A Summary of the Naval Postgraduate School Research Program.
1984-06-01
Administrative Sciences, Operations Research, National Security Affairs, Physics, Electrical Engineering , Meterology, Aeronautics, Oceanography and Mechanical ...Oceans and Major Seas -------------------------------- 290 DEPARTMENT OF MECHANICAL ENGINEERING 291 Mechanical Engineering Department Summary 293...in Buried Pipes Using Sulphur Hexaflouride as a Tracer Gas," American Society of Mechanical Engineers , The Journal of Engineering for Power
Activities of the Institute for Mechanical Engineering
NASA Astrophysics Data System (ADS)
The Institute of Mechanical Engineering (IME) is part of Canada's National Research Council. Its mission is to undertake, support, promote, and disseminate research and development in the mechanical engineering aspects of three vital sectors of the Canadian economy: transportation, resource industries, and manufacturing. The IME achieves its mission by performing research and development in its own facilities; by developing, providing, and transferring expertise and knowledge; by making its research facilities available to collaborators and clients; and by participating in international liaison and collaborative research activities. Six research programs are conducted in the IME: Advanced Manufacturing Technology; Coastal Zone Engineering; Cold Regions Engineering; Combustion and Fluids Engineering; Ground Transportation Technology; and Machinery and Engine Technology. The rationale and major research thrusts of each program are described, and specific achievements in 1991-92 are reviewed. Lists of technical reports and papers presented by IME personnel are also included.
Activities report of the Department of Engineering
NASA Astrophysics Data System (ADS)
Acoustics, aerodynamics, fluid mechanics, design, electrical, materials science, mechanical, control, robotics, soil mechanics, structural engineering, thermodynamics, and turbomachine engineering research are described.
Welcoming speech from Dean Faculty of Mechanical Engineering, UMP
NASA Astrophysics Data System (ADS)
Taha, Zahari
2012-09-01
In the Name of Allah, the Most Beneficent, the Most Merciful. It is with great pleasure that I welcome the participants of the International Conference of Mechanical Engineering Research 2011. The Prophet Muhammad (peace be upon him) said 'Acquire knowledge and impart it to the people.' (Al Tirmidhi). The quest for knowledge has been from the beginning of time but knowledge only becomes valuable when it is disseminated and applied to benefit humankind. It is hoped that ICMER 2011 will be a platform to gather and disseminate the latest knowledge in mechanical engineering. Academicians, Scientist, Researchers and practitioners of mechanical engineering will be able to share and discuss new findings and applications of mechanical engineering. It is envisaged that the intellectual discourse will result in future collaborations between universities, research institutions and industry both locally and internationally. In particular it is expected that focus will be given to issues on environmental and energy sustainability. Researchers in the mechanical engineering faculty at UMP have a keen interest in technology to harness energy from the ocean. Lowering vehicle emissions has been a primary goal of researchers in the mechanical engineering faculty and the automotive engineering centre as well including developing vehicles using alternative fuels such as biodiesel and renewable sources such as solar driven electric vehicles. Finally I would like to congratulate the organizing committee for their tremendous efforts in organizing the conference. As I wrote this in the Holy Land of Makkah, I pray to Allah swt that the conference will be a success. Prof. Dr. Zahari Taha CEng, MIED, FASc Dean, Faculty of Mechanical Engineering Universiti Malaysia Pahang
Wind Blades + Snowboards Meet Robynne, Mechanical Engineering Postdoc Researcher Discover New Blades + Snowboards Meet Robynne, Mechanical Engineering Postdoc Researcher Discover New Opportunities
Ramin Faramarzi Photo of Ramin Faramarzi Ramin Faramarzi Researcher V-Mechanical Engineering Engineering, California State University B.S. Mechanical Engineering, North Carolina State University articles and is a registered mechanical engineer in the state of California. Education M.S. Mechanical
PREFACE: 3rd International Conference of Mechanical Engineering Research (ICMER 2015)
NASA Astrophysics Data System (ADS)
Mamat, Riazalman; Rahman, Mustafizur; Mohd. Zuki Nik Mohamed, Nik; Che Ghani, Saiful Anwar; Harun, Wan Sharuzi Wan
2015-12-01
The 3rd ICMER2015 is the continuity of the NCMER2010. The year 2010 represents a significant milestone in the history for Faculty of Mechanical Engineering, Universiti Malaysia Pahang (UMP) Malaysia with the organization of the first and second national level conferences (1st and 2nd NCMER) at UMP on May 26-27 and Dec 3-4 2010. The Faculty then changed the name from National Conference on Mechanical Engineering Research (NCMER) to International Conference on Mechanical Engineering Research (ICMER) in 2011 and this year, 2015 is our 3rd ICMER. These proceedings contain the selected scientific manuscripts submitted to the conference. It is with great pleasure to welcome you to the "International Conference on Mechanical Engineering Research (ICMER2015)" that is held at Zenith Hotel, Kuantan, Malaysia. The call for papers attracted submissions of over two hundred abstracts from twelve different countries including Japan, Iran, China, Kuwait, Indonesia, Norway, Philippines, Morocco, Germany, UAE and more. The scientific papers published in these proceedings have been revised and approved by the technical committee of the 3rd ICMER2015. All of the papers exhibit clear, concise, and precise expositions that appeal to a broad international readership interested in mechanical engineering, combustion, metallurgy, materials science as well as in manufacturing and biomechanics. The reports present original ideas or results of general significance supported by clear reasoning and compelling evidence, and employ methods, theories and practices relevant to the research. The authors clearly state the questions and the significance of their research to theory and practice, describe how the research contributes to new knowledge, and provide tables and figures that meaningfully add to the narrative. In this edition of ICMER representatives attending are from academia, industry, governmental and private sectors. The plenary and invited speakers will present, discuss, promote and disseminate research in all fields of mechanical engineering. Topics cover synthesis, applications, and fundamental studies of the topics related to mechanical engineering. In addition, booths for industries to showcase their state-of-the-art products are also provided. The organizing committee of the conference thanks all the participants for their fruitful work and personal contribution to the development of these conference proceedings.
Graduate engineering research participation in aeronautics
NASA Technical Reports Server (NTRS)
Roberts, A. S., Jr.
1986-01-01
The Aeronautics Graduate Research Program commenced in 1971, with the primary goal of engaging students who qualified for regular admission to the Graduate School of Engineering at Old Dominion University in a graduate engineering research and study program in collaboration with NASA Langley Research Center, Hampton, Virginia. The format and purposes of this program are discussed. Student selection and program statistics are summarized. Abstracts are presented in the folowing areas: aircraft design, aerodynamics, lift/drag characteristics; avionics; fluid mechanics; solid mechanics; instrumentation and measurement techniques; thermophysical properties experiments; large space structures; earth orbital dynamics; and environmental engineering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-07-01
This interdisciplinary laboratory in the College of Engineering support research in areas of condensed matter physics, solid state chemistry, and materials science. These research programs are developed with the assistance of faculty, students, and research associates in the departments of Physics, Materials Science and Engineering, chemistry, Chemical Engineering, Electrical Engineering, Mechanical Engineering, and Nuclear Engineering.
Research and technology at the Kennedy Space Center
NASA Technical Reports Server (NTRS)
1983-01-01
Cryogenic engineering, hypergolic engineering, hazardous warning, structures and mechanics, computer sciences, communications, meteorology, technology applications, safety engineering, materials analysis, biomedicine, and engineering management and training aids research are reviewed.
NASA Lewis Research Center/university graduate research program on engine structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1985-01-01
NASA Lewis Research Center established a graduate research program in support of the Engine Structures Research activities. This graduate research program focuses mainly on structural and dynamics analyses, computational mechanics, mechanics of composites and structural optimization. The broad objectives of the program, the specific program, the participating universities and the program status are briefly described.
NASA Lewis Research Center/University Graduate Research Program on Engine Structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1985-01-01
NASA Lewis Research Center established a graduate research program in support of the Engine Structures Research activities. This graduate research program focuses mainly on structural and dynamics analyses, computational mechanics, mechanics of composites and structural optimization. The broad objectives of the program, the specific program, the participating universities and the program status are briefly described.
NASA Astrophysics Data System (ADS)
Jannati, E. D.; Setiawan, A.; Siahaan, P.; Rochman, C.
2018-05-01
This study aims to determine the description of virtual laboratory learning media development to improve science literacy skills of Mechanical Engineering students on the concept of basic Physics. Quasi experimental method was employed in this research. The participants of this research were first semester students of mechanical engineering in Majalengka University. The research instrument was readability test of instructional media. The results of virtual laboratory learning media readability test show that the average score is 78.5%. It indicates that virtual laboratory learning media development are feasible to be used in improving science literacy skill of Mechanical Engineering students in Majalengka University, specifically on basic Physics concepts of material measurement.
Compendium of Abstracts on Statistical Applications in Geotechnical Engineering.
1983-09-01
research in the application of probabilistic and statistical methods to soil mechanics, rock mechanics, and engineering geology problems have grown markedly...probability, statistics, soil mechanics, rock mechanics, and engineering geology. 2. The purpose of this report is to make available to the U. S...Deformation Dynamic Response Analysis Seepage, Soil Permeability and Piping Earthquake Engineering, Seismology, Settlement and Heave Seismic Risk Analysis
Federal Funding of Engineering Research and Development, 1980-1984.
ERIC Educational Resources Information Center
American Society of Mechanical Engineers, Washington, DC.
Data on the sources, amounts, and trends of federal funding for engineering research and development (R&D) are presented for 1980-1984. Narrative highlights are provided for: the total federal funding obligations for engineering R&D, mechanical engineering, astronautical engineering, aeronautical engineering, chemical engineering, civil…
PREFACE: 1st International Conference on Mechanical Engineering Research 2011 (ICMER2011)
NASA Astrophysics Data System (ADS)
Abu Bakar, Rosli
2012-09-01
The year 2010 represented a significant milestone in the history of the Mechanical Engineering community with the organization of the first and second national level conferences (National Conference in Mechanical Engineering for Research, 1st and 2nd NCMER) at Universiti Malaysia Pahang on 26-27 May and 3-4 December 2010. The conferences attracted a large number of delegates from different premier academic and research institutions in the country to participate and share their research experiences at the conference. The International Conference on Mechanical Engineering Research (ICMER 2011) followed on from the first and second conferences due to good support from researchers. The ICMER 2011 is a good platform for researchers and postgraduate students to present their latest finding in research. The conference covers a wide range of topics including the internal combustion engine, machining processes, heat and mass transfer, fuel, biomechanical analysis, aerodynamic analysis, thermal comfort, computational techniques, design and simulation, automotive transmission, optimization techniques, hybrid electric vehicles, engine vibration, heat exchangers, finite element analysis, computational fluid dynamics, green energy, vehicle dynamics renewable energy, combustion, design, product development, advanced experimentation techniques, to name but a few. The international conference has helped to bridge the gap between researchers working at different institutions and in different countries to share their knowledge and has helped to motivate young scientists with their research. This has also given some clear direction for further research from the deliberations of the conference. Several people have contributed in different ways to the success of the conference. We thank the keynote speakers and all authors of the contributed papers, for the cooperation rendered to us in the publication of the CD conference proceedings. In particular, we would like to place on record our thanks to the expert reviewers who have spared their time reviewing the papers. We also highly appreciate the assistance offered by many volunteers in the preparation of the conference proceedings. All papers in ICMER 2011 have the opportunity to be published in IOP Conference Series: Materials Science and Engineering, (indexed by Scopus, Ei Compendex, Inspec), International Journal of Automotive and Mechanical Engineering (IJAME) and Journal of Mechanical Engineering and Sciences (JMES). Professor Dr Hj Rosli Abu Bakar Chairman ICMER 2011
The Institute of Biological Engineering 2013 Annual Conference
2014-10-30
of Bioengineering University of Washington Presentation: Peptide-Based materials for Drug Delivery Dr. Ya-Ping Sun (Supported by the Grant) Frank...Professor of Biomedical Engineering and Mechanical Engineering and Materials Science Duke University Presentation: Acoustic Microfluidics and New...Triangle Materials Research Science and Engineering Center, Department of Biomedical Engineering, Duke University, Department of Mechanical Engineering
2007-06-01
single-cylinder diesel engine showed that at high EGR rates, the autoignition mechanism changes from the typical single stage to a two-stage process...2002). 3. Edwards, T., Zabarnick, S. "Supercritical Fuel Deposition Mechanisms ," Industrial and Engineering Chemistry Research 32: 3117-3122 (1993...and the Air Force Office of Scientific Research. 20070910360 15. SUBJECT TERMS Flames, Propulsion, Gas Turbines, Diesel Engines , Scramjets, Pulse
ERIC Educational Resources Information Center
Young, Monica J.
2012-01-01
The purpose of this mixed-methods study was to better understand how female mechanical engineering faculty members' career experiences in academia affect their satisfaction. Specifically, the research considered differences in satisfaction reported by female and male mechanical engineering faculty members in terms of: (a) departmental…
Composite mechanics for engine structures
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
1987-01-01
Recent research activities and accomplishments at Lewis Research Center on composite mechanics for engine structures are summarized. The activities focused mainly on developing procedures for the computational simulation of composite intrinsic and structural behavior. The computational simulation encompasses all aspects of composite mechanics, advanced three-dimensional finite-element methods, damage tolerance, composite structural and dynamic response, and structural tailoring and optimization.
Composite mechanics for engine structures
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
1989-01-01
Recent research activities and accomplishments at Lewis Research Center on composite mechanics for engine structures are summarized. The activities focused mainly on developing procedures for the computational simulation of composite intrinsic and structural behavior. The computational simulation encompasses all aspects of composite mechanics, advanced three-dimensional finite-element methods, damage tolerance, composite structural and dynamic response, and structural tailoring and optimization.
Lewis Structures Technology, 1988. Volume 2: Structural Mechanics
NASA Technical Reports Server (NTRS)
1988-01-01
Lewis Structures Div. performs and disseminates results of research conducted in support of aerospace engine structures. These results have a wide range of applicability to practitioners of structural engineering mechanics beyond the aerospace arena. The engineering community was familiarized with the depth and range of research performed by the division and its academic and industrial partners. Sessions covered vibration control, fracture mechanics, ceramic component reliability, parallel computing, nondestructive evaluation, constitutive models and experimental capabilities, dynamic systems, fatigue and damage, wind turbines, hot section technology (HOST), aeroelasticity, structural mechanics codes, computational methods for dynamics, structural optimization, and applications of structural dynamics, and structural mechanics computer codes.
Research and technology, 1984 report
NASA Technical Reports Server (NTRS)
1984-01-01
Research and technology projects in the following areas are described: cryogenic engineering, hypergolic engineering, hazardous warning instrumentation, structures and mechanics, sensors and controls, computer sciences, communications, material analysis, biomedicine, meteorology, engineering management, logistics, training and maintenance aids, and technology applications.
Ethical aspects of the mitigation obstruction argument against climate engineering research.
Morrow, David R
2014-12-28
Many commentators fear that climate engineering research might lead policy-makers to reduce mitigation efforts. Most of the literature on this so-called 'moral hazard' problem focuses on the prediction that climate engineering research would reduce mitigation efforts. This paper focuses on a related ethical question: Why would it be a bad thing if climate engineering research obstructed mitigation? If climate engineering promises to be effective enough, it might justify some reduction in mitigation. Climate policy portfolios involving sufficiently large or poorly planned reductions in mitigation, however, could lead to an outcome that would be worse than the portfolio that would be chosen in the absence of further climate engineering research. This paper applies three ethical perspectives to describe the kinds of portfolios that would be worse than that 'baseline portfolio'. The literature on climate engineering identifies various mechanisms that might cause policy-makers to choose these inferior portfolios, but it is difficult to know in advance whether the existence of these mechanisms means that climate engineering research really would lead to a worse outcome. In the light of that uncertainty, a precautionary approach suggests that researchers should take measures to reduce the risk of mitigation obstruction. Several such measures are suggested. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-03
... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993 -- American Society of Mechanical Engineers Notice is hereby given that, on March 5....C. 4301 et seq. (``the Act''), the American Society of Mechanical Engineers (``ASME'') has filed...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-24
... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--American Society of Mechanical Engineers Notice is hereby given that, on August 20....C. 4301 et seq. (``the Act''), the American Society of Mechanical Engineers (``ASME'') has filed...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-23
... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--American Society of Mechanical Engineers Notice is hereby given that, on December 6....C. 4301 et seq. (``the Act''), American Society of Mechanical Engineers (``ASME'') has filed written...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-11
... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--American Society of Mechanical Engineers Notice is hereby given that, on April 12....C. 4301 et seq. (``the Act''), American Society Of Mechanical Engineers (``ASME'') has filed written...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-16
... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--American Society of Mechanical Engineers Notice is hereby given that, on October 14....C. 4301 et seq. (``the Act''), American Society of Mechanical Engineers (``ASME'') has filed written...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-19
... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--American Society of Mechanical Engineers Notice is hereby given that, on July 25....C. 4301 et seq. (``the Act''), American Society of Mechanical Engineers (``ASME'') has filed written...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-04
... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--American Society of Mechanical Engineers Notice is hereby given that, on January 10....C. 4301 et seq. (``the Act''), American Society of Mechanical Engineers (``ASME'') has filed written...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-02
... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993; American Society of Mechanical Engineers Notice is hereby given that, on June 28....C. 4301 et seq. (``the Act''), the American Society of Mechanical Engineers (``ASME'') has filed...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-24
... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--American Society of Mechanical Engineers Notice is hereby given that, on April 27....C. 4301 et seq. (``the Act''), the American Society of Mechanical Engineers (``ASME'') has filed...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-24
... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to The National Cooperative Research and Production Act of 1993--American Society of Mechanical Engineers Notice is hereby given that, on February 25....C. 4301 et seq.. (``the Act''), the American Society of Mechanical Engineers (``ASME'') has filed...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-20
... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993; American Society of Mechanical Engineers Notice is hereby given that, on August 27....C. 4301 et seq. (``the Act''), the American Society of Mechanical Engineers (``ASME'') has filed...
ERIC Educational Resources Information Center
Streveler, Ruth; Geist, Monica; Ammerman, Ravel; Sulzbach, Candace; Miller, Ronald; Olds, Barbara; Nelson, Mary
2007-01-01
This study extends ongoing work to identify difficult concepts in thermal and transport science and measure students' understanding of those concepts via a concept inventory. Two research questions provided the focal point: "What important concepts in electric circuits and engineering mechanics do students find difficult to learn?" and…
Mechanical Engineering Department engineering research: Annual report, FY 1986
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denney, R.M.; Essary, K.L.; Genin, M.S.
1986-12-01
This report provides information on the five areas of research interest in LLNL's Mechanical Engineering Department. In Computer Code Development, a solid geometric modeling program is described. In Dynamic Systems and Control, structure control and structure dynamics are discussed. Fabrication technology involves machine cutting, interferometry, and automated optical component manufacturing. Materials engineering reports on composite material research and measurement of molten metal surface properties. In Nondestructive Evaluation, NMR, CAT, and ultrasound machines are applied to manufacturing processes. A model for underground collapse is developed. Finally, an alternative heat exchanger is investigated for use in a fusion power plant. Separate abstractsmore » were prepared for each of the 13 reports in this publication. (JDH)« less
Nordberg, Rachel C; Bodle, Josie C; Loboa, Elizabeth G
2018-01-01
It is critical that human adipose stem cell (hASC) tissue-engineering therapies possess appropriate mechanical properties in order to restore function of the load bearing tissues of the musculoskeletal system. In an effort to elucidate the hASC response to mechanical stimulation and develop mechanically robust tissue engineered constructs, recent research has utilized a variety of mechanical loading paradigms including cyclic tensile strain, cyclic hydrostatic pressure, and mechanical unloading in simulated microgravity. This chapter describes methods for applying these mechanical stimuli to hASC to direct differentiation for functional tissue engineering of the musculoskeletal system.
On Unsaturated Soil Mechanics - Personal Views on Current Research
NASA Astrophysics Data System (ADS)
Pande, G. N.; Pietruszczak, S.
2015-09-01
This paper presents the authors' personal views on current research being conducted by various research groups around the world in the broad area of mechanics of unsaturated geomaterials in general and soils in particular. The topic is of interest to a wide spectrum of scientists and engineers working in diverse areas such as geology and geophysics, powder technology, agricultural, petroleum, chemical, geotechnical, civil, environmental and nuclear engineering. Even if we restrict ourselves to civil, geotechnical and environmental engineering, it is noted that a plethora of hypotheses as well as a number of empirical and semi-empirical relations have been introduced for describing the mechanics of unsaturated porous media. However, many of these proposed advances as well as methods of testing may lack sound theoretical basis.
[Research progress of cell-scaffold complex in tendon tissue engineering].
Zhu, Ying; Li, Min
2013-04-01
To review the research progress of cell-scaffold complex in the tendon tissue engineering. Recent literature concerning cell-scaffold complex in the tendon tissue engineering was reviewed, the research situation of the cell-scaffold complex was elaborated in the aspects of seed cells, scaffolds, cell culture, and application. In tendon tissue engineering, a cell-scaffold complex is built by appropriate seed cells and engineered scaffolds. Experiments showed that modified seed cells had better therapeutic effects. Further, scaffold functionality could be improved through surface modification, growth factor cure, mechanical stimulation, and contact guidance. Among these methods, mechanical stimulation revealed the most significant results in promoting cell proliferation and function. Through a variety of defect models, it is demonstrated that the use of cell-scaffold complex could achieve satisfactory results for tendon regeneration. The cell-scaffold complex for tendon tissue engineering is a popular research topic. Although it has not yet met the requirement of clinical use, it has broad application prospects.
Fuel Combustion and Engine Performance | Transportation Research | NREL
. Through modeling, simulation, and experimental validation, researchers examine what happens to fuel inside combustion and engine research activities include: Developing experimental and simulation research platforms develop and refine accurate, efficient kinetic mechanisms for fuel ignition Investigating low-speed pre
NACA Mechanics in an Allison Engine Training Class
1943-10-21
The Allison Engine Company's A.G. Covell instructs mechanics from various divisions at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory on the operation of the Allison Basic Engine. The military had asked that the laboratory undertake an extensive program to improve the performance of the Allison V–1710 engine. The V–1710 was the only liquid-cooled engine used during World War II, and the military counted on it to power several types of fighter aircraft. The NACA instituted an Apprentice Program during the war to educate future mechanics, technicians, and electricians. The program was suspended for a number of years due to the increasing rates of military service by its participants. The laboratory continued its in-house education during the war, however, by offering a number of classes to its employees and lectures for the research staff. The classes and lectures were usually taught by fellow members of the staff, but occasionally external experts were brought in. The students in the Allison class in the Engine Research Building were taught how to completely disassemble and reassemble the engine components and systems. From left to right are Don Vining, Ed Cudlin, Gus DiNovo, George Larsen, Charles Diggs, Martin Lipes, Harley Roberts, Martin Berwaldt and John Dempsey. A.G. Covell is standing.
Simbody: multibody dynamics for biomedical research.
Sherman, Michael A; Seth, Ajay; Delp, Scott L
Multibody software designed for mechanical engineering has been successfully employed in biomedical research for many years. For real time operation some biomedical researchers have also adapted game physics engines. However, these tools were built for other purposes and do not fully address the needs of biomedical researchers using them to analyze the dynamics of biological structures and make clinically meaningful recommendations. We are addressing this problem through the development of an open source, extensible, high performance toolkit including a multibody mechanics library aimed at the needs of biomedical researchers. The resulting code, Simbody, supports research in a variety of fields including neuromuscular, prosthetic, and biomolecular simulation, and related research such as biologically-inspired design and control of humanoid robots and avatars. Simbody is the dynamics engine behind OpenSim, a widely used biomechanics simulation application. This article reviews issues that arise uniquely in biomedical research, and reports on the architecture, theory, and computational methods Simbody uses to address them. By addressing these needs explicitly Simbody provides a better match to the needs of researchers than can be obtained by adaptation of mechanical engineering or gaming codes. Simbody is a community resource, free for any purpose. We encourage wide adoption and invite contributions to the code base at https://simtk.org/home/simbody.
Rotation, Reflection, and Frame Changes; Orthogonal tensors in computational engineering mechanics
NASA Astrophysics Data System (ADS)
Brannon, R. M.
2018-04-01
Whilst vast literature is available for the most common rotation-related tasks such as coordinate changes, most reference books tend to cover one or two methods, and resources for less-common tasks are scarce. Specialized research applications can be found in disparate journal articles, but a self-contained comprehensive review that covers both elementary and advanced concepts in a manner comprehensible to engineers is rare. Rotation, Reflection, and Frame Changes surveys a refreshingly broad range of rotation-related research that is routinely needed in engineering practice. By illustrating key concepts in computer source code, this book stands out as an unusually accessible guide for engineers and scientists in engineering mechanics.
Measuring in situ mechanical properties of pavement subgrade soils
DOT National Transportation Integrated Search
1999-01-01
This synthesis report will be of interest to pavement and geotechnical design and research engineers, geologists and engineering geologists, and similar laboratory personnel. It describes the current practice for measuring the in situ mechanical prop...
NASA Technical Reports Server (NTRS)
1988-01-01
The charter of the Structures Division is to perform and disseminate results of research conducted in support of aerospace engine structures. These results have a wide range of applicability to practioners of structural engineering mechanics beyond the aerospace arena. The specific purpose of the symposium was to familiarize the engineering structures community with the depth and range of research performed by the division and its academic and industrial partners. Sessions covered vibration control, fracture mechanics, ceramic component reliability, parallel computing, nondestructive evaluation, constitutive models and experimental capabilities, dynamic systems, fatigue and damage, wind turbines, hot section technology (HOST), aeroelasticity, structural mechanics codes, computational methods for dynamics, structural optimization, and applications of structural dynamics, and structural mechanics computer codes.
NASA-UVA Light Aerospace Alloy and Structures Technology Program: LA(2)ST
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.
1993-01-01
The NASA-UVA Light Aerospace Alloy and Structures Technology (LA(2)ST) Program continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, Civil Engineering and Applied Mechanics, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. We report on progress achieved between July 1 and December 31, 1992. The objective of the LA(2)ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement advances; and critically, a pool of educated graduate students for aerospace technologies.
Progress of Stirling cycle analysis and loss mechanism characterization
NASA Technical Reports Server (NTRS)
Tew, R. C., Jr.
