Sample records for mechanical engineering infrastructure

  1. Should bioengineering graduates seek employment in the defense industry?

    PubMed

    Johnson, Arthur T

    2014-01-01

    They say that the difference between a mechanical engineer and a civil engineer is that the mechanical engineer develops weapons whereas a civil engineer designs targets. The implication is that some engineers are involved with building peaceful infrastructure whereas others contribute to destruction. This brings to mind the question: what is the proper role for engineers in the creation of weapons and defenses against them? In particular, should engineers specializing in biology or medicine be involved in the defense industry? After all, bioengineers are supposed to be builders or healers rather than warriors or destroyers.

  2. Expecting the Unexpected: Towards Robust Credential Infrastructure

    NASA Astrophysics Data System (ADS)

    Xu, Shouhuai; Yung, Moti

    Cryptographic credential infrastructures, such as Public key infrastructure (PKI), allow the building of trust relationships in electronic society and electronic commerce. At the center of credential infrastructures is the methodology of digital signatures. However, methods that assure that credentials and signed messages possess trustworthiness and longevity are not well understood, nor are they adequately addressed in both literature and practice. We believe that, as a basic engineering principle, these properties have to be built into the credential infrastructure rather than be treated as an after-thought since they are crucial to the long term success of this notion. In this paper we present a step in the direction of dealing with these issues. Specifically, we present the basic engineering reasoning as well as a model that helps understand (somewhat formally) the trustworthiness and longevity of digital signatures, and then we give basic mechanisms that help improve these notions.

  3. Characterizing the impact of spatiotemporal variations in stormwater infrastructure on hydrologic conditions

    NASA Astrophysics Data System (ADS)

    Jovanovic, T.; Mejia, A.; Hale, R. L.; Gironas, J. A.

    2015-12-01

    Urban stormwater infrastructure design has evolved in time, reflecting changes in stormwater policy and regulations, and in engineering design. This evolution makes urban basins heterogeneous socio-ecological-technological systems. We hypothesize that this heterogeneity creates unique impact trajectories in time and impact hotspots in space within and across cities. To explore this, we develop and implement a network hydro-engineering modeling framework based on high-resolution digital elevation and stormwater infrastructure data. The framework also accounts for climatic, soils, land use, and vegetation conditions in an urban basin, thus making it useful to study the impacts of stormwater infrastructure across cities. Here, to evaluate the framework, we apply it to urban basins in the metropolitan areas of Phoenix, Arizona. We use it to estimate different metrics to characterize the storm-event hydrologic response. We estimate both traditional metrics (e.g., peak flow, time to peak, and runoff volume) as well as new metrics (e.g., basin-scale dispersion mechanisms). We also use the dispersion mechanisms to assess the scaling characteristics of urban basins. Ultimately, we find that the proposed framework can be used to understand and characterize the impacts associated with stormwater infrastructure on hydrologic conditions within a basin. Additionally, we find that the scaling approach helps in synthesizing information but it requires further validation using additional urban basins.

  4. Report of the Defense Science Board Task Force on Critical Homeland Infrastructure Protection

    DTIC Science & Technology

    2007-01-01

    nuclear, radiation and explosive hazards; • Monitoring “people of interest” while protecting civil liberties; • Detection of hostile intent; • Detect...Guardian DARPA Overview Mr. Roger Gibbs DARPA LLNL Technologies in Support of Infrastructure Protection Mr. Don Prosnitz LLNL Sandia National...Mechanical Engineers AT/FP Antiterrorism/Force Protection CBRNE Chemical Biological Radiological Nuclear Explosive CERT Commuter Emergency Response Team

  5. Collaborative-Large scale Engineering Assessment Networks for Environmental Research: The Overview

    NASA Astrophysics Data System (ADS)

    Moo-Young, H.

    2004-05-01

    A networked infrastructure for engineering solutions and policy alternatives is necessary to assess, manage, and protect complex, anthropogenic ally stressed environmental resources effectively. Reductionist and discrete disciplinary methodologies are no longer adequate to evaluate and model complex environmental systems and anthropogenic stresses. While the reductonist approach provides important information regarding individual mechanisms, it cannot provide complete information about how multiple processes are related. Therefore, it is not possible to make accurate predictions about system responses to engineering interventions and the effectiveness of policy options. For example, experts cannot agree on best management strategies for contaminated sediments in riverine and estuarine systems. This is due, in part to the fact that existing models do not accurately capture integrated system dynamics. In addition, infrastructure is not available for investigators to exchange and archive data, to collaborate on new investigative methods, and to synthesize these results to develop engineering solutions and policy alternatives. Our vision for the future is to create a network comprising field facilities and a collaboration of engineers, scientists, policy makers, and community groups. This will allow integration across disciplines, across different temporal and spatial scales, surface and subsurface geographies, and air sheds and watersheds. Benefits include fast response to changes in system health, real-time decision making, and continuous data collection that can be used to anticipate future problems, and to develop sound engineering solutions and management decisions. CLEANER encompasses four general aspects: 1) A Network of environmental field facilities instrumented for the acquisition and analysis of environmental data; 2) A Virtual Repository of Data and information technology for engineering modeling, analysis and visualization of data, i.e. an environmental cyber-infrastructure; 3) A Mechanism for multidisciplinary research and education activities designed to exploit the output of the instrumented sites and networked information technology, to formulate engineering and policy options directed toward the protection, remediation, and restoration of stressed environments and sustainability of environmental resources; and 4) A Collaboration among engineers, natural and social scientists, educators, policy makers, industry, non-governmental organizations, the public, and other stakeholders.

  6. Engineering Infrastructures: Problems of Safety and Security in the Russian Federation

    NASA Astrophysics Data System (ADS)

    Makhutov, Nikolay A.; Reznikov, Dmitry O.; Petrov, Vitaly P.

    Modern society cannot exist without stable and reliable engineering infrastructures (EI), whose operation is vital for any national economy. These infrastructures include energy, transportation, water and gas supply systems, telecommunication and cyber systems, etc. Their performance is commensurate with storing and processing huge amounts of information, energy and hazardous substances. Ageing infrastructures are deteriorating — with operating conditions declining from normal to emergency and catastrophic. The complexity of engineering infrastructures and their interdependence with other technical systems makes them vulnerable to emergency situations triggered by natural and manmade catastrophes or terrorist attacks.

  7. Ontology-Driven Provenance Management in eScience: An Application in Parasite Research

    NASA Astrophysics Data System (ADS)

    Sahoo, Satya S.; Weatherly, D. Brent; Mutharaju, Raghava; Anantharam, Pramod; Sheth, Amit; Tarleton, Rick L.

    Provenance, from the French word "provenir", describes the lineage or history of a data entity. Provenance is critical information in scientific applications to verify experiment process, validate data quality and associate trust values with scientific results. Current industrial scale eScience projects require an end-to-end provenance management infrastructure. This infrastructure needs to be underpinned by formal semantics to enable analysis of large scale provenance information by software applications. Further, effective analysis of provenance information requires well-defined query mechanisms to support complex queries over large datasets. This paper introduces an ontology-driven provenance management infrastructure for biology experiment data, as part of the Semantic Problem Solving Environment (SPSE) for Trypanosoma cruzi (T.cruzi). This provenance infrastructure, called T.cruzi Provenance Management System (PMS), is underpinned by (a) a domain-specific provenance ontology called Parasite Experiment ontology, (b) specialized query operators for provenance analysis, and (c) a provenance query engine. The query engine uses a novel optimization technique based on materialized views called materialized provenance views (MPV) to scale with increasing data size and query complexity. This comprehensive ontology-driven provenance infrastructure not only allows effective tracking and management of ongoing experiments in the Tarleton Research Group at the Center for Tropical and Emerging Global Diseases (CTEGD), but also enables researchers to retrieve the complete provenance information of scientific results for publication in literature.

  8. International Conference of Applied Science and Technology for Infrastructure Engineering

    NASA Astrophysics Data System (ADS)

    Elvina Santoso, Shelvy; Hardianto, Ekky

    2017-11-01

    Preface: International Conference of Applied Science and Technology for Infrastructure Engineering (ICASIE) 2017. The International Conference of Applied Science and Technology for Infrastructure Engineering (ICASIE) 2017 has been scheduled and successfully taken place at Swiss-Bell Inn Hotel, Surabaya, Indonesia, on August 5th 2017 organized by Department of Civil Infrastructure Engineering, Faculty of Vocation, Institut Teknologi Sepuluh Nopember (ITS). This annual event aims to create synergies between government, private sectors; employers; practitioners; and academics. This conference has different theme each year and “MATERIAL FOR INFRASTUCTURE ENGINEERING” will be taken for this year’s main theme. In addition, we also provide a platform for various other sub-theme topic including but not limited to Geopolymer Concrete and Materials Technology, Structural Dynamics, Engineering, and Sustainability, Seismic Design and Control of Structural Vibrations, Innovative and Green Buildings, Project Management, Transportation and Highway Engineering, Geotechnical Engineering, Water Engineering and Resources Management, Surveying and Geospatial Engineering, Coastal Engineering, Geophysics, Energy, Electronic and Mechatronic, Industrial Process, and Data Mining. List of Organizers, Journal Editors, Steering Committee, International Scientific Committee, Chairman, Keynote Speakers are available in this pdf.

  9. The Effect of Pixel Size on the Accuracy of Orthophoto Production

    NASA Astrophysics Data System (ADS)

    Kulur, S.; Yildiz, F.; Selcuk, O.; Yildiz, M. A.

    2016-06-01

    In our country, orthophoto products are used by the public and private sectors for engineering services and infrastructure projects, Orthophotos are particularly preferred due to faster and are more economical production according to vector digital photogrammetric production. Today, digital orthophotos provide an expected accuracy for engineering and infrastructure projects. In this study, the accuracy of orthophotos using pixel sizes with different sampling intervals are tested for the expectations of engineering and infrastructure projects.

  10. Integrating Cost Engineering and Project Management in a Junior Engineering Economics Course and a Senior Capstone Project Design Course

    ERIC Educational Resources Information Center

    Tickles, Virginia C.; Li, Yadong; Walters, Wilbur L.

    2013-01-01

    Much criticism exists concerning a lack of focus on real-world problem-solving in the science, technology, engineering and mathematics (STEM) infrastructures. Many of these critics say that current educational infrastructures are incapable in preparing future scientists and engineers to solve the complex and multidisciplinary problems this society…

  11. Developing an infrastructure index : phase I.

    DOT National Transportation Integrated Search

    2010-04-01

    Over the past decade the American Society of Civil Engineers has used the Infrastructure Report : Card to raise awareness of infrastructure issues. Aging and deteriorating infrastructure has : recently been highlighted in the popular media. However, ...

  12. System Engineering Infrastructure Evolution Galileo IOV and the Steps Beyond

    NASA Astrophysics Data System (ADS)

    Eickhoff, J.; Herpel, H.-J.; Steinle, T.; Birn, R.; Steiner, W.-D.; Eisenmann, H.; Ludwig, T.

    2009-05-01

    The trends to more and more constrained financial budgets in satellite engineering require a permanent optimization of the S/C system engineering processes and infrastructure. Astrium in the recent years already has built up a system simulation infrastructure - the "Model-based Development & Verification Environment" - which meanwhile is well known all over Europe and is established as Astrium's standard approach for ESA, DLR projects and now even the EU/ESA-Project Galileo IOV. The key feature of the MDVE / FVE approach is to provide entire S/C simulation (with full featured OBC simulation) already in early phases to start OBSW code tests on a simulated S/C and to later add hardware in the loop step by step up to an entire "Engineering Functional Model (EFM)" or "FlatSat". The subsequent enhancements to this simulator infrastructure w.r.t. spacecraft design data handling are reported in the following sections.

  13. Robust Engineering Designs for Infrastructure Adaptation to a Changing Climate

    NASA Astrophysics Data System (ADS)

    Samaras, C.; Cook, L.

    2015-12-01

    Infrastructure systems are expected to be functional, durable and safe over long service lives - 50 to over 100 years. Observations and models of climate science show that greenhouse gas emissions resulting from human activities have changed climate, weather and extreme events. Projections of future changes (albeit with uncertainties caused by inadequacies of current climate/weather models) can be made based on scenarios for future emissions, but actual future emissions are themselves uncertain. Most current engineering standards and practices for infrastructure assume that the probabilities of future extreme climate and weather events will match those of the past. Climate science shows that this assumption is invalid, but is unable, at present, to define these probabilities over the service lives of existing and new infrastructure systems. Engineering designs, plans, and institutions and regulations will need to be adaptable for a range of future conditions (conditions of climate, weather and extreme events, as well as changing societal demands for infrastructure services). For their current and future projects, engineers should: Involve all stakeholders (owners, financers, insurance, regulators, affected public, climate/weather scientists, etc.) in key decisions; Use low regret, adaptive strategies, such as robust decision making and the observational method, comply with relevant standards and regulations, and exceed their requirements where appropriate; Publish design studies and performance/failure investigations to extend the body of knowledge for advancement of practice. The engineering community should conduct observational and modeling research with climate/weather/social scientists and the concerned communities and account rationally for climate change in revised engineering standards and codes. This presentation presents initial research on decisionmaking under uncertainty for climate resilient infrastructure design.

  14. Engineering Information Infrastructure for Product Lifecycle Managment

    NASA Astrophysics Data System (ADS)

    Kimura, Fumihiko

    For proper management of total product life cycle, it is fundamentally important to systematize design and engineering information about product systems. For example, maintenance operation could be more efficiently performed, if appropriate parts design information is available at the maintenance site. Such information shall be available as an information infrastructure for various kinds of engineering operations, and it should be easily accessible during the whole product life cycle, such as transportation, marketing, usage, repair/upgrade, take-back and recycling/disposal. Different from the traditional engineering database, life cycle support information has several characteristic requirements, such as flexible extensibility, distributed architecture, multiple viewpoints, long-time archiving, and product usage information, etc. Basic approaches for managing engineering information infrastructure are investigated, and various information contents and associated life cycle applications are discussed.

  15. Joint Knowledge Generation Between Climate Science and Infrastructure Engineering

    NASA Astrophysics Data System (ADS)

    Stoner, A. M. K.; Hayhoe, K.; Jacobs, J. M.

    2015-12-01

    Over the past decade the engineering community has become increasingly aware of the need to incorporate climate projections into the planning and design of sensitive infrastructure. However, this is a task that is easier said than done. This presentation will discuss some of the successes and hurdles experiences through the past year, from a climate scientist's perspective, working with engineers in infrastructure research and applied engineering through the Infrastructure & Climate Network (ICNet). Engineers rely on strict building codes and ordinances, and can be the subject of lawsuits if those codes are not followed. Matters are further complicated by the uncertainty inherent to climate projections, which include short-term natural variability, as well as the influence of scientific uncertainty and even human behavior on the rate and magnitude of change. Climate scientists typically address uncertainty by creating projections based on multiple models following different future scenarios. This uncertainty is difficult to incorporate into engineering projects, however, due to the fact that they cannot build two different bridges, one allowing for a lower amount of change, and another for a higher. More often than not there is a considerable difference between the costs of building two such bridges, which means that available funds often are the deciding factor. Discussions of climate science are often well received with engineers who work in the research area of infrastructure; going a step further, however, and implementing it in applied engineering projects can be challenging. This presentation will discuss some of the challenges and opportunities inherent to collaborations between climate scientists and transportation engineers, drawing from a range of studies including truck weight restrictions on roads during the spring thaw, and bridge deck performance due to environmental forcings.

  16. Geotechnical Engineering Circular No. 3. Design Guidance: Geotechnical Earthquake Engineering for Highways. Volume II - Design Examples

    DOT National Transportation Integrated Search

    1994-02-01

    The report contains an assessment of existing port infrastructure related to United States-Mexico trade, planned infrastructure improvements, an identification of current trade and transportation flows, and an assessment of emerging trade corridors. ...

  17. Evolution of a Materials Data Infrastructure

    NASA Astrophysics Data System (ADS)

    Warren, James A.; Ward, Charles H.

    2018-06-01

    The field of materials science and engineering is writing a new chapter in its evolution, one of digitally empowered materials discovery, development, and deployment. The 2008 Integrated Computational Materials Engineering (ICME) study report helped usher in this paradigm shift, making a compelling case and strong recommendations for an infrastructure supporting ICME that would enable access to precompetitive materials data for both scientific and engineering applications. With the launch of the Materials Genome Initiative in 2011, which drew substantial inspiration from the ICME study, digital data was highlighted as a core component of a Materials Innovation Infrastructure, along with experimental and computational tools. Over the past 10 years, our understanding of what it takes to provide accessible materials data has matured and rapid progress has been made in establishing a Materials Data Infrastructure (MDI). We are learning that the MDI is essential to eliminating the seams between experiment and computation by providing a means for them to connect effortlessly. Additionally, the MDI is becoming an enabler, allowing materials engineering to tie into a much broader model-based engineering enterprise for product design.

  18. Waste IPSC : Thermal-Hydrologic-Chemical-Mechanical (THCM) modeling and simulation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeze, Geoffrey A.; Wang, Yifeng; Arguello, Jose Guadalupe, Jr.

    2010-10-01

    Waste IPSC Objective is to develop an integrated suite of high performance computing capabilities to simulate radionuclide movement through the engineered components and geosphere of a radioactive waste storage or disposal system: (1) with robust thermal-hydrologic-chemical-mechanical (THCM) coupling; (2) for a range of disposal system alternatives (concepts, waste form types, engineered designs, geologic settings); (3) for long time scales and associated large uncertainties; (4) at multiple model fidelities (sub-continuum, high-fidelity continuum, PA); and (5) in accordance with V&V and software quality requirements. THCM Modeling collaborates with: (1) Other Waste IPSC activities: Sub-Continuum Processes (and FMM), Frameworks and Infrastructure (and VU,more » ECT, and CT); (2) Waste Form Campaign; (3) Used Fuel Disposition (UFD) Campaign; and (4) ASCEM.« less

  19. Space Vehicle Flight Mechanics (La Mecanique du Vol des Vehicules Spatiaux)

    DTIC Science & Technology

    1990-06-01

    uncertainties to a reasonably or a single-stage-to-orbit vehicle manageable level". Some of the (without supersonic combustion) chiof anxieties were as...their landing on the moon or to manning space stations orbiting Earth, there exists an enormous infrastructure of scientists, engineers, managers and...politicians who together allow these ventures to come to fruition. This paper addresses the evolution of space flight, the technical and management

  20. Conception of the system for traffic measurements based on piezoelectric foils

    NASA Astrophysics Data System (ADS)

    Płaczek, M.

    2016-08-01

    A concept of mechatronic system for traffic measurements based on the piezoelectric transducers used as sensors is presented. The aim of the work project is to theoretically and experimentally analyse the dynamic response of road infrastructure forced by vehicles motion. The subject of the project is therefore on the borderline of civil engineering and mechanical and covers a wide range of issues in both these areas. To measure the dynamic response of the tested pieces of road infrastructure application of piezoelectric, in particular piezoelectric transducers in the form of piezoelectric films (MFC - Macro Fiber Composite) is proposed. The purpose is to verify the possibility to use composite piezoelectric transducers as sensors used in traffic surveillance systems - innovative methods of controlling the road infrastructure and traffic. Presented paper reports works that were done in order to receive the basic information about analysed systems and their behaviour under excitation by passing vehicles. It is very important to verify if such kind of systems can be controlled by the analysis of the dynamic response of road infrastructure measured using piezoelectric transducers. Obtained results show that it could be possible.

  1. EPA NRMRL green Infrastructure research

    EPA Science Inventory

    Green Infrastructure is an engineering approach to wet weather flow management that uses infiltration, evapotranspiration, capture and reuse to better mimic the natural drainage processes than traditional gray systems. Green technologies supplement gray infrastructure to red...

  2. EU H2020 SERA: Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe

    NASA Astrophysics Data System (ADS)

    Giardini, Domenico; Saleh, Kauzar; SERA Consortium, the

    2017-04-01

    SERA - Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe - is a new infrastructure project awarded in the last Horizon 2020 call for Integrating Activities for Advanced Communities (INFRAIA-01-2016-2017). Building up on precursor projects like NERA, SHARE, NERIES, SERIES, etc., SERA is expected to contribute significantly to the access of data, services and research infrastructures, and to develop innovative solutions in seismology and earthquake engineering, with the overall objective of reducing the exposure to risks associated to natural and anthropogenic earthquakes. For instance, SERA will revise the European Seismic Hazard reference model for input in the current revision of the Eurocode 8 on Seismic Design of Buildings; we also foresee to develop the first comprehensive framework for seismic risk modeling at European scale, and to develop new standards for future experimental observations and instruments for earthquake engineering and seismology. To that aim, SERA is engaging 31 institutions across Europe with leading expertise in the operation of research facilities, monitoring infrastructures, data repositories and experimental facilities in the fields of seismology, anthropogenic hazards and earthquake engineering. SERA comprises 26 activities, including 5 Networking Activities (NA) to improve the availability and access of data through enhanced community coordination and pooling of resources, 6 Joint Research Activities (JRA) aimed at creating new European standards for the optimal use of the data collected by the European infrastructures, Virtual Access (VA) to the 5 main European services for seismology and engineering seismology, and Trans-national Access (TA) to 10 high-class experimental facilities for earthquake engineering and seismology in Europe. In fact, around 50% of the SERA resources will be dedicated to virtual and transnational access. SERA and EPOS (European Platform Observing System, a European Research Infrastructure Consortium for solid Earth services in Europe) will be developed in parallel, giving SERA the capacity to develop building blocks for EPOS in the areas of seismology, anthropogenic hazards and seismic engineering, such as new virtual access, new anthropogenic hazards products, expanded access to waveform data, etc. In addition, services developed and validated in SERA will be produced in a way that is compatible for integration in EPOS. This communication is aimed at informing the scientific community about the objectives and workplan of SERA, starting in spring 2017 for a duration of 3 years.

  3. Evaluating Investments in Natural Gas Vehicles and Infrastructure for Your Fleet: Vehicle Infrastructure Cash-Flow Estimation -- VICE 2.0; Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzales, John

    2015-04-02

    Presentation by Senior Engineer John Gonzales on Evaluating Investments in Natural Gas Vehicles and Infrastructure for Your Fleet using the Vehicle Infrastructure Cash-flow Estimation (VICE) 2.0 model.

  4. Software Engineering Infrastructure in a Large Virtual Campus

    ERIC Educational Resources Information Center

    Cristobal, Jesus; Merino, Jorge; Navarro, Antonio; Peralta, Miguel; Roldan, Yolanda; Silveira, Rosa Maria

    2011-01-01

    Purpose: The design, construction and deployment of a large virtual campus are a complex issue. Present virtual campuses are made of several software applications that complement e-learning platforms. In order to develop and maintain such virtual campuses, a complex software engineering infrastructure is needed. This paper aims to analyse the…

  5. National Aeronautics Research, Development, Test and Evaluation (RDT&E) Infrastructure Plan

    DTIC Science & Technology

    2011-01-01

    addressed in the National Aeronautics R&D Plan, identi- fying unnecessary redundancy solely on the basis of infrastructure required to support H H13 ...near, mid, and far terms, and impact not only scramjet propulsion systems, but potential turbine-based combined cycle systems as well. Turbine Engine...Icing Test Facilities A greater understanding of the impact that icing conditions have on turbine engine opera- tions is needed to develop enhanced

  6. Engineering properties of douglas-fir lumber reclaimed from deconstructed buildings

    Treesearch

    Robert Falk; Derek Maul; Steven Cramer; James Evans; Victoria Herian

    2008-01-01

    A vast wood resource exists in our Nation's wood-framed building infrastructure. As the buildings in this infrastructure age and are remodeled or removed for redevelopment, the wood framing residing in these buildings has the potential to be recovered for reuse. However, little technical information exists on the residual engineering properties of reclaimed...

  7. Computational Infrastructure for Engine Structural Performance Simulation

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1997-01-01

    Select computer codes developed over the years to simulate specific aspects of engine structures are described. These codes include blade impact integrated multidisciplinary analysis and optimization, progressive structural fracture, quantification of uncertainties for structural reliability and risk, benefits estimation of new technology insertion and hierarchical simulation of engine structures made from metal matrix and ceramic matrix composites. Collectively these codes constitute a unique infrastructure readiness to credibly evaluate new and future engine structural concepts throughout the development cycle from initial concept, to design and fabrication, to service performance and maintenance and repairs, and to retirement for cause and even to possible recycling. Stated differently, they provide 'virtual' concurrent engineering for engine structures total-life-cycle-cost.

  8. Fiber Bragg gratings for civil engineering applications

    NASA Astrophysics Data System (ADS)

    Maher, Mohamed H.; Tabrizi, Khosrow; Prohaska, John D.; Snitzer, Elias

    1996-04-01

    Fiber Bragg gratings sensors offer a unique opportunity in civil engineering. They can be configured as a low noise distributed sensor network for measuring mechanical deformations and temperature. They are ideally suited for strain measurements of high modulus structural materials such as steel and concrete. There is considerable interest in the use of these sensors for infrastructural nondestructive testing and there have been several papers on the subject. We present some results of our experiments with fiber Bragg sensors as applied to structural engineering. These include the use of fiber gratings to measure strain behavior of steel, reinforced concrete, and some preliminary results on bituminous materials, such as asphalt concrete. In nondestructive testing using fiber Bragg gratings of structural materials the packaging of the sensors is important and is discussed.

  9. Bachelor of Science-Engineering Technology Program and Fuel Cell Education Program Concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Block, David L.; Sleiti, Ahmad

    2011-09-19

    The Hydrogen and Fuel Cell Technology education project has addressed DOE goals by supplying readily available, objective, technical, and accurate information that is available to students, industry and the public. In addition, the program has supplied educated trainers and training opportunities for the next generation workforce needed for research, development, and demonstration activities in government, industry, and academia. The project has successfully developed courses and associated laboratories, taught the new courses and labs and integrated the HFCT option into the accredited engineering technology and mechanical engineering programs at the University of North Carolina at Charlotte (UNCC). The project has alsomore » established ongoing collaborations with the UNCC energy related centers of the Energy Production & Infrastructure Center (EPIC), the NC Motorsports and Automotive Research Center (NCMARC) and the Infrastructure, Design, Environment and Sustainability Center (IDEAS). The results of the project activities are presented as two major areas – (1) course and laboratory development, offerings and delivery, and (2) program recruitment, promotions and collaborations. Over the project period, the primary activity has been the development and offering of 11 HFCT courses and accompanying laboratories. This process has taken three years with the courses first being developed and then offered each year over the timeframe.« less

  10. Big data analytics as a service infrastructure: challenges, desired properties and solutions

    NASA Astrophysics Data System (ADS)

    Martín-Márquez, Manuel

    2015-12-01

    CERN's accelerator complex generates a very large amount of data. A large volumen of heterogeneous data is constantly generated from control equipment and monitoring agents. These data must be stored and analysed. Over the decades, CERN's researching and engineering teams have applied different approaches, techniques and technologies for this purpose. This situation has minimised the necessary collaboration and, more relevantly, the cross data analytics over different domains. These two factors are essential to unlock hidden insights and correlations between the underlying processes, which enable better and more efficient daily-based accelerator operations and more informed decisions. The proposed Big Data Analytics as a Service Infrastructure aims to: (1) integrate the existing developments; (2) centralise and standardise the complex data analytics needs for CERN's research and engineering community; (3) deliver real-time, batch data analytics and information discovery capabilities; and (4) provide transparent access and Extract, Transform and Load (ETL), mechanisms to the various and mission-critical existing data repositories. This paper presents the desired objectives and properties resulting from the analysis of CERN's data analytics requirements; the main challenges: technological, collaborative and educational and; potential solutions.

  11. Computational simulation of concurrent engineering for aerospace propulsion systems

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Singhal, S. N.

    1992-01-01

    Results are summarized of an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulations methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties - fundamental in developing such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering for propulsion systems and systems in general. Benefits and facets needing early attention in the development are outlined.

  12. Computational simulation for concurrent engineering of aerospace propulsion systems

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Results are summarized for an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulation methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties--fundamental to develop such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering of propulsion systems and systems in general. Benefits and issues needing early attention in the development are outlined.

  13. Computational simulation for concurrent engineering of aerospace propulsion systems

    NASA Astrophysics Data System (ADS)

    Chamis, C. C.; Singhal, S. N.

    1993-02-01

    Results are summarized for an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulation methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties--fundamental to develop such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering of propulsion systems and systems in general. Benefits and issues needing early attention in the development are outlined.

  14. Perm State University HPC-hardware and software services: capabilities for aircraft engine aeroacoustics problems solving

    NASA Astrophysics Data System (ADS)

    Demenev, A. G.

    2018-02-01

    The present work is devoted to analyze high-performance computing (HPC) infrastructure capabilities for aircraft engine aeroacoustics problems solving at Perm State University. We explore here the ability to develop new computational aeroacoustics methods/solvers for computer-aided engineering (CAE) systems to handle complicated industrial problems of engine noise prediction. Leading aircraft engine engineering company, including “UEC-Aviadvigatel” JSC (our industrial partners in Perm, Russia), require that methods/solvers to optimize geometry of aircraft engine for fan noise reduction. We analysed Perm State University HPC-hardware resources and software services to use efficiently. The performed results demonstrate that Perm State University HPC-infrastructure are mature enough to face out industrial-like problems of development CAE-system with HPC-method and CFD-solvers.

  15. Distinctions between intelligent manufactured and constructed systems and a new discipline for intelligent infrastructure hypersystems

    NASA Astrophysics Data System (ADS)

    Aktan, A. Emin

    2003-08-01

    Although the interconnected systems nature of the infrastructures, and the complexity of interactions between their engineered, socio-technical and natural constituents have been recognized for some time, the principles of effectively operating, protecting and preserving such systems by taking full advantage of "modeling, simulations, optimization, control and decision making" tools developed by the systems engineering and operations research community have not been adequately studied or discussed by many engineers including the writer. Differential and linear equation systems, numerical and finite element modeling techniques, statistical and probabilistic representations are universal, however, different disciplines have developed their distinct approaches to conceptualizing, idealizing and modeling the systems they commonly deal with. The challenge is in adapting and integrating deterministic and stochastic, geometric and numerical, physics-based and "soft (data-or-knowledge based)", macroscopic or microscopic models developed by various disciplines for simulating infrastructure systems. There is a lot to be learned by studying how different disciplines have studied, improved and optimized the systems relating to various processes and products in their domains. Operations research has become a fifty-year old discipline addressing complex systems problems. Its mathematical tools range from linear programming to decision processes and game theory. These tools are used extensively in management and finance, as well as by industrial engineers for optimizing and quality control. Progressive civil engineering academic programs have adopted "systems engineering" as a focal area. However, most of the civil engineering systems programs remain focused on constructing and analyzing highly idealized, often generic models relating to the planning or operation of transportation, water or waste systems, maintenance management, waste management or general infrastructure hazards risk management. We further note that in the last decade there have been efforts for "agent-based" modeling of synthetic infrastructure systems by taking advantage of supercomputers at various DOE Laboratories. However, whether there is any similitude between such synthetic and actual systems needs investigating further.

  16. The Application of Ground-Penetrating Radar to Transportation Engineering: Recent Advances and New Perspectives (GI Division Outstanding ECS Award Lecture)

    NASA Astrophysics Data System (ADS)

    Tosti, Fabio; Benedetto, Andrea; Pajewski, Lara; Alani, Amir M.

    2017-04-01

    Ground-penetrating radar (GPR) is one of the most acknowledged and established non-destructive testing (NDT) techniques within the context of the health monitoring and assessment of transportation infrastructures. GPR is being increasingly used for the effective management of infrastructural assets as it weakens the case for using other destructive monitoring methods, such as digging holes, and allows for rapid and reliable detection of many causes of the subsurface damage. Thereby, its usage favours the optimisation of the economical expenditure for the effective maintenance of great infrastructures as well as it improves the public safety by preventing or not raising the risk of accidents. GPR has been used in highway, railway and airfield engineering as well as for the monitoring of critical infrastructures, such as bridges and tunnels. It has found established use in the assessment of the geometric properties of the subsurface, such as in the case of the evaluation of the pavement layer thicknesses, or the size of the rebars in concrete-made structural components. Major physical-based investigations have been focused on the evaluation of the moisture ingress in flexible road pavements and in concrete structures, as well as on the detection of the rebars corrosion caused by the ingress of chloride. The majority of these parameters are evaluated using methods of signal analysis and data processing based on the signal in the time domain. The sophistication of the hardware and software of the GPR systems over the last few years as well as the recent advances achieved in the research have contributed to raise the high potential of this non-destructive technique and paved the way towards new application areas in transportation engineering. In particular, GPR is nowadays finding major application when used with complementary non-destructive testing techniques, although it has still proved to provide reliable results in various self-standing applications. This work aims at presenting the recent advances and the new perspectives in the application of GPR to transportation engineering. This study reports on new experimental-based and theoretical models for the assessment of the physical (i.e., clay and water content in subgrade soils, railway ballast fouling) and the mechanical (i.e., the Young's modulus of elasticity) properties that are critical in maintaining the structural stability and the bearing capacity of the major transport infrastructures, such as highways, railways and airfields. With regard to the physical parameters, the electromagnetic behaviour related to the clay content in the load-bearing layers of flexible pavements as well as in subgrade soils has been analysed and modelled in both dry and wet conditions. Furthermore, it is discussed a new simulation-based methodology for the detection of the fouling content in railway ballast. Concerning the mechanical parameters, experimental based methods are presented for the assessment of the strength and deformation properties of the soils and the top-bounded layers of flexible pavements. Furthermore, unique case studies in terms of the methodology proposed, the survey planning and the site procedures in rather complex operations, are discussed in the case of bridges and tunnels inspections. Acknowledgements The Authors are grateful to the GI Division President Dr. Francesco Soldovieri and the relevant Award Committee in the context of the "GI Division Outstanding Early Career Scientists Award" of the European Geosciences Union. We also acknowledge the COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" for providing networking and discussion opportunities throughout its activity and operation as well as facilitating prospect for publishing research outputs.

  17. Artificial Muscles Based on Electroactive Polymers as an Enabling Tool in Biomimetics

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.

    2007-01-01

    Evolution has resolved many of nature's challenges leading to working and lasting solutions that employ principles of physics, chemistry, mechanical engineering, materials science, and many other fields of science and engineering. Nature's inventions have always inspired human achievements leading to effective materials, structures, tools, mechanisms, processes, algorithms, methods, systems, and many other benefits. Some of the technologies that have emerged include artificial intelligence, artificial vision, and artificial muscles, where the latter is the moniker for electroactive polymers (EAPs). To take advantage of these materials and make them practical actuators, efforts are made worldwide to develop capabilities that are critical to the field infrastructure. Researchers are developing analytical model and comprehensive understanding of EAP materials response mechanism as well as effective processing and characterization techniques. The field is still in its emerging state and robust materials are still not readily available; however, in recent years, significant progress has been made and commercial products have already started to appear. In the current paper, the state-of-the-art and challenges to artificial muscles as well as their potential application to biomimetic mechanisms and devices are described and discussed.

  18. Interactive Model-Centric Systems Engineering (IMCSE) Phase 1

    DTIC Science & Technology

    2014-09-30

    and supporting infrastructure ...testing. 4. Supporting MPTs. During Phase 1, the opportunity to develop several MPTs to support IMCSE arose, including supporting infrastructure ...Analysis will be completed and tested with a case application, along with preliminary supporting infrastructure , which will then be used to inform the

  19. Aspects, Wrappers and Events

    NASA Technical Reports Server (NTRS)

    Filman, Robert E.

    2003-01-01

    This viewgraph presentation provides information on Object Infrastructure Framework (OIF), an Aspect-Oriented Programming (AOP) system. The presentation begins with an introduction to the difficulties and requirements of distributed computing, including functional and non-functional requirements (ilities). The architecture of Distributed Object Technology includes stubs, proxies for implementation objects, and skeletons, proxies for client applications. The key OIF ideas (injecting behavior, annotated communications, thread contexts, and pragma) are discussed. OIF is an AOP mechanism; AOP is centered on: 1) Separate expression of crosscutting concerns; 2) Mechanisms to weave the separate expressions into a unified system. AOP is software engineering technology for separately expressing systematic properties while nevertheless producing running systems that embody these properties.

  20. Applied Space Systems Engineering. Chapter 17; Manage Technical Data

    NASA Technical Reports Server (NTRS)

    Kent, Peter

    2008-01-01

    Effective space systems engineering (SSE) is conducted in a fully electronic manner. Competitive hardware, software, and system designs are created in a totally digital environment that enables rapid product design and manufacturing cycles, as well as a multitude of techniques such as modeling, simulation, and lean manufacturing that significantly reduce the lifecycle cost of systems. Because the SSE lifecycle depends on the digital environment, managing the enormous volumes of technical data needed to describe, build, deploy, and operate systems is a critical factor in the success of a project. This chapter presents the key aspects of Technical Data Management (TDM) within the SSE process. It is written from the perspective of the System Engineer tasked with establishing the TDM process and infrastructure for a major project. Additional perspectives are reflected from the point of view of the engineers on the project who work within the digital engineering environment established by the TDM toolset and infrastructure, and from the point of view of the contactors who interface via the TDM infrastructure. Table 17.1 lists the TDM process as it relates to SSE.

  1. NASA STI Program Coordinating Council Eleventh Meeting: NASA STI Modernization Plan

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The theme of this NASA Scientific and Technical Information Program Coordinating Council Meeting was the modernization of the STI Program. Topics covered included the activities of the Engineering Review Board in the creation of the Infrastructure Upgrade Plan, the progress of the RECON Replacement Project, the use and status of Electronic SCAN (Selected Current Aerospace Notices), the Machine Translation Project, multimedia, electronic document interchange, the NASA Access Mechanism, computer network upgrades, and standards in the architectural effort.

  2. Volcanic hazards at distant critical infrastructure: A method for bespoke, multi-disciplinary assessment

    NASA Astrophysics Data System (ADS)

    Odbert, H. M.; Aspinall, W.; Phillips, J.; Jenkins, S.; Wilson, T. M.; Scourse, E.; Sheldrake, T.; Tucker, P.; Nakeshree, K.; Bernardara, P.; Fish, K.

    2015-12-01

    Societies rely on critical services such as power, water, transport networks and manufacturing. Infrastructure may be sited to minimise exposure to natural hazards but not all can be avoided. The probability of long-range transport of a volcanic plume to a site is comparable to other external hazards that must be considered to satisfy safety assessments. Recent advances in numerical models of plume dispersion and stochastic modelling provide a formalized and transparent approach to probabilistic assessment of hazard distribution. To understand the risks to critical infrastructure far from volcanic sources, it is necessary to quantify their vulnerability to different hazard stressors. However, infrastructure assets (e.g. power plantsand operational facilities) are typically complex systems in themselves, with interdependent components that may differ in susceptibility to hazard impact. Usually, such complexity means that risk either cannot be estimated formally or that unsatisfactory simplifying assumptions are prerequisite to building a tractable risk model. We present a new approach to quantifying risk by bridging expertise of physical hazard modellers and infrastructure engineers. We use a joint expert judgment approach to determine hazard model inputs and constrain associated uncertainties. Model outputs are chosen on the basis of engineering or operational concerns. The procedure facilitates an interface between physical scientists, with expertise in volcanic hazards, and infrastructure engineers, with insight into vulnerability to hazards. The result is a joined-up approach to estimating risk from low-probability hazards to critical infrastructure. We describe our methodology and show preliminary results for vulnerability to volcanic hazards at a typical UK industrial facility. We discuss our findings in the context of developing bespoke assessment of hazards from distant sources in collaboration with key infrastructure stakeholders.

  3. Freshwater Choices in China: Options That Will Impact South and Southeast Asia

    DTIC Science & Technology

    2014-12-04

    engineering infrastructure upstream on shared international river basins within its borders, and will be able to effectively use the threat of...constructing hydro-engineering infrastructure upstream on shared international river basins within its borders, and will be able to effectively use the...international river basins within its borders, China will be able to effectively use the threat of restricting freshwater flows as a political weapon to

  4. Considering Climate Change in Road and Building Design

    NASA Astrophysics Data System (ADS)

    Jacobs, Jennifer M.; Kirshen, Paul H.; Daniel, Jo Sias

    2013-07-01

    What is the role of climate in infrastructure design? How can engineers design for a changing climate? How can climate scientists better inform the design process? These were the questions posed at the first Infrastructure and Climate Network (ICNet) Steering Committee Workshop, which was sponsored by a U.S. National Science Foundation research grant (CBET-1231326) from the Research Coordination Networks-Science, Engineering and Education for Sustainability (RCN-SEES) program.

  5. Application of management tools to integrate ecological principles with the design of marine infrastructure.

    PubMed

    Dafforn, Katherine A; Mayer-Pinto, Mariana; Morris, Rebecca L; Waltham, Nathan J

    2015-08-01

    Globally the coastal zone is suffering the collateral damage from continuing urban development and construction, expanding resource sectors, increasing population, regulation to river flow, and on-going land change and degradation. While protection of natural coastal habitat is recommended, balancing conservation with human services is now the challenge for managers. Marine infrastructure such as seawalls, marinas and offshore platforms is increasingly used to support and provide services, but has primarily been designed for engineering purposes without consideration of the ecological consequences. Increasingly developments are seeking alternatives to hard engineering and a range of ecological solutions has begun to replace or be incorporated into marine and coastal infrastructure. But too often, hard engineering remains the primary strategy because the tools for managers to implement ecological solutions are either lacking or not supported by policy and stakeholders. Here we outline critical research needs for marine urban development and emerging strategies that seek to mitigate the impacts of marine infrastructure. We present case studies to highlight the strategic direction necessary to support management decisions internationally. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Integrated structural health monitoring

    NASA Astrophysics Data System (ADS)

    Farrar, Charles R.; Sohn, Hoon; Fugate, Michael L.; Czarnecki, Jerry J.

    2001-07-01

    Structural health monitoring is the implementation of a damage detection strategy for aerospace, civil and mechanical engineering infrastructure. Typical damage experienced by this infrastructure might be the development of fatigue cracks, degradation of structural connections, or bearing wear in rotating machinery. The goal of the research effort reported herein is to develop a robust and cost-effective structural health monitoring solution by integrating and extending technologies from various engineering and information technology disciplines. It is the author's opinion that all structural health monitoring systems must be application specific. Therefore, a specific application, monitoring welded moment resisting steel frame connections in structures subjected to seismic excitation, is described along with the motivation for choosing this application. The structural health monitoring solution for this application will integrate structural dynamics, wireless data acquisition, local actuation, micro-electromechanical systems (MEMS) technology, and statistical pattern recognition algorithms. The proposed system is based on an assessment of the deficiencies associated with many current structural health monitoring technologies including past efforts by the authors. This paper provides an example of the integrated approach to structural health monitoring being undertaken at Los Alamos National Laboratory and summarizes progress to date on various aspects of the technology development.

  7. Some recent advances of intelligent health monitoring systems for civil infrastructures in HIT

    NASA Astrophysics Data System (ADS)

    Ou, Jinping

    2005-06-01

    The intelligent health monitoring systems more and more become a technique for ensuring the health and safety of civil infrastructures and also an important approach for research of the damage accumulation or even disaster evolving characteristics of civil infrastructures, and attracts prodigious research interests and active development interests of scientists and engineers since a great number of civil infrastructures are planning and building each year in mainland China. In this paper, some recent advances on research, development nad implementation of intelligent health monitoring systems for civil infrastructuresin mainland China, especially in Harbin Institute of Technology (HIT), P.R.China. The main contents include smart sensors such as optical fiber Bragg grating (OFBG) and polivinyllidene fluoride (PVDF) sensors, fatigue life gauges, self-sensing mortar and carbon fiber reinforced polymer (CFRP), wireless sensor networks and their implementation in practical infrastructures such as offshore platform structures, hydraulic engineering structures, large span bridges and large space structures. Finally, the relative research projects supported by the national foundation agencies of China are briefly introduced.

  8. Repurposing Mass-produced Internal Combustion Engines Quantifying the Value and Use of Low-cost Internal Combustion Piston Engines for Modular Applications in Energy and Chemical Engineering Industries

    NASA Astrophysics Data System (ADS)

    L'Heureux, Zara E.

    This thesis proposes that internal combustion piston engines can help clear the way for a transformation in the energy, chemical, and refining industries that is akin to the transition computer technology experienced with the shift from large mainframes to small personal computers and large farms of individually small, modular processing units. This thesis provides a mathematical foundation, multi-dimensional optimizations, experimental results, an engine model, and a techno-economic assessment, all working towards quantifying the value of repurposing internal combustion piston engines for new applications in modular, small-scale technologies, particularly for energy and chemical engineering systems. Many chemical engineering and power generation industries have focused on increasing individual unit sizes and centralizing production. This "bigger is better" concept makes it difficult to evolve and incorporate change. Large systems are often designed with long lifetimes, incorporate innovation slowly, and necessitate high upfront investment costs. Breaking away from this cycle is essential for promoting change, especially change happening quickly in the energy and chemical engineering industries. The ability to evolve during a system's lifetime provides a competitive advantage in a field dominated by large and often very old equipment that cannot respond to technology change. This thesis specifically highlights the value of small, mass-manufactured internal combustion piston engines retrofitted to participate in non-automotive system designs. The applications are unconventional and stem first from the observation that, when normalized by power output, internal combustion engines are one hundred times less expensive than conventional, large power plants. This cost disparity motivated a look at scaling laws to determine if scaling across both individual unit size and number of units produced would predict the two order of magnitude difference seen here. For the first time, this thesis provides a mathematical analysis of scaling with a combination of both changing individual unit size and varying the total number of units produced. Different paths to meet a particular cumulative capacity are analyzed and show that total costs are path dependent and vary as a function of the unit size and number of units produced. The path dependence identified is fairly weak, however, and for all practical applications, the underlying scaling laws seem unaffected. This analysis continues to support the interest in pursuing designs built around small, modular infrastructure. Building on the observation that internal combustion engines are an inexpensive power-producing unit, the first optimization in this thesis focuses on quantifying the value of engine capacity committing to deliver power in the day-ahead electricity and reserve markets, specifically based on pricing from the New York Independent System Operator (NYISO). An optimization was written in Python to determine, based on engine cost, fuel cost, engine wear, engine lifetime, and electricity prices, when and how much of an engine's power should be committed to a particular energy market. The optimization aimed to maximize profit for the engine and generator (engine genset) system acting as a price-taker. The result is an annual profit on the order of \\$30 per kilowatt. The most value in the engine genset is in its commitments to the spinning reserve market, where power is often committed but not always called on to deliver. This analysis highlights the benefits of modularity in energy generation and provides one example where the system is so inexpensive and short-lived, that the optimization views the engine replacement cost as a consumable operating expense rather than a capital cost. Having the opportunity to incorporate incremental technological improvements in a system's infrastructure throughout its lifetime allows introduction of new technology with higher efficiencies and better designs. An alternative to traditionally large infrastructure that locks in a design and today's state-of-the-art technology for the next 50 - 70 years, is a system designed to incorporate new technology in a modular fashion. The modular engine genset system used for power generation is one example of how this works in practice. The largest single component of this thesis is modeling, designing, retrofitting, and testing a reciprocating piston engine used as a compressor. Motivated again by the low cost of an internal combustion engine, this work looks at how an engine (which is, in its conventional form, essentially a reciprocating compressor) can be cost-effectively retrofitted to perform as a small-scale gas compressor. In the laboratory, an engine compressor was built by retrofitting a one-cylinder, 79 cc engine. Various retrofitting techniques were incorporated into the system design, and the engine compressor performance was quantified in each iteration. Because the retrofitted engine is now a power consumer rather than a power-producing unit, the engine compressor is driven in the laboratory with an electric motor. Experimentally, compressed air engine exhaust (starting at elevated inlet pressures) surpassed 650 psia (about 45 bar), which makes this system very attractive for many applications in chemical engineering and refining industries. A model of the engine compressor system was written in Python and incorporates experimentally-derived parameters to quantify gas leakage, engine friction, and flow (including backflow) through valves. The model as a whole was calibrated and verified with experimental data and is used to explore engine retrofits beyond what was tested in the laboratory. Along with the experimental and modeling work, a techno-economic assessment is included to compare the engine compressor system with state-of-the-art, commercially-available compressors. Included in the financial analysis is a case study where an engine compressor system is modeled to achieve specific compression needs. The result of the assessment is that, indeed, the low engine cost, even with the necessary retrofits, provides a cost advantage over incumbent compression technologies. Lastly, this thesis provides an algorithm and case study for another application of small-scale units in energy infrastructure, specifically in energy storage. This study focuses on quantifying the value of small-scale, onsite energy storage in shaving peak power demands. This case study focuses on university-level power demands. The analysis finds that, because peak power is so costly, even small amounts of energy storage, when dispatched optimally, can provide significant cost reductions. This provides another example of the value of small-scale implementations, particularly in energy infrastructure. While the study focuses on flywheels and batteries as the energy storage medium, engine gensets could also be used to deliver power and shave peak power demands. The overarching goal of this thesis is to introduce small-scale, modular infrastructure, with a particular focus on the opportunity to retrofit and repurpose inexpensive, mass-manufactured internal combustion engines in new and unconventional applications. The modeling and experimental work presented in this dissertation show very compelling results for engines incorporated into both energy generation infrastructure and chemical engineering industries via compression technologies. The low engine cost provides an opportunity to add retrofits whilst remaining cost competitive with the incumbent technology. This work supports the claim that modular infrastructure, built on the indivisible unit of an internal combustion engine, can revolutionize many industries by providing a low-cost mechanism for rapid change and promoting small-scale designs.

  9. Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saffer, Shelley

    2014-12-01

    This is a final report of the DOE award DE-SC0001132, Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation. This document describes the achievements of the goals, and resulting research made possible by this award.

  10. Information Operations Team Training & Information Operations Training Aid, Information Warfare Effectiveness (IWE) Program, Delivery Order 8

    DTIC Science & Technology

    2010-03-01

    submenus and toolbar with icon buttons 4. The IFOTA shall conform to Defense Information Infrastructure Common Operating Environment ( DII COE) and...him my business card , but it might come in the package we request via AFRL). PSYOP Instructor IWST is now called IWT (??) SME MD MD Instructor...Engineering and Software Engineering CTA Cognitive Task Analysis DII COE Defense Information Infrastructure Common Operating Environment EJB Enterprise Java

  11. Risk and Reliability of Infrastructure Asset Management Workshop

    DTIC Science & Technology

    2006-08-01

    of assets within the portfolio for use in Risk and Reliability analysis ... US Army Corps of Engineers assesses its Civil Works infrastructure and applies risk and reliability in the management of that infrastructure. The ... the Corps must complete assessments across its portfolio of major assets before risk management can be used in decision making. Effective risk

  12. 32 CFR 22.105 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... knowledge and understanding in science and engineering, rather than the practical application of that... part, basic research includes: (1) Research-related, science and engineering education, including... to enhance the infrastructure for science and engineering research. Claim. A written demand or...

  13. 32 CFR 22.105 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... knowledge and understanding in science and engineering, rather than the practical application of that... part, basic research includes: (1) Research-related, science and engineering education, including... to enhance the infrastructure for science and engineering research. Claim. A written demand or...

  14. 32 CFR 22.105 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... knowledge and understanding in science and engineering, rather than the practical application of that... part, basic research includes: (1) Research-related, science and engineering education, including... to enhance the infrastructure for science and engineering research. Claim. A written demand or...

  15. 32 CFR 22.105 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... knowledge and understanding in science and engineering, rather than the practical application of that... part, basic research includes: (1) Research-related, science and engineering education, including... to enhance the infrastructure for science and engineering research. Claim. A written demand or...

  16. Job Prospects for Marine Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1986-01-01

    Marine engineering is one of the smaller disciplines that have grown during recent decades. Job prospects in this field, salaries, types of employers (particularly Navy shipbuilding and infrastructure work), and marine/ocean engineers involvement with environmental issues are discussed. (JN)

  17. The Gaze of the Perfect Search Engine: Google as an Infrastructure of Dataveillance

    NASA Astrophysics Data System (ADS)

    Zimmer, M.

    Web search engines have emerged as a ubiquitous and vital tool for the successful navigation of the growing online informational sphere. The goal of the world's largest search engine, Google, is to "organize the world's information and make it universally accessible and useful" and to create the "perfect search engine" that provides only intuitive, personalized, and relevant results. While intended to enhance intellectual mobility in the online sphere, this chapter reveals that the quest for the perfect search engine requires the widespread monitoring and aggregation of a users' online personal and intellectual activities, threatening the values the perfect search engines were designed to sustain. It argues that these search-based infrastructures of dataveillance contribute to a rapidly emerging "soft cage" of everyday digital surveillance, where they, like other dataveillance technologies before them, contribute to the curtailing of individual freedom, affect users' sense of self, and present issues of deep discrimination and social justice.

  18. Transportation Infrastructure Robustness : Joint Engineering and Economic Analysis

    DOT National Transportation Integrated Search

    2017-11-01

    The objectives of this study are to develop a methodology for assessing the robustness of transportation infrastructure facilities and assess the effect of damage to such facilities on travel demand and the facilities users welfare. The robustness...

  19. NAS infrastructure management system build 1.5 computer-human interface

    DOT National Transportation Integrated Search

    2001-01-01

    Human factors engineers from the National Airspace System (NAS) Human Factors Branch (ACT-530) of the Federal Aviation Administration William J. Hughes Technical Center conducted an evaluation of the NAS Infrastructure Management System (NIMS) Build ...

  20. Precipitation Nonstationarity Effects on Water Infrastructure and Risk Management

    EPA Science Inventory

    The non-stationary precipitation regime, as increasingly recognized, affects the engineering basis and service functions of drinking water, wastewater, and stormwater infrastructures in urban centers. Small, yet significant rates of temporal precipitation change and diverse spat...

  1. Second annual Transportation Infrastructure Engineering Conference.

    DOT National Transportation Integrated Search

    2013-10-01

    The conference will highlight a few of the current projects that have been sponsored by the Center for Transportation : Infrastructure and Safety (CTIS), a national University Transportation Center at S&T. In operation since 1998, the CTIS supports :...

  2. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels.

    PubMed

    Lee, Sung Kuk; Chou, Howard; Ham, Timothy S; Lee, Taek Soon; Keasling, Jay D

    2008-12-01

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  3. Partners | Argonne National Laboratory

    Science.gov Websites

    Biology IMEInstitute for Molecular Engineering JCESRJoint Center for Energy Storage Research MCSGMidwest Science and Engineering RISCRisk and Infrastructure Science Center SBCStructural Biology Center Energy.gov

  4. Energy | Argonne National Laboratory

    Science.gov Websites

    Biology IMEInstitute for Molecular Engineering JCESRJoint Center for Energy Storage Research MCSGMidwest Science and Engineering RISCRisk and Infrastructure Science Center SBCStructural Biology Center Energy.gov

  5. Bob Butt | NREL

    Science.gov Websites

    , testing, and commissioning of electrical infrastructure, facilities, and equipment. Education M.S ., Electrical Engineering, University of Arizona B.S., Electrical Engineering, University of Arizona

  6. Advancing innovative high-speed remote-sensing highway infrastructure assessment using emerging technologies : technical report.

    DOT National Transportation Integrated Search

    2017-02-01

    Asset management is a strategic approach to the optimal allocation of resources for the management, operation, maintenance, and preservation of transportation infrastructure. Asset management combines engineering and economic principles with sound bu...

