Sample records for mechanical engineering processes

  1. Integrating Thermal Tools Into the Mechanical Design Process

    NASA Technical Reports Server (NTRS)

    Tsuyuki, Glenn T.; Siebes, Georg; Novak, Keith S.; Kinsella, Gary M.

    1999-01-01

    The intent of mechanical design is to deliver a hardware product that meets or exceeds customer expectations, while reducing cycle time and cost. To this end, an integrated mechanical design process enables the idea of parallel development (concurrent engineering). This represents a shift from the traditional mechanical design process. With such a concurrent process, there are significant issues that have to be identified and addressed before re-engineering the mechanical design process to facilitate concurrent engineering. These issues also assist in the integration and re-engineering of the thermal design sub-process since it resides within the entire mechanical design process. With these issues in mind, a thermal design sub-process can be re-defined in a manner that has a higher probability of acceptance, thus enabling an integrated mechanical design process. However, the actual implementation is not always problem-free. Experience in applying the thermal design sub-process to actual situations provides the evidence for improvement, but more importantly, for judging the viability and feasibility of the sub-process.

  2. Engineering Change Management Method Framework in Mechanical Engineering

    NASA Astrophysics Data System (ADS)

    Stekolschik, Alexander

    2016-11-01

    Engineering changes make an impact on different process chains in and outside the company, and lead to most error costs and time shifts. In fact, 30 to 50 per cent of development costs result from technical changes. Controlling engineering change processes can help us to avoid errors and risks, and contribute to cost optimization and a shorter time to market. This paper presents a method framework for controlling engineering changes at mechanical engineering companies. The developed classification of engineering changes and accordingly process requirements build the basis for the method framework. The developed method framework comprises two main areas: special data objects managed in different engineering IT tools and process framework. Objects from both areas are building blocks that can be selected to the overall business process based on the engineering process type and change classification. The process framework contains steps for the creation of change objects (both for overall change and for parts), change implementation, and release. Companies can select singleprocess building blocks from the framework, depending on the product development process and change impact. The developed change framework has been implemented at a division (10,000 employees) of a big German mechanical engineering company.

  3. The Process of Updating Engineering Management Science in an Australian Regional University Excellence in Developing E-Learning

    ERIC Educational Resources Information Center

    Ku, H.; Fulcher, R.

    2007-01-01

    The aim of the current paper is to share the processes in revising the courseware of the course of "Engineering Management Science" coded as ENG4004, in the Bachelor of Engineering (Mechanical, Mechatronics, Electrical and Electronic, Computer Systems, Instrumentation and Control), Bachelor of Engineering Technology (Mechanical, Building…

  4. Methodology for Developing Teaching Activities and Materials for Use in Fluid Mechanics Courses in Undergraduate Engineering Programs

    ERIC Educational Resources Information Center

    Gamez-Montero, P. Javier; Raush, Gustavo; Domènech, Lluis; Castilla, Robert; García-Vílchez, Mercedes; Moreno, Hipòlit; Carbó, Albert

    2015-01-01

    "Mechanics" and "Fluids" are familiar concepts for any newly-registered engineering student. However, when combined into the term "Fluid Mechanics", students are thrust into the great unknown. The present article demonstrates the process of adaptation employed by the Fluid Mechanics course in the undergraduate…

  5. Development of Engineering Design Education in the Department of Mechanical Engineering at Kanazawa Technical College

    NASA Astrophysics Data System (ADS)

    Yamada, Hirofumi; Ten-Nichi, Michio; Mathui, Hirosi; Nakamura, Akizi

    This paper introduces a method of the engineering design education for college of technology mechanical engineering students. In order to teach the practical engineering design, the MIL-STD-499A process is adapted and improved upon for a Mechatronics hands-on lesson used as the MOT method. The educational results in five years indicate that knowledge of the engineering management is useful for college students in learning engineering design. Portfolio for lessons and the hypothesis method also have better effects on the understanding of the engineering specialty.

  6. An Integrated Product Environment

    NASA Technical Reports Server (NTRS)

    Higgins, Chuck

    1997-01-01

    Mechanical Advantage is a mechanical design decision support system. Unlike our CAD/CAM cousins, Mechanical Advantage addresses true engineering processes, not just the form and fit of geometry. If we look at a traditional engineering environment, we see that an engineer starts with two things - performance goals and design rules. The intent is to have a product perform specific functions and accomplish that within a designated environment. Geometry should be a simple byproduct of that engineering process - not the controller of it. Mechanical Advantage is a performance modeler allowing engineers to consider all these criteria in making their decisions by providing such capabilities as critical parameter analysis, tolerance and sensitivity analysis, math driven Geometry, and automated design optimizations. If you should desire an industry standard solid model, we would produce an ACIS-based solid model. If you should desire an ANSI/ISO standard drawing, we would produce this as well with a virtual push of the button. For more information on this and other Advantage Series products, please contact the author.

  7. Improved Rhenium Thrust Chambers

    NASA Technical Reports Server (NTRS)

    O'Dell, John Scott

    2015-01-01

    Radiation-cooled bipropellant thrust chambers are being considered for ascent/ descent engines and reaction control systems on various NASA missions and spacecraft, such as the Mars Sample Return and Orion Multi-Purpose Crew Vehicle (MPCV). Currently, iridium (Ir)-lined rhenium (Re) combustion chambers are the state of the art for in-space engines. NASA's Advanced Materials Bipropellant Rocket (AMBR) engine, a 150-lbf Ir-Re chamber produced by Plasma Processes and Aerojet Rocketdyne, recently set a hydrazine specific impulse record of 333.5 seconds. To withstand the high loads during terrestrial launch, Re chambers with improved mechanical properties are needed. Recent electrochemical forming (EL-Form"TM") results have shown considerable promise for improving Re's mechanical properties by producing a multilayered deposit composed of a tailored microstructure (i.e., Engineered Re). The Engineered Re processing techniques were optimized, and detailed characterization and mechanical properties tests were performed. The most promising techniques were selected and used to produce an Engineered Re AMBR-sized combustion chamber for testing at Aerojet Rocketdyne.

  8. 40 CFR 68.73 - Mechanical integrity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.73 Mechanical integrity. (a... accepted good engineering practices. (3) The frequency of inspections and tests of process equipment shall be consistent with applicable manufacturers' recommendations and good engineering practices, and more...

  9. 40 CFR 68.73 - Mechanical integrity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.73 Mechanical integrity. (a... accepted good engineering practices. (3) The frequency of inspections and tests of process equipment shall be consistent with applicable manufacturers' recommendations and good engineering practices, and more...

  10. 40 CFR 68.73 - Mechanical integrity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.73 Mechanical integrity. (a... accepted good engineering practices. (3) The frequency of inspections and tests of process equipment shall be consistent with applicable manufacturers' recommendations and good engineering practices, and more...

  11. 40 CFR 68.73 - Mechanical integrity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.73 Mechanical integrity. (a... accepted good engineering practices. (3) The frequency of inspections and tests of process equipment shall be consistent with applicable manufacturers' recommendations and good engineering practices, and more...

  12. On-Board Real-Time Optimization Control for Turbo-Fan Engine Life Extending

    NASA Astrophysics Data System (ADS)

    Zheng, Qiangang; Zhang, Haibo; Miao, Lizhen; Sun, Fengyong

    2017-11-01

    A real-time optimization control method is proposed to extend turbo-fan engine service life. This real-time optimization control is based on an on-board engine mode, which is devised by a MRR-LSSVR (multi-input multi-output recursive reduced least squares support vector regression method). To solve the optimization problem, a FSQP (feasible sequential quadratic programming) algorithm is utilized. The thermal mechanical fatigue is taken into account during the optimization process. Furthermore, to describe the engine life decaying, a thermal mechanical fatigue model of engine acceleration process is established. The optimization objective function not only contains the sub-item which can get fast response of the engine, but also concludes the sub-item of the total mechanical strain range which has positive relationship to engine fatigue life. Finally, the simulations of the conventional optimization control which just consider engine acceleration performance or the proposed optimization method have been conducted. The simulations demonstrate that the time of the two control methods from idle to 99.5 % of the maximum power are equal. However, the engine life using the proposed optimization method could be surprisingly increased by 36.17 % compared with that using conventional optimization control.

  13. The role of mechanical loading in ligament tissue engineering.

    PubMed

    Benhardt, Hugh A; Cosgriff-Hernandez, Elizabeth M

    2009-12-01

    Tissue-engineered ligaments have received growing interest as a promising alternative for ligament reconstruction when traditional transplants are unavailable or fail. Mechanical stimulation was recently identified as a critical component in engineering load-bearing tissues. It is well established that living tissue responds to altered loads through endogenous changes in cellular behavior, tissue organization, and bulk mechanical properties. Without the appropriate biomechanical cues, new tissue formation lacks the necessary collagenous organization and alignment for sufficient load-bearing capacity. Therefore, tissue engineers utilize mechanical conditioning to guide tissue remodeling and improve the performance of ligament grafts. This review provides a comparative analysis of the response of ligament and tendon fibroblasts to mechanical loading in current bioreactor studies. The differential effect of mechanical stimulation on cellular processes such as protease production, matrix protein synthesis, and cell proliferation is examined in the context of tissue engineering design.

  14. MEMSlab: A Practical MEMS Course for the Fabrication, Packaging, and Testing of a Single-Axis Accelerometer

    ERIC Educational Resources Information Center

    Grundbacher, R.; Hoetzel, J. E.; Hierold, C.

    2009-01-01

    A microelectro-mechanical systems (MEMS) laboratory course (MEMSlab) in the Mechanical and Process Engineering Department at the Swiss Federal Institute of Technology (ETH Zurich), is presented. The course has been taught for four years and has been attended primarily by Master's students from mechanical and electrical engineering; since fall…

  15. Direct Measurement and Evaluation for Mechanical Engineering Programme Outcomes: Impact on Continuous Improvement

    ERIC Educational Resources Information Center

    Tahir, Mohd Faizal Mat; Khamis, Nor Kamaliana; Wahid, Zaliha; Ihsan, Ahmad Kamal Ariffin Mohd; Ghani, Jaharah Ab; Sabri, Mohd Anas Mohd; Sajuri, Zainuddin; Abdullah, Shahrum; Sulong, Abu Bakar

    2013-01-01

    Universiti Kebangsaan Malaysia (UKM) is a research university that continuously undergoes an audit and accreditation process for the management of its courses. The Faculty of Engineering and the Built Environment (FKAB) is subjected to such processes, one of them is the auditing conducted by the Engineering Accreditation Council (EAC), which gives…

  16. Software engineering technology transfer: Understanding the process

    NASA Technical Reports Server (NTRS)

    Zelkowitz, Marvin V.

    1993-01-01

    Technology transfer is of crucial concern to both government and industry today. In this report, the mechanisms developed by NASA to transfer technology are explored and the actual mechanisms used to transfer software development technologies are investigated. Time, cost, and effectiveness of software engineering technology transfer is reported.

  17. The development and application of CFD technology in mechanical engineering

    NASA Astrophysics Data System (ADS)

    Wei, Yufeng

    2017-12-01

    Computational Fluid Dynamics (CFD) is an analysis of the physical phenomena involved in fluid flow and heat conduction by computer numerical calculation and graphical display. The numerical method simulates the complexity of the physical problem and the precision of the numerical solution, which is directly related to the hardware speed of the computer and the hardware such as memory. With the continuous improvement of computer performance and CFD technology, it has been widely applied to the field of water conservancy engineering, environmental engineering and industrial engineering. This paper summarizes the development process of CFD, the theoretical basis, the governing equations of fluid mechanics, and introduces the various methods of numerical calculation and the related development of CFD technology. Finally, CFD technology in the mechanical engineering related applications are summarized. It is hoped that this review will help researchers in the field of mechanical engineering.

  18. Interrelationships among Librarians, Engineers, and Publishers in the Publication Process.

    ERIC Educational Resources Information Center

    Jackson, Eugene B.

    This paper advocates the involvement of librarians in the publishing process and examines the mechanics of that process. Concerns of librarians, engineers, and publishers are delineated, with examples taken from the internal and external dissemination of technical information by a major U.S. government research agency and various large industrial…

  19. A Theory of Information Quality and a Framework for Its Implementation in the Requirements Engineering Process

    ERIC Educational Resources Information Center

    Grenn, Michael W.

    2013-01-01

    This dissertation introduces a theory of information quality to explain macroscopic behavior observed in the systems engineering process. The theory extends principles of Shannon's mathematical theory of communication [1948] and statistical mechanics to information development processes concerned with the flow, transformation, and meaning of…

  20. Welding parameter optimization of alloy material by friction stir welding using Taguchi approach and design of experiments

    NASA Astrophysics Data System (ADS)

    Karwande, Amit H.; Rao, Seeram Srinivasa

    2018-04-01

    Friction stir welding (FSW) a welding process in which metals are joint by melting them at their solid state. In different engineering areas such as civil, mechanical, naval and aeronautical engineering beams are widely used of the magnesium alloys for different applications and that are joined by conventional inert gas welding process. Magnesium metal has less density and low melting point for that reason large heat generation in the common welding process so its necessity to adapt new welding process. FSW process increases the weld quality which observed under various mechanical testing by using different tool size.

  1. Creating Learning Environment Connecting Engineering Design and 3D Printing

    NASA Astrophysics Data System (ADS)

    Pikkarainen, Ari; Salminen, Antti; Piili, Heidi

    Engineering education in modern days require continuous development in didactics, pedagogics and used practical methods. 3D printing provides excellent opportunity to connect different engineering areas into practice and produce learning by doing applications. The 3D-printing technology used in this study is FDM (Fused deposition modeling). FDM is the most used 3D-printing technology by commercial numbers at the moment and the qualities of the technology makes it popular especially in academic environments. For achieving the best result possible, students will incorporate the principles of DFAM (Design for additive manufacturing) into their engineering design studies together with 3D printing. This paper presents a plan for creating learning environment for mechanical engineering students combining the aspects of engineering design, 3D-CAD learning and AM (additive manufacturing). As a result, process charts for carrying out the 3D printing process from technological point of view and design process for AM from engineering design point of view were created. These charts are used in engineering design education. The learning environment is developed to work also as a platform for Bachelor theses, work-training environment for students, prototyping service centre for cooperation partners and source of information for mechanical engineering education in Lapland University of Applied Sciences.

  2. Quantum thermodynamic cycles and quantum heat engines. II.

    PubMed

    Quan, H T

    2009-04-01

    We study the quantum-mechanical generalization of force or pressure, and then we extend the classical thermodynamic isobaric process to quantum-mechanical systems. Based on these efforts, we are able to study the quantum version of thermodynamic cycles that consist of quantum isobaric processes, such as the quantum Brayton cycle and quantum Diesel cycle. We also consider the implementation of the quantum Brayton cycle and quantum Diesel cycle with some model systems, such as single particle in a one-dimensional box and single-mode radiation field in a cavity. These studies lay the microscopic (quantum-mechanical) foundation for Szilard-Zurek single-molecule engine.

  3. Characterization of the Temperature Capabilities of Advanced Disk Alloy ME3

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Telesman, Jack; Kantzos, Peter T.; OConnor, Kenneth

    2002-01-01

    The successful development of an advanced powder metallurgy disk alloy, ME3, was initiated in the NASA High Speed Research/Enabling Propulsion Materials (HSR/EPM) Compressor/Turbine Disk program in cooperation with General Electric Engine Company and Pratt & Whitney Aircraft Engines. This alloy was designed using statistical screening and optimization of composition and processing variables to have extended durability at 1200 F in large disks. Disks of this alloy were produced at the conclusion of the program using a realistic scaled-up disk shape and processing to enable demonstration of these properties. The objective of the Ultra-Efficient Engine Technologies disk program was to assess the mechanical properties of these ME3 disks as functions of temperature in order to estimate the maximum temperature capabilities of this advanced alloy. These disks were sectioned, machined into specimens, and extensively tested. Additional sub-scale disks and blanks were processed and selectively tested to explore the effects of several processing variations on mechanical properties. Results indicate the baseline ME3 alloy and process can produce 1300 to 1350 F temperature capabilities, dependent on detailed disk and engine design property requirements.

  4. Patent Information Use in Engineering Technology Design: An Analysis of Student Work

    ERIC Educational Resources Information Center

    Phillips, Margaret; Zwicky, Dave

    2017-01-01

    How might engineering technology students make use of patent information in the engineering design process? Librarians analyzed team project reports and personal reflections created by students in an undergraduate mechanical engineering technology design course, revealing that the students used patents to consider the patentability of their ideas,…

  5. Project-Based Manufacturing Engineering Practice at Ibaraki University and Its Outcomes

    NASA Astrophysics Data System (ADS)

    Yamasaki, Kazuhiko; Wang, Dong F.; Maekawa, Katsuhiro

    The real world experience of manufacturing processes from an idea stage to a final product must be related to classroom lectures in mechanical engineering curriculum, including design, materials engineering, dynamics and control. Various challenges and difficulties encountered during the manufacturing engineering practice also let students recognize their creativity as well as what kinds of knowledge is missing. Awareness is the start of growth. In line with this principle we have carried out the mechanical engineering practice for 10 years. Some modifications toward “project-based practice” , however, have been made through manufacturing engineers’ real activities. Drawing and specification, process control, cost management, and role-sharing arrangement are stressed during the semester course. The present paper describes how it works and what is left to improve further, such as a refinement of themes and a coaching method for bringing out the hidden talent in students.

  6. The technique for Simulation of Transient Combustion Processes in the Rocket Engine Operating with Gaseous Fuel “Hydrogen and Oxygen”

    NASA Astrophysics Data System (ADS)

    Zubanov, V. M.; Stepanov, D. V.; Shabliy, L. S.

    2017-01-01

    The article describes the method for simulation of transient combustion processes in the rocket engine. The engine operates on gaseous propellant: oxygen and hydrogen. Combustion simulation was performed using the ANSYS CFX software. Three reaction mechanisms for the stationary mode were considered and described in detail. Reactions mechanisms have been taken from several sources and verified. The method for converting ozone properties from the Shomate equation to the NASA-polynomial format was described in detail. The way for obtaining quick CFD-results with intermediate combustion components using an EDM model was found. Modeling difficulties with combustion model Finite Rate Chemistry, associated with a large scatter of reference data were identified and described. The way to generate the Flamelet library with CFX-RIF is described. Formulated adequate reaction mechanisms verified at a steady state have also been tested for transient simulation. The Flamelet combustion model was recognized as adequate for the transient mode. Integral parameters variation relates to the values obtained during stationary simulation. A cyclic irregularity of the temperature field, caused by precession of the vortex core, was detected in the chamber with the proposed simulation technique. Investigations of unsteady processes of rocket engines including the processes of ignition were proposed as the area for application of the described simulation technique.

  7. Leadership processes for re-engineering changes to the health care industry.

    PubMed

    Guo, Kristina L

    2004-01-01

    As health care organizations seek innovative ways to change financing and delivery mechanisms due to escalated health care costs and increased competition, drastic changes are being sought in the form of re-engineering. This study discusses the leader's role of re-engineering in health care. It specifically addresses the reasons for failures in re-engineering and argues that success depends on senior level leaders playing a critical role. Existing studies lack comprehensiveness in establishing models of re-engineering and management guidelines. This research focuses on integrating re-engineering and leadership processes in health care by creating a step-by-step model. Particularly, it illustrates the four Es: Examination, Establishment, Execution and Evaluation, as a comprehensive re-engineering process that combines managerial roles and activities to result in successfully changed and reengineered health care organizations.

  8. Assessment of the mechanics of a tissue-engineered rat trachea in an image-processing environment.

    PubMed

    Silva, Thiago Henrique Gomes da; Pazetti, Rogerio; Aoki, Fabio Gava; Cardoso, Paulo Francisco Guerreiro; Valenga, Marcelo Henrique; Deffune, Elenice; Evaristo, Thaiane; Pêgo-Fernandes, Paulo Manuel; Moriya, Henrique Takachi

    2014-07-01

    Despite the recent success regarding the transplantation of tissue-engineered airways, the mechanical properties of these grafts are not well understood. Mechanical assessment of a tissue-engineered airway graft before implantation may be used in the future as a predictor of function. The aim of this preliminary work was to develop a noninvasive image-processing environment for the assessment of airway mechanics. Decellularized, recellularized and normal tracheas (groups DECEL, RECEL, and CONTROL, respectively) immersed in Krebs-Henseleit solution were ventilated by a small-animal ventilator connected to a Fleisch pneumotachograph and two pressure transducers (differential and gauge). A camera connected to a stereomicroscope captured images of the pulsation of the trachea before instillation of saline solution and after instillation of Krebs-Henseleit solution, followed by instillation with Krebs-Henseleit with methacholine 0.1 M (protocols A, K and KMCh, respectively). The data were post-processed with computer software and statistical comparisons between groups and protocols were performed. There were statistically significant variations in the image measurements of the medial region of the trachea between the groups (two-way analysis of variance [ANOVA], p<0.01) and of the proximal region between the groups and protocols (two-way ANOVA, p<0.01). The technique developed in this study is an innovative method for performing a mechanical assessment of engineered tracheal grafts that will enable evaluation of the viscoelastic properties of neo-tracheas prior to transplantation.

  9. Army Research Office and Air Force Office of Scientific Research Contractors’ Meeting in Chemical Propulsion Held in Boulder, Colorado on June 11-13, 2007

    DTIC Science & Technology

    2007-06-01

    single-cylinder diesel engine showed that at high EGR rates, the autoignition mechanism changes from the typical single stage to a two-stage process...2002). 3. Edwards, T., Zabarnick, S. "Supercritical Fuel Deposition Mechanisms ," Industrial and Engineering Chemistry Research 32: 3117-3122 (1993...and the Air Force Office of Scientific Research. 20070910360 15. SUBJECT TERMS Flames, Propulsion, Gas Turbines, Diesel Engines , Scramjets, Pulse

  10. EDITORIAL: Precision Measurement Technology at the 56th International Scientific Colloquium in Ilmenau Precision Measurement Technology at the 56th International Scientific Colloquium in Ilmenau

    NASA Astrophysics Data System (ADS)

    Manske, E.; Froehlich, T.

    2012-07-01

    The 56th International Scientific Colloquium was held from 12th to 16th September 2011 at the Ilmenau University of Technology in Germany. This event was organized by the Faculty of Mechanical Engineering under the title: 'Innovation in Mechanical Engineering—Shaping the Future' and was intended to reflect the entire scope of modern mechanical engineering. In three main topics many research areas, all involving innovative mechanical engineering, were addressed, especially in the fields of Precision Engineering and Precision Measurement Technology, Mechatronics and Ambient-Assisted Living and Systems Technology. The participants were scientists from 21 countries, and 166 presentations were given. This special issue of Measurement Science and Technology presents selected contributions on 'Precision Engineering and Precision Measurement Technology'. Over three days the conference participants discussed novel scientific results in two sessions. The main topics of these sessions were: Measurement and Sensor Technology Process measurement Laser measurement Force measurement Weighing technology Temperature measurement Measurement dynamics and Nanopositioning and Nanomeasuring Technology Nanopositioning and nanomeasuring machines Nanometrology Probes and tools Mechanical design Signal processing Control and visualization in NPM devices Significant research results from the Collaborative Research Centre SFB 622 'Nanopositioning and Nanomeasuring Machines' funded by the German Research Foundation (DFG) were presented as part of this topic. As the Chairmen, our special thanks are due to the International Programme Committee, the Organization Committee and the conference speakers as well as colleagues from the Institute of Process Measurement and Sensor Technology who helped make the conference a success. We would like to thank all the authors for their contributions, the referees for their time spent reviewing the contributions and their valuable comments, and the whole Editorial Board of Measurement Science and Technology for their support.

  11. Development of a parallel FE simulator for modeling the whole trans-scale failure process of rock from meso- to engineering-scale

    NASA Astrophysics Data System (ADS)

    Li, Gen; Tang, Chun-An; Liang, Zheng-Zhao

    2017-01-01

    Multi-scale high-resolution modeling of rock failure process is a powerful means in modern rock mechanics studies to reveal the complex failure mechanism and to evaluate engineering risks. However, multi-scale continuous modeling of rock, from deformation, damage to failure, has raised high requirements on the design, implementation scheme and computation capacity of the numerical software system. This study is aimed at developing the parallel finite element procedure, a parallel rock failure process analysis (RFPA) simulator that is capable of modeling the whole trans-scale failure process of rock. Based on the statistical meso-damage mechanical method, the RFPA simulator is able to construct heterogeneous rock models with multiple mechanical properties, deal with and represent the trans-scale propagation of cracks, in which the stress and strain fields are solved for the damage evolution analysis of representative volume element by the parallel finite element method (FEM) solver. This paper describes the theoretical basis of the approach and provides the details of the parallel implementation on a Windows - Linux interactive platform. A numerical model is built to test the parallel performance of FEM solver. Numerical simulations are then carried out on a laboratory-scale uniaxial compression test, and field-scale net fracture spacing and engineering-scale rock slope examples, respectively. The simulation results indicate that relatively high speedup and computation efficiency can be achieved by the parallel FEM solver with a reasonable boot process. In laboratory-scale simulation, the well-known physical phenomena, such as the macroscopic fracture pattern and stress-strain responses, can be reproduced. In field-scale simulation, the formation process of net fracture spacing from initiation, propagation to saturation can be revealed completely. In engineering-scale simulation, the whole progressive failure process of the rock slope can be well modeled. It is shown that the parallel FE simulator developed in this study is an efficient tool for modeling the whole trans-scale failure process of rock from meso- to engineering-scale.

  12. Quantum-mechanical engines working with an ideal gas with a finite number of particles confined in a power-law trap

    NASA Astrophysics Data System (ADS)

    Wang, Jianhui; Ma, Yongli; He, Jizhou

    2015-07-01

    Based on quantum thermodynamic processes, we make a quantum-mechanical (QM) extension of the typical heat engine cycles, such as the Carnot, Brayton, Otto, Diesel cycles, etc., with no introduction of the concept of temperature. When these QM engine cycles are implemented by an ideal gas confined in an arbitrary power-law trap, a relation between the quantum adiabatic exponent and trap exponent is found. The differences and similarities between the efficiency of a given QM engine cycle and its classical counterpart are revealed and discussed.

  13. Recent developments in turbomachinery component materials and manufacturing challenges for aero engine applications

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Raghunandana, K.; Satish Shenoy, B.

    2018-02-01

    In the recent years the development of turbomachinery materials performance enhancement plays a vital role especially in aircraft air breathing engines like turbojet engine, turboprop engine, turboshaft engine and turbofan engines. Especially the transonic flow engines required highly sophisticated materials where it can sustain the entire thrust which can create by the engine. The main objective of this paper is to give an overview of the present cost-effective and technological capabilities process for turbomachinery component materials. Especially the main focus is given to study the Electro physical, Photonic additive removal process and Electro chemical process for turbomachinery parts manufacture. The aeronautical propulsion based technologies are reviewed thoroughly where in surface reliability, geometrical precession, and material removal and highly strengthened composite material deposition rates usually difficult to cut dedicated steels, Titanium and Nickel based alloys. In this paper the past aeronautical and propulsion mechanical based manufacturing technologies, current sophisticated technologies and also future challenging material processing techniques are covered. The paper also focuses on the brief description of turbomachinery components of shaping process and coating in aeromechanical applications.

  14. Computational analysis of liquid hypergolic propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Krishnan, A.; Przekwas, A. J.; Gross, K. W.

    1992-01-01

    The combustion process in liquid rocket engines depends on a number of complex phenomena such as atomization, vaporization, spray dynamics, mixing, and reaction mechanisms. A computational tool to study their mutual interactions is developed to help analyze these processes with a view of improving existing designs and optimizing future designs of the thrust chamber. The focus of the article is on the analysis of the Variable Thrust Engine for the Orbit Maneuvering Vehicle. This engine uses a hypergolic liquid bipropellant combination of monomethyl hydrazine as fuel and nitrogen tetroxide as oxidizer.

  15. Metal- matrix composite processing technologies for aircraft engine applications

    NASA Astrophysics Data System (ADS)

    Pank, D. R.; Jackson, J. J.

    1993-06-01

    Titanium metal-matrix composites (MMC) are prime candidate materials for aerospace applications be-cause of their excellent high-temperature longitudinal strength and stiffness and low density compared with nickel- and steel-base materials. This article examines the steps GE Aircraft Engines (GEAE) has taken to develop an induction plasma deposition (IPD) processing method for the fabrication of Ti6242/SiC MMC material. Information regarding process methodology, microstructures, and mechani-cal properties of consolidated MMC structures will be presented. The work presented was funded under the GE-Aircraft Engine IR & D program.

  16. Grain Boundary Engineering the Mechanical Properties of Allvac 718Plus(Trademark) Superalloy

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Telesman, Jack; Garg, Anita; Lin, Peter; Provenzano, virgil; Heard, Robert; Miller, Herbert M.

    2010-01-01

    Grain Boundary Engineering can enhance the population of structurally-ordered "low S" Coincidence Site Lattice (CSL) grain boundaries in the microstructure. In some alloys, these "special" grain boundaries have been reported to improve overall resistance to corrosion, oxidation, and creep resistance. Such improvements could be quite beneficial for superalloys, especially in conditions which encourage damage and cracking at grain boundaries. Therefore, the effects of GBE processing on high-temperature mechanical properties of the cast and wrought superalloy Allvac 718Plus (Allvac ATI) were screened. Bar sections were subjected to varied GBE processing, and then consistently heat treated, machined, and tested at 650 C. Creep, tensile stress relaxation, and dwell fatigue crack growth tests were performed. The influences of GBE processing on microstructure, mechanical properties, and associated failure modes are discussed.

  17. The International Congress of Mechanical Engineering and Agricultural Sciences - CIIMCA 2013

    NASA Astrophysics Data System (ADS)

    Remolina-Millán, Aduljay; Hernández-Arroyo, Emil

    2014-06-01

    The organizing committee of The International Congress of Mechanical Engineering and Agricultural Sciences - CIIMCA 2013 - are pleased to present CIIMCA-2013: the first international conference focused on subjects of materials science, mechanical engineering and renewable energy organized by Mechanical Engineering Faculty of the ''Universidad Pontificia Bolivariana'' in Bucaramanga, Colombia. This conference aims to be a place to produce discussions on whole topics of the congress, between the scientists of Colombia and the world. We strongly believe that knowledge is fundamental to the development of our countries. For that reason this multidisciplinary conference is looking forward to integrate engineering, agricultural science and nanoscience and nanotechnology to produce a synergy of this area of knowledge and to achieve scientific and technological developments. Agriculture is a very important topic for our conference; in Colombia, agricultural science needs more attention from the scientific community and the government. In the Faculty of Mechanical Engineering we are beginning to work on these issues to produce knowledge and improve the conditions in our country. The CIIMCA conference is a great opportunity to create interpersonal relationships and networks between scientists around the world. The interaction between scientists is very important in the process of the construction of knowledge. The general chairman encourages and invites you to make friends, relationships and participate strongly in the symposia and all program activities. PhD Aduljay Remolina-Millán Principal Chairman, International Mechanical Engineering and Agricultural Sciences Congress - CIIMCA Msc Emil Hernández-Arroyo Principal Chairman, International Mechanical Engineering and Agricultural Sciences Congress - CIIMCA Conference photograph Conference photograph 'Universidad Pontificia Bolivariana seccional Bucaramanga' host of the first International Mechanical Engineering and Agricultural Sciences Congress - CIIMCA 2013 - Floridablanaca, Colombia. Conference photograph Closure of CIIMCA 2013. Details of the editorial committee and acknowledgements are available in the PDF.

  18. Evidence of Facilitation Cascade Processes as Drivers of Successional Patterns of Ecosystem Engineers at the Upper Altitudinal Limit of the Dry Puna.

    PubMed

    Malatesta, Luca; Tardella, Federico Maria; Piermarteri, Karina; Catorci, Andrea

    2016-01-01

    Facilitation processes constitute basic elements of vegetation dynamics in harsh systems. Recent studies in tropical alpine environments demonstrated how pioneer plant species defined as "ecosystem engineers" are capable of enhancing landscape-level richness by adding new species to the community through the modification of microhabitats, and also provided hints about the alternation of different ecosystem engineers over time. Nevertheless, most of the existing works analysed different ecosystem engineers separately, without considering the interaction of different ecosystem engineers. Focusing on the altitudinal limit of Peruvian Dry Puna vegetation, we hypothesized that positive interactions structure plant communities by facilitation cascades involving different ecosystem engineers, determining the evolution of the microhabitat patches in terms of abiotic resources and beneficiary species hosted. To analyze successional mechanisms, we used a "space-for-time" substitution to account for changes over time, and analyzed data on soil texture, composition, and temperature, facilitated species and their interaction with nurse species, and surface area of engineered patches by means of chemical analyses, indicator species analysis, and rarefaction curves. A successional process, resulting from the dynamic interaction of different ecosystem engineers, which determined a progressive amelioration of soil conditions (e.g. nitrogen and organic matter content, and temperature), was the main driver of species assemblage at the community scale, enhancing species richness. Cushion plants act as pioneers, by starting the successional processes that continue with shrubs and tussocks. Tussock grasses have sometimes been found to be capable of creating microhabitat patches independently. The dynamics of species assemblage seem to follow the nested assemblage mechanism, in which the first foundation species to colonize a habitat provides a novel substrate for colonization by other foundation species through a facilitation cascade process.

  19. Improving Metal Casting Process

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Don Sirois, an Auburn University research associate, and Bruce Strom, a mechanical engineering Co-Op Student, are evaluating the dimensional characteristics of an aluminum automobile engine casting. More accurate metal casting processes may reduce the weight of some cast metal products used in automobiles, such as engines. Research in low gravity has taken an important first step toward making metal products used in homes, automobiles, and aircraft less expensive, safer, and more durable. Auburn University and industry are partnering with NASA to develop one of the first accurate computer model predictions of molten metals and molding materials used in a manufacturing process called casting. Ford Motor Company's casting plant in Cleveland, Ohio is using NASA-sponsored computer modeling information to improve the casting process of automobile and light-truck engine blocks.

  20. Thermodynamic and Mechanical Analysis of a Thermomagnetic Rotary Engine

    NASA Astrophysics Data System (ADS)

    Fajar, D. M.; Khotimah, S. N.; Khairurrijal

    2016-08-01

    A heat engine in magnetic system had three thermodynamic coordinates: magnetic intensity ℋ, total magnetization ℳ, and temperature T, where the first two of them are respectively analogous to that of gaseous system: pressure P and volume V. Consequently, Carnot cycle that constitutes the principle of a heat engine in gaseous system is also valid on that in magnetic system. A thermomagnetic rotary engine is one model of it that was designed in the form of a ferromagnetic wheel that can rotates because of magnetization change at Curie temperature. The study is aimed to describe the thermodynamic and mechanical analysis of a thermomagnetic rotary engine and calculate the efficiencies. In thermodynamic view, the ideal processes are isothermal demagnetization, adiabatic demagnetization, isothermal magnetization, and adiabatic magnetization. The values of thermodynamic efficiency depend on temperature difference between hot and cold reservoir. In mechanical view, a rotational work is determined through calculation of moment of inertia and average angular speed. The value of mechanical efficiency is calculated from ratio between rotational work and heat received by system. The study also obtains exergetic efficiency that states the performance quality of the engine.

  1. Interactive training model of TRIZ for mechanical engineers in China

    NASA Astrophysics Data System (ADS)

    Tan, Runhua; Zhang, Huangao

    2014-03-01

    Innovation is a process of taking an original idea and converting it into a business value, in which the engineers face some inventive problems which can be solved hardly by experience. TRIZ, as a new theory for companies in China, provides both conceptual and procedural knowledge for finding and solving inventive problems. Because the government plays a leading role in the diffusion of TRIZ, too many companies from different industries are waiting to be trained, but the quantity of the trainers mastering TRIZ is incompatible with that requirement. In this context, to improve the training effect, an interactive training model of TRIZ for the mechanical engineers in China is developed and the implementation in the form of training classes is carried out. The training process is divided into 6 phases as follows: selecting engineers, training stage-1, finding problems, training stage-2, finding solutions and summing up. The government, TRIZ institutions and companies to join the programs interact during the process. The government initiates and monitors a project in form of a training class of TRIZ and selects companies to join the programs. Each selected companies choose a few engineers to join the class and supervises the training result. The TRIZ institutions design the training courses and carry out training curriculum. With the beginning of the class, an effective communication channel is established by means of interview, discussion face to face, E-mail, QQ and so on. After two years training practices, the results show that innovative abilities of the engineers to join and pass the final examinations increased distinctly, and most of companies joined the training class have taken congnizance of the power of TRIZ for product innovation. This research proposes an interactive training model of TRIZ for mechanical engineers in China to expedite the knowledge diffusion of TRIZ.

  2. Comparative evaluation of gas-turbine engine combustion chamber starting and stalling characteristics for mechanical and air-injection

    NASA Technical Reports Server (NTRS)

    Dyatlov, I. N.

    1983-01-01

    The effectiveness of propellant atomization with and without air injection in the combustion chamber nozzle of a gas turbine engine is studied. Test show that the startup and burning performance of these combustion chambers can be improved by using an injection during the mechanical propellant atomization process. It is shown that the operational range of combustion chambers can be extended to poorer propellant mixtures by combined air injection mechanical atomization of the propellant.

  3. International Conference on Defects-Recognition, Imaging and Physics in Semiconductors (13th), held at Wheeling, West Virginia, on 13-17 September 2009

    DTIC Science & Technology

    2010-06-01

    Jansson, Y. Leterrier, and J.A.E. Manson, Engi- neering Fracture Mechanics . 37 (2006), pp. 2614-2626. 43. N.E. Jansson et al., Thin Solid Films, 515...ceremony in Octo- ber. Apelian is the Howmet Professor of Mechanical Engineering and direc- tor of the Metal Processing Institute at Worcester... mechanical engineering to mate- rials as an undergraduate student at the Indian Institute of Technology Kanpur. "I realized that major changes in

  4. The TAME Project: Towards improvement-oriented software environments

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.; Rombach, H. Dieter

    1988-01-01

    Experience from a dozen years of analyzing software engineering processes and products is summarized as a set of software engineering and measurement principles that argue for software engineering process models that integrate sound planning and analysis into the construction process. In the TAME (Tailoring A Measurement Environment) project at the University of Maryland, such an improvement-oriented software engineering process model was developed that uses the goal/question/metric paradigm to integrate the constructive and analytic aspects of software development. The model provides a mechanism for formalizing the characterization and planning tasks, controlling and improving projects based on quantitative analysis, learning in a deeper and more systematic way about the software process and product, and feeding the appropriate experience back into the current and future projects. The TAME system is an instantiation of the TAME software engineering process model as an ISEE (integrated software engineering environment). The first in a series of TAME system prototypes has been developed. An assessment of experience with this first limited prototype is presented including a reassessment of its initial architecture.

  5. Processing study of injection molding of silicon nitride for engine applications

    NASA Technical Reports Server (NTRS)

    Rorabaugh, M. E.; Yeh, H. C.

    1985-01-01

    The high hardness of silicon nitride, which is currently under consideration as a structural material for such hot engine components as turbine blades, renders machining of the material prohibitively costly; the near net shape forming technique of injection molding is accordingly favored as a means for component fabrication. Attention is presently given to the relationships between injection molding processing parameters and the resulting microstructural and mechanical properties of the resulting engine parts. An experimental program has been conducted under NASA sponsorship which tests the quality of injection molded bars of silicon nitride at various stages of processing.

  6. Evidence of Facilitation Cascade Processes as Drivers of Successional Patterns of Ecosystem Engineers at the Upper Altitudinal Limit of the Dry Puna

    PubMed Central

    2016-01-01

    Facilitation processes constitute basic elements of vegetation dynamics in harsh systems. Recent studies in tropical alpine environments demonstrated how pioneer plant species defined as “ecosystem engineers” are capable of enhancing landscape-level richness by adding new species to the community through the modification of microhabitats, and also provided hints about the alternation of different ecosystem engineers over time. Nevertheless, most of the existing works analysed different ecosystem engineers separately, without considering the interaction of different ecosystem engineers. Focusing on the altitudinal limit of Peruvian Dry Puna vegetation, we hypothesized that positive interactions structure plant communities by facilitation cascades involving different ecosystem engineers, determining the evolution of the microhabitat patches in terms of abiotic resources and beneficiary species hosted. To analyze successional mechanisms, we used a “space-for-time” substitution to account for changes over time, and analyzed data on soil texture, composition, and temperature, facilitated species and their interaction with nurse species, and surface area of engineered patches by means of chemical analyses, indicator species analysis, and rarefaction curves. A successional process, resulting from the dynamic interaction of different ecosystem engineers, which determined a progressive amelioration of soil conditions (e.g. nitrogen and organic matter content, and temperature), was the main driver of species assemblage at the community scale, enhancing species richness. Cushion plants act as pioneers, by starting the successional processes that continue with shrubs and tussocks. Tussock grasses have sometimes been found to be capable of creating microhabitat patches independently. The dynamics of species assemblage seem to follow the nested assemblage mechanism, in which the first foundation species to colonize a habitat provides a novel substrate for colonization by other foundation species through a facilitation cascade process. PMID:27902757

  7. Possible role of mechanical force in regulating regeneration of the vascularized fat flap inside a tissue engineering chamber.

    PubMed

    Ye, Yuan; Yuan, Yi; Lu, Feng; Gao, Jianhua

    2015-12-01

    In plastic and reconstructive surgery, adipose tissue is widely used as effective filler for tissue defects. Strategies for treating soft tissue deficiency, which include free adipose tissue grafts, use of hyaluronic acid, collagen injections, and implantation of synthetic materials, have several clinical limitations. With the aim of overcoming these limitations, researchers have recently utilized tissue engineering chambers to produce large volumes of engineered vascularized fat tissue. However, the process of growing fat tissue in a chamber is still relatively limited, and can result in unpredictable or dissatisfactory final tissue volumes. Therefore, detailed understanding of the process is both necessary and urgent. Many studies have shown that mechanical force can change the function of cells via mechanotransduction. Here, we hypothesized that, besides the inflammatory response, one of the key factors to control the regeneration of vascularized fat flap inside a tissue engineering chamber might be the balance of mechanical forces. To test our hypothesis, we intend to change the balance of forces by means of measures in order to make the equilibrium point in favor of the direction of regeneration. If those measures proved to be feasible, they could be applied in clinical practice to engineer vascularized adipose tissue of predictable size and shape, which would in turn help in the advancement of tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Effect of microstructure on high-temperature mechanical behavior of nickel-base superalloys for turbine disc applications

    NASA Astrophysics Data System (ADS)

    Sharpe, Heather Joan

    2007-05-01

    Engineers constantly seek advancements in the performance of aircraft and power generation engines, including, lower costs and emissions, and improved fuel efficiency. Nickel-base superalloys are the material of choice for turbine discs, which experience some of the highest temperatures and stresses in the engine. Engine performance is proportional to operating temperatures. Consequently, the high-temperature capabilities of disc materials limit the performance of gas-turbine engines. Therefore, any improvements to engine performance necessitate improved alloy performance. In order to take advantage of improvements in high-temperature capabilities through tailoring of alloy microstructure, the overall objectives of this work were to establish relationships between alloy processing and microstructure, and between microstructure and mechanical properties. In addition, the projected aimed to demonstrate the applicability of neural network modeling to the field of Ni-base disc alloy development and behavior. The first phase of this work addressed the issue of how microstructure varies with heat treatment and by what mechanisms these structures are formed. Further it considered how superalloy composition could account for microstructural variations from the same heat treatment. To study this, four next-generation Ni-base disc alloys were subjected to various controlled heat-treatments and the resulting microstructures were then quantified. These quantitative results were correlated to chemistry and processing, including solution temperature, cooling rate, and intermediate hold temperature. A complex interaction of processing steps and chemistry was found to contribute to all features measured; grain size, precipitate distribution, grain boundary serrations. Solution temperature, above a certain threshold, and cooling rate controlled grain size, while cooling rate and intermediate hold temperature controlled precipitate formation and grain boundary serrations. Diffusion, both intergranular and grain boundary, was identified as the most pertinent mechanism. Variations in chemistry between alloys created different amounts of gamma/gamma' misfit strain, which affected precipitate size and morphology. Next the question of how a disc alloy with differing microstructures would respond to constant or cyclic stresses as a function of time was addressed. To this end, mechanical testing at elevated temperatures was conducted, including tensile, hardness, creep deformation, creep crack growth and fatigue crack growth. Overall, mechanical properties were primarily related to the cooling rate during processing with hold temperatures being secondary. Whether the impact was positive or negative depended on the behavior under consideration. Fast cooling rates improved yield strength and creep resistance, but were detrimental to creep crack growth rates. The ability of precipitate particles to impede dislocation motion was the most frequently cited mechanism behind structure-property interaction. Neural network models were successfully generated for processing-structure predictions, as well as for structure-property predictions. Training data was limited, none-the-less models were able to predict outputs with minimal relative errors. This was achieved through careful balance between the number of inputs and amount of training data. Despite the demonstrated correlation between microstructure and yield strength, microstructural quantities did not need to be directly inputted. Neural networks were sufficiently sensitive as to infer these effects from processing and chemistry inputs. This result improves the efficiency of this technique, while also demonstrating the capability of neural network techniques. A full program of heat-treatment, microstructure quantification, mechanical testing, and neural network modeling was successfully applied to next generation Ni-base disc alloys. From this work the mechanisms of processing-structure and structure-property relationships were studied. Further, testing results were used to demonstrate the applicability of machine-learning techniques to the development and optimization of this family of superalloys.

  9. Physical and Chemical Processes in Flames

    DTIC Science & Technology

    2010-02-15

    Results: Use of comprehensively validated reduced chemical kinetic mechanism allows realistic description of methane oxidation chemistry with NOx ...PERFORMING ORGANIZATION REPORT NUMBER Department of Mechanical and Aerospace Engineering Princeton University Princeton, NJ 08544... mechanism reduction; skeletal mechanism ; CO/H2 oxidation; ethylene oxidation; heptane oxidation; directed relation graph; high-pressure combustion

  10. Benefit from NASA

    NASA Image and Video Library

    1998-01-01

    Don Sirois, an Auburn University research associate, and Bruce Strom, a mechanical engineering Co-Op Student, are evaluating the dimensional characteristics of an aluminum automobile engine casting. More accurate metal casting processes may reduce the weight of some cast metal products used in automobiles, such as engines. Research in low gravity has taken an important first step toward making metal products used in homes, automobiles, and aircraft less expensive, safer, and more durable. Auburn University and industry are partnering with NASA to develop one of the first accurate computer model predictions of molten metals and molding materials used in a manufacturing process called casting. Ford Motor Company's casting plant in Cleveland, Ohio is using NASA-sponsored computer modeling information to improve the casting process of automobile and light-truck engine blocks.

  11. Particle Engineering Via Mechanical Dry Coating in the Design of Pharmaceutical Solid Dosage Forms.

    PubMed

    Qu, Li; Morton, David A V; Zhou, Qi Tony

    2015-01-01

    Cohesive powders are problematic in the manufacturing of pharmaceutical solid dosage forms because they exhibit poor flowability, fluidization and aerosolization. These undesirable bulk properties of cohesive powders represent a fundamental challenge in the design of efficient pharmaceutical manufacturing processes. Recently, mechanical dry coating has attracted increasing attention as it can improve the bulk properties of cohesive powders in a cheaper, simpler, safer and more environment-friendly way than the existing solvent-based counterparts. In this review, mechanical dry coating techniques are outlined and their potential applications in formulation and manufacturing of pharmaceutical solid dosage forms are discussed. Reported data from the literature have shown that mechanical dry coating holds promise for the design of superior pharmaceutical solid formulations or manufacturing processes by engineering the interfaces of cohesive powders in an efficient and economical way.

  12. Applying the Decoding the Disciplines Process to Teaching Structural Mechanics: An Autoethnographic Case Study

    ERIC Educational Resources Information Center

    Tingerthal, John Steven

    2013-01-01

    Using case study methodology and autoethnographic methods, this study examines a process of curricular development known as "Decoding the Disciplines" (Decoding) by documenting the experience of its application in a construction engineering mechanics course. Motivated by the call to integrate what is known about teaching and learning…

  13. Mechanical Engineering Department engineering research: Annual report, FY 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denney, R.M.; Essary, K.L.; Genin, M.S.

    1986-12-01

    This report provides information on the five areas of research interest in LLNL's Mechanical Engineering Department. In Computer Code Development, a solid geometric modeling program is described. In Dynamic Systems and Control, structure control and structure dynamics are discussed. Fabrication technology involves machine cutting, interferometry, and automated optical component manufacturing. Materials engineering reports on composite material research and measurement of molten metal surface properties. In Nondestructive Evaluation, NMR, CAT, and ultrasound machines are applied to manufacturing processes. A model for underground collapse is developed. Finally, an alternative heat exchanger is investigated for use in a fusion power plant. Separate abstractsmore » were prepared for each of the 13 reports in this publication. (JDH)« less

  14. Engineering cells for cell culture bioprocessing--physiological fundamentals.

    PubMed

    Seth, Gargi; Hossler, Patrick; Yee, Joon Chong; Hu, Wei-Shou

    2006-01-01

    In the past decade, we have witnessed a tremendous increase in the number of mammalian cell-derived therapeutic proteins with clinical applications. The success of making these life-saving biologics available to the public is partly due to engineering efforts to enhance process efficiency. To further improve productivity, much effort has been devoted to developing metabolically engineered producing cells, which possess characteristics favorable for large-scale bioprocessing. In this article we discuss the fundamental physiological basis for cell engineering. Different facets of cellular mechanisms, including metabolism, protein processing, and the balancing pathways of cell growth and apoptosis, contribute to the complex traits of favorable growth and production characteristics. We present our assessment of the current state of the art by surveying efforts that have already been undertaken in engineering cells for a more robust process. The concept of physiological homeostasis as a key determinant and its implications on cell engineering is emphasized. Integrating the physiological perspective with cell culture engineering will facilitate attainment of dream cells with superlative characteristics.

  15. Automotive Control Systems: For Engine, Driveline, and Vehicle

    NASA Astrophysics Data System (ADS)

    Kiencke, Uwe; Nielsen, Lars

    Advances in automotive control systems continue to enhance safety and comfort and to reduce fuel consumption and emissions. Reflecting the trend to optimization through integrative approaches for engine, driveline, and vehicle control, this valuable book enables control engineers to understand engine and vehicle models necessary for controller design, and also introduces mechanical engineers to vehicle-specific signal processing and automatic control. The emphasis on measurement, comparisons between performance and modeling, and realistic examples derive from the authors' unique industrial experience

  16. Development of Mechanics in Support of Rocket Technology in Ukraine

    NASA Astrophysics Data System (ADS)

    Prisnyakov, Vladimir

    2003-06-01

    The paper analyzes the advances of mechanics made in Ukraine in resolving various problems of space and rocket technology such as dynamics and strength of rockets and rocket engines, rockets of different purpose, electric rocket engines, and nonstationary processes in various systems of rockets accompanied by phase transitions of working media. Achievements in research on the effect of vibrations and gravitational fields on the behavior of space-rocket systems are also addressed. Results obtained in investigating the reliability and structural strength durability conditions for nuclear installations, solid- and liquid-propellant engines, and heat pipes are presented

  17. 40 CFR 68.73 - Mechanical integrity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Mechanical integrity. 68.73 Section 68...) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.73 Mechanical integrity. (a... accepted good engineering practices. (3) The frequency of inspections and tests of process equipment shall...

  18. Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency

    NASA Astrophysics Data System (ADS)

    DeFilippo, Anthony Cesar

    The ever-present need for reducing greenhouse gas emissions associated with transportation motivates this investigation of a novel ignition technology for internal combustion engine applications. Advanced engines can achieve higher efficiencies and reduced emissions by operating in regimes with diluted fuel-air mixtures and higher compression ratios, but the range of stable engine operation is constrained by combustion initiation and flame propagation when dilution levels are high. An advanced ignition technology that reliably extends the operating range of internal combustion engines will aid practical implementation of the next generation of high-efficiency engines. This dissertation contributes to next-generation ignition technology advancement by experimentally analyzing a prototype technology as well as developing a numerical model for the chemical processes governing microwave-assisted ignition. The microwave-assisted spark plug under development by Imagineering, Inc. of Japan has previously been shown to expand the stable operating range of gasoline-fueled engines through plasma-assisted combustion, but the factors limiting its operation were not well characterized. The present experimental study has two main goals. The first goal is to investigate the capability of the microwave-assisted spark plug towards expanding the stable operating range of wet-ethanol-fueled engines. The stability range is investigated by examining the coefficient of variation of indicated mean effective pressure as a metric for instability, and indicated specific ethanol consumption as a metric for efficiency. The second goal is to examine the factors affecting the extent to which microwaves enhance ignition processes. The factors impacting microwave enhancement of ignition processes are individually examined, using flame development behavior as a key metric in determining microwave effectiveness. Further development of practical combustion applications implementing microwave-assisted spark technology will benefit from predictive models which include the plasma processes governing the observed combustion enhancement. This dissertation documents the development of a chemical kinetic mechanism for the plasma-assisted combustion processes relevant to microwave-assisted spark ignition. The mechanism includes an existing mechanism for gas-phase methane oxidation, supplemented with electron impact reactions, cation and anion chemical reactions, and reactions involving vibrationally-excited and electronically-excited species. Calculations using the presently-developed numerical model explain experimentally-observed trends, highlighting the relative importance of pressure, temperature, and mixture composition in determining the effectiveness of microwave-assisted ignition enhancement.

  19. Eddy current characterization of magnetic treatment of nickel 200

    NASA Technical Reports Server (NTRS)

    Chern, E. J.

    1993-01-01

    Eddy current methods have been applied to characterize the effect of magnetic treatments on component service-life extension. Coil impedance measurements were acquired and analyzed on nickel 200 specimens that have been subjected to many mechanical and magnetic engineering processes: annealing, applied strain, magnetic field, shot peening, and magnetic field after peening. Experimental results have demonstrated a functional relationship between coil impedance, resistance and reactance, and specimens subjected to various engineering processes. It has shown that magnetic treatment does induce changes in electromagnetic properties of nickel 200 that then exhibit evidence of stress relief. However, further fundamental studies are necessary for a thorough understanding of the exact mechanism of the magnetic field processing effect on machine-tool service life.

  20. Eddy current characterization of magnetic treatment of materials

    NASA Technical Reports Server (NTRS)

    Chern, E. James

    1992-01-01

    Eddy current impedance measuring methods have been applied to study the effect that magnetically treated materials have on service life extension. Eddy current impedance measurements have been performed on Nickel 200 specimens that have been subjected to many mechanical and magnetic engineering processes: annealing, applied strain, magnetic field, shot peening, and magnetic field after peening. Experimental results have demonstrated a functional relationship between coil impedance, resistance and reactance, and specimens subjected to various engineering processes. It has shown that magnetic treatment does induce changes in a material's electromagnetic properties and does exhibit evidence of stress relief. However, further fundamental studies are necessary for a thorough understanding of the exact mechanism of the magnetic-field processing effect on machine tool service life.

  1. Attracting Students to Fluid Mechanics with Coffee

    NASA Astrophysics Data System (ADS)

    Ristenpart, William

    2016-11-01

    We describe a new class developed at U.C. Davis titled "The Design of Coffee," which serves as a nonmathematical introduction to chemical engineering as illustrated by the process of roasting and brewing coffee. Hands-on coffee experiments demonstrate key engineering principles, including material balances, chemical kinetics, mass transfer, conservation of energy, and fluid mechanics. The experiments lead to an engineering design competition where students strive to make the best tasting coffee using the least amount of energy - a classic engineering optimization problem, but one that is both fun and tasty. "The Design of Coffee" started as a freshmen seminar in 2013, and it has exploded in popularity: it now serves 1,533 students per year, and is the largest and most popular elective course at U.C. Davis. In this talk we focus on the class pedagogy as applied to fluid mechanics, with an emphasis on how coffee serves as an engaging and exciting topic for teaching students about fluid mechanics in an approachable, hands-on manner.

  2. Mechanical Design of Spacecraft

    NASA Technical Reports Server (NTRS)

    1962-01-01

    In the spring of 1962, engineers from the Engineering Mechanics Division of the Jet Propulsion Laboratory gave a series of lectures on spacecraft design at the Engineering Design seminars conducted at the California Institute of Technology. Several of these lectures were subsequently given at Stanford University as part of the Space Technology seminar series sponsored by the Department of Aeronautics and Astronautics. Presented here are notes taken from these lectures. The lectures were conceived with the intent of providing the audience with a glimpse of the activities of a few mechanical engineers who are involved in designing, building, and testing spacecraft. Engineering courses generally consist of heavily idealized problems in order to allow the more efficient teaching of mathematical technique. Students, therefore, receive a somewhat limited exposure to actual engineering problems, which are typified by more unknowns than equations. For this reason it was considered valuable to demonstrate some of the problems faced by spacecraft designers, the processes used to arrive at solutions, and the interactions between the engineer and the remainder of the organization in which he is constrained to operate. These lecture notes are not so much a compilation of sophisticated techniques of analysis as they are a collection of examples of spacecraft hardware and associated problems. They will be of interest not so much to the experienced spacecraft designer as to those who wonder what part the mechanical engineer plays in an effort such as the exploration of space.

  3. Replication of engine block cylinder bridge microstructure and mechanical properties with lab scale 319 Al alloy billet castings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombardi, A., E-mail: a2lombar@ryerson.ca; D'Elia, F.; Ravindran, C.

    2014-01-15

    In recent years, aluminum alloy gasoline engine blocks have in large part successfully replaced nodular cast iron engine blocks, resulting in improved vehicle fuel efficiency. However, because of the inadequate wear resistance properties of hypoeutectic Al–Si alloys, gray iron cylinder liners are required. These liners cause the development of large tensile residual stress along the cylinder bores and necessitate the maximization of mechanical properties in this region to prevent premature engine failure. The aim of this study was to replicate the engine cylinder bridge microstructure and mechanical properties following TSR treatment (which removes the sand binder to enable easy castingmore » retrieval) using lab scale billet castings of the same alloy composition with varying cooling rates. Comparisons in microstructure between the engine block and the billet castings were carried out using optical and scanning electron microscopy, while mechanical properties were assessed using tensile testing. The results suggest that the microstructure at the top and middle of the engine block cylinder bridge was successfully replicated by the billet castings. However, the microstructure at the bottom of the cylinder was not completely replicated due to variations in secondary phase morphology and distribution. The successful replication of engine block microstructure will enable the future optimization of heat treatment parameters. - Highlights: • A method to replicate engine block microstructure was developed. • Billet castings will allow cost effective optimization of heat treatment process. • The replication of microstructure in the cylinder region was mostly successful. • Porosity was more clustered in the billet castings compared to the engine block. • Mechanical properties were lower in billet castings due to porosity and inclusions.« less

  4. Get Students Excited--3D Printing Brings Designs to Life

    ERIC Educational Resources Information Center

    Lacey, Gary

    2010-01-01

    Students in technology education programs from middle school through high school around the nation are benefiting from--and enjoying--hands-on experience in mechanical engineering, applied mathematics, materials processing, basic electronics, robotics, industrial manufacturing, and other STEM (science, technology, engineering, and math)-focused…

  5. Discussion of the Investigation Method on the Reaction Kinetics of Metallurgical Reaction Engineering

    NASA Astrophysics Data System (ADS)

    Du, Ruiling; Wu, Keng; Zhang, Jiazhi; Zhao, Yong

    Reaction kinetics of metallurgical physical chemistry which was successfully applied in metallurgy (as ferrous metallurgy, non-ferrous metallurgy) became an important theoretical foundation for subject system of traditional metallurgy. Not only the research methods were very perfect, but also the independent structures and systems of it had been formed. One of the important tasks of metallurgical reaction engineering was the simulation of metallurgical process. And then, the mechanism of reaction process and the conversion time points of different control links should be obtained accurately. Therefore, the research methods and results of reaction kinetics in metallurgical physical chemistry were not very suitable for metallurgical reaction engineering. In order to provide the definite conditions of transmission, reaction kinetics parameters and the conversion time points of different control links for solving the transmission and reaction equations in metallurgical reaction engineering, a new method for researching kinetics mechanisms in metallurgical reaction engineering was proposed, which was named stepwise attempt method. Then the comparison of results between the two methods and the further development of stepwise attempt method were discussed in this paper. As a new research method for reaction kinetics in metallurgical reaction engineering, stepwise attempt method could not only satisfy the development of metallurgical reaction engineering, but also provide necessary guarantees for establishing its independent subject system.

  6. Modeling of a data exchange process in the Automatic Process Control System on the base of the universal SCADA-system

    NASA Astrophysics Data System (ADS)

    Topolskiy, D.; Topolskiy, N.; Solomin, E.; Topolskaya, I.

    2016-04-01

    In the present paper the authors discuss some ways of solving energy saving problems in mechanical engineering. In authors' opinion one of the ways of solving this problem is integrated modernization of power engineering objects of mechanical engineering companies, which should be intended for the energy supply control efficiency increase and electric energy commercial accounting improvement. The author have proposed the usage of digital current and voltage transformers for these purposes. To check the compliance of this equipment with the IEC 61850 International Standard, we have built a mathematic model of the data exchange process between measuring transformers and a universal SCADA-system. The results of modeling show that the discussed equipment corresponds to the mentioned Standard requirements and the usage of the universal SCADA-system for these purposes is preferable and economically reasonable. In modeling the authors have used the following software: MasterScada, Master OPC_DI_61850, OPNET.

  7. Statistical Thermodynamics and Microscale Thermophysics

    NASA Astrophysics Data System (ADS)

    Carey, Van P.