1986-01-01
An assessment of Stirling engine thermodynamic modeling and design codes shows a general deficiency; this deficiency is due to poor understanding of the fluid flow and heat transfer phenomena that occur in the oscillating flow and pressure level environment within the engines. Stirling engine thermodynamic loss mechanisms are listed. Several experimental and computational research efforts now underway to characterize various loss mechanisms are reviewed. The need for additional experimental rigs and rig upgrades is discussed. Recent developments and current efforts in Stirling engine thermodynamic modeling are also reviewed.
Patanè, Fabrizio; Laut, Jeffrey
2017-01-01
Prof. Paolo Cappa passed away on 26 August 2016, at the age of 59, after a long and courageous fight against cancer. Paolo Cappa was a Professor in Mechanical and Thermal Measurements and Experimental Biomechanics in the Department of Mechanical and Aerospace Engineering of Sapienza University of Rome, where he had also served as the Head of the Department, and a Research Professor in the Department of Mechanical and Aerospace Engineering of New York University Tandon School of Engineering. During his intense, yet short, career, he made several significant scientific contributions within the discipline of Mechanical and Thermal Measurements, pioneering fundamental applications to Biomechanics. He co-founded the Motion Analysis and Robotics Laboratory (MARLab) within the Neurorehabilitation Division of IRCCS Pediatric Hospital “Bambino Gesu”, in Rome, to fuel transitional research from the laboratory to clinical practice. Through collaboration with neurologists and physiatrists at MARLab, Prof. Cappa led the development of a powerful array of novel mechanical solutions to wearable robotics for pediatric patients, addressing dramatic needs for children’s health and contributing to the training of an entire generation of Mechanical Engineering students. PMID:29156582
Palermo, Eduardo; Rossi, Stefano; Patanè, Fabrizio; Laut, Jeffrey; Porfiri, Maurizio
2017-11-18
Prof. Paolo Cappa passed away on 26 August 2016, at the age of 59, after a long and courageous fight against cancer. Paolo Cappa was a Professor in Mechanical and Thermal Measurements and Experimental Biomechanics in the Department of Mechanical and Aerospace Engineering of Sapienza University of Rome, where he had also served as the Head of the Department, and a Research Professor in the Department of Mechanical and Aerospace Engineering of New York University Tandon School of Engineering. During his intense, yet short, career, he made several significant scientific contributions within the discipline of Mechanical and Thermal Measurements, pioneering fundamental applications to Biomechanics. He co-founded the Motion Analysis and Robotics Laboratory (MARLab) within the Neurorehabilitation Division of IRCCS Pediatric Hospital "Bambino Gesu", in Rome, to fuel transitional research from the laboratory to clinical practice. Through collaboration with neurologists and physiatrists at MARLab, Prof. Cappa led the development of a powerful array of novel mechanical solutions to wearable robotics for pediatric patients, addressing dramatic needs for children's health and contributing to the training of an entire generation of Mechanical Engineering students.
Stirling Laboratory Research Engine: Preprototype configuration report
NASA Technical Reports Server (NTRS)
Hoehn, F. W.
1982-01-01
The concept of a simple Stirling research engine that could be used by industrial, university, and government laboratories was studied. The conceptual and final designs, hardware fabrication and the experimental validation of a preprototype stirling laboratory research engine (SLRE) were completed. Also completed was a task to identify the potential markets for research engines of this type. An analytical effort was conducted to provide a stirling cycle computer model. The versatile engine is a horizontally opposed, two piston, single acting stirling engine with a split crankshaft drive mechanism; special instrumentation is installed at all component interfaces. Results of a thermodynamic energy balance for the system are reported. Also included are the engine performance results obtained over a range of speeds, working pressures, phase angles and gas temperatures. The potential for a stirling research engine to support the laboratory requirements of educators and researchers was demonstrated.
NASA Technical Reports Server (NTRS)
Huang, C. J.; Motard, R. L.
1978-01-01
The computing equipment in the engineering systems simulation laboratory of the Houston University Cullen College of Engineering is described and its advantages are summarized. The application of computer techniques in aerospace-related research psychology and in chemical, civil, electrical, industrial, and mechanical engineering is described in abstracts of 84 individual projects and in reprints of published reports. Research supports programs in acoustics, energy technology, systems engineering, and environment management as well as aerospace engineering.
2005-01-01
Surface Tasks ................................................................................................... 250 Goali : Creep and Microstructural...SURFACE TASKS Morris Driels, Professor Department of Mechanical Engineering Sponsor: U.S. Army Materiel Systems Analysis Activity GOALI : CREEP AND...Professor Department of Mechanical Engineering Sponsor: National Science Foundation SUMMARY: This GOALI (Grant Opportunities for Academic Liaison
[Research Conducted at the Institute for Computer Applications in Science and Engineering
NASA Technical Reports Server (NTRS)
1997-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period 1 Oct. 1996 - 31 Mar. 1997.
NASA-UVA light aerospace alloy and structures technology program (LA2ST)
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.
1992-01-01
The NASA-UVa Light Aerospace Alloy and Structure Technology (LAST) Program continues to maintain a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, Civil Engineering and Applied Mechanics, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between January 1 and June 30, 1992. The objectives of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of the next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with Langley researchers. Technical objectives are established for each research project. We aim to produce relevant data and basic understanding of material mechanical response, corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement advances; and critically, a pool of educated graduate students for aerospace technologies. The accomplishments presented in this report cover topics including: (1) Mechanical and Environmental Degradation Mechanisms in Advance Light Metals and Composites; (2) Aerospace Materials Science; (3) Mechanics of Materials and Composites for Aerospace Structures; and (4) Thermal Gradient Structures.
Career Profiles- Aero-Mechanical Design- Operations Engineering Branch
2015-10-26
NASA Armstrong’s Aeromechanical Design Group provides mechanical design solutions ranging from research and development to ground support equipment. With an aerospace or mechanical engineering background, team members use the latest computer-aided design software to create one-of-kind parts, assemblies, and drawings, and aid in the design’s fabrication and integration. Reverse engineering and inspection of Armstrong’s fleet of aircraft is made possible by using state-of-the-art coordinate measuring machines and laser scanning equipment.
Advanced Combustor in the Four Burner Area
1966-03-21
Engineer Frank Kutina and a National Aeronautics and Space Administration (NASA) mechanic examine the setup of an advanced combustor rig inside one of the test cells at the Lewis Research Center’s Four Burner Area in the Engine Research Building. Kutina, of the Research Operations Branch, served as go-between for the researchers and the mechanics. He helped develop the test configurations and get the hardware installed. At the time of this photograph, Lewis Center Director Abe Silverstein had just established the Airbreathing Engine Division to address the new propulsion of the 1960s. After nearly a decade of focusing almost exclusively on space, NASA Lewis began tackling issues relating to the new turbofan engine, noise reduction, energy efficiency, supersonic transport, and the never-ending quest for higher performance levels with smaller and more lightweight engines. The Airbreathing Engine Division’s Combustion Branch was dedicated to the study and mitigation of the high temperatures and pressures found in advanced combustor designs. These high temperatures and pressures could destroy engine components. The Lewis investigation included film cooling, diffuser flow, and jet mixing. Components were tested in smaller test cells, but a full-scale augmenting burner rig, seen here, was tested extensively in the Four Burner Area test cell.
Computational structural mechanics for engine structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1989-01-01
The computational structural mechanics (CSM) program at Lewis encompasses: (1) fundamental aspects for formulating and solving structural mechanics problems, and (2) development of integrated software systems to computationally simulate the performance/durability/life of engine structures. It is structured to mainly supplement, complement, and whenever possible replace, costly experimental efforts which are unavoidable during engineering research and development programs. Specific objectives include: investigate unique advantages of parallel and multiprocesses for: reformulating/solving structural mechanics and formulating/solving multidisciplinary mechanics and develop integrated structural system computational simulators for: predicting structural performances, evaluating newly developed methods, and for identifying and prioritizing improved/missing methods needed. Herein the CSM program is summarized with emphasis on the Engine Structures Computational Simulator (ESCS). Typical results obtained using ESCS are described to illustrate its versatility.
Navy/ASEE (American Society for Engineering Education) Summer Faculty Research Program, 1985.
1986-05-15
MECHANICAL ENGINEERING ASTRONOMY MECHANICAL ENGINEERING DEPT. 07 PHYSICS/ASTR. BETHLEHEM ,PA 18015 EAU CLAIR2 ,WI 54701 ROBERT HARTFORD TIMOTHY LANCEY...GA 30910 KLAMATH FALLS ,OR 97601 RICHARD MESSNER HORACE REYNOLDS UN:V OF NEW HAMPSHIRE GALLAUDET ELECTRICAL ENGINEERING PSYCHOLOGY E.C.E. DEPARTMENT...HOWARD’ U:V:ERSICY 4 DC CATHOLU. UNIVERSIT 4 DC HOWARD NVESC 4 DC HOWARD U NIVERSITYf 4 DC CATHOLIT’ UNIVERSITY DC GALLAUDET 4 DC AINERICA:; :;VRIY4 DE
Thrust Area Report, Engineering Research, Development and Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langland, R. T.
1997-02-01
The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Programmore » has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.« less
Student research laboratory for optical engineering
NASA Astrophysics Data System (ADS)
Tolstoba, Nadezhda D.; Saitgalina, Azaliya; Abdula, Polina; Butova, Daria
2015-10-01
Student research laboratory for optical engineering is comfortable place for student's scientific and educational activity. The main ideas of laboratory, process of creation of laboratory and also activity of laboratory are described in this article. At ITMO University in 2013-2014 were formed a lot of research laboratories. SNLO is a student research (scientific) laboratory formed by the Department of Applied and computer optics of the University ITMO (Information Technologies of Mechanics and Optics). Activity of laboratory is career guidance of entrants and students in the field of optical engineering. Student research laboratory for optical engineering is a place where student can work in the interesting and entertaining scientific atmosphere.
Measurements to Understand the Flow Mechanisms Contributing to Tandem Rotor Outwash
2015-05-23
Directorate —AFDD Aviation & Missile Research, Development & Engineering Center Research, Development & Engineering Command Ames Research Center, Moffett...pilot visibility issues in brownout, dust entrain- ment into engine inlets, blade erosion, and increased air- craft maintenance. Though almost 50 years...Diameter Taylor , 1950 (Ref. 17) S, C, Ta 20 in & 45 in Fradenburgh, 1958 (Ref. 18) S 24 in Bolanovich & Marks, 1959 (Ref. 19) S 75 ft Bryan, 1960 (Ref
Turbulent Reacting Flows and Supersonic Combustion
1992-03-15
velocity measurements. This project, as well as the MOC code described in Sec. 4.2.1, represents the Ph.D thesis research of Jennifer Palmer. 4.2.3 PLIF...growing 2-D modes and growing 45 degree modes generates streamwise modes ( Craik -type resonances). * The transition is similar to what is observed for...Mechanical Engineering Jennifer Palmer Graduate Research Assistant, Mechanical Engineering 8.0 Ph.D. DEGREES AWARDED Noel Clemens, June 1991, "An Experimental
ERIC Educational Resources Information Center
Yeager, Joseph; Sommer, Linda
2007-01-01
Combining psycholinguistic technologies and systems analysis created advances in motivational profiling and numerous new behavioral engineering applications. These advances leapfrog many mainstream statistical research methods, producing superior research results via cause-effect language mechanisms. Entire industries explore motives ranging from…
ERIC Educational Resources Information Center
Zhang, Li
2018-01-01
This article investigates citation and research collaboration habits of faculty in four engineering departments. The analysis focuses on similarities and differences among the engineering disciplines. Main differences exist in the use of conference papers and technical reports. The age of cited materials varies by discipline and by format.…
An overview of the Penn State Propulsion Engineering Research Center
NASA Technical Reports Server (NTRS)
Merkle, Charles L.
1991-01-01
An overview of the Penn State Propulsion Engineering Research Center is presented. The following subject areas are covered: research objectives and long term perspective of the Center; current status and operational philosophy; and brief description of Center projects (combustion, fluid mechanics and heat transfer, materials compatibility, turbomachinery, and advanced propulsion concepts).
An Assessment of Research-Doctorate Programs in the United States: Engineering.
ERIC Educational Resources Information Center
Jones, Lyle V., Ed.; And Others
The quality of doctoral-level chemical engineering (N=79), civil engineering (N=74), electrical engineering (N=91), and mechanical engineering (N=82) programs at United States universities was assessed, using 16 measures. These measures focused on variables related to: (1) program size; (2) characteristics of graduates; (3) reputational factors…
The development and application of CFD technology in mechanical engineering
NASA Astrophysics Data System (ADS)
Wei, Yufeng
2017-12-01
Computational Fluid Dynamics (CFD) is an analysis of the physical phenomena involved in fluid flow and heat conduction by computer numerical calculation and graphical display. The numerical method simulates the complexity of the physical problem and the precision of the numerical solution, which is directly related to the hardware speed of the computer and the hardware such as memory. With the continuous improvement of computer performance and CFD technology, it has been widely applied to the field of water conservancy engineering, environmental engineering and industrial engineering. This paper summarizes the development process of CFD, the theoretical basis, the governing equations of fluid mechanics, and introduces the various methods of numerical calculation and the related development of CFD technology. Finally, CFD technology in the mechanical engineering related applications are summarized. It is hoped that this review will help researchers in the field of mechanical engineering.
NASA Astrophysics Data System (ADS)
Du, Ruiling; Wu, Keng; Zhang, Jiazhi; Zhao, Yong
Reaction kinetics of metallurgical physical chemistry which was successfully applied in metallurgy (as ferrous metallurgy, non-ferrous metallurgy) became an important theoretical foundation for subject system of traditional metallurgy. Not only the research methods were very perfect, but also the independent structures and systems of it had been formed. One of the important tasks of metallurgical reaction engineering was the simulation of metallurgical process. And then, the mechanism of reaction process and the conversion time points of different control links should be obtained accurately. Therefore, the research methods and results of reaction kinetics in metallurgical physical chemistry were not very suitable for metallurgical reaction engineering. In order to provide the definite conditions of transmission, reaction kinetics parameters and the conversion time points of different control links for solving the transmission and reaction equations in metallurgical reaction engineering, a new method for researching kinetics mechanisms in metallurgical reaction engineering was proposed, which was named stepwise attempt method. Then the comparison of results between the two methods and the further development of stepwise attempt method were discussed in this paper. As a new research method for reaction kinetics in metallurgical reaction engineering, stepwise attempt method could not only satisfy the development of metallurgical reaction engineering, but also provide necessary guarantees for establishing its independent subject system.
NASA Astrophysics Data System (ADS)
Manske, E.; Froehlich, T.
2012-07-01
The 56th International Scientific Colloquium was held from 12th to 16th September 2011 at the Ilmenau University of Technology in Germany. This event was organized by the Faculty of Mechanical Engineering under the title: 'Innovation in Mechanical Engineering—Shaping the Future' and was intended to reflect the entire scope of modern mechanical engineering. In three main topics many research areas, all involving innovative mechanical engineering, were addressed, especially in the fields of Precision Engineering and Precision Measurement Technology, Mechatronics and Ambient-Assisted Living and Systems Technology. The participants were scientists from 21 countries, and 166 presentations were given. This special issue of Measurement Science and Technology presents selected contributions on 'Precision Engineering and Precision Measurement Technology'. Over three days the conference participants discussed novel scientific results in two sessions. The main topics of these sessions were: Measurement and Sensor Technology Process measurement Laser measurement Force measurement Weighing technology Temperature measurement Measurement dynamics and Nanopositioning and Nanomeasuring Technology Nanopositioning and nanomeasuring machines Nanometrology Probes and tools Mechanical design Signal processing Control and visualization in NPM devices Significant research results from the Collaborative Research Centre SFB 622 'Nanopositioning and Nanomeasuring Machines' funded by the German Research Foundation (DFG) were presented as part of this topic. As the Chairmen, our special thanks are due to the International Programme Committee, the Organization Committee and the conference speakers as well as colleagues from the Institute of Process Measurement and Sensor Technology who helped make the conference a success. We would like to thank all the authors for their contributions, the referees for their time spent reviewing the contributions and their valuable comments, and the whole Editorial Board of Measurement Science and Technology for their support.
Elements of Motivational Structure for Studying Mechanical Engineering
ERIC Educational Resources Information Center
Dubreta, Nikša; Miloš, Damir
2017-01-01
The article presents the findings on students' reasons for studying mechanical engineering. These reasons were covered in terms of extrinsic and intrinsic motivation additionally related to selected independent variables of the sample--students' secondary school Grade Point Average, their gender and the socio-economic status. The research was…
ERIC Educational Resources Information Center
Kellam, N. N.; Maher, M. A.; Peters, W. H.
2008-01-01
This research effort examined current mechanical engineering educational programmes in America and Australia to determine the degree of holistic, systems thinking of each programme. Faculty from ten American universities and ten Australian universities participated in online surveys and interviews. Resulting data analysis and interpretation…
Draftsmen at Work during Construction of the Aircraft Engine Research Laboratory
1942-09-21
The National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory was designed by a group of engineers at the Langley Memorial Aeronautical Laboratory in late 1940 and 1941. Under the guidance of Ernest Whitney, the men worked on drawings and calculations in a room above Langley’s Structural Research Laboratory. The main Aircraft Engine Research Laboratory design group originally consisted of approximately 30 engineers and draftsmen, but there were smaller groups working separately on specific facilities. The new engine lab would have six principal buildings: the Engine Research Building, hangar, Fuels and Lubricants Building, Administration Building, Propeller Test Stand, and Altitude Wind Tunnel. In December 1941 most of those working on the project transferred to Cleveland from Langley. Harrison Underwood and Charles Egan led 18 architectural, 26 machine equipment, 3 structural and 10 mechanical draftsmen. Initially these staff members were housed in temporary offices in the hangar. As sections of the four-acre Engine Research Building were completed in the summer of 1942, the design team began relocating there. The Engine Research Building contained a variety of test cells and laboratories to address virtually every aspect of piston engine research. It also contained a two-story office wing, seen in this photograph that would later house many of the powerplant research engineers.
Research in Applied Mathematics, Fluid Mechanics and Computer Science
NASA Technical Reports Server (NTRS)
1999-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1998 through March 31, 1999.
[Research activities in applied mathematics, fluid mechanics, and computer science
NASA Technical Reports Server (NTRS)
1995-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period April 1, 1995 through September 30, 1995.
Bioinspiration: applying mechanical design to experimental biology.
Flammang, Brooke E; Porter, Marianne E
2011-07-01
The production of bioinspired and biomimetic constructs has fostered much collaboration between biologists and engineers, although the extent of biological accuracy employed in the designs produced has not always been a priority. Even the exact definitions of "bioinspired" and "biomimetic" differ among biologists, engineers, and industrial designers, leading to confusion regarding the level of integration and replication of biological principles and physiology. By any name, biologically-inspired mechanical constructs have become an increasingly important research tool in experimental biology, offering the opportunity to focus research by creating model organisms that can be easily manipulated to fill a desired parameter space of structural and functional repertoires. Innovative researchers with both biological and engineering backgrounds have found ways to use bioinspired models to explore the biomechanics of organisms from all kingdoms to answer a variety of different questions. Bringing together these biologists and engineers will hopefully result in an open discourse of techniques and fruitful collaborations for experimental and industrial endeavors.
1980-12-01
Professor Paul M. Naghdi National Academy of Sciences University of California National Research Council Department of Mechanical Engineering Ship Hull...Angeles, California 90024 Department of Mechanical Engineering Washington, D.C. 20064 Professor Burt Paul University of Pennsylvania Dr. Samuel B...78u4 74 -6 19 Universities (Con’t) Universities (Con’t) Dr. V. K. Varadan Professor V. H. Neubert Ohio State University Research Foundation Pennsylvania
The research and practice of spacecraft software engineering
NASA Astrophysics Data System (ADS)
Chen, Chengxin; Wang, Jinghua; Xu, Xiaoguang
2017-06-01
In order to ensure the safety and reliability of spacecraft software products, it is necessary to execute engineering management. Firstly, the paper introduces the problems of unsystematic planning, uncertain classified management and uncontinuous improved mechanism in domestic and foreign spacecraft software engineering management. Then, it proposes a solution for software engineering management based on system-integrated ideology in the perspective of spacecraft system. Finally, a application result of spacecraft is given as an example. The research can provides a reference for executing spacecraft software engineering management and improving software product quality.
NASA Technical Reports Server (NTRS)
1975-01-01
A research program was conducted to further the professional knowledge of qualified engineering and science faculty members, to stimulate an exchange of ideas between participants and NASA engineers and scientists, and to enrich the research activities of the participants' institutions. Abstracts of reports submitted at the end of the program are presented. Topics investigated include multispectral photography, logic circuits, gravitation theories, information systems, fracture mechanics, holographic interferometry, surface acoustic wave technology, ion beams in the upper atmosphere, and hybrid microcircuits.
Advances in Application of Mechanical Stimuli in Bioreactors for Cartilage Tissue Engineering.
Li, Ke; Zhang, Chunqiu; Qiu, Lulu; Gao, Lilan; Zhang, Xizheng
2017-08-01
Articular cartilage (AC) is the weight-bearing tissue in diarthroses. It lacks the capacity for self-healing once there are injuries or diseases due to its avascularity. With the development of tissue engineering, repairing cartilage defects through transplantation of engineered cartilage that closely matches properties of native cartilage has become a new option for curing cartilage diseases. The main hurdle for clinical application of engineered cartilage is how to develop functional cartilage constructs for mass production in a credible way. Recently, impressive hyaline cartilage that may have the potential to provide capabilities for treating large cartilage lesions in the future has been produced in laboratories. The key to functional cartilage construction in vitro is to identify appropriate mechanical stimuli. First, they should ensure the function of metabolism because mechanical stimuli play the role of blood vessels in the metabolism of AC, for example, acquiring nutrition and removing wastes. Second, they should mimic the movement of synovial joints and produce phenotypically correct tissues to achieve the adaptive development between the micro- and macrostructure and function. In this article, we divide mechanical stimuli into three types according to forces transmitted by different media in bioreactors, namely forces transmitted through the liquid medium, solid medium, or other media, then we review and summarize the research status of bioreactors for cartilage tissue engineering (CTE), mainly focusing on the effects of diverse mechanical stimuli on engineered cartilage. Based on current researches, there are several motion patterns in knee joints; but compression, tension, shear, fluid shear, or hydrostatic pressure each only partially reflects the mechanical condition in vivo. In this study, we propose that rolling-sliding-compression load consists of various stimuli that will represent better mechanical environment in CTE. In addition, engineers often ignore the importance of biochemical factors to the growth and development of engineered cartilage. In our point of view, only by fully considering synergistic effects of mechanical and biochemical factors can we find appropriate culture conditions for functional cartilage constructs. Once again, rolling-sliding-compression load under appropriate biochemical conditions may be conductive to realize the adaptive development between the structure and function of engineered cartilage in vitro.
NASA Center for Intelligent Robotic Systems for Space Exploration
NASA Technical Reports Server (NTRS)
1990-01-01
NASA's program for the civilian exploration of space is a challenge to scientists and engineers to help maintain and further develop the United States' position of leadership in a focused sphere of space activity. Such an ambitious plan requires the contribution and further development of many scientific and technological fields. One research area essential for the success of these space exploration programs is Intelligent Robotic Systems. These systems represent a class of autonomous and semi-autonomous machines that can perform human-like functions with or without human interaction. They are fundamental for activities too hazardous for humans or too distant or complex for remote telemanipulation. To meet this challenge, Rensselaer Polytechnic Institute (RPI) has established an Engineering Research Center for Intelligent Robotic Systems for Space Exploration (CIRSSE). The Center was created with a five year $5.5 million grant from NASA submitted by a team of the Robotics and Automation Laboratories. The Robotics and Automation Laboratories of RPI are the result of the merger of the Robotics and Automation Laboratory of the Department of Electrical, Computer, and Systems Engineering (ECSE) and the Research Laboratory for Kinematics and Robotic Mechanisms of the Department of Mechanical Engineering, Aeronautical Engineering, and Mechanics (ME,AE,&M), in 1987. This report is an examination of the activities that are centered at CIRSSE.
Case Study of a Small Scale Polytechnic Entrepreneurship Capstone Course Sequence
ERIC Educational Resources Information Center
Webster, Rustin D.; Kopp, Richard
2017-01-01
A multidisciplinary entrepreneurial senior capstone has been created for engineering technology students at a research I land-grant university statewide extension. The two semester course sequence welcomes students from Mechanical Engineering Technology, Electrical Engineering Technology, Computer Graphics Technology, and Organizational…
NASA Technical Reports Server (NTRS)
Bushnell, Dennis M. (Technical Monitor)
2000-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, computer science, fluid mechanics, and structures and materials during the period October 1, 1999 through March 31, 2000.
ERIC Educational Resources Information Center
Lee, Chen Kang; Sidhu, Manjit Singh
2015-01-01
Engineering educators have been increasingly taking the learning style theories into serious consideration as part of their efforts to enhance the teaching and learning in engineering. This paper presents a research study to investigate the learning style preference of the mechanical engineering students in Universiti Tenaga Nasional (UNITEN),…
Terrain Mechanics and Modeling Research Program: Enhanced Vehicle Dynamics Module
2009-05-01
ER D C/ G SL T R- 09 -8 Terrain Mechanics and Modeling Research Program Enhanced Vehicle Dynamics Module Daniel C. Creighton, George...public release; distribution is unlimited. Terrain Mechanics and Modeling Research Program ERDC/GSL TR-09-8 May 2009 Enhanced Vehicle Dynamics...Module Daniel C. Creighton, George B. McKinley, and Randolph A. Jones Geotechnical and Structures Laboratory U.S. Army Engineer Research and
Lewis Research Center support of Chrysler upgraded engine program
NASA Technical Reports Server (NTRS)
Warren, E. L.
1978-01-01
Running of the upgraded engine has indicated that, although the engine is mechanically sound, it is deficient in power. Recent modifications and corrective action have improved this. Testing of the engine is being done in the test cell. This simulates an automobile installation. Located in the inlet flow ducts are two turbine flow meters to measure engine air flow.
A Global Assessment of Stem Cell Engineering
Loring, Jeanne F.; McDevitt, Todd C.; Palecek, Sean P.; Schaffer, David V.; Zandstra, Peter W.