  7. Interactive Model-Centric Systems Engineering (IMCSE) Phase Two

    DTIC Science & Technology

    2015-02-28

    109 Backend Implementation...42 Figure 10. Interactive Epoch-Era Analysis leverages humans-in-the-loop analysis and supporting infrastructure ...preliminary supporting 10 infrastructure . This will inform the transition strategies, additional case application and prototype user testing. • The

  8. ViLLaGEs: opto-mechanical design of an on-sky visible-light MEMS-based AO system

    NASA Astrophysics Data System (ADS)

    Grigsby, Bryant; Lockwood, Chris; Baumann, Brian; Gavel, Don; Johnson, Jess; Ammons, S. Mark; Dillon, Daren; Morzinski, Katie; Reinig, Marc; Palmer, Dave; Severson, Scott; Gates, Elinor

    2008-07-01

    Visible Light Laser Guidestar Experiments (ViLLaGEs) is a new Micro-Electro Mechanical Systems (MEMS) based visible-wavelength adaptive optics (AO) testbed on the Nickel 1-meter telescope at Lick Observatory. Closed loop Natural Guide Star (NGS) experiments were successfully carried out during engineering during the fall of 2007. This is a major evolutionary step, signaling the movement of AO technologies into visible light with a MEMS mirror. With on-sky Strehls in I-band of greater than 20% during second light tests, the science possibilities have become evident. Described here is the advanced engineering used in the design and construction of the ViLLaGEs system, comparing it to the LickAO infrared system, and a discussion of Nickel dome infrastructural improvements necessary for this system. A significant portion of the engineering discussion revolves around the sizable effort that went towards eliminating flexure. Then, we detail upgrades to ViLLaGEs to make it a facility class instrument. These upgrades will focus on Nyquist sampling the diffraction limited point spread function during open loop operations, motorization and automation for technician level alignments, adding dithering capabilities and changes for near infrared science.

  9. Teacher Programs | Argonne National Laboratory

    Science.gov Websites

    Biology IMEInstitute for Molecular Engineering JCESRJoint Center for Energy Storage Research MCSGMidwest Science and Engineering RISCRisk and Infrastructure Science Center SBCStructural Biology Center Energy.gov

  10. Educational Programs | Argonne National Laboratory

    Science.gov Websites

    Biology IMEInstitute for Molecular Engineering JCESRJoint Center for Energy Storage Research MCSGMidwest Science and Engineering RISCRisk and Infrastructure Science Center SBCStructural Biology Center Energy.gov

  11. Linde FUSRAP Site Remediation: Engineering Challenges and Solutions of Remedial Activities on an Active Industrial Facility - 13506

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beres, Christopher M.; Fort, E. Joseph; Boyle, James D.

    2013-07-01

    The Linde FUSRAP Site (Linde) is located in Tonawanda, New York at a major research and development facility for Praxair, Inc. (Praxair). Successful remediation activities at Linde combines meeting cleanup objectives of radiological contamination while minimizing impacts to Praxair business operations. The unique use of Praxair's property coupled with an array of active and abandoned utilities poses many engineering and operational challenges; each of which has been overcome during the remedial action at Linde. The U.S. Army Corps of Engineers - Buffalo District (USACE) and CABRERA SERVICES, INC. (CABRERA) have successfully faced engineering challenges such as relocation of an abovegroundmore » structure, structural protection of an active water line, and installation of active mechanical, electrical, and communication utilities to perform remediation. As remediation nears completion, continued success of engineering challenges is critical as remaining activities exist in the vicinity of infrastructure essential to business operations; an electrical substation and duct bank providing power throughout the Praxair facility. Emphasis on engineering and operations through final remediation and into site restoration will allow for the safe and successful completion of the project. (authors)« less

  12. Field Work Proposal: PUBLIC OUTREACH EVENT FOR ACCELERATOR STEWARDSHIP TEST FACILITY PILOT PROGRAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutton, Andrew; Areti, Hari

    2015-03-05

    Jefferson Lab’s outreach efforts towards the goals of Accelerator Stewardship Test Facility Pilot Program consist of the lab’s efforts in three venues. The first venue, at the end of March is to meet with the members of Virginia Tech Corporate Research Center (VTCRC) (http://www.vtcrc.com/tenant-directory/) in Blacksburg, Virginia. Of the nearly 160 members, we expect that many engineering companies (including mechanical, electrical, bio, software) will be present. To this group, we will describe the capabilities of Jefferson Lab’s accelerator infrastructure. The description will include not only the facilities but also the intellectual expertise. No funding is requested for this effort. Themore » second venue is to reach the industrial exhibitors at the 6th International Particle Accelerator Conference (IPAC’15). Jefferson Lab will host a booth at the conference to reach out to the >75 industrial exhibitors (https://www.jlab.org/conferences/ipac2015/SponsorsExhibitors.php) who represent a wide range of technologies. A number of these industries could benefit if they can access Jefferson Lab’s accelerator infrastructure. In addition to the booth, where written material will be available, we plan to arrange a session A/V presentation to the industry exhibitors. The booth will be hosted by Jefferson Lab’s Public Relations staff, assisted on a rotating basis by the lab’s scientists and engineers. The budget with IPAC’15 designations represents the request for funds for this effort. The third venue is the gathering of Southeastern Universities Research Association (SURA) university presidents. Here we plan to reach the research departments of the universities who can benefit by availing themselves to the infrastructure (material sciences, engineering, medical schools, material sciences, to name a few). Funding is requested to allow for attendance at the SURA Board Meeting. We are coordinating with DOE regarding these costs to raise the projected conference management cost ceiling in the Conference Management Tool.« less

  13. High Temperature Concentrated Solar Power Using Liquid Metal

    NASA Astrophysics Data System (ADS)

    Henry, Asegun

    One of the most attractive ways to try and reduce the cost of concentrated solar power (CSP) is to increase the system efficiency and the biggest loss in the system occurs in the conversion of heat to electricity via heat engine. Heat engines that utilize turbomachinery currently operate near their thermodynamic limitations and thus one of the only ways to improve heat engine efficiency is to increase the turbine inlet temperature. Significant effort is being devoted to the development of supercritical CO2 heat engines, but the most efficient heat engines are combined cycles, which reach efficiencies as high as 60%. However, such heat engines require turbine inlet temperatures ~1300-1500C, which is far beyond what is currently feasible with the state of the art molten salt infrastructure. In working towards the development of a system that can operate in the 1300-1500C temperature range, the most significant challenges lie in the materials and forming functional and reliable components out of new materials. One of the most attractive options from a cost and heat transfer perspective is to use liquid metals, such as tin and aluminum-silicon alloys along with a ceramic based infrastructure. This talk will overview ongoing efforts in the Atomistic Simulation and Energy (ASE) research group at Georgia Tech to develop prototype components such as an efficient high temperature cavity receiver, pumps and valves that can make a liquid metal based CSP infrastructure realizable.

  14. Clayton Barrows | NREL

    Science.gov Websites

    engineering, Penn State, 2013 B.S. in electrical engineering, University of Wyoming, 2005 Prior Work of Electrical and Electronics Engineers (IEEE) Featured Publications Barrows, Clayton, Trieu Mai and Electrical Structure of the North American Electric Power Infrastructure." IEEE Systems

  15. Engineering Infrastructure Diagramming and Modeling. Engineering Education and Practice in The United States.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Engineering and Technical Systems.

    This report forms an integral part of a study conducted by the Committee on the Education and Utilization of the Engineer, under the auspices of the National Research Council. Five major tasks undertaken by the panel were: (1) defining engineering; (2) determining influences on the engineering community, including external influences and internal…

  16. Digital Rocks Portal: Preservation, Sharing, Remote Visualization and Automated Analysis of Imaged Datasets

    NASA Astrophysics Data System (ADS)

    Prodanovic, M.; Esteva, M.; Ketcham, R. A.; Hanlon, M.; Pettengill, M.; Ranganath, A.; Venkatesh, A.

    2016-12-01

    Due to advances in imaging modalities such as X-ray microtomography and scattered electron microscopy, 2D and 3D imaged datasets of rock microstructure on nanometer to centimeter length scale allow investigation of nonlinear flow and mechanical phenomena using numerical approaches. This in turn produces various upscaled parameters required by subsurface flow and deformation simulators. However, a single research group typically specializes in an imaging modality and/or related modeling on a single length scale, and lack of data-sharing infrastructure makes it difficult to integrate different length scales. We developed a sustainable, open and easy-to-use repository called the Digital Rocks Portal (http://www.digitalrocksportal.org), that (1) organizes images and related experimental measurements of different porous materials, (2) improves access to them for a wider community of geosciences or engineering researchers not necessarily trained in computer science or data analysis. Our objective is to enable scientific inquiry and engineering decisions founded on a data-driven basis. We show how the data loaded in the portal can be documented, referenced in publications via digital object identifiers, visualize and linked to other repositories. We then show preliminary results on integrating remote parallel visualization and flow simulation workflow with the pore structures currently stored in the repository. We finally discuss the issues of collecting correct metadata, data discoverability and repository sustainability. This is the first repository for this particular data, but is part of the wider ecosystem of geoscience data and model cyber-infrastructure called "Earthcube" (http://earthcube.org/) sponsored by National Science Foundation. For data sustainability and continuous access, the portal is implemented within the reliable, 24/7 maintained High Performance Computing Infrastructure supported by the Texas Advanced Computing Center (TACC) at the University of Texas at Austin. Long-term storage is provided through the University of Texas System Research Cyber-infrastructure initiative.

  17. MSFC Three Point Docking Mechanism design review

    NASA Technical Reports Server (NTRS)

    Schaefer, Otto; Ambrosio, Anthony

    1992-01-01

    In the next few decades, we will be launching expensive satellites and space platforms that will require recovery for economic reasons, because of initial malfunction, servicing, repairs, or out of a concern for post lifetime debris removal. The planned availability of a Three Point Docking Mechanism (TPDM) is a positive step towards an operational satellite retrieval infrastructure. This study effort supports NASA/MSFC engineering work in developing an automated docking capability. The work was performed by the Grumman Space & Electronics Group as a concept evaluation/test for the Tumbling Satellite Retrieval Kit. Simulation of a TPDM capture was performed in Grumman's Large Amplitude Space Simulator (LASS) using mockups of both parts (the mechanism and payload). Similar TPDM simulation activities and more extensive hardware testing was performed at NASA/MSFC in the Flight Robotics Laboratory and Space Station/Space Operations Mechanism Test Bed (6-DOF Facility).

  18. Collaborative Multi-Scale 3d City and Infrastructure Modeling and Simulation

    NASA Astrophysics Data System (ADS)

    Breunig, M.; Borrmann, A.; Rank, E.; Hinz, S.; Kolbe, T.; Schilcher, M.; Mundani, R.-P.; Jubierre, J. R.; Flurl, M.; Thomsen, A.; Donaubauer, A.; Ji, Y.; Urban, S.; Laun, S.; Vilgertshofer, S.; Willenborg, B.; Menninghaus, M.; Steuer, H.; Wursthorn, S.; Leitloff, J.; Al-Doori, M.; Mazroobsemnani, N.

    2017-09-01

    Computer-aided collaborative and multi-scale 3D planning are challenges for complex railway and subway track infrastructure projects in the built environment. Many legal, economic, environmental, and structural requirements have to be taken into account. The stringent use of 3D models in the different phases of the planning process facilitates communication and collaboration between the stake holders such as civil engineers, geological engineers, and decision makers. This paper presents concepts, developments, and experiences gained by an interdisciplinary research group coming from civil engineering informatics and geo-informatics banding together skills of both, the Building Information Modeling and the 3D GIS world. New approaches including the development of a collaborative platform and 3D multi-scale modelling are proposed for collaborative planning and simulation to improve the digital 3D planning of subway tracks and other infrastructures. Experiences during this research and lessons learned are presented as well as an outlook on future research focusing on Building Information Modeling and 3D GIS applications for cities of the future.

  19. Big-BOE: Fusing Spanish Official Gazette with Big Data Technology.

    PubMed

    Basanta-Val, Pablo; Sánchez-Fernández, Luis

    2018-06-01

    The proliferation of new data sources, stemmed from the adoption of open-data schemes, in combination with an increasing computing capacity causes the inception of new type of analytics that process Internet of things with low-cost engines to speed up data processing using parallel computing. In this context, the article presents an initiative, called BIG-Boletín Oficial del Estado (BOE), designed to process the Spanish official government gazette (BOE) with state-of-the-art processing engines, to reduce computation time and to offer additional speed up for big data analysts. The goal of including a big data infrastructure is to be able to process different BOE documents in parallel with specific analytics, to search for several issues in different documents. The application infrastructure processing engine is described from an architectural perspective and from performance, showing evidence on how this type of infrastructure improves the performance of different types of simple analytics as several machines cooperate.

  20. Undergraduate research internships to support exploratory research in transportation engineering : project final report, Sept. 2008.

    DOT National Transportation Integrated Search

    2008-09-01

    The Case Western Reserve University Department of Civil Engineering is in the process of expanding its teaching and research activities, Transportation Engineering as part of its initiative in the overall area of Infrastructure Performance and Reliab...

  1. Assessment of Vulnerability to Climate Change Effects on Urban Stormwater Infrastructure in City of Las Vegas, NV

    NASA Astrophysics Data System (ADS)

    Thakali, R.; Kalra, A.; Mastino, L.; Velotta, M.; Ahmad, S.

    2016-12-01

    In the spring of 2016 the City of Las Vegas and the Southern Illinois University began collaborating on a project that seeks to assess the city's current vulnerability to drought, extreme heat, and extreme precipitation patterns, as well as the response mechanisms that are already in place within its jurisdiction. The document analyzes a series of scenarios to assess to what extent the vulnerability of four Key Planning Areas will change in the long term (30-50 years), what will be the most affected city operations, and what mechanisms the City will need to put into place to adapt to such changes. As part of the vulnerability report, this study assessed the impacts of climate change in the existing stormwater system of the Gowan watershed within City of Las Vegas, NV, by assessing projected design storms. The climate change projection for the region was evaluated using the high-resolution North American Regional Climate Change Assessment Program (NARCCAP) climate model data. The design storms (6h 100y) were calculated using the best fitted probability distribution among twenty-seven distributions for the historic and future NARCCAP climate model projection. North American Regional Reanalysis (NARR) data were used to assess the performance of NARCCAP data. The projected design storms were implemented in an existing U.S. Army Corps of Engineers' Hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS) model developed by Clark County Regional Flood Control District (CCRFCD), Las Vegas. The simulation results showed an increase in the design storms which exceeded the capacity of existing stormwater infrastructure.

  2. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.

    2009-12-02

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology willmore » provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.« less

  3. Possible Weakening Processes Imposed on California's Earthen Levees under Protracted Drought

    NASA Astrophysics Data System (ADS)

    Robinson, J. D.; Vahedifard, F.; AghaKouchak, A.

    2015-12-01

    California is currently suffering from a multiyear extreme drought and the impacts of the drought are anticipated to worsen in a warming climate. The resilience of critical infrastructure under extreme drought conditions is a major concern which has not been well understood. Thus, there is a crucial need to improve our understanding about the potential threats of drought on infrastructure and take subsequent actions in a timely manner to mitigate these threats and adopt our infrastructure for forthcoming extreme events. The need is more pronounced for earthen levees, since their functionality to protect limited water resources and dryland is more critical during drought. A significant amount of California's levee systems are currently operating under a high risk condition. Protracted drought can further threaten the structural competency of these already at-risk levee systems through several thermo-hydro mechanical weakening processes that undermine their stability. Viable information on the implications of these weakening processes, particularly on California's earthen levees, is relatively incomplete. This article discusses, from a geotechnical engineering perspective, how California's protracted drought might threaten the integrity of levee systems through the imposition of several thermo-hydro mechanical weakening processes. Pertinent facts and statistics regarding the drought in California are presented and discussed. Catastrophic levee failures and major damages resulting from drought-induce weakening processes such as shear strength reduction, desiccation cracking, land subsidence and surface erosion, fissuring and soil softening, and soil carbon oxidation are discussed to illustrate the devastating impacts that the California drought might impose on existing earthen levees. This article calls for further research in light of these potential drought-inducing weakening mechanisms to support mitigation strategies for reducing future catastrophic levee failures.

  4. Predictive Power of Clean Bed Filtration Theory for Fecal Indicator Bacteria Removal in Stormwater Biofilters

    NASA Astrophysics Data System (ADS)

    Parker, E.; Rippy, M.; Mehring, A.; Winfrey, B.; Ambrose, R. F.; Levin, L. A.; Grant, S. B.

    2017-12-01

    Green infrastructure (also referred to as low impact development, or LID) has the potential to transform urban stormwater runoff from an environmental threat to a valuable water resource. Here we focus on the removal of fecal indicator bacteria (FIB, a pollutant responsible for runoff associated inland and coastal beach closures) in stormwater biofilters (a common type of green infrastructure). Drawing on a combination of previously published and new laboratory studies of FIB removal in biofilters, we find that 66% of the variance in FIB removal rates can be explained by clean bed filtration theory (CBFT, 31%), antecedent dry period (14%), study effect (8%), biofilter age (7%), and the presence or absence of shrubs (6%). Our analysis suggests that, with the exception of shrubs, plants affect FIB removal indirectly by changing the infiltration rate, not directly by changing the FIB removal mechanisms or altering filtration rates in ways not already accounted for by CBFT. The analysis presented here represents a significant step forward in our understanding of how physicochemical theories (such as CBFT) can be melded with hydrology, engineering design, and ecology to improve the water quality benefits of green infrastructure.

  5. Bridge resource program.

    DOT National Transportation Integrated Search

    2013-09-01

    The mission of Rutgers Universitys Center for Advanced Infrastructure and Transportation (CAIT) Bridge Resource Program (BRP) is to provide bridge engineering support to the New Jersey Department of Transportation (NJDOT)s Bridge Engineering an...

  6. Redefine Water Infrastructure Adaptation to a Nonstationary Climate (Editorial)

    EPA Science Inventory

    The statement “Climate Stationarity is Dead” by Milly et al. (2008) stresses the need to evaluate and when necessary, incorporate non-stationary hydroclimatic changes into water resources and infrastructure planning and engineering. Variations of this theme echo in several other ...

  7. Infrastructure sensing.

    PubMed

    Soga, Kenichi; Schooling, Jennifer

    2016-08-06

    Design, construction, maintenance and upgrading of civil engineering infrastructure requires fresh thinking to minimize use of materials, energy and labour. This can only be achieved by understanding the performance of the infrastructure, both during its construction and throughout its design life, through innovative monitoring. Advances in sensor systems offer intriguing possibilities to radically alter methods of condition assessment and monitoring of infrastructure. In this paper, it is hypothesized that the future of infrastructure relies on smarter information; the rich information obtained from embedded sensors within infrastructure will act as a catalyst for new design, construction, operation and maintenance processes for integrated infrastructure systems linked directly with user behaviour patterns. Some examples of emerging sensor technologies for infrastructure sensing are given. They include distributed fibre-optics sensors, computer vision, wireless sensor networks, low-power micro-electromechanical systems, energy harvesting and citizens as sensors.

  8. Infrastructure sensing

    PubMed Central

    Soga, Kenichi; Schooling, Jennifer

    2016-01-01

    Design, construction, maintenance and upgrading of civil engineering infrastructure requires fresh thinking to minimize use of materials, energy and labour. This can only be achieved by understanding the performance of the infrastructure, both during its construction and throughout its design life, through innovative monitoring. Advances in sensor systems offer intriguing possibilities to radically alter methods of condition assessment and monitoring of infrastructure. In this paper, it is hypothesized that the future of infrastructure relies on smarter information; the rich information obtained from embedded sensors within infrastructure will act as a catalyst for new design, construction, operation and maintenance processes for integrated infrastructure systems linked directly with user behaviour patterns. Some examples of emerging sensor technologies for infrastructure sensing are given. They include distributed fibre-optics sensors, computer vision, wireless sensor networks, low-power micro-electromechanical systems, energy harvesting and citizens as sensors. PMID:27499845

  9. Developing Sustainable Urban Water-Energy Infrastructures: Applying a Multi-Sectoral Social-Ecological-Infrastructural Systems (SEIS) Framework

    NASA Astrophysics Data System (ADS)

    Ramaswami, A.

    2016-12-01

    Urban infrastructure - broadly defined to include the systems that provide water, energy, food, shelter, transportation-communication, sanitation and green/public spaces in cities - have tremendous impact on the environment and on human well-being (Ramaswami et al., 2016; Ramaswami et al., 2012). Aggregated globally, these sectors contribute 90% of global greenhouse gas (GHG) emissions and 96% of global water withdrawals. Urban infrastructure contributions to such impacts are beginning to dominate. Cities are therefore becoming the action arena for infrastructure transformations that can achieve high levels of service delivery while reducing environmental impacts and enhancing human well-being. Achieving sustainable urban infrastructure transitions requires: information about the engineered infrastructure, and its interaction with the natural (ecological-environmental) and the social sub-systems In this paper, we apply a multi-sector, multi-scalar Social-Ecological-Infrastructural Systems framework that describes the interactions among biophysical engineered infrastructures, the natural environment and the social system in a systems-approach to inform urban infrastructure transformations. We apply the SEIS framework to inform water and energy sector transformations in cities to achieve environmental and human health benefits realized at multiple scales - local, regional and global. Local scales address pollution, health, wellbeing and inequity within the city; regional scales address regional pollution, scarcity, as well as supply risks in the water-energy sectors; global impacts include greenhouse gas emissions and climate impacts. Different actors shape infrastructure transitions including households, businesses, and policy actors. We describe the development of novel cross-sectoral strategies at the water-energy nexus in cities, focusing on water, waste and energy sectors, in a case study of Delhi, India. Ramaswami, A.; Russell, A.G.; Culligan, P.J.; Sharma, K.R.; Kumar, E. (2016). Meta-Principles for developing smart, sustainable, and healthy cities, Science, 352(6288), 940-3. Ramaswami, A., et al. A Social-Ecological Infrastructural Systems Framework for Inter-Disciplinary Study of Sustainable City-Systems. J. Ind Ecol, 16(6): 801-813, 2012.

  10. Coatings Extend Life of Engines and Infrastructure

    NASA Technical Reports Server (NTRS)

    2010-01-01

    MesoCoat Inc., of Euclid, Ohio, collaborated with Glenn Research Center to provide thermal barrier coating (TBC) technology, developed by Glenn researcher Dongming Zhu, to enhance the lifespan and performance of engines in U.S. Air Force legacy aircraft. The TBC reduces thermal stresses on engine parts, increasing component life by 50 percent. MesoCoat is also producing metal cladding technology that may soon provide similar life-lengthening benefits for the Nation's infrastructure. Through a Space Act Agreement with Glenn, the company employs the Center's high-density infrared arc lamp system to bond its cladding materials for demonstration prototypes; the coating technology can prevent corrosion on metal beams, pipes, and rebar for up to 100 years.

  11. A Grid Infrastructure for Supporting Space-based Science Operations

    NASA Technical Reports Server (NTRS)

    Bradford, Robert N.; Redman, Sandra H.; McNair, Ann R. (Technical Monitor)

    2002-01-01

    Emerging technologies for computational grid infrastructures have the potential for revolutionizing the way computers are used in all aspects of our lives. Computational grids are currently being implemented to provide a large-scale, dynamic, and secure research and engineering environments based on standards and next-generation reusable software, enabling greater science and engineering productivity through shared resources and distributed computing for less cost than traditional architectures. Combined with the emerging technologies of high-performance networks, grids provide researchers, scientists and engineers the first real opportunity for an effective distributed collaborative environment with access to resources such as computational and storage systems, instruments, and software tools and services for the most computationally challenging applications.

  12. Challenges for Engineering Design, Construction, and Maintenance of Infrastructure in Afghanistan

    DTIC Science & Technology

    2010-11-01

    applied engineering expertise that collectively can solve challenging infra- structure problems. USACE-ERDC’s researchers and engineers are field...Development Center (ERDC) possesses a unique combination of basic research and applied engineering expertise that collectively can solve challenging...restoration, and other projects. The USACE Engineer Research and Development Center (ERDC) possesses a unique combination of basic research and applied

  13. Modeling complexity in engineered infrastructure system: Water distribution network as an example

    NASA Astrophysics Data System (ADS)

    Zeng, Fang; Li, Xiang; Li, Ke

    2017-02-01

    The complex topology and adaptive behavior of infrastructure systems are driven by both self-organization of the demand and rigid engineering solutions. Therefore, engineering complex systems requires a method balancing holism and reductionism. To model the growth of water distribution networks, a complex network model was developed following the combination of local optimization rules and engineering considerations. The demand node generation is dynamic and follows the scaling law of urban growth. The proposed model can generate a water distribution network (WDN) similar to reported real-world WDNs on some structural properties. Comparison with different modeling approaches indicates that a realistic demand node distribution and co-evolvement of demand node and network are important for the simulation of real complex networks. The simulation results indicate that the efficiency of water distribution networks is exponentially affected by the urban growth pattern. On the contrary, the improvement of efficiency by engineering optimization is limited and relatively insignificant. The redundancy and robustness, on another aspect, can be significantly improved through engineering methods.

  14. National Hydroclimatic Change and Infrastructure Adaptation Assessment: Region-Specific Adaptation Factors

    EPA Science Inventory

    Climate change, land use and socioeconomic developments are principal variables that define the need and scope of adaptive engineering and management to sustain water resource and infrastructure development. As described in IPCC (2007), hydroclimatic changes in the next 30-50 ye...

  15. Adapting Water Infrastructure to Non-stationary Climate ...

    EPA Pesticide Factsheets

    Water supply and sanitation are carried out by three major types of water infrastructure: drinking water treatment and distribution, wastewater collection and treatment, and storm water collection and management. Their sustainability is measured by resilience against and adaptability to an evolving factor; here it refers to the change of climate and its hydrologic impacts. The term resilience is defined as the ability to repair and recover its physical state and service function under the impacts of external forces (Milman and Short, 2008; McDaniels et al., 2008). In this context, capacity reserve (CR) is one very important physical attribute of system’s resilience; further details will be described later in this section and in the subsequent Chapter 1.7. While service function of a water infrastructure varies geographically among municipalities, its general engineering and management follow a triple bottom line of objectives: system reliability, environmental sustainability, and engineering economics. Communicate to science community and practitioners on the climate change adaptation to increase water infrastructure resilience by adaptation design

  16. Permafrost Hazards and Linear Infrastructure

    NASA Astrophysics Data System (ADS)

    Stanilovskaya, Julia; Sergeev, Dmitry

    2014-05-01

    The international experience of linear infrastructure planning, construction and exploitation in permafrost zone is being directly tied to the permafrost hazard assessment. That procedure should also consider the factors of climate impact and infrastructure protection. The current global climate change hotspots are currently polar and mountain areas. Temperature rise, precipitation and land ice conditions change, early springs occur more often. The big linear infrastructure objects cross the territories with different permafrost conditions which are sensitive to the changes in air temperature, hydrology, and snow accumulation which are connected to climatic dynamics. One of the most extensive linear structures built on permafrost worldwide are Trans Alaskan Pipeline (USA), Alaska Highway (Canada), Qinghai-Xizang Railway (China) and Eastern Siberia - Pacific Ocean Oil Pipeline (Russia). Those are currently being influenced by the regional climate change and permafrost impact which may act differently from place to place. Thermokarst is deemed to be the most dangerous process for linear engineering structures. Its formation and development depend on the linear structure type: road or pipeline, elevated or buried one. Zonal climate and geocryological conditions are also of the determining importance here. All the projects are of the different age and some of them were implemented under different climatic conditions. The effects of permafrost thawing have been recorded every year since then. The exploration and transportation companies from different countries maintain the linear infrastructure from permafrost degradation in different ways. The highways in Alaska are in a good condition due to governmental expenses on annual reconstructions. The Chara-China Railroad in Russia is under non-standard condition due to intensive permafrost response. Standards for engineering and construction should be reviewed and updated to account for permafrost hazards caused by the climate change. Extra maintenance activity is needed for existence infrastructure to stay operable. Engineers should run climate models under the most pessimistic scenarios when planning new infrastructure projects. That would allow reducing the potential shortcomings related to the permafrost thawing.

  17. Meet EPA Engineer Steve Clark

    EPA Pesticide Factsheets

    Steve Clark is an environmental engineer in EPA’s National Homeland Security Research Center (NHSRC). His research focuses on water security, exploring ways to protect and decontaminate pipes and other water “infrastructure.”

  18. Reconfiguring practice: the interdependence of experimental procedure and computing infrastructure in distributed earthquake engineering.

    PubMed

    De La Flor, Grace; Ojaghi, Mobin; Martínez, Ignacio Lamata; Jirotka, Marina; Williams, Martin S; Blakeborough, Anthony

    2010-09-13

    When transitioning local laboratory practices into distributed environments, the interdependent relationship between experimental procedure and the technologies used to execute experiments becomes highly visible and a focal point for system requirements. We present an analysis of ways in which this reciprocal relationship is reconfiguring laboratory practices in earthquake engineering as a new computing infrastructure is embedded within three laboratories in order to facilitate the execution of shared experiments across geographically distributed sites. The system has been developed as part of the UK Network for Earthquake Engineering Simulation e-Research project, which links together three earthquake engineering laboratories at the universities of Bristol, Cambridge and Oxford. We consider the ways in which researchers have successfully adapted their local laboratory practices through the modification of experimental procedure so that they may meet the challenges of coordinating distributed earthquake experiments.

  19. CrossTalk: The Journal of Defense Software Engineering. Volume 27, Number 5, September/October 2014

    DTIC Science & Technology

    2014-10-01

    CMSP Infrastructure . 24. CMSP Infrastructure sends message via broadcast to mobile devices in the designated area(s). 25. Mobile device users... infrastructure could potentially threaten our way of life. Given the swiftness of technological change, it is excusable that organizations might...system, which is diagramed in Fig. 1, would expand these op- tions to mobile devices. FEMA established the message struc- ture and the approvals needed to

  20. The Path to Convergence: Design, Coordination and Social Issues in the Implementation of a Middleware Data Broker.

    NASA Astrophysics Data System (ADS)

    Slota, S.; Khalsa, S. J. S.

    2015-12-01

    Infrastructures are the result of systems, networks, and inter-networks that accrete, overlay and segment one another over time. As a result, working infrastructures represent a broad heterogeneity of elements - data types, computational resources, material substrates (computing hardware, physical infrastructure, labs, physical information resources, etc.) as well as organizational and social functions which result in divergent outputs and goals. Cyber infrastructure's engineering often defaults to a separation of the social from the technical that results in the engineering succeeding in limited ways, or the exposure of unanticipated points of failure within the system. Studying the development of middleware intended to mediate interactions among systems within an earth systems science infrastructure exposes organizational, technical and standards-focused negotiations endemic to a fundamental trait of infrastructure: its characteristic invisibility in use. Intended to perform a core function within the EarthCube cyberinfrastructure, the development, governance and maintenance of an automated brokering system is a microcosm of large-scale infrastructural efforts. Points of potential system failure, regardless of the extent to which they are more social or more technical in nature, can be considered in terms of the reverse salient: a point of social and material configuration that momentarily lags behind the progress of an emerging or maturing infrastructure. The implementation of the BCube data broker has exposed reverse salients in regards to the overall EarthCube infrastructure (and the role of middleware brokering) in the form of organizational factors such as infrastructural alignment, maintenance and resilience; differing and incompatible practices of data discovery and evaluation among users and stakeholders; and a preponderance of local variations in the implementation of standards and authentication in data access. These issues are characterized by their role in increasing tension or friction among components that are on the path to convergence and may help to predict otherwise-occluded endogenous points of failure or non-adoption in the infrastructure.

  1. Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Gorelick, Noel

    2013-04-01

    The Google Earth Engine platform is a system designed to enable petabyte-scale, scientific analysis and visualization of geospatial datasets. Earth Engine provides a consolidated environment including a massive data catalog co-located with thousands of computers for analysis. The user-friendly front-end provides a workbench environment to allow interactive data and algorithm development and exploration and provides a convenient mechanism for scientists to share data, visualizations and analytic algorithms via URLs. The Earth Engine data catalog contains a wide variety of popular, curated datasets, including the world's largest online collection of Landsat scenes (> 2.0M), numerous MODIS collections, and many vector-based data sets. The platform provides a uniform access mechanism to a variety of data types, independent of their bands, projection, bit-depth, resolution, etc..., facilitating easy multi-sensor analysis. Additionally, a user is able to add and curate their own data and collections. Using a just-in-time, distributed computation model, Earth Engine can rapidly process enormous quantities of geo-spatial data. All computation is performed lazily; nothing is computed until it's required either for output or as input to another step. This model allows real-time feedback and preview during algorithm development, supporting a rapid algorithm development, test, and improvement cycle that scales seamlessly to large-scale production data processing. Through integration with a variety of other services, Earth Engine is able to bring to bear considerable analytic and technical firepower in a transparent fashion, including: AI-based classification via integration with Google's machine learning infrastructure, publishing and distribution at Google scale through integration with the Google Maps API, Maps Engine and Google Earth, and support for in-the-field activities such as validation, ground-truthing, crowd-sourcing and citizen science though the Android Open Data Kit.

  2. Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Gorelick, N.

    2012-12-01

    The Google Earth Engine platform is a system designed to enable petabyte-scale, scientific analysis and visualization of geospatial datasets. Earth Engine provides a consolidated environment including a massive data catalog co-located with thousands of computers for analysis. The user-friendly front-end provides a workbench environment to allow interactive data and algorithm development and exploration and provides a convenient mechanism for scientists to share data, visualizations and analytic algorithms via URLs. The Earth Engine data catalog contains a wide variety of popular, curated datasets, including the world's largest online collection of Landsat scenes (> 2.0M), numerous MODIS collections, and many vector-based data sets. The platform provides a uniform access mechanism to a variety of data types, independent of their bands, projection, bit-depth, resolution, etc..., facilitating easy multi-sensor analysis. Additionally, a user is able to add and curate their own data and collections. Using a just-in-time, distributed computation model, Earth Engine can rapidly process enormous quantities of geo-spatial data. All computation is performed lazily; nothing is computed until it's required either for output or as input to another step. This model allows real-time feedback and preview during algorithm development, supporting a rapid algorithm development, test, and improvement cycle that scales seamlessly to large-scale production data processing. Through integration with a variety of other services, Earth Engine is able to bring to bear considerable analytic and technical firepower in a transparent fashion, including: AI-based classification via integration with Google's machine learning infrastructure, publishing and distribution at Google scale through integration with the Google Maps API, Maps Engine and Google Earth, and support for in-the-field activities such as validation, ground-truthing, crowd-sourcing and citizen science though the Android Open Data Kit.

  3. Liquid Rocket Engine Testing Overview

    NASA Technical Reports Server (NTRS)

    Rahman, Shamim

    2005-01-01

    Contents include the following: Objectives and motivation for testing. Technology, Research and Development Test and Evaluation (RDT&E), evolutionary. Representative Liquid Rocket Engine (LRE) test compaigns. Apollo, shuttle, Expandable Launch Vehicles (ELV) propulsion. Overview of test facilities for liquid rocket engines. Boost, upper stage (sea-level and altitude). Statistics (historical) of Liquid Rocket Engine Testing. LOX/LH, LOX/RP, other development. Test project enablers: engineering tools, operations, processes, infrastructure.

  4. Digital Rocks Portal: a sustainable platform for imaged dataset sharing, translation and automated analysis

    NASA Astrophysics Data System (ADS)

    Prodanovic, M.; Esteva, M.; Hanlon, M.; Nanda, G.; Agarwal, P.

    2015-12-01

    Recent advances in imaging have provided a wealth of 3D datasets that reveal pore space microstructure (nm to cm length scale) and allow investigation of nonlinear flow and mechanical phenomena from first principles using numerical approaches. This framework has popularly been called "digital rock physics". Researchers, however, have trouble storing and sharing the datasets both due to their size and the lack of standardized image types and associated metadata for volumetric datasets. This impedes scientific cross-validation of the numerical approaches that characterize large scale porous media properties, as well as development of multiscale approaches required for correct upscaling. A single research group typically specializes in an imaging modality and/or related modeling on a single length scale, and lack of data-sharing infrastructure makes it difficult to integrate different length scales. We developed a sustainable, open and easy-to-use repository called the Digital Rocks Portal, that (1) organizes images and related experimental measurements of different porous materials, (2) improves access to them for a wider community of geosciences or engineering researchers not necessarily trained in computer science or data analysis. Once widely accepter, the repository will jumpstart productivity and enable scientific inquiry and engineering decisions founded on a data-driven basis. This is the first repository of its kind. We show initial results on incorporating essential software tools and pipelines that make it easier for researchers to store and reuse data, and for educators to quickly visualize and illustrate concepts to a wide audience. For data sustainability and continuous access, the portal is implemented within the reliable, 24/7 maintained High Performance Computing Infrastructure supported by the Texas Advanced Computing Center (TACC) at the University of Texas at Austin. Long-term storage is provided through the University of Texas System Research Cyber-infrastructure initiative.

  5. Creating Global Networks through an Online Engineering Graduate Programme

    ERIC Educational Resources Information Center

    Murray, M. H.

    2011-01-01

    Internationally, the railway industry is facing a severe shortage of engineers with high-level, relevant, professional and technical knowledge and abilities, in particular amongst engineers involved in the design, construction and maintenance of railway infrastructure. A unique graduate level programme has been created to meet that global need via…

  6. Future Cities Engineering: Early Engineering Interventions in the Middle Grades

    ERIC Educational Resources Information Center

    McCue, Camille; James, David

    2008-01-01

    This paper describes qualitative and quantitative research conducted with middle school students participating in a Future Cities Engineering course. Insights were sought regarding both affective and cognitive changes which transpired during the one-semester schedule of activities focused on modeling the infrastructure of a city built 150 years in…

  7. Stabilization of erodible slopes with geofibers and nontraditional liquid additives.

    DOT National Transportation Integrated Search

    2013-05-01

    Instability of erodible slopes due to extreme climate events and of permafrost slopes due degradation and thawing is a significant : engineering problem for northern transportation infrastructure. Engineers continually look for mitigation alternative...

  8. RISK ASSESSMENT AND MANAGEMENT OF WATER SUPPLY SYSTEM - INFRASTRUCTURE INITIATIVE FOR THE 21ST CENTURY

    EPA Science Inventory

    The current problem in the United States is that the water infrastructure is aging and spending has not been adequate to repair, replace, or rehabilitate drinking water distribution systems and wastewater collection systems. The American Society of Civil Engineers Report Card in...

  9. Anticipatory ethics for a future Internet: analyzing values during the design of an Internet infrastructure.

    PubMed

    Shilton, Katie

    2015-02-01

    The technical details of Internet architecture affect social debates about privacy and autonomy, intellectual property, cybersecurity, and the basic performance and reliability of Internet services. This paper explores one method for practicing anticipatory ethics in order to understand how a new infrastructure for the Internet might impact these social debates. This paper systematically examines values expressed by an Internet architecture engineering team-the Named Data Networking project-based on data gathered from publications and internal documents. Networking engineers making technical choices also weigh non-technical values when working on Internet infrastructure. Analysis of the team's documents reveals both values invoked in response to technical constraints and possibilities, such as efficiency and dynamism, as well as values, including privacy, security and anonymity, which stem from a concern for personal liberties. More peripheral communitarian values espoused by the engineers include democratization and trust. The paper considers the contextual and social origins of these values, and then uses them as a method of practicing anticipatory ethics: considering the impact such priorities may have on a future Internet.

  10. Structural Health Monitoring of Civil Infrastructure Using Optical Fiber Sensing Technology: A Comprehensive Review

    PubMed Central

    Ye, X. W.; Su, Y. H.; Han, J. P.

    2014-01-01

    In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure. PMID:25133250

  11. Structural health monitoring of civil infrastructure using optical fiber sensing technology: a comprehensive review.

    PubMed

    Ye, X W; Su, Y H; Han, J P

    2014-01-01

    In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure.

  12. Probabilistic simulation of concurrent engineering of propulsion systems

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Technology readiness and the available infrastructure is assessed for timely computational simulation of concurrent engineering for propulsion systems. Results for initial coupled multidisciplinary, fabrication-process, and system simulators are presented including uncertainties inherent in various facets of engineering processes. An approach is outlined for computationally formalizing the concurrent engineering process from cradle-to-grave via discipline dedicated workstations linked with a common database.

  13. Applications of smart materials in structural engineering.

    DOT National Transportation Integrated Search

    2003-10-01

    With the development of materials and technology, many new materials find their applications in civil engineering to deal with the deteriorating infrastructure. Smart material is a promising example that deserves a wide focus, from research to applic...

  14. PREFACE: 9th World Congress on Computational Mechanics and 4th Asian Pacific Congress on Computational Mechanics

    NASA Astrophysics Data System (ADS)

    Khalili, N.; Valliappan, S.; Li, Q.; Russell, A.

    2010-07-01

    The use for mathematical models of natural phenomena has underpinned science and engineering for centuries, but until the advent of modern computers and computational methods, the full utility of most of these models remained outside the reach of the engineering communities. Since World War II, advances in computational methods have transformed the way engineering and science is undertaken throughout the world. Today, theories of mechanics of solids and fluids, electromagnetism, heat transfer, plasma physics, and other scientific disciplines are implemented through computational methods in engineering analysis, design, manufacturing, and in studying broad classes of physical phenomena. The discipline concerned with the application of computational methods is now a key area of research, education, and application throughout the world. In the early 1980's, the International Association for Computational Mechanics (IACM) was founded to promote activities related to computational mechanics and has made impressive progress. The most important scientific event of IACM is the World Congress on Computational Mechanics. The first was held in Austin (USA) in 1986 and then in Stuttgart (Germany) in 1990, Chiba (Japan) in 1994, Buenos Aires (Argentina) in 1998, Vienna (Austria) in 2002, Beijing (China) in 2004, Los Angeles (USA) in 2006 and Venice, Italy; in 2008. The 9th World Congress on Computational Mechanics is held in conjunction with the 4th Asian Pacific Congress on Computational Mechanics under the auspices of Australian Association for Computational Mechanics (AACM), Asian Pacific Association for Computational Mechanics (APACM) and International Association for Computational Mechanics (IACM). The 1st Asian Pacific Congress was in Sydney (Australia) in 2001, then in Beijing (China) in 2004 and Kyoto (Japan) in 2007. The WCCM/APCOM 2010 publications consist of a printed book of abstracts given to delegates, along with 247 full length peer reviewed papers published with free access online in IOP Conference Series: Materials Science and Engineering. The editors acknowledge the help of the paper reviewers in maintaining a high standard of assessment and the co-operation of the authors in complying with the requirements of the editors and the reviewers. We also would like to take this opportunity to thank the members of the Local Organising Committee and the International Scientific Committee for helping make WCCM/APCOM 2010 a successful event. We also thank The University of New South Wales, The University of Newcastle, the Centre for Infrastructure Engineering and Safety (CIES), IACM, APCAM, AACM for their financial support, along with the United States Association for Computational Mechanics for the Travel Awards made available. N. Khalili S. Valliappan Q. Li A. Russell 19 July 2010 Sydney, Australia

  15. Application of information technology to the National Launch System

    NASA Technical Reports Server (NTRS)

    Mauldin, W. T.; Smith, Carolyn L.; Monk, Jan C.; Davis, Steve; Smith, Marty E.

    1992-01-01

    The approach to the development of the Unified Information System (UNIS) to provide in a timely manner all the information required to manage, design, manufacture, integrate, test, launch, operate, and support the Advanced Launch System (NLS), as well as the current and planned capabilities are described. STESYM, the Space Transportation Main Engine (STME) development program, is comprised of a collection of data models which can be grouped into two primary models: the Engine Infrastructure Model (ENGIM) and the Engine Integrated Cast Model (ENGICOM). ENGIM is an end-to-end model of the infrastructure needed to perform the fabrication, assembly, and testing of the STEM program and its components. Together, UNIS and STESYM are to provide NLS managers and engineers with the ability to access various types and files of data quickly and use that data to assess the capabilities of the STEM program.

  16. Cement-based piezoelectric ceramic composites for sensor applications in civil engineering

    NASA Astrophysics Data System (ADS)

    Dong, Biqin

    The objectives of this thesis are to develop and apply a new smart composite for the sensing and actuation application of civil engineering. Piezoelectric ceramic powder is incorporated into cement-based composite to achieve the sensing and actuation capability. The research investigates microstructure, polarization and aging, material properties and performance of cement-based piezoelectric ceramic composites both theoretically and experimentally. A hydrogen bonding is found at the interface of piezoelectric ceramic powder and cement phase by IR (Infrared Ray), XPS (X-ray Photoelectron Spectroscopy) and SIMS (Secondary Ion Mass Spectroscopy). It largely affects the material properties of composites. A simple first order model is introduced to explain the poling mechanism of composites and the dependency of polarization is discussed using electromechanical coupling coefficient kt. The mechanisms acting on the aging effect is explored in detail. Dielectrical, piezoelectric and mechanical properties of the cement-based piezoelectric ceramic composites are studied by experiment and theoretical calculation based on modified cube model (n=1) with chemical bonding . A complex circuit model is proposed to explain the unique feature of impedance spectra and the instinct of high-loss of cement-based piezoelectric ceramic composite. The sensing ability of cement-based piezoelectric ceramic composite has been evaluated by using step wave, sine wave, and random wave. It shows that the output of the composite can reflects the nature and characteristics of mechanical input. The work in this thesis opens a new direction for the current actuation/sensing technology in civil engineering. The materials and techniques, developed in this work, have a great potential in application of health monitoring of buildings and infrastructures.

  17. All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance

    NASA Astrophysics Data System (ADS)

    Peng, Chaoyi; Chen, Zhuyang; Tiwari, Manish K.

    2018-03-01

    Superhydrophobicity is a remarkable evolutionary adaption manifested by several natural surfaces. Artificial superhydrophobic coatings with good mechanical robustness, substrate adhesion and chemical robustness have been achieved separately. However, a simultaneous demonstration of these features along with resistance to liquid impalement via high-speed drop/jet impact is challenging. Here, we describe all-organic, flexible superhydrophobic nanocomposite coatings that demonstrate strong mechanical robustness under cyclic tape peels and Taber abrasion, sustain exposure to highly corrosive media, namely aqua regia and sodium hydroxide solutions, and can be applied to surfaces through scalable techniques such as spraying and brushing. In addition, the mechanical flexibility of our coatings enables impalement resistance to high-speed drops and turbulent jets at least up to 35 m s-1 and a Weber number of 43,000. With multifaceted robustness and scalability, these coatings should find potential usage in harsh chemical engineering as well as infrastructure, transport vehicles and communication equipment.

  18. The size effect in corrosion greatly influences the predicted life span of concrete infrastructures.

    PubMed

    Angst, Ueli M; Elsener, Bernhard

    2017-08-01

    Forecasting the life of concrete infrastructures in corrosive environments presents a long-standing and socially relevant challenge in science and engineering. Chloride-induced corrosion of reinforcing steel in concrete is the main cause for premature degradation of concrete infrastructures worldwide. Since the middle of the past century, this challenge has been tackled by using a conceptual approach relying on a threshold chloride concentration for corrosion initiation ( C crit ). All state-of-the-art models for forecasting chloride-induced steel corrosion in concrete are based on this concept. We present an experiment that shows that C crit depends strongly on the exposed steel surface area. The smaller the tested specimen is, the higher and the more variable C crit becomes. This size effect in the ability of reinforced concrete to withstand corrosion can be explained by the local conditions at the steel-concrete interface, which exhibit pronounced spatial variability. The size effect has major implications for the future use of the common concept of C crit . It questions the applicability of laboratory results to engineering structures and the reproducibility of typically small-scale laboratory testing. Finally, we show that the weakest link theory is suitable to transform C crit from small to large dimensions, which lays the basis for taking the size effect into account in the science and engineering of forecasting the durability of infrastructures.

  19. The size effect in corrosion greatly influences the predicted life span of concrete infrastructures

    PubMed Central

    Angst, Ueli M.; Elsener, Bernhard

    2017-01-01

    Forecasting the life of concrete infrastructures in corrosive environments presents a long-standing and socially relevant challenge in science and engineering. Chloride-induced corrosion of reinforcing steel in concrete is the main cause for premature degradation of concrete infrastructures worldwide. Since the middle of the past century, this challenge has been tackled by using a conceptual approach relying on a threshold chloride concentration for corrosion initiation (Ccrit). All state-of-the-art models for forecasting chloride-induced steel corrosion in concrete are based on this concept. We present an experiment that shows that Ccrit depends strongly on the exposed steel surface area. The smaller the tested specimen is, the higher and the more variable Ccrit becomes. This size effect in the ability of reinforced concrete to withstand corrosion can be explained by the local conditions at the steel-concrete interface, which exhibit pronounced spatial variability. The size effect has major implications for the future use of the common concept of Ccrit. It questions the applicability of laboratory results to engineering structures and the reproducibility of typically small-scale laboratory testing. Finally, we show that the weakest link theory is suitable to transform Ccrit from small to large dimensions, which lays the basis for taking the size effect into account in the science and engineering of forecasting the durability of infrastructures. PMID:28782038

  20. LANL: Weapons Infrastructure Briefing to Naval Reactors, July 18, 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chadwick, Frances

    Presentation slides address: The Laboratory infrastructure supports hundreds of high hazard, complex operations daily; LANL’s unique science and engineering infrastructure is critical to delivering on our mission; LANL FY17 Budget & Workforce; Direct-Funded Infrastructure Accounts; LANL Org Chart; Weapons Infrastructure Program Office; The Laboratory’s infrastructure relies on both Direct and Indirect funding; NA-50’s Operating, Maintenance & Recapitalization funding is critical to the execution of the mission; Los Alamos is currently executing several concurrent Line Item projects; Maintenance @ LANL; NA-50 is helping us to address D&D needs; We are executing a CHAMP Pilot Project at LANL; G2 = Main Toolmore » for Program Management; MDI: Future Investments are centered on facilities with a high Mission Dependency Index; Los Alamos hosted first “Deep Dive” in November 2016; Safety, Infrastructure & Operations is one of the most important programs at LANL, and is foundational for our mission success.« less

  1. 32 CFR Appendix A to Part 989 - Glossary of References, Abbreviations, Acronyms, and Terms

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Engineering and the Environment AFCEE/TDB AFCEE Technical Directorate, Built Infrastructure Division (AFCEE... Materiel Command HQ USAF Headquarters, United States Air Force HQ USAF/A7C The Air Force Civil Engineer.../AQR Deputy Assistant Secretary of the Air Force (Science, Technology, and Engineering) SAF/GC Air...

  2. CHALLENGES IN MAINTAINING DRINKING WATER QUALITY AT THE TAP: CONTAMINATION WITH TOXIC LEAD

    EPA Science Inventory

    Aging drinking water infrastructure in the US was given a grade of D (poor) by the American Society of Civil Engineers, and was voted as the most urgent of all societal infrastructure challenges. Legacy lead pipe, leaded solder and/or leaded brass are a particularly notorious old...

  3. Military Engineer Contribution to Operational Art: The Hybrid Threat Environment

    DTIC Science & Technology

    2015-05-22

    engineering are capabilities and activities that support the maneuver force, to include mobility , countermobility, and survivability tasks.12 These may...effort or “ways” engineers support the pursuit of the operational desired state. The engineer lines of effort (LOE) include assure mobility , enhance...protection, enable force projection and logistics, and building partner capacity and develop infrastructure.16 The assured mobility LOE seeks to

  4. Using inertial measurement units originally developed for biomechanics for modal testing of civil engineering structures

    NASA Astrophysics Data System (ADS)

    Hester, David; Brownjohn, James; Bocian, Mateusz; Xu, Yan; Quattrone, Antonino

    2018-05-01

    This paper explores the use of wireless Inertial Measurement Units (IMU) originally developed for bio-mechanical research applications for modal testing of civil engineering infrastructure. Due to their biomechanics origin, these devices combine a triaxial accelerometer with gyroscopes and magnetometers for orientation, as well as on board data logging capability and wireless communication for optional data streaming and to coordinate synchronisation with other IMUs in a network. The motivation for application to civil structures is that their capabilities and simple operating procedures make them suitable for modal testing of many types of civil infrastructure of limited dimension including footbridges and floors while also enabling recovering of dynamic forces generated and applied to structures by moving humans. To explore their capabilities in civil applications, the IMUs are evaluated through modal tests on three different structures with increasing challenge of spatial and environmental complexity. These are, a full-scale floor mock-up in a laboratory, a short span road bridge and a seven story office tower. For each case, the results from the IMUs are compared with those from a conventional wired system to identify the limitations. The main conclusion is that the relatively high noise floor and limited communication range will not be a serious limitation in the great majority of typical civil modal test applications where convenient operation is a significant advantage over conventional wired systems.

  5. [Purveyors of technology: provincial engineers and the construction of road infrastructure in Minas Gerais].

    PubMed

    Barbosa, Lidiany Silva

    2011-01-01

    The article analyzes the role played by engineers in the construction of road infrastructure in Minas Gerais between the 1840s and 1880s. Building and providing regular maintenance for roads and bridges was a task carried out by the Minas Gerais provincial government, which since the 1830s had a specific agency assigned to designing, building, and maintaining public communication routes. Engineers were part of the agency from its inception, playing a significant role in designing projects and in the actual execution of certain works. The current study is grounded in administrative documentation in which the details of work progress are reported to the provincial government. The gathered records provide technical, administrative, and financial information, along with data on labor power and the agents engaged in construction works.

  6. Innovations in Nuclear Infrastructure and Education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Bernard

    The decision to implement the Innovation in Nuclear Infrastructure and Engineering Program (INIE) was an important first step towards ensuring that the United States preserves its worldwide leadership role in the field of nuclear science and engineering. Prior to INIE, university nuclear science and engineering programs were waning, undergraduate student enrollment was down, university research reactors were being shut down, while others faced the real possibility of closure. For too long, cutting edge research in the areas of nuclear medicine, neutron scattering, radiochemistry, and advanced materials was undervalued and therefore underfunded. The INIE program corrected this lapse in focus andmore » direction and started the process of drawing a new blueprint with positive goals and objectives that supports existing as well the next generation of educators, students and researchers.« less

  7. A year 2003 conceptual model for the U.S. telecommunications infrastructure.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Roger Gary; Reinert, Rhonda K.

    2003-12-01

    To model the telecommunications infrastructure and its role and robustness to shocks, we must characterize the business and engineering of telecommunications systems in the year 2003 and beyond. By analogy to environmental systems modeling, we seek to develop a 'conceptual model' for telecommunications. Here, the conceptual model is a list of high-level assumptions consistent with the economic and engineering architectures of telecommunications suppliers and customers, both today and in the near future. We describe the present engineering architectures of the most popular service offerings, and describe the supplier markets in some detail. We also develop a characterization of the customermore » base for telecommunications services and project its likely response to disruptions in service, base-lining such conjectures against observed behaviors during 9/11.« less

  8. Distinction of Concept and Discussion on Construction Idea of Smart Water Grid Project

    NASA Astrophysics Data System (ADS)

    Ye, Y.; Yizi, S., Sr.; Lili, L., Sr.; Sang, X.; Zhai, J.

    2016-12-01

    Smart water grid project includes construction of water physical grid consisting of various flow regulating infrastructures, construction of water information grid in line with the trend of intelligent technology and construction of water management grid featured by system & mechanism construction and systemization of regulation decision-making. It is the integrated platform and comprehensive carrier for water conservancy practices. Currently, there still is dispute over engineering construction idea of smart water grid which, however, represents the future development trend of water management and is increasingly emphasized. The paper, based on distinction of concept of water grid and water grid engineering, explains the concept of water grid intelligentization, actively probes into construction idea of Smart water grid project in our country and presents scientific problems to be solved as well as core technologies to be mastered for smart water grid construction.

