed in an effort to provide lighter weight construction and better thermal and electrical properties and still maintain adequate strength and stability. To this end, thin film polymer nanocomposites, synthesized for the purpose of influencing electrical conductivity using metal oxide particles as filler without incurring losses in mechanical properties, were examined to determine elastic modulus and degree of dispersion of particles. The effects of various metal oxides on these properties will be discussed.

  14. Mechanical and Material Characterization of Mining Wheels for Enhanced Safety

    NASA Astrophysics Data System (ADS)

    DiCecco, Sante

    A study was undertaken to evaluate the mechanical and material behaviour of the Q345 alloy, used in fabrication of five-piece mining wheel assemblies. Material samples were extracted from all components of a five-piece wheel. Material testing included compositional analyses, fully submerged corrosion testing, and microstructural analyses. Mechanical testing included hardness testing, tensile testing and stress-based high-cycle fatigue testing of specimens with polished and pre-corroded surface conditions. Special emphasis was placed on obtaining the fatigue behaviour of the alloy in the pre-corroded condition. Component microstructures were all found to consist of ferrite and colony pearlite. Ultimate tensile strengths of most component samples ranged from 471 MPa to 544 MPa, which was within minimum alloy specifications. Fatigue results found polished specimens and pre-corroded specimens to have endurance strengths of approximately 295 MPa and 222 MPa, respectively, at 5,000,000 cycles. The pre-corroded condition resulted in a decrease in fatigue strength of 25.6%.

  15. Mechanical Characterization of Composites and Foams for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Veazie, D. R.; Glinsey, C.; Webb, M. M.; Norman, M.; Meador, Michael A. (Technical Monitor)

    2000-01-01

    Experimental studies to investigate the mechanical properties of ultra-lightweight polyimide foams for space applications, compression after impact (CAI) properties for low velocity impact of sandwich composites, and aspen fiber/polypropylene composites containing an interface adhesive additive, Maleic Anhydride Grafted Polypropylene (MAPP), were performed at Clark Atlanta University. Tensile, compression, flexural, and shear modulus tests were performed on TEEK foams categorized by their densities and relative cost according to ASTM specifications. Results showed that the mechanical properties of the foams increased as a function of higher price and increasing density. The CAI properties of Nomex/phenolic honeycomb core, fiberglass/epoxy facesheet sandwich composites for two damage arrangements were compared using different levels of impact energy ranging from 0 - 452 Joules. Impact on the thin side showed slightly more retention of CAI strength at low impact levels, whereas higher residual compressive strength was observed from impact on the thick side at higher impact levels. The aspen fiber/polypropylene composites studied are composed of various percentages (by weight) of aspen fiber and polypropylene ranging from 30%-60% and 40%-100%, respectively. Results showed that the MAPP increases tensile and flexural strength, while having no significant influence on tensile and flexural modulus.

  16. Knowledge Discovery Process for Characterization of Materials Failure Mechanism

    NASA Technical Reports Server (NTRS)

    Cios, Krzysztof J.

    1999-01-01

    It is the intent of this project to provide a platform to visualize the various data collected from stress-strain testing of composite ceramic matrix materials. The data collected from the stress-strain tests are acoustic emissions (AE). As a material is subjected to a stress-strain test, various failure mechanisms occur in the material. The recorded sounds emitted during the test may correspond to various failure mechanisms. This project, thus, will give a possible way to visualize the data and data derived from the recorded AE. The stress-strain testing was performed on several composite matrix material combinations. Each of these tests produced anywhere from 1000 to 10,000+ AE events. For each AE event recorded, several characteristics in both the time and frequency domains are created. This project has two goals. First, this project will provide a summation page for a selected waveform. This page will include all of the characteristics determined from the AE event waveform along with graphs of the AE event waveform and its corresponding Power Spectrum. The other function of this project is to retrieve and display selected AE event waveforms for comparison.

  17. Characterization of surface/subsurface damage for ceramics with nanoindentation method

    NASA Astrophysics Data System (ADS)

    Bao, Yumei; Chai, Guozhong; Gu, Shengting

    2010-08-01

    Ceramics are increasingly used in the fields of aerospace, communication, mechanical and modern biomedical engineering. With high hardness, strength and abrasive resistance, the machined ceramic components are most likely to contain surface/subsurface damages, influencing strongly the performance and reliability of ceramic components. Nanoindentation test is an advanced technology in measuring the elastic modulus and hardness of the materials in micro-nano scale based on Oliver-Phar's equation. Nanoindentation has been employed extensively to characterize the mechanical properties of a wide range of materials including ceramics. To characterize the surface/subsurface damage in ceramics, a degraded elastic modulus based damage variable is defined to describe the damage induced property degradation of the materials based on the traditional Kachanov continuum damage mechanics (CDM) framework. A simple characterization method for surface/subsurface damage is realized based on nanoindentation test. The alumina bulk samples are chosen to study the surface/subsurface indentation induced damage by nanoindentaiton. The elastic modulus under various indenting loads is measured with Conical and Berkovich tip. The variation of the elastic modulus and indentation induced damage with load and displacement are analyzed in detail. Experimental results show that the proposed method is feasible and satisfactory.

  18. Characterization of mechanical properties of leather with airborne ultrasonics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A nondestructive method to accurately evaluate the quality of hides and leather is urgently needed by leather and hide industries. We previously reported the research results for airborne ultrasonic (AU) testing using non-contact transducers to evaluate the quality of hides and leather. The abilit...

  19. Microstructural Characterization and Mechanical Properties of PA11 Nanocomposite Fibers

    NASA Astrophysics Data System (ADS)

    Latko, Paulina; Kolbuk, Dorota; Kozera, Rafal; Boczkowska, Anna

    2016-01-01

    Polyamide 11/multi-walled carbon nanotubes nanocomposite fibers with weight fraction 2, 4, and 6 wt.% and diameter 80 μm were prepared with a twin screw mini-extruder. The morphology and degree of dispersion of the multi-walled carbon nanotubes in the fibers was investigated by using scanning and transmission electron microscopy. In turn, the molecular structure was indicated by using wide-angle x-ray scattering and correlated with thermal analysis. It was found that carbon nanotubes lead to the formation of α phase in the fibers and they show medial level of alignment within the length of the fiber. Mechanical analysis of the fibers shows that apart from the crystallinity content, the tensile strength is strongly dependent on the macroscopic defects of the surface of the fibers. Nanocomposite fibers based on polyamide 11 with carbon nanotubes can be used as a precursor for non-woven or woven fabrics manufacturing process.

  20. Mechanical and optical characterization of gelled matrices during storage.

    PubMed

    Lorenzo, Gabriel; Zaritzky, Noemí; Califano, Alicia

    2015-03-01

    The effect of composition and storage time on the rheological and optical attributes of multi-component gels containing locust bean gum (LBG), low acyl (LAG) and high acyl (HAG) gellan gums, was determined using three-component mixture design. The generalized Maxwell model was used to fit experimental rheological data. Mechanical and relaxation spectra of gelled systems were determined by the type of gellan gum used, except LBG alone which behaved as a diluted gum dispersion. Storage time dependence of the gels was analyzed using the rubber elasticity theory and to determine changes in network mesh size the equivalent network approach was applied. Destabilization kinetic was obtained from light scattering results; increasing LAG content improved the long-term stability of the matrices. Almost every formulation exhibited an increment in both moduli during the first 10 days remaining practically constant thereafter or until they broke (binary mixtures with LBG); gels with HAG/LBG mixtures were the least stable. PMID:25498706

  1. Nondestructive characterization methods for monolithic solid oxide fuel cells

    SciTech Connect

    Ellingson, W.A.

    1993-01-01

    Monolithic solid oxide fuel cells (MSOFCS) represent a potential breakthrough in fuel cell technology, provided that reliable fabrication methods can be developed. Fabrication difficulties arise in several steps of the processing: First is the fabrication of uniform thin (305 {mu}m) single-layer and trilayer green tapes (the trilayer tapes of anode/electrolyte/cathode and anode/interconnect/cathode must have similar coefficients of thermal expansion to sinter uniformly and to have the necessary electrochemical properties); Second is the development of fuel and oxidant channels in which residual stresses are likely to develop in the tapes; Third is the fabrication of a ``complete`` cell for which the bond quality between layers and the quality of the trilayers must be established; and Last, attachment of fuel and oxidant manifolds and verification of seal integrity. Purpose of this report is to assess nondestructive characterization methods that could be developed for application to laboratory, prototype, and full-scale MSOFCs.

  2. Characterization and Developmental History of Problem Solving Methods in Medicine

    PubMed Central

    Harbort, Robert A.

    1980-01-01

    The central thesis of this paper is the importance of the framework in which information is structured. It is technically important in the design of systems; it is also important in guaranteeing that systems are usable by clinicians. Progress in medical computing depends on our ability to develop a more quantitative understanding of the role of context in our choice of problem solving techniques. This in turn will help us to design more flexible and responsive computer systems. The paper contains an overview of some models of knowledge and problem solving methods, a characterization of modern diagnostic techniques, and a discussion of skill development in medical practice. Diagnostic techniques are examined in terms of how they are taught, what problem solving methods they use, and how they fit together into an overall theory of interpretation of the medical status of a patient.

  3. Apparatus and method for characterizing ultrafast polarization varying optical pulses

    DOEpatents

    Smirl, Arthur; Trebino, Rick P.

    1999-08-10

    Practical techniques are described for characterizing ultrafast potentially ultraweak, ultrashort optical pulses. The techniques are particularly suited to the measurement of signals from nonlinear optical materials characterization experiments, whose signals are generally too weak for full characterization using conventional techniques.

  4. Rock mass mechanical property estimations for the Yucca Mountain Site Characterization Project; Yucca Mountain Site Characterization Project

    SciTech Connect

    Lin, M.; Hardy, M.P.; Bauer, S.J.

    1993-06-01

    Rock mass mechanical properties are important in the design of drifts and ramps. These properties are used in evaluations of the impacts of thermomechanical loading of potential host rock within the Yucca Mountain Site Characterization Project. Representative intact rock and joint mechanical properties were selected for welded and nonwelded tuffs from the currently available data sources. Rock mass qualities were then estimated using both the Norwegian Geotechnical Institute (Q) and Geomechanics Rating (RMR) systems. Rock mass mechanical properties were developed based on estimates of rock mass quality, the current knowledge of intact properties, and fracture/joint characteristics. Empirical relationships developed to correlate the rock mass quality indices and the rock mass mechanical properties were then used to estimate the range of rock mass mechanical properties.

  5. Mechanical and swelling behaviour of well characterized polybutadiene networks

    NASA Technical Reports Server (NTRS)

    Mckenna, Gregory B.; Hinkley, Jeffrey A.

    1986-01-01

    Endlinking of hydroxyl-terminated polybutadiene with the appropriate isocyanate has been used to prepare well characterized networks. Two networks have been studied with molecular weights of the prepolymers being 6100 and 2400 g/mole by g.p.c. Cylindrical specimens were prepared and the derivatives of the stored energy function with respect to the stretch invariants were determined by torque and normal force measurements in torsion. From these data the Valanis-Landel (1967) stored energy function derivatives w-prime(lambda) were determined for both networks. The stored energy function for the junction constraint model of Flory (1953, 1977, 1979, 1985) which is a special form of the Valanis-Landel function, has been fitted to that determined from the experiments. The contributions to the stored energy function from the phantom network and from the junction constraints respectively do not agree with predictions from the topologies of the networks. In spite of this, the form of w-prime(lambda) for the junction constraint model gives an excellent 'curve fit' to the data. Comparison is also made with equilibrium swelling.

  6. Physical and chemical methods for the characterization of hazardous wastes

    NASA Astrophysics Data System (ADS)

    Francis, C. W.; Maskarinec, M. P.; Lee, D. W.

    Numerous test methods have been proposed and developed to evaluate the hazards associated with handling and disposal of wastes in landfills. The major concern is the leaching of toxic constituents from the wastes. The fate of hazardous constituents in landfilled wastes is highly dependent on the physical and chemical characteristics of the waste. Thus, the primary objective in the selection of waste characterization procedures should be focused on those methods that gauge the fate of the waste's hazardous constituents in a specific landfill environment. Waste characterization in the United States has centered around the characteristics of ignitability, corrosivity, reactivity, and toxicity. The strategy employed in the development of most regulatory waste characterization procedures has been a pass or fail approach, usually tied to some form of a mismanagement scenario for that waste. For example, USEPA has chosen the disposal of a waste in a municipal waste landfill as a mismanagement scenario for the development of the waste leaching tests to determine the toxicity characteristic. Many wastes, such as large-volume utility wastes or mining wastes, are not disposed of in municipal waste landfills. As a consequence, more effort is needed in the development of waste leaching tests that determine the long-term leaching characteristics of that waste in the landfill environment in which the waste is to be disposed. Waste leaching models also need to be developed and tested as to their ability to simulate actual disposal environments. These models need to be compared with laboratory leaching tests, and, if practical, coupled with groundwater transport models.

  7. Characterization of peak flow events with local singularity method

    NASA Astrophysics Data System (ADS)

    Cheng, Q.; Li, L.; Wang, L.

    2009-07-01

    Three methods, return period, power-law frequency plot (concentration-area) and local singularity index, are introduced in the paper for characterizing peak flow events from river flow data for the past 100 years from 1900 to 2000 recorded at 25 selected gauging stations on rivers in the Oak Ridges Moraine (ORM) area, Canada. First a traditional method, return period, was applied to the maximum annual river flow data. Whereas the Pearson III distribution generally fits the values, a power-law frequency plot (C-A) on the basis of self-similarity principle provides an effective mean for distinguishing "extremely" large flow events from the regular flow events. While the latter show a power-law distribution, about 10 large flow events manifest departure from the power-law distribution and these flow events can be classified into a separate group most of which are related to flood events. It is shown that the relation between the average water releases over a time period after flow peak and the time duration may follow a power-law distribution. The exponent of the power-law or singularity index estimated from this power-law relation may be used to characterize non-linearity of peak flow recessions. Viewing large peak flow events or floods as singular processes can anticipate the application of power-law models not only for characterizing the frequency distribution of peak flow events, for example, power-law relation between the number and size of floods, but also for describing local singularity of processes such as power-law relation between the amount of water released versus releasing time. With the introduction and validation of singularity of peak flow events, alternative power-law models can be used to depict the recession property as well as other types of non-linear properties.

  8. Method to characterize dielectric properties of powdery substances

    NASA Astrophysics Data System (ADS)

    Tuhkala, M.; Juuti, J.; Jantunen, H.

    2013-07-01

    An open ended coaxial cavity method for dielectric characterization of powdery substance operating at 4.5 GHz in TEM mode is presented. Classical mixing rules and electromagnetic modeling were utilized with measured effective permittivities and Q factors to determine the relative permittivity and dielectric loss tangent of different powders with ɛr up to 30. The modeling enabled determination of the correction factor for the simplified equation for the relative permittivity of an open ended coaxial resonator and mixing rules having the best correlation with experiments. SiO2, Al2O3, LTCC CT 2000, ZrO2, and La2O3 powders were used in the experiments. Based on the measured properties and Bruggeman symmetric and Looyenga mixing rules, the determined dielectric characteristics of the powders exhibited good correlation with values in the literature. The presented characterization method enabled the determination of dielectric properties of powdery substances within the presented range, and therefore could be applied to various research fields and applications where dielectric properties of powders need to be known and controlled.

  9. Hydrogeological-Geophysical Methods for Subsurface Site Characterization - Final Report

    SciTech Connect

    Rubin, Yoram

    2001-01-01

    The goal of this research project is to increase water savings and show better ecological control of natural vegetation by developing hydrogeological-geophysical methods for characterizing the permeability and content of water in soil. The ground penetrating radar (GPR) tool was developed and used as the surface geophysical method for monitoring water content. Initial results using the tool suggest that surface GPR is a viable technique for obtaining precision volumetric water content profile estimates, and that laboratory-derived petrophysical relationships could be applied to field-scale GPR data. A field-scale bacterial transport study was conducted within an uncontaminated sandy Pleistocene aquifer to evaluate the importance of heterogeneity in controlling the transport of bacteria. Geochemical, hydrological, geological, and geophysical data were collected to characterize the site prior to and after chemical and bacterial injection experiments. Study results shows that, even within the fairly uniform shallow marine deposits of the narrow channel focus area, heterogeneity existed that influenced the chemical tracer transport over lateral distances of a few meters and vertical distances of less than a half meter. The interpretation of data suggest that the incorporation of geophysical data with limited hydrological data may provide valuable information about the stratigraphy, log conductivity values, and the spatial correlation structure of log conductivity, which have traditionally been obtainable only by performing extensive and intrusive hydrological sampling.

  10. A high throughput array microscope for the mechanical characterization of biomaterials

    NASA Astrophysics Data System (ADS)

    Cribb, Jeremy; Osborne, Lukas D.; Hsiao, Joe Ping-Lin; Vicci, Leandra; Meshram, Alok; O'Brien, E. Tim; Spero, Richard Chasen; Taylor, Russell; Superfine, Richard

    2015-02-01

    In the last decade, the emergence of high throughput screening has enabled the development of novel drug therapies and elucidated many complex cellular processes. Concurrently, the mechanobiology community has developed tools and methods to show that the dysregulation of biophysical properties and the biochemical mechanisms controlling those properties contribute significantly to many human diseases. Despite these advances, a complete understanding of the connection between biomechanics and disease will require advances in instrumentation that enable parallelized, high throughput assays capable of probing complex signaling pathways, studying biology in physiologically relevant conditions, and capturing specimen and mechanical heterogeneity. Traditional biophysical instruments are unable to meet this need. To address the challenge of large-scale, parallelized biophysical measurements, we have developed an automated array high-throughput microscope system that utilizes passive microbead diffusion to characterize mechanical properties of biomaterials. The instrument is capable of acquiring data on twelve-channels simultaneously, where each channel in the system can independently drive two-channel fluorescence imaging at up to 50 frames per second. We employ this system to measure the concentration-dependent apparent viscosity of hyaluronan, an essential polymer found in connective tissue and whose expression has been implicated in cancer progression.

  11. A high throughput array microscope for the mechanical characterization of biomaterials

    PubMed Central

    Cribb, Jeremy; Osborne, Lukas D.; Hsiao, Joe Ping-Lin; Vicci, Leandra; Meshram, Alok; O’Brien, E. Tim; Spero, Richard Chasen; Taylor, Russell; Superfine, Richard

    2015-01-01

    In the last decade, the emergence of high throughput screening has enabled the development of novel drug therapies and elucidated many complex cellular processes. Concurrently, the mechanobiology community has developed tools and methods to show that the dysregulation of biophysical properties and the biochemical mechanisms controlling those properties contribute significantly to many human diseases. Despite these advances, a complete understanding of the connection between biomechanics and disease will require advances in instrumentation that enable parallelized, high throughput assays capable of probing complex signaling pathways, studying biology in physiologically relevant conditions, and capturing specimen and mechanical heterogeneity. Traditional biophysical instruments are unable to meet this need. To address the challenge of large-scale, parallelized biophysical measurements, we have developed an automated array high-throughput microscope system that utilizes passive microbead diffusion to characterize mechanical properties of biomaterials. The instrument is capable of acquiring data on twelve-channels simultaneously, where each channel in the system can independently drive two-channel fluorescence imaging at up to 50 frames per second. We employ this system to measure the concentration-dependent apparent viscosity of hyaluronan, an essential polymer found in connective tissue and whose expression has been implicated in cancer progression. PMID:25725856

  12. A novel mechanical cleavage method for synthesizing few-layer graphenes

    PubMed Central

    2011-01-01

    A novel method to synthesize few layer graphene from bulk graphite by mechanical cleavage is presented here. The method involves the use of an ultrasharp single crystal diamond wedge to cleave a highly ordered pyrolytic graphite sample to generate the graphene layers. Cleaving is aided by the use of ultrasonic oscillations along the wedge. Characterization of the obtained layers shows that the process is able to synthesize graphene layers with an area of a few micrometers. Application of oscillation enhances the quality of the layers produced with the layers having a reduced crystallite size as determined from the Raman spectrum. Interesting edge structures are observed that needs further investigation. PMID:21711598

  13. Mechanical integrity test methods for Class 2 injection wells

    SciTech Connect

    Smith, K.P.

    1991-03-01

    Mechanical integrity testing of injection wells to ensure that they do not threaten an underground source of drinking water (USDW) is a key component of the Underground Injection Control (UIC) program of the Safe Drinking Water Act of 1974. Approximately 55% of all active injection wells are classified as Class II wells. These wells are used by the oil and gas industry primarily to dispose of waste fluids or to enhance production of hydrocarbons. Mechanical integrity is defined as the absence of significant leaks in the casing, tubing, or packers (internal integrity); and the absence of significant fluid movement into a USDW through cement channels behind the casing (external integrity). A wide variety of mechanical integrity test (MIT) methods have been developed to meet federal and primacy state program requirements. The internal mechanical integrity of standard injection wells can be evaluated by radioactive tracer surveys, standard annular pressure tests, annulus pressure monitoring, and continuous injection pressure versus injection rate monitoring. These tests are listed in order of decreasing reliability and increasing detection limits. 28 refs., 17 figs., 6 tabs.

  14. Steered Molecular Dynamics Methods Applied to Enzyme Mechanism and Energetics.

    PubMed

    Ramírez, C L; Martí, M A; Roitberg, A E

    2016-01-01

    One of the main goals of chemistry is to understand the underlying principles of chemical reactions, in terms of both its reaction mechanism and the thermodynamics that govern it. Using hybrid quantum mechanics/molecular mechanics (QM/MM)-based methods in combination with a biased sampling scheme, it is possible to simulate chemical reactions occurring inside complex environments such as an enzyme, or aqueous solution, and determining the corresponding free energy profile, which provides direct comparison with experimental determined kinetic and equilibrium parameters. Among the most promising biasing schemes is the multiple steered molecular dynamics method, which in combination with Jarzynski's Relationship (JR) allows obtaining the equilibrium free energy profile, from a finite set of nonequilibrium reactive trajectories by exponentially averaging the individual work profiles. However, obtaining statistically converged and accurate profiles is far from easy and may result in increased computational cost if the selected steering speed and number of trajectories are inappropriately chosen. In this small review, using the extensively studied chorismate to prephenate conversion reaction, we first present a systematic study of how key parameters such as pulling speed, number of trajectories, and reaction progress are related to the resulting work distributions and in turn the accuracy of the free energy obtained with JR. Second, and in the context of QM/MM strategies, we introduce the Hybrid Differential Relaxation Algorithm, and show how it allows obtaining more accurate free energy profiles using faster pulling speeds and smaller number of trajectories and thus smaller computational cost.

  15. Steered Molecular Dynamics Methods Applied to Enzyme Mechanism and Energetics.

    PubMed

    Ramírez, C L; Martí, M A; Roitberg, A E

    2016-01-01

    One of the main goals of chemistry is to understand the underlying principles of chemical reactions, in terms of both its reaction mechanism and the thermodynamics that govern it. Using hybrid quantum mechanics/molecular mechanics (QM/MM)-based methods in combination with a biased sampling scheme, it is possible to simulate chemical reactions occurring inside complex environments such as an enzyme, or aqueous solution, and determining the corresponding free energy profile, which provides direct comparison with experimental determined kinetic and equilibrium parameters. Among the most promising biasing schemes is the multiple steered molecular dynamics method, which in combination with Jarzynski's Relationship (JR) allows obtaining the equilibrium free energy profile, from a finite set of nonequilibrium reactive trajectories by exponentially averaging the individual work profiles. However, obtaining statistically converged and accurate profiles is far from easy and may result in increased computational cost if the selected steering speed and number of trajectories are inappropriately chosen. In this small review, using the extensively studied chorismate to prephenate conversion reaction, we first present a systematic study of how key parameters such as pulling speed, number of trajectories, and reaction progress are related to the resulting work distributions and in turn the accuracy of the free energy obtained with JR. Second, and in the context of QM/MM strategies, we introduce the Hybrid Differential Relaxation Algorithm, and show how it allows obtaining more accurate free energy profiles using faster pulling speeds and smaller number of trajectories and thus smaller computational cost. PMID:27497165

  16. Characterization of Al–Al{sub 4}C{sub 3} nanocomposites produced by mechanical milling

    SciTech Connect

    Santos-Beltrán, A.; Morales-Rodriguez, H.; Gallegos-Orozco, V.; Baldenebro-Lopez, F.

    2015-08-15

    In this work, a mixture of Al–C–Al{sub 4}C{sub 3} nanopowder previously synthesized by mechanical milling and subsequent thermal treatment was used to reinforce the Al matrix. The nanocomposites were fabricated via high-energy ball milling and subsequent sintering process for different periods of time at 550 °C. Hardness and compression tests were performed to evaluate the mechanical properties of the nanocomposites in the as-milled and sintered conditions. According to the results the reinforcement located in the grain boundaries is responsible for the brittle behavior observed in the nanocomposites during the compression test. The combined effect of sintering and precipitation mechanisms produced an evident increase of the strength of the Al matrix at a relatively short sintering time. By using the Rietveld method the crystallite size and microstrain measurements were determined and correlated with the microhardness values. For the proper characterization of the nanoparticles present in the Al matrix, atomic force microscopy and high resolution electron microscopy were used. - Highlights: • Nanostructured Al{sub 4}C{sub 3} reinforcement was fabricated via mechanical milling and heat treatment. • We found a significant increase of the mechanical properties at short sintering times. • The formation of Al{sub 4}C{sub 3} with during sintering time restricted the excessive growth of the crystallite. • Al{sub 4}C{sub 3} located in the grain boundaries causes brittle fracture observed in compression tests. • There is a correlation between, crystallite size and microstrain values with microhardness.

  17. Development of a synchrotron biaxial tensile device for in situ characterization of thin films mechanical response.

    PubMed

    Geandier, G; Thiaudière, D; Randriamazaoro, R N; Chiron, R; Djaziri, S; Lamongie, B; Diot, Y; Le Bourhis, E; Renault, P O; Goudeau, P; Bouaffad, A; Castelnau, O; Faurie, D; Hild, F

    2010-10-01

    We have developed on the DIFFABS-SOLEIL beamline a biaxial tensile machine working in the synchrotron environment for in situ diffraction characterization of thin polycrystalline films mechanical response. The machine has been designed to test compliant substrates coated by the studied films under controlled, applied strain field. Technological challenges comprise the sample design including fixation of the substrate ends, the related generation of a uniform strain field in the studied (central) volume, and the operations from the beamline pilot. Preliminary tests on 150 nm thick W films deposited onto polyimide cruciform substrates are presented. The obtained results for applied strains using x-ray diffraction and digital image correlation methods clearly show the full potentialities of this new setup. PMID:21034098

  18. Development of a synchrotron biaxial tensile device for in situ characterization of thin films mechanical response

    SciTech Connect

    Geandier, G.; Thiaudiere, D.; Bouaffad, A.; Randriamazaoro, R. N.; Chiron, R.; Castelnau, O.; Faurie, D.; Djaziri, S.; Lamongie, B.; Diot, Y.; Le Bourhis, E.; Renault, P. O.; Goudeau, P.; Hild, F.

    2010-10-15

    We have developed on the DIFFABS-SOLEIL beamline a biaxial tensile machine working in the synchrotron environment for in situ diffraction characterization of thin polycrystalline films mechanical response. The machine has been designed to test compliant substrates coated by the studied films under controlled, applied strain field. Technological challenges comprise the sample design including fixation of the substrate ends, the related generation of a uniform strain field in the studied (central) volume, and the operations from the beamline pilot. Preliminary tests on 150 nm thick W films deposited onto polyimide cruciform substrates are presented. The obtained results for applied strains using x-ray diffraction and digital image correlation methods clearly show the full potentialities of this new setup.

  19. Sensitivity optimization of the scanning microdeformation microscope and application to mechanical characterization of soft materials

    NASA Astrophysics Data System (ADS)

    Le Rouzic, J.; Vairac, P.; Cretin, B.; Delobelle, P.

    2008-03-01

    In this article we present the study of the sensitivity optimization of our system of micromechanical characterization called the scanning microdeformation microscope. The flexural contact modes of vibration of the cantilever have been modeled. We discuss the matching between the cantilever stiffness and the contact stiffness which depends on the sample material. In order to obtain the best sensitivity, the stiffnesses must be the closest one to each other. Because the length of the cantilever directly affects its stiffness, the cantilever geometry can be optimized for different materials. We have validated this study with measurements on a soft material the polydimethylsiloxane with a cantilever optimized for materials of Young's moduli of some megapascals. Experimental results obtained with two different samples have shown the high sensitivity of the method for the measurement of low Young's moduli and have been compared with nanoindentation and dynamic mechanical analysis results.

  20. Application of the time-temperature superposition principle to the mechanical characterization of elastomeric adhesives for crash simulation purposes

    NASA Astrophysics Data System (ADS)

    Rauh, A.; Hinterhölzl, R.; Drechsler, K.

    2012-05-01

    In the automotive industry, finite element simulation is widely used to ensure crashworthiness. Mechanical material data over wide strain rate and temperature ranges are required as a basis. This work proposes a method reducing the cost of mechanical material characterization by using the time-temperature superposition principle on elastomeric adhesives. The method is based on the time and temperature interdependence which is characteristic for mechanical properties of polymers. Based on the assumption that polymers behave similarly at high strain rates and at low temperatures, a temperature-dominated test program is suggested, which can be used to deduce strain rate dependent material behavior at different reference temperatures. The temperature shift factor is found by means of dynamic mechanical analysis according to the WLF-equation, named after Williams, Landel and Ferry. The principle is applied to the viscoelastic properties as well as to the failure properties of the polymer. The applicability is validated with high strain rate tests.

  1. Mechanical Characterization of Nanoporous Thin Films by Nanoindentation and Laser-induced Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Chow, Gabriel

    wavelengths are micrometers in scale whereas indentation depths are usually confined to the nanometer scale. This dissertation demonstrates the effectiveness of LiSAW on both thin porous layers and rough surfaces and shows the challenges faced by nanoindentation on the same films. Zeolite thin films are studied extensively in this work as a model system because of their porous crystalline framework and enormous economic market. Many types of zeolite exist and their widely varying structures and levels of porosity present a unique opportunity for mechanical characterization. For a fully dense ZSM-5 type zeolite with wear and corrosion resistance properties, nanoindentation was used to compare its mechanical properties to industrial chromium and cadmium films. Through tribological and indentation tests, it was shown that the zeolite film possesses exceptional resilience and hardness therefore demonstrating superior wear resistance to chromium and cadmium. This also highlighted the quality of nanoindentation measurements on thick dense layers where traditional nanoindentation excels. Nanoindentation was then performed on porous and non-porous MFI zeolite films with low-k (low dielectric constant) properties. These films were softer and much thinner than the ZSM-5 coatings resulting in significant substrate effects, evidenced by inflation of the measurements from the hard silicon substrate, during indentation. Such effects were avoided with the LiSAW technique on the same films where properties were readily extracted without complications. An alternative indentation analysis method was demonstrated to produce accurate mechanical measurements in line with the LiSAW results, but the non-traditional technique requires substantial computational intensity. Thus LiSAW was proven to be an accurate and efficient means of mechanical characterization for thin porous layers. The case for LiSAW was further supported by utilizing the technique on a porous nanostructured V2O5 electrode film

  2. Mechanical characterization of diblock copolymer ``armored'' emulsion droplets

    NASA Astrophysics Data System (ADS)

    Rozairo, Damith; Croll, Andrew

    2013-03-01

    There has been an increased interest in block copolymer vesicles due to a plethora of possible application ranging from targeted drug delivery to cosmetically active agents. In this regard, understanding the physics of the block copolymer vesicle and its morphology is critical to the rational development of these technologies. As a step towards more complex vesicle structures, we describe experiments in which we carefully examine the interface and morphology of polystyrene-b-polyethyleneoxide (PS-PEO) emulsion drops. In our study, PS-PEO acts as a surfactant and at the toluene-water interface creates a monolayer, inhibiting drop recombination and minimizing interfacial energies. Our experiments are conducted in a water cell where the buoyant force is exploited to push drops against a thin sheet of mica. The shape of the drops is measured using an upright confocal microscope and compared with a Bashforth-Adams model in order to examine the mechanical response to the buoyant force. We observe unique dynamics as the drops buckle at short timescales trapping a small pocket of fluid which slowly drains away. Furthermore, the influence of polymer concentration, changes in pH and block copolymer architecture on the morphology and dynamics of the droplets is examined.

  3. Microstructural and mechanical characterization of laser deposited advanced materials

    NASA Astrophysics Data System (ADS)

    Sistla, Harihar Rakshit

    Additive manufacturing in the form of laser deposition is a unique way to manufacture near net shape metallic components from advanced materials. Rapid solidification facilitates the extension of solid solubility, compositional flexibility and decrease in micro-segregation in the melt among other advantages. The current work investigates the employment of laser deposition to fabricate the following: 1. Functionally gradient materials: This allows grading dissimilar materials compositionally to tailor specific properties of both these materials into a single component. Specific compositions of the candidate materials (SS 316, Inconel 625 and Ti64) were blended and deposited to study the brittle intermetallics reported in these systems. 2. High entropy alloys: These are multi- component alloys with equiatomic compositions of 5 or more elements. The ratio of Al to Ni was decreased to observe the transition of solid solution from a BCC to an FCC crystal structure in the AlFeCoCrNi system. 3. Structurally amorphous alloys: Zr-based metallic glasses have been reported to have high glass forming ability. These alloys have been laser deposited so as to rapidly cool them from the melt into an amorphous state. Microstructural analysis and X-ray diffraction were used to study the phase formation, and hardness was measured to estimate the mechanical properties.

  4. Structural and Mechanical Characterization of Thermally Treated Conch Shells

    NASA Astrophysics Data System (ADS)

    Li, Haoze; Jin, Dalai; Li, Rui; Li, Xiaodong

    2015-04-01

    Seashells are natural nanocomposite armors with an exceptional combination of strength and toughness. Conch shells have a crossed-lamellar structure constructed with aragonite and biopolymer. Thermal treatment uncovered a nanoscale hierarchical structure in shell's third-order lamellae. Individual third-order lamellae were found to consist of aragonite nanoparticles cemented with biopolymer. The biopolymer renders conch shells joint increase in strength, ductility and fracture energy, and especially the fracture energy increase is more remarkable. The shell's aragonite transformed to calcite at 407°C and lime at 607°C. The shell's biopolymer was burned out in the thermal treatment at 310°C, leading to 1.7% mass loss. The crossed-lamellar structure remained in the 500°C thermally treated shell. The 900°C heat treatment destroyed the crossed-lamellar architecture completely. Thermal treatment resulted in reduction in mechanical properties due to the joint effects—burning out of biopolymer, phase transformation, and destruction of structural integrity. The findings advance our understanding of conch shell's architecture and provide new guidelines for the design and manufacturing of bio-inspired materials.

  5. Mechanical characterization of Co/Cu multilayered nanowires.

    PubMed

    Jiménez-Sáez, J C; Pérez-Martin, A M C; Jiménez-Rodríguez, J J

    2012-06-01

    The mechanical deformation properties of (110) Co/Cu multilayered nanowires were studied by Molecular Dynamics under uniaxial tensile and compressive stresses. The potential of the immiscible CoCu system was modeled by a second-moment tight-binding approximation. Stress-strain curves at different conditions were obtained and the elastic modulus and yield stress were analyzed. Both magnitudes are approximately independent of the strain rate, except at high values. They decrease linearly with increasing temperature. Below a volume-to-surface-area ratio, their values drastically increase and diverge from the bulk values. If the thickness of the Cu sublayers increases, the Young's modulus and yield stress decrease, although in a different way. The elastic modulus decreases linearly and the yield stress falls steeply whenever Cu is present in the nanowire, since the lattice distortion takes place firstly and fundamentally in Cu sublayers. The change in the axial stress at the interface is little significant on average and rather localized. Unlike, the transverse stress has a non-uniform distribution along the Cu sublayer, especially at the yield point. The Young's modulus and yield stress are larger in tension than in compression. Under tensile stress, nanowires slip via partial dislocation nucleation and propagation. Unlike, compressive deformation of nanowires takes place via both partial and full dislocations.