2014-01-01
Over the last 2 years a global assessment of stem cell engineering (SCE) was conducted with the sponsorship of the National Science Foundation, the National Cancer Institute at the National Institutes of Health, and the National Institute of Standards and Technology. The purpose was to gather information on the worldwide status and trends in SCE, that is, the involvement of engineers and engineering approaches in the stem cell field, both in basic research and in the translation of research into clinical applications and commercial products. The study was facilitated and managed by the World Technology Evaluation Center. The process involved site visits in both Asia and Europe, and it also included several different workshops. From this assessment, the panel concluded that there needs to be an increased role for engineers and the engineering approach. This will provide a foundation for the generation of new markets and future economic growth. To do this will require an increased investment in engineering, applied research, and commercialization as it relates to stem cell research and technology. It also will require programs that support interdisciplinary teams, new innovative mechanisms for academic–industry partnerships, and unique translational models. In addition, the global community would benefit from forming strategic partnerships between countries that can leverage existing and emerging strengths in different institutions. To implement such partnerships will require multinational grant programs with appropriate review mechanisms. PMID:24428577
A global assessment of stem cell engineering.
Loring, Jeanne F; McDevitt, Todd C; Palecek, Sean P; Schaffer, David V; Zandstra, Peter W; Nerem, Robert M
2014-10-01
Over the last 2 years a global assessment of stem cell engineering (SCE) was conducted with the sponsorship of the National Science Foundation, the National Cancer Institute at the National Institutes of Health, and the National Institute of Standards and Technology. The purpose was to gather information on the worldwide status and trends in SCE, that is, the involvement of engineers and engineering approaches in the stem cell field, both in basic research and in the translation of research into clinical applications and commercial products. The study was facilitated and managed by the World Technology Evaluation Center. The process involved site visits in both Asia and Europe, and it also included several different workshops. From this assessment, the panel concluded that there needs to be an increased role for engineers and the engineering approach. This will provide a foundation for the generation of new markets and future economic growth. To do this will require an increased investment in engineering, applied research, and commercialization as it relates to stem cell research and technology. It also will require programs that support interdisciplinary teams, new innovative mechanisms for academic-industry partnerships, and unique translational models. In addition, the global community would benefit from forming strategic partnerships between countries that can leverage existing and emerging strengths in different institutions. To implement such partnerships will require multinational grant programs with appropriate review mechanisms.
Man-vehicle systems research facility advanced aircraft flight simulator throttle mechanism
NASA Technical Reports Server (NTRS)
Kurasaki, S. S.; Vallotton, W. C.
1985-01-01
The Advanced Aircraft Flight Simulator is equipped with a motorized mechanism that simulates a two engine throttle control system that can be operated via a computer driven performance management system or manually by the pilots. The throttle control system incorporates features to simulate normal engine operations and thrust reverse and vary the force feel to meet a variety of research needs. While additional testing to integrate the work required is principally now in software design, since the mechanical aspects function correctly. The mechanism is an important part of the flight control system and provides the capability to conduct human factors research of flight crews with advanced aircraft systems under various flight conditions such as go arounds, coupled instrument flight rule approaches, normal and ground operations and emergencies that would or would not normally be experienced in actual flight.
Lubricant Formulations to Enhance Engine Efficiency in Modern Internal Combustion Engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Wai; Wong, Victor; Plumley, Michael
2017-04-19
The research program presented aimed to investigate, develop, and demonstrate low-friction, environmentally-friendly and commercially-feasible lubricant formulations that would significantly improve the mechanical efficiency of modern engines without incurring increased wear, emissions or deterioration of the emission-aftertreatment system.
Preliminary design of propulsion system for V/STOL research and technology aircraft
NASA Technical Reports Server (NTRS)
1977-01-01
The V/STOL Research and Technology Aircraft (RTA)propulsion system design effort is limited to components of the lift/cruise engines, turboshaft engine modifications, lift fan assembly, and propulsion system performance generation. The uninstalled total net thrust with all engines and fans operating at intermediate power was 37,114 pounds. Uninstalled system total net thrust was 27,102 pounds when one lift/cruise is inoperative. Components have lives above the 500 hours of the RTA duty cycle. The L/C engine used in a fixed nacelle has the cross shaft forward of the reduction gear whereas the cross shaft is aft of the reduction gear in a tilt nacelle L/C engine. The lift/cruise gearbox contains components and technologies from other DDA engines. The rotor has a 62-inch diameter and contains 22 composite blades that have a hub/tip ratio of 0.454. The blade pitch change mechanism contains hydraulic and mechanical redundancy. The lift fan assembly is completely self-contained including oil cooling in 10 exit vanes.
Disease resistance: Molecular mechanisms and biotechnological applications
USDA-ARS?s Scientific Manuscript database
This special issue “Disease resistance: molecular mechanisms and biotechnological applications” contains 11 review articles and four original research papers. Research in the area of engineering for disease resistance continues to progress although only 10% of the transgenic plants registered for ...
ERIC Educational Resources Information Center
Adamu, Gishua Garba; Dawha, Josphine Musa; Kamar, Tiamiyu Salihu
2015-01-01
Mechanical Engineering Trade Skills Assessment Instrument (METSAI) is aimed at determining the extent to which students have acquired practical skills before graduation that will enable them get employment for sustainable job security in Yobe state. The study employed instrumentation research design. The populations of the study were 23 mechanical…
Biomedical engineering - A means to add new dimension to medicine and research
NASA Technical Reports Server (NTRS)
Doerr, D. F.
1992-01-01
Biomedical engineering is an evolving science that seeks to insert technically oriented and trained personnel to assist medical professionals in solving technological problems in the pursuit of innovations in the delivery of health care. Consequently, engineering solutions are brought to bear on problems that previously were outside the training of physicians and beyond the understanding or appreciation of the conventionally educated electrical or mechanical engineers. This physician/scientist/engineer team has a capability to extend medicine and research far beyond the capability of a single entity operating alone. How biomedical engineering has added a new dimension to medical science at the Kennedy Space Center is described.
Recent Cooperative Research Activities of HDD and Flexible Media Transport Technologies in Japan
NASA Astrophysics Data System (ADS)
Ono, Kyosuke
This paper presents the recent status of industry-university cooperative research activities in Japan on the mechatronics of information storage and input/output equipment. There are three research committees for promoting information exchange on technical problems and research topics of head-disk interface in hard disk drives (HDD), flexible media transport and image printing processes which are supported by the Japan Society of Mechanical Engineering (JSME), the Japanese Society of Tribologists (JAST) and the Japan Society of Precision Engineering (JSPE). For hard disk drive technology, the Storage Research Consortium (SRC) is supporting more than 40 research groups in various different universities to perform basic research for future HDD technology. The past and present statuses of these activities are introduced, particularly focusing on HDD and flexible media transport mechanisms.
A summary of NASA/Air Force full scale engine research programs using the F100 engine
NASA Technical Reports Server (NTRS)
Deskin, W. J.; Hurrell, H. G.
1979-01-01
A full scale engine research (FSER) program conducted with the F100 engine is presented. The program mechanism is described and the F100 test vehicles utilized are illustrated. Technology items were addressed in the areas of swirl augmentation, flutter phenomenon, advanced electronic control logic theory, strain gage technology and distortion sensitivity. The associated test programs are described. The FSER approach utilizes existing state of the art engine hardware to evaluate advanced technology concepts and problem areas. Aerodynamic phenomenon previously not considered by design systems were identified and incorporated into industry design tools.
CSM research: Methods and application studies
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.
1989-01-01
Computational mechanics is that discipline of applied science and engineering devoted to the study of physical phenomena by means of computational methods based on mathematical modeling and simulation, utilizing digital computers. The discipline combines theoretical and applied mechanics, approximation theory, numerical analysis, and computer science. Computational mechanics has had a major impact on engineering analysis and design. When applied to structural mechanics, the discipline is referred to herein as computational structural mechanics. Complex structures being considered by NASA for the 1990's include composite primary aircraft structures and the space station. These structures will be much more difficult to analyze than today's structures and necessitate a major upgrade in computerized structural analysis technology. NASA has initiated a research activity in structural analysis called Computational Structural Mechanics (CSM). The broad objective of the CSM activity is to develop advanced structural analysis technology that will exploit modern and emerging computers, such as those with vector and/or parallel processing capabilities. Here, the current research directions for the Methods and Application Studies Team of the Langley CSM activity are described.
[The application of genetic engineering to the petroleum biodesulfurization].
Tong, M Y; Fang, X C; Ma, T; Zhang, Q
2001-11-01
The developed course and reaction mechanisms of petroleum biodesulfurization were introduced. The recent development of genetic engineering technology, which used in desulfuration strain's construction, reconstruction and other fields, was summarized emphatically. Its current research situation internal and overseas and the developing prospect were simply analyzed, and our research designs were submitted.
NASA Astrophysics Data System (ADS)
Chieng Chen, Vincent Lee
2015-04-01
A very warm welcome to all participants of the 9th Curtin University Technology, Science and Engineering (CUTSE) Conference 2014. This annual conference dates back to 2006 when the first Curtin University of Technology Science and Engineering (CUTSE) Conference was held in Curtin University, Miri Sarawak. CUTSE Conference was initially intended for Curtin's undergraduates such that they are able to experience the presentation of their work in a conference environment. As time passes and following the urge of knowledge dissemination, CUTSE Conference is hence open to public. This year the Department of Mechanical Engineering has been given the honour to organize the 9th CUTSE Conference. It has been a pleasure to watch CUTSE grow from strength to strength over the years. This year, our theme is "Discovering, Innovating and Engineering". We hope that it is in this spirit that CUTSE participants may align their respective work, such that we all aim for a greater and better implementation of "Discovering, Innovating and Engineering". The 9th CUTSE Conference 2014 is an excellent avenue for researchers, engineers, scientists, academicians, professionals from industry and students to share their research findings and initiate further collaborations in their respective fields. Parallel sessions in Mechanical, Electrical, Computer, Civil and Chemical engineering as well as the sciences will be hosted over a period of two days. Each year, the conference attracts participation from a number of countries in addition to Malaysia and Australia. In addition, student participants will get the opportunity to present their research projects and gain valuable feedback from industry professionals. This year the Conference will be organised by the Department of Mechanical Engineering of Curtin Sarawak's School of Engineering and Science in collaboration with The Institute of Engineers Malaysia, Miri Branch. On behalf of the organizing committee, I would like to thank this year's sponsors and supporters. We appreciate your support for CUTSE 2014 and in research and development, and your foresight in nurturing cutting edge research into industrial applications. CUTSE 2014 would not be possible without the dedicated work and efforts of the organizing committee, who worked tirelessly in all aspects of the conference organization. I thank you for your hard work and commitment towards making CUTSE 2014 a success. Selamat Datai (Welcome) and enjoy the conference. Dr Vincent Lee Chieng Chen Organizing Chairperson, 9th CUTSE Conference 2014
NREL, Mike worked as a graduate research assistant at University of Wisconsin-Madison Solar Energy Lab Engineering, University of Wisconsin at Madison B.S. Mechanical Engineering, University of Wisconsin at Madison
Aviation Careers Series: Aviation Maintenance and Avionics
DOT National Transportation Integrated Search
1996-01-30
The NHTSA Office of Crash Avoidance Research is responsible for identifying and developing effective vehicle systems for helping drivers avoid crashes. Our work utilizes the expertise of human factors engineers and psychologists, mechanical engineers...
Creative Engineering Based Education with Autonomous Robots Considering Job Search Support
NASA Astrophysics Data System (ADS)
Takezawa, Satoshi; Nagamatsu, Masao; Takashima, Akihiko; Nakamura, Kaeko; Ohtake, Hideo; Yoshida, Kanou
The Robotics Course in our Mechanical Systems Engineering Department offers “Robotics Exercise Lessons” as one of its Problem-Solution Based Specialized Subjects. This is intended to motivate students learning and to help them acquire fundamental items and skills on mechanical engineering and improve understanding of Robotics Basic Theory. Our current curriculum was established to accomplish this objective based on two pieces of research in 2005: an evaluation questionnaire on the education of our Mechanical Systems Engineering Department for graduates and a survey on the kind of human resources which companies are seeking and their expectations for our department. This paper reports the academic results and reflections of job search support in recent years as inherited and developed from the previous curriculum.
Was Babbage's Analytical Engine intended to be a mechanical model of the mind?
Green, Christopher D
2005-02-01
In the 1830s, Charles Babbage worked on a mechanical computer he dubbed the Analytical Engine. Although some people around Babbage described his invention as though it had authentic mental powers, Babbage refrained from making such claims. He does not, however, seem to have discouraged those he worked with from mooting the idea publicly. This article investigates whether (1) the Analytical Engine was the focus of a covert research program into the mechanism of mentality; (2) Babbage opposed the idea that the Analytical Engine had mental powers but allowed his colleagues to speculate as they saw fit; or (3) Babbage believed such claims to be fanciful, but cleverly used the publicity they engendered to draw public and political attention to his project.
MD-11 PCA - Research flight team photo
NASA Technical Reports Server (NTRS)
1995-01-01
On Aug. 30, 1995, a the McDonnell Douglas MD-11 transport aircraft landed equipped with a computer-assisted engine control system that has the potential to increase flight safety. In landings at NASA Dryden Flight Research Center, Edwards, California, on August 29 and 30, the aircraft demonstrated software used in the aircraft's flight control computer that essentially landed the MD-11 without a need for the pilot to manipulate the flight controls significantly. In partnership with McDonnell Douglas Aerospace (MDA), with Pratt & Whitney and Honeywell helping to design the software, NASA developed this propulsion-controlled aircraft (PCA) system following a series of incidents in which hydraulic failures resulted in the loss of flight controls. This new system enables a pilot to operate and land the aircraft safely when its normal, hydraulically-activated control surfaces are disabled. This August 29, 1995, photo shows the MD-11 team. Back row, left to right: Tim Dingen, MDA pilot; John Miller, MD-11 Chief pilot (MDA); Wayne Anselmo, MD-11 Flight Test Engineer (MDA); Gordon Fullerton, PCA Project pilot; Bill Burcham, PCA Chief Engineer; Rudey Duran, PCA Controls Engineer (MDA); John Feather, PCA Controls Engineer (MDA); Daryl Townsend, Crew Chief; Henry Hernandez, aircraft mechanic; Bob Baron, PCA Project Manager; Don Hermann, aircraft mechanic; Jerry Cousins, aircraft mechanic; Eric Petersen, PCA Manager (Honeywell); Trindel Maine, PCA Data Engineer; Jeff Kahler, PCA Software Engineer (Honeywell); Steve Goldthorpe, PCA Controls Engineer (MDA). Front row, left to right: Teresa Hass, Senior Project Management Analyst; Hollie Allingham (Aguilera), Senior Project Management Analyst; Taher Zeglum, PCA Data Engineer (MDA); Drew Pappas, PCA Project Manager (MDA); John Burken, PCA Control Engineer.
Fundamental heat transfer research for gas turbine engines
NASA Technical Reports Server (NTRS)
Metzger, D. E. (Editor)
1980-01-01
Thirty-seven experts from industry and the universities joined 24 NASA Lewis staff members in an exchange of ideas on trends in aeropropulsion research and technology, basic analyses, computational analyses, basic experiments, near-engine environment experiments, fundamental fluid mechanics and heat transfer, and hot technology as related to gas turbine engines. The workshop proceedings described include pre-workshop input from participants, presentations of current activity by the Lewis staff, reports of the four working groups, and a workshop summary.
NASA Propulsion Engineering Research Center, Volume 2
NASA Technical Reports Server (NTRS)
1994-01-01
This is the second volume in the 1994 annual report for the NASA Propulsion Engineering Research Center's Sixth Annual Symposium. This conference covered: (1) Combustors and Nozzles; (2) Turbomachinery Aero- and Hydro-dynamics; (3) On-board Propulsion systems; (4) Advanced Propulsion Applications; (5) Vaporization and Combustion; (6) Heat Transfer and Fluid Mechanics; and (7) Atomization and Sprays.
ERIC Educational Resources Information Center
Miller, Ronald L.; Streveler, Ruth A.; Yang, Dazhi; Roman, Aidsa I. Santiago
2011-01-01
This paper summarizes progress on two related lines of chemical engineering education research: 1) identifying persistent student misconceptions in thermal and transport science (fluid mechanics, heat transfer, and thermodynamics); and, 2) developing a method to help students repair these misconceptions. Progress on developing the Thermal and…
Downsizing assessment of automotive Stirling engines
NASA Technical Reports Server (NTRS)
Knoll, R. H.; Tew, R. C., Jr.; Klann, J. L.
1983-01-01
A 67 kW (90 hp) Stirling engine design, sized for use in a 1984 1440 kg (3170 lb) automobile was the focal point for developing automotive Stirling engine technology. Since recent trends are towards lighter vehicles, an assessment was made of the applicability of the Stirling technology being developed for smaller, lower power engines. Using both the Philips scaling laws and a Lewis Research Center (Lewis) Stirling engine performance code, dimensional and performance characteristics were determined for a 26 kW (35 hp) and a 37 kW (50 hp) engine for use in a nominal 907 kg (2000 lb) vehicle. Key engine elements were sized and stressed and mechanical layouts were made to ensure mechanical fit and integrity of the engines. Fuel economy estimates indicated that the Stirling engine would maintain a 30 to 45 percent fuel economy advantage comparable spark ignition and diesel powered vehicles in the 1984 period.
Developing technology for surgery in the UK: a multidisciplinary meeting of engineers and surgeons.
Taylor, G W
2007-03-01
There is an increasing necessity for surgeons and engineers to work together in order to target future technological developments at clinical need and cost-effectiveness. This is a report of two linked meetings with these objectives, held at the Institute of Mechanical Engineers, London, UK. The two meetings were organized by the same faculty members and held on consecutive days. Delegates included surgeons, academic mechanical engineers, researchers and industrial representatives. The programme was made up of varied presentations by surgeons and engineers as well as open discussion of the topics covered. Delegates were updated on the current state of surgical robotics in the UK in four surgical specialties; urology, neurosurgery, orthopaedics and ENT. This included clinical and experimental evidence, together with discussion of future advances. Minimally invasive surgery, real-time imaging and the development of more compact and cost effective surgical robots were identified as key areas for future research. Copyright 2006 John Wiley & Sons, Ltd.
[Activities of Institute for Computer Applications in Science and Engineering (ICASE)
NASA Technical Reports Server (NTRS)
1999-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics. fluid mechanics, and computer science during the period April 1, 1999 through September 30. 1999.
Langley Research Center Standard for the Evaluation of Socket Welds
NASA Technical Reports Server (NTRS)
Berry, R. F., Jr.
1985-01-01
A specification utilized for the nondestructive evaluation of socket type pipe joints at Langley Research Center (LaRC) is discussed. The scope of hardware shall include, but is not limited to, all common pipe fittings: tees, elbows, couplings, caps, and so forth, socket type flanges, unions, and valves. In addition, the exterior weld of slip on flanges shall be inspected using this specification. At the discretion of the design engineer, standard practice engineer, Fracture Mechanics Engineering Section, Pressure Systems Committee, or other authority, four nondestructive evaluation techniques may be utilized exclusively, or in combination, to inspect socket type welds. These techniques are visual, radiographic, magnetic particle, and dye penetrant. Under special circumstances, other techniques (such as eddy current or ultrasonics) may be required and their application shall be guided by the appropriate sections of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (B&PVC).
NASA Technical Reports Server (NTRS)
1992-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, fluid mechanics including fluid dynamics, acoustics, and combustion, aerodynamics, and computer science during the period 1 Apr. 1992 - 30 Sep. 1992 is summarized.
-3167 Chuck joined NREL in 2010. His research is focused on heat transfer modeling, heating, ventilating background is in experimental heat transfer and fluid mechanics. Education Ph.D. Mechanical Engineering
Education Program for Ph.D. Course to Cultivate Literacy and Competency
NASA Astrophysics Data System (ADS)
Yokono, Yasuyuki; Mitsuishi, Mamoru
The program aims to cultivate internationally competitive young researchers equipped with Fundamental attainment (mathematics, physics, chemistry and biology, and fundamental social sciences) , Specialized knowledge (mechanical dynamics, mechanics of materials, hydrodynamics, thermodynamics, design engineering, manufacturing engineering and material engineering, and bird‧s-eye view knowledge on technology, society and the environment) , Literacy (Language, information literacy, technological literacy and knowledge of the law) and Competency (Creativity, problem identification and solution, planning and execution, self-management, teamwork, leadership, sense of responsibility and sense of duty) to become future leaders in industry and academia.
ROBOTICS IN HAZARDOUS ENVIRONMENTS - REAL DEPLOYMENTS BY THE SAVANNAH RIVER NATIONAL LABORATORY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kriikku, E.; Tibrea, S.; Nance, T.
The Research & Development Engineering (R&DE) section in the Savannah River National Laboratory (SRNL) engineers, integrates, tests, and supports deployment of custom robotics, systems, and tools for use in radioactive, hazardous, or inaccessible environments. Mechanical and electrical engineers, computer control professionals, specialists, machinists, welders, electricians, and mechanics adapt and integrate commercially available technology with in-house designs, to meet the needs of Savannah River Site (SRS), Department of Energy (DOE), and other governmental agency customers. This paper discusses five R&DE robotic and remote system projects.
1986 Bibliography of Information on Engineering Technology Education.
ERIC Educational Resources Information Center
Gourley, Frank A., Jr.
1987-01-01
Lists articles, papers, and reports on engineering technology education that were published in 1986. Categorizes the citations under headings of administration, computers, curriculum, electronics, industry/government/employers, instructional technology, laboratories, liberal studies, manufacturing, mechanical, minorities, research, robotics, and…
ERIC Educational Resources Information Center
Ndem, Joseph; Ogba, Ernest; Egbe, Benjamin
2015-01-01
This study was designed to assess the agricultural engineering knowledge and competencies acquired by the senior secondary students for farm mechanization in technical colleges in Ebonyi state of Nigeria. A survey research design was adopted for the study. Three research questions and two null hypotheses guided the study. The population of the…
NAKAHARA JUNZO Who Was A Leading Japanese Practical Engineer of The Meiji Era Born in Kumamoto
NASA Astrophysics Data System (ADS)
Iwai, Zenta
Nakahara Junzo is one of the leading engineers in the Meiji era who contributed the introduction and the construction of western style higher engineering education system after the Meiji restoration. He was born at Yamaga, Kumamoto Prefecture, in 1856. He learned at Kumamoto Yo-Gakko from 1871 to 1874. Then he entered Kohbu Dai-Gakko, one of the forerunners of the engineering departments of the University of Tokyo, in 1876 and graduated from this school in 1882. He served as the first principal of the Kumamoto Koto Kogyou Gakko, the first dean of the Faculty of Engineering, Kyushu Imperial University and the 7th president of the Japan Society of Mechanical Engineers, respectively. In this report, it is summarized and evaluated about his contributions concerning the progress of the Japanese higher engineering education and practical researches done by him in the field of mechanical engineering.
Engineering Research and Development and Technology thrust area report FY92
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langland, R.T.; Minichino, C.
1993-03-01
The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) to conduct high-quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, theymore » are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year 1992. Its intent is to provide timely summaries of objectives, theories, methods, and results. The nine thrust areas for this fiscal year are: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Emerging Technologies; Fabrication Technology; Materials Science and Engineering; Microwave and Pulsed Power; Nondestructive Evaluation; and Remote Sensing and Imaging, and Signal Engineering.« less
Rationally designed synthetic protein hydrogels with predictable mechanical properties.
Wu, Junhua; Li, Pengfei; Dong, Chenling; Jiang, Heting; Bin Xue; Gao, Xiang; Qin, Meng; Wang, Wei; Bin Chen; Cao, Yi
2018-02-12
Designing synthetic protein hydrogels with tailored mechanical properties similar to naturally occurring tissues is an eternal pursuit in tissue engineering and stem cell and cancer research. However, it remains challenging to correlate the mechanical properties of protein hydrogels with the nanomechanics of individual building blocks. Here we use single-molecule force spectroscopy, protein engineering and theoretical modeling to prove that the mechanical properties of protein hydrogels are predictable based on the mechanical hierarchy of the cross-linkers and the load-bearing modules at the molecular level. These findings provide a framework for rationally designing protein hydrogels with independently tunable elasticity, extensibility, toughness and self-healing. Using this principle, we demonstrate the engineering of self-healable muscle-mimicking hydrogels that can significantly dissipate energy through protein unfolding. We expect that this principle can be generalized for the construction of protein hydrogels with customized mechanical properties for biomedical applications.
ERIC Educational Resources Information Center
Tahir, Mohd Faizal Mat; Khamis, Nor Kamaliana; Wahid, Zaliha; Ihsan, Ahmad Kamal Ariffin Mohd; Ghani, Jaharah Ab; Sabri, Mohd Anas Mohd; Sajuri, Zainuddin; Abdullah, Shahrum; Sulong, Abu Bakar
2013-01-01
Universiti Kebangsaan Malaysia (UKM) is a research university that continuously undergoes an audit and accreditation process for the management of its courses. The Faculty of Engineering and the Built Environment (FKAB) is subjected to such processes, one of them is the auditing conducted by the Engineering Accreditation Council (EAC), which gives…
The Stirling engine as a low cost tool to educate mechanical engineers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gros, J.; Munoz, M.; Moreno, F.
1995-12-31
The University of Zaragoza through CIRCE, the New Enterprise foundation, an Opel foundation and the local Government of Aragon have been developed a program to introduce the Stirling Engine as a low cost tool to educate students in mechanical engineering. The promotion of a prize like GNAT Power organized by the magazine Model Engineer in London, has improved the practical education of students in the field of mechanical devices and thermal engines. Two editions of the contest, 1993 and 1994, awarded the greatest power Stirling engine made by only using a little candle of paraffin as a heat source. Fourmore » engines were presented in the first edition, with an average power of about 100 mW, and seven engines in the second one, achieving a power of about 230 mW. Presentations in Technical Schools and the University have been carried out. Also low cost tools have been made for measuring an electronic device to draw the real internal pressure volume diagram using a PC. A very didactic software to design classic kinematic alpha, beta and gamma engines plus Ringbom beta and gamma engines has been created. A book is going to be published (in Spanish) explaining the design of small Stirling engines as a way to start with low cost research in thermal engines, a very difficult target with IC engines.« less
Research and technology 1995 annual report
NASA Technical Reports Server (NTRS)
1995-01-01
As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1995 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as technology transfer activities. Major areas of research include environmental engineering, automation, robotics, advanced software, materials science, life sciences, mechanical engineering, nondestructive evaluation, and industrial engineering.
Advanced Combustion Numerics and Modeling - FY18 First Quarter Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitesides, R. A.; Killingsworth, N. J.; McNenly, M. J.