  9. Engineering novel habitats on urban infrastructure to increase intertidal biodiversity.

    PubMed

    Chapman, M G; Blockley, D J

    2009-09-01

    Urbanization replaces natural shorelines with built infrastructure, seriously impacting species living on these "new" shores. Understanding the ecology of developed shorelines and reducing the consequences of urban development to fauna and flora cannot advance by simply documenting changes to diversity. It needs a robust experimental programme to develop ways in which biodiversity can be sustained in urbanized environments. There have, however, been few such experiments despite wholesale changes to shorelines in urbanized areas. Seawalls--the most extensive artificial infrastructure--are generally featureless, vertical habitats that support reduced levels of local biodiversity. Here, a mimic of an important habitat on natural rocky shores (rock-pools) was experimentally added to a seawall and its impact on diversity assessed. The mimics created shaded vertical substratum and pools that retained water during low tide. These novel habitats increased diversity of foliose algae and sessile and mobile animals, especially higher on the shore. Many species that are generally confined to lowshore levels, expanded their distribution over a greater tidal range. In fact, there were more species in the constructed pools than in natural pools of similar size on nearby shores. There was less effect on the abundances of mobile animals, which may be due to the limited time available for recruitment, or because these structures did not provide appropriate habitat. With increasing anthropogenic intrusion into natural areas and concomitant loss of species, it is essential to learn how to build urban infrastructure that can maintain or enhance biodiversity while meeting societal and engineering criteria. Success requires melding engineering skills and ecological understanding. This paper demonstrates one cost-effective way of addressing this important issue for urban infrastructure affecting nearshore habitats.

  10. Derailment-based Fault Tree Analysis on Risk Management of Railway Turnout Systems

    NASA Astrophysics Data System (ADS)

    Dindar, Serdar; Kaewunruen, Sakdirat; An, Min; Gigante-Barrera, Ángel

    2017-10-01

    Railway turnouts are fundamental mechanical infrastructures, which allow a rolling stock to divert one direction to another. As those are of a large number of engineering subsystems, e.g. track, signalling, earthworks, these particular sub-systems are expected to induce high potential through various kind of failure mechanisms. This could be a cause of any catastrophic event. A derailment, one of undesirable events in railway operation, often results, albeit rare occurs, in damaging to rolling stock, railway infrastructure and disrupt service, and has the potential to cause casualties and even loss of lives. As a result, it is quite significant that a well-designed risk analysis is performed to create awareness of hazards and to identify what parts of the systems may be at risk. This study will focus on all types of environment based failures as a result of numerous contributing factors noted officially as accident reports. This risk analysis is designed to help industry to minimise the occurrence of accidents at railway turnouts. The methodology of the study relies on accurate assessment of derailment likelihood, and is based on statistical multiple factors-integrated accident rate analysis. The study is prepared in the way of establishing product risks and faults, and showing the impact of potential process by Boolean algebra.

  11. U35: Legacy Engine Final Report

    DOT National Transportation Integrated Search

    2012-07-01

    The Legacy engine is a new core technology that can be used with existing infrastructure providing for near term benefits while minimizing costs. Also, as a new technology, it will be optimized for many years to come providing the opportunity for con...

  12. Time Talk: On Small Changes That Enact Infrastructural Mentoring for Undergraduate Women in Technical Fields

    ERIC Educational Resources Information Center

    Sullivan, Patricia; Moore, Kristen

    2013-01-01

    This article brings together the communication needs and positioning of women in technical areas, and asks "how can technical communication classes contribute to the mentoring of young women engineers at a time when many of those women want to be identified as engineers instead of being spotlighted as women in engineering?" Incorporating…

  13. Developing an Information Infrastructure To Support Information Retrieval: Towards a Theory of Clustering Based in Classification.

    ERIC Educational Resources Information Center

    Micco, Mary; Popp, Rich

    Techniques for building a world-wide information infrastructure by reverse engineering existing databases to link them in a hierarchical system of subject clusters to create an integrated database are explored. The controlled vocabulary of the Library of Congress Subject Headings is used to ensure consistency and group similar items. Each database…

  14. Language Resources for Language Technology: Proceedings of the TELRI (Trans-European Language Resources Infrastructure) European Seminar (1st, Tihany, Hungary, September 15-16, 1995).

    ERIC Educational Resources Information Center

    Rettig, Heike, Ed.

    This proceedings contains papers from the first European seminar of the Trans-European Language Resources Infrastructure (TELRI) include: "Cooperation with Central and Eastern Europe in Language Engineering" (Poul Andersen); "Language Technology and Language Resources in China" (Feng Zhiwei); "Public Domain Generic Tools:…

  15. Liquid Rocket Engine Testing

    NASA Technical Reports Server (NTRS)

    Rahman, Shamim

    2005-01-01

    Comprehensive Liquid Rocket Engine testing is essential to risk reduction for Space Flight. Test capability represents significant national investments in expertise and infrastructure. Historical experience underpins current test capabilities. Test facilities continually seek proactive alignment with national space development goals and objectives including government and commercial sectors.

  16. Final Progress Report for Award DE-FG07-05ID14637.pdf

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cathy Dixon

    2012-03-09

    2004-2011 Final Report for AFCI University Fellowship Program. The goal of this effort was to be supportive of university students and university programs - particularly those students and programs that will help to strengthen the development of nuclear-related fields. The program also supported the stability of the nuclear infrastructure and developed research partnerships that are helping to enlarge the national nuclear science technology base. In this fellowship program, the U.S. Department of Energy sought master's degree students in nuclear, mechanical, or chemical engineering, engineering/applied physics, physics, chemistry, radiochemistry, or fields of science and engineering applicable to the AFCI/Gen IV/GNEP missionsmore » in order to meet future U.S. nuclear program needs. The fellowship program identified candidates and selected full time students of high-caliber who were taking nuclear courses as part of their degree programs. The DOE Academic Program Managers encouraged fellows to pursue summer internships at national laboratories and supported the students with appropriate information so that both the fellows and the nation's nuclear energy objectives were successful.« less

  17. 75 FR 7256 - Denali Commission Fiscal Year 2010 Draft Work Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-18

    ...--Radiology Equipment.. 36,733. Bartlett Regional Hospital--Blood 52,500. Chemistry Analyzer. Mt. Edgecumbe... corporations, native nonprofit entities, or tribal governments, including one member who is a civil engineer... engineer. The Transportation Program addresses two areas of rural Alaska transportation infrastructure...

  18. Tony Magri | NREL

    Science.gov Websites

    Windows System Engineer with the Computational Science Center. He implements, supports, and integrates Windows-based technology solutions at the ESIF and manages a portion of the VMware infrastructure . Throughout his career, Tony has built a strong skillset in enterprise Windows Engineering and Active

  19. CIVIL ENGINEERS' ROLES IN PUBLIC WORKS

    NASA Astrophysics Data System (ADS)

    Murata, Teruaki

    Recently, the public interests are becoming high in the way of executing public works and the future direction of infrastructure development, which raises nation-wide discussion on these issues. How should we make our country's growth strategy for sustainable development? How should we realize the grand design of infrastructure needed for the implementation of such a strategy? It is obvious that further discussions are needed for these challenging questions. With an aim to promote such discussions, this paper reviews the history of public works and the professional practices (or accomplishments) of our great civil engineers, and discusses the future of public works and the roles of civil engineers based on their origin. Further, in this paper, the author, as the chairman of the Public Works Committee of Japan Civil Engineering Contractors Association, introduces the Association's proposal of "realization of an attractive construction industry." However, for its realization, sustainable institutional arrangements under social consensus are indispensable. Also, individual engineer must establish his/her own identity based on sense of social ethics. It is the author's hope that, through these journals, the professional practices of civil engineers will be widely known to the public with objective logics and discussed to achieve social consensus.

  20. Sustainable water management under future uncertainty with eco-engineering decision scaling

    NASA Astrophysics Data System (ADS)

    Poff, N. Leroy; Brown, Casey M.; Grantham, Theodore E.; Matthews, John H.; Palmer, Margaret A.; Spence, Caitlin M.; Wilby, Robert L.; Haasnoot, Marjolijn; Mendoza, Guillermo F.; Dominique, Kathleen C.; Baeza, Andres

    2016-01-01

    Managing freshwater resources sustainably under future climatic and hydrological uncertainty poses novel challenges. Rehabilitation of ageing infrastructure and construction of new dams are widely viewed as solutions to diminish climate risk, but attaining the broad goal of freshwater sustainability will require expansion of the prevailing water resources management paradigm beyond narrow economic criteria to include socially valued ecosystem functions and services. We introduce a new decision framework, eco-engineering decision scaling (EEDS), that explicitly and quantitatively explores trade-offs in stakeholder-defined engineering and ecological performance metrics across a range of possible management actions under unknown future hydrological and climate states. We illustrate its potential application through a hypothetical case study of the Iowa River, USA. EEDS holds promise as a powerful framework for operationalizing freshwater sustainability under future hydrological uncertainty by fostering collaboration across historically conflicting perspectives of water resource engineering and river conservation ecology to design and operate water infrastructure for social and environmental benefits.

  1. Sustainable water management under future uncertainty with eco-engineering decision scaling

    USGS Publications Warehouse

    Poff, N LeRoy; Brown, Casey M; Grantham, Theodore E.; Matthews, John H; Palmer, Margaret A.; Spence, Caitlin M; Wilby, Robert L.; Haasnoot, Marjolijn; Mendoza, Guillermo F; Dominique, Kathleen C; Baeza, Andres

    2015-01-01

    Managing freshwater resources sustainably under future climatic and hydrological uncertainty poses novel challenges. Rehabilitation of ageing infrastructure and construction of new dams are widely viewed as solutions to diminish climate risk, but attaining the broad goal of freshwater sustainability will require expansion of the prevailing water resources management paradigm beyond narrow economic criteria to include socially valued ecosystem functions and services. We introduce a new decision framework, eco-engineering decision scaling (EEDS), that explicitly and quantitatively explores trade-offs in stakeholder-defined engineering and ecological performance metrics across a range of possible management actions under unknown future hydrological and climate states. We illustrate its potential application through a hypothetical case study of the Iowa River, USA. EEDS holds promise as a powerful framework for operationalizing freshwater sustainability under future hydrological uncertainty by fostering collaboration across historically conflicting perspectives of water resource engineering and river conservation ecology to design and operate water infrastructure for social and environmental benefits.

  2. Space Civil Engineering option - A progress report

    NASA Technical Reports Server (NTRS)

    Criswell, Marvin E.; Sadeh, Willy Z.

    1992-01-01

    Space Civil Engineering is an emerging engineering discipline that focuses on extending and expanding Civil Engineering to the development, operation, and maintenance of infrastructures on celestial bodies. Space Civil Engineering is presently being developed as a new discipline within the Department of Civil Engineering at Colorado State University and with support of the NASA Space Grant College Program. Academic programs geared toward creating Space Civil Engineering Options at both undergraduate and graduate levels are being formulated. Basic ideas and concepts and the current status of the curriculum in the Space Civil Engineering Option primarily at the undergraduate level are presented.

  3. Geophysical Survey of McMurdo Ice Shelf to Determine Infrastructure Stability and for Future Planning

    DTIC Science & Technology

    2017-01-01

    ER D C/ CR RE L TR -1 7- 2 Engineering for Polar Operations, Logistics, and Research (EPOLAR) Geophysical Survey of McMurdo Ice Shelf...Army Engineer Research and Development Center (ERDC) solves the nation’s toughest engineering and environmental challenges. ERDC develops...ERDC, visit the ERDC online library at http://acwc.sdp.sirsi.net/client/default. Engineering for Polar Operations, Logistics, and Research (EPOLAR

  4. University/Science Center Collaborations (A Science Center Perspective): Developing an Infrastructure of Partnerships with Science Centers to Support the Engagement of Scientists and Engineers in Education and Outreach for Broad Impact

    NASA Astrophysics Data System (ADS)

    Marshall, Eric

    2009-03-01

    Science centers, professional associations, corporations and university research centers share the same mission of education and outreach, yet come from ``different worlds.'' This gap may be bridged by working together to leverage unique strengths in partnership. Front-end evaluation results for the development of new resources to support these (mostly volunteer-based) partnerships elucidate the factors which lead to a successful relationship. Maintaining a science museum-scientific community partnership requires that all partners devote adequate resources (time, money, etc.). In general, scientists/engineers and science museum professionals often approach relationships with different assumptions and expectations. The culture of science centers is distinctly different from the culture of science. Scientists/engineers prefer to select how they will ultimately share their expertise from an array of choices. Successful partnerships stem from clearly defined roles and responsibilities. Scientists/engineers are somewhat resistant to the idea of traditional, formal training. Instead of developing new expertise, many prefer to offer their existing strengths and expertise. Maintaining a healthy relationship requires the routine recognition of the contributions of scientists/engineers. As professional societies, university research centers and corporations increasingly engage in education and outreach, a need for a supportive infrastructure becomes evident. Work of TryScience.org/VolTS (Volunteers TryScience), the MRS NISE Net (Nanoscale Informal Science Education Network) subcommittee, NRCEN (NSF Research Center Education Network), the IBM On Demand Community, and IEEE Educational Activities exemplify some of the pieces of this evolving infrastructure.

  5. Fluid Mechanics of Urban Environments

    NASA Astrophysics Data System (ADS)

    Fernando, Harindra J.

    2008-11-01

    The rapid urbanization of the Earth has led to highly populated cities that act as concentrated centers of anthropogenic stressors on the natural environment. The degradation of environmental quality due to such stressors, in turn, greatly impacts human behavior. Anthropogenic stressors largely originate as a result of coupling between man-made urban elements (i.e., networks of engineering and socio-economic infrastructures) and the environment, for which surrounding fluid motions play a key role. In recent years, research efforts have been directed at the understanding and modeling of fluid motions in urban areas, infrastructure dynamics and interactions thereof, with the hope of identifying environmental impacts of urbanization and complex outcomes (or ``emergent properties'') of nominally simple interactions between infrastructures and environment. Such consequences play an important role in determining the ``resilience'' of cities under anthropogenic stressors, defined as maintaining the structure and essential functions of an urbanity without regime shifts. Holistic integrated models that meld the dynamics of infrastructures and environment as well as ``quality of life'' attributes are becoming powerful decision-making tools with regard to sustainability of urban areas (continuance or even enhancement of socio-economic activities in harmony with the environment). The rudimentary forms of integrated models are beginning to take shape, augmented by comprehensive field studies and advanced measurement platforms to validate them. This presentation deals with the challenges of modeling urban atmosphere, subject to anthropogenic forcing. An important emergent property, the Urban Heat Island, and its role in determining resilience and sustainability of cities will be discussed based on the prediction of a coupled model.

  6. Security Engineering and Educational Initiatives for Critical Information Infrastructures

    DTIC Science & Technology

    2013-06-01

    standard for cryptographic protection of SCADA communications. The United Kingdom’s National Infrastructure Security Co-ordination Centre (NISCC...has released a good practice guide on firewall deployment for SCADA systems and process control networks [17]. Meanwhile, National Institute for ...report. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 18 The SCADA gateway collects the data gathered by sensors, translates them from

  7. Capability Engineering Process (CEP) Foundations - Version 2

    DTIC Science & Technology

    2006-03-02

    R& D /Ops Research, Infrastructure & Organization, Qoncepts, Doctrine & Collective Training, IT Infrastructure , Equipment, Supplies and Services...les investissements strategiques requis pour repondre it une lacune en matiere de capacite. Ce processus est elabore dans la cadre du projet de...ainsi que six (6) buts secondaires servent it positionner Ie PIC comme un processus interne aux activites de planification axee sur les capacites

  8. Assessing equitable access to urban green space: the role of engineered water infrastructure.

    PubMed

    Wendel, Heather E Wright; Downs, Joni A; Mihelcic, James R

    2011-08-15

    Urban green space and water features provide numerous social, environmental, and economic benefits, yet disparities often exist in their distribution and accessibility. This study examines the link between issues of environmental justice and urban water management to evaluate potential improvements in green space and surface water access through the revitalization of existing engineered water infrastructures, namely stormwater ponds. First, relative access to green space and water features were compared for residents of Tampa, Florida, and an inner-city community of Tampa (East Tampa). Although disparities were not found in overall accessibility between Tampa and East Tampa, inequalities were apparent when quality, diversity, and size of green spaces were considered. East Tampa residents had significantly less access to larger, more desirable spaces and water features. Second, this research explored approaches for improving accessibility to green space and natural water using three integrated stormwater management development scenarios. These scenarios highlighted the ability of enhanced water infrastructures to increase access equality at a variety of spatial scales. Ultimately, the "greening" of gray urban water infrastructures is advocated as a way to address environmental justice issues while also reconnecting residents with issues of urban water management.

  9. Proceedings of the 1996 Windsor workshop on alternative fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-10-01

    This document contains information which was presented at the 1996 Windsor Workshop on Alternative Fuels. Topics include: international links; industry topics and infrastructure issues; propane; engine developments; the cleanliness of alternative fuels; heavy duty alternative fuel engines; California zev commercialization efforts; and in-use experience.

  10. Middle School Regional Science Bowl Competition | Argonne National

    Science.gov Websites

    biology, chemistry, earth science, physics, energy, and math. The winner of the academic portion of the Biology IMEInstitute for Molecular Engineering JCESRJoint Center for Energy Storage Research MCSGMidwest Science and Engineering RISCRisk and Infrastructure Science Center SBCStructural Biology Center Energy.gov

  11. Stormwater Design Return Period Standards for U.S. Transportation Infrastructure: How Are States Approaching Resilience?

    NASA Astrophysics Data System (ADS)

    Samaras, C.; Lopez, T.

    2016-12-01

    Climate change is projected to increase the frequency and intensity of precipitation in many regions, which is relevant for stormwater engineering designs and resilience in the transportation sector. Existing and future stormwater infrastructure is generally designed for historical and stationary hydrologic conditions. For example, the design return period is based on statistical analysis of past precipitation events, often over a 50-year historical timeline. The design return period translates into how much peak precipitation volume a system is designed for in a state, and provides information about the performance of a drainage structure. The higher the design period used by an engineer for a given stormwater system, the more peak stormwater volume the system can convey. Therefore, design return periods can be associated with a design's near-term and long-term resilience. However, there is a tradeoff between the choice of design return period, the total infrastructure capital cost, and the resilience of a system to heavy precipitation events. This study analyzes current stormwater infrastructure design guidelines for state departments of transportation in the contiguous United States, in order to understand how stormwater design return periods vary across states and provide insight into the resilience of current stormwater systems design. The study found that the design return period varies considerably across the United States by roadway functional class and drainage classification, as well as within climate regions. Understanding this variation will help states identify possible vulnerabilities, highlight deficiencies across states and infrastructure types, and help in updating design return periods to increase the climate resilience of stormwater infrastructure.

  12. Space civil engineering - A new discipline

    NASA Technical Reports Server (NTRS)

    Sadeh, Willy Z.; Criswell, Marvin E.

    1991-01-01

    Space Civil Engineering is an emerging engineering discipline that focuses on extending and expanding the Civil Engineering know-how and practice to the development and maintenance of infrastructure on celestial bodies. Space Civil Engineering is presently being developed as a new discipline within the Department of Civil Engineering at Colorado State University under a recently established NASA Space Grant College Program. Academic programs geared toward creating Space Civil Engineering Options at both undergraduate and graduate levels are being formulated. Basic ideas and concepts of the curriculum in the Space Civil Engineering Option at both undergraduate and graduate levels are presented. The role of Space Civil Engineering in the Space Program is discussed.

  13. Effective hydrogen generator testing for on-site small engine

    NASA Astrophysics Data System (ADS)

    Chaiwongsa, Praitoon; Pornsuwancharoen, Nithiroth; Yupapin, Preecha P.

    2009-07-01

    We propose a new concept of hydrogen generator testing for on-site small engine. In general, there is a trade-off between simpler vehicle design and infrastructure issues, for instance, liquid fuels such as gasoline and methanol for small engine use. In this article we compare the hydrogen gases combination the gasoline between normal systems (gasoline only) for small engine. The advantage of the hydrogen combines gasoline for small engine saving the gasoline 25%. Furthermore, the new concept of hydrogen combination for diesel engine, bio-diesel engine, liquid petroleum gas (LPG), natural gas vehicle (NGV), which is discussed in details.

  14. Systems Engineering of Electric and Hybrid Vehicles

    NASA Technical Reports Server (NTRS)

    Kurtz, D. W.; Levin, R. R.

    1986-01-01

    Technical paper notes systems engineering principles applied to development of electric and hybrid vehicles such that system performance requirements support overall program goal of reduced petroleum consumption. Paper discusses iterative design approach dictated by systems analyses. In addition to obvious peformance parameters of range, acceleration rate, and energy consumption, systems engineering also considers such major factors as cost, safety, reliability, comfort, necessary supporting infrastructure, and availability of materials.

  15. Critical Infrastructure Protection II, The International Federation for Information Processing, Volume 290.

    NASA Astrophysics Data System (ADS)

    Papa, Mauricio; Shenoi, Sujeet

    The information infrastructure -- comprising computers, embedded devices, networks and software systems -- is vital to day-to-day operations in every sector: information and telecommunications, banking and finance, energy, chemicals and hazardous materials, agriculture, food, water, public health, emergency services, transportation, postal and shipping, government and defense. Global business and industry, governments, indeed society itself, cannot function effectively if major components of the critical information infrastructure are degraded, disabled or destroyed. Critical Infrastructure Protection II describes original research results and innovative applications in the interdisciplinary field of critical infrastructure protection. Also, it highlights the importance of weaving science, technology and policy in crafting sophisticated, yet practical, solutions that will help secure information, computer and network assets in the various critical infrastructure sectors. Areas of coverage include: - Themes and Issues - Infrastructure Security - Control Systems Security - Security Strategies - Infrastructure Interdependencies - Infrastructure Modeling and Simulation This book is the second volume in the annual series produced by the International Federation for Information Processing (IFIP) Working Group 11.10 on Critical Infrastructure Protection, an international community of scientists, engineers, practitioners and policy makers dedicated to advancing research, development and implementation efforts focused on infrastructure protection. The book contains a selection of twenty edited papers from the Second Annual IFIP WG 11.10 International Conference on Critical Infrastructure Protection held at George Mason University, Arlington, Virginia, USA in the spring of 2008.

  16. On the Development of a Computing Infrastructure that Facilitates IPPD from a Decision-Based Design Perspective

    NASA Technical Reports Server (NTRS)

    Hale, Mark A.; Craig, James I.; Mistree, Farrokh; Schrage, Daniel P.

    1995-01-01

    Integrated Product and Process Development (IPPD) embodies the simultaneous application of both system and quality engineering methods throughout an iterative design process. The use of IPPD results in the time-conscious, cost-saving development of engineering systems. Georgia Tech has proposed the development of an Integrated Design Engineering Simulator that will merge Integrated Product and Process Development with interdisciplinary analysis techniques and state-of-the-art computational technologies. To implement IPPD, a Decision-Based Design perspective is encapsulated in an approach that focuses on the role of the human designer in product development. The approach has two parts and is outlined in this paper. First, an architecture, called DREAMS, is being developed that facilitates design from a decision-based perspective. Second, a supporting computing infrastructure, called IMAGE, is being designed. The current status of development is given and future directions are outlined.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hale, M.A.; Craig, J.I.

    Integrated Product and Process Development (IPPD) embodies the simultaneous application to both system and quality engineering methods throughout an iterative design process. The use of IPPD results in the time-conscious, cost-saving development of engineering systems. To implement IPPD, a Decision-Based Design perspective is encapsulated in an approach that focuses on the role of the human designer in product development. The approach has two parts and is outlined in this paper. First, an architecture, called DREAMS, is being developed that facilitates design from a decision-based perspective. Second, a supporting computing infrastructure, called IMAGE, is being designed. Agents are used to implementmore » the overall infrastructure on the computer. Successful agent utilization requires that they be made of three components: the resource, the model, and the wrap. Current work is focused on the development of generalized agent schemes and associated demonstration projects. When in place, the technology independent computing infrastructure will aid the designer in systematically generating knowledge used to facilitate decision-making.« less

  18. Use of agents to implement an integrated computing environment

    NASA Technical Reports Server (NTRS)

    Hale, Mark A.; Craig, James I.

    1995-01-01

    Integrated Product and Process Development (IPPD) embodies the simultaneous application to both system and quality engineering methods throughout an iterative design process. The use of IPPD results in the time-conscious, cost-saving development of engineering systems. To implement IPPD, a Decision-Based Design perspective is encapsulated in an approach that focuses on the role of the human designer in product development. The approach has two parts and is outlined in this paper. First, an architecture, called DREAMS, is being developed that facilitates design from a decision-based perspective. Second, a supporting computing infrastructure, called IMAGE, is being designed. Agents are used to implement the overall infrastructure on the computer. Successful agent utilization requires that they be made of three components: the resource, the model, and the wrap. Current work is focused on the development of generalized agent schemes and associated demonstration projects. When in place, the technology independent computing infrastructure will aid the designer in systematically generating knowledge used to facilitate decision-making.

  19. Progress in catalytic ignition fabrication, modeling and infrastructure : (part 2) development of a multi-zone engine model simulated using MATLAB software.

    DOT National Transportation Integrated Search

    2014-02-01

    A mathematical model was developed for the purpose of providing students with data : acquisition and engine modeling experience at the University of Idaho. In developing the : model, multiple heat transfer and emissions models were researched and com...

  20. Women Engineers: Stories of Persistence

    ERIC Educational Resources Information Center

    Kuzmak, Nancy

    2010-01-01

    More engineers are needed to support the infrastructure of the United States and to solve economic, human, and environmental problems. Women have been cited as the untapped resource who can provide new perspectives, solutions, and diversity. Unfortunately, over the last 20 years, colleges have not learned how to graduate more women, keeping…

  1. Improving the Research Infrastructure at U.S. Universities and Colleges. Hearing before the Committee on Science and Technology. U.S. House of Representatives, Ninety-Eighth Congress, Second Session.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Science and Technology.

    The state of university science and engineering research capabilities is considered. Attention is directed to the need for improving and enhancing the research infrastructure, including support for instrumentation, buildings, and other related research facilities. U.S. universities and colleges are encountering severe facilities and…

  2. The Infrastructure of Command Information Systems

    DTIC Science & Technology

    1991-11-01

    Coordinator: Jan Prins RAs: Ed Biagioni (ONR fellow, FYgo-91) Quan Zhou SOFTLAB (infrastructure) Coordinator: Staff: Susanna Schwab (director of...engineer 2 Research Assistants: John Alspaugh * Murray Anderegg mp* Ron Azuma * Mike Bajura mp* David Becker Andrew Bell mp Ed Biagioni ...Jan Prins *Ed Biagioni (ONR fellow, FY90-91), *fall 90 *Dan Poirier *John A. Smith 3 CLOCS (ONR Fellow) Coordinator: RA: Donald F. Stanat *Mark Davis

  3. [Public health infrastructure investment difficulties in Chile: concessions and public tenders].

    PubMed

    Goyenechea, Matías

    2016-05-12

    This paper seeks to highlight the problems of gaps in health infrastructure in Chile, and to analyze the mechanisms by which it is provided. In Chile this is done in two ways: the first is through competitive bidding or sector-wide modality. The second way is through hospital concessions. Both mechanisms have had difficulties in recent years, which are reported. Finally, we propose ways to improve the provision of health infrastructure in Chile.

  4. Developing a concept of social-ecological-technological systems to characterize resilience of urban areas and infrastructure to extreme events

    NASA Astrophysics Data System (ADS)

    Chester, M.; Grimm, N. B.; Redman, C.; Miller, T.; McPherson, T.; Munoz-Erickson, T.; Chandler, D. G.

    2015-12-01

    Climate change is widely considered one of the greatest challenges to global sustainability, with extreme events being the most immediate way that people experience this phenomenon. Urban areas are particularly vulnerable to these events given their location, concentration of people, and increasingly complex and interdependent infrastructure. We are developing a conceptual framework for urban social-ecological-technological systems (SETS) that will allow researchers and practitioners to assess how infrastructure can be resilient, provide ecosystem services, improve social well being, and exploit new technologies in ways that benefit urban populations. The framework integrates the three domains of social and equity issues, environmental quality and protection, and technical/engineering aspects, to form a concept of infrastructure that occurs at the intersection of the domains. Examples show how the more common socioecological systems and socially sensitive engineering approaches that fail to incorporate the third dimension may elevate vulnerability to climate-related disaster. The SETS conceptual framework bridges currently siloed social science, environmental science, and engineering approaches to significantly advance research into the structure, function, and emergent properties of SETS. Extreme events like heat waves in Phoenix; coastal and urban flooding in the wake of superstorm Sandy and following hurricanes in Miami, FL; drought in Mexico; and urban flooding in Baltimore, Portland, San Juan PR, Syracuse, and Valdivia, Chile provide examples of the impacts of and vulnerability to extreme events that demand a new approach. The infrastructure of the future must be resilient, leverage ecosystem services, improve social well being, and exploit new technologies in ways that benefit all segments of urban populations and are appropriate to the particular urban contexts. These contexts are defined not only by the biophysical environment but also by culture and institutions of each place. We apply the SETS conceptual framework to nine western hemisphere cities in diverse settings, presenting hypotheses about the relative efficacy of strategies for resilient SETS infrastructure in cities contrasting in event type, biophysical setting, and cultural and institutional contexts.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kok, Koen; Widergren, Steve

    Secure, Clean and Efficient Energy is one of the great societal challenges of our time. Electricity as a sustainable energy carrier plays a central role in the most effective transition scenarios towards sustainability. To harness this potential, the current electricity infrastructure needs to be rigorously re-engineered into an integrated and intelligent electricity system: the smart grid. Key elements of the smart grid vision are the coordination mechanisms. In such a system, vast numbers of devices, currently just passively connected to the grid, will become actively involved in system-wide and local coordination tasks. In this light, transactive energy (TE) is emergingmore » as a strong contender for orchestrating the coordinated operation of so many devices.« less

  6. Operational support and service concepts for observatories

    NASA Astrophysics Data System (ADS)

    Emde, Peter; Chapus, Pierre

    2014-08-01

    The operational support and service for observatories aim at the provision, the preservation and the increase of the availability and performance of the entire structural, mechanical, drive and control systems of telescopes and the related infrastructure. The operational support and service levels range from the basic service with inspections, preventive maintenance, remote diagnostics and spare parts supply over the availability service with telephone hotline, online and on-site support, condition monitoring and spare parts logistics to the extended service with operations and site and facility management. For the level of improvements and lifecycle management support they consist of expert assessments and studies, refurbishments and upgrades including the related engineering and project management activities.

  7. 20 CFR 619.1 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... inquiries and responses between SWAs. Major IT Modernization Project means conversion, re-engineering..., or upgrading software libraries, protocols, or hardware platform and infrastructure. These are...

  8. Climate Change, Degradation of Permafrost, and Hazards to Infrastructure in the Circumpolar Arctic.

    NASA Astrophysics Data System (ADS)

    Anisimov, O.

    2001-12-01

    Warming, thawing and disappearance of permafrost have accelerated in recent decades damaging engineered structures and raising public concerns. By the middle of the 21st century anthropogenic climate change may cause 2 to 3 C warming of the frozen ground, 10% to 16% reduction of the total permafrost area, 30% to 50% deepening of the active-layer thickness, and shifts between the permafrost zones due to cumulative effect of changing surface temperature, soil moisture, and vegetation. Such changes will have important implications for northern engineering and infrastructure built upon permafrost. The foundations supporting engineered structures are designed for the constant climatic conditions with construction-specific safety factor, which in the practice of the cold-region engineering varies typically from 5% to 60% with respect to the bearing capacity. In the zone of discontinuous permafrost a 2.0 C rise in air temperature may decrease the bearing capacity of frozen ground under buildings by more than a half. This may have important consequences for the infrastructure and particularly for residential buildings constructed in the permafrost zone between 1950 and 1990 in northern Russian cities Vorkuta, Yakytsk, Norylsk, and Magadan. Many of them are already weakened or damaged, which may in part be attributed to the effect of climate change. Susceptibility of permafrost to environmental hazards associated with thermokarst, ground settlement, and other destructive cryogenic processes may be crudely evaluated using the geocryological hazard index, which is the combination of the predicted for the future climate relative change in the active-layer thickness and the ground ice content. Predictive maps constructed for scenarios of climate change indicated that several population centers (Barrow, Inuvik), river terminals on the arctic coast of Russia (Salekhard, Igarka, Dudinka, Tiksi), and gas production complexes with associated infrastructure in northwest Siberia fall in the high-risk category with respect to potential environmental hazards associated with degradation of permafrost.

  9. Engineering With Nature Geographic Project Mapping Tool (EWN ProMap)

    DTIC Science & Technology

    2015-07-01

    EWN ProMap database provides numerous case studies for infrastructure projects such as breakwaters, river engineering dikes, and seawalls that have...the EWN Project Mapping Tool (EWN ProMap) is to assist users in their search for case study information that can be valuable for developing EWN ideas...Essential elements of EWN include: (1) using science and engineering to produce operational efficiencies supporting sustainable delivery of

  10. Explorations Around "Graceful Failure" in Transportation Infrastructure: Lessons Learned By the Infrastructure and Climate Network (ICNet)

    NASA Astrophysics Data System (ADS)

    Jacobs, J. M.; Thomas, N.; Mo, W.; Kirshen, P. H.; Douglas, E. M.; Daniel, J.; Bell, E.; Friess, L.; Mallick, R.; Kartez, J.; Hayhoe, K.; Croope, S.

    2014-12-01

    Recent events have demonstrated that the United States' transportation infrastructure is highly vulnerable to extreme weather events which will likely increase in the future. In light of the 60% shortfall of the $900 billion investment needed over the next five years to maintain this aging infrastructure, hardening of all infrastructures is unlikely. Alternative strategies are needed to ensure that critical aspects of the transportation network are maintained during climate extremes. Preliminary concepts around multi-tier service expectations of bridges and roads with reference to network capacity will be presented. Drawing from recent flooding events across the U.S., specific examples for roads/pavement will be used to illustrate impacts, disruptions, and trade-offs between performance during events and subsequent damage. This talk will also address policy and cultural norms within the civil engineering practice that will likely challenge the application of graceful failure pathways during extreme events.

  11. Engineers' Spatial Orientation Ability Development at the European Space for Higher Education

    ERIC Educational Resources Information Center

    Carrera, C. Carbonell; Perez, J. L. Saorin; Cantero, J. de la Torre; Gonzalez, A. M. Marrero

    2011-01-01

    The aim of this research was to determine whether the new geographic information technologies, included as teaching objectives in the new European Space for Higher Education Engineering degrees, develop spatial abilities. Bearing this in mind, a first year seminar using the INSPIRE Geoportal (Infrastructure for Spatial Information in Europe) was…

  12. Knowledge Cultures and the Shaping of Work-Based Learning: The Case of Computer Engineering

    ERIC Educational Resources Information Center

    Nerland, Monika

    2008-01-01

    This paper examines how the knowledge culture of computer engineering--that is, the ways in which knowledge is produced, distributed, accumulated and collectively approached within this profession--serve to construct work-based learning in specific ways. Typically, the epistemic infrastructures take the form of information structures with a global…

  13. 78 FR 24786 - Notice of Funding Availability for the Department of Transportation's National Infrastructure...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-26

    ..., engineering or design work and purchasing existing facilities or right-of-way. 3. Livability: Increasing... Feasibility: The technical feasibility of the project should be demonstrated by engineering and design studies and activities; the development of design criteria and/or a basis of design; the basis for the cost...

  14. Standing Naval Forces and Global Security

    DTIC Science & Technology

    1993-06-04

    standards an- good engineering practices. The team submits a r:-,cr: to !PPC recommending that the prcject be accepted b NATO. 8. Audit . The...established. A system of common funds and trailing audits must be in effect to pay for the infrastructure. NATO infrastructure appears to be a good example to...Search And Rescue and maritime safety monitor marine polution 6. sharing maritime inteiiigence1 5 Commodore Bateman foresees coupling these activities or

  15. Is the work flow model a suitable candidate for an observatory supervisory control infrastructure?

    NASA Astrophysics Data System (ADS)

    Daly, Philip N.; Schumacher, Germán.

    2016-08-01

    This paper reports on the early investigation of using the work flow model for observatory infrastructure software. We researched several work ow engines and identified 3 for further detailed, study: Bonita BPM, Activiti and Taverna. We discuss the business process model and how it relates to observatory operations and identify a path finder exercise to further evaluate the applicability of these paradigms.

  16. About opportunities of the sharing of city infrastructure centralized warmly - and water supply

    NASA Astrophysics Data System (ADS)

    Zamaleev, M. M.; Gubin, I. V.; Sharapov, V. I.

    2017-11-01

    It is shown that joint use of engineering infrastructure of centralized heat and water supply of consumers will be the cost-efficient decision for municipal services of the city. The new technology for regulated heating of drinking water in the condenser of steam turbines of combined heat and power plant is offered. Calculation of energy efficiency from application of new technology is executed.

  17. Systems engineering considerations for operational support systems

    NASA Technical Reports Server (NTRS)

    Aller, Robert O.

    1993-01-01

    Operations support as considered here is the infrastructure of people, procedures, facilities and systems that provide NASA with the capability to conduct space missions. This infrastructure involves most of the Centers but is concentrated principally at the Johnson Space Center, the Kennedy Space Center, the Goddard Space Flight Center, and the Jet Propulsion Laboratory. It includes mission training and planning, launch and recovery, mission control, tracking, communications, data retrieval and data processing.

  18. Adapting New Space System Designs into Existing Ground Infrastructure

    NASA Technical Reports Server (NTRS)

    Delgado, Hector N.; McCleskey, Carey M.

    2008-01-01

    As routine space operations extend beyond earth orbit, the ability for ground infrastructures to take on new launch vehicle systems and a more complex suite of spacecraft and payloads has become a new challenge. The U.S. Vision for Space Exploration and its Constellation Program provides opportunities for our space operations community to meet this challenge. Presently, as new flight and ground systems add to the overall groundbased and space-based capabilities for NASA and its international partners, specific choices are being made as to what to abandon, what to retain, as well as what to build new. The total ground and space-based infrastructure must support a long-term, sustainable operation after it is all constructed, deployed, and activated. This paper addresses key areas of engineering concern during conceptual design, development, and routine operations, with a particular focus on: (1) legacy system reusability, (2) system supportability attributes and operations characteristics, (3) ground systems design trades and criteria, and (4) technology application survey. Each key area explored weighs the merits of reusability of the infrastructure in terms of: engineering analysis methods and techniques; top-level facility, systems, and equipment design criteria; and some suggested methods for making the operational system attributes (the "-ilities") highly visible to the design teams and decisionmakers throughout the design process.

  19. Hydrologists in the City: Re-envisioning How We Manage Water in Urban Areas

    NASA Astrophysics Data System (ADS)

    McPhillips, L. E.

    2014-12-01

    As the footprint of our urban areas expands, so does our manipulation of the hydrology. For decades we have channeled runoff into storm sewers, wreaking havoc on downstream water bodies with pulses of polluted stormwater. Recently, there has been a push for 'green infrastructure' to replace this hard, grey infrastructure, where green infrastructure- from rain gardens to green roofs to restored riparian areas- would detain stormwater and promote pollutant removal, in addition to a plethora of other ecosystem services. Primarily, it has been landscape architects, engineers, and urban planners who have jumped on the green infrastructure bandwagon. I believe there is also a niche for hydrologists and biogeochemists in re-envisioning how we manage stormwater in urban areas. Developed areas may not be as enticing as a remote mountain field site and their hydrology may be a lot more complicated to model than that of a forest hillslope, but these areas are where the majority of people live and where we could have a great impact on informing better water management practices. In collaboration with more applied fields like landscape architecture and engineering, we can provide crucial insight on existing hydrology as well as how certain green infrastructure or other alternative considerations could support a more sustainable and resilient city, particularly in the face of climate change. Our knowledge on landscape hydrological processes and biogeochemical cycling- combined with the expertise of these other fields- can inform design of truly multi-functional green infrastructure that can effectively manage storm runoff in addition to providing wildlife habitat, carbon sequestration, improved aesthetics, and even an opportunity to engage with citizens. While there are certainly some hydrologists that have recognized this opportunity, I hope to see many more pursuing research and seeking solutions for better management of water in urbanized areas.

  20. Multifunctional benefits of SuDS: techno-economic evaluation of decentralised solutions for urban water management

    NASA Astrophysics Data System (ADS)

    Mijic, Ana; Ossa-Moreno, Juan; Smith, Karl M.

    2016-04-01

    The increased frequency of extreme weather events associated with climate change poses a significant threat to the integrity and function of critical urban infrastructure - rail, road, telecommunications, power and water supply/sewerage networks. A key threat within the United Kingdom (UK) is the increased risk of pluvial flooding; the conventional approach of channeling runoff to an outfall has proven to be unsustainable during severe storm events. Green infrastructure, in the form of Sustainable Urban Drainage Systems (SuDS), has been proposed as a means of minimising the risk of pluvial flooding. However, despite their technical performance, SuDS uptake in the UK has not reached its full capacity yet, mostly due to reasons that go beyong the engineering realm. This work investigated the strategic role of SuDS retrofit in managing environmental risks to urban infrastructure in London at a catchment level, through an economic appraisal of multifunctional benefits. It was found that by including the multifunctional benefits of SuDS, the economic feasibility of the project improves considerably. The case study has also shown a mechanism towards achieving wider-scale SuDS retrofit, whereby the investments are split amongst multiple stakeholder groups by highlighting the additional benefits each group derives. Groups include water utilities and their users, local government and critical infrastructure owners. Finally, limitations to the existing cost-benefit methdology in the UK were identified, and recommendations made regarding incentives and governmental regulations to enhance the uptake of SuDS in London. The proposed methodology provides compelling and robust, cost-benefit based evidence of SUDS' effectiveness within the flood risk management planning framework, but also with regard to the additional benefits of Nature Based Solutions in urban environments.

  1. A Systematic Comprehensive Computational Model for Stake Estimation in Mission Assurance: Applying Cyber Security Econometrics System (CSES) to Mission Assurance Analysis Protocol (MAAP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abercrombie, Robert K; Sheldon, Frederick T; Grimaila, Michael R

    2010-01-01

    In earlier works, we presented a computational infrastructure that allows an analyst to estimate the security of a system in terms of the loss that each stakeholder stands to sustain as a result of security breakdowns. In this paper, we discuss how this infrastructure can be used in the subject domain of mission assurance as defined as the full life-cycle engineering process to identify and mitigate design, production, test, and field support deficiencies of mission success. We address the opportunity to apply the Cyberspace Security Econometrics System (CSES) to Carnegie Mellon University and Software Engineering Institute s Mission Assurance Analysismore » Protocol (MAAP) in this context.« less

  2. Nanotechnology and MEMS-based systems for civil infrastructure safety and security: Opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Robinson, Nidia; Saafi, Mohamed

    2006-03-01

    Critical civil infrastructure systems such as bridges, high rises, dams, nuclear power plants and pipelines present a major investment and the health of the United States' economy and the lifestyle of its citizens both depend on their safety and security. The challenge for engineers is to maintain the safety and security of these large structures in the face of terrorism threats, natural disasters and long-term deterioration, as well as to meet the demands of emergency response times. With the significant negative impact that these threats can have on the structural environment, health monitoring of civil infrastructure holds promise as a way to provide information for near real-time condition assessment of the structure's safety and security. This information can be used to assess the integrity of the structure for post-earthquake and terrorist attacks rescue and recovery, and to safely and rapidly remove the debris and to temporary shore specific structural elements. This information can also be used for identification of incipient damage in structures experiencing long-term deterioration. However, one of the major obstacles preventing sensor-based monitoring is the lack of reliable, easy-to-install, cost-effective and harsh environment resistant sensors that can be densely embedded into large-scale civil infrastructure systems. Nanotechnology and MEMS-based systems which have matured in recent years represent an innovative solution to current damage detection systems, leading to wireless, inexpensive, durable, compact, and high-density information collection. In this paper, ongoing research activities at Alabama A&M University (AAMU) Center for Transportation Infrastructure Safety and Security on the application of nanotechnology and MEMS to Civil Infrastructure for health monitoring will presented. To date, research showed that nanotechnology and MEMS-based systems can be used to wirelessly detect and monitor different damage mechanisms in concrete structures as well as monitor critical structures' stability during floods and barge impact. However, some technical issues that needs to be addressed before full implementation of these new systems and will also be discussed in this paper.

  3. Synthesis and Engineering Materials Properties of Fluid Phase Chemical Hydrogen Storage Materials for Automotive Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Young Joon; Westman, Matthew P.; Karkamkar, Abhijeet J.

    Among candidates for chemical hydrogen storage in PEM fuel cell automotive applications, ammonia borane (AB, NH3BH3) is considered to be one of the most promising materials due to its high practical hydrogen content of 14-16 wt%. This material is selected as a surrogate chemical for a hydrogen storage system. For easier transition to the existing infrastructure, a fluid phase hydrogen storage material is very attractive and thus, we investigated the engineering materials properties of AB in liquid carriers for a chemical hydrogen storage slurry system. Slurries composed of AB and high temperature liquids were prepared by mechanical milling and sonicationmore » in order to obtain stable and fluidic properties. Volumetric gas burette system was adopted to observe the kinetics of the H2 release reactions of the AB slurry and neat AB. Viscometry and microscopy were employed to further characterize slurries engineering properties. Using a tip-sonication method we have produced AB/silicone fluid slurries at solid loadings up to 40wt% (6.5wt% H2) with viscosities less than 500cP at 25°C.« less

  4. EPOS-Seismology: building the Thematic Core Service for Seismology during the EPOS Implementation Phase

    NASA Astrophysics Data System (ADS)

    Haslinger, Florian; EPOS Seismology Consortium, the

    2015-04-01

    After the successful completion of the EPOS Preparatory Phase, the community of European Research Infrastructures in Seismology is now moving ahead with the build-up of the Thematic Core Service (TCS) for Seismology in EPOS, EPOS-Seismology. Seismology is a domain where European-level infrastructures have been developed since decades, often supported by large-scale EU projects. Today these infrastructures provide services to access earthquake waveforms (ORFEUS), parameters (EMSC) and hazard data and products (EFEHR). The existing organizations constitute the backbone of infrastructures that also in future will continue to manage and host the services of the TCS EPOS-Seismology. While the governance and internal structure of these organizations will remain active, and continue to provide direct interaction with the community, EPOS-Seismology will provide the integration of these within EPOS. The main challenge in the build-up of the TCS EPOS-Seismology is to improve and extend these existing services, producing a single framework which is technically, organizationally and financially integrated with the EPOS architecture, and to further engage various kinds of end users (e.g. scientists, engineers, public managers, citizen scientists). On the technical side the focus lies on four major tasks: - the construction of the next generation software architecture for the European Integrated (waveform) Data Archive EIDA, developing advanced metadata and station information services, fully integrate strong motion waveforms and derived parametric engineering-domain data, and advancing the integration of mobile (temporary) networks and OBS deployments in EIDA; - the further development and expansion of services to access seismological products of scientific interest as provided by the community by implementing a common collection and development (IT) platform, improvements in the earthquake information services e.g. by introducing more robust quality indicators and diversifying collection and dissemination mechanisms, as well as improving historical earthquake data services; - the development of a comprehensive suite of earthquake hazard products, tools, and services harmonized on the European level and available through a common access platform, encompassing information on seismic sources, seismogenic faults, ground-motion prediction equations, geotechnical information, and strong-motion recordings in buildings, together with an interface to earthquake risk; - a portal implementation of computational seismology tools and services, specifically for seismic waveform propagation in complex 3D media following the results of the VERCE project, and initiating the inclusion of further suitable codes on that portal in discussion with the community, forming the basis of EPOS computational earth science infrastructure. Important features common to all tasks are the development of EPOS-wide integrated and interoperable metadata structures, the introduction and utilization of adequate and referencable persistent identifiers for data and products, and the implementation of appropriate user access and authorization mechanisms. Here we present further details on the technical work plan for Seismology during the EPOS Implementation Phase and its integration into the overall EPOS build-up, together with the current view and state of the discussion on the development of adequate governance structures, and discuss how we envision the interaction with and involvement of the wider community outside the consortium in these activities.

  5. Multi-Sensing system for outdoor thermal monitoring: Application to large scale civil engineering components

    NASA Astrophysics Data System (ADS)

    Crinière, Antoine; Dumoulin, Jean; Manceau, Jean-Luc; Perez, Laetitia; Bourquin, Frederic

    2014-05-01

    Aging of transport infrastructures combined with traffic and climatic solicitations contribute to the reduction of their performances. To address and quantify the resilience of civil engineering structure, investigations on robust, fast and efficient methods are required. Among research works carried out at IFSTTAR, methods for long term monitoring face an increasing demand. Such works take benefits of this last decade technological progresses in ICT domain. The present study follows the ISTIMES European project [1], which aimed at demonstrate the ability of different electromagnetic sensing techniques, processing methods and ICT architecture, to be used for long term monitoring of critical transport infrastructures. Thanks to this project a multi-sensing techniques system, able to date and synchronize measurements carried out by infrared thermography coupled with various measurements data (i.e. weather parameters), have been designed, developed and implemented on real site [2]. Among experiments carried out on real transport infrastructure, it has been shown, for the "Musmesci" bridge deck (Italy), that by using infrared thermal image sequence with weather measurements during sevral days it was possible to develop analysis methods able to produce qualitative and quantitative data [3]. In the present study, added functionalities were designed and added to the "IrLAW" system in order to reach full autonomy in term of power supply, very long term measurement capability (at least 1 year) and automated data base feeding. The surveyed civil engineering structures consist in two concrete beams of 16 m long and 21 T weight each. One of the two beams was damage by high energy mechanical impact at the IFSTTAR falling rocks test station facilities located in the French Alpes [4]. The system is composed of one IR uncooled microbolometric camera (FLIR SC325) with a 320X240 Focal Plane Array detector in band III, a weather station VAISALA WXT520, a GPS, a failover power supply and a backup system. All the components of the system are connected to the IrLaW software through an IP network. The monitoring system is fully autonomous since August 2013 and provides data at 0. Hz sampling frequency. First results obtained by data post-processing is addressed. Finally, discussion on experimental feedback and main outcomes of several month of measurement in outdoor conditions will be presented. REFERENCES [1]Proto M. et al., , 2010. Transport infrastructure surveillance and monitoring by electromagnetic sensing: the ISTIMES project. Sensors, 10,10620-10639, doi: 10.3390/s101210620. [2]J. Dumoulin, R. Averty ".Development of an infrared system coupled with a weather station for real time atmospheric corrections using GPU computing: Application to bridge monitoring", in Proc of 11th International Conference on Quantitative InfraRed Thermography, Naples Italy, 2012. [3]J. Dumoulin, A. Crinière, R. Averty ," Detection and thermal characterization of the inner structure of the "Musmeci" bridge deck by infrared thermography monitoring ",Journal of Geophysics and Engineering, Volume 10, Number 2, November 2013, IOP Science, doi:10.1088/1742-2132/10/6/064003. [4]I. Catapano, R. Di Napoli, F. Soldovieri1, M. Bavusi, A. Loperte and J. Dumoulin, "Structural monitoring via microwave tomography-enhanced GPR: the Montagnole test site", Journal of Geophysics and Engineering, Volume 9, Number 4, August 2012, pp 100-107, IOP Science, doi:10.1088/1742-2132/9/4/S100.

  6. Reducing the complexity of NASA's space communications infrastructure

    NASA Technical Reports Server (NTRS)

    Miller, Raymond E.; Liu, Hong; Song, Junehwa

    1995-01-01

    This report describes the range of activities performed during the annual reporting period in support of the NASA Code O Success Team - Lifecycle Effectiveness for Strategic Success (COST LESS) team. The overall goal of the COST LESS team is to redefine success in a constrained fiscal environment and reduce the cost of success for end-to-end mission operations. This goal is more encompassing than the original proposal made to NASA for reducing complexity of NASA's Space Communications Infrastructure. The COST LESS team approach for reengineering the space operations infrastructure has a focus on reversing the trend of engineering special solutions to similar problems.

  7. Bayesian Inference of Nonstationary Precipitation Intensity-Duration-Frequency Curves for Infrastructure Design

    DTIC Science & Technology

    2016-03-01

    design . ERDC/CHL CHETN-X-2. Vicksburg, MS: U.S. Army Engineer Research and Development Center. http://chl.erdc.usace.army. mil/chetn REFERENCES...Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon , D. Qin, M. Manning, Z. Chen, M...Duration- Frequency Curves for Infrastructure Design by Brian E. Skahill, Amir AghaKouchak, Linyin Cheng, Aaron Byrd, and Joseph Kanney

  8. Making a Difference Through Engineer Capacity Building in Africa

    DTIC Science & Technology

    2014-05-22

    expense is 10 percent in Africa whereas in China energy it is only 3 percent.37 A lack of transportation infrastructure in Africa means that businesses...Africa. In 2012, China committed to provide $20 billion in loans for agriculture and infrastructure development. While this level of aid is roughly the...using wind, solar, hydropower, natural gas, and geothermal sources. This program is being executed in six sub-Saharan African nations. They are

  9. An integrated approach to infrastructure.

    PubMed

    Hayes, Stewart

    2010-02-01

    In an edited version of a paper presented at the IHEA (Institute of Hospital Engineering Australia) 60th National Conference 2009, Stewart Hayes, principal consultant at Jakeman Business Solutions, argues that, with "traditional" means of purchasing and maintaining critical hospital infrastructure systems "becoming less viable", a more integrated, strategic approach to procuring and providing essential hospital services that looks not just to the present, but equally to the facility's anticipated future needs, is becoming ever more important.

  10. Tools for Large-Scale Data Analytic Examination of Relational and Epistemic Networks in Engineering Education

    ERIC Educational Resources Information Center

    Madhavan, Krishna; Johri, Aditya; Xian, Hanjun; Wang, G. Alan; Liu, Xiaomo

    2014-01-01

    The proliferation of digital information technologies and related infrastructure has given rise to novel ways of capturing, storing and analyzing data. In this paper, we describe the research and development of an information system called Interactive Knowledge Networks for Engineering Education Research (iKNEER). This system utilizes a framework…

  11. Development of a Web-Based System to Support Self-Directed Learning of Microfabrication Technologies

    ERIC Educational Resources Information Center

    Jou, Min; Wu, Yu-Shiang

    2012-01-01

    Having engineers in microfabrication technologies educated has become much more difficult than having engineers educated in the traditional technologies, and this may be because of the high cost for acquirement of equipment, materials, and infrastructural means (i.e., cleaning rooms), all in addition to the hands-on practices that are often times…

  12. Hydrogen Internal Combustion Engine (ICE) Vehicles and Fueling Infrastructure : Alternative Fuels & Life-Cycle Engineering Program : November 29, 2006 to November 28, 2011

    DOT National Transportation Integrated Search

    2011-12-20

    Wind turbines located on sites known as wind farms have become popular in the United States and elsewhere because they may be able to reduce, if not replace, the use of fossil fuels for energy production. The development of wind farms has been partic...