  6. Yang-Yang equilibrium statistical mechanics: A brilliant method

    NASA Astrophysics Data System (ADS)

    Guan, Xi-Wen; Chen, Yang-Yang

    2016-03-01

    Yang and Yang in 1969 [J. Math. Phys. 10, 1115 (1969)] for the first time proposed a rigorous approach to the thermodynamics of the one-dimensional system of bosons with a delta-function interaction. This paper was a breakthrough in exact statistical mechanics, after Yang [Phys. Rev. Lett. 19, 1312 (1967)] published his seminal work on the discovery of the Yang-Baxter equation in 1967. Yang and Yang’s brilliant method yields significant applications in a wide range of fields of physics. In this paper, we briefly introduce the method of the Yang-Yang equilibrium statistical mechanics and demonstrate a fundamental application of the Yang-Yang method for the study of thermodynamics of the Lieb-Liniger model with strong and weak interactions in a whole temperature regime. We also consider the equivalence between the Yang-Yang’s thermodynamic Bethe ansatz equation and the thermodynamics of the ideal gas with the Haldane’s generalized exclusion statistics.

  7. Yang-Yang Equilibrium Statistical Mechanics: A Brilliant Method

    NASA Astrophysics Data System (ADS)

    Guan, Xi-Wen; Chen, Yang-Yang

    C. N. Yang and C. P. Yang in 1969 (J. Math. Phys. 10, 1115 (1969)) for the first time proposed a rigorous approach to the thermodynamics of the one-dimensional system of bosons with a delta-function interaction. This paper was a breakthrough in exact statistical mechanics, after C. N. Yang (Phys. Rev. Lett. 19, 1312 (1967)) published his seminal work on the discovery of the Yang-Baxter equation in 1967. Yang and Yang's brilliant method yields significant applications in a wide range of fields of physics. In this communication, we briefly introduce the method of the Yang-Yang equilibrium statistical mechanics and demonstrate a fundamental application of the Yang-Yang method for the study of thermodynamics of the Lieb-Liniger model with strong and weak interactions in a whole temperature regime. We also consider the equivalence between the Yang-Yang's thermodynamic Bethe ansatz equation and the thermodynamics of the ideal gas with the Haldane's generalized exclusion statistics.

  8. Characterization of optical traps using on-line estimation methods

    NASA Astrophysics Data System (ADS)

    Gorman, Jason J.; LeBrun, Thomas W.; Balijepalli, Arvind; Gagnon, Cedric; Lee, Dongjin

    2005-08-01

    System identification methods are presented for the estimation of the characteristic frequency of an optically trapped particle. These methods are more amenable to automated on-line measurements and are believed to be less prone to erroneous results compared to techniques based on thermal noise analysis. Optical tweezers have been shown to be an effective tool in measuring the complex interactions of micro-scale particles with piconewton resolution. However, the accuracy of the measurements depends heavily on knowledge of the trap stiffness and the viscous drag coefficient for the trapped particle. The most commonly referenced approach to measuring the trap stiffness is the power spectrum method, which provides the characteristic frequency for the trap based on the roll-off of the frequency response of a trapped particle excited by thermal fluctuations. However, the reliance on thermal fluctuations to excite the trapping dynamics results in a large degree of uncertainty in the estimated characteristic frequency. These issues are addressed by two parameter estimation methods which can be implemented on-line for fast trap characterization. The first is a frequency domain system identification approach which combines swept-sine frequency testing with a least-squares transfer function fitting algorithm. The second is a recursive least-squares parameter estimation scheme. The algorithms and results from simulation studies are discussed in detail.

  9. Amyloid oligomer structure characterization from simulations: A general method

    SciTech Connect

    Nguyen, Phuong H.; Li, Mai Suan

    2014-03-07

    Amyloid oligomers and plaques are composed of multiple chemically identical proteins. Therefore, one of the first fundamental problems in the characterization of structures from simulations is the treatment of the degeneracy, i.e., the permutation of the molecules. Second, the intramolecular and intermolecular degrees of freedom of the various molecules must be taken into account. Currently, the well-known dihedral principal component analysis method only considers the intramolecular degrees of freedom, and other methods employing collective variables can only describe intermolecular degrees of freedom at the global level. With this in mind, we propose a general method that identifies all the structures accurately. The basis idea is that the intramolecular and intermolecular states are described in terms of combinations of single-molecule and double-molecule states, respectively, and the overall structures of oligomers are the product basis of the intramolecular and intermolecular states. This way, the degeneracy is automatically avoided. The method is illustrated on the conformational ensemble of the tetramer of the Alzheimer's peptide Aβ{sub 9−40}, resulting from two atomistic molecular dynamics simulations in explicit solvent, each of 200 ns, starting from two distinct structures.

  10. Amyloid oligomer structure characterization from simulations: A general method

    NASA Astrophysics Data System (ADS)

    Nguyen, Phuong H.; Li, Mai Suan; Derreumaux, Philippe

    2014-03-01

    Amyloid oligomers and plaques are composed of multiple chemically identical proteins. Therefore, one of the first fundamental problems in the characterization of structures from simulations is the treatment of the degeneracy, i.e., the permutation of the molecules. Second, the intramolecular and intermolecular degrees of freedom of the various molecules must be taken into account. Currently, the well-known dihedral principal component analysis method only considers the intramolecular degrees of freedom, and other methods employing collective variables can only describe intermolecular degrees of freedom at the global level. With this in mind, we propose a general method that identifies all the structures accurately. The basis idea is that the intramolecular and intermolecular states are described in terms of combinations of single-molecule and double-molecule states, respectively, and the overall structures of oligomers are the product basis of the intramolecular and intermolecular states. This way, the degeneracy is automatically avoided. The method is illustrated on the conformational ensemble of the tetramer of the Alzheimer's peptide Aβ9-40, resulting from two atomistic molecular dynamics simulations in explicit solvent, each of 200 ns, starting from two distinct structures.

  11. Impulse response method for characterization of echogenic liposomes.

    PubMed

    Raymond, Jason L; Luan, Ying; van Rooij, Tom; Kooiman, Klazina; Huang, Shao-Ling; McPherson, David D; Versluis, Michel; de Jong, Nico; Holland, Christy K

    2015-04-01

    An optical characterization method is presented based on the use of the impulse response to characterize the damping imparted by the shell of an air-filled ultrasound contrast agent (UCA). The interfacial shell viscosity was estimated based on the unforced decaying response of individual echogenic liposomes (ELIP) exposed to a broadband acoustic impulse excitation. Radius versus time response was measured optically based on recordings acquired using an ultra-high-speed camera. The method provided an efficient approach that enabled statistical measurements on 106 individual ELIP. A decrease in shell viscosity, from 2.1 × 10(-8) to 2.5 × 10(-9) kg/s, was observed with increasing dilatation rate, from 0.5 × 10(6) to 1 × 10(7) s(-1). This nonlinear behavior has been reported in other studies of lipid-shelled UCAs and is consistent with rheological shear-thinning. The measured shell viscosity for the ELIP formulation used in this study [κs = (2.1 ± 1.0) × 10(-8) kg/s] was in quantitative agreement with previously reported values on a population of ELIP and is consistent with other lipid-shelled UCAs. The acoustic response of ELIP therefore is similar to other lipid-shelled UCAs despite loading with air instead of perfluorocarbon gas. The methods described here can provide an accurate estimate of the shell viscosity and damping for individual UCA microbubbles.

  12. Mechanical characterization of composite repairs for fiberglass wind turbine blades

    NASA Astrophysics Data System (ADS)

    Chawla, Tanveer Singh

    While in service, wind turbine blades experience various modes of loading. An example is impact loading in the form of hail or bird strikes, which might lead to localized damage or formation of cracks a few plies deep on the blade surface. One of the methods to conduct repairs on wind turbine blades that are damaged while in service is hand lay-up of the repair part after grinding out the damaged portion and some of its surrounding area. The resin used for such repairs usually differs from the parent plate resin in composition and properties such as gel time, viscosity, etc. As a result the properties of the repaired parts are not the same as that of the undamaged blades. Subsequent repetitive loading can be detrimental to weak repairs to such an extent so as to cause delamination at the parent-repair bondline causing the repairs to eventually fall off the blade. Thus the strength and toughness of the repair are of critical importance. Initial part of this work consists of an effort to increase repair strength by identifying an optimum hand layup repair resin for fiberglass wind turbine blades currently being manufactured by a global company. As delamination of the repair from the parent blade is a major concern and unidirectional glass fibers along with a polymer resin are used to manufacture blades under consideration, testing method detailed in ASTM D 5528 (Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites) was followed to determine propagation fracture toughness values of the prospective vinyl ester repair resin candidates. These values were compared to those for a base polyester repair resin used by the company. Experimental procedure and results obtained from the above mentioned testing using double cantilever beam (DCB) specimens are detailed. Three new repair resins were shortlisted through mode I testing. It was also found that variation in the depth of the ground top ply of the parent part

  13. A density-based adaptive quantum mechanical/molecular mechanical method.

    PubMed

    Waller, Mark P; Kumbhar, Sadhana; Yang, Jack

    2014-10-20

    We present a density-based adaptive quantum mechanical/molecular mechanical (DBA-QM/MM) method, whereby molecules can switch layers from the QM to the MM region and vice versa. The adaptive partitioning of the molecular system ensures that the layer assignment can change during the optimization procedure, that is, on the fly. The switch from a QM molecule to a MM molecule is determined if there is an absence of noncovalent interactions to any atom of the QM core region. The presence/absence of noncovalent interactions is determined by analysis of the reduced density gradient. Therefore, the location of the QM/MM boundary is based on physical arguments, and this neatly removes some empiricism inherent in previous adaptive QM/MM partitioning schemes. The DBA-QM/MM method is validated by using a water-in-water setup and an explicitly solvated L-alanyl-L-alanine dipeptide. PMID:24954803

  14. A density-based adaptive quantum mechanical/molecular mechanical method.

    PubMed

    Waller, Mark P; Kumbhar, Sadhana; Yang, Jack

    2014-10-20

    We present a density-based adaptive quantum mechanical/molecular mechanical (DBA-QM/MM) method, whereby molecules can switch layers from the QM to the MM region and vice versa. The adaptive partitioning of the molecular system ensures that the layer assignment can change during the optimization procedure, that is, on the fly. The switch from a QM molecule to a MM molecule is determined if there is an absence of noncovalent interactions to any atom of the QM core region. The presence/absence of noncovalent interactions is determined by analysis of the reduced density gradient. Therefore, the location of the QM/MM boundary is based on physical arguments, and this neatly removes some empiricism inherent in previous adaptive QM/MM partitioning schemes. The DBA-QM/MM method is validated by using a water-in-water setup and an explicitly solvated L-alanyl-L-alanine dipeptide.

  15. A Method for Quantifying Mechanical Properties of Tissue following Viral Infection

    PubMed Central

    Lam, Vy; Bigley, Tarin; Terhune, Scott S.; Wakatsuki, Tetsuro

    2012-01-01

    Viral infection and replication involves the reorganization of the actin network within the host cell. Actin plays a central role in the mechanical properties of cells. We have demonstrated a method to quantify changes in mechanical properties of fabricated model three-dimensional (3D) connective tissue following viral infection. Using this method, we have characterized the impact of infection by the human herpesvirus, cytomegalovirus (HCMV). HCMV is a member of the herpesvirus family and infects a variety of cell types including fibroblasts. In the body, fibroblasts are necessary for maintaining connective tissue and function by creating mechanical force. Using this 3D connective tissue model, we observed that infection disrupted the cell’s ability to generate force and reduced the cumulative contractile force of the tissue. The addition of HCMV viral particles in the absence of both viral gene expression and DNA replication was sufficient to disrupt tissue function. We observed that alterations of the mechanical properties are, in part, due to a disruption of the underlying complex actin microfilament network established by the embedded fibroblasts. Finally, we were able to prevent HCMV-mediated disruption of tissue function by the addition of human immune globulin against HCMV. This study demonstrates a method to quantify the impact of viral infection on mechanical properties which are not evident using conventional cell culture systems. PMID:22870300

  16. Efficient hybrid-symbolic methods for quantum mechanical calculations

    NASA Astrophysics Data System (ADS)

    Scott, T. C.; Zhang, Wenxing

    2015-06-01

    We present hybrid symbolic-numerical tools to generate optimized numerical code for rapid prototyping and fast numerical computation starting from a computer algebra system (CAS) and tailored to any given quantum mechanical problem. Although a major focus concerns the quantum chemistry methods of H. Nakatsuji which has yielded successful and very accurate eigensolutions for small atoms and molecules, the tools are general and may be applied to any basis set calculation with a variational principle applied to its linear and non-linear parameters.

  17. Algebraic multigrid methods applied to problems in computational structural mechanics

    NASA Technical Reports Server (NTRS)

    Mccormick, Steve; Ruge, John

    1989-01-01

    The development of algebraic multigrid (AMG) methods and their application to certain problems in structural mechanics are described with emphasis on two- and three-dimensional linear elasticity equations and the 'jacket problems' (three-dimensional beam structures). Various possible extensions of AMG are also described. The basic idea of AMG is to develop the discretization sequence based on the target matrix and not the differential equation. Therefore, the matrix is analyzed for certain dependencies that permit the proper construction of coarser matrices and attendant transfer operators. In this manner, AMG appears to be adaptable to structural analysis applications.

  18. Mechanical characterization of densely welded Apache Leap tuff

    SciTech Connect

    Fuenkajorn, K.; Daemen, J.J.K.

    1991-06-01

    An empirical criterion is formulated to describe the compressive strength of the densely welded Apache Leap tuff. The criterion incorporates the effects of size, L/D ratio, loading rate and density variations. The criterion improves the correlation between the test results and the failure envelope. Uniaxial and triaxial compressive strengths, Brazilian tensile strength and elastic properties of the densely welded brown unit of the Apache Leap tuff have been determined using the ASTM standard test methods. All tuff samples are tested dry at room temperature (22 {plus_minus} 2{degrees}C), and have the core axis normal to the flow layers. The uniaxial compressive strength is 73.2 {plus_minus} 16.5 MPa. The Brazilian tensile strength is 5.12 {plus_minus} 1.2 MPa. The Young`s modulus and Poisson`s ratio are 22.6 {plus_minus} 5.7 GPa and 0.20 {plus_minus} 0.03. Smoothness and perpendicularity do not fully meet the ASTM requirements for all samples, due to the presence of voids and inclusions on the sample surfaces and the sample preparation methods. The investigations of loading rate, L/D radio and cyclic loading effects on the compressive strength and of the size effect on the tensile strength are not conclusive. The Coulomb strength criterion adequately represents the failure envelope of the tuff under confining pressures from 0 to 62 MPa. Cohesion and internal friction angle are 16 MPa and 43 degrees. The brown unit of the Apache Leap tuff is highly heterogeneous as suggested by large variations of the test results. The high intrinsic variability of the tuff is probably caused by the presence of flow layers and by nonuniform distributions of inclusions, voids and degree of welding. Similar variability of the properties has been found in publications on the Topopah Spring tuff at Yucca Mountain. 57 refs., 32 figs., 29 tabs.

  19. Spectroscopic Methods of Remote Sensing for Vegetation Characterization

    NASA Astrophysics Data System (ADS)

    Kokaly, R. F.

    2013-12-01

    Imaging spectroscopy (IS), often referred to as hyperspectral remote sensing, is one of the latest innovations in a very long history of spectroscopy. Spectroscopic methods have been used for understanding the composition of the world around us, as well as, the solar system and distant parts of the universe. Continuous sampling of the electromagnetic spectrum in narrow bands is what separates IS from previous forms of remote sensing. Terrestrial imaging spectrometers often have hundreds of channels that cover the wavelength range of reflected solar radiation, including the visible, near-infrared (NIR), and shortwave infrared (SWIR) regions. In part due to the large number of channels, a wide variety of methods have been applied to extract information from IS data sets. These can be grouped into several broad classes, including: multi-channel indices, statistical procedures, full spectrum mixing models, and spectroscopic methods. Spectroscopic methods carry on the more than 150 year history of laboratory-based spectroscopy applied to material identification and characterization. Spectroscopic methods of IS relate the positions and shapes of spectral features resolved by airborne and spaceborne sensors to the biochemical and physical composition of vegetation in a pixel. The chlorophyll 680nm, water 980nm, water 1200nm, SWIR 1700nm, SWIR 2100nm, and SWIR 2300nm features have been the subject of study. Spectral feature analysis (SFA) involves isolating such an absorption feature using continuum removal (CR) and calculating descriptors of the feature, such as center position, depth, width, area, and asymmetry. SFA has been applied to quantify pigment and non-pigment biochemical concentrations in leaves, plants, and canopies. Spectral feature comparison (SFC) utilizes CR of features in each pixel's spectrum and linear regression with continuum-removed features in reference spectra in a library of known vegetation types to map vegetation species and communities. SFC has

  20. Insights into Protein–Ligand Interactions: Mechanisms, Models, and Methods

    PubMed Central

    Du, Xing; Li, Yi; Xia, Yuan-Ling; Ai, Shi-Meng; Liang, Jing; Sang, Peng; Ji, Xing-Lai; Liu, Shu-Qun

    2016-01-01

    Molecular recognition, which is the process of biological macromolecules interacting with each other or various small molecules with a high specificity and affinity to form a specific complex, constitutes the basis of all processes in living organisms. Proteins, an important class of biological macromolecules, realize their functions through binding to themselves or other molecules. A detailed understanding of the protein–ligand interactions is therefore central to understanding biology at the molecular level. Moreover, knowledge of the mechanisms responsible for the protein-ligand recognition and binding will also facilitate the discovery, design, and development of drugs. In the present review, first, the physicochemical mechanisms underlying protein–ligand binding, including the binding kinetics, thermodynamic concepts and relationships, and binding driving forces, are introduced and rationalized. Next, three currently existing protein-ligand binding models—the “lock-and-key”, “induced fit”, and “conformational selection”—are described and their underlying thermodynamic mechanisms are discussed. Finally, the methods available for investigating protein–ligand binding affinity, including experimental and theoretical/computational approaches, are introduced, and their advantages, disadvantages, and challenges are discussed. PMID:26821017

  1. On the Use of Accelerated Test Methods for Characterization of Advanced Composite Materials

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.

    2003-01-01

    A rational approach to the problem of accelerated testing for material characterization of advanced polymer matrix composites is discussed. The experimental and analytical methods provided should be viewed as a set of tools useful in the screening of material systems for long-term engineering properties in aerospace applications. Consideration is given to long-term exposure in extreme environments that include elevated temperature, reduced temperature, moisture, oxygen, and mechanical load. Analytical formulations useful for predictive models that are based on the principles of time-based superposition are presented. The need for reproducible mechanisms, indicator properties, and real-time data are outlined as well as the methodologies for determining specific aging mechanisms.

  2. High Pressure NMR Methods for Characterizing Functional Substates of Proteins.

    PubMed

    Kalbitzer, Hans Robert

    2015-01-01

    Proteins usually exist in multiple conformational states in solution. High pressure NMR spectroscopy is a well-suited method to identify these states. In addition, these states can be characterized by their thermodynamic parameters, the free enthalpies at ambient pressure, the partial molar volumes, and the partial molar compressibility that can be obtained from the analysis of the high pressure NMR data. Two main types of states of proteins exist, functional states and folding states. There is a strong link between these two types, the functional states represent essential folding states (intermediates), other folding states may have no functional meaning (optional folding states). In this chapter, this concept is tested on the Ras protein, an important proto-oncogen in humans where all substates required by theory can be identified experimentally by high pressure NMR spectroscopy. Finally, we show how these data can be used to develop allosteric inhibitors of proteins. PMID:26174382

  3. Geophysical site characterization methods -- the ``divining rods`` of the future

    SciTech Connect

    Fieber, L.L.

    1997-12-31

    Have you ever wished that you could use a ``divining rod`` to quickly and reliably define the magnitude of environmental impacts in soil or water? To the uninitiated, such ideas seem like a farfetched script from a star trek episode where a guy named Spock is walking around with a device called a tri-quarter. In realty, such approaches to site characterization have been used in the petroleum and mineral exploration industries for decades. These techniques are so reliable that they are widely used in the medical field today. Consider the value of Magnetic Resonance Imaging (MRI) and Ultrasound. Using the principles of electromagnetics, resistivity, seismology, and gravity, explorationists have successfully measured minute differences in the properties of earth materials. Using these differences, called anomalies, scientists can predict actual conditions with little or no sampling or analysis and with striking repeatability. This paper provides a plain English description of some common geophysical methods in use today. The general principles and specific applications of several methods will be described. The obvious and not-so-obvious limitations of those methods will be examined in detail.

  4. A method for characterizing the stability of light sources.

    PubMed

    Sanvito, Tiziano; Zocca, Francesca; Pullia, Alberto; Potenza, Marco

    2013-10-21

    We describe a method for measuring small fluctuations in the intensity of a laser source with a resolution of 10⁻⁴. The current signal generated by a PIN diode is passed to a front-end electronics that discriminates the AC from the DC components, which are physically separated and propagated along circuit paths with different gains. The gain long the AC signal path is set one order of magnitude larger than that along the DC signal path in such a way to optimize the measurement dynamic range. We then derive the relative fluctuation signal by normalizing the input-referred AC signal component to its input-referred DC counterpart. In this way the fluctuation of the optical signal waveform relative to the mean power of the laser is obtained. A "Noise-Scattering-Pattern method" and a "Signal-Power-Spectrum method" are then used to analyze the intensity fluctuations from three different solid-state lasers. This is a powerful tool for the characterization of the intensity stability of lasers. Applications are discussed. PMID:24150307

  5. An electromagnetic induction method for underground target detection and characterization

    SciTech Connect

    Bartel, L.C.; Cress, D.H.

    1997-01-01

    An improved capability for subsurface structure detection is needed to support military and nonproliferation requirements for inspection and for surveillance of activities of threatening nations. As part of the DOE/NN-20 program to apply geophysical methods to detect and characterize underground facilities, Sandia National Laboratories (SNL) initiated an electromagnetic induction (EMI) project to evaluate low frequency electromagnetic (EM) techniques for subsurface structure detection. Low frequency, in this case, extended from kilohertz to hundreds of kilohertz. An EMI survey procedure had already been developed for borehole imaging of coal seams and had successfully been applied in a surface mode to detect a drug smuggling tunnel. The SNL project has focused on building upon the success of that procedure and applying it to surface and low altitude airborne platforms. Part of SNL`s work has focused on improving that technology through improved hardware and data processing. The improved hardware development has been performed utilizing Laboratory Directed Research and Development (LDRD) funding. In addition, SNL`s effort focused on: (1) improvements in modeling of the basic geophysics of the illuminating electromagnetic field and its coupling to the underground target (partially funded using LDRD funds) and (2) development of techniques for phase-based and multi-frequency processing and spatial processing to support subsurface target detection and characterization. The products of this project are: (1) an evaluation of an improved EM gradiometer, (2) an improved gradiometer concept for possible future development, (3) an improved modeling capability, (4) demonstration of an EM wave migration method for target recognition, and a demonstration that the technology is capable of detecting targets to depths exceeding 25 meters.

  6. Dynamic characterization of satellite components through non-invasive methods

    SciTech Connect

    Mullins, Joshua G; Wiest, Heather K; Mascarenas, David D. L.; Macknelly, David

    2010-10-21

    The rapid deployment of satellites is hindered by the need to flight-qualify their components and the resulting mechanical assembly. Conventional methods for qualification testing of satellite components are costly and time consuming. Furthermore, full-scale vehicles must be subjected to launch loads during testing. This harsh testing environment increases the risk of component damage during qualification. The focus of this research effort was to assess the performance of Structural Health Monitoring (SHM) techniques as a replacement for traditional vibration testing. SHM techniques were applied on a small-scale structure representative of a responsive satellite. The test structure consisted of an extruded aluminum space-frame covered with aluminum shear plates, which was assembled using bolted joints. Multiple piezoelectric patches were bonded to the test structure and acted as combined actuators and sensors. Various methods of SHM were explored including impedance-based health monitoring, wave propagation, and conventional frequency response functions. Using these methods in conjunction with finite element modelling, the dynamic properties of the test structure were established and areas of potential damage were identified and localized. The adequacy of the results from each SHM method was validated by comparison to results from conventional vibration testing.

  7. Dynamic characterization of satellite components through non-invasive methods

    SciTech Connect

    Mullens, Joshua G; Wiest, Heather K; Mascarenas, David D; Park, Gyuhae

    2011-01-24

    The rapid deployment of satellites is hindered by the need to flight-qualify their components and the resulting mechanical assembly. Conventional methods for qualification testing of satellite components are costly and time consuming. Furthermore, full-scale vehicles must be subjected to launch loads during testing. The harsh testing environment increases the risk of component damage during qualification. The focus of this research effort was to assess the performance of Structural Health Monitoring (SHM) techniques as replacement for traditional vibration testing. SHM techniques were applied on a small-scale structure representative of a responsive satellite. The test structure consisted of an extruded aluminum space-frame covered with aluminum shear plates, which was assembled using bolted joints. Multiple piezoelectric patches were bonded to the test structure and acted as combined actuators and sensors. Various methods of SHM were explored including impedance-based health monitoring, wave propagation, and conventional frequency response functions. Using these methods in conjunction with finite element modeling, the dynamic properties of the test structure were established and areas of potential damage were identified and localized. The adequacy of the results from each SHM method was validated by comparison to results from conventional vibration testing.

  8. Integrated Force Method Solution to Indeterminate Structural Mechanics Problems

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.; Halford, Gary R.

    2004-01-01

    Strength of materials problems have been classified into determinate and indeterminate problems. Determinate analysis primarily based on the equilibrium concept is well understood. Solutions of indeterminate problems required additional compatibility conditions, and its comprehension was not exclusive. A solution to indeterminate problem is generated by manipulating the equilibrium concept, either by rewriting in the displacement variables or through the cutting and closing gap technique of the redundant force method. Compatibility improvisation has made analysis cumbersome. The authors have researched and understood the compatibility theory. Solutions can be generated with equal emphasis on the equilibrium and compatibility concepts. This technique is called the Integrated Force Method (IFM). Forces are the primary unknowns of IFM. Displacements are back-calculated from forces. IFM equations are manipulated to obtain the Dual Integrated Force Method (IFMD). Displacement is the primary variable of IFMD and force is back-calculated. The subject is introduced through response variables: force, deformation, displacement; and underlying concepts: equilibrium equation, force deformation relation, deformation displacement relation, and compatibility condition. Mechanical load, temperature variation, and support settling are equally emphasized. The basic theory is discussed. A set of examples illustrate the new concepts. IFM and IFMD based finite element methods are introduced for simple problems.

  9. Frequency-domain multiscale quantum mechanics/electromagnetics simulation method

    SciTech Connect

    Meng, Lingyi; Yin, Zhenyu; Yam, ChiYung E-mail: ghc@everest.hku.hk; Koo, SiuKong; Chen, GuanHua E-mail: ghc@everest.hku.hk; Chen, Quan; Wong, Ngai

    2013-12-28

    A frequency-domain quantum mechanics and electromagnetics (QM/EM) method is developed. Compared with the time-domain QM/EM method [Meng et al., J. Chem. Theory Comput. 8, 1190–1199 (2012)], the newly developed frequency-domain QM/EM method could effectively capture the dynamic properties of electronic devices over a broader range of operating frequencies. The system is divided into QM and EM regions and solved in a self-consistent manner via updating the boundary conditions at the QM and EM interface. The calculated potential distributions and current densities at the interface are taken as the boundary conditions for the QM and EM calculations, respectively, which facilitate the information exchange between the QM and EM calculations and ensure that the potential, charge, and current distributions are continuous across the QM/EM interface. Via Fourier transformation, the dynamic admittance calculated from the time-domain and frequency-domain QM/EM methods is compared for a carbon nanotube based molecular device.

  10. Characterizing the single-walled carbon nanotube dispersions: Novel methods development and their applications

    NASA Astrophysics Data System (ADS)

    Xiao, Zhiwei

    Single-walled carbon nanotubes (SWCNTs) thin films exhibit great potential in various applications thanks to their extraordinary physical and mechanical properties. However, to fully take advantage of their superior properties there are still several barriers to be overcome. On one hand, SWCNTs are rarely found as isolated individual tubes, which makes them very difficult to exfoliate and disperse. On the other hand, SWCNTs are not with perfect defect-free chemical structure, which can severely degrade the intrinsic properties of the pristine SWCNTs and thus deteriorate the various SWCNT based applications. In many cases, when people perform chemical functionalization to SWCNTs, they have to find a balance between the improvement of the dispersability and compatibility of SWCNTs and the degradation of the intrinsic properties of SWCNTs. Therefore, it is crucial to have an easy-to-use and reliable way to characterize and quantify the corresponding structural information of SWCNT in dispersion such as bundle size, bundling state, defect density, etc. Two different techniques for in-situ structural characterization of SWCNTs in dispersion have been developed. The Preparative Ultracentrifuge Method (PUM) combined with dynamic light scattering (DLS) technique provides us an approach to investigate the bulk averaged SWCNT bundle size in dispersion. The Simultaneous Raman Scattering and Photoluminescence (SRSPL) technique allows us to study the bundling state/degree of exfoliation of SWCNT in dispersion. Based on the 1D exciton diffusion model, we can also use the SRSPL technique to estimate the defect density of SWCNTs in dispersion. The application of PUM and SRSPL has been demonstrated in studying the structural changes of SWCNT dispersion under different processing (sonication and ultracetrifugation) conditions. It revealed the exfoliation mechanism of SWCNT under sonication technique. Moreover, the developed PUM characterization techniques were further applied to

  11. Recombination in viruses: mechanisms, methods of study, and evolutionary consequences.

    PubMed

    Pérez-Losada, Marcos; Arenas, Miguel; Galán, Juan Carlos; Palero, Ferran; González-Candelas, Fernando

    2015-03-01

    Recombination is a pervasive process generating diversity in most viruses. It joins variants that arise independently within the same molecule, creating new opportunities for viruses to overcome selective pressures and to adapt to new environments and hosts. Consequently, the analysis of viral recombination attracts the interest of clinicians, epidemiologists, molecular biologists and evolutionary biologists. In this review we present an overview of three major areas related to viral recombination: (i) the molecular mechanisms that underlie recombination in model viruses, including DNA-viruses (Herpesvirus) and RNA-viruses (Human Influenza Virus and Human Immunodeficiency Virus), (ii) the analytical procedures to detect recombination in viral sequences and to determine the recombination breakpoints, along with the conceptual and methodological tools currently used and a brief overview of the impact of new sequencing technologies on the detection of recombination, and (iii) the major areas in the evolutionary analysis of viral populations on which recombination has an impact. These include the evaluation of selective pressures acting on viral populations, the application of evolutionary reconstructions in the characterization of centralized genes for vaccine design, and the evaluation of linkage disequilibrium and population structure. PMID:25541518

  12. Insights into the Thiamine Diphosphate Enzyme Activation Mechanism: Computational Model for Transketolase Using a Quantum Mechanical/Molecular Mechanical Method.

    PubMed

    Nauton, Lionel; Hélaine, Virgil; Théry, Vincent; Hecquet, Laurence

    2016-04-12

    We propose the first computational model for transketolase (TK), a thiamine diphosphate (ThDP)-dependent enzyme, using a quantum mechanical/molecular mechanical method on the basis of crystallographic TK structures from yeast and Escherichia coli, together with experimental kinetic data reported in the literature with wild-type and mutant TK. This model allowed us to define a new route for ThDP activation in the enzyme environment. We evidenced a strong interaction between ThDP and Glu418B of the TK active site, itself stabilized by Glu162A. The crucial point highlighted here is that deprotonation of ThDP C2 is not performed by ThDP N4' as reported in the literature, but by His481B, involving a HOH688A molecule bridge. Thus, ThDP N4' is converted from an amino form to an iminium form, ensuring the stabilization of the C2 carbanion or carbene. Finally, ThDP activation proceeds via an intermolecular process and not by an intramolecular one as reported in the literature. More generally, this proposed ThDP activation mechanism can be applied to some other ThDP-dependent enzymes and used to define the entire TK mechanism with donor and acceptor substrates more accurately.

  13. Quantum mechanical approaches to in silico enzyme characterization and drug design

    SciTech Connect

    Nilmeier, J P; Fattebert, J L; Jacobson, M P; Kalyanaraman, C

    2012-01-17

    The astonishing, exponentially increasing rates of genome sequencing has led to one of the most significant challenges for the biological and computational sciences in the 21st century: assigning the likely functions of the encoded proteins. Enzymes represent a particular challenge, and a critical one, because the universe of enzymes is likely to contain many novel functions that may be useful for synthetic biology, or as drug targets. Current approaches to protein annotation are largely based on bioinformatics. At the simplest level, this annotation involves transferring the annotations of characterized enzymes to related sequences. In practice, however, there is no simple, sequence based criterion for transferring annotations, and bioinformatics alone cannot propose new enzymatic functions. Structure-based computational methods have the potential to address these limitations, by identifying potential substrates of enzymes, as we and others have shown. One successful approach has used in silico 'docking' methods, more commonly applied in structure-based drug design, to identify possible metabolite substrates. A major limitation of this approach is that it only considers substrate binding, and does not directly assess the potential of the enzyme to catalyze a particular reaction using a particular substrate. That is, substrate binding affinity is necessary but not sufficient to assign function. A reaction profile is ultimately what is needed for a more complete quantitative description of function. To address this rather fundamental limitation, they propose to use quantum mechanical methods to explicitly compute transition state barriers that govern the rates of catalysis. Although quantum mechanical, and mixed quantum/classical (QM/MM), methods have been used extensively to investigate enzymatic reactions, the focus has been primarily on elucidating complex reaction mechanisms. Here, the key catalytic steps are known, and they use these methods quantify substrate

  14. Reactive molecular dynamics of network polymers: Generation, characterization and mechanical properties

    NASA Astrophysics Data System (ADS)

    Shankar, Chandrashekar

    The goal of this research was to gain a fundamental understanding of the properties of networks created by the ring opening metathesis polymerization (ROMP) of dicyclopentadiene (DCPD) used in self-healing materials. To this end we used molecular simulation methods to generate realistic structures of DCPD networks, characterize their structures, and determine their mechanical properties. Density functional theory (DFT) calculations, complemented by structural information derived from molecular dynamics simulations were used to reconstruct experimental Raman spectra and differential scanning calorimetry (DSC) data. We performed coarse-grained simulations comparing networks generated via the ROMP reaction process and compared them to those generated via a RANDOM process, which led to the fundamental realization that the polymer topology has a unique influence on the network properties. We carried out fully atomistic simulations of DCPD using a novel algorithm for recreating ROMP reactions of DCPD molecules. Mechanical properties derived from these atomistic networks are in excellent agreement with those obtained from coarse-grained simulations in which interactions between nodes are subject to angular constraints. This comparison provides self-consistent validation of our simulation results and helps to identify the level of detail necessary for the coarse-grained interaction model. Simulations suggest networks can classified into three stages: fluid-like, rubber-like or glass-like delineated by two thresholds in degree of reaction alpha: The onset of finite magnitudes for the Young's modulus, alphaY, and the departure of the Poisson ration from 0.5, alphaP. In each stage the polymer exhibits a different predominant mechanical response to deformation. At low alpha < alphaY it flows. At alpha Y < alpha < alphaP the response is entropic with no change in internal energy. At alpha > alphaP the response is enthalpic change in internal energy. We developed graph theory

  15. Structure and Mechanical Characterization of DNA i-Motif Nanowires by Molecular Dynamics Simulation

    PubMed Central

    Singh, Raghvendra Pratap; Blossey, Ralf; Cleri, Fabrizio

    2013-01-01

    We studied the structure and mechanical properties of DNA i-motif nanowires by means of molecular dynamics computer simulations. We built up to 230 nm-long nanowires, based on a repeated TC5 sequence from crystallographic data, fully relaxed and equilibrated in water. The unusual C⋅C+ stacked structure, formed by four ssDNA strands arranged in an intercalated tetramer, is here fully characterized both statically and dynamically. By applying stretching, compression, and bending deformations with the steered molecular dynamics and umbrella sampling methods, we extract the apparent Young’s and bending moduli of the nanowire, as well as estimates for the tensile strength and persistence length. According to our results, the i-motif nanowire shares similarities with structural proteins, as far as its tensile stiffness, but is closer to nucleic acids and flexible proteins, as far as its bending rigidity is concerned. Furthermore, thanks to its very thin cross section, the apparent tensile toughness is close to that of a metal. Besides their yet to be clarified biological significance, i-motif nanowires may qualify as interesting candidates for nanotechnology templates, due to such outstanding mechanical properties. PMID:24359754

  16. Mechanical characterization of bone anchors used with a bone-attached, parallel robot for skull surgery.

    PubMed

    Kobler, Jan-Philipp; Prielozny, Lenka; Lexow, G Jakob; Rau, Thomas S; Majdani, Omid; Ortmaier, Tobias

    2015-05-01

    Bone-attached robots and microstereotactic frames, intended for deep brain stimulation and minimally invasive cochlear implantation, typically attach to a patient's skull via bone anchors. A rigid and reliable link between such devices and the skull is mandatory in order to fulfill the high accuracy demands of minimally invasive procedures while maintaining patient safety. In this paper, a method is presented to experimentally characterize the mechanical properties of the anchor-bone linkage. A custom-built universal testing machine is used to measure the pullout strength as well as the spring constants of bone anchors seated in four different bone substitutes as well as in human cranial bone. Furthermore, the angles at which forces act on the bone anchors are varied to simulate realistic conditions. Based on the experimental results, a substitute material that has mechanical properties similar to those of cranial bone is identified. The results further reveal that the pullout strength of the investigated anchor design is sufficient with respect to the proposed application. However, both the measured load capacity as well as the spring constants vary depending on the load angles. Based on these findings, an alternative bone anchor design is presented and experimentally validated. Furthermore, the results serve as a basis for stiffness simulation and optimization of bone-attached microstereotactic frames. PMID:25771430

  17. Fabrication and mechanical characterization of a polyvinyl alcohol sponge for tissue engineering applications.

    PubMed

    Karimi, A; Navidbakhsh, M; Faghihi, S

    2014-05-01

    Polyvinyl alcohol (PVA) sponges are widely used for clinical applications, including ophthalmic surgical treatments, wound healing and tissue engineering. There is, however, a lack of sufficient data on the mechanical properties of PVA sponges. In this study, a biomechanical method is used to characterize the elastic modulus, maximum stress and strain as well as the swelling ratio of a fabricated PVA sponge (P-sponge) and it is compared with two commercially available PVA sponges (CENEFOM and EYETEC). The results indicate that the elastic modulus of the P-sponge is 5.32% and 13.45% lower than that of the CENEFOM and EYETEC sponges, while it bears 4.11% more and 10.37% less stress compared to the CENEFOM and EYETEC sponges, respectively. The P-sponge shows a maximum strain of 32% more than the EYETEC sponge as well as a 26.78% higher swelling ratio, which is a significantly higher absorbency compared to the CENEFOM. It is believed that the results of this study would help for a better understanding of the extension, rupture and swelling mechanism of PVA sponges, which could lead to crucial improvement in the design and application of PVA-based materials in ophthalmic and plastic surgeries as well as wound healing and tissue engineering.