    1999-08-01

    Many exciting new developments in microscale engineering are based on the application of traditional principles of statistical thermodynamics. In this text Van Carey offers a modern view of thermodynamics, interweaving classical and statistical thermodynamic principles and applying them to current engineering systems. He begins with coverage of microscale energy storage mechanisms from a quantum mechanics perspective and then develops the fundamental elements of classical and statistical thermodynamics. Subsequent chapters discuss applications of equilibrium statistical thermodynamics to solid, liquid, and gas phase systems. The remainder of the book is devoted to nonequilibrium thermodynamics of transport phenomena and to nonequilibrium effects and noncontinuum behavior at the microscale. Although the text emphasizes mathematical development, Carey includes many examples and exercises to illustrate how the theoretical concepts are applied to systems of scientific and engineering interest. In the process he offers a fresh view of statistical thermodynamics for advanced undergraduate and graduate students, as well as practitioners, in mechanical, chemical, and materials engineering.

  8. INTEGRATION OF SYSTEMS ENGINEERING AND PROCESS INTENSIFICATION IN THE DESIGN OF PROCESSES FOR UTILIZING BIOBASED GLYCEROL

    EPA Science Inventory

    The expected results include an integrated process and mechanical design including a fabrication plan for the glycerol dehydration reactor, comprehensive heat and material balance, environmental impact assessment and comprehensive safety review. The resulting process design w...

  9. Creative brains: designing in the real world†

    PubMed Central

    Goel, Vinod

    2014-01-01

    The process of designing artifacts is a creative activity. It is proposed that, at the cognitive level, one key to understanding design creativity is to understand the array of symbol systems designers utilize. These symbol systems range from being vague, imprecise, abstract, ambiguous, and indeterminate (like conceptual sketches), to being very precise, concrete, unambiguous, and determinate (like contract documents). The former types of symbol systems support associative processes that facilitate lateral (or divergent) transformations that broaden the problem space, while the latter types of symbol systems support inference processes facilitating vertical (or convergent) transformations that deepen of the problem space. The process of artifact design requires the judicious application of both lateral and vertical transformations. This leads to a dual mechanism model of design problem-solving comprising of an associative engine and an inference engine. It is further claimed that this dual mechanism model is supported by an interesting hemispheric dissociation in human prefrontal cortex. The associative engine and neural structures that support imprecise, ambiguous, abstract, indeterminate representations are lateralized in the right prefrontal cortex, while the inference engine and neural structures that support precise, unambiguous, determinant representations are lateralized in the left prefrontal cortex. At the brain level, successful design of artifacts requires a delicate balance between the two hemispheres of prefrontal cortex. PMID:24817846

  10. Knowledge management in the engineering design environment

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.

    2006-01-01

    The Aerospace and Defense industry is experiencing an increasing loss of knowledge through workforce reductions associated with business consolidation and retirement of senior personnel. Significant effort is being placed on process definition as part of ISO certification and, more recently, CMMI certification. The process knowledge in these efforts represents the simplest of engineering knowledge and many organizations are trying to get senior engineers to write more significant guidelines, best practices and design manuals. A new generation of design software, known as Product Lifecycle Management systems, has many mechanisms for capturing and deploying a wider variety of engineering knowledge than simple process definitions. These hold the promise of significant improvements through reuse of prior designs, codification of practices in workflows, and placement of detailed how-tos at the point of application.

  11. Hydrogen-enabled microstructure and fatigue strength engineering of titanium alloys

    NASA Astrophysics Data System (ADS)

    Paramore, James D.; Fang, Zhigang Zak; Dunstan, Matthew; Sun, Pei; Butler, Brady G.

    2017-02-01

    Traditionally, titanium alloys with satisfactory mechanical properties can only be produced via energy-intensive and costly wrought processes, while titanium alloys produced using low-cost powder metallurgy methods consistently result in inferior mechanical properties, especially low fatigue strength. Herein, we demonstrate a new microstructural engineering approach for producing low-cost titanium alloys with exceptional fatigue strength via the hydrogen sintering and phase transformation (HSPT) process. The high fatigue strength presented in this work is achieved by creating wrought-like microstructures without resorting to wrought processing. This is accomplished by generating an ultrafine-grained as-sintered microstructure through hydrogen-enabled phase transformations, facilitating the subsequent creation of fatigue-resistant microstructures via simple heat treatments. The exceptional strength, ductility, and fatigue performance reported in this paper are a breakthrough in the field of low-cost titanium processing.

  12. Hydrogen-enabled microstructure and fatigue strength engineering of titanium alloys

    DOE PAGES

    Paramore, James D.; Fang, Zhigang Zak; Dunstan, Matthew; ...

    2017-02-01

    Traditionally, titanium alloys with satisfactory mechanical properties can only be produced via energy-intensive and costly wrought processes, while titanium alloys produced using low-cost powder metallurgy methods consistently result in inferior mechanical properties, especially low fatigue strength. Herein, we demonstrate a new microstructural engineering approach for producing low-cost titanium alloys with exceptional fatigue strength via the hydrogen sintering and phase transformation (HSPT) process. The high fatigue strength presented in this work is achieved by creating wroughtlike microstructures without resorting to wrought processing. This is accomplished by generating an ultrafine-grained as-sintered microstructure through hydrogen-enabled phase transformations, facilitating the subsequent creation of fatigue-resistantmore » microstructures via simple heat treatments. Finally, the exceptional strength, ductility, and fatigue performance reported in this paper are a breakthrough in the field of low-cost titanium processing.« less

  13. Hydrogen-enabled microstructure and fatigue strength engineering of titanium alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paramore, James D.; Fang, Zhigang Zak; Dunstan, Matthew

    Traditionally, titanium alloys with satisfactory mechanical properties can only be produced via energy-intensive and costly wrought processes, while titanium alloys produced using low-cost powder metallurgy methods consistently result in inferior mechanical properties, especially low fatigue strength. Herein, we demonstrate a new microstructural engineering approach for producing low-cost titanium alloys with exceptional fatigue strength via the hydrogen sintering and phase transformation (HSPT) process. The high fatigue strength presented in this work is achieved by creating wroughtlike microstructures without resorting to wrought processing. This is accomplished by generating an ultrafine-grained as-sintered microstructure through hydrogen-enabled phase transformations, facilitating the subsequent creation of fatigue-resistantmore » microstructures via simple heat treatments. Finally, the exceptional strength, ductility, and fatigue performance reported in this paper are a breakthrough in the field of low-cost titanium processing.« less

  14. Hydrogen-enabled microstructure and fatigue strength engineering of titanium alloys

    PubMed Central

    Paramore, James D.; Fang, Zhigang Zak; Dunstan, Matthew; Sun, Pei; Butler, Brady G.

    2017-01-01

    Traditionally, titanium alloys with satisfactory mechanical properties can only be produced via energy-intensive and costly wrought processes, while titanium alloys produced using low-cost powder metallurgy methods consistently result in inferior mechanical properties, especially low fatigue strength. Herein, we demonstrate a new microstructural engineering approach for producing low-cost titanium alloys with exceptional fatigue strength via the hydrogen sintering and phase transformation (HSPT) process. The high fatigue strength presented in this work is achieved by creating wrought-like microstructures without resorting to wrought processing. This is accomplished by generating an ultrafine-grained as-sintered microstructure through hydrogen-enabled phase transformations, facilitating the subsequent creation of fatigue-resistant microstructures via simple heat treatments. The exceptional strength, ductility, and fatigue performance reported in this paper are a breakthrough in the field of low-cost titanium processing. PMID:28145527

  15. Liquid rocket engine combustion stabilization devices

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Combustion instability, which results from a coupling of the combustion process and the fluid dynamics of the engine system, was investigated. The design of devices which reduce coupling (combustion chamber baffles) and devices which increase damping (acoustic absorbers) are described. Included in the discussion are design criteria and recommended practices, structural and mechanical design, thermal control, baffle geometry, baffle/engine interactions, acoustic damping analysis, and absorber configurations.

  16. Examples of finite element mesh generation using SDRC IDEAS

    NASA Technical Reports Server (NTRS)

    Zapp, John; Volakis, John L.

    1990-01-01

    IDEAS (Integrated Design Engineering Analysis Software) offers a comprehensive package for mechanical design engineers. Due to its multifaceted capabilities, however, it can be manipulated to serve the needs of electrical engineers, also. IDEAS can be used to perform the following tasks: system modeling, system assembly, kinematics, finite element pre/post processing, finite element solution, system dynamics, drafting, test data analysis, and project relational database.

  17. Genetically Engineered Materials for Biofuels Production

    NASA Astrophysics Data System (ADS)

    Raab, Michael

    2012-02-01

    Agrivida, Inc., is an agricultural biotechnology company developing industrial crop feedstocks for the fuel and chemical industries. Agrivida's crops have improved processing traits that enable efficient, low cost conversion of the crops' cellulosic components into fermentable sugars. Currently, pretreatment and enzymatic conversion of the major cell wall components, cellulose and hemicellulose, into fermentable sugars is the most expensive processing step that prevents widespread adoption of biomass in biofuels processes. To lower production costs we are consolidating pretreatment and enzyme production within the crop. In this strategy, transgenic plants express engineered cell wall degrading enzymes in an inactive form, which can be reactivated after harvest. We have engineered protein elements that disrupt enzyme activity during normal plant growth. Upon exposure to specific processing conditions, the engineered enzymes are converted into their active forms. This mechanism significantly lowers pretreatment costs and enzyme loadings (>75% reduction) below those currently available to the industry.

  18. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications.

    PubMed

    Stefani, I; Cooper-White, J J

    2016-05-01

    Cardiovascular diseases remain the largest cause of death worldwide, and half of these deaths are the result of failure of the vascular system. Tissue engineering promises to provide new, and potentially more effective therapeutic strategies to replace damaged or degenerated vessels with functional vessels. However, these engineered vessels have substantial performance criteria, including vessel-like tubular shape, structure and mechanical property slate. Further, whether implanted without or with prior in vitro culture, such tubular scaffolds must provide a suitable environment for cell adhesion and growth and be of sufficient porosity to permit cell colonization. This study investigates the fabrication of slowly degradable, composite tubular polymer scaffolds made from polycaprolactone (PCL) and acrylated l-lactide-co-trimethylene carbonate (aPLA-co-TMC). The addition of acrylate groups permits the 'in-process' formation of crosslinks between aPLA-co-TMC chains during electrospinning of the composite system, exemplifying a novel process to produce multicomponent, elastomeric electrospun polymer scaffolds. Although PCL and aPLA-co-TMC were miscible in a co-solvent, a criteria for electrospinning, due to thermodynamic incompatibility of the two polymers as melts, solvent evaporation during electrospinning drove phase separation of these two systems, producing 'core-shell' fibres, with the core being composed of PCL, and the shell of crosslinked elastomeric aPLA-co-TMC. The resulting elastic fibrous scaffolds displayed burst pressures and suture retention strengths comparable with human arteries. Cytocompatibility testing with human mesenchymal stem cells confirmed adhesion to, and proliferation on the three-dimensional fibrous network, as well as alignment with highly-organized fibres. This new processing methodology and resulting mechanically-robust composite scaffolds hold significant promise for tubular tissue engineering applications. Autologous small diameter blood vessel grafts are unsuitable solutions for vessel repair. Engineered solutions such as tubular biomaterial scaffolds however have substantial performance criteria to meet, including vessel-like tubular shape, structure and mechanical property slate. We detail herein an innovative methodology to co-electrospin and 'in-process' crosslink composite mixtures of Poly(caprolactone) and a newly synthesised acrylated-Poly(lactide-co-trimethylene-carbonate) to create elastomeric, core-shell nanofibrous porous scaffolds in a one-step process. This novel composite system can be used to make aligned scaffolds that encourage stem cell adhesion, growth and morphological control, and produce robust tubular scaffolds of tunable internal diameter and wall thickness that possess mechanical properties approaching those of native vessels, ideal for future applications in the field of vessel tissue engineering. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  19. The Flow Engine Framework: A Cognitive Model of Optimal Human Experience

    PubMed Central

    Šimleša, Milija; Guegan, Jérôme; Blanchard, Edouard; Tarpin-Bernard, Franck; Buisine, Stéphanie

    2018-01-01

    Flow is a well-known concept in the fields of positive and applied psychology. Examination of a large body of flow literature suggests there is a need for a conceptual model rooted in a cognitive approach to explain how this psychological phenomenon works. In this paper, we propose the Flow Engine Framework, a theoretical model explaining dynamic interactions between rearranged flow components and fundamental cognitive processes. Using an IPO framework (Inputs – Processes – Outputs) including a feedback process, we organize flow characteristics into three logically related categories: inputs (requirements for flow), mediating and moderating cognitive processes (attentional and motivational mechanisms) and outputs (subjective and objective outcomes), describing the process of the flow. Comparing flow with an engine, inputs are depicted as flow-fuel, core processes cylinder strokes and outputs as power created to provide motion. PMID:29899807

  20. Elastase-Sensitive Elastomeric Scaffolds with Variable Anisotropy for Soft Tissue Engineering

    PubMed Central

    Guan, Jianjun; Fujimoto, Kazuro L.; Wagner, William R.

    2010-01-01

    Purpose To develop elastase-sensitive polyurethane scaffolds that would be applicable to the engineering of mechanically active soft tissues. Methods A polyurethane containing an elastase-sensitive peptide sequence was processed into scaffolds by thermally induced phase separation. Processing conditions were manipulated to alter scaffold properties and anisotropy. The scaffold’s mechanical properties, degradation, and cytocompatibility using muscle-derived stem cells were characterized. Scaffold in vivo degradation was evaluated by subcutaneous implantation. Results When heat transfer was multidirectional, scaffolds had randomly oriented pores. Imposition of a heat transfer gradient resulted in oriented pores. Both scaffolds were flexible and relatively strong with mechanical properties dependent upon fabrication conditions such as solvent type, polymer concentration and quenching temperature. Oriented scaffolds exhibited anisotropic mechanical properties with greater tensile strength in the orientation direction. These scaffolds also supported muscle-derived stem cell growth more effectively than random scaffolds. The scaffolds expressed over 40% weight loss after 56 days in elastase containing buffer. Elastase-sensitive scaffolds were complete degraded after 8 weeks subcutaneous implantation in rats, markedly faster than similar polyurethanes that did not contain the peptide sequence. Conclusion The elastase-sensitive polyurethane scaffolds showed promise for application in soft tissue engineering where controlling scaffold mechanical properties and pore architecture are desirable. PMID:18509596

  1. Engineering evidence for carbon monoxide toxicity cases.

    PubMed

    Galatsis, Kosmas

    2016-07-01

    Unintentional carbon monoxide poisonings and fatalities lead to many toxicity cases. Given the unusual physical properties of carbon monoxide-in that the gas is odorless and invisible-unorganized and erroneous methods in obtaining engineering evidence as required during the discovery process often occurs. Such evidence gathering spans domains that include building construction, appliance installation, industrial hygiene, mechanical engineering, combustion and physics. In this paper, we attempt to place a systematic framework that is relevant to key aspects in engineering evidence gathering for unintentional carbon monoxide poisoning cases. Such a framework aims to increase awareness of this process and relevant issues to help guide legal counsel and expert witnesses. © The Author(s) 2015.

  2. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: COMM ENGINEERING, USA ENVIRONMENTAL VAPOR RECOVERY UNIT (EVRU)

    EPA Science Inventory

    This report documents the testing of a new technology that recovers and utilizes vapors from crude oil storage tanks employed in the oil production and processing industry. The COMM Engineering, USA Environmental Vapor Recovery Unit (EVRU) is a non-mechanical eductor, or jet pump...

  3. Mechanism of plasma-assisted ignition for H2 and C1-C5 hydrocarbons

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey; Aleksandrov, Nikolay

    2016-09-01

    Nonequilibrium plasma demonstrates ability to control ultra-lean, ultra-fast, low-temperature flames and appears to be an extremely promising technology for a wide range of applications, including aviation GTEs, piston engines, ramjets, scramjets and detonation initiation for pulsed detonation engines. To use nonequilibrium plasma for ignition and combustion in real energetic systems, one must understand the mechanisms of plasma-assisted ignition and combustion and be able to numerically simulate the discharge and combustion processes under various conditions. A new, validated mechanism for high-temperature hydrocarbon plasma assisted combustion was built and allows to qualitatively describe plasma-assisted combustion close and above the self-ignition threshold. The principal mechanisms of plasma-assisted ignition and combustion have been established and validated for a wide range of plasma and gas parameters. These results provide a basis for improving various energy-conversion combustion systems, from automobile to aircraft engines, using nonequilibrium plasma methods.

  4. Mechanical stimulation in the engineering of heart muscle.

    PubMed

    Liaw, Norman Yu; Zimmermann, Wolfram-Hubertus

    2016-01-15

    Recreating the beating heart in the laboratory continues to be a formidable bioengineering challenge. The fundamental feature of the heart is its pumping action, requiring considerable mechanical forces to compress a blood filled chamber with a defined in- and outlet. Ventricular output crucially depends on venous loading of the ventricles (preload) and on the force generated by the preloaded ventricles to overcome arterial blood pressure (afterload). The rate of contraction is controlled by the spontaneously active sinus node and transmission of its electrical impulses into the ventricles. The underlying principles for these physiological processes are described by the Frank-Starling mechanism and Bowditch phenomenon. It is essential to consider these principles in the design and evaluation of tissue engineered myocardium. This review focuses on current strategies to evoke mechanical loading in hydrogel-based heart muscle engineering. Copyright © 2015. Published by Elsevier B.V.

  5. USNCTAM perspectives on mechanics in medicine

    PubMed Central

    Bao, Gang; Bazilevs, Yuri; Chung, Jae-Hyun; Decuzzi, Paolo; Espinosa, Horacio D.; Ferrari, Mauro; Gao, Huajian; Hossain, Shaolie S.; Hughes, Thomas J. R.; Kamm, Roger D.; Liu, Wing Kam; Marsden, Alison; Schrefler, Bernhard

    2014-01-01

    Over decades, the theoretical and applied mechanics community has developed sophisticated approaches for analysing the behaviour of complex engineering systems. Most of these approaches have targeted systems in the transportation, materials, defence and energy industries. Applying and further developing engineering approaches for understanding, predicting and modulating the response of complicated biomedical processes not only holds great promise in meeting societal needs, but also poses serious challenges. This report, prepared for the US National Committee on Theoretical and Applied Mechanics, aims to identify the most pressing challenges in biological sciences and medicine that can be tackled within the broad field of mechanics. This echoes and complements a number of national and international initiatives aiming at fostering interdisciplinary biomedical research. This report also comments on cultural/educational challenges. Specifically, this report focuses on three major thrusts in which we believe mechanics has and will continue to have a substantial impact. (i) Rationally engineering injectable nano/microdevices for imaging and therapy of disease. Within this context, we discuss nanoparticle carrier design, vascular transport and adhesion, endocytosis and tumour growth in response to therapy, as well as uncertainty quantification techniques to better connect models and experiments. (ii) Design of biomedical devices, including point-of-care diagnostic systems, model organ and multi-organ microdevices, and pulsatile ventricular assistant devices. (iii) Mechanics of cellular processes, including mechanosensing and mechanotransduction, improved characterization of cellular constitutive behaviour, and microfluidic systems for single-cell studies. PMID:24872502

  6. Hillslope hydrology and stability

    USGS Publications Warehouse

    Lu, Ning; Godt, Jonathan

    2012-01-01

    Landslides are caused by a failure of the mechanical balance within hillslopes. This balance is governed by two coupled physical processes: hydrological or subsurface flow and stress. The stabilizing strength of hillslope materials depends on effective stress, which is diminished by rainfall. This book presents a cutting-edge quantitative approach to understanding hydro-mechanical processes across variably saturated hillslope environments and to the study and prediction of rainfall-induced landslides. Topics covered include historic synthesis of hillslope geomorphology and hydrology, total and effective stress distributions, critical reviews of shear strength of hillslope materials and different bases for stability analysis. Exercises and homework problems are provided for students to engage with the theory in practice. This is an invaluable resource for graduate students and researchers in hydrology, geomorphology, engineering geology, geotechnical engineering and geomechanics and for professionals in the fields of civil and environmental engineering and natural hazard analysis.

  7. Biomimetic modelling.

    PubMed Central

    Vincent, Julian F V

    2003-01-01

    Biomimetics is seen as a path from biology to engineering. The only path from engineering to biology in current use is the application of engineering concepts and models to biological systems. However, there is another pathway: the verification of biological mechanisms by manufacture, leading to an iterative process between biology and engineering in which the new understanding that the engineering implementation of a biological system can bring is fed back into biology, allowing a more complete and certain understanding and the possibility of further revelations for application in engineering. This is a pathway as yet unformalized, and one that offers the possibility that engineers can also be scientists. PMID:14561351

  8. LEADER - An integrated engine behavior and design analyses based real-time fault diagnostic expert system for Space Shuttle Main Engine (SSME)

    NASA Technical Reports Server (NTRS)

    Gupta, U. K.; Ali, M.

    1989-01-01

    The LEADER expert system has been developed for automatic learning tasks encompassing real-time detection, identification, verification, and correction of anomalous propulsion system operations, using a set of sensors to monitor engine component performance to ascertain anomalies in engine dynamics and behavior. Two diagnostic approaches are embodied in LEADER's architecture: (1) learning and identifying engine behavior patterns to generate novel hypotheses about possible abnormalities, and (2) the direction of engine sensor data processing to perform resoning based on engine design and functional knowledge, as well as the principles of the relevant mechanics and physics.

  9. Energy and technology review: Engineering modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabayan, H.S.; Goudreau, G.L.; Ziolkowski, R.W.

    1986-10-01

    This report presents information concerning: Modeling Canonical Problems in Electromagnetic Coupling Through Apertures; Finite-Element Codes for Computing Electrostatic Fields; Finite-Element Modeling of Electromagnetic Phenomena; Modeling Microwave-Pulse Compression in a Resonant Cavity; Lagrangian Finite-Element Analysis of Penetration Mechanics; Crashworthiness Engineering; Computer Modeling of Metal-Forming Processes; Thermal-Mechanical Modeling of Tungsten Arc Welding; Modeling Air Breakdown Induced by Electromagnetic Fields; Iterative Techniques for Solving Boltzmann's Equations for p-Type Semiconductors; Semiconductor Modeling; and Improved Numerical-Solution Techniques in Large-Scale Stress Analysis.

  10. Engineering on the straight and narrow: the mechanics of nanofibrous assemblies for fiber-reinforced tissue regeneration.

    PubMed

    Mauck, Robert L; Baker, Brendon M; Nerurkar, Nandan L; Burdick, Jason A; Li, Wan-Ju; Tuan, Rocky S; Elliott, Dawn M

    2009-06-01

    Tissue engineering of fibrous tissues of the musculoskeletal system represents a considerable challenge because of the complex architecture and mechanical properties of the component structures. Natural healing processes in these dense tissues are limited as a result of the mechanically challenging environment of the damaged tissue and the hypocellularity and avascular nature of the extracellular matrix. When healing does occur, the ordered structure of the native tissue is replaced with a disorganized fibrous scar with inferior mechanical properties, engendering sites that are prone to re-injury. To address the engineering of such tissues, we and others have adopted a structurally motivated approach based on organized nanofibrous assemblies. These scaffolds are composed of ultrafine polymeric fibers that can be fabricated in such a way to recreate the structural anisotropy typical of fiber-reinforced tissues. This straight-and-narrow topography not only provides tailored mechanical properties, but also serves as a 3D biomimetic micropattern for directed tissue formation. This review describes the underlying technology of nanofiber production and focuses specifically on the mechanical evaluation and theoretical modeling of these structures as it relates to native tissue structure and function. Applying the same mechanical framework for understanding native and engineered fiber-reinforced tissues provides a functional method for evaluating the utility and maturation of these unique engineered constructs. We further describe several case examples where these principles have been put to test, and discuss the remaining challenges and opportunities in forwarding this technology toward clinical implementation.

  11. Engineering on the Straight and Narrow: The Mechanics of Nanofibrous Assemblies for Fiber-Reinforced Tissue Regeneration

    PubMed Central

    Baker, Brendon M.; Nerurkar, Nandan L.; Burdick, Jason A.; Li, Wan-Ju; Tuan, Rocky S.; Elliott, Dawn M.

    2009-01-01

    Tissue engineering of fibrous tissues of the musculoskeletal system represents a considerable challenge because of the complex architecture and mechanical properties of the component structures. Natural healing processes in these dense tissues are limited as a result of the mechanically challenging environment of the damaged tissue and the hypocellularity and avascular nature of the extracellular matrix. When healing does occur, the ordered structure of the native tissue is replaced with a disorganized fibrous scar with inferior mechanical properties, engendering sites that are prone to re-injury. To address the engineering of such tissues, we and others have adopted a structurally motivated approach based on organized nanofibrous assemblies. These scaffolds are composed of ultrafine polymeric fibers that can be fabricated in such a way to recreate the structural anisotropy typical of fiber-reinforced tissues. This straight-and-narrow topography not only provides tailored mechanical properties, but also serves as a 3D biomimetic micropattern for directed tissue formation. This review describes the underlying technology of nanofiber production and focuses specifically on the mechanical evaluation and theoretical modeling of these structures as it relates to native tissue structure and function. Applying the same mechanical framework for understanding native and engineered fiber-reinforced tissues provides a functional method for evaluating the utility and maturation of these unique engineered constructs. We further describe several case examples where these principles have been put to test, and discuss the remaining challenges and opportunities in forwarding this technology toward clinical implementation. PMID:19207040

  12. Health care professional workstation: software system construction using DSSA scenario-based engineering process.

    PubMed

    Hufnagel, S; Harbison, K; Silva, J; Mettala, E

    1994-01-01

    This paper describes a new method for the evolutionary determination of user requirements and system specifications called scenario-based engineering process (SEP). Health care professional workstations are critical components of large scale health care system architectures. We suggest that domain-specific software architectures (DSSAs) be used to specify standard interfaces and protocols for reusable software components throughout those architectures, including workstations. We encourage the use of engineering principles and abstraction mechanisms. Engineering principles are flexible guidelines, adaptable to particular situations. Abstraction mechanisms are simplifications for management of complexity. We recommend object-oriented design principles, graphical structural specifications, and formal components' behavioral specifications. We give an ambulatory care scenario and associated models to demonstrate SEP. The scenario uses health care terminology and gives patients' and health care providers' system views. Our goal is to have a threefold benefit. (i) Scenario view abstractions provide consistent interdisciplinary communications. (ii) Hierarchical object-oriented structures provide useful abstractions for reuse, understandability, and long term evolution. (iii) SEP and health care DSSA integration into computer aided software engineering (CASE) environments. These environments should support rapid construction and certification of individualized systems, from reuse libraries.

  13. Influence of Water Content on Mechanical Properties of Rock in Both Saturation and Drying Processes

    NASA Astrophysics Data System (ADS)

    Zhou, Zilong; Cai, Xin; Cao, Wenzhuo; Li, Xibing; Xiong, Cheng

    2016-08-01

    Water content has a pronounced influence on the properties of rock materials, which is responsible for many rock engineering hazards, such as landslides and karst collapse. Meanwhile, water injection is also used for the prevention of some engineering disasters like rock-bursts. To comprehensively investigate the effect of water content on mechanical properties of rocks, laboratory tests were carried out on sandstone specimens with different water contents in both saturation and drying processes. The Nuclear Magnetic Resonance technique was applied to study the water distribution in specimens with variation of water contents. The servo-controlled rock mechanics testing machine and Split Hopkinson Pressure Bar technique were used to conduct both compressive and tensile tests on sandstone specimens with different water contents. From the laboratory tests, reductions of the compressive and tensile strength of sandstone under static and dynamic states in different saturation processes were observed. In the drying process, all of the saturated specimens could basically regain their mechanical properties and recover its strength as in the dry state. However, for partially saturated specimens in the saturation and drying processes, the tensile strength of specimens with the same water content was different, which could be related to different water distributions in specimens.

  14. Using experimental design modules for process characterization in manufacturing/materials processes laboratories

    NASA Technical Reports Server (NTRS)

    Ankenman, Bruce; Ermer, Donald; Clum, James A.

    1994-01-01

    Modules dealing with statistical experimental design (SED), process modeling and improvement, and response surface methods have been developed and tested in two laboratory courses. One course was a manufacturing processes course in Mechanical Engineering and the other course was a materials processing course in Materials Science and Engineering. Each module is used as an 'experiment' in the course with the intent that subsequent course experiments will use SED methods for analysis and interpretation of data. Evaluation of the modules' effectiveness has been done by both survey questionnaires and inclusion of the module methodology in course examination questions. Results of the evaluation have been very positive. Those evaluation results and details of the modules' content and implementation are presented. The modules represent an important component for updating laboratory instruction and to provide training in quality for improved engineering practice.

  15. Tendon and ligament as novel cell sources for engineering the knee meniscus.

    PubMed

    Hadidi, P; Paschos, N K; Huang, B J; Aryaei, A; Hu, J C; Athanasiou, K A

    2016-12-01

    The application of cell-based therapies in regenerative medicine is hindered by the difficulty of acquiring adequate numbers of competent cells. For the knee meniscus in particular, this may be solved by harvesting tissue from neighboring tendons and ligaments. In this study, we have investigated the potential of cells from tendon and ligament, as compared to meniscus cells, to engineer scaffold-free self-assembling fibrocartilage. Self-assembling meniscus-shaped constructs engineered from a co-culture of articular chondrocytes and either meniscus, tendon, or ligament cells were cultured for 4 weeks with TGF-β1 in serum-free media. After culture, constructs were assessed for their mechanical properties, histological staining, gross appearance, and biochemical composition including cross-link content. Correlations were performed to evaluate relationships between biochemical content and mechanical properties. In terms of mechanical properties as well as biochemical content, constructs engineered using tenocytes and ligament fibrocytes were found to be equivalent or superior to constructs engineered using meniscus cells. Furthermore, cross-link content was found to be correlated with engineered tissue tensile properties. Tenocytes and ligament fibrocytes represent viable cell sources for engineering meniscus fibrocartilage using the self-assembling process. Due to greater cross-link content, fibrocartilage engineered with tenocytes and ligament fibrocytes may maintain greater tensile properties than fibrocartilage engineered with meniscus cells. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  16. Tendon and ligament as novel cell sources for engineering the knee meniscus

    PubMed Central

    Hadidi, Pasha; Paschos, Nikolaos K.; Huang, Brian J.; Aryaei, Ashkan; Hu, Jerry C.; Athanasiou, Kyriacos A.

    2016-01-01

    Objective The application of cell-based therapies in regenerative medicine is hindered by the difficulty of acquiring adequate numbers of competent cells. For the knee meniscus in particular, this may be solved by harvesting tissue from neighboring tendons and ligaments. In this study, we have investigated the potential of cells from tendon and ligament, as compared to meniscus cells, to engineer scaffold-free self-assembling fibrocartilage. Method Self-assembling meniscus-shaped constructs engineered from a co-culture of articular chondrocytes and either meniscus, tendon, or ligament cells were cultured for 4 weeks with TGF-β1 in serum-free media. After culture, constructs were assessed for their mechanical properties, histological staining, gross appearance, and biochemical composition including cross-link content. Correlations were performed to evaluate relationships between biochemical content and mechanical properties. Results In terms of mechanical properties as well as biochemical content, constructs engineered using tenocytes and ligament fibrocytes were found to be equivalent or superior to constructs engineered using meniscus cells. Furthermore, cross-link content was found to be correlated with engineered tissue tensile properties. Conclusion Tenocytes and ligament fibrocytes represent viable cell sources for engineering meniscus fibrocartilage using the self-assembling process. Due to greater cross-link content, fibrocartilage engineered with tenocytes and ligament fibrocytes may maintain greater tensile properties than fibrocartilage engineered with meniscus cells. PMID:27473559

  17. Embryo mechanics: balancing force production with elastic resistance during morphogenesis.

    PubMed

    Davidson, Lance A

    2011-01-01

    Morphogenesis requires the spatial and temporal control of embryo mechanics, including force production and mechanical resistance to those forces, to coordinate tissue deformation and large-scale movements. Thus, biomechanical processes play a key role in directly shaping the embryo. Additional roles for embryo mechanics during development may include the patterning of positional information and to provide feedback to ensure the success of morphogenetic movements in shaping the larval body and organs. To understand the multiple roles of mechanics during development requires familiarity with engineering principles of the mechanics of structures, the viscoelastic properties of biomaterials, and the integration of force and stress within embryonic structures as morphogenesis progresses. In this chapter, we review the basic engineering principles of biomechanics as they relate to morphogenesis, introduce methods for quantifying embryo mechanics and the limitations of these methods, and outline a formalism for investigating the role of embryo mechanics in birth defects. We encourage the nascent field of embryo mechanics to adopt standard engineering terms and test methods so that studies of diverse organisms can be compared and universal biomechanical principles can be revealed. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Emergence of Scaffold-free Approaches for Tissue Engineering Musculoskeletal Cartilages

    PubMed Central

    DuRaine, Grayson D.; Brown, Wendy E.; Hu, Jerry C.; Athanasiou, Kyriacos A.

    2014-01-01

    This review explores scaffold-free methods as an additional paradigm for tissue engineering. Musculoskeletal cartilages –for example articular cartilage, meniscus, temporomandibular joint disc, and intervertebral disc – are characterized by low vascularity and cellularity, and are amenable to scaffold-free tissue engineering approaches. Scaffold-free approaches, particularly the self-assembling process, mimic elements of developmental processes underlying these tissues. Discussed are various scaffold-free approaches for musculoskeletal cartilage tissue engineering, such as cell sheet engineering, aggregation, and the self-assembling process, as well as the availability and variety of cells used. Immunological considerations are of particular importance as engineered tissues are frequently of allogeneic, if not xenogeneic, origin. Factors that enhance the matrix production and mechanical properties of these engineered cartilages are also reviewed, as the fabrication of biomimetically suitable tissues is necessary to replicate function and ensure graft survival in vivo. The concept of combining scaffold-free and scaffold-based tissue engineering methods to address clinical needs is also discussed. Inasmuch as scaffold-based musculoskeletal tissue engineering approaches have been employed as a paradigm to generate engineered cartilages with appropriate functional properties, scaffold-free approaches are emerging as promising elements of a translational pathway not only for musculoskeletal cartilages but for other tissues as well. PMID:25331099

  19. Elements of Engineering Excellence

    NASA Technical Reports Server (NTRS)

    Blair, J. C.; Ryan, R. S.; Schutzenhofer

    2012-01-01

    The inspiration for this Contract Report (CR) originated in discussions with the director of Marshall Space Flight Center (MSFC) Engineering who asked that we investigate the question: "How do you achieve excellence in aerospace engineering?" Engineering a space system is a complex activity. Avoiding its inherent potential pitfalls and achieving a successful product is a challenge. This CR presents one approach to answering the question of how to achieve Engineering Excellence. We first investigated the root causes of NASA major failures as a basis for developing a proposed answer to the question of Excellence. The following discussions integrate a triad of Technical Understanding and Execution, Partnership with the Project, and Individual and Organizational Culture. The thesis is that you must focus on the whole process and its underlying culture, not just on the technical aspects. In addition to the engineering process, emphasis is given to the need and characteristics of a Learning Organization as a mechanism for changing the culture.

  20. Dream controller

    DOEpatents

    Cheng, George Shu-Xing; Mulkey, Steven L; Wang, Qiang; Chow, Andrew J

    2013-11-26

    A method and apparatus for intelligently controlling continuous process variables. A Dream Controller comprises an Intelligent Engine mechanism and a number of Model-Free Adaptive (MFA) controllers, each of which is suitable to control a process with specific behaviors. The Intelligent Engine can automatically select the appropriate MFA controller and its parameters so that the Dream Controller can be easily used by people with limited control experience and those who do not have the time to commission, tune, and maintain automatic controllers.

  1. SMS engineering design report

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The engineering design for the Shuttle Missions Simulator is presented in sections, with each section representing a subsystem development activity. Subsystems covered include: electrical power system; mechanical power system; main propellant and external tank; solid rocket booster; reaction control system; orbital maneuvering system; guidance, navigation, and control; data processing system; mission control center interface; and image display system.

  2. Engineering controllable bidirectional molecular motors based on myosin

    PubMed Central

    Chen, Lu; Nakamura, Muneaki; Schindler, Tony D.; Parker, David; Bryant, Zev

    2012-01-01

    Cytoskeletal motors drive the transport of organelles and molecular cargoes within cells1, and have potential applications in molecular detection and diagnostic devices2,3. Engineering molecular motors with dynamically controllable properties will allow selective perturbation of mechanical processes in living cells, and yield optimized device components for complex tasks such as molecular sorting and directed assembly3. Biological motors have previously been modified by introducing activation/deactivation switches that respond to metal ions4,5 and other signals6. Here we show that myosin motors can be engineered to reversibly change their direction of motion in response to a calcium signal. Building on previous protein engineering studies7–11 and guided by a structural model12 for the redirected power stroke of myosin VI, we constructed bidirectional myosins through the rigid recombination of structural modules. The performance of the motors was confirmed using gliding filament assays and single fluorophore tracking. Our general strategy, in which external signals trigger changes in the geometry and mechanics of myosin lever arms, should enable spatiotemporal control over a range of motor properties including processivity, stride size13, and branchpoint turning14. PMID:22343382

  3. Engineering controllable bidirectional molecular motors based on myosin

    NASA Astrophysics Data System (ADS)

    Chen, Lu; Nakamura, Muneaki; Schindler, Tony D.; Parker, David; Bryant, Zev

    2012-04-01

    Cytoskeletal motors drive the transport of organelles and molecular cargoes within cells and have potential applications in molecular detection and diagnostic devices. Engineering molecular motors with controllable properties will allow selective perturbation of mechanical processes in living cells and provide optimized device components for tasks such as molecular sorting and directed assembly. Biological motors have previously been modified by introducing activation/deactivation switches that respond to metal ions and other signals. Here, we show that myosin motors can be engineered to reversibly change their direction of motion in response to a calcium signal. Building on previous protein engineering studies and guided by a structural model for the redirected power stroke of myosin VI, we have constructed bidirectional myosins through the rigid recombination of structural modules. The performance of the motors was confirmed using gliding filament assays and single fluorophore tracking. Our strategy, in which external signals trigger changes in the geometry and mechanics of myosin lever arms, should make it possible to achieve spatiotemporal control over a range of motor properties including processivity, stride size and branchpoint turning.

  4. Low-cost single-crystal turbine blades, volume 2

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Dennis, R. E.; Heath, B. R.

    1984-01-01

    The overall objectives of Project 3 were to develop the exothermic casting process to produce uncooled single-crystal (SC) HP turbine blades in MAR-M 247 and higher strength derivative alloys and to validate the materials process and components through extensive mechanical property testing, rig testing, and 200 hours of endurance engine testing. These Program objectives were achieved. The exothermic casting process was successfully developed into a low-cost nonproperietary method for producing single-crystal castings. Single-crystal MAR-M 247 and two derivatives DS alloys developed during this project, NASAIR 100 and SC Alloy 3, were fully characterized through mechanical property testing. SC MAR-M 247 shows no significant improvement in strength over directionally solidified (DS) MAR-M 247, but the derivative alloys, NASAIR 100 and Alloy 3, show significant tensile and fatigue improvements. Firtree testing, holography, and strain-gauge rig testing were used to determine the effects of the anisotropic characteristics of single-crystal materials. No undesirable characteristics were found. In general, the single-crystal material behaved similarly to DS MAR-M 247. Two complete engine sets of SC HP turbine blades were cast using the exothermic casting process and fully machined. These blades were successfully engine-tested.

  5. Mesoscale fabrication and design

    NASA Astrophysics Data System (ADS)

    Hayes, Gregory R.

    A strong link between mechanical engineering design and materials science and engineering fabrication can facilitate an effective and adaptable prototyping process. In this dissertation, new developments in the lost mold-rapid infiltration forming (LM-RIF) process is presented which demonstrates the relationship between these two fields of engineering in the context of two device applications. Within the LM-RIF process, changes in materials processing and mechanical design are updated iteratively, often aided by statistical design of experiments (DOE). The LM-RIF process was originally developed by Antolino and Hayes et al to fabricate mesoscale components. In this dissertation the focus is on advancements in the process and underlying science. The presented advancements to the LM-RIF process include an augmented lithography procedure, the incorporation of engineered aqueous and non-aqueous colloidal suspensions, an assessment of constrained drying forces during LM-RIF processing, mechanical property evaluation, and finally prototype testing and validation. Specifically, the molding procedure within the LM-RIF process is capable of producing molds with thickness upwards of 1mm, as well as multi-layering to create three dimensional structures. Increasing the mold thickness leads to an increase in the smallest feature resolvable; however, the increase in mold thickness and three dimensional capability has expanded the mechanical design space. Tetragonally stabilized zirconia (3Y-TZP) is an ideal material for mesoscale instruments, as it is biocompatible, exhibits high strength, and is chemically stable. In this work, aqueous colloidal suspensions were formulated with two new gel-binder systems, increasing final natural orifice translumenal endoscopic surgery (NOTES) instrument yield from 0% to upwards of 40% in the best case scenario. The effects of the gel-binder system on the rheological behavior of the suspension along with the thermal characteristics of the gel-binder system were characterized. Finally, mechanical properties of ceramic specimens were obtained via 3-point bend testing. Another candidate material for NOTES devices as well as cellular contact aided compliant mechanisms (C3M) devices is 300 series stainless steel (300 series stainless steel). 300 series stainless steel is a common biocompatible material; it is used in surgical applications, exhibits a high corrosion resistance, and has high strength to failure. New, high solids loading, non-aqueous colloidal suspensions of 300 series stainless steel were formulated and incorporated into the LM-RIF process. The rheological behavior and thermal characteristics of the non-aqueous colloidal suspensions were analyzed and engineered to operate within the LM-RIF process. Final part yield with the non-aqueous colloidal suspensions was higher than that of the aqueous ceramic suspensions. Mechanical properties of 300 series stainless steel specimens were determined via 3-point bend testing. Furthermore, new composite non-aqueous colloidal suspensions of 3Y-TZP and 300 series stainless steel were formulated and incorporated into the LM-RIF process. The composite materials showed an increase in final part yield, and an increase in yield strength compared to pure 300 series stainless steel was determined by Vickers hardness testing. The successful incorporation of composite suspensions in the LM-RIF process was facilitated through an analysis of the rheological behavior as a function of solids loading and ceramic to metal ratio. Optimized designs of NOTES instruments, as well as C3M devices were manufactured using the LM-RIF process with the non-aqueous 300 series stainless steel suspension. The performance of the prototype NOTES instruments was evaluated and compared against the theoretically predicted performance results, showing good agreement. Similarly, good agreement was seen between the stress-displacement behavior of prototype C3M devices when compared to the theoretically calculated stress-displacement results. Finally, in a comparison by endoscopic surgeons at Hershey Medical Center between an existing industry standard endoscopic device and the mesoscale instrument prototypes fabricated via the LM-RIF process, the prototype design performed favorably in almost all categories. (Abstract shortened by UMI.)

  6. A review of evolution of electrospun tissue engineering scaffold: From two dimensions to three dimensions.

    PubMed

    Ngadiman, Nor Hasrul Akhmal; Noordin, M Y; Idris, Ani; Kurniawan, Denni

    2017-07-01

    The potential of electrospinning process to fabricate ultrafine fibers as building blocks for tissue engineering scaffolds is well recognized. The scaffold construct produced by electrospinning process depends on the quality of the fibers. In electrospinning, material selection and parameter setting are among many factors that contribute to the quality of the ultrafine fibers, which eventually determine the performance of the tissue engineering scaffolds. The major challenge of conventional electrospun scaffolds is the nature of electrospinning process which can only produce two-dimensional electrospun mats, hence limiting their applications. Researchers have started to focus on overcoming this limitation by combining electrospinning with other techniques to fabricate three-dimensional scaffold constructs. This article reviews various polymeric materials and their composites/blends that have been successfully electrospun for tissue engineering scaffolds, their mechanical properties, and the various parameters settings that influence the fiber morphology. This review also highlights the secondary processes to electrospinning that have been used to develop three-dimensional tissue engineering scaffolds as well as the steps undertaken to overcome electrospinning limitations.

  7. Methodological advances in predicting flow-induced dynamics of plants using mechanical-engineering theory.

    PubMed

    de Langre, Emmanuel

    2012-03-15

    The modeling of fluid-structure interactions, such as flow-induced vibrations, is a well-developed field of mechanical engineering. Many methods exist, and it seems natural to apply them to model the behavior of plants, and potentially other cantilever-like biological structures, under flow. Overcoming this disciplinary divide, and the application of such models to biological systems, will significantly advance our understanding of ecological patterns and processes and improve our predictive capabilities. Nonetheless, several methodological issues must first be addressed, which I describe here using two practical examples that have strong similarities: one from agricultural sciences and the other from nuclear engineering. Very similar issues arise in both: individual and collective behavior, small and large space and time scales, porous modeling, standard and extreme events, trade-off between the surface of exchange and individual or collective risk of damage, variability, hostile environments and, in some aspects, evolution. The conclusion is that, although similar issues do exist, which need to be exploited in some detail, there is a significant gap that requires new developments. It is obvious that living plants grow in and adapt to their environment, which certainly makes plant biomechanics fundamentally distinct from classical mechanical engineering. Moreover, the selection processes in biology and in human engineering are truly different, making the issue of safety different as well. A thorough understanding of these similarities and differences is needed to work efficiently in the application of a mechanistic approach to ecology.

  8. Autoignition Characteristics of Low Cetane Number JP-8 and Approaches for Improved Operation in Military Diesel Engines

    DTIC Science & Technology

    2011-08-09

    OPERATION IN MILITARY DIESEL ENGINES Naeim Henein, PhD Walter Bryzik, Ph.D. Chandrasekharan Jayakumar Department of Mechanical Engineering...the use of Computational Fluid Dynamics (CFD) diesel cycle simulation codes to gain more insight and a better understanding of the processes that...PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Naeim Henein; Walter Bryzik; Chandrasekharan Jayakumar ; Eric R. Sattler; Nicholas C. Johnson; Nichole K. Hubble

  9. Active and passive interaction mechanism of smart materials for health monitoring of engineering structures: a review

    NASA Astrophysics Data System (ADS)

    Annamdas, Venu Gopal Madhav; Annamdas, Kiran Kumar

    2009-03-01

    Smart materials when interact with engineering structures, should have the capability to sense, measure, process, and detect any change in the selected variables (stress, damage) at critical locations. These smart materials can be classified into active and passive depending on the type of the structure, variables to be monitored, and interaction mechanism due to surface bonding or embedment. Some of the prominent smart materials are piezoelectric materials, micro fiber composite, polymers, shape memory alloys, electrostrictive and magnetostrictive materials, electrorheological and magnetorheological fluids and fiber optics. In addition, host structures do have the properties to support or repel the usage of smart materials inside or on it. This paper presents some of the most widely used smart materials and their interaction mechanism for structural health monitoring of engineering structures.

  10. Engineering Design Education Program for Graduate School

    NASA Astrophysics Data System (ADS)

    Ohbuchi, Yoshifumi; Iida, Haruhiko

    The new educational methods of engineering design have attempted to improve mechanical engineering education for graduate students in a way of the collaboration in education of engineer and designer. The education program is based on the lecture and practical exercises concerning the product design, and has engineering themes and design process themes, i.e. project management, QFD, TRIZ, robust design (Taguchi method) , ergonomics, usability, marketing, conception etc. At final exercise, all students were able to design new product related to their own research theme by applying learned knowledge and techniques. By the method of engineering design education, we have confirmed that graduate students are able to experience technological and creative interest.

  11. Noncontact techniques for diesel engine diagnostics using exhaust waveform analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gore, D.A.; Cooke, G.J.

    1987-01-01

    RCA Corporation's continuing efforts to develop noncontact test techniques for diesel engines have led to recent advancements in deep engine diagnostics. The U.S. Army Tank-Automotive Command (TACOM) has been working with RCA for the development of new noncontact sensors and test techniques which use these sensors in conjunction with their family of Simplified Test Equipment (STE) to perform vehicle diagnostics. The STE systems are microprocessor-based maintenance tools that assist the Army mechanic in diagnosing malfunctions in both tactical and combat vehicles. The test systems support the mechanic by providing the sophisticated signal processing capabilities necessary for a wide range ofmore » diagnostic testing including exhaust waveform analysis.« less

  12. Model building techniques for analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walther, Howard P.; McDaniel, Karen Lynn; Keener, Donald

    2009-09-01

    The practice of mechanical engineering for product development has evolved into a complex activity that requires a team of specialists for success. Sandia National Laboratories (SNL) has product engineers, mechanical designers, design engineers, manufacturing engineers, mechanical analysts and experimentalists, qualification engineers, and others that contribute through product realization teams to develop new mechanical hardware. The goal of SNL's Design Group is to change product development by enabling design teams to collaborate within a virtual model-based environment whereby analysis is used to guide design decisions. Computer-aided design (CAD) models using PTC's Pro/ENGINEER software tools are heavily relied upon in the productmore » definition stage of parts and assemblies at SNL. The three-dimensional CAD solid model acts as the design solid model that is filled with all of the detailed design definition needed to manufacture the parts. Analysis is an important part of the product development process. The CAD design solid model (DSM) is the foundation for the creation of the analysis solid model (ASM). Creating an ASM from the DSM currently is a time-consuming effort; the turnaround time for results of a design needs to be decreased to have an impact on the overall product development. This effort can be decreased immensely through simple Pro/ENGINEER modeling techniques that summarize to the method features are created in a part model. This document contains recommended modeling techniques that increase the efficiency of the creation of the ASM from the DSM.« less

  13. Mechatronics: the future of mechanical engineering; past, present, and a vision for the future

    NASA Astrophysics Data System (ADS)

    Ramasubramanian, M. K.

    2001-08-01

    Mechatronics is the synergistic integration of precision mechanical engineering, electronics, computational hardware and software in the design of products and processes. Mechatronics, the term coined in Japan in the '70s, has evolved to symbolize what mechanical design engineers do today worldwide. The revolutionary introduction of the microprocessor (or microcontroller) in the early '80s and ever increasing performance-cost ratio has changed the paradigm of mechanical design forever, and has broadened the original definition of mechatronics to include intelligent control and autonomous decision-making. Today, increasing number of new products is being developed at the intersection between traditional disciplines of Engineering, and Computer and Material Sciences. New developments in these traditional disciplines are being absorbed into mechatronics design at an ever-increasing pace. In this paper, a brief history of mechatronics, and several examples of this rapid adaptation of technologies into product design is presented. With the ongoing information technology revolution, especially in wireless communication, smart sensors design (enabled by MEMS technology), and embedded systems engineering, mechatronics design is going through another step change in capabilities and scope. The implications of these developments in mechatronics design in the near future are discussed. Finally, deficiencies in our engineering curriculum to address the needs of the industry to cope up with these rapid changes, and proposed remedies, will also be discussed.

  14. Manipulation of mechanical compliance of elastomeric PGS by incorporation of halloysite nanotubes for soft tissue engineering applications.

    PubMed

    Chen, Qi-Zhi; Liang, Shu-Ling; Wang, Jiang; Simon, George P

    2011-11-01

    Poly (glycerol sebacate) (PGS) is a promising elastomer for use in soft tissue engineering. However, it is difficult to achieve with PGS a satisfactory balance of mechanical compliance and degradation rate that meet the requirements of soft tissue engineering. In this work, we have synthesised a new PGS nanocomposite system filled with halloysite nanotubes, and mechanical properties, as well as related chemical characters, of the nanocomposites were investigated. It was found that the addition of nanotubular halloysite did not compromise the extensibility of material, compared with the pure PGS counterpart; instead the elongation at rupture was increased from 110 (in the pure PGS) to 225% (in the 20 wt% composite). Second, Young's modulus and resilience of 3-5 wt% composites were ∼0.8 MPa and >94% respectively, remaining close to the level of pure PGS which is desired for applications in soft tissue engineering. Third, an important feature of the 1-5 wt% composites was their stable mechanical properties over an extended period, which could allow the provision of reliable mechanical support to damaged tissues during the lag phase of the healing process. Finally, the in vitro study indicated that the addition of halloysite slowed down the degradation rate of the composites. In conclusion, the good compliance, enhanced stretchability, stable mechanical behavior over an extended period, and reduced degradation rates make the 3-5 wt% composites promising candidates for application in soft tissue engineering. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Overview of thermal barrier coatings in diesel engines

    NASA Technical Reports Server (NTRS)

    Yonushonis, T. M.

    1995-01-01

    An understanding of delamination mechanisms in thermal barrier coatings has been developed for diesel applications through nondestructive evaluation, structural analysis modeling and engine evaluation of various thermal barrier coatings. This knowledge has resulted in improved thermal barrier coatings which survive abusive cyclic fatigue tests in high output diesel engines. Significant efforts are still required to improve the plasma spray processing capability and the economics for complex geometry diesel engine components. Data obtained from advanced diesel engines on the effect of thermal barrier coatings on engine fuel economy and emission has not been encouraging. Although the underlying metal component temperatures have been reduced through the use of thermal barrier coating, engine efficiency and emission trends have not been promising.

  16. Effect of soot on oil properties and wear of engine components

    NASA Astrophysics Data System (ADS)

    Green, D. A.; Lewis, R.

    2007-09-01

    The objective of the work outlined in this paper was to increase the understanding of the wear mechanisms that occur within a soot contaminated contact zone, to help in future development of a predictive wear model to assist in the automotive engine valve train design process. The paper builds on previous work by the author, through testing of different lubricants and increased levels of soot contamination. Wear testing has been carried out using specimens operating under realistic engine conditions, using a reciprocating test-rig specifically designed for this application, where a steel disc is held in a heated bath of oil and a steel ball is attached to a reciprocating arm (replicating a sliding elephant's foot valve train contact). Detailed analysis of the test specimens has been performed using scanning electron microscopy to identify wear features relating to the proposed wear mechanisms. Analysis of worn engine components from durability engine tests has also been carried out for a comparison between specimen tests and engine testing. To assist the understanding of the wear test results obtained, the physical properties of contaminated lubricants were investigated, through viscosity, traction and friction measurements. The results have revealed how varying lubrication conditions change the wear rate of engine components and determine the wear mechanism that dominates in specific situations. Testing has also shown the positive effects of advanced engine lubricants to reduce the amount of wear produced with soot present.

  17. Teaching Reform of Course Group Regarding Theory and Design of Mechanisms Based on MATLAB Technology

    ERIC Educational Resources Information Center

    Shen, Yi; Yuan, Mingxin; Wang, Mingqiang

    2013-01-01

    Considering that the course group regarding theory and design of mechanisms is characterized by strong engineering application background and the students generally feel very boring and tedious during the learning process, some teaching reforms for the theory and design of mechanisms are carried out to improve the teaching effectiveness in this…

  18. USNCTAM perspectives on mechanics in medicine.

    PubMed

    Bao, Gang; Bazilevs, Yuri; Chung, Jae-Hyun; Decuzzi, Paolo; Espinosa, Horacio D; Ferrari, Mauro; Gao, Huajian; Hossain, Shaolie S; Hughes, Thomas J R; Kamm, Roger D; Liu, Wing Kam; Marsden, Alison; Schrefler, Bernhard

    2014-08-06

    Over decades, the theoretical and applied mechanics community has developed sophisticated approaches for analysing the behaviour of complex engineering systems. Most of these approaches have targeted systems in the transportation, materials, defence and energy industries. Applying and further developing engineering approaches for understanding, predicting and modulating the response of complicated biomedical processes not only holds great promise in meeting societal needs, but also poses serious challenges. This report, prepared for the US National Committee on Theoretical and Applied Mechanics, aims to identify the most pressing challenges in biological sciences and medicine that can be tackled within the broad field of mechanics. This echoes and complements a number of national and international initiatives aiming at fostering interdisciplinary biomedical research. This report also comments on cultural/educational challenges. Specifically, this report focuses on three major thrusts in which we believe mechanics has and will continue to have a substantial impact. (i) Rationally engineering injectable nano/microdevices for imaging and therapy of disease. Within this context, we discuss nanoparticle carrier design, vascular transport and adhesion, endocytosis and tumour growth in response to therapy, as well as uncertainty quantification techniques to better connect models and experiments. (ii) Design of biomedical devices, including point-of-care diagnostic systems, model organ and multi-organ microdevices, and pulsatile ventricular assistant devices. (iii) Mechanics of cellular processes, including mechanosensing and mechanotransduction, improved characterization of cellular constitutive behaviour, and microfluidic systems for single-cell studies. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  19. Physical and Chemical Processes in Flames

    DTIC Science & Technology

    2010-02-15

    7. "An efficient reduced mechanism for methane oxidation with NOx chemistry ," by T. F. Lu and C. K. Law, Paper No. C17, Fifth US Combustion Meeting... Mechanical and Aerospace Engineering Princeton University Princeton, NJ 08544 9. SPONSORING I MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR...TERMS Laminar flame speeds; ignition temperatures; extinction limits; mechanism reduction; skeletal mechanism ; CO/H2 oxidation; ethy lene oxidation

  20. Advanced Plant Habitat

    NASA Image and Video Library

    2016-11-17

    A test unit, or prototype, of NASA's Advanced Plant Habitat (APH) was delivered to the Space Station Processing Facility at the agency's Kennedy Space Center in Florida. Inside a laboratory, Engineering Services Contract engineers set up test parameters on computers. From left, are Glenn Washington, ESC quality engineer; Claton Grosse, ESC mechanical engineer; and Jeff Richards, ESC project scientist. The APH is the largest plant chamber built for the agency. It will have 180 sensors and four times the light output of Veggie. The APH will be delivered to the International Space Station in March 2017.

  1. An investigation of squeeze-cast alloy 718

    NASA Technical Reports Server (NTRS)

    Gamwell, W. R.

    1993-01-01

    Alloy 718 billets produced by the squeeze-cast process have been evaluated for use as potential replacements for propulsion engine components which are normally produced from forgings. Alloy 718 billets were produced using various processing conditions. Structural characterizations were performed on 'as-cast' billets. As-cast billets were then homogenized and solution treated and aged according to conventional heat-treatment practices for this alloy. Mechanical property evaluations were performed on heat-treated billets. As-cast macrostructures and microstructures varied with squeeze-cast processing parameters. Mechanical properties varied with squeeze-cast processing parameters and heat treatments. One billet exhibited a defect free, refined microstructure, with mechanical properties approaching those of wrought alloy 718 bar, confirming the feasibility of squeeze-casting alloy 718. However, further process optimization is required, and further structural and mechanical property improvements are expected with process optimization.

  2. Review of problems in application of supersonic combustion

    NASA Technical Reports Server (NTRS)

    Ferri, A.

    1977-01-01

    The problem of air-breathing engines capable of flying at very high Mach numbers is described briefly. Possible performance of supersonic combustion ramjets is outlined briefly and the supersonic combustion process is described. Two mechanisms of combustion are outlined: one is supersonic combustion controlled by convection process, and the second is controlled by diffusion. The parameters related to the combustion process are discussed in detail. Data and analyses of reaction rates and mixing phenomena are represented; the flame mechanism is discussed, and experimental results are presented.

  3. Efficiency at Maximum Power Output of a Quantum-Mechanical Brayton Cycle

    NASA Astrophysics Data System (ADS)

    Yuan, Yuan; He, Ji-Zhou; Gao, Yong; Wang, Jian-Hui

    2014-03-01

    The performance in finite time of a quantum-mechanical Brayton engine cycle is discussed, without introduction of temperature. The engine model consists of two quantum isoenergetic and two quantum isobaric processes, and works with a single particle in a harmonic trap. Directly employing the finite-time thermodynamics, the efficiency at maximum power output is determined. Extending the harmonic trap to a power-law trap, we find that the efficiency at maximum power is independent of any parameter involved in the model, but depends on the confinement of the trapping potential.

  4. Parametric Design and Mechanical Analysis of Beams based on SINOVATION

    NASA Astrophysics Data System (ADS)

    Xu, Z. G.; Shen, W. D.; Yang, D. Y.; Liu, W. M.

    2017-07-01

    In engineering practice, engineer needs to carry out complicated calculation when the loads on the beam are complex. The processes of analysis and calculation take a lot of time and the results are unreliable. So VS2005 and ADK are used to develop a software for beams design based on the 3D CAD software SINOVATION with C ++ programming language. The software can realize the mechanical analysis and parameterized design of various types of beams and output the report of design in HTML format. Efficiency and reliability of design of beams are improved.

  5. The Requirement for Vocational Skills in the Engineering Industry in the Areas of Modena and Vienna. Synthesis Report.

    ERIC Educational Resources Information Center

    Gatti, Mario; Mereu, Maria Grazia; Tagliaferro, Claudio; Markowitsch, Jorg; Neuberger, Robert

    Requirements for vocational skills in the engineering industry in Modena, Italy, and Vienna, Austria, were studied. In Modena, employees of a representative sample of 90 small, medium, and large firms in the mechanical processing, agricultural machinery, and sports car manufacturing sectors were interviewed. In Vienna, data were collected through…

  6. Using the Discipline of Agricultural Engineering to Integrate Math and Science

    ERIC Educational Resources Information Center

    Foutz, Tim; Navarro, Maria; Hill, Roger B.; Thompson, Sidney A.; Miller, Kathy; Riddleberger, Deborah

    2011-01-01

    An outcome of a 1998 forum sponsored by the National Research Council was a recognition that topics related to food production and agriculture are excellent mechanisms for integrating science topics taught in the K-12 education system and for providing many avenues for inquiry based and project based learning. The engineering design process is…

  7. Exploring the Use of Statistical Process Control Methods to Assess Course Changes

    ERIC Educational Resources Information Center

    Vollstedt, Ann-Marie

    2010-01-01

    This dissertation pertains to the field of Engineering Education. The Department of Mechanical Engineering at the University of Nevada, Reno (UNR) is hosting this dissertation under a special agreement. This study was motivated by the desire to find an improved, quantitative measure of student quality that is both convenient to use and easy to…

  8. Effect of processing on Polymer/Composite structure and properties

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Advances in the vitality and economic health of the field of polymer forecasting are discussed. A consistent and rational point of view which considers processing as a participant in the underlying triad of relationships which comprise materials science and engineering is outlined. This triad includes processing as it influences material structure, and ultimately properties. Methods in processing structure properties, polymer science and engineering, polymer chemistry and synthesis, structure and modification and optimization through processing, and methods of melt flow modeling in processing structure property relations of polymer were developed. Mechanical properties of composites are considered, and biomedical materials research to include polymer processing effects are studied. An analysis of the design technology of advances graphite/epoxy composites is also reported.