  13. Enabling Geotechnical Data for Broader Use by the Spatial Data Infrastructures

    ERIC Educational Resources Information Center

    Zand, Amir Ghasem

    2011-01-01

    Geotechnical data are one of the most prevalent data types in civil engineering projects. The majority of the civil engineering projects that are in use today are designed using site-specific geotechnical data. The usage of geotechnical data is not limited to construction projects. This data is used in a wide range of applications, including…

  14. A Joint Learning Activity in Process Control and Distance Collaboration between Future Engineers and Technicians

    ERIC Educational Resources Information Center

    Deschênes, Jean-Sebastien; Barka, Noureddine; Michaud, Mario; Paradis, Denis; Brousseau, Jean

    2013-01-01

    A joint learning activity in process control is presented, in the context of a distance collaboration between engineering and technical-level students, in a similar fashion as current practices in the industry involving distance coordination and troubleshooting. The necessary infrastructure and the setup used are first detailed, followed by a…

  15. The framework for simulation of bioinspired security mechanisms against network infrastructure attacks.

    PubMed

    Shorov, Andrey; Kotenko, Igor

    2014-01-01

    The paper outlines a bioinspired approach named "network nervous system" and methods of simulation of infrastructure attacks and protection mechanisms based on this approach. The protection mechanisms based on this approach consist of distributed procedures of information collection and processing, which coordinate the activities of the main devices of a computer network, identify attacks, and determine necessary countermeasures. Attacks and protection mechanisms are specified as structural models using a set-theoretic approach. An environment for simulation of protection mechanisms based on the biological metaphor is considered; the experiments demonstrating the effectiveness of the protection mechanisms are described.

  16. Research Institute for Technical Careers

    NASA Technical Reports Server (NTRS)

    Glenn, Ronald L.

    1996-01-01

    The NASA research grant to Wilberforce University enabled us to establish the Research Institute for Technical Careers (RITC) in order to improve the teaching of science and engineering at Wilberforce. The major components of the research grant are infrastructure development, establishment of the Wilberforce Intensive Summer Experience (WISE), and Joint Research Collaborations with NASA Scientists. (A) Infrastructure Development. The NASA grant has enabled us to improve the standard of our chemistry laboratory and establish the electronics, design, and robotics laboratories. These laboratories have significantly improved the level of instruction at Wilberforce University. (B) Wilberforce Intensive Summer Experience (WISE). The WISE program is a science and engineering bridge program for prefreshman students. It is an intensive academic experience designed to strengthen students' knowledge in mathematics, science, engineering, computing skills, and writing. (C) Joint Collaboration. Another feature of the grant is research collaborations between NASA Scientists and Wilberforce University Scientists. These collaborations have enabled our faculty and students to conduct research at NASA Lewis during the summer and publish research findings in various journals and scientific proceedings.

  17. Upcoming Events | Argonne National Laboratory

    Science.gov Websites

    IACTInstitute for Atom-Efficient Chemical Transformations IGSBInstitute for Genomics and Systems Biology Engineering RISCRisk and Infrastructure Science Center SBCStructural Biology Center Energy.gov U.S. Department

  18. Co-location and Self-Similar Topologies of Urban Infrastructure Networks

    NASA Astrophysics Data System (ADS)

    Klinkhamer, Christopher; Zhan, Xianyuan; Ukkusuri, Satish; Elisabeth, Krueger; Paik, Kyungrock; Rao, Suresh

    2016-04-01

    The co-location of urban infrastructure is too obvious to be easily ignored. For reasons of practicality, reliability, and eminent domain, the spatial locations of many urban infrastructure networks, including drainage, sanitary sewers, and road networks, are well correlated. However, important questions dealing with correlations in the network topologies of differing infrastructure types remain unanswered. Here, we have extracted randomly distributed, nested subnets from the urban drainage, sanitary sewer, and road networks in two distinctly different cities: Amman, Jordan; and Indianapolis, USA. Network analyses were performed for each randomly chosen subnet (location and size), using a dual-mapping approach (Hierarchical Intersection Continuity Negotiation). Topological metrics for each infrastructure type were calculated and compared for all subnets in a given city. Despite large differences in the climate, governance, and populace of the two cities, and functional properties of the different infrastructure types, these infrastructure networks are shown to be highly spatially homogenous. Furthermore, strong correlations are found between topological metrics of differing types of surface and subsurface infrastructure networks. Also, the network topologies of each infrastructure type for both cities are shown to exhibit self-similar characteristics (i.e., power law node-degree distributions, [p(k) = ak-γ]. These findings can be used to assist city planners and engineers either expanding or retrofitting existing infrastructure, or in the case of developing countries, building new cities from the ground up. In addition, the self-similar nature of these infrastructure networks holds significant implications for the vulnerability of these critical infrastructure networks to external hazards and ways in which network resilience can be improved.

  19. Material degradation due to moisture and temperature. Part 1: mathematical model, analysis, and analytical solutions

    NASA Astrophysics Data System (ADS)

    Xu, C.; Mudunuru, M. K.; Nakshatrala, K. B.

    2016-11-01

    The mechanical response, serviceability, and load-bearing capacity of materials and structural components can be adversely affected due to external stimuli, which include exposure to a corrosive chemical species, high temperatures, temperature fluctuations (i.e., freezing-thawing), cyclic mechanical loading, just to name a few. It is, therefore, of paramount importance in several branches of engineering—ranging from aerospace engineering, civil engineering to biomedical engineering—to have a fundamental understanding of degradation of materials, as the materials in these applications are often subjected to adverse environments. As a result of recent advancements in material science, new materials such as fiber-reinforced polymers and multi-functional materials that exhibit high ductility have been developed and widely used, for example, as infrastructural materials or in medical devices (e.g., stents). The traditional small-strain approaches of modeling these materials will not be adequate. In this paper, we study degradation of materials due to an exposure to chemical species and temperature under large strain and large deformations. In the first part of our research work, we present a consistent mathematical model with firm thermodynamic underpinning. We then obtain semi-analytical solutions of several canonical problems to illustrate the nature of the quasi-static and unsteady behaviors of degrading hyperelastic solids.

  20. NHERI: Advancing the Research Infrastructure of the Multi-Hazard Community

    NASA Astrophysics Data System (ADS)

    Blain, C. A.; Ramirez, J. A.; Bobet, A.; Browning, J.; Edge, B.; Holmes, W.; Johnson, D.; Robertson, I.; Smith, T.; Zuo, D.

    2017-12-01

    The Natural Hazards Engineering Research Infrastructure (NHERI), supported by the National Science Foundation (NSF), is a distributed, multi-user national facility that provides the natural hazards research community with access to an advanced research infrastructure. Components of NHERI are comprised of a Network Coordination Office (NCO), a cloud-based cyberinfrastructure (DesignSafe-CI), a computational modeling and simulation center (SimCenter), and eight Experimental Facilities (EFs), including a post-disaster, rapid response research facility (RAPID). Utimately NHERI enables researchers to explore and test ground-breaking concepts to protect homes, businesses and infrastructure lifelines from earthquakes, windstorms, tsunamis, and surge enabling innovations to help prevent natural hazards from becoming societal disasters. When coupled with education and community outreach, NHERI will facilitate research and educational advances that contribute knowledge and innovation toward improving the resiliency of the nation's civil infrastructure to withstand natural hazards. The unique capabilities and coordinating activities over Year 1 between NHERI's DesignSafe-CI, the SimCenter, and individual EFs will be presented. Basic descriptions of each component are also found at https://www.designsafe-ci.org/facilities/. Additionally to be discussed are the various roles of the NCO in leading development of a 5-year multi-hazard science plan, coordinating facility scheduling and fostering the sharing of technical knowledge and best practices, leading education and outreach programs such as the recent Summer Institute and multi-facility REU program, ensuring a platform for technology transfer to practicing engineers, and developing strategic national and international partnerships to support a diverse multi-hazard research and user community.

  1. Environmental engineering of navigation infrastructure: a survey of existing practices, challenges, and potential opportunities.

    PubMed

    Fredette, Thomas J; Foran, Christy M; Brasfield, Sandra M; Suedel, Burton C

    2012-01-01

    Navigation infrastructure such as channels, jetties, river training structures, and lock-and-dam facilities are primary components of a safe and efficient water transportation system. Planning for such infrastructure has until recently involved efforts to minimize impacts on the environment through a standardized environmental assessment process. More recently, consistent with environmental sustainability concepts, planners have begun to consider how such projects can also be constructed with environmental enhancements. This study examined the existing institutional conditions within the US Army Corps of Engineers and cooperating federal agencies relative to incorporating environmental enhancements into navigation infrastructure projects. The study sought to (1) investigate institutional attitudes towards the environmental enhancement of navigation infrastructure (EENI) concept, (2) identify potential impediments to implementation and solutions to such impediments, (3) identify existing navigation projects designed with the express intent of enhancing environmental benefit in addition to the primary project purpose, (4) identify innovative ideas for increasing environmental benefits for navigation projects, (5) identify needs for additional technical information or research, and (6) identify laws, regulations, and policies that both support and hinder such design features. The principal investigation tool was an Internet-based survey with 53 questions. The survey captured a wide range of perspectives on the EENI concept including ideas, concerns, research needs, and relevant laws and policies. Study recommendations included further promotion of the concept of EENI to planners and designers, documentation of existing projects, initiation of pilot studies on some of the innovative ideas provided through the survey, and development of national goals and interagency agreements to facilitate implementation. Copyright © 2011 SETAC.

  2. Impacts of Permafrost on Infrastructure and Ecosystem Services

    NASA Astrophysics Data System (ADS)

    Trochim, E.; Schuur, E.; Schaedel, C.; Kelly, B. P.

    2017-12-01

    The Study of Environmental Arctic Change (SEARCH) program developed knowledge pyramids as a tool for advancing scientific understanding and making this information accessible for decision makers. Knowledge pyramids are being used to synthesize, curate and disseminate knowledge of changing land ice, sea ice, and permafrost in the Arctic. Each pyramid consists of a one-two page summary brief in broadly accessible language and literature organized by levels of detail including synthesizes and scientific building blocks. Three knowledge pyramids have been produced related to permafrost on carbon, infrastructure, and ecosystem services. Each brief answers key questions with high societal relevance framed in policy-relevant terms. The knowledge pyramids concerning infrastructure and ecosystem services were developed in collaboration with researchers specializing in the specific topic areas in order to identify the most pertinent issues and accurately communicate information for integration into policy and planning. For infrastructure, the main issue was the need to build consensus in the engineering and science communities for developing improved methods for incorporating data applicable to building infrastructure on permafrost. In ecosystem services, permafrost provides critical landscape properties which affect basic human needs including fuel and drinking water availability, access to hunting and harvest, and fish and wildlife habitat. Translating these broad and complex topics necessitated a systematic and iterative approach to identifying key issues and relating them succinctly to the best state of the art research. The development of the knowledge pyramids provoked collaboration and synthesis across distinct research and engineering communities. The knowledge pyramids also provide a solid basis for policy development and the format allows the content to be regularly updated as the research community advances.

  3. An infrastructure for ontology-based information systems in biomedicine: RICORDO case study.

    PubMed

    Wimalaratne, Sarala M; Grenon, Pierre; Hoehndorf, Robert; Gkoutos, Georgios V; de Bono, Bernard

    2012-02-01

    The article presents an infrastructure for supporting the semantic interoperability of biomedical resources based on the management (storing and inference-based querying) of their ontology-based annotations. This infrastructure consists of: (i) a repository to store and query ontology-based annotations; (ii) a knowledge base server with an inference engine to support the storage of and reasoning over ontologies used in the annotation of resources; (iii) a set of applications and services allowing interaction with the integrated repository and knowledge base. The infrastructure is being prototyped and developed and evaluated by the RICORDO project in support of the knowledge management of biomedical resources, including physiology and pharmacology models and associated clinical data. The RICORDO toolkit and its source code are freely available from http://ricordo.eu/relevant-resources. sarala@ebi.ac.uk.

  4. ITER Cryoplant Infrastructures

    NASA Astrophysics Data System (ADS)

    Fauve, E.; Monneret, E.; Voigt, T.; Vincent, G.; Forgeas, A.; Simon, M.

    2017-02-01

    The ITER Tokamak requires an average 75 kW of refrigeration power at 4.5 K and 600 kW of refrigeration Power at 80 K to maintain the nominal operation condition of the ITER thermal shields, superconducting magnets and cryopumps. This is produced by the ITER Cryoplant, a complex cluster of refrigeration systems including in particular three identical Liquid Helium Plants and two identical Liquid Nitrogen Plants. Beyond the equipment directly part of the Cryoplant, colossal infrastructures are required. These infrastructures account for a large part of the Cryoplants lay-out, budget and engineering efforts. It is ITER Organization responsibility to ensure that all infrastructures are adequately sized and designed to interface with the Cryoplant. This proceeding presents the overall architecture of the cryoplant. It provides order of magnitude related to the cryoplant building and utilities: electricity, cooling water, heating, ventilation and air conditioning (HVAC).

  5. Providing the Persistent Data Storage in a Software Engineering Environment Using Java/COBRA and a DBMS

    NASA Technical Reports Server (NTRS)

    Dhaliwal, Swarn S.

    1997-01-01

    An investigation was undertaken to build the software foundation for the WHERE (Web-based Hyper-text Environment for Requirements Engineering) project. The TCM (Toolkit for Conceptual Modeling) was chosen as the foundation software for the WHERE project which aims to provide an environment for facilitating collaboration among geographically distributed people involved in the Requirements Engineering process. The TCM is a collection of diagram and table editors and has been implemented in the C++ programming language. The C++ implementation of the TCM was translated into Java in order to allow the editors to be used for building various functionality of the WHERE project; the WHERE project intends to use the Web as its communication back- bone. One of the limitations of the translated software (TcmJava), which militated against its use in the WHERE project, was persistent data management mechanisms which it inherited from the original TCM; it was designed to be used in standalone applications. Before TcmJava editors could be used as a part of the multi-user, geographically distributed applications of the WHERE project, a persistent storage mechanism must be built which would allow data communication over the Internet, using the capabilities of the Web. An approach involving features of Java, CORBA (Common Object Request Broker), the Web, a middle-ware (Java Relational Binding (JRB)), and a database server was used to build the persistent data management infrastructure for the WHERE project. The developed infrastructure allows a TcmJava editor to be downloaded and run from a network host by using a JDK 1.1 (Java Developer's Kit) compatible Web-browser. The aforementioned editor establishes connection with a server by using the ORB (Object Request Broker) software and stores/retrieves data in/from the server. The server consists of a CORBA object or objects depending upon whether the data is to be made persistent on a single server or multiple servers. The CORBA object providing the persistent data server is implemented using the Java progranu-ning language. It uses the JRB to store/retrieve data in/from a relational database server. The persistent data management system provides transaction and user management facilities which allow multi-user, distributed access to the stored data in a secure manner.

  6. Communications: Critical Infrastructure and Key Resources Sector-Specific Plan as Input to the National Infrastructure Protection Plan

    DTIC Science & Technology

    2007-05-01

    Commission maintains an expert staff of engineers and statisticians to analyze this data in an attempt to reveal troublesome trends in network reliability...response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and...to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE MAY

  7. Making Technology Ready: Integrated Systems Health Management

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Oliver, Patrick J.

    2007-01-01

    This paper identifies work needed by developers to make integrated system health management (ISHM) technology ready and by programs to make mission infrastructure ready for this technology. This paper examines perceptions of ISHM technologies and experience in legacy programs. Study methods included literature review and interviews with representatives of stakeholder groups. Recommendations address 1) development of ISHM technology, 2) development of ISHM engineering processes and methods, and 3) program organization and infrastructure for ISHM technology evolution, infusion and migration.

  8. Report of the Interagency Optical Network Testbeds Workshop 2, NASA Ames Research Center, September 12-14, 2005

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Optical Network Testbeds Workshop 2 (ONT2), held on September 12-14, 2005, was cosponsored by the Department of Energy Office of Science (DOE/SC) and the National Aeronautics and Space Administration (NASA), in cooperation with the Joint Engineering Team (JET) of the Federal Networking and Information Technology Research and Development (NITRD) Program's Large Scale Networking (LSN) Coordinating Group. The ONT2 workshop was a follow-on to an August 2004 Workshop on Optical Network Testbeds (ONT1). ONT1 recommended actions by the Federal agencies to assure timely development and implementation of optical networking technologies and infrastructure. Hosted by the NASA Ames Research Center in Mountain View, California, the ONT2 workshop brought together representatives of the U.S. advanced research and education (R&E) networks, regional optical networks (RONs), service providers, international networking organizations, and senior engineering and R&D managers from Federal agencies and national research laboratories. Its purpose was to develop a common vision of the optical network technologies, services, infrastructure, and organizations needed to enable widespread use of optical networks; recommend activities for transitioning the optical networking research community and its current infrastructure to leading-edge optical networks over the next three to five years; and present information enabling commercial network infrastructure providers to plan for and use leading-edge optical network services in that time frame.

  9. Kentucky DOE-EPSCoR Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stencel, J.M.; Ochsenbein, M.P.

    2003-04-14

    The KY DOE EPSCoR Program included efforts to impact positively the pipeline of science and engineering students and to establish research, education and business infrastructure, sustainable beyond DOE EPSCoR funding.

  10. Seismic Barrier Protection of Critical Infrastructure

    DTIC Science & Technology

    2017-05-14

    where collapsing buildings claim by far most lives. Moreover, in recent events, industry activity of oil extraction and wastewater reinjection are...engineering building structural designs and materials have evolved over many years to minimize the destructive effects of seismic surface waves. However...Rayleigh, Love, shear). To protect against them, a large body of earthquake engineering has been developed, and effective building practices are

  11. Bio-Nanotechnology Infrastructure and Technology Oriented Research

    DTIC Science & Technology

    2008-07-17

    4) dissemination of the accomplishments through filing patents, publishing refereed papers and presenting at international conferences and meetings...NUMBER 6. AUTHOR(S) Kinzy Jones 5d. PROJECT NUMBER Florida International University ADVANCED MATERIALS ENGINEERING RESERACH INSTITUTE 5e...University ADVANCED MATERIALS ENGINEERING RESERACH INSTITUTE 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES

  12. 13th Annual Systems Engineering Conference: Tues- Wed

    DTIC Science & Technology

    2010-10-28

    greater understanding/documentation of lessons learned – Promotes SE within the organization • Justification for continued funding of SE Infrastructure...educational process – Addresses the development of innovative learning tools, strategies, and teacher training • Research and Development – Promotes ...technology, and mathematics • More commitment to engaging young students in science, engineering, technology and mathematics • More rigor in defining

  13. A novel critical infrastructure resilience assessment approach using dynamic Bayesian networks

    NASA Astrophysics Data System (ADS)

    Cai, Baoping; Xie, Min; Liu, Yonghong; Liu, Yiliu; Ji, Renjie; Feng, Qiang

    2017-10-01

    The word resilience originally originates from the Latin word "resiliere", which means to "bounce back". The concept has been used in various fields, such as ecology, economics, psychology, and society, with different definitions. In the field of critical infrastructure, although some resilience metrics are proposed, they are totally different from each other, which are determined by the performances of the objects of evaluation. Here we bridge the gap by developing a universal critical infrastructure resilience metric from the perspective of reliability engineering. A dynamic Bayesian networks-based assessment approach is proposed to calculate the resilience value. A series, parallel and voting system is used to demonstrate the application of the developed resilience metric and assessment approach.

  14. Nasa's Experiences Enabling the Capture and Sharing of Technical Expertise Through Communities of Practice

    NASA Astrophysics Data System (ADS)

    Topousis, Daria E.; Dennehy, Cornelius J.; Lebsock, Kenneth L.

    2012-12-01

    Historically, engineers at the National Aeronautics and Space Administration (NASA) had few opportunities or incentives to share their technical expertise across the Agency. Its center- and project-focused culture often meant that knowledge never left organizational and geographic boundaries. The need to develop a knowledge sharing culture became critical as a result of increasingly complex missions, closeout of the Shuttle Program, and a new generation of engineers entering the workforce. To address this need, the Office of the Chief Engineer established communities of practice on the NASA Engineering Network. These communities were strategically aligned with NASA's core competencies in such disciplines as avionics, flight mechanics, life support, propulsion, structures, loads and dynamics, human factors, and guidance, navigation, and control. This paper is a case study of NASA's implementation of a system that would identify and develop communities, from establishing simple websites that compiled discipline-specific resources to fostering a knowledge-sharing environment through collaborative and interactive technologies. It includes qualitative evidence of improved availability and transfer of knowledge. It focuses on capabilities that increased knowledge exchange such as a custom-made Ask An Expert system, community contact lists, publication of key resources, and submission forms that allowed any user to propose content for the sites. It discusses the peer relationships that developed through the communities and the leadership and infrastructure that made them possible.

  15. The Framework for Simulation of Bioinspired Security Mechanisms against Network Infrastructure Attacks

    PubMed Central

    Kotenko, Igor

    2014-01-01

    The paper outlines a bioinspired approach named “network nervous system" and methods of simulation of infrastructure attacks and protection mechanisms based on this approach. The protection mechanisms based on this approach consist of distributed prosedures of information collection and processing, which coordinate the activities of the main devices of a computer network, identify attacks, and determine nessesary countermeasures. Attacks and protection mechanisms are specified as structural models using a set-theoretic approach. An environment for simulation of protection mechanisms based on the biological metaphor is considered; the experiments demonstrating the effectiveness of the protection mechanisms are described. PMID:25254229

  16. Passive fire protection--a vital safety role.

    PubMed

    MacInnes, Callum; Rankin, Richard

    2012-06-01

    Callum Maclnnes BSc (Hons), AIFireE, an engineer at WSP UK--part of a global design engineering and management consultancy group specialising in property, transport and infrastructure, industry and environment projects--and his colleague, senior engineer, Richard Rankin CEng MEng (Hons) MIFireE, discuss the importance of passive fire protection in healthcare premises at a time when, due particularly to the difficult financial climate, many hospitals are undergoing upgrading and refurbishment, potentially affording an ideal opportunity to ensure that proper fire compartmentation measures are in place.

  17. Modeling joint restoration strategies for interdependent infrastructure systems.

    PubMed

    Zhang, Chao; Kong, Jingjing; Simonovic, Slobodan P

    2018-01-01

    Life in the modern world depends on multiple critical services provided by infrastructure systems which are interdependent at multiple levels. To effectively respond to infrastructure failures, this paper proposes a model for developing optimal joint restoration strategy for interdependent infrastructure systems following a disruptive event. First, models for (i) describing structure of interdependent infrastructure system and (ii) their interaction process, are presented. Both models are considering the failure types, infrastructure operating rules and interdependencies among systems. Second, an optimization model for determining an optimal joint restoration strategy at infrastructure component level by minimizing the economic loss from the infrastructure failures, is proposed. The utility of the model is illustrated using a case study of electric-water systems. Results show that a small number of failed infrastructure components can trigger high level failures in interdependent systems; the optimal joint restoration strategy varies with failure occurrence time. The proposed models can help decision makers to understand the mechanisms of infrastructure interactions and search for optimal joint restoration strategy, which can significantly enhance safety of infrastructure systems.

  18. Adapting Infrastructure and Civil Engineering Practice to a Changing Climate: Developing a Manual of Practice

    NASA Astrophysics Data System (ADS)

    Walker, D.; Ayyub, B. M.

    2017-12-01

    According to U.S. Census, new construction spending in the U.S. for 2014 was $993 Billion (roughly 6 percent of U.S. GDP). Informing the development of standards of engineering practice related to design and maintenance thus represents a significant opportunity to promote climate adaptation and mitigation, as well as community resilience. The climate science community informs us that extremes of climate and weather are changing from historical values and that the changes are driven substantially by emissions of greenhouse gases caused by human activities. Civil infrastructure systems traditionally have been designed, constructed, operated and maintained for appropriate probabilities of functionality, durability and safety while exposed to climate and weather extremes during their full service lives. Because of uncertainties in future greenhouse gas emissions and in the models for future climate and weather extremes, neither the climate science community nor the engineering community presently can define the statistics of future climate and weather extremes. The American Society for Civil Engineering's (ASCE) Committee on Adapting to a Changing Climate is actively involved in efforts internal and external to ASCE to promote understanding of the challenges climate change represents in engineering practice and to promote a re-examination of those practices that may need to change in light of changing climate. In addition to producing an ASCE e-book, as well as number of ASCE webinars, the Committee is currently developing a Manual of Practice intended to provide guidance for the development or enhancement of standards for infrastructure analysis and design in a world in which risk profiles are changing (non-stationarity) and climate change is a reality, but cannot be projected with a high degree of certainty. This presentation will explore both the need for such guidance as well as some of the challenges and opportunities facing its implementation.

  19. Social infrastructure to integrate science and practice: the experience of the Long Tom Watershed Council

    Treesearch

    Rebecca L. Flitcroft; Dana C. Dedrick; Courtland L. Smith; Cynthia A. Thieman; John P. Bolte

    2009-01-01

    Ecological problem solving requires a flexible social infrastructure that can incorporate scientific insights and adapt to changing conditions. As applied to watershed management, social infrastructure includes mechanisms to design, carry out, evaluate, and modify plans for resource protection or restoration. Efforts to apply the best science will not bring anticipated...

  20. LTPP Climate Tool [Tech Brief

    DOT National Transportation Integrated Search

    2017-01-01

    This Product Brief describes the Long-Term Pavement Performance (LTPP) Climate Tool (intended for use by infrastructure engineers) that provides convenient access to the National Aeronautics and Space Administration (NASA) Modern-Era Retrospective An...

  1. Monitoring of civil infrastructures by interferometric radar: a review.

    PubMed

    Pieraccini, Massimiliano

    2013-01-01

    Ground-based radar interferometry is an increasingly popular technique for monitoring civil infrastructures. Many research groups, professionals, and companies have tested it in different operative scenarios, so it is time for a first systematic survey of the case studies reported in the literature. This review is addressed especially to the engineers and scientists interested to consider the applicability of the technique to their practice, so it is focused on the issues of the practical cases rather than on theory and principles, which are now well consolidated.

  2. ATLAS Metadata Infrastructure Evolution for Run 2 and Beyond

    NASA Astrophysics Data System (ADS)

    van Gemmeren, P.; Cranshaw, J.; Malon, D.; Vaniachine, A.

    2015-12-01

    ATLAS developed and employed for Run 1 of the Large Hadron Collider a sophisticated infrastructure for metadata handling in event processing jobs. This infrastructure profits from a rich feature set provided by the ATLAS execution control framework, including standardized interfaces and invocation mechanisms for tools and services, segregation of transient data stores with concomitant object lifetime management, and mechanisms for handling occurrences asynchronous to the control framework's state machine transitions. This metadata infrastructure is evolving and being extended for Run 2 to allow its use and reuse in downstream physics analyses, analyses that may or may not utilize the ATLAS control framework. At the same time, multiprocessing versions of the control framework and the requirements of future multithreaded frameworks are leading to redesign of components that use an incident-handling approach to asynchrony. The increased use of scatter-gather architectures, both local and distributed, requires further enhancement of metadata infrastructure in order to ensure semantic coherence and robust bookkeeping. This paper describes the evolution of ATLAS metadata infrastructure for Run 2 and beyond, including the transition to dual-use tools—tools that can operate inside or outside the ATLAS control framework—and the implications thereof. It further examines how the design of this infrastructure is changing to accommodate the requirements of future frameworks and emerging event processing architectures.

  3. Health care network communications infrastructure: an engineering design for the Military Health Service System.

    PubMed

    Hoffman, P; Kline, E; George, L; Price, K; Clark, M; Walasin, R

    1995-01-01

    The Military Health Service System (MHSS) provides health care for the Department of Defense (DOD). This system operates on an annual budget of $15 Billion, supports 127 medical treatment facilities (MTFs) and 500 clinics, and provides support to 8.7 million beneficiaries worldwide. To support these facilities and their patients, the MHSS uses more than 125 different networked automated medical systems. These systems rely on a heterogeneous telecommunications infrastructure for data communications. With the support of the Defense Medical Information Management (DMIM) Program Office, our goal was to identify the network requirements for DMIM migration and target systems and design a communications infrastructure to support all systems with an integrated network. This work used tools from Business Process Reengineering (BPR) and applied it to communications infrastructure design for the first time. The methodology and results are applicable to any health care enterprise, military or civilian.

  4. Health care network communications infrastructure: an engineering design for the Military Health Service System.

    PubMed Central

    Hoffman, P.; Kline, E.; George, L.; Price, K.; Clark, M.; Walasin, R.

    1995-01-01

    The Military Health Service System (MHSS) provides health care for the Department of Defense (DOD). This system operates on an annual budget of $15 Billion, supports 127 medical treatment facilities (MTFs) and 500 clinics, and provides support to 8.7 million beneficiaries worldwide. To support these facilities and their patients, the MHSS uses more than 125 different networked automated medical systems. These systems rely on a heterogeneous telecommunications infrastructure for data communications. With the support of the Defense Medical Information Management (DMIM) Program Office, our goal was to identify the network requirements for DMIM migration and target systems and design a communications infrastructure to support all systems with an integrated network. This work used tools from Business Process Reengineering (BPR) and applied it to communications infrastructure design for the first time. The methodology and results are applicable to any health care enterprise, military or civilian. PMID:8563346

  5. Connected Vehicle Infrastructure : Deployment and Funding Overview

    DOT National Transportation Integrated Search

    2018-01-01

    This report reviews existing and proposed legislation relevant to connected vehicle infrastructure (CVI) implementation, identifies existing funding mechanisms for CVI implementation, reviews CVI pilot programs and case studies, and provides an overv...

  6. Environmental durability of graphite.

    DOT National Transportation Integrated Search

    2002-01-01

    The increasing acceptance and incorporation of fiber-reinforced polymer matrix composites (PMCs) as engineering construction materials have led many to look to the infrastructure as an application for these versatile materials. One such system is pul...

  7. The MSFC Systems Engineering Guide: An Overview and Plan

    NASA Technical Reports Server (NTRS)

    Shelby, Jerry A.; Thomas, L. Dale

    2007-01-01

    As systems and subsystems requirements become more complex in the pursuit of the exploration of space, advanced technology will demand and require an integrated approach to the design and development of safe and successful space vehicles and there products. System engineers play a vital and key role in transforming mission needs into vehicle requirements that can be verified and validated. This will result in a safe and cost effective design that will satisfy the mission schedule. A key to successful vehicle design within systems engineering is communication. Communication, through a systems engineering infrastructure, will not only ensure that customers and stakeholders are satisfied but will also assist in identifying vehicle requirements; i.e. identification, integration and management. This vehicle design will produce a system that is verifiable, traceable, and effectively satisfies cost, schedule, performance, and risk throughout the life-cycle of the product. A communication infrastructure will bring about the integration of different engineering disciplines within vehicle design. A system utilizing these aspects will enhance system engineering performance and improve upon required activities such as Development of Requirements, Requirements Management, Functional Analysis, Test, Synthesis, Trade Studies, Documentation, and Lessons Learned to produce a successful final product. This paper will describe the guiding vision, progress to date and the plan forward for development of the Marshall Space Flight Center (MSFC) Systems Engineering Guide (SEG), a virtual systems engineering handbook and archive that will describe the system engineering processes that are used by MSFC in the development of complex systems such as the Ares launch vehicle. It is the intent of this website to be a "One Stop Shop" for our systems engineers that will provide tutorial information, an overview of processes and procedures and links to assist system engineering with guidance and references, and provide an archive of systems engineering artifacts produced by the many NASA projects developed and managed by MSFC over the years.

  8. Model development, testing and experimentation in a CyberWorkstation for Brain-Machine Interface research.

    PubMed

    Rattanatamrong, Prapaporn; Matsunaga, Andrea; Raiturkar, Pooja; Mesa, Diego; Zhao, Ming; Mahmoudi, Babak; Digiovanna, Jack; Principe, Jose; Figueiredo, Renato; Sanchez, Justin; Fortes, Jose

    2010-01-01

    The CyberWorkstation (CW) is an advanced cyber-infrastructure for Brain-Machine Interface (BMI) research. It allows the development, configuration and execution of BMI computational models using high-performance computing resources. The CW's concept is implemented using a software structure in which an "experiment engine" is used to coordinate all software modules needed to capture, communicate and process brain signals and motor-control commands. A generic BMI-model template, which specifies a common interface to the CW's experiment engine, and a common communication protocol enable easy addition, removal or replacement of models without disrupting system operation. This paper reviews the essential components of the CW and shows how templates can facilitate the processes of BMI model development, testing and incorporation into the CW. It also discusses the ongoing work towards making this process infrastructure independent.

  9. Army Corps of Engineers: Water Resource Authorizations, Appropriations, and Activities

    DTIC Science & Technology

    2016-02-09

    favorable benefit -cost ratio. 31 Local sponsors assume any rehabilitation cost for damage to an active project attributable to deficient maintenance...infrastructure activities are not traditional Corps water resources projects, they are not subject to the Corps planning process (e.g., a benefit -cost...Army Corps of Engineers: Water Resource Authorizations, Appropriations, and Activities Nicole T. Carter Specialist in Natural Resources Policy

  10. FAST Center for Environmental Remediation, Fate and Transport of Hazardous Chemicals

    DTIC Science & Technology

    2003-07-01

    Because of the FAST Center project, A&T will compete for funding and will make significant research contributions in environmental science and engineering....include: (1) development of infrastructure and facilities for environmental research at A&T (2) significant research contributions in environmental ... science and engineering, (3) graduation of 25 M.S. graduates in five different disciplines, (4) training of 16 undergraduate assistants, (5) publication

  11. Systems Engineering for Distributed, Live, Virtual, and Constructive (LVC) Simulation

    DTIC Science & Technology

    2010-12-01

    programming languages like the Scala programming language (Wampler et al. 2009), provide tighter con- trol of syntax guidance and problem...Wampler, D. and A. Payne. 2009. Programming Scala . 1 st ed. O’Reilly Media 1510 Gallant and Gaughan AUTHOR BIOGRAPHIES SCOTT GALLANT is a Systems...subsequently linked to the technical design. Doing this within a data-driven systems engineering infrastructure allows generative programming techniques

  12. Pumping liquid metal at high temperatures up to 1,673 kelvin

    NASA Astrophysics Data System (ADS)

    Amy, C.; Budenstein, D.; Bagepalli, M.; England, D.; Deangelis, F.; Wilk, G.; Jarrett, C.; Kelsall, C.; Hirschey, J.; Wen, H.; Chavan, A.; Gilleland, B.; Yuan, C.; Chueh, W. C.; Sandhage, K. H.; Kawajiri, Y.; Henry, A.

    2017-10-01

    Heat is fundamental to power generation and many industrial processes, and is most useful at high temperatures because it can be converted more efficiently to other types of energy. However, efficient transportation, storage and conversion of heat at extreme temperatures (more than about 1,300 kelvin) is impractical for many applications. Liquid metals can be very effective media for transferring heat at high temperatures, but liquid-metal pumping has been limited by the corrosion of metal infrastructures. Here we demonstrate a ceramic, mechanical pump that can be used to continuously circulate liquid tin at temperatures of around 1,473-1,673 kelvin. Our approach to liquid-metal pumping is enabled by the use of ceramics for the mechanical and sealing components, but owing to the brittle nature of ceramics their use requires careful engineering. Our set-up enables effective heat transfer using a liquid at previously unattainable temperatures, and could be used for thermal storage and transport, electric power production, and chemical or materials processing.

  13. Computational thermo-hydro-mechanics for freezing and thawing multiphase geological media in the finite deformation range

    NASA Astrophysics Data System (ADS)

    Sun, W.; Na, S.

    2017-12-01

    A stabilized thermo-hydro-mechanical (THM) finite element model is introduced to investigate the freeze-thaw action of frozen porous media in the finite deformation range. By applying the mixture theory, frozen soil is idealized as a composite consisting of three phases, i.e., solid grain, unfrozen water and ice crystal. A generalized hardening rule at finite strain is adopted to replicate how the elasto-plastic responses and critical state evolve under the influence of phase transitions and heat transfer. The enhanced particle interlocking and ice strengthening during the freezing processes and the thawing-induced consolidation at the geometrical nonlinear regimes are both replicated in numerical examples. The numerical issues due to lack of two-fold inf-sup condition and ill-conditioning of the system of equations are addressed. Numerical examples for engineering applications at cold region are analyzed via the proposed model to predict the impacts of changing climate on infrastructure at cold regions.

  14. Invisible transportation infrastructure technology to mitigate energy and environment.

    PubMed

    Hossain, Md Faruque

    2017-01-01

    Traditional transportation infrastructure built by heat trapping products and the transportation vehiles run by fossil fuel, both causing deadly climate change. Thus, a new technology of invisible Flying Transportation system has been proposed to mitigate energy and environmental crisis caused by traditional infrastructure system. Underground Maglev system has been modeled to be constructed for all transportation systems to run the vehicle smoothly just over two feet over the earth surface by propulsive and impulsive force at flying stage. A wind energy modeling has also been added to meet the vehicle's energy demand when it runs on a non-maglev area. Naturally, all maglev infrastructures network to be covered by evergreen herb except pedestrian walkways to absorb CO 2 , ambient heat, and moisture (vapor) from the surrounding environment to make it cool. The research revealed that the vehicle will not require any energy since it will run by superconducting electromagnetic force while it runs on a maglev infrastructure area and directed by wind energy while it runs on non-maglev area. The proposed maglev transportation infrastructure technology will indeed be an innovative discovery in modern engineering science which will reduce fossil fuel energy consumption and climate change dramatically.

  15. Context-aware system design

    NASA Astrophysics Data System (ADS)

    Chan, Christine S.; Ostertag, Michael H.; Akyürek, Alper Sinan; Šimunić Rosing, Tajana

    2017-05-01

    The Internet of Things envisions a web-connected infrastructure of billions of sensors and actuation devices. However, the current state-of-the-art presents another reality: monolithic end-to-end applications tightly coupled to a limited set of sensors and actuators. Growing such applications with new devices or behaviors, or extending the existing infrastructure with new applications, involves redesign and redeployment. We instead propose a modular approach to these applications, breaking them into an equivalent set of functional units (context engines) whose input/output transformations are driven by general-purpose machine learning, demonstrating an improvement in compute redundancy and computational complexity with minimal impact on accuracy. In conjunction with formal data specifications, or ontologies, we can replace application-specific implementations with a composition of context engines that use common statistical learning to generate output, thus improving context reuse. We implement interconnected context-aware applications using our approach, extracting user context from sensors in both healthcare and grid applications. We compare our infrastructure to single-stage monolithic implementations with single-point communications between sensor nodes and the cloud servers, demonstrating a reduction in combined system energy by 22-45%, and multiplying the battery lifetime of power-constrained devices by at least 22x, with easy deployment across different architectures and devices.

  16. Advances in engineering nanometrology at the National Physical Laboratory

    NASA Astrophysics Data System (ADS)

    Leach, Richard K.; Claverley, James; Giusca, Claudiu; Jones, Christopher W.; Nimishakavi, Lakshmi; Sun, Wenjuan; Tedaldi, Matthew; Yacoot, Andrew

    2012-07-01

    The National Physical Laboratory, UK, has been active in the field of engineering nanometrology for a number of years. A summary of progress over the last five years is presented in this paper and the following research projects discussed in detail. (1) Development of an infrastructure for the calibration of instruments for measuring areal surface topography, along with the development of areal software measurement standards. This work comprises the use of the optical transfer function and a technique for the simultaneous measurement of topography and the phase change on reflection, allowing composite materials to be measured. (2) Development of a vibrating micro-CMM probe with isotropic probing reaction and the ability to operate in a non-contact mode. (3) A review of x-ray computed tomography and its use in dimensional metrology. (4) The further development of a metrology infrastructure for atomic force microscopy and the development of an instrument for the measurement of the effect of the probe-surface interaction. (5) Traceable measurement of displacement using optical and x-ray interferometry to picometre accuracy. (6) Development of an infrastructure for low-force metrology, including the development of appropriate transfer artefacts.

  17. ORNL engineering design and construction reengineering report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNeese, L.E.

    1998-01-01

    A team composed of individuals representing research and development (R and D) divisions, infrastructure support organizations, and Department of Energy (DOE)-Oak Ridge Operations was chartered to reengineer the engineering, design, and construction (ED and C) process at Oak Ridge National Laboratory (ORNL). The team recognized that ED and C needs of both R and D customers and the ORNL infrastructure program have to be met to maintain a viable and competitive national laboratory. Their goal was to identify and recommend implementable best-in-class ED and C processes that will efficiently and cost-effectively support the ORNL R and D staff by beingmore » responsive to their programmatic and infrastructure needs. The team conducted process mapping of current and potential ED and C approaches, developed idealized versions of ED and C processes, and identified potential barriers to an efficient ED and C process. Eight subteams were assigned to gather information and to evaluate the significance of potential barriers through benchmarking, surveys, interviews, and reviews of key topical areas in order to determine whether the perceived barriers were real and important and whether they resulted from laws or regulations over which ORNL has no control.« less

  18. Galvanic Liquid Applied Coating System For Protection of Embedded Steel Surfaces from Corrosion

    NASA Technical Reports Server (NTRS)

    Curran, Joseph; Curran, Jerome; Voska, N. (Technical Monitor)

    2002-01-01

    Corrosion of reinforcing steel in concrete is an insidious problem facing Kennedy Space Center (KSC), other Government Agencies, and the general public. These problems include KSC launch support structures, highway bridge infrastructure, and building structures such as condominium balconies. Due to these problems, the development of a Galvanic Liquid Applied Coating System would be a breakthrough technology having great commercial value for the following industries: Transportation, Infrastructure, Marine Infrastructure, Civil Engineering, and the Construction Industry. This sacrificial coating system consists of a paint matrix that may include metallic components, conducting agents, and moisture attractors. Similar systems have been used in the past with varying degrees of success. These systems have no proven history of effectiveness over the long term. In addition, these types of systems have had limited success overcoming the initial resistance between the concrete/coating interface. The coating developed at KSC incorporates methods proven to overcome the barriers that previous systems could not achieve. Successful development and continued optimization of this breakthrough system would produce great interest in NASA/KSC for corrosion engineering technology and problem solutions. Commercial patents on this technology would enhance KSC's ability to attract industry partners for similar corrosion control applications.

  19. That None Shall Perish

    NASA Astrophysics Data System (ADS)

    Mack, Kelly

    2010-03-01

    Despite efforts to increase the number of women faculty in the STEM disciplines, the representation of women, particularly in higher academic ranks remains disproportionately low. As a means of addressing this issue, the National Science Foundation (NSF) ADVANCE Program has as its mission to increase the participation and advancement of women in academic science and engineering careers. As such, the Program utilizes advances in social science research, as well as both demonstrated and novel strategies rooted in organizational change theory as a means of targeting gender diversity issues in the science, technology, engineering, and mathematics (STEM) disciplines. This presentation will provide an overview of the current status of women faculty, as well as the ADVANCE Program and the mechanisms by which it has supported institutions of higher education. Additionally, vital best practices and the concomitant incorporation of them into the institutional infrastructure will be discussed. These include, but are not limited to: strategic training on implicit bias, programmatic focus on departmental leadership, use of professional development grants, institutionalization of mentoring, incorporation of transparency in policies and procedures, demonstration of sensitivities toward work-life balance issues and women of color.

  20. A wireless fatigue monitoring system utilizing a bio-inspired tree ring data tracking technique.

    PubMed

    Bai, Shi; Li, Xuan; Xie, Zhaohui; Zhou, Zhi; Ou, Jinping

    2014-03-05

    Fatigue, a hot scientific research topic for centuries, can trigger sudden failure of critical structures such as aircraft and railway systems, resulting in enormous casualties as well as economic losses. The fatigue life of certain structures is intrinsically random and few monitoring techniques are capable of tracking the full life-cycle fatigue damage. In this paper, a novel in-situ wireless real-time fatigue monitoring system using a bio-inspired tree ring data tracking technique is proposed. The general framework, methodology, and verification of this intelligent system are discussed in details. The rain-flow counting (RFC) method is adopted as the core algorithm which quantifies fatigue damages, and Digital Signal Processing (DSP) is introduced as the core module for data collection and analysis. Laboratory test results based on strain gauges and polyvinylidene fluoride (PVDF) sensors have shown that the developed intelligent system can provide a reliable quick feedback and early warning of fatigue failure. With the merits of low cost, high accuracy and great reliability, the developed wireless fatigue sensing system can be further applied to mechanical engineering, civil infrastructures, transportation systems, aerospace engineering, etc.

  1. Bridging the gap: from 2D cell culture to 3D microengineered extracellular matrices

    PubMed Central

    Li, Yanfen

    2016-01-01

    Historically the culture of mammalian cells in the laboratory has been performed on planar substrates with media cocktails that are optimized to maintain phenotype. However, it is becoming increasingly clear that much of biology discerned from 2D studies does not translate well to the 3D microenvironment. Over the last several decades, 2D and 3D microengineering approaches have been developed that better recapitulate the complex architecture and properties of in vivo tissue. Inspired by the infrastructure of the microelectronics industry, lithographic patterning approaches have taken center stage because of the ease in which cell-sized features can be engineered on surfaces and within a broad range of biocompatible materials. Patterning and templating techniques enable precise control over extracellular matrix properties including: composition, mechanics, geometry, cell-cell contact, and diffusion. In this review article we will explore how the field of engineered extracellular matrices has evolved with the development of new hydrogel chemistry and the maturation of micro- and nano- fabrication. Guided by the spatiotemporal regulation of cell state in developing tissues, we will review the maturation of micropatterning in 2D, pseudo-3D systems, and patterning within 3D hydrogels in the context of translating the information gained from 2D systems to synthetic engineered 3D tissues. PMID:26592366

  2. Enabling the Capture and Sharing of NASA Technical Expertise Through Communities of Practice

    NASA Technical Reports Server (NTRS)

    Topousis, Daria E.; Dennehy, Cornelius J.; Lebsock, Kenneth L.

    2011-01-01

    Historically, engineers at the National Aeronautics and Space Administration (NASA) had few opportunities or incentives to share their technical expertise across the Agency. Its center- and project- focused culture often meant that knowledge never left organizational and geographic boundaries. With increasingly complex missions, the closeout of the Shuttle Program, and a new generation entering the workforce, developing a knowledge sharing culture became critical. To address this need, the Office of the Chief Engineer established communities of practice on the NASA Engineering Network. These communities were strategically aligned with NASA's core competencies in such disciplines as avionics, flight mechanics, life support, propulsion, structures, loads and dynamics, human factors, and guidance, navigation, and control. This paper describes the process used to identify and develop communities, from establishing simple websites that compiled discipline-specific resources to fostering a knowledge-sharing environment through collaborative and interactive technologies. It includes qualitative evidence of improved availability and transfer of knowledge. It focuses on pivotal capabilities that increased knowledge exchange such as a custom-made Ask An Expert system, community contact lists, publication of key resources, and submission forms that allowed any user to propose content for the sites. It discusses the peer relationships that developed through the communities and the leadership and infrastructure that made them possible.

  3. Modular and selective biosynthesis of gasoline-range alkanes.

    PubMed

    Sheppard, Micah J; Kunjapur, Aditya M; Prather, Kristala L J

    2016-01-01

    Typical renewable liquid fuel alternatives to gasoline are not entirely compatible with current infrastructure. We have engineered Escherichia coli to selectively produce alkanes found in gasoline (propane, butane, pentane, heptane, and nonane) from renewable substrates such as glucose or glycerol. Our modular pathway framework achieves carbon-chain extension by two different mechanisms. A fatty acid synthesis route is used to generate longer chains heptane and nonane, while a more energy efficient alternative, reverse-β-oxidation, is used for synthesis of propane, butane, and pentane. We demonstrate that both upstream (thiolase) and intermediate (thioesterase) reactions can act as control points for chain-length specificity. Specific free fatty acids are subsequently converted to alkanes using a broad-specificity carboxylic acid reductase and a cyanobacterial aldehyde decarbonylase (AD). The selectivity obtained by different module pairings provides a foundation for tuning alkane product distribution for desired fuel properties. Alternate ADs that have greater activity on shorter substrates improve observed alkane titer. However, even in an engineered host strain that significantly reduces endogenous conversion of aldehyde intermediates to alcohol byproducts, AD activity is observed to be limiting for all chain lengths. Given these insights, we discuss guiding principles for pathway selection and potential opportunities for pathway improvement. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  4. [Geotechnical Board activities and funding]. [Annual] activites report, July 1, 1992--June 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smeallie, P.H.

    1993-07-23

    The Geotechnical Board, a part of the US National Research Council, which is the operating arm of the National Academy of Sciences and the National Academy of Engineering, serves to advise the federal government and others on issues where geotechnology can have an impact, such as environmental remediation and infrastructure development. The board met three times during the reporting period to review current projects and to initiate activities that move the knowledge base of geotechnology forward. The board operates with two long-standing national committees, the US National Committee for Rock Mechanics and the US National Committee on Tunneling Technology. Itmore » also conducts special studies at the request of the government. A list of attachments is given.« less

  5. Materials-Enabled High-Efficiency (MEHE) Heavy-Duty Diesel Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kass, M.; Veliz, M.

    2011-09-30

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UTBattelle, Inc. and Caterpillar, Inc. was to improve diesel engine efficiency by incorporating advanced materials to enable higher combustion pressures and temperatures necessary for improved combustion. The project scope also included novel materials for use in advanced components and designs associated with waste-heat recovery and other concepts for improved thermal efficiency. Caterpillar initially provided ORNL with a 2004 Tier 2 C15 ACERT diesel engine (designed for on-highway use) and two 600 hp motoring dynamometers. The first year of the CRADA effort was focused on establishing a heavy-duty experimental enginemore » research cell. First year activities included procuring, installing and commissioning the cell infrastructure. Infrastructure components consisted of intake air handling system, water tower, exhaust handling system, and cell air conditioning. Other necessary infrastructure items included the fuel delivery system and bottled gas handling to support the analytical instrumentation. The second year of the CRADA focused on commissioning the dynamometer system to enable engine experimentation. In addition to the requirements associated with the dynamometer controller, the electrical system needed a power factor correction system to maintain continuity with the electrical grid. During the second year the engine was instrumented and baseline operated to confirm performance and commission the dynamometer. The engine performance was mapped and modeled according to requirements provided by Caterpillar. This activity was further supported by a Work-for-Others project from Caterpillar to evaluate a proprietary modeling system. A second Work-for-Others activity was performed to evaluate a novel turbocharger design. This project was highly successful and may lead to new turbocharger designs for Caterpillar heavy-duty diesel engines. During the third (and final) year of the CRADA, a novel valve material was evaluated to assess high temperature performance and durability. A series of prototype valves, composed of a unique nickel-alloy was placed in the engine head. The engine was aggressively operated using a transient test cycle for 200 hours. The valve recession was periodically measured to determine valve performance. Upon completion of the test the valves were removed and returned to Caterpillar for additional assessment. Industrial in-kind support was available throughout the project period. Review of the status and research results were carried out on a regular basis (meetings and telecons) which included direction for future work activities. A significant portion of the industrial support was in the form of information exchange and technical consultation.« less

  6. Case study of the science, engineering, mathematics, and aerospace academy: Participant and parental perceptions

    NASA Astrophysics Data System (ADS)

    Graves, Catherine

    The science, engineering, mathematics, and aerospace academy (SEMAA) is a federally-funded national out-of-school time (OST) science, technology, engineering, and mathematics (STEM) program that provides K-12 grade participants with hands-on activities and access to an aerospace education laboratory with the goals of increasing participants' engagement and interest in STEM and STEM careers. The SEMAA also provides support, resources, and training for SEMAA participants' parents through the Family Cafe. This multiple-case study investigated participants' and their parents' reasons for enrolling in the SEMAA and characterized the SEMAA in terms of its operations and infrastructure, instructors, learning environment, curriculum and instruction, and parental engagement. This study also assessed the role of the SEMAA in supporting participants' STEM college degree and career interests. Additionally, this study assessed the participants' attitudes towards science and science motivation factors. The findings of this study have implications for SEMAA and other OST STEM program providers related to: (a) recruitment and retention, (b) operations and infrastructure, (c) learning environments, (d) instructors, (e) curriculum and instruction, (f) parental engagement, and (g) OST STEM program outcomes.

  7. Building 'blue': An eco-engineering framework for foreshore developments.

    PubMed

    Mayer-Pinto, M; Johnston, E L; Bugnot, A B; Glasby, T M; Airoldi, L; Mitchell, A; Dafforn, K A

    2017-03-15

    Urbanisation in terrestrial systems has driven architects, planners, ecologists and engineers to collaborate on the design and creation of more sustainable structures. Examples include the development of 'green infrastructure' and the introduction of wildlife corridors that mitigate urban stressors and provide positive ecological outcomes. In contrast, efforts to minimise the impacts of urban developments in marine environments have been far more restricted in their extent and scope, and have often overlooked the ecological role of the built environment as potential habitat. Urban foreshore developments, i.e. those built on the interface of intertidal and/or subtidal zones, have the potential to incorporate clear multi-functional outcomes, by supporting novel ecosystems. We present a step-by-step eco-engineering framework for 'building blue' that will allow coastal managers to facilitate planning and construction of sustainable foreshore developments. Adopting such an approach will incorporate ecological principles, thereby mitigating some of the environmental impacts, creating more resilient urban infrastructure and environments, and maximising benefits to the multiple stakeholders and users of marine urban waterfronts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Rainfall thresholds as a landslide indicator for engineered slopes on the Irish Rail network

    NASA Astrophysics Data System (ADS)

    Martinović, Karlo; Gavin, Kenneth; Reale, Cormac; Mangan, Cathal

    2018-04-01

    Rainfall thresholds express the minimum levels of rainfall that need to be reached or exceeded in order for landslides to occur in a particular area. They are a common tool in expressing the temporal portion of landslide hazard analysis. Numerous rainfall thresholds have been developed for different areas worldwide, however none of these are focused on landslides occurring on the engineered slopes on transport infrastructure networks. This paper uses empirical method to develop the rainfall thresholds for landslides on the Irish Rail network earthworks. For comparison, rainfall thresholds are also developed for natural terrain in Ireland. The results show that particular thresholds involving relatively low rainfall intensities are applicable for Ireland, owing to the specific climate. Furthermore, the comparison shows that rainfall thresholds for engineered slopes are lower than those for landslides occurring on the natural terrain. This has severe implications as it indicates that there is a significant risk involved when using generic weather alerts (developed largely for natural terrain) for infrastructure management, and showcases the need for developing railway and road specific rainfall thresholds for landslides.

  9. Error begat error: design error analysis and prevention in social infrastructure projects.

    PubMed

    Love, Peter E D; Lopez, Robert; Edwards, David J; Goh, Yang M

    2012-09-01

    Design errors contribute significantly to cost and schedule growth in social infrastructure projects and to engineering failures, which can result in accidents and loss of life. Despite considerable research that has addressed their error causation in construction projects they still remain prevalent. This paper identifies the underlying conditions that contribute to design errors in social infrastructure projects (e.g. hospitals, education, law and order type buildings). A systemic model of error causation is propagated and subsequently used to develop a learning framework for design error prevention. The research suggests that a multitude of strategies should be adopted in congruence to prevent design errors from occurring and so ensure that safety and project performance are ameliorated. Copyright © 2011. Published by Elsevier Ltd.

  10. Recycled carpet materials for infrastructure applications.

    DOT National Transportation Integrated Search

    2013-06-01

    The objective of this project was to develop novel composite materials for infrastructure applications by recycling nylon based waste carpets. These novel composites have been proven to possess improved mechanical and sound barrier properties to meet...

  11. Selection of interest and inflation rates for infrastructure investment analyses.

    DOT National Transportation Integrated Search

    2014-12-01

    The South Dakota Department of Transportation (SDDOT) uses engineering economic analyses (EEA) to : support planning, design, and construction decision-making such as project programming and planning, : pavement type selection, and the occasional val...

  12. 75 FR 66743 - U.S. Air Force Academy Board of Visitors Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ...'' initiative to renovate aging infrastructure; an overview of Academy science, technology, engineering... public, rosters that list the names of BoV members and any releasable materials presented during open...