  18. Fabrication and mechanical characterization of a polyvinyl alcohol sponge for tissue engineering applications.

    PubMed

    Karimi, A; Navidbakhsh, M; Faghihi, S

    2014-05-01

    Polyvinyl alcohol (PVA) sponges are widely used for clinical applications, including ophthalmic surgical treatments, wound healing and tissue engineering. There is, however, a lack of sufficient data on the mechanical properties of PVA sponges. In this study, a biomechanical method is used to characterize the elastic modulus, maximum stress and strain as well as the swelling ratio of a fabricated PVA sponge (P-sponge) and it is compared with two commercially available PVA sponges (CENEFOM and EYETEC). The results indicate that the elastic modulus of the P-sponge is 5.32% and 13.45% lower than that of the CENEFOM and EYETEC sponges, while it bears 4.11% more and 10.37% less stress compared to the CENEFOM and EYETEC sponges, respectively. The P-sponge shows a maximum strain of 32% more than the EYETEC sponge as well as a 26.78% higher swelling ratio, which is a significantly higher absorbency compared to the CENEFOM. It is believed that the results of this study would help for a better understanding of the extension, rupture and swelling mechanism of PVA sponges, which could lead to crucial improvement in the design and application of PVA-based materials in ophthalmic and plastic surgeries as well as wound healing and tissue engineering. PMID:24259496

  19. Mechanical characterization of bone anchors used with a bone-attached, parallel robot for skull surgery.

    PubMed

    Kobler, Jan-Philipp; Prielozny, Lenka; Lexow, G Jakob; Rau, Thomas S; Majdani, Omid; Ortmaier, Tobias

    2015-05-01

    Bone-attached robots and microstereotactic frames, intended for deep brain stimulation and minimally invasive cochlear implantation, typically attach to a patient's skull via bone anchors. A rigid and reliable link between such devices and the skull is mandatory in order to fulfill the high accuracy demands of minimally invasive procedures while maintaining patient safety. In this paper, a method is presented to experimentally characterize the mechanical properties of the anchor-bone linkage. A custom-built universal testing machine is used to measure the pullout strength as well as the spring constants of bone anchors seated in four different bone substitutes as well as in human cranial bone. Furthermore, the angles at which forces act on the bone anchors are varied to simulate realistic conditions. Based on the experimental results, a substitute material that has mechanical properties similar to those of cranial bone is identified. The results further reveal that the pullout strength of the investigated anchor design is sufficient with respect to the proposed application. However, both the measured load capacity as well as the spring constants vary depending on the load angles. Based on these findings, an alternative bone anchor design is presented and experimentally validated. Furthermore, the results serve as a basis for stiffness simulation and optimization of bone-attached microstereotactic frames.

  20. Nonlinear viscoelastic characterization of polymer materials using a dynamic-mechanical methodology

    NASA Technical Reports Server (NTRS)

    Strganac, Thomas W.; Payne, Debbie Flowers; Biskup, Bruce A.; Letton, Alan

    1995-01-01

    Polymer materials retrieved from LDEF exhibit nonlinear constitutive behavior; thus the authors present a method to characterize nonlinear viscoelastic behavior using measurements from dynamic (oscillatory) mechanical tests. Frequency-derived measurements are transformed into time-domain properties providing the capability to predict long term material performance without a lengthy experimentation program. Results are presented for thin-film high-performance polymer materials used in the fabrication of high-altitude scientific balloons. Predictions based upon a linear test and analysis approach are shown to deteriorate for moderate to high stress levels expected for extended applications. Tests verify that nonlinear viscoelastic response is induced by large stresses. Hence, an approach is developed in which the stress-dependent behavior is examined in a manner analogous to modeling temperature-dependent behavior with time-temperature correspondence and superposition principles. The development leads to time-stress correspondence and superposition of measurements obtained through dynamic mechanical tests. Predictions of material behavior using measurements based upon linear and nonlinear approaches are compared with experimental results obtained from traditional creep tests. Excellent agreement is shown for the nonlinear model.

  1. Method to characterize collective impact of factors on indoor air

    NASA Astrophysics Data System (ADS)

    Szczurek, Andrzej; Maciejewska, Monika; Teuerle, Marek; Wyłomańska, Agnieszka

    2015-02-01

    One of the most important problems in studies of building environment is a description of how it is influenced by various dynamically changing factors. In this paper we characterized the joint impact of a collection of factors on indoor air quality (IAQ). We assumed that the influence is reflected in the temporal variability of IAQ parameters and may be deduced from it. The proposed method utilizes mean square displacement (MSD) analysis which was originally developed for studying the dynamics in various systems. Based on the MSD time-dependence descriptor β, we distinguished three types of the collective impact of factors on IAQ: retarding, stabilizing and promoting. We presented how the aggregated factors influence the temperature, relative humidity and CO2 concentration, as these parameters are informative for the condition of indoor air. We discovered, that during a model day there are encountered one, two or even three types of influence. The presented method allows us to study the impacts from the perspective of the dynamics of indoor air.

  2. Apparatus and method for characterizing ultrafast polarization varying optical pulses

    DOEpatents

    Smirl, A.; Trebino, R.P.

    1999-08-10

    Practical techniques are described for characterizing ultrafast potentially ultraweak, ultrashort optical pulses. The techniques are particularly suited to the measurement of signals from nonlinear optical materials characterization experiments, whose signals are generally too weak for full characterization using conventional techniques. 2 figs.

  3. Method for the Characterization of Extreme-Ultraviolet Photoresist Outgassing.

    PubMed

    Tarrio, Charles

    2009-01-01

    Outgassing from photoresists illuminated by extreme ultraviolet radiation can lead to degradation of the very expensive multilayer-coated optics in an extreme ultraviolet stepper. Reliable quantification of the various organic molecules outgassed by photoresists has been a challenging goal. We have designed a compact system for this measurement. In the first step, the total number of molecules emitted by the photoresist is measured using a pressure-rise method in a closed vacuum chamber, with the pressure measured by mechanical means using a capacitance displacement gauge. To provide identification and relative abundances, the outgassed molecules are then collected in an evacuated trap cooled by liquid nitrogen for subsequent analysis by gas chromatography with mass spectrometry. We will discuss the design and performance of the system.

  4. A short course on quantum mechanics and methods of quantization

    NASA Astrophysics Data System (ADS)

    Ercolessi, Elisa

    2015-07-01

    These notes collect the lectures given by the author to the "XXIII International Workshop on Geometry and Physics" held in Granada (Spain) in September 2014. The first part of this paper aims at introducing a mathematical oriented reader to the realm of Quantum Mechanics (QM) and then to present the geometric structures that underline the mathematical formalism of QM which, contrary to what is usually done in Classical Mechanics (CM), are usually not taught in introductory courses. The mathematics related to Hilbert spaces and Differential Geometry are assumed to be known by the reader. In the second part, we concentrate on some quantization procedures, that are founded on the geometric structures of QM — as we have described them in the first part — and represent the ones that are more operatively used in modern theoretical physics. We will discuss first the so-called Coherent State Approach which, mainly complemented by "Feynman Path Integral Technique", is the method which is most widely used in quantum field theory. Finally, we will describe the "Weyl Quantization Approach" which is at the origin of modern tomographic techniques, originally used in optics and now in quantum information theory.

  5. Site characterization for calibration of radiometric sensors using vicarious method

    NASA Astrophysics Data System (ADS)

    Parihar, Shailesh; Rathore, L. S.; Mohapatra, M.; Sharma, A. K.; Mitra, A. K.; Bhatla, R.; Singh, R. S.; Desai, Yogdeep; Srivastava, Shailendra S.

    2016-05-01

    Radiometric performances of earth observation satellite/sensors vary from ground pre-launch calibration campaign to post launch period extended to lifetime of the satellite due to launching vibrations. Therefore calibration is carried out worldwide through various methods throughout satellite lifetime. In India Indian Space Research Organization (ISRO) calibrates the sensor of Resourcesat-2 satellite by vicarious method. One of these vicarious calibration methods is the reflectance-based approach that is applied in this study for radiometric calibration of sensors on-board Resouresat-2 satellite. The results of ground-based measurement of atmospheric conditions and surface reflectance are made at Bap, Rajasthan Calibration/Validation (Cal/Val) site. Cal/Val observations at site were carried out with hyper-spectral Spectroradiometer covering spectral range of 350nm- 2500nm for radiometric characterization of the site. The Sunphotometer/Ozonometer for measuring the atmospheric parameters has also been used. The calibrated radiance is converted to absolute at-sensor spectral reflectance and Top-Of-Atmosphere (TOA) radiance. TOA radiance was computed using radiative transfer model `Second simulation of the satellite signal in the solar spectrum' (6S), which can accurately simulate the problems introduced by the presence of the atmosphere along the path from Sun to target (surface) to Sensor. The methodology for band averaged reflectance retrieval and spectral reflectance fitting process are described. Then the spectral reflectance and atmospheric parameters are put into 6S code to predict TOA radiance which compare with Resourcesat-2 radiance. Spectral signature and its reflectance ratio indicate the uniformity of the site. Thus the study proves that the selected site is suitable for vicarious calibration of sensor of Resourcesat-2. Further the study demonstrates the procedure for similar exercise for site selection for Cal/Val analysis of other satellite over India

  6. A Novel Method for Characterizing Spacesuit Mobility through Metabolic Cost

    NASA Technical Reports Server (NTRS)

    McFarland, Shane; Norcross, Jason

    2014-01-01

    Spacesuit mobility has historically been defined and characterized by a combination of range of motion and joint torque of the individual anatomical joints when performing isolated motions meant to drive that joint only in a given orthogonal plane. While this has been the standard approach for several decades, there are numerous shortcomings that suit designers and engineers would like to see rectified. First, the lack of a standardized method for collecting both range of motion and joint torque translates to many different test setups, procedures and methods of data analysis. Second, all of these previously used methods for data collection lack some degree of repeatability, even within the same test setup and the same conductor; in addition, attempts at higher fidelity data collection techniques require high overhead and cost with minimal improvement. Lastly, isolated motions in standard anatomical planes are not representative of real-world tasks that a crewmember would be performing during an EVA, be it microgravity or surface exploration based. To address these shortcomings, options are being explored within the Space Suit and Crew Survival Systems Branch to ascertain the feasibility of an alternative approach to defining mobility - one that is more repeatable, lower overhead, and more tied to functional EVA tasks. This paper serves to document the first attempt at such an alternative option - one that looks at the metabolic energy-cost of a spacesuit. In other words, can we objectively compare the mobility of a spacesuit by evaluating the metabolic cost of that suit to the wearer while performing a battery of functional EVA tasks?

  7. Characterization of heterogeneous solids via wave methods in computational microelasticity

    NASA Astrophysics Data System (ADS)

    Gonella, Stefano; Steven Greene, M.; Kam Liu, Wing

    2011-05-01

    Real solids are inherently heterogeneous bodies. While the resolution at which they are observed may be disparate from one material to the next, heterogeneities heavily affect the dynamic behavior of all microstructured solids. This work introduces a wave propagation simulation methodology, based on Mindlin's microelastic continuum theory, as a tool to dynamically characterize microstructured solids in a way that naturally accounts for their inherent heterogeneities. Wave motion represents a natural benchmark problem to appreciate the full benefits of the microelastic theory, as in high-frequency dynamic regimes do microstructural effects unequivocally elucidate themselves. Through a finite-element implementation of the microelastic continuum and the interpretation of the resulting computational multiscale wavefields, one can estimate the effect of microstructures upon the wave propagation modes, phase and group velocities. By accounting for microstructures without explicitly modeling them, the method allows reducing the computational time with respect to classical methods based on a direct numerical simulation of the heterogeneities. The numerical method put forth in this research implements the microelastic theory through a finite-element scheme with enriched super-elements featuring microstructural degrees of freedom, and implementing constitutive laws obtained by homogenizing the microstructure characteristics over material meso-domains. It is possible to envision the use of this modeling methodology in support of diverse applications, ranging from structural health monitoring in composite materials to the simulation of biological and geomaterials. From an intellectual point of view, this work offers a mathematical explanation of some of the discrepancies often observed between one-scale models and physical experiments by targeting the area of wave propagation, one area where these discrepancies are most pronounced.

  8. Quality function deployment as a mechanism for process characterization and control

    SciTech Connect

    Gillespie, L.K.

    1990-07-01

    This study was initiated to determine how well quality function deployment (QFD) was suited for process characterization. The process chosen on which to test QFD was the mechanical process of flat lapping (flat sanding) metal parts to a specified flatness or finish. This is the first use of QFD at this facility. It is the first example the authors have seen of its use for generic process characterization. It is normally used to define product needs. 13 refs., 16 figs., 5 tabs.

  9. Common Practice Lightning Strike Protection Characterization Technique to Quantify Damage Mechanisms on Composite Substrates

    NASA Technical Reports Server (NTRS)

    Szatkowski, George N.; Dudley, Kenneth L.; Koppen, Sandra V.; Ely, Jay J.; Nguyen, Truong X.; Ticatch, Larry A.; Mielnik, John J.; Mcneill, Patrick A.

    2013-01-01

    heating parameters which occur during lightning attachment. Following guidance defined in the universal common practice LSP test documents, protected and unprotected CFRP panels were evaluated at 20, 40 and 100KAmps. This report presents analyzed data demonstrating the scientific usefulness of the common practice approach. Descriptions of the common practice CFRP test articles, LSP test bed fixture, and monitoring techniques to capture the electrical, mechanical and thermal parameters during lightning attachment are presented here. Two methods of measuring the electrical currents were evaluated, inductive current probes and a newly developed fiberoptic sensor. Two mechanical displacement methods were also examined, optical laser measurement sensors and a digital imaging correlation camera system. Recommendations are provided to help users implement the common practice test approach and obtain LSP test characterizations comparable across data sets.

  10. Thermo-mechanical characterization of nano filled and fiber reinforced brake friction materials

    NASA Astrophysics Data System (ADS)

    Singh, Tej; Patnaik, Amar; Satapathy, Bhabani K.

    2013-06-01

    Brake friction materials filled with multiwalled carbon nanotubes (MWCNT) and nanoclay have been fabricated and characterize for thermo-mechanical properties. Thermo gravimetric analysis (TGA) show that the stability of the friction composites increased with increase in MWCNT and nanoclay contents. Dynamic mechanical analysis (DMA) of the composite have been carried out to characterize the storage modulus (E'), loss modulus (E″) and damping factor (Tan δ) as a function of temperature. The storage and loss modulus show a maxima at lower content of MWCNT and nanoclay.

  11. Fabrication and mechanical characterization of semi-free-standing (conjugated) polymer thin films.

    PubMed

    Martín, Jaime; Muñoz, Miguel; Encinar, Mario; Calleja, Montserrat; Martín-González, Marisol

    2014-05-13

    Polymers undergo severe low-dimensionality effects when they are confined to ultrathin films since most of the structural and dynamical processes involving polymer molecules are correlated to length scales of the order of nanometers. However, the real influence of the size limitation over such processes is often hard to identify as it is masked by interfacial effects. We present the fabrication of a new type of nanostructure consisting of poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] (PCDTBT) thin film that is held up exclusively over tips of poly(ether-ether-ketone) (PEEK) nanopillars. The fabrication method exploits the nonwetting behavior of PCDTBT onto an ordered PEEK nanopillar array when the mobility of the PCDTBT molecules is enhanced by a solvent annealing process. We use this new configuration to characterize the mechanical behavior of free-standing thin film regions, thus in the absence of underlaying substrate, by means of an atomic force microscope (AFM) setup. First, we study how the finite thickness and/or the presence of the underlying substrate influences the mechanical modulus of the material in the linear elastic regime. Moreover, we analyze deep indentations up to the rupture of the thin film, which allow for the measurement of important mechanical features of the nanoconfined polymer, such as its yield strain, the rupture strain, the bending rigidity, etc., which are impossible to investigate in thin films deposited on substrates. PMID:24111564

  12. Mechanical and interfacial characterization of laser welded Co-Cr alloy with different joint configurations

    PubMed Central

    Kokolis, John; Chakmakchi, Makdad; Theocharopoulos, Antonios; Prombonas, Anthony

    2015-01-01

    PURPOSE The mechanical and interfacial characterization of laser welded Co-Cr alloy with two different joint designs. MATERIALS AND METHODS Dumbbell cast specimens (n=30) were divided into 3 groups (R, I, K, n=10). Group R consisted of intact specimens, group I of specimens sectioned with a straight cut, and group K of specimens with a 45° bevel made at the one welding edge. The microstructure and the elemental distributions of alloy and welding regions were examined by an SEM/EDX analysis and then specimens were loaded in tension up to fracture. The tensile strength (TS) and elongation (ε) were determined and statistically compared among groups employing 1-way ANOVA, SNK multiple comparison test (α=.05) and Weibull analysis where Weibull modulus m and characteristic strength σο were identified. Fractured surfaces were imaged by a SEM. RESULTS SEM/EDX analysis showed that cast alloy consists of two phases with differences in mean atomic number contrast, while no mean atomic number was identified for welded regions. EDX analysis revealed an increased Cr and Mo content at the alloy-joint interface. All mechanical properties of group I (TS, ε, m and σο) were found inferior to R while group K showed intermediated values without significant differences to R and I, apart from elongation with group R. The fractured surfaces of all groups showed extensive dendritic pattern although with a finer structure in the case of welded groups. CONCLUSION The K shape joint configuration should be preferred over the I, as it demonstrates improved mechanical strength and survival probability. PMID:25722836

  13. Fabrication and mechanical characterization of semi-free-standing (conjugated) polymer thin films.

    PubMed

    Martín, Jaime; Muñoz, Miguel; Encinar, Mario; Calleja, Montserrat; Martín-González, Marisol

    2014-05-13

    Polymers undergo severe low-dimensionality effects when they are confined to ultrathin films since most of the structural and dynamical processes involving polymer molecules are correlated to length scales of the order of nanometers. However, the real influence of the size limitation over such processes is often hard to identify as it is masked by interfacial effects. We present the fabrication of a new type of nanostructure consisting of poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] (PCDTBT) thin film that is held up exclusively over tips of poly(ether-ether-ketone) (PEEK) nanopillars. The fabrication method exploits the nonwetting behavior of PCDTBT onto an ordered PEEK nanopillar array when the mobility of the PCDTBT molecules is enhanced by a solvent annealing process. We use this new configuration to characterize the mechanical behavior of free-standing thin film regions, thus in the absence of underlaying substrate, by means of an atomic force microscope (AFM) setup. First, we study how the finite thickness and/or the presence of the underlying substrate influences the mechanical modulus of the material in the linear elastic regime. Moreover, we analyze deep indentations up to the rupture of the thin film, which allow for the measurement of important mechanical features of the nanoconfined polymer, such as its yield strain, the rupture strain, the bending rigidity, etc., which are impossible to investigate in thin films deposited on substrates.

  14. Water state characterization, swelling behavior, thermal and mechanical properties of chitosan based networks.

    PubMed

    Khalid, M N; Agnely, F; Yagoubi, N; Grossiord, J L; Couarraze, G

    2002-06-01

    Two kinds of chitosan-based hydrogels, a crosslinked chitosan reference gel and a chitosan-poly(ethylene oxide) semi-interpenetrating network (semi-IPN), with potential pH-sensitive swelling and drug delivery properties are characterized. Swelling studies were performed on the two kinds of hydrogels by differential scanning calorimetry (DSC) at pH 1.2 and by the gravimetric method at pH 1.2 and pH 7.2. Both methods lead to similar results. If pH-dependent swelling properties were observed with both hydrogels, they were however improved for the semi-IPN. The amount of bound water in the xerogels could be determined from DSC measurements and a thermogravimetric analysis. The results obtained by both techniques were in good agreement and indicated that the semi-IPN contained more bound water than the reference gel probably due to the presence of the hydrophilic poly(ethylene oxide) chains. Young modulus of the swollen hydrogels was determined by indentation analysis. The semi-IPN displayed improved mechanical properties compared to the reference gel.

  15. Multi-scale mechanical characterization of scaffolds for heart valve tissue engineering.

    PubMed

    Argento, G; Simonet, M; Oomens, C W J; Baaijens, F P T

    2012-11-15

    Electrospinning is a promising technology to produce scaffolds for cardiovascular tissue engineering. Each electrospun scaffold is characterized by a complex micro-scale structure that is responsible for its macroscopic mechanical behavior. In this study, we focus on the development and the validation of a computational micro-scale model that takes into account the structural features of the electrospun material, and is suitable for studying the multi-scale scaffold mechanics. We show that the computational tool developed is able to describe and predict the mechanical behavior of electrospun scaffolds characterized by different microstructures. Moreover, we explore the global mechanical properties of valve-shaped scaffolds with different microstructural features, and compare the deformation of these scaffolds when submitted to diastolic pressures with a tissue engineered and a native valve. It is shown that a pronounced degree of anisotropy is necessary to reproduce the deformation patterns observed in the native heart valve.

  16. A simple calibration method for mechanically braked cycle ergometers.

    PubMed

    Van Praagh, E; Bedu, M; Roddier, P; Coudert, J

    1992-01-01

    The calibration of cycle ergometers should be checked regularly. Some studies have shown calibration errors of more than 40%. A simple, inexpensive calibrating method for mechanically braked cycle ergometers was developed and tried out on a new type of ergocycle. The cycle ergometer was elevated and the crank replaced by a pulley fitted to the shaft. The crank speed (rpm) increased linearly as a function of time when different masses were applied on the pulley. For a given braking force on the cycle ergometer, different accelerations corresponding to the increased pulley forces could be measured. When extrapolating for zero acceleration, it was possible to determine a "limit-force" which allowed the system to be in equilibrium. Additional force creates motion. The same experiments were repeated with increasing braking forces. Using the differently sized gear sprockets of the transmission system, it was possible to calculate the actual force, including all the resistances. The actual force found by the calibrating method was then compared with the indicated force proposed by the manufacturer. With increasing forces, the relative errors decreased from 9.6 to 2.9%. The cycle ergometer calibrated by this technique meets the standards recommended in exercise physiology. PMID:1544728

  17. Characterizing a nonclassical carbene with coupled cluster methods: cyclobutylidene.

    PubMed

    Wang, Xiao; Agarwal, Jay; Schaefer Iii, Henry F

    2016-09-21

    Carbenes represent a special class of reactive compounds that possess a lone pair of electrons on a carbon atom. Among the myriad examples of carbenes in the literature, cyclobutylidene stands out as a unique nonclassical compound that includes transannular interaction between opposing C1 and C3 carbon atoms within a four-membered ring. On its lowest potential energy surface (X[combining tilde](1)A'), cyclobutylidene quickly rearranges, following three reaction paths: (i) 1,2-H migration; (ii) 1,2-C migration; and, (iii) 1,3-H migration. Herein, this reactivity is examined with high-level coupled-cluster methods [up to CCSDT(Q)]. At this level of theory, combined with extrapolation techniques to obtain energies at the complete basis set (CBS) limit, the long-standing disparity between theoretical and experimental results is resolved. Specifically, cyclobutylidene is predicted to prefer 1,2-C migration rather than 1,2-H migration. Rate constants for the three reaction paths are obtained from canonical variational transition state theory (CVT) and yield reasonable agreement with existing experimental results. Further characterization of cyclobutylidene is also reported: the singlet-triplet gap (ΔES-T) is found to be -9.3 kcal mol(-1) at the CCSDT(Q)/CBS level of theory, and anharmonic vibrational frequencies are determined with second-order vibrational perturbation theory (VPT2). PMID:27539444

  18. Characterization of nuclear graphite elastic properties using laser ultrasonic methods

    SciTech Connect

    Zeng, Fan W; Han, Karen; Olasov, Lauren R; Gallego, Nidia C; Contescu, Cristian I; Spicer, James B

    2015-01-01

    Laser ultrasonic methods have been used to characterize the elastic behaviors of commercially-available and legacy nuclear graphites. Since ultrasonic techniques are sensitive to various aspects of graphite microstructure including preferred grain orientation, microcrack orientation and porosity, laser ultrasonics is a candidate technique for monitoring graphite degradation and structural integrity in environments expected in high-temperature, gas-cooled nuclear reactors. Aspects of materials texture can be assessed by studying ultrasonic wavespeeds as a function of propagation direction and polarization. Shear wave birefringence measurements, in particular, can be used to evaluate elastic anisotropy. In this work, laser ultrasonic measurements of graphite moduli have been made to provide insight into the relationship between the microstructures and the macroscopic stiffnesses of these materials. In particular, laser ultrasonic measurements have been made using laser line sources to produce shear waves with specific polarizations. By varying the line orientation relative to the sample, shear wave birefringence measurements have been recorded. Results from shear wave birefringence measurements show that an isostatically molded graphite, such as PCIB, behaves isotropically, while an extruded graphite, such as H-451, displays significant ultrasonic texture. Graphites have complicated microstructures that depend on the manufacturing processes used, and ultrasonic texture in these materials could originate from grain orientation and preferred microcrack alignment. Effects on material isotropy due to service related microstructural changes are possible and the ultimate aim of this work is to determine the degree to which these changes can be assessed nondestructively using laser ultrasonics measurements

  19. Molecular methods for identification and characterization of novel papillomaviruses.

    PubMed

    Kocjan, B J; Bzhalava, D; Forslund, O; Dillner, J; Poljak, M

    2015-09-01

    Papillomaviruses (PV) are a remarkably heterogeneous family of small DNA viruses that infect a wide variety of vertebrate species and are aetiologically linked with the development of various neoplastic changes of the skin and mucosal epithelia. Based on nucleotide similarity, PVs are hierarchically classified into genera, species and types. Novel human PV (HPV) types are given a unique number only after the whole genome has been cloned and deposited with the International HPV Reference Center. As of 9 March 2015, 200 different HPV types, belonging to 49 species, had been recognized by the International HPV Reference Center. In addition, 131 animal PV types identified from 66 different animal species exist. Recent advances in molecular techniques have resulted in an explosive increase in the identification of novel HPV types and novel subgenomic HPV sequences in the last few years. Among PV genera, the γ-PV genus has been growing most rapidly in recent years with 80 completely sequenced HPV types, followed by α-PV and β-PV genera that have 65 and 51 recognized HPV types, respectively. We reviewed in detail the contemporary molecular methods most often used for identification and characterization of novel PV types, including PCR, rolling circle amplification and next-generation sequencing. Furthermore, we present a short overview of 12 and 10 novel HPV types recently identified in Sweden and Slovenia, respectively. Finally, an update on the International Human Papillomavirus Reference Center is provided.

  20. Preparation and mechanical characterization of polycaprolactone/graphene oxide biocomposite nanofibers

    NASA Astrophysics Data System (ADS)

    Lopresti, Francesco; Maio, Andrea; Botta, Luigi; Scaffaro, Roberto

    2016-05-01

    Biocomposite nanofiber scaffolds of polycaprolactone (PCL) filled with graphene oxide (GO) were prepared using electrospinning technology. Morphological and mechanical properties of the scaffolds were characterized in dry and wet environment. The results showed that the successful incorporation of GO nanosheets into PCL polymer nanofibers improved their mechanical properties. Furthermore it was demonstrated the higher performance achieved when GO is filled at low concentration in the nanofibers.

  1. Mechanism for single-event burnout of power MOSFETs and its characterization technique

    NASA Astrophysics Data System (ADS)

    Kuboyama, S.; Matsuda, S.; Kanno, T.; Ishii, T.

    1992-12-01

    A novel characterization technique for single event burnout (SEB) of power MOSFETs was developed. The technique is based on a pulse-height analyzer system for charge collection measurement with a modified charge-sensitive amplifier which has a very wide dynamic range. The data obtained by this technique give detailed information about the SEB mechanism of power MOSFETs. The experimental data suggested a position-independent charge collection mechanism along an ion track, and a new parameter for SEB hardness was proposed.

  2. Optical method for determining the mechanical properties of a material

    DOEpatents

    Maris, H.J.; Stoner, R.J.

    1998-12-01

    Disclosed is a method for characterizing a sample, comprising the steps of: (a) acquiring data from the sample using at least one probe beam wavelength to measure, for times less than a few nanoseconds, a change in the reflectivity of the sample induced by a pump beam; (b) analyzing the data to determine at least one material property by comparing a background signal component of the data with data obtained for a similar delay time range from one or more samples prepared under conditions known to give rise to certain physical and chemical material properties; and (c) analyzing a component of the measured time dependent reflectivity caused by ultrasonic waves generated by the pump beam using the at least one determined material property. The first step of analyzing may include a step of interpolating between reference samples to obtain an intermediate set of material properties. The material properties may include sound velocity, density, and optical constants. In one embodiment, only a correlation is made with the background signal, and at least one of the structural phase, grain orientation, and stoichiometry is determined. 14 figs.

  3. Optical method for determining the mechanical properties of a material

    DOEpatents

    Maris, Humphrey J.; Stoner, Robert J.

    1998-01-01

    Disclosed is a method for characterizing a sample, comprising the steps of: (a) acquiring data from the sample using at least one probe beam wavelength to measure, for times less than a few nanoseconds, a change in the reflectivity of the sample induced by a pump beam; (b) analyzing the data to determine at least one material property by comparing a background signal component of the data with data obtained for a similar delay time range from one or more samples prepared under conditions known to give rise to certain physical and chemical material properties; and (c) analyzing a component of the measured time dependent reflectivity caused by ultrasonic waves generated by the pump beam using the at least one determined material property. The first step of analyzing may include a step of interpolating between reference samples to obtain an intermediate set of material properties. The material properties may include sound velocity, density, and optical constants. In one embodiment, only a correlation is made with the background signal, and at least one of the structural phase, grain orientation, and stoichiometry is determined.

  4. [Characterizing methods of structure and character for silane film on metal surface].

    PubMed

    Xu, Yi; Tang, Shou-yuan; Zhang, Xiao-feng

    2004-04-01

    Surface analysis methods for structure and characters of silane film on metal surface were reviewed in this paper. Many instrumental methods, such as XPS, ATR-FTIR, RA-FTIR, SIMS, ellipsometry, EIS and so on, were applied to characterizing different silane films on different metal base surfaces. According to the research on silane film formation mechanism, silane film state, silane film structure, silane film thickness, silane film corrosion resistance and so on, factors which affect silane film properties were discussed. Various parameters were proposed for characterizing silane film. Merits and defects of various surface analysis methods were expressed. In order to acquire more chemical information, different surface analysis methods can be combined for detection at the same time. Regarding the results from these detection and analysis, new silane treatment technique for metal surface can be optimized and improved greatly. Some other kinds of surface analysis methods were also mentioned in this paper. More advanced researches in the field of silane film analysis on metal surface were prospected. PMID:15766167

  5. Phototoxicity: Its Mechanism and Animal Alternative Test Methods

    PubMed Central

    Park, Hyeonji; Lim, Kyung-Min

    2015-01-01

    The skin exposure to solar irradiation and photoreactive xenobiotics may produce abnormal skin reaction, phototoxicity. Phototoxicity is an acute light-induced response, which occurs when photoreacive chemicals are activated by solar lights and transformed into products cytotoxic against the skin cells. Multifarious symptoms of phototoxicity are identified, skin irritation, erythema, pruritis, and edema that are similar to those of the exaggerated sunburn. Diverse organic chemicals, especially drugs, are known to induce phototoxicity, which is probably from the common possession of UV-absorbing benzene or heterocyclic rings in their molecular structures. Both UVB (290~320 nm) and UVA (320~400 nm) are responsible for the manifestation of phototoxicity. Absorption of photons and absorbed energy (hv) by photoactive chemicals results in molecular changes or generates reactive oxygen species and depending on the way how endogenous molecules are affected by phototoxicants, mechanisms of phototoxcity is categorized into two modes of action: Direct when unstable species from excited state directly react with the endogenous molecules, and indirect when endogeneous molecules react with secondary photoproducts. In order to identify phototoxic potential of a chemical, various test methods have been introduced. Focus is given to animal alternative test methods, i.e., in vitro, and in chemico assays as well as in vivo. 3T3 neutral red uptake assay, erythrocyte photohemolysis test, and phototoxicity test using human 3-dimensional (3D) epidermis model are examples of in vitro assays. In chemico methods evaluate the generation of reactive oxygen species or DNA strand break activity employing plasmid for chemicals, or drugs with phototoxic potential. PMID:26191378

  6. Self-assembled light lanthanide oxalate architecture with controlled morphology, characterization, growing mechanism and optical property

    SciTech Connect

    He, Hongmei; Zhang, Youjin; Zhu, Wei; Zheng, Ao

    2011-10-15

    Highlights: {yields} Flower-like Sm{sub 2}(C{sub 2}O{sub 4}){sub 3}.10H{sub 2}O was gained with Na{sub 3}Cit assisted precipitation method. {yields} The mechanism of the flower-like Sm{sub 2}(C{sub 2}O{sub 4}){sub 3}.10H{sub 2}O formation was proposed. {yields} The Sm{sub 2}(C{sub 2}O{sub 4}){sub 3}.10H{sub 2}O and Sm{sub 2}O{sub 3} samples exhibited obviously different PL spectra. {yields} Ln{sub 2}(C{sub 2}O{sub 4}){sub 3}.nH{sub 2}O (Ln = Gd, Dy, Lu, Y) also were achieved by the simple method. -- Abstract: Flower-like Sm{sub 2}(C{sub 2}O{sub 4}){sub 3}.10H{sub 2}O had been synthesized by a facile complex agent assisted precipitation method. The flower-like Sm{sub 2}(C{sub 2}O{sub 4}){sub 3}.10H{sub 2}O was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, thermogravimetry-differential thermal analysis and photoluminescence. The possible growth mechanism of the flower-like Sm{sub 2}(C{sub 2}O{sub 4}){sub 3}.10H{sub 2}O was proposed. To extend this method, other Ln{sub 2}(C{sub 2}O{sub 4}){sub 3}.nH{sub 2}O (Ln = Gd, Dy, Lu, Y) with different morphologies also had been prepared by adjusting different rare earth precursors. Further studies revealed that besides the reaction conditions and the additive amount of complex agents, the morphologies of the as-synthesised lanthanide oxalates were also determined by the rare earth ions. The Sm{sub 2}(C{sub 2}O{sub 4}){sub 3}.10H{sub 2}O and Sm{sub 2}O{sub 3} samples exhibited different photoluminescence spectra, which was relevant to Sm{sup 3+} energy level structure of 4f electrons. The method may be applied in the synthesis of other lanthanide compounds, and the work could explore the potential optical materials.