  9. Materials and Manufacturing, Drafting 3: 9257.03.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    Designed for students interested in engineering fields pertaining to mechanical and electronic drafting, the course covers several types of drawings in the mechanical and electronic drafting field and many types of machine shop operations. The student will become familiar with stress, loading, safety factors, and manufacturing processes. The…

  10. A Bioreactor to Identify the Driving Mechanical Stimuli of Tissue Growth and Remodeling.

    PubMed

    van Kelle, Mathieu A J; Oomen, Pim J A; Bulsink, Jurgen A; Janssen-van den Broek, Marloes W J T; Lopata, Richard G P; Rutten, Marcel C M; Loerakker, Sandra; Bouten, Carlijn V C

    2017-06-01

    Tissue growth and remodeling are essential processes that should ensure long-term functionality of tissue-engineered (TE) constructs. Even though it is widely recognized that these processes strongly depend on mechanical stimuli, the underlying mechanisms of mechanically induced growth and remodeling are only partially understood. It is generally accepted that cells sense mechanical changes and respond by altering their surroundings, by means of extracellular matrix growth and remodeling, in an attempt to return to a certain preferred mechanical homeostatic state. However, the exact mechanical cues that trigger cells to synthesize and remodel their environment remain unclear. To identify the driving mechanical stimuli of these processes, it is critical to be able to temporarily follow the mechanical state of developing tissues under physiological loading conditions. Therefore, a novel "versatile tissue growth and remodeling" (Vertigro) bioreactor was developed that is capable of tissue culture and mechanical stimulation for a prolonged time period, while simultaneously performing mechanical testing. The Vertigro's unique two-chamber design allows easy, sterile handling of circular 3D TE constructs in a dedicated culture chamber, while a separate pressure chamber facilitates a pressure-driven dynamic loading regime during culture. As a proof-of-concept, temporal changes in the mechanical state of cultured tissues were quantified using nondestructive mechanical testing by means of a classical bulge test, in which the tissue displacement was tracked using ultrasound imaging. To demonstrate the successful development of the bioreactor system, compositional, structural, and geometrical changes were qualitatively and quantitatively assessed using a series of standard analysis techniques. With this bioreactor and associated mechanical analysis technique, a powerful toolbox has been developed to quantitatively study and identify the driving mechanical stimuli of engineered tissue growth and remodeling.

  11. Surface Modification Concepts for Enhancement of the High-Temperature Corrosion Resistance of Gas Turbine Superalloys,

    DTIC Science & Technology

    1980-12-01

    now developed to the point where they could be considered as true engineering materials. ** Nickel-based alloys are used for turbine blading and...Introduction Implicit in the design of modern gas turbine engines is the premise that their aerofoil components, made of nickel- and cobalt-based...the deposit. Hot corrosion is a principal process of degradation of aerofoil surface integrity in gas turbine engines . 2.2 Mechanisms of Hot Corrosion

  12. The single-zone numerical model of homogeneous charge compression ignition engine performance

    NASA Astrophysics Data System (ADS)

    Fedyanov, E. A.; Itkis, E. M.; Kuzmin, V. N.; Shumskiy, S. N.

    2017-02-01

    The single-zone model of methane-air mixture combustion in the Homogeneous Charge Compression Ignition engine was developed. First modeling efforts resulted in the selection of the detailed kinetic reaction mechanism, most appropriate for the conditions of the HCCI process. Then, the model was completed so as to simulate the performance of the four-stroke engine and was coupled by physically reasonable adjusting functions. Validation of calculations against experimental data showed acceptable agreement.

  13. NASA-UVA Light Aerospace Alloy and Structures Technology Program: LA(2)ST

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1993-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA(2)ST) Program continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, Civil Engineering and Applied Mechanics, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. We report on progress achieved between July 1 and December 31, 1992. The objective of the LA(2)ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement advances; and critically, a pool of educated graduate students for aerospace technologies.

  14. Optimized adipose tissue engineering strategy based on a neo-mechanical processing method.

    PubMed

    He, Yunfan; Lin, Maohui; Wang, Xuecen; Guan, Jingyan; Dong, Ziqing; Feng, Lu; Xing, Malcolm; Feng, Chuanbo; Li, Xiaojian

    2018-05-26

    Decellularized adipose tissue (DAT) represents a promising scaffold for adipose tissue engineering. However, the unique and prolonged lipid removal process required for adipose tissue can damage extracellular matrix (ECM) constituents. Moreover, inadequate vascularization limits the recellularization of DAT in vivo. We proposed a neo-mechanical protocol for rapidly breaking adipocytes and removing lipid content from adipose tissue. The lipid-depleted adipose tissue was then subjected to a fast and mild decellularization to fabricate high-quality DAT (M-DAT). Adipose liquid extract (ALE) derived from this mechanical process was collected and incorporated into M-DAT to further optimize in vivo recellularization. Ordinary DAT was fabricated and served as a control. This developed strategy was evaluated based on decellularization efficiency, ECM quality, and recellularization efficiency. Angiogenic factor components and angiogenic potential of ALE were evaluated in vivo and in vitro. M-DAT achieved the same decellularization efficiency, but exhibited better retention of ECM components and recellularization, compared to those with ordinary DAT. Protein quantification revealed considerable levels of angiogenic factors (basic fibroblast growth factor, epidermal growth factor, transforming growth factor-β1, and vascular endothelial growth factor) in ALE. ALE promoted tube formation in vitro and induced intense angiogenesis in M-DAT in vivo; furthermore, higher expression of the adipogenic factor PPARγ and greater numbers of adipocytes were evident following ALE treatment, compared to those in the M-DAT group. Mechanical processing of adipose tissue led to the production of high-quality M-DAT and angiogenic factor-enriched ALE. The combination of ALE and M-DAT could be a promising strategy for engineered adipose tissue construction. This article is protected by copyright. All rights reserved. © 2018 by the Wound Healing Society.

  15. Improved silicon carbide for advanced heat engines. I - Process development for injection molding

    NASA Technical Reports Server (NTRS)

    Whalen, Thomas J.; Trela, Walter

    1989-01-01

    Alternate processing methods have been investigated as a means of improving the mechanical properties of injection-molded SiC. Various mixing processes (dry, high-sheer, and fluid) were evaluated along with the morphology and particle size of the starting beta-SiC powder. Statistically-designed experiments were used to determine significant effects and interactions of variables in the mixing, injection molding, and binder removal process steps. Improvements in mechanical strength can be correlated with the reduction in flaw size observed in the injection molded green bodies obtained with improved processing methods.

  16. Gel spinning of silk tubes for tissue engineering

    PubMed Central

    Lovett, Michael; Cannizzaro, Christopher; Vunjak-Novakovic, Gordana; Kaplan, David L.

    2011-01-01

    Tubular vessels for tissue engineering are typically fabricated using a molding, dipping, or electrospinning technique. While these techniques provide some control over inner and outer diameters of the tube, they lack the ability to align the polymers or fibers of interest throughout the tube. This is an important aspect of biomaterial composite structure and function for mechanical and biological impact of tissue outcomes. We present a novel aqueous process system to spin tubes from biopolymers and proteins such as silk fibroin. Using silk as an example, this method of winding an aqueous solution around a reciprocating rotating mandrel offers substantial improvement in the control of the tube properties, specifically with regard to winding pattern, tube porosity, and composite features. Silk tube properties are further controlled via different post-spinning processing mechanisms such as methanol-treatment, air-drying, and lyophilization. This approach to tubular scaffold manufacture offers numerous tissue engineering applications such as complex composite biomaterial matrices, blood vessel grafts and nerve guides, among others. PMID:18801570

  17. Development Status and Performance Comparisons of Environmental Barrier Coating Systems for SiCSiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan

    2016-01-01

    Environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft turbine engine systems, because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. This paper presents current NASA EBC-CMC development emphases including: the coating composition and processing improvements, laser high heat flux-thermal gradient thermo-mechanical fatigue - environmental testing methodology development, and property evaluations for next generation EBC-CMC systems. EBCs processed with various deposition techniques including Plasma Spray, Electron Beam - Physical Vapor Deposition, and Plasma Spray Physical Vapor Deposition (PS-PVD) will be particularly discussed. The testing results and demonstrations of advanced EBCs-CMCs in complex simulated engine thermal gradient cyclic fatigue, oxidizing-steam and CMAS environments will help provide insights into the coating development strategies to meet long-term engine component durability goals.

  18. Development of Facilities for an Ocean Engineering Laboratory. Final Report.

    ERIC Educational Resources Information Center

    Nash, W. A.; And Others

    A collection of seven laboratory facilities and processes dedicated to improving student understanding of the fundamental concepts associated with the structural mechanics of oceanic structures is described. Complete working drawings covering all mechanical and electrical aspects of these systems are presented so that the systems may be reproduced…

  19. Mapping of Mechanical Strains and Stresses around Quiescent Engineered Three-Dimensional Epithelial Tissues

    PubMed Central

    Gjorevski, Nikolce; Nelson, Celeste M.

    2012-01-01

    Understanding how physical signals guide biological processes requires qualitative and quantitative knowledge of the mechanical forces generated and sensed by cells in a physiologically realistic three-dimensional (3D) context. Here, we used computational modeling and engineered epithelial tissues of precise geometry to define the experimental parameters that are required to measure directly the mechanical stress profile of 3D tissues embedded within native type I collagen. We found that to calculate the stresses accurately in these settings, we had to account for mechanical heterogeneities within the matrix, which we visualized and quantified using confocal reflectance and atomic force microscopy. Using this technique, we were able to obtain traction forces at the epithelium-matrix interface, and to resolve and quantify patterns of mechanical stress throughout the surrounding matrix. We discovered that whereas single cells generate tension by contracting and pulling on the matrix, the contraction of multicellular tissues can also push against the matrix, causing emergent compression. Furthermore, tissue geometry defines the spatial distribution of mechanical stress across the epithelium, which communicates mechanically over distances spanning hundreds of micrometers. Spatially resolved mechanical maps can provide insight into the types and magnitudes of physical parameters that are sensed and interpreted by multicellular tissues during normal and pathological processes. PMID:22828342

  20. Cultivation mode research of practical application talents for optical engineering major

    NASA Astrophysics Data System (ADS)

    Liu, Zhiying

    2017-08-01

    The requirements on science and technology graduates are more and higher with modern science progress and society market economy development. Because optical engineering major is with very long practicality, practice should be paid more attention from analysis of optical engineering major and students' foundation. To play role of practice to a large amount, the practice need be systemic and correlation. It should be combination of foundation and profundity. Modern foundation professional knowledge is studied with traditional optical concept and technology at the same time. Systemic regularity and correlation should be embodied in the contents. Start from basic geometrical optics concept, the optical parameter of optical instrument is analyzed, the optical module is built and ray tracing is completed during geometrical optics practice. With foundation of primary aberration calculation, the optical system is further designed and evaluated during optical design practice course. With the optical model and given instrument functions and requirements, the optical-mechanism is matched. The accuracy is calculated, analyzed and distributed in every motion segment. And the mechanism should guarantee the alignment and adjustment. The optical mechanism is designed during the instrument and element design practice. When the optical and mechanism drawings are completed, the system is ready to be fabricated. Students can complete grinding, polishing and coating process by themselves through optical fabricating practice. With the optical and mechanical elements, the system can be assembled and aligned during the thesis practice. With a set of correlated and logical practices, the students can acquire the whole process knowledge about optical instrument. All details are contained in every practice process. These practical experiences provide students working ability. They do not need much adaption anymore when they go to work after graduation. It is favorable to both student talents and employer.

  1. Methods for automated semantic definition of manufacturing structures (mBOM) in mechanical engineering companies

    NASA Astrophysics Data System (ADS)

    Stekolschik, Alexander, Prof.

    2017-10-01

    The bill of materials (BOM), which involves all parts and assemblies of the product, is the core of any mechanical or electronic product. The flexible and integrated management of engineering (Engineering Bill of Materials [eBOM]) and manufacturing (Manufacturing Bill of Materials [mBOM]) structures is the key to the creation of modern products in mechanical engineering companies. This paper presents a method framework for the creation and control of e- and, especially, mBOM. The requirements, resulting from the process of differentiation between companies that produce serialized or engineered-to-order products, are considered in the analysis phase. The main part of the paper describes different approaches to fully or partly automated creation of mBOM. The first approach is the definition of part selection rules in the generic mBOM templates. The mBOM can be derived from the eBOM for partly standardized products by using this method. Another approach is the simultaneous use of semantic rules, options, and parameters in both structures. The implementation of the method framework (selection of use cases) in a standard product lifecycle management (PLM) system is part of the research.

  2. Stem cell homing-based tissue engineering using bioactive materials

    NASA Astrophysics Data System (ADS)

    Yu, Yinxian; Sun, Binbin; Yi, Chengqing; Mo, Xiumei

    2017-06-01

    Tissue engineering focuses on repairing tissue and restoring tissue functions by employing three elements: scaffolds, cells and biochemical signals. In tissue engineering, bioactive material scaffolds have been used to cure tissue and organ defects with stem cell-based therapies being one of the best documented approaches. In the review, different biomaterials which are used in several methods to fabricate tissue engineering scaffolds were explained and show good properties (biocompatibility, biodegradability, and mechanical properties etc.) for cell migration and infiltration. Stem cell homing is a recruitment process for inducing the migration of the systemically transplanted cells, or host cells, to defect sites. The mechanisms and modes of stem cell homing-based tissue engineering can be divided into two types depending on the source of the stem cells: endogenous and exogenous. Exogenous stem cell-based bioactive scaffolds have the challenge of long-term culturing in vitro and for endogenous stem cells the biochemical signal homing recruitment mechanism is not clear yet. Although the stem cell homing-based bioactive scaffolds are attractive candidates for tissue defect therapies, based on in vitro studies and animal tests, there is still a long way before clinical application.

  3. Thermal engine driven heat pump for recovery of volatile organic compounds

    DOEpatents

    Drake, Richard L.

    1991-01-01

    The present invention relates to a method and apparatus for separating volatile organic compounds from a stream of process gas. An internal combustion engine drives a plurality of refrigeration systems, an electrical generator and an air compressor. The exhaust of the internal combustion engine drives an inert gas subsystem and a heater for the gas. A water jacket captures waste heat from the internal combustion engine and drives a second heater for the gas and possibly an additional refrigeration system for the supply of chilled water. The refrigeration systems mechanically driven by the internal combustion engine effect the precipitation of volatile organic compounds from the stream of gas.

  4. A Robust Method to Generate Mechanically Anisotropic Vascular Smooth Muscle Cell Sheets for Vascular Tissue Engineering.

    PubMed

    Backman, Daniel E; LeSavage, Bauer L; Shah, Shivem B; Wong, Joyce Y

    2017-06-01

    In arterial tissue engineering, mimicking native structure and mechanical properties is essential because compliance mismatch can lead to graft failure and further disease. With bottom-up tissue engineering approaches, designing tissue components with proper microscale mechanical properties is crucial to achieve the necessary macroscale properties in the final implant. This study develops a thermoresponsive cell culture platform for growing aligned vascular smooth muscle cell (VSMC) sheets by photografting N-isopropylacrylamide (NIPAAm) onto micropatterned poly(dimethysiloxane) (PDMS). The grafting process is experimentally and computationally optimized to produce PNIPAAm-PDMS substrates optimal for VSMC attachment. To allow long-term VSMC sheet culture and increase the rate of VSMC sheet formation, PNIPAAm-PDMS surfaces were further modified with 3-aminopropyltriethoxysilane yielding a robust, thermoresponsive cell culture platform for culturing VSMC sheets. VSMC cell sheets cultured on patterned thermoresponsive substrates exhibit cellular and collagen alignment in the direction of the micropattern. Mechanical characterization of patterned, single-layer VSMC sheets reveals increased stiffness in the aligned direction compared to the perpendicular direction whereas nonpatterned cell sheets exhibit no directional dependence. Structural and mechanical anisotropy of aligned, single-layer VSMC sheets makes this platform an attractive microstructural building block for engineering a vascular graft to match the in vivo mechanical properties of native arterial tissue. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties.

    PubMed

    Moroni, L; de Wijn, J R; van Blitterswijk, C A

    2006-03-01

    One of the main issues in tissue engineering is the fabrication of scaffolds that closely mimic the biomechanical properties of the tissues to be regenerated. Conventional fabrication techniques are not sufficiently suitable to control scaffold structure to modulate mechanical properties. Within novel scaffold fabrication processes 3D fiber deposition (3DF) showed great potential for tissue engineering applications because of the precision in making reproducible 3D scaffolds, characterized by 100% interconnected pores with different shapes and sizes. Evidently, these features also affect mechanical properties. Therefore, in this study we considered the influence of different structures on dynamic mechanical properties of 3DF scaffolds. Pores were varied in size and shape, by changing fibre diameter, spacing and orientation, and layer thickness. With increasing porosity, dynamic mechanical analysis (DMA) revealed a decrease in elastic properties such as dynamic stiffness and equilibrium modulus, and an increase of the viscous parameters like damping factor and creep unrecovered strain. Furthermore, the Poisson's ratio was measured, and the shear modulus computed from it. Scaffolds showed an adaptable degree of compressibility between sponges and incompressible materials. As comparison, bovine cartilage was tested and its properties fell in the fabricated scaffolds range. This investigation showed that viscoelastic properties of 3DF scaffolds could be modulated to accomplish mechanical requirements for tailored tissue engineered applications.

  6. Artificial Symmetry-Breaking for Morphogenetic Engineering Bacterial Colonies.

    PubMed

    Nuñez, Isaac N; Matute, Tamara F; Del Valle, Ilenne D; Kan, Anton; Choksi, Atri; Endy, Drew; Haseloff, Jim; Rudge, Timothy J; Federici, Fernan

    2017-02-17

    Morphogenetic engineering is an emerging field that explores the design and implementation of self-organized patterns, morphologies, and architectures in systems composed of multiple agents such as cells and swarm robots. Synthetic biology, on the other hand, aims to develop tools and formalisms that increase reproducibility, tractability, and efficiency in the engineering of biological systems. We seek to apply synthetic biology approaches to the engineering of morphologies in multicellular systems. Here, we describe the engineering of two mechanisms, symmetry-breaking and domain-specific cell regulation, as elementary functions for the prototyping of morphogenetic instructions in bacterial colonies. The former represents an artificial patterning mechanism based on plasmid segregation while the latter plays the role of artificial cell differentiation by spatial colocalization of ubiquitous and segregated components. This separation of patterning from actuation facilitates the design-build-test-improve engineering cycle. We created computational modules for CellModeller representing these basic functions and used it to guide the design process and explore the design space in silico. We applied these tools to encode spatially structured functions such as metabolic complementation, RNAPT7 gene expression, and CRISPRi/Cas9 regulation. Finally, as a proof of concept, we used CRISPRi/Cas technology to regulate cell growth by controlling methionine synthesis. These mechanisms start from single cells enabling the study of morphogenetic principles and the engineering of novel population scale structures from the bottom up.

  7. Process Improvement Through Tool Integration in Aero-Mechanical Design

    NASA Technical Reports Server (NTRS)

    Briggs, Clark

    2010-01-01

    Emerging capabilities in commercial design tools promise to significantly improve the multi-disciplinary and inter-disciplinary design and analysis coverage for aerospace mechanical engineers. This paper explores the analysis process for two example problems of a wing and flap mechanical drive system and an aircraft landing gear door panel. The examples begin with the design solid models and include various analysis disciplines such as structural stress and aerodynamic loads. Analytical methods include CFD, multi-body dynamics with flexible bodies and structural analysis. Elements of analysis data management, data visualization and collaboration are also included.

  8. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This report summarizes work performed in support of the development and demonstration of a structural ceramic technology for automotive gas turbine engines. The AGT101 regenerated gas turbine engine developed under the previous DOE/NASA Advanced Gas Turbine (AGT) program is being utilized for verification testing of the durability of next-generation ceramic components and their suitability for service at reference powertrain design conditions. Topics covered in this report include ceramic processing definition and refinement, design improvements to the test bed engine and test rigs, and design methodologies related to ceramic impact and fracture mechanisms. Appendices include reports by ATTAP subcontractors addressing the development of silicon nitride and silicon carbide families of materials and processes.

  9. Implementation of a Goal-Based Systems Engineering Process Using the Systems Modeling Language (SysML)

    NASA Technical Reports Server (NTRS)

    Breckenridge, Jonathan T.; Johnson, Stephen B.

    2013-01-01

    This paper describes the core framework used to implement a Goal-Function Tree (GFT) based systems engineering process using the Systems Modeling Language. It defines a set of principles built upon by the theoretical approach described in the InfoTech 2013 ISHM paper titled "Goal-Function Tree Modeling for Systems Engineering and Fault Management" presented by Dr. Stephen B. Johnson. Using the SysML language, the principles in this paper describe the expansion of the SysML language as a baseline in order to: hierarchically describe a system, describe that system functionally within success space, and allocate detection mechanisms to success functions for system protection.

  10. Wetland eco-engineering: measuring and modeling feedbacks of oxidation processes between plants and clay-rich material

    NASA Astrophysics Data System (ADS)

    Saaltink, Rémon; Dekker, Stefan C.; Griffioen, Jasper; Wassen, Martin J.

    2016-09-01

    Interest is growing in using soft sediment as a foundation in eco-engineering projects. Wetland construction in the Dutch lake Markermeer is an example: here, dredging some of the clay-rich lake-bed sediment and using it to construct wetland will soon begin. Natural processes will be utilized during and after construction to accelerate ecosystem development. Knowing that plants can eco-engineer their environment via positive or negative biogeochemical plant-soil feedbacks, we conducted a 6-month greenhouse experiment to identify the key biogeochemical processes in the mud when Phragmites australis is used as an eco-engineering species. We applied inverse biogeochemical modeling to link observed changes in pore water composition to biogeochemical processes. Two months after transplantation we observed reduced plant growth and shriveling and yellowing of foliage. The N : P ratios of the plant tissue were low, and these were affected not by hampered uptake of N but by enhanced uptake of P. Subsequent analyses revealed high Fe concentrations in the leaves and roots. Sulfate concentrations rose drastically in our experiment due to pyrite oxidation; as reduction of sulfate will decouple Fe-P in reducing conditions, we argue that plant-induced iron toxicity hampered plant growth, forming a negative feedback loop, while simultaneously there was a positive feedback loop, as iron toxicity promotes P mobilization as a result of reduced conditions through root death, thereby stimulating plant growth and regeneration. Given these two feedback mechanisms, we propose the use of Fe-tolerant species rather than species that thrive in N-limited conditions. The results presented in this study demonstrate the importance of studying the biogeochemical properties of the situated sediment and the feedback mechanisms between plant and soil prior to finalizing the design of the eco-engineering project.

  11. Hydrogen combustion in tomorrow's energy technology

    NASA Astrophysics Data System (ADS)

    Peschka, W.

    The fundamental characteristics of hydrogen combustion and the current status of hydrogen energy applications technology are reviewed, with an emphasis on research being pursued at DFVLR. Topics addressed include reaction mechanisms and pollution, steady-combustion devices (catalytic heaters, H2/air combustors, H2/O2 rocket engines, H2-fueled jet engines, and gas and steam turbine processes), unsteady combustion (in internal-combustion engines with internal or external mixture formation), and feasibility studies of hydrogen-powered automobiles. Diagrams, drawings, graphs, and photographs are provided.

  12. A Survey On Management Of Software Engineering In Japan

    NASA Astrophysics Data System (ADS)

    Kadono, Yasuo; Tsubaki, Hiroe; Tsuruho, Seishiro

    2008-05-01

    The purpose of this study is to clarity the mechanism of how software engineering capabilities relate to the business performance of IT vendors in Japan. To do this, we developed a structural model using factors related to software engineering, business performance and competitive environment. By analyzing the data collected from 78 major IT vendors in Japan, we found that superior deliverables and business performance were correlated with the effort expended particularly on human resource development, quality assurance, research and development and process improvement.

  13. Physics and Process Modeling (PPM) and Other Propulsion R and T. Volume 1; Materials Processing, Characterization, and Modeling; Lifting Models

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This CP contains the extended abstracts and presentation figures of 36 papers presented at the PPM and Other Propulsion R&T Conference. The focus of the research described in these presentations is on materials and structures technologies that are parts of the various projects within the NASA Aeronautics Propulsion Systems Research and Technology Base Program. These projects include Physics and Process Modeling; Smart, Green Engine; Fast, Quiet Engine; High Temperature Engine Materials Program; and Hybrid Hyperspeed Propulsion. Also presented were research results from the Rotorcraft Systems Program and work supported by the NASA Lewis Director's Discretionary Fund. Authors from NASA Lewis Research Center, industry, and universities conducted research in the following areas: material processing, material characterization, modeling, life, applied life models, design techniques, vibration control, mechanical components, and tribology. Key issues, research accomplishments, and future directions are summarized in this publication.

  14. Open-source three-dimensional printing of biodegradable polymer scaffolds for tissue engineering.

    PubMed

    Trachtenberg, Jordan E; Mountziaris, Paschalia M; Miller, Jordan S; Wettergreen, Matthew; Kasper, Fred K; Mikos, Antonios G

    2014-12-01

    The fabrication of scaffolds for tissue engineering requires elements of customization depending on the application and is often limited due to the flexibility of the processing technique. This investigation seeks to address this obstacle by utilizing an open-source three-dimensional printing (3DP) system that allows vast customizability and facilitates reproduction of experiments. The effects of processing parameters on printed poly(ε-caprolactone) scaffolds with uniform and gradient pore architectures have been characterized with respect to fiber and pore morphology and mechanical properties. The results demonstrate the ability to tailor the fiber diameter, pore size, and porosity through modification of pressure, printing speed, and programmed fiber spacing. A model was also used to predict the compressive mechanical properties of uniform and gradient scaffolds, and it was found that modulus and yield strength declined with increasing porosity. The use of open-source 3DP technologies for printing tissue-engineering scaffolds provides a flexible system that can be readily modified at a low cost and is supported by community documentation. In this manner, the 3DP system is more accessible to the scientific community, which further facilitates the translation of these technologies toward successful tissue-engineering strategies.

  15. Microstructure of Tablet-Pharmaceutical Significance, Assessment, and Engineering.

    PubMed

    Sun, Changquan Calvin

    2017-05-01

    To summarize the microstructure - property relationship of pharmaceutical tablets and approaches to improve tablet properties through tablet microstructure engineering. The main topics reviewed here include: 1) influence of material properties and manufacturing process parameters on the evolution of tablet microstructure; 2) impact of tablet structure on tablet properties; 3) assessment of tablet microstructure; 4) development and engineering of tablet microstructure. Microstructure plays a decisive role on important pharmaceutical properties of a tablet, such as disintegration, drug release, and mechanical strength. Useful information on mechanical properties of a powder can be obtained from analyzing tablet porosity-pressure data. When helium pycnometry fails to accurately measure true density of a water-containing powder, non-linear regression of tablet density-pressure data is a useful alternative method. A component that is more uniformly distributed in a tablet generally exerts more influence on the overall tablet properties. During formulation development, it is highly recommended to examine the relationship between any property of interest and tablet porosity when possible. Tablet microstructure can be engineered by judicious selection of formulation composition, including the use of the optimum solid form of the drug and appropriate type and amount of excipients, and controlling manufacturing process.

  16. High Throughput and Mechano-Active Platforms to Promote Cartilage Regeneration and Repair

    NASA Astrophysics Data System (ADS)

    Mohanraj, Bhavana

    Traumatic joint injuries initiate acute degenerative changes in articular cartilage that can lead to progressive loss of load-bearing function. As a result, patients often develop post-traumatic osteoarthritis (PTOA), a condition for which there currently exists no biologic interventions. To address this need, tissue engineering aims to mimic the structure and function of healthy, native counterparts. These constructs can be used to not only replace degenerated tissue, but also build in vitro, pre-clinical models of disease. Towards this latter goal, this thesis focuses on the design of a high throughput system to screen new therapeutics in a micro-engineered model of PTOA, and the development of a mechanically-responsive drug delivery system to augment tissue-engineered approaches for cartilage repair. High throughput screening is a powerful tool for drug discovery that can be adapted to include 3D tissue constructs. To facilitate this process for cartilage repair, we built a high throughput mechanical injury platform to create an engineered cartilage model of PTOA. Compressive injury of functionally mature constructs increased cell death and proteoglycan loss, two hallmarks of injury observed in vivo. Comparison of this response to that of native cartilage explants, and evaluation of putative therapeutics, validated this model for subsequent use in small molecule screens. A primary screen of 118 compounds identified a number of 'hits' and relevant pathways that may modulate pathologic signaling post-injury. To complement this process of therapeutic discovery, a stimuli-responsive delivery system was designed that used mechanical inputs as the 'trigger' mechanism for controlled release. The failure thresholds of these mechanically-activated microcapsules (MAMCs) were influenced by physical properties and composition, as well as matrix mechanical properties in 3D environments. TGF-beta released from the system upon mechano-activation stimulated stem cell chondrogenesis, demonstrating the potential of MAMCs to actively deliver therapeutics within demanding mechanical environments. Taken together, this work advances our capacity to identify and deliver new compounds of clinical relevance to modulate disease progression following traumatic injury using state-of-the-art micro-engineered screening tools and a novel mechanically-activated delivery system. These platforms advance strategies for cartilage repair and regeneration in PTOA and provide new options for the treatment of this debilitating condition.

  17. Mathematical Modeling of Uniaxial Mechanical Properties of Collagen Gel Scaffolds for Vascular Tissue Engineering

    PubMed Central

    Irastorza, Ramiro M.; Drouin, Bernard; Blangino, Eugenia; Mantovani, Diego

    2015-01-01

    Small diameter tissue-engineered arteries improve their mechanical and functional properties when they are mechanically stimulated. Applying a suitable stress and/or strain with or without a cycle to the scaffolds and cells during the culturing process resides in our ability to generate a suitable mechanical model. Collagen gel is one of the most used scaffolds in vascular tissue engineering, mainly because it is the principal constituent of the extracellular matrix for vascular cells in human. The mechanical modeling of such a material is not a trivial task, mainly for its viscoelastic nature. Computational and experimental methods for developing a suitable model for collagen gels are of primary importance for the field. In this research, we focused on mechanical properties of collagen gels under unconfined compression. First, mechanical viscoelastic models are discussed and framed in the control system theory. Second, models are fitted using system identification. Several models are evaluated and two nonlinear models are proposed: Mooney-Rivlin inspired and Hammerstein models. The results suggest that Mooney-Rivlin and Hammerstein models succeed in describing the mechanical behavior of collagen gels for cyclic tests on scaffolds (with best fitting parameters 58.3% and 75.8%, resp.). When Akaike criterion is used, the best is the Mooney-Rivlin inspired model. PMID:25834840

  18. Mathematical modeling of uniaxial mechanical properties of collagen gel scaffolds for vascular tissue engineering.

    PubMed

    Irastorza, Ramiro M; Drouin, Bernard; Blangino, Eugenia; Mantovani, Diego

    2015-01-01

    Small diameter tissue-engineered arteries improve their mechanical and functional properties when they are mechanically stimulated. Applying a suitable stress and/or strain with or without a cycle to the scaffolds and cells during the culturing process resides in our ability to generate a suitable mechanical model. Collagen gel is one of the most used scaffolds in vascular tissue engineering, mainly because it is the principal constituent of the extracellular matrix for vascular cells in human. The mechanical modeling of such a material is not a trivial task, mainly for its viscoelastic nature. Computational and experimental methods for developing a suitable model for collagen gels are of primary importance for the field. In this research, we focused on mechanical properties of collagen gels under unconfined compression. First, mechanical viscoelastic models are discussed and framed in the control system theory. Second, models are fitted using system identification. Several models are evaluated and two nonlinear models are proposed: Mooney-Rivlin inspired and Hammerstein models. The results suggest that Mooney-Rivlin and Hammerstein models succeed in describing the mechanical behavior of collagen gels for cyclic tests on scaffolds (with best fitting parameters 58.3% and 75.8%, resp.). When Akaike criterion is used, the best is the Mooney-Rivlin inspired model.

  19. The role of aluminum in slow sand filtration.

    PubMed

    Weber-Shirk, Monroe L; Chan, Kwok Loon

    2007-03-01

    Engineering enhancement of slow sand filtration has been an enigma in large part because the mechanisms responsible for particle removal have not been well characterized. The presumed role of biological processes in the filter ripening process nearly precluded the possibility of enhancing filter performance since interventions to enhance biological activity would have required decreasing the quality of the influent water. In previous work, we documented that an acid soluble polymer controls filter performance. The new understanding that particle removal is controlled in large part by physical chemical mechanisms has expanded the possibilities of engineering slow sand filter performance. Herein, we explore the role of naturally occurring aluminum as a ripening agent for slow sand filters and the possibility of using a low dose of alum to improve filter performance or to ripen slow sand filters.

  20. Development and characterization of decellularized human nasoseptal cartilage matrix for use in tissue engineering.

    PubMed

    Graham, M Elise; Gratzer, Paul F; Bezuhly, Michael; Hong, Paul

    2016-10-01

    Reconstruction of cartilage defects in the head and neck can require harvesting of autologous cartilage grafts, which can be associated with donor site morbidity. To overcome this limitation, tissue-engineering approaches may be used to generate cartilage grafts. The objective of this study was to decellularize and characterize human nasoseptal cartilage with the aim of generating a biological scaffold for cartilage tissue engineering. Laboratory study using nasoseptal cartilage. Remnant human nasoseptal cartilage specimens were collected and subjected to a novel decellularization treatment. The decellularization process involved several cycles of enzymatic detergent treatments. For characterization, decellularized and fresh (control) specimens underwent histological, biochemical, and mechanical analyses. Scanning electron microscopy and biocompatibility assay were also performed. The decellularization process had minimal effect on glycosaminoglycan content of the cartilage extracellular matrix. Deoxyribonucleic acid (DNA) analysis revealed the near-complete removal of genomic DNA from decellularized tissues. The effectiveness of the decellularization process was also confirmed on histological and scanning electron microscopic analyses. Mechanical testing results showed that the structural integrity of the decellularized tissue was maintained, and biocompatibility was confirmed. Overall, the current decellularization treatment resulted in significant reduction of genetic/cellular material with preservation of the underlying extracellular matrix structure. This decellularized material may serve as a potential scaffold for cartilage tissue engineering. N/A. Laryngoscope, 126:2226-2231, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  1. Properties of Base Stocks Obtained from Used Engine Oils by Acid/Clay Re-refining (Proprietes des Stocks de Base Obtenus par Regeneration des Huiles a Moteur Usees par le Procede de Traitement a l’Acide et a la Terre),

    DTIC Science & Technology

    1980-09-01

    Research Conseil national Council Canada de recherches Canada LEY EL < PROPERTIES OF BASE STOCKS OBTAINED FROM USED ENGINE OILS BY ACID /CLAY RE-REFINING DTIC...MECHANICAL ENGINEERING REPORT Canad NC MP75 NRC NO. 18719 PROPERTIES OF BASE STOCKS OBTAINED FROM USED ENGINE OILS BY ACID /CLAY RE-REFINING (PROPRIETES...refined Base Stock ..................................... 10 3 Physical Test Data of Acid /Clay Process - Re-refined Base Stock Oils ............ 11 4

  2. Engineered passive bioreactive barriers: risk-managing the legacy of industrial soil and groundwater pollution.

    PubMed

    Kalin, Robert M

    2004-06-01

    Permeable reactive barriers are a technology that is one decade old, with most full-scale applications based on abiotic mechanisms. Though there is extensive literature on engineered bioreactors, natural biodegradation potential, and in situ remediation, it is only recently that engineered passive bioreactive barrier technology is being considered at the commercial scale to manage contaminated soil and groundwater risks. Recent full-scale studies are providing the scientific confidence in our understanding of coupled microbial (and genetic), hydrogeologic, and geochemical processes in this approach and have highlighted the need to further integrate engineering and science tools.

  3. Transport phenomena in environmental engineering

    NASA Astrophysics Data System (ADS)

    Sander, Aleksandra; Kardum, Jasna Prlić; Matijašić, Gordana; Žižek, Krunoslav

    2018-01-01

    A term transport phenomena arises as a second paradigm at the end of 1950s with high awareness that there was a strong need to improve the scoping of chemical engineering science. At that point, engineers became highly aware that it is extremely important to take step forward from pure empirical description and the concept of unit operations only to understand the specific process using phenomenological equations that rely on three elementary physical processes: momentum, energy and mass transport. This conceptual evolution of chemical engineering was first presented with a well-known book of R. Byron Bird, Warren E. Stewart and Edwin N. Lightfoot, Transport Phenomena, published in 1960 [1]. What transport phenomena are included in environmental engineering? It is hard to divide those phenomena through different engineering disciplines. The core is the same but the focus changes. Intention of the authors here is to present the transport phenomena that are omnipresent in treatment of various process streams. The focus in this chapter is made on the transport phenomena that permanently occur in mechanical macroprocesses of sedimentation and filtration for separation in solid-liquid particulate systems and on the phenomena of the flow through a fixed and a fluidized bed of particles that are immanent in separation processes in packed columns and in environmental catalysis. The fundamental phenomena for each thermal and equilibrium separation process technology are presented as well. Understanding and mathematical description of underlying transport phenomena result in scoping the separation processes in a way that ChEs should act worldwide.

  4. Mechanistic, kinetic, and processing aspects of tungsten chemical mechanical polishing

    NASA Astrophysics Data System (ADS)

    Stein, David

    This dissertation presents an investigation into tungsten chemical mechanical polishing (CMP). CMP is the industrially predominant unit operation that removes excess tungsten after non-selective chemical vapor deposition (CVD) during sub-micron integrated circuit (IC) manufacture. This work explores the CMP process from process engineering and fundamental mechanistic perspectives. The process engineering study optimized an existing CMP process to address issues of polish pad and wafer carrier life. Polish rates, post-CMP metrology of patterned wafers, electrical test data, and synergy with a thermal endpoint technique were used to determine the optimal process. The oxidation rate of tungsten during CMP is significantly lower than the removal rate under identical conditions. Tungsten polished without inhibition during cathodic potentiostatic control. Hertzian indenter model calculations preclude colloids of the size used in tungsten CMP slurries from indenting the tungsten surface. AFM surface topography maps and TEM images of post-CMP tungsten do not show evidence of plow marks or intergranular fracture. Polish rate is dependent on potassium iodate concentration; process temperature is not. The colloid species significantly affects the polish rate and process temperature. Process temperature is not a predictor of polish rate. A process energy balance indicates that the process temperature is predominantly due to shaft work, and that any heat of reaction evolved during the CMP process is negligible. Friction and adhesion between alumina and tungsten were studied using modified AFM techniques. Friction was constant with potassium iodate concentration, but varied with applied pressure. This corroborates the results from the energy balance. Adhesion between the alumina and the tungsten was proportional to the potassium iodate concentration. A heuristic mechanism, which captures the relationship between polish rate, pressure, velocity, and slurry chemistry, is presented. In this mechanism, the colloid reacts with the chemistry of the slurry to produce active sites. These active sites become inactive by removing tungsten from the film. The process repeats when then inactive sites are reconverted to active sites. It is shown that the empirical form of the heuristic mechanism fits all of the data obtained. The mechanism also agrees with the limiting cases that were investigated.

  5. Engineering the mechanical and biological properties of nanofibrous vascular grafts for in situ vascular tissue engineering.

    PubMed

    Henry, Jeffrey J D; Yu, Jian; Wang, Aijun; Lee, Randall; Fang, Jun; Li, Song

    2017-08-17

    Synthetic small diameter vascular grafts have a high failure rate, and endothelialization is critical for preventing thrombosis and graft occlusion. A promising approach is in situ tissue engineering, whereby an acellular scaffold is implanted and provides stimulatory cues to guide the in situ remodeling into a functional blood vessel. An ideal scaffold should have sufficient binding sites for biomolecule immobilization and a mechanical property similar to native tissue. Here we developed a novel method to blend low molecular weight (LMW) elastic polymer during electrospinning process to increase conjugation sites and to improve the mechanical property of vascular grafts. LMW elastic polymer improved the elasticity of the scaffolds, and significantly increased the amount of heparin conjugated to the micro/nanofibrous scaffolds, which in turn increased the loading capacity of vascular endothelial growth factor (VEGF) and prolonged the release of VEGF. Vascular grafts were implanted into the carotid artery of rats to evaluate the in vivo performance. VEGF treatment significantly enhanced endothelium formation and the overall patency of vascular grafts. Heparin coating also increased cell infiltration into the electrospun grafts, thus increasing the production of collagen and elastin within the graft wall. This work demonstrates that LMW elastic polymer blending is an approach to engineer the mechanical and biological property of micro/nanofibrous vascular grafts for in situ vascular tissue engineering.

  6. Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering.

    PubMed

    Carrion-Vazquez, M; Oberhauser, A F; Fisher, T E; Marszalek, P E; Li, H; Fernandez, J M

    2000-01-01

    Mechanical unfolding and refolding may regulate the molecular elasticity of modular proteins with mechanical functions. The development of the atomic force microscopy (AFM) has recently enabled the dynamic measurement of these processes at the single-molecule level. Protein engineering techniques allow the construction of homomeric polyproteins for the precise analysis of the mechanical unfolding of single domains. alpha-Helical domains are mechanically compliant, whereas beta-sandwich domains, particularly those that resist unfolding with backbone hydrogen bonds between strands perpendicular to the applied force, are more stable and appear frequently in proteins subject to mechanical forces. The mechanical stability of a domain seems to be determined by its hydrogen bonding pattern and is correlated with its kinetic stability rather than its thermodynamic stability. Force spectroscopy using AFM promises to elucidate the dynamic mechanical properties of a wide variety of proteins at the single molecule level and provide an important complement to other structural and dynamic techniques (e.g., X-ray crystallography, NMR spectroscopy, patch-clamp).

  7. [Advance in researches on the effect of forest on hydrological process].

    PubMed

    Zhang, Zhiqiang; Yu, Xinxiao; Zhao, Yutao; Qin, Yongsheng

    2003-01-01

    According to the effects of forest on hydrological process, forest hydrology can be divided into three related aspects: experimental research on the effects of forest changing on hydrological process quantity and water quality; mechanism study on the effects of forest changing on hydrological cycle, and establishing and exploitating physical-based distributed forest hydrological model for resource management and engineering construction. Orientation experiment research can not only support the first-hand data for forest hydrological model, but also make clear the precipitation-runoff mechanisms. Research on runoff mechanisms can be valuable for the exploitation and improvement of physical based hydrological models. Moreover, the model can also improve the experimental and runoff mechanism researches. A review of above three aspects are summarized in this paper.

  8. A Theory of Information Quality and a Framework for its Implementation in the Requirements Engineering Process

    NASA Astrophysics Data System (ADS)

    Grenn, Michael W.

    This dissertation introduces a theory of information quality to explain macroscopic behavior observed in the systems engineering process. The theory extends principles of Shannon's mathematical theory of communication [1948] and statistical mechanics to information development processes concerned with the flow, transformation, and meaning of information. The meaning of requirements information in the systems engineering context is estimated or measured in terms of the cumulative requirements quality Q which corresponds to the distribution of the requirements among the available quality levels. The requirements entropy framework (REF) implements the theory to address the requirements engineering problem. The REF defines the relationship between requirements changes, requirements volatility, requirements quality, requirements entropy and uncertainty, and engineering effort. The REF is evaluated via simulation experiments to assess its practical utility as a new method for measuring, monitoring and predicting requirements trends and engineering effort at any given time in the process. The REF treats the requirements engineering process as an open system in which the requirements are discrete information entities that transition from initial states of high entropy, disorder and uncertainty toward the desired state of minimum entropy as engineering effort is input and requirements increase in quality. The distribution of the total number of requirements R among the N discrete quality levels is determined by the number of defined quality attributes accumulated by R at any given time. Quantum statistics are used to estimate the number of possibilities P for arranging R among the available quality levels. The requirements entropy H R is estimated using R, N and P by extending principles of information theory and statistical mechanics to the requirements engineering process. The information I increases as HR and uncertainty decrease, and the change in information AI needed to reach the desired state of quality is estimated from the perspective of the receiver. The HR may increase, decrease or remain steady depending on the degree to which additions, deletions and revisions impact the distribution of R among the quality levels. Current requirements trend metrics generally treat additions, deletions and revisions the same and simply measure the quantity of these changes over time. The REF evaluates the quantity of requirements changes over time, distinguishes between their positive and negative effects by calculating their impact on HR, Q, and AI, and forecasts when the desired state will be reached, enabling more accurate assessment of the status and progress of the requirements engineering effort. Results from random variable simulations suggest the REF is an improved leading indicator of requirements trends that can be readily combined with current methods. The increase in I, or decrease in H R and uncertainty, is proportional to the engineering effort E input into the requirements engineering process. The REF estimates the AE needed to transition R from their current state of quality to the desired end state or some other interim state of interest. Simulation results are compared with measured engineering effort data for Department of Defense programs published in the SE literature, and the results suggest the REF is a promising new method for estimation of AE.

  9. Firmware Development Improves System Efficiency

    NASA Technical Reports Server (NTRS)

    Chern, E. James; Butler, David W.

    1993-01-01

    Most manufacturing processes require physical pointwise positioning of the components or tools from one location to another. Typical mechanical systems utilize either stop-and-go or fixed feed-rate procession to accomplish the task. The first approach achieves positional accuracy but prolongs overall time and increases wear on the mechanical system. The second approach sustains the throughput but compromises positional accuracy. A computer firmware approach has been developed to optimize this point wise mechanism by utilizing programmable interrupt controls to synchronize engineering processes 'on the fly'. This principle has been implemented in an eddy current imaging system to demonstrate the improvement. Software programs were developed that enable a mechanical controller card to transmit interrupts to a system controller as a trigger signal to initiate an eddy current data acquisition routine. The advantages are: (1) optimized manufacturing processes, (2) increased throughput of the system, (3) improved positional accuracy, and (4) reduced wear and tear on the mechanical system.

  10. Ceramic technology for advanced heat engines project. Semiannual progress report, October 1985-March 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-08-01

    Significant accomplishments in fabricating cermaic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, additional research is needed in materials and processing development, design methodology, and data base and life prediction. An assessment of needs was completed, and a five-year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotivemore » heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.« less

  11. Mechanics Simulations in Second Life

    ERIC Educational Resources Information Center

    Black, Kelly

    2010-01-01

    This paper examines the use of the 3-D virtual world Second Life to explore basic mechanics in physics. In Second Life, students can create scripts that take advantage of a virtual physics engine in order to conduct experiments that focus on specific phenomena. The paper explores two particular examples of this process: (1) the movement of an…

  12. Cooperative Learning in a Soil Mechanics Course at Undergraduate Level

    ERIC Educational Resources Information Center

    Pinho-Lopes, M.; Macedo, J.; Bonito, F.

    2011-01-01

    The implementation of the Bologna Process enforced a significant change on traditional learning models, which were focused mainly on the transmission of knowledge. The results obtained in a first attempt at implementation of a cooperative learning model in the Soil Mechanics I course of the Department of Civil Engineering of the University of…

  13. Evaluating the Learning Process of Mechanical CAD Students

    ERIC Educational Resources Information Center

    Hamade, R. F.; Artail, H. A.; Jaber, M. Y.

    2007-01-01

    There is little theoretical or experimental research on how beginner-level trainees learn CAD skills in formal training sessions. This work presents findings on how trainees develop their skills in utilizing a solid mechanical CAD tool (Pro/Engineer version 2000i[squared] and later version Wildfire). Exercises at the beginner and intermediate…

  14. Mechanically activated fly ash as a high performance binder for civil engineering

    NASA Astrophysics Data System (ADS)

    Rieger, D.; Kullová, L.; Čekalová, M.; Novotný, P.; Pola, M.

    2017-01-01

    This study is aimed for investigation of fly ash binder with suitable properties for civil engineering needs. The fly ash from Czech brown coal power plant Prunerov II was used and mechanically activated to achieve suitable particle size for alkaline activation of hardening process. This process is driven by dissolution of aluminosilicate content of fly ash and by subsequent development of inorganic polymeric network called geopolymer. Hardening kinetics at 25 and 30 °C were measured by strain controlled small amplitude oscillatory rheometry with strain of 0.01 % and microstructure of hardened binder was evaluated by scanning electron microscopy. Strength development of hardened binder was investigated according to compressional and flexural strength for a period of 180 days. Our investigation finds out, that mechanically activated fly ash can be comparable to metakaolin geopolymers, according to setting time and mechanical parameters even at room temperature curing. Moreover, on the bases of long time strength development, achieved compressional strength of 134.5 after 180 days is comparable to performance of high grade Portland cement concretes.

  15. Artificial Muscles Based on Electroactive Polymers as an Enabling Tool in Biomimetics

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.

    2007-01-01

    Evolution has resolved many of nature's challenges leading to working and lasting solutions that employ principles of physics, chemistry, mechanical engineering, materials science, and many other fields of science and engineering. Nature's inventions have always inspired human achievements leading to effective materials, structures, tools, mechanisms, processes, algorithms, methods, systems, and many other benefits. Some of the technologies that have emerged include artificial intelligence, artificial vision, and artificial muscles, where the latter is the moniker for electroactive polymers (EAPs). To take advantage of these materials and make them practical actuators, efforts are made worldwide to develop capabilities that are critical to the field infrastructure. Researchers are developing analytical model and comprehensive understanding of EAP materials response mechanism as well as effective processing and characterization techniques. The field is still in its emerging state and robust materials are still not readily available; however, in recent years, significant progress has been made and commercial products have already started to appear. In the current paper, the state-of-the-art and challenges to artificial muscles as well as their potential application to biomimetic mechanisms and devices are described and discussed.

  16. A Collaborative Knowledge Management Process for Implementing Healthcare Enterprise Information Systems

    NASA Astrophysics Data System (ADS)

    Cheng, Po-Hsun; Chen, Sao-Jie; Lai, Jin-Shin; Lai, Feipei

    This paper illustrates a feasible health informatics domain knowledge management process which helps gather useful technology information and reduce many knowledge misunderstandings among engineers who have participated in the IBM mainframe rightsizing project at National Taiwan University (NTU) Hospital. We design an asynchronously sharing mechanism to facilitate the knowledge transfer and our health informatics domain knowledge management process can be used to publish and retrieve documents dynamically. It effectively creates an acceptable discussion environment and even lessens the traditional meeting burden among development engineers. An overall description on the current software development status is presented. Then, the knowledge management implementation of health information systems is proposed.

  17. Economics of electron beam and electrical discharge processing for post-combustion NO(x) control in internal combustion engines

    NASA Astrophysics Data System (ADS)

    Penetrante, B. M.

    1993-08-01

    The physics and chemistry of non-thermal plasma processing for post-combustion NO(x) control in internal combustion engines are discussed. A comparison of electron beam and electrical discharge processing is made regarding their power consumption, radical production, NO(x) removal mechanisms, and by-product formation. Pollution control applications present a good opportunity for transferring pulsed power techniques to the commercial sector. However, unless advances are made to drastically reduce the price and power consumption of electron beam sources and pulsed power systems, these plasma techniques will not become commercially competitive with conventional thermal or surface-catalytic methods.

  18. Fabrication development for high-level nuclear waste containers for the tuff repository; Phase 1 final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domian, H.A.; Holbrook, R.L.; LaCount, D.F.

    1990-09-01

    This final report completes Phase 1 of an engineering study of potential manufacturing processes for the fabrication of containers for the long-term storage of nuclear waste. An extensive literature and industry review was conducted to identify and characterize various processes. A technical specification was prepared using the American Society of Mechanical Engineers Boiler & Pressure Vessel Code (ASME BPVC) to develop the requirements. A complex weighting and evaluation system was devised as a preliminary method to assess the processes. The system takes into account the likelihood and severity of each possible failure mechanism in service and the effects of variousmore » processes on the microstructural features. It is concluded that an integral, seamless lower unit of the container made by back extrusion has potential performance advantages but is also very high in cost. A welded construction offers lower cost and may be adequate for the application. Recommendations are made for the processes to be further evaluated in the next phase when mock-up trials will be conducted to address key concerns with various processes and materials before selecting a primary manufacturing process. 43 refs., 26 figs., 34 tabs.« less

  19. Disk Alloy Development

    NASA Technical Reports Server (NTRS)

    Gabb, Tim; Gayda, John; Telesman, Jack

    2001-01-01

    The advanced powder metallurgy disk alloy ME3 was designed using statistical screening and optimization of composition and processing variables in the NASA HSR/EPM disk program to have extended durability at 1150 to 1250 "Fin large disks. Scaled-up disks of this alloy were produced at the conclusion of this program to demonstrate these properties in realistic disk shapes. The objective of the UEET disk program was to assess the mechanical properties of these ME3 disks as functions of temperature, in order to estimate the maximum temperature capabilities of this advanced alloy. Scaled-up disks processed in the HSR/EPM Compressor / Turbine Disk program were sectioned, machined into specimens, and tested in tensile, creep, fatigue, and fatigue crack growth tests by NASA Glenn Research Center, in cooperation with General Electric Engine Company and Pratt & Whitney Aircraft Engines. Additional sub-scale disks and blanks were processed and tested to explore the effects of several processing variations on mechanical properties. Scaled-up disks of an advanced regional disk alloy, Alloy 10, were used to evaluate dual microstructure heat treatments. This allowed demonstration of an improved balance of properties in disks with higher strength and fatigue resistance in the bores and higher creep and dwell fatigue crack growth resistance in the rims. Results indicate the baseline ME3 alloy and process has 1300 to 1350 O F temperature capabilities, dependent on detailed disk and engine design property requirements. Chemistry and process enhancements show promise for further increasing temperature capabilities.

  20. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.

    1992-01-01

    The NASA-UVa Light Aerospace Alloy and Structure Technology (LAST) Program continues to maintain a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, Civil Engineering and Applied Mechanics, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between January 1 and June 30, 1992. The objectives of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of the next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with Langley researchers. Technical objectives are established for each research project. We aim to produce relevant data and basic understanding of material mechanical response, corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement advances; and critically, a pool of educated graduate students for aerospace technologies. The accomplishments presented in this report cover topics including: (1) Mechanical and Environmental Degradation Mechanisms in Advance Light Metals and Composites; (2) Aerospace Materials Science; (3) Mechanics of Materials and Composites for Aerospace Structures; and (4) Thermal Gradient Structures.

  1. Methodology for Physics and Engineering of Reliable Products

    NASA Technical Reports Server (NTRS)

    Cornford, Steven L.; Gibbel, Mark

    1996-01-01

    Physics of failure approaches have gained wide spread acceptance within the electronic reliability community. These methodologies involve identifying root cause failure mechanisms, developing associated models, and utilizing these models to inprove time to market, lower development and build costs and higher reliability. The methodology outlined herein sets forth a process, based on integration of both physics and engineering principles, for achieving the same goals.

  2. Tissue Engineering and Regenerative Repair in Wound Healing

    PubMed Central

    Hu, Michael S.; Maan, Zeshaan N.; Wu, Jen-Chieh; Rennert, Robert C.; Hong, Wan Xing; Lai, Tiffany S.; Cheung, Alexander T. M.; Walmsley, Graham G.; Chung, Michael T.; McArdle, Adrian; Longaker, Michael T.; Lorenz, H. Peter

    2014-01-01

    Wound healing is a highly evolved defense mechanism against infection and further injury. It is a complex process involving multiple cell types and biological pathways. Mammalian adult cutaneous wound healing is mediated by a fibroproliferative response leading to scar formation. In contrast, early to mid-gestational fetal cutaneous wound healing is more akin to regeneration and occurs without scar formation. This early observation has led to extensive research seeking to unlock the mechanism underlying fetal scarless regenerative repair. Building upon recent advances in biomaterials and stem cell applications, tissue engineering approaches are working towards a recapitulation of this phenomenon. In this review, we describe the elements that distinguish fetal scarless and adult scarring wound healing, and discuss current trends in tissue engineering aimed at achieving scarless tissue regeneration. PMID:24788648

  3. Meeting the expectation of industry: an integrated approach for the teaching of mechanics and electronics to design students

    NASA Astrophysics Data System (ADS)

    Bingham, Guy A.; Southee, Darren J.; Page, Tom

    2015-07-01

    This paper examines the traditional engineering-based provision delivered to Product Design and Technology (B.Sc.) undergraduates at the Loughborough Design School and questions its relevancy against the increasing expectations of industry. The paper reviews final-year design projects to understand the level of transference of engineering-based knowledge into design practice and highlights areas of opportunity for improved teaching and learning. The paper discusses the development and implementation of an integrated approach to the teaching of Mechanics and Electronics to formalise and reinforce the key learning process of transference within the design context. The paper concludes with observations from the delivery of this integrated teaching and offers insights from student and academic perspectives for the further improvement of engineering-based teaching and learning.

  4. Development of a competency mapping tool for undergraduate professional degree programmes, using mechanical engineering as a case study

    NASA Astrophysics Data System (ADS)

    Holmes, David W.; Sheehan, Madoc; Birks, Melanie; Smithson, John

    2018-01-01

    Mapping the curriculum of a professional degree to the associated competency standard ensures graduates have the competence to perform as professionals. Existing approaches to competence mapping vary greatly in depth, complexity, and effectiveness, and a standardised approach remains elusive. This paper describes a new mapping software tool that streamlines and standardises the competency mapping process. The available analytics facilitate ongoing programme review, management, and accreditation. The complete mapping and analysis of an Australian mechanical engineering degree programme is described as a case study. Each subject is mapped by evaluating the amount and depth of competence development present. Combining subject results then enables highly detailed programme level analysis. The mapping process is designed to be administratively light, with aspects of professional development embedded in the software. The effective competence mapping described in this paper enables quantification of learning within a professional degree programme, and provides a mechanism for holistic programme improvement.

  5. 46 CFR 113.35-15 - Mechanical engine order telegraph systems; application.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Mechanical engine order telegraph systems; application...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-15 Mechanical engine order telegraph systems; application. If a mechanical engine order telegraph...

  6. 46 CFR 113.35-15 - Mechanical engine order telegraph systems; application.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Mechanical engine order telegraph systems; application...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-15 Mechanical engine order telegraph systems; application. If a mechanical engine order telegraph...

  7. 46 CFR 113.35-15 - Mechanical engine order telegraph systems; application.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Mechanical engine order telegraph systems; application...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-15 Mechanical engine order telegraph systems; application. If a mechanical engine order telegraph...

  8. 46 CFR 113.35-15 - Mechanical engine order telegraph systems; application.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Mechanical engine order telegraph systems; application...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-15 Mechanical engine order telegraph systems; application. If a mechanical engine order telegraph...

  9. Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering.

    PubMed

    Narayanan, Ganesh; Vernekar, Varadraj N; Kuyinu, Emmanuel L; Laurencin, Cato T

    2016-12-15

    Regenerative engineering converges tissue engineering, advanced materials science, stem cell science, and developmental biology to regenerate complex tissues such as whole limbs. Regenerative engineering scaffolds provide mechanical support and nanoscale control over architecture, topography, and biochemical cues to influence cellular outcome. In this regard, poly (lactic acid) (PLA)-based biomaterials may be considered as a gold standard for many orthopaedic regenerative engineering applications because of their versatility in fabrication, biodegradability, and compatibility with biomolecules and cells. Here we discuss recent developments in PLA-based biomaterials with respect to processability and current applications in the clinical and research settings for bone, ligament, meniscus, and cartilage regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Ceramic Technology for Advanced Heat Engines Project. Semiannual progress report, October 1984-March 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-09-01

    A five-year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applicationsmore » in these engines.« less

  11. Ceramic technology for advanced heat engines project: Semiannual progress report for April through September 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-03-01

    An assessment of needs was completed, and a five-year project plan was developed with extensive input from private industry. Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barriermore » and wear applications in these engines.« less

  12. Numerical and Experimental Study on Manufacture of a Novel High-Capacity Engine Oil Pan Subjected to Hydro-Mechanical Deep Drawing

    NASA Astrophysics Data System (ADS)

    Chen, D. Y.; Xu, Y.; Zhang, S. H.; El-Aty, A. Abd; Ma, Y.

    2017-09-01

    The oil pan is equipped at the bottom of engine crankcase of the automobile to prevent impurity and collect the lubrication oil from the surfaces of the engine which is helpful for heat dissipation and oxidation prevention. The present study aims at manufacturing a novel high-capacity engine oil pan, which is considered as a complex shaped component with features of thin wall, large size and asymmetric deep cavity through both numerical and experimental methods. The result indicated that it is difficult to form the current part through the common deep drawing process. Accordingly, the hydro-mechanical deep drawing technology was conducted, which consisted of two steps, previous local drawing and the final integral deep drawing with hydraulic pressure. The finite element analysis (FEA) was carried out to investigate the influence of initial blank dimension and the key process parameters such as loading path, draw-bead force and fillet radius on the formability of the sheet blank. Compared with the common deep drawing, the limit drawing ratio by hydro-mechanical deep drawing can be increased from 2.34 to 2.77, while the reduction in blank wall thickness can be controlled in the range of 28%. The formability is greatly improved without any defects such as crack and wrinkle by means of parameters optimisation. The results gained from simulation keep a reasonable agreement with that obtained from experiment trials.

  13. The Physics of Semiconductors

    NASA Astrophysics Data System (ADS)

    Brennan, Kevin F.