This project is focused on early stage research and development of numerical methods and models to improve advanced engine combustion concepts and systems. The current focus is on development of new mathematics and algorithms to reduce the time to solution for advanced combustion engine design using detailed fuel chemistry. The research is prioritized towards the most time-consuming workflow bottlenecks (computer and human) and accuracy gaps that slow ACS program members. Zero-RK, the fast and accurate chemical kinetics solver software developed in this project, is central to the research efforts and continues to be developed to address the current and emergingmore » needs of the engine designers, engine modelers and fuel mechanism developers.« less
NASA Astrophysics Data System (ADS)
Zhu, Zheng; Yang, Fan; Zhang, Yang; Geng, Tao; Li, Yuxiang
2017-08-01
This paper introduced the idea of teaching reformation of photoelectric information science and engineering specialty experiments. The teaching reformation of specialty experiments was analyzed from many aspects, such as construction of specialized laboratory, experimental methods, experiment content, experiment assessing mechanism, and so on. The teaching of specialty experiments was composed of four levels experiments: basic experiments, comprehensive and designing experiments, innovative research experiments and engineering experiments which are aiming at enterprise production. Scientific research achievements and advanced technology on photoelectric technology were brought into the teaching of specialty experiments, which will develop the students' scientific research ability and make them to be the talent suitable for photoelectric industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, A.; Hsiung, S.M.; Chowdhury, A.H.
Long-term stability of emplacement drifts and potential near-field fluid flow resulting from coupled effects are among the concerns for safe disposal of high-level nuclear waste (HLW). A number of factors can induce drift instability or change the near-field flow patterns. Repetitive seismic loads from earthquakes and thermal loads generated by the decay of emplaced waste are two significant factors. One of two key technical uncertainties (KTU) that can potentially pose a high risk of noncompliance with the performance objectives of 10 CFR Part 60 is the prediction of thermal-mechanical (including repetitive seismic load) effects on stability of emplacement drifts andmore » the engineered barrier system. The second KTU of concern is the prediction of thermal-mechanical-hydrological (including repetitive seismic load) effects on the host rock surrounding the engineered barrier system. The Rock Mechanics research project being conducted at the Center for Nuclear Waste Regulatory Analyses (CNWRA) is intended to address certain specific technical issues associated with these two KTUs. This research project has two major components: (i) seismic response of rock joints and a jointed rock mass and (ii) coupled thermal-mechanical-hydrological (TMH) response of a jointed rock mass surrounding the engineered barrier system (EBS). This final report summarizes the research activities concerned with the repetitive seismic load aspect of both these KTUs.« less
ERIC Educational Resources Information Center
Fox, A. P.; Kuhl, D. H.
A project was conducted to derive a comprehensive list of the performances of a competence mechanic to satisfy the planning needs of automotive engineering lecturers, curriculum committees, researchers, course designers, and staff developers. A list of 127 tasks together with information about their relative importance and the frequency with which…
A summary of NASA/Air Force Full Scale Engine Research programs using the F100 engine
NASA Technical Reports Server (NTRS)
Deskin, W. J.; Hurrell, H. G.
1979-01-01
This paper summarizes a joint NASA/Air Force Full Scale Engine Research (FSER) program conducted with the F100 engine during the period 1974 through 1979. The program mechanism is described and the F100 test vehicles utilized are illustrated. Technology items which have been addressed in the areas of swirl augmentation, flutter phenomenon, advanced electronic control logic theory, strain gage technology, and distortion sensitivity are identified and the associated test programs conducted at the NASA-Lewis Research Center are described. Results presented show that the FSER approach, which utilizes existing state-of-the-art engine hardware to evaluate advanced technology concepts and problem areas, can contribute a significant data base for future system applications. Aerodynamic phenomenon previously not considered by current design systems have been identified and incorporated into current industry design tools.
NASA Astrophysics Data System (ADS)
The American Society for Engineering Education (ASEE) is seeking applicants for 40 fellowships that will be awarded by the Office of Naval Research (ONR) in 1984. This program is designed to increase the number of U.S. citizens doing graduate work in such fields as ocean engineering, applied physics, electrical engineering, computer science, naval architecture, materials science) and aerospace a n d mechanical engineering. The fellowships are awarded on the recommendation of a panel of scientists and engineers convened by the ASEE. The deadline for applications is February 15, 1984.The program is open to graduating seniors who already have or will shortly have baccalaureates in disciplines vital to the research aims of the Navy and critical to national defense. As a reflection of the quality of the program, 1983 fellows had an average cummulative grade point average of 3.88; nine had a perfect 4.0.
2015-01-01
Ground control research in underground coal mines has been ongoing for over 50 years. One of the most problematic issues in underground coal mines is roof failures associated with weak shale. This paper will present a historical narrative on the research the National Institute for Occupational Safety and Health has conducted in relation to rock mechanics and shale. This paper begins by first discussing how shale is classified in relation to coal mining. Characterizing and planning for weak roof sequences is an important step in developing an engineering solution to prevent roof failures. Next, the failure mechanics associated with the weak characteristics of shale will be discussed. Understanding these failure mechanics also aids in applying the correct engineering solutions. The various solutions that have been implemented in the underground coal mining industry to control the different modes of failure will be summarized. Finally, a discussion on current and future research relating to rock mechanics and shale is presented. The overall goal of the paper is to share the collective ground control experience of controlling roof structures dominated by shale rock in underground coal mining. PMID:26549926
Murphy, M M
2016-02-01
Ground control research in underground coal mines has been ongoing for over 50 years. One of the most problematic issues in underground coal mines is roof failures associated with weak shale. This paper will present a historical narrative on the research the National Institute for Occupational Safety and Health has conducted in relation to rock mechanics and shale. This paper begins by first discussing how shale is classified in relation to coal mining. Characterizing and planning for weak roof sequences is an important step in developing an engineering solution to prevent roof failures. Next, the failure mechanics associated with the weak characteristics of shale will be discussed. Understanding these failure mechanics also aids in applying the correct engineering solutions. The various solutions that have been implemented in the underground coal mining industry to control the different modes of failure will be summarized. Finally, a discussion on current and future research relating to rock mechanics and shale is presented. The overall goal of the paper is to share the collective ground control experience of controlling roof structures dominated by shale rock in underground coal mining.
NASA Astrophysics Data System (ADS)
Murphy, M. M.
2016-02-01
Ground control research in underground coal mines has been ongoing for over 50 years. One of the most problematic issues in underground coal mines is roof failures associated with weak shale. This paper will present a historical narrative on the research the National Institute for Occupational Safety and Health has conducted in relation to rock mechanics and shale. This paper begins by first discussing how shale is classified in relation to coal mining. Characterizing and planning for weak roof sequences is an important step in developing an engineering solution to prevent roof failures. Next, the failure mechanics associated with the weak characteristics of shale will be discussed. Understanding these failure mechanics also aids in applying the correct engineering solutions. The various solutions that have been implemented in the underground coal mining industry to control the different modes of failure will be summarized. Finally, a discussion on current and future research relating to rock mechanics and shale is presented. The overall goal of the paper is to share the collective ground control experience of controlling roof structures dominated by shale rock in underground coal mining.
Characteristics and engineering properties of the soft soil layer in highway soil subgrades.
DOT National Transportation Integrated Search
2006-06-01
The objective of this research was to examine the conditions and characteristics of soil subgrades that had been stabilized using mechanical compaction. Goals of the study are to identify and examine the engineering properties and behavior of the ...
Testing of Composite Fan Vanes With Erosion-Resistant Coating Accelerated
NASA Technical Reports Server (NTRS)
Bowman, Cheryl L.; Sutter, James K.; Otten, Kim D.; Samorezov, Sergey; Perusek, Gail P.
2004-01-01
The high-cycle fatigue of composite stator vanes provided an accelerated life-state prior to insertion in a test stand engine. The accelerated testing was performed in the Structural Dynamics Laboratory at the NASA Glenn Research Center under the guidance of Structural Mechanics and Dynamics Branch personnel. Previous research on fixturing and test procedures developed at Glenn determined that engine vibratory conditions could be simulated for polymer matrix composite vanes by using the excitation of a combined slip table and electrodynamic shaker in Glenn's Structural Dynamics Laboratory. Bench-top testing gave researchers the confidence to test the coated vanes in a full-scale engine test.
Unstart phenomena induced by flow choking in scramjet inlet-isolators
NASA Astrophysics Data System (ADS)
Im, Seong-kyun; Do, Hyungrok
2018-02-01
A review of recent research outcomes in downstream flow choking-driven unstart is presented. Unstart is a flow phenomenon at the inlet that severely reduces the air mass flow rate through the engine, causing a loss of thrust and considerable transient mechanical loading. Therefore, unstart in a scramjet engine crucially affects the design and the operation range of hypersonic vehicles. Downstream flow choking is known to be one of the major mechanisms inducing inlet unstart, as confirmed by recent scramjet-powered flight tests. The current paper examines recent research progress in identifying flow choking mechanisms that trigger unstart. Three different flow choking mechanisms are discussed: flow blockage, mass addition, and heat release from combustion reactions. Current research outcomes on the characteristic of unstarting flows, such as transient and quasi-steady motions, are reviewed for each flow choking mechanism. The characteristics of unstarted flows are described including Buzzing phenomena and oscillatory motions of unstarted shockwaves. Then, the state-of-the-art methods to predict, detect, and control unstart are presented. The review suggests that further investigations with high-enthalpy ground facilities will aid understanding of heat release-driven unstart.
NASA Astrophysics Data System (ADS)
Kamaludin, M.; Munawar, W.; Mahdan, D.; Simanjuntak, M. V.; Wendi, H. F.
2018-02-01
The learning system is not only studied on campus but also practicing in the world of work. Industry Practical aims to enable students to develop their skills in accordance with the real world of work. To know the success of the implementation of industry practical program then held evaluation. The evaluation of the program in this study used the CIPP evaluation approach (Context, Input, Process, Product). The purpose of this research is to know the extent of achievement and success of industry practical program at vocational school in Bandung with descriptive research method using mix method approach. The sample in this research is students majoring in mechanical engineering in the city of Bandung who have done industry practical.
NASA Technical Reports Server (NTRS)
1994-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1993 through March 31, 1994. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.
Development of Mechanics in Support of Rocket Technology in Ukraine
NASA Astrophysics Data System (ADS)
Prisnyakov, Vladimir
2003-06-01
The paper analyzes the advances of mechanics made in Ukraine in resolving various problems of space and rocket technology such as dynamics and strength of rockets and rocket engines, rockets of different purpose, electric rocket engines, and nonstationary processes in various systems of rockets accompanied by phase transitions of working media. Achievements in research on the effect of vibrations and gravitational fields on the behavior of space-rocket systems are also addressed. Results obtained in investigating the reliability and structural strength durability conditions for nuclear installations, solid- and liquid-propellant engines, and heat pipes are presented
ERIC Educational Resources Information Center
BENDER, RALPH E.; HALTERMAN, JERRY J.
THIS STUDY WAS DESIGNED TO DEVELOP CURRICULUMS NEEDED IN TRAINING PROGRAMS FOR AGRICULTURAL ENGINEERING TECHNICIANS IN OHIO. A QUESTIONNAIRE TO INVENTORY THE LABOR FORCE WAS ADMINISTERED TO INDIVIDUALS, FIRMS, BUSINESSES, AND AGENCIES EMPLOYING PERSONS IN AREAS REQUIRING AGRICULTURAL ENGINEERING AND FARM MECHANICS. ANOTHER TO COLLECT INFORMATION…
ERIC Educational Resources Information Center
Asiabanpour, Bahram
2010-01-01
In this paper a novel outreach approach to high school students to familiarize them with engineering functions and methods is explained. In this approach students participated in a seven days research camp and learned many engineering skills and tools such as CAD solid modeling, finite element analysis, rapid prototyping, mechanical tests, team…
NASA Technical Reports Server (NTRS)
Fertis, D. G.
1983-01-01
On June 1, 1980, the University of Akron and the NASA Lewis Research Center (LERC) established a Graduate Cooperative Fellowship Program in the specialized areas of Engine Structural Analysis and Dynamics, Computational Mechanics, Mechanics of Composite Materials, and Structural Optimization, in order to promote and develop requisite technologies in these areas of engine technology. The objectives of this program are consistent with those of the NASA Engine Structure Program in which graduate students of the University of Akron participate by conducting research at Lewis. This report is the second on this grant and summarizes the second and third year research effort, which includes the participation of five graduate students where each student selects one of the above areas as his special field of interest. Each student is required to spend 30 percent of his educational training time at the NASA Lewis Research Center and the balance at the University of Akron. His course work is judiciously selected and tailored to prepare him for research work in his field of interest. A research topic is selected for each student while in residence at the NASA Lewis Research Center, which is also approved by the faculty of the University of Akron as his thesis topic for a Master's and/or a Ph.D. degree.
Research progress of microbial corrosion of reinforced concrete structure
NASA Astrophysics Data System (ADS)
Li, Shengli; Li, Dawang; Jiang, Nan; Wang, Dongwei
2011-04-01
Microbial corrosion of reinforce concrete structure is a new branch of learning. This branch deals with civil engineering , environment engineering, biology, chemistry, materials science and so on and is a interdisciplinary area. Research progress of the causes, research methods and contents of microbial corrosion of reinforced concrete structure is described. The research in the field is just beginning and concerted effort is needed to go further into the mechanism of reinforce concrete structure and assess the security and natural life of reinforce concrete structure under the special condition and put forward the protective methods.
CMC Research at NASA Glenn in 2017: Recent Progress and Plans
NASA Technical Reports Server (NTRS)
Grady, Joseph E.
2017-01-01
As part of NASA's Aeronautics research mission, Glenn Research Center has developed advanced constituents for 2700F CMC turbine engine applications. In this presentation, fiber and matrix development and characterization for SiCSiC composites will be reviewed and resulting improvements in CMC durability and mechanical properties will be summarized. Progress toward the development and validation of models predicting the effects of the engine environment on durability of CMC and Environmental Barrier Coatings will be summarized and plans for research and collaborations in 2017 will be summarized.
PREFACE: International Conference on Applied Sciences 2015 (ICAS2015)
NASA Astrophysics Data System (ADS)
Lemle, Ludovic Dan; Jiang, Yiwen
2016-02-01
The International Conference on Applied Sciences ICAS2015 took place in Wuhan, China on June 3-5, 2015 at the Military Economics Academy of Wuhan. The conference is regularly organized, alternatively in Romania and in P.R. China, by Politehnica University of Timişoara, Romania, and Military Economics Academy of Wuhan, P.R. China, with the joint aims to serve as a platform for exchange of information between various areas of applied sciences, and to promote the communication between the scientists of different nations, countries and continents. The topics of the conference cover a comprehensive spectrum of issues from: >Economical Sciences and Defense: Management Sciences, Business Management, Financial Management, Logistics, Human Resources, Crisis Management, Risk Management, Quality Control, Analysis and Prediction, Government Expenditure, Computational Methods in Economics, Military Sciences, National Security, and others... >Fundamental Sciences and Engineering: Interdisciplinary applications of physics, Numerical approximation and analysis, Computational Methods in Engineering, Metallic Materials, Composite Materials, Metal Alloys, Metallurgy, Heat Transfer, Mechanical Engineering, Mechatronics, Reliability, Electrical Engineering, Circuits and Systems, Signal Processing, Software Engineering, Data Bases, Modeling and Simulation, and others... The conference gathered qualified researchers whose expertise can be used to develop new engineering knowledge that has applicability potential in Engineering, Economics, Defense, etc. The number of participants was 120 from 11 countries (China, Romania, Taiwan, Korea, Denmark, France, Italy, Spain, USA, Jamaica, and Bosnia and Herzegovina). During the three days of the conference four invited and 67 oral talks were delivered. Based on the work presented at the conference, 38 selected papers have been included in this volume of IOP Conference Series: Materials Science and Engineering. These papers present new research in the various fields of Materials Engineering, Mechanical Engineering, Computers Engineering, and Electrical Engineering. It's our great pleasure to present this volume of IOP Conference Series: Materials Science and Engineering to the scientific community to promote further research in these areas. We sincerely hope that the papers published in this volume will contribute to the advancement of knowledge in the respective fields.
Thermo-mechanical concepts applied to modeling liquid propellant rocket engine stability
NASA Astrophysics Data System (ADS)
Kassoy, David R.; Norris, Adam
2016-11-01
The response of a gas to transient, spatially distributed energy addition can be quantified mathematically using thermo-mechanical concepts available in the literature. The modeling demonstrates that the ratio of the energy addition time scale to the acoustic time scale of the affected volume, and the quantity of energy added to that volume during the former determine the whether the responses to heating can be described as occurring at nearly constant volume, fully compressible or nearly constant pressure. Each of these categories is characterized by significantly different mechanical responses. Application to idealized configurations of liquid propellant rocket engines provides an opportunity to identify physical conditions compatible with gasdynamic disturbances that are sources of engine instability. Air Force Office of Scientific Research.
Proceedings of the Conference Arctic '85; Civil Engineering in the Artic offshore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, F.L.; Machemehl, J.L.
1985-01-01
Topics of the 1985 Conference included: Arctic construction, Arctic foundation, Arctic structures, and ocean effects. Arctic terminals and coastal offshore bases, protecting the Arctic environment, and probabilistic methods in Arctic offshore engineering were also discussed. Ice mechanics, marine pipelines in the Arctic, and the role of universities in training civil engineers for Arctic offshore development were highlighted. Sessions on remote sensing, surveying, and mapping were included, and offshore installations in the Bering Sea were discussed. Another topic of discussion was research in Civil Engineering for development of the Arctic offshore. The overall thrust of the conference was the application ofmore » Arctic offshore engineering principles and research in the field of oil and gas exploration and exploitation activity.« less
Generalized simulation technique for turbojet engine system analysis
NASA Technical Reports Server (NTRS)
Seldner, K.; Mihaloew, J. R.; Blaha, R. J.
1972-01-01
A nonlinear analog simulation of a turbojet engine was developed. The purpose of the study was to establish simulation techniques applicable to propulsion system dynamics and controls research. A schematic model was derived from a physical description of a J85-13 turbojet engine. Basic conservation equations were applied to each component along with their individual performance characteristics to derive a mathematical representation. The simulation was mechanized on an analog computer. The simulation was verified in both steady-state and dynamic modes by comparing analytical results with experimental data obtained from tests performed at the Lewis Research Center with a J85-13 engine. In addition, comparison was also made with performance data obtained from the engine manufacturer. The comparisons established the validity of the simulation technique.
Research Apprenticeships for Disadvantaged High Schoolers (RADHS)
1982-07-09
DISADVANTAGED hIGH SCHOOLER (RADHS) 61102-FCD AUTI4ORM$ 2313/D3N% Roy B. Cowin t PWOFiIMG OGANZATbON NAME(S) AND ADORE SS(1S) L PIRFOMMG OlIGANUZATMO CN ABET...that the Air Force Research Apprenticeships for Disadvantaged High Schoolers (RADHS) should augment its Uninitiates Introduction To Engineering (UNITE...mechanical engineering. Numerous projects deal with energy con - servation and alternative energy sources, protective clothing, and electrical safey
Summary of research in progress at ICASE
NASA Technical Reports Server (NTRS)
1993-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1992 through March 31, 1993.
Simulation of hybrid propulsion system using LSRG and single cylinder engine
NASA Astrophysics Data System (ADS)
Han, C.; Ohyama, K.; Wang, W. Q.
2017-11-01
Nowadays, more and more people are beginning to use hybrid vehicles (HVs). The drive system of HVs needs to produce the electric energy with the electric generator and gearbox powered by an engine. Therefore, the structure becomes complex and the cost is high. To solve this issue, this research proposes a new drive system design that combines the engine and a linear switched reluctance generator (LSRG). When the engine is operating, the LSRG can simultaneously assist the engine’s mechanical output or can generate power to charge the battery. In this research, three research steps are executed. In the first step, the LSRG is designed according to the size of normal engine. Then, finite element analysis is used to get the data of flux linkage and calculate the inductance and translator force. Finally, Simulink models of control system are constructed to verify the performance of LSRG.
Research in the aerospace physical sciences
NASA Technical Reports Server (NTRS)
Whitehurst, R. N.
1973-01-01
Research efforts are reported in various areas including dynamics of thin films, polymer chemistry, mechanical and chemical properties of materials, radar system engineering, stabilization of lasers, and radiation damage of organic crystals. Brief summaries of research accomplished and literature citations are included.
NASA Technical Reports Server (NTRS)
Hughes, Christopher E.
2001-01-01
A comprehensive aeroacoustic research program called the Source Diagnostic Test was recently concluded in NASA Glenn Research Center's 9- by 15-Foot Low Speed Wind Tunnel. The testing involved representatives from Glenn, NASA Langley Research Center, GE Aircraft Engines, and the Boeing Company. The technical objectives of this research were to identify the different source mechanisms of noise in a modern, high-bypass turbofan aircraft engine through scale-model testing and to make detailed acoustic and aerodynamic measurements to more fully understand the physics of how turbofan noise is generated.
NASA Technical Reports Server (NTRS)
1993-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics and computer science during the period April 1, 1993 through September 30, 1993. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustic and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.
Engine Validation of Noise and Emission Reduction Technology Phase I
NASA Technical Reports Server (NTRS)
Weir, Don (Editor)
2008-01-01
This final report has been prepared by Honeywell Aerospace, Phoenix, Arizona, a unit of Honeywell International, Inc., documenting work performed during the period December 2004 through August 2007 for the NASA Glenn Research Center, Cleveland, Ohio, under the Revolutionary Aero-Space Engine Research (RASER) Program, Contract No. NAS3-01136, Task Order 8, Engine Validation of Noise and Emission Reduction Technology Phase I. The NASA Task Manager was Dr. Joe Grady of the NASA Glenn Research Center. The NASA Contract Officer was Mr. Albert Spence of the NASA Glenn Research Center. This report is for a test program in which NASA funded engine validations of integrated technologies that reduce aircraft engine noise. These technologies address the reduction of engine fan and jet noise, and noise associated with propulsion/airframe integration. The results of these tests will be used by NASA to identify the engineering tradeoffs associated with the technologies that are needed to enable advanced engine systems to meet stringent goals for the reduction of noise. The objectives of this program are to (1) conduct system engineering and integration efforts to define the engine test-bed configuration; (2) develop selected noise reduction technologies to a technical maturity sufficient to enable engine testing and validation of those technologies in the FY06-07 time frame; (3) conduct engine tests designed to gain insight into the sources, mechanisms and characteristics of noise in the engines; and (4) establish baseline engine noise measurements for subsequent use in the evaluation of noise reduction.
Dr. John H. Hopps Jr. Defense Research Scholars Program
2014-12-16
Summer 2011) Post -Graduation Plans • Employed as a mechanical engineer at Allegion. • Applying to graduate programs in industrial design and mechanical...Summer 2010) • Multi-Layer Mirror Design for Ultra-Soft X-Rays, Ecole Polytechnique (Summer 2011) Post -Graduation Plans • Post Baccalaureate Research...the year off to work while others planned on strengthening their applications by broadening their research skills in post baccalaureate programs
Computer Plotting Data Points in the Engine Research Building
1956-09-21
A female computer plotting compressor data in the Engine Research Building at the NACA’s Lewis Flight Propulsion Laboratory. The Computing Section was introduced during World War II to relieve short-handed research engineers of some of the tedious data-taking work. The computers made the initial computations and plotted the data graphically. The researcher then analyzed the data and either summarized the findings in a report or made modifications or ran the test again. With the introduction of mechanical computer systems in the 1950s the female computers learned how to encode the punch cards. As the data processing capabilities increased, fewer female computers were needed. Many left on their own to start families, while others earned mathematical degrees and moved into advanced positions.
Langley Aerospace Research Summer Scholars. Part 2
NASA Technical Reports Server (NTRS)
Schwan, Rafaela (Compiler)
1995-01-01
The Langley Aerospace Research Summer Scholars (LARSS) Program was established by Dr. Samuel E. Massenberg in 1986. The program has increased from 20 participants in 1986 to 114 participants in 1995. The program is LaRC-unique and is administered by Hampton University. The program was established for the benefit of undergraduate juniors and seniors and first-year graduate students who are pursuing degrees in aeronautical engineering, mechanical engineering, electrical engineering, material science, computer science, atmospheric science, astrophysics, physics, and chemistry. Two primary elements of the LARSS Program are: (1) a research project to be completed by each participant under the supervision of a researcher who will assume the role of a mentor for the summer, and (2) technical lectures by prominent engineers and scientists. Additional elements of this program include tours of LARC wind tunnels, computational facilities, and laboratories. Library and computer facilities will be available for use by the participants.
Technical Reports: Langley Aerospace Research Summer Scholars. Part 1
NASA Technical Reports Server (NTRS)
Schwan, Rafaela (Compiler)
1995-01-01
The Langley Aerospace Research Summer Scholars (LARSS) Program was established by Dr. Samuel E. Massenberg in 1986. The program has increased from 20 participants in 1986 to 114 participants in 1995. The program is LaRC-unique and is administered by Hampton University. The program was established for the benefit of undergraduate juniors and seniors and first-year graduate students who are pursuing degrees in aeronautical engineering, mechanical engineering, electrical engineering, material science, computer science, atmospheric science, astrophysics, physics, and chemistry. Two primary elements of the LARSS Program are: (1) a research project to be completed by each participant under the supervision of a researcher who will assume the role of a mentor for the summer, and (2) technical lectures by prominent engineers and scientists. Additional elements of this program include tours of LARC wind tunnels, computational facilities, and laboratories. Library and computer facilities will be available for use by the participants.
The Application of Problem-Based Learning in Mechanical Engineering
NASA Astrophysics Data System (ADS)
Putra, Z. A.; Dewi, M.
2018-02-01
The course of Technology and Material Testing prepare students with the ability to do a variety of material testing in the study of mechanical engineering. Students find it difficult to understand the materials to make them unable to carry out the material testing in accordance with the purpose of study. This happens because they knowledge is not adequately supported by the competence to find and construct learning experience. In this study, quasy experiment research method with pre-post-test with control group design was used. The subjects of the study were students divided in two groups; control and experiment with twenty-two students in each group. Study result: their grades showed no difference in between the pre-test or post-test in control group, but the difference in grade existed between the pre-test and post-test in experiment group. Yet, there is no significant difference in the study result on both groups. The researcher recommend that it is necessary to develop Problem-Based Learning that suits need analysis on D3 Program for Mechanical Engineering Department at the State University of Padang, to ensure the compatibility between Model of Study and problems and need. This study aims to analyze how Problem-Based Learning effects on the course of Technology and Material Testing for the students of D3 Program of Mechanical Engineering of the State University of Padang.