  7. Interfacial and Mechanical Characterization of Soft Materials Using Polymer Membranes Geometries

    NASA Astrophysics Data System (ADS)

    Laprade, Evan J.

    Polymer membranes have found their way in to a wide range of applications including selective barriers, protective coatings, packaging, sensors, and medical implants, becom- ing more pervasive in our lives every day. Their importance is derived not only from their unique mechanical and interfacial properties, but also from the versatility of their geometry. In this thesis, several polymer membrane geometries are employed to interfacially and mechanically characterize the properties of soft materials and polymer thin films. This thesis is organized in to two sections, the first deals with interfacial characterization using a membrane contact geometry. The centerpiece of this section, and this thesis, was the development of a sensitive membrane peel test to measure adhesion. A model membrane-contact system was used to evaluate an analytical model of large deformation contact and ultimately develop a simple protocol for measuring an adhesion energy using a membrane peel geometry. A second investigation in the section looked at the multiple harmonic behavior of quartz crystal resonators during contact mechanics experiments. An analytical solution to the radial mass sensitivity function was calculated and compared to experimentally measured sensitivity profiles from growing water drop and membrane contact experiments. The second half of this thesis deals with non-contact membrane geometries for mechanically characterizing two novel polymer membranes. The first is a highly water permeable sulfonated pentablock copolymer, designed for water purification applications. In this work these membranes were mechanically characterized with a biaxial creep test to investigate the affect of sulfonation level and processing conditions on their deformation behavior. Lastly pendant drop membranes were fabricated by ionically crosslinking amphiphilic gradient copolymers at an oil/water interface. These robust, self healing membranes were modeled with both an elastic and liquid

  8. Conical intersections in solution: Formulation, algorithm, and implementation with combined quantum mechanics/molecular mechanics method

    NASA Astrophysics Data System (ADS)

    Cui, Ganglong; Yang, Weitao

    2011-05-01

    The significance of conical intersections in photophysics, photochemistry, and photodissociation of polyatomic molecules in gas phase has been demonstrated by numerous experimental and theoretical studies. Optimization of conical intersections of small- and medium-size molecules in gas phase has currently become a routine optimization process, as it has been implemented in many electronic structure packages. However, optimization of conical intersections of small- and medium-size molecules in solution or macromolecules remains inefficient, even poorly defined, due to large number of degrees of freedom and costly evaluations of gradient difference and nonadiabatic coupling vectors. In this work, based on the sequential quantum mechanics and molecular mechanics (QM/MM) and QM/MM-minimum free energy path methods, we have designed two conical intersection optimization methods for small- and medium-size molecules in solution or macromolecules. The first one is sequential QM conical intersection optimization and MM minimization for potential energy surfaces; the second one is sequential QM conical intersection optimization and MM sampling for potential of mean force surfaces, i.e., free energy surfaces. In such methods, the region where electronic structures change remarkably is placed into the QM subsystem, while the rest of the system is placed into the MM subsystem; thus, dimensionalities of gradient difference and nonadiabatic coupling vectors are decreased due to the relatively small QM subsystem. Furthermore, in comparison with the concurrent optimization scheme, sequential QM conical intersection optimization and MM minimization or sampling reduce the number of evaluations of gradient difference and nonadiabatic coupling vectors because these vectors need to be calculated only when the QM subsystem moves, independent of the MM minimization or sampling. Taken together, costly evaluations of gradient difference and nonadiabatic coupling vectors in solution or

  9. Mechanical Properties of Sisal/Coir Fiber Reinforced Hybrid Composites Fabricated by Cold Pressing Method

    NASA Astrophysics Data System (ADS)

    Akash; Sreenivasa Rao, K. V.; Venkatesha Gupta, N. S.; kumar, D. S. Arun

    2016-09-01

    Bio-composites have less density and are environmental friendly materials that require less energy during production and subsequent machining. This paper reports the mechanical and water absorption properties of sodium hydroxide (NaOH) treated sisal and coir fiber reinforced epoxy resin thermo set hybrid composites. The hybrid composites were prepared by traditional cold pressing method at room temperature with applied pressure of 410.4 kg/cm2 for 3 hours pressurization time. The mechanical properties were characterized according to ASTM standards. Hybrid composites with 40wt% of sisal and coir fiber were found to possess higher tensile strength of 48.2MPa and flexural strength of 76.68 MPa among the fabricated hybrid composite specimens. Absorption of water increases with increasing fiber volume. The experimental result also show that the sisal and coir fibers are promising reinforcement for use in low cost bio-composites which have high strength to weight ratio.

  10. Comparison of mechanical testing methods for biomaterials: Pipette aspiration, nanoindentation, and macroscale testing.

    PubMed

    Buffinton, Christine Miller; Tong, Kelly J; Blaho, Roberta A; Buffinton, Elise M; Ebenstein, Donna M

    2015-11-01

    Characterization of the mechanical properties of biological materials is often complicated by small volume, irregular geometry, fragility, and environmental sensitivity. Pipette aspiration and nanoindentation testing deal well with these limitations and have seen increasing use in biomaterial characterization, but little research has been done to systematically validate these techniques for soft materials. This study compared the results of pipette aspiration, nanoindentation, and bulk uniaxial tension and compression in determining the small-strain elastic moduli of a range of biomedically-relevant materials, a series of silicone elastomers and polyacrylamide hydrogels. A custom apparatus was developed for pipette aspiration testing, a commercial Hysitron instrument with custom spherical tip was used for nanoindentation, and standard commercial machines were used for tension and compression testing. The measured small-strain elastic moduli ranged from 27 to 368 kPa for the silicones and 11 to 44 kPa for the polyacrylamide gels. All methods detected expected trends in material stiffness, except for the results from one inconsistent silicone. Pipette aspiration and nanoindentation measured similar elastic moduli for silicone materials, but pipette aspiration measured consistently larger stiffness in the hydrogels, which may be explained by the gels' resistance to tension. Despite the difference in size scale among the testing methods, size does not appear to influence the results. These results suggest that both pipette aspiration and nanoindentation are suitable for measuring mechanical properties of soft biomaterials and appear to have no more limitations than bulk techniques. PMID:26295450

  11. Comparison of mechanical testing methods for biomaterials: Pipette aspiration, nanoindentation, and macroscale testing.

    PubMed

    Buffinton, Christine Miller; Tong, Kelly J; Blaho, Roberta A; Buffinton, Elise M; Ebenstein, Donna M

    2015-11-01

    Characterization of the mechanical properties of biological materials is often complicated by small volume, irregular geometry, fragility, and environmental sensitivity. Pipette aspiration and nanoindentation testing deal well with these limitations and have seen increasing use in biomaterial characterization, but little research has been done to systematically validate these techniques for soft materials. This study compared the results of pipette aspiration, nanoindentation, and bulk uniaxial tension and compression in determining the small-strain elastic moduli of a range of biomedically-relevant materials, a series of silicone elastomers and polyacrylamide hydrogels. A custom apparatus was developed for pipette aspiration testing, a commercial Hysitron instrument with custom spherical tip was used for nanoindentation, and standard commercial machines were used for tension and compression testing. The measured small-strain elastic moduli ranged from 27 to 368 kPa for the silicones and 11 to 44 kPa for the polyacrylamide gels. All methods detected expected trends in material stiffness, except for the results from one inconsistent silicone. Pipette aspiration and nanoindentation measured similar elastic moduli for silicone materials, but pipette aspiration measured consistently larger stiffness in the hydrogels, which may be explained by the gels' resistance to tension. Despite the difference in size scale among the testing methods, size does not appear to influence the results. These results suggest that both pipette aspiration and nanoindentation are suitable for measuring mechanical properties of soft biomaterials and appear to have no more limitations than bulk techniques.

  12. Quantitative shear wave imaging optical coherence tomography for noncontact mechanical characterization of myocardium

    NASA Astrophysics Data System (ADS)

    Wang, Shang; Lopez, Andrew L.; Morikawa, Yuka; Tao, Ge; Li, Jiasong; Larina, Irina V.; Martin, James F.; Larin, Kirill V.

    2015-03-01

    Optical coherence elastography (OCE) is an emerging low-coherence imaging technique that provides noninvasive assessment of tissue biomechanics with high spatial resolution. Among various OCE methods, the capability of quantitative measurement of tissue elasticity is of great importance for tissue characterization and pathology detection across different samples. Here we report a quantitative OCE technique, termed quantitative shear wave imaging optical coherence tomography (Q-SWI-OCT), which enables noncontact measurement of tissue Young's modulus based on the ultra-fast imaging of the shear wave propagation inside the sample. A focused air-puff device is used to interrogate the tissue with a low-pressure short-duration air stream that stimulates a localized displacement with the scale at micron level. The propagation of this tissue deformation in the form of shear wave is captured by a phase-sensitive OCT system running with the scan of the M-mode imaging over the path of the wave propagation. The temporal characteristics of the shear wave is quantified based on the cross-correlation of the tissue deformation profiles at all the measurement locations, and linear regression is utilized to fit the data plotted in the domain of time delay versus wave propagation distance. The wave group velocity is thus calculated, which results in the quantitative measurement of the Young's modulus. As the feasibility demonstration, experiments are performed on tissuemimicking phantoms with different agar concentrations and the quantified elasticity values with Q-SWI-OCT agree well with the uniaxial compression tests. For functional characterization of myocardium with this OCE technique, we perform our pilot experiments on ex vivo mouse cardiac muscle tissues with two studies, including 1) elasticity difference of cardiac muscle under relaxation and contract conditions and 2) mechanical heterogeneity of the heart introduced by the muscle fiber orientation. Our results suggest the

  13. A new assimilation method with physical mechanism to estimate evapotranspiration

    NASA Astrophysics Data System (ADS)

    Ye, Wen; Xu, Xinyi

    2016-04-01

    The accurate estimation of regional evapotranspiration has been a research hotspot in the field of hydrology and water resources both in domestic and abroad. A new assimilation method with physical mechanism was proposed to estimate evapotranspiration, which was easier to apply. Based on the evapotranspiration (ET) calculating method with soil moisture recurrence relations in the Distributed Time Variant Gain Model (DTVGM) and Ensemble Kalman Filter (EnKF), it constructed an assimilation system for recursive calculation of evapotranspiration in combination with "observation value" by the retrieval data of evapotranspiration through the Two-Layer Remote Sensing Model. By updating the filter in the model with assimilated evapotranspiration, synchronization correction to the model estimation was achieved and more accurate time continuous series values of evapotranspiration were obtained. Through the verification of observations in Xiaotangshan Observatory and hydrological stations in the basin, the correlation coefficient of remote sensing inversion evapotranspiration and actual evapotranspiration reaches as high as 0.97, and the NS efficiency coefficient of DTVGM model was 0.80. By using the typical daily evapotranspiration from Remote Sensing and the data from DTVGM Model, we assimilated the hydrological simulation processes with DTVGM Model in Shahe Basin in Beijing to obtain continuous evapotranspiration time series. The results showed that the average relative error between the remote sensing values and DTVGM simulations is about 12.3%, and for the value between remote sensing retrieval data and assimilation values is 4.5%, which proved that the assimilation results of Ensemble Kalman Filter (EnKF) were closer to the "real" data, and was better than the evapotranspiration simulated by DTVGM without any improvement. Keyword Evapotranspiration assimilation Ensemble Kalman Filter Distributed hydrological model Two-Layer Remote Sensing Model

  14. A new two-alternative forced choice method for the unbiased characterization of perceptual bias and discriminability.

    PubMed

    Jogan, Matjaž; Stocker, Alan A

    2014-03-13

    Perception is often biased by secondary stimulus attributes (e.g., stimulus noise, attention, or spatial context). A correct quantitative characterization of perceptual bias is essential for testing hypotheses about the underlying perceptual mechanisms and computations. We demonstrate that the standard two-alternative forced choice (2AFC) method can lead to incorrect estimates of perceptual bias. We present a new 2AFC method that solves this problem by asking subjects to judge the relative perceptual distances between the test and each of two reference stimuli. Naïve subjects can easily perform this task. We successfully validated the new method with a visual motion-discrimination experiment. We demonstrate that the method permits an efficient and accurate characterization of perceptual bias and simultaneously provides measures of discriminability for both the reference and test stimulus, all from a single stimulus condition. This makes it an attractive choice for the characterization of perceptual bias and discriminability in a wide variety of psychophysical experiments.

  15. Investigation of the surface generation mechanism of mechanical polishing engineering ceramics using discrete element method

    NASA Astrophysics Data System (ADS)

    Han, Xuesong

    2014-09-01

    Machining technology about ceramics has been developed very fast over recent years due to the growing industrial demand of higher machining accuracy and better surface quality of ceramic elements, while the nature of hard and brittle ceramics makes it difficult to acquire damage-free and ultra-smooth surface. Ceramic bulk can be treated as an assemblage of discrete particles bonded together randomly as the micro-structure of ceramics consists of crystal particles and pores, and the inter-granular fracture of the ceramics can be naturally represented by the separation of particles due to breakage of bonds. Discrete element method (DEM) provides a promising approach for constructing an effective model to describe the tool-workpiece interaction and can serve as a predicting simulation tool in analyzing the complicated surface generation mechanism and is employed in this research to simulate the mechanical polishing process of ceramics and surface integrity. In this work, a densely packed particle assembly system of the polycrystalline Si3N4 has been generated using bonded-particle model to represent the ceramic workpiece numerically. The simulation results justify that the common critical depth of cut cannot be used as the effective parameters for evaluating brittle to ductile transformation in ceramic polishing process. Therefore, a generalized criterion of defining the range of ductile regime machining has been developed based on the numerical results. Furthermore, different distribution of pressure chain is observed with different depth of cut which ought to have intense relationship with special structure of ceramics. This study also justified the advantage of DEM model in its capability of revealing the mechanical behaviors of ceramics at micro-scale.

  16. Mechanisms of Methods for Hepatitis C Virus Inactivation

    PubMed Central

    Pfaender, Stephanie; Brinkmann, Janine; Todt, Daniel; Riebesehl, Nina; Steinmann, Joerg; Steinmann, Jochen; Pietschmann, Thomas

    2014-01-01

    Virus inactivation by chemical disinfectants is an important instrument for infection control in medical settings, but the mechanisms involved are poorly understood. In this study, we systematically investigated the effects of several antiviral treatments on hepatitis C virus (HCV) particles as model for enveloped viruses. Studies were performed with authentic cell culture-derived viruses, and the influence of chemical disinfectants, heat, and UV treatment on HCV was analyzed by the determination of infectious particles in a limiting-dilution assay, by quantitative reverse transcription-PCR, by core enzyme-linked immunosorbent assay, and by proteolytic protection assay. All different inactivation methods resulted in a loss of HCV infectivity by targeting different parts of the virus particle. Alcohols such as ethanol and 2-propanol did not affect the viral RNA genome integrity but disrupted the viral envelope membrane in a capsid protection assay. Heat and UV treatment of HCV particles resulted in direct damage of the viral genome since transfection of viral particle-associated RNA into permissive cells did not initiate RNA replication. In addition, heat incubation at 80°C disrupted the HCV envelope, rendering the viral capsid susceptible to proteolytic digest. This study demonstrated the molecular processes of viral inactivation of an enveloped virus and should facilitate the development of effective disinfection strategies in infection control not only against HCV but also against other enveloped viruses. PMID:25527548

  17. Mechanical modulation method for ultrasensitive phase measurements in photonics biosensing.

    PubMed

    Patskovsky, S; Maisonneuve, M; Meunier, M; Kabashin, A V

    2008-12-22

    A novel polarimetry methodology for phase-sensitive measurements in single reflection geometry is proposed for applications in optical transduction-based biological sensing. The methodology uses altering step-like chopper-based mechanical phase modulation for orthogonal s- and p- polarizations of light reflected from the sensing interface and the extraction of phase information at different harmonics of the modulation. We show that even under a relatively simple experimental arrangement, the methodology provides the resolution of phase measurements as low as 0.007 deg. We also examine the proposed approach using Total Internal Reflection (TIR) and Surface Plasmon Resonance (SPR) geometries. For TIR geometry, the response appears to be strongly dependent on the prism material with the best values for high refractive index Si. The detection limit for Si-based TIR is estimated as 10(-5) in terms Refractive Index Units (RIU) change. SPR geometry offers much stronger phase response due to a much sharper phase characteristics. With the detection limit of 3.2*10(-7) RIU, the proposed methodology provides one of best sensitivities for phase-sensitive SPR devices. Advantages of the proposed method include high sensitivity, simplicity of experimental setup and noise immunity as a result of a high stability modulation.

  18. Integrated Surface and Mechanical Characterization of Freestanding Biological and Other Nano-Structures Using Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Xin

    film promises a broad range of potential applications in electronic devices due to unique electrical and mechanical properties. SWCNT thin film is transferred onto micro-patterned SU-8 strips using wet contact print method, forming a freestanding nano-structure. AFM with tipless cantilever is used to deform the suspended thin film under mixed bending and stretching for mechanical and electromechanical characterization. The experiment helps to construct the base for next generation flexible electronic devices with fundamental understanding in morphology-property relation.

  19. Characterizing the mechanism of thiazolidinedione-induced hepatotoxicity: An in vitro model in mitochondria

    SciTech Connect

    Hu, Dan; Wu, Chun-qi; Li, Ze-jun; Liu, Yue; Fan, Xing; Wang, Quan-jun; Ding, Ri-gao

    2015-04-15

    Objective: To characterize the mechanism of action of thiazolidinedione (TZD)-induced liver mitochondrial toxicity caused by troglitazone, rosiglitazone, and pioglitazone in HepaRG cells. Methods: Human hepatoma cells (HepaRG) were treated with troglitazone, rosiglitazone, or pioglitazone (12.5, 25, and 50 μM) for 48 h. The Seahorse Biosciences XF24 Flux Analyzer was used to measure mitochondrial oxygen consumption. The effect of TZDs on reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were detected by flow cytometry. The mitochondrial ultrastructure of HepaRG cells was observed under a transmission electrical microscope (TEM). mtDNA content was evaluated by real-time PCR, and ATP content and mitochondrial respiratory chain (MRC) complex I, II, III, IV activity were measured via chemiluminescence. Results were considered statistically significant at p < 0.05. Results: Among the three drugs, troglitazone exhibited the highest potency, followed by rosiglitazone, and then pioglitazone. The TZDs caused varying degrees of mitochondrial respiratory function disorders including decreases in oxygen consumption, MRC activity, and ATP level, and an elevation in ROS level. TZD treatment resulted in mtDNA content decline, reduction in MMP, and alterations of mitochondrial structure. Conclusion: All investigated TZDs show a certain degree of mitochondrial toxicity, with troglitazone exhibiting the highest potency. The underlying mechanism of TZD-induced hepatotoxicity may be associated with alterations in mitochondrial respiratory function disorders, oxidative stress, and changes in membrane permeability. These parameters may be used early in drug development to further optimize risk:benefit profiles. - Highlights: • We compared three TZD mitochondrial toxicity characteristics in HepaRG cells. • TZD induced respiratory disorders and mitochondrial structural damage. • Mitochondrial toxicity evaluation presents guidance value for hepatotoxicity.

  20. TiO2 nanocomposites: Preparation, characterization, mechanical and biological properties

    NASA Astrophysics Data System (ADS)

    Koşarsoy, Gözde; Şen, Elif Hilal; Aksöz, Nilüfer; İde, Semra; Aksoy, Hüsnü

    2014-11-01

    Some novel nanocomposites, which contain different concentrations of TiO2 nanopowders, were firstly prepared by using marble dust with convenient chemical components. Their nano structures characterized and distributions of the nano-aggregations related with internal structural content of the samples have been determined by X-ray Scattering Methods (SAXS and WAXS) and mechanical properties were determined by using strain-stress measurements to increase their potential usage possibility as building materials in health and research centers. In the last and important part of the study, Candida albicans and Aspergillus niger which are a significant risk to medical patients were used to investigate originally prepared nanostructured samples' photocatalyst effect. During the last part of the study, effect of UV and visible light on photocatalyst nanocomposites were also researched. Heterogeneous photocatalysts can carry out advanced oxidation processes used for an antimicrobial effect on microorganisms. TiO2 nanoparticles as one of heterogeneous photocatalysts have been shown to exhibit strong cytotoxicity when exposed to UV and visible light.

  1. Mechanical and optical characterization of bio-nanocomposite from pineapple leaf fiber material for food packaging

    NASA Astrophysics Data System (ADS)

    Nikmatin, Siti; Rudwiyanti, Jerry R.; Prasetyo, Kurnia W.; Yedi, Dwi A.

    2015-01-01

    The utilization of Bio-nanocomposite material that was derived from pineapple leaf fiber as filler and tapioca starch with plasticizer glycerol as a matrix for food packaging can reduce the use of plastic that usually was made from petroleum materials. It is important to develop and producethis environmental friendly plastic because of limited availability of petroleum nowadays. The process of synthesize and characterization tapioca starch with the plasticizer glycerol bionanocomposites using print method had been conducted. There were 3 samples with different filler concentration variation; 3%, 4% and 5%.The results of mechanical test from each sample showed that bio-nanocomposite with 5% filler concentration was the optimum sample with 4.6320 MPa for tensile strength test and 24.87% for the elongation test. Based on the result of optical test for each sample was gained that along with the increasing of concentration filler would make the absorbance value of the sample became decreased, bio-nanocomposite with 5% filler concentration had several peaks with low absorbance values. The first peak was in 253 nm of wavelength regionwith absorbance of 0.131%, and the second peak was in 343 nmwavelength region and absorbance was 0.087%.

  2. Formation Mechanism and Characterization of Ag-Metal Chelate Polymer Prepared by a Wet Chemical Process

    NASA Astrophysics Data System (ADS)

    Huang, Chueh-Jung; Lin, Jiang-Jen; Shieu, Fuh-Sheng

    2005-08-01

    In this study, a metal chelate polymer (MCP) contained Ag(0) was prepared from commercial polyvinyl acetate (PVAc) and silver nitrate (AgNO3) by a wet chemical method using concentrate formic acid (HCOOH) as solvent. The characterization of these MCP materials, and the formation mechanism that involved in the MCP system, were studied by the analyses of Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscopy (FESEM). The Ag(I) cations of silver nitrate (AgNO3) were found coordinated with polymer functional groups to form polymer-Ag(I) complexes. The XRD analysis revealed that these complexed Ag(I) ions were in-situ reduced to generate Ag(0) metal by HCOOH solvent in MCP system. The results of FTIR and NMR analyses demonstrated that there are hydrolyzed hydroxyl groups present in the MCP chains. The XPS analysis showed that the oxygen ligands that interacted with the Ag(0) were mostly contributed from the OH groups. The interaction between the reduced Ag(0) metal and the polymer chains was confirmed by transmission electron microscopy (TEM) investigation on the MCP materials.

  3. Mechanical Characterization of Adhesive Bonded Sheet Metal Joints at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Mori, Kiyomi; Azimin, Muhd; Tanaka, Masashi; Ikeda, Takashi

    A new approach is expected for heat resisting metal joints with inorganic adhesive. In the present study, the mechanical characterization of the inorganic adhesive and the strength evaluation of metal joints are realized by an experimental procedure that includes a static test for single lap joints bonded with inorganic adhesives. The inorganic adhesive can be cured at 150°C, and the maximum temperature resistance proposed is up to 1,200°C. A tensile shear test for the joints with a nickel adherend is performed at an elevated temperature of up to 400°C. The effect of material property, overlap length, and thickness of adherend on the joint strength is discussed based on stress analysis for corresponding joint models using a Finite Element Method. It is important to confirm whether fracture occurred in the adhesive layer or at the interface between the adhesive and the adherend. Therefore, the deformation and fracture behavior of the adhesive layer is investigated microscopically by the photographs of a scanning electron microscope (SEM) for the fracture surface.

  4. Characterization of Solid Polymers, Ceramic Gap Filler, and Closed-Cell Polymer Foam Using Low-Load Test Methods

    NASA Technical Reports Server (NTRS)

    Herring, Helen M.

    2008-01-01

    Various solid polymers, polymer-based composites, and closed-cell polymer foam are being characterized to determine their mechanical properties, using low-load test methods. The residual mechanical properties of these materials after environmental exposure or extreme usage conditions determines their value in aerospace structural applications. In this experimental study, four separate polymers were evaluated to measure their individual mechanical responses after thermal aging and moisture exposure by dynamic mechanical analysis. A ceramic gap filler, used in the gaps between the tiles on the Space Shuttle, was also tested, using dynamic mechanical analysis to determine material property limits during flight. Closed-cell polymer foam, used for the Space Shuttle External Tank insulation, was tested under low load levels to evaluate how the foam's mechanical properties are affected by various loading and unloading scenarios.

  5. Investigation of methods for fabricating, characterizing, and transporting cryogenic inertial-confinement-fusion tartets

    SciTech Connect

    Fanning, J.J.; Kim, K.

    1981-01-01

    The objective of this work is to investigate methods for fabricating, characterizing and transporting cryogenic inertial confinement fusion targets on a continuous basis. A microprocessor-based data acquisition system has been built that converts a complete target image to digital data, which are then analyzed by automated software procedures. The low temperatures required to freeze the hydrogen isotopes contained in a target is provided by a cryogenic cold chamber capable of attaining 15 K. A new method for target manipulation and positioning is studied that employs molecular gas beams to levitate a target and an electrostatic quadrupole structure to provide for its lateral containment. Since the electrostatic target-positioning scheme requires that the targets be charged, preliminary investigation has been carried out for a target-charging mechanism based on ion-bombardment.

  6. Growth Mechanism Of Carbon Nanotubes Prepared By Fluidized Floating Catalyst Method

    NASA Astrophysics Data System (ADS)

    Azira, A. A.; Zainal, N. F. A.; Nik, S. F.; Rusop, M.

    2009-06-01

    In this paper, carbon nanotubes were synthesized by fluidized floating catalyst method which yielded high yield even at low temperature; 650° C using camphor oil as carbon source and Argon as carrier gas. Optimum concentration for trimetal alloy catalyst; Fe/Ni/Mg has been found to be the suitable catalyst for producing carbon nanotubes at high yield. Carbon nanotubes are formed by the evaporation of the camphor oil (precursor), which decomposes `in situ' and aggregates on the metal alloy catalyst particles present in the ceramic boat. The morphology of carbon nanotubes were characterized by field emission scanning electron microscopy (FESEM). This result demonstrates that fluidized floating catalyst method is suitable for effective formation of CNTs with average size ˜11.5 nm. The morphological studies support `tip growth mechanism' for the growth of the CNT's in our case.

  7. Apparatus and method for sensing motion in a microelectro-mechanical system

    DOEpatents

    Dickey, Fred M.; Holswade, Scott C.

    1999-01-01

    An apparatus and method are disclosed for optically sensing motion in a microelectromechanical system (also termed a MEMS device) formed by surface micromachining or LIGA. The apparatus operates by reflecting or scattering a light beam off a corrugated surface (e.g. gear teeth or a reference feature) of a moveable member (e.g. a gear, rack or linkage) within the MEMS device and detecting the reflected or scattered light. The apparatus can be used to characterize a MEMS device, measuring one or more performance characteristic such as spring and damping coefficients, torque and friction, or uniformity of motion of the moveable member. The apparatus can also be used to determine the direction and extent of motion of the moveable member; or to determine a particular mechanical state that a MEMS device is in. Finally, the apparatus and method can be used for providing feedback to the MEMS device to improve performance and reliability.

  8. Characterization and diagnostic methods for geomagnetic auroral infrasound waves

    NASA Astrophysics Data System (ADS)

    Oldham, Justin J.

    Infrasonic perturbations resulting from auroral activity have been observed since the 1950's. In the last decade advances in infrasonic microphone sensitivity, high latitude sensor coverage, time series analysis methods and computational efficiency have elucidated new types of auroral infrasound. Persistent periods of infrasonic activity associated with geomagnetic sub-storms have been termed geomagnetic auroral infrasound waves [GAIW]. We consider 63 GAIW events recorded by the Fairbanks, AK infrasonic array I53US ranging from 2003 to 2014 and encompassing a complete solar cycle. We make observations of the acoustic features of these events alongside magnetometer, riometer, and all-sky camera data in an effort to quantify the ionospheric conditions suitable for infrasound generation. We find that, on average, the generation mechanism for GAIW is confined to a region centered about ~60 0 longitude east of the anti-Sun-Earth line and at ~770 North latitude. We note furthermore that in all cases considered wherein imaging riometer data are available, that dynamic regions of heightened ionospheric conductivity periodically cross the overhead zenith. Consistent features in concurrent magnetometer conditions are also noted, with irregular oscillations in the horizontal component of the field ubiquitous in all cases. In an effort to produce ionosphere based infrasound free from the clutter and unknowns typical of geophysical observations, an experiment was undertaken at the High Frequency Active Auroral Research Program [HAARP] facility in 2012. Infrasonic signals appearing to originate from a source region overhead were observed briefly on 9 August 2012. The signals were observed during a period when an electrojet current was presumed to have passed overhead and while the facilities radio transmitter was periodically heating the lower ionosphere. Our results suggest dynamic auroral electrojet currents as primary sources of much of the observed infrasound, with

  9. Chemo-mechanical microscale characterization of materials heterogeneity in oil/gas shales: linking organics and inorganics

    NASA Astrophysics Data System (ADS)

    Ferralis, N.; Abedi, S.; Grossman, J. C.; Ulm, F.

    2013-12-01

    From a materials perspective, the unconventional peculiarity of oil/gas shales resides in the intrinsic multi-scale heterogeneity in their chemical composition, organic maturity, mineralogy and microtexture. In contrast to common assumptions of maturity being driven only by the reservoir conditions (temperature and pressure), the presence of organic matter with different maturity within a few microns apart calls into question the role played by the organic and mineral heterogeneity into the chemo-mechanical properties of the material. Understanding how the upscaling of chemical diversity affects the fracturability and in general the mechanical strength of oil/gas shales is crucial. Compared to conventional oil and gas reservoirs, as well as coal, such heterogeneity requires novel and additional characterization tools from nano- to macro-scales to allow for a complete understanding of the role played by such heterogeneity in the chemo- mechanical properties of gas shales. Here we present a novel suite of chemical and mineralogical characterization tools that allow the in situ, non-destructive imaging of organic maturity and mineralogy from the microscale to the millimeter scale. This method is based on a combination of Raman, fluorescence and UV-Visible absorption spectroscopy. The upscaling is designed to provide a maturity population distribution from the nanoscale to the conventionally used macro-scale averaged parameters (such as vitrinite reflectance). Furthermore, in combination with registered micro/nano-mechanical indentation data a direct correlation of fracture mechanics and chemistry is made, allowing for the determination of high yield strain regions, relations between organic and inorganic anisotropy and interface mechanics. The underlying scientific insight at the nano and micro-scale of the potential origin of fractures in oil/gas shales, will potentially provide a connection bottom-up link to continuum fracture mechanics.

  10. Characterization of Mechanical Stress Effects on Lithium-ion Battery Materials

    NASA Astrophysics Data System (ADS)

    Peabody, Christina A.

    Lithium-ion batteries are the preferred energy storage devices for a variety of applications from electric vehicles to small scale portable electronics such as laptop computers and cellular telephones. In many of these applications the cycle lifetimes of current lithium-ion technologies are insufficient for the projected lifetime of the device. This is because the energy storage capabilities of batteries degrade over time regardless of usage conditions. The origin of this capacity fade and its corresponding impedance rise is poorly understood, though previous research has attributed it to chemical degradation mechanisms. In this thesis a mechanical mechanism that contributes to the lifetime limiting capacity fade in lithium-ion batteries is characterized. First, the mechanical response of pouch-type lithium-ion batteries is characterized under static and cyclic compressive loading. Using simplified battery systems composed of the polymer separator and foil current collectors in conjunction with viscoelastic creep models, the mechanical response of a battery to a static compressive stress is shown to be dominated by the nonelectroactive battery components. Then the analysis is taken one step further to show that the viscoelastic response of the battery can be attributed to the creep response of the polymer separator. The remainder of this dissertation focuses on characterizing the effects of viscoelastic creep of the polymer separator on the performance of a lithium-ion battery. Mechanical stresses on the polymer separator arise during normal battery operation due to external stresses applied to the cell and also constrained expansion of the electrodes during electrochemical intercalation. The viscoelastic creep of the separator is shown to result in pore closure which limits ion transport in the electrolyte phase of the battery, ultimately causing a rate limited capacity loss. Finally, the effect of separator porosity and composition on this viscoelastic creep

  11. Characterization of cationic starch flocculants synthesized by dry process with ball milling activating method.

    PubMed

    Su, Yuting; Du, Hongying; Huo, Yinqiang; Xu, Yongliang; Wang, Jie; Wang, Liying; Zhao, Siming; Xiong, Shanbai

    2016-06-01

    The cationic starch flocculants were synthesized by the reaction of maize starch which was activated by a ball-milling treatment with 2,3-epoxypropyl trimethyl ammonium chlorides (ETMAC) using the dry method. The cationic starches were characterized by several approaches including scanning electron microscope (SEM), degree of substitution (DS), infrared spectrum (IR), X-ray diffraction (XRD), flocculating activity, electron spin resonance (ESR), and solid-state nuclear magnetic resonance (NMR). The effect of mechanical activation on starch etherifying modification was investigated. The mechanical activation cracked starch granules and destructed their crystal structures. This resulted in enhancements to the reaction activity and reaction efficiency, which was approved by ESR and solid state NMR. The starch flocculants, synthesized by the reaction of mechanically activated starches at 90°C for 2.5h with ETMAC at molar ratio of 0.40:1.00, showed good flocculation activity. The substitution degree (0.300) and reaction efficiency (75.06%) of starch flocculants synthesized with mechanically activated starches were significantly greater than those of starch flocculants with native starches (P<0.05).

  12. 46 CFR 54.30-10 - Method of performing mechanical stress relief.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Method of performing mechanical stress relief. 54.30-10... PRESSURE VESSELS Mechanical Stress Relief § 54.30-10 Method of performing mechanical stress relief. (a) The mechanical stress relief shall be carried out in accordance with the following stipulations using water...

  13. 46 CFR 54.30-10 - Method of performing mechanical stress relief.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Method of performing mechanical stress relief. 54.30-10... PRESSURE VESSELS Mechanical Stress Relief § 54.30-10 Method of performing mechanical stress relief. (a) The mechanical stress relief shall be carried out in accordance with the following stipulations using water...

  14. 46 CFR 54.30-10 - Method of performing mechanical stress relief.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Method of performing mechanical stress relief. 54.30-10... PRESSURE VESSELS Mechanical Stress Relief § 54.30-10 Method of performing mechanical stress relief. (a) The mechanical stress relief shall be carried out in accordance with the following stipulations using water...

  15. 46 CFR 54.30-10 - Method of performing mechanical stress relief.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Method of performing mechanical stress relief. 54.30-10... PRESSURE VESSELS Mechanical Stress Relief § 54.30-10 Method of performing mechanical stress relief. (a) The mechanical stress relief shall be carried out in accordance with the following stipulations using water...

  16. Multi-unit controlled release systems of nifedipine and nifedipine:pluronic F-68 solid dispersions: characterization of release mechanisms.