    1999-02-01

    Modern fabrication techniques have made it possible to produce semiconductor devices whose dimensions are so small that quantum mechanical effects dominate their behavior. This book describes the key elements of quantum mechanics, statistical mechanics, and solid-state physics that are necessary in understanding these modern semiconductor devices. The author begins with a review of elementary quantum mechanics, and then describes more advanced topics, such as multiple quantum wells. He then disusses equilibrium and nonequilibrium statistical mechanics. Following this introduction, he provides a thorough treatment of solid-state physics, covering electron motion in periodic potentials, electron-phonon interaction, and recombination processes. The final four chapters deal exclusively with real devices, such as semiconductor lasers, photodiodes, flat panel displays, and MOSFETs. The book contains many homework exercises and is suitable as a textbook for electrical engineering, materials science, or physics students taking courses in solid-state device physics. It will also be a valuable reference for practicing engineers in optoelectronics and related areas.

  14. 77 FR 25036 - Hispanic-Serving Agricultural Colleges and Universities (HSACU) Certification Process

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-27

    ..., Agricultural Power Machinery Operation 01.0205, Agricultural Mechanics and Equipment/Machine Technology 01.0299... Education 14.0301, Agricultural/Biological Engineering and Bioengineering 19.0501, Foods, Nutrition, and...

  15. Wave Phase-Sensitive Transformation of 3d-Straining of Mechanical Fields

    NASA Astrophysics Data System (ADS)

    Smirnov, I. N.; Speranskiy, A. A.

    2015-11-01

    It is the area of research of oscillatory processes in elastic mechanical systems. Technical result of innovation is creation of spectral set of multidimensional images which reflect time-correlated three-dimensional vector parameters of metrological, and\\or estimated, and\\or design parameters of oscillations in mechanical systems. Reconstructed images of different dimensionality integrated in various combinations depending on their objective function can be used as homeostatic profile or cybernetic image of oscillatory processes in mechanical systems for an objective estimation of current operational conditions in real time. The innovation can be widely used to enhance the efficiency of monitoring and research of oscillation processes in mechanical systems (objects) in construction, mechanical engineering, acoustics, etc. Concept method of vector vibrometry based on application of vector 3D phase- sensitive vibro-transducers permits unique evaluation of real stressed-strained states of power aggregates and loaded constructions and opens fundamental innovation opportunities: conduct of continuous (on-line regime) reliable monitoring of turboagregates of electrical machines, compressor installations, bases, supports, pipe-lines and other objects subjected to damaging effect of vibrations; control of operational safety of technical systems at all the stages of life cycle including design, test production, tuning, testing, operational use, repairs and resource enlargement; creation of vibro-diagnostic systems of authentic non-destructive control of anisotropic characteristics of materials resistance of power aggregates and loaded constructions under outer effects and operational flaws. The described technology is revolutionary, universal and common for all branches of engineering industry and construction building objects.

  16. Crystal growth for high-efficiency silicon solar cells workshop: Summary

    NASA Technical Reports Server (NTRS)

    Dumas, K. A.

    1985-01-01

    The state of the art in the growth of silicon crystals for high-efficiency solar cells are reviewed, sheet requirements are defined, and furture areas of research are identified. Silicon sheet material characteristics that limit cell efficiencies and yields were described as well as the criteria for the ideal sheet-growth method. The device engineers wish list to the material engineer included: silicon sheet with long minority carrier lifetime that is uniform throughout the sheet, and which doesn't change during processing; and sheet material that stays flat throughout device processing, has uniform good mechanical strength, and is low cost. Impurities in silicon solar cells depreciate cell performance by reducing diffusion length and degrading junctions. The impurity behavior, degradation mechanisms, and variations in degradation threshold with diffusion length for silicon solar cells were described.

  17. Prediction and Estimation of Scaffold Strength with different pore size

    NASA Astrophysics Data System (ADS)

    Muthu, P.; Mishra, Shubhanvit; Sri Sai Shilpa, R.; Veerendranath, B.; Latha, S.

    2018-04-01

    This paper emphasizes the significance of prediction and estimation of the mechanical strength of 3D functional scaffolds before the manufacturing process. Prior evaluation of the mechanical strength and structural properties of the scaffold will reduce the cost fabrication and in fact ease up the designing process. Detailed analysis and investigation of various mechanical properties including shear stress equivalence have helped to estimate the effect of porosity and pore size on the functionality of the scaffold. The influence of variation in porosity was examined by computational approach via finite element analysis (FEA) and ANSYS application software. The results designate the adequate perspective of the evolutionary method for the regulation and optimization of the intricate engineering design process.

  18. Functional groups of ecosystem engineers: a proposed classification with comments on current issues.

    PubMed

    Berke, Sarah K

    2010-08-01

    Ecologists have long known that certain organisms fundamentally modify, create, or define habitats by altering the habitat's physical properties. In the past 15 years, these processes have been formally defined as "ecosystem engineering", reflecting a growing consensus that environmental structuring by organisms represents a fundamental class of ecological interactions occurring in most, if not all, ecosystems. Yet, the precise definition and scope of ecosystem engineering remains debated, as one should expect given the complexity, enormity, and variability of ecological systems. Here I briefly comment on a few specific current points of contention in the ecosystem engineering concept. I then suggest that ecosystem engineering can be profitably subdivided into four narrower functional categories reflecting four broad mechanisms by which ecosystem engineering occurs: structural engineers, bioturbators, chemical engineers, and light engineers. Finally, I suggest some conceptual model frameworks that could apply broadly within these functional groups.

  19. The materials used in bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Tereshchenko, V. P.; Kirilova, I. A.; Sadovoy, M. A.; Larionov, P. M.

    2015-11-01

    Bone tissue engineering looking for an alternative solution to the problem of skeletal injuries. The method is based on the creation of tissue engineered bone tissue equivalent with stem cells, osteogenic factors, and scaffolds - the carriers of these cells. For production of tissue engineered bone equivalent is advisable to create scaffolds similar in composition to natural extracellular matrix of the bone. This will provide optimal conditions for the cells, and produce favorable physico-mechanical properties of the final construction. This review article gives an analysis of the most promising materials for the manufacture of cell scaffolds. Biodegradable synthetic polymers are the basis for the scaffold, but it alone cannot provide adequate physical and mechanical properties of the construction, and favorable conditions for the cells. Addition of natural polymers improves the strength characteristics and bioactivity of constructions. Of the inorganic compounds, to create cell scaffolds the most widely used calcium phosphates, which give the structure adequate stiffness and significantly increase its osteoinductive capacity. Signaling molecules do not affect the physico-mechanical properties of the scaffold, but beneficial effect is on the processes of adhesion, proliferation and differentiation of cells. Biodegradation of the materials will help to fulfill the main task of bone tissue engineering - the ability to replace synthetic construct by natural tissues that will restore the original anatomical integrity of the bone.

  20. Design process of the nanofluid injection mechanism in nuclear power plants

    NASA Astrophysics Data System (ADS)

    Kang, Myoung-Suk; Jee, Changhyun; Park, Sangjun; Bang, In Choel; Heo, Gyunyoung

    2011-04-01

    Nanofluids, which are engineered suspensions of nanoparticles in a solvent such as water, have been found to show enhanced coolant properties such as higher critical heat flux and surface wettability at modest concentrations, which is a useful characteristic in nuclear power plants (NPPs). This study attempted to provide an example of engineering applications in NPPs using nanofluid technology. From these motivations, the conceptual designs of the emergency core cooling systems (ECCSs) assisted by nanofluid injection mechanism were proposed after following a design framework to develop complex engineering systems. We focused on the analysis of functional requirements for integrating the conventional ECCSs and nanofluid injection mechanism without loss of performance and reliability. Three candidates of nanofluid-engineered ECCS proposed in previous researches were investigated by applying axiomatic design (AD) in the manner of reverse engineering and it enabled to identify the compatibility of functional requirements and potential design vulnerabilities. The methods to enhance such vulnerabilities were referred from TRIZ and concretized for the ECCS of the Korean nuclear power plant. The results show a method to decouple the ECCS designs with the installation of a separate nanofluids injection tank adjacent to the safety injection tanks such that a low pH environment for nanofluids can be maintained at atmospheric pressure which is favorable for their injection in passive manner.

  1. Design process of the nanofluid injection mechanism in nuclear power plants

    PubMed Central

    2011-01-01

    Nanofluids, which are engineered suspensions of nanoparticles in a solvent such as water, have been found to show enhanced coolant properties such as higher critical heat flux and surface wettability at modest concentrations, which is a useful characteristic in nuclear power plants (NPPs). This study attempted to provide an example of engineering applications in NPPs using nanofluid technology. From these motivations, the conceptual designs of the emergency core cooling systems (ECCSs) assisted by nanofluid injection mechanism were proposed after following a design framework to develop complex engineering systems. We focused on the analysis of functional requirements for integrating the conventional ECCSs and nanofluid injection mechanism without loss of performance and reliability. Three candidates of nanofluid-engineered ECCS proposed in previous researches were investigated by applying axiomatic design (AD) in the manner of reverse engineering and it enabled to identify the compatibility of functional requirements and potential design vulnerabilities. The methods to enhance such vulnerabilities were referred from TRIZ and concretized for the ECCS of the Korean nuclear power plant. The results show a method to decouple the ECCS designs with the installation of a separate nanofluids injection tank adjacent to the safety injection tanks such that a low pH environment for nanofluids can be maintained at atmospheric pressure which is favorable for their injection in passive manner. PMID:21711896

  2. Design process of the nanofluid injection mechanism in nuclear power plants.

    PubMed

    Kang, Myoung-Suk; Jee, Changhyun; Park, Sangjun; Bang, In Choel; Heo, Gyunyoung

    2011-04-27

    Nanofluids, which are engineered suspensions of nanoparticles in a solvent such as water, have been found to show enhanced coolant properties such as higher critical heat flux and surface wettability at modest concentrations, which is a useful characteristic in nuclear power plants (NPPs). This study attempted to provide an example of engineering applications in NPPs using nanofluid technology. From these motivations, the conceptual designs of the emergency core cooling systems (ECCSs) assisted by nanofluid injection mechanism were proposed after following a design framework to develop complex engineering systems. We focused on the analysis of functional requirements for integrating the conventional ECCSs and nanofluid injection mechanism without loss of performance and reliability. Three candidates of nanofluid-engineered ECCS proposed in previous researches were investigated by applying axiomatic design (AD) in the manner of reverse engineering and it enabled to identify the compatibility of functional requirements and potential design vulnerabilities. The methods to enhance such vulnerabilities were referred from TRIZ and concretized for the ECCS of the Korean nuclear power plant. The results show a method to decouple the ECCS designs with the installation of a separate nanofluids injection tank adjacent to the safety injection tanks such that a low pH environment for nanofluids can be maintained at atmospheric pressure which is favorable for their injection in passive manner.

  3. Root tensile strength assessment of Dryas octopetala L. and implications for its engineering mechanism on lateral moraine slopes (Turtmann Valley, Switzerland)

    NASA Astrophysics Data System (ADS)

    Eibisch, Katharina; Eichel, Jana; Dikau, Richard

    2015-04-01

    Geomorphic processes and properties are influenced by vegetation. It has been shown that vegetation cover intercepts precipitation, enhances surface detention and storage, traps sediment and provides additional surface roughness. Plant roots impact the soil in a mechanical and hydrological manner and affect shear strength, infiltration capacity and moisture content. Simultaneously, geomorphic processes disturb the vegetation development. This strong coupling of the geomorphic and ecologic system is investigated in Biogeomorphology. Lateral moraine slopes are characterized by a variety of geomorphic processes, e. g. sheet wash, solifluction and linear erosion. However, some plant species, termed engineer species, possess specific functional traits which allow them to grow under these conditions and also enable them to influence the frequency, magnitude and even nature of geomorphic processes. For lateral moraine slopes, Dryas octopetala L., an alpine dwarf shrub, was identified as a potential engineer species. The engineering mechanism of D. octopetala, based on its morphological (e.g., growth form) and biomechanical (e.g., root strength) traits, yet remains unclear and only little research has been conducted on alpine plant species. The objectives of this study are to fill this gap by (A) quantifying D. octopetala root tensile strength as an important trait considering anchorage in and stabilization of the slope and (B) linking plant traits to the geomorphic process they influence on lateral moraine slopes. D. octopetala traits were studied on a lateral moraine slope in Turtmann glacier forefield, Switzerland. (A) Root strength of single root threads of Dryas octopetala L. were tested using the spring scale method (Schmidt et al., 2001; Hales et al., 2013). Measurement equipment was modified to enable field measurements of roots shortly after excavation. Tensile strength of individual root threads was calculated and statistically analyzed. First results show that Dryas roots appear to be quite strong compared to other alpine species with a mean tensile strength of 22,63 N mm -². (B) On a micro scale, morphological and biomechanical features of above and below-ground biomass were qualitatively studied through field observations on D. octopetala individuals. Findings indicate that D. octopetala's dense cushions, covering many square meters of the moraines surface, traps fine sediment, stores moisture and significantly reduces erosion through wind and water. Furthermore, Dryas is well adapted to rock fall or burial by forming stabilized patches of ground despite steep slope inclinations and strong, episodic surface runoff and creep processes. Anchorage is provided by its strong root, which in all studied cases grew upslope parallel to the moraines surface. Insights from this study allow to relate root tensile strength and other specific plant traits of Dryas octopetala to an engineering mechanism and effect on geomorphic processes on lateral moraine slopes. Knowledge about Dryas as an engineering species may help to understand its biotic influence on the geomorphic system of a lateral moraine and aid in the selection of species for erosion control or rehabilitation of ecosystems, where Dryas is native.

  4. A numerical investigation on the influence of engine shape and mixing processes on wave engine performance

    NASA Astrophysics Data System (ADS)

    Erickson, Robert R.

    Wave engines are a class of unsteady, air-breathing propulsion devices that use an intermittent combustion process to generate thrust. The inherently simple mechanical design of the wave engine allows for a relatively low cost per unit propulsion system, yet unsatisfactory overall performance has severely limited the development of commercially successful wave engines. The primary objective of this investigation was to develop a more detailed physical understanding of the influence of gas dynamic nonlinearities, unsteady combustion processes, and engine shape on overall wave engine performance. Within this study, several numerical models were developed and applied to wave engines and related applications. The first portion of this investigation examined the influence of duct shape on driven oscillations in acoustic compression devices, which represent a simplified physical system closely related in several ways to the wave engine. A numerical model based on an application of the Galerkin method was developed to simulate large amplitude, one-dimensional acoustic waves driven in closed ducts. Results from this portion of the investigation showed that gas-dynamic nonlinearities significantly influence the properties of driven oscillations by transferring acoustic energy from the fundamental driven mode into higher harmonic modes. The second portion of this investigation presented and analyzed results from a numerical model of wave engine dynamics based on the quasi one-dimensional conservation equations in addition to separate sub-models for mixing and heat release. This model was then used to perform parametric studies of the characteristics of mixing and engine shape. The objectives of these studies were to determine the influence of mixing characteristics and engine shape on overall wave engine performance and to develop insight into the physical processes controlling overall performance trends. Results from this model showed that wave engine performance was strongly dependent on the coupling between the unsteady heat release that drives oscillations in the engine and the characteristics that determine the acoustic properties of the engine such as engine shape and mean property gradients. Simulation results showed that average thrust generation decreased dramatically when the natural acoustic mode frequencies of the engine and the frequency content of the unsteady heat release were not aligned.

  5. Arctic communications techniques: Remote unattended power systems

    NASA Astrophysics Data System (ADS)

    Walker, G.

    1986-02-01

    The purpose of this report is to describe the accomplishments during the reporting period, 16 December 1985 through 1 February 1986, on the project entitled Arctic Communications Techniques: Remote Unattended Power Systems. All of the fabricated component parts for the first Ross-Stirling engine were completed. During the assembly process several interferences between some of the parts in the rotating mechanism were discovered causing drawing changes and subsequent rework to a few of the components. Assembly of the first engine was then completed. On the first attempt the engine ran successfully at approximately 3500 rpm.

  6. Three-grid accelerator system for an ion propulsion engine

    NASA Technical Reports Server (NTRS)

    Brophy, John R. (Inventor)

    1994-01-01

    An apparatus is presented for an ion engine comprising a three-grid accelerator system with the decelerator grid biased negative of the beam plasma. This arrangement substantially reduces the charge-exchange ion current reaching the accelerator grid at high tank pressures, which minimizes erosion of the accelerator grid due to charge exchange ion sputtering, known to be the major accelerator grid wear mechanism. An improved method for life testing ion engines is also provided using the disclosed apparatus. In addition, the invention can also be applied in materials processing.

  7. Development of structural ceramic components for automobile applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawamoto, H.

    1995-12-01

    Development efforts have been made in automobile technologies on heat engines to improve the power performance, the fuel economy, and so on. It is well recognized that ceramic applications are keys to succeed in such advanced heat engines, because of their good mechanical and thermal properties. This paper discusses present automobile applications of structural ceramic components and the expectations in automobile uses. The strength and reliability of mass-produced components for the engines are described with the manufacturing processes. The future R&D directions are recommended for structural ceramics.

  8. Simulation and Spacecraft Design: Engineering Mars Landings.

    PubMed

    Conway, Erik M

    2015-10-01

    A key issue in history of technology that has received little attention is the use of simulation in engineering design. This article explores the use of both mechanical and numerical simulation in the design of the Mars atmospheric entry phases of the Viking and Mars Pathfinder missions to argue that engineers used both kinds of simulation to develop knowledge of their designs' likely behavior in the poorly known environment of Mars. Each kind of simulation could be used as a warrant of the other's fidelity, in an iterative process of knowledge construction.

  9. European Science Notes Information Bulletin Reports on Current European and Middle Eastern Science

    DTIC Science & Technology

    1992-01-01

    evclopment in the Abbey-Polymer Processing and Properties ................... 524 J, Magill Corrosion and Protection Centre at the University of...34* Software Engineering and microprocessors and communication chips. The Information Processing Systems recently announced T9000 microprocessor will...computational fluid dynamics, struc- In addition to general and special-purpose tural mechanics, partial differential equations, processing , Europe has a

  10. The efficiency evaluation of support vibration isolation with mechanic inertial motion converter for vibroactive process equipment

    NASA Astrophysics Data System (ADS)

    Buryan, Yu. A.; Babichev, D. O.; Silkov, M. V.; Shtripling, L. O.; Kalashnikov, B. A.

    2017-08-01

    This research refers to the problems of processing equipment protection from vibration influence. The theory issues of vibration isolation for vibroactive objects such as engines, pumps, compressors, fans, piping, etc. are considered. The design of the perspective air spring with the parallel mounted mechanical inertial motion converter is offered. The mathematical model of the suspension, allowing selecting options to reduce the factor of the force transmission to the base in a certain frequency range is obtained.

  11. Student research laboratory for optical engineering

    NASA Astrophysics Data System (ADS)

    Tolstoba, Nadezhda D.; Saitgalina, Azaliya; Abdula, Polina; Butova, Daria

    2015-10-01

    Student research laboratory for optical engineering is comfortable place for student's scientific and educational activity. The main ideas of laboratory, process of creation of laboratory and also activity of laboratory are described in this article. At ITMO University in 2013-2014 were formed a lot of research laboratories. SNLO is a student research (scientific) laboratory formed by the Department of Applied and computer optics of the University ITMO (Information Technologies of Mechanics and Optics). Activity of laboratory is career guidance of entrants and students in the field of optical engineering. Student research laboratory for optical engineering is a place where student can work in the interesting and entertaining scientific atmosphere.

  12. Quiet Clean Short-haul Experimental Engine (QCSEE). Composite fan frame subsystem test report

    NASA Technical Reports Server (NTRS)

    Stotler, C. L., Jr.; Bowden, J. H.

    1977-01-01

    The element and subcomponent testing conducted to verify the composite fan frame design of two experimental high bypass geared turbofan engines and propulsion systems for short haul passenger aircraft is described. Emphasis is placed on the propulsion technology required for future externally blown flap aircraft with engines located both under the wing and over the wing, including technology in composite structures and digital engine controls. The element tests confirmed that the processes used in the frame design would produce the predicted mechanical properties. The subcomponent tests verified that the detail structural components of the frame had adequate structural integrity.

  13. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Advanced Turbine Technology Application Project (ATTAP) activities during the past year were highlighted by test-bed engine design and development activities; ceramic component design; materials and component characterization; ceramic component process development and fabrication; component rig testing; and test-bed engine fabrication and testing. Although substantial technical challenges remain, all areas exhibited progress. Test-bed engine design and development activity included engine mechanical design, power turbine flow-path design and mechanical layout, and engine system integration aimed at upgrading the AGT-5 from a 1038 C metal engine to a durable 1371 C structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities include: the ceramic combustor body, the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, the ceramic/metal power turbine static structure, and the ceramic power turbine rotors. The materials and component characterization efforts included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities are being conducted for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig testing activities include the development of the necessary test procedures and conduction of rig testing of the ceramic components and assemblies. Four-hundred hours of hot gasifier rig test time were accumulated with turbine inlet temperatures exceeding 1204 C at 100 percent design gasifier speed. A total of 348.6 test hours were achieved on a single ceramic rotor without failure and a second ceramic rotor was retired in engine-ready condition at 364.9 test hours. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology that will permit the achievement of program performance and durability goals. The designated durability engine accumulated 359.3 hour of test time, 226.9 of which were on the General Motors gas turbine durability schedule.

  14. Human Systems Engineering for Launch processing at Kennedy Space Center (KSC)

    NASA Technical Reports Server (NTRS)

    Henderson, Gena; Stambolian, Damon B.; Stelges, Katrine

    2012-01-01

    Launch processing at Kennedy Space Center (KSC) is primarily accomplished by human users of expensive and specialized equipment. In order to reduce the likelihood of human error, to reduce personal injuries, damage to hardware, and loss of mission the design process for the hardware needs to include the human's relationship with the hardware. Just as there is electrical, mechanical, and fluids, the human aspect is just as important. The focus of this presentation is to illustrate how KSC accomplishes the inclusion of the human aspect in the design using human centered hardware modeling and engineering. The presentations also explain the current and future plans for research and development for improving our human factors analysis tools and processes.

  15. Influence of engineered interfaces on residual stresses and mechanical response in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Wilt, Thomas E.

    1992-01-01

    Because of the inherent coefficient of thermal expansion (CTE) mismatch between fiber and matrix within metal and intermetallic matrix composite systems, high residual stresses can develop under various thermal loading conditions. These conditions include cooling from processing temperature to room temperature as well as subsequent thermal cycling. As a result of these stresses, within certain composite systems, radial, circumferential, and/or longitudinal cracks have been observed to form at the fiber matrix interface region. A number of potential solutions for reducing this thermally induced residual stress field have been proposed recently. Examples of some potential solutions are high CTE fibers, fiber preheating, thermal anneal treatments, and an engineered interface. Here the focus is on designing an interface (by using a compensating/compliant layer concept) to reduce or eliminate the thermal residual stress field and, therefore, the initiation and propagation of cracks developed during thermal loading. Furthermore, the impact of the engineered interface on the composite's mechanical response when subjected to isothermal mechanical load histories is examined.

  16. Pharmaceutical Particle Engineering via Spray Drying

    PubMed Central

    2007-01-01

    This review covers recent developments in the area of particle engineering via spray drying. The last decade has seen a shift from empirical formulation efforts to an engineering approach based on a better understanding of particle formation in the spray drying process. Microparticles with nanoscale substructures can now be designed and their functionality has contributed significantly to stability and efficacy of the particulate dosage form. The review provides concepts and a theoretical framework for particle design calculations. It reviews experimental research into parameters that influence particle formation. A classification based on dimensionless numbers is presented that can be used to estimate how excipient properties in combination with process parameters influence the morphology of the engineered particles. A wide range of pharmaceutical application examples—low density particles, composite particles, microencapsulation, and glass stabilization—is discussed, with specific emphasis on the underlying particle formation mechanisms and design concepts. PMID:18040761

  17. PREFACE: 1st International Conference on Mechanical Engineering Research 2011 (ICMER2011)

    NASA Astrophysics Data System (ADS)

    Abu Bakar, Rosli

    2012-09-01

    The year 2010 represented a significant milestone in the history of the Mechanical Engineering community with the organization of the first and second national level conferences (National Conference in Mechanical Engineering for Research, 1st and 2nd NCMER) at Universiti Malaysia Pahang on 26-27 May and 3-4 December 2010. The conferences attracted a large number of delegates from different premier academic and research institutions in the country to participate and share their research experiences at the conference. The International Conference on Mechanical Engineering Research (ICMER 2011) followed on from the first and second conferences due to good support from researchers. The ICMER 2011 is a good platform for researchers and postgraduate students to present their latest finding in research. The conference covers a wide range of topics including the internal combustion engine, machining processes, heat and mass transfer, fuel, biomechanical analysis, aerodynamic analysis, thermal comfort, computational techniques, design and simulation, automotive transmission, optimization techniques, hybrid electric vehicles, engine vibration, heat exchangers, finite element analysis, computational fluid dynamics, green energy, vehicle dynamics renewable energy, combustion, design, product development, advanced experimentation techniques, to name but a few. The international conference has helped to bridge the gap between researchers working at different institutions and in different countries to share their knowledge and has helped to motivate young scientists with their research. This has also given some clear direction for further research from the deliberations of the conference. Several people have contributed in different ways to the success of the conference. We thank the keynote speakers and all authors of the contributed papers, for the cooperation rendered to us in the publication of the CD conference proceedings. In particular, we would like to place on record our thanks to the expert reviewers who have spared their time reviewing the papers. We also highly appreciate the assistance offered by many volunteers in the preparation of the conference proceedings. All papers in ICMER 2011 have the opportunity to be published in IOP Conference Series: Materials Science and Engineering, (indexed by Scopus, Ei Compendex, Inspec), International Journal of Automotive and Mechanical Engineering (IJAME) and Journal of Mechanical Engineering and Sciences (JMES). Professor Dr Hj Rosli Abu Bakar Chairman ICMER 2011

  18. A multi-scale controlled tissue engineering scaffold prepared by 3D printing and NFES technology

    NASA Astrophysics Data System (ADS)

    Yan, Feifei; Liu, Yuanyuan; Chen, Haiping; Zhang, Fuhua; Zheng, Lulu; Hu, Qingxi

    2014-03-01

    The current focus in the field of life science is the use of tissue engineering scaffolds to repair human organs, which has shown great potential in clinical applications. Extracellular matrix morphology and the performance and internal structure of natural organs are required to meet certain requirements. Therefore, integrating multiple processes can effectively overcome the limitations of the individual processes and can take into account the needs of scaffolds for the material, structure, mechanical properties and many other aspects. This study combined the biological 3D printing technology and the near-field electro-spinning (NFES) process to prepare a multi-scale controlled tissue engineering scaffold. While using 3D printing technology to directly prepare the macro-scaffold, the compositing NFES process to build tissue micro-morphology ultimately formed a tissue engineering scaffold which has the specific extracellular matrix structure. This scaffold not only takes into account the material, structure, performance and many other requirements, but also focuses on resolving the controllability problems in macro- and micro-forming which further aim to induce cell directed differentiation, reproduction and, ultimately, the formation of target tissue organs. It has in-depth immeasurable significance to build ideal scaffolds and further promote the application of tissue engineering.

  19. 46 CFR 12.15-13 - Deck engine mechanic.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Deck engine mechanic. 12.15-13 Section 12.15-13 Shipping... ENDORSEMENTS Qualified Member of the Engine Department § 12.15-13 Deck engine mechanic. (a) An applicant for an endorsement as deck engine mechanic shall be a person holding an MMC or MMD endorsed as junior engineer. The...

  20. 46 CFR 12.15-13 - Deck engine mechanic.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Deck engine mechanic. 12.15-13 Section 12.15-13 Shipping... ENDORSEMENTS Qualified Member of the Engine Department § 12.15-13 Deck engine mechanic. (a) An applicant for an endorsement as deck engine mechanic shall be a person holding an MMC or MMD endorsed as junior engineer. The...

  1. 46 CFR 12.15-13 - Deck engine mechanic.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Deck engine mechanic. 12.15-13 Section 12.15-13 Shipping... ENDORSEMENTS Qualified Member of the Engine Department § 12.15-13 Deck engine mechanic. (a) An applicant for an endorsement as deck engine mechanic shall be a person holding an MMC or MMD endorsed as junior engineer. The...

  2. 46 CFR 12.15-13 - Deck engine mechanic.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Deck engine mechanic. 12.15-13 Section 12.15-13 Shipping... ENDORSEMENTS Qualified Member of the Engine Department § 12.15-13 Deck engine mechanic. (a) An applicant for an endorsement as deck engine mechanic shall be a person holding an MMC or MMD endorsed as junior engineer. The...

  3. An Investigation of the "e-rater"® Automated Scoring Engine's Grammar, Usage, Mechanics, and Style Microfeatures and Their Aggregation Model. Research Report. ETS RR-17-04

    ERIC Educational Resources Information Center

    Chen, Jing; Zhang, Mo; Bejar, Isaac I.

    2017-01-01

    Automated essay scoring (AES) generally computes essay scores as a function of macrofeatures derived from a set of microfeatures extracted from the text using natural language processing (NLP). In the "e-rater"® automated scoring engine, developed at "Educational Testing Service" (ETS) for the automated scoring of essays, each…

  4. The use of a novel bone allograft wash process to generate a biocompatible, mechanically stable and osteoinductive biological scaffold for use in bone tissue engineering.

    PubMed

    Smith, C A; Richardson, S M; Eagle, M J; Rooney, P; Board, T; Hoyland, J A

    2015-05-01

    Fresh-frozen biological allograft remains the most effective substitute for the 'gold standard' autograft, sharing many of its osteogenic properties but, conversely, lacking viable osteogenic cells. Tissue engineering offers the opportunity to improve the osseointegration of this material through the addition of mesenchymal stem cells (MSCs). However, the presence of dead, immunogenic and potentially harmful bone marrow could hinder cell adhesion and differentiation, graft augmentation and incorporation, and wash procedures are therefore being utilized to remove the marrow, thereby improving the material's safety. To this end, we assessed the efficiency of a novel wash technique to produce a biocompatible, biological scaffold void of cellular material that was mechanically stable and had osteoinductive potential. The outcomes of our investigations demonstrated the efficient removal of marrow components (~99.6%), resulting in a biocompatible material with conserved biomechanical stability. Additionally, the scaffold was able to induce osteogenic differentiation of MSCs, with increases in osteogenic gene expression observed following extended culture. This study demonstrates the efficiency of the novel wash process and the potential of the resultant biological material to serve as a scaffold in bone allograft tissue engineering. © 2014 The Authors. Journal of Tissue Engineering and Regenerative Medicine published by John Wiley & Sons Ltd.

  5. Optimal Power and Efficiency of Quantum Thermoacoustic Micro-cycle Working in 1D Harmonic Trap

    NASA Astrophysics Data System (ADS)

    E, Qing; Wu, Feng; Yin, Yong; Liu, XiaoWei

    2017-10-01

    Thermoacoustic engines (including heat engines and refrigerators) are energy conversion devices without moving part. They have great potential in aviation, new energy utilization, power technology, refrigerating and cryogenics. The thermoacoustic parcels, which compose the working fluid of a thermoacoustic engine, oscillate within the sound channel with a temperature gradient. The thermodynamic foundation of a thermoacoustic engine is the thermoacoustic micro-cycle (TAMC). In this paper, the theory of quantum mechanics is applied to the study of the actual thermoacoustic micro-cycle for the first time. A quantum mechanics model of the TAMC working in a 1D harmonic trap, which is named as a quantum thermoacoustic micro-cycle (QTAMC), is established. The QTAMC is composed of two constant force processes connected by two straight line processes. Analytic expressions of the power output and the efficiency for QTAMC have been derived. The effects of the trap width and the temperature amplitude on the power output and the thermal efficiency have been discussed. Some optimal characteristic curves of power output versus efficiency are plotted, and then the optimization region of QTAMC is given in this paper. The results obtained here not only enrich the thermoacoustic theory but also expand the application of quantum thermodynamics.

  6. Thrust Area Report, Engineering Research, Development and Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langland, R. T.

    1997-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Programmore » has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.« less

  7. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Advanced Turbine Technologies Application Project (ATTAP) is in the fifth year of a multiyear development program to bring the automotive gas turbine engine to a state at which industry can make commercialization decisions. Activities during the past year included reference powertrain design updates, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Engine design and development included mechanical design, combustion system development, alternate aerodynamic flow testing, and controls development. Design activities included development of the ceramic gasifier turbine static structure, the ceramic gasifier rotor, and the ceramic power turbine rotor. Material characterization efforts included the testing and evaluation of five candidate high temperature ceramic materials. Ceramic component process development and fabrication, with the objective of approaching automotive volumes and costs, continued for the gasifier turbine rotor, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Engine and rig fabrication, testing, and development supported improvements in ceramic component technology. Total test time in 1992 amounted to 599 hours, of which 147 hours were engine testing and 452 were hot rig testing.

  8. Present State of the Art of Composite Fabric Forming: Geometrical and Mechanical Approaches

    PubMed Central

    Cherouat, Abel; Borouchaki, Houman

    2009-01-01

    Continuous fibre reinforced composites are now firmly established engineering materials for the manufacture of components in the automotive and aerospace industries. In this respect, composite fabrics provide flexibility in the design manufacture. The ability to define the ply shapes and material orientation has allowed engineers to optimize the composite properties of the parts. The formulation of new numerical models for the simulation of the composite forming processes must allow for reduction in the delay in manufacturing and an optimization of costs in an integrated design approach. We propose two approaches to simulate the deformation of woven fabrics: geometrical and mechanical approaches.

  9. Material recognition based on thermal cues: Mechanisms and applications.

    PubMed

    Ho, Hsin-Ni

    2018-01-01

    Some materials feel colder to the touch than others, and we can use this difference in perceived coldness for material recognition. This review focuses on the mechanisms underlying material recognition based on thermal cues. It provides an overview of the physical, perceptual, and cognitive processes involved in material recognition. It also describes engineering domains in which material recognition based on thermal cues have been applied. This includes haptic interfaces that seek to reproduce the sensations associated with contact in virtual environments and tactile sensors aim for automatic material recognition. The review concludes by considering the contributions of this line of research in both science and engineering.

  10. Material recognition based on thermal cues: Mechanisms and applications

    PubMed Central

    Ho, Hsin-Ni

    2018-01-01

    ABSTRACT Some materials feel colder to the touch than others, and we can use this difference in perceived coldness for material recognition. This review focuses on the mechanisms underlying material recognition based on thermal cues. It provides an overview of the physical, perceptual, and cognitive processes involved in material recognition. It also describes engineering domains in which material recognition based on thermal cues have been applied. This includes haptic interfaces that seek to reproduce the sensations associated with contact in virtual environments and tactile sensors aim for automatic material recognition. The review concludes by considering the contributions of this line of research in both science and engineering. PMID:29687043

  11. CSM research: Methods and application studies

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.

    1989-01-01

    Computational mechanics is that discipline of applied science and engineering devoted to the study of physical phenomena by means of computational methods based on mathematical modeling and simulation, utilizing digital computers. The discipline combines theoretical and applied mechanics, approximation theory, numerical analysis, and computer science. Computational mechanics has had a major impact on engineering analysis and design. When applied to structural mechanics, the discipline is referred to herein as computational structural mechanics. Complex structures being considered by NASA for the 1990's include composite primary aircraft structures and the space station. These structures will be much more difficult to analyze than today's structures and necessitate a major upgrade in computerized structural analysis technology. NASA has initiated a research activity in structural analysis called Computational Structural Mechanics (CSM). The broad objective of the CSM activity is to develop advanced structural analysis technology that will exploit modern and emerging computers, such as those with vector and/or parallel processing capabilities. Here, the current research directions for the Methods and Application Studies Team of the Langley CSM activity are described.

  12. Aerospace engineering educational program

    NASA Technical Reports Server (NTRS)

    Craft, William; Klett, David; Lai, Steven

    1992-01-01

    The principle goal of the educational component of NASA CORE is the creation of aerospace engineering options in the mechanical engineering program at both the undergraduate and graduate levels. To accomplish this goal, a concerted effort during the past year has resulted in detailed plans for the initiation of aerospace options in both the BSME and MSME programs in the fall of 1993. All proposed new courses and the BSME aerospace option curriculum must undergo a lengthy approval process involving two cirriculum oversight committees (School of Engineering and University level) and three levels of general faculty approval. Assuming approval is obtained from all levels, the options will officially take effect in Fall '93. In anticipation of this, certain courses in the proposed curriculum are being offered during the current academic year under special topics headings so that current junior level students may graduate in May '94 under the BSME aerospace option. The proposed undergraduate aerospace option curriculum (along with the regular mechanical engineering curriculum for reference) is attached at the end of this report, and course outlines for the new courses are included in the appendix.

  13. Myocardial Tissue Engineering for Regenerative Applications.

    PubMed

    Fujita, Buntaro; Zimmermann, Wolfram-Hubertus

    2017-09-01

    This review provides an overview of the current state of tissue-engineered heart repair with a special focus on the anticipated modes of action of tissue-engineered therapy candidates and particular implications as to transplant immunology. Myocardial tissue engineering technologies have made tremendous advances in recent years. Numerous different strategies are under investigation and have reached different stages on their way to clinical translation. Studies in animal models demonstrated that heart repair requires either remuscularization by delivery of bona fide cardiomyocytes or paracrine support for the activation of endogenous repair mechanisms. Tissue engineering approaches result in enhanced cardiomyocyte retention and sustained remuscularization, but may also be explored for targeted paracrine or mechanical support. Some of the more advanced tissue engineering approaches are already tested clinically; others are at late stages of pre-clinical development. Process optimization towards cGMP compatibility and clinical scalability of contractile engineered human myocardium is an essential step towards clinical translation. Long-term allograft retention can be achieved under immune suppression. HLA matching may be an option to enhance graft retention and reduce the need for comprehensive immune suppression. Tissue-engineered heart repair is entering the clinical stage of the translational pipeline. Like in any effective therapy, side effects must be anticipated and carefully controlled. Allograft implantation under immune suppression is the most likely clinical scenario. Strategies to overcome transplant rejection are evolving and may further boost the clinical acceptance of tissue-engineered heart repair.

  14. Wind Energy Workforce Development: Engineering, Science, & Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesieutre, George A.; Stewart, Susan W.; Bridgen, Marc

    2013-03-29

    Broadly, this project involved the development and delivery of a new curriculum in wind energy engineering at the Pennsylvania State University; this includes enhancement of the Renewable Energy program at the Pennsylvania College of Technology. The new curricula at Penn State includes addition of wind energy-focused material in more than five existing courses in aerospace engineering, mechanical engineering, engineering science and mechanics and energy engineering, as well as three new online graduate courses. The online graduate courses represent a stand-alone Graduate Certificate in Wind Energy, and provide the core of a Wind Energy Option in an online intercollege professional Mastersmore » degree in Renewable Energy and Sustainability Systems. The Pennsylvania College of Technology erected a 10 kilowatt Xzeres wind turbine that is dedicated to educating the renewable energy workforce. The entire construction process was incorporated into the Renewable Energy A.A.S. degree program, the Building Science and Sustainable Design B.S. program, and other construction-related coursework throughout the School of Construction and Design Technologies. Follow-on outcomes include additional non-credit opportunities as well as secondary school career readiness events, community outreach activities, and public awareness postings.« less

  15. 46 CFR 113.35-9 - Mechanical engine order telegraph systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Mechanical engine order telegraph systems. 113.35-9... COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-9 Mechanical engine order telegraph systems. (a) Each mechanical engine order telegraph system must consist of transmitters and...

  16. Opportunities in Mechnical Engineering. [VGM Career Horizons Series].

    ERIC Educational Resources Information Center

    Konzo, Seichi; Bayne, James W.

    This book presents information on career opportunities in mechanical engineering. Chapter 1 describes the historical development of mechanical engineering and its interactions with society, considers the growth of the American Society of Mechanical Engineers, and discusses the relevance of mechanical engineering to present-day and future society.…

  17. Reverse engineering the mechanical and molecular pathways in stem cell morphogenesis.

    PubMed

    Lu, Kai; Gordon, Richard; Cao, Tong

    2015-03-01

    The formation of relevant biological structures poses a challenge for regenerative medicine. During embryogenesis, embryonic cells differentiate into somatic tissues and undergo morphogenesis to produce three-dimensional organs. Using stem cells, we can recapitulate this process and create biological constructs for therapeutic transplantation. However, imperfect imitation of nature sometimes results in in vitro artifacts that fail to recapitulate the function of native organs. It has been hypothesized that developing cells may self-organize into tissue-specific structures given a correct in vitro environment. This proposition is supported by the generation of neo-organoids from stem cells. We suggest that morphogenesis may be reverse engineered to uncover its interacting mechanical pathway and molecular circuitry. By harnessing the latent architecture of stem cells, novel tissue-engineering strategies may be conceptualized for generating self-organizing transplants. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Gorelick, Noel

    2013-04-01

    The Google Earth Engine platform is a system designed to enable petabyte-scale, scientific analysis and visualization of geospatial datasets. Earth Engine provides a consolidated environment including a massive data catalog co-located with thousands of computers for analysis. The user-friendly front-end provides a workbench environment to allow interactive data and algorithm development and exploration and provides a convenient mechanism for scientists to share data, visualizations and analytic algorithms via URLs. The Earth Engine data catalog contains a wide variety of popular, curated datasets, including the world's largest online collection of Landsat scenes (> 2.0M), numerous MODIS collections, and many vector-based data sets. The platform provides a uniform access mechanism to a variety of data types, independent of their bands, projection, bit-depth, resolution, etc..., facilitating easy multi-sensor analysis. Additionally, a user is able to add and curate their own data and collections. Using a just-in-time, distributed computation model, Earth Engine can rapidly process enormous quantities of geo-spatial data. All computation is performed lazily; nothing is computed until it's required either for output or as input to another step. This model allows real-time feedback and preview during algorithm development, supporting a rapid algorithm development, test, and improvement cycle that scales seamlessly to large-scale production data processing. Through integration with a variety of other services, Earth Engine is able to bring to bear considerable analytic and technical firepower in a transparent fashion, including: AI-based classification via integration with Google's machine learning infrastructure, publishing and distribution at Google scale through integration with the Google Maps API, Maps Engine and Google Earth, and support for in-the-field activities such as validation, ground-truthing, crowd-sourcing and citizen science though the Android Open Data Kit.

  19. Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Gorelick, N.

    2012-12-01

    The Google Earth Engine platform is a system designed to enable petabyte-scale, scientific analysis and visualization of geospatial datasets. Earth Engine provides a consolidated environment including a massive data catalog co-located with thousands of computers for analysis. The user-friendly front-end provides a workbench environment to allow interactive data and algorithm development and exploration and provides a convenient mechanism for scientists to share data, visualizations and analytic algorithms via URLs. The Earth Engine data catalog contains a wide variety of popular, curated datasets, including the world's largest online collection of Landsat scenes (> 2.0M), numerous MODIS collections, and many vector-based data sets. The platform provides a uniform access mechanism to a variety of data types, independent of their bands, projection, bit-depth, resolution, etc..., facilitating easy multi-sensor analysis. Additionally, a user is able to add and curate their own data and collections. Using a just-in-time, distributed computation model, Earth Engine can rapidly process enormous quantities of geo-spatial data. All computation is performed lazily; nothing is computed until it's required either for output or as input to another step. This model allows real-time feedback and preview during algorithm development, supporting a rapid algorithm development, test, and improvement cycle that scales seamlessly to large-scale production data processing. Through integration with a variety of other services, Earth Engine is able to bring to bear considerable analytic and technical firepower in a transparent fashion, including: AI-based classification via integration with Google's machine learning infrastructure, publishing and distribution at Google scale through integration with the Google Maps API, Maps Engine and Google Earth, and support for in-the-field activities such as validation, ground-truthing, crowd-sourcing and citizen science though the Android Open Data Kit.

  20. Institutional profile: the London Centre for Nanotechnology.

    PubMed

    Weston, David; Bontoux, Thierry

    2009-12-01

    Located in the London neighborhoods of Bloomsbury and South Kensington, the London Centre for Nanotechnology is a UK-based multidisciplinary research center that operates at the forefront of science and technology. It is a joint venture between two of the world's leading institutions, UCL and Imperial College London, uniting their strong capabilities in the disciplines that underpin nanotechnology: engineering, the physical sciences and biomedicine. The London Centre for Nanotechnology has a unique operating model that accesses and focuses the combined skills of the Departments of Chemistry, Physics, Materials, Medicine, Electrical and Electronic Engineering, Mechanical Engineering, Chemical Engineering, Biochemical Engineering and Earth Sciences across the two universities. It aims to provide the nanoscience and nanotechnology required to solve major problems in healthcare, information processing, energy and the environment.

  1. Summer Work Experience: Determining Methane Combustion Mechanisms and Sub-Scale Diffuser Properties for Space Transporation System Engine Testing

    NASA Technical Reports Server (NTRS)

    Williams, Powtawche N.

    1998-01-01

    To assess engine performance during the testing of Space Shuttle Main Engines (SSMEs), the design of an optimal altitude diffuser is studied for future Space Transportation Systems (STS). For other Space Transportation Systems, rocket propellant using kerosene is also studied. Methane and dodecane have similar reaction schemes as kerosene, and are used to simulate kerosene combustion processes at various temperatures. The equations for the methane combustion mechanism at high temperature are given, and engine combustion is simulated on the General Aerodynamic Simulation Program (GASP). The successful design of an altitude diffuser depends on the study of a sub-scaled diffuser model tested through two-dimensional (2-D) flow-techniques. Subroutines given calculate the static temperature and pressure at each Mach number within the diffuser flow. Implementing these subroutines into program code for the properties of 2-D compressible fluid flow determines all fluid characteristics, and will be used in the development of an optimal diffuser design.

  2. Delamination Mechanisms of Thermal and Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Lee, Kang N.; Miller, Robert A.

    2003-01-01

    Advanced ceramic thermal harrier coatings will play an increasingly important role In future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating durability issue remains a major concern with the ever-increasing temperature requirements. In this paper, thermal cyclic response and delamination failure modes of a ZrO2-8wt%Y2O3 and mullite/BSAS thermaVenvironmenta1 barrier coating system on SiC/SiC ceramic matrix composites were investigated using a laser high-heat-flux technique. The coating degradation and delamination processes were monitored in real time by measuring coating apparent conductivity changes during the cyclic tests under realistic engine temperature and stress gradients, utilizing the fact that delamination cracking causes an apparent decrease in the measured thermal conductivity. The ceramic coating crack initiation and propagation driving forces under the cyclic thermal loads, in conjunction with the mechanical testing results, will be discussed.

  3. Delamination Mechanisms of Thermal and Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Lee, Kang N.; Miller, Robert A.

    1990-01-01

    Advanced ceramic thermal barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating durability issue remains a major concern with the ever-increasing temperature requirements. In this paper, thermal cyclic response and delamination failure modes of a ZrO2-8wt%Y2O3 and mullite/BSAS thermal/environmental barrier coating system on SiC/SiC ceramic matrix composites were investigated using a laser high-heat-flux technique. The coating degradation and delamination processes were monitored in real time by measuring coating apparent conductivity changes during the cyclic tests under realistic engine temperature and stress gradients, utilizing the fact that delamination cracking causes an apparent decrease in the measured thermal conductivity. The ceramic coating crack initiation and propagation driving forces under the cyclic thermal loads, in conjunction with the mechanical testing results, will be discussed.

  4. Durability and CMAS Resistance of Advanced Environmental Barrier Coatings Systems for SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2015-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. This paper will emphasize advanced environmental barrier coating developments for SiCSiC turbine airfoil components, by using advanced coating compositions and processing, in conjunction with mechanical and environment testing and durability validations. The coating-CMC degradations and durability in the laboratory simulated engine fatigue-creep and complex operating environments are being addressed. The effects of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the degradation mechanisms of the environmental barrier coating systems will be discussed. The results help understand the advanced EBC-CMC system performance, aiming at the durability improvements of more robust, prime-reliant environmental barrier coatings for successful applications of the component technologies and lifing methodologies.

  5. 46 CFR 113.35-15 - Mechanical engine order telegraph systems; application.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Mechanical engine order telegraph systems; application...-15 Mechanical engine order telegraph systems; application. If a mechanical engine order telegraph... cables or other mechanical limitations must not prevent the efficient operation of the system. ...

  6. Correction of engineering servicing regularity of transporttechnological machines in operational process

    NASA Astrophysics Data System (ADS)

    Makarova, A. N.; Makarov, E. I.; Zakharov, N. S.

    2018-03-01

    In the article, the issue of correcting engineering servicing regularity on the basis of actual dependability data of cars in operation is considered. The purpose of the conducted research is to increase dependability of transport-technological machines by correcting engineering servicing regularity. The subject of the research is the mechanism of engineering servicing regularity influence on reliability measure. On the basis of the analysis of researches carried out before, a method of nonparametric estimation of car failure measure according to actual time-to-failure data was chosen. A possibility of describing the failure measure dependence on engineering servicing regularity by various mathematical models is considered. It is proven that the exponential model is the most appropriate for that purpose. The obtained results can be used as a separate method of engineering servicing regularity correction with certain operational conditions taken into account, as well as for the technical-economical and economical-stochastic methods improvement. Thus, on the basis of the conducted researches, a method of engineering servicing regularity correction of transport-technological machines in the operational process was developed. The use of that method will allow decreasing the number of failures.

  7. Mechanistic failure mode investigation and resolution of parvovirus retentive filters.

    PubMed

    LaCasse, Daniel; Lute, Scott; Fiadeiro, Marcus; Basha, Jonida; Stork, Matthew; Brorson, Kurt; Godavarti, Ranga; Gallo, Chris

    2016-07-08

    Virus retentive filters are a key product safety measure for biopharmaceuticals. A simplistic perception is that they function solely based on a size-based particle removal mechanism of mechanical sieving and retention of particles based on their hydrodynamic size. Recent observations have revealed a more nuanced picture, indicating that changes in viral particle retention can result from process pressure and/or flow interruptions. In this study, a mechanistic investigation was performed to help identify a potential mechanism leading to the reported reduced particle retention in small virus filters. Permeate flow rate or permeate driving force were varied and analyzed for their impact on particle retention in three commercially available small virus retentive filters. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:959-970, 2016. © 2016 American Institute of Chemical Engineers.

  8. Fourier heat conduction as a phenomenon described within the scope of the second law

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jesudason, Christopher G.

    The historical development of the Carnot cycle necessitated the construction of isothermal and adiabatic pathways within the cycle that were also mechanically 'reversible' which lead eventually to the Kelvin-Clausius development of the entropy function S where for any reversible closed path C, ∮{sub C} dS = 0 based on an infinite number of concatenated Carnot engines that approximated the said path and where for each engine ΔQ{sub 1}/T{sub 1}+ΔQ{sub 2}/T{sub 2} = 0 where the Q's and T's are the heat absorption increments and temperature respectively with the subscripts indicating the isothermal paths (1;2) where for the Carnot engine, the heat absorptionmore » is for the diathermal (isothermal) paths of the cycle only. Since 'heat' has been defined as that form of energy that is transferred as a result of a temperature difference and a corollary of the Clausius statement of the Second law is that it is impossible for heat to be transferred from a cold to a hot reservoir with no other effect on the environment, these statements suggested that the local mode of transfer of 'heat' in the isothermal segments of the pathway does imply a Fourier heat conduction mechanism (to conform to the definition of 'heat') albeit of a 'reversible' kind, but on the other hand, the Fourier mechanism is apparently irreversible, leading to an increase in entropy of the combined reservoirs at either end of the material involved in the conveyance of the heat energy. These and several other considerations lead Benofy and Quay (BQ) to postulate the Fourier heat conduction phenomenon to be an ancillary principle in thermodynamics, with this principle being strictly local in nature, where the global Second law statements could not be applied to this local process. Here we present equations that model heat conduction as a thermodynamically reversible but mechanically irreversible process where due to the belief in mechanical time reversible symmetry, thermodynamical reversibility has been unfortunately linked to mechanical reversibility, that has discouraged such an association. The modeling is based on an application of a 'recoverable transition', defined and developed earlier on ideas derived from thermal desorption of particles from a surface where the Fourier heat conduction process is approximated as a series of such desorption processes. We recall that the original Carnot engine required both adiabatic and isothermal steps to complete the zero entropy cycle, and this construct lead to the consequent deduction that any Second law statement that refers to heat-work conversion processes are only globally relevant. Here, on the other hand, we examine Fourier heat conduction from MD simulation and model this process as a zero-entropy forward scattering process relative to each of the atoms in the lattice chain being treated as a system where the Carnot cycle can be applied individually. The equations developed predicts the 'work' done to be equal to the energy transfer rate. The MD simulations conducted shows excellent agreement with the theory. Such views and results as these, if developed to a successful conclusion could imply that the Carnot cycle be viewed as describing a local process of energy-work conversion and that irreversible local processes might be brought within the scope of this cycle, implying a unified treatment of thermodynamically (i) irreversible, (ii) reversible, (iii) isothermal and (iv) adiabatic processes.« less

  9. Combination of biochemical and mechanical cues for tendon tissue engineering.

    PubMed

    Testa, Stefano; Costantini, Marco; Fornetti, Ersilia; Bernardini, Sergio; Trombetta, Marcella; Seliktar, Dror; Cannata, Stefano; Rainer, Alberto; Gargioli, Cesare

    2017-11-01

    Tendinopathies negatively affect the life quality of millions of people in occupational and athletic settings, as well as the general population. Tendon healing is a slow process, often with insufficient results to restore complete endurance and functionality of the tissue. Tissue engineering, using tendon progenitors, artificial matrices and bioreactors for mechanical stimulation, could be an important approach for treating rips, fraying and tissue rupture. In our work, C3H10T1/2 murine fibroblast cell line was exposed to a combination of stimuli: a biochemical stimulus provided by Transforming Growth Factor Beta (TGF-β) and Ascorbic Acid (AA); a three-dimensional environment represented by PEGylated-Fibrinogen (PEG-Fibrinogen) biomimetic matrix; and a mechanical induction exploiting a custom bioreactor applying uniaxial stretching. In vitro analyses by immunofluorescence and mechanical testing revealed that the proposed combined approach favours the organization of a three-dimensional tissue-like structure promoting a remarkable arrangement of the cells and the neo-extracellular matrix, reflecting into enhanced mechanical strength. The proposed method represents a novel approach for tendon tissue engineering, demonstrating how the combined effect of biochemical and mechanical stimuli ameliorates biological and mechanical properties of the artificial tissue compared to those obtained with single inducement. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  10. A Summary of the Naval Postgraduate School Research Program.

    DTIC Science & Technology

    1984-06-01

    Administrative Sciences, Operations Research, National Security Affairs, Physics, Electrical Engineering , Meterology, Aeronautics, Oceanography and Mechanical ...Oceans and Major Seas -------------------------------- 290 DEPARTMENT OF MECHANICAL ENGINEERING 291 Mechanical Engineering Department Summary 293...in Buried Pipes Using Sulphur Hexaflouride as a Tracer Gas," American Society of Mechanical Engineers , The Journal of Engineering for Power

  11. Multifunctional centrifugal grinding unit

    NASA Astrophysics Data System (ADS)

    Sevostyanov, V. S.; Uralskij, V. I.; Uralskij, A. V.; Sinitsa, E. V.

    2018-03-01

    The article presents scientific and engineering developments of multifunctional centrifugal grinding unit in which the selective effect of grinding bodies on the crushing material is realized, depending on its physical and mechanical characteristics and various schemes for organizing the technological process

  12. Finite-size effect on optimal efficiency of heat engines.

    PubMed

    Tajima, Hiroyasu; Hayashi, Masahito

    2017-07-01

    The optimal efficiency of quantum (or classical) heat engines whose heat baths are n-particle systems is given by the strong large deviation. We give the optimal work extraction process as a concrete energy-preserving unitary time evolution among the heat baths and the work storage. We show that our optimal work extraction turns the disordered energy of the heat baths to the ordered energy of the work storage, by evaluating the ratio of the entropy difference to the energy difference in the heat baths and the work storage, respectively. By comparing the statistical mechanical optimal efficiency with the macroscopic thermodynamic bound, we evaluate the accuracy of the macroscopic thermodynamics with finite-size heat baths from the statistical mechanical viewpoint. We also evaluate the quantum coherence effect on the optimal efficiency of the cycle processes without restricting their cycle time by comparing the classical and quantum optimal efficiencies.

  13. A study of process parameters on workpiece anisotropy in the laser engineered net shaping (LENSTM) process

    NASA Astrophysics Data System (ADS)

    Chandra, Shubham; Rao, Balkrishna C.

    2017-06-01

    The process of laser engineered net shaping (LENSTM) is an additive manufacturing technique that employs the coaxial flow of metallic powders with a high-power laser to form a melt pool and the subsequent deposition of the specimen on a substrate. Although research done over the past decade on the LENSTM processing of alloys of steel, titanium, nickel and other metallic materials typically reports superior mechanical properties in as-deposited specimens, when compared to the bulk material, there is anisotropy in the mechanical properties of the melt deposit. The current study involves the development of a numerical model of the LENSTM process, using the principles of computational fluid dynamics (CFD), and the subsequent prediction of the volume fraction of equiaxed grains to predict process parameters required for the deposition of workpieces with isotropy in their properties. The numerical simulation is carried out on ANSYS-Fluent, whose data on thermal gradient are used to determine the volume fraction of the equiaxed grains present in the deposited specimen. This study has been validated against earlier efforts on the experimental studies of LENSTM for alloys of nickel. Besides being applicable to the wider family of metals and alloys, the results of this study will also facilitate effective process design to improve both product quality and productivity.

  14. Research and engineering assessment of biological solubilization of phosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, R.D.; McIlwain, M.E.; Losinski, S.J.

    This research and engineering assessment examined a microbial phosphate solubilization process as a method of recovering phosphate from phosphorus containing ore compared to the existing wet acid and electric arc methods. A total of 860 microbial isolates, collected from a range of natural environments were tested for their ability to solubilize phosphate from rock phosphate. A bacterium (Pseudomonas cepacia) was selected for extensive characterization and evaluation of the mechanism of phosphate solubilization and of process engineering parameters necessary to recover phosphate from rock phosphate. These studies found that concentration of hydrogen ion and production of organic acids arising from oxidationmore » of the carbon source facilitated microbial solubilization of both pure chemical insoluble phosphate compounds and phosphate rock. Genetic studies found that phosphate solubilization was linked to an enzyme system (glucose dehydrogenase). Process-related studies found that a critical solids density of 1% by weight (ore to liquid) was necessary for optimal solubilization. An engineering analysis evaluated the cost and energy requirements for a 2 million ton per year sized plant, whose size was selected to be comparable to existing wet acid plants.« less

  15. Study on energy consumption evaluation of mountainous highway based on LCA

    NASA Astrophysics Data System (ADS)

    Fei, Lunlin; Zhang, Qi; Xie, Yongqing

    2017-06-01

    For the system to understand the road construction energy consumption process, this paper selects a typical mountainous highway in the south, using the theory and method of Life Cycle Assessment (LCA) to quantitatively study the energy consumption of the whole process of highway raw materials production, construction and operation. The results show that the energy consumption in the raw material production stage is the highest, followed by the highway operation and construction stage. The energy consumption per unit of tunnel engineering, bridge engineering, roadbed engineering and pavement engineering in the construction phase are 2279.00 tce, 1718.07 tce, 542.19 tce and 34.02 tce, and in operational phase, 85.44% of electricity consumption comes from tunnel ventilation and lighting. Therefore, in the bridge and tunnel construction process, we should promote energy-saving innovation of the construction technology and mechanical equipment, and further strengthen the research and development of tunnel ventilation, lighting energy-saving equipment and intelligent control technology, which will help significantly reduce the energy consumption and greenhouse gas emissions of the life cycle of highway.

  16. Application of the Billet Casting Method to Determine the Onset of Incipient Melting of 319 Al Alloy Engine Blocks

    NASA Astrophysics Data System (ADS)

    Lombardi, A.; Ravindran, C.; MacKay, R.

    2015-06-01

    The increased use of Al for automotive applications has resulted from the need to improve vehicle fuel efficiency. Aluminum alloy engine blocks fulfil the need of lightweighting. However, there are many challenges associated with thermo-mechanical mismatch between Al and the gray cast iron cylinder liners, which result in large tensile residual stress along the cylinder bores. This requires improced mechanical properties in this region to prevent premature engine failure. In this study, replicating billet castings were used to simulate the engine block solution heat treatment process and determine the onset of incipient melting. Microstructural changes during heat treatment were assessed with SEM and EDX, while thermal analysis was carried out using differential scanning calorimetry. The results suggest that solution heat treatment at 500 °C was effective in dissolving secondary phase particles, while solutionizing at 515 or 530 °C caused incipient melting of Al2Cu and Al5Mg8Cu2Si6. Incipient melting caused the formation ultra-fine eutectic clusters consisting of Al, Al2Cu, and Al5Mg8Cu2Si6 on quenching. In addition, DSC analysis found that incipient melting initiated at 507 °C for all billets, although the quantity of local melting reduced with microstructural refinement as evidenced by smaller endothermic peaks and energy absorption. The results from this study will assist in improving engine block casting integrity and process efficiency.

  17. Use of a protein engineering strategy to overcome limitations in the production of "Difficult to Express" recombinant proteins.