  13. Modeling joint restoration strategies for interdependent infrastructure systems

    PubMed Central

    Simonovic, Slobodan P.

    2018-01-01

    Life in the modern world depends on multiple critical services provided by infrastructure systems which are interdependent at multiple levels. To effectively respond to infrastructure failures, this paper proposes a model for developing optimal joint restoration strategy for interdependent infrastructure systems following a disruptive event. First, models for (i) describing structure of interdependent infrastructure system and (ii) their interaction process, are presented. Both models are considering the failure types, infrastructure operating rules and interdependencies among systems. Second, an optimization model for determining an optimal joint restoration strategy at infrastructure component level by minimizing the economic loss from the infrastructure failures, is proposed. The utility of the model is illustrated using a case study of electric-water systems. Results show that a small number of failed infrastructure components can trigger high level failures in interdependent systems; the optimal joint restoration strategy varies with failure occurrence time. The proposed models can help decision makers to understand the mechanisms of infrastructure interactions and search for optimal joint restoration strategy, which can significantly enhance safety of infrastructure systems. PMID:29649300

  14. Web Tools Streamline Climate Preparedness and Resilience Planning and Implementation for Water Resources Infrastructure

    NASA Astrophysics Data System (ADS)

    White, K. D.; Friedman, D.; Schechter, J.; Foley, P.; Mueller, C.; Baker, B.; Huber, M.; Veatch, W.

    2016-12-01

    Observed and projected impacts of climate change are pronounced on the hydrologic cycle because of the sensitivity of hydroclimatic variables to changes in temperature. Well-documented climate change impacts to the hydrologic cycle include increases in extreme heat conditions, coastal flooding, heavy precipitation, and drought frequency and magnitude, all of which can combine in surprising ways to pose regionally varying threats to public health and safety, ecosystem functions, and the economy. Climate preparedness and resilience activities are therefore necessary for water infrastructure which provides flood risk reduction, navigation, water supply, ecosystem restoration, and hydropower services. Because this water infrastructure entails long lifetimes, up to or beyond 100 years, and significant public investment, accurate and timely information about climate impacts over both the near-and far-term is required to plan and implement climate preparedness and resilience measures. Engineers are natural translators of science into actionable information to support this type of decision-making, because they understand both the important physical processes and the processes, laws, standards, and criteria required for the planning and design of public infrastructure. Though engineers are capable of the data management activities needed to ingest, transform, and prepare climate information for use in these decisions, the US Army Corps of Engineers (USACE) has chosen to emphasize analysis of information over data management. In doing so, the USACE is developing and using web tools with visualization capabilities to streamline climate preparedness and resilience planning and implementation while ensuring repeatable analytical results nationally. Examples discussed here include calculation of sea level change, including a comparison of mean sea level and other tidal statistics against scenarios of change; detection of abrupt and slowly varying nonstationarities in observed hydrologic data; and evaluations of projected flow frequency and duration that help to characterize future conditions and facilitate comparisons to observed conditions.

  15. Dealing with Natural Disasters: Preparedness versus Post-Event Response

    NASA Astrophysics Data System (ADS)

    Sitar, N.

    2015-12-01

    Management or mitigation of natural disasters is comprised of two distinct elements: disaster preparedness and disaster response. Fundamentally disasters fall into two categories: 1) those whose timing can be predicted and evaluated in advance, such as hurricanes, floods, tsunamis, or even sea level rise; and 2) those that can be anticipated based on analysis, but their exact timing is unknown, such as earthquakes and landslides. Consequently, the type of response and options available for scientific and engineering consultation are fundamentally different. The common aspects of all natural disasters is that there is evidence of past events either historical or geologic, or both. Thus, given past evidence, scientists and engineers have an opportunity to recommend and guide development and implementation of long term or permanent mitigation measures, such as improving the resiliency of the infrastructure and emergency preparedness. However, the appropriate mitigation measures are very much a function of the type of event. Severe atmospheric events, such as hurricanes, typically can be predicted several days in advance and scientists and engineers have a role in guiding preparation of specific additional, temporary, mitigation measures and selective evacuation, as appropriate. In contrast, while earthquake potential of a given region may be well recognized, the actual timing of the event is an unknown and, consequently, the primary defense is in developing sufficiently resilient infrastructure which can be enhanced with early warning systems. Similarly, the type of damage caused by flooding, e.g. hurricane and tsunami, is significantly different from the type of damage caused by an earthquake in that flooding damage is pervasive affecting large contiguous areas wiping out all infrastructure whereas earthquake or landslide damage tends to be clustered with many elements of infrastructure remaining fully or somewhat operable. This distinction is very important when it comes to the type of technical guidance that is needed following such events. This presentation highlights lessons learned from post-event reconnaissance as a part of the NSF-funded Geotechnical Extreme Event Reconnaissance (GEER) over the last two decades.

  16. Microbial engineering for the production of advanced biofuels.

    PubMed

    Peralta-Yahya, Pamela P; Zhang, Fuzhong; del Cardayre, Stephen B; Keasling, Jay D

    2012-08-16

    Advanced biofuels produced by microorganisms have similar properties to petroleum-based fuels, and can 'drop in' to the existing transportation infrastructure. However, producing these biofuels in yields high enough to be useful requires the engineering of the microorganism's metabolism. Such engineering is not based on just one specific feedstock or host organism. Data-driven and synthetic-biology approaches can be used to optimize both the host and pathways to maximize fuel production. Despite some success, challenges still need to be met to move advanced biofuels towards commercialization, and to compete with more conventional fuels.

  17. Early Formulation Model-centric Engineering on Nasa's Europa Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Bayer, Todd; Chung, Seung; Cole, Bjorn; Cooke, Brian; Dekens, Frank; Delp, Chris; Gontijo, I.; Lewis, Kari; Moshir, Mehrdad; Rasmussen, Robert; hide

    2012-01-01

    By leveraging the existing Model-Based Systems Engineering (MBSE) infrastructure at JPL and adding a modest investment, the Europa Mission Concept Study made striking advances in mission concept capture and analysis. This effort has reaffirmed the importance of architecting and successfully harnessed the synergistic relationship of system modeling to mission architecting. It clearly demonstrated that MBSE can provide greater agility than traditional systems engineering methods. This paper will describe the successful application of MBSE in the dynamic environment of early mission formulation, the significant results produced and lessons learned in the process.

  18. State Infrastructure Banks: A Mechanism to Expand Federal Transportation Financing

    DOT National Transportation Integrated Search

    1996-10-01

    State Infrastructure Banks (SIBs) are intended to complement traditional transportation grant programs and provide states with increased flexibility to offer many types of financial assistance, such as loans and subsidized interest rates, and provide...

  19. Financing the construction of transport infrastructure as the basis for sustainable development of the regional economy

    NASA Astrophysics Data System (ADS)

    Nidziy, Elena

    2017-10-01

    Dependence of the regional economic development from efficiency of financing of the construction of transport infrastructure is analyzed and proved in this article. Effective mechanism for infrastructure projects financing, public and private partnership, is revealed and its concrete forms are formulated. Here is proposed an optimal scenario for financing for the transport infrastructure, which can lead to positive transformations in the economy. Paper considers the advantages and risks of public and private partnership for subjects of contractual relations. At that, components for the assessment of economic effect of the implementation of infrastructure projects were proposed simultaneously with formulation of conditions for minimization risks. Results of the research could be used for solution of persistent problems in the development of transport infrastructure, issues of financial assurance of construction of infrastructure projects at the regional level.

  20. Boston Community Energy Study - Zonal Analysis for Urban Microgrids

    DTIC Science & Technology

    2016-03-01

    ordinarily rural systems that have generation assets such as wind turbines (WTs) [14] or photovoltaic (PV) panels [15] that power loads such as lights and...movers powered by internal combustion engines, diesel engines, microturbines, geothermal systems, hydro systems, or wind turbines ; they also could include...can have on urban areas such as New York City. While flooding and wind damaged or destroyed some of the energy infrastructure, all installed

  1. Economics in Criticality and Restoration of Energy Infrastructures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, Gale A.; Flaim, Silvio J.; Folga, Stephen M.

    Economists, systems analysts, engineers, regulatory specialists, and other experts were assembled from academia, the national laboratories, and the energy industry to discuss present restoration practices (many have already been defined to the level of operational protocols) in the sectors of the energy infrastructure as well as other infrastructures, to identify whether economics, a discipline concerned with the allocation of scarce resources, is explicitly or implicitly a part of restoration strategies, and if there are novel economic techniques and solution methods that could be used help encourage the restoration of energy services more quickly than present practices or to restore servicemore » more efficiently from an economic perspective. AcknowledgementsDevelopment of this work into a coherent product with a useful message has occurred thanks to the thoughtful support of several individuals:Kenneth Friedman, Department of Energy, Office of Energy Assurance, provided the impetus for the work, as well as several suggestions and reminders of direction along the way. Funding from DOE/OEA was critical to the completion of this effort.Arnold Baker, Chief Economist, Sandia National Laboratories, and James Peerenboom, Director, Infrastructure Assurance Center, Argonne National Laboratory, provided valuable contacts that helped to populate the authoring team with the proper mix of economists, engineers, and systems and regulatory specialists to meet the objectives of the work.Several individuals provided valuable review of the document at various stages of completion, and provided suggestions that were valuable to the editing process. This list of reviewers includes Jeffrey Roark, Economist, Tennessee Valley Authority; James R. Dalrymple, Manager of Transmission System Services and Transmission/Power Supply, Tennessee Valley Authority; William Mampre, Vice President, EN Engineering; Kevin Degenstein, EN Engineering; and Patrick Wilgang, Department of Energy, Office of Energy Assurance.With many authors, creating a document with a single voice is a difficult task. Louise Maffitt, Senior Research Associate, Institute for Engineering Research and Applications at New Mexico Institute of Mining & Technology (on contract to Sandia National Laboratories) served a vital role in the development of this document by taking the unedited material (in structured format) and refining the basic language so as to make the flow of the document as close to a single voice as one could hope for. Louise's work made the job of reducing the content to a readable length an easier process. Additional editorial suggestions from the authors themselves, particularly from Sam Flaim, Steve Folga, and Doug Gotham, expedited this process.« less

  2. Clinical engineering and risk management in healthcare technological process using architecture framework.

    PubMed

    Signori, Marcos R; Garcia, Renato

    2010-01-01

    This paper presents a model that aids the Clinical Engineering to deal with Risk Management in the Healthcare Technological Process. The healthcare technological setting is complex and supported by three basics entities: infrastructure (IS), healthcare technology (HT), and human resource (HR). Was used an Enterprise Architecture - MODAF (Ministry of Defence Architecture Framework) - to model this process for risk management. Thus, was created a new model to contribute to the risk management in the HT process, through the Clinical Engineering viewpoint. This architecture model can support and improve the decision making process of the Clinical Engineering to the Risk Management in the Healthcare Technological process.

  3. Environmental assessment in slum improvement programs: Some evidence from a study on infrastructure projects in two Dhaka slums

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, Farhat Jahan; Amin, A.T.M. Nurul

    2006-08-15

    This paper reports findings from a study on slum improvement projects to show the difference that environmental assessment (EA) can make in such interventions and to suggest mechanisms for its integration into such projects. The findings are based on a field survey that was carried out in two slums of Dhaka where infrastructure projects were implemented. In one slum, the EA process was considered in designing and locating infrastructure and in the other it was not. The survey results traced the severe problems that existed in both slums before the implementation of infrastructure improvement projects and reveal that after themore » intervention the situation has considerably improved in the slum where EA was conducted. In contrast, some problems still persist in the other slum where EA was not considered. To make it worse, the newly built infrastructures have even given rise to a set of new problems. In order to avoid such negative outcomes from development interventions, the paper finally develops the mechanism for integration of EA into slum improvement project.« less

  4. Efficient use of recycled concrete in transportation infrastructure

    DOT National Transportation Integrated Search

    2011-01-21

    This study examined current national and international practices regarding the use of recycled concrete aggregates (RCA) as engineering materials by the transportation industry as well as a history of Michigan's experience with RCA. In the laboratory...

  5. IMPLEMENTING PRACTICAL PICO-HYDROPOWER

    EPA Science Inventory

    Deliverables for this proposal will be energy output data modeled from experimental testing of the hydropower unit and monitoring of the stormwater handling infrastructure in the GIS building; along with a design and engineering plan for implementation and building integrat...

  6. Piezoresistive Strain Sensors and Multiplexed Arrays for Transportation Infrastructures

    DOT National Transportation Integrated Search

    2012-10-01

    During Year 5 of SAFETEA-LU, ITI researcher Professor Yonggang Huang, an expert in : the science of stretchable and flexible electronics, collaborated with researchers at : University of Illinois to engineer stretchable and flexible piezoresistive st...

  7. Proceedings of the 1993 Windsor Workshop on Alternative Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-10-01

    This report contains viewgraph papers on the following topics on alternative fuels: availability of alternative fueled engines and vehicles; emerging technologies; overcoming barriers to alternative fuels commercialization; infrastructure issues; and new initiatives in research and development.

  8. Intelligent Transportation Infrastructure Benefits: Expected And Experienced

    DOT National Transportation Integrated Search

    1996-08-20

    In traffic engineering, the concept of traffic control is giving way to the broader philosophy of Transportation Systems Management (TSM), whose purpose is not to move vehicles, but to optimize the utilization of transportation resources to improve t...

  9. Initial research on recycled tyre bales for road infrastructure applications

    NASA Astrophysics Data System (ADS)

    Duda, Aleksander; Sobala, Dariusz

    2017-12-01

    The paper reviews selected surveys carried out within the R&D project, co-financed with the European Regional Development Fund, called "ReUse - Innovative Recycling Materials, Enhancing the Sustainability of Bridge Facilities" (Innotech No. K3 / IN3 / 38/228116 / NCBiR / 15). The aim of the project and conducted research is to develop and implement innovative, cheap and environmentally-friendly recycled construction material in the form of tyre bales made from compressed used car tyres. This material is likely to be applied in civil engineering, especially in transport infrastructure, geotechnical and hydraulic engineering. New material is cheap and has unique properties such as low weight, high water permeability, high vibration and noise-damping capacity, low pressure coefficient values and other parameters that technically and economically allow it to replace natural aggregates. The extensive practical application of new material will facilitate the replacement of waste management methods with the environmentally friendly ones.

  10. Running SW4 On New Commodity Technology Systems (CTS-1) Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, Arthur J.; Petersson, N. Anders; Pitarka, Arben

    We have recently been running earthquake ground motion simulations with SW4 on the new capacity computing systems, called the Commodity Technology Systems - 1 (CTS-1) at Lawrence Livermore National Laboratory (LLNL). SW4 is a fourth order time domain finite difference code developed by LLNL and distributed by the Computational Infrastructure for Geodynamics (CIG). SW4 simulates seismic wave propagation in complex three-dimensional Earth models including anelasticity and surface topography. We are modeling near-fault earthquake strong ground motions for the purposes of evaluating the response of engineered structures, such as nuclear power plants and other critical infrastructure. Engineering analysis of structures requiresmore » the inclusion of high frequencies which can cause damage, but are often difficult to include in simulations because of the need for large memory to model fine grid spacing on large domains.« less

  11. On civil engineering disasters and their mitigation

    NASA Astrophysics Data System (ADS)

    Xie, Lili; Qu, Zhe

    2018-01-01

    Civil engineering works such as buildings and infrastructure are the carriers of human civilization. They are, however, also the origins of various types of disasters, which are referred to in this paper as civil engineering disasters. This paper presents the concept of civil engineering disasters, their characteristics, classification, causes, and mitigation technologies. Civil engineering disasters are caused primarily by civil engineering defects, which are usually attributed to improper selection of construction site, hazard assessment, design and construction, occupancy, and maintenance. From this viewpoint, many so-called natural disasters such as earthquakes, strong winds, floods, landslides, and debris flows are substantially due to civil engineering defects rather than the actual natural hazards. Civil engineering disasters occur frequently and globally and are the most closely related to human beings among all disasters. This paper emphasizes that such disasters can be mitigated mainly through civil engineering measures, and outlines the related objectives and scientific and technological challenges.

  12. ISTIMES project: status and outcomes

    NASA Astrophysics Data System (ADS)

    Cuomo, V.; Proto, M.; Soldovieri, F.

    2012-04-01

    ISTIMES is a project approved in the Seventh Framework Programme of the European Union under the Joint Call FP7-ICT-SEC-2007-1. It has a three years duration and will be completed within June 2012. According to the aims of the proposal, ISTIMES project has designed, assessed and developed a prototypical modular and scalable ICT-based system, exploiting distributed and local sensors, for non-destructive electromagnetic monitoring; the specific application field was the reliability and safety of critical transport infrastructures, even if the modularity of the ISTIMES approach has permitted to extend it successfully to other critical infrastructures as dams. The continuous and fruitful involvement of end users (as Italian Civil Protection) allowed to develop applications focused on users needs. ISTIMES couples current monitoring of infrastructures with a high situational awareness during crises management, providing updated and detailed real and near real time information about the infrastructure status to improve decision support for emergency and disasters stakeholders. The system exploits an open network architecture that can accommodate a wide range of heterogeneous sensors, static and mobile, and can be easily scaled up to allow the integration of additional sensors and interfaces with other networks. It relies on state-of-the-art electromagnetic sensors, enabling a networking of terrestrial sensors, supported by specific satellite and airborne measurements. The integration of electromagnetic technologies with new ICT information and telecommunications systems enables remotely controlled monitoring and surveillance at different temporal and spatial scales, providing indexes and images of the critical transport infrastructures. The project has exploited, assessed and improved many different non-invasive technologies based on electromagnetic sensing as: Optic Fiber Sensors, Synthetic Aperture; Radar (SAR) satellite platform; Hyperspectral Spectroscopy; Infrared Thermography; Ground Penetrating Radar; low-frequency Geophysical Techniques; ground based SAR and optical cameras for the assessment of the dynamical behaviour of the infrastructure. A great effort has been devoted to "transfer" these novel and state-of art technologies from the laboratory experience to actual on field applications by adapting/improving them and developing prototypes for the specific application domain of the monitoring of transport and critical infrastructures. Sensor synergy, data cross correlation and novel concepts of information fusion have permitted to carry out a multi-method, multi-resolution and multi-scale electromagnetic detection and monitoring of the infrastructure, including surface and subsurface aspects. The project has allowed to develop an ICT architecture based on web sensors and serviceoriented- technologies that comply with specific end-user requirements, including interoperability, economical convenience, exportability, efficiency and reliability. The efforts have focussed mainly to the creation of web based interfaces able to control "not standard" sensors, as the ones proposed in the project, and to the standardization necessary to have a full interoperability and modularity of the monitoring system. In addition, the system is able to provide a more easily accessible and transparent scheme for use by different end-users and to integrate the monitoring results and images with other kind of information such as GIS layer and historical datasets relating to the site. The ISTIMES system has been evaluated at two test sites and two test beds. At the two test sites of Montagnole rock-fall station (Chambery, France) and Hydrogeosite Laboratory (Potenza, Italy), the attention was posed to a thorough analysis of the performances of the in situ sensing techniques, by investigating, with good outcomes, also the possibility to correlate and have a synergy from the different sensors. In particular, it is worth noting that the experiment realized at Montagnole is unique, at least at European level, regarding both the high mechanical impact on a real scale elements of civil engineering structure, and also for the exploitation of all sensor techniques set up in a cooperative way. The effectiveness of the overall monitoring system has been assessed by the experiments at real test beds as Sihlhochstrasse bridge, a 1.5 km bridge representing one of the main entrance road to Zurich city (Switzerland), Varco Izzo railway tunnel and Musmeci motorway bridge located in the area of Potenza city in Basilicata region (Italy) affected by a high seismic risk. In particular, for the Musmeci bridge, the main entrance road to Potenza city and a masterpiece of architectural/civil engineering realized by Sergio Musmeci in 60' years, all the sensing technologies involved in the project have been exploited to perform a monitoring/diagnostics; the Musmeci bridge results have been correlated and tested also by the comparison with the sensors mostly used by civil engineers for this kind of infrastructures (Proto et al., 2010). Acknowledgment The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n. 225663.

  13. Prototype Software Assurance Framework (SAF): Introduction and Overview

    DTIC Science & Technology

    2017-04-05

    Introduction 1 1 Process Management (Category 1) 6 1.1 Process Definition (Area 1.1) 6 1.2 Infrastructure Standards (Area 1.2) 6 1.3 Resources (Area 1.3) 7...1.4 Training (Area 1.4) 8 2 Project Management (Category 2) 9 2.1 Project Plans (Area 2.1) 9 2.2 Project Infrastructure (Area 2.2) 10 2.3 Project...Monitoring (Area 2.3) 10 2.4 Project Risk Management (Area 2.4) 11 2.5 Supplier Management (Area 2.5) 11 3 Engineering (Category 3) 13 3.1 Product

  14. Monitoring of Civil Infrastructures by Interferometric Radar: A Review

    PubMed Central

    Pieraccini, Massimiliano

    2013-01-01

    Ground-based radar interferometry is an increasingly popular technique for monitoring civil infrastructures. Many research groups, professionals, and companies have tested it in different operative scenarios, so it is time for a first systematic survey of the case studies reported in the literature. This review is addressed especially to the engineers and scientists interested to consider the applicability of the technique to their practice, so it is focused on the issues of the practical cases rather than on theory and principles, which are now well consolidated. PMID:24106454

  15. Common Capabilities for Trust and Security in Service Oriented Infrastructures

    NASA Astrophysics Data System (ADS)

    Brossard, David; Colombo, Maurizio

    In order to achieve agility of the enterprise and shorter concept-to-market timescales for new services, IT and communication providers and their customers increasingly use technologies and concepts which come together under the banner of the Service Oriented Infrastructure (SOI) approach. In this paper we focus on the challenges relating to SOI security. The solutions presented cover the following areas: i) identity federation, ii) distributed usage & access management, and iii) context-aware secure messaging, routing & transformation. We use a scenario from the collaborative engineering space to illustrate the challenges and the solutions.

  16. International Symposium on Grids and Clouds (ISGC) 2016

    NASA Astrophysics Data System (ADS)

    The International Symposium on Grids and Clouds (ISGC) 2016 will be held at Academia Sinica in Taipei, Taiwan from 13-18 March 2016, with co-located events and workshops. The conference is hosted by the Academia Sinica Grid Computing Centre (ASGC). The theme of ISGC 2016 focuses on“Ubiquitous e-infrastructures and Applications”. Contemporary research is impossible without a strong IT component - researchers rely on the existence of stable and widely available e-infrastructures and their higher level functions and properties. As a result of these expectations, e-Infrastructures are becoming ubiquitous, providing an environment that supports large scale collaborations that deal with global challenges as well as smaller and temporal research communities focusing on particular scientific problems. To support those diversified communities and their needs, the e-Infrastructures themselves are becoming more layered and multifaceted, supporting larger groups of applications. Following the call for the last year conference, ISGC 2016 continues its aim to bring together users and application developers with those responsible for the development and operation of multi-purpose ubiquitous e-Infrastructures. Topics of discussion include Physics (including HEP) and Engineering Applications, Biomedicine & Life Sciences Applications, Earth & Environmental Sciences & Biodiversity Applications, Humanities, Arts, and Social Sciences (HASS) Applications, Virtual Research Environment (including Middleware, tools, services, workflow, etc.), Data Management, Big Data, Networking & Security, Infrastructure & Operations, Infrastructure Clouds and Virtualisation, Interoperability, Business Models & Sustainability, Highly Distributed Computing Systems, and High Performance & Technical Computing (HPTC), etc.

  17. Innovative bio-mediated particulate materials for sustainable maritime transportation infrastructure.

    DOT National Transportation Integrated Search

    2017-08-15

    The mechanical properties of sandy soils in the coastal area and beach sands often do not satisfy construction expectation for maritime transportation infrastructure. The salty, loose sand makes it difficult for quick construction of port, building a...

  18. EDITORIAL: Molecular Imaging Technology

    NASA Astrophysics Data System (ADS)

    Asai, Keisuke; Okamoto, Koji

    2006-06-01

    'Molecular Imaging Technology' focuses on image-based techniques using nanoscale molecules as sensor probes to measure spatial variations of various species (molecular oxygen, singlet oxygen, carbon dioxide, nitric monoxide, etc) and physical properties (pressure, temperature, skin friction, velocity, mechanical stress, etc). This special feature, starting on page 1237, contains selected papers from The International Workshop on Molecular Imaging for Interdisciplinary Research, sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan, which was held at the Sendai Mediatheque, Sendai, Japan, on 8 9 November 2004. The workshop was held as a sequel to the MOSAIC International Workshop that was held in Tokyo in 2003, to summarize the outcome of the 'MOSAIC Project', a five-year interdisciplinary project supported by Techno-Infrastructure Program, the Special Coordination Fund for Promotion of Science Technology to develop molecular sensor technology for aero-thermodynamic research. The workshop focused on molecular imaging technology and its applications to interdisciplinary research areas. More than 110 people attended this workshop from various research fields such as aerospace engineering, automotive engineering, radiotechnology, fluid dynamics, bio-science/engineering and medical engineering. The purpose of this workshop is to stimulate intermixing of these interdisciplinary fields for further development of molecular sensor and imaging technology. It is our pleasure to publish the seven papers selected from our workshop as a special feature in Measurement and Science Technology. We will be happy if this issue inspires people to explore the future direction of molecular imaging technology for interdisciplinary research.

  19. Medical device integration using mobile telecommunications infrastructure.

    PubMed

    Moorman, Bridget A; Cockle, Richard A

    2013-01-01

    Financial pressures, an aging population, and a rising number of patients with chronic diseases, have encouraged the use of remote monitoring technologies. This usually entails at least one physiological parameter measurement for a clinician. Mobile telecommunication technologies lend themselves to this functionality, and in some cases, avoid some of the issues encountered with device integration. Moreover, the inherent characteristics of the mobile telecommunications infrastructure allow a coupling of business and clinical functions that were not possible before. Table I compares and contrasts some key aspect of device integration in and out of a healthcare facility. An HTM professional may be part of the team that acquires and/or manages a system using a mobile telecommunications technology. It is important for HTM professionals to ensure the data is in a standard format so that the interfaces across this system don't become brittle and break easily if one part changes. Moreover, the security and safety considerations of the system and the data should be a primary consideration in and y purchase, with attention given to the proper environmental and encryption mechanisms. Clinical engineers and other HTM professionals are unique in that they understand the patient/clinician/device interface and the need to ensure its safety and effectiveness regardless of geographical environment.

  20. The cost of getting CCS wrong: Uncertainty, infrastructure design, and stranded CO 2

    DOE PAGES

    Middleton, Richard Stephen; Yaw, Sean Patrick

    2018-01-11

    Carbon capture, and storage (CCS) infrastructure will require industry—such as fossil-fuel power, ethanol production, and oil and gas extraction—to make massive investment in infrastructure. The cost of getting these investments wrong will be substantial and will impact the success of CCS technology. Multiple factors can and will impact the success of commercial-scale CCS, including significant uncertainties regarding capture, transport, and injection-storage decisions. Uncertainties throughout the CCS supply chain include policy, technology, engineering performance, economics, and market forces. In particular, large uncertainties exist for the injection and storage of CO 2. Even taking into account upfront investment in site characterization, themore » final performance of the storage phase is largely unknown until commercial-scale injection has started. We explore and quantify the impact of getting CCS infrastructure decisions wrong based on uncertain injection rates and uncertain CO 2 storage capacities using a case study managing CO 2 emissions from the Canadian oil sands industry in Alberta. We use SimCCS, a widely used CCS infrastructure design framework, to develop multiple CCS infrastructure scenarios. Each scenario consists of a CCS infrastructure network that connects CO 2 sources (oil sands extraction and processing) with CO 2 storage reservoirs (acid gas storage reservoirs) using a dedicated CO 2 pipeline network. Each scenario is analyzed under a range of uncertain storage estimates and infrastructure performance is assessed and quantified in terms of cost to build additional infrastructure to store all CO 2. We also include the role of stranded CO 2, CO 2 that a source was expecting to but cannot capture due substandard performance in the transport and storage infrastructure. Results show that the cost of getting the original infrastructure design wrong are significant and that comprehensive planning will be required to ensure that CCS becomes a successful climate mitigation technology. Here, we show that the concept of stranded CO 2 can transform a seemingly high-performing infrastructure design into the worst case scenario.« less

  1. The cost of getting CCS wrong: Uncertainty, infrastructure design, and stranded CO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middleton, Richard Stephen; Yaw, Sean Patrick

    Carbon capture, and storage (CCS) infrastructure will require industry—such as fossil-fuel power, ethanol production, and oil and gas extraction—to make massive investment in infrastructure. The cost of getting these investments wrong will be substantial and will impact the success of CCS technology. Multiple factors can and will impact the success of commercial-scale CCS, including significant uncertainties regarding capture, transport, and injection-storage decisions. Uncertainties throughout the CCS supply chain include policy, technology, engineering performance, economics, and market forces. In particular, large uncertainties exist for the injection and storage of CO 2. Even taking into account upfront investment in site characterization, themore » final performance of the storage phase is largely unknown until commercial-scale injection has started. We explore and quantify the impact of getting CCS infrastructure decisions wrong based on uncertain injection rates and uncertain CO 2 storage capacities using a case study managing CO 2 emissions from the Canadian oil sands industry in Alberta. We use SimCCS, a widely used CCS infrastructure design framework, to develop multiple CCS infrastructure scenarios. Each scenario consists of a CCS infrastructure network that connects CO 2 sources (oil sands extraction and processing) with CO 2 storage reservoirs (acid gas storage reservoirs) using a dedicated CO 2 pipeline network. Each scenario is analyzed under a range of uncertain storage estimates and infrastructure performance is assessed and quantified in terms of cost to build additional infrastructure to store all CO 2. We also include the role of stranded CO 2, CO 2 that a source was expecting to but cannot capture due substandard performance in the transport and storage infrastructure. Results show that the cost of getting the original infrastructure design wrong are significant and that comprehensive planning will be required to ensure that CCS becomes a successful climate mitigation technology. Here, we show that the concept of stranded CO 2 can transform a seemingly high-performing infrastructure design into the worst case scenario.« less

  2. Demonstration and Validation of Corrosion-Mitigation Technologies for Mechanical Room Utility Piping and Cooling-Tower Pumps

    DTIC Science & Technology

    2015-05-01

    Infrastructure, Task 2.1” ERDC/CERL TR-15-5 ii Abstract Two critical infrastructure corrosion issues at Fort Bragg, NC, are the cor- rosion of steel utility...piping union joints in mechanical rooms and the cor- rosion of steel pump housings in cooling tower systems. Reliable operation of these components...pump 5 incorporating 316 stainless steel housing. .................................... 19 Figure 13. New pump 5 being installed

  3. Advanced Development of Certified OS Kernels

    DTIC Science & Technology

    2015-06-01

    It provides an infrastructure to map a physical page into multiple processes’ page maps in different address spaces. Their ownership mechanism ensures...of their shared memory infrastructure . Trap module The trap module specifies the behaviors of exception handlers and mCertiKOS system calls. In...layers), 1 pm for the shared memory infrastructure (3 layers), 3.5 pm for the thread management (10 layers), 1 pm for the process management (4 layers

  4. Re-Engineering Complex Legacy Systems at NASA

    NASA Technical Reports Server (NTRS)

    Ruszkowski, James; Meshkat, Leila

    2010-01-01

    The Flight Production Process (FPP) Re-engineering project has established a Model-Based Systems Engineering (MBSE) methodology and the technological infrastructure for the design and development of a reference, product-line architecture as well as an integrated workflow model for the Mission Operations System (MOS) for human space exploration missions at NASA Johnson Space Center. The design and architectural artifacts have been developed based on the expertise and knowledge of numerous Subject Matter Experts (SMEs). The technological infrastructure developed by the FPP Re-engineering project has enabled the structured collection and integration of this knowledge and further provides simulation and analysis capabilities for optimization purposes. A key strength of this strategy has been the judicious combination of COTS products with custom coding. The lean management approach that has led to the success of this project is based on having a strong vision for the whole lifecycle of the project and its progress over time, a goal-based design and development approach, a small team of highly specialized people in areas that are critical to the project, and an interactive approach for infusing new technologies into existing processes. This project, which has had a relatively small amount of funding, is on the cutting edge with respect to the utilization of model-based design and systems engineering. An overarching challenge that was overcome by this project was to convince upper management of the needs and merits of giving up more conventional design methodologies (such as paper-based documents and unwieldy and unstructured flow diagrams and schedules) in favor of advanced model-based systems engineering approaches.

  5. Design standards for U.S. transportation infrastructure : the implications of climate change

    DOT National Transportation Integrated Search

    2008-01-01

    This paper examines the changes to engineering design practice that might occur given : climate-induced changes in environmental factors. A project design is separated into the : individual components that might be affected by changing environmental ...

  6. Incentives for mobility : using market mechanisms to rebuild America's transportation infrastructure

    DOT National Transportation Integrated Search

    1989-08-01

    America's transportation infrastructure is inadequate, but the solution is not simply to spend more public money. A market-oriented analysis reveals that the problem is institutional. The incentives which operate in the public sector under current po...

  7. Fuels Performance: Navigating the Intersection of Fuels and Combustion (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-12-01

    Researchers at the National Renewable Energy Laboratory (NREL), the only national laboratory dedicated 100% to renewable energy and energy efficiency, recognize that engine and infrastructure compatibility can make or break the impact of even the most promising fuel. NREL and its industry partners navigate the intersection of fuel chemistry, ignition kinetics, combustion, and emissions, with innovative approaches to engines and fuels that meet drivers' expectations, while minimizing petroleum use and GHGs.

  8. Proceedings of the Fourth International Workshop on a Research Agenda for Maintenance and Evolution of Service-Oriented Systems (MESOA 2010)

    DTIC Science & Technology

    2011-09-01

    service -oriented systems • Software -as-a- Service ( SaaS ) • social network infrastructures • Internet marketing • mobile computing • context awareness...Maintenance and Evolution of Service -Oriented Systems (MESOA 2010), organized by members of the Carnegie Mellon Software Engineering Institute’s...CMU/SEI-2011-SR-008 | 1 1 Workshop Introduction The Software Engineering Institute (SEI) started developing a service -oriented architecture

  9. Permafrost and infrastructure in the usa Basin (Northeast European Russia): possible impacts of global warming.

    PubMed

    Mazhitova, Galina; Karstkarel, Nanka; Oberman, Naum; Romanovsky, Vladimir; Kuhry, Peter

    2004-08-01

    The relationship between permafrost conditions and the distribution of infrastructure in the Usa Basin, Northeast European Russia, is analyzed. About 75% of the Basin is underlain by permafrost terrain with various degrees of continuity (isolated patches to continuous permafrost). The region has a high level of urban and industrial development (e.g., towns, coal mines, hydrocarbon extraction sites, railway, pipelines). GIS-analyses indicate that about 60% of all infrastructure is located in the 'high risk' permafrost area, here defined as the zones of isolated to discontinuous permafrost (3-90% coverage) with 'warm' ground temperatures (0 to -2 degrees C). Ground monitoring, aerial photo interpretation, and permafrost modeling suggest a differential response to future global warming. Most of the permafrost-affected terrain will likely start to thaw within a few decades to a century. This forecast poses serious challenges to permafrost engineering and calls for long-term investments in adequate infrastructure that will pay back overtime.

  10. Material experiments: Environment and engineering institutions in the early American republic.

    PubMed

    Johnson, Ann

    2009-01-01

    In nineteenth-century America, strength of materials, an engineering science, focused on empirical research that yielded practical tools about how to predict the behavior of a wide variety of materials engineers might encounter as they built the nation's infrastructure. This orientation toward "cookbook formulae" that could accommodate many different kinds of timber, stone, mortar, metals, and so on was specifically tailored for the American context, where engineers were peripatetic, materials diverse, and labor in short supply. But these methods also reflected deeper beliefs about the specialness of the landscape and the providential site of the American political experiment. As such, engineers' appreciation of natural bounty both emerged from and contributed to larger values about exceptionalism and the practical character of Americans.

  11. Complex Networks and Critical Infrastructures

    NASA Astrophysics Data System (ADS)

    Setola, Roberto; de Porcellinis, Stefano

    The term “Critical Infrastructures” indicates all those technological infrastructures such as: electric grids, telecommunication networks, railways, healthcare systems, financial circuits, etc. that are more and more relevant for the welfare of our countries. Each one of these infrastructures is a complex, highly non-linear, geographically dispersed cluster of systems, that interact with their human owners, operators, users and with the other infrastructures. Their augmented relevance and the actual political and technological scenarios, which have increased their exposition to accidental failure and deliberate attacks, demand for different and innovative protection strategies (generally indicate as CIP - Critical Infrastructure Protection). To this end it is mandatory to understand the mechanisms that regulate the dynamic of these infrastructures. In this framework, an interesting approach is those provided by the complex networks. In this paper we illustrate some results achieved considering structural and functional properties of the corresponding topological networks both when each infrastructure is assumed as an autonomous system and when we take into account also the dependencies existing among the different infrastructures.

  12. AGT (Advanced Gas Turbine) technology project

    NASA Technical Reports Server (NTRS)

    1988-01-01

    An overall summary documentation is provided for the Advanced Gas Turbine Technology Project conducted by the Allison Gas Turbine Division of General Motors. This advanced, high risk work was initiated in October 1979 under charter from the U.S. Congress to promote an engine for transportation that would provide an alternate to reciprocating spark ignition (SI) engines for the U.S. automotive industry and simultaneously establish the feasibility of advanced ceramic materials for hot section components to be used in an automotive gas turbine. As this program evolved, dictates of available funding, Government charter, and technical developments caused program emphases to focus on the development and demonstration of the ceramic turbine hot section and away from the development of engine and powertrain technologies and subsequent vehicular demonstrations. Program technical performance concluded in June 1987. The AGT 100 program successfully achieved project objectives with significant technology advances. Specific AGT 100 program achievements are: (1) Ceramic component feasibility for use in gas turbine engines has been demonstrated; (2) A new, 100 hp engine was designed, fabricated, and tested for 572 hour at operating temperatures to 2200 F, uncooled; (3) Statistical design methodology has been applied and correlated to experimental data acquired from over 5500 hour of rig and engine testing; (4) Ceramic component processing capability has progressed from a rudimentary level able to fabricate simple parts to a sophisticated level able to provide complex geometries such as rotors and scrolls; (5) Required improvements for monolithic and composite ceramic gas turbine components to meet automotive reliability, performance, and cost goals have been identified; (6) The combustor design demonstrated lower emissions than 1986 Federal Standards on methanol, JP-5, and diesel fuel. Thus, the potential for meeting emission standards and multifuel capability has been initiated; (7) Small turbine engine aerodynamic and mechanical design capability has been initiated; and (8) An infrastructure of manpower, facilities, materials, and fabrication capabilities has been established which is available for continued development of ceramic component technology in gas turbine and other heat engines.

  13. Building the interspace: Digital library infrastructure for a University Engineering Community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schatz, B.

    A large-scale digital library is being constructed and evaluated at the University of Illinois, with the goal of bringing professional search and display to Internet information services. A testbed planned to grow to 10K documents and 100K users is being constructed in the Grainger Engineering Library Information Center, as a joint effort of the University Library and the National Center for Supercomputing Applications (NCSA), with evaluation and research by the Graduate School of Library and Information Science and the Department of Computer Science. The electronic collection will be articles from engineering and science journals and magazines, obtained directly from publishersmore » in SGML format and displayed containing all text, figures, tables, and equations. The publisher partners include IEEE Computer Society, AIAA (Aerospace Engineering), American Physical Society, and Wiley & Sons. The software will be based upon NCSA Mosaic as a network engine connected to commercial SGML displayers and full-text searchers. The users will include faculty/students across the midwestern universities in the Big Ten, with evaluations via interviews, surveys, and transaction logs. Concurrently, research into scaling the testbed is being conducted. This includes efforts in computer science, information science, library science, and information systems. These efforts will evaluate different semantic retrieval technologies, including automatic thesaurus and subject classification graphs. New architectures will be designed and implemented for a next generation digital library infrastructure, the Interspace, which supports interaction with information spread across information spaces within the Net.« less

  14. Micro-measurements of mechanical properties for adhesives and composites using digital imaging technology

    NASA Technical Reports Server (NTRS)

    Brinson, Hal F.

    1994-01-01

    The need for a constituent based durability or accelerated life prediction procedure to be used for the engineering design of polymer matrix composites is discussed in the light of current plans for the High Speed Civil Transport (HSCT) concerns about the U.S. infrastructure (bridges, pipelines, etc.) and other technological considerations of national concern. It is pointed out that good measurement procedures for insitu resin properties are needed for both adhesives and composites. A double cantilever beam (DCB) specimen which shows promise for the easy determination of adhesive shear properties is presented and compared with measurements of strains within the bondline using a new optical digital imaging micro-measurement system (DIMMS). The DCB specimen is also used to assess damage in a bonded joint using a dynamic mechanical thermal analysis system (DMTA). The possible utilization of the same DIMMS and DMTA procedures to determine the insitu properties of the resin in a composite specimen are discussed as well as the use of the procedures to evaluate long term mechanical and physical aging. Finally, a discussion on the state-of-the art of the measurement of strains in micron and sub-micron domains is given.

  15. Unraveling Structural Infrasound: understanding the science for persistent remote monitoring of critical infrastructure (Invited)

    NASA Astrophysics Data System (ADS)

    McKenna, S. M.; Diaz-Alvarez, H.; McComas, S.; Costley, D.; Whitlow, R. D.; Jordan, A. M.; Taylor, O.

    2013-12-01

    In 2006, the Engineer Research and Development Center (ERDC) began a program designed to meet the capability gap associated with remote assessment of critical infrastructure. This program addresses issues arising from the use of geophysical techniques to solve engineering problems through persistent monitoring of critical infrastructure using infrasound. In the original 2006-2009 study of a railroad bridge in Ft. Leonard Wood, MO, the fundamental modes of motion of the structure were detected at up to 30 km away, with atmospheric excitation deemed to be the source driver. Follow-on research focused on the mechanically driven modes excited by traffic, with directional acoustic emanations. The success of the Ft. Wood ambient excitation study resulted in several subsequent programs to push the boundaries of this new technique for standoff assessment, discussed herein. Detection of scour and river system health monitoring are serious problems for monitoring civil infrastructure, from both civilian and military perspectives. Knowledge of overall system behavior over time is crucial for assessment of bridge foundations and barge navigation. This research focuses on the same steel-truss bridge from the Ft. Wood study, and analyzes 3D and 2D substructure models coupled with the superstructure reaction loads to assess the modal deformations within the infrasound bandwidth and the correlation to scour of embedment material. The Urban infrasound program is infrasound modeling, data analysis, and sensor research leading to the detection, classification and localization of threat activities in complex propagation environments. Three seismo-acoustic arrays were deployed on rooftops across the Southern Methodist University campus in Dallas, Texas, to characterize the urban infrasound environment. Structural sources within 15 km of the arrays have been identified through signal processing and confirmed through acoustical models. Infrasound is also being studied as a means of structural impact assessment. The Interstate-20 Mississippi River Bridge in Vicksburg, MS is a 7 span, cantilever bridge. On March 23, 2011, a barge moving downstream struck a pier of the bridge. Infrasound stations located approximately 4.5 km away detected the impact. Coincidentally, ERDC had instrumented the bridge with strain gages and accelerometers as part of a structural health monitoring project. Finite Element (FE) models were developed to investigate the structural behavior of the bridge due to the impact, with experimental data and FE models validating source mechanism of the infrasound from the bridge. Health assessment of large dams, whether for flood control or power generation, is critical for both civilian and military applications. Ambient excitations can induce measurable responses in the dam, adjacent foundation and in the reservoir, some of which are in the infrasound passband. The Portugues Dam outside of Ponce, Puerto Rico, is being investigated. Currently in the final stages of construction, infrasound array data collections over all four seasons before and after the opening of the dam will provide a seasonally variable database, begun in July 2013. Impulsive excitation using an instrumented Cold Gas thruster (CGT) instrumented with a dynamic force sensor induces transient frequency responses in the dam, reservoir, and along the dam-foundation interface below 20 Hz, to allow for controlled source validation.

  16. Green Infrastructure Research at NRMRL’s Urban Watershed Research Facility

    EPA Science Inventory

    USEPA’s National Risk Management Research Laboratory (NRMRL) examined several options for completing water quality research supporting the Clean Water Act and the Safe Drinking Water Act. NRMRL concluded that developing and understanding the engineering unit processes within gre...

  17. SWALE RESEARCH AT NRMRL’S URBAN WATERSHED RESEARCH FACILITY

    EPA Science Inventory

    Swales are “engineered ditches” that provide stable routing for stormwater runoff. Swales are green infrastructure, a low-cost drainage option for highways, farms, industrial, and commercial areas. Beyond enhancing local aesthetics, swales mitigate the pollutants carried by the...

  18. Driver attitudes and behaviors at intersections and potential effectiveness of engineering countermeasures

    DOT National Transportation Integrated Search

    2005-11-01

    The objective of this focus group study was to identify driver attitudes and behaviors related to intersection safety and to assess the likely impacts of new or existing infrastructure-based technologies/countermeasures. Four focus groups were conduc...

  19. BEYOND GREEN BUILDINGS: AN INTEGRATED HOLISTIC DESIGN APPROACH

    EPA Science Inventory

    Technical Challenge: The Urban Sustainable Infrastructure Engineering Program (USIEP) at the University of Colorado at Denver is designing a Sustainable Youth Zone (SYZ) building in a disadvantaged community in Commerce City, CO. The SYZ utilizes a holistic ...

  20. Global Networking.

    ERIC Educational Resources Information Center

    Lynch, Clifford

    1997-01-01

    Discusses the state of the Internet. Highlights include the magnitude of the infrastructure, costs, its increasing pace, constraints in international links, provision of network capacity to homes and small businesses, cable television modems, political and cultural problems, the digital library concept, search engines, the failure of personal…

  1. Graduate student recruiting into critical transportation infrastructure areas of interest.

    DOT National Transportation Integrated Search

    2013-01-01

    This report presents the results of a three-year, intensive recruiting and mentoring program in : the University of Oklahomas (OU) College of Engineering (CoE). Highly qualified and diverse : graduate students were sought to pursue degrees in tran...

  2. Procurement procedures and specifications for performance measure capable traffic infrastructure data collection systems.

    DOT National Transportation Integrated Search

    2012-01-01

    Traffic signal systems represent a substantial component of the highway transportation network in the United : States. It is challenging for most agencies to find engineering resources to properly update signal policies and : timing plans to accommod...

  3. Proof of concept : examining characteristics of roadway infrastructure in various 3D visualization modes.

    DOT National Transportation Integrated Search

    2015-02-01

    Utilizing enhanced visualization in transportation planning and design gained popularity in the last decade. This work aimed at : demonstrating the concept of utilizing a highly immersive, virtual reality simulation engine for creating dynamic, inter...

  4. Bridge deck cracking and composite action analyses : final report, March 2010.

    DOT National Transportation Integrated Search

    2010-03-01

    According to the American Society of Civil Engineers Report Card (ASCE, 2005), United States infrastructure received a grade point average of "D"(i.e., poor rating) in 2005. Moreover, the National Bridge Inventory (Federal Highway Administration, 200...

  5. Novel Alternative Cementitious Maerials for Development of the Next Generation of Sustainable Transportation Infrastructure[Tech Brief

    DOT National Transportation Integrated Search

    2015-10-01

    Georgia Institute of Technology and collaborators from Oklahoma State University, Tourney Consulting, and the Army Corps of Engineers, for an Exploratory Advanced Research (EAR) Program project funded by the Federal Highway Administrations (FHWA...

  6. Making Temporal Search More Central in Spatial Data Infrastructures

    NASA Astrophysics Data System (ADS)

    Corti, P.; Lewis, B.

    2017-10-01

    A temporally enabled Spatial Data Infrastructure (SDI) is a framework of geospatial data, metadata, users, and tools intended to provide an efficient and flexible way to use spatial information which includes the historical dimension. One of the key software components of an SDI is the catalogue service which is needed to discover, query, and manage the metadata. A search engine is a software system capable of supporting fast and reliable search, which may use any means necessary to get users to the resources they need quickly and efficiently. These techniques may include features such as full text search, natural language processing, weighted results, temporal search based on enrichment, visualization of patterns in distributions of results in time and space using temporal and spatial faceting, and many others. In this paper we will focus on the temporal aspects of search which include temporal enrichment using a time miner - a software engine able to search for date components within a larger block of text, the storage of time ranges in the search engine, handling historical dates, and the use of temporal histograms in the user interface to display the temporal distribution of search results.

  7. Transportation systems analyses. Volume 2: Technical/programmatics

    NASA Astrophysics Data System (ADS)

    1993-05-01

    The principal objective of this study is to accomplish a systems engineering assessment of the nation's space transportation infrastructure. This analysis addresses the necessary elements to perform man delivery and return, cargo transfer, cargo delivery, payload servicing, and the exploration of the Moon and Mars. Specific elements analyzed, but not limited to, include the Space Exploration Initiative (SEI), the National Launch System (NLS), the current expendable launch vehicle (ELV) fleet, ground facilities, the Space Station Freedom (SSF), and other civil, military and commercial payloads. The performance of this study entails maintaining a broad perspective on the large number of transportation elements that could potentially comprise the U.S. space infrastructure over the next several decades. To perform this systems evaluation, top-level trade studies are conducted to enhance our understanding of the relationships between elements of the infrastructure. This broad 'infrastructure-level perspective' permits the identification of preferred infrastructures. Sensitivity analyses are performed to assure the credibility and usefulness of study results. This report documents the three principal transportation systems analyses (TSA) efforts during the period 7 November 92 - 6 May 93. The analyses are as follows: Mixed-Fleet (STS/ELV) strategies for SSF resupply; Transportation Systems Data Book - overview; and Operations Cost Model - overview/introduction.

  8. Enabling fast charging - Infrastructure and economic considerations

    NASA Astrophysics Data System (ADS)

    Burnham, Andrew; Dufek, Eric J.; Stephens, Thomas; Francfort, James; Michelbacher, Christopher; Carlson, Richard B.; Zhang, Jiucai; Vijayagopal, Ram; Dias, Fernando; Mohanpurkar, Manish; Scoffield, Don; Hardy, Keith; Shirk, Matthew; Hovsapian, Rob; Ahmed, Shabbir; Bloom, Ira; Jansen, Andrew N.; Keyser, Matthew; Kreuzer, Cory; Markel, Anthony; Meintz, Andrew; Pesaran, Ahmad; Tanim, Tanvir R.

    2017-11-01

    The ability to charge battery electric vehicles (BEVs) on a time scale that is on par with the time to fuel an internal combustion engine vehicle (ICEV) would remove a significant barrier to the adoption of BEVs. However, for viability, fast charging at this time scale needs to also occur at a price that is acceptable to consumers. Therefore, the cost drivers for both BEV owners and charging station providers are analyzed. In addition, key infrastructure considerations are examined, including grid stability and delivery of power, the design of fast charging stations and the design and use of electric vehicle service equipment. Each of these aspects have technical barriers that need to be addressed, and are directly linked to economic impacts to use and implementation. This discussion focuses on both the economic and infrastructure issues which exist and need to be addressed for the effective implementation of fast charging at 400 kW and above. In so doing, it has been found that there is a distinct need to effectively manage the intermittent, high power demand of fast charging, strategically plan infrastructure corridors, and to further understand the cost of operation of charging infrastructure and BEVs.

  9. Enabling fast charging – Infrastructure and economic considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnham, Andrew; Dufek, Eric J.; Stephens, Thomas

    The ability to charge battery electric vehicles (BEVs) on a time scale that is on par with the time to fuel an internal combustion engine vehicle (ICEV) would remove a significant barrier to the adoption of BEVs. However, for viability, fast charging at this time scale needs to also occur at a price that is acceptable to consumers. Therefore, the cost drivers for both BEV owners and charging station providers are analyzed. In addition, key infrastructure considerations are examined, including grid stability and delivery of power, the design of fast charging stations and the design and use of electric vehiclemore » service equipment. Each of these aspects have technical barriers that need to be addressed, and are directly linked to economic impacts to use and implementation. This discussion focuses on both the economic and infrastructure issues which exist and need to be addressed for the effective implementation of fast charging at 400 kW and above. In so doing, it has been found that there is a distinct need to effectively manage the intermittent, high power demand of fast charging, strategically plan infrastructure corridors, and to further understand the cost of operation of charging infrastructure and BEVs.« less

  10. Enabling fast charging – Infrastructure and economic considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnham, Andrew; Dufek, Eric J.; Stephens, Thomas

    The ability to charge battery electric vehicles (BEVs) on a time scale that is on par with the time to fuel an internal combustion engine vehicle (ICEV) would remove a significant barrier to the adoption of BEVs. However, for viability, fast charging at this time scale needs to also occur at a price that is acceptable to consumers. Therefore, the cost drivers for both BEV owners and charging station providers are analyzed. In addition, key infrastructure considerations are examined, including grid stability and delivery of power, the design of fast charging stations and the design and use of electric vehiclemore » service equipment. Each of these aspects have technical barriers that need to be addressed, and are directly linked to economic impacts to use and implementation. Here, this discussion focuses on both the economic and infrastructure issues which exist and need to be addressed for the effective implementation of fast charging up to 350 kW. In doing so, it has been found that there is a distinct need to effectively manage the intermittent, high power demand of fast charging, strategically plan infrastructure corridors, and to further understand the cost of operation of charging infrastructure and BEVs.« less

  11. Enabling fast charging – Infrastructure and economic considerations

    DOE PAGES

    Burnham, Andrew; Dufek, Eric J.; Stephens, Thomas; ...

    2017-10-23

    The ability to charge battery electric vehicles (BEVs) on a time scale that is on par with the time to fuel an internal combustion engine vehicle (ICEV) would remove a significant barrier to the adoption of BEVs. However, for viability, fast charging at this time scale needs to also occur at a price that is acceptable to consumers. Therefore, the cost drivers for both BEV owners and charging station providers are analyzed. In addition, key infrastructure considerations are examined, including grid stability and delivery of power, the design of fast charging stations and the design and use of electric vehiclemore » service equipment. Each of these aspects have technical barriers that need to be addressed, and are directly linked to economic impacts to use and implementation. Here, this discussion focuses on both the economic and infrastructure issues which exist and need to be addressed for the effective implementation of fast charging up to 350 kW. In doing so, it has been found that there is a distinct need to effectively manage the intermittent, high power demand of fast charging, strategically plan infrastructure corridors, and to further understand the cost of operation of charging infrastructure and BEVs.« less

  12. Applicability of microelectronic and mechanical systems (MEMS) for transportation infrastructure management.

    DOT National Transportation Integrated Search

    2008-08-11

    It will be advantageous to have information on the state of health of infrastructure at all times in : order to carry out effective on-demand maintenance. With the tremendous advancement in technology, it is : possible to employ devices embedded in s...

  13. Internal hydrological mechanism of permeable pavement and interaction with subsurface water

    EPA Science Inventory

    Many communities are implementing green infrastructure stormwater control measures (SCMs) in urban environments across the U.S. to mimic pre-urban, natural hydrology more closely. Permeable pavement is one SCM infrastructure that has been commonly selected for both new and retro...

  14. Digital Rocks Portal: a Sustainable Platform for Data Management, Analysis and Remote Visualization of Volumetric Images of Porous Media

    NASA Astrophysics Data System (ADS)

    Prodanovic, M.; Esteva, M.; Ketcham, R. A.