    PubMed

    Mehta, Ketan A; Kislalioglu, M Serpil; Phuapradit, Wantanee; Malick, A Waseem; Shah, Navnit H

    2002-03-01

    Nifedipine (N) and nifedipine. Pluronic F-68 solid dispersion (SD) pellets were developed and characterizedfor drug release mechanisms from a multi-unit erosion matrix system for controlled release. Nifedipine was micronized using a jet mill. Solid dispersion with Pluronic F-68 was prepared by the fusion method. Nifedipine and SD were characterized by particle size analysis, solubility, differential scanning calorimetry (DSC), and x-ray diffraction (XRD) studies. Samples were subsequently processed into matrix pellets by extrusion/spheronization using Eudragit L 100-55 and Eudragit S 100 as release rate-controlling polymers. Drug release mechanisms from pellets were characterized by microscopy and mercury intrusion porosimetry; DSC and XRD studies indicated no polymorphic changes in N after micronization and also confirmed the formation of SD of N with Pluronic F-68. Pellets of N showed a 24-hr drug release profile following zero-order kinetics. Pellets of SD showed a 12-hr release profile followingfirst-order kinetics. Aqueous solubility of N after SD formation was found to be increased 10-fold. Due to increased solubility of N in SD, the drug release mechanism from the multi-unit erosion matrix changed from pure surface erosion to an erosion/diffusion mechanism, thereby altering the release rate and kinetics.

  17. PLGA nanoparticles improve the oral bioavailability of curcumin in rats: characterizations and mechanisms.

    PubMed

    Xie, Xiaoxia; Tao, Qing; Zou, Yina; Zhang, Fengyi; Guo, Miao; Wang, Ying; Wang, Hui; Zhou, Qian; Yu, Shuqin

    2011-09-14

    The overall goal of this paper was to develop poly(lactic-co-glycolic acid) nanoparticles (PLGA-NPs) of curcumin (CUR), named CUR-PLGA-NPs, and to study the effect and mechanisms enhancing the oral bioavailability of CUR. CUR-PLGA-NPs were prepared according to a solid-in-oil-in-water (s/o/w) solvent evaporation method and exhibited a smooth and spherical shape with diameters of about 200 nm. Characterization of CUR-PLGA-NPs showed CUR was successfully encapsulated on the PLGA polymer. The entrapment efficiency and loading rate of CUR were 91.96 and 5.75%, respectively. CUR-PLGA-NPs showed about 640-fold in water solubility relative to that of n-CUR. A sustained CUR release to a total of approximately 77% was discovered from CUR-PLGA-NPs in artificial intestinal juice, but only about 48% in artificial gastric juice. After oral administration of CUR-PLGA-NPs, the relative bioavailability was 5.6-fold and had a longer half-life compared with that of native curcumin. The results showed that the effect in improving oral bioavailability of CUR may be associated with improved water solubility, higher release rate in the intestinal juice, enhanced absorption by improved permeability, inhibition of P-glycoprotein (P-gp)-mediated efflux, and increased residence time in the intestinal cavity. Thus, encapsulating hydrophobic drugs on PLGA polymer is a promising method for sustained and controlled drug delivery with improved bioavailability of Biopharmaceutics Classification System (BCS) class IV, such as CUR. PMID:21797282

  18. Crystallographic, Microstructural, and Mechanical Characterization of Dynamically Processed EP741NP Superalloy

    NASA Astrophysics Data System (ADS)

    Sharma, A. D.; Sharma, A. K.; Thakur, N.

    2016-08-01

    Considerable progress has been made for the solidification of metal powders with improved properties by using varieties of metallurgical methods. However, solidification of superalloy powders offers many difficulties under traditional processes. This article outlines an extensive program being undertaken to produce monoliths of superalloys with enhanced microstructural and mechanical properties. EP741NP superalloy has been subjected to explosive shock wave loading to obtain uniform and crack-free monoliths. An axisymmetric cylindrical configuration with a plastic explosive of high-detonation velocity has been used to consolidate the superalloy powder nearer to its theoretical density (~98 pct). By careful design of experiments, detonation velocity has been measured vis-à-vis compaction of metal powders in a single-shot experiment by employing instrumented detonics. The shock-processed specimens characterized for phase, lattice parameter, and structural variation by X-ray diffraction technique show intact crystalline structure. Results obtained from Williamson-Hall method indicate small micro-strain (2.8 × 10-3) and decreased crystallite size. Energy-dispersive spectroscopy suggests no segregation within the specimens. Scanning electron microscopy shows fracture-less and micro-cracks/void-free compacts of superalloy indicating satisfactory sub-structural strength. Indentation experiments with variable loads (1.96 N and 2.94 N) performed on the shock-processed specimen cut along transverse section show high order of Vicker's micro-hardness value up to 486 H v. The tensile and compressive strengths of the superalloy monoliths cut along the consolidation axes have been found to be 824 and 834 MPa, respectively.

  19. Review of Collagen I Hydrogels for Bioengineered Tissue Microenvironments: Characterization of Mechanics, Structure, and Transport

    PubMed Central

    Vlachos, Pavlos P.; Rylander, Marissa Nichole

    2014-01-01

    Type I collagen hydrogels have been used successfully as three-dimensional substrates for cell culture and have shown promise as scaffolds for engineered tissues and tumors. A critical step in the development of collagen hydrogels as viable tissue mimics is quantitative characterization of hydrogel properties and their correlation with fabrication parameters, which enables hydrogels to be tuned to match specific tissues or fulfill engineering requirements. A significant body of work has been devoted to characterization of collagen I hydrogels; however, due to the breadth of materials and techniques used for characterization, published data are often disjoint and hence their utility to the community is reduced. This review aims to determine the parameter space covered by existing data and identify key gaps in the literature so that future characterization and use of collagen I hydrogels for research can be most efficiently conducted. This review is divided into three sections: (1) relevant fabrication parameters are introduced and several of the most popular methods of controlling and regulating them are described, (2) hydrogel properties most relevant for tissue engineering are presented and discussed along with their characterization techniques, (3) the state of collagen I hydrogel characterization is recapitulated and future directions are proposed. Ultimately, this review can serve as a resource for selection of fabrication parameters and material characterization methodologies in order to increase the usefulness of future collagen-hydrogel-based characterization studies and tissue engineering experiments. PMID:24923709

  20. Review of collagen I hydrogels for bioengineered tissue microenvironments: characterization of mechanics, structure, and transport.

    PubMed

    Antoine, Elizabeth E; Vlachos, Pavlos P; Rylander, Marissa Nichole

    2014-12-01

    Type I collagen hydrogels have been used successfully as three-dimensional substrates for cell culture and have shown promise as scaffolds for engineered tissues and tumors. A critical step in the development of collagen hydrogels as viable tissue mimics is quantitative characterization of hydrogel properties and their correlation with fabrication parameters, which enables hydrogels to be tuned to match specific tissues or fulfill engineering requirements. A significant body of work has been devoted to characterization of collagen I hydrogels; however, due to the breadth of materials and techniques used for characterization, published data are often disjoint and hence their utility to the community is reduced. This review aims to determine the parameter space covered by existing data and identify key gaps in the literature so that future characterization and use of collagen I hydrogels for research can be most efficiently conducted. This review is divided into three sections: (1) relevant fabrication parameters are introduced and several of the most popular methods of controlling and regulating them are described, (2) hydrogel properties most relevant for tissue engineering are presented and discussed along with their characterization techniques, (3) the state of collagen I hydrogel characterization is recapitulated and future directions are proposed. Ultimately, this review can serve as a resource for selection of fabrication parameters and material characterization methodologies in order to increase the usefulness of future collagen-hydrogel-based characterization studies and tissue engineering experiments.

  1. The mechanics of development: models and methods for tissue morphogenesis

    PubMed Central

    Gjorevski, Nikolce; Nelson, Celeste M.

    2011-01-01

    Embryonic development is a physical process during which masses of cells are sculpted into functional organs. The mechanical properties of tissues and the forces exerted on them serve as epigenetic regulators of morphogenesis. Understanding these mechanobiological effects in the embryo requires new experimental approaches. Here we focus on branching of the lung airways and bending of the heart tube to describe examples of mechanical and physical cues that guide cell fate decisions and organogenesis. We highlight recent technological advances to measure tissue elasticity and endogenous mechanical stresses in real time during organ development. We also discuss recent progress in manipulating forces in intact embryos. PMID:20860059

  2. Prion protein-coated magnetic beads: synthesis, characterization and development of a new ligands screening method.

    PubMed

    de Moraes, Marcela Cristina; Santos, Juliana Bosco; Dos Anjos, Daniel Meira; Rangel, Luciana Pereira; Vieira, Tuane Cristine Ramos Gonçalves; Moaddel, Ruin; da Silva, Jerson Lima

    2015-01-30

    Prion diseases are characterized by protein aggregation and neurodegeneration. Conversion of the native prion protein (PrP(C)) into the abnormal scrapie PrP isoform (PrP(Sc)), which undergoes aggregation and can eventually form amyloid fibrils, is a critical step leading to the characteristic path morphological hallmark of these diseases. However, the mechanism of conversion remains unclear. It is known that ligands can act as cofactors or inhibitors in the conversion mechanism of PrP(C) into PrP(Sc). Within this context, herein, we describe the immobilization of PrP(C) onto the surface of magnetic beads and the morphological characterization of PrP(C)-coated beads by fluorescence confocal microscopy. PrP(C)-coated magnetic beads were used to identify ligands from a mixture of compounds, which were monitored by UHPLC-ESI-MS/MS. This affinity-based method allowed the isolation of the anti-prion compound quinacrine, an inhibitor of PrP aggregation. The results indicate that this approach can be applied to not only "fish" for anti-prion compounds from complex matrixes, but also to screening for and identify possible cellular cofactors involved in the deflagration of prion diseases. PMID:25576041

  3. Prion protein-coated magnetic beads: synthesis, characterization and development of a new ligands screening method.

    PubMed

    de Moraes, Marcela Cristina; Santos, Juliana Bosco; Dos Anjos, Daniel Meira; Rangel, Luciana Pereira; Vieira, Tuane Cristine Ramos Gonçalves; Moaddel, Ruin; da Silva, Jerson Lima

    2015-01-30

    Prion diseases are characterized by protein aggregation and neurodegeneration. Conversion of the native prion protein (PrP(C)) into the abnormal scrapie PrP isoform (PrP(Sc)), which undergoes aggregation and can eventually form amyloid fibrils, is a critical step leading to the characteristic path morphological hallmark of these diseases. However, the mechanism of conversion remains unclear. It is known that ligands can act as cofactors or inhibitors in the conversion mechanism of PrP(C) into PrP(Sc). Within this context, herein, we describe the immobilization of PrP(C) onto the surface of magnetic beads and the morphological characterization of PrP(C)-coated beads by fluorescence confocal microscopy. PrP(C)-coated magnetic beads were used to identify ligands from a mixture of compounds, which were monitored by UHPLC-ESI-MS/MS. This affinity-based method allowed the isolation of the anti-prion compound quinacrine, an inhibitor of PrP aggregation. The results indicate that this approach can be applied to not only "fish" for anti-prion compounds from complex matrixes, but also to screening for and identify possible cellular cofactors involved in the deflagration of prion diseases.

  4. Methods to identify and characterize developmental neurotoxicity for human health risk assessment. I: behavioral effects.

    PubMed Central

    Cory-Slechta, D A; Crofton, K M; Foran, J A; Ross, J F; Sheets, L P; Weiss, B; Mileson, B

    2001-01-01

    Alterations in nervous system function after exposure to a developmental neurotoxicant may be identified and characterized using neurobehavioral methods. A number of methods can evaluate alterations in sensory, motor, and cognitive functions in laboratory animals exposed to toxicants during nervous system development. Fundamental issues underlying proper use and interpretation of these methods include a) consideration of the scientific goal in experimental design, b) selection of an appropriate animal model, c) expertise of the investigator, d) adequate statistical analysis, and e) proper data interpretation. Strengths and weaknesses of the assessment methods include sensitivity, selectivity, practicality, and variability. Research could improve current behavioral methods by providing a better understanding of the relationship between alterations in motor function and changes in the underlying structure of these systems. Research is also needed to develop simple and sensitive assays for use in screening assessments of sensory and cognitive function. Assessment methods are being developed to examine other nervous system functions, including social behavior, autonomic processes, and biologic rhythms. Social behaviors are modified by many classes of developmental neurotoxicants and hormonally active compounds that may act either through neuroendocrine mechanisms or by directly influencing brain morphology or neurochemistry. Autonomic and thermoregulatory functions have been the province of physiologists and neurobiologists rather than toxicologists, but this may change as developmental neurotoxicology progresses and toxicologists apply techniques developed by other disciplines to examine changes in function after toxicant exposure. PMID:11250808

  5. Development of nanoindentation techniques for characterizing local mechanical properties of soft materials

    NASA Astrophysics Data System (ADS)

    Wood, Charles David

    Indentation has become a popular mechanical characterization technique due to the promise of high-resolution maps of material stiffness. Due to the far-reaching nature of the testing framework, indentation tests can occur on nearly any material type and on any length scale. In this dissertation, we will look at three different materials systems and demonstrate new and unique uses for the indentation framework. These results will provide information not available by other methodologies, thereby proving its universal value. Two different indentation schemes are employed, either probing the top surface of cross-section samples or by probing into the thickness of a thin film. The differences between each of the studies highlight the importance of sample geometry/orientation, contact conditions, material response, etc. First, we will use indentation to probe local regions near carbon nanotube/glass fiber hybrid composites in an epoxy matrix. Indentations were performed to determine the radial gradient of modulus enhancements from the glass fiber surface. The results from indentation demonstrated that spatial reinforcement due to the presence of nanotubes was tied to fiber morphology and not the local morphology of carbon nanotubes. Secondly, we look at rubber and filler interaction on two different levels; macroscale and nanoscale. On the nanoscale, we show that interactions at the filler/polymer interface create regions of altered polymer mobility. These regions are influenced by geometric and chemical confinement, which increase the stiffness of these small regions (< 200nm). We employ two different indentation methods to highlight how contact orientation determines the nature of our results. Ultra-soft materials, such as hydrogels and tissues, pose rather unique challenges when they are tested mechanically. However, with tissues and gels, the sensitivity of the machines is challenged and therefore protocols must be developed to produce accurate results. We validate

  6. Methods of failure and reliability assessment for mechanical heart pumps.

    PubMed

    Patel, Sonna M; Allaire, Paul E; Wood, Houston G; Throckmorton, Amy L; Tribble, Curt G; Olsen, Don B

    2005-01-01

    Medical Instrumentation (AAMI), and the Bethesda Conference. It further discusses studies that evaluate the failure, reliability, and safety of artificial blood pumps including in vitro and in vivo testing. A descriptive summary of mechanical and human error studies and methods of artificial blood pumps is detailed. PMID:15644079

  7. Mechanical Characterization of Photo-crosslinked, Thermoresponsive Hydrogel Thin Films via AFM Nanoindentation

    NASA Astrophysics Data System (ADS)

    Le, Thao; Aidala, Katherine; Hayward, Ryan

    2014-03-01

    Thin hydrogel films with patterned swelling are known to buckle into programmed three-dimensional shapes, offering approaches to fabricate reversibly self-folding micro-devices for actuators and drug delivery devices. To precisely control the shapes adopted, it is important to quantitatively understand the relationship between swelling and mechanical properties. Furthermore, to understand the buckling pathways and the mechanical responses of the swelled materials, it is also important to identify how the gels undergo stress relaxation. However, the low moduli, high water contents, and micrometer-scale thicknesses of these materials have so far made mechanical characterization difficult. In this study, we use an AFM nanoindentation technique to characterize the mechanical properties of photo-crosslinked, thermoresponsive poly(N-isopropylacrylamide) hydrogel thin films. Simultaneously, we conduct stress relaxation experiments at microscopic indentation lengths to differentiate between the effects of viscoelastic and poroelastic response mechanisms. This research was funded by the Army Research Office through W911NF-11-1-0080 and the NSF Materials Research Science and Engineering Center at the University of Massachusetts through DMR-0820506.

  8. Site characterization in densely fractured dolomite: Comparison of methods

    USGS Publications Warehouse

    Muldoon, M.; Bradbury, K.R.

    2005-01-01

    One of the challenges in characterizing fractured-rock aquifers is determining whether the equivalent porous medium approximation is valid at the problem scale. Detailed hydrogeologic characterization completed at a small study site in a densely fractured dolomite has yielded an extensive data set that was used to evaluate the utility of the continuum and discrete-fracture approaches to aquifer characterization. There are two near-vertical sets of fractures at the site; near-horizontal bedding-plane partings constitute a third fracture set. Eighteen boreholes, including five coreholes, were drilled to a depth of ???10.6 m. Borehole geophysical logs revealed several laterally extensive horizontal fractures and dissolution zones. Flowmeter and short-interval packer testing identified which of these features were hydraulically important. A monitoring system, consisting of short-interval piezometers and multilevel samplers, was designed to monitor four horizontal fractures and two dissolution zones. The resulting network consisted of >70 sampling points and allowed detailed monitoring of head distributions in three dimensions. Comparison of distributions of hydraulic head - and hydraulic conductivity determined by these two approaches suggests that even in a densely fractured-carbonate aquifer, a characterization approach using traditional long-interval monitoring wells is inadequate to characterize ground water movement for the purposes of regulatory monitoring or site remediation. In addition, traditional multiwell pumping tests yield an average or bulk hydraulic conductivity that is not adequate for predicting rapid ground water travel times through the fracture network, and the pumping test response does not appear to be an adequate tool for assessing whether the porous medium approximation is valid. Copyright ?? 2005 National Ground Water Association.

  9. Site characterization in densely fractured dolomite: comparison of methods.

    PubMed

    Muldoon, Maureen; Bradbury, Ken R

    2005-01-01

    One of the challenges in characterizing fractured-rock aquifers is determining whether the equivalent porous medium approximation is valid at the problem scale. Detailed hydrogeologic characterization completed at a small study site in a densely fractured dolomite has yielded an extensive data set that was used to evaluate the utility of the continuum and discrete-fracture approaches to aquifer characterization. There are two near-vertical sets of fractures at the site; near-horizontal bedding-plane partings constitute a third fracture set. Eighteen boreholes, including five coreholes, were drilled to a depth of approximately 10.6 m. Borehole geophysical logs revealed several laterally extensive horizontal fractures and dissolution zones. Flowmeter and short-interval packer testing identified which of these features were hydraulically important. A monitoring system, consisting of short-interval piezometers and multilevel samplers, was designed to monitor four horizontal fractures and two dissolution zones. The resulting network consisted of >70 sampling points and allowed detailed monitoring of head distributions in three dimensions. Comparison of distributions of hydraulic head and hydraulic conductivity determined by these two approaches suggests that even in a densely fractured-carbonate aquifer, a characterization approach using traditional long-interval monitoring wells is inadequate to characterize ground water movement for the purposes of regulatory monitoring or site remediation. In addition, traditional multiwell pumping tests yield an average or bulk hydraulic conductivity that is not adequate for predicting rapid ground water travel times through the fracture network, and the pumping test response does not appear to be an adequate tool for assessing whether the porous medium approximation is valid.

  10. Electrical and mechanical characterization of nanoscale-layered cellulose-based electro-active paper.

    PubMed

    Yun, Gyu-Young; Yun, Ki-Ju; Kim, Joo-Hyung; Kim, Jaehwan

    2011-01-01

    In order to understand the electro-mechanical behavior of piezoelectric electro active paper (EAPap), the converse and direct piezoelectric characterization of cellulose EAPap was studied and compared. A delay between the electrical field and the induced strain of EAPap was observed due to the inner nano-voids or the localized amorphous regions in layer-by-layered structure to capture or hold the electrical charges and remnant ions. The linear relation between electric field and induced strain is also observed. The electro-mechanical performance of EAPap is discussed in detail in this paper.

  11. Characterization of an X-ray mirror mechanical bender for the European XFEL.

    PubMed

    Vannoni, Maurizio; Freijo Martín, Idoia; Sinn, Harald

    2016-07-01

    One of the classical devices used to tune a mirror on an X-ray optical setup is a mechanical bender. This is often designed in such a way that the mirror is held with clamps on both ends; a motor is then used to put a torque on the clamps, inducing a cylindrical shape of the mirror surface. A mechanical bender with this design was recently characterized, to bend a 950 mm-long mirror up to a radius of curvature of 10 km. The characterization was performed using a large-aperture Fizeau interferometer with an angled incidence setup. Some particular and critical effects were investigated, such as calibration, hysteresis, twisting and long-term stability.

  12. Hazards Response of Energetic Materials - Initiation Mechanisms, Experimental Characterization, and Development of Predictive Capability

    SciTech Connect

    Maienschein, J; Nichols III, A; Reaugh, J; McClelland, M; Hsu, P C

    2005-04-15

    We present our approach to develop a predictive capability for hazards -- thermal and non-shock impact -- response of energetic material systems based on: (A) identification of relevant processes; (B) characterization of the relevant properties; (C) application of property data to predictive models; and (D) application of the models into predictive simulation. This paper focuses on the first two elements above, while a companion paper by Nichols et al focuses on the final two elements. We outline the underlying mechanisms of hazards response and their interactions, and present our experimental work to characterize the necessary material parameters, including thermal ignition, thermal and mechanical properties, fracture/fragmentation behavior, deflagration rates, and the effect of material damage. We also describe our validation test, the Scaled Thermal Explosion Experiment. Finally, we integrate the entire collection of data into a qualitative understanding that is useful until such time as the predictive models become available.

  13. Mechanical characterization of a CO2 fractured reservoir by means of microseismicity induced by high pressure injection tests

    NASA Astrophysics Data System (ADS)

    De Simone, Silvia; Soler, Joaquim; Carrera, Jesus; Slooten, Luit Jan; Ortiz, Gema

    2014-05-01

    Reservoir characterization is an essential issue in geological storage of CO2 in Technological Development Plant (TDP). In particular, hydromechanical characterization of the caprock-reservoir system is crucial, in order to define the maximum suitable injection pressure and the in-situ mechanical properties. Thus, it is possible to conjecture the hydromechanical behavior of the system during CO2 injection. Microseismicity induced by fluid injection may be used as instruments to find out fractured reservoir properties. Indeed, the hydromechanical response is controlled by permeability (k), Young modulus (E) and Poisson ratio (ν). In caprock-reservoir systems, reservoir stiffness controls the stress transfer towards the caprock, where failure may occur. Therefore, the location of the microseismic hypocenters could give information on the reservoir stiffness. In this work we propose a simulation and calibration method of the microseismicity induced by high pressure fluid injection in a fractured reservoir. Coupled hydromechanical models are peformed. The methology is applied to a particular case study.

  14. Systematic investigation of the synthesis, characterization and switching mechanism of metal oxide nanoparticle resists

    NASA Astrophysics Data System (ADS)

    Siauw, Meiliana; Du, Ke; Valade, David; Trefonas, Peter; Thackeray, James W.; Whittaker, Andrew; Blakey, Idriss

    2016-03-01

    Metal oxide nanoparticle resists have recently emerged as next generation photoresist materials which exhibit promising performance for extreme ultraviolet lithography. In this present work, we are able to show our ability to synthesize and well characterize small uniform metal oxide nanoparticles, to present stability study of the nanoparticles in the resist solvent over time, to pattern ~20 nm features by electron beam lithography, and to provide an insight into the insolubilization mechanism of the resist system.

  15. Characterization and Evaluation of Micro-mechanical Properties of Ultra High Strength Concrete by using Micro-indentation Test

    NASA Astrophysics Data System (ADS)

    Murthy, A. Ramachandra; Iyer, Nagesh R.; Raghu Prasad, B. K.

    2016-09-01

    This work presents the details of characterization and micro-mechanical properties of ultra high strength concrete. Characterization was carried out for High Strength Concrete (HSC, HSC1) and Ultra High Strength Concrete (UHSC). Various mechanical properties, namely, compressive strength, split tensile strength and modulus of elasticity have been estimated for HSC, HSC1 and UHSC. It was observed from characterization studies that the split tensile strength is high in the case of UHSC compared to HSC and HSC1. X-ray diffraction analysis has been performed for cement, silica fume and quartz powder to know the chemical composition. The amount of quantified phases has been estimated. Micro indentation technique has been employed to evaluate the micromechanical properties such as modulus of elasticity and hardness. Oliver and Pharr method has been used to compute modulus of elasticity and hardness. It is observed that the value of modulus of elasticity obtained from the micro indentation test is in very good agreement with that of the value obtained from uniaxial compression test data of a cylindrical specimen. Finally micro-structure of the specimen has been obtained for various magnifications to examine the voids/pores in the UHSC matrix.

  16. Nondestructive testing and characterization of residual stress field using an ultrasonic method

    NASA Astrophysics Data System (ADS)

    Song, Wentao; Xu, Chunguang; Pan, Qinxue; Song, Jianfeng

    2016-03-01

    To address the difficulty in testing and calibrating the stress gradient in the depth direction of mechanical components, a new technology of nondestructive testing and characterization of the residual stress gradient field by ultrasonic method is proposed based on acoustoelasticity theory. By carrying out theoretical analysis, the sensitivity coefficients of different types of ultrasonic are obtained by taking the low carbon steel(12%C) as a research object. By fixing the interval distance between sending and receiving transducers, the mathematical expressions of the change of stress and the variation of time are established. To design one sending-one receiving and oblique incidence ultrasonic detection probes, according to Snell law, the critically refracted longitudinal wave (LCR wave) is excited at a certain depth of the fixed distance of the tested components. Then, the relationship between the depth of LCR wave detection and the center frequency of the probe in Q235 steel is obtained through experimental study. To detect the stress gradient in the depth direction, a stress gradient LCR wave detection model is established, through which the stress gradient formula is derived by the relationship between center frequency and detecting depth. A C-shaped stress specimen of Q235 steel is designed to conduct stress loading tests, and the stress is measured with the five group probes at different center frequencies. The accuracy of ultrasonic testing is verified by X-ray stress analyzer. The stress value of each specific depth is calculated using the stress gradient formula. Accordingly, the ultrasonic characterization of residual stress field is realized. Characterization results show that the stress gradient distribution is consistent with the simulation in ANSYS. The new technology can be widely applied in the detection of the residual stress gradient field caused by mechanical processing, such as welding and shot peening.

  17. Mechanism for and method of biasing magnetic sensor

    SciTech Connect

    Kautz, David R.

    2007-12-04

    A magnetic sensor package having a biasing mechanism involving a coil-generated, resistor-controlled magnetic field for providing a desired biasing effect. In a preferred illustrated embodiment, the package broadly comprises a substrate; a magnetic sensor element; a biasing mechanism, including a coil and a first resistance element; an amplification mechanism; a filter capacitor element; and an encapsulant. The sensor is positioned within the coil. A current applied to the coil produces a biasing magnetic field. The biasing magnetic field is controlled by selecting a resistance value for the first resistance element which achieves the desired biasing effect. The first resistance element preferably includes a plurality of selectable resistors, the selection of one or more of which sets the resistance value.

  18. Gelation Mechanisms and Characterization of Electrochemically Generated Protein Films at Metal Interfaces

    NASA Astrophysics Data System (ADS)

    Martin, Elizabeth J.

    Although the electrochemical behavior of metals used in orthopedic implants has been studied extensively, the material interactions with proteins during corrosion processes remains poorly understood. Some studies suggest that metal-protein interactions accelerate corrosion, while others suggest that proteins protect the material from degradation. Corrosion of implant materials is a major concern due to the metal ion release that can sometimes cause adverse local tissue reactions and ultimately, failure of the implant. The initial purpose of this research was therefore to study the corrosion behavior of CoCrMo, an alloy commonly used in hip replacements, with a quartz crystal microbalance (QCM) in physiologically relevant media. The QCM enables in situ characterization of surface changes accompanying corrosion and is sensitive to viscoelastic effects at its surface. Results of QCM studies in proteinaceous media showed film deposition on the alloy surface under electrochemical conditions that otherwise produced mass loss if proteins were not present in the electrolyte. Additional studies on pure Co, Cr, and Mo demonstrated that the protein films also form on Mo surfaces after a release of molybdate ions, suggesting that these ions are essential for film formation. The electrochemically generated protein films are reminiscent of carbonaceous films that form on implant surfaces in vivo, therefore a second goal of the research was to delineate mechanisms that cause the films to form. In the second stage of this research, electrochemical QCM tests were conducted on models of the CoCrMo system consisting of Cr electrodes in proteinaceous or polymeric media containing dissolved molybdate ions. Studies indicated that films can be generated through electrochemical processes so long as both amine functional groups and molybdate ions are present in the electrolyte solution. These results suggest that the films form due to an ionic cross-linking reaction between the positively

  19. Application of electroanalytical methods to the characterization of metallothioneins and related molecules.

    PubMed

    Rodríguez, A R; Esteban, M

    2000-03-01

    Electroanalytical methods have been applied to the characterization and to the study of complexing properties of several Cd,Zn metallothioneins (MT) of different mammalian origin, rabbit and rat liver and horse kidney and human foetal liver and adult kidney. Differential pulse polarography (DPP) has been selected as the most suitable technique for distinguishing the chemical form of compounds and, assuming a diffusion controlled mechanism, monitoring the evolution of different species as a function of parameters, such as the solution pH and the gradual addition of cations, cadmium and/or zinc, initially contained in the studied molecules. Due to the fact that the metallothioneins structure is complex and often not perfectly known, the peptidic fragment Lys-Cys-Thr-Cys-Cys-Ala (56-61) MT-1 (FT) of the mouse liver has been taken as a model for MT characterization. The study of FT alone and in the presence of Cd and/or Zn, using several electroanalytical methods has been very useful for the investigation of adsorption-diffusion processes and for the identification and elucidation of electrochemical systems. The interpretation of voltammetric data is very often not easy. For some cases, proper interpretation can be made using chemometric techniques. Multivariate factor analysis has been applied to the electroanalytical investigation of the complexing properties between cadmium and/or zinc and FT, using results obtained by DPP and linear sweep voltammetry. For more complex systems, like MT, the application of chemometry becomes more complex.

  20. Encouraging the use of seismic methods for the hydrogeophysical characterization of the critical zone

    NASA Astrophysics Data System (ADS)

    Pasquet, S.; Bodet, L.; Chalikakis, K.; Flipo, N.; Longuevergne, L.; Guérin, R.

    2015-12-01

    The characterization, study and monitoring of hydrosystems mainly rely on piezometric and log data, e.g. on local information. Fortunately, hydrogeophysics provide appropriate tools to interpolate boreholes information and to image heterogeneities in the critical zone. When electrical and electromagnetic methods predominate in such context, we recently suggested the use of classical seismic methods not only to provide a characterization of the subsurface geometry, but also to estimate the mechanical properties of the critical zone influenced by its water content. We tested, on two critical zone observatories with distinct hydrogeological characteristics, the simultaneous estimation of pressure (P-) and shear (S-) wave seismic velocities (VP and VS, respectively) from P-wave travel-time tomography and surface-wave dispersion inversion respectively. On both sites, e.g. a fractured environment with strong discontinuities and a continuous multi-layered hydrosystem, we were able to image spatial and/or temporal variations of VP/VS ratio, whose evolution was strongly associated to the water content observed locally.

  1. Biophysics of cancer progression and high-throughput mechanical characterization of biomaterials

    NASA Astrophysics Data System (ADS)

    Osborne, Lukas Dylan

    Cancer metastasis involves a series of events known as the metastatic cascade. In this complex progression, cancer cells detach from the primary tumor, invade the surrounding stromal space, transmigrate the vascular system, and establish secondary tumors at distal sites. Specific mechanical phenotypes are likely adopted to enable cells to successfully navigate the mechanical environments encountered during metastasis. To examine the role of cell mechanics in cancer progression, I employed force-consistent biophysical and biochemical assays to characterize the mechanistic links between stiffness, stiffness response and cell invasion during the epithelial to mesenchymal transition (EMT). EMT is an essential physiological process, whose abnormal reactivation has been implicated in the detachment of cancer cells from epithelial tissue and their subsequent invasion into stromal tissue. I demonstrate that epithelial-state cells respond to force by evoking a stiffening response, and that after EMT, mesenchymal-state cells have reduced stiffness but also lose the ability to increase their stiffness in response to force. Using loss and gain of function studies, two proteins are established as functional connections between attenuated stiffness and stiffness response and the increased invasion capacity acquired after EMT. To enable larger scale assays to more fully explore the connection between biomechanics and cancer, I discuss the development of an automated array high throughput (AHT) microscope. The AHT system is shown to implement passive microbead rheology to accurately characterize the mechanical properties of biomaterials. Compared to manually performed mechanical characterizations, the AHT system executes experiments in two orders of magnitude less time. Finally, I use the AHT microscope to study the effect of gain of function oncogenic molecules on cell stiffness. I find evidence that our assay can identify alterations in cell stiffness due to constitutive

  2. Quantum mechanical methods for the investigation of metalloproteins and related bioinorganic compounds.

    PubMed

    Bertini, Luca; Bruschi, Maurizio; Cosentino, Ugo; Greco, Claudio; Moro, Giorgio; Zampella, Giuseppe; De Gioia, Luca

    2014-01-01

    It is well known that transition metal ions are often bound to proteins, conveying very specific functional properties. In fact, metalloproteins play crucial biological roles in the transport and activation of small molecules such as H2, O2, and N2, as well as in several other biochemical processes. However, even if the presence of transition metals in the active site of proteins allows a very rich biochemistry, the experimental disclosure of structure-activity relationships in metalloproteins is generally difficult exactly because of the presence of transition metals, which are intrinsically characterized by a very versatile and often elusive chemistry. For this reason, computational methods are becoming very popular tools in the characterization of metalloproteins. In particular, since computing power is becoming less and less expensive, due to the continuous technological development of CPUs, the computational tools suited to investigate metalloproteins are becoming more accessible and therefore more commonly used also in molecular biology and biochemistry laboratories. Here, we present the main procedures and computational methods based on quantum mechanics, which are commonly used to study the structural, electronic, and reactivity properties of metalloproteins and related bioinspired compounds, with a specific focus on the practical and technical aspects that must be generally tackled to properly study such biomolecular systems.

  3. Computational Methods for Structural Mechanics and Dynamics, part 1

    NASA Technical Reports Server (NTRS)

    Stroud, W. Jefferson (Editor); Housner, Jerrold M. (Editor); Tanner, John A. (Editor); Hayduk, Robert J. (Editor)

    1989-01-01

    The structural analysis methods research has several goals. One goal is to develop analysis methods that are general. This goal of generality leads naturally to finite-element methods, but the research will also include other structural analysis methods. Another goal is that the methods be amenable to error analysis; that is, given a physical problem and a mathematical model of that problem, an analyst would like to know the probable error in predicting a given response quantity. The ultimate objective is to specify the error tolerances and to use automated logic to adjust the mathematical model or solution strategy to obtain that accuracy. A third goal is to develop structural analysis methods that can exploit parallel processing computers. The structural analysis methods research will focus initially on three types of problems: local/global nonlinear stress analysis, nonlinear transient dynamics, and tire modeling.

  4. Detailed characterizations of a Comparative Reactivity Method (CRM) instrument: experiments vs. modelling

    NASA Astrophysics Data System (ADS)

    Michoud, V.; Hansen, R. F.; Locoge, N.; Stevens, P. S.; Dusanter, S.