    PubMed

    Hussain, Hirra; Fisher, David I; Abbott, W Mark; Roth, Robert G; Dickson, Alan J

    2017-10-01

    Certain recombinant proteins are deemed "difficult to express" in mammalian expression systems requiring significant cell and/or process engineering to abrogate expression bottlenecks. With increasing demand for the production of recombinant proteins in mammalian cells, low protein yields can have significant consequences for industrial processes. To investigate the molecular mechanisms that restrict expression of recombinant proteins, naturally secreted model proteins were analyzed from the tissue inhibitors of metalloproteinase (TIMP) protein family. In particular, TIMP-2 and TIMP-3 were subjected to detailed study. TIMP proteins share significant sequence homology (∼50% identity and ∼70% similarity in amino acid sequence). However, they show marked differences in secretion in mammalian expression systems despite this extensive sequence homology. Using these two proteins as models, this study characterized the molecular mechanisms responsible for poor recombinant protein production. Our results reveal that both TIMP-2 and TIMP-3 are detectable at mRNA and protein level within the cell but only TIMP-2 is secreted effectively into the extracellular medium. Analysis of protein localization and the nature of intracellular protein suggest TIMP-3 is severely limited in its post-translational processing. To overcome this challenge, modification of the TIMP-3 sequence to include a furin protease-cleavable pro-sequence resulted in secretion of the modified TIMP-3 protein, however, incomplete processing was observed. Based on the TIMP-3 data, the protein engineering approach was optimized and successfully applied in combination with cell engineering, the overexpression of furin, to another member of the TIMP protein family (the poorly expressed TIMP-4). Use of the described protein engineering strategy resulted in successful secretion of poorly (TIMP-4) and non-secreted (TIMP-3) targets, and presents a novel strategy to enhance the production of "difficult" recombinant targets. Biotechnol. Bioeng. 2017;114: 2348-2359. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. The influence of petroleum products on the methane fermentation process.

    PubMed

    Choromański, Paweł; Karwowska, Ewa; Łebkowska, Maria

    2016-01-15

    In this study the influence of the petroleum products: diesel fuel and spent engine oil on the sewage sludge digestion process and biogas production efficiency was investigated. Microbiological, chemical and enzymatic analyses were applied in the survey. It was revealed that the influence of the petroleum derivatives on the effectiveness of the methane fermentation of sewage sludge depends on the type of the petroleum product. Diesel fuel did not limit the biogas production and the methane concentration in the biogas, while spent engine oil significantly reduced the process efficacy. The changes in physical-chemical parameters, excluding COD, did not reflect the effect of the tested substances. The negative influence of petroleum products on individual bacterial groups was observed after 7 days of the process, while after 14 days probably some adaptive mechanisms appeared. The dehydrogenase activity assessment was the most relevant parameter to evaluate the effect of petroleum products contamination. Diesel fuel was probably used as a source of carbon and energy in the process, while the toxic influence was observed in case of spent engine oil. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. United States Air Force Graduate Student Summer Support Program 1986. Program Technical Report. Volume 2

    DTIC Science & Technology

    1986-12-01

    Engineering University of Wisconsin- Madison Mechanics, 1985 Dept. of Engineering Mechanics Specialty: Engineering Mechanics 1415 Johnson Drive Assigned: RPL... Madison , WI 53706 (608) 262-3990 Brian J. Doherty Degree: B.S.E., Bioenginnering, 1984 Duke University Specialty: Bloengineering Biomedical Engineering...Assigned: ML Kent, OH 44242 (216) 672-2246 Gregory L. Walker Degree: B.S., Engineering University of Wisconsin- Madison Mechanics, 1985 Engineering

  20. Materials Characterization of Additively Manufactured Components for Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Carter, Robert; Draper, Susan; Locci, Ivan; Lerch, Bradley; Ellis, David; Senick, Paul; Meyer, Michael; Free, James; Cooper, Ken; Jones, Zachary

    2015-01-01

    To advance Additive Manufacturing (AM) technologies for production of rocket propulsion components the NASA Glenn Research Center (GRC) is applying state of the art characterization techniques to interrogate microstructure and mechanical properties of AM materials and components at various steps in their processing. The materials being investigated for upper stage rocket engines include titanium, copper, and nickel alloys. Additive manufacturing processes include laser powder bed, electron beam powder bed, and electron beam wire fed processes. Various post build thermal treatments, including Hot Isostatic Pressure (HIP), have been studied to understand their influence on microstructure, mechanical properties, and build density. Micro-computed tomography, electron microscopy, and mechanical testing in relevant temperature environments has been performed to develop relationships between build quality, microstructure, and mechanical performance at temperature. A summary of GRC's Additive Manufacturing roles and experimental findings will be presented.

  1. Material Characterization of Additively Manufactured Components for Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Carter, Robert; Draper, Susan; Locci, Ivan; Lerch, Bradley; Ellis, David; Senick, Paul; Meyer, Michael; Free, James; Cooper, Ken; Jones, Zachary

    2015-01-01

    To advance Additive Manufacturing (AM) technologies for production of rocket propulsion components the NASA Glenn Research Center (GRC) is applying state of the art characterization techniques to interrogate microstructure and mechanical properties of AM materials and components at various steps in their processing. The materials being investigated for upper stage rocket engines include titanium, copper, and nickel alloys. Additive manufacturing processes include laser powder bed, electron beam powder bed, and electron beam wire fed processes. Various post build thermal treatments, including Hot Isostatic Pressure (HIP), have been studied to understand their influence on microstructure, mechanical properties, and build density. Micro-computed tomography, electron microscopy, and mechanical testing in relevant temperature environments has been performed to develop relationships between build quality, microstructure, and mechanical performance at temperature. A summary of GRCs Additive Manufacturing roles and experimental findings will be presented.

  2. Two phase exhaust for internal combustion engine

    DOEpatents

    Vuk, Carl T [Denver, IA

    2011-11-29

    An internal combustion engine having a reciprocating multi cylinder internal combustion engine with multiple valves. At least a pair of exhaust valves are provided and each supply a separate power extraction device. The first exhaust valves connect to a power turbine used to provide additional power to the engine either mechanically or electrically. The flow path from these exhaust valves is smaller in area and volume than a second flow path which is used to deliver products of combustion to a turbocharger turbine. The timing of the exhaust valve events is controlled to produce a higher grade of energy to the power turbine and enhance the ability to extract power from the combustion process.

  3. Data Documentation for Navy Civilian Manpower Study,

    DTIC Science & Technology

    1986-09-01

    Engineering 0830 Mechanical Engineer 0840 Nuclear Engineering 0850 Electrical Engineering 0855 Electronics Engineering 0856 Electronics ...OCCUPATIONAL LEVEL (DONOL) CODES DONOL code Title 1060 Engineering Drafting 1061 Electronics Technician w 1062 Engineering Technician 1063 Industrial...Architect 2314 Electrical Engineer 2315 Electronic Engineer 2316 Industrial Engineer 2317 Mechanical Engineer 2318

  4. The materials used in bone tissue engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tereshchenko, V. P., E-mail: tervp@ngs.ru; Kirilova, I. A.; Sadovoy, M. A.

    Bone tissue engineering looking for an alternative solution to the problem of skeletal injuries. The method is based on the creation of tissue engineered bone tissue equivalent with stem cells, osteogenic factors, and scaffolds - the carriers of these cells. For production of tissue engineered bone equivalent is advisable to create scaffolds similar in composition to natural extracellular matrix of the bone. This will provide optimal conditions for the cells, and produce favorable physico-mechanical properties of the final construction. This review article gives an analysis of the most promising materials for the manufacture of cell scaffolds. Biodegradable synthetic polymers aremore » the basis for the scaffold, but it alone cannot provide adequate physical and mechanical properties of the construction, and favorable conditions for the cells. Addition of natural polymers improves the strength characteristics and bioactivity of constructions. Of the inorganic compounds, to create cell scaffolds the most widely used calcium phosphates, which give the structure adequate stiffness and significantly increase its osteoinductive capacity. Signaling molecules do not affect the physico-mechanical properties of the scaffold, but beneficial effect is on the processes of adhesion, proliferation and differentiation of cells. Biodegradation of the materials will help to fulfill the main task of bone tissue engineering - the ability to replace synthetic construct by natural tissues that will restore the original anatomical integrity of the bone.« less

  5. Express Control of the Mechanical Properties of High-Strength and Hard-to-Machine Materials at All Stages of the Technological Cycle of Producing Mechanical Engineering Products

    NASA Astrophysics Data System (ADS)

    Matyunin, V. M.; Marchenkov, A. Yu.; Demidov, A. N.; Karimbekov, M. A.

    2017-12-01

    It is shown that depth-sensing indentation can be used to perform express control of the mechanical properties of high-strength and hard-to-machine materials. This control can be performed at various stages of a technological cycle of processing materials and parts without preparing and testing tensile specimens, which will significantly reduce the consumption of materials, time, and labor.

  6. THE ETHICS OF 'NUDGING'.

    PubMed

    Johnstone, Megan-Jane

    2016-12-01

    Over the past several years increasing attention has been given to the social engineering process of 'nudging' (also called 'choice architecture') and its impact as a mechanism designed to deliberately manipulate and incentivise people to think and act in a presumably beneficial direction.

  7. Redirecting adenovirus tropism by genetic, chemical, and mechanical modification of the adenovirus surface for cancer gene therapy.

    PubMed

    Yoon, A-Rum; Hong, Jinwoo; Kim, Sung Wan; Yun, Chae-Ok

    2016-06-01

    Despite remarkable advancements, clinical evaluations of adenovirus (Ad)-mediated cancer gene therapies have highlighted the need for improved delivery and targeting. Genetic modification of Ad capsid proteins has been extensively attempted. Although genetic modification enhances the therapeutic potential of Ad, it is difficult to successfully incorporate extraneous moieties into the capsid and the engineering process is laborious. Recently, chemical modification of the Ad surface with nanomaterials and targeting moieties has been found to enhance Ad internalization into the target by both passive and active mechanisms. Alternatively, external stimulus-mediated targeting can result in selective accumulation of Ad in the tumor and prevent dissemination of Ad into surrounding nontarget tissues. In the present review, we discuss various genetic, chemical, and mechanical engineering strategies for overcoming the challenges that hinder the therapeutic efficacy of Ad-based approaches. Surface modification of Ad by genetic, chemical, or mechanical engineering strategies enables Ad to overcome the shortcomings of conventional Ad and enhances delivery efficiency through distinct and unique mechanisms that unmodified Ad cannot mimic. However, although the therapeutic potential of Ad-mediated gene therapy has been enhanced by various surface modification strategies, each strategy still possesses innate limitations that must be addressed, requiring innovative ideas and designs.

  8. Design modification and optimisation of the perfusion system of a tri-axial bioreactor for tissue engineering.

    PubMed

    Hussein, Husnah; Williams, David J; Liu, Yang

    2015-07-01

    A systematic design of experiments (DOE) approach was used to optimize the perfusion process of a tri-axial bioreactor designed for translational tissue engineering exploiting mechanical stimuli and mechanotransduction. Four controllable design parameters affecting the perfusion process were identified in a cause-effect diagram as potential improvement opportunities. A screening process was used to separate out the factors that have the largest impact from the insignificant ones. DOE was employed to find the settings of the platen design, return tubing configuration and the elevation difference that minimise the load on the pump and variation in the perfusion process and improve the controllability of the perfusion pressures within the prescribed limits. DOE was very effective for gaining increased knowledge of the perfusion process and optimizing the process for improved functionality. It is hypothesized that the optimized perfusion system will result in improved biological performance and consistency.

  9. The Systems Engineering Approach to Mechanical Failure Prevention. Proceedings of the Meeting of the Mechanical Failures Prevention Group (47th) Held in Virginia Beach, Virginia on April 13-15, 1993.

    DTIC Science & Technology

    1993-04-15

    Czyryca from the Naval Surface Warfare Center gave a Plenary Aodress on Lessons Learned in Metallurgical Failure Analyses of Naval Machinery. The...processing methods take many years to implement, because of the large capital investments and the learning process involved, we feel confident that they will...signals experienced by the self. Filters are an indistinguishable part of the self. As we learn about the causes of our failures, and see that we can

  10. Engineering of Impulse Mechanism for Mechanical Hander Power Tools

    NASA Astrophysics Data System (ADS)

    Nikolaevich Drozdov, Anatoliy

    2018-03-01

    The solution to the problem of human security in cities should be considered on the basis of an integrated and multidisciplinary approach, including issues of security and ecology in the application of technical means used to ensure the viability and development of technocracy. In this regard, an important task is the creation of a safe technique with improved environmental properties with high technological characteristics. This primarily relates to mechanised tool — the division of technological machines with built in engines is that their weight is fully or partially perceived by the operator’s hands, making the flow and control of the car. For this subclass of machines is characterized by certain features: a built-in motor, perception of at least part of their weight by the operator during the work, the implementation of feeding and management at the expense of the muscular power of the operator. Therefore, among the commonly accepted technical and economic characteristics, machines in this case, important ergonomic (ergonomics), regulation of levels which ensures the safety of the operator. To ergonomics include vibration, noise characteristics, mass, and force feeding machine operator. Vibration is a consequence of the dynamism of the system operator machine - processed object (environment) in which the engine energy is redistributed among all the structures, causing their instability. In the machine vibration caused by technological and constructive (transformative mechanisms) unbalance of individual parts of the drive, the presence of technological and design (impact mechanisms) clearances and other reasons. This article describes a new design of impulse mechanism for hander power tools (wrenches, screwdrivers) with enhanced torque. The article substantiates a simulation model of dynamic compression process in an operating chamber during impact, provides simulation results and outlines further lines of research.

  11. Influence of gender in choosing a career amongst engineering fields: a survey study from Turkey

    NASA Astrophysics Data System (ADS)

    Bucak, Seyda; Kadirgan, Neset

    2011-10-01

    The aim of this study is to understand the motivating factors behind students' choices in their decision-making process and also get an insight on their perception of different engineering branches. A survey was prepared and the results were evaluated amongst 1163 answers. Two major influences on student's decision in their professional choices are shown to be career services and family members. Generally, students have claimed to choose a profession based on 'finding a job' and 'being happy'. Some engineering branches such as Genetic and Bioengineering, Chemical Engineering, Environmental Engineering and Industrial Engineering, are shown to be distinctly preferred by female students, whereas mechanical, civil and electronic engineering are favourites for male students. The survey results were also compared with the distribution of male and female students in various engineering departments. This study clearly shows that certain engineering branches are perceived as more appropriate for women and are thus favoured by female students, while those perceived as more appropriate for men are favoured by male students.

  12. A High Throughput Model of Post-Traumatic Osteoarthritis using Engineered Cartilage Tissue Analogs

    PubMed Central

    Mohanraj, Bhavana; Meloni, Gregory R.; Mauck, Robert L.; Dodge, George R.

    2014-01-01

    (1) Objective A number of in vitro models of post-traumatic osteoarthritis (PTOA) have been developed to study the effect of mechanical overload on the processes that regulate cartilage degeneration. While such frameworks are critical for the identification therapeutic targets, existing technologies are limited in their throughput capacity. Here, we validate a test platform for high-throughput mechanical injury incorporating engineered cartilage. (2) Method We utilized a high throughput mechanical testing platform to apply injurious compression to engineered cartilage and determined their strain and strain rate dependent responses to injury. Next, we validated this response by applying the same injury conditions to cartilage explants. Finally, we conducted a pilot screen of putative PTOA therapeutic compounds. (3) Results Engineered cartilage response to injury was strain dependent, with a 2-fold increase in GAG loss at 75% compared to 50% strain. Extensive cell death was observed adjacent to fissures, with membrane rupture corroborated by marked increases in LDH release. Testing of established PTOA therapeutics showed that pan-caspase inhibitor (ZVF) was effective at reducing cell death, while the amphiphilic polymer (P188) and the free-radical scavenger (NAC) reduced GAG loss as compared to injury alone. (4) Conclusions The injury response in this engineered cartilage model replicated key features of the response from cartilage explants, validating this system for application of physiologically relevant injurious compression. This study establishes a novel tool for the discovery of mechanisms governing cartilage injury, as well as a screening platform for the identification of new molecules for the treatment of PTOA. PMID:24999113

  13. Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part I: from three-dimensional cell growth to biomimetics of in vivo development.

    PubMed

    Lenas, Petros; Moos, Malcolm; Luyten, Frank P

    2009-12-01

    Recent advances in developmental biology, systems biology, and network science are converging to poise the heretofore largely empirical field of tissue engineering on the brink of a metamorphosis into a rigorous discipline based on universally accepted engineering principles of quality by design. Failure of more simplistic approaches to the manufacture of cell-based therapies has led to increasing appreciation of the need to imitate, at least to some degree, natural mechanisms that control cell fate and differentiation. The identification of many of these mechanisms, which in general are based on cell signaling pathways, is an important step in this direction. Some well-accepted empirical concepts of developmental biology, such as path-dependence, robustness, modularity, and semiautonomy of intermediate tissue forms, that appear sequentially during tissue development are starting to be incorporated in process design.

  14. Interfacing modules for integrating discipline specific structural mechanics codes

    NASA Technical Reports Server (NTRS)

    Endres, Ned M.

    1989-01-01

    An outline of the organization and capabilities of the Engine Structures Computational Simulator (Simulator) at NASA Lewis Research Center is given. One of the goals of the research at Lewis is to integrate various discipline specific structural mechanics codes into a software system which can be brought to bear effectively on a wide range of engineering problems. This system must possess the qualities of being effective and efficient while still remaining user friendly. The simulator was initially designed for the finite element simulation of gas jet engine components. Currently, the simulator has been restricted to only the analysis of high pressure turbine blades and the accompanying rotor assembly, although the current installation can be expanded for other applications. The simulator presently assists the user throughout its procedures by performing information management tasks, executing external support tasks, organizing analysis modules and executing these modules in the user defined order while maintaining processing continuity.

  15. The Impact of Biomechanics in Tissue Engineering and Regenerative Medicine

    PubMed Central

    Butler, David L.; Goldstein, Steven A.; Guo, X. Edward; Kamm, Roger; Laurencin, Cato T.; McIntire, Larry V.; Mow, Van C.; Nerem, Robert M.; Sah, Robert L.; Soslowsky, Louis J.; Spilker, Robert L.; Tranquillo, Robert T.

    2009-01-01

    Biomechanical factors profoundly influence the processes of tissue growth, development, maintenance, degeneration, and repair. Regenerative strategies to restore damaged or diseased tissues in vivo and create living tissue replacements in vitro have recently begun to harness advances in understanding of how cells and tissues sense and adapt to their mechanical environment. It is clear that biomechanical considerations will be fundamental to the successful development of clinical therapies based on principles of tissue engineering and regenerative medicine for a broad range of musculoskeletal, cardiovascular, craniofacial, skin, urinary, and neural tissues. Biomechanical stimuli may in fact hold the key to producing regenerated tissues with high strength and endurance. However, many challenges remain, particularly for tissues that function within complex and demanding mechanical environments in vivo. This paper reviews the present role and potential impact of experimental and computational biomechanics in engineering functional tissues using several illustrative examples of past successes and future grand challenges. PMID:19583462

  16. Pilot scale system for the production of palm-based Monoester-OH

    NASA Astrophysics Data System (ADS)

    Ngah, Muhammad Syukri; Badri, Khairiah Haji

    2016-11-01

    A mechanically agitate reactor vessel in a moderate scale size of 500 L has been developed. This vessel was constructed to produce palm-based polyurethane polyol with a capacity of maximum 400 L. This is to accomodate the demand required for marketing trial run as part of the commercialization intention. The chemistry background of the process design was thoroughly studied. The esterification and condensation in batch process was maintained from the laboratory scale. Only RBD palm kernel oil was used in this study. This paper will describe the engineering design for the reactor vessel development beginning at the stoichiometric equations for the production process to the detail engineering including the equipment selection and fabrication in order to meet the design and objective specifications.

  17. Industrial Test of High Strength Steel Plates Free Boron Q890D Used for Engineering Machinery

    NASA Astrophysics Data System (ADS)

    Dong, Ruifeng; Liu, Zetian; Gao, Jun

    The chemistry composition, process parameters and the test results of Q890D free boron high strength steel plate used for engineering machinery was studied. The 16 40 mm thickness steel plates with good mechanical properties that was yield strength of 930 970 MPa, tensile strength of 978 1017 MPa, elongation of 13.5 15%, the average impact energy value of more than 100 J were developed by improving steel purity, adopting the reasonable controlled rolling and cooling process, using reasonable off-line quenching and tempering process. The test plates have good crack resistance in 60 °C preheat temperature condition because of that there are no any cracks in the surfaces, cross-section and roots of welding joints.

  18. Nonlinear Multiscale Modeling of 3D Woven Fiber Composites under Ballistic Loading

    DTIC Science & Technology

    2013-07-11

    contact parameters on the underlying damage processes is being studied and worked on. We further develop a material model suitable particularly for...of Material and Process Engineering. 2011/05/23 00:00:00, . : , TOTAL: 1 (d) Manuscripts Number of Peer-Reviewed Conference Proceeding publications...continuum damage mechanics suitable for polymer materials. The effect of contact parameters on the underlying damage processes is being studied and

  19. Engineering quorum sensing signaling of Pseudomonas for enhanced wastewater treatment and electricity harvest: A review.

    PubMed

    Yong, Yang-Chun; Wu, Xiang-Yang; Sun, Jian-Zhong; Cao, Ying-Xiu; Song, Hao

    2015-12-01

    Cell-cell communication that enables synchronized population behaviors in microbial communities dictates various biological processes. It is of great interest to unveil the underlying mechanisms of fine-tuning cell-cell communication to achieve environmental and energy applications. Pseudomonas is a ubiquitous microbe in environments that had wide applications in bioremediation and bioenergy generation. The quorum sensing (QS, a generic cell-cell communication mechanism) systems of Pseudomonas underlie the aromatics biodegradation, denitrification and electricity harvest. Here, we reviewed the recent progresses of the genetic strategies in engineering QS circuits to improve efficiency of wastewater treatment and the performance of microbial fuel cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. CONFIG: Integrated engineering of systems and their operation

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Ryan, Dan; Fleming, Land

    1994-01-01

    This article discusses CONFIG 3, a prototype software tool that supports integrated conceptual design evaluation from early in the product life cycle, by supporting isolated or integrated modeling, simulation, and analysis of the function, structure, behavior, failures and operations of system designs. Integration and reuse of models is supported in an object-oriented environment providing capabilities for graph analysis and discrete event simulation. CONFIG supports integration among diverse modeling approaches (component view, configuration or flow path view, and procedure view) and diverse simulation and analysis approaches. CONFIG is designed to support integrated engineering in diverse design domains, including mechanical and electro-mechanical systems, distributed computer systems, and chemical processing and transport systems.

  1. FIBER-TEX 1992: The Sixth Conference on Advanced Engineering Fibers and Textile Structures for Composites

    NASA Technical Reports Server (NTRS)

    Buckley, John D. (Editor)

    1993-01-01

    The FIBER-TEX 1992 proceedings contain the papers presented at the conference held on 27-29 Oct. 1992 at Drexel University. The conference was held to create a forum to encourage an interrelationship of the various disciplines involved in the fabrication of materials, the types of equipment, and the processes used in the production of advanced composite structures. Topics discussed were advanced engineering fibers, textile processes and structures, structural fabric production, mechanics and characteristics of woven composites, and the latest requirements for the use of textiles in the production of composite materials and structures as related to global activities focused on textile structural composites.

  2. Different response to acetic acid stress in Saccharomyces cerevisiae wild-type and l-ascorbic acid-producing strains.

    PubMed

    Martani, Francesca; Fossati, Tiziana; Posteri, Riccardo; Signori, Lorenzo; Porro, Danilo; Branduardi, Paola

    2013-09-01

    Biotechnological processes are of increasing significance for industrial production of fine and bulk chemicals, including biofuels. Unfortunately, under operative conditions microorganisms meet multiple stresses, such as non-optimal pH, temperature, oxygenation and osmotic stress. Moreover, they have to face inhibitory compounds released during the pretreatment of lignocellulosic biomasses, which constitute the preferential substrate for second-generation processes. Inhibitors include furan derivatives, phenolic compounds and weak organic acids, among which acetic acid is one of the most abundant and detrimental for cells. They impair cellular metabolism and growth, reducing the productivity of the process: therefore, the development of robust cell factories with improved production rates and resistance is of crucial importance. Here we show that a yeast strain engineered to endogenously produce vitamin C exhibits an increased tolerance compared to the parental strain when exposed to acetic acid at moderately toxic concentrations, measured as viability on plates. Starting from this evidence, we investigated more deeply: (a) the nature and levels of reactive oxygen species (ROS); (b) the activation of enzymes that act directly as detoxifiers of reactive oxygen species, such as superoxide dismutase (SOD) and catalase, in parental and engineered strains during acetic acid stress. The data indicate that the engineered strain can better recover from stress by limiting ROS accumulation, independently from SOD activation. The engineered yeast can be proposed as a model for further investigating direct and indirect mechanism(s) by which an antioxidant can rescue cells from organic acid damage; moreover, these studies will possibly provide additional targets for further strain improvements. Copyright © 2013 John Wiley & Sons, Ltd.

  3. Silk fibroin as biomaterial for bone tissue engineering.

    PubMed

    Melke, Johanna; Midha, Swati; Ghosh, Sourabh; Ito, Keita; Hofmann, Sandra

    2016-02-01

    Silk fibroin (SF) is a fibrous protein which is produced mainly by silkworms and spiders. Its unique mechanical properties, tunable biodegradation rate and the ability to support the differentiation of mesenchymal stem cells along the osteogenic lineage, have made SF a favorable scaffold material for bone tissue engineering. SF can be processed into various scaffold forms, combined synergistically with other biomaterials to form composites and chemically modified, which provides an impressive toolbox and allows SF scaffolds to be tailored to specific applications. This review discusses and summarizes recent advancements in processing SF, focusing on different fabrication and functionalization methods and their application to grow bone tissue in vitro and in vivo. Potential areas for future research, current challenges, uncertainties and gaps in knowledge are highlighted. Silk fibroin is a natural biomaterial with remarkable biomedical and mechanical properties which make it favorable for a broad range of bone tissue engineering applications. It can be processed into different scaffold forms, combined synergistically with other biomaterials to form composites and chemically modified which provides a unique toolbox and allows silk fibroin scaffolds to be tailored to specific applications. This review discusses and summarizes recent advancements in processing silk fibroin, focusing on different fabrication and functionalization methods and their application to grow bone tissue in vitro and in vivo. Potential areas for future research, current challenges, uncertainties and gaps in knowledge are highlighted. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Standardized Curriculum for Diesel Engine Mechanics.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized curricula are provided for two courses for the secondary vocational education program in Mississippi: diesel engine mechanics I and II. The eight units in diesel engine mechanics I are as follows: orientation; shop safety; basic shop tools; fasteners; measurement; engine operating principles; engine components; and basic auxiliary…

  5. Mechanical Engineering Senior Design Project Final Presentations | College

    Science.gov Websites

    Mechanical Engineering Senior Design Project Final Presentations December 7, 2015 Mechanical Engineering On Wednesday, Dec. 9th, the mechanical engineering senior design project final presentations will be made in and Steven Keller Objective: Design a temperature controlled unit that would cool and maintain a

  6. Ramin Faramarzi | NREL

    Science.gov Websites

    Ramin Faramarzi Photo of Ramin Faramarzi Ramin Faramarzi Researcher V-Mechanical Engineering Engineering, California State University B.S. Mechanical Engineering, North Carolina State University articles and is a registered mechanical engineer in the state of California. Education M.S. Mechanical

  7. Double patterning from design enablement to verification

    NASA Astrophysics Data System (ADS)

    Abercrombie, David; Lacour, Pat; El-Sewefy, Omar; Volkov, Alex; Levine, Evgueni; Arb, Kellen; Reid, Chris; Li, Qiao; Ghosh, Pradiptya

    2011-11-01

    Litho-etch-litho-etch (LELE) is the double patterning (DP) technology of choice for 20 nm contact, via, and lower metal layers. We discuss the unique design and process characteristics of LELE DP, the challenges they present, and various solutions. ∘ We examine DP design methodologies, current DP conflict feedback mechanisms, and how they can help designers identify and resolve conflicts. ∘ In place and route (P&R), the placement engine must now be aware of the assumptions made during IP cell design, and use placement directives provide by the library designer. We examine the new effects DP introduces in detail routing, discuss how multiple choices of LELE and the cut allowances can lead to different solutions, and describe new capabilities required by detail routers and P&R engines. ∘ We discuss why LELE DP cuts and overlaps are critical to optical process correction (OPC), and how a hybrid mechanism of rule and model-based overlap generation can provide a fast and effective solution. ∘ With two litho-etch steps, mask misalignment and image rounding are now verification considerations. We present enhancements to the OPCVerify engine that check for pinching and bridging in the presence of DP overlay errors and acute angles.

  8. Chlorine condenser-evaporator simulation

    NASA Astrophysics Data System (ADS)

    Muraveva, E. A.

    2017-10-01

    Refrigeration machines are an integral part of chemical engineering. Coldness in mechanical engineering is used to improve the properties of steels, to stabilize the shape and size of steel parts, to restore the dimensions of worn steel hardened parts, to fasten the parts to be machined during cutting and grinding, to ensure fixed planting during assembly, bending pipelines, deep drawing and stamping parts from sheet materials, in the manufacture and processing of rubber parts, with solid anodizing of aluminum alloy parts.

  9. Modification of BRCA1 Breast Cancer Risk by Coffee Consumption: Potential Mechanisms for Biologic Effect

    DTIC Science & Technology

    2007-08-01

    engineered mice for the animal study to determine whether coffee, decaffeinated coffee, or caffeine prevents BRCA1 hereditary breast cancer. We...have bred the necessary genetically engineered mice for the animal study to determine whether coffee, decaffeinated coffee, or caffeine prevents BRCA1...participates in the regulation of DNA repair. As the repair process concludes, gamma H2AX is removed from the surrounding region. We were interested in

  10. An approach to architecture 3D scaffold with interconnective microchannel networks inducing angiogenesis for tissue engineering.

    PubMed

    Sun, Jiaoxia; Wang, Yuanliang; Qian, Zhiyong; Hu, Chenbo

    2011-11-01

    The angiogenesis of 3D scaffold is one of the major current limitations in clinical practice tissue engineering. The new strategy of construction 3D scaffold with microchannel circulation network may improve angiogenesis. In this study, 3D poly(D: ,L: -lactic acid) scaffolds with controllable microchannel structures were fabricated using sacrificial sugar structures. Melt drawing sugar-fiber network produced by a modified filament spiral winding method was used to form the microchannel with adjustable diameters and porosity. This fabrication process was rapid, inexpensive, and highly scalable. The porosity, microchannel diameter, interconnectivity and surface topographies of the scaffold were characterized by scanning electron microscopy. Mechanical properties were evaluated by compression tests. The mean porosity values of the scaffolds were in the 65-78% and the scaffold exhibited microchannel structure with diameter in the 100-200 μm range. The results showed that the scaffolds exhibited an adequate porosity, interconnective microchannel network, and mechanical properties. The cell culture studies with endothelial cells (ECs) demonstrated that the scaffold allowed cells to proliferate and penetrate into the volume of the entire scaffold. Overall, these findings suggest that the fabrication process offers significant advantages and flexibility in generating a variety of non-cytotoxic tissue engineering scaffolds with controllable distributions of porosity and physical properties that could provide the necessary physical cues for ECs and further improve angiogenesis for tissue engineering.

  11. Nozzle Aerodynamic Stability During a Throat Shift

    NASA Technical Reports Server (NTRS)

    Kawecki, Edwin J.; Ribeiro, Gregg L.

    2005-01-01

    An experimental investigation was conducted on the internal aerodynamic stability of a family of two-dimensional (2-D) High Speed Civil Transport (HSCT) nozzle concepts. These nozzles function during takeoff as mixer-ejectors to meet acoustic requirements, and then convert to conventional high-performance convergent-divergent (CD) nozzles at cruise. The transition between takeoff mode and cruise mode results in the aerodynamic throat and the minimum cross-sectional area that controls the engine backpressure shifting location within the nozzle. The stability and steadiness of the nozzle aerodynamics during this so called throat shift process can directly affect the engine aerodynamic stability, and the mechanical design of the nozzle. The objective of the study was to determine if pressure spikes or other perturbations occurred during the throat shift process and, if so, identify the caused mechanisms for the perturbations. The two nozzle concepts modeled in the test program were the fixed chute (FC) and downstream mixer (DSM). These 2-D nozzles differ principally in that the FC has a large over-area between the forward throat and aft throat locations, while the DSM has an over-area of only about 10 percent. The conclusions were that engine mass flow and backpressure can be held constant simultaneously during nozzle throat shifts on this class of nozzles, and mode shifts can be accomplished at a constant mass flow and engine backpressure without upstream pressure perturbations.

  12. Investigation of the laser engineered net shaping process for nanostructured cermets

    NASA Astrophysics Data System (ADS)

    Xiong, Yuhong

    Laser Engineered Net Shaping (LENSRTM) is a solid freeform fabrication (SFF) technology that combines high power laser deposition and powder metallurgy technologies. The LENSRTM technology has been used to fabricate a number of metallic alloys with improved physical and mechanical material properties. The successful application provides a motivation to also apply this method to fabricate non-metallic alloys, such as tungsten carbide-cobalt (WC-Co) cermets in a timely and easy way. However, reports on this topic are very limited. In this work, the LENSRTM technology was used to investigate its application to nanostructured WC-Co cermets, including processing conditions, microstructural evolution, thermal behavior, mechanical properties, and environmental and economic benefits. Details of the approaches are described as follows. A comprehensive analysis of the relationships between process parameters, microstructural evolution and mechanical properties was conducted through various analytical techniques. Effects of process parameters on sample profiles and microstructures were analyzed. Dissolution, shape change and coarsening of WC particles were investigated to study the mechanisms of microstructural evolution. The thermal features were correlated with the microstructure and mechanical properties. The special thermal behavior during this process and its relevant effects on the microstructure have been experimentally studied and numerically simulated. A high-speed digital camera was applied to study the temperature profile, temperature gradient and cooling rate in and near the molten pool. Numerical modeling was employed for 3D samples using finite element method with ADINA software for the first time. The validated modeling results were used to interpret microstructural evolution and thermal history. In order to fully evaluate the capability of the LENSRTM technology for the fabrication of cermets, material properties of WC-Co cermets produced by different powder metallurgy technologies were compared. In addition, another cermet system, nanostructured titanium/tungsten carbide-nickel ((Ti,W)C-Ni) powder, prepared using high-energy ball milling process, was also deposited by the LENSRTM technology. Because of the near net shape feature of the LENSRTM process, special emphasis was also placed on its potential environmental and economic benefits by applying life cycle assessment (LCA) and technical cost modeling (TCM). Comparisons were conducted between the conventional powder metallurgy processes and the LENSRTM process.

  13. Cell encapsulation in biodegradable hydrogels for tissue engineering applications.

    PubMed

    Nicodemus, Garret D; Bryant, Stephanie J

    2008-06-01

    Encapsulating cells in biodegradable hydrogels offers numerous attractive features for tissue engineering, including ease of handling, a highly hydrated tissue-like environment for cell and tissue growth, and the ability to form in vivo. Many properties important to the design of a hydrogel scaffold, such as swelling, mechanical properties, degradation, and diffusion, are closely linked to the crosslinked structure of the hydrogel, which is controlled through a variety of different processing conditions. Degradation may be tuned by incorporating hydrolytically or enzymatically labile segments into the hydrogel or by using natural biopolymers that are susceptible to enzymatic degradation. Because cells are present during the gelation process, the number of suitable chemistries and formulations are limited. In this review, we describe important considerations for designing biodegradable hydrogels for cell encapsulation and highlight recent advances in material design and their applications in tissue engineering.

  14. Molecular Approach to Conjugated Polymers with Biomimetic Properties.

    PubMed

    Baek, Paul; Voorhaar, Lenny; Barker, David; Travas-Sejdic, Jadranka

    2018-06-13

    The field of bioelectronics involves the fascinating interplay between biology and human-made electronics. Applications such as tissue engineering, biosensing, drug delivery, and wearable electronics require biomimetic materials that can translate the physiological and chemical processes of biological systems, such as organs, tissues. and cells, into electrical signals and vice versa. However, the difference in the physical nature of soft biological elements and rigid electronic materials calls for new conductive or electroactive materials with added biomimetic properties that can bridge the gap. Soft electronics that utilize organic materials, such as conjugated polymers, can bring many important features to bioelectronics. Among the many advantages of conjugated polymers, the ability to modulate the biocompatibility, solubility, functionality, and mechanical properties through side chain engineering can alleviate the issues of mechanical mismatch and provide better interface between the electronics and biological elements. Additionally, conjugated polymers, being both ionically and electrically conductive through reversible doping processes provide means for direct sensing and stimulation of biological processes in cells, tissues, and organs. In this Account, we focus on our recent progress in molecular engineering of conjugated polymers with tunable biomimetic properties, such as biocompatibility, responsiveness, stretchability, self-healing, and adhesion. Our approach is general and versatile, which is based on functionalization of conjugated polymers with long side chains, commonly polymeric or biomolecules. Applications for such materials are wide-ranging, where we have demonstrated conductive, stimuli-responsive antifouling, and cell adhesive biointerfaces that can respond to external stimuli such as temperature, salt concentration, and redox reactions, the processes that in turn modify and reversibly switch the surface properties. Furthermore, utilizing the advantageous chemical, physical, mechanical and functional properties of the grafts, we progressed into grafting of the long side chains onto conjugated polymers in solution, with the vision of synthesizing solution-processable conjugated graft copolymers with biomimetic functionalities. Examples of the developed materials to date include rubbery and adhesive photoluminescent plastics, biomolecule-functionalized electrospun biosensors, thermally and dually responsive photoluminescent conjugated polymers, and tunable self-healing, adhesive, and stretchable strain sensors, advanced functional biocidal polymers, and filtration membranes. As outlined in these examples, the applications of these biomimetic, conjugated polymers are still in the development stage toward truly printable, organic bioelectronic devices. However, in this Account, we advocate that molecular engineering of conjugated polymers is an attractive approach to a versatile class of organic electronics with both ionic and electrical conductivity as well as mechanical properties required for next-generation bioelectronics.

  15. Expose Mechanical Engineering Students to Biomechanics Topics

    ERIC Educational Resources Information Center

    Shen, Hui

    2011-01-01

    To adapt the focus of engineering education to emerging new industries and technologies nationwide and in the local area, a biomechanics module has been developed and incorporated into a mechanical engineering technical elective course to expose mechanical engineering students at ONU (Ohio Northern University) to the biomedical engineering topics.…

  16. 46 CFR 113.35-9 - Mechanical engine order telegraph systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Mechanical engine order telegraph systems. 113.35-9 Section 113.35-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-9 Mechanical engine order...

  17. 46 CFR 113.35-13 - Mechanical engine order telegraph systems; operation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Mechanical engine order telegraph systems; operation...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-13 Mechanical engine order telegraph systems; operation. If more than one transmitter operates a...

  18. 46 CFR 113.35-9 - Mechanical engine order telegraph systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Mechanical engine order telegraph systems. 113.35-9 Section 113.35-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-9 Mechanical engine order...

  19. 46 CFR 113.35-13 - Mechanical engine order telegraph systems; operation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Mechanical engine order telegraph systems; operation...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-13 Mechanical engine order telegraph systems; operation. If more than one transmitter operates a...

  20. 46 CFR 113.35-13 - Mechanical engine order telegraph systems; operation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Mechanical engine order telegraph systems; operation...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-13 Mechanical engine order telegraph systems; operation. If more than one transmitter operates a...

  1. 46 CFR 113.35-9 - Mechanical engine order telegraph systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Mechanical engine order telegraph systems. 113.35-9 Section 113.35-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-9 Mechanical engine order...

  2. 46 CFR 113.35-13 - Mechanical engine order telegraph systems; operation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Mechanical engine order telegraph systems; operation...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-13 Mechanical engine order telegraph systems; operation. If more than one transmitter operates a...

  3. 46 CFR 113.35-9 - Mechanical engine order telegraph systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Mechanical engine order telegraph systems. 113.35-9 Section 113.35-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-9 Mechanical engine order...

  4. It's all in the timing: modeling isovolumic contraction through development and disease with a dynamic dual electromechanical bioreactor system.

    PubMed

    Morgan, Kathy Ye; Black, Lauren Deems

    2014-01-01

    This commentary discusses the rationale behind our recently reported work entitled "Mimicking isovolumic contraction with combined electromechanical stimulation improves the development of engineered cardiac constructs," introduces new data supporting our hypothesis, and discusses future applications of our bioreactor system. The ability to stimulate engineered cardiac tissue in a bioreactor system that combines both electrical and mechanical stimulation offers a unique opportunity to simulate the appropriate dynamics between stretch and contraction and model isovolumic contraction in vitro. Our previous study demonstrated that combined electromechanical stimulation that simulated the timing of isovolumic contraction in healthy tissue improved force generation via increased contractile and calcium handling protein expression and improved hypertrophic pathway activation. In new data presented here, we further demonstrate that modification of the timing between electrical and mechanical stimulation to mimic a non-physiological process negatively impacts the functionality of the engineered constructs. We close by exploring the various disease states that have altered timing between the electrical and mechanical stimulation signals as potential future directions for the use of this system.

  5. Engineering stategies and implications of using higher plants for throttling gas and water exchange in a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Chamberland, Dennis; Wheeler, Raymond M.; Corey, Kenneth A.

    1993-01-01

    Engineering stategies for advanced life support systems to be used on Lunar and Mars bases involve a wide spectrum of approaches. These range from purely physical-chemical life support strategies to purely biological approaches. Within the context of biological based systems, a bioengineered system can be devised that would utilize the metabolic mechanisms of plants to control the rates of CO2 uptake and O2 evolution (photosynthesis) and water production (transpiration). Such a mechanism of external engineering control has become known as throttling. Research conducted at the John F. Kennedy Space Center's Controlled Ecological Life Support System Breadboard Project has demonstrated the potential of throttling these fluxes by changing environmental parameters affecting the plant processes. Among the more effective environmental throttles are: light and CO2 concentration for controllingthe rate of photsynthesis and humidity and CO2 concentration for controlling transpiration. Such a bioengineered strategy implies control mechanisms that in the past have not been widely attributed to life support systems involving biological components and suggests a broad range of applications in advanced life support system design.

  6. A comprehensive combustion model for biodiesel-fueled engine simulations

    NASA Astrophysics Data System (ADS)

    Brakora, Jessica L.

    Engine models for alternative fuels are available, but few are comprehensive, well-validated models that include accurate physical property data as well as a detailed description of the fuel chemistry. In this work, a comprehensive biodiesel combustion model was created for use in multi-dimensional engine simulations, specifically the KIVA3v R2 code. The model incorporates realistic physical properties in a vaporization model developed for multi-component fuel sprays and applies an improved mechanism for biodiesel combustion chemistry. A reduced mechanism was generated from the methyl decanoate (MD) and methyl-9-decenoate (MD9D) mechanism developed at Lawrence Livermore National Laboratory. It was combined with a multi-component mechanism to include n-heptane in the fuel chemistry. The biodiesel chemistry was represented using a combination of MD, MD9D and n-heptane, which varied for a given fuel source. The reduced mechanism, which contained 63 species, accurately predicted ignition delay times of the detailed mechanism over a range of engine-specific operating conditions. Physical property data for the five methyl ester components of biodiesel were added to the KIVA library. Spray simulations were performed to ensure that the models adequately reproduce liquid penetration observed in biodiesel spray experiments. Fuel composition impacted liquid length as expected, with saturated species vaporizing more and penetrating less. Distillation curves were created to ensure the fuel vaporization process was comparable to available data. Engine validation was performed against a low-speed, high-load, conventional combustion experiments and the model was able to predict the performance and NOx formation seen in the experiment. High-speed, low-load, low-temperature combustion conditions were also modeled, and the emissions (HC, CO, NOx) and fuel consumption were well-predicted for a sweep of injection timings. Finally, comparisons were made between the results of biodiesel composition (palm vs. soy) and fuel blends (neat vs. B20). The model effectively reproduced the trends observed in the experiments.

  7. Application of xanthan gum as polysaccharide in tissue engineering: A review.

    PubMed

    Kumar, Anuj; Rao, Kummara Madhusudana; Han, Sung Soo

    2018-01-15

    Xanthan gum is a microbial high molecular weight exo-polysaccharide produced by Xanthomonas bacteria (a Gram-negative bacteria genus that exhibits several different species) and it has widely been used as an additive in various industrial and biomedical applications such as food and food packaging, cosmetics, water-based paints, toiletries, petroleum, oil-recovery, construction and building materials, and drug delivery. Recently, it has shown great potential in issue engineering applications and a variety of modification methods have been employed to modify xanthan gum as polysaccharide for this purpose. However, xanthan gum-based biomaterials need further modification for several targeted applications due to some disadvantages (e.g., processing and mechanical performance of xanthan gum), where modified xanthan gum will be well suited for tissue engineering products. In this review, the current scenario of the use of xanthan gum for various tissue engineering applications, including its origin, structure, properties, modification, and processing for the preparation of the hydrogels and/or the scaffolds is precisely reviewed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Materials from Mussel-Inspired Chemistry for Cell and Tissue Engineering Applications.

    PubMed

    Madhurakkat Perikamana, Sajeesh Kumar; Lee, Jinkyu; Lee, Yu Bin; Shin, Young Min; Lee, Esther J; Mikos, Antonios G; Shin, Heungsoo

    2015-09-14

    Current advances in biomaterial fabrication techniques have broadened their application in different realms of biomedical engineering, spanning from drug delivery to tissue engineering. The success of biomaterials depends highly on the ability to modulate cell and tissue responses, including cell adhesion, as well as induction of repair and immune processes. Thus, most recent approaches in the field have concentrated on functionalizing biomaterials with different biomolecules intended to evoke cell- and tissue-specific reactions. Marine mussels produce mussel adhesive proteins (MAPs), which help them strongly attach to different surfaces, even under wet conditions in the ocean. Inspired by mussel adhesiveness, scientists discovered that dopamine undergoes self-polymerization at alkaline conditions. This reaction provides a universal coating for metals, polymers, and ceramics, regardless of their chemical and physical properties. Furthermore, this polymerized layer is enriched with catechol groups that enable immobilization of primary amine or thiol-based biomolecules via a simple dipping process. Herein, this review explores the versatile surface modification techniques that have recently been exploited in tissue engineering and summarizes polydopamine polymerization mechanisms, coating process parameters, and effects on substrate properties. A brief discussion of polydopamine-based reactions in the context of engineering various tissue types, including bone, blood vessels, cartilage, nerves, and muscle, is also provided.

  9. CF60 Concrete Composition Design and Application on Fudiankou Xijiang Super Large Bridge

    NASA Astrophysics Data System (ADS)

    Qiu, Yi Mei; Wen, Sen Yuan; Chen, Jun Xiang

    2018-06-01

    Guangxi Wuzhou City Ring Road Fudiankou Xijiang super large bridge CF60 concrete is a new multi-phase composite high-performance concrete, this paper for the Fudiankou Xijiang bridge structure and characteristics of the project, in accordance with the principle of local materials and technical specification requirements, combined with the site conditions of CF60 engineering high performance concrete component materials, proportion and the technical performance, quantify the main physical and mechanical performance index. Analysis main influencing factors of the technical indicators, reasonable adjustment of concrete mix design parameters, and the use of technical means of admixture and multi-function composite admixture of concrete, obtain the optimal proportion of good work, process, mechanical properties stability and durability of engineering properties, recommend and verification of concrete mix; to explore the CF60 high performance concrete Soil in the Fudiankou Xijiang bridge application technology, detection and tracking the quality of concrete construction, concrete structure during the construction of the key technology and control points is proposed, evaluation of CF60 high performance concrete in the actual engineering application effect and benefit to ensure engineering quality of bridge structure and service life, and super long span bridge engineering construction to provide basis and reference.

  10. Shuttle Systems 3-D Applications: Application of 3-D Graphics in Engineering Training for Shuttle Ground Processing

    NASA Technical Reports Server (NTRS)

    Godfrey, Gary S.

    2003-01-01

    This project illustrates an animation of the orbiter mate to the external tank, an animation of the OMS POD installation to the orbiter, and a simulation of the landing gear mechanism at the Kennedy Space Center. A detailed storyboard was created to reflect each animation or simulation. Solid models were collected and translated into Pro/Engineer's prt and asm formats. These solid models included computer files of the: orbiter, external tank, solid rocket booster, mobile launch platform, transporter, vehicle assembly building, OMS POD fixture, and landing gear. A depository of the above solid models was established. These solid models were translated into several formats. This depository contained the following files: stl for sterolithography, stp for neutral file work, shrinkwrap for compression, tiff for photoshop work, jpeg for Internet use, and prt and asm for Pro/Engineer use. Solid models were created of the material handling sling, bay 3 platforms, and orbiter contact points. Animations were developed using mechanisms to reflect each storyboard. Every effort was made to build all models technically correct for engineering use. The result was an animated routine that could be used by NASA for training material handlers and uncovering engineering safety issues.

  11. Advanced Environmental Barrier Coating Development for SiC-SiC Ceramic Matrix Composite Components

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan; Hurst, Janet B.; Halbig, Michael Charles; Puleo, Bernadette J.; Costa, Gustavo; Mccue, Terry R.

    2017-01-01

    This presentation reviews the NASA advanced environmental barrier coating (EBC) system development for SiC-SiC Ceramic Matrix Composite (CMC) combustors particularly under the NASA Environmentally Responsible Aviation, Fundamental Aeronautics and Transformative Aeronautics Concepts Programs. The emphases have been placed on the current design challenges of the 2700-3000F capable environmental barrier coatings for low NOX emission combustors for next generation turbine engines by using advanced plasma spray based processes, and the coating processing and integration with SiC-SiC CMCs and component systems. The developments also have included candidate coating composition system designs, degradation mechanisms, performance evaluation and down-selects; the processing optimizations using TriplexPro Air Plasma Spray Low Pressure Plasma Spray (LPPS), Plasma Spray Physical Vapor Deposition and demonstration of EBC-CMC systems. This presentation also highlights the EBC-CMC system temperature capability and durability improvements under the NASA development programs, as demonstrated in the simulated engine high heat flux, combustion environments, in conjunction with high heat flux, mechanical creep and fatigue loading testing conditions.

  12. Activities report of the Department of Engineering

    NASA Astrophysics Data System (ADS)

    Acoustics, aerodynamics, fluid mechanics, design, electrical, materials science, mechanical, control, robotics, soil mechanics, structural engineering, thermodynamics, and turbomachine engineering research are described.

  13. Collaborative simulation method with spatiotemporal synchronization process control

    NASA Astrophysics Data System (ADS)

    Zou, Yisheng; Ding, Guofu; Zhang, Weihua; Zhang, Jian; Qin, Shengfeng; Tan, John Kian

    2016-10-01

    When designing a complex mechatronics system, such as high speed trains, it is relatively difficult to effectively simulate the entire system's dynamic behaviors because it involves multi-disciplinary subsystems. Currently,a most practical approach for multi-disciplinary simulation is interface based coupling simulation method, but it faces a twofold challenge: spatial and time unsynchronizations among multi-directional coupling simulation of subsystems. A new collaborative simulation method with spatiotemporal synchronization process control is proposed for coupling simulating a given complex mechatronics system across multiple subsystems on different platforms. The method consists of 1) a coupler-based coupling mechanisms to define the interfacing and interaction mechanisms among subsystems, and 2) a simulation process control algorithm to realize the coupling simulation in a spatiotemporal synchronized manner. The test results from a case study show that the proposed method 1) can certainly be used to simulate the sub-systems interactions under different simulation conditions in an engineering system, and 2) effectively supports multi-directional coupling simulation among multi-disciplinary subsystems. This method has been successfully applied in China high speed train design and development processes, demonstrating that it can be applied in a wide range of engineering systems design and simulation with improved efficiency and effectiveness.

  14. Research on the energy and ecological efficiency of mechanical equipment remanufacturing systems

    NASA Astrophysics Data System (ADS)

    Shi, Junli; Cheng, Jinshi; Ma, Qinyi; Wang, Yajun

    2017-08-01

    According to the characteristics of mechanical equipment remanufacturing system, the dynamic performance of energy consumption and emission is explored, the equipment energy efficiency and emission analysis model is established firstly, and then energy and ecological efficiency analysis method of the remanufacturing system is put forward, at last, the energy and ecological efficiency of WD615.87 automotive diesel engine remanufacturing system as an example is analyzed, the way of energy efficiency improvementnt and environmental friendly mechanism of remanufacturing process is put forward.

  15. Effects of Gravity on Cell Movement and Development

    NASA Technical Reports Server (NTRS)

    Wang, Yu-Li

    2002-01-01

    The main purpose of this project was to understand how the migration and growth of cultured cells respond to mechanical forces. We have made significant progress on all the proposed aims. The most important discoveries are that changes in the environmental mechanical input, such as during space flight, can induce profound changes in cell migration, growth, and programmed cell death. In addition, using genetically engineered cells, we have gained important insight into the molecular mechanism underlying such mechanosensing processes. The results are summarized.

  16. Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys.

    PubMed

    Gorsse, Stéphane; Hutchinson, Christopher; Gouné, Mohamed; Banerjee, Rajarshi

    2017-01-01

    We present a brief review of the microstructures and mechanical properties of selected metallic alloys processed by additive manufacturing (AM). Three different alloys, covering a large range of technology readiness levels, are selected to illustrate particular microstructural features developed by AM and clarify the engineering paradigm relating process-microstructure-property. With Ti-6Al-4V the emphasis is placed on the formation of metallurgical defects and microstructures induced by AM and their role on mechanical properties. The effects of the large in-built dislocation density, surface roughness and build atmosphere on mechanical and damage properties are discussed using steels. The impact of rapid solidification inherent to AM on phase selection is highlighted for high-entropy alloys. Using property maps, published mechanical properties of additive manufactured alloys are graphically summarized and compared to conventionally processed counterparts.

  17. Mechanical Design of a Performance Test Rig for the Turbine Air-Flow Task (TAFT)

    NASA Technical Reports Server (NTRS)

    Forbes, John C.; Xenofos, George D.; Farrow, John L.; Tyler, Tom; Williams, Robert; Sargent, Scott; Moharos, Jozsef

    2004-01-01

    To support development of the Boeing-Rocketdyne RS84 rocket engine, a full-flow, reaction turbine geometry was integrated into the NASA-MSFC turbine air-flow test facility. A mechanical design was generated which minimized the amount of new hardware while incorporating all test and instrumentation requirements. This paper provides details of the mechanical design for this Turbine Air-Flow Task (TAFT) test rig. The mechanical design process utilized for this task included the following basic stages: Conceptual Design. Preliminary Design. Detailed Design. Baseline of Design (including Configuration Control and Drawing Revision). Fabrication. Assembly. During the design process, many lessons were learned that should benefit future test rig design projects. Of primary importance are well-defined requirements early in the design process, a thorough detailed design package, and effective communication with both the customer and the fabrication contractors.

  18. Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys

    NASA Astrophysics Data System (ADS)

    Gorsse, Stéphane; Hutchinson, Christopher; Gouné, Mohamed; Banerjee, Rajarshi

    2017-12-01

    We present a brief review of the microstructures and mechanical properties of selected metallic alloys processed by additive manufacturing (AM). Three different alloys, covering a large range of technology readiness levels, are selected to illustrate particular microstructural features developed by AM and clarify the engineering paradigm relating process-microstructure-property. With Ti-6Al-4V the emphasis is placed on the formation of metallurgical defects and microstructures induced by AM and their role on mechanical properties. The effects of the large in-built dislocation density, surface roughness and build atmosphere on mechanical and damage properties are discussed using steels. The impact of rapid solidification inherent to AM on phase selection is highlighted for high-entropy alloys. Using property maps, published mechanical properties of additive manufactured alloys are graphically summarized and compared to conventionally processed counterparts.

  19. Advanced online control mode selection for gas turbine aircraft engines

    NASA Astrophysics Data System (ADS)

    Wiseman, Matthew William

    The modern gas turbine aircraft engine is a complex, highly nonlinear system the operates in a widely varying environment. Traditional engine control techniques based on the hydro mechanical control concepts of early turbojet engines are unable to deliver the performance required from today's advanced engine designs. A new type of advanced control utilizing multiple control modes and an online mode selector is investigated, and various strategies for improving the baseline mode selection architecture are introduced. The ability to five-tune actuator command outputs is added to the basic mode selection and blending process, and mode selection designs that we valid for the entire flight envelope are presented. Methods for optimizing the mode selector to improve overall engine performance are also discussed. Finally, using flight test data from a GE F110-powered F16 aircraft, the full-envelope mode selector designs are validated and shown to provide significant performance benefits. Specifically, thrust command tracking is enhanced while critical engine limits are protected, with very little impact on engine efficiency.

  20. A Global Assessment of Stem Cell Engineering

    PubMed Central

    Loring, Jeanne F.; McDevitt, Todd C.; Palecek, Sean P.; Schaffer, David V.; Zandstra, Peter W.

    2014-01-01

    Over the last 2 years a global assessment of stem cell engineering (SCE) was conducted with the sponsorship of the National Science Foundation, the National Cancer Institute at the National Institutes of Health, and the National Institute of Standards and Technology. The purpose was to gather information on the worldwide status and trends in SCE, that is, the involvement of engineers and engineering approaches in the stem cell field, both in basic research and in the translation of research into clinical applications and commercial products. The study was facilitated and managed by the World Technology Evaluation Center. The process involved site visits in both Asia and Europe, and it also included several different workshops. From this assessment, the panel concluded that there needs to be an increased role for engineers and the engineering approach. This will provide a foundation for the generation of new markets and future economic growth. To do this will require an increased investment in engineering, applied research, and commercialization as it relates to stem cell research and technology. It also will require programs that support interdisciplinary teams, new innovative mechanisms for academic–industry partnerships, and unique translational models. In addition, the global community would benefit from forming strategic partnerships between countries that can leverage existing and emerging strengths in different institutions. To implement such partnerships will require multinational grant programs with appropriate review mechanisms. PMID:24428577

  1. A global assessment of stem cell engineering.

    PubMed

    Loring, Jeanne F; McDevitt, Todd C; Palecek, Sean P; Schaffer, David V; Zandstra, Peter W; Nerem, Robert M

    2014-10-01

    Over the last 2 years a global assessment of stem cell engineering (SCE) was conducted with the sponsorship of the National Science Foundation, the National Cancer Institute at the National Institutes of Health, and the National Institute of Standards and Technology. The purpose was to gather information on the worldwide status and trends in SCE, that is, the involvement of engineers and engineering approaches in the stem cell field, both in basic research and in the translation of research into clinical applications and commercial products. The study was facilitated and managed by the World Technology Evaluation Center. The process involved site visits in both Asia and Europe, and it also included several different workshops. From this assessment, the panel concluded that there needs to be an increased role for engineers and the engineering approach. This will provide a foundation for the generation of new markets and future economic growth. To do this will require an increased investment in engineering, applied research, and commercialization as it relates to stem cell research and technology. It also will require programs that support interdisciplinary teams, new innovative mechanisms for academic-industry partnerships, and unique translational models. In addition, the global community would benefit from forming strategic partnerships between countries that can leverage existing and emerging strengths in different institutions. To implement such partnerships will require multinational grant programs with appropriate review mechanisms.

  2. Fabrication of a Neotrachea Using Engineered Cartilage

    PubMed Central

    Weidenbecher, Mark; Tucker, Harvey M.; Awadallah, Amad; Dennis, James E.

    2008-01-01

    Objectives Surgical management of long-segment tracheal stenosis is an ongoing problem. Many types of tracheal prostheses have been tried but with limited success because of immune rejection, graft ischemia, or restenosis. Tissue engineered cartilage may offer a solution to this problem, although scaffolds, which are currently often used for support, can lead to biocompatibility problems. This study investigated the feasibility of scaffold-free cartilage to tissue engineer a vascularized neotrachea in rabbits. Study Design Animal study. Methods Autologous neotracheal constructs were implanted in the abdomen of six New Zealand white rabbits. Auricular chondrocytes were used to engineer scaffold-free cartilage sheets. A muscle flap raised from the external abdominal oblique muscle and the engineered cartilage were wrapped around a silicone stent to fabricate a vascularized neotrachea in vivo. In two of the six rabbits, a full thickness skin graft was used to create an epithelial lining. The constructs were harvested after either 6 or 10 weeks. Results All neotracheal constructs were healthy with well-vascularized and integrated layers. The implanted engineered cartilage underwent a remodeling process, forming a solid tracheal framework. Constructs harvested after 10 weeks proved to have significantly better mechanical properties than after 6 weeks and were comparable with the rabbit's native trachea. Conclusion Scaffold-free engineered cartilage can successfully fabricate a well-vascularized, autologous neotrachea with excellent mechanical properties. The results suggest that this approach can be used to reconstruct tracheal defects in rabbits. PMID:18197138

  3. The Educational Needs of Graduate Mechanical Engineers in New Zealand.

    ERIC Educational Resources Information Center

    Deans, J.

    1999-01-01

    Surveys graduate and undergraduate mechanical engineering students at the University of Auckland. Shows that the dominant work activities of New Zealand mechanical engineers include design and consultancy and that graduate engineers rapidly migrate into management. (Author/CCM)

  4. The Specific Features of design and process engineering in branch of industrial enterprise

    NASA Astrophysics Data System (ADS)

    Sosedko, V. V.; Yanishevskaya, A. G.

    2017-06-01

    Production output of industrial enterprise is organized in debugged working mechanisms at each stage of product’s life cycle from initial design documentation to product and finishing it with utilization. The topic of article is mathematical model of the system design and process engineering in branch of the industrial enterprise, statistical processing of estimated implementation results of developed mathematical model in branch, and demonstration of advantages at application at this enterprise. During the creation of model a data flow about driving of information, orders, details and modules in branch of enterprise groups of divisions were classified. Proceeding from the analysis of divisions activity, a data flow, details and documents the state graph of design and process engineering was constructed, transitions were described and coefficients are appropriated. To each condition of system of the constructed state graph the corresponding limiting state probabilities were defined, and also Kolmogorov’s equations are worked out. When integration of sets of equations of Kolmogorov the state probability of system activity the specified divisions and production as function of time in each instant is defined. On the basis of developed mathematical model of uniform system of designing and process engineering and manufacture, and a state graph by authors statistical processing the application of mathematical model results was carried out, and also advantage at application at this enterprise is shown. Researches on studying of loading services probability of branch and third-party contractors (the orders received from branch within a month) were conducted. The developed mathematical model of system design and process engineering and manufacture can be applied to definition of activity state probability of divisions and manufacture as function of time in each instant that will allow to keep account of loading of performance of work in branches of the enterprise.