Maintenance of Mechanical Equipment in Minnesota Schools, 1968 Survey.
ERIC Educational Resources Information Center
Larson, R. E.; Rust, L. W.
Results of a one-year research program to study maintenance procedures for operating mechanical equipment were based on the determination of--(1) the present condition and level of performance of operating mechanical equipment, (2) the problems encountered by school administrators and custodial engineers pertaining to operating mechanical…
The Many Faces of a Software Engineer in a Research Community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marinovici, Maria C.; Kirkham, Harold
2013-10-14
The ability to gather, analyze and make decisions based on real world data is changing nearly every field of human endeavor. These changes are particularly challenging for software engineers working in a scientific community, designing and developing large, complex systems. To avoid the creation of a communications gap (almost a language barrier), the software engineers should possess an ‘adaptive’ skill. In the science and engineering research community, the software engineers must be responsible for more than creating mechanisms for storing and analyzing data. They must also develop a fundamental scientific and engineering understanding of the data. This paper looks atmore » the many faces that a software engineer should have: developer, domain expert, business analyst, security expert, project manager, tester, user experience professional, etc. Observations made during work on a power-systems scientific software development are analyzed and extended to describe more generic software development projects.« less
Teaching Heliophysics Science to Undergraduates in an Engineering Context
NASA Astrophysics Data System (ADS)
Baker, J. B.; Sweeney, D. G.; Ruohoniemi, J.
2013-12-01
In recent years, space research at Virginia Tech has experienced rapid growth since the initiation of the Center for Space Science and Engineering Research (Space@VT) during the summer of 2007. The Space@VT center resides in the College of Engineering and currently comprises approximately 30-40 faculty and students. Space@VT research encompasses a wide spectrum of science and engineering activities including: magnetosphere-ionosphere data analysis; ground- and space-based instrument development; spacecraft design and environmental interactions; and numerical space plasma simulations. In this presentation, we describe how Space@VT research is being integrated into the Virginia Tech undergraduate engineering curriculum via classroom instruction and hands-on group project work. In particular, we describe our experiences teaching a new sophomore course titled 'Exploration of the Space Environment' which covers a broad range of scientific, engineering, and societal aspects associated with the exploration and technological exploitation of space. Topics covered include: science of the space environment; space weather hazards and societal impacts; elementary orbital mechanics and rocket propulsion; spacecraft engineering subsystems; and applications of space-based technologies. We also describe a high-altitude weather balloon project which has been offered as a 'hands-on' option for fulfilling the course project requirements of the course.
NASA Astrophysics Data System (ADS)
Makarova, A. N.; Makarov, E. I.; Zakharov, N. S.
2018-03-01
In the article, the issue of correcting engineering servicing regularity on the basis of actual dependability data of cars in operation is considered. The purpose of the conducted research is to increase dependability of transport-technological machines by correcting engineering servicing regularity. The subject of the research is the mechanism of engineering servicing regularity influence on reliability measure. On the basis of the analysis of researches carried out before, a method of nonparametric estimation of car failure measure according to actual time-to-failure data was chosen. A possibility of describing the failure measure dependence on engineering servicing regularity by various mathematical models is considered. It is proven that the exponential model is the most appropriate for that purpose. The obtained results can be used as a separate method of engineering servicing regularity correction with certain operational conditions taken into account, as well as for the technical-economical and economical-stochastic methods improvement. Thus, on the basis of the conducted researches, a method of engineering servicing regularity correction of transport-technological machines in the operational process was developed. The use of that method will allow decreasing the number of failures.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-08
... Network Enterprises, Inc., Dallas, TX; Packer Engineering, Inc., Naperville, IL; PDQ Precision Inc..., Inc., Auburn Hills, MI; Pratt & Miller Engineering and Fabrication, Inc., New Hudson, MI; Seica Inc... Environmental, Inc., Plymouth, MI; Electrical-Mechanical Associates, Inc., Ann Arbor, MI; The Euclid Chemical...
1993-12-01
Mechanical Engineering Associate, PhD Laboratory: PL/VT Division Engineering University of Texas, San Anton Vol-Page No: 3-26 San Antonio, TX 7824-9065...parameters. The modules can be primitive or compound. Primitive modules represent the elementary computation units and define their interfaces. The... linear under varying conditions for the range of processor numbers. Discussion Performance: Our evaluation of the performance measurement results is the
NASA Astrophysics Data System (ADS)
Mercado, Karla Patricia E.
Tissue engineering holds great promise for the repair or replacement of native tissues and organs. Further advancements in the fabrication of functional engineered tissues are partly dependent on developing new and improved technologies to monitor the properties of engineered tissues volumetrically, quantitatively, noninvasively, and nondestructively over time. Currently, engineered tissues are evaluated during fabrication using histology, biochemical assays, and direct mechanical tests. However, these techniques destroy tissue samples and, therefore, lack the capability for real-time, longitudinal monitoring. The research reported in this thesis developed nondestructive, noninvasive approaches to characterize the structural, biological, and mechanical properties of 3-D engineered tissues using high-frequency quantitative ultrasound and elastography technologies. A quantitative ultrasound technique, using a system-independent parameter known as the integrated backscatter coefficient (IBC), was employed to visualize and quantify structural properties of engineered tissues. Specifically, the IBC was demonstrated to estimate cell concentration and quantitatively detect differences in the microstructure of 3-D collagen hydrogels. Additionally, the feasibility of an ultrasound elastography technique called Single Tracking Location Acoustic Radiation Force Impulse (STL-ARFI) imaging was demonstrated for estimating the shear moduli of 3-D engineered tissues. High-frequency ultrasound techniques can be easily integrated into sterile environments necessary for tissue engineering. Furthermore, these high-frequency quantitative ultrasound techniques can enable noninvasive, volumetric characterization of the structural, biological, and mechanical properties of engineered tissues during fabrication and post-implantation.
Mechanisms, applications, and perspectives of antiviral RNA silencing in plants
Garcia-Ruiz, Hernan; Ruiz, Mayra Teresa Garcia; Peralta, Sergio Manuel Gabriel; Gabriel, Cristina Betzabeth Miravel; El-Mounadi, Kautar
2017-01-01
Viral diseases of plants cause important economic losses due to reduction in crop quality and quantity to the point of threatening food security in some countries. Given the reduced availability of natural sources, genetic resistance to viruses has been successfully engineered for some plant-virus combinations. A sound understanding of the basic mechanisms governing plant-virus interactions, including antiviral RNA silencing, is the foundation to design better management strategies and biotechnological approaches to engineer and implement antiviral resistance in plants. In this review, we present current molecular models to explain antiviral RNA silencing and its application in basic plant research, biotechnology and genetic engineering. PMID:28890589
Interfacing modules for integrating discipline specific structural mechanics codes
NASA Technical Reports Server (NTRS)
Endres, Ned M.
1989-01-01
An outline of the organization and capabilities of the Engine Structures Computational Simulator (Simulator) at NASA Lewis Research Center is given. One of the goals of the research at Lewis is to integrate various discipline specific structural mechanics codes into a software system which can be brought to bear effectively on a wide range of engineering problems. This system must possess the qualities of being effective and efficient while still remaining user friendly. The simulator was initially designed for the finite element simulation of gas jet engine components. Currently, the simulator has been restricted to only the analysis of high pressure turbine blades and the accompanying rotor assembly, although the current installation can be expanded for other applications. The simulator presently assists the user throughout its procedures by performing information management tasks, executing external support tasks, organizing analysis modules and executing these modules in the user defined order while maintaining processing continuity.
Republic P-47G Thunderbolt and the NACA Flight Operations Crew
1944-03-21
The Flight Operations crew stands before a Republic P-47G Thunderbolt at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory in Cleveland, Ohio. The laboratory’s Flight Research Section was responsible for conducting a variety of research flights. During World War II most of the test flights complemented the efforts in ground-based facilities to improve engine cooling systems or study advanced fuel mixtures. The Republic P–47G was loaned to the laboratory to test NACA modifications to the Wright R–2800 engine’s cooling system at higher altitudes. The laboratory has always maintained a fleet of aircraft so different research projects were often conducted concurrently. The flight research program requires an entire section of personnel to accomplish its work. This staff generally consists of a flight operations group, which includes the section chief, pilots and administrative staff; a flight maintenance group with technicians and mechanics responsible for inspecting aircraft, performing checkouts and installing and removing flight instruments; and a flight research group that integrates the researchers’ experiments into the aircraft. The staff at the time of this March 1944 photograph included 3 pilots, 16 planning and analysis engineers, 36 mechanics and technicians, 10 instrumentation specialists, 6 secretaries and 5 computers.
[Advance in researches on the effect of forest on hydrological process].
Zhang, Zhiqiang; Yu, Xinxiao; Zhao, Yutao; Qin, Yongsheng
2003-01-01
According to the effects of forest on hydrological process, forest hydrology can be divided into three related aspects: experimental research on the effects of forest changing on hydrological process quantity and water quality; mechanism study on the effects of forest changing on hydrological cycle, and establishing and exploitating physical-based distributed forest hydrological model for resource management and engineering construction. Orientation experiment research can not only support the first-hand data for forest hydrological model, but also make clear the precipitation-runoff mechanisms. Research on runoff mechanisms can be valuable for the exploitation and improvement of physical based hydrological models. Moreover, the model can also improve the experimental and runoff mechanism researches. A review of above three aspects are summarized in this paper.
NASA Technical Reports Server (NTRS)
2005-01-01
The goal of this research is to develop and demonstrate innovative adaptive seal technologies that can lead to dramatic improvements in engine performance, life, range, and emissions, and enhance operability for next generation gas turbine engines. This work is concentrated on the development of self-adaptive clearance control systems for gas turbine engines. Researchers have targeted the high-pressure turbine (HPT) blade tip seal location for following reasons: Current active clearance control (ACC) systems (e.g., thermal case-cooling schemes) cannot respond to blade tip clearance changes due to mechanical, thermal, and aerodynamic loads. As such they are prone to wear due to the required tight running clearances during operation. Blade tip seal wear (increased clearances) reduces engine efficiency, performance, and service life. Adaptive sealing technology research has inherent impact on all envisioned 21st century propulsion systems (e.g. distributed vectored, hybrid and electric drive propulsion concepts).
Research and educational initiatives at the Syracuse University Center for Hypersonics
NASA Technical Reports Server (NTRS)
Spina, E.; Lagraff, J.; Davidson, B.; Bogucz, E.; Dang, T.
1995-01-01
The Department of Mechanical, Aerospace, and Manufacturing Engineering and the Northeast Parallel Architectures Center of Syracuse University have been funded by NASA to establish a program to educate young engineers in the hypersonic disciplines. This goal is being achieved through a comprehensive five-year program that includes elements of undergraduate instruction, advanced graduate coursework, undergraduate research, and leading-edge hypersonics research. The research foci of the Syracuse Center for Hypersonics are three-fold; high-temperature composite materials, measurements in turbulent hypersonic flows, and the application of high-performance computing to hypersonic fluid dynamics.
The Transformative Experience in Engineering Education
NASA Astrophysics Data System (ADS)
Goodman, Katherine Ann
This research evaluates the usefulness of transformative experience (TE) in engineering education. With TE, students 1) apply ideas from coursework to everyday experiences without prompting (motivated use); 2) see everyday situations through the lens of course content (expanded perception); and 3) value course content in new ways because it enriches everyday affective experience (affective value). In a three-part study, we examine how engineering educators can promote student progress toward TE and reliably measure that progress. For the first study, we select a mechanical engineering technical elective, Flow Visualization, that had evidence of promoting expanded perception of fluid physics. Through student surveys and interviews, we compare this elective to the required Fluid Mechanics course. We found student interest in fluids fell into four categories: complexity, application, ubiquity, and aesthetics. Fluid Mechanics promotes interest from application, while Flow Visualization promotes interest based in ubiquity and aesthetics. Coding for expanded perception, we found it associated with students' engineering identity, rather than a specific course. In our second study, we replicate atypical teaching methods from Flow Visualization in a new design course: Aesthetics of Design. Coding of surveys and interviews reveals that open-ended assignments and supportive teams lead to increased ownership of projects, which fuels risk-taking, and produces increased confidence as an engineer. The third study seeks to establish parallels between expanded perception and measurable perceptual expertise. Our visual expertise experiment uses fluid flow images with both novices and experts (students who had passed fluid mechanics). After training, subjects sort images into laminar and turbulent categories. The results demonstrate that novices learned to sort the flow stimuli in ways similar to subjects in prior perceptual expertise studies. In contrast, the experts' significantly better results suggest they are accessing conceptual fluids knowledge to perform this new, visual task. The ability to map concepts onto visual information is likely a necessary step toward expanded perception. Our findings suggest that open-ended aesthetic experiences with engineering content unexpectedly support engineering identity development, and that visual tasks could be developed to measure conceptual understanding, promoting expanded perception. Overall, we find TE a productive theoretical framework for engineering education research.
Edwin Lee Photo of Edwin Lee Edwin Lee Researcher III-Mechanical Engineering Edwin.Lee@nrel.gov | 303-275-3110 Edwin Lee joined NREL in 2013 and works in the Commercial Buildings Research Group. He
Luz, Taciana Ramos; Echternacht, Eliza Helena de Oliveira
2012-01-01
This study aims to analyze the factors that justify the low use of a mechanical transfer in the context of a long-term institution. It is a device intended for internal transportation of individuals who have mobility problems. The analysis involves researchers from the fields of health and engineering in order to generate design criteria that consider the needs of caregivers and patients of this institution. To understand the reality of this site and their specificities, was used Ergonomic Work Analysis.
Efficiency Assessment of a Blended-Learning Educational Methodology in Engineering
NASA Astrophysics Data System (ADS)
Rogado, Ana Belén González; Conde, Ma José Rodríguez; Migueláñez, Susana Olmos; Riaza, Blanca García; Peñalvo, Francisco José García
The content of this presentation highlights the importance of an active learning methodology in engineering university degrees in Spain. We present of some of the outcomes from an experimental study carried out during the academic years 2007/08 and 2008/09 with engineering students (Technical Industrial Engineering: Mechanics, Civical Design Engineering: Civical building, Technical Architecture and Technical Engineering on Computer Management.) at the University of Salamanca. In this research we select a subject which is common for the four degrees: Computer Science. This study has the aim of contributing to the improvement of education and teaching methods for a better performance of students in Engineering.
2009-12-01
minimal pressure losses. 15. NUMBER OF PAGES 113 14. SUBJECT TERMS Pulse Detonation Combustors, PDC, Pulse Detonation Engines, PDE , PDE ...Postgraduate School PDC Pulse Detonation Combustor PDE Pulse Detonation Engine RAM Random Access Memory RDT Research, Design and Test RPL...inhibiting the implementation of this advanced propulsion system. The primary advantage offered by pulse detonation engines ( PDEs ) is the high efficiency
Graduate engineering research participation in aeronautics
NASA Technical Reports Server (NTRS)
Roberts, A. S., Jr.
1984-01-01
Graduate student engineering research in aeronautics at Old Dominion University is surveyed. Student participation was facilitated through a NASA sponsored university program which enabled the students to complete degrees. Research summaries are provided and plans for the termination of the grant program are outlined. Project topics include: Failure modes for mechanically fastened joints in composite materials; The dynamic stability of an earth orbiting satellite deploying hinged appendages; The analysis of the Losipescu shear test for composite materials; and the effect of boundary layer structure on wing tip vortex formation and decay.
The 1991 research and technology report, Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Soffen, Gerald (Editor); Ottenstein, Howard (Editor); Montgomery, Harry (Editor); Truszkowski, Walter (Editor); Frost, Kenneth (Editor); Sullivan, Walter (Editor); Boyle, Charles (Editor)
1991-01-01
The 1991 Research and Technology Report for Goddard Space Flight Center is presented. Research covered areas such as (1) earth sciences including upper atmosphere, lower atmosphere, oceans, hydrology, and global studies; (2) space sciences including solar studies, planetary studies, Astro-1, gamma ray investigations, and astrophysics; (3) flight projects; (4) engineering including robotics, mechanical engineering, electronics, imaging and optics, thermal and cryogenic studies, and balloons; and (5) ground systems, networks, and communications including data and networks, TDRSS, mission planning and scheduling, and software development and test.
NASA Technical Reports Server (NTRS)
1997-01-01
This CP contains the extended abstracts and presentation figures of 36 papers presented at the PPM and Other Propulsion R&T Conference. The focus of the research described in these presentations is on materials and structures technologies that are parts of the various projects within the NASA Aeronautics Propulsion Systems Research and Technology Base Program. These projects include Physics and Process Modeling; Smart, Green Engine; Fast, Quiet Engine; High Temperature Engine Materials Program; and Hybrid Hyperspeed Propulsion. Also presented were research results from the Rotorcraft Systems Program and work supported by the NASA Lewis Director's Discretionary Fund. Authors from NASA Lewis Research Center, industry, and universities conducted research in the following areas: material processing, material characterization, modeling, life, applied life models, design techniques, vibration control, mechanical components, and tribology. Key issues, research accomplishments, and future directions are summarized in this publication.
NASA-UVA light aerospace alloy and structures technology program (LA2ST)
NASA Technical Reports Server (NTRS)
Starke, Edgar A., Jr.; Gangloff, Richard P.; Herakovich, Carl T.; Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.
1995-01-01
The NASA-UVa Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. Projects are being conducted by graduate students and faculty advisors in the Department of Materials Science and Engineering, as well as in the Department of Civil Engineering and Applied Mechanics, at the University of Virginia. Here, we report on progress achieved between July 1 and December 31, 1994. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies.
ERIC Educational Resources Information Center
Virginia Polytechnic Inst. and State Univ., Blacksburg.
This summer institute emphasizes the establishment of minimum measurable standards of attainment in agricultural engineering phases of teacher education in agriculture. Speeches presented are: (1) "Where We Are in Agricultural Mechanics Education," by Alfred H. Krebs, (2) "Research Offerings for More Effective Teaching in Agricultural Mechanics,"…
NASA-UVA light aerospace alloy and structures technology program (LA2ST)
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.
1994-01-01
The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986, and continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between July 1 and December 31, 1993. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and critically, a pool of educated graduate students for aerospace technologies.
NASA-UVA light aerospace alloy and structures technology program (LA2ST)
NASA Astrophysics Data System (ADS)
Gangloff, Richard P.; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.
1994-03-01
The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986, and continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between July 1 and December 31, 1993. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and critically, a pool of educated graduate students for aerospace technologies.
Overview of Glenn Mechanical Components Branch Research
NASA Astrophysics Data System (ADS)
Zakrajsek, James
2002-09-01
Mr. James Zakrajsek, chief of the Mechanical Components Branch, gave an overview of research conducted by the branch. Branch members perform basic research on mechanical components and systems, including gears and bearings, turbine seals, structural and thermal barrier seals, and space mechanisms. The research is focused on propulsion systems for present and advanced aerospace vehicles. For rotorcraft and conventional aircraft, we conduct research to develop technology needed to enable the design of low noise, ultra safe geared drive systems. We develop and validate analytical models for gear crack propagation, gear dynamics and noise, gear diagnostics, bearing dynamics, and thermal analyses of gear systems using experimental data from various component test rigs. In seal research we develop and test advanced turbine seal concepts to increase efficiency and durability of turbine engines. We perform experimental and analytical research to develop advanced thermal barrier seals and structural seals for current and next generation space vehicles. Our space mechanisms research involves fundamental investigation of lubricants, materials, components and mechanisms for deep space and planetary environments.
Tendon and ligament as novel cell sources for engineering the knee meniscus.
Hadidi, P; Paschos, N K; Huang, B J; Aryaei, A; Hu, J C; Athanasiou, K A
2016-12-01
The application of cell-based therapies in regenerative medicine is hindered by the difficulty of acquiring adequate numbers of competent cells. For the knee meniscus in particular, this may be solved by harvesting tissue from neighboring tendons and ligaments. In this study, we have investigated the potential of cells from tendon and ligament, as compared to meniscus cells, to engineer scaffold-free self-assembling fibrocartilage. Self-assembling meniscus-shaped constructs engineered from a co-culture of articular chondrocytes and either meniscus, tendon, or ligament cells were cultured for 4 weeks with TGF-β1 in serum-free media. After culture, constructs were assessed for their mechanical properties, histological staining, gross appearance, and biochemical composition including cross-link content. Correlations were performed to evaluate relationships between biochemical content and mechanical properties. In terms of mechanical properties as well as biochemical content, constructs engineered using tenocytes and ligament fibrocytes were found to be equivalent or superior to constructs engineered using meniscus cells. Furthermore, cross-link content was found to be correlated with engineered tissue tensile properties. Tenocytes and ligament fibrocytes represent viable cell sources for engineering meniscus fibrocartilage using the self-assembling process. Due to greater cross-link content, fibrocartilage engineered with tenocytes and ligament fibrocytes may maintain greater tensile properties than fibrocartilage engineered with meniscus cells. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kayumov, A. T.; Mustafina, D. N.
2014-12-01
In this research work an attempt is made to reveal the factors and level of engineering and working professions prestige in the minds of studying youth on the basis of empiric data. The results of research allow revealing the mechanism of social-professional selfidentification of school-aged youth, on the basis of which an opportunity to study in a new way traditional system of profession-oriented work appears.
CMC Research at NASA Glenn in 2015: Recent Progress and Plans
NASA Technical Reports Server (NTRS)
Grady, Joseph E.
2015-01-01
As part of NASAs Aeronautical Sciences project, Glenn Research Center has developed advanced fiber and matrix constituents for a 2700F CMC for turbine engine applications. Fiber and matrix development and characterization will be reviewed. Resulting improvements in CMC mechanical properties and durability will be summarized. Plans for 2015 will be described, including development and validation of models predicting effects of the engine environment on durability of SiC/SiC composites with Environmental Barrier Coatings
NASA Technical Reports Server (NTRS)
2004-01-01
The grant closure report is organized in the following four chapters: Chapter describes the two research areas Design optimization and Solid mechanics. Ten journal publications are listed in the second chapter. Five highlights is the subject matter of chapter three. CHAPTER 1. The Design Optimization Test Bed CometBoards. CHAPTER 2. Solid Mechanics: Integrated Force Method of Analysis. CHAPTER 3. Five Highlights: Neural Network and Regression Methods Demonstrated in the Design Optimization of a Subsonic Aircraft. Neural Network and Regression Soft Model Extended for PX-300 Aircraft Engine. Engine with Regression and Neural Network Approximators Designed. Cascade Optimization Strategy with Neural network and Regression Approximations Demonstrated on a Preliminary Aircraft Engine Design. Neural Network and Regression Approximations Used in Aircraft Design.
research interests in fluid mechanics, rheology, separation science, reaction engineering, mathematical -established Newtonian fluid mechanics and solution reaction kinetics do not apply to these biomass slurries , and reaction kinetics of the biomass slurries in order to develop predictive modeling capabilities
Analytical Ferrography Standardization.
1982-01-01
AD-AII6 508 MECHANICAL TECHNOLOGY INC LATHAM NY RESEARCH AND 0EV--ETC F/6 7/4 ANALYTICAL FERROGRAPHY STANDARDIZATION. (U) JAN 82 P A SENHOLZI, A S...ii Mwl jutio7 Unimte SMechanical Technology Incorporated Research and Development Division ReerhadDvlpetDvso I FINAL REPORT ANALYTICAL FERROGRAPHY ...Final Report MTI Technical Report No. 82TRS6 ANALYTICAL FERROGRAPHY STANDARDIZATION P. B. Senholzi A. S. Maciejewski Applications Engineering Mechanical
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Holloway
2005-09-30
Beginning the fall semester of 1999, The University of Maryland, Departments of Mechanical and Electrical Engineering and the Institute for Systems Research served as a U.S. Department of Energy (USDOE) Graduate Automotive Technology Education (GATE) Center for Hybrid Electric Drivetrains and Control Strategies. A key goal was to produce a graduate level education program that educated and prepared students to address the technical challenges of designing and developing hybrid electric vehicles, as they progressed into the workforce. A second goal was to produce research that fostered the advancement of hybrid electric vehicles, their controls, and other related automotive technologies. Participationmore » ended at the University of Maryland after the 2004 fall semester. Four graduate courses were developed and taught during the course of this time, two of which evolved into annually-taught undergraduate courses, namely Vehicle Dynamics and Control Systems Laboratory. Five faculty members from Mechanical Engineering, Electrical Engineering, and the Institute for Systems Research participated. Four Ph.D. degrees (two directly supported and two indirectly supported) and seven Master's degrees in Mechanical Engineering resulted from the research conducted. Research topics included thermoelectric waste heat recovery, fuel cell modeling, pre- and post-transmission hybrid powertrain control and integration, hybrid transmission design, H{sub 2}-doped combustion, and vehicle dynamics. Many of the participating students accepted positions in the automotive industry or government laboratories involved in automotive technology work after graduation. This report discusses the participating faculty, the courses developed and taught, research conducted, the students directly and indirectly supported, and the publication list. Based on this collection of information, the University of Maryland firmly believes that the key goal of the program was met and that the majority of the participating students are now contributing to the advancement of automotive technology in this country.« less
Mechanical and Thermal Engineering Sciences | Research | NREL
. Geothermal Energy Developing cost-competitive technologies to advance the use of geothermal energy areas of energy efficiency, sustainable transportation, and renewable power. We provide engineering and scientific expertise to a variety of federal agencies, including the DOE Office of Energy Efficiency and
Interrelationships among Librarians, Engineers, and Publishers in the Publication Process.
ERIC Educational Resources Information Center
Jackson, Eugene B.
This paper advocates the involvement of librarians in the publishing process and examines the mechanics of that process. Concerns of librarians, engineers, and publishers are delineated, with examples taken from the internal and external dissemination of technical information by a major U.S. government research agency and various large industrial…
John Kuniholm: An Ordinary Man with an Extraordinary Story
ERIC Educational Resources Information Center
Williams, John M.