    2017-12-01

    Nanometer to centimeter-scale imaging such as (focused ion beam) scattered electron microscopy, magnetic resonance imaging and X-ray (micro)tomography has since 1990s introduced 2D and 3D datasets of rock microstructure that allow investigation of nonlinear flow and mechanical phenomena on the length scales that are otherwise impervious to laboratory measurements. The numerical approaches that use such images produce various upscaled parameters required by subsurface flow and deformation simulators. All of this has revolutionized our knowledge about grain scale phenomena. However, a lack of data-sharing infrastructure among research groups makes it difficult to integrate different length scales. We have developed a sustainable, open and easy-to-use repository called the Digital Rocks Portal (https://www.digitalrocksportal.org), that (1) organizes images and related experimental measurements of different porous materials, (2) improves access to them for a wider community of engineering or geosciences researchers not necessarily trained in computer science or data analysis. Digital Rocks Portal (NSF EarthCube Grant 1541008) is the first repository for imaged porous microstructure data. It is implemented within the reliable, 24/7 maintained High Performance Computing Infrastructure supported by the Texas Advanced Computing Center (University of Texas at Austin). Long-term storage is provided through the University of Texas System Research Cyber-infrastructure initiative. We show how the data can be documented, referenced in publications via digital object identifiers (see Figure below for examples), visualized, searched for and linked to other repositories. We show recently implemented integration of the remote parallel visualization, bulk upload for large datasets as well as preliminary flow simulation workflow with the pore structures currently stored in the repository. We discuss the issues of collecting correct metadata, data discoverability and repository sustainability.

  15. Coupling Adaptation Tipping Points and Engineering Options: New Insights for Resilient Water Infrastructure Replacement Planning

    NASA Astrophysics Data System (ADS)

    Smet, K.; de Neufville, R.; van der Vlist, M.

    2017-12-01

    This work presents an innovative approach for replacement planning for aging water infrastructure given uncertain future conditions. We draw upon two existing methodologies to develop an integrated long-term replacement planning framework. We first expand the concept of Adaptation Tipping Points to generate long-term planning timelines that incorporate drivers of investment related to both internal structural processes as well as changes in external operating conditions. Then, we use Engineering Options to explore different actions taken at key moments in this timeline. Contrasting to the traditionally more static approach to infrastructure design, designing the next generation of infrastructure so it can be changed incrementally is a promising method to safeguard current investments given future uncertainty. This up-front inclusion of structural options in the system actively facilitates future adaptation, transforming uncertainty management in infrastructure planning from reactive to more proactive. A two-part model underpins this approach. A simulation model generates diverse future conditions, allowing development of timelines of intervention moments in the structure's life. This feeds into an economic model, evaluating the lifetime performance of different replacement strategies, making explicit the value of different designs and their flexibility. A proof of concept study demonstrates this approach for a pumping station. The strategic planning timelines for this structure demonstrate that moments when capital interventions become necessary due to reduced functionality from structural degradation or changed operating conditions are widely spread over the structure's life. The disparate timing of these necessary interventions supports an incremental, adaptive mindset when considering end-of-life and replacement decisions. The analysis then explores different replacement decisions, varying the size and specific options included in the proposed new structure. Results show that incremental adaptive designs and incorporating options can improve economic performance, as compared to traditional, "build it once & build it big" designs. The benefit from incorporating flexibility varies with structural functionality, future conditions and the specific options examined.

  16. Missile Defense Information Technology Small Business Conference

    DTIC Science & Technology

    2009-09-01

    NetOps Survivability 4 • Supported User Base • Number of Workstations • Number of Servers • Number of Special Circuits • Number of Sites • Number...Contracts, MDIOC • Ground Test (DTC) • MDSEC (SS) • Infrastructure (IC) • BMDS Support (BCT) • JTAAS – SETA • Mod & Sim ( DES ) • Analysis (GML) • Tenants...AUG 09) 4 MDA DOCE Engineering Functions • Design Engineers – Develop detailed design artifacts based on architectural specifications – Coordinate

  17. Sustainability Logistics Basing - Science and Technology Objective - Demonstration; 50, 300, 1000- Person Base Camp, Analysis of FY12 Operationally Relevant Technical Baseline

    DTIC Science & Technology

    2017-04-10

    Natick Soldier Research , Development and Engineering Center’s Sustainability/Logistics- Basing -Science and Technology Objective – Demonstration to...CERDEC)  Tank Automotive Research , Development, and Engineering Center (TARDEC)  Product Director Contingency Basing Infrastructure (PdD – CBI...assessed using the QoL (O) tool, developed for the SLB-STO-D program by the Consumer Research Team (NSRDEC), based upon the assumptions documented within

  18. Sustainable access to data, products, services and software from the European seismological Research Infrastructures: the EPOS TCS Seismology

    NASA Astrophysics Data System (ADS)

    Haslinger, Florian; Dupont, Aurelien; Michelini, Alberto; Rietbrock, Andreas; Sleeman, Reinoud; Wiemer, Stefan; Basili, Roberto; Bossu, Rémy; Cakti, Eser; Cotton, Fabrice; Crawford, Wayne; Diaz, Jordi; Garth, Tom; Locati, Mario; Luzi, Lucia; Pinho, Rui; Pitilakis, Kyriazis; Strollo, Angelo

    2016-04-01

    Easy, efficient and comprehensive access to data, data products, scientific services and scientific software is a key ingredient in enabling research at the frontiers of science. Organizing this access across the European Research Infrastructures in the field of seismology, so that it best serves user needs, takes advantage of state-of-the-art ICT solutions, provides cross-domain interoperability, and is organizationally and financially sustainable in the long term, is the core challenge of the implementation phase of the Thematic Core Service (TCS) Seismology within the EPOS-IP project. Building upon the existing European-level infrastructures ORFEUS for seismological waveforms, EMSC for seismological products, and EFEHR for seismological hazard and risk information, and implementing a pilot Computational Earth Science service starting from the results of the VERCE project, the work within the EPOS-IP project focuses on improving and extending the existing services, aligning them with global developments, to at the end produce a well coordinated framework that is technically, organizationally, and financially integrated with the EPOS architecture. This framework needs to respect the roles and responsibilities of the underlying national research infrastructures that are the data owners and main providers of data and products, and allow for active input and feedback from the (scientific) user community. At the same time, it needs to remain flexible enough to cope with unavoidable challenges in the availability of resources and dynamics of contributors. The technical work during the next years is organized in four areas: - constructing the next generation software architecture for the European Integrated (waveform) Data Archive EIDA, developing advanced metadata and station information services, fully integrate strong motion waveforms and derived parametric engineering-domain data, and advancing the integration of mobile (temporary) networks and OBS deployments in EIDA; - further development and expansion of services to access seismological products of scientific interest as provided by the community by implementing a common collection and development (IT) platform, improvements in the earthquake information services e.g. by introducing more robust quality indicators and diversifying collection and dissemination mechanisms, as well as improving historical earthquake data services; - development of a comprehensive suite of earthquake hazard products, tools, and services harmonized on the European level and available through a common access platform, encompassing information on seismic sources, seismogenic faults, ground-motion prediction equations, geotechnical information, and strong-motion recordings in buildings, together with an interface to earthquake risk; - a portal implementation of computational seismology tools and services, specifically for seismic waveform propagation in complex 3D media following the results of the VERCE project, and initiating the inclusion of further suitable codes on that portal in discussion with the community, forming the basis of EPOS computational earth science infrastructure. This will be accompanied by development and implementation of integrated and interoperable metadata structures, adequate and referencable persistent identifiers, and appropriate user access and authorization mechanisms. Here we present further detail on the work plan with the attempt to foster interaction with the target user community on the spectrum of services as well as on feedback mechanisms and governance.

  19. Bridging the Gap: From 2D Cell Culture to 3D Microengineered Extracellular Matrices.

    PubMed

    Li, Yanfen; Kilian, Kristopher A

    2015-12-30

    Historically the culture of mammalian cells in the laboratory has been performed on planar substrates with media cocktails that are optimized to maintain phenotype. However, it is becoming increasingly clear that much of biology discerned from 2D studies does not translate well to the 3D microenvironment. Over the last several decades, 2D and 3D microengineering approaches have been developed that better recapitulate the complex architecture and properties of in vivo tissue. Inspired by the infrastructure of the microelectronics industry, lithographic patterning approaches have taken center stage because of the ease in which cell-sized features can be engineered on surfaces and within a broad range of biocompatible materials. Patterning and templating techniques enable precise control over extracellular matrix properties including: composition, mechanics, geometry, cell-cell contact, and diffusion. In this review article we explore how the field of engineered extracellular matrices has evolved with the development of new hydrogel chemistry and the maturation of micro- and nano- fabrication. Guided by the spatiotemporal regulation of cell state in developing tissues, techniques for micropatterning in 2D, pseudo-3D systems, and patterning within 3D hydrogels will be discussed in the context of translating the information gained from 2D systems to synthetic engineered 3D tissues. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The structure and infrastructure of the global nanotechnology literature

    NASA Astrophysics Data System (ADS)

    Kostoff, Ronald N.; Stump, Jesse A.; Johnson, Dustin; Murday, James S.; Lau, Clifford G. Y.; Tolles, William M.

    2006-08-01

    Text mining is the extraction of useful information from large volumes of text. A text mining analysis of the global open nanotechnology literature was performed. Records from the Science Citation Index (SCI)/Social SCI were analyzed to provide the infrastructure of the global nanotechnology literature (prolific authors/journals/institutions/countries, most cited authors/papers/journals) and the thematic structure (taxonomy) of the global nanotechnology literature, from a science perspective. Records from the Engineering Compendex (EC) were analyzed to provide a taxonomy from a technology perspective. The Far Eastern countries have expanded nanotechnology publication output dramatically in the past decade.

  1. FAA Airport Design Competition for Universities

    NASA Technical Reports Server (NTRS)

    Sandy, Mary

    2008-01-01

    Raise awareness of the importance of airports to the National Airspace System infrastructure. Increase the involvement of the academic community in addressing airport operations and infrastructure issues and needs. Engage U.S. students in the conceptualization of applications, systems and equipment capable of addressing related challenges in a robust, reliable and comprehensive manner. Encourage U.S. undergraduate and graduate students to contribute innovative ideas and solutions to airport and runway safety issues. Provide the framework and incentives for quality educational experiences for university students. d Develop an awareness of and an interest in airports as a vital and interesting area for engineering and technology careers.

  2. Economic Impacts of Infrastructure Damages on Industrial Sector

    NASA Astrophysics Data System (ADS)

    Kajitani, Yoshio

    This paper proposes a basic model for evaluating economic impacts on industrial sectors under the conditions that multiple infrastructures are simultaneously damaged during the earthquake disasters. Especially, focusing on the available economic data developed in the smallest spatial scale in Japan (small area statistics), economic loss estimation model based on the small area statistics and its applicability are investigated on. In the detail, a loss estimation framework, utilizing survey results on firms' activities under electricity, water and gas disruptions, and route choice models in Transportation Engineering, are applied to the case of 2004 Mid-Niigata Earthquake.

  3. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    NASA Technical Reports Server (NTRS)

    Monell, Donald W.; Piland, William M.

    2000-01-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g., manufacturing and systems operation). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often lead to the inability of assessing critical programmatic and technical issues (e.g., cost, risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographical distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative engineering environment. NASA is planning to use this collaborative engineering engineering infrastructure to provide better aerospace systems life cycle design and analysis, which includes analytical assessment of the technical and programmatic aspects of a system from "cradle to grave." This paper describes the recent NASA developments in the area of collaborative engineering, the benefits (realized and anticipated) of using the developed capability, and the long-term plans for implementing this capability across Agency.

  4. INcreasing Security and Protection through Infrastructure REsilience: The INSPIRE Project

    NASA Astrophysics Data System (ADS)

    D'Antonio, Salvatore; Romano, Luigi; Khelil, Abdelmajid; Suri, Neeraj

    The INSPIRE project aims at enhancing the European potential in the field of security by ensuring the protection of critical information infrastructures through (a) the identification of their vulnerabilities and (b) the development of innovative techniques for securing networked process control systems. To increase the resilience of such systems INSPIRE will develop traffic engineering algorithms, diagnostic processes and self-reconfigurable architectures along with recovery techniques. Hence, the core idea of the INSPIRE project is to protect critical information infrastructures by appropriately configuring, managing, and securing the communication network which interconnects the distributed control systems. A working prototype will be implemented as a final demonstrator of selected scenarios. Controls/Communication Experts will support project partners in the validation and demonstration activities. INSPIRE will also contribute to standardization process in order to foster multi-operator interoperability and coordinated strategies for securing lifeline systems.

  5. Information Infrastructure Technology and Applications (IITA) Program: Annual K-12 Workshop

    NASA Technical Reports Server (NTRS)

    Hunter, Paul; Likens, William; Leon, Mark

    1995-01-01

    The purpose of the K-12 workshop is to stimulate a cross pollination of inter-center activity and introduce the regional centers to curing edge K-1 activities. The format of the workshop consists of project presentations, working groups, and working group reports, all contained in a three day period. The agenda is aggressive and demanding. The K-12 Education Project is a multi-center activity managed by the Information Infrastructure Technology and Applications (IITA)/K-12 Project Office at the NASA Ames Research Center (ARC). this workshop is conducted in support of executing the K-12 Education element of the IITA Project The IITA/K-12 Project funds activities that use the National Information Infrastructure (NII) (e.g., the Internet) to foster reform and restructuring in mathematics, science, computing, engineering, and technical education.

  6. Financing mechanisms for capital improvements : interchanges : final report.

    DOT National Transportation Integrated Search

    2010-03-01

    This report examines the use of alternative local financing mechanisms for interchange and interchange area infrastructure improvements. The financing mechanisms covered include transportation impact fees, tax increment financing, value capture finan...

  7. Progress in catalytic ignition fabrication, modeling and infrastructure : (part 1) catalytic ignition studies.

    DOT National Transportation Integrated Search

    2014-02-01

    Platinum has been recognized as a viable combustion catalyst for use in transportation : engines operating at fuel-lean conditions. Its change in electrical resistance with temperature : has been used to measure light-off temperatures and rates of he...

  8. Effective Sealing and Monitoring of Small Movement Expansion Joints in Connecticut Bridges

    DOT National Transportation Integrated Search

    2017-03-01

    One in nine bridges in the United States is rated as structurally deficient by the 2013 Infrastructure Report Card published by the American Society of Civil Engineers. One of the primary degradation factors that contribute to compromising the struct...

  9. Supplement to the bridge resource program : state-of-the-art practices of mass concrete - a literature review.

    DOT National Transportation Integrated Search

    2013-09-01

    The mission of Rutgers Universitys Center for Advanced Infrastructure and Transportation (CAIT) Bridge Resource Program : (BRP) is to provide bridge engineering support to the New Jersey Department of Transportation (NJDOT)s Bridge : Engineerin...

  10. Lean and Efficient Software: Whole-Program Optimization of Executables

    DTIC Science & Technology

    2013-01-03

    staffing for the project  Implementing the necessary infrastructure ( testing, performance evaluation, needed support software, bug and issue...in the SOW The result of the planning discussions is shown in the milestone table (section 6). In addition, we selected appropriate engineering

  11. Stormwater Management Model

    EPA Science Inventory

    SWMM is a model for urban hydrology. It has a long history and is relied upon by professional engineers in the US and around the world. SWMM provides both gray and green Infrastructure modeling capabilities. As such, it is a convenient tool for understanding the tradeoff between ...

  12. Sustainable Urban Infrastructure Development and the Role of Water Technologies in the U.S.

    EPA Science Inventory

    Increased climate variability and rapid urbanization are fundamentally changing the urban watershed hydrology and consequently sustainability of water systems. However, our urban planning and engineering practices are based on decades-old hydrological theory and guidance based o...

  13. Process Security in Chemical Engineering Education

    ERIC Educational Resources Information Center

    Piluso, Cristina; Uygun, Korkut; Huang, Yinlun; Lou, Helen H.

    2005-01-01

    The threats of terrorism have greatly alerted the chemical process industries to assure plant security at all levels: infrastructure-improvement-focused physical security, information-protection-focused cyber security, and design-and-operation-improvement-focused process security. While developing effective plant security methods and technologies…

  14. Co-Optima Transportation Ingenuity Capitalizes on Strengths of U.S. Energy

    Science.gov Websites

    of the cover of the Co-Optimization of Fuels and Engines FY17 Year in Review report The Co-Optima the nation's existing $1 trillion fuel infrastructure according to a Co-Optimization of Fuels &

  15. Water Resources and Supply Adaptation: A paradigm Shifting for Future Climate?

    EPA Science Inventory

    Climate change adds another layer of complexity in planning, engineering and management of water resources and urban water infrastructures. Yet our current practice is confined to the traditional approach that evaluates developmental scenarios and their sustainability mostly by a...

  16. Knowledge-based decision support for Space Station assembly sequence planning

    NASA Astrophysics Data System (ADS)

    1991-04-01

    A complete Personal Analysis Assistant (PAA) for Space Station Freedom (SSF) assembly sequence planning consists of three software components: the system infrastructure, intra-flight value added, and inter-flight value added. The system infrastructure is the substrate on which software elements providing inter-flight and intra-flight value-added functionality are built. It provides the capability for building representations of assembly sequence plans and specification of constraints and analysis options. Intra-flight value-added provides functionality that will, given the manifest for each flight, define cargo elements, place them in the National Space Transportation System (NSTS) cargo bay, compute performance measure values, and identify violated constraints. Inter-flight value-added provides functionality that will, given major milestone dates and capability requirements, determine the number and dates of required flights and develop a manifest for each flight. The current project is Phase 1 of a projected two phase program and delivers the system infrastructure. Intra- and inter-flight value-added were to be developed in Phase 2, which has not been funded. Based on experience derived from hundreds of projects conducted over the past seven years, ISX developed an Intelligent Systems Engineering (ISE) methodology that combines the methods of systems engineering and knowledge engineering to meet the special systems development requirements posed by intelligent systems, systems that blend artificial intelligence and other advanced technologies with more conventional computing technologies. The ISE methodology defines a phased program process that begins with an application assessment designed to provide a preliminary determination of the relative technical risks and payoffs associated with a potential application, and then moves through requirements analysis, system design, and development.

  17. Knowledge-based decision support for Space Station assembly sequence planning

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A complete Personal Analysis Assistant (PAA) for Space Station Freedom (SSF) assembly sequence planning consists of three software components: the system infrastructure, intra-flight value added, and inter-flight value added. The system infrastructure is the substrate on which software elements providing inter-flight and intra-flight value-added functionality are built. It provides the capability for building representations of assembly sequence plans and specification of constraints and analysis options. Intra-flight value-added provides functionality that will, given the manifest for each flight, define cargo elements, place them in the National Space Transportation System (NSTS) cargo bay, compute performance measure values, and identify violated constraints. Inter-flight value-added provides functionality that will, given major milestone dates and capability requirements, determine the number and dates of required flights and develop a manifest for each flight. The current project is Phase 1 of a projected two phase program and delivers the system infrastructure. Intra- and inter-flight value-added were to be developed in Phase 2, which has not been funded. Based on experience derived from hundreds of projects conducted over the past seven years, ISX developed an Intelligent Systems Engineering (ISE) methodology that combines the methods of systems engineering and knowledge engineering to meet the special systems development requirements posed by intelligent systems, systems that blend artificial intelligence and other advanced technologies with more conventional computing technologies. The ISE methodology defines a phased program process that begins with an application assessment designed to provide a preliminary determination of the relative technical risks and payoffs associated with a potential application, and then moves through requirements analysis, system design, and development.

  18. A Wireless Fatigue Monitoring System Utilizing a Bio-Inspired Tree Ring Data Tracking Technique

    PubMed Central

    Bai, Shi; Li, Xuan; Xie, Zhaohui; Zhou, Zhi; Ou, Jinping

    2014-01-01

    Fatigue, a hot scientific research topic for centuries, can trigger sudden failure of critical structures such as aircraft and railway systems, resulting in enormous casualties as well as economic losses. The fatigue life of certain structures is intrinsically random and few monitoring techniques are capable of tracking the full life-cycle fatigue damage. In this paper, a novel in-situ wireless real-time fatigue monitoring system using a bio-inspired tree ring data tracking technique is proposed. The general framework, methodology, and verification of this intelligent system are discussed in details. The rain-flow counting (RFC) method is adopted as the core algorithm which quantifies fatigue damages, and Digital Signal Processing (DSP) is introduced as the core module for data collection and analysis. Laboratory test results based on strain gauges and polyvinylidene fluoride (PVDF) sensors have shown that the developed intelligent system can provide a reliable quick feedback and early warning of fatigue failure. With the merits of low cost, high accuracy and great reliability, the developed wireless fatigue sensing system can be further applied to mechanical engineering, civil infrastructures, transportation systems, aerospace engineering, etc. PMID:24603635

  19. Here and now: the intersection of computational science, quantum-mechanical simulations, and materials science

    NASA Astrophysics Data System (ADS)

    Marzari, Nicola

    The last 30 years have seen the steady and exhilarating development of powerful quantum-simulation engines for extended systems, dedicated to the solution of the Kohn-Sham equations of density-functional theory, often augmented by density-functional perturbation theory, many-body perturbation theory, time-dependent density-functional theory, dynamical mean-field theory, and quantum Monte Carlo. Their implementation on massively parallel architectures, now leveraging also GPUs and accelerators, has started a massive effort in the prediction from first principles of many or of complex materials properties, leading the way to the exascale through the combination of HPC (high-performance computing) and HTC (high-throughput computing). Challenges and opportunities abound: complementing hardware and software investments and design; developing the materials' informatics infrastructure needed to encode knowledge into complex protocols and workflows of calculations; managing and curating data; resisting the complacency that we have already reached the predictive accuracy needed for materials design, or a robust level of verification of the different quantum engines. In this talk I will provide an overview of these challenges, with the ultimate prize being the computational understanding, prediction, and design of properties and performance for novel or complex materials and devices.

  20. Health monitoring of the Saint-Jean bridge of Bordeaux, France using fiber Bragg grating extensometers

    NASA Astrophysics Data System (ADS)

    Magne, Sylvain; Boussoir, Jonathan; Rougeault, Stephane; Marty-Dewynter, Veronique; Ferdinand, Pierre; Bureau, Lionel

    2003-07-01

    Most civil engineering structures have been built in the 50's and 60's and reach similar level of degradation accelerated by loading conditions and corrosion. In Europe, National Authorities and the European Commission promote Health Monitoring concepts, instrumentation of existing structures and help in the design of new durable structures of higher performance. In this context, the CEA-List has achieved a non-exclusive industrial transfer of its Bragg grating sensing technology for civil engineering applications to Hydrolog (French SME), supported by the European Community and the french ministry of Industry. In order to check the reliability and user-friendliness of this instrumentation, eleven spectrally-multiplexed Bragg grating-based extensometers, four FBG temperature sensors and an acquisition unit have been installed into the Saint-Jean bridge in Bordeaux, France with the help of the Infrastructure Regional Direction (DRE-Aquitaine) and the Bordeaux Authority (Communaute Urbaine de Bordeaux). A standardized loading of the bridge has been performed on October 29, 1001, with the purpose of correlating its mechanical reaction to loading conditions. Moreover, the equipment has been operating for one year to take into account the winter-summer cycle.

  1. Financing mechanisms for capital improvements : interchanges, final report, March 2010.

    DOT National Transportation Integrated Search

    2010-03-01

    This report examines the use of alternative local financing mechanisms for interchange and interchange area infrastructure improvements. The financing mechanisms covered include transportation impact fees, tax increment financing, value capture finan...

  2. The GIIDA (Management of the CNR Environmental Data for Interoperability) project

    NASA Astrophysics Data System (ADS)

    Nativi, S.

    2009-04-01

    This work presents the GIIDA (Gestione Integrata e Interoperativa dei Dati Ambientali del CNR) inter-departimental project of the Italian National Research Council (CNR). The project is an initiative of the Earth and Environment Department (Dipartimento Terra e Ambiente) of the CNR. GIIDA mission is "To implement the Spatial Information Infrastructure (SII) of CNR for Environmental and Earth Observation data". The project aims to design and develop a multidisciplinary cyber-infrastructure for the management, processing and evaluation of Earth and environmental data. This infrastructure will contribute to the Italian presence in international projects and initiatives, such as: INSPIRE, GMES, GEOSS and SEIS. The main GIIDA goals are: • Networking: To create a network of CNR Institutes for implementing a common information space and sharing spatial resources. • Observation: Re-engineering the environmental observation system of CNR • Modeling: Re-engineering the environmental modeling system del CNR • Processing: Re-engineering the environmental processing system del CNR • Mediation: To define mediation methods and instruments for implementing the international interoperability standards. The project started in July 2008 releasing a specification document of the GIIDA architecture for interoperability and security. Based on these documents, a Call for Proposals was issued in September 2008. GIIDA received 23 proposed pilots from 16 different Institutes belonging to five CNR Departments and from 15 non-CNR Institutions (e.g. three Italian regional administrations, three national research centers, four universities, some SMEs). These pilot were divided into thematic areas. In fact, GIIDA considers seven main thematic areas/domains: • Biodiversity; • Climate Changes; • Air Quality; • Soil and Water Quality; • Risks; • Infrastructures for Research and Public Administrations; • Sea and Marine resources Each of these thematic areas is covered by a Working Group which coordinates the activities and the achievements of the respective pilots. Working Groups are called to develop for each area: 1) a specific Web Portal; 2) a thematic catalog service; 3) a thematic thesaurus service; 4) a thematic Wiki; 5) standard access and view services for thematic resources -such as: datasets, models, and processing services; 6) a couple of significant use scenarios to be demonstrated.

  3. Empowering citizens with access control mechanisms to their personal health resources.

    PubMed

    Calvillo, J; Román, I; Roa, L M

    2013-01-01

    Advancements in information and communication technologies have allowed the development of new approaches to the management and use of healthcare resources. Nowadays it is possible to address complex issues such as meaningful access to distributed data or communication and understanding among heterogeneous systems. As a consequence, the discussion focuses on the administration of the whole set of resources providing knowledge about a single subject of care (SoC). New trends make the SoC administrator and responsible for all these elements (related to his/her demographic data, health, well-being, social conditions, etc.) and s/he is granted the ability of controlling access to them by third parties. The subject of care exchanges his/her passive role without any decision capacity for an active one allowing to control who accesses what. We study the necessary access control infrastructure to support this approach and develop mechanisms based on semantic tools to assist the subject of care with the specification of access control policies. This infrastructure is a building block of a wider scenario, the Person-Oriented Virtual Organization (POVO), aiming at integrating all the resources related to each citizen's health-related data. The POVO covers the wide range and heterogeneity of available healthcare resources (e.g., information sources, monitoring devices, or software simulation tools) and grants each SoC the access control to them. Several methodological issues are crucial for the design of the targeted infrastructure. The distributed system concept and focus are reviewed from the service oriented architecture (SOA) perspective. The main frameworks for the formalization of distributed system architectures (Reference Model-Open Distributed Processing, RM-ODP; and Model Driven Architecture, MDA) are introduced, as well as how the use of the Unified Modelling Language (UML) is standardized. The specification of access control policies and decision making mechanisms are essential keys for this approach and they are accomplished by using semantic technologies (i.e., ontologies, rule languages, and inference engines). The results are mainly focused on the security and access control of the proposed scenario. An ontology has been designed and developed for the POVO covering the terminology of the scenario and easing the automation of administration tasks. Over that ontology, an access control mechanism based on rule languages allows specifying access control policies, and an inference engine performs the decision making process automatically. The usability of solutions to ease administration tasks to the SoC is improved by the Me-As-An-Admin (M3A) application. This guides the SoC through the specification of personal access control policies to his/her distributed resources by using semantic technologies (e.g., metamodeling, model-to-text transformations, etc.). All results are developed as services and included in an architecture in accordance with standards and principles of openness and interoperability. Current technology can bring health, social and well-being care actually centered on citizens, and granting each person the management of his/her health information. However, the application of technology without adopting methodologies or normalized guidelines will reduce the interoperability of solutions developed, failing in the development of advanced services and improved scenarios for health delivery. Standards and reference architectures can be cornerstones for future-proof and powerful developments. Finally, not only technology must follow citizen-centric approaches, but also the gaps needing legislative efforts that support these new paradigms of healthcare delivery must be identified and addressed. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. Analysis of Instrumentation to Monitor the Hydrologic Performance of Green Infrastructure at the Edison Environmental Center

    EPA Science Inventory

    Infiltration is one of the primary functional mechanisms of green infrastructure stormwater controls, so this study explored selection and placement of embedded soil moisture and water level sensors to monitor surface infiltration and infiltration into the underlying soil for per...

  5. Rising Dragon: Infrastructure Development and Chinese Influence in Vietnam

    DTIC Science & Technology

    2009-06-01

    This thesis will contribute to the on-going debate over whether China’s rise as a regional and potential global power will be benign or disruptive...bilateral and regional initiatives. These infrastructure developments create the mechanisms for future exploitation by expanding China’s economic and military

  6. Middleware Case Study: MeDICi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wynne, Adam S.

    2011-05-05

    In many application domains in science and engineering, data produced by sensors, instruments and networks is naturally processed by software applications structured as a pipeline . Pipelines comprise a sequence of software components that progressively process discrete units of data to produce a desired outcome. For example, in a Web crawler that is extracting semantics from text on Web sites, the first stage in the pipeline might be to remove all HTML tags to leave only the raw text of the document. The second step may parse the raw text to break it down into its constituent grammatical parts, suchmore » as nouns, verbs and so on. Subsequent steps may look for names of people or places, interesting events or times so documents can be sequenced on a time line. Each of these steps can be written as a specialized program that works in isolation with other steps in the pipeline. In many applications, simple linear software pipelines are sufficient. However, more complex applications require topologies that contain forks and joins, creating pipelines comprising branches where parallel execution is desirable. It is also increasingly common for pipelines to process very large files or high volume data streams which impose end-to-end performance constraints. Additionally, processes in a pipeline may have specific execution requirements and hence need to be distributed as services across a heterogeneous computing and data management infrastructure. From a software engineering perspective, these more complex pipelines become problematic to implement. While simple linear pipelines can be built using minimal infrastructure such as scripting languages, complex topologies and large, high volume data processing requires suitable abstractions, run-time infrastructures and development tools to construct pipelines with the desired qualities-of-service and flexibility to evolve to handle new requirements. The above summarizes the reasons we created the MeDICi Integration Framework (MIF) that is designed for creating high-performance, scalable and modifiable software pipelines. MIF exploits a low friction, robust, open source middleware platform and extends it with component and service-based programmatic interfaces that make implementing complex pipelines simple. The MIF run-time automatically handles queues between pipeline elements in order to handle request bursts, and automatically executes multiple instances of pipeline elements to increase pipeline throughput. Distributed pipeline elements are supported using a range of configurable communications protocols, and the MIF interfaces provide efficient mechanisms for moving data directly between two distributed pipeline elements.« less

  7. 76 FR 7153 - Secretarial Business Development Mission; Transportation Infrastructure/Multimodal Products and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ...- modal freight and intelligent supply chain management, provides significant business [[Page 7154..., including port development, airport development, freight rail systems and technologies, supply chain systems... for U.S. engineers, program management firms, and manufacturers to contribute to the creation of new...

  8. USEPA's Future Role for the Stormwater Management Model (SWMM)

    EPA Science Inventory

    USEPA’s Storm Water Management Model (SWMM) is a heavily used model to simulate stormwater and wastewater infrastructure performance as an enhanced decision making tool. SWMM I was released in 1971 by the Metcalf and Eddy, Water Resources Engineers, and the University of Florida...

  9. DREAMS and IMAGE: A Model and Computer Implementation for Concurrent, Life-Cycle Design of Complex Systems

    NASA Technical Reports Server (NTRS)

    Hale, Mark A.; Craig, James I.; Mistree, Farrokh; Schrage, Daniel P.

    1995-01-01

    Computing architectures are being assembled that extend concurrent engineering practices by providing more efficient execution and collaboration on distributed, heterogeneous computing networks. Built on the successes of initial architectures, requirements for a next-generation design computing infrastructure can be developed. These requirements concentrate on those needed by a designer in decision-making processes from product conception to recycling and can be categorized in two areas: design process and design information management. A designer both designs and executes design processes throughout design time to achieve better product and process capabilities while expanding fewer resources. In order to accomplish this, information, or more appropriately design knowledge, needs to be adequately managed during product and process decomposition as well as recomposition. A foundation has been laid that captures these requirements in a design architecture called DREAMS (Developing Robust Engineering Analysis Models and Specifications). In addition, a computing infrastructure, called IMAGE (Intelligent Multidisciplinary Aircraft Generation Environment), is being developed that satisfies design requirements defined in DREAMS and incorporates enabling computational technologies.

  10. A model for manuscript submitted to the nth IIR conference on overview of the long-baseline neutrino facility cryogenic system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montanari, David; Adamowski, Mark; Bremer, Johan

    2017-03-09

    The Deep Underground Neutrino Experiment (DUNE) collaboration is developing a multi-kiloton Long-Baseline neutrino experiment that will be located one mile underground at the Sanford Underground Research Facility (SURF) in Lead, SD. In the present design, detectors will be located inside four cryostats filled with a total of 68,400 ton of ultrapure liquid argon, at the level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) is developing the conventional facilities and cryogenics infrastructure supporting this experiment. The cryogenics system is composed of several sub-systems: External/Infrastructure, Proximity, and Internal cryogenics. It will bemore » engineered, manufactured, commissioned, and qualified by an international engineering team. This contribution highlights the main features of the LBNF cryogenic system. It presents its performance, functional requirements and modes of operations. As a result, it also details the status of the design, present and future needs.« less

  11. Illinois Accelerator Research Center

    DOE PAGES

    Kroc, Thomas K.; Cooper, Charlie A.

    2017-10-26

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 heavy assembly building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, whichmore » contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. Finally, at IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.« less

  12. Illinois Accelerator Research Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroc, Thomas K.; Cooper, Charlie A.

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 heavy assembly building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, whichmore » contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. Finally, at IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.« less

  13. Illinois Accelerator Research Center

    NASA Astrophysics Data System (ADS)

    Kroc, Thomas K.; Cooper, Charlie A.

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 Heavy Assembly Building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft2 Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, which contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. At IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.

  14. Final report for the Integrated and Robust Security Infrastructure (IRSI) laboratory directed research and development project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchinson, R.L.; Hamilton, V.A.; Istrail, G.G.

    1997-11-01

    This report describes the results of a Sandia-funded laboratory-directed research and development project titled {open_quotes}Integrated and Robust Security Infrastructure{close_quotes} (IRSI). IRSI was to provide a broad range of commercial-grade security services to any software application. IRSI has two primary goals: application transparency and manageable public key infrastructure. IRSI must provide its security services to any application without the need to modify the application to invoke the security services. Public key mechanisms are well suited for a network with many end users and systems. There are many issues that make it difficult to deploy and manage a public key infrastructure. IRSImore » addressed some of these issues to create a more manageable public key infrastructure.« less

  15. SumutSiana

    NASA Astrophysics Data System (ADS)

    Nasution, M. K. M.

    2018-02-01

    Technically, a definition is at the heart of all forms of understanding. However, in the engineering aspect, the introduction becomes a first step that expands the meaning and function of definitions used for something, especially a particular study. SumutSiana is a term specifically constructed to understand not only North Sumatra culture, but the natural wealth required in social engineering, and this paper becomes infrastructure for it. SumutSiana is disclosed as a scope of discussion on natural resources, culture, human resources, and all related to North Sumatra.

  16. Role of Inspection and Condition Assessment in U.S. Army Corps of Engineers Civil Works Infrastructure Management: Current Practices and Opportunities for the Future

    DTIC Science & Technology

    2009-01-01

    being done, in part, in response to Executive Order 13327, which mandates a pragmatic and consistent approach to Federal agency management of real...move forward. The U.S. Army Research and Development Center, Construction Engineering Research Laboratory was tasked with surveying a number of...assessment in use within USACE. (All rely on a deficiency-based approach, i.e., deviations from standards or from known benchmarks, to inspection.); (2

  17. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    NASA Technical Reports Server (NTRS)

    Monell, Donald W.; Piland, William M.

    1999-01-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g. manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often lead to the inability of assessing critical programmatic and technical issues (e.g., cost risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative engineering environment. NASA is planning to use this collaborative engineering infrastructure to provide better aerospace systems life cycle design and analysis, which includes analytical assessment of the technical and programmatic aspects of a system from "cradle to grave." This paper describes the recent NASA developments in the area of collaborative engineering, the benefits (realized and anticipated) of using the developed capability, and the long-term plans for implementing this capability across the Agency.

  18. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    NASA Astrophysics Data System (ADS)

    Monell, Donald W.; Piland, William M.

    2000-07-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g., manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often led to the inability of assessing critical programmatic and technical issues (e.g., cost, risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative engineering environment. NASA is planning to use this collaborative engineering infrastructure to provide better aerospace systems life cycle design and analysis, which includes analytical assessment of the technical and programmatic aspects of a system from "cradle to grave." This paper describes the recent NASA developments in the area of collaborative engineering, the benefits (realized and anticipated) of using the developed capability, and the long-term plans for implementing this capability across the Agency.

  19. Balancing strength and toughness of calcium-silicate-hydrate via random nanovoids and particle inclusions: Atomistic modeling and statistical analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Ning; Shahsavari, Rouzbeh

    2016-11-01

    As the most widely used manufactured material on Earth, concrete poses serious societal and environmental concerns which call for innovative strategies to develop greener concrete with improved strength and toughness, properties that are exclusive in man-made materials. Herein, we focus on calcium silicate hydrate (C-S-H), the major binding phase of all Portland cement concretes, and study how engineering its nanovoids and portlandite particle inclusions can impart a balance of strength, toughness and stiffness. By performing an extensive +600 molecular dynamics simulations coupled with statistical analysis tools, our results provide new evidence of ductile fracture mechanisms in C-S-H - reminiscent of crystalline alloys and ductile metals - decoding the interplay between the crack growth, nanovoid/particle inclusions, and stoichiometry, which dictates the crystalline versus amorphous nature of the underlying matrix. We found that introduction of voids and portlandite particles can significantly increase toughness and ductility, specially in C-S-H with more amorphous matrices, mainly owing to competing mechanisms of crack deflection, voids coalescence, internal necking, accommodation, and geometry alteration of individual voids/particles, which together regulate toughness versus strength. Furthermore, utilizing a comprehensive global sensitivity analysis on random configuration-property relations, we show that the mean diameter of voids/particles is the most critical statistical parameter influencing the mechanical properties of C-S-H, irrespective of stoichiometry or crystalline or amorphous nature of the matrix. This study provides new fundamental insights, design guidelines, and de novo strategies to turn the brittle C-S-H into a ductile material, impacting modern engineering of strong and tough concrete infrastructures and potentially other complex brittle materials.

  20. Stormwater management and ecosystem services: a review

    NASA Astrophysics Data System (ADS)

    Prudencio, Liana; Null, Sarah E.

    2018-03-01

    Researchers and water managers have turned to green stormwater infrastructure, such as bioswales, retention basins, wetlands, rain gardens, and urban green spaces to reduce flooding, augment surface water supplies, recharge groundwater, and improve water quality. It is increasingly clear that green stormwater infrastructure not only controls stormwater volume and timing, but also promotes ecosystem services, which are the benefits that ecosystems provide to humans. Yet there has been little synthesis focused on understanding how green stormwater management affects ecosystem services. The objectives of this paper are to review and synthesize published literature on ecosystem services and green stormwater infrastructure and identify gaps in research and understanding, establishing a foundation for research at the intersection of ecosystems services and green stormwater management. We reviewed 170 publications on stormwater management and ecosystem services, and summarized the state-of-the-science categorized by the four types of ecosystem services. Major findings show that: (1) most research was conducted at the parcel-scale and should expand to larger scales to more closely understand green stormwater infrastructure impacts, (2) nearly a third of papers developed frameworks for implementing green stormwater infrastructure and highlighted barriers, (3) papers discussed ecosystem services, but less than 40% quantified ecosystem services, (4) no geographic trends emerged, indicating interest in applying green stormwater infrastructure across different contexts, (5) studies increasingly integrate engineering, physical science, and social science approaches for holistic understanding, and (6) standardizing green stormwater infrastructure terminology would provide a more cohesive field of study than the diverse and often redundant terminology currently in use. We recommend that future research provide metrics and quantify ecosystem services, integrate disciplines to measure ecosystem services from green stormwater infrastructure, and better incorporate stormwater management into environmental policy. Our conclusions outline promising future research directions at the intersection of stormwater management and ecosystem services.

  1. The Hydrologic Implications Of Unique Urban Soil Horizon Sequencing On The Functions Of Passive Green Infrastructure

    NASA Astrophysics Data System (ADS)

    Shuster, W.; Schifman, L. A.; Herrmann, D.

    2017-12-01

    Green infrastructure represents a broad set of site- to landscape-scale practices that can be flexibly implemented to increase sewershed retention capacity, and can thereby improve on the management of water quantity and quality. Although much green infrastructure presents as formal engineered designs, urbanized landscapes with highly-interspersed pervious surfaces (e.g., right-of-way, parks, lawns, vacant land) may offer ecosystem services as passive, infiltrative green infrastructure. Yet, infiltration and drainage processes are regulated by soil surface conditions, and then the layering of subsoil horizons, respectively. Drawing on a unique urban soil taxonomic and hydrologic dataset collected in 12 cities (each city representing a major soil order), we determined how urbanization processes altered the sequence of soil horizons (compared to pre-urbanized reference soil pedons) and modeled the hydrologic implications of these shifts in layering with an unsaturated zone code (HYDRUS2D). We found that the different layering sequences in urbanized soils render different types and extents of supporting (plant-available soil water), provisioning (productive vegetation), and regulating (runoff mitigation) ecosystem services.

  2. The Effect of Infrastructure Sharing in Estimating Operations Cost of Future Space Transportation Systems

    NASA Technical Reports Server (NTRS)

    Sundaram, Meenakshi

    2005-01-01

    NASA and the aerospace industry are extremely serious about reducing the cost and improving the performance of launch vehicles both manned or unmanned. In the aerospace industry, sharing infrastructure for manufacturing more than one type spacecraft is becoming a trend to achieve economy of scale. An example is the Boeing Decatur facility where both Delta II and Delta IV launch vehicles are made. The author is not sure how Boeing estimates the costs of each spacecraft made in the same facility. Regardless of how a contractor estimates the cost, NASA in its popular cost estimating tool, NASA Air force Cost Modeling (NAFCOM) has to have a method built in to account for the effect of infrastructure sharing. Since there is no provision in the most recent version of NAFCOM2002 to take care of this, it has been found by the Engineering Cost Community at MSFC that the tool overestimates the manufacturing cost by as much as 30%. Therefore, the objective of this study is to develop a methodology to assess the impact of infrastructure sharing so that better operations cost estimates may be made.

  3. Clinical research: business opportunities for pharmacy-based investigational drug services.

    PubMed

    Marnocha, R M

    1999-02-01

    The application by an academic health center of business principles to the conduct of clinical research is described. Re-engineering of the infrastructure for clinical research at the University of Wisconsin and University of Wisconsin Hospital and Clinics began in 1990 with the creation of the Center for Clinical Trials (CCT) and the restructuring of the investigational drug services (IDS). Strategies to further improve the institution's clinical research activities have been continually assessed and most recently have centered on the adaptation of a business philosophy within the institution's multidisciplinary research infrastructure. Toward that end, the CCT and IDS have introduced basic business principles into operational activities. Four basic business concepts have been implemented: viewing the research protocol as a commodity, seeking payment for services rendered, tracking investments, and assessing performance. It is proposed that incorporation of these basic business concepts is not only compatible with the infrastructure for clinical research but beneficial to that infrastructure. The adaptation of a business mindset is likely to enable an academic health center to reach its clinical research goals.

  4. Certification of tactics and strategies in aviation

    NASA Technical Reports Server (NTRS)

    Koelman, Hartmut

    1994-01-01

    The paper suggests that the 'tactics and strategies' notion is a highly suitable paradigm to describe the cognitive involvement of human operators in advanced aviation systems (far more suitable than classical functional analysis), and that the workload and situational awareness of operators are intimately associated with the planning and execution of their tactics and strategies. If system designers have muddled views about the collective tactics and strategies to be used during operation, they will produce sub-optimum designs. If operators use unproven and/or inappropriate tactics and strategies, the system may fail. The author wants to make a point that, beyond certification of people or system designs, there may be a need to go into more detail and examine (certify?) the set of tactics and strategies (i.e., the Operational Concept) which makes the people and systems perform as expected. The collective tactics and strategies determine the information flows and situational awareness which exists in organizations and composite human-machine systems. The available infrastructure and equipment (automation) enable these information flows and situational awareness, but are at the same time the constraining factor. Frequently, the tactics and strategies are driven by technology, whereas we would rather like to see a system designed to support an optimized Operational Concept, i.e., to support a sufficiently coherent, cooperative and modular set of anticipation and planning mechanisms. Again, in line with the view of MacLeod and Taylor (1993), this technology driven situation may be caused by the system designer's and operator job designer's over-emphasis on functional analysis (a mechanistic engineering concept), at the expense of a subject which does not seem to be well understood today: the role of the (human cognitive and/or automated) tactics and strategies which are embedded in composite human-machine systems. Research would be needed to arrive at a generally accepted 'planning theory' which can elevate the analysis, description and design of tactics and strategies from today's cottage industry methods to an engineering discipline. The available infrastructure and equipment (automation) enable these information flows and situational awareness, but are at the same time the constraining factor. Frequently, the tactics and strategies are driven by technology, whereas we would rather like to see a system designed to support an optimized Operational Concept, i.e., to support a sufficiently coherent, cooperative and modular set of anticipation and planning mechanisms. Again, in line with the view of MacLeod and Taylor (1993), this technology driven situation may be caused by the system designer's and operator job designer's over-emphasis on functional analysis (a mechanistic engineering concept), at the expense of a subject which does not seem to be well understood today: the role of the (human cognitive and/or automated) tactics and strategies which are embedded in composite human-machine systems. Research would be needed to arrive at a generally accepted 'planning theory' which can evaluate the analysis, description and design of tactics and strategies from today's cottage industry methods to an engineering discipline.

  5. Educating the humanitarian engineer.

    PubMed

    Passino, Kevin M

    2009-12-01

    The creation of new technologies that serve humanity holds the potential to help end global poverty. Unfortunately, relatively little is done in engineering education to support engineers' humanitarian efforts. Here, various strategies are introduced to augment the teaching of engineering ethics with the goal of encouraging engineers to serve as effective volunteers for community service. First, codes of ethics, moral frameworks, and comparative analysis of professional service standards lay the foundation for expectations for voluntary service in the engineering profession. Second, standard coverage of global issues in engineering ethics educates humanitarian engineers about aspects of the community that influence technical design constraints encountered in practice. Sample assignments on volunteerism are provided, including a prototypical design problem that integrates community constraints into a technical design problem in a novel way. Third, it is shown how extracurricular engineering organizations can provide a theory-practice approach to education in volunteerism. Sample completed projects are described for both undergraduates and graduate students. The student organization approach is contrasted with the service-learning approach. Finally, long-term goals for establishing better infrastructure are identified for educating the humanitarian engineer in the university, and supporting life-long activities of humanitarian engineers.

  6. Is There an Economic Case for Training Intervention in the Manual Material Handling Sector of Developing Countries?

    PubMed

    Lahiri, Supriya; Tempesti, Tommaso; Gangopadhyay, Somnath

    2016-02-01

    To estimate cost-effectiveness ratios and net costs of a training intervention to reduce morbidity among porters who carry loads without mechanical assistance in a developing country informal sector setting. Pre- and post-intervention survey data (n = 100) were collected in a prospective study: differences in physical/mental composite scores and pain scale scores were computed. Costs and economic benefits of the intervention were monetized with a net-cost model. Significant changes in physical composite scores (2.5), mental composite scores (3.2), and pain scale scores (-1.0) led to cost-effectiveness ratios of $6.97, $5.41, and $17.91, respectively. Multivariate analysis showed that program adherence enhanced effectiveness. The net cost of the intervention was -$5979.00 due to a reduction in absenteeism. Workplace ergonomic training is cost-effective and should be implemented wherein other engineering-control interventions are precluded due to infrastructural constraints.

  7. Coupling Sensing Hardware with Data Interrogation Software for Structural Health Monitoring

    DOE PAGES

    Farrar, Charles R.; Allen, David W.; Park, Gyuhae; ...

    2006-01-01

    The process of implementing a damage detection strategy for aerospace, civil and mechanical engineering infrastructure is referred to as structural health monitoring (SHM). The authors' approach is to address the SHM problem in the context of a statistical pattern recognition paradigm. In this paradigm, the process can be broken down into four parts: (1) Operational Evaluation, (2) Data Acquisition and Cleansing, (3) Feature Extraction and Data Compression, and (4) Statistical Model Development for Feature Discrimination. These processes must be implemented through hardware or software and, in general, some combination of these two approaches will be used. This paper will discussmore » each portion of the SHM process with particular emphasis on the coupling of a general purpose data interrogation software package for structural health monitoring with a modular wireless sensing and processing platform. More specifically, this paper will address the need to take an integrated hardware/software approach to developing SHM solutions.« less

  8. Developing a short range vehicle to infrastructure communication system to enhance the safety at STOP sign intersections : final report.

    DOT National Transportation Integrated Search

    2016-05-01

    Stop sign controlled unsignalized intersections raise a public safe concern. Even though various strategies, such as engineering, education, and policy, have been applied in practice, there are a number of fatal crashes occurred at unsignalized inter...

  9. Sandia and General Motors: Advancing Clean Combustion Engines with

    Science.gov Websites

    Quantitative Risk Assessment Technical Reference for Hydrogen Compatibility of Materials Hydrogen Battery Abuse Testing Laboratory Center for Infrastructure Research and Innovation Combustion Research Facility Joint BioEnergy Institute Close Energy Research Programs ARPA-E Basic Energy Sciences Materials

  10. The cloud services innovation platform- enabling service-based environmental modelling using infrastructure-as-a-service cloud computing

    USDA-ARS?s Scientific Manuscript database

    Service oriented architectures allow modelling engines to be hosted over the Internet abstracting physical hardware configuration and software deployments from model users. Many existing environmental models are deployed as desktop applications running on user's personal computers (PCs). Migration ...

  11. Integrated remote sensing and visualization (IRSV) system for transportation infrastructure operations and management, phase one, volume 1 : summary report.

    DOT National Transportation Integrated Search

    2009-12-01

    The Integrated Remote Sensing and Visualization System (IRSV) is being designed to accommodate the needs of todays Bridge : Engineers at the state and local level from the following aspects: : Better understanding and enforcement of a complex ...

  12. Challenges and Opportunities for Innovation in the Public Works Infrastructure. Volume 1.

    DTIC Science & Technology

    1993-06-01

    managing innovation are continuously moving into the private sector seeking higher wages. Political Agendas. Frequent emphasis on short-term, high...Colglazier, Jr., " Managing Innovation ," Pergamon Press (1982). Mitropoulos, P., "An Expert System Technology Transfer Model for the Architecture-Engineering

  13. 76 FR 38614 - Transportation Infrastructure/Multimodal Products and Services Trade Mission to Doha, Qatar, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ...- modal freight and intelligent supply chain management, provides significant business opportunities in... technologies, supply chain systems and strategies; mass transportation systems; advanced vehicle technologies... opportunities for U.S. engineers, program management firms, and manufacturers to contribute to the creation of...

  14. 76 FR 32953 - Transportation Infrastructure/Multimodal Products and Services Trade Mission to Doha, Qatar, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-07

    ... new systems, particularly those related to multimodal freight and intelligent supply chain management... technologies, supply chain systems and strategies; mass transportation systems; advanced vehicle technologies... country. There are excellent opportunities for U.S. engineers, program management firms, and manufacturers...

  15. Virtual Control Systems Environment (VCSE)

    ScienceCinema

    Atkins, Will

    2018-02-14

    Will Atkins, a Sandia National Laboratories computer engineer discusses cybersecurity research work for process control systems. Will explains his work on the Virtual Control Systems Environment project to develop a modeling and simulation framework of the U.S. electric grid in order to study and mitigate possible cyberattacks on infrastructure.

  16. USEPA’s Future Role for the Storm Water Management Model (SWMM)

    EPA Science Inventory

    USEPA's Storm Water Management Model (SWMM) is a heavily used model to simulate stormwater and wastewater infrastructure performance as an enhanced decision making tool. SWMM I was released in 1971 by the Metcalf and Eddy, Water Resources Engineers, and the University of Florida...

  17. USEPA’s Future Role for the Storm Water Management Model (SWMM)

    EPA Science Inventory

    USEPA’s Storm Water Management Model (SWMM) is a heavily used model to simulate stormwater and wastewater infrastructure performance as an enhanced decision making tool. SWMM I was released in 1971 by the Metcalf and Eddy, Water Resources Engineers, and the University of F...

  18. Phylogenetic and Functional Diversity of Total (DNA) and Expressed (RNA) Bacterial Communities in Urban Green Infrastructure Bioswale Soils.

    PubMed

    Gill, Aman S; Lee, Angela; McGuire, Krista L

    2017-08-15

    New York City (NYC) is pioneering green infrastructure with the use of bioswales and other engineered soil-based habitats to provide stormwater infiltration and other ecosystem functions. In addition to avoiding the environmental and financial costs of expanding traditional built infrastructure, green infrastructure is thought to generate cobenefits in the form of diverse ecological processes performed by its plant and microbial communities. Yet, although plant communities in these habitats are closely managed, we lack basic knowledge about how engineered ecosystems impact the distribution and functioning of soil bacteria. We sequenced amplicons of the 16S ribosomal subunit, as well as seven genes associated with functional pathways, generated from both total (DNA-based) and expressed (RNA) soil communities in the Bronx, NYC, NY, in order to test whether bioswale soils host characteristic bacterial communities with evidence for enriched microbial functioning, compared to nonengineered soils in park lawns and tree pits. Bioswales had distinct, phylogenetically diverse bacterial communities, including taxa associated with nutrient cycling and metabolism of hydrocarbons and other pollutants. Bioswale soils also had a significantly greater diversity of genes involved in several functional pathways, including carbon fixation ( cbbL-R [ cbbL gene, red-like subunit] and apsA ), nitrogen cycling ( noxZ and amoA ), and contaminant degradation ( bphA ); conversely, no functional genes were significantly more abundant in nonengineered soils. These results provide preliminary evidence that urban land management can shape the diversity and activity of soil communities, with positive consequences for genetic resources underlying valuable ecological functions, including biogeochemical cycling and degradation of common urban pollutants. IMPORTANCE Management of urban soil biodiversity by favoring taxa associated with decontamination or other microbial metabolic processes is a powerful prospect, but it first requires an understanding of how engineered soil habitats shape patterns of microbial diversity. This research adds to our understanding of urban microbial biogeography by providing data on soil bacteria in bioswales, which had relatively diverse and compositionally distinct communities compared to park and tree pit soils. Bioswales also contained comparatively diverse pools of genes related to carbon sequestration, nitrogen cycling, and contaminant degradation, suggesting that engineered soils may serve as effective reservoirs of functional microbial biodiversity. We also examined both total (DNA-based) and expressed (RNA) communities, revealing that total bacterial communities (the exclusive targets in the vast majority of soil studies) were poor predictors of expressed community diversity, pointing to the value of quantifying RNA, especially when ecological functioning is considered. Copyright © 2017 American Society for Microbiology.