  5. A poly(glycerol sebacate)-coated mesoporous bioactive glass scaffold with adjustable mechanical strength, degradation rate, controlled-release and cell behavior for bone tissue engineering.

    PubMed

    Lin, Dan; Yang, Kai; Tang, Wei; Liu, Yutong; Yuan, Yuan; Liu, Changsheng

    2015-07-01

    Various requirements in the field of tissue engineering have motivated the development of three-dimensional scaffold with adjustable physicochemical properties and biological functions. A series of multiparameter-adjustable mesoporous bioactive glass (MBG) scaffolds with uncrosslinked poly(glycerol sebacate) (PGS) coating was prepared in this article. MBG scaffold was prepared by a modified F127/PU co-templating process and then PGS was coated by a simple adsorption and lyophilization process. Through controlling macropore parameters and PGS coating amount, the mechanical strength, degradation rate, controlled-release and cell behavior of the composite scaffold could be modulated in a wide range. PGS coating successfully endowed MBG scaffold with improved toughness and adjustable mechanical strength covering the bearing range of trabecular bone (2-12MPa). Multilevel degradation rate of the scaffold and controlled-release rate of protein from mesopore could be achieved, with little impact on the protein activity owing to an "ultralow-solvent" coating and "nano-cavity entrapment" immobilization method. In vitro studies indicated that PGS coating promoted cell attachment and proliferation in a dose-dependent manner, without affecting the osteogenic induction capacity of MBG substrate. These results first provide strong evidence that uncrosslinked PGS might also yield extraordinary achievements in traditional MBG scaffold. With the multiparameter adjustability, the composite MBG/PGS scaffolds would have a hopeful prospect in bone tissue engineering. The design considerations and coating method of this study can also be extended to other ceramic-based artificial scaffolds and are expected to provide new thoughts on development of future tissue engineering materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Implementing model-based system engineering for the whole lifecycle of a spacecraft

    NASA Astrophysics Data System (ADS)

    Fischer, P. M.; Lüdtke, D.; Lange, C.; Roshani, F.-C.; Dannemann, F.; Gerndt, A.

    2017-09-01

    Design information of a spacecraft is collected over all phases in the lifecycle of a project. A lot of this information is exchanged between different engineering tasks and business processes. In some lifecycle phases, model-based system engineering (MBSE) has introduced system models and databases that help to organize such information and to keep it consistent for everyone. Nevertheless, none of the existing databases approached the whole lifecycle yet. Virtual Satellite is the MBSE database developed at DLR. It has been used for quite some time in Phase A studies and is currently extended for implementing it in the whole lifecycle of spacecraft projects. Since it is unforeseeable which future use cases such a database needs to support in all these different projects, the underlying data model has to provide tailoring and extension mechanisms to its conceptual data model (CDM). This paper explains the mechanisms as they are implemented in Virtual Satellite, which enables extending the CDM along the project without corrupting already stored information. As an upcoming major use case, Virtual Satellite will be implemented as MBSE tool in the S2TEP project. This project provides a new satellite bus for internal research and several different payload missions in the future. This paper explains how Virtual Satellite will be used to manage configuration control problems associated with such a multi-mission platform. It discusses how the S2TEP project starts using the software for collecting the first design information from concurrent engineering studies, then making use of the extension mechanisms of the CDM to introduce further information artefacts such as functional electrical architecture, thus linking more and more processes into an integrated MBSE approach.

  7. Software Engineering Technology Infusion Within NASA

    NASA Technical Reports Server (NTRS)

    Zelkowitz, Marvin V.

    1996-01-01

    Abstract technology transfer is of crucial concern to both government and industry today. In this paper, several software engineering technologies used within NASA are studied, and the mechanisms, schedules, and efforts at transferring these technologies are investigated. The goals of this study are: 1) to understand the difference between technology transfer (the adoption of a new method by large segments of an industry) as an industry-wide phenomenon and the adoption of a new technology by an individual organization (called technology infusion); and 2) to see if software engineering technology transfer differs from other engineering disciplines. While there is great interest today in developing technology transfer models for industry, it is the technology infusion process that actually causes changes in the current state of the practice.

  8. Endochondral Priming: A Developmental Engineering Strategy for Bone Tissue Regeneration.

    PubMed

    Freeman, Fiona E; McNamara, Laoise M

    2017-04-01

    Tissue engineering and regenerative medicine have significant potential to treat bone pathologies by exploiting the capacity for bone progenitors to grow and produce tissue constituents under specific biochemical and physical conditions. However, conventional tissue engineering approaches, which combine stem cells with biomaterial scaffolds, are limited as the constructs often degrade, due to a lack of vascularization, and lack the mechanical integrity to fulfill load bearing functions, and as such are not yet widely used for clinical treatment of large bone defects. Recent studies have proposed that in vitro tissue engineering approaches should strive to simulate in vivo bone developmental processes and, thereby, imitate natural factors governing cell differentiation and matrix production, following the paradigm recently defined as "developmental engineering." Although developmental engineering strategies have been recently developed that mimic specific aspects of the endochondral ossification bone formation process, these findings are not widely understood. Moreover, a critical comparison of these approaches to standard biomaterial-based bone tissue engineering has not yet been undertaken. For that reason, this article presents noteworthy experimental findings from researchers focusing on developing an endochondral-based developmental engineering strategy for bone tissue regeneration. These studies have established that in vitro approaches, which mimic certain aspects of the endochondral ossification process, namely the formation of the cartilage template and the vascularization of the cartilage template, can promote mineralization and vascularization to a certain extent both in vitro and in vivo. Finally, this article outlines specific experimental challenges that must be overcome to further exploit the biology of endochondral ossification and provide a tissue engineering construct for clinical treatment of large bone/nonunion defects and obviate the need for bone tissue graft.

  9. Investigation of low cost material processes for liquid rocket engines

    NASA Technical Reports Server (NTRS)

    Nguyentat, Thinh; Kawashige, Chester M.; Scala, James G.; Horn, Ronald M.

    1993-01-01

    The development of low cost material processes is essential to the achievement of economical liquid rocket propulsion systems in the next century. This paper will present the results of the evaluation of some promising material processes including powder metallurgy, vacuum plasma spray, metal spray forming, and bulge forming. The physical and mechanical test results from the samples and subscale hardware fabricated from high strength copper alloys and superalloys will be discussed.

  10. Next Generation Tissue Engineering of Orthopedic Soft Tissue-to-Bone Interfaces.

    PubMed

    Boys, Alexander J; McCorry, Mary Clare; Rodeo, Scott; Bonassar, Lawrence J; Estroff, Lara A

    2017-09-01

    Soft tissue-to-bone interfaces are complex structures that consist of gradients of extracellular matrix materials, cell phenotypes, and biochemical signals. These interfaces, called entheses for ligaments, tendons, and the meniscus, are crucial to joint function, transferring mechanical loads and stabilizing orthopedic joints. When injuries occur to connected soft tissue, the enthesis must be re-established to restore function, but due to structural complexity, repair has proven challenging. Tissue engineering offers a promising solution for regenerating these tissues. This prospective review discusses methodologies for tissue engineering the enthesis, outlined in three key design inputs: materials processing methods, cellular contributions, and biochemical factors.

  11. Next Generation Tissue Engineering of Orthopedic Soft Tissue-to-Bone Interfaces

    PubMed Central

    Boys, Alexander J.; McCorry, Mary Clare; Rodeo, Scott; Bonassar, Lawrence J.; Estroff, Lara A.

    2017-01-01

    Soft tissue-to-bone interfaces are complex structures that consist of gradients of extracellular matrix materials, cell phenotypes, and biochemical signals. These interfaces, called entheses for ligaments, tendons, and the meniscus, are crucial to joint function, transferring mechanical loads and stabilizing orthopedic joints. When injuries occur to connected soft tissue, the enthesis must be re-established to restore function, but due to structural complexity, repair has proven challenging. Tissue engineering offers a promising solution for regenerating these tissues. This prospective review discusses methodologies for tissue engineering the enthesis, outlined in three key design inputs: materials processing methods, cellular contributions, and biochemical factors. PMID:29333332

  12. Creep fatigue life prediction for engine hot section materials (isotropic): Fourth year progress review

    NASA Technical Reports Server (NTRS)

    Nelson, Richard S.; Schoendorf, John F.

    1986-01-01

    As gas turbine technology continues to advance, the need for advanced life prediction methods for hot section components is becoming more and more evident. The complex local strain and temperature histories at critical locations must be accurately interpreted to account for the effects of various damage mechanisms (such as fatigue, creep, and oxidation) and their possible interactions. As part of the overall NASA HOST effort, this program is designed to investigate these fundamental damage processes, identify modeling strategies, and develop practical models which can be used to guide the early design and development of new engines and to increase the durability of existing engines.

  13. Innovating Method of Existing Mechanical Product Based on TRIZ Theory

    NASA Astrophysics Data System (ADS)

    Zhao, Cunyou; Shi, Dongyan; Wu, Han

    Main way of product development is adaptive design and variant design based on existing product. In this paper, conceptual design frame and its flow model of innovating products is put forward through combining the methods of conceptual design and TRIZ theory. Process system model of innovating design that includes requirement analysis, total function analysis and decomposing, engineering problem analysis, finding solution of engineering problem and primarily design is constructed and this establishes the base for innovating design of existing product.

  14. Lunar soil properties and soil mechanics

    NASA Technical Reports Server (NTRS)

    Mitchell, J. K.; Houston, W. N.

    1974-01-01

    The long-range objectives were to develop methods of experimentation and analysis for the determination of the physical properties and engineering behavior of lunar surface materials under in situ environmental conditions. Data for this purpose were obtained from on-site manned investigations, orbiting and softlanded spacecraft, and terrestrial simulation studies. Knowledge of lunar surface material properties are reported for the development of models for several types of lunar studies and for the investigation of lunar processes. The results have direct engineering application for manned missions to the moon.

  15. Integrating post-manufacturing issues into design and manufacturing decisions

    NASA Technical Reports Server (NTRS)

    Eubanks, Charles F.

    1996-01-01

    An investigation is conducted on research into some of the fundamental issues underlying the design for manufacturing, service and recycling that affect engineering decisions early in the conceptual design phase of mechanical systems. The investigation focuses on a system-based approach to material selection, manufacturing methods and assembly processes related to overall product requirements, performance and life-cycle costs. Particular emphasis is placed on concurrent engineering decision support for post-manufacturing issues such as serviceability, recyclability, and product retirement.

  16. Combinatory approach for developing silk fibroin scaffolds for cartilage regeneration.

    PubMed

    Ribeiro, Viviana P; da Silva Morais, Alain; Maia, F Raquel; Canadas, Raphael F; Costa, João B; Oliveira, Ana L; Oliveira, Joaquim M; Reis, Rui L

    2018-05-01

    Several processing technologies and engineering strategies have been combined to create scaffolds with superior performance for efficient tissue regeneration. Cartilage tissue is a good example of that, presenting limited self-healing capacity together with a high elasticity and load-bearing properties. In this work, novel porous silk fibroin (SF) scaffolds derived from horseradish peroxidase (HRP)-mediated crosslinking of highly concentrated aqueous SF solution (16 wt%) in combination with salt-leaching and freeze-drying methodologies were developed for articular cartilage tissue engineering (TE) applications. The HRP-crosslinked SF scaffolds presented high porosity (89.3 ± 0.6%), wide pore distribution and high interconnectivity (95.9 ± 0.8%). Moreover, a large swelling capacity and favorable degradation rate were observed up to 30 days, maintaining the porous-like structure and β-sheet conformational integrity obtained with salt-leaching and freeze-drying processing. The in vitro studies supported human adipose-derived stem cells (hASCs) adhesion, proliferation, and high glycosaminoglycans (GAGs) synthesis under chondrogenic culture conditions. Furthermore, the chondrogenic differentiation of hASCs was assessed by the expression of chondrogenic-related markers (collagen type II, Sox-9 and Aggrecan) and deposition of cartilage-specific extracellular matrix for up to 28 days. The cartilage engineered constructs also presented structural integrity as their mechanical properties were improved after chondrogenic culturing. Subcutaneous implantation of the scaffolds in CD-1 mice demonstrated no necrosis or calcification, and deeply tissue ingrowth. Collectively, the structural properties and biological performance of these porous HRP-crosslinked SF scaffolds make them promising candidates for cartilage regeneration. In cartilage tissue engineering (TE), several processing technologies have been combined to create scaffolds for efficient tissue repair. In our study, we propose novel silk fibroin (SF) scaffolds derived from enzymatically crosslinked SF hydrogels processed by salt-leaching and freeze-drying technologies, for articular cartilage applications. Though these scaffolds, we were able to combine the elastic properties of hydrogel-based systems, with the stability, resilience and controlled porosity of scaffolds processed via salt-leaching and freeze-drying technologies. SF protein has been extensively explored for TE applications, as a result of its mechanical strength, elasticity, biocompatibility, and biodegradability. Thus, the structural, mechanical and biological performance of the proposed scaffolds potentiates their use as three-dimensional matrices for cartilage regeneration. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Myths and realities: Defining re-engineering for a large organization

    NASA Technical Reports Server (NTRS)

    Yin, Sandra; Mccreary, Julia

    1992-01-01

    This paper describes the background and results of three studies concerning software reverse engineering, re-engineering, and reuse (R3) hosted by the Internal Revenue Service in 1991 and 1992. The situation at the Internal Revenue--aging, piecemeal computer systems and outdated technology maintained by a large staff--is familiar to many institutions, especially among management information systems. The IRS is distinctive for the sheer magnitude and diversity of its problems; the country's tax records are processed using assembly language and COBOL and spread across tape and network DBMS files. How do we proceed with replacing legacy systems? The three software re-engineering studies looked at methods, CASE tool support, and performed a prototype project using re-engineering methods and tools. During the course of these projects, we discovered critical issues broader than the mechanical definitions of methods and tool technology.

  18. Application of new optical coherence elastography to monitor the mineralization processing in bone tissue engineering constructs

    NASA Astrophysics Data System (ADS)

    Guan, Guangying; Song, Shaozhen; Huang, Zhihong; Yang, Ying

    2015-03-01

    Generation of functional tissue in vitro through tissue engineering technique is a promising direction to repair and replace malfunctioned organ and tissue in the modern medicine for various diseases which could not been treated well by conventional therapy. Similar to the embryo development, the generation of tissue in vitro is a highly dynamic processing. Obtaining the feedback of the processing real time is highly demanded. In this study, a new methodology has been explored aiming to monitor the morphological and mechanical property alteration of bone tissue engineering constructs simultaneously. Optical coherence elastography (OCE) equipped with a LDS V201 permanent magnet shaker and a modulated acoustic radiation force (ARF) to provide a vibration signal, has been used for the real time and non-destructive monitoring. A phantom construct system has been used to optimize the measurement conditions in which agar hydrogel with concentration from 0, 0.75 to 2% with/without hydroxyappatite particles have been injected to 3D porous poly (lactic acid) scaffolds to simulate the collagenous extracellular matrix (ECM) and mineralized ECM. The structural and elastography images of the constructs have clearly demonstrated the linear relation with the increased mechanical property versus the increase of agar concentration within the pores of the scaffolds. The MG63 bone cells seeded in the scaffolds and cultured for 4 weeks have been monitored by the established protocol exhibiting the increased mechanical strength in the pore wall where the ECM or mineralized ECM was assumed to be formed in comparison to empty pores. This study confirms that OCE-ARF could become a valuable tool in regenerative medicine to assess the biological events during in vitro culture and conditioning.

  19. Introductory Education for Mechanical Engineering by Exercise in Mechanical Disassembly

    NASA Astrophysics Data System (ADS)

    Matsui, Yoshio; Asakawa, Naoki; Iwamori, Satoru

    An introductory program “Exercise for engineers in mechanical disassembly” is an exercise that ten students of every team disassemble a motor scooter to the components and then assemble again to the initial form in 15 weeks. The purpose of this program is to introduce mechanical engineering by touching the real machine and learning how it is composed from various mechanical parts to the students at the early period after the entrance into the university. Additional short lectures by young teachers and a special lecture by a top engineer in the industry encourage the students to combine the actual machine and the mechanical engineering subjects. Furthermore, various educations such as group leader system, hazard prediction training, parts filing are included in this program. As a result, students recognize the importance of the mechanical engineering study and the way of group working.

  20. Issues in nanocomposite ceramic engineering: focus on processing and properties of alumina-based composites.

    PubMed

    Palmero, Paola; Kern, Frank; Sommer, Frank; Lombardi, Mariangela; Gadow, Rainer; Montanaro, Laura

    2014-12-30

    Ceramic nanocomposites, containing at least one phase in the nanometric dimension, have received special interest in recent years. They have, in fact, demonstrated increased performance, reliability and lifetime with respect to monolithic ceramics. However, a successful approach to the production of tailored composite nanostructures requires the development of innovative concepts at each step of manufacturing, from the synthesis of composite nanopowders, to their processing and sintering.This review aims to deepen understanding of some of the critical issues associated with the manufacturing of nanocomposite ceramics, focusing on alumina-based composite systems. Two case studies are presented and briefly discussed. The former illustrates the benefits, in terms of sintered microstructure and related mechanical properties, resulting from the application of an engineering approach to a laboratory-scale protocol for the elaboration of nanocomposites in the system alumina-ZrO2-YAG (yttrium aluminium garnet). The latter illustrates the manufacturing of alumina-based composites for large-scale applications such as cutting tools, carried out by an injection molding process. The need for an engineering approach to be applied in all processing steps is demonstrated also in this second case study, where a tailored manufacturing process is required to obtain the desired results.

  1. The composing process of technical writers: A preliminary study

    NASA Technical Reports Server (NTRS)

    Mair, D.; Roundy, N.

    1981-01-01

    The assumption that technical writers compose as do other writers is tested. The literature on the composing process, not limited to the pure or applied sciences, was reviewed, yielding three areas of general agreement. The composing process (1) consists of several stages, (2) is reflexive, and (3) may be mastered by means of strategies. Data on the ways technical writers compose were collected, and findings were related to the three areas of agreement. Questionnaires and interviews surveying 70 writers were used. The disciplines represented by these writers included civil, chemical, agricultural, geological, mechanical, electrical, and petroleum engineering, chemistry, hydrology, geology, and biology. Those providing consulting services, or performing research. No technical editors or professional writers were surveyed, only technicians, engineers, and researchers whose jobs involved composing reports. Three pedagogical implications are included.

  2. Future fundamental combustion research for aeropropulsion systems

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.

    1985-01-01

    Physical fluid mechanics, heat transfer, and chemical kinetic processes which occur in the combustion chamber of aeropropulsion systems were investigated. With the component requirements becoming more severe for future engines, the current design methodology needs the new tools to obtain the optimum configuration in a reasonable design and development cycle. Research efforts in the last few years were encouraging but to achieve these benefits research is required into the fundamental aerothermodynamic processes of combustion. It is recommended that research continues in the areas of flame stabilization, combustor aerodynamics, heat transfer, multiphase flow and atomization, turbulent reacting flows, and chemical kinetics. Associated with each of these engineering sciences is the need for research into computational methods to accurately describe and predict these complex physical processes. Research needs in each of these areas are highlighted.

  3. Engineering of mechanical manufacturing from the cradle to cradle

    NASA Astrophysics Data System (ADS)

    Peralta, M. E.; Aguayo, F.; Lama, J. R.

    2012-04-01

    The sustainability of manufacturing processes lies in industrial planning and productive activity. Industrial plants are characterized by the management of resource (inputs and outputs), processing and conversion processes, which usually are organized in a linear system. Good planning will optimize the manufacturing and promoting the quality of the industrial system. Cradle to Cradle is a new paradigm for engineering and sustainable manufacturing that integrates projects (industrial parks, manufacturing plants, systems and products) in a framework consistent with the environment, adapted to the society and technology and economically viable. To carry it out, we implement this paradigm in the MGE2 (Genomic Model of Eco-innovation and Eco-design), as a methodology for designing and developing products and manufacturing systems with an approach from the cradle to cradle.

  4. Systems Thinking for the Enterprise: A Thought Piece

    NASA Astrophysics Data System (ADS)

    Rebovich, George

    This paper suggests a way of managing the acquisition of capabilities for large-scale government enterprises that is different from traditional "specify and build" approaches commonly employed by U.S. government agencies in acquiring individual systems or systems of systems (SoS). Enterprise capabilities evolve through the emergence and convergence of information and other technologies and their integration into social, institutional and operational organizations and processes. Enterprise capabilities evolve whether or not the enterprise has processes in place to actively manage them. Thus the critical role of enterprise system engineering (ESE) processes should be to shape, enhance and accelerate the "natural" evolution of enterprise capabilities. ESE processes do not replace or add a layer to traditional system engineering (TSE) processes used in developing individual systems or SoS. ESE processes should complement TSE processes by shaping outcome spaces and stimulating interactions among enterprise participants through marketlike mechanisms to reward those that create innovation which moves and accelerates the evolution of the enterprise.

  5. Compendium of Abstracts on Statistical Applications in Geotechnical Engineering.

    DTIC Science & Technology

    1983-09-01

    research in the application of probabilistic and statistical methods to soil mechanics, rock mechanics, and engineering geology problems have grown markedly...probability, statistics, soil mechanics, rock mechanics, and engineering geology. 2. The purpose of this report is to make available to the U. S...Deformation Dynamic Response Analysis Seepage, Soil Permeability and Piping Earthquake Engineering, Seismology, Settlement and Heave Seismic Risk Analysis

  6. Teaching Continuum Mechanics in a Mechanical Engineering Program

    ERIC Educational Resources Information Center

    Liu, Yucheng

    2011-01-01

    This paper introduces a graduate course, continuum mechanics, which is designed for and taught to graduate students in a Mechanical Engineering (ME) program. The significance of continuum mechanics in engineering education is demonstrated and the course structure is described. Methods used in teaching this course such as topics, class…

  7. Applicability of Online Education to Large Undergraduate Engineering Courses

    NASA Astrophysics Data System (ADS)

    Bir, Devayan Debashis

    With the increase in undergraduate engineering enrollment, many universities have chosen to teach introductory engineering courses such as Statics of Engineering and Mechanics of Materials in large classes due to budget limitations. With the overwhelming literature against traditionally taught large classes, this study aims to see the effects of the trending online pedagogy. Online courses are the latest trend in education due to the flexibility they provide to students in terms of schedule and pace of learning with the added advantage of being less expensive for the university over a period. In this research, the effects of online lectures on engineering students' course performances and students' attitudes towards online learning were examined. Specifically, the academic performances of students enrolled in a traditionally taught, lecture format Mechanics of Materials course with the performance of students in an online Mechanics of Materials course in summer 2016 were compared. To see the effect of the two different teaching approaches across student types, students were categorized by gender, enrollment status, nationality, and by the grades students obtained for Statics, one of the prerequisite courses for Mechanics of Materials. Student attitudes towards the online course will help to keep the process of continuously improving the online course, specifically, to provide quality education through the online medium in terms of course content and delivery. The findings of the study show that the online pedagogy negatively affects student academic performance when compared to the traditional face-to-face pedagogy across all categories, except for the high scoring students. Student attitudes reveal that while they enjoyed the flexibility schedule and control over their pace of studying, they faced issues with self-regulation and face-to-face interaction.

  8. Experimental thermodynamics of single molecular motor.

    PubMed

    Toyabe, Shoichi; Muneyuki, Eiro

    2013-01-01

    Molecular motor is a nano-sized chemical engine that converts chemical free energy to mechanical motions. Hence, the energetics is as important as kinetics in order to understand its operation principle. We review experiments to evaluate the thermodynamic properties of a rotational F1-ATPase motor (F1-motor) at a single-molecule level. We show that the F1-motor achieves 100% thermo dynamic efficiency at the stalled state. Furthermore, the motor reduces the internal irreversible heat inside the motor to almost zero and achieves a highly-efficient free energy transduction close to 100% during rotations far from quasistatic process. We discuss the mechanism of how the F1-motor achieves such a high efficiency, which highlights the remarkable property of the nano-sized engine F1-motor.

  9. Quantitative Ultrasonic Evaluation of Mechanical Properties of Engineering Materials

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1978-01-01

    Progress in the application of ultrasonic techniques to nondestructive measurement of mechanical strength of engineering materials is reviewed. A dormant concept in nondestructive evaluation (NDE) is invoked. The availability of ultrasonic methods that can be applied to actual parts to assess their potential susceptibility to failure under design conditions is discussed. It was shown that ultrasonic methods yield measurements of elastic moduli, microstructure, hardness, fracture toughness, tensile strength, yield strength, and shear strength for a wide range of materials (including many types of metals, ceramics, and fiber composites). It was also indicated that although most of these methods were shown feasible in laboratory studies, more work is needed before they can be used on actual parts in processing, assembly, inspection, and maintenance lines.

  10. Advanced Technology Inlet Design, NRA 8-21 Cycle II: DRACO Flowpath Hypersonic Inlet Design

    NASA Technical Reports Server (NTRS)

    Sanders, Bobby W.; Weir, Lois J.

    1999-01-01

    The report outlines work performed in support of the flowpath development for the DRACO engine program. The design process initiated to develop a hypersonic axisymmetric inlet for a Mach 6 rocket-based combined cycle (RBCC) engine is discussed. Various design parametrics were investigated, including design shock-on-lip Mach number, cone angle, throat Mach number, throat angle. length of distributed compression, and subsonic diffuser contours. Conceptual mechanical designs consistent with installation into the D-21 vehicle were developed. Additionally, program planning for an intensive inlet development program to support a Critical Design Review in three years was performed. This development program included both analytical and experimental elements and support for a flight-capable inlet mechanical design.

  11. Outsourcing neural active control to passive composite mechanics: a tissue engineered cyborg ray

    NASA Astrophysics Data System (ADS)

    Gazzola, Mattia; Park, Sung Jin; Park, Kyung Soo; Park, Shirley; di Santo, Valentina; Deisseroth, Karl; Lauder, George V.; Mahadevan, L.; Parker, Kevin Kit

    2016-11-01

    Translating the blueprint that stingrays and skates provide, we create a cyborg swimming ray capable of orchestrating adaptive maneuvering and phototactic navigation. The impossibility of replicating the neural system of batoids fish is bypassed by outsourcing algorithmic functionalities to the body composite mechanics, hence casting the active control problem into a design, passive one. We present a first step in engineering multilevel "brain-body-flow" systems that couple sensory information to motor coordination and movement, leading to behavior. This work paves the way for the development of autonomous and adaptive artificial creatures able to process multiple sensory inputs and produce complex behaviors in distributed systems and may represent a path toward soft-robotic "embodied cognition".

  12. The Evaluation of Industry Practical of Mechanical Engineering in Vocational Education: A CIPP Model Approach

    NASA Astrophysics Data System (ADS)

    Kamaludin, M.; Munawar, W.; Mahdan, D.; Simanjuntak, M. V.; Wendi, H. F.

    2018-02-01

    The learning system is not only studied on campus but also practicing in the world of work. Industry Practical aims to enable students to develop their skills in accordance with the real world of work. To know the success of the implementation of industry practical program then held evaluation. The evaluation of the program in this study used the CIPP evaluation approach (Context, Input, Process, Product). The purpose of this research is to know the extent of achievement and success of industry practical program at vocational school in Bandung with descriptive research method using mix method approach. The sample in this research is students majoring in mechanical engineering in the city of Bandung who have done industry practical.

  13. Lyophilized Silk Sponges: A Versatile Biomaterial Platform for Soft Tissue Engineering

    PubMed Central

    2015-01-01

    We present a silk biomaterial platform with highly tunable mechanical and degradation properties for engineering and regeneration of soft tissues such as, skin, adipose, and neural tissue, with elasticity properties in the kilopascal range. Lyophilized silk sponges were prepared under different process conditions and the effect of silk molecular weight, concentration and crystallinity on 3D scaffold formation, structural integrity, morphology, mechanical and degradation properties, and cell interactions in vitro and in vivo were studied. Tuning the molecular weight distribution (via degumming time) of silk allowed the formation of stable, highly porous, 3D scaffolds that held form with silk concentrations as low as 0.5% wt/v. Mechanical properties were a function of silk concentration and scaffold degradation was driven by beta-sheet content. Lyophilized silk sponges supported the adhesion of mesenchymal stem cells throughout 3D scaffolds, cell proliferation in vitro, and cell infiltration and scaffold remodeling when implanted subcutaneously in vivo. PMID:25984573

  14. Influence analysis of electronically and vibrationally excited particles on the ignition of methane and hydrogen under the conditions of a gas turbine engine

    NASA Astrophysics Data System (ADS)

    Deminskii, M. A.; Konina, K. M.; Potapkin, B. V.

    2018-03-01

    The vibronic and electronic energy relaxation phenomena in the specific conditions of a gas turbine engine were investigated in this paper. The plasma-chemical mechanism has been augmented with the results of recent investigations of the processes that involve electronically and vibrationally excited species. The updated mechanism was employed for the computer simulation of plasma-assisted combustion of hydrogen-air and methane-air mixtures under high pressure and in the range of initial temperatures T  =  500-900 K. The updated mechanism was verified using the experimental data. The influence of electronically excited nitrogen on the ignition delay time was analyzed. The rate coefficient of the vibration-vibration exchange between N2 and HO2 was calculated as well as the rate coefficient of HO2 decomposition.

  15. [Fermentation production of microbial catalase and its application in textile industry].

    PubMed

    Zhang, Dongxu; Du, Guocheng; Chen, Jian

    2010-11-01

    Microbial catalase is an important industrial enzyme that catalyzes the decomposition of hydrogen peroxide to water and oxygen. This enzyme has great potential of application in food, textile and pharmaceutical industries. The production of microbial catalase has been significantly improved thanks to advances in bioprocess engineering and genetic engineering. In this paper, we review the progresses in fermentation production of microbial catalase and its application in textile industry. Among these progresses, we will highlight strain isolation, substrate and environment optimization, enzyme induction, construction of engineering strains and application process optimization. Meanwhile, we also address future research trends for microbial catalase production and its application in textile industry. Molecular modification (site-directed mutagenesis and directed revolution) will endue catalase with high pH and temperature stabilities. Improvement of catalase production, based on the understanding of induction mechanism and the process control of recombinant stain fermentation, will further accelerate the application of catalase in textile industry.

  16. Continuous micron-scaled rope engineering using a rotating multi-nozzle electrospinning emitter

    NASA Astrophysics Data System (ADS)

    Zhang, Chunchen; Gao, Chengcheng; Chang, Ming-Wei; Ahmad, Zeeshan; Li, Jing-Song

    2016-10-01

    Electrospinning (ES) enables simple production of fibers for broad applications (e.g., biomedical engineering, energy storage, and electronics). However, resulting structures are predominantly random; displaying significant disordered fiber entanglement, which inevitably gives rise to structural variations and reproducibility on the micron scale. Surface and structural features on this scale are critical for biomaterials, tissue engineering, and pharmaceutical sciences. In this letter, a modified ES technique using a rotating multi-nozzle emitter is developed and utilized to fabricate continuous micron-scaled polycaprolactone (PCL) ropes, providing control on fiber intercalation (twist) and structural order. Micron-scaled ropes comprising 312 twists per millimeter are generated, and rope diameter and pitch length are regulated using polymer concentration and process parameters. Electric field simulations confirm vector and distribution mechanisms, which influence fiber orientation and deposition during the process. The modified fabrication system provides much needed control on reproducibility and fiber entanglement which is crucial for electrospun biomedical materials.

  17. Description of operation of fast-response solenoid actuator in diesel fuel system model

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Grekhov, L. V.; Fan, L.; Ma, X.; Song, E.

    2018-03-01

    The performance of the fast-response solenoid actuator (FRSA) of engine fuel systems is characterized by the response time of less than 0.1 ms and the necessity to take into consideration the non-stationary peculiarities of mechanical, hydraulic, electrical and magnetic processes. Simple models for magnetization in static and dynamic hysteresis are used for this purpose. The experimental study of the FRSA performance within the electro-hydraulic injector of the Common Rail demonstrated an agreement between the computational and experimental results. The computation of the processes is not only a tool for analysis, but also a tool for design and optimization of the solenoid actuator of new engine fuels systems.

  18. Robotics technology discipline

    NASA Technical Reports Server (NTRS)

    Montemerlo, Melvin D.

    1990-01-01

    Viewgraphs on robotics technology discipline for Space Station Freedom are presented. Topics covered include: mechanisms; sensors; systems engineering processes for integrated robotics; man/machine cooperative control; 3D-real-time machine perception; multiple arm redundancy control; manipulator control from a movable base; multi-agent reasoning; and surfacing evolution technologies.

  19. 1301163

    NASA Image and Video Library

    2013-10-29

    MSFC MECHANICAL ENGINEER BRIAN WEST, (L), DEMONSTRATES STRUCTURED LIGHT SCANNING PROCESS TO MEMBERS OF THE BREMEN, GERMANY, BUSINESS DELEGATION WHO VISITED MARSHALL RECENTLY. SENATOR MARTIN GÜNTHNER, MINISTRY OF ECONOMIC AFFAIRS, LABOUR AND PORTS (CENTER) VIEWS THE PRESSURE VESSEL BEING SCANNED. AT RIGHT IS BERND SCHMELING, SENIOR MANAGER PROCUREMENT, AIRBUS OPERATIONS GMBH

  20. Harnessing biomechanics to develop cartilage regeneration strategies.

    PubMed

    Athanasiou, Kyriacos A; Responte, Donald J; Brown, Wendy E; Hu, Jerry C

    2015-02-01

    As this review was prepared specifically for the American Society of Mechanical Engineers H.R. Lissner Medal, it primarily discusses work toward cartilage regeneration performed in Dr. Kyriacos A. Athanasiou's laboratory over the past 25 years. The prevalence and severity of degeneration of articular cartilage, a tissue whose main function is largely biomechanical, have motivated the development of cartilage tissue engineering approaches informed by biomechanics. This article provides a review of important steps toward regeneration of articular cartilage with suitable biomechanical properties. As a first step, biomechanical and biochemical characterization studies at the tissue level were used to provide design criteria for engineering neotissues. Extending this work to the single cell and subcellular levels has helped to develop biochemical and mechanical stimuli for tissue engineering studies. This strong mechanobiological foundation guided studies on regenerating hyaline articular cartilage, the knee meniscus, and temporomandibular joint (TMJ) fibrocartilage. Initial tissue engineering efforts centered on developing biodegradable scaffolds for cartilage regeneration. After many years of studying scaffold-based cartilage engineering, scaffoldless approaches were developed to address deficiencies of scaffold-based systems, resulting in the self-assembling process. This process was further improved by employing exogenous stimuli, such as hydrostatic pressure, growth factors, and matrix-modifying and catabolic agents, both singly and in synergistic combination to enhance neocartilage functional properties. Due to the high cell needs for tissue engineering and the limited supply of native articular chondrocytes, costochondral cells are emerging as a suitable cell source. Looking forward, additional cell sources are investigated to render these technologies more translatable. For example, dermis isolated adult stem (DIAS) cells show potential as a source of chondrogenic cells. The challenging problem of enhanced integration of engineered cartilage with native cartilage is approached with both familiar and novel methods, such as lysyl oxidase (LOX). These diverse tissue engineering strategies all aim to build upon thorough biomechanical characterizations to produce functional neotissue that ultimately will help combat the pressing problem of cartilage degeneration. As our prior research is reviewed, we look to establish new pathways to comprehensively and effectively address the complex problems of musculoskeletal cartilage regeneration.

  1. Air Force Center of Excellence on Bio-nano-enabled Inorganic/Organic Nanostructures and Improved Cognition (BIONIC)

    DTIC Science & Technology

    2015-01-09

    IRG #3)  Mostafa A. El-Sayed, School of Chemistry & Biochemistry (IRG #2)  Andrei Fedorov, School of Mechanical Engineering (IRG #2)  Michael A...Engineering, U.S. Citizen)  *David Anderson (Ph.D. student, School of Mechanical Engineering, U.S. Citizen)  Luke A. Beardslee (Ph.D. student, School...Songkil Kim (PhD student, School of Mechanical Engineering)  Philip Kwon (Ph.D. student, School of Mechanical Engineering, U.S. Citizen)  Erin Lightman

  2. Powder metallurgy processing of high strength turbine disk alloys

    NASA Technical Reports Server (NTRS)

    Evans, D. J.

    1976-01-01

    Using vacuum-atomized AF2-1DA and Mar-M432 powders, full-scale gas turbine engine disks were fabricated by hot isostatically pressing (HIP) billets which were then isothermally forged using the Pratt & Whitney Aircraft GATORIZING forging process. While a sound forging was produced in the AF2-1DA, a container leak had occurred in the Mar-M432 billet during HIP. This resulted in billet cracking during forging. In-process control procedures were developed to identify such leaks. The AF2-1DA forging was heat treated and metallographic and mechanical property evaluation was performed. Mechanical properties exceeded those of Astroloy, one of the highest temperature capability turbine disk alloys presently used.

  3. Finite element study of scaffold architecture design and culture conditions for tissue engineering.

    PubMed

    Olivares, Andy L; Marsal, Elia; Planell, Josep A; Lacroix, Damien

    2009-10-01

    Tissue engineering scaffolds provide temporary mechanical support for tissue regeneration and transfer global mechanical load to mechanical stimuli to cells through its architecture. In this study the interactions between scaffold pore morphology, mechanical stimuli developed at the cell microscopic level, and culture conditions applied at the macroscopic scale are studied on two regular scaffold structures. Gyroid and hexagonal scaffolds of 55% and 70% porosity were modeled in a finite element analysis and were submitted to an inlet fluid flow or compressive strain. A mechanoregulation theory based on scaffold shear strain and fluid shear stress was applied for determining the influence of each structures on the mechanical stimuli on initial conditions. Results indicate that the distribution of shear stress induced by fluid perfusion is very dependent on pore distribution within the scaffold. Gyroid architectures provide a better accessibility of the fluid than hexagonal structures. Based on the mechanoregulation theory, the differentiation process in these structures was more sensitive to inlet fluid flow than axial strain of the scaffold. This study provides a computational approach to determine the mechanical stimuli at the cellular level when cells are cultured in a bioreactor and to relate mechanical stimuli with cell differentiation.

  4. Engineered Three-Dimensional Cardiac Fibrotic Tissue to Study Fibrotic Remodeling

    PubMed Central

    Sadeghi, Amir Hossein; Shin, Su Ryon; Deddens, Janine C.; Fratta, Giuseppe; Mandla, Serena; Yazdi, Iman K.; Prakash, Gyan; Antona, Silvia; Demarchi, Danilo; Buijsrogge, Marc P.; Sluijter, Joost P.G.; Hjortnaes, Jesper

    2017-01-01

    Activation of cardiac fibroblasts (CF) into myofibroblasts is considered to play an essential role in cardiac remodeling and fibrosis. A limiting factor in studying this process is the spontaneous activation of CFs when cultured on two-dimensional (2D) culture plates. Here, a simplified 3D hydrogel platform of contractile cardiac tissue, stimulated by transforming growth factor-β1 (TGF-β1), is presented to recapitulate a fibrogenic micro-environment. It was hypothesized that the quiescent state of CFs can be maintained by mimicking the mechanical stiffness of native heart tissue. To test this hypothesis, a 3D cell culture model consisting of cardiomyocytes and CFs encapsulated within mechanically engineered gelatin methacryloyl (GelMA) hydrogel, was developed. The study shows that CFs maintain their quiescent phenotype in mechanically tuned hydrogels. Additionally, treatment with a beta-adrenergic agonist increased beating frequency, demonstrating physiologic-like behavior of the heart constructs. Subsequently, quiescent CFs within the constructs were activated by the exogenous addition of TGF-β1. The expression of fibrotic protein markers (and the functional changes in mechanical stiffness) in the fibrotic-like tissues were analyzed to validate the model. Overall, this 3D engineered culture model of contractile cardiac tissue enabled controlled activation of CFs, demonstrating the usability of this platform to study fibrotic remodeling. PMID:28498548

  5. Detergent-enzymatic decellularization of swine blood vessels: insight on mechanical properties for vascular tissue engineering.

    PubMed

    Pellegata, Alessandro F; Asnaghi, M Adelaide; Stefani, Ilaria; Maestroni, Anna; Maestroni, Silvia; Dominioni, Tommaso; Zonta, Sandro; Zerbini, Gianpaolo; Mantero, Sara

    2013-01-01

    Small caliber vessels substitutes still remain an unmet clinical need; few autologous substitutes are available, while synthetic grafts show insufficient patency in the long term. Decellularization is the complete removal of all cellular and nuclear matters from a tissue while leaving a preserved extracellular matrix representing a promising tool for the generation of acellular scaffolds for tissue engineering, already used for various tissues with positive outcomes. The aim of this work is to investigate the effect of a detergent-enzymatic decellularization protocol on swine arteries in terms of cell removal, extracellular matrix preservation, and mechanical properties. Furthermore, the effect of storage at -80°C on the mechanical properties of the tissue is evaluated. Swine arteries were harvested, frozen, and decellularized; histological analysis revealed complete cell removal and preserved extracellular matrix. Furthermore, the residual DNA content in decellularized tissues was far low compared to native one. Mechanical testings were performed on native, defrozen, and decellularized tissues; no statistically significant differences were reported for Young's modulus, ultimate stress, compliance, burst pressure, and suture retention strength, while ultimate strain and stress relaxation of decellularized vessels were significantly different from the native ones. Considering the overall results, the process was confirmed to be suitable for the generation of acellular scaffolds for vascular tissue engineering.

  6. Human Systems Integration in Practice: Constellation Lessons Learned

    NASA Technical Reports Server (NTRS)

    Zumbado, Jennifer Rochlis

    2012-01-01

    NASA's Constellation program provided a unique testbed for Human Systems Integration (HSI) as a fundamental element of the Systems Engineering process. Constellation was the first major program to have HSI mandated by NASA's Human Rating document. Proper HSI is critical to the success of any project that relies on humans to function as operators, maintainers, or controllers of a system. HSI improves mission, system and human performance, significantly reduces lifecycle costs, lowers risk and minimizes re-design. Successful HSI begins with sufficient project schedule dedicated to the generation of human systems requirements, but is by no means solely a requirements management process. A top-down systems engineering process that recognizes throughout the organization, human factors as a technical discipline equal to traditional engineering disciplines with authority for the overall system. This partners with a bottoms-up mechanism for human-centered design and technical issue resolution. The Constellation Human Systems Integration Group (HSIG) was a part of the Systems Engineering and Integration (SE&I) organization within the program office, and existed alongside similar groups such as Flight Performance, Environments & Constraints, and Integrated Loads, Structures and Mechanisms. While the HSIG successfully managed, via influence leadership, a down-and-in Community of Practice to facilitate technical integration and issue resolution, it lacked parallel top-down authority to drive integrated design. This presentation will discuss how HSI was applied to Constellation, the lessons learned and best practices it revealed, and recommendations to future NASA program and project managers. This presentation will discuss how Human Systems Integration (HSI) was applied to NASA's Constellation program, the lessons learned and best practices it revealed, and recommendations to future NASA program and project managers on how to accomplish this critical function.

  7. A Sequential Shifting Algorithm for Variable Rotor Speed Control

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Edwards, Jason M.; DeCastro, Jonathan A.

    2007-01-01

    A proof of concept of a continuously variable rotor speed control methodology for rotorcraft is described. Variable rotor speed is desirable for several reasons including improved maneuverability, agility, and noise reduction. However, it has been difficult to implement because turboshaft engines are designed to operate within a narrow speed band, and a reliable drive train that can provide continuous power over a wide speed range does not exist. The new methodology proposed here is a sequential shifting control for twin-engine rotorcraft that coordinates the disengagement and engagement of the two turboshaft engines in such a way that the rotor speed may vary over a wide range, but the engines remain within their prescribed speed bands and provide continuous torque to the rotor; two multi-speed gearboxes facilitate the wide rotor speed variation. The shifting process begins when one engine slows down and disengages from the transmission by way of a standard freewheeling clutch mechanism; the other engine continues to apply torque to the rotor. Once one engine disengages, its gear shifts, the multi-speed gearbox output shaft speed resynchronizes and it re-engages. This process is then repeated with the other engine. By tailoring the sequential shifting, the rotor may perform large, rapid speed changes smoothly, as demonstrated in several examples. The emphasis of this effort is on the coordination and control aspects for proof of concept. The engines, rotor, and transmission are all simplified linear models, integrated to capture the basic dynamics of the problem.

  8. Ceramic Technology For Advanced Heat Engines Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-12-01

    Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. The objective of the project is to develop the industrial technology base required for reliable ceramicsmore » for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. This advanced materials technology is being developed in parallel and close coordination with the ongoing DOE and industry proof of concept engine development programs. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. Abstracts prepared for appropriate papers.« less

  9. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    ATTAP activities during the past year included test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Significant technical challenges remain, but all areas exhibited progress. Test-bed engine design and development included engine mechanical design, combustion system design, alternate aerodynamic designs of gasifier scrolls, and engine system integration aimed at upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1372 C (2500 F) structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities completed include the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, ceramic combustors, the ceramic regenerator disk, the ceramic power turbine rotors, and the ceramic/metal power turbine static structure. The material and component characterization efforts included the testing and evaluation of seven candidate materials and three development components. Ceramic component process development and fabrication proceeded for the gasifier turbine rotor, gasifier turbine scroll, gasifier turbine vanes and vane platform, extruded regenerator disks, and thermal insulation. Component rig activities included the development of both rigs and the necessary test procedures, and conduct of rig testing of the ceramic components and assemblies. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology that permit the achievement of both program performance and durability goals. Total test time in 1991 amounted to 847 hours, of which 128 hours were engine testing, and 719 were hot rig testing.

  10. Mechanical Engineering Technology Curriculum.

    ERIC Educational Resources Information Center

    Georgia State Univ., Atlanta. Dept. of Vocational and Career Development.

    This guide offers information and procedures necessary to train mechanical engineering technicians. Discussed first are the rationale and objectives of the curriculum. The occupational field of mechanical engineering technology is described. Next, a curriculum model is set forth that contains information on the standard mechanical engineering…

  11. Molecular Engineering for Mechanically Resilient and Stretchable Electronic Polymers and Composites

    DTIC Science & Technology

    2016-06-08

    AFRL-AFOSR-VA-TR-2016-0231 Molecular Engineering for Mechanically Resilient and Stretchable Electronic Polymers and Composites Darren Lipomi...04-2013 to 31-03-2016 4. TITLE AND SUBTITLE Molecular Engineering for Mechanically Resilient and Stretchable Electronic Polymers and Composites 5a... Engineering for Mechanically Resilient and Stretchable Electronic Polymers and Composites PI: Prof. Darren J. Lipomi 9500 Gilman Dr., Mail Code #0448

  12. Deployment Process, Mechanization, and Testing for the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Iskenderian, Ted

    2004-01-01

    NASA's Mar Exploration Rover (MER) robotic prospectors were produced in an environment of unusually challenging schedule, volume, and mass restrictions. The technical challenges pushed the system s design towards extensive integration of function, which resulted in complex system engineering issues. One example of the system's integrated complexity can be found in the deployment process for the rover. Part of this process, rover "standup", is outlined in this paper. Particular attention is given to the Rover Lift Mechanism's (RLM) role and its design. Analysis methods are presented and compared to test results. It is shown that because prudent design principles were followed, a robust mechanism was created that minimized the duration of integration and test, and enabled recovery without perturbing related systems when reasonably foreseeable problems did occur. Examples of avoidable, unnecessary difficulty are also presented.

  13. Work-Hardening Induced Tensile Ductility of Bulk Metallic Glasses via High-Pressure Torsion

    PubMed Central

    Joo, Soo-Hyun; Pi, Dong-Hai; Setyawan, Albertus Deny Heri; Kato, Hidemi; Janecek, Milos; Kim, Yong Chan; Lee, Sunghak; Kim, Hyoung Seop

    2015-01-01

    The mechanical properties of engineering materials are key for ensuring safety and reliability. However, the plastic deformation of BMGs is confined to narrow regions in shear bands, which usually result in limited ductilities and catastrophic failures at low homologous temperatures. The quasi-brittle failure and lack of tensile ductility undercut the potential applications of BMGs. In this report, we present clear tensile ductility in a Zr-based BMG via a high-pressure torsion (HPT) process. Enhanced tensile ductility and work-hardening behavior after the HPT process were investigated, focusing on the microstructure, particularly the changed free volume, which affects deformation mechanisms (i.e., initiation, propagation, and obstruction of shear bands). Our results provide insights into the basic functions of hydrostatic pressure and shear strain in the microstructure and mechanical properties of HPT-processed BMGs. PMID:25905686

  14. A primer of statistical methods for correlating parameters and properties of electrospun poly(L-lactide) scaffolds for tissue engineering--PART 1: design of experiments.

    PubMed

    Seyedmahmoud, Rasoul; Rainer, Alberto; Mozetic, Pamela; Maria Giannitelli, Sara; Trombetta, Marcella; Traversa, Enrico; Licoccia, Silvia; Rinaldi, Antonio

    2015-01-01

    Tissue engineering scaffolds produced by electrospinning are of enormous interest, but still lack a true understanding about the fundamental connection between the outstanding functional properties, the architecture, the mechanical properties, and the process parameters. Fragmentary results from several parametric studies only render some partial insights that are hard to compare and generally miss the role of parameters interactions. To bridge this gap, this article (Part-1 of 2) features a case study on poly-L-lactide scaffolds to demonstrate how statistical methods such as design of experiments can quantitatively identify the correlations existing between key scaffold properties and control parameters, in a systematic, consistent, and comprehensive manner disentangling main effects from interactions. The morphological properties (i.e., fiber distribution and porosity) and mechanical properties (Young's modulus) are "charted" as a function of molecular weight (MW) and other electrospinning process parameters (the Xs), considering the single effect as well as interactions between Xs. For the first time, the major role of the MW emerges clearly in controlling all scaffold properties. The correlation between mechanical and morphological properties is also addressed. © 2014 Wiley Periodicals, Inc.

  15. A Transversely Isotropic Thermo-mechanical Framework for Oil Shale

    NASA Astrophysics Data System (ADS)

    Semnani, S. J.; White, J. A.; Borja, R. I.

    2014-12-01

    The present study provides a thermo-mechanical framework for modeling the temperature dependent behavior of oil shale. As a result of heating, oil shale undergoes phase transformations, during which organic matter is converted to petroleum products, e.g. light oil, heavy oil, bitumen, and coke. The change in the constituents and microstructure of shale at high temperatures dramatically alters its mechanical behavior e.g. plastic deformations and strength, as demonstrated by triaxial tests conducted at multiple temperatures [1,2]. Accordingly, the present model formulates the effects of changes in the chemical constituents due to thermal loading. It is well known that due to the layered structure of shale its mechanical properties in the direction parallel to the bedding planes is significantly different from its properties in the perpendicular direction. Although isotropic models simplify the modeling process, they fail to accurately describe the mechanical behavior of these rocks. Therefore, many researchers have studied the anisotropic behavior of rocks, including shale [3]. The current study presents a framework to incorporate the effects of transverse isotropy within a thermo-mechanical formulation. The proposed constitutive model can be readily applied to existing finite element codes to predict the behavior of oil shale in applications such as in-situ retorting process and stability assessment in petroleum reservoirs. [1] Masri, M. et al."Experimental Study of the Thermomechanical Behavior of the Petroleum Reservoir." SPE Eastern Regional/AAPG Eastern Section Joint Meeting. Society of Petroleum Engineers, 2008. [2] Xu, B. et al. "Thermal impact on shale deformation/failure behaviors---laboratory studies." 45th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, 2011. [3] Crook, AJL et al. "Development of an orthotropic 3D elastoplastic material model for shale." SPE/ISRM Rock Mechanics Conference. Society of Petroleum Engineers, 2002.

  16. Biofluid Mechanics Education at U Michigan

    NASA Astrophysics Data System (ADS)

    Grotberg, James

    2007-11-01

    At the University of Michigan, biofluid mechanics is taught in the Department of Biomedical Engineering with cross-listing in Mechanical Engineering. The course has evolved over 25 years and serves advanced undergraduates and graduate students. The course description is as follows: BiomedE/MechE 476 Biofluid Mechanics. CATALOG DESCRIPTION: This is an intermediate level fluid mechanics course which uses examples from biotechnology processes and physiologic applications including cellular, cardiovascular, respiratory, ocular, renal, orthopedic, and gastrointestinal systems. COURSE TOPICS: 1. Dimensional analysis (gastrointestinal, renal) 2. Approximation methods, numerical methods (biotechnology, respiratory) 3. Particle kinematics in Eulerian and Lagrangian references frames (biotechnology, respiratory) 4. Conservation of mass and momentum 5. Constitutive equations (blood, mucus) 6. Kinematic and stress boundary conditions: rigid, flexible, porous (cardio-pulmonary, cellular) 7. Surface tension phenomena (pulmonary, ocular) 8. Flow and wave propagation in flexible tubes (cardio-pulmonary) 9. Oscillatory and pulsatile flows (cardio-pulmonary, orthopedic) 10. High Reynolds number flows (cardio-pulmonary) 11. Low Reynolds number flows (biotechnology, cellular, vascular) 12. Lubrication theory (vascular, orthopedic) 13. Flow in poroelastic media (orthopedic, pulmonary, ocular) 14. Video presentations of laboratory experiments.

  17. Mechanism Design Principle for Optical-Precision, Deployable Instruments

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Hachkowski, M. Roman

    2000-01-01

    The present paper is intended to be a guide for the design of 'microdynamically quiet' deployment mechanisms for optical-precision structures, such as deployable telescope mirrors and optical benches. Many of the guidelines included herein come directly from the field of optomechanical engineering, and are neither newly developed guidelines nor are they uniquely applicable to high-precision deployment mechanisms. However, the application of these guidelines to the design of deployment mechanisms is a rather new practice, so efforts are made herein to illustrate the process through the discussion of specific examples. The present paper summarizes a more extensive set of design guidelines for optical-precision mechanisms that are under development.

  18. Model-Driven Useware Engineering

    NASA Astrophysics Data System (ADS)

    Meixner, Gerrit; Seissler, Marc; Breiner, Kai

    User-oriented hardware and software development relies on a systematic development process based on a comprehensive analysis focusing on the users' requirements and preferences. Such a development process calls for the integration of numerous disciplines, from psychology and ergonomics to computer sciences and mechanical engineering. Hence, a correspondingly interdisciplinary team must be equipped with suitable software tools to allow it to handle the complexity of a multimodal and multi-device user interface development approach. An abstract, model-based development approach seems to be adequate for handling this complexity. This approach comprises different levels of abstraction requiring adequate tool support. Thus, in this chapter, we present the current state of our model-based software tool chain. We introduce the use model as the core model of our model-based process, transformation processes, and a model-based architecture, and we present different software tools that provide support for creating and maintaining the models or performing the necessary model transformations.

  19. The Effect of Gravity on the Combustion Synthesis of Porous Biomaterials

    NASA Technical Reports Server (NTRS)

    Castillo, M.; Zhang, X.; Moore, J. J.; Schowengerdt, F. D.; Ayers, R. A.

    2003-01-01

    Production of highly porous composite materials by traditional materials processing is limited by difficult processing techniques. This work investigates the use of self propagating high temperature (combustion) synthesis (SHS) to create porous tricalcium phosphate (Ca3(PO4)2), TiB-Ti, and NiTi in low and microgravity. Combustion synthesis provides the ability to use set processing parameters to engineer the required porous structure suitable for bone repair or replacement. The processing parameters include green density, particle size, gasifying agents, composition, and gravity. The advantage of the TiB-Ti system is the high level of porosity achieved together with a modulus that can be controlled by both composition (TiB-Ti) and porosity. At the same time, NiTi exhibits shape memory properties. SHS of biomaterials allows the engineering of required porosity coupled with resorbtion properties and specific mechanical properties into the composite materials to allow for a better biomaterial.

  20. Ecosystem engineering and manipulation of host plant tissues by the insect borer Oncideres albomarginata chamela.

    PubMed

    Calderón-Cortés, Nancy; Uribe-Mú, Claudia A; Martínez-Méndez, A Karen; Escalera-Vázquez, Luis H; Cristobal-Pérez, E Jacob; García-Oliva, Felipe; Quesada, Mauricio

    2016-01-01

    Ecosystem engineering by insect herbivores occurs as the result of structural modification of plants manipulated by insects. However, only few studies have evaluated the effect of these modifications on the plant responses induced by stem-borers that act as ecosystem engineers. In this study, we evaluated the responses induced by the herbivory of the twig-girdler beetle Oncideres albomarginata chamela (Cerambycidae: Lamiinae) on its host plant Spondias purpurea (Anacardiaceae), and its relationship with the ecosystem engineering process carried out by this stem-borer. Our results demonstrated that O. albomarginata chamela branch removal induced the development of lateral branches increasing the resources needed for the development of future insect generations, of its own offspring and of many other insect species. Detached branches represent habitats with high content of nitrogen and phosphorous, which eventually can be incorporated into the ecosystem, increasing nutrient cycling efficiency. Consequently, branch removal and the subsequent plant tissue regeneration induced by O. albomarginata chamela represent key mechanisms underlying the ecosystem engineering process carried out by this stem-borer, which enhances arthropod diversity in the ecosystem. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Overview of thermal barrier coatings in diesel engines

    NASA Technical Reports Server (NTRS)

    Yonushonis, Thomas M.

    1995-01-01

    An understanding of delamination mechanisms in thermal barrier coatings has been developed for diesel engine applications through rig tests, structural analysis modeling, nondestructive evaluation, and engine evaluation of various thermal barrier coatings. This knowledge has resulted in improved thermal barrier coatings which survive abusive cyclic fatigue tests in high output diesel engines. Although much conflicting literature now exists regarding the impact of thermal barrier coatings on engine performance and fuel consumption, the changes in fuel consumption appear to be less than a few percent and can be negative for state-of-the-art diesel engines. The ability of the thermal barrier coating to improve fuel economy tends to be dependent on a number of factors including the fuel injection system, combustion chamber design, and the initial engine fuel economy. Limited investigations on state-of-the-art diesel engines have indicated that the surface connected porosity and coating surface roughness may influence engine fuel economy. Current research efforts on thermal barrier coatings are primarily directed at reducing in-cylinder heat rejection, thermal fatigue protection of underlying metal surfaces and a possible reduction in diesel engine emissions. Significant efforts are still required to improve the plasma spray processing capability and the economics for complex geometry diesel engine components.

  2. SSC Engineering Analysis

    NASA Technical Reports Server (NTRS)

    Ryan, Harry; Junell, Justin; Albasini, Colby; O'Rourke, William; Le, Thang; Strain, Ted; Stiglets, Tim

    2011-01-01

    A package for the automation of the Engineering Analysis (EA) process at the Stennis Space Center has been customized. It provides the ability to assign and track analysis tasks electronically, and electronically route a task for approval. It now provides a mechanism to keep these analyses under configuration management. It also allows the analysis to be stored and linked to the engineering data that is needed to perform the analysis (drawings, etc.). PTC s (Parametric Technology Corp o ration) Windchill product was customized to allow the EA to be created, routed, and maintained under configuration management. Using Infoengine Tasks, JSP (JavaServer Pages), Javascript, a user interface was created within the Windchill product that allows users to create EAs. Not only does this interface allow users to create and track EAs, but it plugs directly into the out-ofthe- box ability to associate these analyses with other relevant engineering data such as drawings. Also, using the Windchill workflow tool, the Design and Data Management System (DDMS) team created an electronic routing process based on the manual/informal approval process. The team also added the ability for users to notify and track notifications to individuals about the EA. Prior to the Engineering Analysis creation, there was no electronic way of creating and tracking these analyses. There was also a feature that was added that would allow users to track/log e-mail notifications of the EA.

  3. Freezing-induced deformation of biomaterials in cryomedicine

    NASA Astrophysics Data System (ADS)

    Ozcelikkale, Altug

    Cryomedicine utilizes low temperature treatments of biological proteins, cells and tissues for cryopreservation, materials processing and cryotherapy. Lack of proper understanding of cryodamage that occurs during these applications remains to be the primary bottleneck for development of successful tissue cryopreservation and cryosurgery procedures. An engineering approach based on a view of biological systems as functional biomaterials can help identify, predict and control the primary cryodamage mechanisms by developing an understanding of underlying freezing-induced biophysical processes. In particular, freezing constitutes the main structural/mechanical origin of cryodamage and results in significant deformation of biomaterials at multiple length scales. Understanding of these freezing-induced deformation processes and their effects on post-thaw biomaterial functionality is currently lacking but will be critical to engineer improved cryomedicine procedures. This dissertation addresses this problem by presenting three separate but related studies of freezing-induced deformation at multiple length scales including nanometer-scale protein fibrils, single cells and whole tissues. A combination of rigorous experimentation and computational modeling is used to characterize post-thaw biomaterial structure and properties, predict biomaterial behavior and assess its post-thaw biological functionality. Firstly, freezing-induced damage on hierarchical extracellular matrix structure of collagen is investigated at molecular, fibril and matrix levels. Results indicate to a specific kind of fibril damage due to freezing-induced expansion of intrafibrillar fluid. This is followed by a study of freezing-induced cell and tissue deformation coupled to osmotically driven cellular water transport. Computational and semi empirical modeling of these processes indicate that intracellular deformation of the cell during freezing is heterogeneous and can interfere with cellular water transport, thereby leading to previously unconsidered mechanisms of cell freezing response. In addition, cellular water transport is identified as the critical limiting factor on the amount of freezing-induced tissue deformation, particularly in native tissues with high cell densities. Finally, effects of cryopreservation on post-thaw biological functionality of collagen engineered tissue constructs is investigated where cell-matrix interactions during fibroblast migration are considered as the functional response. Simultaneous cell migration and extracellular matrix deformation are characterized. Results show diminished cell-matrix coupling by freeze/thaw accompanied by a subtle decrease in cell migration. A connection between these results and freezing-induced collagen fibril damage is also suggested. Overall, this dissertation provides new fundamental knowledge on cryodamage mechanisms and a collection of novel multi-purpose engineering tools that will open the way for rational design of cryomedicine technologies.