2006-01-01
This article profiles John Kuniholm, a 34-year-old PhD candidate in biomedical engineering at Duke University and has master's degrees in mechanical engineering and industrial design from North Carolina State University. He has worked in the research and development of tools for robotic cardiac surgery for Cardiovations, a Johnson & Johnson…
Veers Photo of Paul Veers Paul Veers Group Research Manager III-Mechanical Engineering Paul.Veers @nrel.gov | 303-384-7197 Paul Veers is the Chief Engineer at the NWTC and represents NREL on DOE's Staff at Sandia National Laboratories. Paul has authored over 70 articles, papers, book chapters, and
Careers | Argonne National Laboratory
YouTube Google+ More Social Media » Jason Carter Mechanical Engineer Read more » Look at the world differently. At Argonne, we view the world from a different perspective. Our scientists and engineers conduct world-class research in clean energy, the environment, technology, national security and more. We're
Research project for increasing pool of minority engineers
NASA Technical Reports Server (NTRS)
Rogers, Decatur B.
1995-01-01
The Tennessee State University (TSU) Research Project for Increasing the Pool of Minority Engineers is designed to develop engineers who have academic and research experiences in technical areas of interest to NASA. These engineers will also have some degree of familiarity with NASA Lewis Research Center as a result of interaction with Lewis engineers, field trips and internships at Lewis. The Research Project has four components, which are: (1) Minority Introduction to Engineering (MITE), a high school precollege program, (2) engineering and technology previews, (3) the NASA LeRC Scholars program which includes scholarships and summer internships, and (4) undergraduate research experiences on NASA sponsored research. MITE is a two-week summer engineering camp designed to introduce minority high school students to engineering by exposing them to: (1) engineering role models (engineering students and NASA engineer), (2) field trips to engineering firms, (3) in addition to introducing youth to the language of the engineer (i.e., science, mathematics, technical writing, computers, and the engineering laboratory). Three MITE camps are held on the campus of TSU with an average of 40 participants. MITE has grown from 25 participants at its inception in 1990 to 118 participants in 1994 with participants from 17 states, including the District of Columbia, and 51 percent of the participants were female. Over the four-year period, 77 percent of the seniors who participated in MITE have gone to college, while 53 percent of those seniors in college are majoring in science, engineering or mathematics (SEM). This first Engineering and Technology Previews held in 1993 brought 23 youths from Cleveland, Ohio to TSU for a two-day preview of engineering and college life. Two previews are scheduled for 1994-1995. The NASA LeRC Scholars program provides scholarships and summer internships for minority engineering students majoring in electrical or mechanical engineering. Presently six (6) engineering students are in the Scholars program. The average GPA for the scholars is 3.239. Each scholar must maintain a minimum GPA of 3.000/4.000. NASA LeRC Fred Higgs has been awarded a GEM Fellowship. In addition, he will be presenting a paper entitled 'Design of Helical Spring Using Probabilistic Design Methodology' at the Middle Tennessee Section ASME Student Design Presentations in Nashville on March 23rd and at the National Conference on Undergraduate Research to be held at Union College, Schenectady, New York on April 20-22, 1995. Each of the scholars is working on one of the three NASA sponsored research projects in the college.
1998-01-01
Don Sirois, an Auburn University research associate, and Bruce Strom, a mechanical engineering Co-Op Student, are evaluating the dimensional characteristics of an aluminum automobile engine casting. More accurate metal casting processes may reduce the weight of some cast metal products used in automobiles, such as engines. Research in low gravity has taken an important first step toward making metal products used in homes, automobiles, and aircraft less expensive, safer, and more durable. Auburn University and industry are partnering with NASA to develop one of the first accurate computer model predictions of molten metals and molding materials used in a manufacturing process called casting. Ford Motor Company's casting plant in Cleveland, Ohio is using NASA-sponsored computer modeling information to improve the casting process of automobile and light-truck engine blocks.
Improving Metal Casting Process
NASA Technical Reports Server (NTRS)
1998-01-01
Don Sirois, an Auburn University research associate, and Bruce Strom, a mechanical engineering Co-Op Student, are evaluating the dimensional characteristics of an aluminum automobile engine casting. More accurate metal casting processes may reduce the weight of some cast metal products used in automobiles, such as engines. Research in low gravity has taken an important first step toward making metal products used in homes, automobiles, and aircraft less expensive, safer, and more durable. Auburn University and industry are partnering with NASA to develop one of the first accurate computer model predictions of molten metals and molding materials used in a manufacturing process called casting. Ford Motor Company's casting plant in Cleveland, Ohio is using NASA-sponsored computer modeling information to improve the casting process of automobile and light-truck engine blocks.
Snapshot of Active Flow Control Research at NASA Langley
NASA Technical Reports Server (NTRS)
Washburn, A. E.; Gorton, S. Althoff; Anders, S. G.
2002-01-01
NASA Langley is aggressively investigating the potential advantages of active flow control as opposed to more traditional aerodynamic techniques. Many of these techniques will be blended with advanced materials and structures to further enhance payoff. Therefore a multi-disciplinary approach to technology development is being attempted that includes researchers from the more historical disciplines of fluid mechanics. acoustics, material science, structural mechanics, and control theory. The overall goals of the topics presented are focused on advancing the state of knowledge and understanding of controllable fundamental mechanisms in fluids rather than on specific engineering problems. An organizational view of current research activities at NASA Langley in active flow control as supported by several programs such as the Morphing Project under Breakthrough Vehicle Technologies Program (BVT). the Ultra-Efficient Engine Technology Program (UEET), and the 21st Century Aircraft Technology Program (TCAT) is presented. On-center research as well as NASA Langley funded contracts and grants are discussed at a relatively high level. The products of this research, as part of the fundamental NASA R and D (research and development) program. will be demonstrated as either bench-top experiments, wind-tunnel investigations, or in flight tests. Later they will be transferred to more applied research programs within NASA, DOD (Department of Defense), and U.S. industry.
Nanotechnology in bone tissue engineering.
Walmsley, Graham G; McArdle, Adrian; Tevlin, Ruth; Momeni, Arash; Atashroo, David; Hu, Michael S; Feroze, Abdullah H; Wong, Victor W; Lorenz, Peter H; Longaker, Michael T; Wan, Derrick C
2015-07-01
Nanotechnology represents a major frontier with potential to significantly advance the field of bone tissue engineering. Current limitations in regenerative strategies include impaired cellular proliferation and differentiation, insufficient mechanical strength of scaffolds, and inadequate production of extrinsic factors necessary for efficient osteogenesis. Here we review several major areas of research in nanotechnology with potential implications in bone regeneration: 1) nanoparticle-based methods for delivery of bioactive molecules, growth factors, and genetic material, 2) nanoparticle-mediated cell labeling and targeting, and 3) nano-based scaffold construction and modification to enhance physicochemical interactions, biocompatibility, mechanical stability, and cellular attachment/survival. As these technologies continue to evolve, ultimate translation to the clinical environment may allow for improved therapeutic outcomes in patients with large bone deficits and osteodegenerative diseases. Traditionally, the reconstruction of bony defects has relied on the use of bone grafts. With advances in nanotechnology, there has been significant development of synthetic biomaterials. In this article, the authors provided a comprehensive review on current research in nanoparticle-based therapies for bone tissue engineering, which should be useful reading for clinicians as well as researchers in this field. Copyright © 2015 Elsevier Inc. All rights reserved.
Geoscience salaries up by 10.8%
NASA Astrophysics Data System (ADS)
Bell, Peter M.
According to a recent salary survey of over 4000 scientists in all fields by Research and Development (March 1984) geoscientists ranked fourth place for 1984. Mathematics, aeronautical engineering, and metallurgy had higher median salaries, but the discipline of geoscience had a higher median salary than that of physics, chemical engineering, mechanical engineering, electrical engineering, ceramics, chemistry, industrial engineering, biology, and other fields of research and development. The 1984 median salary for geoscientists was $40,950, up from the median value by 10.8%. In 1983, geoscience was ranked in ninth place.The geoscientist profile for 1984 was not unusual. The median age was 47.5 years, and the median years of experience was 18. Geoscientists are the best educated. Eighty-two percent of the geoscientists polled had advanced degrees beyond the bachelor's degree. Fifty-six percent of the geoscientists had the Ph.D. degree.
Engineering Design Education Program for Graduate School
NASA Astrophysics Data System (ADS)
Ohbuchi, Yoshifumi; Iida, Haruhiko
The new educational methods of engineering design have attempted to improve mechanical engineering education for graduate students in a way of the collaboration in education of engineer and designer. The education program is based on the lecture and practical exercises concerning the product design, and has engineering themes and design process themes, i.e. project management, QFD, TRIZ, robust design (Taguchi method) , ergonomics, usability, marketing, conception etc. At final exercise, all students were able to design new product related to their own research theme by applying learned knowledge and techniques. By the method of engineering design education, we have confirmed that graduate students are able to experience technological and creative interest.
Sandia National Laboratories: Research: Research Foundations: Geoscience
Materials Science Nanodevices & Microsystems Radiation Effects & High Energy Density Science Engineering Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High variety of scales, including mechanical, thermal, and chemical effects Improve the understanding of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klipstein, David H.; Robinson, Sharon
The Reaction Engineering Roadmap is a part of an industry- wide effort to create a blueprint of the research and technology milestones that are necessary to achieve longterm industry goals. This report documents the results of a workshop focused on the research needs, technology barriers, and priorities of the chemical industry as they relate to reaction engineering viewed first by industrial use (basic chemicals; specialty chemicals; pharmaceuticals; and polymers) and then by technology segment (reactor system selection, design, and scale-up; chemical mechanism development and property estimation; dealing with catalysis; and new, nonstandard reactor types).
1988-04-01
Engineering Educa- -Zhejiang Provincial Society of tion College Mechanical Engineering - Bejing Institute of Technology -Zhejiang Commission, China ...17,445 50 50 ( China Lake), and the Air Force Cam- 1970 16,316 52 48 bridge Research Laboratory. 1975 14,537 51 49 1980 16,542 50 50 The FFRDCs basically...Army ( Opera - Brassey’s International Defense tions Research). She holds a B.A. Gains Publishers, 1984), p. 9. degree in mathematics from the Col
CMC Research at NASA Glenn in 2016: Recent Progress and Plans
NASA Technical Reports Server (NTRS)
Grady, Joseph E.
2016-01-01
As part of NASA's Aeronautical Sciences project, Glenn Research Center has developed advanced fiber and matrix constituents for a 2700 degrees Fahrenheit CMC (Ceramic Matrix Composite) for turbine engine applications. Fiber and matrix development and characterization will be reviewed. Resulting improvements in CMC mechanical properties and durability will be summarized. Plans for 2015 will be described, including development and validation of models predicting effects of the engine environment on durability of SiCSiC composites with Environmental Barrier Coatings (EBCs).
Opportunities for research in aerothermodynamics
NASA Technical Reports Server (NTRS)
Graham, R. W.
1983-01-01
"Aerothermodynamics' involves the disciplines of chemistry, thermodynamics, fluid mechanics and heat transfer which have collaborative importance in propulsion systems. There are growing opportunities for the further application of these disciplines to improve the methodology for the design of advanced gas turbines; particularly, the combustor and turbine. Design procedures follow empirical or cut and try guidelines. The tremendous advances in computational analysis and in instrumentation techniques hold promise for research answers to complex physical processes that are currently not well understood. The transfer of basic research understanding to engineering design should result in shorter, less expensive development commitments for engines. The status and anticipated opportunities in research topics relevant to combustors and turbines is reviewed.
Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis
NASA Technical Reports Server (NTRS)
Morgan, Morris H., III; Gilinsky, Mikhail M.
2004-01-01
In this project on the first stage (2000-Ol), we continued to develop the previous joint research between the Fluid Mechanics and Acoustics Laboratory (FM&AL) at Hampton University (HU) and the Jet Noise Team (JNT) at the NASA Langley Research Center (NASA LaRC). At the second stage (2001-03), FM&AL team concentrated its efforts on solving of problems of interest to Glenn Research Center (NASA GRC), especially in the field of propulsion system enhancement. The NASA GRC R&D Directorate and LaRC Hyper-X Program specialists in a hypersonic technology jointly with the FM&AL staff conducted research on a wide region of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines. The last year the Hampton University School of Engineering & Technology was awarded the NASA grant, for creation of the Aeropropulsion Center, and the FM&AL is a key team of the project fulfillment responsible for research in Aeropropulsion and Acoustics (Pillar I). This work is supported by joint research between the NASA GRC/ FM&AL and the Institute of Mechanics at Moscow State University (IMMSU) in Russia under a CRDF grant. The main areas of current scientific interest of the FM&AL include an investigation of the proposed and patented advanced methods for aircraft engine thrust and noise benefits. This is the main subject of our other projects, of which one is presented. The last year we concentrated our efforts to analyze three main problems: (a) new effective methods fuel injection into the flow stream in air-breathing engines; (b) new re-circulation method for mixing, heat transfer and combustion enhancement in propulsion systems and domestic industry application; (c) covexity flow The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines (see, for example, Figures 4). The FM&AL Team uses analytical methods, numerical simulations and experimental tests at the Hampton University campus, NASA and IM/MSU.
Using the Discipline of Agricultural Engineering to Integrate Math and Science
ERIC Educational Resources Information Center
Foutz, Tim; Navarro, Maria; Hill, Roger B.; Thompson, Sidney A.; Miller, Kathy; Riddleberger, Deborah
2011-01-01
An outcome of a 1998 forum sponsored by the National Research Council was a recognition that topics related to food production and agriculture are excellent mechanisms for integrating science topics taught in the K-12 education system and for providing many avenues for inquiry based and project based learning. The engineering design process is…
ERIC Educational Resources Information Center
Duarte, M.; Leite, C.; Mouraz, A.
2016-01-01
This study researches how first-year engineering students perceived the influence of curricular activities on their own learning autonomy, measured with an adaptation of the Personal Responsibility Orientation to Self-direction in Learning Scale (PRO-SDLS). Participants were questioned to assess the influence of the teacher's role. The results…
ERIC Educational Resources Information Center
Hanson, Marlys C.
Opportunities for scientists in the near future will be very good in the fields of energy research and development, both for degreed scientists and for technicians. Geologists, geophysicists, mining engineers, rock mechanics, hydrologists, applied physicists, applied chemists, and nuclear engineers are among the types of personnel needed. These…
NASA Technical Reports Server (NTRS)
1996-01-01
The mechanical behavior of a cobalt-nickel-chromium-tungsten superalloy, Haynes 188, is being critically examined at the NASA Lewis Research Center. This dynamic, strain-aging (DSA) alloy is used for combustor liners in many military and commercial aircraft turbine engines and for the liquid oxygen posts in the main injectors of the space shuttle main engine. Its attractive features include a good combination of high monotonic yield and tensile strength, and excellent fabricability, weldability, and resistance to high-temperature oxidation for prolonged exposures.
Asilomar moments: formative framings in recombinant DNA and solar climate engineering research.
Schäfer, Stefan; Low, Sean
2014-12-28
We examine the claim that in governance for solar climate engineering research, and especially field tests, there is no need for external governance beyond existing mechanisms such as peer review and environmental impact assessments that aim to assess technically defined risks to the physical environment. By drawing on the historical debate on recombinant DNA research, we show that defining risks is not a technical question but a complex process of narrative formation. Governance emerges from within, and as a response to, narratives of what is at stake in a debate. In applying this finding to the case of climate engineering, we find that the emerging narrative differs starkly from the narrative that gave meaning to rDNA technology during its formative period, with important implications for governance. While the narrative of rDNA technology was closed down to narrowly focus on technical risks, that of climate engineering continues to open up and includes social, political and ethical issues. This suggests that, in order to be legitimate, governance must take into account this broad perception of what constitutes the relevant issues and risks of climate engineering, requiring governance that goes beyond existing mechanisms that focus on technical risks. Even small-scale field tests with negligible impacts on the physical environment warrant additional governance as they raise broader concerns that go beyond the immediate impacts of individual experiments. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Message from Vice Chancellor, UMP
NASA Astrophysics Data System (ADS)
Nasir Ibrahim, Daing
2012-09-01
Assalamualaikumwarahmatullahiwabarakatuh and Salam i Malaysia First and foremost, I want to thank the International Conference Mechanical Engineering Research (ICMER) organisers for inviting me to address and officiate at this conference. It is a privilege and an honour for me on this momentous occasion to grace the ceremony. The ICMER provides a platform to bring together not only researchers but also postgraduate students in Mechanical Engineering, Automotive Engineering, Manufacturing Engineering, Biomechanical Engineering, Material Engineering and Industrial Engineering. With this platform, ICMER will embark on a whole process of making new discoveries and then translating them into products and services for the marketplace; this is only made possible by people like all of you. It might be only a starting point but with hard work and perseverance I am sure you will succeed with flying colours. As one of Malaysia's Public Universities, UMP's main challenge is to remain competitive and relevant by offering high quality technical academic programmes and research activities, focusing on its niche areas. New knowledge and findings cannot be generated without research and development (R&D) therefore, Malaysia has had substantial investment in research and development facilities. These efforts will undoubtedly generate lots of interesting results and new knowledge as either further investigation or commercial activities. Therefore, researchers like you must see this as the generator of new knowledge to extend your research outcomes from laboratory experiments to the marketplace and towards commercialisation. Naybe this doesn't appear significant in the short term but it may make a tremendous impact in the future. The Malaysian government has invested a huge sum of Ringgits in R&D over the years. Therefore, public universities such as UMP must produce more quality researchers and graduates to ensure Malaysia reaps the returns from these investments and consequently progressive economic growth for the country. Commensurate with these efforts, the results of research must be commercialised effectively. That is why our 2nd KRA UMP's 2011-2015 Strategic Plan determines that we strengthen and sustain its financial support by allocating research grants and industry collaboration and consultations through its business and commercialisation unit. Commercialisation of research outcomes doesn't happen naturally. It may need many man-hours and effort to be invested rather than just purchasing new tools and equipment for laboratories. Moreover, it would be unfortunate if many research results remain in the form of technical publications and scientific journals rather than actual products. These may of course be valuable in their own right but the impact on society and economies must be the main agenda and one of the objectives of the research. The process of taking technology from laboratories to the marketplace will face challenges and pitfalls. In that case we as researchers must be responsible and willing to create a supportive environment for those who undertake this risky business of commercialising R&D especially for innovative entrepreneurship that carries out a new technological approach out from the laboratories to high-tech ventures. We have achieved many accolades from numerous competitors since we first embarked on our journey to make R&D activities play a more significant role in the economy in Malaysia. Therefore, we must keep up the pace of this journey and maintain our investment in R&D despite facing the unfavourable global financial situation because ultimately we must to remain a top and competitive player in the global economy. This can be done by continuing to produce high quality research and technology which will set a milestone in transforming our economy. On behalf of UMP, I would like to express my appreciation to the all the committee members from the Faculty of Mechanical Engineering and Automotive Engineering Centre for their hard work and relentless effort. Without their commitment and contributions, this event would not have been possible at this time. And with that, thank you again and wassalam. YH Profesor Dato' Dr Daing Nasir Ibrahim Vice Chancellor Universiti Malaysia Pahang
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lottes, S.A.; Bojanowski, C.; Shen, J.
2012-04-09
The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. Themore » analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water effects on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to improve design allowing for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, CFD analysis of the operation of the wind tunnel in the TFHRC wind engineering laboratory. This quarterly report documents technical progress on the project tasks for the period of October through December 2011.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lottes, S.A.; Bojanowski, C.; Shen, J.
2012-06-28
The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. Themore » analysis methods employ well benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water effects on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to improve design allowing for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, CFD analysis of the operation of the wind tunnel in the TFHRC wind engineering laboratory. This quarterly report documents technical progress on the project tasks for the period of January through March 2012.« less
Middendorf, Jill M; Griffin, Darvin J; Shortkroff, Sonya; Dugopolski, Caroline; Kennedy, Stephen; Siemiatkoski, Joseph; Cohen, Itai; Bonassar, Lawrence J
2017-10-01
Autologous Chondrocyte Implantation (ACI) is a widely recognized method for the repair of focal cartilage defects. Despite the accepted use, problems with this technique still exist, including graft hypertrophy, damage to surrounding tissue by sutures, uneven cell distribution, and delamination. Modified ACI techniques overcome these challenges by seeding autologous chondrocytes onto a 3D scaffold and securing the graft into the defect. Many studies on these tissue engineered grafts have identified the compressive properties, but few have examined frictional and shear properties as suggested by FDA guidance. This study is the first to perform three mechanical tests (compressive, frictional, and shear) on human tissue engineered cartilage. The objective was to understand the complex mechanical behavior, function, and changes that occur with time in these constructs grown in vitro using compression, friction, and shear tests. Safranin-O histology and a DMMB assay both revealed increased sulfated glycosaminoglycan (sGAG) content in the scaffolds with increased maturity. Similarly, immunohistochemistry revealed increased lubricin localization on the construct surface. Confined compression and friction tests both revealed improved properties with increased construct maturity. Compressive properties correlated with the sGAG content, while improved friction coefficients were attributed to increased lubricin localization on the construct surfaces. In contrast, shear properties did not improve with increased culture time. This study suggests the various mechanical and biological properties of tissue engineered cartilage improve at different rates, indicating thorough mechanical evaluation of tissue engineered cartilage is critical to understanding the performance of repaired cartilage. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2298-2306, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
1995-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period 1 Oct. 1994 - 31 Mar. 1995.
Sanz-Herrera, Jose A.; Reina-Romo, Esther
2011-01-01
Tissue engineering is an emerging field of research which combines the use of cell-seeded biomaterials both in vitro and/or in vivo with the aim of promoting new tissue formation or regeneration. In this context, how cells colonize and interact with the biomaterial is critical in order to get a functional tissue engineering product. Cell-biomaterial interaction is referred to here as the phenomenon involved in adherent cells attachment to the biomaterial surface, and their related cell functions such as growth, differentiation, migration or apoptosis. This process is inherently complex in nature involving many physico-chemical events which take place at different scales ranging from molecular to cell body (organelle) levels. Moreover, it has been demonstrated that the mechanical environment at the cell-biomaterial location may play an important role in the subsequent cell function, which remains to be elucidated. In this paper, the state-of-the-art research in the physics and mechanics of cell-biomaterial interaction is reviewed with an emphasis on focal adhesions. The paper is focused on the different models developed at different scales available to simulate certain features of cell-biomaterial interaction. A proper understanding of cell-biomaterial interaction, as well as the development of predictive models in this sense, may add some light in tissue engineering and regenerative medicine fields. PMID:22174660
NASA Technical Reports Server (NTRS)
Groeneweg, John F.
1994-01-01
Results of recent NASA research to reduce aircraft turbofan noise are described. As the bypass ratio of a turbofan engine increases from 5 to as much as 20, the dominant source of engine noise is the fan. A primary mechanism of tone noise generation is the rotor blade wakes interacting with downstream stator vanes. Methods of analyzing rotor-stator tone noise generation are described and sample results are given. The role of an acoustic modal description is emphasized. Wind tunnel tests of model fans and nacelles are described including a novel rotating microphone technique for modal measurement. Sample far field results are given showing the effects of inlet length, and modal measurements are shown which point to a new generation mechanism. Concepts for active fan noise control at the source are addressed. Implications of the research which have general relevance to fan noise generation and control are discussed.
NASA Astrophysics Data System (ADS)
Groeneweg, John F.
Results of recent NASA research to reduce aircraft turbofan noise are described. As the bypass ratio of a turbofan engine increases from 5 to as much as 20, the dominant source of engine noise is the fan. A primary mechanism of tone noise generation is the rotor blade wakes interacting with downstream stator vanes. Methods of analyzing rotor-stator tone noise generation are described and sample results are given. The role of an acoustic modal description is emphasized. Wind tunnel tests of model fans and nacelles are described including a novel rotating microphone technique for modal measurement. Sample far field results are given showing the effects of inlet length, and modal measurements are shown which point to a new generation mechanism. Concepts for active fan noise control at the source are addressed. Implications of the research which have general relevance to fan noise generation and control are discussed.
NASA Astrophysics Data System (ADS)
Micari, Marina; Pazos, Pilar; Hartmann, Mitra J. Z.
Although there has been a great deal of research on women's experiences in engineering study, there has been little attempt to connect experiential factors to performance in both course and lab. This two-phase study investigated gender differences in undergraduates' experiences in a fluid mechanics course as well as the relationship between experiential factors and student performance in that course. One hundred forty-seven students at a Midwestern research university completed questionnaires related to course experience and perceived engagement. Data were also collected on final grade for 89 students in the second round of data collection. Relative to men, women reported less confidence that they could avoid mistakes in the lab, less experience with mechanical items, less perceived ability in engineering relative to classmates, and less perceived skill in tasks requiring navigation or maneuvering through space. Feelings of engagement were related to grade, but no gender differences were found in either engagement or grade.
Hydrodynamic Analyses and Evaluation of New Fluid Film Bearing Concepts
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Dimofte, Florin
1998-01-01
Over the past several years, numerical and experimental investigations have been performed on a waved journal bearing. The research work was undertaken by Dr. Florin Dimofte, a Senior Research Associate in the Mechanical Engineering Department at the University of Toledo. Dr. Theo Keith, Distinguished University Professor in the Mechanical Engineering Department was the Technical Coordinator of the project. The wave journal bearing is a bearing with a slight but precise variation in its circular profile such that a waved profile is circumscribed on the inner bearing diameter. The profile has a wave amplitude that is equal to a fraction of the bearing clearance. Prior to this period of research on the wave bearing, computer codes were written and an experimental facility was established. During this period of research considerable effort was directed towards the study of the bearing's stability. The previously developed computer codes and the experimental facility were of critical importance in performing this stability research. A collection of papers and reports were written to describe the results of this work. The attached captures that effort and represents the research output during the grant period.
Motivation, characterization, and strategy for tissue engineering the temporomandibular joint disc.
Detamore, Michael S; Athanasiou, Kyriacos A
2003-12-01
The purpose of this review is to serve as the standard point of reference in guiding researchers investigating the tissue engineering of the temporomandibular joint (TMJ) disc. Tissue engineering of the TMJ disc is in its infancy, and currently there exists a gap between the tissue engineering community and the TMJ characterization community. The primary goal is to help bridge that gap by consolidating the characterization studies here as a reference to researchers attempting to tissue engineer the TMJ disc. A brief review of TMJ anatomy is provided, along with a description of relevant pathology, current treatment, and a rationale for engineering the TMJ disc. The biochemical composition and organization of the disc are reviewed, including glycosaminoglycan (GAG) and collagen content. The collagen of the disc is almost exclusively type I and primarily runs anteroposteriorly through the center and in a ringlike fashion around the periphery. The GAG content is approximately an order of magnitude less than that of hyaline cartilage, and although the distribution is not entirely clear, it seems as though chondroitin and dermatan sulfate are by far the primary GAGs. Cellular characterization and mechanical properties under compression, tension, and shear are reviewed as well. The cells of the disc are not chondrocytes, but rather resemble fibrocytes and fibrochondrocytes and may be of the same lineage. Mechanically, the disc is certainly anisotropic and nonhomogeneous. Finally, a review of efforts in tissue engineering and cell culture studies of the disc is provided and we close with a description of the direction we envision/propose for successful tissue engineering of the TMJ disc.