  19. Phylogenetic and Functional Diversity of Total (DNA) and Expressed (RNA) Bacterial Communities in Urban Green Infrastructure Bioswale Soils

    PubMed Central

    Lee, Angela; McGuire, Krista L.

    2017-01-01

    ABSTRACT New York City (NYC) is pioneering green infrastructure with the use of bioswales and other engineered soil-based habitats to provide stormwater infiltration and other ecosystem functions. In addition to avoiding the environmental and financial costs of expanding traditional built infrastructure, green infrastructure is thought to generate cobenefits in the form of diverse ecological processes performed by its plant and microbial communities. Yet, although plant communities in these habitats are closely managed, we lack basic knowledge about how engineered ecosystems impact the distribution and functioning of soil bacteria. We sequenced amplicons of the 16S ribosomal subunit, as well as seven genes associated with functional pathways, generated from both total (DNA-based) and expressed (RNA) soil communities in the Bronx, NYC, NY, in order to test whether bioswale soils host characteristic bacterial communities with evidence for enriched microbial functioning, compared to nonengineered soils in park lawns and tree pits. Bioswales had distinct, phylogenetically diverse bacterial communities, including taxa associated with nutrient cycling and metabolism of hydrocarbons and other pollutants. Bioswale soils also had a significantly greater diversity of genes involved in several functional pathways, including carbon fixation (cbbL-R [cbbL gene, red-like subunit] and apsA), nitrogen cycling (noxZ and amoA), and contaminant degradation (bphA); conversely, no functional genes were significantly more abundant in nonengineered soils. These results provide preliminary evidence that urban land management can shape the diversity and activity of soil communities, with positive consequences for genetic resources underlying valuable ecological functions, including biogeochemical cycling and degradation of common urban pollutants. IMPORTANCE Management of urban soil biodiversity by favoring taxa associated with decontamination or other microbial metabolic processes is a powerful prospect, but it first requires an understanding of how engineered soil habitats shape patterns of microbial diversity. This research adds to our understanding of urban microbial biogeography by providing data on soil bacteria in bioswales, which had relatively diverse and compositionally distinct communities compared to park and tree pit soils. Bioswales also contained comparatively diverse pools of genes related to carbon sequestration, nitrogen cycling, and contaminant degradation, suggesting that engineered soils may serve as effective reservoirs of functional microbial biodiversity. We also examined both total (DNA-based) and expressed (RNA) communities, revealing that total bacterial communities (the exclusive targets in the vast majority of soil studies) were poor predictors of expressed community diversity, pointing to the value of quantifying RNA, especially when ecological functioning is considered. PMID:28576763

  20. Using infrastructure optimization to reduce greenhouse gas emissions from oil sands extraction and processing.

    PubMed

    Middleton, Richard S; Brandt, Adam R

    2013-02-05

    The Alberta oil sands are a significant source of oil production and greenhouse gas emissions, and their importance will grow as the region is poised for decades of growth. We present an integrated framework that simultaneously considers economic and engineering decisions for the capture, transport, and storage of oil sands CO(2) emissions. The model optimizes CO(2) management infrastructure at a variety of carbon prices for the oil sands industry. Our study reveals several key findings. We find that the oil sands industry lends itself well to development of CO(2) trunk lines due to geographic coincidence of sources and sinks. This reduces the relative importance of transport costs compared to nonintegrated transport systems. Also, the amount of managed oil sands CO(2) emissions, and therefore the CCS infrastructure, is very sensitive to the carbon price; significant capture and storage occurs only above 110$/tonne CO(2) in our simulations. Deployment of infrastructure is also sensitive to CO(2) capture decisions and technology, particularly the fraction of capturable CO(2) from oil sands upgrading and steam generation facilities. The framework will help stakeholders and policy makers understand how CCS infrastructure, including an extensive pipeline system, can be safely and cost-effectively deployed.

  1. Next generation biofuel engineering in prokaryotes

    PubMed Central

    Gronenberg, Luisa S.; Marcheschi, Ryan J.; Liao, James C.

    2014-01-01

    Next-generation biofuels must be compatible with current transportation infrastructure and be derived from environmentally sustainable resources that do not compete with food crops. Many bacterial species have unique properties advantageous to the production of such next-generation fuels. However, no single species possesses all characteristics necessary to make high quantities of fuels from plant waste or CO2. Species containing a subset of the desired characteristics are used as starting points for engineering organisms with all desired attributes. Metabolic engineering of model organisms has yielded high titer production of advanced fuels, including alcohols, isoprenoids and fatty acid derivatives. Technical developments now allow engineering of native fuel producers, as well as lignocellulolytic and autotrophic bacteria, for the production of biofuels. Continued research on multiple fronts is required to engineer organisms for truly sustainable and economical biofuel production. PMID:23623045

  2. Implementation Practice and Implementation Research: A Report from the Field

    ERIC Educational Resources Information Center

    Brekke, John S.; Phillips, Elizabeth; Pancake, Laura; O, Anne; Lewis, Jenebah; Duke, Jessica

    2009-01-01

    The Interventions and Practice Research Infrastructure Program (IPRISP) funding mechanism was introduced by the National Institute of Mental Health (NIMH) to bridge the gap between the worlds of services research and the usual care practice in the community. The goal was to build infrastructure that would provide a platform for research to…

  3. InterMine Webservices for Phytozome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Joseph; Hayes, David; Goodstein, David

    2014-01-10

    A data warehousing framework for biological information provides a useful infrastructure for providers and users of genomic data. For providers, the infrastructure give them a consistent mechanism for extracting raw data. While for the users, the web services supported by the software allows them to make either simple and common, or complex and unique, queries of the data

  4. Optical network democratization.

    PubMed

    Nejabati, Reza; Peng, Shuping; Simeonidou, Dimitra

    2016-03-06

    The current Internet infrastructure is not able to support independent evolution and innovation at physical and network layer functionalities, protocols and services, while at same time supporting the increasing bandwidth demands of evolving and heterogeneous applications. This paper addresses this problem by proposing a completely democratized optical network infrastructure. It introduces the novel concepts of the optical white box and bare metal optical switch as key technology enablers for democratizing optical networks. These are programmable optical switches whose hardware is loosely connected internally and is completely separated from their control software. To alleviate their complexity, a multi-dimensional abstraction mechanism using software-defined network technology is proposed. It creates a universal model of the proposed switches without exposing their technological details. It also enables a conventional network programmer to develop network applications for control of the optical network without specific technical knowledge of the physical layer. Furthermore, a novel optical network virtualization mechanism is proposed, enabling the composition and operation of multiple coexisting and application-specific virtual optical networks sharing the same physical infrastructure. Finally, the optical white box and the abstraction mechanism are experimentally evaluated, while the virtualization mechanism is evaluated with simulation. © 2016 The Author(s).

  5. Quantifying causal mechanisms to determine how protected areas affect poverty through changes in ecosystem services and infrastructure.

    PubMed

    Ferraro, Paul J; Hanauer, Merlin M

    2014-03-18

    To develop effective environmental policies, we must understand the mechanisms through which the policies affect social and environmental outcomes. Unfortunately, empirical evidence about these mechanisms is limited, and little guidance for quantifying them exists. We develop an approach to quantifying the mechanisms through which protected areas affect poverty. We focus on three mechanisms: changes in tourism and recreational services; changes in infrastructure in the form of road networks, health clinics, and schools; and changes in regulating and provisioning ecosystem services and foregone production activities that arise from land-use restrictions. The contributions of ecotourism and other ecosystem services to poverty alleviation in the context of a real environmental program have not yet been empirically estimated. Nearly two-thirds of the poverty reduction associated with the establishment of Costa Rican protected areas is causally attributable to opportunities afforded by tourism. Although protected areas reduced deforestation and increased regrowth, these land cover changes neither reduced nor exacerbated poverty, on average. Protected areas did not, on average, affect our measures of infrastructure and thus did not contribute to poverty reduction through this mechanism. We attribute the remaining poverty reduction to unobserved dimensions of our mechanisms or to other mechanisms. Our study empirically estimates previously unidentified contributions of ecotourism and other ecosystem services to poverty alleviation in the context of a real environmental program. We demonstrate that, with existing data and appropriate empirical methods, conservation scientists and policymakers can begin to elucidate the mechanisms through which ecosystem conservation programs affect human welfare.

  6. Quantifying causal mechanisms to determine how protected areas affect poverty through changes in ecosystem services and infrastructure

    PubMed Central

    Ferraro, Paul J.; Hanauer, Merlin M.

    2014-01-01

    To develop effective environmental policies, we must understand the mechanisms through which the policies affect social and environmental outcomes. Unfortunately, empirical evidence about these mechanisms is limited, and little guidance for quantifying them exists. We develop an approach to quantifying the mechanisms through which protected areas affect poverty. We focus on three mechanisms: changes in tourism and recreational services; changes in infrastructure in the form of road networks, health clinics, and schools; and changes in regulating and provisioning ecosystem services and foregone production activities that arise from land-use restrictions. The contributions of ecotourism and other ecosystem services to poverty alleviation in the context of a real environmental program have not yet been empirically estimated. Nearly two-thirds of the poverty reduction associated with the establishment of Costa Rican protected areas is causally attributable to opportunities afforded by tourism. Although protected areas reduced deforestation and increased regrowth, these land cover changes neither reduced nor exacerbated poverty, on average. Protected areas did not, on average, affect our measures of infrastructure and thus did not contribute to poverty reduction through this mechanism. We attribute the remaining poverty reduction to unobserved dimensions of our mechanisms or to other mechanisms. Our study empirically estimates previously unidentified contributions of ecotourism and other ecosystem services to poverty alleviation in the context of a real environmental program. We demonstrate that, with existing data and appropriate empirical methods, conservation scientists and policymakers can begin to elucidate the mechanisms through which ecosystem conservation programs affect human welfare. PMID:24567397

  7. Towards Large-Scale, Non-Destructive Inspection of Concrete Bridges

    NASA Astrophysics Data System (ADS)

    Mahmoud, A.; Shah, A. H.; Popplewell, N.

    2005-04-01

    It is estimated that the rehabilitation of deteriorating engineering infrastructure in the harsh North American environment could cost billions of dollars. Bridges are key infrastructure components for surface transportation. Steel-free and fibre-reinforced concrete is used increasingly nowadays to circumvent the vulnerability of steel rebar to corrosion. Existing steel-free and fibre-reinforced bridges may experience extensive surface-breaking cracks that need to be characterized without incurring further damage. In the present study, a method that uses Lamb elastic wave propagation to non-destructively characterize cracks in plain as well as fibre-reinforced concrete is investigated both numerically and experimentally. Numerical and experimental data are corroborated with good agreement.

  8. Bases of the scientific conception of the “green frame” designing in urban areas for providing ecological safety of the urban environment

    NASA Astrophysics Data System (ADS)

    Bespalov, V.; Kotlyarova, E.

    2017-10-01

    In modern conditions of a stable urban areas development special place is occupied by the problem of ecological security of built-up areas, including residential, recreational, industrial areas and objects of transport and engineering infrastructure. The main results of the study are to establish the basis of formation of the concept of choice of energy-efficient technologies and tools of forming an ecologically efficient “green frame” of urban areas on the basis of a single integrated scientific concept. Analysis allowed us to divide the measures for improvement into the following main groups: organizational and planning, engineering and technical and special engineering and environmental. The significance of these results for the construction industry, including transport infrastructure, is to increase the level of environmental safety in the construction and reconstruction of urban areas due to the organization of their improvement on the basis suggested by the authors scientific approach. Its basis is integrated accounting of the natural and climatic features of the landscaping territory, the types and level of environmental impact of negative anthropogenic factors, the features of architectural and planning solutions of the existing or projected on the studied area, the structure and types of green spaces and their functional ecological properties.

  9. Computational Infrastructure for Geodynamics (CIG)

    NASA Astrophysics Data System (ADS)

    Gurnis, M.; Kellogg, L. H.; Bloxham, J.; Hager, B. H.; Spiegelman, M.; Willett, S.; Wysession, M. E.; Aivazis, M.

    2004-12-01

    Solid earth geophysicists have a long tradition of writing scientific software to address a wide range of problems. In particular, computer simulations came into wide use in geophysics during the decade after the plate tectonic revolution. Solution schemes and numerical algorithms that developed in other areas of science, most notably engineering, fluid mechanics, and physics, were adapted with considerable success to geophysics. This software has largely been the product of individual efforts and although this approach has proven successful, its strength for solving problems of interest is now starting to show its limitations as we try to share codes and algorithms or when we want to recombine codes in novel ways to produce new science. With funding from the NSF, the US community has embarked on a Computational Infrastructure for Geodynamics (CIG) that will develop, support, and disseminate community-accessible software for the greater geodynamics community from model developers to end-users. The software is being developed for problems involving mantle and core dynamics, crustal and earthquake dynamics, magma migration, seismology, and other related topics. With a high level of community participation, CIG is leveraging state-of-the-art scientific computing into a suite of open-source tools and codes. The infrastructure that we are now starting to develop will consist of: (a) a coordinated effort to develop reusable, well-documented and open-source geodynamics software; (b) the basic building blocks - an infrastructure layer - of software by which state-of-the-art modeling codes can be quickly assembled; (c) extension of existing software frameworks to interlink multiple codes and data through a superstructure layer; (d) strategic partnerships with the larger world of computational science and geoinformatics; and (e) specialized training and workshops for both the geodynamics and broader Earth science communities. The CIG initiative has already started to leverage and develop long-term strategic partnerships with open source development efforts within the larger thrusts of scientific computing and geoinformatics. These strategic partnerships are essential as the frontier has moved into multi-scale and multi-physics problems in which many investigators now want to use simulation software for data interpretation, data assimilation, and hypothesis testing.

  10. Fabrication Infrastructure to Enable Efficient Exploration and Utilization of Space

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Fikes, John C.; McLemore, Carole A.; Manning, Curtis W.; Good, Jim

    2007-01-01

    Unlike past one-at-a-time mission approaches, system-of-systems infrastructures will be needed to enable ambitious scenarios for sustainable future space exploration and utilization. Fabrication infrastructure will be needed to support habitat structure development, tools and mechanical part fabrication, as well as repair and replacement of ground support and space mission hardware such as life support items, vehicle components and crew systems. The fabrication infrastructure will need the In Situ Fabrication and Repair (ISFR) element, which is working in conjunction with the In Situ Resources Utilization (ISRU) element, to live off the land. The ISFR Element supports the entire life cycle of Exploration by: reducing downtime due to failed components; decreasing risk to crew by recovering quickly from degraded operation of equipment; improving system functionality with advanced geometry capabilities; and enhancing mission safety by reducing assembly part counts of original designs where possible. This paper addresses the fabrication infrastructures that support efficient, affordable, reliable infrastructures for both space exploration systems and logistics; these infrastructures allow sustained, affordable and highly effective operations on the Moon, Mars and beyond.

  11. An atom is known by the company it keeps: Content, representation and pedagogy within the epistemic revolution of the complexity sciences

    NASA Astrophysics Data System (ADS)

    Blikstein, Paulo

    The goal of this dissertation is to explore relations between content, representation, and pedagogy, so as to understand the impact of the nascent field of complexity sciences on science, technology, engineering and mathematics (STEM) learning. Wilensky & Papert coined the term "structurations" to express the relationship between knowledge and its representational infrastructure. A change from one representational infrastructure to another they call a "restructuration." The complexity sciences have introduced a novel and powerful structuration: agent-based modeling. In contradistinction to traditional mathematical modeling, which relies on equational descriptions of macroscopic properties of systems, agent-based modeling focuses on a few archetypical micro-behaviors of "agents" to explain emergent macro-behaviors of the agent collective. Specifically, this dissertation is about a series of studies of undergraduate students' learning of materials science, in which two structurations are compared (equational and agent-based), consisting of both design research and empirical evaluation. I have designed MaterialSim, a constructionist suite of computer models, supporting materials and learning activities designed within the approach of agent-based modeling, and over four years conducted an empirical inves3 tigation of an undergraduate materials science course. The dissertation is comprised of three studies: Study 1 - diagnosis . I investigate current representational and pedagogical practices in engineering classrooms. Study 2 - laboratory studies. I investigate the cognition of students engaging in scientific inquiry through programming their own scientific models. Study 3 - classroom implementation. I investigate the characteristics, advantages, and trajectories of scientific content knowledge that is articulated in epistemic forms and representational infrastructures unique to complexity sciences, as well as the feasibility of the integration of constructionist, agent-based learning environments in engineering classrooms. Data sources include classroom observations, interviews, videotaped sessions of model-building, questionnaires, analysis of computer-generated logfiles, and quantitative and qualitative analysis of artifacts. Results shows that (1) current representational and pedagogical practices in engineering classrooms were not up to the challenge of the complex content being taught, (2) by building their own scientific models, students developed a deeper understanding of core scientific concepts, and learned how to better identify unifying principles and behaviors in materials science, and (3) programming computer models was feasible within a regular engineering classroom.

  12. 46 CFR 113.35-15 - Mechanical engine order telegraph systems; application.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Mechanical engine order telegraph systems; application...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-15 Mechanical engine order telegraph systems; application. If a mechanical engine order telegraph...

  13. 46 CFR 113.35-15 - Mechanical engine order telegraph systems; application.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Mechanical engine order telegraph systems; application...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-15 Mechanical engine order telegraph systems; application. If a mechanical engine order telegraph...

  14. 46 CFR 113.35-15 - Mechanical engine order telegraph systems; application.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Mechanical engine order telegraph systems; application...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-15 Mechanical engine order telegraph systems; application. If a mechanical engine order telegraph...

  15. 46 CFR 113.35-15 - Mechanical engine order telegraph systems; application.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Mechanical engine order telegraph systems; application...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-15 Mechanical engine order telegraph systems; application. If a mechanical engine order telegraph...

  16. Meet Jen Kurtz | NREL

    Science.gov Websites

    Denver. But truthfully, the group manager in NREL's hydrogen and fuel cells systems engineering group --are successful." Jen says that one of the biggest things in the mission space is that research around hydrogen infrastructure will help enable more than one advancement. "We want to increase

  17. Fuel Cells Advanced Drivetrain

    DTIC Science & Technology

    2010-08-09

    T800 Silverado Military specific system upscale (4WD) HydroGen3 – CH2 HydroGen3 – LH2 4010 – Early Adopter Engineering Model (GEN Nadeau) Gen4...Timeline Maintenance Infrastructure Fort Belvoir, VA 2003-ongoing Full FCV and Volt Maintenance 350,700bar LH2 (Decommissioned) Volt Charging(pending

  18. Risk and Infrastructure Science Center - Global Security Sciences

    Science.gov Websites

    delivers scientific tools and methodologies to inform decision making regarding the most challenging Sciences ASD Accelerator Systems AES APS Engineering Support XSD X-ray Science Physical Sciences and Leadership Strategic Alliance for Global Energy Solutions Overview Leadership Systems Science Center Overview

  19. 23 CFR 505.13 - Federal Government's share of project cost.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... INFRASTRUCTURE MANAGEMENT PROJECTS OF NATIONAL AND REGIONAL SIGNIFICANCE EVALUATION AND RATING § 505.13 Federal Government's share of project cost. (a) Based on engineering studies, studies of economic feasibility, and... 23 Highways 1 2010-04-01 2010-04-01 false Federal Government's share of project cost. 505.13...

  20. PIV Logon Configuration Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Glen Alan

    This document details the configurations and enhancements implemented to support the usage of federal Personal Identity Verification (PIV) Card for logon on unclassified networks. The guidance is a reference implementation of the configurations and enhancements deployed at the Los Alamos National Laboratory (LANL) by Network and Infrastructure Engineering – Core Services (NIE-CS).

  1. Outdoor Testing Areas | Energy Systems Integration Facility | NREL

    Science.gov Websites

    of engineers running tests on plug-in hybrid electric vehicles at the Medium-Voltage Outdoor Test large microgrids hub, located in the outdoor low-voltage test yard, includes underground trench access pits for full enclosure of rotating machinery under test. Key Infrastructure Secured underground pits

  2. The Use of Design Practice to Teach Mathematics and Science

    ERIC Educational Resources Information Center

    Norton, Stephen John

    2008-01-01

    Relatively low participation in the hard sciences (mathematics, science, engineering and technology) has become a concern with respect to the capacity of Australia to meet critical infrastructure projects. This problem has its roots in poor student attitudes towards and perceptions about the study of prerequisite subjects including mathematics and…

  3. The Atlanta University Center: A Consortium-Based Dual Degree Engineering Program

    ERIC Educational Resources Information Center

    Jackson, Marilyn T.

    2007-01-01

    The Atlanta University Center (AUC) comprises five historically black colleges and a centralized library. All are separate institutions, each having its own board of directors, president, infrastructure, students, faculty, staff, and traditions. To encourage coordination of effort and resources, the AUC was formed and the first formal cooperative…

  4. Support a Science of Performance Improvement

    ERIC Educational Resources Information Center

    Bryk, Anthony S.

    2009-01-01

    We must reengineer both how we carry out educational R&D and the schools in which this work occurs if we want to achieve more productive ends. Education needs a Design, Educational Engineering, and Development infrastructure, which includes a rapid prototyping process by which researchers and practitioners co-develop innovations, try them in…

  5. Port Infrastructure: Financing of Navigation Projects at Small and Medium-Sized Ports

    DOT National Transportation Integrated Search

    2000-03-01

    Under the Water Resources Development Act of 1986, all public ports have had to share in the cost of navigation projets with the Corps of Engineers by paying the nonfederal share of the project's cost, which ranges from 20-60 percent depending on the...

  6. Transportation Challenges in the Hampton Roads, VA, Region

    DTIC Science & Technology

    2012-06-01

    ORDERS ( PPO ) ...........................................................11 J. HIGHWAYS FOR NATIONAL DEFENSE (HND) ...................................12 K... PPO Port Planning Orders RND Railroads for National Defense SDDCTEA Surface Deployment and Distribution Command Transportation Engineering...important Continental United States (CONUS) port infrastructure in both peacetime and wartime. Strategic Seaports and Port Planning Orders ( PPOs ) were

  7. Security Engineering Lessons Learned for Migrating Independent LANs to an Enterprise Environment

    ERIC Educational Resources Information Center

    Marchant, Robert L.; Bonneau, Thomas

    2013-01-01

    Transition from small, independent LANs into larger enterprise managed infrastructures is becoming more prominent in academia, business and government. Consolidation of IT resources into larger, more disciplined, and more professionally managed environments has significant advantages however they do bring their own unique issues to solve in order…

  8. Human Research and Engineering Directorate, Major Laboratory Programs: Current Thrust Areas and Recent Research

    DTIC Science & Technology

    2010-09-01

    response equipment. After the hardware and software infrastructure is complete, the focus will shift to creating soundscapes over headphones and...Background sounds will emulate a range of conditions from quiet deserts to busy urban streets. Accurate portrayals of military soundscapes and listening

  9. Infrastructure Retrofit Design via Composite Mechanics

    NASA Technical Reports Server (NTRS)

    Chamis, Christos, C.; Gotsis,Pascal K.

    1998-01-01

    Select applications are described to illustrate the concept for retrofitting reinforced concrete infrastructure with fiber reinforced plastic laminates. The concept is first illustrated by using an axially loaded reinforced concrete column. A reinforced concrete arch and a dome are then used to illustrate the versatility of the concept. Advanced methods such as finite element structural analysis and progressive structural fracture are then used to evaluate the retrofitting laminate adequacy. Results obtains show that retrofits can be designed to double and even triple the as-designed load of the select reinforced concrete infrastructures.

  10. Structural health monitoring of civil infrastructure.

    PubMed

    Brownjohn, J M W

    2007-02-15

    Structural health monitoring (SHM) is a term increasingly used in the last decade to describe a range of systems implemented on full-scale civil infrastructures and whose purposes are to assist and inform operators about continued 'fitness for purpose' of structures under gradual or sudden changes to their state, to learn about either or both of the load and response mechanisms. Arguably, various forms of SHM have been employed in civil infrastructure for at least half a century, but it is only in the last decade or two that computer-based systems are being designed for the purpose of assisting owners/operators of ageing infrastructure with timely information for their continued safe and economic operation. This paper describes the motivations for and recent history of SHM applications to various forms of civil infrastructure and provides case studies on specific types of structure. It ends with a discussion of the present state-of-the-art and future developments in terms of instrumentation, data acquisition, communication systems and data mining and presentation procedures for diagnosis of infrastructural 'health'.

  11. Spatial connectivity, scaling, and temporal trajectories as emergent urban stormwater impacts

    NASA Astrophysics Data System (ADS)

    Jovanovic, T.; Gironas, J. A.; Hale, R. L.; Mejia, A.

    2016-12-01

    Urban watersheds are structurally complex systems comprised of multiple components (e.g., streets, pipes, ponds, vegetated swales, wetlands, riparian corridors, etc.). These multiple engineered components interact in unanticipated and nontrivial ways with topographic conditions, climate variability, land use/land cover changes, and the underlying eco-hydrogeomorphic dynamics. Such interactions can result in emergent urban stormwater impacts with cascading effects that can negatively influence the overall functioning of the urban watershed. For example, the interaction among many detention ponds has been shown, in some situations, to synchronize flow volumes and ultimately lead to downstream flow amplifications and increased pollutant mobilization. Additionally, interactions occur at multiple temporal and spatial scales requiring that urban stormwater dynamics be represented at the long-term temporal (decadal) and across spatial scales (from the single lot to the watershed scale). In this study, we develop and implement an event-based, high-resolution, network hydro-engineering model (NHEM), and demonstrate an approach to reconstruct the long-term regional infrastructure and land use/land cover conditions of an urban watershed. As the study area, we select an urban watershed in the metropolitan area of Scottsdale, Arizona. Using the reconstructed landscapes to drive the NHEM, we find that distinct surficial, hydrologic connectivity patterns result from the intersection of hydrologic processes, infrastructure, and land use/land cover arrangements. These spatial patters, in turn, exhibit scaling characteristics. For example, the scaling of urban watershed dispersion mechanisms shows altered scaling exponents with respect to pre-urban conditions. For example, the scaling exponent associated with geomorphic dispersion tends to increase for urban conditions, reflecting increased surficial path heterogeneity. Both the connectivity and scaling results can be used to delineate impact trajectories (i.e. the evolution of spatially referenced impacts over time). We find that the impact trajectories provide insight about the urban stormwater sustainability of watersheds as well as clues about the potential imprint of socio-environmental feedbacks in the evolutionary dynamics.

  12. A preliminary investigation on the effects of characteristics and contractual behaviour on civil engineering project performance

    NASA Astrophysics Data System (ADS)

    Ismail, W. N. W.; Adnan, H.; Yusuwan, N.; Maisham, M.; Hassan, A. A.

    2018-02-01

    The significant role of civil engineering project is not only to make the lives of people easier and secure but also to trigger the economic growth by providing infrastructure facilities as well as job opportunities. As it is dominantly initiated by government sectors, performance of the civil engineering projects is always observed. This study aims to investigate the characteristics of civil engineering project and the contractual behavior of the key participants and how do these two factors affect civil engineering projects performance. Literature reviews, content analysis and questionnaires survey were conducted to undertake the research. A total of 50 questionnaires were distributed and 10 questionnaires were returned, resulting in a 20% response rate. The research unveiled that performance of civil engineering projects are influenced greatly by the ability to handle the unpredictable character of the civil engineering projects and adequate behavioral management. Apart from that, balancing the factors with high quality of workmanship, avoidance or well managed conflicts and high satisfaction level will ensure performance in projects.

  13. Application of Cement Science to Improved Wellbore Infrastructures Mileva Radonjic and Darko Kupresan Craft & Hawkins Department of Petroleum Engineering, Louisiana State University, USA Corresponding author: mileva@lsu.edu Key words: micro-annular gas flow, nano-properties of wellbore cements, micro-porosity

    NASA Astrophysics Data System (ADS)

    Radonjic, M.

    2015-12-01

    Recent focus on carbon emission from cement industry inspired researchers to improve CSH properties by reducing Ca/Si ratio at the nanoscale, and lower porosity (permeability) of hydrated cement at micro scale. If implemented in wellbore cement technology, both of these efforts could provide advanced properties for wellbore infrastructure. These advancements would further reduce the issue of leaky wellbores in fluid injections, hydraulic fracturing and subsurface storage for existing operating wells. Numerous inadequately abandoned wells, however, pose more complex engineering problems, primarily due to the difficulty in locating fluid flow pathways along the wellbore structure. In order to appreciate the difficulty of this problem, we need to remind ourselves that: a typical 30,000-ft. wellbore with an average production casing of 8 inches in diameter can be presented in scale by a 6-m long human hair of 150 μm these structures are placed in the subsurface, often not just vertical in geometry but deviated close to 90° tangent where monitoring and remediation becomes demanding and if we consider that wellbore cement is not continuously placed along the wellbore and it is approximately 1/10 of a wellbore diameter, we can see that the properties of these materials demand application of nano-science and a different scale phenomena than perhaps previously acknowledged. The key concept behind Ca/Si reduction associated with improved mechanical properties is traditionally achieved chemically, by addition of supplemental cementitious materials. In our study we have tried to evaluate CSH alterations due to mechanically induced phase transformation. The data suggest that confined compression-extrusion of hydrated wellbore cement and the consequent propagation of pore water can change cement composition by dissolving and removing Ca, therefore reducing Ca/Si of cement phases. The advantage of this approach is that the process is less impacted by pressure/temperature oscillations found in subsurface conditions. In addition, we have proved experimentally, that even cement samples stored in corrosive environment for two years can successfully be treated and healed by confined compression of tubular expansion for purpose of microannular gas flow remediation.

  14. When water meets behavioral economics (or: it is not all about money!)

    NASA Astrophysics Data System (ADS)

    Escriva-Bou, A.

    2014-12-01

    Water engineers do not like people; we are better with numbers, equations and models where people behavior is only a variable, usually constant, or in the best case a probabilistic approximation. On the other side, most economic studies relate to people's behavior, and when economists develop engineering-based models, engineers usually think that econometric approaches are too simple to represent complex systems that engineers like to work with. Besides this simple-minded cliche, there is a lot of field to explore in the intersections of both disciplines. Even though the development of infrastructure cost-benefit analyses after Dupuit's work, or the more recent growth of hydroeconomic modeling, we are still missing a lot of potential synergic benefits from integrating behavioral economics and water infrastructure design and management. To present a simple example: urban water infrastructure design is based on water peaks, so reservoirs, pump stations and pipe dimensions have to be built to serve these peaks; water-related energy assessment studies have shown that there is a lot of energy used for every drop of water used in our houses, farms, and industries, and energy peaks are even larger that water peaks, creating expensive troubles for energy supply; and all this energy consumption means greenhouse gas emissions. Therefore we agree that reducing water peaks might create a lot of benefits, but could water customers change their behavior? Which incentives do they need? It is only about money, or it may be managed with better information? Beyond this example there are many other promising economic topics that could help in our daily water problems, such as: game theoretic approaches to understand decisions; science-based agent models that help us to understand the performance of a system as the sum of agents' actions and interactions; or the analysis of institutional-driven management to avoid the tragedy of the commons that depletes groundwater resources globally. And no need to remind that all resource scarcity problems will increase with population growth, so it would be better to begin work sooner on these problems.

  15. Multi-agent modelling framework for water, energy and other resource networks

    NASA Astrophysics Data System (ADS)

    Knox, S.; Selby, P. D.; Meier, P.; Harou, J. J.; Yoon, J.; Lachaut, T.; Klassert, C. J. A.; Avisse, N.; Mohamed, K.; Tomlinson, J.; Khadem, M.; Tilmant, A.; Gorelick, S.

    2015-12-01

    Bespoke modelling tools are often needed when planning future engineered interventions in the context of various climate, socio-economic and geopolitical futures. Such tools can help improve system operating policies or assess infrastructure upgrades and their risks. A frequently used approach is to simulate and/or optimise the impact of interventions in engineered systems. Modelling complex infrastructure systems can involve incorporating multiple aspects into a single model, for example physical, economic and political. This presents the challenge of combining research from diverse areas into a single system effectively. We present the Pynsim 'Python Network Simulator' framework, a library for building simulation models capable of representing, the physical, institutional and economic aspects of an engineered resources system. Pynsim is an open source, object oriented code aiming to promote integration of different modelling processes through a single code library. We present two case studies that demonstrate important features of Pynsim's design. The first is a large interdisciplinary project of a national water system in the Middle East with modellers from fields including water resources, economics, hydrology and geography each considering different facets of a multi agent system. It includes: modelling water supply and demand for households and farms; a water tanker market with transfer of water between farms and households, and policy decisions made by government institutions at district, national and international level. This study demonstrates that a well-structured library of code can provide a hub for development and act as a catalyst for integrating models. The second focuses on optimising the location of new run-of-river hydropower plants. Using a multi-objective evolutionary algorithm, this study analyses different network configurations to identify the optimal placement of new power plants within a river network. This demonstrates that Pynsim can be used to evaluate a multitude of topologies for identifying the optimal location of infrastructure investments. Pynsim is available on GitHub or via standard python installer packages such as pip. It comes with several examples and online documentation, making it attractive for those less experienced in software engineering.

  16. Structural changes of green roof growing substrate layer studied by X-ray CT

    NASA Astrophysics Data System (ADS)

    Jelinkova, Vladimira; Sacha, Jan; Dohnal, Michal; Snehota, Michal

    2017-04-01

    Increasing interest in green infrastructure linked with newly implemented legislation/rules/laws worldwide opens up research potential for field of soil hydrology. A better understanding of function of engineered soils involved in green infrastructure solutions such as green roofs or rain garden is needed. A soil layer is considered as a highly significant component of the aforesaid systems. In comparison with a natural soil, the engineered soil is assumed to be the more challenging case due to rapid structure changes early stages after its build-up. The green infrastructure efficiency depends on the physical and chemical properties of the soil, which are, in the case of engineered soils, a function of its initial composition and subsequent soil formation processes. The project presented in this paper is focused on fundamental processes in the relatively thick layer of engineered soil. The initial structure development, during which the pore geometry is altered by the growth of plant roots, water influx, solid particles translocation and other soil formation processes, is investigated with the help of noninvasive imaging technique  X-ray computed tomography. The soil development has been studied on undisturbed soil samples taken periodically from green roof test system during early stages of its life cycle. Two approaches and sample sizes were employed. In the first approach, undisturbed samples (volume of about 63 cm3) were taken each time from the test site and scanned by X-ray CT. In the second approach, samples (volume of about 630 cm3) were permanently installed at the test site and has been repeatedly removed to perform X-ray CT imaging. CT-derived macroporosity profiles reveal significant temporal changes of soil structure. Clogging of pores by fine particles and fissures development are two most significant changes that would affect the green roof system efficiency. This work has been supported by the Ministry of Education, Youth and Sports within National Sustainability Programme I, project number LO1605 and with financial support from the Czech Science Foundation under project number GAČR 17-21011S.

  17. The Australian Computational Earth Systems Simulator

    NASA Astrophysics Data System (ADS)

    Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.

    2001-12-01

    Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic behaviour of earth systems. ACcESS represents a part of Australia's contribution to the APEC Cooperation for Earthquake Simulation (ACES) international initiative. Together with other national earth systems science initiatives including the Japanese Earth Simulator and US General Earthquake Model projects, ACcESS aims to provide a driver for scientific advancement and technological breakthroughs including: quantum leaps in understanding of earth evolution at global, crustal, regional and microscopic scales; new knowledge of the physics of crustal fault systems required to underpin the grand challenge of earthquake prediction; new understanding and predictive capabilities of geological processes such as tectonics and mineralisation.

  18. A national-scale authentication infrastructure.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, R.; Engert, D.; Foster, I.

    2000-12-01

    Today, individuals and institutions in science and industry are increasingly forming virtual organizations to pool resources and tackle a common goal. Participants in virtual organizations commonly need to share resources such as data archives, computer cycles, and networks - resources usually available only with restrictions based on the requested resource's nature and the user's identity. Thus, any sharing mechanism must have the ability to authenticate the user's identity and determine if the user is authorized to request the resource. Virtual organizations tend to be fluid, however, so authentication mechanisms must be flexible and lightweight, allowing administrators to quickly establish andmore » change resource-sharing arrangements. However, because virtual organizations complement rather than replace existing institutions, sharing mechanisms cannot change local policies and must allow individual institutions to maintain control over their own resources. Our group has created and deployed an authentication and authorization infrastructure that meets these requirements: the Grid Security Infrastructure. GSI offers secure single sign-ons and preserves site control over access policies and local security. It provides its own versions of common applications, such as FTP and remote login, and a programming interface for creating secure applications.« less

  19. Trust Management Considerations For the Cooperative Infrastructure Defense Framework: Trust Relationships, Evidence, and Decisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maiden, Wendy M.

    Cooperative Infrastructure Defense (CID) is a hierarchical, agent-based, adaptive, cyber-security framework designed to collaboratively protect multiple enclaves or organizations participating in a complex infrastructure. CID employs a swarm of lightweight, mobile agents called Sensors designed to roam hosts throughout a security enclave to find indications of anomalies and report them to host-based Sentinels. The Sensors’ findings become pieces of a larger puzzle, which the Sentinel puts together to determine the problem and respond per policy as given by the enclave-level Sergeant agent. Horizontally across multiple enclaves and vertically within each enclave, authentication and access control technologies are necessary but insufficientmore » authorization mechanisms to ensure that CID agents continue to fulfill their roles in a trustworthy manner. Trust management fills the gap, providing mechanisms to detect malicious agents and offering more robust mechanisms for authorization. This paper identifies the trust relationships throughout the CID hierarchy, the types of trust evidence that could be gathered, and the actions that the CID system could take if an entity is determined to be untrustworthy.« less

  20. A compliant mechanism for inspecting extremely confined spaces

    NASA Astrophysics Data System (ADS)

    Mascareñas, David; Moreu, Fernando; Cantu, Precious; Shields, Daniel; Wadden, Jack; El Hadedy, Mohamed; Farrar, Charles

    2017-11-01

    We present a novel, compliant mechanism that provides the capability to navigate extremely confined spaces for the purpose of infrastructure inspection. Extremely confined spaces are commonly encountered during infrastructure inspection. Examples of such spaces can include pipes, conduits, and ventilation ducts. Often these infrastructure features go uninspected simply because there is no viable way to access their interior. In addition, it is not uncommon for extremely confined spaces to possess a maze-like architecture that must be selectively navigated in order to properly perform an inspection. Efforts by the imaging sensor community have resulted in the development of imaging sensors on the millimeter length scale. Due to their compact size, they are able to inspect many extremely confined spaces of interest, however, the means to deliver these sensors to the proper location to obtain the desired images are lacking. To address this problem, we draw inspiration from the field of endoscopic surgery. Specifically we consider the work that has already been done to create long flexible needles that are capable of being steered through the human body. These devices are typically referred to as ‘steerable needles.’ Steerable needle technology is not directly applicable to the problem of navigating maze-like arrangements of extremely confined spaces, but it does provide guidance on how this problem should be approached. Specifically, the super-elastic nitinol tubing material that allows steerable needles to operate is also appropriate for the problem of navigating maze-like arrangements of extremely confined spaces. Furthermore, the portion of the mechanism that enters the extremely confined space is completely mechanical in nature. The mechanical nature of the device is an advantage when the extremely confined space features environmental hazards such as radiation that could degrade an electromechanically operated mechanism. Here, we present a compliant mechanism developed to navigate maze-like arrangements of extremely confined spaces. The mechanism is shown to be able to selectively navigate past three 90° bends. The ability to selectively navigate extremely confined spaces opens up new possibilities to use emerging miniature imaging technology for infrastructure inspection.

  1. Geo-Engineering through Internet Informatics (GEMINI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watney, W. Lynn; Doveton, John H.; Victorine, John R.

    GEMINI will resolve reservoir parameters that control well performance; characterize subtle reservoir properties important in understanding and modeling hydrocarbon pore volume and fluid flow; expedite recognition of bypassed, subtle, and complex oil and gas reservoirs at regional and local scale; differentiate commingled reservoirs; build integrated geologic and engineering model based on real-time, iterate solutions to evaluate reservoir management options for improved recovery; provide practical tools to assist the geoscientist, engineer, and petroleum operator in making their tasks more efficient and effective; enable evaluations to be made at different scales, ranging from individual well, through lease, field, to play and regionmore » (scalable information infrastructure); and provide training and technology transfer to evaluate capabilities of the client.« less

  2. The INDIGO-Datacloud Authentication and Authorization Infrastructure

    NASA Astrophysics Data System (ADS)

    Ceccanti, A.; Hardt, M.; Wegh, B.; Millar, AP; Caberletti, M.; Vianello, E.; Licehammer, S.

    2017-10-01

    Contemporary distributed computing infrastructures (DCIs) are not easily and securely accessible by scientists. These computing environments are typically hard to integrate due to interoperability problems resulting from the use of different authentication mechanisms, identity negotiation protocols and access control policies. Such limitations have a big impact on the user experience making it hard for user communities to port and run their scientific applications on resources aggregated from multiple providers. The INDIGO-DataCloud project wants to provide the services and tools needed to enable a secure composition of resources from multiple providers in support of scientific applications. In order to do so, a common AAI architecture has to be defined that supports multiple authentication mechanisms, support delegated authorization across services and can be easily integrated in off-the-shelf software. In this contribution we introduce the INDIGO Authentication and Authorization Infrastructure, describing its main components and their status and how authentication, delegation and authorization flows are implemented across services.

  3. Synthetic Biology Guides Biofuel Production

    PubMed Central

    Connor, Michael R.; Atsumi, Shota

    2010-01-01

    The advancement of microbial processes for the production of renewable liquid fuels has increased with concerns about the current fuel economy. The development of advanced biofuels in particular has risen to address some of the shortcomings of ethanol. These advanced fuels have chemical properties similar to petroleum-based liquid fuels, thus removing the need for engine modification or infrastructure redesign. While the productivity and titers of each of these processes remains to be improved, progress in synthetic biology has provided tools to guide the engineering of these processes through present and future challenges. PMID:20827393

  4. Evaluation Program on the Implementation of Industrial Apprenticeship (Prakerin) in Electrical Engineering

    NASA Astrophysics Data System (ADS)

    Maulana, I.; Sumarto; Nurafiati, P.; Puspita, R. H.

    2018-02-01

    This research aims to find out the evaluation program of the Industrial apprenticeship (Prakerin) in electrical engineering. This research includes on four variables of CIPP. (1). Context (a). programme planning (b). design. (2). Input (a). readiness of students (b). performance of vocational education teachers (c). Facilities and infrastructure, (3). process (a). performance students (b). performance mentors, (4). Product (a). readiness of student work. This research is a type of program evaluation research with Stake model approach. Data collection methods used are questionnaires with closed questions and frequently asked questions.

  5. A technological infrastructure to sustain Internetworked Enterprises

    NASA Astrophysics Data System (ADS)

    La Mattina, Ernesto; Savarino, Vincenzo; Vicari, Claudia; Storelli, Davide; Bianchini, Devis

    In the Web 3.0 scenario, where information and services are connected by means of their semantics, organizations can improve their competitive advantage by publishing their business and service descriptions. In this scenario, Semantic Peer to Peer (P2P) can play a key role in defining dynamic and highly reconfigurable infrastructures. Organizations can share knowledge and services, using this infrastructure to move towards value networks, an emerging organizational model characterized by fluid boundaries and complex relationships. This chapter collects and defines the technological requirements and architecture of a modular and multi-Layer Peer to Peer infrastructure for SOA-based applications. This technological infrastructure, based on the combination of Semantic Web and P2P technologies, is intended to sustain Internetworked Enterprise configurations, defining a distributed registry and enabling more expressive queries and efficient routing mechanisms. The following sections focus on the overall architecture, while describing the layers that form it.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    MATALUCCI,RUDOLPH V.; O'CONNOR,SHARON

    The mission of the Architectural Surety{trademark} program at Sandia National Laboratories is to assure the performance of buildings, facilities, and other infrastructure systems under normal, abnormal, and malevolent threat conditions. Through educational outreach efforts in the classroom, at conferences, and presentations such as this one, public and professional awareness of the need to defuse and mitigate such threats is increased. Buildings, airports, utilities, and other kinds of infrastructure deteriorate over time, as evidenced most dramatically by the crumbling cities and aging buildings, bridges, and other facility systems. Natural disasters such as tornadoes, earthquakes, hurricanes, and flooding also stress the materialsmore » and structural elements of the built environment. In addition, criminals, vandals, and terrorists attack federal buildings, dams, bridges, tunnels, and other public and private facilities. Engineers and architects are beginning to systematically consider these threats during the design, construction, and retrofit phases of buildings and infrastructures and are recommending advanced research in new materials and techniques. Existing building codes and standards do not adequately address nor protect the infrastructure or the public from many of these emerging threats. The activities in Sandia National Laboratories' Architectural Surety{trademark} efforts take a risk management approach to enhancing the safety, security, and reliability of the constructed environment. The technologies and techniques developed during Sandia's 50 years as the nation's lead laboratory for nuclear weapons surety are now being applied to assessing and reducing the vulnerability of dams, to enhancing the safety and security of staff in foreign embassies, and assuring the reliability of other federal facilities. High consequence surety engineering and design brings together technological advancements, new material requirements, systems integration, and risk management to improve the safety, security, and reliability of the as-built environment. The thrust of this paper is the role that new materials can play in protecting the infrastructure. Retrofits of existing buildings, innovative approaches to the design and construction of new facilities, and the mitigation of consequences in the event of an unpreventable disaster are some of the areas that new construction materials can benefit the Architectural Surety{trademark} of the constructed environment.« less

  7. Requirements Engineering in Building Climate Science Software

    NASA Astrophysics Data System (ADS)

    Batcheller, Archer L.

    Software has an important role in supporting scientific work. This dissertation studies teams that build scientific software, focusing on the way that they determine what the software should do. These requirements engineering processes are investigated through three case studies of climate science software projects. The Earth System Modeling Framework assists modeling applications, the Earth System Grid distributes data via a web portal, and the NCAR (National Center for Atmospheric Research) Command Language is used to convert, analyze and visualize data. Document analysis, observation, and interviews were used to investigate the requirements-related work. The first research question is about how and why stakeholders engage in a project, and what they do for the project. Two key findings arise. First, user counts are a vital measure of project success, which makes adoption important and makes counting tricky and political. Second, despite the importance of quantities of users, a few particular "power users" develop a relationship with the software developers and play a special role in providing feedback to the software team and integrating the system into user practice. The second research question focuses on how project objectives are articulated and how they are put into practice. The team seeks to both build a software system according to product requirements but also to conduct their work according to process requirements such as user support. Support provides essential communication between users and developers that assists with refining and identifying requirements for the software. It also helps users to learn and apply the software to their real needs. User support is a vital activity for scientific software teams aspiring to create infrastructure. The third research question is about how change in scientific practice and knowledge leads to changes in the software, and vice versa. The "thickness" of a layer of software infrastructure impacts whether the software team or users have control and responsibility for making changes in response to new scientific ideas. Thick infrastructure provides more functionality for users, but gives them less control of it. The stability of infrastructure trades off against the responsiveness that the infrastructure can have to user needs.

  8. Flood trends and river engineering on the Mississippi River system

    USGS Publications Warehouse

    Pinter, N.; Jemberie, A.A.; Remo, J.W.F.; Heine, R.A.; Ickes, B.S.

    2008-01-01

    Along >4000 km of the Mississippi River system, we document that climate, land-use change, and river engineering have contributed to statistically significant increases in flooding over the past 100-150 years. Trends were tested using a database of >8 million hydrological measurements. A geospatial database of historical engineering construction was used to quantify the response of flood levels to each unit of engineering infrastructure. Significant climate- and/or land use-driven increases in flow were detected, but the largest and most pervasive contributors to increased flooding on the Mississippi River system were wing dikes and related navigational structures, followed by progressive levee construction. In the area of the 2008 Upper Mississippi flood, for example, about 2 m of the flood crest is linked to navigational and flood-control engineering. Systemwide, large increases in flood levels were documented at locations and at times of wing-dike and levee construction. Copyright 2008 by the American Geophysical Union.

  9. Engineering uses of physics-based ground motion simulations

    USGS Publications Warehouse

    Baker, Jack W.; Luco, Nicolas; Abrahamson, Norman A.; Graves, Robert W.; Maechling, Phillip J.; Olsen, Kim B.

    2014-01-01

    This paper summarizes validation methodologies focused on enabling ground motion simulations to be used with confidence in engineering applications such as seismic hazard analysis and dynmaic analysis of structural and geotechnical systems. Numberical simullation of ground motion from large erthquakes, utilizing physics-based models of earthquake rupture and wave propagation, is an area of active research in the earth science community. Refinement and validatoin of these models require collaboration between earthquake scientists and engineering users, and testing/rating methodolgies for simulated ground motions to be used with confidence in engineering applications. This paper provides an introduction to this field and an overview of current research activities being coordinated by the Souther California Earthquake Center (SCEC). These activities are related both to advancing the science and computational infrastructure needed to produce ground motion simulations, as well as to engineering validation procedures. Current research areas and anticipated future achievements are also discussed.

  10. Creating global networks through an online engineering graduate programme

    NASA Astrophysics Data System (ADS)

    Murray, M. H.

    2011-03-01

    Internationally, the railway industry is facing a severe shortage of engineers with high-level, relevant, professional and technical knowledge and abilities, in particular amongst engineers involved in the design, construction and maintenance of railway infrastructure. A unique graduate level programme has been created to meet that global need via a fully online, distance education format. The development and operation of this Master of Engineering degree is proposed as a model of the process needed for industry-relevance, flexible delivery, international networking and professional development required for a successful graduate engineering programme in the twenty-first century. In particular, this paper demonstrates how a mix of new and more familiar technologies are utilised through a variety of tasks to overcome the huge distances and multiple time zones that separate the participants across a growing number of countries, successfully achieving close and sustained interaction amongst the participants and railway experts.

  11. Causal pathways linking environmental change with health behaviour change: Natural experimental study of new transport infrastructure and cycling to work.

    PubMed

    Prins, R G; Panter, J; Heinen, E; Griffin, S J; Ogilvie, D B

    2016-06-01

    Mechanisms linking changes to the environment with changes in physical activity are poorly understood. Insights into mechanisms of interventions can help strengthen causal attribution and improve understanding of divergent response patterns. We examined the causal pathways linking exposure to new transport infrastructure with changes in cycling to work. We used baseline (2009) and follow-up (2012) data (N=469) from the Commuting and Health in Cambridge natural experimental study (Cambridge, UK). Exposure to new infrastructure in the form of the Cambridgeshire Guided Busway was defined using residential proximity. Mediators studied were changes in perceptions of the route to work, theory of planned behaviour constructs and self-reported use of the new infrastructure. Outcomes were modelled as an increase, decrease or no change in weekly cycle commuting time. We used regression analyses to identify combinations of mediators forming potential pathways between exposure and outcome. We then tested these pathways in a path model and stratified analyses by baseline level of active commuting. We identified changes in perceptions of the route to work, and use of the cycle path, as potential mediators. Of these potential mediators, only use of the path significantly explained (85%) the effect of the infrastructure in increasing cycling. Path use also explained a decrease in cycling among more active commuters. The findings strengthen the causal argument that changing the environment led to changes in health-related behaviour via use of the new infrastructure, but also show how some commuters may have spent less time cycling as a result. Copyright © 2016. Published by Elsevier Inc.

  12. Synergizing green and gray infrastructures to increase water supply resilience in the Brazos River basin in Texas

    NASA Astrophysics Data System (ADS)

    Gao, H.; Yamazaki, D.; Finley, T.; Bohn, T. J.; Low, G.; Sabo, J. L.

    2017-12-01

    Water infrastructure lies at the heart of the challenges and opportunities of Integrated Water Resource Management (IWRM). Green infrastructure (e.g., wetlands restoration) presents an alternative to its hard-path counterpart - gray infrastructure, which often has external, economic and unmeasured ecological costs. But the science framework to prioritize green infrastructure buildout is nascent. In this study, we addressed this gap in Brazos River basin in Texas, in the context of corporate decisions to secure water supplies for various water stewardship objectives. We developed a physically-based tool to quantify the potential for wetland restoration to restore desired flows (hydrology), and a financial framework for comparing its cost-benefit with heightening an existing dam (conservation finance). Our framework has three components. First, we harnessed a topographic index (HAND) to identify the potential wetlands sites. Second, we coupled a land surface model (VIC) with a hydrodynamic model (CaMa-Flood) to investigate the effects of wetland size, location, and vegetation on hydrology. Finally, we estimated the net present value, indirect rate of return and payback period for green (wetlands) vs. gray (reservoir expansion) infrastructure. We found wetlands have more substantial impact on peak flow than baseflow. Interestingly, wetlands can improve baseflow reliability but not directly except with the largest (>400 km2) projects. Peak flow reduction volumes of wetlands if used as credits towards reservoir flood-control storage provide adequate conservation storage to deliver guaranteed reliability of baseflow. Hence, the synergy of existing dams with newly created wetlands offers a promising natural solution to increase water supply resilience, while green projects also generate revenue compared to their gray counterparts. This study demonstrates the possibility of using innovative engineering design to synergize green and gray infrastructures to convert water conflict to opportunities.

  13. 46 CFR 12.15-13 - Deck engine mechanic.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Deck engine mechanic. 12.15-13 Section 12.15-13 Shipping... ENDORSEMENTS Qualified Member of the Engine Department § 12.15-13 Deck engine mechanic. (a) An applicant for an endorsement as deck engine mechanic shall be a person holding an MMC or MMD endorsed as junior engineer. The...

  14. 46 CFR 12.15-13 - Deck engine mechanic.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Deck engine mechanic. 12.15-13 Section 12.15-13 Shipping... ENDORSEMENTS Qualified Member of the Engine Department § 12.15-13 Deck engine mechanic. (a) An applicant for an endorsement as deck engine mechanic shall be a person holding an MMC or MMD endorsed as junior engineer. The...

  15. 46 CFR 12.15-13 - Deck engine mechanic.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Deck engine mechanic. 12.15-13 Section 12.15-13 Shipping... ENDORSEMENTS Qualified Member of the Engine Department § 12.15-13 Deck engine mechanic. (a) An applicant for an endorsement as deck engine mechanic shall be a person holding an MMC or MMD endorsed as junior engineer. The...

  16. 46 CFR 12.15-13 - Deck engine mechanic.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Deck engine mechanic. 12.15-13 Section 12.15-13 Shipping... ENDORSEMENTS Qualified Member of the Engine Department § 12.15-13 Deck engine mechanic. (a) An applicant for an endorsement as deck engine mechanic shall be a person holding an MMC or MMD endorsed as junior engineer. The...

  17. A Case Study on the Strata Movement Mechanism and Surface Deformation Regulation in Chengchao Underground Iron Mine

    NASA Astrophysics Data System (ADS)

    Cheng, Guanwen; Chen, Congxin; Ma, Tianhui; Liu, Hongyuan; Tang, Chunan

    2017-04-01

    The regular pattern of surface deformation and the mechanism of underground strata movement, especially in iron mines constructed with the block caving method, have a great influence on infrastructure on the surface, so they are an important topic for research. Based on the engineering geology conditions and the surface deformation and fracture features in Chengchao Iron Mine, the mechanism of strata movement and the regular pattern of surface deformation in the footwall were studied by the geomechanical method, and the following conclusions can be drawn: I. The surface deformation process is divided into two stages over time, i.e., the chimney caving development stage and the post-chimney deformation stage. Currently, the surface deformation in Chengchao Iron Mine is at the post-chimney deformation stage. II. At the post-chimney deformation stage, the surface deformation and geological hazards in Chengchao Iron Mine are primarily controlled by the NWW-trending joints, with the phenomenon of toppling deformation and failure on the surface. Based on the surface deformation characteristics in Chengchao Iron Mine, the surface deformation area can be divided into the following four zones: the fracture extension zone, the fracture closure zone, the fracture formation zone and the deformation accumulation zone. The zones on the surface can be determined by the surface deformation characteristics. III. The cantilever beams near the chimney caving area, caused by the NWW-trending joints, have been subjected to toppling failure. This causes the different deformation and failure mechanisms in different locations of the deep rock mass. The deep rock can be divided into four zones, i.e., the fracture zone, fracture transition zone, deformation zone and undisturbed zone, according to the different deformation and failure mechanisms. The zones in the deep rock are the reason for the zones on the surface, so they can be determined by the zones on the surface. Through these findings, the degree of damage to the infrastructure in different locations can be determined based on the surface deformation zones. As the mining continues deeper, the development regulation of the zones on the surface and in deep rock mass can be further studied based on the zones in the deep rock.