  4. The effects of intermittent hydrostatic pressure on self-assembled articular cartilage constructs.

    PubMed

    Hu, Jerry C; Athanasiou, Kyriacos A

    2006-05-01

    To date, static culture for the tissue engineering of articular cartilage has shown to be inadequate in conferring functionality to constructs. Various forms of mechanical stimuli accompany articular cartilage development in vivo, and one of these is hydrostatic pressure. This study used histology, biochemistry, and biomechanics to examine the effects of intermittent hydrostatic pressure, applied at 10 MPa and 1 Hz for 4 h per day for 5 days per week for up to 8 weeks on self-assembled chondrocyte constructs. The self-assembling process is a novel approach that allows engineering of articular cartilage constructs without the use of exogenous scaffolds. The self-assembled constructs were found to be capable of enduring this loading regimen. Significant increases in collagen production were only observed in pressurized samples. Intermittent hydrostatic pressure prevented a significant decrease in total GAG, which was significant in controls. Aside from the beneficial effects intermittent hydrostatic pressure may have on ECM synthesis, its effects on mechanical properties may require longer culture periods to manifest. This study demonstrates the successful use of the self-assembling process to produce articular cartilage constructs. It also shows for the first time that long-term culture of tissue-engineered articular cartilage construct benefits from intermittent hydrostatic pressure.

  5. A new predictive multi-zone model for HCCI engine combustion

    DOE PAGES

    Bissoli, Mattia; Frassoldati, Alessio; Cuoci, Alberto; ...

    2016-06-30

    Here, this work introduces a new predictive multi-zone model for the description of combustion in Homogeneous Charge Compression Ignition (HCCI) engines. The model exploits the existing OpenSMOKE++ computational suite to handle detailed kinetic mechanisms, providing reliable predictions of the in-cylinder auto-ignition processes. All the elements with a significant impact on the combustion performances and emissions, like turbulence, heat and mass exchanges, crevices, residual burned gases, thermal and feed stratification are taken into account. Compared to other computational approaches, this model improves the description of mixture stratification phenomena by coupling a wall heat transfer model derived from CFD application with amore » proper turbulence model. Furthermore, the calibration of this multi-zone model requires only three parameters, which can be derived from a non-reactive CFD simulation: these adaptive variables depend only on the engine geometry and remain fixed across a wide range of operating conditions, allowing the prediction of auto-ignition, pressure traces and pollutants. This computational framework enables the use of detail kinetic mechanisms, as well as Rate of Production Analysis (RoPA) and Sensitivity Analysis (SA) to investigate the complex chemistry involved in the auto-ignition and the pollutants formation processes. In the final sections of the paper, these capabilities are demonstrated through the comparison with experimental data.« less

  6. Direct, CMOS In-Line Process Flow Compatible, Sub 100 °C Cu-Cu Thermocompression Bonding Using Stress Engineering

    NASA Astrophysics Data System (ADS)

    Panigrahi, Asisa Kumar; Ghosh, Tamal; Kumar, C. Hemanth; Singh, Shiv Govind; Vanjari, Siva Rama Krishna

    2018-05-01

    Diffusion of atoms across the boundary between two bonding layers is the key for achieving excellent thermocompression Wafer on Wafer bonding. In this paper, we demonstrate a novel mechanism to increase the diffusion across the bonding interface and also shows the CMOS in-line process flow compatible Sub 100 °C Cu-Cu bonding which is devoid of Cu surface treatment prior to bonding. The stress in sputtered Cu thin films was engineered by adjusting the Argon in-let pressure in such a way that one film had a compressive stress while the other film had tensile stress. Due to this stress gradient, a nominal pressure (2 kN) and temperature (75 °C) was enough to achieve a good quality thermocompression bonding having a bond strength of 149 MPa and very low specific contact resistance of 1.5 × 10-8 Ω-cm2. These excellent mechanical and electrical properties are resultant of a high quality Cu-Cu bonding having grain growth between the Cu films across the boundary and extended throughout the bonded region as revealed by Cross-sectional Transmission Electron Microscopy. In addition, reliability assessment of Cu-Cu bonding with stress engineering was demonstrated using multiple current stressing and temperature cycling test, suggests excellent reliable bonding without electrical performance degradation.

  7. Assessment of Knowledge and Skills Needed in Selected Engineering Technician Fields: Mechanical/Manufacturing/Industrial.

    ERIC Educational Resources Information Center

    Gourley, Frank A., Jr.

    A study identified the essential educational topics and the level of proficiency perceived to be required in these topics for selected two-year engineering technology programs in North Carolina. The four curricula studied were mechanical engineering technology, mechanical drafting and design technology, manufacturing engineering technology, and…

  8. A chondroitinase-ABC and TGF-β1 treatment regimen for enhancing the mechanical properties of tissue-engineered fibrocartilage.

    PubMed

    MacBarb, Regina F; Makris, Eleftherios A; Hu, Jerry C; Athanasiou, Kyriacos A

    2013-01-01

    The development of functionally equivalent fibrocartilage remains elusive despite efforts to engineer tissues such as knee meniscus, intervertebral disc and temporomandibular joint disc. Attempts to engineer these structures often fail to create tissues with mechanical properties on a par with native tissue, resulting in constructs unsuitable for clinical applications. The objective of this study was to engineer a spectrum of biomimetic fibrocartilages representative of the distinct functional properties found in native tissues. Using the self-assembly process, different co-cultures of meniscus cells and articular chondrocytes were seeded into agarose wells and treated with the catabolic agent chondroitinase-ABC (C-ABC) and the anabolic agent transforming growth factor-β1 (TGF-β1) via a two-factor (cell ratio and bioactive treatment), full factorial study design. Application of both C-ABC and TGF-β1 resulted in a beneficial or positive increase in the collagen content of treated constructs compared to controls. Significant increases in both the collagen density and fiber diameter were also seen with this treatment, increasing these values by 32 and 15%, respectively, over control values. Mechanical testing found the combined bioactive treatment to synergistically increase the Young's modulus and ultimate tensile strength of the engineered fibrocartilages compared to controls, with values reaching the lower spectrum of those found in native tissues. Together, these data demonstrate that C-ABC and TGF-β1 interact to develop a denser collagen matrix better able to withstand tensile loading. This study highlights a way to optimize the tensile properties of engineered fibrocartilage using a biochemical and a biophysical agent together to create distinct fibrocartilages with functional properties mimicking those of native tissue. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. A chondroitinase-ABC and TGF-β1 treatment regimen for enhancing the mechanical properties of tissue engineered fibrocartilage

    PubMed Central

    MacBarb, Regina F.; Makris, Eleftherios A.; Hu, Jerry C.; Athanasiou, Kyriacos A.

    2012-01-01

    The development of functionally equivalent fibrocartilage remains elusive despite efforts to engineer tissues such as the knee menisci, intervertebral disc, and TMJ disc. Attempts to engineer these structures often fail to create tissues with mechanical properties on par with native tissue, resulting in constructs unsuitable for clinical applications. The objective of this study was to engineer a spectrum of biomimetic fibrocartilages representative of the distinct functional properties found in native tissues. Using the self-assembly process, different co-cultures of meniscus cells (MCs) and articular chondrocytes (ACs) were seeded into agarose wells and treated with the catabolic agent chondroitinase-ABC (C-ABC) and the anabolic agent transforming growth factor-β1 (TGF-β1) via a two-factor (cell ratio and bioactive treatment), full factorial study design. Application of both C-ABC and TGF-β1 resulted in a beneficial or positive increase in the collagen content of treated constructs compared to controls. Significant increases in both the collagen density and fiber diameter were also seen with this treatment, increasing these values 32% and 15%, respectively, over control values. Mechanical testing found the combined bioactive treatment to synergistically increase the Young’s modulus and ultimate tensile strength of the engineered fibrocartilages compared to controls, with values reaching the lower spectrum of those found in native tissues. Together, these data demonstrate that C-ABC and TGF-β1 interact to develop a denser collagen matrix better able to withstand tensile loading. This study highlights a way to optimize the tensile properties of engineered fibrocartilage using a biochemical and biophysical agent together to create distinct fibrocartilages with functional properties mimicking those of native tissue. PMID:23041782

  10. Constructing wetlands: measuring and modeling feedbacks of oxidation processes between plants and clay-rich material

    NASA Astrophysics Data System (ADS)

    Saaltink, Rémon; Dekker, Stefan C.; Griffioen, Jasper; Wassen, Martin J.

    2016-04-01

    Interest is growing in using soft sediment as a building material in eco-engineering projects. Wetland construction in the Dutch lake Markermeer is an example: here the option of dredging some of the clay-rich lake-bed sediment and using it to construct 10.000 ha of wetland will soon go under construction. Natural processes will be utilized during and after construction to accelerate ecosystem development. Knowing that plants can eco-engineer their environment via positive or negative biogeochemical plant-soil feedbacks, we conducted a six-month greenhouse experiment to identify the key biogeochemical processes in the mud when Phragmites australis is used as an eco-engineering species. We applied inverse biogeochemical modeling to link observed changes in pore water composition to biogeochemical processes. Two months after transplantation we observed reduced plant growth and shriveling as well as yellowing of foliage. The N:P ratios of plant tissue were low and were affected not by hampered uptake of N but by enhanced uptake of P. Plant analyses revealed high Fe concentrations in the leaves and roots. Sulfate concentrations rose drastically in our experiment due to pyrite oxidation; as reduction of sulfate will decouple Fe-P in reducing conditions, we argue that plant-induced iron toxicity hampered plant growth, forming a negative feedback loop, while simultaneously there was a positive feedback loop, as iron toxicity promotes P mobilization as a result of reduced conditions through root death, thereby stimulating plant growth and regeneration. Given these two feedback mechanisms, we propose that when building wetlands from these mud deposits Fe-tolerant species are used rather than species that thrive in N-limited conditions. The results presented in this study demonstrate the importance of studying the biogeochemical properties of the building material and the feedback mechanisms between plant and soil prior to finalizing the design of the eco-engineering project.

  11. Ames Engineering Directorate

    NASA Technical Reports Server (NTRS)

    Phillips, Veronica J.

    2017-01-01

    The Ames Engineering Directorate is the principal engineering organization supporting aerospace systems and spaceflight projects at NASA's Ames Research Center in California's Silicon Valley. The Directorate supports all phases of engineering and project management for flight and mission projects-from R&D to Close-out-by leveraging the capabilities of multiple divisions and facilities.The Mission Design Center (MDC) has full end-to-end mission design capability with sophisticated analysis and simulation tools in a collaborative concurrent design environment. Services include concept maturity level (CML) maturation, spacecraft design and trades, scientific instruments selection, feasibility assessments, and proposal support and partnerships. The Engineering Systems Division provides robust project management support as well as systems engineering, mechanical and electrical analysis and design, technical authority and project integration support to a variety of programs and projects across NASA centers. The Applied Manufacturing Division turns abstract ideas into tangible hardware for aeronautics, spaceflight and science applications, specializing in fabrication methods and management of complex fabrication projects. The Engineering Evaluation Lab (EEL) provides full satellite or payload environmental testing services including vibration, temperature, humidity, immersion, pressure/altitude, vacuum, high G centrifuge, shock impact testing and the Flight Processing Center (FPC), which includes cleanrooms, bonded stores and flight preparation resources. The Multi-Mission Operations Center (MMOC) is composed of the facilities, networks, IT equipment, software and support services needed by flight projects to effectively and efficiently perform all mission functions, including planning, scheduling, command, telemetry processing and science analysis.

  12. Tubing-Electrospinning: A One-Step Process for Fabricating Fibrous Matrices with Spatial, Chemical, and Mechanical Gradients.

    PubMed

    Kim, Jung-Suk; Im, Byung Gee; Jin, Gyuhyung; Jang, Jae-Hyung

    2016-08-31

    Guiding newly generated tissues in a gradient pattern, thereby precisely mimicking inherent tissue morphology and subsequently arranging the intimate networks between adjacent tissues, is essential to raise the technical levels of tissue engineering and facilitate its transition into the clinic. In this study, a straightforward electrospinning method (the tubing-electrospinning technique) was developed to create fibrous matrices readily with diverse gradient patterns and to induce patterned cellular responses. Gradient fibrous matrices can be produced simply by installing a series of polymer-containing lengths of tubing into an electrospinning circuit and sequentially processing polymers without a time lag. The loading of polymer samples with different characteristics, including concentration, wettability, and mechanical properties, into the tubing system enabled unique features in fibrous matrices, such as longitudinal gradients in fiber density, surface properties, and mechanical stiffness. The resulting fibrous gradients were shown to arrange cellular migration and residence in a gradient manner, thereby offering efficient cues to mediate patterned tissue formation. The one-step process using tubing-electrospinning apparatus can be used without significant modifications regardless of the type of fibrous gradient. Hence, the tubing-electrospinning system can serve as a platform that can be readily used by a wide-range of users to induce patterned tissue formation in a gradient manner, which will ultimately improve the functionality of tissue engineering scaffolds.

  13. Comparisons of Kinematics and Dynamics Simulation Software Tools

    NASA Technical Reports Server (NTRS)

    Shiue, Yeu-Sheng Paul

    2002-01-01

    Kinematic and dynamic analyses for moving bodies are essential to system engineers and designers in the process of design and validations. 3D visualization and motion simulation plus finite element analysis (FEA) give engineers a better way to present ideas and results. Marshall Space Flight Center (MSFC) system engineering researchers are currently using IGRIP from DELMIA Inc. as a kinematic simulation tool for discrete bodies motion simulations. Although IGRIP is an excellent tool for kinematic simulation with some dynamic analysis capabilities in robotic control, explorations of other alternatives with more powerful dynamic analysis and FEA capabilities are necessary. Kinematics analysis will only examine the displacement, velocity, and acceleration of the mechanism without considering effects from masses of components. With dynamic analysis and FEA, effects such as the forces or torques at the joint due to mass and inertia of components can be identified. With keen market competition, ALGOR Mechanical Event Simulation (MES), MSC visualNastran 4D, Unigraphics Motion+, and Pro/MECHANICA were chosen for explorations. In this study, comparisons between software tools were presented in terms of following categories: graphical user interface (GUI), import capability, tutorial availability, ease of use, kinematic simulation capability, dynamic simulation capability, FEA capability, graphical output, technical support, and cost. Propulsion Test Article (PTA) with Fastrac engine model exported from IGRIP and an office chair mechanism were used as examples for simulations.

  14. Cell-Biomaterial Mechanical Interaction in the Framework of Tissue Engineering: Insights, Computational Modeling and Perspectives

    PubMed Central

    Sanz-Herrera, Jose A.; Reina-Romo, Esther

    2011-01-01

    Tissue engineering is an emerging field of research which combines the use of cell-seeded biomaterials both in vitro and/or in vivo with the aim of promoting new tissue formation or regeneration. In this context, how cells colonize and interact with the biomaterial is critical in order to get a functional tissue engineering product. Cell-biomaterial interaction is referred to here as the phenomenon involved in adherent cells attachment to the biomaterial surface, and their related cell functions such as growth, differentiation, migration or apoptosis. This process is inherently complex in nature involving many physico-chemical events which take place at different scales ranging from molecular to cell body (organelle) levels. Moreover, it has been demonstrated that the mechanical environment at the cell-biomaterial location may play an important role in the subsequent cell function, which remains to be elucidated. In this paper, the state-of-the-art research in the physics and mechanics of cell-biomaterial interaction is reviewed with an emphasis on focal adhesions. The paper is focused on the different models developed at different scales available to simulate certain features of cell-biomaterial interaction. A proper understanding of cell-biomaterial interaction, as well as the development of predictive models in this sense, may add some light in tissue engineering and regenerative medicine fields. PMID:22174660

  15. Generating favorable growth factor and protease release profiles to enable extracellular matrix accumulation within an in vitro tissue engineering environment.

    PubMed

    Zhang, Xiaoqing; Battiston, Kyle G; Labow, Rosalind S; Simmons, Craig A; Santerre, J Paul

    2017-05-01

    Tissue engineering (particularly for the case of load-bearing cardiovascular and connective tissues) requires the ability to promote the production and accumulation of extracellular matrix (ECM) components (e.g., collagen, glycosaminoglycan and elastin). Although different approaches have been attempted in order to enhance ECM accumulation in tissue engineered constructs, studies of underlying signalling mechanisms that influence ECM deposition and degradation during tissue remodelling and regeneration in multi-cellular culture systems have been limited. The current study investigated vascular smooth muscle cell (VSMC)-monocyte co-culture systems using different VSMC:monocyte ratios, within a degradable polyurethane scaffold, to assess their influence on ECM generation and degradation processes, and to elucidate relevant signalling molecules involved in this in vitro vascular tissue engineering system. It was found that a desired release profile of growth factors (e.g. insulin growth factor-1 (IGF-1)) and hydrolytic proteases (e.g. matrix-metalloproteinases 2, 9, 13 and 14 (MMP2, MMP9, MMP13 and MMP14)), could be achieved in co-culture systems, yielding an accumulation of ECM (specifically for 2:1 and 4:1 VSMC:monocyte culture systems). This study has significant implications for the tissue engineering field (including vascular tissue engineering), not only because it identified important cytokines and proteases that control ECM accumulation/degradation within synthetic tissue engineering scaffolds, but also because the established culture systems could be applied to improve the development of different types of tissue constructs. Sufficient extracellular matrix accumulation within cardiovascular and connective tissue engineered constructs is a prerequisite for their appropriate function in vivo. This study established co-culture systems with tissue specific cells (vascular smooth muscle cells (VSMCs)) and defined ratios of immune cells (monocytes) to investigate extracellular matrix (ECM) generation and degradation processes, revealing important mechanisms underlying ECM turnover during vascular tissue regeneration/remodelling. A specific growth factor (IGF-1), as well as hydrolytic proteases (e.g. MMP2, MMP9, MMP13 and MMP14), were identified as playing important roles in these processes. ECM accumulation was found to be dependent on achieving a desired release profile of these ECM-promoting and ECM-degrading factors within the multi-cellular microenvironment. The findings enhance our understanding of ECM deposition and degradation during in vitro tissue engineering and would be applicable to the repair or regeneration of a variety of tissues. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. From natural bone grafts to tissue engineering therapeutics: Brainstorming on pharmaceutical formulative requirements and challenges.

    PubMed

    Baroli, Biancamaria

    2009-04-01

    Tissue engineering is an emerging multidisciplinary field of investigation focused on the regeneration of diseased or injured tissues through the delivery of appropriate molecular and mechanical signals. Therefore, bone tissue engineering covers all the attempts to reestablish a normal physiology or to speed up healing of bone in all musculoskeletal disorders and injuries that are lashing modern societies. This article attempts to give a pharmaceutical perspective on the production of engineered man-made bone grafts that are described as implantable tissue engineering therapeutics, and to highlight the importance of understanding bone composition and structure, as well as osteogenesis and bone healing processes, to improve the design and development of such implants. In addition, special emphasis is given to pharmaceutical aspects that are frequently minimized, but that, instead, may be useful for formulation developments and in vitro/in vivo correlations.

  17. Hardwiring microbes via direct interspecies electron transfer: mechanisms and applications.

    PubMed

    Cheng, Qiwen; Call, Douglas F

    2016-08-10

    Multicellular microbial communities are important catalysts in engineered systems designed to treat wastewater, remediate contaminated sediments, and produce energy from biomass. Understanding the interspecies interactions within them is therefore essential to design effective processes. The flow of electrons within these communities is especially important in the determination of reaction possibilities (thermodynamics) and rates (kinetics). Conventional models of electron transfer incorporate the diffusion of metabolites generated by one organism and consumed by a second, frequently referred to as mediated interspecies electron transfer (MIET). Evidence has emerged in the last decade that another method, called direct interspecies electron transfer (DIET), may occur between organisms or in conjunction with electrically conductive materials. Recent research has suggested that DIET can be stimulated in engineered systems to improve desired treatment goals and energy recovery in systems such as anaerobic digesters and microbial electrochemical technologies. In this review, we summarize the latest understanding of DIET mechanisms, the associated microorganisms, and the underlying thermodynamics. We also critically examine approaches to stimulate DIET in engineered systems and assess their effectiveness. We find that in most cases attempts to promote DIET in mixed culture systems do not yield the improvements expected based on defined culture studies. Uncertainties of other processes that may be co-occurring in real systems, such as contaminant sorption and biofilm promotion, need to be further investigated. We conclude by identifying areas of future research related to DIET and its application in biological treatment processes.

  18. 78 FR 37721 - Approval of American Society of Mechanical Engineers' Code Cases

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ...-0359] RIN 3150-AI72 Approval of American Society of Mechanical Engineers' Code Cases AGENCY: Nuclear... mandatory American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel (BPV) Code and... Guide'' series. In a notice of proposed rulemaking, ``Approval of American Society of Mechanical...

  19. Small Engines and Outboard Marine Mechanics Curriculum.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This competency-based curriculum guide is a handbook for the development of small engine and outboard marine mechanics programs. Based on a survey of Alaskan small engines and marine mechanics employers, it includes all competencies a student should acquire in such a mechanics program. The handbook stresses the importance of understanding the…

  20. Coupling of Nuclear Waste Form Corrosion and Radionuclide Transports in Presence of Relevant Repository Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Nathalie A.; Neeway, James J.; Qafoku, Nikolla P.

    2015-09-30

    Assessments of waste form and disposal options start with the degradation of the waste forms and consequent mobilization of radionuclides. Long-term static tests, single-pass flow-through tests, and the pressurized unsaturated flow test are often employed to study the durability of potential waste forms and to help create models that predict their durability throughout the lifespan of the disposal site. These tests involve the corrosion of the material in the presence of various leachants, with different experimental designs yielding desired information about the behavior of the material. Though these tests have proved instrumental in elucidating various mechanisms responsible for material corrosion,more » the chemical environment to which the material is subject is often not representative of a potential radioactive waste repository where factors such as pH and leachant composition will be controlled by the near-field environment. Near-field materials include, but are not limited to, the original engineered barriers, their resulting corrosion products, backfill materials, and the natural host rock. For an accurate performance assessment of a nuclear waste repository, realistic waste corrosion experimental data ought to be modeled to allow for a better understanding of waste form corrosion mechanisms and the effect of immediate geochemical environment on these mechanisms. Additionally, the migration of radionuclides in the resulting chemical environment during and after waste form corrosion must be quantified and mechanisms responsible for migrations understood. The goal of this research was to understand the mechanisms responsible for waste form corrosion in the presence of relevant repository sediments to allow for accurate radionuclide migration quantifications. The rationale for this work is that a better understanding of waste form corrosion in relevant systems will enable increased reliance on waste form performance in repository environments and potentially decrease the need for expensive engineered barriers.Our current work aims are 1) quantifying and understanding the processes associated with glass alteration in contact with Fe-bearing materials; 2) quantifying and understanding the processes associated with glass alteration in presence of MgO (example of engineered barrier used in WIPP); 3) identifying glass alteration suppressants and the processes involved to reach glass alteration suppression; 4) quantifying and understanding the processes associated with Saltstone and Cast Stone (SRS and Hanford cementitious waste forms) in various representative groundwaters; 5) investigating positron annihilation as a new tool for the study of glass alteration; and 6) quantifying and understanding the processes associated with glass alteration under gamma irradiation.« less

  1. Murine tissue-engineered stomach demonstrates epithelial differentiation.

    PubMed

    Speer, Allison L; Sala, Frederic G; Matthews, Jamil A; Grikscheit, Tracy C

    2011-11-01

    Gastric cancer remains the second largest cause of cancer-related mortality worldwide. Postgastrectomy morbidity is considerable and quality of life is poor. Tissue-engineered stomach is a potential replacement solution to restore adequate food reservoir and gastric physiology. In this study, we performed a detailed investigation of the development of tissue-engineered stomach in a mouse model, specifically evaluating epithelial differentiation, proliferation, and the presence of putative stem cell markers. Organoid units were isolated from <3 wk-old mouse glandular stomach and seeded onto biodegradable scaffolds. The constructs were implanted into the omentum of adult mice. Implants were harvested at designated time points and analyzed with histology and immunohistochemistry. Tissue-engineered stomach grows as an expanding sphere with a simple columnar epithelium organized into gastric glands and an adjacent muscularis. The regenerated gastric epithelium demonstrates differentiation of all four cell types: mucous, enteroendocrine, chief, and parietal cells. Tissue-engineered stomach epithelium proliferates at a rate comparable to native glandular stomach and expresses two putative stem cell markers: DCAMKL-1 and Lgr5. This study demonstrates the successful generation of tissue-engineered stomach in a mouse model for the first time. Regenerated gastric epithelium is able to appropriately proliferate and differentiate. The generation of murine tissue-engineered stomach is a necessary advance as it provides the transgenic tools required to investigate the molecular and cellular mechanisms of this regenerative process. Delineating the mechanism of how tissue-engineered stomach develops in vivo is an important precursor to its use as a human stomach replacement therapy. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Integrated Tools for Future Distributed Engine Control Technologies

    NASA Technical Reports Server (NTRS)

    Culley, Dennis; Thomas, Randy; Saus, Joseph

    2013-01-01

    Turbine engines are highly complex mechanical systems that are becoming increasingly dependent on control technologies to achieve system performance and safety metrics. However, the contribution of controls to these measurable system objectives is difficult to quantify due to a lack of tools capable of informing the decision makers. This shortcoming hinders technology insertion in the engine design process. NASA Glenn Research Center is developing a Hardware-inthe- Loop (HIL) platform and analysis tool set that will serve as a focal point for new control technologies, especially those related to the hardware development and integration of distributed engine control. The HIL platform is intended to enable rapid and detailed evaluation of new engine control applications, from conceptual design through hardware development, in order to quantify their impact on engine systems. This paper discusses the complex interactions of the control system, within the context of the larger engine system, and how new control technologies are changing that paradigm. The conceptual design of the new HIL platform is then described as a primary tool to address those interactions and how it will help feed the insertion of new technologies into future engine systems.

  3. “Engineering Substrate Micro- and Nanotopography to Control Cell Function”

    PubMed Central

    Bettinger, Christopher J; Langer, Robert; Borenstein, Jeffrey T

    2010-01-01

    Lead-In The interaction of mammalian cells with nanoscale topography has proven to be an important signaling modality in controlling cell function. Naturally occurring nanotopographic structures within the extracellular matrix present surrounding cells with mechanotransductive cues that influence local migration, cell polarization, and other functions. Synthetically nanofabricated topography can also influence cell morphology, alignment, adhesion, migration, proliferation, and cytoskeleton organization. Here we review the use of in vitro synthetic cell-nanotopography interactions to control cell behavior and influence complex cellular processes including stem cell differentiation and tissue organization. Future challenges and opportunities in cell-nanotopography engineering will also be discussed including the elucidation of mechanisms and applications in tissue engineering. PMID:19492373

  4. Ice Accretion Measurements on an Airfoil and Wedge in Mixed-Phase Conditions

    NASA Technical Reports Server (NTRS)

    Struk, Peter; Bartkus, Tadas; Tsao, Jen-Ching; Currie, Tom; Fuleki, Dan

    2015-01-01

    This paper describes ice accretion measurements from experiments conducted at the National Research Council (NRC) of Canada's Research Altitude Test Facility during 2012. Due to numerous engine power loss events associated with high altitude convective weather, potential ice accretion within an engine due to ice crystal ingestion is being investigated collaboratively by NASA and NRC. These investigations examine the physical mechanisms of ice accretion on surfaces exposed to ice crystal and mixed phase conditions, similar to those believed to exist in core compressor regions of jet engines. A further objective of these tests is to examine scaling effects since altitude appears to play a key role in this icing process.

  5. Learning about friction: group dynamics in engineering students' work with free body diagrams

    NASA Astrophysics Data System (ADS)

    Berge, Maria; Weilenmann, Alexandra

    2014-11-01

    In educational research, it is well-known that collaborative work on core conceptual issues in physics leads to significant improvements in students' conceptual understanding. In this paper, we explore collaborative learning in action, adding to previous research in engineering education with a specific focus on the students' use of free body diagrams in interaction. By looking at details in interaction among a group of three engineering students, we illustrate how they collectively construct a free body diagram together when learning introductory mechanics. In doing so, we have focused on both learning possibilities and the dynamic processes that take place in the learning activity. These findings have a number of implications for educational practice.

  6. Strain-Tuning Atomic Substitution in Two-Dimensional Atomic Crystals.

    PubMed

    Li, Honglai; Liu, Hongjun; Zhou, Linwei; Wu, Xueping; Pan, Yuhao; Ji, Wei; Zheng, Biyuan; Zhang, Qinglin; Zhuang, Xiujuan; Zhu, Xiaoli; Wang, Xiao; Duan, Xiangfeng; Pan, Anlian

    2018-05-22

    Atomic substitution offers an important route to achieve compositionally engineered two-dimensional nanostructures and their heterostructures. Despite the recent research progress, the fundamental understanding of the reaction mechanism has still remained unclear. Here, we reveal the atomic substitution mechanism of two-dimensional atomic layered materials. We found that the atomic substitution process depends on the varying lattice constant (strain) in monolayer crystals, dominated by two strain-tuning (self-promoted and self-limited) mechanisms using density functional theory calculations. These mechanisms were experimentally confirmed by the controllable realization of a graded substitution ratio in the monolayers by controlling the substitution temperature and time and further theoretically verified by kinetic Monte Carlo simulations. The strain-tuning atomic substitution processes are of general importance to other two-dimensional layered materials, which offers an interesting route for tailoring electronic and optical properties of these materials.

  7. Life and Damage Monitoring-Using NDI Data Interpretation for Corrosion Damage and Remaining Life Assessments

    DTIC Science & Technology

    2003-02-01

    Holistic Life Prediction Methodology Engineering is a profession based in science, but in the face of limited data or resources, the application of...the process. (see Table 1). "* HLPM uses continuum mechanics but defines limits of applicability - is material and process specific. "* HLPM defines...LEFM - EPFM ?) Nucleated Structure dominated Data base** Tensile/compressive discontinuity (not crack growth buckling inherent) type, size, Appropriate

  8. Study of phenomena related to the sintering process of silicon nitride at atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Bertani, A.

    1982-01-01

    A procedure was perfected for the production of components used in engineering applications of silicon nitride. Particles of complex geometry that combine remarkable mechanical properties with a high density are obtained. The process developed, in contrast to the "hot pressing" method, does not use external pressures, and in contrast to the reaction bonding method, final densities close to the theoretical value are obtained.

  9. PREFACE: International Conference on Applied Sciences 2015 (ICAS2015)

    NASA Astrophysics Data System (ADS)

    Lemle, Ludovic Dan; Jiang, Yiwen

    2016-02-01

    The International Conference on Applied Sciences ICAS2015 took place in Wuhan, China on June 3-5, 2015 at the Military Economics Academy of Wuhan. The conference is regularly organized, alternatively in Romania and in P.R. China, by Politehnica University of Timişoara, Romania, and Military Economics Academy of Wuhan, P.R. China, with the joint aims to serve as a platform for exchange of information between various areas of applied sciences, and to promote the communication between the scientists of different nations, countries and continents. The topics of the conference cover a comprehensive spectrum of issues from: >Economical Sciences and Defense: Management Sciences, Business Management, Financial Management, Logistics, Human Resources, Crisis Management, Risk Management, Quality Control, Analysis and Prediction, Government Expenditure, Computational Methods in Economics, Military Sciences, National Security, and others... >Fundamental Sciences and Engineering: Interdisciplinary applications of physics, Numerical approximation and analysis, Computational Methods in Engineering, Metallic Materials, Composite Materials, Metal Alloys, Metallurgy, Heat Transfer, Mechanical Engineering, Mechatronics, Reliability, Electrical Engineering, Circuits and Systems, Signal Processing, Software Engineering, Data Bases, Modeling and Simulation, and others... The conference gathered qualified researchers whose expertise can be used to develop new engineering knowledge that has applicability potential in Engineering, Economics, Defense, etc. The number of participants was 120 from 11 countries (China, Romania, Taiwan, Korea, Denmark, France, Italy, Spain, USA, Jamaica, and Bosnia and Herzegovina). During the three days of the conference four invited and 67 oral talks were delivered. Based on the work presented at the conference, 38 selected papers have been included in this volume of IOP Conference Series: Materials Science and Engineering. These papers present new research in the various fields of Materials Engineering, Mechanical Engineering, Computers Engineering, and Electrical Engineering. It's our great pleasure to present this volume of IOP Conference Series: Materials Science and Engineering to the scientific community to promote further research in these areas. We sincerely hope that the papers published in this volume will contribute to the advancement of knowledge in the respective fields.

  10. Thermophysical and Thermomechanical Properties of Thermal Barrier Coating Systems

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2000-01-01

    Thermal barrier coatings have been developed for advanced gas turbine and diesel engine applications to improve engine reliability and fuel efficiency. However, the issue of coating durability under high temperature cyclic conditions is still of major concern. The coating failure is closely related to thermal stresses and oxidation in the coating systems. Coating shrinkage cracking resulting from ceramic sintering and creep at high temperatures can further accelerate the coating failure process. The purpose of this paper is to address critical issues such as ceramic sintering and creep, thermal fatigue and their relevance to coating life prediction. Novel test approaches have been established to obtain critical thermophysical and thermomechanical properties of the coating systems under near-realistic temperature and stress gradients encountered in advanced engine systems. Emphasis is placed on the dynamic changes of the coating thermal conductivity and elastic modulus, fatigue and creep interactions, and resulting failure mechanisms during the simulated engine tests. Detailed experimental and modeling results describing processes occurring in the thermal barrier coating systems provide a framework for developing strategies to manage ceramic coating architecture, microstructure and properties.

  11. The upside of noise: engineered dissipation as a resource in superconducting circuits

    NASA Astrophysics Data System (ADS)

    Kapit, Eliot

    2017-09-01

    Historically, noise in superconducting circuits has been considered an obstacle to be removed. A large fraction of the research effort in designing superconducting circuits has focused on noise reduction, with great success, as coherence times have increased by four orders of magnitude in the past two decades. However, noise and dissipation can never be fully eliminated, and further, a rapidly growing body of theoretical and experimental work has shown that carefully tuned noise, in the form of engineered dissipation, can be a profoundly useful tool in designing and operating quantum circuits. In this article, I review important applications of engineered dissipation, including state generation, state stabilization, and autonomous quantum error correction, where engineered dissipation can mitigate the effect of intrinsic noise, reducing logical error rates in quantum information processing. Further, I provide a pedagogical review of the basic noise processes in superconducting qubits (photon loss and phase noise), and argue that any dissipative mechanism which can correct photon loss errors is very likely to automatically suppress dephasing. I also discuss applications for quantum simulation, and possible future research directions.

  12. Artificial muscles on heat

    NASA Astrophysics Data System (ADS)

    McKay, Thomas G.; Shin, Dong Ki; Percy, Steven; Knight, Chris; McGarry, Scott; Anderson, Iain A.

    2014-03-01

    Many devices and processes produce low grade waste heat. Some of these include combustion engines, electrical circuits, biological processes and industrial processes. To harvest this heat energy thermoelectric devices, using the Seebeck effect, are commonly used. However, these devices have limitations in efficiency, and usable voltage. This paper investigates the viability of a Stirling engine coupled to an artificial muscle energy harvester to efficiently convert heat energy into electrical energy. The results present the testing of the prototype generator which produced 200 μW when operating at 75°C. Pathways for improved performance are discussed which include optimising the electronic control of the artificial muscle, adjusting the mechanical properties of the artificial muscle to work optimally with the remainder of the system, good sealing, and tuning the resonance of the displacer to minimise the power required to drive it.

  13. 40 CFR 1065.410 - Maintenance limits for stabilized test engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... engineering grade tools to identify bad engine components. Any equipment, instruments, or tools used for... no longer use it as an emission-data engine. Also, if your test engine has a major mechanical failure... your test engine has a major mechanical failure that requires you to take it apart, you may no longer...

  14. 40 CFR 1065.410 - Maintenance limits for stabilized test engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... engineering grade tools to identify bad engine components. Any equipment, instruments, or tools used for... no longer use it as an emission-data engine. Also, if your test engine has a major mechanical failure... your test engine has a major mechanical failure that requires you to take it apart, you may no longer...

  15. The Institute of Biological Engineering 2013 Annual Conference

    DTIC Science & Technology

    2014-10-30

    of Bioengineering University of Washington Presentation: Peptide-Based materials for Drug Delivery Dr. Ya-Ping Sun (Supported by the Grant) Frank...Professor of Biomedical Engineering and Mechanical Engineering and Materials Science Duke University Presentation: Acoustic Microfluidics and New...Triangle Materials Research Science and Engineering Center, Department of Biomedical Engineering, Duke University, Department of Mechanical Engineering

  16. Mechanical Engineering | Classification | College of Engineering & Applied

    Science.gov Websites

    ProfessorMechanical Engineering(414) 229-6949avdeev@uwm.eduEng & Math Sciences 975 profile photo Robert Balmer, Sc . D.Professor EmeritusMechanical Engineering(414) 229-3374balmer@uwm.eduEng & Math Sciences E260 profile -6614wjchang@uwm.eduEng & Math Sciences 1113 profile photo Junhong Chen Ph.D.UWM Distinguished

  17. Engineering a Place for Women: A Study of How Departmental Climate Influences the Career Satisfaction of Female Mechanical Engineering Faculty Members

    ERIC Educational Resources Information Center

    Young, Monica J.

    2012-01-01

    The purpose of this mixed-methods study was to better understand how female mechanical engineering faculty members' career experiences in academia affect their satisfaction. Specifically, the research considered differences in satisfaction reported by female and male mechanical engineering faculty members in terms of: (a) departmental…

  18. Integrating Communication into Engineering Curricula: An Interdisciplinary Approach to Facilitating Transfer at New Mexico Institute of Mining and Technology

    ERIC Educational Resources Information Center

    Ford, Julie Dyke

    2012-01-01

    This program profile describes a new approach towards integrating communication within Mechanical Engineering curricula. The author, who holds a joint appointment between Technical Communication and Mechanical Engineering at New Mexico Institute of Mining and Technology, has been collaborating with Mechanical Engineering colleagues to establish a…

  19. Urban development applications project. Urban technology transfer study

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Technology transfer is defined along with reasons for attempting to transfer technology. Topics discussed include theoretical models, stages of the innovation model, communication process model, behavior of industrial organizations, problem identification, technology search and match, establishment of a market mechanism, applications engineering, commercialization, and management of technology transfer.

  20. Heterogeneous mass transfer in HRE in the presence of electrostatic field research

    NASA Astrophysics Data System (ADS)

    Reshetnikov, S. M.; Zyryanov, I. A.; Budin, A. G.; Pozolotin, A. P.

    2017-01-01

    The paper presents research results of polymethylmethacrylate (PMMA) combustion in a hybrid rocket engine (HRE) under the influence of an electrostatic field. It is shown that the main mechanism of electrostatic field influence on the combustion rate is process changes in the condensed phase.

  1. Effects of Fault Segmentation, Mechanical Interaction, and Structural Complexity on Earthquake-Generated Deformation

    ERIC Educational Resources Information Center

    Haddad, David Elias

    2014-01-01

    Earth's topographic surface forms an interface across which the geodynamic and geomorphic engines interact. This interaction is best observed along crustal margins where topography is created by active faulting and sculpted by geomorphic processes. Crustal deformation manifests as earthquakes at centennial to millennial timescales. Given that…

  2. Beta Testing in Social Work

    ERIC Educational Resources Information Center

    Traube, Dorian E.; Begun, Stephanie; Petering, Robin; Flynn, Marilyn L.

    2017-01-01

    The field of social work does not currently have a widely adopted method for expediting innovations into micro- or macropractice. Although it is common in fields such as engineering and business to have formal processes for accelerating scientific advances into consumer markets, few comparable mechanisms exist in the social sciences or social…

  3. Construction of combustion models for rapeseed methyl ester bio-diesel fuel for internal combustion engine applications.

    PubMed

    Golovitchev, Valeri I; Yang, Junfeng

    2009-01-01

    Bio-diesel fuels are non-petroleum-based diesel fuels consisting of long chain alkyl esters produced by the transesterification of vegetable oils, that are intended for use (neat or blended with conventional fuels) in unmodified diesel engines. There have been few reports of studies proposing theoretical models for bio-diesel combustion simulations. In this study, we developed combustion models based on ones developed previously. We compiled the liquid fuel properties, and the existing detailed mechanism of methyl butanoate ester (MB, C(5)H(10)O(2)) oxidation was supplemented by sub-mechanisms for two proposed fuel constituent components, C(7)H(16) and C(7)H(8)O (and then, by mp2d, C(4)H(6)O(2) and propyne, C(3)H(4)) to represent the combustion model for rapeseed methyl ester described by the chemical formula, C(19)H(34)O(2) (or C(19)H(36)O(2)). The main fuel vapor thermal properties were taken as those of methyl palmitate C(19)H(36)O(2) in the NASA polynomial form of the Burcat database. The special global reaction was introduced to "crack" the main fuel into its constituent components. This general reaction included 309 species and 1472 reactions, including soot and NO(x) formation processes. The detailed combustion mechanism was validated using shock-tube ignition-delay data under diesel engine conditions. For constant volume and diesel engine (Volvo D12C) combustion modeling, this mechanism could be reduced to 88 species participating in 363 reactions.

  4. Datasets on demographic trends in enrollment into undergraduate engineering programs at Covenant University, Nigeria.

    PubMed

    Popoola, Segun I; Atayero, Aderemi A; Badejo, Joke A; Odukoya, Jonathan A; Omole, David O; Ajayi, Priscilla

    2018-06-01

    In this data article, we present and analyze the demographic data of undergraduates admitted into engineering programs at Covenant University, Nigeria. The population distribution of 2649 candidates admitted into Chemical Engineering, Civil Engineering, Computer Engineering, Electrical and Electronics Engineering, Information and Communication Engineering, Mechanical Engineering, and Petroleum Engineering programs between 2002 and 2009 are analyzed by gender, age, and state of origin. The data provided in this data article were retrieved from the student bio-data submitted to the Department of Admissions and Student Records (DASR) and Center for Systems and Information Services (CSIS) by the candidates during the application process into the various engineering undergraduate programs. These vital information is made publicly available, after proper data anonymization, to facilitate empirical research in the emerging field of demographics analytics in higher education. A Microsoft Excel spreadsheet file is attached to this data article and the data is thoroughly described for easy reuse. Descriptive statistics and frequency distributions of the demographic data are presented in tables, plots, graphs, and charts. Unrestricted access to these demographic data will facilitate reliable and evidence-based research findings for sustainable education in developing countries.

  5. Polymer powder processing of cryomilled polycaprolactone for solvent-free generation of homogeneous bioactive tissue engineering scaffolds.

    PubMed

    Lim, Jing; Chong, Mark Seow Khoon; Chan, Jerry Kok Yen; Teoh, Swee-Hin

    2014-06-25

    Synthetic polymers used in tissue engineering require functionalization with bioactive molecules to elicit specific physiological reactions. These additives must be homogeneously dispersed in order to achieve enhanced composite mechanical performance and uniform cellular response. This work demonstrates the use of a solvent-free powder processing technique to form osteoinductive scaffolds from cryomilled polycaprolactone (PCL) and tricalcium phosphate (TCP). Cryomilling is performed to achieve micrometer-sized distribution of PCL and reduce melt viscosity, thus improving TCP distribution and improving structural integrity. A breakthrough is achieved in the successful fabrication of 70 weight percentage of TCP into a continuous film structure. Following compaction and melting, PCL/TCP composite scaffolds are found to display uniform distribution of TCP throughout the PCL matrix regardless of composition. Homogeneous spatial distribution is also achieved in fabricated 3D scaffolds. When seeded onto powder-processed PCL/TCP films, mesenchymal stem cells are found to undergo robust and uniform osteogenic differentiation, indicating the potential application of this approach to biofunctionalize scaffolds for tissue engineering applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Experimental thermodynamics of single molecular motor

    PubMed Central

    Toyabe, Shoichi; Muneyuki, Eiro

    2013-01-01

    Molecular motor is a nano-sized chemical engine that converts chemical free energy to mechanical motions. Hence, the energetics is as important as kinetics in order to understand its operation principle. We review experiments to evaluate the thermodynamic properties of a rotational F1-ATPase motor (F1-motor) at a single-molecule level. We show that the F1-motor achieves 100% thermo dynamic efficiency at the stalled state. Furthermore, the motor reduces the internal irreversible heat inside the motor to almost zero and achieves a highly-efficient free energy transduction close to 100% during rotations far from quasistatic process. We discuss the mechanism of how the F1-motor achieves such a high efficiency, which highlights the remarkable property of the nano-sized engine F1-motor. PMID:27493546

  7. Waste IPSC : Thermal-Hydrologic-Chemical-Mechanical (THCM) modeling and simulation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeze, Geoffrey A.; Wang, Yifeng; Arguello, Jose Guadalupe, Jr.

    2010-10-01

    Waste IPSC Objective is to develop an integrated suite of high performance computing capabilities to simulate radionuclide movement through the engineered components and geosphere of a radioactive waste storage or disposal system: (1) with robust thermal-hydrologic-chemical-mechanical (THCM) coupling; (2) for a range of disposal system alternatives (concepts, waste form types, engineered designs, geologic settings); (3) for long time scales and associated large uncertainties; (4) at multiple model fidelities (sub-continuum, high-fidelity continuum, PA); and (5) in accordance with V&V and software quality requirements. THCM Modeling collaborates with: (1) Other Waste IPSC activities: Sub-Continuum Processes (and FMM), Frameworks and Infrastructure (and VU,more » ECT, and CT); (2) Waste Form Campaign; (3) Used Fuel Disposition (UFD) Campaign; and (4) ASCEM.« less

  8. Outstanding student paper award at the 1996 Fall Meeting

    NASA Astrophysics Data System (ADS)

    The Planetology Section presented an Outstanding Student Paper Award at the AGU 1996 Fall Meeting in San Francisco, California, in December 1996. Elissa Koenig, presented a poster entitled “Mapping and Modeling of Radial Fracture Patterns on Venus.” Koenig graduated summa cum laude from Princeton University in 1991 with a B.S.E. form the Geological Engineering Program. She then spent a year as a Fulbright Scholar at the University of Auckland, New Zealand, where she studied the fluid dynamics of geyser eruptions. Elissa joined the Geomechanics Research Group at Stanford University in 1993 as an NSF Graduate Fellow, minoring in mechanical engineering. Her Ph.D. dissertation, titled “The Mechanics of Brittle Fracture and Faulting Venus,” explores the processes of both radial dike emplacement and strike-slip faulting.

  9. On the possibility of producing piston pins for diesel engines from steel 18KhGT with the use of mechanical and chemical heat treatment

    NASA Astrophysics Data System (ADS)

    Zolot'ko, V. A.

    1997-06-01

    At the present time pisto pins of highly loaded diesel engines are produced by mechanical treatment from tube preforms of steel 12KhN3A and carburized by subsequent heat treatment. The high cost of domestic steel and the absence of preforms of the requisite size make it necessary to choose a less scare material and develop a treatment process that would provide the requisite operational characteristics of the parts. The present work is devoted to a study of the possibility of using for the purpose steel 18KhGT in a state of substructural toughening created by cold plastic straining (CPS) and a stabilizing heat treatment with subsequent ion nitriding.

  10. Recent Cooperative Research Activities of HDD and Flexible Media Transport Technologies in Japan

    NASA Astrophysics Data System (ADS)

    Ono, Kyosuke

    This paper presents the recent status of industry-university cooperative research activities in Japan on the mechatronics of information storage and input/output equipment. There are three research committees for promoting information exchange on technical problems and research topics of head-disk interface in hard disk drives (HDD), flexible media transport and image printing processes which are supported by the Japan Society of Mechanical Engineering (JSME), the Japanese Society of Tribologists (JAST) and the Japan Society of Precision Engineering (JSPE). For hard disk drive technology, the Storage Research Consortium (SRC) is supporting more than 40 research groups in various different universities to perform basic research for future HDD technology. The past and present statuses of these activities are introduced, particularly focusing on HDD and flexible media transport mechanisms.

  11. Decoupling the effect of shear stress and stretch on tissue growth & remodeling in a vascular graft.

    PubMed

    van Haaften, Eline E; Wissing, Tamar B; Rutten, Marcel; Bulsink, Jurgen A; Gashi, Kujtim; van Kelle, Mathieu A J; Smits, Anthal; Bouten, Carlijn; Kurniawan, Nicholas A

    2018-06-07

    The success of cardiovascular tissue engineering strategies largely depends on the mechanical environment in which cells develop a neo-tissue via growth and remodeling processes. This mechanical environment is defined by the local scaffold architecture to which cells adhere, i.e., the micro-environment, and by external mechanical cues to which cells respond, i.e., hemodynamic loading. The hemodynamic environment of early-developing blood vessels consists of both shear stress (due to blood flow) and circumferential stretch (due to blood pressure). Experimental platforms that recapitulate this mechanical environment in a controlled and tunable manner are thus critical for investigating cardiovascular tissue engineering. In traditional perfusion bioreactors, however, shear stress and stretch are coupled, hampering a clear delineation of their effects on cell and tissue response. Here, we uniquely designed a bioreactor that independently combines these two types of mechanical cues in eight parallel vascular grafts. The system is computationally and experimentally validated, through finite element analysis and culture of tissue constructs respectively, to distinguish various levels of shear stress (up to 5 Pa) and cyclic stretch (up to 1.10). To illustrate the usefulness of the system, we investigated the relative contribution of cyclic stretch (1.05 at 0.5 Hz) and shear stress (1 Pa) to tissue development. Both types of hemodynamic loading contributed to cell alignment, but the contribution of shear stress overruled stretch-induced cell proliferation and matrix (i.e., collagen and glycosaminoglycan) production. At a macroscopic level, cyclic stretching led to the most linear stress-stretch response, which was not related to the presence of shear stress. In conclusion, we have developed a bioreactor that is particularly suited to further unravel the interplay between hemodynamics and in situ tissue engineering processes. Using the new system, the present work highlights the importance of hemodynamic loading to the study of developing vascular tissues.

  12. Knocking in the Otto-cycle Engine

    NASA Technical Reports Server (NTRS)

    Weinhart, H

    1939-01-01

    Engine knock is, as is known, preceded by normal burning of the first part of the charge, and only the part burned last (residual charge), knocks. The aim of the present measurements was, first, to reexamine the combustion form in this residual charge, because of the absence of uniform and frequently contradictory results in the very extensive literature on the subject. On top of that, an attempt was to be made to gain a deeper insight into the mechanism accompanying the combustion process, by means of the electrical test equipment perfected in recent years.

  13. Materials Science Laboratory

    NASA Technical Reports Server (NTRS)

    Jackson, Dionne

    2005-01-01

    The NASA Materials Science Laboratory (MSL) provides science and engineering services to NASA and Contractor customers at KSC, including those working for the Space Shuttle. International Space Station. and Launch Services Programs. These services include: (1) Independent/unbiased failure analysis (2) Support to Accident/Mishap Investigation Boards (3) Materials testing and evaluation (4) Materials and Processes (M&P) engineering consultation (5) Metrology (6) Chemical analysis (including ID of unknown materials) (7) Mechanical design and fabrication We provide unique solutions to unusual and urgent problems associated with aerospace flight hardware, ground support equipment and related facilities.

  14. Processing-Related Issues for the Design and Lifing of SiC/SiC Hot-Section Components

    NASA Technical Reports Server (NTRS)

    DiCarlo, J.; Bhatt, R.; Morscher, G.; Yun, H. M.

    2006-01-01

    For successful SiC/SiC engine components, numerous process steps related to the fiber, fiber architecture, interphase coating, and matrix need to be optimized. Under recent NASA-sponsored programs, it was determined that many of these steps in their initial approach were inadequate, resulting in less than optimum thermostructural and life properties for the as-fabricated components. This presentation will briefly review many of these process issues, the key composite properties they degrade, their underlying mechanisms, and current process remedies developed by NASA and others.

  15. A review of rapid prototyping techniques for tissue engineering purposes.

    PubMed

    Peltola, Sanna M; Melchels, Ferry P W; Grijpma, Dirk W; Kellomäki, Minna

    2008-01-01

    Rapid prototyping (RP) is a common name for several techniques, which read in data from computer-aided design (CAD) drawings and manufacture automatically three-dimensional objects layer-by-layer according to the virtual design. The utilization of RP in tissue engineering enables the production of three-dimensional scaffolds with complex geometries and very fine structures. Adding micro- and nanometer details into the scaffolds improves the mechanical properties of the scaffold and ensures better cell adhesion to the scaffold surface. Thus, tissue engineering constructs can be customized according to the data acquired from the medical scans to match the each patient's individual needs. In addition RP enables the control of the scaffold porosity making it possible to fabricate applications with desired structural integrity. Unfortunately, every RP process has its own unique disadvantages in building tissue engineering scaffolds. Hence, the future research should be focused on the development of RP machines designed specifically for fabrication of tissue engineering scaffolds, although RP methods already can serve as a link between tissue and engineering.

  16. Expediting the transition from replacement medicine to tissue engineering.

    PubMed

    Coury, Arthur J

    2016-06-01

    In this article, an expansive interpretation of "Tissue Engineering" is proposed which is in congruence with classical and recent published definitions. I further simplify the definition of tissue engineering as: "Exerting systematic control of the body's cells, matrices and fluids." As a consequence, many medical therapies not commonly considered tissue engineering are placed in this category because of their effect on the body's responses. While the progress of tissue engineering strategies is inexorable and generally positive, it has been subject to setbacks as have many important medical therapies. Medical practice is currently undergoing a transition on several fronts (academics, start-up companies, going concerns) from the era of "replacement medicine" where body parts and functions are replaced by mechanical, electrical or chemical therapies to the era of tissue engineering where health is restored by regeneration generation or limitation of the body's tissues and functions by exploiting our expanding knowledge of the body's biological processes to produce natural, healthy outcomes.

  17. Accelerated testing of space mechanisms

    NASA Technical Reports Server (NTRS)

    Murray, S. Frank; Heshmat, Hooshang

    1995-01-01

    This report contains a review of various existing life prediction techniques used for a wide range of space mechanisms. Life prediction techniques utilized in other non-space fields such as turbine engine design are also reviewed for applicability to many space mechanism issues. The development of new concepts on how various tribological processes are involved in the life of the complex mechanisms used for space applications are examined. A 'roadmap' for the complete implementation of a tribological prediction approach for complex mechanical systems including standard procedures for test planning, analytical models for life prediction and experimental verification of the life prediction and accelerated testing techniques are discussed. A plan is presented to demonstrate a method for predicting the life and/or performance of a selected space mechanism mechanical component.

  18. Bioresorbable scaffolds for bone tissue engineering: optimal design, fabrication, mechanical testing and scale-size effects analysis.

    PubMed

    Coelho, Pedro G; Hollister, Scott J; Flanagan, Colleen L; Fernandes, Paulo R

    2015-03-01

    Bone scaffolds for tissue regeneration require an optimal trade-off between biological and mechanical criteria. Optimal designs may be obtained using topology optimization (homogenization approach) and prototypes produced using additive manufacturing techniques. However, the process from design to manufacture remains a research challenge and will be a requirement of FDA design controls to engineering scaffolds. This work investigates how the design to manufacture chain affects the reproducibility of complex optimized design characteristics in the manufactured product. The design and prototypes are analyzed taking into account the computational assumptions and the final mechanical properties determined through mechanical tests. The scaffold is an assembly of unit-cells, and thus scale size effects on the mechanical response considering finite periodicity are investigated and compared with the predictions from the homogenization method which assumes in the limit infinitely repeated unit cells. Results show that a limited number of unit-cells (3-5 repeated on a side) introduce some scale-effects but the discrepancies are below 10%. Higher discrepancies are found when comparing the experimental data to numerical simulations due to differences between the manufactured and designed scaffold feature shapes and sizes as well as micro-porosities introduced by the manufacturing process. However good regression correlations (R(2) > 0.85) were found between numerical and experimental values, with slopes close to 1 for 2 out of 3 designs. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT VI, MAINTAINING MECHANICAL GOVERNORS--DETROIT DIESEL ENGINES.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF MECHANICAL GOVERNORS USED ON DIESEL ENGINES. TOPICS ARE (1) TYPES OF GOVERNORS AND ENGINE LOCATION, (2) GOVERNOR APPLICATIONS, (3) LIMITING SPEED MECHANICAL GOVERNOR, (4) VARIABLE SPEED MECHANICAL GOVERNOR, AND (5) CONSTANT SPEED…

  20. Dramatic Improvement of the Mechanical Strength of Silane-Modified Hydroxyapatite–Gelatin Composites via Processing with Cosolvent

    PubMed Central

    2018-01-01

    Bone tissue engineering (BTE) requires a sturdy biomaterial for scaffolds for restoration of large bone defects. Ideally, the scaffold should have a mechanical strength comparable to the natural bone in the implanted site. We show that adding cosolvent during the processing of our previously developed composite of hydroxyapatite–gelatin with a silane cross-linker can significantly affect its mechanical strength. When processed with tetrahydrofuran (THF) as the cosolvent, the new hydroxyapatite–gelatin composite can demonstrate almost twice the compressive strength (97 vs 195 MPa) and biaxial flexural strength (222 vs 431 MPa) of the previously developed hydroxyapatite–gelatin composite (i.e., processed without THF), respectively. We further confirm that this mechanical strength improvement is due to the improved morphology of both the enTMOS network and the composite. Furthermore, the addition of cosolvents does not appear to negatively impact the cell viability. Finally, the porous scaffold can be easily fabricated, and its compressive strength is around 11 MPa under dry conditions. All these results indicate that this new hydroxyapatite–gelatin composite is a promising material for BTE application. PMID:29623305

  1. Structure and mechanical properties of supramolecular random copolymer hydrogels cross linked by hydrophobic aggregates.

    NASA Astrophysics Data System (ADS)

    Vogt, Bryan; Wiener, Clinton; Wang, Chao; Weiss, Bob

    Stress dissipation mechanisms are critical to improving the toughness of hydrogels. The use of reversible hydrophobic associations for crosslnking of hydrogels provides such a mechanism for toughening, but can also lead to the creep of the hydrogel as the crosslinks break and reform. The morphology of the hydrophobic aggregates thus is critical to the mechanical properties of the hydrogels. In this work, we will demonstrate how the processing of these copolymers impacts the hydrogel structure and this structure is correlated with the mechanical properties through a combination of small angle scattering, rheology, and tensile measurements. The hydrophilic and hydrophobic chemistries in the copolymer can be used to tune the water content and strength of the crosslinks, while the copolymer composition provides the number density of crosslinks and also acts to modulate the swelling of the hydrogel. These copolymers as well as their hydrogels can in general use traditional polymer processing, but the details of this processing impacts both the nanoscale morphology and the resultant mechanical properties of the hydrogels. This work was financially supported by the Civil, Mechanical and Manufacturing Innovation (CMMI) Division in the Directorate for Engineering of the National Science Foundation, Grant. CMMI-1300212.

  2. Study on properties of CFRP fabricated by VA-RTM process

    NASA Astrophysics Data System (ADS)

    Jeoung, Sun Kyoung; Hwang, Ye Jin; Lee, Hyun Wook; Son, Soon Keun; Kim, Hyung Sik; Ha, Jin Uk

    2016-03-01

    Carbon fiber reinforced plastics (CFRP) have a lot of attention from industry and academia due to its excellent mechanical property. It has been used for aircraft, automotive and so on, since it can replace metallic materials and reduce total weight with increased physical properties. However, the manufacturing process and the material cost are still challenging to be commercialized in the automotive market. Therefore, many researchers are trying to minimize materials and process cost for broadening their applications. In this study, thermoset epoxy resins were used for binder of CFRP. Epoxy resins were investigated in order to figure out optimized curing speed under vacuum assisted resin transfer molding (VARTM) processing condition. Mechanical properties of CFRP with different carbon fiber orientation and woven carbon fiber were compared to mathematically simulated results. In order to develop the application of automobile component, reliability tests of CFRP were carried out. Tensile strength of CFRP is increased when the orientation angle between fiber and axis of load was decreased (90°→ 0°). It is considered that epoxy and carbon fiber absorbed the tensile energy because the orientation of fiber and the load bearing are matched with axis direction. In addition, the CFRP automobile engine hood was fabricated by VARTM process. Drop weight impact tests (20kg & 100kg weight) were carried out in order to simulate crash performance of CFRP engine hoods.

  3. Novel electrospun nanofibers of modified gelatin-tyrosine in cartilage tissue engineering.

    PubMed

    Agheb, Maria; Dinari, Mohammad; Rafienia, Mohammad; Salehi, Hossein

    2017-02-01

    In natural cartilage tissues, chondrocytes are linked to extracellular matrix (ECM) through cell-surface binding proteins. Surface modification of gelatin can provide a new generation of biopolymers and fibrous scaffolds with chemical, mechanical, and biological properties. In this study tyrosine protein and 1,2,3-triazole ring were utilized to functionalize gelatin without Cu catalyst. Their molecular structure was characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy ( 1 HNMR). Chemical cross-linkers such as glutaraldehyde (GA) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-hydroxysulfosuccinimide (NHS) were used to electrospin the modified gelatin. The modification of gelatin and cross-linking effects were confirmed by scanning electron microscopy (SEM), contact angle measurement, and mechanical tests. MTT assay using chondrocyte cells showed cell viability of electrospun modified gelatin scaffolds. In vitro cell culture studies showed that electrospun engineered protein scaffolds would support the attachment and growth of cells. The results also showed that cross-linked nanofibers with EDC/NHS could be considered excellent matrices in cell adhesion and proliferation before electrospinning process and their potential substrate in tissue engineering applications, especially in the field of cartilage engineering. Copyright © 2016. Published by Elsevier B.V.