Fiber-reinforced scaffolds in soft tissue engineering
Wang, Wei; Fan, Yubo; Wang, Xiumei; Watari, Fumio
2017-01-01
Abstract Soft tissue engineering has been developed as a new strategy for repairing damaged or diseased soft tissues and organs to overcome the limitations of current therapies. Since most of soft tissues in the human body are usually supported by collagen fibers to form a three-dimensional microstructure, fiber-reinforced scaffolds have the advantage to mimic the structure, mechanical and biological environment of natural soft tissues, which benefits for their regeneration and remodeling. This article reviews and discusses the latest research advances on design and manufacture of novel fiber-reinforced scaffolds for soft tissue repair and how fiber addition affects their structural characteristics, mechanical strength and biological activities in vitro and in vivo. In general, the concept of fiber-reinforced scaffolds with adjustable microstructures, mechanical properties and degradation rates can provide an effective platform and promising method for developing satisfactory biomechanically functional implantations for soft tissue engineering or regenerative medicine. PMID:28798872
NASA Astrophysics Data System (ADS)
Sumbodo, Wirawan; Pardjono, Samsudi, Rahadjo, Winarno Dwi
2018-03-01
This study aims to determine the existing conditions of implementation of partnership management model of SMK with the industry on the mechanical engineering expertise in Central Java. The method used is descriptive analysis. The research result shows that the implementation of partnership management model of SMK based on new existing industry produces ready graduates of 62.5% which belongs to low category, although the partnership program of SMK with the industry is done well with the average score of 3.17. As many as 37.5% of SMK graduates of Mechanical Engineering Expertise Program choose to continue their studies or to be an entrepreneur. It is expected that the partnership model of SMK with the industry can be developed into a reference for government policy in developing SMK that is able to produce graduates who are ready to work according to the needs of partner industry.
NASA Technical Reports Server (NTRS)
Monroe, Joseph; Kelkar, Ajit
2003-01-01
The NASA PAIR program incorporated the NASA-Sponsored research into the undergraduate environment at North Carolina Agricultural and Technical State University. This program is designed to significantly improve undergraduate education in the areas of mathematics, science, engineering, and technology (MSET) by directly benefiting from the experiences of NASA field centers, affiliated industrial partners and academic institutions. The three basic goals of the program were enhancing core courses in MSET curriculum, upgrading core-engineering laboratories to compliment upgraded MSET curriculum, and conduct research training for undergraduates in MSET disciplines through a sophomore shadow program and through Research Experience for Undergraduates (REU) programs. Since the inception of the program nine courses have been modified to include NASA related topics and research. These courses have impacted over 900 students in the first three years of the program. The Electrical Engineering circuit's lab is completely re-equipped to include Computer controlled and data acquisition equipment. The Physics lab is upgraded to implement better sensory data acquisition to enhance students understanding of course concepts. In addition a new instrumentation laboratory in the department of Mechanical Engineering is developed. Research training for A&T students was conducted through four different programs: Apprentice program, Developers program, Sophomore Shadow program and Independent Research program. These programs provided opportunities for an average of forty students per semester.
Current Results and Proposed Activities in Microgravity Fluid Dynamics
NASA Technical Reports Server (NTRS)
Polezhaev, V. I.
1996-01-01
The Institute for Problems in Mechanics' Laboratory work in mathematical and physical modelling of fluid mechanics develops models, methods, and software for analysis of fluid flow, instability analysis, direct numerical modelling and semi-empirical models of turbulence, as well as experimental research and verification of these models and their applications in technological fluid dynamics, microgravity fluid mechanics, geophysics, and a number of engineering problems. This paper presents an overview of the results in microgravity fluid dynamics research during the last two years. Nonlinear problems of weakly compressible and compressible fluid flows are discussed.
Reconstructing the Antikythera Mechanism
NASA Astrophysics Data System (ADS)
Freeth, Tony
The Antikythera Mechanism is a geared astronomical calculating machine from ancient Greece. The extraordinary nature of this device has become even more apparent in recent years as a result of research under the aegis of the Antikythera Mechanism Research Project (AMRP) - an international collaboration of scientists, historians, museum staff, engineers, and imaging specialists. Though many questions still remain, we may now be close to reconstructing the complete machine. As a technological artifact, it is unique in the ancient world. Its brilliant design conception means that it is a landmark in the history of science and technology.
2011-11-01
FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT...those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other...NUMBER 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) U.S. Army Medical Research
Lewis Structures Technology, 1988. Volume 1: Structural Dynamics
NASA Technical Reports Server (NTRS)
1988-01-01
The specific purpose of the symposium was to familiarize the engineering structures community with the depth and range of research performed by the Structures Division of the Lewis Research Center and its academic and industrial partners. Sessions covered vibration control, fracture mechanics, ceramic component reliability, parallel computing, nondestructive testing, dynamical systems, fatigue and damage, wind turbines, hot section technology, structural mechanics codes, computational methods for dynamics, structural optimization, and applications of structural dynamics.
2016-05-01
research, Kunkler (2006) suggested that the similarities between computer simulation tools and robotic surgery systems (e.g., mechanized feedback...distribution is unlimited. 49 Davies B. A review of robotics in surgery . Proceedings of the Institution of Mechanical Engineers, Part H: Journal...ARL-TR-7683 ● MAY 2016 US Army Research Laboratory A Guide for Developing Human- Robot Interaction Experiments in the Robotic
Popoola, Segun I; Atayero, Aderemi A; Badejo, Joke A; Odukoya, Jonathan A; Omole, David O; Ajayi, Priscilla
2018-06-01
In this data article, we present and analyze the demographic data of undergraduates admitted into engineering programs at Covenant University, Nigeria. The population distribution of 2649 candidates admitted into Chemical Engineering, Civil Engineering, Computer Engineering, Electrical and Electronics Engineering, Information and Communication Engineering, Mechanical Engineering, and Petroleum Engineering programs between 2002 and 2009 are analyzed by gender, age, and state of origin. The data provided in this data article were retrieved from the student bio-data submitted to the Department of Admissions and Student Records (DASR) and Center for Systems and Information Services (CSIS) by the candidates during the application process into the various engineering undergraduate programs. These vital information is made publicly available, after proper data anonymization, to facilitate empirical research in the emerging field of demographics analytics in higher education. A Microsoft Excel spreadsheet file is attached to this data article and the data is thoroughly described for easy reuse. Descriptive statistics and frequency distributions of the demographic data are presented in tables, plots, graphs, and charts. Unrestricted access to these demographic data will facilitate reliable and evidence-based research findings for sustainable education in developing countries.
Re-Educating Jet-Engine-Researchers to Stay Relevant
NASA Astrophysics Data System (ADS)
Gal-Or, Benjamin
2016-06-01
To stay relevantly supported, jet-engine researchers, designers and operators should follow changing uses of small and large jet engines, especially those anticipated to be used by/in the next generation, JET-ENGINE-STEERED ("JES") fleets of jet drones but fewer, JES-Stealth-Fighter/Strike Aircraft. In addition, some diminishing returns from isolated, non-integrating, jet-engine component studies, vs. relevant, supersonic, shock waves control in fluidic-JES-side-effects on compressor stall dynamics within Integrated Propulsion Flight Control ("IPFC"), and/or mechanical JES, constitute key relevant methods that currently move to China, India, South Korea and Japan. The central roles of the jet engine as primary or backup flight controller also constitute key relevant issues, especially under post stall conditions involving induced engine-stress while participating in crash prevention or minimal path-time maneuvers to target. And when proper instructors are absent, self-study of the JES-STVS REVOLUTION is an updating must, where STVS stands for wing-engine-airframe-integrated, embedded stealthy-jet-engine-inlets, restructured engines inside Stealth, Tailless, canard-less, Thrust Vectoring IFPC Systems. Anti-terror and Airliners Super-Flight-Safety are anticipated to overcome US legislation red-tape that obstructs JES-add-on-emergency-kits-use.
Ice Accretion Measurements on an Airfoil and Wedge in Mixed-Phase Conditions
NASA Technical Reports Server (NTRS)
Struk, Peter; Bartkus, Tadas; Tsao, Jen-Ching; Currie, Tom; Fuleki, Dan
2015-01-01
This paper describes ice accretion measurements from experiments conducted at the National Research Council (NRC) of Canada's Research Altitude Test Facility during 2012. Due to numerous engine power loss events associated with high altitude convective weather, potential ice accretion within an engine due to ice crystal ingestion is being investigated collaboratively by NASA and NRC. These investigations examine the physical mechanisms of ice accretion on surfaces exposed to ice crystal and mixed phase conditions, similar to those believed to exist in core compressor regions of jet engines. A further objective of these tests is to examine scaling effects since altitude appears to play a key role in this icing process.
Learning about friction: group dynamics in engineering students' work with free body diagrams
NASA Astrophysics Data System (ADS)
Berge, Maria; Weilenmann, Alexandra
2014-11-01
In educational research, it is well-known that collaborative work on core conceptual issues in physics leads to significant improvements in students' conceptual understanding. In this paper, we explore collaborative learning in action, adding to previous research in engineering education with a specific focus on the students' use of free body diagrams in interaction. By looking at details in interaction among a group of three engineering students, we illustrate how they collectively construct a free body diagram together when learning introductory mechanics. In doing so, we have focused on both learning possibilities and the dynamic processes that take place in the learning activity. These findings have a number of implications for educational practice.
NASA Astrophysics Data System (ADS)
Stekolschik, Alexander, Prof.
2017-10-01
The bill of materials (BOM), which involves all parts and assemblies of the product, is the core of any mechanical or electronic product. The flexible and integrated management of engineering (Engineering Bill of Materials [eBOM]) and manufacturing (Manufacturing Bill of Materials [mBOM]) structures is the key to the creation of modern products in mechanical engineering companies. This paper presents a method framework for the creation and control of e- and, especially, mBOM. The requirements, resulting from the process of differentiation between companies that produce serialized or engineered-to-order products, are considered in the analysis phase. The main part of the paper describes different approaches to fully or partly automated creation of mBOM. The first approach is the definition of part selection rules in the generic mBOM templates. The mBOM can be derived from the eBOM for partly standardized products by using this method. Another approach is the simultaneous use of semantic rules, options, and parameters in both structures. The implementation of the method framework (selection of use cases) in a standard product lifecycle management (PLM) system is part of the research.
Tribological characteristics of silicon carbide whisker-reinforced alumina at elevated temperatures
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher
1991-01-01
The enhanced fracture toughness of whisker reinforced ceramics makes them attractive candidates for sliding components of advanced hear engines. Examples include piston rings and valve stems for Stirling engines and other low heat rejection devices. However, the tribological behavior of whisker reinforced ceramics is largely unknown. This is especially true for the applications described where use temperatures can vary from below ambient to well over 1000 C. An experimental research program to identify the dominant wear mechanism(s) for a silicon carbide whisker reinforced alumina composite, SiCw-Al2O3 is described. In addition, a wear mechanism model is developed to explain and corroborate the experimental results and to provide insight for material improvement.
Underwater striling engine design with modified one-dimensional model
NASA Astrophysics Data System (ADS)
Li, Daijin; Qin, Kan; Luo, Kai
2015-09-01
Stirling engines are regarded as an efficient and promising power system for underwater devices. Currently, many researches on one-dimensional model is used to evaluate thermodynamic performance of Stirling engine, but in which there are still some aspects which cannot be modeled with proper mathematical models such as mechanical loss or auxiliary power. In this paper, a four-cylinder double-acting Stirling engine for Unmanned Underwater Vehicles (UUVs) is discussed. And a one-dimensional model incorporated with empirical equations of mechanical loss and auxiliary power obtained from experiments is derived while referring to the Stirling engine computer model of National Aeronautics and Space Administration (NASA). The P-40 Stirling engine with sufficient testing results from NASA is utilized to validate the accuracy of this one-dimensional model. It shows that the maximum error of output power of theoretical analysis results is less than 18% over testing results, and the maximum error of input power is no more than 9%. Finally, a Stirling engine for UUVs is designed with Schmidt analysis method and the modified one-dimensional model, and the results indicate this designed engine is capable of showing desired output power.
NASA Technical Reports Server (NTRS)
1975-01-01
This NASA Dryden Flight Research Center photograph taken in 1975 shows the General Dynamic IPCS/F-111E Aardvark with a camouflage paint pattern. This prototype F-111E was used during the flight testing of the Integrated Propulsion Control System (IPCS). The wings of the IPCS/F-111E are swept back to near 60 degrees for supersonic flight. During the same period as F-111 TACT program, an F-111E Aardvark (#67-0115) was flown at the NASA Flight Research Center to investigate an electronic versus a conventional hydro-mechanical controlled engine. The program called integrated propulsion control system (IPCS) was a joint effort by NASA's Lewis Research Center and Flight Research Center, the Air Force's Flight Propulsion Laboratory and the Boeing, Honeywell and Pratt & Whitney companies. The left engine of the F-111E was selected for modification to an all electronic system. A Pratt & Whitney TF30-P-9 engine was modified and extensively laboratory, and ground-tested before installation into the F-111E. There were 14 IPCS flights made from 1975 through 1976. The flight demonstration program proved an engine could be controlled electronically, leading to a more efficient Digital Electronic Engine Control System flown in the F-15.
Electro-Thermal-Mechanical Simulation Capability Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, D
This is the Final Report for LDRD 04-ERD-086, 'Electro-Thermal-Mechanical Simulation Capability'. The accomplishments are well documented in five peer-reviewed publications and six conference presentations and hence will not be detailed here. The purpose of this LDRD was to research and develop numerical algorithms for three-dimensional (3D) Electro-Thermal-Mechanical simulations. LLNL has long been a world leader in the area of computational mechanics, and recently several mechanics codes have become 'multiphysics' codes with the addition of fluid dynamics, heat transfer, and chemistry. However, these multiphysics codes do not incorporate the electromagnetics that is required for a coupled Electro-Thermal-Mechanical (ETM) simulation. There aremore » numerous applications for an ETM simulation capability, such as explosively-driven magnetic flux compressors, electromagnetic launchers, inductive heating and mixing of metals, and MEMS. A robust ETM simulation capability will enable LLNL physicists and engineers to better support current DOE programs, and will prepare LLNL for some very exciting long-term DoD opportunities. We define a coupled Electro-Thermal-Mechanical (ETM) simulation as a simulation that solves, in a self-consistent manner, the equations of electromagnetics (primarily statics and diffusion), heat transfer (primarily conduction), and non-linear mechanics (elastic-plastic deformation, and contact with friction). There is no existing parallel 3D code for simulating ETM systems at LLNL or elsewhere. While there are numerous magnetohydrodynamic codes, these codes are designed for astrophysics, magnetic fusion energy, laser-plasma interaction, etc. and do not attempt to accurately model electromagnetically driven solid mechanics. This project responds to the Engineering R&D Focus Areas of Simulation and Energy Manipulation, and addresses the specific problem of Electro-Thermal-Mechanical simulation for design and analysis of energy manipulation systems such as magnetic flux compression generators and railguns. This project compliments ongoing DNT projects that have an experimental emphasis. Our research efforts have been encapsulated in the Diablo and ALE3D simulation codes. This new ETM capability already has both internal and external users, and has spawned additional research in plasma railgun technology. By developing this capability Engineering has become a world-leader in ETM design, analysis, and simulation. This research has positioned LLNL to be able to compete for new business opportunities with the DoD in the area of railgun design. We currently have a three-year $1.5M project with the Office of Naval Research to apply our ETM simulation capability to railgun bore life issues and we expect to be a key player in the railgun community.« less
Hydrogen combustion in tomorrow's energy technology
NASA Astrophysics Data System (ADS)
Peschka, W.
The fundamental characteristics of hydrogen combustion and the current status of hydrogen energy applications technology are reviewed, with an emphasis on research being pursued at DFVLR. Topics addressed include reaction mechanisms and pollution, steady-combustion devices (catalytic heaters, H2/air combustors, H2/O2 rocket engines, H2-fueled jet engines, and gas and steam turbine processes), unsteady combustion (in internal-combustion engines with internal or external mixture formation), and feasibility studies of hydrogen-powered automobiles. Diagrams, drawings, graphs, and photographs are provided.
NASA Astrophysics Data System (ADS)
Wang, Qinpeng; Yang, Jianguo; Xin, Dong; He, Yuhai; Yu, Yonghua
2018-05-01
In this paper, based on the characteristic analyzing of the mechanical fuel injection system for the marine medium-speed diesel engine, a sectional high-pressure common rail fuel injection system is designed, rated condition rail pressure of which is 160MPa. The system simulation model is built and the performance of the high pressure common rail fuel injection system is analyzed, research results provide the technical foundation for the system engineering development.
A Survey On Management Of Software Engineering In Japan
NASA Astrophysics Data System (ADS)
Kadono, Yasuo; Tsubaki, Hiroe; Tsuruho, Seishiro
2008-05-01
The purpose of this study is to clarity the mechanism of how software engineering capabilities relate to the business performance of IT vendors in Japan. To do this, we developed a structural model using factors related to software engineering, business performance and competitive environment. By analyzing the data collected from 78 major IT vendors in Japan, we found that superior deliverables and business performance were correlated with the effort expended particularly on human resource development, quality assurance, research and development and process improvement.
Can Interactive Web-Based CAD Tools Improve the Learning of Engineering Drawing? A Case Study
ERIC Educational Resources Information Center
Pando Cerra, Pablo; Suárez González, Jesús M.; Busto Parra, Bernardo; Rodríguez Ortiz, Diana; Álvarez Peñín, Pedro I.
2014-01-01
Many current Web-based learning environments facilitate the theoretical teaching of a subject but this may not be sufficient for those disciplines that require a significant use of graphic mechanisms to resolve problems. This research study looks at the use of an environment that can help students learn engineering drawing with Web-based CAD…
Light Weight Portable Plasma Medical Device - Plasma Engineering Research Laboratory
2011-10-01
Millennial Student. 15. Thiyagarajan, M. (2011). Portable Plasma Biomedical Device for Cancer Treatment. Irvine, California: ASME Emerging...American Society of Mechanical Engineers Sigma Xi Toastmasters International Club MIT Entrepreneur Club Eta Kappa Nu Tau Beta Pi Institute of...Learning Environment. Corpus Christi, TX: TAMUCC 1st Faculty Symposium: Course Design for the Millennial Student. Thiyagarajan, M. (2011). Portable
Obituary: Frank Albini, 1936-2005
Pat Andrews
2006-01-01
Frank Albini, fire behavior research scientist from 1973 to 1985, died of cancer at the age of 69 on 3 December 2005. He was born in Madera, California, where he graduated from high school. He attended the California Institute of Technology and earned a BS in Aeronautical Engineering in 1958, and a year later an MS in Mechanical Engineering. He was awarded a PhD in...
Summary of Research 1998, Department of Mechanical Engineering.
1999-08-01
thermoacoustic behavior in strong zero-mean oscillatory flows with potential application to the design of heat exchangers in thermoacoustic engines...important feature in the thermal characterization of microtubes , which are to be used in microheat exchangers . DoD KEY TECHNOLOGY AREA: Modeling and...Simulation KEYWORDS: Laminar Duct Flows, Convection and Conduction Heat Transfer, Axial Conduction, Micro- heat Exchang - ers DEVELOPMENT AND CALIBRATION
Late postacute neurologic rehabilitation: neuroscience, engineering, and clinical programs.
Bach-y-Rita, Paul
2003-08-01
This lecture highlights my career in rehabilitation research. My principal efforts in rehabilitation have been to study (1) mechanisms of brain plasticity related to reorganization of the brain and recovery of function; (2) late postacute rehabilitation; (3) sensory substitution; and (4) rehabilitation engineering. A principal goal has been to aid in the development of a strong scientific base in rehabilitation.
NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.
1994-01-01
The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. Projects are being conducted by graduate students and faculty advisors in the Department of Materials Science and Engineering, as well as in the Department of Civil Engineering and Applied Mechanics, at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between January 1 and June 30, 1994. These results were presented at the Fifth Annual NASA LA2ST Grant Review Meeting held at the Langley Research Center in July of 1994. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, lightweight aerospace alloys, composites, and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies.
Multifaceted Learning Objective Assessment in a Mechanical Engineering Capstone Design Course
NASA Astrophysics Data System (ADS)
Baker, Nicholas S.
This thesis details multi method research approaches that have been used to study student learning objective instruction and assessment in the mechanical engineering (ME) capstone course at the University of Nevada, Reno (UNR). A primary focus of the research is to evaluate the pilot implementation of a Writing Fellows (WF) program in the ME capstone course, which has been assessed using a variety of techniques. The assessment generally indicates positive results. In particular, students favor the continuation of the program and find it more helpful than group consultations within the University Writing Center (UWC) alone. Self-assessment by the students indicates higher confidence in their communication skills, while preliminary analysis suggests that the writing fellow improved the scores of graded assignments by approximately one-third of a letter grade overall. Assessment efforts also highlight the need for deeper interaction between the WF and engineering faculty. A secondary focus of this research presents a methodology that has been developed and used to analyze how the Accreditation Board for Engineering and Technology's (ABET's) current Criterion 3 Student Outcomes (SOs) have been assessed in UNR's ME capstone class over several academic years. The methodology generally finds levels of ABET SO assessment in agreement with departmental and industry-held expectations for capstone courses at large. Finally, an analysis of student grades in the capstone course finds significant differences across semesters and identifies several potential causes.
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Abumeri, Galib H.
2000-01-01
Aircraft engines are assemblies of dynamically interacting components. Engine updates to keep present aircraft flying safely and engines for new aircraft are progressively required to operate in more demanding technological and environmental requirements. Designs to effectively meet those requirements are necessarily collections of multi-scale, multi-level, multi-disciplinary analysis and optimization methods and probabilistic methods are necessary to quantify respective uncertainties. These types of methods are the only ones that can formally evaluate advanced composite designs which satisfy those progressively demanding requirements while assuring minimum cost, maximum reliability and maximum durability. Recent research activities at NASA Glenn Research Center have focused on developing multi-scale, multi-level, multidisciplinary analysis and optimization methods. Multi-scale refers to formal methods which describe complex material behavior metal or composite; multi-level refers to integration of participating disciplines to describe a structural response at the scale of interest; multidisciplinary refers to open-ended for various existing and yet to be developed discipline constructs required to formally predict/describe a structural response in engine operating environments. For example, these include but are not limited to: multi-factor models for material behavior, multi-scale composite mechanics, general purpose structural analysis, progressive structural fracture for evaluating durability and integrity, noise and acoustic fatigue, emission requirements, hot fluid mechanics, heat-transfer and probabilistic simulations. Many of these, as well as others, are encompassed in an integrated computer code identified as Engine Structures Technology Benefits Estimator (EST/BEST) or Multi-faceted/Engine Structures Optimization (MP/ESTOP). The discipline modules integrated in MP/ESTOP include: engine cycle (thermodynamics), engine weights, internal fluid mechanics, cost, mission and coupled structural/thermal, various composite property simulators and probabilistic methods to evaluate uncertainty effects (scatter ranges) in all the design parameters. The objective of the proposed paper is to briefly describe a multi-faceted design analysis and optimization capability for coupled multi-discipline engine structures optimization. Results are presented for engine and aircraft type metrics to illustrate the versatility of that capability. Results are also presented for reliability, noise and fatigue to illustrate its inclusiveness. For example, replacing metal rotors with composites reduces the engine weight by 20 percent, 15 percent noise reduction, and an order of magnitude improvement in reliability. Composite designs exist to increase fatigue life by at least two orders of magnitude compared to state-of-the-art metals.
Microfabrication of hierarchical structures for engineered mechanical materials
NASA Astrophysics Data System (ADS)
Vera Canudas, Marc
Materials found in nature present, in some cases, unique properties from their constituents that are of great interest in engineered materials for applications ranging from structural materials for the construction of bridges, canals and buildings to the fabrication of new lightweight composites for airplane and automotive bodies, to protective thin film coatings, amongst other fields. Research in the growing field of biomimetic materials indicates that the micro-architectures present in natural materials are critical to their macroscopic mechanical properties. A better understanding of the effect that structure and hierarchy across scales have on the material properties will enable engineered materials with enhanced properties. At the moment, very few theoretical models predict mechanical properties of simple materials based on their microstructures. Moreover these models are based on observations from complex biological systems. One way to overcome this challenge is through the use of microfabrication techniques to design and fabricate simple materials, more appropriate for the study of hierarchical organizations and microstructured materials. Arrays of structures with controlled geometry and dimension can be designed and fabricated at different length scales, ranging from a few hundred nanometers to centimeters, in order to mimic similar systems found in nature. In this thesis, materials have been fabricated in order to gain fundamental insight into the complex hierarchical materials found in nature and to engineer novel materials with enhanced mechanical properties. The materials fabricated here were mechanically characterized and compared to simple mechanics models to describe their behavior with the goal of applying the knowledge acquired to the design and synthesis of future engineered materials with novel properties.