    2015-04-01

    The Hydroxyl radical (OH) is an important oxidant in the daytime troposphere that controls the lifetime of most trace gases, whose oxidation leads to the formation of harmful secondary pollutants such as ozone (O3) and Secondary Organic Aerosols (SOA). In spite of the importance of OH, uncertainties remain concerning its atmospheric budget and integrated measurements of the total sink of OH can help reducing these uncertainties. In this context, several methods have been developed to measure the first-order loss rate of ambient OH, called total OH reactivity. Among these techniques, the Comparative Reactivity Method (CRM) is promising and has already been widely used in the field and in atmospheric simulation chambers. This technique relies on monitoring competitive OH reactions between a reference molecule (pyrrole) and compounds present in ambient air inside a sampling reactor. However, artefacts and interferences exist for this method and a thorough characterization of the CRM technique is needed. In this study, we present a detailed characterization of a CRM instrument, assessing the corrections that need to be applied on ambient measurements. The main corrections are, in the order of their integration in the data processing: (1) a correction for a change in relative humidity between zero air and ambient air, (2) a correction for the formation of spurious OH when artificially produced HO2 react with NO in the sampling reactor, and (3) a correction for a deviation from pseudo first-order kinetics. The dependences of these artefacts to various measurable parameters, such as the pyrrole-to-OH ratio or the bimolecular reaction rate constants of ambient trace gases with OH are also studied. From these dependences, parameterizations are proposed to correct the OH reactivity measurements from the abovementioned artefacts. A comparison of experimental and simulation results is then discussed. The simulations were performed using a 0-D box model including either (1) a

  5. Spectroscopic characterization of the binding mechanism of fluorescein and carboxyfluorescein in human serum albumin

    NASA Astrophysics Data System (ADS)

    Sulaiman, Saba A. J.; Kulathunga, H. Udani; Abou-Zied, Osama K.

    2015-03-01

    Fluorescein (FL) and some of its precursors have proven to be effective fluorescent tracers in pharmaceutical and medical applications owing to their high quantum yield of fluorescence in physiological conditions and their high membrane permeability. In order to protect FL from metabolic effects during the process of its delivery, human serum albumin (HSA) has been used as a carrier because of its compatibility with the human body. In the present work, we used spectroscopic methods to characterize the binding mechanisms of FL and one of its derivatives, 5(6)- carboxyfluorescein (CFL), in the HSA protein. The absorbance change of the two ligands (FL and CFL) was quantified as a function of the HSA concentration and the results indicate a moderate binding strength for the two ligands inside HSA (1.00 +/- 0.12 x 104 M-1). The quenching effect of FL(CFL) on the fluorescence intensity of W214 (the sole tryptophan in HSA) indicates that FL and CFL occupy Site I in the protein which is known to bind several hydrophobic drugs. By performing site-competitive experiments, the location of the ligands is determined to be similar to that of the anticoagulant drug warfarin. At higher ratios of [ligand]/[HSA], we observed an upward curvature in the Stern-Volmer plots which indicates that the ligands occupy more pockets in Site I, close to W214. Our results indicate that both ligands bind in HSA with a moderate strength that should not affect their release when used as fluorescent reporters. The chemical and physical identities of the two ligands are also preserved inside the HSA binding sites.

  6. Synthesis, characterization, growth mechanism, photoluminescence and field emission properties of novel dandelion-like gallium nitride

    NASA Astrophysics Data System (ADS)

    Nabi, Ghulam; Cao, Chuanbao; Khan, Waheed S.; Hussain, Sajad; Usman, Zahid; Safdar, Muhammad; Shah, Sajjad Hussain; Khattak, Noor Abass Din

    2011-09-01

    Dandelion-like gallium nitride (GaN) microstructures were successfully synthesized via Ni catalyst assisted chemical vapor deposition method at 1200 °C under NH3 atmosphere by pre-treating precursors with aqueous ammonia. The as-synthesized product was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). X-ray diffraction analysis revealed that as-synthesized dandelion-like GaN was pure and has hexagonal wurtzite structure. SEM results showed that the size of the dandelion-like GaN structure was in the range of 30-60 μm. Dandelion-like GaN microstructures exhibited reasonable field emission properties with the turn-on field of 9.65 V μm-1 (0.01 mA cm-2) and threshold field of 11.35 V μm-1 (1 mA cm-2) which is sufficient for applications of electron emission devices, field emission displays and vacuum micro electronic devices. Optical properties were studied at room temperature by using fluorescence spectrophotometer. Photoluminescence (PL) measurements of dandelion-like GaN showed a strong near-band-edge emission at 370.2 nm (3.35 eV) with blue band emission at 450.4 nm (2.75 eV) and 465.2 nm (2.66 eV) but with out yellow band emission. The room-temperature photoluminescence properties showed that it has also potential application in light-emitting devices. The tentative growth mechanism for the growth of dandelion-like GaN was also described.

  7. Mechanical characterization of the rat and mice skin tissues using histostructural and uniaxial data

    PubMed Central

    Karimi, Alireza; Rahmati, Seyyed Mohammadali; Navidbakhsh, Mahdi

    2015-01-01

    The skin tissue has been shown to behave like a nonlinear anisotropic material. This study was aimed to employ a constitutive fiber family equation to characterize the nonlinear anisotropic mechanical behavior of the rat and mice skin tissues in different anatomical locations, including the abdomen and back, using histostructural and uniaxial data. The rat and mice skin tissues were excised from the animals’ body and then the histological analyses were performed on each skin type to determine the mean fiber orientation angle. Afterward, the preconditioned skin tissues were subjected to a series of quasi-static axial and circumferential loads until the incidence of failure. The crucial role of fiber orientation was explicitly added into a proposed strain energy density function. The material coefficients were determined using the constrained nonlinear optimization method based on the axial and circumferential extension data of the rat and mice samples at different anatomical locations. The material coefficients of the skins were given with R2 ≥ 0.998. The results revealed a significant load-bearing capacity and stiffness of the rat abdomen compared to the rat back tissues. In addition, the mice abdomen showed a higher stiffness in the axial direction in comparison with circumferential one, while the mice back displayed its highest stiffness in the circumferential direction. The material coefficients of the rat and mice skin tissues were determined and well compared to the experimental data. The optimized fiber angles were also compared to the experimental histological data, and in all cases less than 11.85% differences were observed in both the skin tissues. PMID:25837446

  8. A method for modeling contact dynamics for automated capture mechanisms

    NASA Technical Reports Server (NTRS)

    Williams, Philip J.

    1991-01-01

    Logicon Control Dynamics develops contact dynamics models for space-based docking and berthing vehicles. The models compute contact forces for the physical contact between mating capture mechanism surfaces. Realistic simulation requires proportionality constants, for calculating contact forces, to approximate surface stiffness of contacting bodies. Proportionality for rigid metallic bodies becomes quite large. Small penetrations of surface boundaries can produce large contact forces.

  9. Hidden algebra method (quasi-exact-solvability in quantum mechanics)

    SciTech Connect

    Turbiner, Alexander

    1996-02-20

    A general introduction to quasi-exactly-solvable problems of quantum mechanics is presented. Main attention is given to multidimensional quasi-exactly-solvable and exactly-solvable Schroedinger operators. Exact-solvability of the Calogero and Sutherland N-body problems ass ociated with an existence of the hidden algebra slN is discussed extensively.

  10. Characterization of the dominant structural vibration of hearing aid receivers: Towards the moderation of mechanical feedback in hearing aids

    NASA Astrophysics Data System (ADS)

    Varanda, Brenno R.

    Presented are the results from the experimental, analytical, and computational analyses accomplished to characterize the mechanical vibration of hearing aid receivers, a key electro-acoustic component of hearing aids. The function of a receiver in a hearing aid is to provide an amplified sound signal into the ear canal. Unfortunately, as the receiver produces sound, it also undergoes vibration which can be transmitted through the hearing aid package to the microphones, resulting in undesirable feedback oscillations. To gain more knowledge and control on the source of these feedback oscillations, a dynamic rigid body model of the receiver is proposed. The rigid body model captures the essential dynamic features of the receiver. The model is represented by two hinged rigid bodies, under an equal and opposite dynamic moment load, and connected to each other by a torsional spring and damper. The mechanical coupling ratio between the two rigid bodies is proved to be acoustically independent. A method is introduced to estimate the parameters for the proposed model using experimental data. An equivalent finite element analysis model is established and tested against a known and characterized mechanical attachment. The simulated model successfully predicts the structural dynamic response showing excellent agreement between the finite element analysis and measured results.

  11. Ultrasound Imaging Techniques for Spatiotemporal Characterization of Composition, Microstructure, and Mechanical Properties in Tissue Engineering.

    PubMed

    Deng, Cheri X; Hong, Xiaowei; Stegemann, Jan P

    2016-08-01

    Ultrasound techniques are increasingly being used to quantitatively characterize both native and engineered tissues. This review provides an overview and selected examples of the main techniques used in these applications. Grayscale imaging has been used to characterize extracellular matrix deposition, and quantitative ultrasound imaging based on the integrated backscatter coefficient has been applied to estimating cell concentrations and matrix morphology in tissue engineering. Spectral analysis has been employed to characterize the concentration and spatial distribution of mineral particles in a construct, as well as to monitor mineral deposition by cells over time. Ultrasound techniques have also been used to measure the mechanical properties of native and engineered tissues. Conventional ultrasound elasticity imaging and acoustic radiation force imaging have been applied to detect regions of altered stiffness within tissues. Sonorheometry and monitoring of steady-state excitation and recovery have been used to characterize viscoelastic properties of tissue using a single transducer to both deform and image the sample. Dual-mode ultrasound elastography uses separate ultrasound transducers to produce a more potent deformation force to microscale characterization of viscoelasticity of hydrogel constructs. These ultrasound-based techniques have high potential to impact the field of tissue engineering as they are further developed and their range of applications expands.

  12. Characterization of mechanical and thermal properties of advanced composite pultrusions. Final report

    SciTech Connect

    Vaughan, J.G.; Roux, J.A.; Mantena, P.R.

    1995-08-01

    This report summarizes the work performed by the Composite Materials Group at the University of Mississippi to characterize the mechanical and thermal properties of pultruded advanced composite materials. Considerable progress has been made on characterizing the effects of pultrusion process variables on the structural/dynamic and thermal properties of a mono-fiber type graphite-epoxy composite material system. The effects of process parameters on the mechanical properties of a mono-fiber type fiberglass-epoxy were also investigated and correlated with the degree of cure using differential scanning calorimetry (DSC) studies. The mechanical properties and the failure mechanisms of these hybrids were compared with those of the mono-fiber type glass/epoxy and graphite/epoxy pultruded composites. The static properties examined were flexural strength and modulus, short-beam shear strength and tensile strength. For the dynamic (modulus and damping) studies, the impulse frequency response technique was used for exciting the flat specimens into flexural, and the round specimens into torsional, modes of vibration using appropriately designed test fixtures. The results of these tests demonstrate the potential for the cost-effective production of stiff, light and well damped composite products having a number of practical applications. A three-dimensional numerical model which utilizes a fixed control volume based finite difference approach was also developed to predict the axial, radial and circumferential temperature and degree of cure profiles, which were found to be in close agreement with experimental results.

  13. Methods for characterizing, classifying, and identifying unknowns in samples

    DOEpatents

    Grate, Jay W [West Richland, WA; Wise, Barry M [Manson, WA

    2002-01-01

    Disclosed is a method for taking the data generated from an array of responses from a multichannel instrument, and determining the characteristics of a chemical in the sample without the necessity of calibrating or training the instrument with known samples containing the same chemical. The characteristics determined by the method are then used to classify and identify the chemical in the sample. The method can also be used to quantify the concentration of the chemical in the sample.

  14. Methods for characterizing, classifying, and identifying unknowns in samples

    DOEpatents

    Grate, Jay W.; Wise, Barry M.

    2003-08-12

    Disclosed is a method for taking the data generated from an array of responses from a multichannel instrument, and determining the characteristics of a chemical in the sample without the necessity of calibrating or training the instrument with known samples containing the same chemical. The characteristics determined by the method are then used to classify and identify the chemical in the sample. The method can also be used to quantify the concentration of the chemical in the sample.

  15. Method for characterization of the redox condition of cementitious materials

    SciTech Connect

    Almond, Philip M.; Langton, Christine A.; Stefanko, David B.

    2015-12-22

    Disclosed are methods for determining the redox condition of cementitious materials. The methods are leaching methods that utilize an in situ redox indicator that is present in the cementitious materials as formed. The in situ redox indicator leaches from cementitious material and, when the leaching process is carried out under anaerobic conditions can be utilized to determine the redox condition of the material. The in situ redox indicator can exhibit distinct characteristics in the leachate depending upon the redox condition of the indicator.

  16. Review of geophysical characterization methods used at the Hanford Site

    SciTech Connect

    GV Last; DG Horton

    2000-03-23

    This paper presents a review of geophysical methods used at Hanford in two parts: (1) shallow surface-based geophysical methods and (2) borehole geophysical methods. This review was not intended to be ``all encompassing'' but should represent the vast majority (>90% complete) of geophysical work conducted onsite and aimed at hazardous waste investigations in the vadose zone and/or uppermost groundwater aquifers. This review did not cover geophysical methods aimed at large-scale geologic structures or seismicity and, in particular, did not include those efforts conducted in support of the Basalt Waste Isolation Program. This review focused primarily on the more recent efforts.

  17. Mechanical and optical characterization of tungsten oxynitride (W-O-N) nano-coatings

    NASA Astrophysics Data System (ADS)

    Nunez, Oscar Roberto

    Aation and cation doping of transition metal oxides has recently gained attention as a viable option to design materials for application in solar energy conversion, photo-catalysis, transparent electrodes, photo-electrochemical cells, electrochromics and flat panel displays in optoelectronics. Specifically, nitrogen doped tungsten oxide (WO3) has gained much attention for its ability to facilitate optical property tuning while also demonstrating enhanced photo-catalytic and photochemical properties. The effect of nitrogen chemistry and mechanics on the optical and mechanical properties of tungsten oxynitride (W-O-N) nano-coatings is studied in detail in this work. The W-O-N coatings were deposited by direct current (DC) sputtering to a thickness of ˜100 nm and the structural, compositional, optical and mechanical properties were characterized in order to gain a deeper understanding of the effects of nitrogen incorporation and chemical composition. All the W-O-N coatings fabricated under variable nitrogen gas flow rate were amorphous. X-ray photoelectron spectroscopy (XPS) and Rutherford backscattering spectrometry (RBS) measurements revealed that nitrogen incorporation is effective only for a nitrogen gas flow rates ?9 sccm. Optical characterization using ultraviolet-visible-near infrared (UV-VIS-NIR) spectroscopy and spectroscopic ellipsometry (SE) indicate that the nitrogen incorporation induced effects on the optical parameters is significant. The band gap (Eg) values decreased from ˜2.99 eV to ˜1.89 eV indicating a transition from insulating WO3 to metallic-like W-N phase. Nano-mechanical characterization using indentation revealed a corresponding change in mechanical properties; maximum values of 4.46 GPa and 98.5 GPa were noted for hardness and Young?s modulus, respectively. The results demonstrate a clear relationship between the mechanical, physical and optical properties of amorphous W-O-N nano-coatings. The correlation presented in this thesis could

  18. Development of Characterization Tools for Reliability Testing of MicroElectroMechanical System Actuators

    SciTech Connect

    Allen, James J.; Eaton, William P.; Smith, Norman F.; Tanner, Danelle M.

    1999-07-26

    Characterization tools have been developed to study the performance characteristics and reliability of surface micromachined actuators. These tools include (1) the ability to electrically stimulate or stress the actuator, (2) the capability to visually inspect the devices in operation, (3) a method for capturing operational information, and (4) a method to extract performance characteristics from the operational information. Additionally, a novel test structure has been developed to measure electrostatic forces developed by a comb drive actuator.

  19. Characterization of mechanical behavior of an epithelial monolayer in response to epidermal growth factor stimulation

    SciTech Connect

    Yang, Ruiguo; Chen, Jennifer Y.; Xi, Ning; Lai, King Wai Chiu; Qu, Chengeng; Fung, Carmen Kar Man; Penn, Lynn S.; Xi, Jun

    2012-03-10

    Cell signaling often causes changes in cellular mechanical properties. Knowledge of such changes can ultimately lead to insight into the complex network of cell signaling. In the current study, we employed a combination of atomic force microscopy (AFM) and quartz crystal microbalance with dissipation monitoring (QCM-D) to characterize the mechanical behavior of A431 cells in response to epidermal growth factor receptor (EGFR) signaling. From AFM, which probes the upper portion of an individual cell in a monolayer of cells, we observed increases in energy dissipation, Young's modulus, and hysteresivity. Increases in hysteresivity imply a shift toward a more fluid-like mechanical ordering state in the bodies of the cells. From QCM-D, which probes the basal area of the monolayer of cells collectively, we observed decreases in energy dissipation factor. This result suggests a shift toward a more solid-like state in the basal areas of the cells. The comparative analysis of these results indicates a regionally specific mechanical behavior of the cell in response to EGFR signaling and suggests a correlation between the time-dependent mechanical responses and the dynamic process of EGFR signaling. This study also demonstrates that a combination of AFM and QCM-D is able to provide a more complete and refined mechanical profile of the cells during cell signaling. -- Highlights: Black-Right-Pointing-Pointer The EGF-induced cellular mechanical response is regionally specific. Black-Right-Pointing-Pointer The EGF-induced cellular mechanical response is time and dose dependent. Black-Right-Pointing-Pointer A combination of AFM and QCM-D provides a more complete mechanical profile of cells.

  20. Characterization of resistance mechanisms to powdery mildew (Erysiphe betae) in beet (Beta vulgaris).

    PubMed

    Fernández-Aparicio, Mónica; Prats, Elena; Emeran, Amero A; Rubiales, Diego

    2009-04-01

    Beet powdery mildew incited by Erysiphe betae is a serious foliar fungal disease of worldwide distribution causing losses of up to 30%. In the present work, we searched for resistance in a germplasm collection of 184 genotypes of Beta vulgaris including fodder (51 genotypes), garden (60 genotypes), leaf (51 genotypes), and sugar (22 genotypes) beet types. Resistant genotypes were identified in the four beet types under study. In addition, mechanisms underlying resistance were dissected through histological studies. These revealed different resistance mechanisms acting at different fungal developmental stages, i.e., penetration resistance, early and late cell death, or posthaustorial resistance. Most genotypes were able to hamper fungal development at several stages. The later are interesting for breeding aiming to resistance durability. Furthermore, characterization of defense mechanisms will be useful for further cellular and molecular studies to unravel the bases of resistance in this species.

  1. Nanoscale Mechanical Characterization of Graphene/Polymer Nanocomposites using Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Cai, Minzhen

    Graphene materials, exhibiting outstanding mechanical properties, are excellent candidates as reinforcement in high-performance polymer nanocomposites. In this dissertation, advanced atomic force microscopy (AFM) techniques are applied to study the nanomechanics of graphene/polymer nanocomposites, specifically the graphene/polymer interfacial strength and the stress transfer at the interface. Two novel methods to directly characterize the interfacial strength between individual graphene sheets and polymers using AFM are presented and applied to a series of polymers and graphene sheets. The interfacial strength of graphene/polymer varies greatly for different combinations. The strongest interaction is found between graphene oxide (GO) and polyvinyl alcohol (PVA), a strongly polar, water-based polymer. On the other hand, polystyrene, a non polar polymer, has the weakest interaction with GO. The interfacial bond strength is attributed to hydrogen bonding and physical adsorption. Further, the stress transfer in GO/PVA nanocomposites is studied quantitatively by monitoring the strain in individual GO sheet inside the polymer via AFM and Raman spectroscopy. For the first time, the strains of individual GO sheets in nanocomposites are imaged and quantified as a function of the applied external strains. The matrix strain is directly transferred to GO sheets for strains up to 8%. At higher strain levels, the onset of the nanocomposite failure and a stick-slip behavior is observed. This study reveals that GO is superior to pure graphene as reinforcement in nanocomposites. These results also imply the potential to make a new generation of nanocomposites with exceptional high strength and toughness. In the second part of this dissertation, AFM is used to study the structure of silk proteins and the morphology of spider silks. For the first time, shear-induced self-assembly of native silk fibroin is observed. The morphology of the Brown Recluse spider silk is investigated and a

  2. Apparatus and method for the characterization of respirable aerosols

    DOEpatents

    Clark, Douglas K.; Hodges, Bradley W.; Bush, Jesse D.; Mishima, Jofu

    2016-05-31

    An apparatus for the characterization of respirable aerosols, including: a burn chamber configured to selectively contain a sample that is selectively heated to generate an aerosol; a heating assembly disposed within the burn chamber adjacent to the sample; and a sampling segment coupled to the burn chamber and configured to collect the aerosol such that it may be analyzed. The apparatus also includes an optional sight window disposed in a wall of the burn chamber such that the sample may be viewed during heating. Optionally, the sample includes one of a Lanthanide, an Actinide, and a Transition metal.

  3. Characterization of an Electrically Controlled Metamaterial Terahertz Modulator Using Dynamic Measurement Method

    NASA Astrophysics Data System (ADS)

    Zhou, Zhen; Chen, YongLi; Feng, LiShuang

    2016-10-01

    The characterization results of a typical electrically controlled metamaterial terahertz (THz) modulator obtained by the dynamic measurement method are presented and are in good agreement with the theoretical results predicted by a first-order model. The dynamic measurement method can characterize the modulation depth and modulation speed simultaneously. The reliability of the method is verified by terahertz time-domain spectroscopy (THz-TDS), and the current response method, which show that the more intuitive and comprehensive dynamic measurement method, can be used to characterize the electrically controlled metamaterial THz modulator accurately.

  4. Two basic plastic joining methods are fusion, mechanical--Part 1. [Comparison of mechanical and fusion joints in pipeline construction

    SciTech Connect

    Gunther, K.M. )

    1993-09-01

    Two basics techniques currently accepted by gas distribution utility companies for joining polyethylene pipe underground are fusion methods and mechanical joining. The general philosophy of Washington Gas Light Co. is to use fusion methods as much as possible, and use mechanical joints for repair and final tie-ins where fusion methods are impractical or impossible to use. Fusion methods used by gas industry users of plastic pipe include: butt fusion; socket fusion; saddle fusion; electrofusion. Mechanical pipe joining techniques or procedures include: factory made mechanical joints such as meter risers and transition fittings; hydraulic compression couplings; bolted and screwed compression couplings; stab type compression couplings; interior seal couplings. Every joining method has strengths, weaknesses, pitfalls and ways they can fail in service. The key is making the best selection based on such factors as location, temperature, conditions, available equipment, training level of personnel on the job and cost. No one method will do it all or every company would be using that particular method. Part 1 focuses on strengths, weaknesses, pitfalls and failure possibilities of the four fusion methods. In the second part, attention will be given to the five mechanical techniques.

  5. Mechanical Characterization and Shape Optimization of Fascicle-Like 3D Skeletal Muscle Tissues Contracted with Electrical and Optical Stimuli.

    PubMed

    Neal, Devin; Sakar, Mahmut Selman; Bashir, Rashid; Chan, Vincent; Asada, Haruhiko Harry

    2015-06-01

    In this study, we present a quantitative approach to construct effective 3D muscle tissues through shape optimization and load impedance matching with electrical and optical stimulation. We have constructed long, thin, fascicle-like skeletal muscle tissue and optimized its form factor through mechanical characterization. A new apparatus was designed and built, which allowed us to measure force-displacement characteristics with diverse load stiffnesses. We have found that (1) there is an optimal form factor that maximizes the muscle stress, (2) the energy transmitted to the load can be maximized with matched load stiffness, and (3) optical stimulation using channelrhodopsin2 in the muscle tissue can generate a twitch force as large as its electrical counterpart for well-developed muscle tissue. Using our tissue construct method, we found that an optimal initial diameter of 500 μm outperformed tissues using 250 μm by more than 60% and tissues using 760 μm by 105%. Using optimal load stiffness, our tissues have generated 12 pJ of energy per twitch at a peak generated stress of 1.28 kPa. Additionally, the difference in optically stimulated twitch performance versus electrically stimulated is a function of how well the overall tissue performs, with average or better performing strips having less than 10% difference. The unique mechanical characterization method used is generalizable to diverse load conditions and will be used to match load impedance to muscle tissue impedance for a wide variety of applications.

  6. Functional Characterization of PRKAR1A Mutations Reveals a Unique Molecular Mechanism Causing Acrodysostosis but Multiple Mechanisms Causing Carney Complex.

    PubMed

    Rhayem, Yara; Le Stunff, Catherine; Abdel Khalek, Waed; Auzan, Colette; Bertherat, Jerome; Linglart, Agnès; Couvineau, Alain; Silve, Caroline; Clauser, Eric

    2015-11-13

    The main target of cAMP is PKA, the main regulatory subunit of which (PRKAR1A) presents mutations in two genetic disorders: acrodysostosis and Carney complex. In addition to the initial recurrent mutation (R368X) of the PRKAR1A gene, several missense and nonsense mutations have been observed recently in acrodysostosis with hormonal resistance. These mutations are located in one of the two cAMP-binding domains of the protein, and their functional characterization is presented here. Expression of each of the PRKAR1A mutants results in a reduction of forskolin-induced PKA activation (measured by a reporter assay) and an impaired ability of cAMP to dissociate PRKAR1A from the catalytic PKA subunits by BRET assay. Modeling studies and sensitivity to cAMP analogs specific for domain A (8-piperidinoadenosine 3',5'-cyclic monophosphate) or domain B (8-(6-aminohexyl)aminoadenosine-3',5'-cyclic monophosphate) indicate that the mutations impair cAMP binding locally in the domain containing the mutation. Interestingly, two of these mutations affect amino acids for which alternative amino acid substitutions have been reported to cause the Carney complex phenotype. To decipher the molecular mechanism through which homologous substitutions can produce such strikingly different clinical phenotypes, we studied these mutations using the same approaches. Interestingly, the Carney mutants also demonstrated resistance to cAMP, but they expressed additional functional defects, including accelerated PRKAR1A protein degradation. These data demonstrate that a cAMP binding defect is the common molecular mechanism for resistance of PKA activation in acrodysosotosis and that several distinct mechanisms lead to constitutive PKA activation in Carney complex. PMID:26405036

  7. Characterization of activated sludge exocellular polymers using several cation-associated extraction methods.

    PubMed

    Park, Chul; Novak, John T

    2007-04-01

    Evaluation of prior research and preliminary investigations in our laboratory led to the development of an extraction strategy that can be used to target different cations in activated sludge floc and extract their associated extracellular polymeric substances (EPS). The methods we used were the cation exchange resin (CER) procedure, base extraction, and sulfide addition to extract EPS linked with divalent cations, Al, and Fe, respectively. A comparison of sludge cations before and after CER extraction revealed that most of Ca(2+) and Mg(2+) were removed while Fe and Al remained intact, suggesting that this method is highly selective for Ca(2+) and Mg(2+)-bound EPS. The correlation between sludge Fe and sulfide-extracted EPS was indicative of selectivity of this method for Fe-bound EPS. The base extraction was less specific than the other methods but it was the method releasing the largest amount of Al into the extract, indicating that the method extracted Al-bound EPS. Concomitantly, the composition of extracted EPS and the amino acid composition differed for the three methods, indicating that EPS associated with different metals were not the same. The change in EPS following anaerobic and aerobic digestion was also characterized by the three extraction methods. CER-extracted EPS were reduced after aerobic digestion while they changed little by anaerobic digestion. On the other hand, anaerobic digestion was associated with the decrease in sulfide-extracted EPS. These results suggest that different types of cation-EPS binding mechanisms exist in activated sludge and that each cation-associated EPS fraction imparts unique digestion characteristics to activated sludge. PMID:17346764

  8. Expiratory flow limitation definition, mechanisms, methods, and significance.

    PubMed

    Tantucci, Claudio

    2013-01-01

    When expiratory flow is maximal during tidal breathing and cannot be increased unless operative lung volumes move towards total lung capacity, tidal expiratory flow limitation (EFL) is said to occur. EFL represents a severe mechanical constraint caused by different mechanisms and observed in different conditions, but it is more relevant in terms of prevalence and negative consequences in obstructive lung diseases and particularly in chronic obstructive pulmonary disease (COPD). Although in COPD patients EFL more commonly develops during exercise, in more advanced disorder it can be present at rest, before in supine position, and then in seated-sitting position. In any circumstances EFL predisposes to pulmonary dynamic hyperinflation and its unfavorable effects such as increased elastic work of breathing, inspiratory muscles dysfunction, and progressive neuroventilatory dissociation, leading to reduced exercise tolerance, marked breathlessness during effort, and severe chronic dyspnea.

  9. Expiratory flow limitation definition, mechanisms, methods, and significance.

    PubMed

    Tantucci, Claudio

    2013-01-01

    When expiratory flow is maximal during tidal breathing and cannot be increased unless operative lung volumes move towards total lung capacity, tidal expiratory flow limitation (EFL) is said to occur. EFL represents a severe mechanical constraint caused by different mechanisms and observed in different conditions, but it is more relevant in terms of prevalence and negative consequences in obstructive lung diseases and particularly in chronic obstructive pulmonary disease (COPD). Although in COPD patients EFL more commonly develops during exercise, in more advanced disorder it can be present at rest, before in supine position, and then in seated-sitting position. In any circumstances EFL predisposes to pulmonary dynamic hyperinflation and its unfavorable effects such as increased elastic work of breathing, inspiratory muscles dysfunction, and progressive neuroventilatory dissociation, leading to reduced exercise tolerance, marked breathlessness during effort, and severe chronic dyspnea. PMID:23606962

  10. Computational Biology Methods for Characterization of Pluripotent Cells.

    PubMed

    Araúzo-Bravo, Marcos J

    2016-01-01

    Pluripotent cells are a powerful tool for regenerative medicine and drug discovery. Several techniques have been developed to induce pluripotency, or to extract pluripotent cells from different tissues and biological fluids. However, the characterization of pluripotency requires tedious, expensive, time-consuming, and not always reliable wet-lab experiments; thus, an easy, standard quality-control protocol of pluripotency assessment remains to be established. Here to help comes the use of high-throughput techniques, and in particular, the employment of gene expression microarrays, which has become a complementary technique for cellular characterization. Research has shown that the transcriptomics comparison with an Embryonic Stem Cell (ESC) of reference is a good approach to assess the pluripotency. Under the premise that the best protocol is a computer software source code, here I propose and explain line by line a software protocol coded in R-Bioconductor for pluripotency assessment based on the comparison of transcriptomics data of pluripotent cells with an ESC of reference. I provide advice for experimental design, warning about possible pitfalls, and guides for results interpretation.

  11. Nucleosome positioning in yeasts: methods, maps, and mechanisms.

    PubMed

    Lieleg, Corinna; Krietenstein, Nils; Walker, Maria; Korber, Philipp

    2015-06-01

    Eukaryotic nuclear DNA is packaged into nucleosomes. During the past decade, genome-wide nucleosome mapping across species revealed the high degree of order in nucleosome positioning. There is a conserved stereotypical nucleosome organization around transcription start sites (TSSs) with a nucleosome-depleted region (NDR) upstream of the TSS and a TSS-aligned regular array of evenly spaced nucleosomes downstream over the gene body. As nucleosomes largely impede access to DNA and thereby provide an important level of genome regulation, it is of general interest to understand the mechanisms generating nucleosome positioning and especially the stereotypical NDR-array pattern. We focus here on the most advanced models, unicellular yeasts, and review the progress in mapping nucleosomes and which nucleosome positioning mechanisms are discussed. There are four mechanistic aspects: How are NDRs generated? How are individual nucleosomes positioned, especially those flanking the NDRs? How are nucleosomes evenly spaced leading to regular arrays? How are regular arrays aligned at TSSs? The main candidates for nucleosome positioning determinants are intrinsic DNA binding preferences of the histone octamer, specific DNA binding factors, nucleosome remodeling enzymes, transcription, and statistical positioning. We summarize the state of the art in an integrative model where nucleosomes are positioned by a combination of all these candidate determinants. We highlight the predominance of active mechanisms involving nucleosome remodeling enzymes which may be recruited by DNA binding factors and the transcription machinery. While this mechanistic framework emerged clearly during recent years, the involved factors and their mechanisms are still poorly understood and require future efforts combining in vivo and in vitro approaches.

  12. Hidden algebra method (quasi-exact-solvability in quantum mechanics)

    SciTech Connect

    Turbiner, A. |

    1996-02-01

    A general introduction to quasi-exactly-solvable problems of quantum mechanics is presented. Main attention is given to multidimensional quasi-exactly-solvable and exactly-solvable Schroedinger operators. Exact-solvability of the Calogero and Sutherland {ital N}-body problems ass ociated with an existence of the hidden algebra {ital sl}{sub {ital N}} is discussed extensively. {copyright} {ital 1996 American Institute of Physics.}

  13. 46 CFR 54.30-10 - Method of performing mechanical stress relief.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Method of performing mechanical stress relief. 54.30-10 Section 54.30-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Mechanical Stress Relief § 54.30-10 Method of performing mechanical stress relief. (a)...

  14. The use of fuzzy control system methods for characterizing expert judgment uncertainty distributions

    SciTech Connect

    Smith, R.E.; Booker, J.M.; Bement, T.R.; Parkinson, W.J.; Meyer, M.A.; Jamshidi, M.

    1998-12-01

    Fuzzy logic methods permit experts to assess parameters affecting performance of components/systems in natural language terms more familiar to them (e.g., high, good, etc.). Recognizing that there is a cost associated with obtaining more precise information, the authors particular interest is in cases where the relationship between the condition of the system and its performance is not well understood, especially for some sets of possible operating conditions, and where developing a better understanding is very difficult and/or expensive. The methods allow the experts to make use of the level of precision with which they understand the underlying process. The authors consider and compare various methods of formulating the process just described, with an application in reliability analysis where expert information forms a significant (if not sole) source of data for reliability analysis. The flow of information through the fuzzy-control-systems based analysis is studied using a simple, hypothetical problem which mimics the structure used to elicit expert information in Parse. They also characterize the effect of using progressively more refined information and examine the use of fuzzy-based methods as data pooling/fusion mechanisms.

  15. Development of Methods of Characterizing Coal in Its Plastic State

    NASA Technical Reports Server (NTRS)

    Lloyd, W. G.

    1978-01-01

    Coal in its plastic state (typically 400-460 C) was examined by the isothermal Gieseler plastometry of seven selected coals of widely varying plastic properties. Kinetic models were proposed for the isothermal plastometric curves. Plastic behavior was compared with a variety of laboratory analyses and characterizations of these coals, including classical coal analysis; mineral analysis; microstructural analysis (extractable fractions, surface area measurement, and petrographic analysis); and thermal analysis (thermogravimetric analysis, thermomechanical analysis, and differential scanning calorimetry). The phenomenon of a sharp, large, poorly reproducible exotherm in the differential scanning calorimetric analysis of coking coals was examined. Several coal extrudates show mineral distribution, organic maceral composition and overall calorific value to be little affected by 800 F extrusion. Volatile matter and plastic properties are moderately reduced, and the network structure (as gauged by extractables) appears to be slightly degraded in the extrusion process.

  16. Non-Intrusive Optical Diagnostic Methods for Flowfield Characterization

    NASA Technical Reports Server (NTRS)

    Tabibi, Bagher M.; Terrell, Charles A.; Spraggins, Darrell; Lee, Ja. H.; Weinstein, Leonard M.

    1997-01-01

    Non-intrusive optical diagnostic techniques such as Electron Beam Fluorescence (EBF), Laser-Induced Fluorescence (LIF), and Focusing Schlieren (FS) have been setup for high-speed flow characterization and large flowfield visualization, respectively. Fluorescence emission from the First Negative band of N2(+) with the (0,0) vibration transition (at lambda =391.44 nm) was obtained using the EBF technique and a quenching rate of N2(+)* molecules by argon gas was reported. A very high sensitivity FS system was built and applied in the High-Speed Flow Generator (HFG) at NASA LaRC. A LIF system is available at the Advanced Propulsion Laboratory (APL) on campus and a plume exhaust velocity measurement, measuring the Doppler shift from lambda = 728.7 nm of argon gas, is under way.

  17. Field study of hydrogeologic characterization methods in a heterogeneous aquifer.

    PubMed

    Alexander, Matthew; Berg, Steven J; Illman, Walter A

    2011-01-01

    Hydraulic conductivity (K) and specific storage (S(s)) are required parameters when designing transient groundwater flow models. The purpose of this study was to evaluate the ability of commonly used hydrogeologic characterization approaches to accurately delineate the distribution of hydraulic properties in a highly heterogeneous glaciofluvial deposit. The metric used to compare the various approaches was the prediction of drawdown responses from three separate pumping tests. The study was conducted at a field site, where a 15 m × 15 m area was instrumented with four 18-m deep Continuous Multichannel Tubing (CMT) wells. Each CMT well contained seven 17 cm × 1.9 cm monitoring ports equally spaced every 2 m down each CMT system. An 18-m deep pumping well with eight separate 1-m long screens spaced every 2 m was also placed in the center of the square pattern. In each of these boreholes, cores were collected and characterized using the Unified Soil Classification System, grain size analysis, and permeameter tests. To date, 471 K estimates have been obtained through permeameter analyses and 270 K estimates from empirical relationships. Geostatistical analysis of the small-scale K data yielded strongly heterogeneous K fields in three-dimensions. Additional K estimates were obtained through slug tests in 28 ports of the four CMT wells. Several pumping tests were conducted using the multiscreen and CMT wells to obtain larger scale estimates of both K and S(s). The various K and S(s) estimates were then quantitatively evaluated by simulating transient drawdown data from three pumping tests using a 3D forward numerical model constructed using HydroGeoSphere (Therrien et al. 2005). Results showed that, while drawdown predictions generally improved as more complexity was introduced into the model, the ability to make accurate drawdown predictions at all CMT ports was inconsistent.