  4. Optimized and Automated design of Plasma Diagnostics for Additive Manufacture

    NASA Astrophysics Data System (ADS)

    Stuber, James; Quinley, Morgan; Melnik, Paul; Sieck, Paul; Smith, Trevor; Chun, Katherine; Woodruff, Simon

    2016-10-01

    Despite having mature designs, diagnostics are usually custom designed for each experiment. Most of the design can be now be automated to reduce costs (engineering labor, and capital cost). We present results from scripted physics modeling and parametric engineering design for common optical and mechanical components found in many plasma diagnostics and outline the process for automated design optimization that employs scripts to communicate data from online forms through proprietary and open-source CAD and FE codes to provide a design that can be sent directly to a printer. As a demonstration of design automation, an optical beam dump, baffle and optical components are designed via an automated process and printed. Supported by DOE SBIR Grant DE-SC0011858.

  5. Error Estimation and Uncertainty Propagation in Computational Fluid Mechanics

    NASA Technical Reports Server (NTRS)

    Zhu, J. Z.; He, Guowei; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Numerical simulation has now become an integral part of engineering design process. Critical design decisions are routinely made based on the simulation results and conclusions. Verification and validation of the reliability of the numerical simulation is therefore vitally important in the engineering design processes. We propose to develop theories and methodologies that can automatically provide quantitative information about the reliability of the numerical simulation by estimating numerical approximation error, computational model induced errors and the uncertainties contained in the mathematical models so that the reliability of the numerical simulation can be verified and validated. We also propose to develop and implement methodologies and techniques that can control the error and uncertainty during the numerical simulation so that the reliability of the numerical simulation can be improved.

  6. 3D printing process of oxidized nanocellulose and gelatin scaffold.

    PubMed

    Xu, Xiaodong; Zhou, Jiping; Jiang, Yani; Zhang, Qi; Shi, Hongcan; Liu, Dongfang

    2018-08-01

    For tissue engineering applications tissue scaffolds need to have a porous structure to meet the needs of cell proliferation/differentiation, vascularisation and sufficient mechanical strength for the specific tissue. Here we report the results of a study of the 3D printing process for composite materials based on oxidized nanocellulose and gelatin, that was optimised through measuring rheological properties of different batches of materials after different crosslinking times, simulation of the pneumatic extrusion process and 3D scaffolds fabrication with Solidworks Flow Simulation, observation of its porous structure by SEM, measurement of pressure-pull performance, and experiments aimed at finding out the vitro cytotoxicity and cell morphology. The materials printed are highly porous scaffolds with good mechanical properties.

  7. Synthetic Biology: Tools to Design, Build, and Optimize Cellular Processes

    PubMed Central

    Young, Eric; Alper, Hal

    2010-01-01

    The general central dogma frames the emergent properties of life, which make biology both necessary and difficult to engineer. In a process engineering paradigm, each biological process stream and process unit is heavily influenced by regulatory interactions and interactions with the surrounding environment. Synthetic biology is developing the tools and methods that will increase control over these interactions, eventually resulting in an integrative synthetic biology that will allow ground-up cellular optimization. In this review, we attempt to contextualize the areas of synthetic biology into three tiers: (1) the process units and associated streams of the central dogma, (2) the intrinsic regulatory mechanisms, and (3) the extrinsic physical and chemical environment. Efforts at each of these three tiers attempt to control cellular systems and take advantage of emerging tools and approaches. Ultimately, it will be possible to integrate these approaches and realize the vision of integrative synthetic biology when cells are completely rewired for biotechnological goals. This review will highlight progress towards this goal as well as areas requiring further research. PMID:20150964

  8. Thermo-hydro-mechanical-chemical processes in fractured-porous media: Benchmarks and examples

    NASA Astrophysics Data System (ADS)

    Kolditz, O.; Shao, H.; Görke, U.; Kalbacher, T.; Bauer, S.; McDermott, C. I.; Wang, W.

    2012-12-01

    The book comprises an assembly of benchmarks and examples for porous media mechanics collected over the last twenty years. Analysis of thermo-hydro-mechanical-chemical (THMC) processes is essential to many applications in environmental engineering, such as geological waste deposition, geothermal energy utilisation, carbon capture and storage, water resources management, hydrology, even climate change. In order to assess the feasibility as well as the safety of geotechnical applications, process-based modelling is the only tool to put numbers, i.e. to quantify future scenarios. This charges a huge responsibility concerning the reliability of computational tools. Benchmarking is an appropriate methodology to verify the quality of modelling tools based on best practices. Moreover, benchmarking and code comparison foster community efforts. The benchmark book is part of the OpenGeoSys initiative - an open source project to share knowledge and experience in environmental analysis and scientific computation.

  9. Modeling selective attention using a neuromorphic analog VLSI device.

    PubMed

    Indiveri, G

    2000-12-01

    Attentional mechanisms are required to overcome the problem of flooding a limited processing capacity system with information. They are present in biological sensory systems and can be a useful engineering tool for artificial visual systems. In this article we present a hardware model of a selective attention mechanism implemented on a very large-scale integration (VLSI) chip, using analog neuromorphic circuits. The chip exploits a spike-based representation to receive, process, and transmit signals. It can be used as a transceiver module for building multichip neuromorphic vision systems. We describe the circuits that carry out the main processing stages of the selective attention mechanism and provide experimental data for each circuit. We demonstrate the expected behavior of the model at the system level by stimulating the chip with both artificially generated control signals and signals obtained from a saliency map, computed from an image containing several salient features.

  10. Flexural Fatigue Response of Repaired S2-Glass/Vinyl Ester Composites

    DTIC Science & Technology

    2009-08-01

    of Mechanical Engineering & Applied Mechanics, North Dakota State University, Fargo, ND 58105 14. ABSTRACT Vacuum-assisted resin transfer molding ...Introduction 1  2.  Vacuum-Assisted Resin Transfer Molding 2  3.  Repair Strategies 2  4.  Processing and Repairing Laminates 4  5.  Experimental 4  5.1  Set 1...vacuum-assisted resin transfer molding (VARTM) (2), performance evaluations have assumed increasing importance due to the lack of historical databases on

  11. Finite Element Creep-Fatigue Analysis of a Welded Furnace Roll for Identifying Failure Root Cause

    NASA Astrophysics Data System (ADS)

    Yang, Y. P.; Mohr, W. C.

    2015-11-01

    Creep-fatigue induced failures are often observed in engineering components operating under high temperature and cyclic loading. Understanding the creep-fatigue damage process and identifying failure root cause are very important for preventing such failures and improving the lifetime of engineering components. Finite element analyses including a heat transfer analysis and a creep-fatigue analysis were conducted to model the cyclic thermal and mechanical process of a furnace roll in a continuous hot-dip coating line. Typically, the roll has a short life, <1 year, which has been a problem for a long time. The failure occurred in the weld joining an end bell to a roll shell and resulted in the complete 360° separation of the end bell from the roll shell. The heat transfer analysis was conducted to predict the temperature history of the roll by modeling heat convection from hot air inside the furnace. The creep-fatigue analysis was performed by inputting the predicted temperature history and applying mechanical loads. The analysis results showed that the failure was resulted from a creep-fatigue mechanism rather than a creep mechanism. The difference of material properties between the filler metal and the base metal is the root cause for the roll failure, which induces higher creep strain and stress in the interface between the weld and the HAZ.

  12. Improvement of the thermal and mechanical flow characteristics in the exhaust system of piston engine through the use of ejection effect

    NASA Astrophysics Data System (ADS)

    Plotnikov, L. V.; Zhilkin, B. P.; Brodov, Yu M.

    2017-11-01

    The results of experimental research of gas dynamics and heat transfer in the exhaust process in piston internal combustion engines are presented. Studies were conducted on full-scale models of piston engine in the conditions of unsteady gas-dynamic (pulsating flows). Dependences of the instantaneous flow speed and the local heat transfer coefficient from the crankshaft rotation angle in the exhaust pipe are presented in the article. Also, the flow characteristics of the exhaust gases through the exhaust systems of various configurations are analyzed. It is shown that installation of the ejector in the exhaust system lead to a stabilization of the flow and allows to improve cleaning of the cylinder from exhaust gases and to optimize the thermal state of the exhaust pipes. Experimental studies were complemented by numerical simulation of the working process of the DM-21 diesel engine (production of “Ural diesel-motor plant”). The object of modeling was the eight-cylinder diesel with turbocharger. The simulation was performed taking into account the processes nonstationarity in the intake and exhaust pipes for the various configurations of exhaust systems (with and without ejector). Numerical simulation of the working process of diesel was performed in ACTUS software (ABB Turbo Systems). The simulation results confirmed the stabilization of the flow due to the use of the ejection effect in the exhaust system of a diesel engine. The use of ejection in the exhaust system of the DM-21 diesel leads to improvement of cleaning cylinders up to 10 %, reduces the specific fuel consumption on average by 1 %.

  13. Mechanical Stimulation of Adipose-Derived Stem Cells for Functional Tissue Engineering of the Musculoskeletal System via Cyclic Hydrostatic Pressure, Simulated Microgravity, and Cyclic Tensile Strain.

    PubMed

    Nordberg, Rachel C; Bodle, Josie C; Loboa, Elizabeth G

    2018-01-01

    It is critical that human adipose stem cell (hASC) tissue-engineering therapies possess appropriate mechanical properties in order to restore function of the load bearing tissues of the musculoskeletal system. In an effort to elucidate the hASC response to mechanical stimulation and develop mechanically robust tissue engineered constructs, recent research has utilized a variety of mechanical loading paradigms including cyclic tensile strain, cyclic hydrostatic pressure, and mechanical unloading in simulated microgravity. This chapter describes methods for applying these mechanical stimuli to hASC to direct differentiation for functional tissue engineering of the musculoskeletal system.

  14. Knowledge-based personalized search engine for the Web-based Human Musculoskeletal System Resources (HMSR) in biomechanics.

    PubMed

    Dao, Tien Tuan; Hoang, Tuan Nha; Ta, Xuan Hien; Tho, Marie Christine Ho Ba

    2013-02-01

    Human musculoskeletal system resources of the human body are valuable for the learning and medical purposes. Internet-based information from conventional search engines such as Google or Yahoo cannot response to the need of useful, accurate, reliable and good-quality human musculoskeletal resources related to medical processes, pathological knowledge and practical expertise. In this present work, an advanced knowledge-based personalized search engine was developed. Our search engine was based on a client-server multi-layer multi-agent architecture and the principle of semantic web services to acquire dynamically accurate and reliable HMSR information by a semantic processing and visualization approach. A security-enhanced mechanism was applied to protect the medical information. A multi-agent crawler was implemented to develop a content-based database of HMSR information. A new semantic-based PageRank score with related mathematical formulas were also defined and implemented. As the results, semantic web service descriptions were presented in OWL, WSDL and OWL-S formats. Operational scenarios with related web-based interfaces for personal computers and mobile devices were presented and analyzed. Functional comparison between our knowledge-based search engine, a conventional search engine and a semantic search engine showed the originality and the robustness of our knowledge-based personalized search engine. In fact, our knowledge-based personalized search engine allows different users such as orthopedic patient and experts or healthcare system managers or medical students to access remotely into useful, accurate, reliable and good-quality HMSR information for their learning and medical purposes. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Engineering thermoplastics for additive manufacturing: a critical perspective with experimental evidence to support functional applications.

    PubMed

    Cicala, Gianluca; Latteri, Alberta; Del Curto, Barbara; Lo Russo, Alessio; Recca, Giuseppe; Farè, Silvia

    2017-01-28

    Among additive manufacturing techniques, the filament-based technique involves what is referred to as fused deposition modeling (FDM). FDM materials are currently limited to a selected number of polymers. The present study focused on investigating the potential of using high-end engineering polymers in FDM. In addition, a critical review of the materials available on the market compared with those studied here was completed. Different engineering thermoplastics, ranging from industrial grade polycarbonates to novel polyetheretherketones (PEEKs), were processed by FDM. Prior to this, for innovative filaments based on PEEK, extrusion processing was carried out. Mechanical properties (i.e., tensile and flexural) were investigated for each extruded material. An industrial-type FDM machine (Stratasys Fortus® 400 mc) was used to fully characterize the effect of printing parameters on the mechanical properties of polycarbonate. The obtained properties were compared with samples obtained by injection molding. Finally, FDM samples made of PEEK were also characterized and compared with those obtained by injection molding. The effect of raster to raster air gap and raster angle on tensile and flexural properties of printed PC was evidenced; the potential of PEEK filaments, as novel FDM material, was highlighted in comparison to state of the art materials. Comparison with injection molded parts allowed to better understand FDM potential for functional applications. The study discussed pros and cons of the different materials. Finally, the development of novel PEEK filaments achieved important results offering a novel solution to the market when high mechanical and thermal properties are required.

  16. Modeling and Simulation of a Free-Piston Engine with Electrical Generator Using HCCI Combustion

    NASA Astrophysics Data System (ADS)

    Alrbai, Mohammad

    Free-piston engines have the potential to challenge the conventional crankshaft engines by their design simplicity and higher operational efficiency. Many studies have been performed to overcome the limitations of the free-piston devices especially the stability and control issues. The investigations within the presented dissertation aim to satisfy many objectives by employing the approach of chemical kinetics to present the combustion process in the free-piston engine. This approach in addition to its advanced accuracy over the empirical methods, it has many other features like the ability to analyze the engine emissions. The effect of the heat release rate (HRR) on the engine performance is considered as the main objective. Understanding the relation between the HRR and the piston dynamics helps in enhancing the system efficiency and identifying the parameters that affect the overall performance. The dissertation covers some other objectives that belongs to the combustion phasing. Exhaust gas recirculation (EGR), equivalence ratio and the intake temperature represent the main combustion parameters, which have been discussed in this dissertation. To obtain the stability in system performance, the model requires a proper controller to simulate the operation and manage the different system parameters; for this purpose, different controlling techniques have been employed. In addition, the dissertation considers some other topics like engine emissions, fuels and fuels mechanisms. The model of the study describes the processes within a single cylinder, two stroke engine, which includes springs to support higher frequencies, reduce cyclic variations and sustain the engine compression ratio. An electrical generator presents the engine load; the generator supports different load profiles and play the key role in controlling the system. The 1st law of thermodynamics and Newton's 2nd law are applied to couple the piston dynamics with the engine thermodynamics. The model governing equations represent a single zone perfectly stirred reactor (PSR) which contain a perfect mixing ideal gas mixture. The chemical kinetics approach is applied using Cantera/ MATLABRTM toolbox, which presents the combustion process. In this research, a homogenous charge compression ignition (HCCI) at different operational conditions is used. HCCI engines have high efficiencies and low emissions and can work within a wide range of fuels. The results have been presented in a multi-cycle simulation and a parametric study forms. In the case of the multi-cycle simulation, a 100 cycles of the engine operation have been simulated. The overall work that is delivered to the electrical generator presents 47% of the total fuel energy. The model indicates an average frequency of 125 Hz along the operational cycles. In order to eliminate the cyclic variations and ensure a continuous operation, a proportional derivative (PD) controller has been employed. The controller adjusts the generator load in order to minimize the difference between the bottom dead center (BDC) locations along the operation cycles. The PD controller shows weakness in achieving the full steady state operation, for this purpose; a proportional integral (PI) controller has been implemented. The PI controller seeks to achieve a specific compression ratio. The results show that; the PI controller indicates unique behavior after 15 cycles of operation where the model ended to fluctuate between two compression ratios only. The complex relation between the thermodynamics and the dynamics of the engine is the greatest challenge in examining the effectiveness of the PI controller. In the parametric investigations, EGR examinations show that NOx emission is reduced to less than the half, as 30 % of EGR is used; this occurs due to the EGR thermal and dilution effects, which cause significant drop in the peak bulk temperature and CO emissions as well. Under the applied conditions, EGR has the ability to raise the work output ratio by increasing the engine compression ratio. The examination of the EGR temperature on the engine performance indicates that cooled EGR charges have the advantage over the hot EGR mixtures on enhancing the work output ratio. At the same time, EGR temperature affects the NOx formation by speeding its instantaneous reactions rate. The dissertation includes a study of the effect of the intake temperature and the equivalence ratio (φ) as well. The increasing in the intake temperature reduce the time needed for ignition, but leads to a reduction in the work output ratio at the same time. Such results can help in studying high knock resistance fuels where ignition delay is a matter. In the case of the equivalence ratio, lean mixtures show efficiencies that exceed 50% compared to those at the stoichiometric conditions. In the case of the ultra-lean (φ<0.5) combustion, the results show that the NOx emission is with the minimal levels as well as the CO and the unburned hydrocarbons (UHC) emissions. Sensitivity analysis to the chemical kinetic mechanism for the fuel combustion has been presented also in the dissertation. Many mechanisms for different fuels have been investigated, for example; a modified mechanism for Methane that includes 36 species and 222 reactions has been compared with the full GRI 3.0 mechanism (53 species and 325 reactions). The results of this comparison indicate that the modified mechanism has the potential to replace the full one in some cases like in demonstrating the engine operation, but not in the engine emissions analysis.

  17. Fabricating Superior NiAl Bronze Components through Wire Arc Additive Manufacturing.

    PubMed

    Ding, Donghong; Pan, Zengxi; van Duin, Stephen; Li, Huijun; Shen, Chen

    2016-08-03

    Cast nickel aluminum bronze (NAB) alloy is widely used for large engineering components in marine applications due to its excellent mechanical properties and corrosion resistance. Casting porosity, as well as coarse microstructure, however, are accompanied by a decrease in mechanical properties of cast NAB components. Although heat treatment, friction stir processing, and fusion welding were implemented to eliminate porosity, improve mechanical properties, and refine the microstructure of as-cast metal, their applications are limited to either surface modification or component repair. Instead of traditional casting techniques, this study focuses on developing NAB components using recently expanded wire arc additive manufacturing (WAAM). Consumable welding wire is melted and deposited layer-by-layer on substrates producing near-net shaped NAB components. Additively-manufactured NAB components without post-processing are fully dense, and exhibit fine microstructure, as well as comparable mechanical properties, to as-cast NAB alloy. The effects of heat input from the welding process and post-weld-heat-treatment (PWHT) are shown to give uniform NAB alloys with superior mechanical properties revealing potential marine applications of the WAAM technique in NAB production.

  18. Fabricating Superior NiAl Bronze Components through Wire Arc Additive Manufacturing

    PubMed Central

    Ding, Donghong; Pan, Zengxi; van Duin, Stephen; Li, Huijun; Shen, Chen

    2016-01-01

    Cast nickel aluminum bronze (NAB) alloy is widely used for large engineering components in marine applications due to its excellent mechanical properties and corrosion resistance. Casting porosity, as well as coarse microstructure, however, are accompanied by a decrease in mechanical properties of cast NAB components. Although heat treatment, friction stir processing, and fusion welding were implemented to eliminate porosity, improve mechanical properties, and refine the microstructure of as-cast metal, their applications are limited to either surface modification or component repair. Instead of traditional casting techniques, this study focuses on developing NAB components using recently expanded wire arc additive manufacturing (WAAM). Consumable welding wire is melted and deposited layer-by-layer on substrates producing near-net shaped NAB components. Additively-manufactured NAB components without post-processing are fully dense, and exhibit fine microstructure, as well as comparable mechanical properties, to as-cast NAB alloy. The effects of heat input from the welding process and post-weld-heat-treatment (PWHT) are shown to give uniform NAB alloys with superior mechanical properties revealing potential marine applications of the WAAM technique in NAB production. PMID:28773774

  19. Variable Valve Actuation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffrey Gutterman; A. J. Lasley

    2008-08-31

    Many approaches exist to enable advanced mode, low temperature combustion systems for diesel engines - such as premixed charge compression ignition (PCCI), Homogeneous Charge Compression Ignition (HCCI) or other HCCI-like combustion modes. The fuel properties and the quantity, distribution and temperature profile of air, fuel and residual fraction in the cylinder can have a marked effect on the heat release rate and combustion phasing. Figure 1 shows that a systems approach is required for HCCI-like combustion. While the exact requirements remain unclear (and will vary depending on fuel, engine size and application), some form of substantially variable valve actuation ismore » a likely element in such a system. Variable valve actuation, for both intake and exhaust valve events, is a potent tool for controlling the parameters that are critical to HCCI-like combustion and expanding its operational range. Additionally, VVA can be used to optimize the combustion process as well as exhaust temperatures and impact the after treatment system requirements and its associated cost. Delphi Corporation has major manufacturing and product development and applied R&D expertise in the valve train area. Historical R&D experience includes the development of fully variable electro-hydraulic valve train on research engines as well as several generations of mechanical VVA for gasoline systems. This experience has enabled us to evaluate various implementations and determine the strengths and weaknesses of each. While a fully variable electro-hydraulic valve train system might be the 'ideal' solution technically for maximum flexibility in the timing and control of the valve events, its complexity, associated costs, and high power consumption make its implementation on low cost high volume applications unlikely. Conversely, a simple mechanical system might be a low cost solution but not deliver the flexibility required for HCCI operation. After modeling more than 200 variations of the mechanism it was determined that the single cam design did not have enough flexibility to satisfy three critical OEM requirements simultaneously, (maximum valve lift variation, intake valve opening timing and valve closing duration), and a new approach would be necessary. After numerous internal design reviews including several with the OEM a dual cam design was developed that had the flexibility to meet all motion requirements. The second cam added complexity to the mechanism however the cost was offset by the deletion of the electric motor required in the previous design. New patent applications including detailed drawings and potential valve motion profiles were generated and alternate two cam designs were proposed and evaluated for function, cost, reliability and durability. Hardware was designed and built and testing of sample hardware was successfully completed on an engine test stand. The mechanism developed during the course of this investigation can be applied by Original Equipment Manufacturers, (OEM), to their advanced diesel engines with the ultimate goal of reducing emissions and improving fuel economy. The objectives are: (1) Develop an optimal, cost effective, variable valve actuation (VVA) system for advanced low temperature diesel combustion processes. (2) Design and model alternative mechanical approaches and down-select for optimum design. (3) Build and demonstrate a mechanism capable of application on running engines.« less

  20. Multifunctional Collaborative Modeling and Analysis Methods in Engineering Science

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.; Broduer, Steve (Technical Monitor)

    2001-01-01

    Engineers are challenged to produce better designs in less time and for less cost. Hence, to investigate novel and revolutionary design concepts, accurate, high-fidelity results must be assimilated rapidly into the design, analysis, and simulation process. This assimilation should consider diverse mathematical modeling and multi-discipline interactions necessitated by concepts exploiting advanced materials and structures. Integrated high-fidelity methods with diverse engineering applications provide the enabling technologies to assimilate these high-fidelity, multi-disciplinary results rapidly at an early stage in the design. These integrated methods must be multifunctional, collaborative, and applicable to the general field of engineering science and mechanics. Multifunctional methodologies and analysis procedures are formulated for interfacing diverse subdomain idealizations including multi-fidelity modeling methods and multi-discipline analysis methods. These methods, based on the method of weighted residuals, ensure accurate compatibility of primary and secondary variables across the subdomain interfaces. Methods are developed using diverse mathematical modeling (i.e., finite difference and finite element methods) and multi-fidelity modeling among the subdomains. Several benchmark scalar-field and vector-field problems in engineering science are presented with extensions to multidisciplinary problems. Results for all problems presented are in overall good agreement with the exact analytical solution or the reference numerical solution. Based on the results, the integrated modeling approach using the finite element method for multi-fidelity discretization among the subdomains is identified as most robust. The multiple-method approach is advantageous when interfacing diverse disciplines in which each of the method's strengths are utilized. The multifunctional methodology presented provides an effective mechanism by which domains with diverse idealizations are interfaced. This capability rapidly provides the high-fidelity results needed in the early design phase. Moreover, the capability is applicable to the general field of engineering science and mechanics. Hence, it provides a collaborative capability that accounts for interactions among engineering analysis methods.

  1. Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.

    2011-01-01

    Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.

  2. Ceramic technology for advanced heat engines project. Semiannual progress report, April-September 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-05-01

    An assessment of needs was completed, and a five-year project plan was developed with input from private industry. Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. Focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. The work described in this report is organized according to the following WBS project elements: management and coordination; materials and processing (monolithics, ceramic composites, thermal and wear coatings, joining); materials design methodology (contact interfaces, newmore » concepts); data base and life prediction (time-dependent behavior, environmental effects, fracture mechanics, NDE development); and technology transfer. This report includes contributions from all currently active project participants.« less

  3. Fracture mechanics and corrosion fatigue.

    NASA Technical Reports Server (NTRS)

    Mcevily, A. J.; Wei, R. P.

    1972-01-01

    Review of the current state-of-the-art in fracture mechanics, particularly in relation to the study of problems in environment-enhanced fatigue crack growth. The usefulness of this approach in developing understanding of the mechanisms for environmental embrittlement and its engineering utility are discussed. After a brief review of the evolution of the fracture mechanics approach and the study of environmental effects on the fatigue behavior of materials, a study is made of the response of materials to fatigue and corrosion fatigue, the modeling of the mechanisms of the fatigue process is considered, and the application of knowledge of fatigue crack growth to the prediction of the high cycle life of unnotched specimens is illustrated.

  4. Recent Advances in Composite Damage Mechanics

    NASA Technical Reports Server (NTRS)

    Reifsnider, Ken; Case, Scott; Iyengar, Nirmal

    1996-01-01

    The state of the art and recent developments in the field of composite material damage mechanics are reviewed, with emphasis on damage accumulation. The kinetics of damage accumulation are considered with emphasis on the general accumulation of discrete local damage events such as single or multiple fiber fractures or microcrack formation. The issues addressed include: how to define strength in the presence of widely distributed damage, and how to combine mechanical representations in order to predict the damage tolerance and life of engineering components. It is shown that a damage mechanics approach can be related to the thermodynamics of the damage accumulation processes in composite laminates subjected to mechanical loading and environmental conditions over long periods of time.

  5. Printing Outside the Box: Additive Manufacturing Processes for Fabrication of Large Aerospace Structures

    NASA Technical Reports Server (NTRS)

    Babai, Majid; Peters, Warren

    2015-01-01

    To achieve NASA's mission of space exploration, innovative manufacturing processes are being applied to the fabrication of propulsion elements. Liquid rocket engines (LREs) are comprised of a thrust chamber and nozzle extension as illustrated in figure 1 for the J2X upper stage engine. Development of the J2X engine, designed for the Ares I launch vehicle, is currently being incorporated on the Space Launch System. A nozzle extension is attached to the combustion chamber to obtain the expansion ratio needed to increase specific impulse. If the nozzle extension could be printed as one piece using free-form additive manufacturing (AM) processes, rather than the current method of forming welded parts, a considerable time savings could be realized. Not only would this provide a more homogenous microstructure than a welded structure, but could also greatly shorten the overall fabrication time. The main objective of this study is to fabricate test specimens using a pulsed arc source and solid wire as shown in figure 2. The mechanical properties of these specimens will be compared with those fabricated using the powder bed, selective laser melting technology at NASA Marshall Space Flight Center. As printed components become larger, maintaining a constant temperature during the build process becomes critical. This predictive capability will require modeling of the moving heat source as illustrated in figure 3. Predictive understanding of the heat profile will allow a constant temperature to be maintained as a function of height from substrate while printing complex shapes. In addition, to avoid slumping, this will also allow better control of the microstructural development and hence the properties. Figure 4 shows a preliminary comparison of the mechanical properties obtained.

  6. Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting.

    PubMed

    Wüst, Silke; Godla, Marie E; Müller, Ralph; Hofmann, Sandra

    2014-02-01

    Three-dimensional (3-D) bioprinting is the layer-by-layer deposition of biological material with the aim of achieving stable 3-D constructs for application in tissue engineering. It is a powerful tool for the spatially directed placement of multiple materials and/or cells within the 3-D sample. Encapsulated cells are protected by the bioink during the printing process. Very few materials are available that fulfill requirements for bioprinting as well as provide adequate properties for cell encapsulation during and after the printing process. A hydrogel composite including alginate and gelatin precursors was tuned with different concentrations of hydroxyapatite (HA) and characterized in terms of rheology, swelling behavior and mechanical properties to assess the versatility of the system. Instantaneous as well as long-term structural integrity of the printed hydrogel was achieved with a two-step mechanism combining the thermosensitive properties of gelatin with chemical crosslinking of alginate. Novel syringe tip heaters were developed for improved temperature control of the bioink to avoid clogging. Human mesenchymal stem cells mixed into the hydrogel precursor survived the printing process and showed high cell viability of 85% living cells after 3 days of subsequent in vitro culture. HA enabled the visualization of the printed structures with micro-computed tomography. The inclusion of HA also favors the use of the bioink for bone tissue engineering applications. By adding factors other than HA, the composite could be used as a bioink for applications in drug delivery, microsphere deposition or soft tissue engineering. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Influence of different processing techniques on the mechanical properties of used tires in embankment construction.

    PubMed

    Edinçliler, Ayşe; Baykal, Gökhan; Saygili, Altug

    2010-06-01

    Use of the processed used tires in embankment construction is becoming an accepted way of beneficially recycling scrap tires due to shortages of natural mineral resources and increasing waste disposal costs. Using these used tires in construction requires an awareness of the properties and the limitations associated with their use. The main objective of this paper is to assess the different processing techniques on the mechanical properties of used tires-sand mixtures to improve the engineering properties of the available soil. In the first part, a literature study on the mechanical properties of the processed used tires such as tire shreds, tire chips, tire buffings and their mixtures with sand are summarized. In the second part, large-scale direct shear tests are performed to evaluate shear strength of tire crumb-sand mixtures where information is not readily available in the literature. The test results with tire crumb were compared with the other processed used tire-sand mixtures. Sand-used tire mixtures have higher shear strength than that of the sand alone and the shear strength parameters depend on the processing conditions of used tires. Three factors are found to significantly affect the mechanical properties: normal stress, processing techniques, and the used tire content. Copyright 2009. Published by Elsevier Ltd.

  8. Welcoming speech from Dean Faculty of Mechanical Engineering, UMP

    NASA Astrophysics Data System (ADS)

    Taha, Zahari

    2012-09-01

    In the Name of Allah, the Most Beneficent, the Most Merciful. It is with great pleasure that I welcome the participants of the International Conference of Mechanical Engineering Research 2011. The Prophet Muhammad (peace be upon him) said 'Acquire knowledge and impart it to the people.' (Al Tirmidhi). The quest for knowledge has been from the beginning of time but knowledge only becomes valuable when it is disseminated and applied to benefit humankind. It is hoped that ICMER 2011 will be a platform to gather and disseminate the latest knowledge in mechanical engineering. Academicians, Scientist, Researchers and practitioners of mechanical engineering will be able to share and discuss new findings and applications of mechanical engineering. It is envisaged that the intellectual discourse will result in future collaborations between universities, research institutions and industry both locally and internationally. In particular it is expected that focus will be given to issues on environmental and energy sustainability. Researchers in the mechanical engineering faculty at UMP have a keen interest in technology to harness energy from the ocean. Lowering vehicle emissions has been a primary goal of researchers in the mechanical engineering faculty and the automotive engineering centre as well including developing vehicles using alternative fuels such as biodiesel and renewable sources such as solar driven electric vehicles. Finally I would like to congratulate the organizing committee for their tremendous efforts in organizing the conference. As I wrote this in the Holy Land of Makkah, I pray to Allah swt that the conference will be a success. Prof. Dr. Zahari Taha CEng, MIED, FASc Dean, Faculty of Mechanical Engineering Universiti Malaysia Pahang

  9. The influence mechanism of processing holes on the flexural properties of biomimetic integrated honeycomb plates.

    PubMed

    Zhang, Xiaoming; Liu, Chang; Chen, Jinxiang; Zhang, Jiandong; Gu, Yueyan; Zhao, Yong

    2016-12-01

    The influence mechanism of processing holes on the flexural properties of fully integrated honeycomb plates (FIHPs) was analyzed using the finite element method (FEM), and the results were compared with experimental data, yielding the following findings: 1) Processing holes under tensile stress have a significant impact on the mechanical properties of FIHPs, which is particularly obvious when initial imperfections are formed during sample preparation. 2) A proposed design technique based on changing the shape of the processing holes from circular to elliptical effectively reduces the stress concentration when such holes must exist in skin or components under tension, and this method motivates a design concept for experimental tests of FIHPs bearing dynamic or fatigue loads. 3) The flexural failure modes of FIHPs were confirmed via FEM analysis, and the mechanism by which trabeculae in FIHPs can effectively prevent cracks from emerging and cause cracks to develop along certain paths was ascertained. Therefore, this paper provides a theoretical basis for the design of processing holes in bionic honeycomb plates and other similar components in practical engineering applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Honing process optimization algorithms

    NASA Astrophysics Data System (ADS)

    Kadyrov, Ramil R.; Charikov, Pavel N.; Pryanichnikova, Valeria V.

    2018-03-01

    This article considers the relevance of honing processes for creating high-quality mechanical engineering products. The features of the honing process are revealed and such important concepts as the task for optimization of honing operations, the optimal structure of the honing working cycles, stepped and stepless honing cycles, simulation of processing and its purpose are emphasized. It is noted that the reliability of the mathematical model determines the quality parameters of the honing process control. An algorithm for continuous control of the honing process is proposed. The process model reliably describes the machining of a workpiece in a sufficiently wide area and can be used to operate the CNC machine CC743.

  11. Mechanical Objects and the Engineering Learner: An Experimental Study of How the Presence of Objects Affects Students' Performance on Engineering Related Tasks

    ERIC Educational Resources Information Center

    Bairaktarova, Diana N.

    2013-01-01

    People display varying levels of interaction with the mechanical objects in their environment; engineers in particular as makers and users of these objects display a higher level of interaction with them. Investigating the educational potential of mechanical objects in stimulating and supporting learning in engineering is warranted by the fact…

  12. Cartilage tissue engineering: From biomaterials and stem cells to osteoarthritis treatments.

    PubMed

    Vinatier, C; Guicheux, J

    2016-06-01

    Articular cartilage is a non-vascularized and poorly cellularized connective tissue that is frequently damaged as a result of trauma and degenerative joint diseases such as osteoarthrtis. Because of the absence of vascularization, articular cartilage has low capacity for spontaneous repair. Today, and despite a large number of preclinical data, no therapy capable of restoring the healthy structure and function of damaged articular cartilage is clinically available. Tissue-engineering strategies involving the combination of cells, scaffolding biomaterials and bioactive agents have been of interest notably for the repair of damaged articular cartilage. During the last 30 years, cartilage tissue engineering has evolved from the treatment of focal lesions of articular cartilage to the development of strategies targeting the osteoarthritis process. In this review, we focus on the different aspects of tissue engineering applied to cartilage engineering. We first discuss cells, biomaterials and biological or environmental factors instrumental to the development of cartilage tissue engineering, then review the potential development of cartilage engineering strategies targeting new emerging pathogenic mechanisms of osteoarthritis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Job Prospects for Mechanical Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1986-01-01

    Discusses the career outlook for mechanical engineers. Explains that the number of bachelor degrees awarded yearly has reached a plateau, but salaries continue to rise. Suggests that the largest increase in demand for mechanical engineers will come from industries involved in automation, particularly those developing robotics. (TW)

  14. Mechanical Stimulation Protocols of Human Derived Cells in Articular Cartilage Tissue Engineering - A Systematic Review.

    PubMed

    Khozoee, Baktash; Mafi, Pouya; Mafi, Reza; Khan, Wasim S

    2017-01-01

    Mechanical stimulation is a key factor in articular cartilage generation and maintenance. Bioreactor systems have been designed and built in order to deliver specific types of mechanical stimulation. The focus has been twofold, applying a type of preconditioning in order to stimulate cell differentiation, and to simulate in vivo conditions in order to gain further insight into how cells respond to different stimulatory patterns. Due to the complex forces at work within joints, it is difficult to simulate mechanical conditions using a bioreactor. The aim of this review is to gain a deeper understanding of the complexities of mechanical stimulation protocols by comparing those employed in bioreactors in the context of tissue engineering for articular cartilage, and to consider their effects on cultured cells. Allied and Complementary Medicine 1985 to 2016, Ovid MEDLINE[R] 1946 to 2016, and Embase 1974 to 2016 were searched using key terms. Results were subject to inclusion and exclusion criteria, key findings summarised into a table and subsequently discussed. Based on this review it is overwhelmingly clear that mechanical stimulation leads to increased chondrogenic properties in the context of bioreactor articular cartilage tissue engineering using human cells. However, given the variability and lack of controlled factors between research articles, results are difficult to compare, and a standardised method of evaluating stimulation protocols proved challenging. With improved standardisation in mechanical stimulation protocol reporting, bioreactor design and building processes, along with a better understanding of joint behaviours, we hope to perform a meta-analysis on stimulation protocols and methods. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. LARGE STRAIN STIMULATION PROMOTES EXTRACELLULAR MATRIX PRODUCTION AND STIFFNESS IN AN ELASTOMERIC SCAFFOLD MODEL

    PubMed Central

    D’more, Antonio; Soares, Joao; Stella, John A.; Zhang, Will; Amoroso, Nicholas J.; Mayer, John E.; Wagner, William R.; Sacks, Michael S.

    2016-01-01

    Mechanical conditioning of engineered tissue constructs is widely recognized as one of the most relevant methods to enhance tissue accretion and microstructure, leading to improved mechanical behaviors. The understanding of the underlying mechanisms remains rather limited, restricting the development of in silico models of these phenomena, and the translation of engineered tissues into clinical application. In the present study, we examined the role of large strip-biaxial strains (up to 50%) on ECM synthesis by vascular smooth muscle cells (VSMCs) micro-integrated into electrospun polyester urethane urea (PEUU) constructs over the course of 3 weeks. Experimental results indicated that VSMC biosynthetic behavior was quite sensitive to tissue strain maximum level, and that collagen was the primary ECM component synthesized. Moreover, we found that while a 30% peak strain level achieved maximum ECM synthesis rate, further increases in strain level lead to a reduction in ECM biosynthesis. Subsequent mechanical analysis of the formed collagen fiber network was performed by removing the scaffold mechanical responses using a strain-energy based approach, showing that the de-novo collagen also demonstrated mechanical behaviors substantially better than previously obtained with small strain training and comparable to mature collagenous tissues. We conclude that the application of large deformations can play a critical role not only in the quantity of ECM synthesis (i.e. the rate of mass production), but also on the modulation of the stiffness of the newly formed ECM constituents. The improved understanding of the process of growth and development of ECM in these mechano-sensitive cell-scaffold systems will lead to more rational design and manufacturing of engineered tissues operating under highly demanding mechanical environments. PMID:27344402

  16. Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys

    PubMed Central

    Gorsse, Stéphane; Hutchinson, Christopher; Gouné, Mohamed; Banerjee, Rajarshi

    2017-01-01

    Abstract We present a brief review of the microstructures and mechanical properties of selected metallic alloys processed by additive manufacturing (AM). Three different alloys, covering a large range of technology readiness levels, are selected to illustrate particular microstructural features developed by AM and clarify the engineering paradigm relating process–microstructure–property. With Ti-6Al-4V the emphasis is placed on the formation of metallurgical defects and microstructures induced by AM and their role on mechanical properties. The effects of the large in-built dislocation density, surface roughness and build atmosphere on mechanical and damage properties are discussed using steels. The impact of rapid solidification inherent to AM on phase selection is highlighted for high-entropy alloys. Using property maps, published mechanical properties of additive manufactured alloys are graphically summarized and compared to conventionally processed counterparts. PMID:28970868

  17. Structural Health Monitoring: Leveraging Pain in the Human Body

    NASA Astrophysics Data System (ADS)

    Nayak, Subhadarshi

    2012-07-01

    Tissue damage, or the perception thereof, is managed through pain experience. The neurobiological process of pain triggers most effective defense mechanisms for our safety. Structural health monitoring (SHM) is also a very similar function, albeit in engineering systems. SHM technology can leverage many aspects of pain mechanisms to progress in several critical areas. Discrimination between features from the undamaged and damaged structures can follow the threshold gate mechanism of the pain perception. Furthermore, the sensing mechanisms can be adaptive to changes by adjusting the threshold as does the pain perception. A distributed sensor network, often advanced by SHM, can be made fault-tolerant and robust by following the perception way of self-organization and redundancy. Data handling in real life is a huge challenge for large-scale SHM. As sensory data of pain is first cleaned, the threshold is then processed through experiential information gathering and use.

  18. Software for biomedical engineering signal processing laboratory experiments.

    PubMed

    Tompkins, Willis J; Wilson, J

    2009-01-01

    In the early 1990's we developed a special computer program called UW DigiScope to provide a mechanism for anyone interested in biomedical digital signal processing to study the field without requiring any other instrument except a personal computer. There are many digital filtering and pattern recognition algorithms used in processing biomedical signals. In general, students have very limited opportunity to have hands-on access to the mechanisms of digital signal processing. In a typical course, the filters are designed non-interactively, which does not provide the student with significant understanding of the design constraints of such filters nor their actual performance characteristics. UW DigiScope 3.0 is the first major update since version 2.0 was released in 1994. This paper provides details on how the new version based on MATLAB! works with signals, including the filter design tool that is the programming interface between UW DigiScope and processing algorithms.

  19. Kinetics in the real world: linking molecules, processes, and systems.

    PubMed

    Kohse-Höinghaus, Katharina; Troe, Jürgen; Grabow, Jens-Uwe; Olzmann, Matthias; Friedrichs, Gernot; Hungenberg, Klaus-Dieter

    2018-04-25

    Unravelling elementary steps, reaction pathways, and kinetic mechanisms is key to understanding the behaviour of many real-world chemical systems that span from the troposphere or even interstellar media to engines and process reactors. Recent work in chemical kinetics provides detailed information on the reactive changes occurring in chemical systems, often on the atomic or molecular scale. The optimisation of practical processes, for instance in combustion, catalysis, battery technology, polymerisation, and nanoparticle production, can profit from a sound knowledge of the underlying fundamental chemical kinetics. Reaction mechanisms can combine information gained from theory and experiments to enable the predictive simulation and optimisation of the crucial process variables and influences on the system's behaviour that may be exploited for both monitoring and control. Chemical kinetics, as one of the pillars of Physical Chemistry, thus contributes importantly to understanding and describing natural environments and technical processes and is becoming increasingly relevant for interactions in and with the real world.

  20. DI Diesel Performance and Emissions Model

    DTIC Science & Technology

    1998-03-31

    Skeletal mechanism for NOx chemistry in Diesel engines ," SAE Paper 981450. Mori, K. (1997), "Worldwide...Based on the review discussed above, Mellor et al. (1998) postulate a skeletal mechanism for NO chemistry in DI Diesel engines . This mechanism is... mechanism for NOx chemistry in Diesel engines ," SAE Paper 981450. Various Internal Ford Reports, Ford Motor Company, Dearborn, MI. 29

  1. The opto-mechanical design process: from vision to reality

    NASA Astrophysics Data System (ADS)

    Kvamme, E. Todd; Stubbs, David M.; Jacoby, Michael S.

    2017-08-01

    The design process for an opto-mechanical sub-system is discussed from requirements development through test. The process begins with a proper mission understanding and the development of requirements for the system. Preliminary design activities are then discussed with iterative analysis and design work being shared between the design, thermal, and structural engineering personnel. Readiness for preliminary review and the path to a final design review are considered. The value of prototyping and risk mitigation testing is examined with a focus on when it makes sense to execute a prototype test program. System level margin is discussed in general terms, and the practice of trading margin in one area of performance to meet another area is reviewed. Requirements verification and validation is briefly considered. Testing and its relationship to requirements verification concludes the design process.

  2. Gasoline Engine Mechanics. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This vocational program guide is intended to assist in the organization, operation, and evaluation of a program in gasoline engine mechanics in school districts, area vocational centers, and community colleges. The following topics are covered: job duties of small-engine mechanics; program content (curriculum framework and student performance…

  3. Joining engineering ceramics

    NASA Astrophysics Data System (ADS)

    Loehman, Ronald E.

    Methods for joining ceramics are outlined with attention given to their fundamental properties, and some examples of ceramic bonding in engineering ceramic systems are presented. Ceramic-ceramic bonds using no filler material include diffusion and electric-field bonding and ceramic welding, and bonds with filler materials can be provided by Mo-Mn brazing, microwave joining, and reactive nonmetallic liquid bonding. Ceramic-metal joints can be effected with filler material by means of the same ceramic-ceramic processes and without filler material by means of use of molten glass or diffusion bonding. Key properties of the bonding processes include: bonds with discontinuous material properties, energies that are positive relative to the bulk material, and unique chemical and mechanical properties. The processes and properties are outlined for ceramic-metal joints and for joining silicon nitride, and the factors that control wetting, adhesion, and reaction on the atomic scale are critical for establishing successful joints.

  4. Force-Mediating Magnetic Nanoparticles to Engineer Neuronal Cell Function

    PubMed Central

    Gahl, Trevor J.; Kunze, Anja

    2018-01-01

    Cellular processes like membrane deformation, cell migration, and transport of organelles are sensitive to mechanical forces. Technically, these cellular processes can be manipulated through operating forces at a spatial precision in the range of nanometers up to a few micrometers through chaperoning force-mediating nanoparticles in electrical, magnetic, or optical field gradients. But which force-mediating tool is more suitable to manipulate cell migration, and which, to manipulate cell signaling? We review here the differences in forces sensation to control and engineer cellular processes inside and outside the cell, with a special focus on neuronal cells. In addition, we discuss technical details and limitations of different force-mediating approaches and highlight recent advancements of nanomagnetics in cell organization, communication, signaling, and intracellular trafficking. Finally, we give suggestions about how force-mediating nanoparticles can be used to our advantage in next-generation neurotherapeutic devices. PMID:29867315

  5. Force-Mediating Magnetic Nanoparticles to Engineer Neuronal Cell Function.

    PubMed

    Gahl, Trevor J; Kunze, Anja

    2018-01-01

    Cellular processes like membrane deformation, cell migration, and transport of organelles are sensitive to mechanical forces. Technically, these cellular processes can be manipulated through operating forces at a spatial precision in the range of nanometers up to a few micrometers through chaperoning force-mediating nanoparticles in electrical, magnetic, or optical field gradients. But which force-mediating tool is more suitable to manipulate cell migration, and which, to manipulate cell signaling? We review here the differences in forces sensation to control and engineer cellular processes inside and outside the cell, with a special focus on neuronal cells. In addition, we discuss technical details and limitations of different force-mediating approaches and highlight recent advancements of nanomagnetics in cell organization, communication, signaling, and intracellular trafficking. Finally, we give suggestions about how force-mediating nanoparticles can be used to our advantage in next-generation neurotherapeutic devices.

  6. Non-equilibrium assembly of microtubules: from molecules to autonomous chemical robots.

    PubMed

    Hess, H; Ross, Jennifer L

    2017-09-18

    Biological systems have evolved to harness non-equilibrium processes from the molecular to the macro scale. It is currently a grand challenge of chemistry, materials science, and engineering to understand and mimic biological systems that have the ability to autonomously sense stimuli, process these inputs, and respond by performing mechanical work. New chemical systems are responding to the challenge and form the basis for future responsive, adaptive, and active materials. In this article, we describe a particular biochemical-biomechanical network based on the microtubule cytoskeletal filament - itself a non-equilibrium chemical system. We trace the non-equilibrium aspects of the system from molecules to networks and describe how the cell uses this system to perform active work in essential processes. Finally, we discuss how microtubule-based engineered systems can serve as testbeds for autonomous chemical robots composed of biological and synthetic components.

  7. Direct Numerical Simulations of Autoignition in Stratified Dimethyl-ether (DME)/Air Turbulent Mixtures

    DOE PAGES

    Bansal, Gaurav; Mascarenhas, Ajith; Chen, Jacqueline H.

    2014-10-01

    In our paper, two- and three-dimensional direct numerical simulations (DNS) of autoignition phenomena in stratified dimethyl-ether (DME)/air turbulent mixtures are performed. A reduced DME oxidation mechanism, which was obtained using rigorous mathematical reduction and stiffness removal procedure from a detailed DME mechanism with 55 species, is used in the present DNS. The reduced DME mechanism consists of 30 chemical species. This study investigates the fundamental aspects of turbulence-mixing-autoignition interaction occurring in homogeneous charge compression ignition (HCCI) engine environments. A homogeneous isotropic turbulence spectrum is used to initialize the velocity field in the domain. Moreover, the computational configuration corresponds to amore » constant volume combustion vessel with inert mass source terms added to the governing equations to mimic the pressure rise due to piston motion, as present in practical engines. DME autoignition is found to be a complex three-staged process; each stage corresponds to a distinct chemical kinetic pathway. The distinct role of turbulence and reaction in generating scalar gradients and hence promoting molecular transport processes are investigated. Then, by applying numerical diagnostic techniques, the different heat release modes present in the igniting mixture are identified. In particular, the contribution of homogeneous autoignition, spontaneous ignition front propagation, and premixed deflagration towards the total heat release are quantified.« less

  8. SWEET sugar transporters for phloem transport and pathogen nutrition.

    PubMed

    Chen, Li-Qing

    2014-03-01

    Many intercellular solute transport processes require an apoplasmic step, that is, efflux from one cell and subsequent uptake by an adjacent cell. Cellular uptake transporters have been identified for many solutes, including sucrose; however, efflux transporters have remained elusive for a long time. Cellular efflux of sugars plays essential roles in many processes, such as sugar efflux as the first step in phloem loading, sugar efflux for nectar secretion, and sugar efflux for supplying symbionts such as mycorrhiza, and maternal efflux for filial tissue development. Furthermore, sugar efflux systems can be hijacked by pathogens for access to nutrition from hosts. Mutations that block recruitment of the efflux mechanism by the pathogen thus cause pathogen resistance. Until recently, little was known regarding the underlying mechanism of sugar efflux. The identification of sugar efflux carriers, SWEETs (Sugars Will Eventually be Exported Transporters), has shed light on cellular sugar efflux. SWEETs appear to function as uniporters, facilitating diffusion of sugars across cell membranes. Indeed, SWEETs probably mediate sucrose efflux from putative phloem parenchyma into the phloem apoplasm, a key step proceeding phloem loading. Engineering of SWEET mutants using transcriptional activator-like effector nuclease (TALEN)-based genomic editing allowed the engineering of pathogen resistance. The widespread expression of the SWEET family promises to provide insights into many other cellular efflux mechanisms.

  9. Students' Understanding of Loops and Nested Loops in Computer Programming: An APOS Theory Perspective

    ERIC Educational Resources Information Center

    Cetin, Ibrahim

    2015-01-01

    The purpose of this study is to explore students' understanding of loops and nested loops concepts. Sixty-three mechanical engineering students attending an introductory programming course participated in the study. APOS (Action, Process, Object, Schema) is a constructivist theory developed originally for mathematics education. This study is the…

  10. Mechanical properties of wood fiber composites under the influence of temperature and humidity

    Treesearch

    Yibin Xue; David Veazie; Cindy Glinsey; Meagan Wright; Roger M. Rowell

    2003-01-01

    Woodfiber-thermoplastic composites (WPC) have received considerable attentions from the forest product industry for civil engineering applications due to its superior properties over wood and plastics alone. Particularly WPCs can be easily fabricated using traditional plastic processing techniques. The major limitation in the applications of WPCs is the poor...

  11. A Comparison of the Use of Text Summaries, Plain Thumbnails, and Enhanced Thumbnails for Web Search Tasks.

    ERIC Educational Resources Information Center

    Woodruff, Allison; Rosenholtz, Ruth; Morrison, Julie B.; Faulring, Andrew; Pirolli, Peter

    2002-01-01

    Discussion of Web search strategies focuses on a comparative study of textual and graphical summarization mechanisms applied to search engine results. Suggests that thumbnail images (graphical summaries) can increase efficiency in processing results, and that enhanced thumbnails (augmented with readable textual elements) had more consistent…

  12. Biomineralization of gold by Mucor plumbeus: The progress in understanding the mechanism of nanoparticles' formation.

    PubMed

    Maliszewska, Irena; Tylus, Włodzimierz; Chęcmanowski, Jacek; Szczygieł, Bogdan; Pawlaczyk-Graja, Izabela; Pusz, Wojciech; Baturo-Cieśniewska, Anna

    2017-09-01

    This contribution describes the deposition of gold nanoparticles by microbial reduction of Au(III) ions using the mycelium of Mucor plumbeus. Biosorption as the major mechanism of Au(III) ions binding by the fungal cells and the reduction of them to the form of Au(0) on/in the cell wall, followed by the transportation of the synthesized gold nanoparticles to the cytoplasm, is postulated. The probable mechanism behind the reduction of Au(III) ions is discussed, leading to the conclusion that this process is nonenzymatic one. Chitosan of the fungal cell wall is most likely to be the major molecule involved in biomineralization of gold by the mycelium of M. plumbeus. Separation of gold nanoparticles from the cells has been carried out by the ultrasonic disintegration and the obtained nanostructures were characterized by UV-vis spectroscopy and transmission electron micrograph analysis. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1381-1392, 2017. © 2017 American Institute of Chemical Engineers.

  13. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Starke, Edgar A., Jr.; Gangloff, Richard P.; Herakovich, Carl T.; Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.

    1995-01-01

    The NASA-UVa Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. Projects are being conducted by graduate students and faculty advisors in the Department of Materials Science and Engineering, as well as in the Department of Civil Engineering and Applied Mechanics, at the University of Virginia. Here, we report on progress achieved between July 1 and December 31, 1994. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies.

  14. Observation of optomechanical buckling transitions

    PubMed Central

    Xu, H.; Kemiktarak, U.; Fan, J.; Ragole, S.; Lawall, J.; Taylor, J. M.

    2017-01-01

    Correlated phases of matter provide long-term stability for systems as diverse as solids, magnets and potential exotic quantum materials. Mechanical systems, such as buckling transition spring switches, can have engineered, stable configurations whose dependence on a control variable is reminiscent of non-equilibrium phase transitions. In hybrid optomechanical systems, light and matter are strongly coupled, allowing engineering of rapid changes in the force landscape, storing and processing information, and ultimately probing and controlling behaviour at the quantum level. Here we report the observation of first- and second-order buckling transitions between stable mechanical states in an optomechanical system, in which full control of the nature of the transition is obtained by means of the laser power and detuning. The underlying multiwell confining potential we create is highly tunable, with a sub-nanometre distance between potential wells. Our results enable new applications in photonics and information technology, and may enable explorations of quantum phase transitions and macroscopic quantum tunnelling in mechanical systems. PMID:28248293

  15. PLA-poloxamer/poloxamine copolymers for ligament tissue engineering: sound macromolecular design for degradable scaffolds and MSC differentiation.

    PubMed

    Leroy, Adrien; Nottelet, Benjamin; Bony, Claire; Pinese, Coline; Charlot, Benoît; Garric, Xavier; Noël, Danièle; Coudane, Jean

    2015-04-01

    The treatment of anterior cruciate ligament (ACL) failures remains a current clinical challenge. The present study aims at providing suitable degradable scaffolds for ligament tissue engineering. First, we focus on the design and the evaluation of poly(lactide)/poloxamer or poly(lactide)/poloxamine multiblock copolymers selected and developed to have suitable degradation and mechanical properties to match ACL repair. In the second part, it is shown that the copolymers can be processed in the form of microfibers and scaffolds consisting of a combination of twisted/braided fibers to further modulate the mechanical properties and prepare scaffold prototypes suitable for ligament application. Finally, after assessment of their cytocompatibility, the polymer scaffolds are associated with mesenchymal stem cells (MSCs). MSC differentiation toward a ligament fibroblast phenotype is promoted by a dual stimulation including an inductive culture medium and cyclic mechanical loads. RT-qPCR analyses confirm the potential of our scaffolds and MSCs for ACL regeneration with upregulation of some differentiation markers including Scleraxis, Tenascin-C and Tenomodulin.

  16. In vitro osteogenesis of human stem cells by using a three-dimensional perfusion bioreactor culture system: a review.

    PubMed

    Ceccarelli, Gabriele; Bloise, Nora; Vercellino, Marco; Battaglia, Rosalia; Morgante, Lucia; De Angelis, Maria Gabriella Cusella; Imbriani, Marcello; Visai, Livia

    2013-04-01

    Tissue engineering (by culturing cells on appropriate scaffolds, and using bioreactors to drive the correct bone structure formation) is an attractive alternative to bone grafting or implantation of bone substitutes. Osteogenesis is a biological process that involves many molecular intracellular pathways organized to optimize bone modeling. The use of bioreactor systems and especially the perfusion bioreactor, provides both the technological means to reveal fundamental mechanisms of cell function in a 3D environment, and the potential to improve the quality of engineered tissues. In this mini-review all the characteristics for the production of an appropriate bone construct are analyzed: the stem cell source, scaffolds useful for the seeding of pre-osteoblastic cells and the effects of fluid flow on differentiation and proliferation of bone precursor cells. By automating and standardizing tissue manufacture in controlled closed systems, engineered tissues may reduce the gap between the process of bone formation in vitro and subsequent graft of bone substitutes in vivo.

  17. Establishment of cell surface engineering and its development.

    PubMed

    Ueda, Mitsuyoshi

    2016-07-01

    Cell surface display of proteins/peptides has been established based on mechanisms of localizing proteins to the cell surface. In contrast to conventional intracellular and extracellular (secretion) expression systems, this method, generally called an arming technology, is particularly effective when using yeasts as a host, because the control of protein folding that is often required for the preparation of proteins can be natural. This technology can be employed for basic and applied research purposes. In this review, I describe various strategies for the construction of engineered yeasts and provide an outline of the diverse applications of this technology to industrial processes such as the production of biofuels and chemicals, as well as bioremediation and health-related processes. Furthermore, this technology is suitable for novel protein engineering and directed evolution through high-throughput screening, because proteins/peptides displayed on the cell surface can be directly analyzed using intact cells without concentration and purification. Functional proteins/peptides with improved or novel functions can be created using this beneficial, powerful, and promising technique.

  18. Defining Medical Capabilities for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Hailey, M.; Antonsen, E.; Blue, R.; Reyes, D.; Mulcahy, R.; Kerstman, E.; Bayuse, T.

    2018-01-01

    Exploration-class missions to the moon, Mars and beyond will require a significant change in medical capability from today's low earth orbit centric paradigm. Significant increases in autonomy will be required due to differences in duration, distance and orbital mechanics. Aerospace medicine and systems engineering teams are working together within ExMC to meet these challenges. Identifying exploration medical system needs requires accounting for planned and unplanned medical care as defined in the concept of operations. In 2017, the ExMC Clinicians group identified medical capabilities to feed into the Systems Engineering process, including: determining what and how to address planned and preventive medical care; defining an Accepted Medical Condition List (AMCL) of conditions that may occur and a subset of those that can be treated effectively within the exploration environment; and listing the medical capabilities needed to treat those conditions in the AMCL. This presentation will discuss the team's approach to addressing these issues, as well as how the outputs of the clinical process impact the systems engineering effort.

  19. Characterization and Analyses of Valves, Feed Lines and Tanks used in Propellant Delivery Systems at NASA SSC

    NASA Technical Reports Server (NTRS)

    Ryan, Harry M.; Coote, David J.; Ahuja, Vineet; Hosangadi, Ashvin

    2006-01-01

    Accurate modeling of liquid rocket engine test processes involves assessing critical fluid mechanic and heat and mass transfer mechanisms within a cryogenic environment, and accurately modeling fluid properties such as vapor pressure and liquid and gas densities as a function of pressure and temperature. The Engineering and Science Directorate at the NASA John C. Stennis Space Center has developed and implemented such analytic models and analysis processes that have been used over a broad range of thermodynamic systems and resulted in substantial improvements in rocket propulsion testing services. In this paper, we offer an overview of the analyses techniques used to simulate pressurization and propellant fluid systems associated with the test stands at the NASA John C. Stennis Space Center. More specifically, examples of the global performance (one-dimensional) of a propellant system are provided as predicted using the Rocket Propulsion Test Analysis (RPTA) model. Computational fluid dynamic (CFD) analyses utilizing multi-element, unstructured, moving grid capability of complex cryogenic feed ducts, transient valve operation, and pressurization and mixing in propellant tanks are provided as well.

  20. Fabrication of Bioceramic Bone Scaffolds for Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Liu, Fwu-Hsing

    2014-10-01

    In this study, microhydroxyapatite and nanosilica sol were used as the raw materials for fabrication of bioceramic bone scaffold using selective laser sintering technology in a self-developed 3D Printing apparatus. When the fluidity of ceramic slurry is matched with suitable laser processing parameters, a controlled pore size of porous bone scaffold can be fabricated under a lower laser energy. Results shown that the fabricated scaffolds have a bending strength of 14.1 MPa, a compressive strength of 24 MPa, a surface roughness of 725 nm, a pore size of 750 μm, an apparent porosity of 32%, and a optical density of 1.8. Results indicate that the mechanical strength of the scaffold can be improved after heat treatment at 1200 °C for 2 h, while simultaneously increasing surface roughness conducive to osteoprogenitor cell adhesion. MTT method and SEM observations confirmed that bone scaffolds fabricated under the optimal manufacturing process possess suitable biocompatibility and mechanical properties, allowing smooth adhesion and proliferation of osteoblast-like cells. Therefore, they have great potential for development in the field of tissue engineering.

Top