  18. Development Status of the J-2X

    NASA Technical Reports Server (NTRS)

    Kynard, Mike; Vilja, John

    2008-01-01

    In June 2006, the NASA Marshall Space Flight Center (MSFC) and Pratt & Whitney Rocketdyne began development of an engine for use on the Ares I crew launch vehicle and the Ares V cargo launch vehicle. The development program will be completed in December 2012 at the end of a Design Certification Review and after certification testing of two flight configuration engines. A team of over 600 people within NASA and Pratt & Whitney Rocketdyne are currently working to prepare for the fall 2008 Critical Design Review (CDR), along with supporting an extensive risk mitigation test program. The J-2X will power the Ares I upper stage and the Ares V earth departure stage (EDS). The initial use will be in the Ares I, used to launch the Orion crew exploration vehicle. In this application, it will power the upper stage after being sent aloft on a Space Shuttle-derived. 5-segment solid rocket booster first stage. In this mission. the engine will ignite at altitude and provide the necessary acceleration force to allow the Orion to achieve orbital velocity. The Ares I upper stage, along with the J-2X. will then be expended. On the Ares V. first stage propulsion is provided by five RS-68B engines and two 5-segment boosters similar to the Ares I configuration. In the Ares V mission. the J-2X is first started to power the EDS and its payload. the Altair lunar lander. into earth orbit, then shut-down and get prepared for its next start. The EDS/Altair will remain in a parking orbit, awaiting rendezvous and docking with Orion. Once the two spacecraft are mated, the J-2X will be restarted to achieve earth departure velocity. After powering the Orion and Altair, the EDS will be expended. By using the J-2X Engine in both applications, a significant infrastructure cost savings is realized. Only one engine development is required, and the sustaining engineering and flight support infrastructures can be combined. There is also flexibility for changing, the production and flight manifest because a single production line can support both missions with minimal differences between each engine configuration kit.

  19. Towards sustainable infrastructure management: knowledge-based service-oriented computing framework for visual analytics

    NASA Astrophysics Data System (ADS)

    Vatcha, Rashna; Lee, Seok-Won; Murty, Ajeet; Tolone, William; Wang, Xiaoyu; Dou, Wenwen; Chang, Remco; Ribarsky, William; Liu, Wanqiu; Chen, Shen-en; Hauser, Edd

    2009-05-01

    Infrastructure management (and its associated processes) is complex to understand, perform and thus, hard to make efficient and effective informed decisions. The management involves a multi-faceted operation that requires the most robust data fusion, visualization and decision making. In order to protect and build sustainable critical assets, we present our on-going multi-disciplinary large-scale project that establishes the Integrated Remote Sensing and Visualization (IRSV) system with a focus on supporting bridge structure inspection and management. This project involves specific expertise from civil engineers, computer scientists, geographers, and real-world practitioners from industry, local and federal government agencies. IRSV is being designed to accommodate the essential needs from the following aspects: 1) Better understanding and enforcement of complex inspection process that can bridge the gap between evidence gathering and decision making through the implementation of ontological knowledge engineering system; 2) Aggregation, representation and fusion of complex multi-layered heterogeneous data (i.e. infrared imaging, aerial photos and ground-mounted LIDAR etc.) with domain application knowledge to support machine understandable recommendation system; 3) Robust visualization techniques with large-scale analytical and interactive visualizations that support users' decision making; and 4) Integration of these needs through the flexible Service-oriented Architecture (SOA) framework to compose and provide services on-demand. IRSV is expected to serve as a management and data visualization tool for construction deliverable assurance and infrastructure monitoring both periodically (annually, monthly, even daily if needed) as well as after extreme events.

  20. Examining Cybersecurity of Cyberphysical Systems for Critical Infrastructures Through Work Domain Analysis.

    PubMed

    Wang, Hao; Lau, Nathan; Gerdes, Ryan M

    2018-04-01

    The aim of this study was to apply work domain analysis for cybersecurity assessment and design of supervisory control and data acquisition (SCADA) systems. Adoption of information and communication technology in cyberphysical systems (CPSs) for critical infrastructures enables automated and distributed control but introduces cybersecurity risk. Many CPSs employ SCADA industrial control systems that have become the target of cyberattacks, which inflict physical damage without use of force. Given that absolute security is not feasible for complex systems, cyberintrusions that introduce unanticipated events will occur; a proper response will in turn require human adaptive ability. Therefore, analysis techniques that can support security assessment and human factors engineering are invaluable for defending CPSs. We conducted work domain analysis using the abstraction hierarchy (AH) to model a generic SCADA implementation to identify the functional structures and means-ends relations. We then adopted a case study approach examining the Stuxnet cyberattack by developing and integrating AHs for the uranium enrichment process, SCADA implementation, and malware to investigate the interactions between the three aspects of cybersecurity in CPSs. The AHs for modeling a generic SCADA implementation and studying the Stuxnet cyberattack are useful for mapping attack vectors, identifying deficiencies in security processes and features, and evaluating proposed security solutions with respect to system objectives. Work domain analysis is an effective analytical method for studying cybersecurity of CPSs for critical infrastructures in a psychologically relevant manner. Work domain analysis should be applied to assess cybersecurity risk and inform engineering and user interface design.

  1. TAMU: Blueprint for A New Space Mission Operations System Paradigm

    NASA Technical Reports Server (NTRS)

    Ruszkowski, James T.; Meshkat, Leila; Haensly, Jean; Pennington, Al; Hogle, Charles

    2011-01-01

    The Transferable, Adaptable, Modular and Upgradeable (TAMU) Flight Production Process (FPP) is a System of System (SOS) framework which cuts across multiple organizations and their associated facilities, that are, in the most general case, in geographically disperse locations, to develop the architecture and associated workflow processes of products for a broad range of flight projects. Further, TAMU FPP provides for the automatic execution and re-planning of the workflow processes as they become operational. This paper provides the blueprint for the TAMU FPP paradigm. This blueprint presents a complete, coherent technique, process and tool set that results in an infrastructure that can be used for full lifecycle design and decision making during the flight production process. Based on the many years of experience with the Space Shuttle Program (SSP) and the International Space Station (ISS), the currently cancelled Constellation Program which aimed on returning humans to the moon as a starting point, has been building a modern model-based Systems Engineering infrastructure to Re-engineer the FPP. This infrastructure uses a structured modeling and architecture development approach to optimize the system design thereby reducing the sustaining costs and increasing system efficiency, reliability, robustness and maintainability metrics. With the advent of the new vision for human space exploration, it is now necessary to further generalize this framework to take into consideration a broad range of missions and the participation of multiple organizations outside of the MOD; hence the Transferable, Adaptable, Modular and Upgradeable (TAMU) concept.

  2. Reducing construction waste: A study of urban infrastructure projects.

    PubMed

    de Magalhães, Ruane Fernandes; Danilevicz, Ângela de Moura Ferreira; Saurin, Tarcisio Abreu

    2017-09-01

    The construction industry is well-known for producing waste detrimental to the environment, and its impacts have increased with the development process of cities. Although there are several studies focused on the environmental impact of residential and commercial buildings, less knowledge is available regarding decreasing construction waste (CW) generation in urban infrastructure projects. This study presents best practices to reduce waste in the said projects, stressing the role of decision-making in the design stage and the effective management of construction processes in public sector. The best practices were identified from literature review, document analysis in 14 projects of urban infrastructure, and both qualitative and quantitative survey with 18 experts (architects and engineers) playing different roles on those projects. The contributions of these research are: (i) the identification of the main building techniques related to the urban design typologies analyzed; (ii) the identification of cause-effect relationships between the design choices and the CW generation diagnosis; (iii) the proposal of a checklist to support the decision-making process, that can be used as a control and evaluation instrument when developing urban infrastructure designs, focused on the construction waste minimization (CWM). Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. 46 CFR 113.35-9 - Mechanical engine order telegraph systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Mechanical engine order telegraph systems. 113.35-9... COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-9 Mechanical engine order telegraph systems. (a) Each mechanical engine order telegraph system must consist of transmitters and...

  4. Opportunities in Mechnical Engineering. [VGM Career Horizons Series].

    ERIC Educational Resources Information Center

    Konzo, Seichi; Bayne, James W.

    This book presents information on career opportunities in mechanical engineering. Chapter 1 describes the historical development of mechanical engineering and its interactions with society, considers the growth of the American Society of Mechanical Engineers, and discusses the relevance of mechanical engineering to present-day and future society.…

  5. 76 FR 2683 - Notice of a Project Waiver of Section 1605: (Buy American Requirement) of the American Recovery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ... Water State Revolving Fund (CWSRF)/ARRA loan recipient, for the purchase of Air Release Vacuum (ARV... CONTACT: Abimbola Odusoga, Environmental Engineer, Water Division, Infrastructure Office (WTR-4), (415... provides drinking water and waste water treatment services to municipalities in the Chino Basin. The Church...

  6. Integrated remote sensing and visualization (IRSV) system for transportation infrastructure operations and management, phase two, volume 1 : outreach and commercialization of IRSV prototype.

    DOT National Transportation Integrated Search

    2012-03-01

    The Integrated Remote Sensing and Visualization System (IRSV) was developed in Phase One of this project in order to : accommodate the needs of todays Bridge Engineers at the state and local level. Overall goals of this project are: : Better u...

  7. 78 FR 50051 - Notice of Availability of the Final Environmental Impact Statement for the Tarmac King Road...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ... DEPARTMENT OF DEFENSE Department of the Army, Corps of Engineers Notice of Availability of the Final Environmental Impact Statement for the Tarmac King Road Limestone Mine Proposed in Levy County... from limestone extraction, material stockpiling, roads, and other infrastructure over a period of...

  8. 76 FR 35264 - Agency Information Collection Activities: Request for Comments for a New Information Collection...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ... Collections of Information--Examples From Each Category Category A (Infrastructure Design). An example from... studies. For example, older driver's performance as they negotiate new designs informs the engineer of... accommodate their needs. Another example of research in this area is determining bicyclists' reactions to such...

  9. Software architecture standard for simulation virtual machine, version 2.0

    NASA Technical Reports Server (NTRS)

    Sturtevant, Robert; Wessale, William

    1994-01-01

    The Simulation Virtual Machine (SBM) is an Ada architecture which eases the effort involved in the real-time software maintenance and sustaining engineering. The Software Architecture Standard defines the infrastructure which all the simulation models are built from. SVM was developed for and used in the Space Station Verification and Training Facility.

  10. Supporting C2 Research and Evaluation: An Infrastructure and its Potential Impact

    DTIC Science & Technology

    2011-06-01

    Potential Impact,” Empirical Software Engineering, Vol. 10 No. 4, pp. 405-435, 2005. http://sir.unl.edu [16] J. O. Engene , Terrorism in Western...Evaluation and Conference: Proceedings of the 3rd-6th DARPA Workshops, Morgan Kaufman Publishers, 1996. … [16] J. O. Engene , Terrorism in Western Europe

  11. Wireless Broadband Communications Systems in Rural Wisconsin. Rural Research Report. Volume 19, Issue 1, Spring 2008

    ERIC Educational Resources Information Center

    Schlager, Kenneth J.

    2008-01-01

    This report describes a communications system engineering planning process that demonstrates an ability to design and deploy cost-effective broadband networks in low density rural areas. The emphasis in on innovative solutions and systems optimization because of the marginal nature of rural telecommunications infrastructure investments. Otherwise,…

  12. Cybersecurity Protection: Design Science Research toward an Intercloud Transparent Bridge Architecture (ITCOBRA)

    ERIC Educational Resources Information Center

    Wilson, Joe M.

    2013-01-01

    This dissertation uses design science research and engineering to develop a cloud-based simulator for modeling next-generation cybersecurity protection frameworks in the United States. The claim is made that an agile and neutral framework extending throughout the cyber-threat plane is needed for critical infrastructure protection (CIP). This…

  13. Integrated remote sensing and visualization (IRSV) system for transportation infrastructure operations and management, phase one, volume 2 : knowledge modeling and database development.

    DOT National Transportation Integrated Search

    2009-12-01

    The Integrated Remote Sensing and Visualization System (IRSV) is being designed to accommodate the needs of todays Bridge Engineers at the : state and local level from several aspects that were documented in Volume One, Summary Report. The followi...

  14. Building Cyberinfrastructures for Earth and Space Sciences so that they will come: lessons learnt from Australia

    NASA Astrophysics Data System (ADS)

    Wyborn, L. A.; Woodcock, R.

    2013-12-01

    One of the greatest drivers for change in the way scientific research is undertaken in Australia was the development of the Australian eResearch Infrastructure which was coordinated by the then Australian Government Department of Innovation, Industry, Science and Research. There were two main tranches of funding: the 2007-2013 National Collaborative Research Infrastructure Strategy (NCRIS) and the 2009 Education and Investment Framework (EIF) Super Science Initiative. Investments were in two areas: the Australian e-Research Infrastructure and domain specific capabilities: combined investment in both is 1,452M with at least 456M being invested in eResearch infrastructure. NCRIS was specifically designed as a community-guided process to provide researchers, both academic and government, with major research facilities, supporting infrastructures and networks necessary for world-class research. Extensive community engagement was sought to inform decisions on where Australia could best make strategic infrastructure investments to further develop its research capacity and improve research outcomes over the next 5 to 10years. The current (2007-2014) Australian e-Research Infrastructure has 2 components: 1. The National eResearch physical infrastructure which includes two petascale HPC facilities (one in Canberra and one in Perth), a 10 Gbps national network (National Research Network), a national data storage infrastructure comprising 8 multi petabyte data stores and shared access methods (Australian Access Federation). 2. A second component is focused on research integration infrastructures and includes the Australian National Data Service, which is concerned with better management, description and access to distributed research data in Australia and the National eResearch Collaboration Tools and Resources (NeCTAR) project. NeCTAR is centred on developing problem oriented digital laboratories which provide better and coordinated access to research tools, data environments and workflows. The eResearch Infrastructure Stack is designed to support 12 individual domain-specific capabilities. Four are relevant to the Earth and Space Sciences: (1) AuScope (a national Earth Science Infrastructure Program), (2) the Integrated Marine Observing System (IMOS), (3) the Terrestrial Ecosystems Research Network (TERN) and (4) the Australian Urban Research Infrastructure Network (AURIN). The two main research integration infrastructures, ANDS and NeCTAR, are seen as pivotal to the success of the Australian eResearch Infrastructure. Without them, there was a risk that that the investments in new computers and data storage would provide physical infrastructure, but few would come to use it as the skills barriers to entry were too high. ANDS focused on transforming Australia's research data environment. Its flagship is Research Data Australia, an Internet-based discovery service designed to provide rich connections between data, projects, researchers and institutions, and promote visibility of Australian research data collections in search engines. NeCTAR focused on building eResearch infrastructure in four areas: virtual laboratories, tools, a federated research cloud and a hosting service. Combined, ANDS and NeCTAR are ensuring that people ARE coming and ARE using the physical infrastructures that were built.

  15. Arguments for the need of mining education continuity and development in Romania

    NASA Astrophysics Data System (ADS)

    Bud, I.; Duma, S.; Pasca, I.; Gusat, D.

    2018-01-01

    Mining is considered the oldest conscious man activity. In the beginning, man searched for hard rocks in the outskirts area and used it to make weapons and ornaments. Subsequently, civilizations evolved through the development of infrastructure, buildings and monuments and finally, weapons. For all these it was necessary to have mineral raw materials obtained under increasingly difficult conditions, through increasingly evolved techniques. In this way, the art of mining and metallurgy was born, which led to the formation of scientific bases. The mining activity was equally art and science. The art and the science have been learned and taught in schools since ancient times and continue today in large universities with mining engineering, metallurgy, mining topography, mining environmental protection, and geology. Lately, in Romania, the mining high school has reached a deadlock and the middle and professional school has collapsed. The development of infrastructure, construction, etc. requires the exploitation and valorisation of mineral resources based on specialists. The paper warns against the danger of losing tradition and skills in mining engineers formation and militate for the re-establishment of professional and technical schools.

  16. The use of the bicycle compatibility index in identifying gaps and deficiencies in bicycle networks

    NASA Astrophysics Data System (ADS)

    Ilie, A.; Oprea, C.; Costescu, D.; Roşca, E.; Dinu, O.; Ghionea, F.

    2016-11-01

    Currently, no methodology is widely accepted by engineers, planners, or bicycle coordinators that allow them to determine how compatible a roadway is in providing efficient operation of both bicycles and motor vehicles. Previous studies reported a number of approaches to obtain an appropriate level of service; some authors developed the bicycle level of service (BLOS) and other authors developed the bicycle compatibility indexes (BCI). The level of service (BLOS) for a bicycle route represents an evaluation of safety and commodity perceived by a bicyclist reported to the motorized traffic, while running on the road surface. The bicycle compatibility index (BCI) is used by bicycle coordinators, transportation planners, traffic engineers to evaluate the capability of specific roadways to accommodate both motorists and bicyclists and to plan for and design roadways that are bicycle compatible. After applying BCI and BLOS models for the designed bicycle infrastructure network in the city of Dej, one can see that only few streets are Moderately Low compatible compared to the others with a high degree of compatibility that recommends to include them in the bicycle infrastructure network.

  17. Consequence-driven cyber-informed engineering (CCE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, Sarah G.; St Michel, Curtis; Smith, Robert

    The Idaho National Lab (INL) is leading a high-impact, national security-level initiative to reprioritize the way the nation looks at high-consequence risk within the industrial control systems (ICS) environment of the country’s most critical infrastructure and other national assets. The Consequence-driven Cyber-informed Engineering (CCE) effort provides both private and public organizations with the steps required to examine their own environments for high-impact events/risks; identify implementation of key devices and components that facilitate that risk; illuminate specific, plausible cyber attack paths to manipulate these devices; and develop concrete mitigations, protections, and tripwires to address the high-consequence risk. The ultimate goal ofmore » the CCE effort is to help organizations take the steps necessary to thwart cyber attacks from even top-tier, highly resourced adversaries that would result in a catastrophic physical effect. CCE participants are encouraged to work collaboratively with each other and with key U.S. Government (USG) contributors to establish a coalition, maximizing the positive effect of lessons-learned and further contributing to the protection of critical infrastructure and other national assets.« less

  18. Transportation systems analyses: Volume 1: Executive Summary

    NASA Astrophysics Data System (ADS)

    1993-05-01

    The principal objective of this study is to accomplish a systems engineering assessment of the nation's space transportation infrastructure. This analysis addresses the necessary elements to perform man delivery and return, cargo transfer, cargo delivery, payload servicing, and the exploration of the Moon and Mars. Specific elements analyzed, but not limited to, include the Space Exploration Initiative (SEI), the National Launch System (NLS), the current expendable launch vehicle (ELV) fleet, ground facilities, the Space Station Freedom (SSF), and other civil, military and commercial payloads. The performance of this study entails maintaining a broad perspective on the large number of transportation elements that could potentially comprise the U.S. space infrastructure over the next several decades. To perform this systems evaluation, top-level trade studies are conducted to enhance our understanding of the relationships between elements of the infrastructure. This broad 'infrastructure-level perspective' permits the identification of preferred infrastructures. Sensitivity analyses are performed to assure the credibility and usefulness of study results. This executive summary of the transportation systems analyses (TSM) semi-annual report addresses the SSF logistics resupply. Our analysis parallels the ongoing NASA SSF redesign effort. Therefore, there could be no SSF design to drive our logistics analysis. Consequently, the analysis attempted to bound the reasonable SSF design possibilities (and the subsequent transportation implications). No other strategy really exists until after a final decision is rendered on the SSF configuration.

  19. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melaina, M. W.; Heath, G.; Sandor, D.

    2013-04-01

    Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehiclesmore » in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.« less

  20. The Efficacy of Blue-Green Infrastructure for Pluvial Flood Prevention under Conditions of Deep Uncertainty

    NASA Astrophysics Data System (ADS)

    Babovic, Filip; Mijic, Ana; Madani, Kaveh

    2017-04-01

    Urban areas around the world are growing in size and importance; however, cities experience elevated risks of pluvial flooding due to the prevalence of impermeable land surfaces within them. Urban planners and engineers encounter a great deal of uncertainty when planning adaptations to these flood risks, due to the interaction of multiple factors such as climate change and land use change. This leads to conditions of deep uncertainty. Blue-Green (BG) solutions utilise natural vegetation and processes to absorb and retain runoff while providing a host of other social, economic and environmental services. When utilised in conjunction with Decision Making under Deep Uncertainty (DMDU) methodologies, BG infrastructure provides a flexible and adaptable method of "no-regret" adaptation; resulting in a practical, economically efficient, and socially acceptable solution for flood risk mitigation. This work presents the methodology for analysing the impact of BG infrastructure in the context of the Adaptation Tipping Points approach to protect against pluvial flood risk in an iterative manner. An economic analysis of the adaptation pathways is also conducted in order to better inform decision-makers on the benefits and costs of the adaptation options presented. The methodology was applied to a case study in the Cranbrook Catchment in the North East of London. Our results show that BG infrastructure performs better under conditions of uncertainty than traditional grey infrastructure.

  1. Grid computing technology for hydrological applications

    NASA Astrophysics Data System (ADS)

    Lecca, G.; Petitdidier, M.; Hluchy, L.; Ivanovic, M.; Kussul, N.; Ray, N.; Thieron, V.

    2011-06-01

    SummaryAdvances in e-Infrastructure promise to revolutionize sensing systems and the way in which data are collected and assimilated, and complex water systems are simulated and visualized. According to the EU Infrastructure 2010 work-programme, data and compute infrastructures and their underlying technologies, either oriented to tackle scientific challenges or complex problem solving in engineering, are expected to converge together into the so-called knowledge infrastructures, leading to a more effective research, education and innovation in the next decade and beyond. Grid technology is recognized as a fundamental component of e-Infrastructures. Nevertheless, this emerging paradigm highlights several topics, including data management, algorithm optimization, security, performance (speed, throughput, bandwidth, etc.), and scientific cooperation and collaboration issues that require further examination to fully exploit it and to better inform future research policies. The paper illustrates the results of six different surface and subsurface hydrology applications that have been deployed on the Grid. All the applications aim to answer to strong requirements from the Civil Society at large, relatively to natural and anthropogenic risks. Grid technology has been successfully tested to improve flood prediction, groundwater resources management and Black Sea hydrological survey, by providing large computing resources. It is also shown that Grid technology facilitates e-cooperation among partners by means of services for authentication and authorization, seamless access to distributed data sources, data protection and access right, and standardization.

  2. BIM Methodology Approach to Infrastructure Design: Case Study of Paniga Tunnel

    NASA Astrophysics Data System (ADS)

    Osello, Anna; Rapetti, Niccolò; Semeraro, Francesco

    2017-10-01

    Nowadays, the implementation of Building Information Modelling (BIM) in civil design represent a new challenge for the AECO (Architecture, Engineering, Construction, Owner and Operator) world, which will involve the interest of many researchers in the next years. It is due to the incentives of Public Administration and European Directives that aim to improve the efficiency and to enhance a better management of the complexity of infrastructure projects. For these reasons, the goal of this research is to propose a methodology for the use of BIM in a tunnel project, analysing the definition of a correct level of detail (LOD) and the possibility to share information via interoperability for FEM analysis.

  3. Self-Healing of Microcracks in Engineered Cementitious Composites (ECC) Under a Natural Environment

    PubMed Central

    Herbert, Emily N.; Li, Victor C.

    2013-01-01

    This paper builds on previous self-healing engineered cementitious composites (ECC) research by allowing ECC to heal outdoors, in the natural environment, under random and sometimes extreme environmental conditions. Development of an ECC material that can heal itself in the natural environment could lower infrastructure maintenance costs and allow for more sustainable development in the future by increasing service life and decreasing the amount of resources and energy needed for repairs. Determining to what extent current ECC materials self-heal in the natural environment is the first step in the development of an ECC that can completely heal itself when exposed to everyday environmental conditions. This study monitored outdoor ECC specimens for one year using resonant frequency (RF) and mechanical reloading to determine the rate and extent of self-healing in the natural environment. It was found that the level of RF, stiffness, and first cracking strength recovery increased as the duration of natural environment exposure increased. For specimens that underwent multiple damage cycles, it was found that the level of recovery was highly dependent on the average temperature and amount of precipitation between each damage event. However, RF, stiffness, and first cracking strength recovery data for specimens that underwent multiple loading cycles suggest that self-healing functionality can be maintained under multiple damage events. PMID:28811411

  4. 46 CFR 113.35-15 - Mechanical engine order telegraph systems; application.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Mechanical engine order telegraph systems; application...-15 Mechanical engine order telegraph systems; application. If a mechanical engine order telegraph... cables or other mechanical limitations must not prevent the efficient operation of the system. ...

  5. Education, Technology, and Media: A Peak into My Summer Internship at NASA Glenn Research Center in Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    Moon, James

    2004-01-01

    My name is James Moon and I am a senor at Tennessee State University where my major is Aeronautical and Industrial Technology with a concentration in industrial electronics. I am currently serving my internship in the Engineering and Technical Services Directorate at the Glenn Research Center (GRC). The Engineering and Technical Service Directorate provides the services and infrastructure for the Glenn Research Center to take research concepts to reality. They provide a full range of integrated services including engineering, advanced prototyping and testing, facility management, and information technology for NASA, industry, and academia. Engineering and Technical Services contains the core knowledge in Information Technology (IT). This includes data systems and analysis, inter and intranet based systems design and data security. Including the design and development of embedded real-time sohare applications for flight and supporting ground systems, Engineering and Technical Services provide a wide range of IT services and products specific to the Glenn Research Center research and engineering community.

  6. A Summary of the Naval Postgraduate School Research Program.

    DTIC Science & Technology

    1984-06-01

    Administrative Sciences, Operations Research, National Security Affairs, Physics, Electrical Engineering , Meterology, Aeronautics, Oceanography and Mechanical ...Oceans and Major Seas -------------------------------- 290 DEPARTMENT OF MECHANICAL ENGINEERING 291 Mechanical Engineering Department Summary 293...in Buried Pipes Using Sulphur Hexaflouride as a Tracer Gas," American Society of Mechanical Engineers , The Journal of Engineering for Power

  7. Cultured Construction: Global Evidence of the Impact of National Values on Piped-to-Premises Water Infrastructure Development.

    PubMed

    Kaminsky, Jessica A

    2016-07-19

    In 2016, the global community undertook the Sustainable Development Goals. One of these goals seeks to achieve universal and equitable access to safe and affordable drinking water for all people by the year 2030. In support of this undertaking, this paper seeks to discover the cultural work done by piped water infrastructure across 33 nations with developed and developing economies that have experienced change in the percentage of population served by piped-to-premises water infrastructure at the national level of analysis. To do so, I regressed the 1990-2012 change in piped-to-premises water infrastructure coverage against Hofstede's cultural dimensions, controlling for per capita GDP, the 1990 baseline level of coverage, percent urban population, overall 1990-2012 change in improved sanitation (all technologies), and per capita freshwater resources. Separate analyses were carried out for the urban, rural, and aggregate national contexts. Hofstede's dimensions provide a measure of cross-cultural difference; high or low scores are not in any way intended to represent better or worse but rather serve as a quantitative way to compare aggregate preferences for ways of being and doing. High scores in the cultural dimensions of Power Distance, Individualism-Collectivism, and Uncertainty Avoidance explain increased access to piped-to-premises water infrastructure in the rural context. Higher Power Distance and Uncertainty Avoidance scores are also statistically significant for increased coverage in the urban and national aggregate contexts. These results indicate that, as presently conceived, piped-to-premises water infrastructure fits best with spatial contexts that prefer hierarchy and centralized control. Furthermore, water infrastructure is understood to reduce uncertainty regarding the provision of individually valued benefits. The results of this analysis identify global trends that enable engineers and policy makers to design and manage more culturally appropriate and socially sustainable water infrastructure by better fitting technologies to user preferences.

  8. What Do Experienced Water Managers Think of Water Resources of Our Nation and Its Management Infrastructure?

    PubMed

    Hossain, Faisal; Arnold, Jeffrey; Beighley, Ed; Brown, Casey; Burian, Steve; Chen, Ji; Mitra, Anindita; Niyogi, Dev; Pielke, Roger; Tidwell, Vincent; Wegner, Dave

    2015-01-01

    This article represents the second report by an ASCE Task Committee "Infrastructure Impacts of Landscape-driven Weather Change" under the ASCE Watershed Management Technical Committee and the ASCE Hydroclimate Technical Committee. Herein, the 'infrastructure impacts" are referred to as infrastructure-sensitive changes in weather and climate patterns (extremes and non-extremes) that are modulated, among other factors, by changes in landscape, land use and land cover change. In this first report, the article argued for explicitly considering the well-established feedbacks triggered by infrastructure systems to the land-atmosphere system via landscape change. In this report by the ASCE Task Committee (TC), we present the results of this ASCE TC's survey of a cross section of experienced water managers using a set of carefully crafted questions. These questions covered water resources management, infrastructure resiliency and recommendations for inclusion in education and curriculum. We describe here the specifics of the survey and the results obtained in the form of statistical averages on the 'perception' of these managers. Finally, we discuss what these 'perception' averages may indicate to the ASCE TC and community as a whole for stewardship of the civil engineering profession. The survey and the responses gathered are not exhaustive nor do they represent the ASCE-endorsed viewpoint. However, the survey provides a critical first step to developing the framework of a research and education plan for ASCE. Given the Water Resources Reform and Development Act passed in 2014, we must now take into account the perceived concerns of the water management community.

  9. What Do Experienced Water Managers Think of Water Resources of Our Nation and Its Management Infrastructure?

    PubMed Central

    Hossain, Faisal; Arnold, Jeffrey; Beighley, Ed; Brown, Casey; Burian, Steve; Chen, Ji; Mitra, Anindita; Niyogi, Dev; Pielke, Roger; Tidwell, Vincent; Wegner, Dave

    2015-01-01

    This article represents the second report by an ASCE Task Committee “Infrastructure Impacts of Landscape-driven Weather Change” under the ASCE Watershed Management Technical Committee and the ASCE Hydroclimate Technical Committee. Herein, the ‘infrastructure impacts” are referred to as infrastructure-sensitive changes in weather and climate patterns (extremes and non-extremes) that are modulated, among other factors, by changes in landscape, land use and land cover change. In this first report, the article argued for explicitly considering the well-established feedbacks triggered by infrastructure systems to the land-atmosphere system via landscape change. In this report by the ASCE Task Committee (TC), we present the results of this ASCE TC’s survey of a cross section of experienced water managers using a set of carefully crafted questions. These questions covered water resources management, infrastructure resiliency and recommendations for inclusion in education and curriculum. We describe here the specifics of the survey and the results obtained in the form of statistical averages on the ‘perception’ of these managers. Finally, we discuss what these ‘perception’ averages may indicate to the ASCE TC and community as a whole for stewardship of the civil engineering profession. The survey and the responses gathered are not exhaustive nor do they represent the ASCE-endorsed viewpoint. However, the survey provides a critical first step to developing the framework of a research and education plan for ASCE. Given the Water Resources Reform and Development Act passed in 2014, we must now take into account the perceived concerns of the water management community. PMID:26544045

  10. Ultra-efficient Engine Diameter Study

    NASA Technical Reports Server (NTRS)

    Daggett, David L.; Brown, Stephen T.; Kawai, Ron T.

    2003-01-01

    Engine fan diameter and Bypass Ratio (BPR) optimization studies have been conducted since the beginning of the turbofan age with the recognition that reducing the engine core jet velocity and increasing fan mass flow rate generally increases propulsive efficiency. However, performance tradeoffs limit the amount of fan flow achievable without reducing airplane efficiency. This study identifies the optimum engine fan diameter and BPR, given the advanced Ultra-Efficient Engine Technology (UEET) powerplant efficiencies, for use on an advanced subsonic airframe. Engine diameter studies have historically focused on specific engine size options, and were limited by existing technology and transportation infrastructure (e.g., ability to fit bare engines through aircraft doors and into cargo holds). This study is unique in defining the optimum fan diameter and drivers for future 2015 (UEET) powerplants while not limiting engine fan diameter by external constraints. This report follows on to a study identifying the system integration issues of UEET engines. This Engine Diameter study was managed by Boeing Phantom Works, Seattle, Washington through the NASA Glenn Revolutionary Aero Space Engine Research (RASER) contract under task order 10. Boeing Phantom Works, Huntington Beach, completed the engine/airplane sizing optimization, while the Boeing Commercial Airplane group (BCA) provided design oversight. A separate subcontract to support the overall project was issued to Tuskegee University.

  11. Establishing a Numerical Modeling Framework for Hydrologic Engineering Analyses of Extreme Storm Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiaodong; Hossain, Faisal; Leung, L. Ruby

    In this study a numerical modeling framework for simulating extreme storm events was established using the Weather Research and Forecasting (WRF) model. Such a framework is necessary for the derivation of engineering parameters such as probable maximum precipitation that are the cornerstone of large water management infrastructure design. Here this framework was built based on a heavy storm that occurred in Nashville (USA) in 2010, and verified using two other extreme storms. To achieve the optimal setup, several combinations of model resolutions, initial/boundary conditions (IC/BC), cloud microphysics and cumulus parameterization schemes were evaluated using multiple metrics of precipitation characteristics. Themore » evaluation suggests that WRF is most sensitive to IC/BC option. Simulation generally benefits from finer resolutions up to 5 km. At the 15km level, NCEP2 IC/BC produces better results, while NAM IC/BC performs best at the 5km level. Recommended model configuration from this study is: NAM or NCEP2 IC/BC (depending on data availability), 15km or 15km-5km nested grids, Morrison microphysics and Kain-Fritsch cumulus schemes. Validation of the optimal framework suggests that these options are good starting choices for modeling extreme events similar to the test cases. This optimal framework is proposed in response to emerging engineering demands of extreme storm events forecasting and analyses for design, operations and risk assessment of large water infrastructures.« less

  12. A Brokering Solution for Business Process Execution

    NASA Astrophysics Data System (ADS)

    Santoro, M.; Bigagli, L.; Roncella, R.; Mazzetti, P.; Nativi, S.

    2012-12-01

    Predicting the climate change impact on biodiversity and ecosystems, advancing our knowledge of environmental phenomena interconnection, assessing the validity of simulations and other key challenges of Earth Sciences require intensive use of environmental modeling. The complexity of Earth system requires the use of more than one model (often from different disciplines) to represent complex processes. The identification of appropriate mechanisms for reuse, chaining and composition of environmental models is considered a key enabler for an effective uptake of a global Earth Observation infrastructure, currently pursued by the international geospatial research community. The Group on Earth Observation (GEO) Model Web initiative aims to increase present accessibility and interoperability of environmental models, allowing their flexible composition into complex Business Processes (BPs). A few, basic principles are at the base of the Model Web concept (Nativi, et al.): 1. Open access 2. Minimal entry-barriers 3. Service-driven approach 4. Scalability In this work we propose an architectural solution aiming to contribute to the Model Web vision. This solution applies the Brokering approach for facilitiating complex multidisciplinary interoperability. The Brokering approach is currently adopted in the new GEOSS Common Infrastructure (GCI) as was presented at the last GEO Plenary meeting in Istanbul, November 2011. According to the Brokering principles, the designed system is flexible enough to support the use of multiple BP design (visual) tools, heterogeneous Web interfaces for model execution (e.g. OGC WPS, WSDL, etc.), and different Workflow engines. We designed and prototyped a component called BP Broker that is able to: (i) read an abstract BP, (ii) "compile" the abstract BP into an executable one (eBP) - in this phase the BP Broker might also provide recommendations for incomplete BPs and parameter mismatch resolution - and (iii) finally execute the eBP using a Workflow engine. The present implementation makes use of BPMN 2.0 notation for BP design and jBPM workflow engine for eBP execution; however, the strong decoupling which characterizes the design of the BP Broker easily allows supporting other technologies. The main benefits of the proposed approach are: (i) no need for a composition infrastructure, (ii) alleviation from technicalities of workflow definitions, (iii) support of incomplete BPs, and (iv) the reuse of existing BPs as atomic processes. The BP Broker was designed and prototyped in the EC funded projects EuroGEOSS (http://www.eurogeoss.eu) and UncertWeb (http://www.uncertweb.org); the latter project provided also the use scenarios that were used to test the framework: the eHabitat scenario (calculation habitat similarity likelihood) and the FERA scenario (impact of climate change on land-use and crop yield). Three more scenarios are presently under development. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreements n. 248488 and n. 226487. References Nativi, S., Mazzetti, P., & Geller, G. (2012), "Environmental model access and interoperability: The GEO Model Web initiative". Environmental Modelling & Software , 1-15

  13. IT Requirements Integration in High-Rise Construction Design Projects

    NASA Astrophysics Data System (ADS)

    Levina, Anastasia; Ilin, Igor; Esedulaev, Rustam

    2018-03-01

    The paper discusses the growing role of IT support for the operation of modern high-rise buildings, due to the complexity of managing engineering systems of buildings and the requirements of consumers for the IT infrastructure. The existing regulatory framework for the development of design documentation for construction, including high-rise buildings, is analyzed, and the lack of coherence in the development of this documentation with the requirements for the creation of an automated management system and the corresponding IT infrastructure is stated. The lack of integration between these areas is the cause of delays and inefficiencies both at the design stage and at the stage of putting the building into operation. The paper proposes an approach to coordinate the requirements of the IT infrastructure of high-rise buildings and design documentation for construction. The solution to this problem is possible within the framework of the enterprise architecture concept by coordinating the requirements of the IT and technological layers at the design stage of the construction.

  14. Towards usable and interdisciplinary e-infrastructure (Invited)

    NASA Astrophysics Data System (ADS)

    de Roure, D.

    2010-12-01

    e-Science and cyberinfrastucture at their outset tended to focus on ‘big science’ and cross-organisational infrastructures, demonstrating complex engineering with the promise of high returns. It soon became evident that the key to researchers harnessing new technology for everyday use is a user-centric approach which empowers the user - both from a developer and an end user viewpoint. For example, this philosophy is demonstrated in workflow systems for systematic data processing and in the Web 2.0 approach as exemplified by the myExperiment social web site for sharing workflows, methods and ‘research objects’. Hence the most disruptive aspect of Cloud and virtualisation is perhaps that they make new computational resources and applications usable, creating a flourishing ecosystem for routine processing and innovation alike - and in this we must consider software sustainability. This talk will discuss the changing nature of e-Science digital ecosystem, focus on the e-infrastructure for cross-disciplinary work, and highlight issues in sustainable software development in this context.

  15. Risk-informed Management of Water Infrastructure in the United States: History, Development, and Best Practices

    NASA Astrophysics Data System (ADS)

    Wolfhope, J.

    2017-12-01

    This presentation will focus on the history, development, and best practices for evaluating the risks associated with the portfolio of water infrastructure in the United States. These practices have evolved from the early development of the Federal Guidelines for Dam Safety and the establishment of the National Dam Safety Program, to the most recent update of the Best Practices for Dam and Levee Risk Analysis jointly published by the U.S. Department of Interior Bureau of Reclamation and the U.S. Army Corps of Engineers. Since President Obama signed the Water Infrastructure Improvements for the Nation Act (WIIN) Act, on December 16, 2016, adding a new grant program under FEMA's National Dam Safety Program, the focus has been on establishing a risk-based priority system for use in identifying eligible high hazard potential dams for which grants may be made. Finally, the presentation provides thoughts on the future direction and priorities for managing the risk of dams and levees in the United States.

  16. United States Air Force Graduate Student Summer Support Program 1986. Program Technical Report. Volume 2

    DTIC Science & Technology

    1986-12-01

    Engineering University of Wisconsin- Madison Mechanics, 1985 Dept. of Engineering Mechanics Specialty: Engineering Mechanics 1415 Johnson Drive Assigned: RPL... Madison , WI 53706 (608) 262-3990 Brian J. Doherty Degree: B.S.E., Bioenginnering, 1984 Duke University Specialty: Bloengineering Biomedical Engineering...Assigned: ML Kent, OH 44242 (216) 672-2246 Gregory L. Walker Degree: B.S., Engineering University of Wisconsin- Madison Mechanics, 1985 Engineering

  17. Low-cost, quantitative assessment of highway bridges through the use of unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Ellenberg, Andrew; Kontsos, Antonios; Moon, Franklin; Bartoli, Ivan

    2016-04-01

    Many envision that in the near future the application of Unmanned Aerial Vehicles (UAVs) will impact the civil engineering industry. Use of UAVs is currently experiencing tremendous growth, primarily in military and homeland security applications. It is only a matter of time until UAVs will be widely accepted as platforms for implementing monitoring/surveillance and inspection in other fields. Most UAVs already have payloads as well as hardware/software capabilities to incorporate a number of non-contact remote sensors, such as high resolution cameras, multi-spectral imaging systems, and laser ranging systems (LIDARs). Of critical importance to realizing the potential of UAVs within the infrastructure realm is to establish how (and the extent to which) such information may be used to inform preservation and renewal decisions. Achieving this will depend both on our ability to quantify information from images (through, for example, optical metrology techniques) and to fuse data from the array of non-contact sensing systems. Through a series of applications to both laboratory-scale and field implementations on operating infrastructure, this paper will present and evaluate (through comparison with conventional approaches) various image processing and data fusion strategies tailored specifically for the assessment of highway bridges. Example scenarios that guided this study include the assessment of delaminations within reinforced concrete bridge decks, the quantification of the deterioration of steel coatings, assessment of the functionality of movement mechanisms, and the estimation of live load responses (inclusive of both strain and displacement).

  18. Integrated technique of planning the capital repair of residential buildings and objects of transport infrastructure

    NASA Astrophysics Data System (ADS)

    Dement'eva, Marina

    2017-10-01

    The paper presents the results of a comparative analysis of two fundamentally different methods for planning capital repairs of objects of transport infrastructure and residential development. The first method was based on perspective long-term plans. Normative service life were the basis for planning the periodicity of repairs. The second method was based on the performance of repairs in fact of the onset of the malfunction. Problems of financing repair work, of the uneven aging of constructs and engineering systems, different wear mechanism in different conditions of exploitation, absence of methods of planning repairs of administrative and production buildings (depots, stations, etc.) justify the need to optimize methods of planning the repair and the relevance of this paper. The aim of the study was to develop the main provisions of an integrated technique for planning the capital repair of buildings of any functional purpose, which combines the advantages of each of the discussed planning methods. For this purpose, the consequences of technical and economic risk were analyzed of the buildings, including stations, depots, transport transfer hubs, administrative buildings, etc when choosing different planning methods. One of the significant results of the study is the possibility of justifying the optimal period of capital repairs on the basis of the proposed technical and economic criteria. The adjustment of the planned repair schedule is carried out taking into account the reliability and cost-effectiveness of the exploitation process.

  19. Data Documentation for Navy Civilian Manpower Study,

    DTIC Science & Technology

    1986-09-01

    Engineering 0830 Mechanical Engineer 0840 Nuclear Engineering 0850 Electrical Engineering 0855 Electronics Engineering 0856 Electronics ...OCCUPATIONAL LEVEL (DONOL) CODES DONOL code Title 1060 Engineering Drafting 1061 Electronics Technician w 1062 Engineering Technician 1063 Industrial...Architect 2314 Electrical Engineer 2315 Electronic Engineer 2316 Industrial Engineer 2317 Mechanical Engineer 2318

  20. Multi-scalar interactions between infrastructure, smallholder water management, and coastal dynamics in the Bengal Delta, Bangladesh

    NASA Astrophysics Data System (ADS)

    Rogers, K. G.; Brondizio, E.; Roy, K.; Syvitski, J. P.

    2016-12-01

    Because of their low-lying elevations and large number of inhabitants and infrastructure, river deltas are ground zero for climate change impacts, particularly from sea-level rise and storm surges. The increased vulnerability of downstream delta communities to coastal flooding as a result of upstream engineering has been acknowledged for decades. What has received less attention is the sensitivity of deltas to the interactions of these processes and increasing intensity of cultivation and irrigation in their coastal regions. Beyond basin-scale damming, regional infrastructure affects the movement of sediment and water on deltas, and combined with upstream modifications may exacerbate the risk of expanded tidal flooding, erosion of arable land, and salinization of soils and groundwater associated with sea level rise. To examine the social-biophysical feedbacks associated with regional-scale infrastructure, smallholder water management practices and coastal dynamics, a nested framework was applied to two districts of the coastal southwest region of Bangladesh. The two districts vary in tidal range, salinity, freshwater availability and socioeconomic structures, and are spatially varied in farmer's adaptations. Both districts contain numerous large embankment systems initially designed to protect cropland from tidal flooding, but that have been poorly maintained since their construction in the 1960's. The framework was co-produced using local-level stakeholder input collected during group interviews with rural farmers in 8 villages within the two districts, and explicitly accounts for engineered and natural biophysical variables as well as governance and institutional structures at 3 levels of analysis. Household survey results indicate that the presence or absence of embankments as a result of poor management and dynamic coastal processes is the primary control on freshwater availability and thus influences farming strategies, socioeconomic conditions and social positions in both districts. Local-scale interactions with the embankments are spatially heterogeneous, but geospatial analyses show the potential for these to collectively impact physical and social stability across a region already vulnerable to coastal flooding.

  1. Preface: High-rate GNSS: Theory, methods and engineering/geophysical applications

    NASA Astrophysics Data System (ADS)

    Xu, Peiliang

    2017-06-01

    Global Navigation Satellite Systems (GNSS) have revolutionized the science and engineering of positioning, timing and navigation and have become an indispensable means to rapidly obtain precise positioning-related information, profoundly affecting our daily life and infrastructure. With GNSS, the position of an object, either stationary or moving, can be determined anywhere, anytime and under any weather condition. In addition to providing a positioning and timing information service, GNSS are now also used to reconstruct physical properties of media through which GNSS signals travel. The utilization of additional GNSS systems such as the European Galileo and the Chinese Beidou (both expected to complete their final global constellations in 2020) will contribute to positioning/navigation science and engineering, provide more industrial opportunities and surely open more challenges.

  2. Broadcasting Engineering Laboratories--Audio/Video and Data--in Real-Time over the Internet

    ERIC Educational Resources Information Center

    Jain, Prashant K.; Gu, Yuxiang; Rizwan-uddin

    2008-01-01

    Internet extends the reach of existing laboratory and training infrastructure to beyond the walls of such facilities. Though nothing can replace the hands-on experience in a laboratory; a carefully developed web-based digital lab may be the next best thing. In some cases, there may be benefits associated with a "distance laboratory" that…

  3. Information Infrastructures for Integrated Enterprises

    DTIC Science & Technology

    1993-05-01

    PROCESSING demographic CAM realization; ule leveling; studies; prelimi- rapid tooling; con- accounting/admin- nary CAFE and tinuous cost istrative reports...nies might consider franchising some facets of indirect labor, such as selected functions of administration, finance, and human resources. Incorporate as...vices CAFE Corporate Average Fuel Economy CAD Computer-Aided Design 0 CAE Computer-Aided Engineering CAIS Common Ada Programming Support Environment

  4. RELEASE OF IL-8 AND IL-6 BY BEAS-2B CELLS FOLLOWING IN VITRO EXPOSURE TO BIODIESEL PM EXTRACTS

    EPA Science Inventory

    Abstract Body: Biodiesel, an alkyl ester of plant oils that can be used in an unmodified diesel engine, is a renewable fuel alternative which show signs of becoming a commercially accepted part of our nation¿s energy infrastructure. Biodiesel exhaust has been physicochemically ch...

  5. Exploration of the Alignment of State Data and Infrastructure to Mathematics and Science Success Indicators

    ERIC Educational Resources Information Center

    Mandinach, Ellen B.; Hauk, Shandy

    2017-01-01

    A range of education initiatives in the U.S. are focusing on ways to improve curriculum, instruction, teacher development, and student assessment related to science, technology, engineering, and mathematics (STEM) education. Key indicators to monitor the quality of STEM education have been proposed by the National Research Council. This paper is…

  6. Engineering Public Private Partnerships (PPPs) in University Education Service Delivery in Africa

    ERIC Educational Resources Information Center

    Odeleye, Donald A.

    2012-01-01

    University education remains a major player in the socio-economic revamping of Africa even though most African national governments have not leveraged the high output of the private sector for educational development. For the most part to date, private universities are running as parallels to their public counterparts. With fewer infrastructures,…

  7. Waves at Navigation Structures

    DTIC Science & Technology

    2014-10-27

    upgrades the Coastal Modeling System’s (CMS) wave model CMS-Wave, a phase-averaged spectral wave model, and BOUSS-2D, a Boussinesq -type nonlinear wave...nearshore wave processes in practical applications. These capabilities facilitate optimization of innovative infrastructure for navigation systems to...navigation systems . The advanced models develop probabilistic engineering design estimates for rehabilitation of coastal structures to evaluate the

  8. 2015 Enterprise Strategic Vision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-08-01

    This document aligns with the Department of Energy Strategic Plan for 2014-2018 and provides a framework for integrating our missions and direction for pursuing DOE’s strategic goals. The vision is a guide to advancing world-class science and engineering, supporting our people, modernizing our infrastructure, and developing a management culture that operates a safe and secure enterprise in an efficient manner.

  9. Sustainable, Reliable Mission-Systems Architecture

    NASA Technical Reports Server (NTRS)

    O'Neil, Graham; Orr, James K.; Watson, Steve

    2005-01-01

    A mission-systems architecture, based on a highly modular infrastructure utilizing open-standards hardware and software interfaces as the enabling technology is essential for affordable md sustainable space exploration programs. This mission-systems architecture requires (8) robust communication between heterogeneous systems, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, end verification of systems, and (e) minimal sustaining engineering. This paper proposes such an architecture. Lessons learned from the Space Shuttle program and Earthbound complex engineered systems are applied to define the model. Technology projections reaching out 5 years are made to refine model details.

  10. A New Overview of The Trilinos Project

    DOE PAGES

    Heroux, Michael A.; Willenbring, James M.

    2012-01-01

    Since An Overview of the Trilinos Project [ACM Trans. Math. Softw. 31(3) (2005), 397–423] was published in 2005, Trilinos has grown significantly. It now supports the development of a broad collection of libraries for scalable computational science and engineering applications, and a full-featured software infrastructure for rigorous lean/agile software engineering. This growth has created significant opportunities and challenges. This paper focuses on some of the most notable changes to the Trilinos project in the last few years. At the time of the writing of this article, the current release version of Trilinos was 10.12.2.

  11. A new vision for fusion energy research: Fusion rocket engines for planetary defense

    DOE PAGES

    Wurden, G. A.; Weber, T. E.; Turchi, P. J.; ...

    2015-11-16

    Here, we argue that it is essential for the fusion energy program to identify an imagination-capturing critical mission by developing a unique product which could command the marketplace. We lay out the logic that this product is a fusion rocket engine, to enable a rapid response capable of deflecting an incoming comet, to prevent its impact on the planet Earth, in defense of our population, infrastructure, and civilization. As a side benefit, deep space solar system exploration, with greater speed and orders-of-magnitude greater payload mass would also be possible.

  12. A new vision for fusion energy research: Fusion rocket engines for planetary defense

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wurden, G. A.; Weber, T. E.; Turchi, P. J.

    Here, we argue that it is essential for the fusion energy program to identify an imagination-capturing critical mission by developing a unique product which could command the marketplace. We lay out the logic that this product is a fusion rocket engine, to enable a rapid response capable of deflecting an incoming comet, to prevent its impact on the planet Earth, in defense of our population, infrastructure, and civilization. As a side benefit, deep space solar system exploration, with greater speed and orders-of-magnitude greater payload mass would also be possible.

  13. Sustainable, Reliable Mission-Systems Architecture

    NASA Technical Reports Server (NTRS)

    O'Neil, Graham; Orr, James K.; Watson, Steve

    2007-01-01

    A mission-systems architecture, based on a highly modular infrastructure utilizing: open-standards hardware and software interfaces as the enabling technology is essential for affordable and sustainable space exploration programs. This mission-systems architecture requires (a) robust communication between heterogeneous system, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, and verification of systems, and (e) minimal sustaining engineering. This paper proposes such an architecture. Lessons learned from the Space Shuttle program and Earthbound complex engineered system are applied to define the model. Technology projections reaching out 5 years are mde to refine model details.

  14. Standardized Curriculum for Diesel Engine Mechanics.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized curricula are provided for two courses for the secondary vocational education program in Mississippi: diesel engine mechanics I and II. The eight units in diesel engine mechanics I are as follows: orientation; shop safety; basic shop tools; fasteners; measurement; engine operating principles; engine components; and basic auxiliary…

  15. Mechanical Engineering Senior Design Project Final Presentations | College

    Science.gov Websites

    Mechanical Engineering Senior Design Project Final Presentations December 7, 2015 Mechanical Engineering On Wednesday, Dec. 9th, the mechanical engineering senior design project final presentations will be made in and Steven Keller Objective: Design a temperature controlled unit that would cool and maintain a

  16. Ramin Faramarzi | NREL

    Science.gov Websites

    Ramin Faramarzi Photo of Ramin Faramarzi Ramin Faramarzi Researcher V-Mechanical Engineering Engineering, California State University B.S. Mechanical Engineering, North Carolina State University articles and is a registered mechanical engineer in the state of California. Education M.S. Mechanical

  17. Editorial [Special issue on software defined networks and infrastructures, network function virtualisation, autonomous systems and network management

    DOE PAGES

    Biswas, Amitava; Liu, Chen; Monga, Inder; ...

    2016-01-01

    For last few years, there has been a tremendous growth in data traffic due to high adoption rate of mobile devices and cloud computing. Internet of things (IoT) will stimulate even further growth. This is increasing scale and complexity of telecom/internet service provider (SP) and enterprise data centre (DC) compute and network infrastructures. As a result, managing these large network-compute converged infrastructures is becoming complex and cumbersome. To cope up, network and DC operators are trying to automate network and system operations, administrations and management (OAM) functions. OAM includes all non-functional mechanisms which keep the network running.

  18. Expose Mechanical Engineering Students to Biomechanics Topics

    ERIC Educational Resources Information Center

    Shen, Hui

    2011-01-01

    To adapt the focus of engineering education to emerging new industries and technologies nationwide and in the local area, a biomechanics module has been developed and incorporated into a mechanical engineering technical elective course to expose mechanical engineering students at ONU (Ohio Northern University) to the biomedical engineering topics.…

  19. 46 CFR 113.35-9 - Mechanical engine order telegraph systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Mechanical engine order telegraph systems. 113.35-9 Section 113.35-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-9 Mechanical engine order...

  20. 46 CFR 113.35-13 - Mechanical engine order telegraph systems; operation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Mechanical engine order telegraph systems; operation...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-13 Mechanical engine order telegraph systems; operation. If more than one transmitter operates a...

Top