  18. Free Energies of Chemical Reactions in Solution and in Enzymes with Ab Initio Quantum Mechanics/Molecular Mechanics Methods

    NASA Astrophysics Data System (ADS)

    Hu, Hao; Yang, Weitao

    2008-05-01

    Combined quantum mechanics/molecular mechanics (QM/MM) methods provide an accurate and efficient energetic description of complex chemical and biological systems, leading to significant advances in the understanding of chemical reactions in solution and in enzymes. Here we review progress in QM/MM methodology and applications, focusing on ab initio QM-based approaches. Ab initio QM/MM methods capitalize on the accuracy and reliability of the associated quantum-mechanical approaches, however, at a much higher computational cost compared with semiempirical quantum-mechanical approaches. Thus reaction-path and activation free-energy calculations based on ab initio QM/MM methods encounter unique challenges in simulation timescales and phase-space sampling. This review features recent developments overcoming these challenges and enabling accurate free-energy determination for reaction processes in solution and in enzymes, along with applications.

  19. Free energies of chemical reactions in solution and in enzymes with ab initio quantum mechanics/molecular mechanics methods.

    PubMed

    Hu, Hao; Yang, Weitao

    2008-01-01

    Combined quantum mechanics/molecular mechanics (QM/MM) methods provide an accurate and efficient energetic description of complex chemical and biological systems, leading to significant advances in the understanding of chemical reactions in solution and in enzymes. Here we review progress in QM/MM methodology and applications, focusing on ab initio QM-based approaches. Ab initio QM/MM methods capitalize on the accuracy and reliability of the associated quantum-mechanical approaches, however, at a much higher computational cost compared with semiempirical quantum-mechanical approaches. Thus reaction-path and activation free-energy calculations based on ab initio QM/MM methods encounter unique challenges in simulation timescales and phase-space sampling. This review features recent developments overcoming these challenges and enabling accurate free-energy determination for reaction processes in solution and in enzymes, along with applications.

  20. Three-dimensional EBSD characterization of thermo-mechanical fatigue crack morphology in compacted graphite iron

    SciTech Connect

    Pirgazi, Hadi; Ghodrat, Sepideh; Kestens, Leo A.I.

    2014-04-01

    In cylinder heads made of compacted graphitic iron (CGI), heating and cooling cycles can lead to localized cracking due to thermo-mechanical fatigue (TMF). To meticulously characterize the complex crack path morphology of CGI under TMF condition, in relation to microstructural features and to find out how and by which mechanisms the cracks predominantly develop, three-dimensional electron back scattering diffraction (EBSD) was employed. Based on the precise quantitative microstructural analysis, it is found that graphite particles not only play a crucial role in the crack initiation, but also are of primary significance for crack propagation, i.e. crack growth is enhanced by the presence of graphite particles. Furthermore, the density of graphite particles on the fracture plane is more than double as high as in any other arbitrary plane of the structure. The obtained results did not indicate a particular crystallographic preference of fracture plane, i.e. the crystal plane parallel to the fracture plane was nearly of random orientation. - Highlights: • Crystallographic features of a thermo-mechanical fatigue (TMF) crack were studied. • Wide-field 3D EBSD is used to characterize the TMF crack morphology. • Data processing was applied on a large length scale of the order of millimeters. • Graphite density in the fracture plane is much higher than any other random plane. • It is revealed that crack growth is enhanced by the presence of graphite particles.

  1. The use of saliva markers in psychobiology: mechanisms and methods.

    PubMed

    Bosch, Jos A

    2014-01-01

    In the social sciences, the use of saliva parameters has greatly expanded in recent years from the measurement of steroid hormones, like cortisol, and now includes a wide range of biochemical parameters. These salivary constituents can be broadly classified into two groups: (1) constituents that enter saliva from plasma (e.g. hormones, inflammatory markers, drug chemicals) and (2) constituents that are produced locally by the saliva glands (e.g. α-amylase, secretory IgA). Reliable measurement of blood-borne constituents assumes a constant saliva/plasma ratio (SPR), which implies that the concentration in saliva truthfully follows intra- and interindividual variations in plasma. The first part of this review discusses the main determinants of the SPR: the mechanism by which plasma constituents enter saliva (i.e. passive diffusion, active transport, ultrafiltration, leakage) and associated physiochemical factors. The second part of this review provides an overview of central and peripheral neural mechanisms that regulate saliva gland function and the release of glandular proteins. This section provides a neurobiological underpinning for a section, which addresses methodological implications for the assessment of glandular secretions. Salivary psychophysiology is a fast-growing field and the time seems ripe for more rigorous methodological studies that may help this discipline to reach its full potential.

  2. Co-validation of three methods for optical characterization of point-focus concentrators

    SciTech Connect

    Wendelin, T.J.; Grossman, J.W.

    1994-10-01

    Three different methods for characterizing point-focus solar concentrator optical performance have been developed for specific applications. These methods include a laser ray trace technique called the Scanning Hartmann Optical Test, a video imaging process called the 2f Technique and actual on-sun testing in conjunction with optical computer modeling. Three concentrator test articles, each of a different design, were characterized using at least two of the methods and, in one case, all three. The results of these tests are compared in order to validate the methods. Excellent agreement is observed in the results, suggesting that the techniques provide consistent and accurate characterizations of solar concentrator optics.

  3. Toward an automated method for optical coherence tomography characterization.

    PubMed

    Strupler, Mathias; Beckley, Amber M; Benboujja, Fouzi; Dubois, Sylvain; Noiseux, Isabelle; Mermut, Ozzy; Bouchard, Jean-Pierre; Boudoux, Caroline

    2015-01-01

    With the increasing use of optical coherence tomography (OCT) in biomedical applications, robust yet simple methods for calibrating and benchmarking a system are needed. We present here a procedure based on a calibration object complemented with an algorithm that analyzes three-dimensional OCT datasets to retrieve key characteristics of an OCT system. The calibration object combines state-of-the-art tissue phantom material with a diamond-turned aluminum multisegment mirror. This method is capable of determining rapidly volumetric field-of-view, axial resolution, and image curvature. Moreover, as the phantom material mimics biological tissue, the system’s signal and noise levels can be evaluated in conditions close to biological experiments. We believe this method could improve OCT quantitative data analysis and help OCT data comparison for longitudinal or multicenter studies. PMID:26720874

  4. Toward an automated method for optical coherence tomography characterization

    NASA Astrophysics Data System (ADS)

    Strupler, Mathias; Beckley, Amber M.; Benboujja, Fouzi; Dubois, Sylvain; Noiseux, Isabelle; Mermut, Ozzy; Bouchard, Jean-Pierre; Boudoux, Caroline

    2015-12-01

    With the increasing use of optical coherence tomography (OCT) in biomedical applications, robust yet simple methods for calibrating and benchmarking a system are needed. We present here a procedure based on a calibration object complemented with an algorithm that analyzes three-dimensional OCT datasets to retrieve key characteristics of an OCT system. The calibration object combines state-of-the-art tissue phantom material with a diamond-turned aluminum multisegment mirror. This method is capable of determining rapidly volumetric field-of-view, axial resolution, and image curvature. Moreover, as the phantom material mimics biological tissue, the system's signal and noise levels can be evaluated in conditions close to biological experiments. We believe this method could improve OCT quantitative data analysis and help OCT data comparison for longitudinal or multicenter studies.

  5. Rapid characterization of titanium microstructural features for specific modelling of mechanical properties

    NASA Astrophysics Data System (ADS)

    Searles, T.; Tiley, J.; Tanner, A.; Williams, R.; Rollins, B.; Lee, E.; Kar, S.; Banerjee, R.; Fraser, H. L.

    2005-01-01

    Mechanical properties of α/β Ti alloys are closely related to their microstructure. The complexity of the microstructural features involved makes it rather difficult to develop models for predicting properties of these alloys. Advances in stereology and microscopy permit rapid characterization of various features in Ti alloys including Widmanstätten α-laths, grain sizes, grain shapes, colony structures and volume fractions of different phases. This research documents the stereology procedures for characterizing microstructural features in Ti alloys, including the use of three-dimensional serial sectioning and reconstruction procedures for developing through material measurements. The resulting data indicate the powerful characterization processes now available, and the ability to rapidly assess microstructural features in Ti alloys. The processes were tested using Ti-62222 by serial sectioning the sample and conducting automated stereology protocols to determine features. In addition, three-dimensional reconstruction was completed on a Ti-6242 sample to evaluate lath interactions within the alloy. Results indicate the tremendous potential for characterizing microstructures using advanced techniques.

  6. Characterization of intraocular lenses: a comparison of different measurement methods

    NASA Astrophysics Data System (ADS)

    Cherrier, M.; Erichsen, I.; Krey, S.

    2010-02-01

    One of the most commonly performed ophthalmic surgeries is the replacement of the eye lens by a synthetic intraocular lens. Because of the trend to match the intraocular lens with the properties of the individual eye, intricate designs for IOLs have been developed. Multifocal, diffractive as well as aspheric designs demand for elaborate measurement and analysis options. Various measurement methods have evolved including techniques which analyze the image itself or the emerging wavefront. In order to understand the advantages of these different methods intraocular lenses of various designs have been measured and analyzed under miscellaneous conditions. Measurement results of this comparison will be presented.

  7. Mechanical Behavior of Al-SiC Nanolaminate Composites Using Micro-Scale Testing Methods

    NASA Astrophysics Data System (ADS)

    Mayer, Carl Randolph

    Nanolaminate composite materials consist of alternating layers of materials at the nanoscale (≤100 nm). Due to the nanometer scale thickness of their layers, these materials display unique and tailorable properties. This enables us to alter both mechanical attributes such as strength and wear properties, as well as functional characteristics such as biocompatibility, optical, and electronic properties. This dissertation focuses on understanding the mechanical behavior of the Al-SiC system. From a practical perspective, these materials exhibit a combination of high toughness and strength which is attractive for many applications. Scientifically, these materials are interesting due to the large elastic modulus mismatch between the layers. This, paired with the small layer thickness, allows a unique opportunity for scientists to study the plastic deformation of metals under extreme amounts of constraint. Previous studies are limited in scope and a more diverse range of mechanical characterization is required to understand both the advantages and limitations of these materials. One of the major challenges with testing these materials is that they are only able to be made in thicknesses on the order of micrometers so the testing methods are limited to small volume techniques. This work makes use of both microscale testing techniques from the literature as well as novel methodologies. Using these techniques we are able to gain insight into aspects of the material's mechanical behavior such as the effects of layer orientation, flaw dependent fracture, tension-compression asymmetry, fracture toughness as a function of layer thickness, and shear behavior as a function of layer thickness.

  8. A novel image-based quantitative method for the characterization of NETosis

    PubMed Central

    Zhao, Wenpu; Fogg, Darin K.; Kaplan, Mariana J.

    2015-01-01

    NETosis is a newly recognized mechanism of programmed neutrophil death. It is characterized by a stepwise progression of chromatin decondensation, membrane rupture, and release of bactericidal DNA-based structures called neutrophil extracellular traps (NETs). Conventional ‘suicidal’ NETosis has been described in pathogenic models of systemic autoimmune disorders. Recent in vivo studies suggest that a process of ‘vital’ NETosis also exists, in which chromatin is condensed and membrane integrity is preserved. Techniques to assess ‘suicidal’ or ‘vital’ NET formation in a specific, quantitative, rapid and semiautomated way have been lacking, hindering the characterization of this process. Here we have developed a new method to simultaneously assess both ‘suicidal’ and ‘vital’ NETosis, using high-speed multi-spectral imaging coupled to morphometric image analysis, to quantify spontaneous NET formation observed ex-vivo or stimulus-induced NET formation triggered in vitro. Use of imaging flow cytometry allows automated, quantitative and rapid analysis of subcellular morphology and texture, and introduces the potential for further investigation using NETosis as a biomarker in pre-clinical and clinical studies. PMID:26003624

  9. Mechanical alloying, characterization and consolidation of Ti-Al-Ni alloys

    NASA Technical Reports Server (NTRS)

    Nash, P.; Higgins, G. T.; Dillinger, N.; Hwang, S. J.; Kim, H.

    1989-01-01

    Mechanical alloying is being investigated as a processing route for the production of aluminide intermetallics. This program involves powder production and characterization, consolidation and thermal treatments and determination of microstructure-property relationships. An attritor mill is being used to produce powder in lots up to 1000 grams and the processing parameters are being systematically varied to establish the optimum milling conditions. The mill is being instrumented to generate data related to the processing to provide a basis for theoretical modeling. Powder is being characterized using thermal analysis, optical and electron microscopy and X-ray diffraction. Particle size distributions and powder density are being determined. Consolidation of the powder is being approached in several different ways including, cold isostatic pressing, sintering, extrusion and hot pressing. The results of the program so far will be presented and future directions discussed.

  10. Webcam autofocus mechanism used as a delay line for the characterization of femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Castro-Marín, Pablo; Kapellmann-Zafra, Gabriel; Garduño-Mejía, Jesús; Rosete-Aguilar, Martha; Román-Moreno, Carlos J.

    2015-08-01

    In this work, we present an electromagnetic focusing mechanism (EFM), from a commercial webcam, implemented as a delay line of a femtosecond laser pulse characterization system. The characterization system consists on a second order autocorrelator based on a two-photon-absorption detection. The results presented here were performed for two different home-made femtosecond oscillators: Ti:sapph @ 820 nm and highly chirped pulses generated with an Erbium Doped Fiber @ 1550 nm. The EFM applied as a delay line represents an excellent alternative due its performance in terms of stability, resolution, and long scan range up to 3 ps. Due its low power consumption, the device can be connected through the Universal Serial Bus (USB) port. Details of components, schematics of electronic controls, and detection systems are presented.

  11. Nondestructive techniques for characterizing mechanical properties of structural materials: An overview

    NASA Technical Reports Server (NTRS)

    Vary, A.; Klima, S. J.

    1985-01-01

    An overview of nondestructive evaluation (NDE) is presented to indicate the availability and application potentials of techniques for quantitative characterization of the mechanical properties of structural materials. The purpose is to review NDE techniques that go beyond the usual emphasis on flaw detection and characterization. Discussed are current and emerging NDE techniques that can verify and monitor entrinsic properties (e.g., tensile, shear, and yield strengths; fracture toughness, hardness, ductility; elastic moduli) and underlying microstructural and morphological factors. Most of the techniques described are, at present, neither widely applied nor widely accepted in commerce and industry because they are still emerging from the laboratory. The limitations of the techniques may be overcome by advances in applications research and instrumentation technology and perhaps by accommodations for their use in the design of structural parts.

  12. Characterization of Cracking Mechanisms of Carbon Anodes Used in Aluminum Industry by Optical Microscopy and Tomography

    NASA Astrophysics Data System (ADS)

    Amrani, Salah; Kocaefe, Duygu; Kocaefe, Yasar; Bhattacharyay, Dipankar; Bouazara, Mohamed; Morais, Brigitte

    2016-10-01

    The objective of this work is to understand the different mechanisms of crack formation in dense anodes used in the aluminum industry. The first approach used is based on the qualitative characterization of the surface cracks and the depth of these cracks. The second approach, which constitutes a quantitative characterization, is carried out by determining the distribution of the crack width along its length as well as the percentage of the surface containing cracks. A qualitative analysis of crack formation was also carried out using 3D tomography. It was observed that mixing and forming conditions have a significant effect on crack formation in green anodes. The devolatilization of pitch during baking causes the formation and propagation of cracks in baked anodes in which large particles control the direction of crack propagation.

  13. Characterization of Cracking Mechanisms of Carbon Anodes Used in Aluminum Industry by Optical Microscopy and Tomography

    NASA Astrophysics Data System (ADS)

    Amrani, Salah; Kocaefe, Duygu; Kocaefe, Yasar; Bhattacharyay, Dipankar; Bouazara, Mohamed; Morais, Brigitte

    2016-08-01

    The objective of this work is to understand the different mechanisms of crack formation in dense anodes used in the aluminum industry. The first approach used is based on the qualitative characterization of the surface cracks and the depth of these cracks. The second approach, which constitutes a quantitative characterization, is carried out by determining the distribution of the crack width along its length as well as the percentage of the surface containing cracks. A qualitative analysis of crack formation was also carried out using 3D tomography. It was observed that mixing and forming conditions have a significant effect on crack formation in green anodes. The devolatilization of pitch during baking causes the formation and propagation of cracks in baked anodes in which large particles control the direction of crack propagation.

  14. Webcam autofocus mechanism used as a delay line for the characterization of femtosecond pulses

    SciTech Connect

    Castro-Marín, Pablo; Kapellmann-Zafra, Gabriel; Garduño-Mejía, Jesús Rosete-Aguilar, Martha; Román-Moreno, Carlos J.

    2015-08-15

    In this work, we present an electromagnetic focusing mechanism (EFM), from a commercial webcam, implemented as a delay line of a femtosecond laser pulse characterization system. The characterization system consists on a second order autocorrelator based on a two-photon-absorption detection. The results presented here were performed for two different home-made femtosecond oscillators: Ti:sapph @ 820 nm and highly chirped pulses generated with an Erbium Doped Fiber @ 1550 nm. The EFM applied as a delay line represents an excellent alternative due its performance in terms of stability, resolution, and long scan range up to 3 ps. Due its low power consumption, the device can be connected through the Universal Serial Bus (USB) port. Details of components, schematics of electronic controls, and detection systems are presented.

  15. Webcam autofocus mechanism used as a delay line for the characterization of femtosecond pulses.

    PubMed

    Castro-Marín, Pablo; Kapellmann-Zafra, Gabriel; Garduño-Mejía, Jesús; Rosete-Aguilar, Martha; Román-Moreno, Carlos J

    2015-08-01

    In this work, we present an electromagnetic focusing mechanism (EFM), from a commercial webcam, implemented as a delay line of a femtosecond laser pulse characterization system. The characterization system consists on a second order autocorrelator based on a two-photon-absorption detection. The results presented here were performed for two different home-made femtosecond oscillators: Ti:sapph @ 820 nm and highly chirped pulses generated with an Erbium Doped Fiber @ 1550 nm. The EFM applied as a delay line represents an excellent alternative due its performance in terms of stability, resolution, and long scan range up to 3 ps. Due its low power consumption, the device can be connected through the Universal Serial Bus (USB) port. Details of components, schematics of electronic controls, and detection systems are presented. PMID:26329240

  16. Stability Characterization of Quinazoline Derivative BG1188 by Optical Methods

    NASA Astrophysics Data System (ADS)

    Militaru, Andra; Smarandache, Adriana; Mahamoud, Abdallah; Damian, Victor; Ganea, Paul; Alibert, Sandrine; Pagès, Jean-Marie; Pascu, Mihail-Lucian

    2011-08-01

    3-[2-(dimethylamino)ethyl]-6-nitroquinazolin-4(3H)-one, labeled BG1188, is a new synthesized compound, out of a series of quinazoline derivatives developed to fight the multidrug resistance of antibiotics acquired by bacteria. A characterization of the BG1188 powder was made using FTIR spectra in order to evidence the functional groups in the medicine's molecule. The ultraviolet-visible (UV-Vis) absorption spectra were used to study the stability of the BG1188 solutions in two solvents and at different temperatures. BG1188 concentration in ultrapure water was varied between 2×10-3 M (stock solution) and 10-6 M. The concentration recommended by higher activity on bacteria was 10-3 M. For the same reason, this was the utilized concentration of BG1188 in dimethyl sulfoxide (DMSO). Time stability was characterized by comparing the time evolution of the UV-Vis absorption spectra of the BG1188 solutions in ultrapure de-ionized water or in DMSO. The spectra were recorded daily for about 4 months after the preparation for the BG1188 solutions in ultrapure water. Generally, samples are stable within the experimental errors at concentrations higher than 10-5 M, but the stability time interval may vary from 119 days at 10-4 M to 34 days at 10-5 M. Time evolution of the absorption spectra at 10-3 M in ultrapure water shows reproducibility within the measuring errors (±1.045%) for time intervals up to 1032 hours (more than 40 days) after preparation. On the other hand, BG1188 solutions in DMSO may be considered unstable because the absorption spectra modify in terms of peak shapes and intensities, indicating that the samples exhibit modifications immediately after preparation. Regardless the solvent used, some aggregation phenomena took place and wire-like aggregates were observed in all the solutions with the naked eye. These aggregates were analyzed, tentatively, using optical microscopy and FTIR.

  17. Method and apparatus for characterizing blood flow through the heart

    SciTech Connect

    Dam, N.G.; Gray, R.I.; Kramer, H.H.; Picunko, T.

    1981-10-13

    An automated method and improved device provide a measurement of blood flow through the heart by the detection and analysis of radioactivity emitted by a radioactive tracer introduced into a patient's bloodstream. Real time, cardiac cycle by cardiac cycle information is processed and displayed to provide diagnostically useful information on an essentially ongoing basis as the patient is being tested.

  18. Synthesis and characterization of catalysts and electrocatalysts using combinatorial methods

    NASA Astrophysics Data System (ADS)

    Ramanathan, Ramnarayanan

    This thesis documents attempts at solving three problems. Bead-based parallel synthetic and screening methods based on matrix algorithms were developed. The method was applied to search for new heterogeneous catalysts for dehydrogenation of methylcyclohexane. The most powerful use of the method to date was to optimize metal adsorption and evaluate catalysts as a function of incident energy, likely to be important in the future, should availability of energy be an optimization parameter. This work also highlighted the importance of order of addition of metal salts on catalytic activity and a portion of this work resulted in a patent with UOP LLC, Desplaines, Illinois. Combinatorial methods were also investigated as a tool to search for carbon-monoxide tolerant anode electrocatalysts and methanol tolerant cathode electrocatalysts, resulting in discovery of no new electrocatalysts. A physically intuitive scaling criterion was developed to analyze all experiments on electrocatalysts, providing insight for future experiments. We attempted to solve the CO poisoning problem in polymer electrolyte fuel cells using carbon molecular sieves as a separator. This approach was unsuccessful in solving the CO poisoning problem, possibly due to the tendency of the carbon molecular sieves to concentrate CO and CO 2 in pore walls.

  19. Quantitative, Qualitative and Geospatial Methods to Characterize HIV Risk Environments

    PubMed Central

    Conners, Erin E.; West, Brooke S.; Roth, Alexis M.; Meckel-Parker, Kristen G.; Kwan, Mei-Po; Magis-Rodriguez, Carlos; Staines-Orozco, Hugo; Clapp, John D.; Brouwer, Kimberly C.

    2016-01-01

    Increasingly, ‘place’, including physical and geographical characteristics as well as social meanings, is recognized as an important factor driving individual and community health risks. This is especially true among marginalized populations in low and middle income countries (LMIC), whose environments may also be more difficult to study using traditional methods. In the NIH-funded longitudinal study Mapa de Salud, we employed a novel approach to exploring the risk environment of female sex workers (FSWs) in two Mexico/U.S. border cities, Tijuana and Ciudad Juárez. In this paper we describe the development, implementation, and feasibility of a mix of quantitative and qualitative tools used to capture the HIV risk environments of FSWs in an LMIC setting. The methods were: 1) Participatory mapping; 2) Quantitative interviews; 3) Sex work venue field observation; 4) Time-location-activity diaries; 5) In-depth interviews about daily activity spaces. We found that the mixed-methodology outlined was both feasible to implement and acceptable to participants. These methods can generate geospatial data to assess the role of the environment on drug and sexual risk behaviors among high risk populations. Additionally, the adaptation of existing methods for marginalized populations in resource constrained contexts provides new opportunities for informing public health interventions. PMID:27191846

  20. Quantitative, Qualitative and Geospatial Methods to Characterize HIV Risk Environments.

    PubMed

    Conners, Erin E; West, Brooke S; Roth, Alexis M; Meckel-Parker, Kristen G; Kwan, Mei-Po; Magis-Rodriguez, Carlos; Staines-Orozco, Hugo; Clapp, John D; Brouwer, Kimberly C

    2016-01-01

    Increasingly, 'place', including physical and geographical characteristics as well as social meanings, is recognized as an important factor driving individual and community health risks. This is especially true among marginalized populations in low and middle income countries (LMIC), whose environments may also be more difficult to study using traditional methods. In the NIH-funded longitudinal study Mapa de Salud, we employed a novel approach to exploring the risk environment of female sex workers (FSWs) in two Mexico/U.S. border cities, Tijuana and Ciudad Juárez. In this paper we describe the development, implementation, and feasibility of a mix of quantitative and qualitative tools used to capture the HIV risk environments of FSWs in an LMIC setting. The methods were: 1) Participatory mapping; 2) Quantitative interviews; 3) Sex work venue field observation; 4) Time-location-activity diaries; 5) In-depth interviews about daily activity spaces. We found that the mixed-methodology outlined was both feasible to implement and acceptable to participants. These methods can generate geospatial data to assess the role of the environment on drug and sexual risk behaviors among high risk populations. Additionally, the adaptation of existing methods for marginalized populations in resource constrained contexts provides new opportunities for informing public health interventions. PMID:27191846

  1. In vitro release kinetics and physical, chemical and mechanical characterization of a POVIAC®/CaCO3/HAP-200 composite.

    PubMed

    Aragón, Javier; González, Ramón; Fuentes, Gastón; Palin, Luca; Croce, Gianluca; Viterbo, Davide

    2012-02-01

    Coralline calcium-hydroxyapatite and calcium carbonate from Porites Porites coral were added to a polymeric matrix based on polyvinyl acetate (POVIAC(®)), to obtain a novel bone substitute composite as well as a system for the controlled drug (cephalexin) release. Composite samples with different compositions were characterized by physical-chemical and mechanical methods. Furthermore, the in vitro release profile of cephalexin and the kinetic behavior of its release from these composites were analyzed by appropriate mathematical models. It was shown that there is no chemical interaction between the inorganic filler and the polymer matrix, each conserving the original properties of the raw materials. The compressive mechanical strength and Young modulus of the composite with 17.5% of POVIAC(®), has better mechanical properties than those of cancellous bone. The variation of POVIAC(®) content can affect the cephalexin release kinetic in the composite. The cephalexin release mechanism from the composites can be considered as the result of the joint contribution of a prevailing Fickian diffusion and of polymer chain relaxation. It was also demonstrated that cephalexin is occluded inside the composites and not on their surface.

  2. SIMS image processing methods for petroleum cracking catalyst characterization

    SciTech Connect

    Leta, D.P.; Lamberti, W.A.; Disko, M.M.; Kugler, E.L.; Varady, W.A. )

    1990-08-01

    The technique of Imaging Secondary Ion Mass Spectrometry (SIMS) has proven to be very well suited to the characterization of fluidized petroleum cracking catalysts (FCC). The ability to view elemental distributions with 0.5 micron spatial resolution at concentrations in the ppm range mates well with the submicron phases and low concentration contaminants present in commercial multi-component FCC particles. The use of ultra-low light level imaging systems with the intrinsically sensitive SIMS technique makes real time viewing of many of the elements important in FCC catalysts possible. Aluminum, silicon and the rare earth elements serve to define the major phases present within each catalyst particle, while the transition row elements and all of the alkali and alkaline elements may be seen at trace concentrations. Of particular importance is the use of the technique to study the distributions of nickel and vanadium which are the most deleterious of the contaminant metals. Modern image processing computers and software now allow the rapid quantitative analysis of SIMS elemental images in order to more clearly reveal the locations of the catalyst phases and the quantitative distributions of the contaminant metals on those phases. Although the analysis techniques discussed in this study may be applied to any of the contaminant elements, for simplicity the authors will limit their examples to the major catalyst elements, and the nickel and vanadium contaminants.

  3. Characterization of U-shape Streamline Fibers: Methods and Applications

    PubMed Central

    Zhang, Tuo; Chen, Hanbo; Guo, Lei; Li, Kaiming; Li, Longchuan; Zhang, Shu; Shen, Dinggang; Hu, Xiaoping; Liu, Tianming

    2014-01-01

    Diffusion tensor imaging (DTI), high angular resolution diffusion imaging (HARDI), and Diffusion Spectrum Imaging (DSI) have been widely used in the neuroimaging field to examine the macro-scale fiber connection patterns in the cerebral cortex. However, the topographic and geometric relationships between diffusion imaging derived streamline fiber connection patterns and cortical folding patterns remain largely unknown. This paper specifically identifies and characterizes the U-shapes of diffusion imaging derived streamline fibers via a novel fiber clustering framework and examines their co-localization patterns with cortical sulci based on DTI, HARDI, and DSI datasets of human, chimpanzee and macaque brains. We verified the presence of these U-shaped streamline fibers that connect neighboring gyri by coursing around cortical sulci such as the central sulcus, pre-central sulcus, post-central sulcus, superior temporal sulcus, inferior frontal sulcus, and intra-parietal sulcus. This study also verified the existence of U-shape fibers across data modalities (DTI/HARDI/DSI) and primate species (macaque, chimpanzee and human), and suggests that the common pattern of U-shape fibers coursing around sulci is evolutionarily-preserved in cortical architectures. PMID:24835185

  4. Membrane characterization by microscopic and scattering methods: multiscale structure.

    PubMed

    Tamime, Rahma; Wyart, Yvan; Siozade, Laure; Baudin, Isabelle; Deumie, Carole; Glucina, Karl; Moulin, Philippe

    2011-04-13

    Several microscopic and scattering techniques at different observation scales (from atomic to macroscopic) were used to characterize both surface and bulk properties of four new flat-sheet polyethersulfone (PES) membranes (10, 30, 100 and 300 kDa) and new 100 kDa hollow fibers (PVDF). Scanning Electron Microscopy (SEM) with "in lens" detection was used to obtain information on the pore sizes of the skin layers at the atomic scale. White Light Interferometry (WLI) and Atomic Force Microscopy (AFM) using different scales (for WLI: windows: 900 × 900 µm2 and 360 × 360 µm2; number of points: 1024; for AFM: windows: 50 × 50 µm2 and 5 × 5 µm2; number of points: 512) showed that the membrane roughness increases markedly with the observation scale and that there is a continuity between the different scan sizes for the determination of the RMS roughness. High angular resolution ellipsometric measurements were used to obtain the signature of each cut-off and the origin of the scattering was identified as coming from the membrane bulk.

  5. A method for anticoagulation of children on mechanical circulatory support.

    PubMed

    Copeland, Hannah; Nolan, Paul E; Covington, Diane; Gustafson, Monica; Smith, Richard; Copeland, Jack G

    2011-11-01

    Anticoagulation of children on mechanical circulatory support presents a challenge. We implanted 28 devices in children and infants using a consistent anticoagulation protocol. We performed a retrospective review of all children implanted in our program with mechanical assist devices since 1997. Heparin, dipyridamole, and aspirin were used for anticoagulation and antiaggregation. Coagulation monitoring included thromboelastography (TEG), platelet aggregration studies, international normalized ratio, partial thromboplastin time, and platelet count. Twenty-eight children, ages 1 month to 16 years (mean 5.3; median 2.4 years), were implanted for 3-107 days (mean 27; median 17). Eighteen received left ventricular assist devices, seven received biventricular assist devices, and three received total artificial hearts. Adverse events during the 720 days of device support included the following: six (21%) reoperations for bleeding; seven strokes (25%): two fatal, two with a mild residual deficit, and three without deficit; and three (11%) visceral emboli: two fatal and one nonfatal. There were eight deaths (29%). Causes of death were embolic (four), graft failure post-transplantation (one), preimplant anoxic brain damage (two), and postexplant heart failure (one). 24/28 (86%) survived to transplantation or weaning from device and 20/28 (71%) were discharged from the hospital, 10 after transplantation and 10 after native heart recovery. All 20 early survivors survived long term. We describe an anticoagulation protocol based upon TEG and platelet aggregation studies and using heparin, aspirin, and dipyridamole. Adequate anticoagulation is more difficult in children. However, 71% of the patients in our study survived long term.

  6. Characterization of Olive Oil by Ultrasonic and Physico-chemical Methods

    NASA Astrophysics Data System (ADS)

    Alouache, B.; Khechena, F. K.; Lecheb, F.; Boutkedjirt, T.

    Olive oil excels by its nutritional and medicinal benefits. It can be consumed without any treatment. However, its quality can be altered by inadequate storage conditions or if it is mixed with other kinds of oils. The objective of this work is to demonstrate the ability of ultrasonic methods to characterize and control olive oil quality. By using of a transducer of 2.25 MHz nominal frequency, in pulse echo mode, ultrasonic parameters, such as propagation velocity and attenuation,have been measured for pure olive oil and for its mixtures with sunflower oil at different proportions. Mechanical properties, such as density and viscosity, have also been determined. The results of ultrasonic measurements are consistent with those obtained by physico-chemical methods, such as rancidity degree, acid index, UV specific extinction coefficient and viscosity. They show that the ultrasonic method allows to distinguish between mixtures at different proportions. The study allows concluding that ultrasound techniques can be considered as a useful complement to existing physico-chemical analysis techniques.

  7. Interferometer and analysis methods for the in vitro characterization of dynamic fluid layers on contact lenses

    NASA Astrophysics Data System (ADS)

    Primeau, Brian C.; Greivenkamp, John E.

    2012-06-01

    The anterior refracting surface of the eye when wearing a contact lens is the thin fluid layer that forms on the surface of the contact lens. Under normal conditions, this fluid layer is less than 10 μm thick. The fluid layer thickness and topography change over time and are affected by the material properties of the contact lens and may affect vision quality and comfort. An in vitro method of characterizing dynamic fluid layers applied to contact lenses mounted on mechanical substrates has been developed by use of a phase-shifting Twyman-Green interferometer. This interferometer continuously measures light reflected from the surface of the fluid layer, allowing precision analysis of the dynamic fluid layer. Movies showing this fluid layer behavior can be generated. Quantitative analysis beyond typical contact angle or visual inspection methods is provided. Different fluid and contact lens material combinations have been evaluated, and variations in fluid layer properties have been observed. This paper discusses the interferometer design and analysis methods used. Example measurement results of different contact lens are presented.

  8. Characterization of gold kiwifruit pectin from fruit of different maturities and extraction methods.

    PubMed

    Yuliarti, Oni; Matia-Merino, Lara; Goh, Kelvin K T; Mawson, John; Williams, Martin A K; Brennan, Charles

    2015-01-01

    Studies on gold kiwifruit pectins are limited. In this work, the characterization of pectin isolated from two different stages of maturity of gold kiwifruit, namely early harvested fruit (EHF) and main harvested fruit (MHF) isolated by three methods (acid, water, enzymatic) was carried out. Pectins isolated from MHF were higher in galacturonic acid content (52-59% w/w) and weight-average molecular weights (Mw, 1.7-3.8 × 10(6)g/mol) compared with EHF pectins (29-49% w/w and 0.2-1.7 × 10(6)g/mol respectively). Enzymatic treatment gave the highest yield but lowest in Mw, viscosity and mechanical spectra for both maturities. The pectin of both maturities was classified as high-methoxyl pectin with the degree of esterification ranged from 82% to 90%. Water-extracted MHF pectin molecules had the highest RMS radius (182.7 nm) and Mw (3.75 × 10(6)g/mol). The water extraction method appeared to retain the native state of pectin molecules compared with acid and enzymatic extraction methods based on the Mw and viscosity data.

  9. Robust diffraction correction method for high-frequency ultrasonic tissue characterization

    NASA Astrophysics Data System (ADS)

    Raju, Balasundar

    2001-05-01

    The computation of quantitative ultrasonic parameters such as the attenuation or backscatter coefficient requires compensation for diffraction effects. In this work a simple and accurate diffraction correction method for skin characterization requiring only a single focal zone is developed. The advantage of this method is that the transducer need not be mechanically repositioned to collect data from several focal zones, thereby reducing the time of imaging and preventing motion artifacts. Data were first collected under controlled conditions from skin of volunteers using a high-frequency system (center frequency=33 MHz, BW=28 MHz) at 19 focal zones through axial translation. Using these data, mean backscatter power spectra were computed as a function of the distance between the transducer and the tissue, which then served as empirical diffraction correction curves for subsequent data. The method was demonstrated on patients patch-tested for contact dermatitis. The computed attenuation coefficient slope was significantly (p<0.05) lower at the affected site (0.13+/-0.02 dB/mm/MHz) compared to nearby normal skin (0.2+/-0.05 dB/mm/MHz). The mean backscatter level was also significantly lower at the affected site (6.7+/-2.1 in arbitrary units) compared to normal skin (11.3+/-3.2). These results show diffraction corrected ultrasonic parameters can differentiate normal from affected skin tissues.

  10. Characterization of Diversity in Toxicity Mechanism Using In Vitro Cytotoxicity Assays in Quantitative High Throughput Screening

    PubMed Central

    Huang, Ruili; Southall, Noel; Cho, Ming-Hsuang; Xia, Menghang; Inglese, James; Austin, Christopher P.

    2009-01-01

    Assessing the potential health risks of environmental chemical compounds is an expensive undertaking which has motivated the development of new alternatives to traditional in vivo toxicological testing. One approach is to stage the evaluation, beginning with less expensive and higher throughput in vitro testing before progressing to more definitive trials. In vitro testing can be used to generate a hypothesis about a compound's mechanism of action, which can then be used to design an appropriate in vivo experiment. Here we begin to address the question of how to design such a battery of in vitro cell-based assays by combining data from two different types of assays, cell viability and caspase activation, with the aim of elucidating mechanism of action. Because caspase activation is a transient event during apoptosis, it is not possible to design a single end-point assay protocol that would identify all instances of compound-induced caspase activation. Nevertheless, useful information about compound mechanism of action can be obtained from these assays in combination with cell viability data. Unsupervised clustering in combination with Dunn's cluster validity index is a robust method for identifying mechanisms of action without requiring any a priori knowledge about mechanisms of toxicity. The performance of this clustering method is evaluated by comparing the clustering results against literature annotations of compound mechanisms. PMID:18281954

  11. Mechanical Properties and Microstructural Characterization of Particulate Reinforced Diboride Composites for High Temperature Leading Edge Applications

    NASA Technical Reports Server (NTRS)

    Ellerby, Donald T.; Johnson, Sylvia M.; Bull, Jeff; Laub, Bernie; Reuther, James; Kinney, David; Kontinos, Dean; Beckman, Sarah; Stuffle, Kevin; Cull, A. D.; Arnold, Jim (Technical Monitor)

    2001-01-01

    Previous work on refractory diboride composites has shown that these systems have the potential for use in high temperature leading edge applications for reusable reentry vehicles. Experiments in reentry environments have shown that these materials have multiple use temperatures greater than 1900 C. The work to be discussed focuses on three compositions: HfB2/SiC, ZrB2/SiC, and ZrB2/C/SiC. These composites have been hot pressed and their mechanical properties measured at room and elevated temperatures. Extensive microstructural characterization has been conducted on polished cross sections and the fracture surfaces have been examined to determine their failure origins.

  12. Mechanical testing and characterization of PVDF, a thin film piezoelectric polymer

    SciTech Connect

    Vinogradov, A.M.; Holloway, F.

    1997-10-01

    Mechanical properties of the thin film piezoelectric polymer PVDF are examined experimentally. The developed program comprising static, creep and dynamic (oscillatory) tests provides a consistent empirical data base for material characterization of the polymer: The results of the study indicate that PVDF thin films are orthotropic materials. The constitutive equations of linear hereditary viscoelasticity are shown to accurately represent the time-dependent response of PVDF over a wide range of stresses, temperatures and frequencies. The experiments indicate that the polymer exhibits thermorheologically simple behavior governed by the temperature-frequency correspondence principle.

  13. Characterization of porous media structure by non linear NMR methods.

    PubMed

    Capuani, S; Alesiani, M; Alessandri, F M; Maraviglia, B

    2001-01-01

    In this paper we discuss the possibility of modifying the multiple spin echoes existing theory, developed for a homogeneous system, to describe also an inhomogeneous system such as a porous medium. We report here the first experimental application of MSE methods to materials like travertine. The ratio A(2)/A(1) from water in travertine presents minima for characteristic values of the delay time tau, like what was previously observed in the trabecular bone. By a judicious choice of the delay time tau and of the G gradient strength, the MSE sequence can be made sensitive to a specific length-scale of the sample heterogeneity. Furthermore the MSE image shows a particular new contrast that makes the non linear NMR method very attractive for the assessment of variations of the porous structure in porous systems. PMID:11445306

  14. Sensitive method for characterizing liquid helium cooled preamplifier feedback resistors

    NASA Technical Reports Server (NTRS)

    Smeins, L. G.; Arentz, R. F.

    1983-01-01

    It is pointed out that the simple and traditional method of measuring resistance using an electrometer is ineffective since it is limited to a narrow and nonrepresentative range of terminal voltages. The present investigation is concerned with a resistor measurement technique which was developed to select and calibrate the Transimpedance Mode Amplifier (TIA) load resistors on the Infrared Astronomical Satellite (IRAS) for the wide variety of time and voltage varying signals which will be processed during the flight. The developed method has great versatility and power, and makes it possible to measure the varied and complex responses of nonideal feedback resistors to IR photo-detector currents. When employed with a stable input coupling capacitor, and a narrow band RMS voltmeter, the five input waveforms thouroughly test and calibrate all the features of interest in a load resistor and its associated TIA circuitry.

  15. Characterization of Meta-Materials Using Computational Electromagnetic Methods

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar; Shin, Joon

    2005-01-01

    An efficient and powerful computational method is presented to synthesize a meta-material to specified electromagnetic properties. Using the periodicity of meta-materials, the Finite Element Methodology (FEM) is developed to estimate the reflection and transmission through the meta-material structure for a normal plane wave incidence. For efficient computations of the reflection and transmission over a wide band frequency range through a meta-material a Finite Difference Time Domain (FDTD) approach is also developed. Using the Nicholson-Ross method and the Genetic Algorithms, a robust procedure to extract electromagnetic properties of meta-material from the knowledge of its reflection and transmission coefficients is described. Few numerical examples are also presented to validate the present approach.

  16. Innovating Method of Existing Mechanical Product Based on TRIZ Theory

    NASA Astrophysics Data System (ADS)

    Zhao, Cunyou; Shi, Dongyan; Wu, Han

    Main way of product development is adaptive design and variant design based on existing product. In this paper, conceptual design frame and its flow model of innovating products is put forward through combining the methods of conceptual design and TRIZ theory. Process system model of innovating design that includes requirement analysis, total function analysis and decomposing, engineering problem analysis, finding solution of engineering problem and primarily design is constructed and this establishes the base for innovating design of existing product.

  17. Method of Testing and Predicting Failures of Electronic Mechanical Systems

    NASA Technical Reports Server (NTRS)

    Iverson, David L.; Patterson-Hine, Frances A.

    1996-01-01

    A method employing a knowledge base of human expertise comprising a reliability model analysis implemented for diagnostic routines is disclosed. The reliability analysis comprises digraph models that determine target events created by hardware failures human actions, and other factors affecting the system operation. The reliability analysis contains a wealth of human expertise information that is used to build automatic diagnostic routines and which provides a knowledge base that can be used to solve other artificial intelligence problems.

  18. Characterization of mechanical damage mechanisms in ceramic composite materials. Technical report, 23 May 1987-24 May 1988

    SciTech Connect

    Lankford, J.

    1988-09-01

    High-strain-rate compressive failure mechanisms in fiber-reinforced ceramic-matrix composite materials were characterized. These are contrasted with composite damage development at low-strain rates, and with the dynamic failure of monolithic ceramics. It is shown that it is possible to derive major strain-rate strengthening benefits if a major fraction of the fiber reinforcement is aligned with the load axis. This effect considerably exceeds the inertial microfracture strengthening observed in monolithic ceramics, and non-aligned composites. Its basis is shown to be the trans-specimen propagation time period for heterogeneously-nucleated, high-strain kink bands. A brief study on zirconia focused on the remarkable inverse strength-strain rate result previously observed for both fully and partially-stabilized zirconia single crystals, whereby the strength decreased with increasing strain rate. Based on the hypothesis that the suppression of microplastic flow, hence, local stress relaxation, might be responsible for this behavior, fully stabilized (i.e., non-transformable) specimens were strain-gaged and subjected to compressive microstrain. The rather stunning observation was that the crystals are highly microplastic, exhibiting plastic yield on loading and anelasticity and reverse plasticity upon unloading. These results clearly support the hypothesis that with increasing strain rate, microcracking is favored at the expense of microplasticity.

  19. Characterization of the mechanical properties of HL-1 cardiomyocytes with high throughput magnetic tweezers

    SciTech Connect

    Chen, La; Maybeck, Vanessa; Offenhäusser, Andreas; Krause, Hans-Joachim

    2015-08-03

    We characterized the mechanical properties of cardiomyocyte-like HL-1 cells using our recently developed multi-pole magnetic tweezers. With the optimized design, both high force and high throughput are achieved at the same time. Force up to 100 pN can be applied on a 1 μm diameter superparamagnetic bead in a workspace with 60 μm radius, which is encircled symmetrically by 3 sharp magnetic tips. By adjusting the coil currents, both the strength and direction of force can be controlled. The result shows that both viscosity and shear elastic modulus of HL-1 cells exhibit an approximately log-normal distribution. The cells became stiffer as they matured, consistent with a transition from proliferating cells to contractile muscle tissue. Moreover, the mechanical properties of HL-1 cells show high heterogeneity, which agrees well with their physiological structure.

  20. Characterization of Mechanical Properties of Cantilevered Nd2Fe14B/Ta Magnetic Microstructures

    NASA Astrophysics Data System (ADS)

    Jiang, Yonggang; Fujita, Takayuki; Uehara, Minoru; Zhang, Deyuan; Cai, Jun; Higuchi, Kohei; Maenaka, Kazusuke

    2011-11-01

    The mechanical properties of low-stress cantilevered Nd2Fe14B/Ta multilayered microstructures are characterized. The cantilevered microstructures are fabricated using silicon molding technique and XeF2 gas-phase silicon etching process. The magnetic microcantilevers show relatively high quality factors varying from 75 to 135. The Young's modulus of the Nd2Fe14B/Ta multilayered film is evaluated by fitting the resonance response of the microcantilevers, which is smaller than those of bulk Nd2Fe14B magnets due to the texture effect. The good mechanical properties of the microcantilevers indicate that Nd2Fe14B/Ta multilayered films can be used as a structural material for microsystem applications. In addition, the electromagnetic driving of the Nd2Fe14B/Ta magnetic microcantilever is also demonstrated.

  1. Development, physiochemical characterization and forming mechanism of Flammulina velutipes polysaccharide-based edible films.

    PubMed

    Du, Hengjun; Hu, Qiuhui; Yang, Wenjian; Pei, Fei; Kimatu, Benard Muinde; Ma, Ning; Fang, Yong; Cao, Chongjiang; Zhao, Liyan

    2016-11-01

    Edible films of Flammulina velutipes polysaccharide were prepared and characterized in terms of rheological, optical, morphologic, mechanical and barrier properties to evaluate their potential application in food packaging. Results suggested that FVP film prepared by the solution of 1:150 (w/v) had the optimal mechanical property, smooth and uniform surface, and good barrier property to water (37.92±2.00gmm/m(2)hkPa) and oxygen (37.92±2.01meq/kg). The capacity of film-formation might be related to inter-molecular and intra-molecular hydrogen bonds of FVP and formation of β-glycosidic bonds during the process of film-formation. These findings will contribute to a theoretical basis for the development of FVP film in food packaging. PMID:27516267

  2. Characterization of the mechanical properties of HL-1 cardiomyocytes with high throughput magnetic tweezers

    NASA Astrophysics Data System (ADS)

    Chen, La; Maybeck, Vanessa; Offenhäusser, Andreas; Krause, Hans-Joachim

    2015-08-01

    We characterized the mechanical properties of cardiomyocyte-like HL-1 cells using our recently developed multi-pole magnetic tweezers. With the optimized design, both high force and high throughput are achieved at the same time. Force up to 100 pN can be applied on a 1 μm diameter superparamagnetic bead in a workspace with 60 μm radius, which is encircled symmetrically by 3 sharp magnetic tips. By adjusting the coil currents, both the strength and direction of force can be controlled. The result shows that both viscosity and shear elastic modulus of HL-1 cells exhibit an approximately log-normal distribution. The cells became stiffer as they matured, consistent with a transition from proliferating cells to contractile muscle tissue. Moreover, the mechanical properties of HL-1 cells show high heterogeneity, which agrees well with their physiological structure.

  3. A probabilistic approach to rock mechanical property characterization for nuclear waste repository design

    SciTech Connect

    Kim, Kunsoo; Gao, Hang

    1996-04-01

    A probabilistic approach is proposed for the characterization of host rock mechanical properties at the Yucca Mountain site. This approach helps define the probability distribution of rock properties by utilizing extreme value statistics and Monte Carlo simulation. We analyze mechanical property data of tuff obtained by the NNWSI Project to assess the utility of the methodology. The analysis indicates that laboratory measured strength and deformation data of Calico Hills and Bullfrog tuffs follow an extremal. probability distribution (the third type asymptotic distribution of the smallest values). Monte Carlo simulation is carried out to estimate rock mass deformation moduli using a one-dimensional tuff model proposed by Zimmermann and Finley. We suggest that the results of these analyses be incorporated into the repository design.

  4. Risk-Informed Safety Margin Characterization Methods Development Work

    SciTech Connect

    Smith, Curtis L; Ma, Zhegang; Tom Riley; Mandelli, Diego; Nielsen, Joseph W; Alfonsi, Andrea; Rabiti, Cristian

    2014-09-01

    This report summarizes the research activity developed during the Fiscal year 2014 within the Risk Informed Safety Margin and Characterization (RISMC) pathway within the Light Water Reactor Sustainability (LWRS) campaign. This research activity is complementary to the one presented in the INL/EXT-??? report which shows advances Probabilistic Risk Assessment Analysis using RAVEN and RELAP-7 in conjunction to novel flooding simulation tools. Here we present several analyses that prove the values of the RISMC approach in order to assess risk associated to nuclear power plants (NPPs). We focus on simulation based PRA which, in contrast to classical PRA, heavily employs system simulator codes. Firstly we compare, these two types of analyses, classical and RISMC, for a Boiling water reactor (BWR) station black out (SBO) initiating event. Secondly we present an extended BWR SBO analysis using RAVEN and RELAP-5 which address the comments and suggestions received about he original analysis presented in INL/EXT-???. This time we focus more on the stochastic analysis such probability of core damage and on the determination of the most risk-relevant factors. We also show some preliminary results regarding the comparison between RELAP5-3D and the new code RELAP-7 for a simplified Pressurized Water Reactors system. Lastly we present some conceptual ideas regarding the possibility to extended the RISMC capabilities from an off-line tool (i.e., as PRA analysis tool) to an online-tool. In this new configuration, RISMC capabilities can be used to assist and inform reactor operator during real accident scenarios.

  5. An alternative method to characterize the surface urban heat island.

    PubMed

    Martin, Philippe; Baudouin, Yves; Gachon, Philippe

    2015-07-01

    An urban heat island (UHI) is a relative measure defined as a metropolitan area that is warmer than the surrounding suburban or rural areas. The UHI nomenclature includes a surface urban heat island (SUHI) definition that describes the land surface temperature (LST) differences between urban and suburban areas. The complexity involved in selecting an urban core and external thermal reference for estimating the magnitude of a UHI led us to develop a new definition of SUHIs that excludes any rural comparison. The thermal reference of these newly defined surface intra-urban heat islands (SIUHIs) is based on various temperature thresholds above the spatial average of LSTs within the city's administrative limits. A time series of images from Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) from 1984 to 2011 was used to estimate the LST over the warm season in Montreal, Québec, Canada. Different SIUHI categories were analyzed in consideration of the global solar radiation (GSR) conditions that prevailed before each acquisition date of the Landsat images. The results show that the cumulative GSR observed 24 to 48 h prior to the satellite overpass is significantly linked with the occurrence of the highest SIUHI categories (thresholds of +3 to +7 °C above the mean spatial LST within Montreal city). The highest correlation (≈0.8) is obtained between a pixel-based temperature that is 6 °C hotter than the city's mean LST (SIUHI + 6) after only 24 h of cumulative GSR. SIUHI + 6 can then be used as a thermal threshold that characterizes hotspots within the city. This identification approach can be viewed as a useful criterion or as an initial step toward the development of heat health watch and warning system (HHWWS), especially during the occurrence of severe heat spells across urban areas.

  6. Field methods for rapidly characterizing paint waste during bridge rehabilitation.

    PubMed

    Shu, Zhan; Axe, Lisa; Jahan, Kauser; Ramanujachary, Kandalam V

    2015-09-01

    For Department of Transportation (DOT) agencies, bridge rehabilitation involving paint removal results in waste that is often managed as hazardous. Hence, an approach that provides field characterization of the waste classification would be beneficial. In this study, an analysis of variables critical to the leaching process was conducted to develop a predictive tool for waste classification. This approach first involved identifying mechanistic processes that control leaching. Because steel grit is used to remove paint, elevated iron concentrations remain in the paint waste. As such, iron oxide coatings provide an important surface for metal adsorption. The diffuse layer model was invoked (logKMe=4.65 for Pb and logKMe=2.11 for Cr), where 90% of the data were captured within the 95% confidence level. Based on an understanding of mechanistic processes along with principal component analysis (PCA) of data obtained from field-portable X-ray fluorescence (FP-XRF), statistically-based models for leaching from paint waste were developed. Modeling resulted in 96% of the data falling within the 95% confidence level for Pb (R(2) 0.6-0.9, p ⩽ 0.04), Ba (R(2) 0.5-0.7, p ⩽ 0.1), and Zn (R(2) 0.6-0.7, p ⩽ 0.08). However, the regression model obtained for Cr leaching was not significant (R(2) 0.3-0.5, p ⩽ 0.75). The results of this work may assist DOT agencies with applying a predictive tool in the field that addresses the mobility of trace metals as well as disposal and management of paint waste during bridge rehabilitation.

  7. An alternative method to characterize the surface urban heat island.

    PubMed

    Martin, Philippe; Baudouin, Yves; Gachon, Philippe

    2015-07-01

    An urban heat island (UHI) is a relative measure defined as a metropolitan area that is warmer than the surrounding suburban or rural areas. The UHI nomenclature includes a surface urban heat island (SUHI) definition that describes the land surface temperature (LST) differences between urban and suburban areas. The complexity involved in selecting an urban core and external thermal reference for estimating the magnitude of a UHI led us to develop a new definition of SUHIs that excludes any rural comparison. The thermal reference of these newly defined surface intra-urban heat islands (SIUHIs) is based on various temperature thresholds above the spatial average of LSTs within the city's administrative limits. A time series of images from Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) from 1984 to 2011 was used to estimate the LST over the warm season in Montreal, Québec, Canada. Different SIUHI categories were analyzed in consideration of the global solar radiation (GSR) conditions that prevailed before each acquisition date of the Landsat images. The results show that the cumulative GSR observed 24 to 48 h prior to the satellite overpass is significantly linked with the occurrence of the highest SIUHI categories (thresholds of +3 to +7 °C above the mean spatial LST within Montreal city). The highest correlation (≈0.8) is obtained between a pixel-based temperature that is 6 °C hotter than the city's mean LST (SIUHI + 6) after only 24 h of cumulative GSR. SIUHI + 6 can then be used as a thermal threshold that characterizes hotspots within the city. This identification approach can be viewed as a useful criterion or as an initial step toward the development of heat health watch and warning system (HHWWS), especially during the occurrence of severe heat spells across urban areas. PMID:25234752

  8. An alternative method to characterize the surface urban heat island

    NASA Astrophysics Data System (ADS)

    Martin, Philippe; Baudouin, Yves; Gachon, Philippe

    2015-07-01

    An urban heat island (UHI) is a relative measure defined as a metropolitan area that is warmer than the surrounding suburban or rural areas. The UHI nomenclature includes a surface urban heat island (SUHI) definition that describes the land surface temperature (LST) differences between urban and suburban areas. The complexity involved in selecting an urban core and external thermal reference for estimating the magnitude of a UHI led us to develop a new definition of SUHIs that excludes any rural comparison. The thermal reference of these newly defined surface intra-urban heat islands (SIUHIs) is based on various temperature thresholds above the spatial average of LSTs within the city's administrative limits. A time series of images from Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) from 1984 to 2011 was used to estimate the LST over the warm season in Montreal, Québec, Canada. Different SIUHI categories were analyzed in consideration of the global solar radiation (GSR) conditions that prevailed before each acquisition date of the Landsat images. The results show that the cumulative GSR observed 24 to 48 h prior to the satellite overpass is significantly linked with the occurrence of the highest SIUHI categories (thresholds of +3 to +7 °C above the mean spatial LST within Montreal city). The highest correlation (≈0.8) is obtained between a pixel-based temperature that is 6 °C hotter than the city's mean LST (SIUHI + 6) after only 24 h of cumulative GSR. SIUHI + 6 can then be used as a thermal threshold that characterizes hotspots within the city. This identification approach can be viewed as a useful criterion or as an initial step toward the development of heat health watch and warning system (HHWWS), especially during the occurrence of severe heat spells across urban areas.

  9. Applications of Principled Search Methods in Climate Influences and Mechanisms

    NASA Technical Reports Server (NTRS)

    Glymour, Clark

    2005-01-01

    Forest and grass fires cause economic losses in the billions of dollars in the U.S. alone. In addition, boreal forests constitute a large carbon store; it has been estimated that, were no burning to occur, an additional 7 gigatons of carbon would be sequestered in boreal soils each century. Effective wildfire suppression requires anticipation of locales and times for which wildfire is most probable, preferably with a two to four week forecast, so that limited resources can be efficiently deployed. The United States Forest Service (USFS), and other experts and agencies have developed several measures of fire risk combining physical principles and expert judgment, and have used them in automated procedures for forecasting fire risk. Forecasting accuracies for some fire risk indices in combination with climate and other variables have been estimated for specific locations, with the value of fire risk index variables assessed by their statistical significance in regressions. In other cases, the MAPSS forecasts [23, 241 for example, forecasting accuracy has been estimated only by simulated data. We describe alternative forecasting methods that predict fire probability by locale and time using statistical or machine learning procedures trained on historical data, and we give comparative assessments of their forecasting accuracy for one fire season year, April- October, 2003, for all U.S. Forest Service lands. Aside from providing an accuracy baseline for other forecasting methods, the results illustrate the interdependence between the statistical significance of prediction variables and the forecasting method used.

  10. Mechanical characterization of thin TiO{sub 2} films by means of microelectromechanical systems-based cantilevers

    SciTech Connect

    Adami, A.; Decarli, M.; Bartali, R.; Micheli, V.; Laidani, N.; Lorenzelli, L.

    2010-01-15

    The measurement of mechanical parameters by means of microcantilever structures offers a reliable and accurate alternative to traditional methods, especially when dealing with thin films, which are extensively used in microfabrication technology and nanotechnology. In this work, microelectromechanical systems (MEMS)-based piezoresistive cantilevers were realized and used for the determination of Young's modulus and residual stress of thin titanium dioxide (TiO{sub 2}) deposited by sputtering from a TiO{sub 2} target using a rf plasma discharge. Films were deposited at different thicknesses, ranging from a few to a hundred nanometers. Dedicated silicon microcantilevers were designed through an optimization of geometrical parameters with the development of analytical as well as numerical models. Young's modulus and residual stress of sputtered TiO{sub 2} films were assessed by using both mechanical characterization based on scanning profilometers and piezoresistive sensing elements integrated in the silicon cantilevers. Results of MEMS-based characterization were combined with the tribological and morphological properties measured by microscratch test and x-ray diffraction analysis.

  11. Hereditary Hemorrhagic Telangiectasia: Breakpoint Characterization of a Novel Large Deletion in ACVRL1 Suggests the Causing Mechanism.

    PubMed

    Boeri, Laura; Radi, Orietta; Canzonieri, Cecilia; Buscarini, Elisabetta; Scatigno, Agnese; Minelli, Antonella; Ornati, Federica; Pagella, Fabio; Danesino, Cesare; Olivieri, Carla

    2013-03-01

    Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant vascular dysplasia. Mutations in either ENG or ACVRL1 account for around 85% of cases, and 10% are large deletions and duplications. Here we present a large novel deletion in ACVRL1 gene and its molecular characterization in a 3 generation Italian family. We employed short tandem repeats (STRs) analysis, direct sequencing, multiplex ligation-dependant probe amplification (MLPA) analysis, and 'deletion-specific' PCR methods. STRs Analysis at ENG and ACVRL1 loci suggested a positive linkage for ACVRL1. Direct sequencing of this gene did not identify any mutations, while MLPA identified a large deletion. These results were confirmed and exactly characterized with a 'deletion-specific' PCR: the deletion size is 4,594 bp and breakpoints in exon 3 and intron 8 show the presence of short direct repeats of 7 bp [GCCCCAC]. We hypothesize, as causative molecular mechanism, the replication slippage model. Understanding the fine mechanisms associated with genomic rearrangements may indicate the nonrandomness of these events, highlighting hot spots regions. The complete concordance among MLPA, STRs analysis and 'deletion-specific PCR' supports the usefulness of MLPA in HHT molecular analysis. PMID:23653583

  12. Mixed ab initio quantum mechanics/molecular mechanics methods using frozen orbitals with applications to peptides and proteins

    NASA Astrophysics Data System (ADS)

    Philipp, Dean Michael

    Methodology is discussed for mixed ab initio quantum mechanics/molecular mechanics modeling of systems where the quantum mechanics (QM) and molecular mechanics (MM) regions are within the same molecule. The ab initio QM calculations are at the restricted Hartree-Fock level using the pseudospectral method of the Jaguar program while the MM part is treated with the OPLS force fields implemented in the IMPACT program. The interface between the QM and MM regions, in particular, is elaborated upon, as it is dealt with by ``breaking'' bonds at the boundaries and using Boys-localized orbitals found from model molecules in place of the bonds. These orbitals are kept frozen during QM calculations. The mixed modeling presented here can be used for single point energy calculations and geometry optimizations. Results from tests of the method to find relative conformational energies and geometries of alanine tetrapeptides are presented along with comparisons to pure QM and pure MM calculations.

  13. Apparatus and method for high-speed characterization of surfaces

    NASA Technical Reports Server (NTRS)

    Hooker, Jeffery A. (Inventor); Simmons, Stephen M. (Inventor)

    1997-01-01

    This invention permits rapid determination of a three-dimensional contour of an object. The apparatus directs a laser beam onto a point on an object, and the scattered light is received by a position sensitive detector (PSD). The location at which scattered light is received can be related to the displacement of the point on the object, using basic trigonometry. The laser beam is deflected non-mechanically, by passing it through a crystal whose index of refraction is varied in a controlled manner. By proper control of the index of refraction, one can scan the beam across a desired area of the object, without using any moving parts, and can therefore obtain complete information about the contour of the object. The device operates without making any conventional images, and is therefore much faster than comparable devices of the prior art. Also, the laser and beam deflector can be housed in a small optical head which enables the device to reach normally inaccessible areas. The device can compare the test object with a reference object, or it can compare two objects for differences.

  14. Characterization of the Space Shuttle Ascent Debris using CFD Methods

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.; Aftosmis, Michael J.; Rogers, Stuart E.

    2005-01-01

    After video analysis of space shuttle flight STS-107's ascent showed that an object shed from the bipod-ramp region impacted the left wing, a transport analysis was initiated to determine a credible flight path and impact velocity for the piece of debris. This debris transport analysis was performed both during orbit, and after the subsequent re-entry accident. The analysis provided an accurate prediction of the velocity a large piece of foam bipod ramp would have as it impacted the wing leading edge. This prediction was corroborated by video analysis and fully-coupled CFD/six degree of freedom (DOF) simulations. While the prediction of impact velocity was accurate enough to predict critical damage in this case, one of the recommendations of the Columbia Accident Investigation Board (CAIB) for return-to-flight (RTF) was to analyze the complete debris environment experienced by the shuttle stack on ascent. This includes categorizing all possible debris sources, their probable geometric and aerodynamic characteristics, and their potential for damage. This paper is chiefly concerned with predicting the aerodynamic characteristics of a variety of potential debris sources (insulating foam and cork, nose-cone ablator, ice, ...) for the shuttle ascent configuration using CFD methods. These aerodynamic characteristics are used in the debris transport analysis to predict flight path, impact velocity and angle, and provide statistical variation to perform risk analyses where appropriate. The debris aerodynamic characteristics are difficult to determine using traditional methods, such as static or dynamic test data, due to the scaling requirements of simulating a typical debris event. The use of CFD methods has been a critical element for building confidence in the accuracy of the debris transport code by bridging the gap between existing aerodynamic data and the dynamics of full-scale, in-flight events.

  15. Pendant bubble method for an accurate characterization of superhydrophobic surfaces.

    PubMed

    Ling, William Yeong Liang; Ng, Tuck Wah; Neild, Adrian

    2011-12-01

    The commonly used sessile drop method for measuring contact angles and surface tension suffers from errors on superhydrophobic surfaces. This occurs from unavoidable experimental error in determining the vertical location of the liquid-solid-vapor interface due to a camera's finite pixel resolution, thereby necessitating the development and application of subpixel algorithms. We demonstrate here the advantage of a pendant bubble in decreasing the resulting error prior to the application of additional algorithms. For sessile drops to attain an equivalent accuracy, the pixel count would have to be increased by 2 orders of magnitude. PMID:22017500

  16. Improvement of mechanical properties of polymeric composites: Experimental methods and new systems

    NASA Astrophysics Data System (ADS)

    Nguyen, Felix Nhanchau

    Filler- (e.g., particulate or fiber) reinforced structural polymers or polymeric composites have changed the way things are made. Today, they are found, for example, in air/ground transportation vehicles, sporting goods, ballistic barrier applications and weapons, electronic packaging, musical instruments, fashion items, and more. As the demand increases, so does the desire to have not only well balanced mechanical properties, but also light weight and low cost. This leads to a constant search for novel constituents and additives, new fabrication methods and analytical techniques. To achieve new or improved composite materials requires more than the identification of the right reinforcements to be used with the right polymer matrix at the right loading. Also, an optimized adhesion between the two phases and a toughened matrix system are needed. This calls for new methods to predict, modify and assess the level of adhesion, and new developments in matrix tougheners to minimize compromises in other mechanical/thermal properties. Furthermore, structural optimization, associated with fabrication (e.g., avoidance of fiber-fiber touching or particle aggregation), and sometimes special properties, such as electrical conductivity or magnetic susceptibility are necessary. Finally, the composite system's durability, often under hostile conditions, is generally mandatory. The present study researches new predictive and experimental methods for optimizing and characterizing filler-matrix adhesion and develops a new type of epoxy tougheners. Specifically, (1) a simple thermodynamic parameter evaluated by UNIFAC is applied successfully to screen out candidate adhesion promoters, which is necessary for optimization of the physio-chemical interactions between the two phases; (2) an optical-acoustical mechanical test assisted with an acoustic emission technique is developed to de-convolute filler debonding/delamination among many other micro failure events, and (3) novel core

  17. Mechanical characterization of bucky gel morphing nanocomposite for actuating/sensing applications

    NASA Astrophysics Data System (ADS)

    Kadhoda Ghamsari, Ali; Jin, Yoonyoung; Woldesenbet, Eyassu

    2012-04-01

    Since the demonstration of the bucky gel actuator (BGA) in 2005, a great deal of effort has been exerted to develop novel applications for this electro-active morphing nanocomposite. This three-layered bimorph nanocomposite can be easily fabricated, operated in air and driven with a few volts. The BGA with improved mechanical strength is an excellent candidate for application in macro- to micro-scale smart structures with actuating and sensing capabilities. However, developing new applications requires identifying and understanding the effective design parameters and mechanical properties, respectively. There has been limited published studies on the mechanical properties of BGA. In this study, the effect of three parameters—layer thickness, carbon nanotube type and weight fraction of components—on the mechanical properties was investigated. Samples were characterized via nano-indentation and DMA. The BGA composed of 22 wt% single-walled carbon nanotubes and 45 wt% ionic liquid exhibited the highest hardness, adhesion, viscosity, and elastic and storage moduli. This study revealed the important role of the carbon nanotube type on BGA adhesion. Samples made with multi-walled carbon nanotubes had the lowest adhesion, which is a required factor in applications such as microfluidics.

  18. Preparation and thermal-mechanical characterization of nanoclay-unsaturated polyester composites.

    PubMed

    Calvo, S; Prolongo, M G; Salom, C; Masegosa, R M

    2010-04-01

    Recently polymer nanocomposites have attracted great interest as much as in industry as in research laboratories, due to they often show remarkable improvement in their mechanical and thermal properties when are compared with the virgin polymers. Among nanocomposites, nanoclay-reinforced polymers have been widely studied, specifically, those formed by a thermosetting polymer matrix, like unsaturated polyester crosslinked resin reinforced with layered silicates, like montmorillonite. In this work we have prepared nanocomposites formed by an isophtalic unsaturated polyester crosslinked resin (UP) reinforced with different contents (2-10 wt%) of organic modified montmorillonite (OMMT). The UP/OMMT nanocomposites have been prepared following different procedures and the structural characterization has been carried out by using X-ray diffraction (XRD). In all the cases an increase of the d-spacing between layers of the OMMT has been detected. The objective of this study is to analyze the thermal and mechanical behaviour of nanocomposites. For all of the reinforced systems, the glass transition temperatures values, Tg, obtained by differential scanning calorimetry (DSC) and dynamic-mechanical thermal analysis, (DMTA) are higher than the corresponding ones to neat UP. On the other hand, the OMMTP mechanical behaviour has been evaluated by DMTA and by tensile tests. Both techniques reveal an increase in Young modulus, however, a decrease of the tensile strength is observed in all the reinforced systems.

  19. Compilation of methods in orbital mechanics and solar geometry

    NASA Technical Reports Server (NTRS)

    Buglia, James J.

    1988-01-01

    This paper contains a collection of computational algorithms for determining geocentric ephemerides of Earth satellites, useful for both mission planning and data reduction applications. Special emphasis is placed on the computation of sidereal time, and on the determination of the geocentric coordinate of the center of the Sun, all to the accuracy found in the Astronomical Almanac. The report is completely self-contained in that no requirement is placed on any external source of information, and hence, these methods are ideal for computer application.

  20. Biogeographical characterization of Saccharomyces cerevisiae wine yeast by molecular methods

    PubMed Central

    Tofalo, Rosanna; Perpetuini, Giorgia; Schirone, Maria; Fasoli, Giuseppe; Aguzzi, Irene; Corsetti, Aldo; Suzzi, Giovanna

    2013-01-01

    Biogeography is the descriptive and explanatory study of spatial patterns and processes involved in the distribution of biodiversity. Without biogeography, it would be difficult to study the diversity of microorganisms because there would be no way to visualize patterns in variation. Saccharomyces cerevisiae, “the wine yeast,” is the most important species involved in alcoholic fermentation, and in vineyard ecosystems, it follows the principle of “everything is everywhere.” Agricultural practices such as farming (organic versus conventional) and floor management systems have selected different populations within this species that are phylogenetically distinct. In fact, recent ecological and geographic studies highlighted that unique strains are associated with particular grape varieties in specific geographical locations. These studies also highlighted that significant diversity and regional character, or ‘terroir,’ have been introduced into the winemaking process via this association. This diversity of wild strains preserves typicity, the high quality, and the unique flavor of wines. Recently, different molecular methods were developed to study population dynamics of S. cerevisiae strains in both vineyards and wineries. In this review, we will provide an update on the current molecular methods used to reveal the geographical distribution of S. cerevisiae wine yeast. PMID:23805132