NREL Receives Editors' Choice Awards for Supercomputer Research | News |
function," Beckham said. "We followed up these molecular simulations with experimental work to Award. The awards recognize outstanding research in computational molecular science and engineering Mechanisms of Cellulose-Active Enzymes Using Molecular Simulation" at the AIChE 2014 Annual Meeting
Spherical Joint Piston and Connecting Rod Developed
NASA Technical Reports Server (NTRS)
1996-01-01
Under an interagency agreement with the Department of Energy, the NASA Lewis Research Center manages a Heavy-Duty Diesel Engine Technology (HDET) research program. The overall program objectives are to reduce fuel consumption through increased engine efficiency, reduce engine exhaust emissions, and provide options for the use of alternative fuels. The program is administered with a balance of research contracts, university research grants, and focused in-house research. The Cummins Engine Company participates in the HDET program under a cost-sharing research contract. Cummins is researching and developing in-cylinder component technologies for heavy-duty diesel engines. An objective of the Cummins research is to develop technologies for a low-emissions, 55-percent thermal efficiency (LE-55) engine. The best current-production engines in this class achieve about 46-percent thermal efficiency. Federal emissions regulations are driving this technology. Regulations for heavy duty diesel engines were tightened in 1994, more demanding emissions regulations are scheduled for 1998, and another step is planned for 2002. The LE-55 engine emissions goal is set at half of the 1998 regulation level and is consistent with plans for 2002 emissions regulations. LE-55 engine design requirements to meet the efficiency target dictate a need to operate at higher peak cylinder pressures. A key technology being developed and evaluated under the Cummins Engine Company LE-55 engine concept is the spherical joint piston and connecting rod. Unlike conventional piston and connecting rod arrangements which are joined by a pin forming a hinged joint, the spherical joint piston and connecting rod use a ball-and-socket joint. The ball-and-socket arrangement enables the piston to have an axisymmetric design allowing rotation within the cylinder. The potential benefits of piston symmetry and rotation are reduced scuffing, improved piston ring sealing, improved lubrication, mechanical and thermal load symmetry, reduced bearing stresses, reduced running clearances, and reduced oil consumption. The spherical joint piston is a monolithic, squeeze-cast, fiber-reinforced aluminum piston. The connecting rod has a ball end that seats on a spherical saddle within the piston and is retained by a pair of aluminum bronze holder rings. The holder rings are secured by a threaded ring that mates with the piston. As part of the ongoing research and development activity, the Cummins Engine Company successfully completed a 100-hr test of the spherical joint piston and connecting rod at LE- 55 peak steady-state engine conditions. In addition, a 100-hr transient cycle test that varied engine conditions between LE-55 no-load and LE-55 full-load was successfully completed.
Fiber-Based Tissue Engineering: Progress, Challenges, and Opportunities
Tamayol, Ali; Akbari, Mohsen; Annabi, Nasim; Paul, Arghya; Khademhosseini, Ali; Juncker, David
2013-01-01
Tissue engineering aims to improve the function of diseased or damaged organs by creating biological substitutes. To fabricate a functional tissue, the engineered construct should mimic the physiological environment including its structural, topographical, and mechanical properties. Moreover, the construct should facilitate nutrients and oxygen diffusion as well as removal of metabolic waste during tissue regeneration. In the last decade, fiber-based techniques such as weaving, knitting, braiding, as well as electrospinning, and direct writing have emerged as promising platforms for making 3D tissue constructs that can address the above mentioned challenges. Here, we critically review the techniques used to form cell-free and cell-laden fibers and to assemble them into scaffolds. We compare their mechanical properties, morphological features and biological activity. We discuss current challenges and future opportunities of fiber-based tissue engineering (FBTE) for use in research and clinical practice. PMID:23195284
2001-08-06
The test of twin Linear Aerospike XRS-2200 engines, originally built for the X-33 program, was performed on August 6, 2001 at NASA's Sternis Space Center, Mississippi. The engines were fired for the planned 90 seconds and reached a planned maximum power of 85 percent. NASA's Second Generation Reusable Launch Vehicle Program , also known as the Space Launch Initiative (SLI), is making advances in propulsion technology with this third and final successful engine hot fire, designed to test electro-mechanical actuators. Information learned from this hot fire test series about new electro-mechanical actuator technology, which controls the flow of propellants in rocket engines, could provide key advancements for the propulsion systems for future spacecraft. The Second Generation Reusable Launch Vehicle Program, led by NASA's Marshall Space Flight Center in Huntsville, Alabama, is a technology development program designed to increase safety and reliability while reducing costs for space travel. The X-33 program was cancelled in March 2001.
Irastorza, Ramiro M.; Drouin, Bernard; Blangino, Eugenia; Mantovani, Diego
2015-01-01
Small diameter tissue-engineered arteries improve their mechanical and functional properties when they are mechanically stimulated. Applying a suitable stress and/or strain with or without a cycle to the scaffolds and cells during the culturing process resides in our ability to generate a suitable mechanical model. Collagen gel is one of the most used scaffolds in vascular tissue engineering, mainly because it is the principal constituent of the extracellular matrix for vascular cells in human. The mechanical modeling of such a material is not a trivial task, mainly for its viscoelastic nature. Computational and experimental methods for developing a suitable model for collagen gels are of primary importance for the field. In this research, we focused on mechanical properties of collagen gels under unconfined compression. First, mechanical viscoelastic models are discussed and framed in the control system theory. Second, models are fitted using system identification. Several models are evaluated and two nonlinear models are proposed: Mooney-Rivlin inspired and Hammerstein models. The results suggest that Mooney-Rivlin and Hammerstein models succeed in describing the mechanical behavior of collagen gels for cyclic tests on scaffolds (with best fitting parameters 58.3% and 75.8%, resp.). When Akaike criterion is used, the best is the Mooney-Rivlin inspired model. PMID:25834840
Irastorza, Ramiro M; Drouin, Bernard; Blangino, Eugenia; Mantovani, Diego
2015-01-01
Small diameter tissue-engineered arteries improve their mechanical and functional properties when they are mechanically stimulated. Applying a suitable stress and/or strain with or without a cycle to the scaffolds and cells during the culturing process resides in our ability to generate a suitable mechanical model. Collagen gel is one of the most used scaffolds in vascular tissue engineering, mainly because it is the principal constituent of the extracellular matrix for vascular cells in human. The mechanical modeling of such a material is not a trivial task, mainly for its viscoelastic nature. Computational and experimental methods for developing a suitable model for collagen gels are of primary importance for the field. In this research, we focused on mechanical properties of collagen gels under unconfined compression. First, mechanical viscoelastic models are discussed and framed in the control system theory. Second, models are fitted using system identification. Several models are evaluated and two nonlinear models are proposed: Mooney-Rivlin inspired and Hammerstein models. The results suggest that Mooney-Rivlin and Hammerstein models succeed in describing the mechanical behavior of collagen gels for cyclic tests on scaffolds (with best fitting parameters 58.3% and 75.8%, resp.). When Akaike criterion is used, the best is the Mooney-Rivlin inspired model.
Multiscale Poly-(ϵ-caprolactone) Scaffold Mimicking Nonlinearity in Tendon Tissue Mechanics
Banik, Brittany L.; Lewis, Gregory S.; Brown, Justin L.
2016-01-01
Regenerative medicine plays a critical role in the future of medicine. However, challenges remain to balance stem cells, biomaterial scaffolds, and biochemical factors to create successful and effective scaffold designs. This project analyzes scaffold architecture with respect to mechanical capability and preliminary mesenchymal stem cell response for tendon regeneration. An electrospun fiber scaffold with tailorable properties based on a “Chinese-fingertrap” design is presented. The unique criss-crossed fiber structures demonstrate non-linear mechanical response similar to that observed in native tendon. Mechanical testing revealed that optimizing the fiber orientation resulted in the characteristic “S”-shaped curve, demonstrating a toe region and linear elastic region. This project has promising research potential across various disciplines: vascular engineering, nerve regeneration, and ligament and tendon tissue engineering. PMID:27141530
In Brief: Suresh confirmed as new head of U.S. National Science Foundation
NASA Astrophysics Data System (ADS)
Showstack, Randy
2010-10-01
On 29 September, the U.S. Senate unanimously confirmed Subra Suresh to be the new director of the U.S. National Science Foundation (NSF) for a 6-year term. Suresh, nominated for the position by U.S. president Barack Obama on 8 June, could be sworn in by mid-October. Suresh has been dean of the School of Engineering and the Vannevar Bush Professor of Engineering at Massachusetts Institute of Technology, Cambridge. His work as a researcher, educator, and academic administrator has spanned a number of disciplines including mechanical engineering, materials science, and biomedical engineering.
Structural dynamics verification facility study
NASA Technical Reports Server (NTRS)
Kiraly, L. J.; Hirchbein, M. S.; Mcaleese, J. M.; Fleming, D. P.
1981-01-01
The need for a structural dynamics verification facility to support structures programs was studied. Most of the industry operated facilities are used for highly focused research, component development, and problem solving, and are not used for the generic understanding of the coupled dynamic response of major engine subsystems. Capabilities for the proposed facility include: the ability to both excite and measure coupled structural dynamic response of elastic blades on elastic shafting, the mechanical simulation of various dynamical loadings representative of those seen in operating engines, and the measurement of engine dynamic deflections and interface forces caused by alternative engine mounting configurations and compliances.
1980-09-01
Research Conseil national Council Canada de recherches Canada LEY EL < PROPERTIES OF BASE STOCKS OBTAINED FROM USED ENGINE OILS BY ACID /CLAY RE-REFINING DTIC...MECHANICAL ENGINEERING REPORT Canad NC MP75 NRC NO. 18719 PROPERTIES OF BASE STOCKS OBTAINED FROM USED ENGINE OILS BY ACID /CLAY RE-REFINING (PROPRIETES...refined Base Stock ..................................... 10 3 Physical Test Data of Acid /Clay Process - Re-refined Base Stock Oils ............ 11 4
NASA Astrophysics Data System (ADS)
Chen, Daniel T. N.; Wen, Qi; Janmey, Paul A.; Crocker, John C.; Yodh, Arjun G.
2010-04-01
Research on soft materials, including colloidal suspensions, glasses, pastes, emulsions, foams, polymer networks, liquid crystals, granular materials, and cells, has captured the interest of scientists and engineers in fields ranging from physics and chemical engineering to materials science and cell biology. Recent advances in rheological methods to probe mechanical responses of these complex media have been instrumental for producing new understanding of soft matter and for generating novel technological applications. This review surveys these technical developments and current work in the field, with partial aim to illustrate open questions for future research.
Elevated temperature biaxial fatigue
NASA Technical Reports Server (NTRS)
Jordan, E. H.
1983-01-01
Biaxial fatigue is often encountered in the complex thermo-mechanical loadings present in gas turbine engines. Engine strain histories can involve non-constant temperature, mean stress, creep, environmental effects, both isotropic and anisotropic materials and non-proportional loading. Life prediction for the general case involving all the above factors is not a practicable research project. The current research program is limited to isothermal fatigue at room temperature and 1200 F of Hastalloy-X for both proportional and non-proportional loading. An improved method for predicting the fatigue life and deformation response under biaxial cycle loading is sought.
NASA Technical Reports Server (NTRS)
1994-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in the areas of (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving Langley facilities and scientists; and (4) computer science.
Abate-Shen, Cory; Brown, Powel H.; Colburn, Nancy H.; Gerner, Eugene W.; Green, Jeffery E.; Lipkin, Martin; Nelson, William G.; Threadgill, David
2009-01-01
Summary The past decade has witnessed the unveiling of a powerful new generation of genetically-engineered mouse (GEM) models of human cancer, which are proving to be highly effective for elucidating cancer mechanisms and interrogating novel experimental therapeutics. This new generation of GEM models are well-suited for chemoprevention research, particularly for investigating progressive stages of carcinogenesis, identifying biomarkers for early detection and intervention, and pre-clinical assessment of novel agents or combinations of agents. Here we discuss opportunities and challenges for the application of GEM models in prevention research, as well as strategies to maximize their relevance for human cancer. PMID:19138951
Salinas, Evelia Y; Hu, Jerry C; Athanasiou, Kyriacos
2018-04-26
The use of tissue-engineered articular cartilage (TEAC) constructs has the potential to become a powerful treatment option for cartilage lesions resulting from trauma or early stages of pathology. Although fundamental tissue-engineering strategies based on the use of scaffolds, cells, and signals have been developed, techniques that lead to biomimetic AC constructs that can be translated to in vivo use are yet to be fully confirmed. Mechanical stimulation during tissue culture can be an effective strategy to enhance the mechanical, structural, and cellular properties of tissue-engineered constructs toward mimicking those of native AC. This review focuses on the use of mechanical stimulation to attain and enhance the properties of AC constructs needed to translate these implants to the clinic. In vivo, mechanical loading at maximal and supramaximal physiological levels has been shown to be detrimental to AC through the development of degenerative changes. In contrast, multiple studies have revealed that during culture, mechanical stimulation within narrow ranges of magnitude and duration can produce anisotropic, mechanically robust AC constructs with high cellular viability. Significant progress has been made in evaluating a variety of mechanical stimulation techniques on TEAC, either alone or in combination with other stimuli. These advancements include determining and optimizing efficacious loading parameters (e.g., duration and frequency) to yield improvements in construct design criteria, such as collagen II content, compressive stiffness, cell viability, and fiber organization. With the advancement of mechanical stimulation as a potent strategy in AC tissue engineering, a compendium detailing the results achievable by various stimulus regimens would be of great use for researchers in academia and industry. The objective is to list the qualitative and quantitative effects that can be attained when direct compression, hydrostatic pressure, shear, and tensile loading are used to tissue-engineer AC. Our goal is to provide a practical guide to their use and optimization of loading parameters. For each loading condition, we will also present and discuss benefits and limitations of bioreactor configurations that have been used. The intent is for this review to serve as a reference for including mechanical stimulation strategies as part of AC construct culture regimens.
Research in nonlinear structural and solid mechanics
NASA Technical Reports Server (NTRS)
Mccomb, H. G., Jr. (Compiler); Noor, A. K. (Compiler)
1981-01-01
Recent and projected advances in applied mechanics, numerical analysis, computer hardware and engineering software, and their impact on modeling and solution techniques in nonlinear structural and solid mechanics are discussed. The fields covered are rapidly changing and are strongly impacted by current and projected advances in computer hardware. To foster effective development of the technology perceptions on computing systems and nonlinear analysis software systems are presented.
NASA Astrophysics Data System (ADS)
Cornwell, Michael D.
Combustion at high pressure in applications such as rocket engines and gas turbine engines commonly experience destructive combustion instabilities. These instabilities results from interactions between combustion heat release, fluid mechanics and acoustics. This research explores the significant affect of unstable fluid mechanics processes in augmenting unstable periodic combustion heat release. The frequency of the unstable heat release may shift to match one of the combustors natural acoustic frequencies which then can result in significant energy exchange from chemical to acoustic energy resulting in thermoacoustic instability. The mechanisms of the fluid mechanics in coupling combustion to acoustics are very broad with many varying mechanisms explained in detail in the first chapter. Significant effort is made in understanding these mechanisms in this research in order to find commonalities, useful for mitigating multiple instability mechanisms. The complexity of combustion instabilities makes mitigation of combustion instabilities very difficult as few mitigation methods have historically proven to be very effective for broad ranges of combustion instabilities. This research identifies turbulence intensity near the forward stagnation point and movement of the forward stagnation point as a common link in what would otherwise appear to be very different instabilities. The most common method of stabilization of both premixed and diffusion flame combustion is through the introduction of swirl. Reverse flow along the centerline is introduced to transport heat and chemically active combustion products back upstream to sustain combustion. This research develops methods to suppress the movement of the forward stagnation point without suppressing the development of the vortex breakdown process which is critical to the transport of heat and reactive species necessary for flame stabilization. These methods are useful in suppressing the local turbulence at the forward stagnation point, limiting dissipation of heat and reactive species significantly improving stability. Combustion hardware is developed and tested to demonstrate the stability principles developed as part of this research. In order to more completely understand combustion instability a very unique method of combustion was researched where there are no discrete points of combustion initiation such as the forward stagnation point typical in many combustion systems including swirl and jet wake stabilized combustion. This class of combustion which has empirical evidence of great stability and efficient combustion with low CO, NOx and UHC emissions is described as high oxidization temperature distributed combustion. This mechanism of combustion is shown to be stable largely because there are no stagnations points susceptible to fluid mechanic perturbations. The final topic of research is active combustion control by fuel modulation. This may be the only practical method of controlling most instabilities with a single technique. As there are many papers reporting active combustion control algorithms this research focused on the complexities of the physics of fuel modulation at frequencies up to 1000 Hz with proportionally controlled flow amplitude. This research into the physics of high speed fluid movement, oscillation mechanical mechanisms and electromagnetics are demonstrated by development and testing of a High Speed Latching Oscillator Valve.
Environment assisted degradation mechanisms in advanced light metals
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Stoner, Glenn E.; Swanson, Robert E.
1988-01-01
The general goals of the research program are to characterize alloy behavior quantitatively and to develop predictive mechanisms for environmental failure modes. Successes in this regard will provide the basis for metallurgical optimization of alloy performance, for chemical control of aggressive environments, and for engineering life prediction with damage tolerance and long term reliability.
Evaluating the Learning Process of Mechanical CAD Students
ERIC Educational Resources Information Center
Hamade, R. F.; Artail, H. A.; Jaber, M. Y.
2007-01-01
There is little theoretical or experimental research on how beginner-level trainees learn CAD skills in formal training sessions. This work presents findings on how trainees develop their skills in utilizing a solid mechanical CAD tool (Pro/Engineer version 2000i[squared] and later version Wildfire). Exercises at the beginner and intermediate…
Tissue constructs: platforms for basic research and drug discovery.
Elson, Elliot L; Genin, Guy M
2016-02-06
The functions, form and mechanical properties of cells are inextricably linked to their extracellular environment. Cells from solid tissues change fundamentally when, isolated from this environment, they are cultured on rigid two-dimensional substrata. These changes limit the significance of mechanical measurements on cells in two-dimensional culture and motivate the development of constructs with cells embedded in three-dimensional matrices that mimic the natural tissue. While measurements of cell mechanics are difficult in natural tissues, they have proven effective in engineered tissue constructs, especially constructs that emphasize specific cell types and their functions, e.g. engineered heart tissues. Tissue constructs developed as models of disease also have been useful as platforms for drug discovery. Underlying the use of tissue constructs as platforms for basic research and drug discovery is integration of multiscale biomaterials measurement and computational modelling to dissect the distinguishable mechanical responses separately of cells and extracellular matrix from measurements on tissue constructs and to quantify the effects of drug treatment on these responses. These methods and their application are the main subjects of this review.
Tissue constructs: platforms for basic research and drug discovery
Elson, Elliot L.; Genin, Guy M.
2016-01-01
The functions, form and mechanical properties of cells are inextricably linked to their extracellular environment. Cells from solid tissues change fundamentally when, isolated from this environment, they are cultured on rigid two-dimensional substrata. These changes limit the significance of mechanical measurements on cells in two-dimensional culture and motivate the development of constructs with cells embedded in three-dimensional matrices that mimic the natural tissue. While measurements of cell mechanics are difficult in natural tissues, they have proven effective in engineered tissue constructs, especially constructs that emphasize specific cell types and their functions, e.g. engineered heart tissues. Tissue constructs developed as models of disease also have been useful as platforms for drug discovery. Underlying the use of tissue constructs as platforms for basic research and drug discovery is integration of multiscale biomaterials measurement and computational modelling to dissect the distinguishable mechanical responses separately of cells and extracellular matrix from measurements on tissue constructs and to quantify the effects of drug treatment on these responses. These methods and their application are the main subjects of this review. PMID:26855763
Future fundamental combustion research for aeropropulsion systems
NASA Technical Reports Server (NTRS)
Mularz, E. J.
1985-01-01
Physical fluid mechanics, heat transfer, and chemical kinetic processes which occur in the combustion chamber of aeropropulsion systems were investigated. With the component requirements becoming more severe for future engines, the current design methodology needs the new tools to obtain the optimum configuration in a reasonable design and development cycle. Research efforts in the last few years were encouraging but to achieve these benefits research is required into the fundamental aerothermodynamic processes of combustion. It is recommended that research continues in the areas of flame stabilization, combustor aerodynamics, heat transfer, multiphase flow and atomization, turbulent reacting flows, and chemical kinetics. Associated with each of these engineering sciences is the need for research into computational methods to accurately describe and predict these complex physical processes. Research needs in each of these areas are highlighted.
NASA Technical Reports Server (NTRS)
Littell, Justin D.
2013-01-01
Increasingly, carbon composite structures are being used in aerospace applications. Their highstrength, high-stiffness, and low-weight properties make them good candidates for replacing many aerospace structures currently made of aluminum or steel. Recently, many of the aircraft engine manufacturers have developed new commercial jet engines that will use composite fan cases. Instead of using traditional composite layup techniques, these new fan cases will use a triaxially braided pattern, which improves case performance. The impact characteristics of composite materials for jet engine fan case applications have been an important research topic because Federal regulations require that an engine case be able to contain a blade and blade fragments during an engine blade-out event. Once the impact characteristics of these triaxial braided materials become known, computer models can be developed to simulate a jet engine blade-out event, thus reducing cost and time in the development of these composite jet engine cases. The two main problems that have arisen in this area of research are that the properties for these materials have not been fully determined and computationally efficient computer models, which incorporate much of the microscale deformation and failure mechanisms, are not available. The research reported herein addresses some of the deficiencies present in previous research regarding these triaxial braided composite materials. The current research develops new techniques to accurately quantify the material properties of the triaxial braided composite materials. New test methods are developed for the polymer resin composite constituent and representative composite coupons. These methods expand previous research by using novel specimen designs along with using a noncontact measuring system that is also capable of identifying and quantifying many of the microscale failure mechanisms present in the materials. Finally, using the data gathered, a new hybrid micromacromechanical computer model is created to simulate the behavior of these composite material systems under static and ballistic impact loading using the test data acquired. The model also quantifies the way in which the fiber/matrix interface affects material response under static and impact loading. The results show that the test methods are capable of accurately quantifying the polymer resin under a variety of strain rates and temperature for three loading conditions. The resin strength and stiffness data show a clear rate and temperature dependence. The data also show the hydrostatic stress effects and hysteresis, all of which can be used by researchers developing composite constitutive models for the resins. The results for the composite data reveal noticeable differences in strength, failure strain, and stiffness in the different material systems presented. The investigations into the microscale failure mechanisms provide information about the nature of the different material system behaviors. Finally, the developed computer model predicts composite static strength and stiffness to within 10 percent of the gathered test data and also agrees with composite impact data, where available.
Heterogeneous mass transfer in HRE in the presence of electrostatic field research
NASA Astrophysics Data System (ADS)
Reshetnikov, S. M.; Zyryanov, I. A.; Budin, A. G.; Pozolotin, A. P.
2017-01-01
The paper presents research results of polymethylmethacrylate (PMMA) combustion in a hybrid rocket engine (HRE) under the influence of an electrostatic field. It is shown that the main mechanism of electrostatic field influence on the combustion rate is process changes in the condensed phase.
78 FR 29117 - Marine Mammals; File No. 17005
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-17
... Mechanical Engineering, Atlanta, GA 30332 to conduct research on cetacean species not listed under the... elastic properties of cetacean head tissues. The work also would allow researchers to: (1) Determine any short term changes in soft tissue elasticity if an animal dies during the stranding response, and (2...
2014-05-01
shelters, tents and fabric covers, mechanical aerial delivery parts and components, kitchens , and combat feeding items (see Figure 4). NSRDEC’s PIF is...generic terms and refrain from revealing confidential or classified information. Research hypotheses are as follows: H1: The PIF leadership predicts
NASA Technical Reports Server (NTRS)
1995-01-01
This issue contains articles with a special focus on Computer-Aided design and engineering amd a research report on the Ames Research Center. Other subjects in this issue are: Electronic Components and Circuits, Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Manufacturing/Fabrication, Mathematics and Information Sciences and Life Sciences
NASA Technical Reports Server (NTRS)
1984-01-01
Opportunities for research as part of NASA-sponsored programs at the JPL cover: Earth and space sciences; systems; telecommunications science and engineering; control and energy conversion; applied mechanics; information systems; and observational systems. General information on applying for an award for tenure as a guest investigator, conditions, of the award, and details of the application procedure are provided.
Protein mechanics: from single molecules to functional biomaterials.
Li, Hongbin; Cao, Yi
2010-10-19
Elastomeric proteins act as the essential functional units in a wide variety of biomechanical machinery and serve as the basic building blocks for biological materials that exhibit superb mechanical properties. These proteins provide the desired elasticity, mechanical strength, resilience, and toughness within these materials. Understanding the mechanical properties of elastomeric protein-based biomaterials is a multiscale problem spanning from the atomistic/molecular level to the macroscopic level. Uncovering the design principles of individual elastomeric building blocks is critical both for the scientific understanding of multiscale mechanics of biomaterials and for the rational engineering of novel biomaterials with desirable mechanical properties. The development of single-molecule force spectroscopy techniques has provided methods for characterizing mechanical properties of elastomeric proteins one molecule at a time. Single-molecule atomic force microscopy (AFM) is uniquely suited to this purpose. Molecular dynamic simulations, protein engineering techniques, and single-molecule AFM study have collectively revealed tremendous insights into the molecular design of single elastomeric proteins, which can guide the design and engineering of elastomeric proteins with tailored mechanical properties. Researchers are focusing experimental efforts toward engineering artificial elastomeric proteins with mechanical properties that mimic or even surpass those of natural elastomeric proteins. In this Account, we summarize our recent experimental efforts to engineer novel artificial elastomeric proteins and develop general and rational methodologies to tune the nanomechanical properties of elastomeric proteins at the single-molecule level. We focus on general design principles used for enhancing the mechanical stability of proteins. These principles include the development of metal-chelation-based general methodology, strategies to control the unfolding hierarchy of multidomain elastomeric proteins, and the design of novel elastomeric proteins that exhibit stimuli-responsive mechanical properties. Moving forward, we are now exploring the use of these artificial elastomeric proteins as building blocks of protein-based biomaterials. Ultimately, we would like to rationally tailor mechanical properties of elastomeric protein-based materials by programming the molecular sequence, and thus nanomechanical properties, of elastomeric proteins at the single-molecule level. This step would help bridge the gap between single protein mechanics and material biomechanics, revealing how the mechanical properties of individual elastomeric proteins are translated into the properties of macroscopic materials.
Advancing Aeronautics: A Decision Framework for Selecting Research Agendas
2011-01-01
Engineering Board ASME American Society of Mechanical Engineers ATA Air Transport Association ATM air traffic management ATP Aeronautics Test Program...not provide a competitive advantage for a sufficient period to justify the R&D outlay. Such projects can include technolo- gies that address...fuel efficiency improvements multiplied by the cost of fuel would provide an estimate of their value to society. Likewise, technolo- gies for
Wind and Wave Energy Pioneer Finds Freedom in Research | News | NREL
generate our own energy one way or another." A mechanical engineering professor with Oregon State at engineering degree to work on the Saturn booster for the Project Apollo moon shot-but was ready for the next faced adversity during his career. At one point in the '90s while serving as director of the NWTC (a job
NASA Astrophysics Data System (ADS)
Chen, He; Yang, Yueguang; Su, Guolei; Wang, Xiaoqing; Zhang, Hourong; Sun, Xiaoyu; Fan, Youping
2017-09-01
There are increasingly serious electrocorrosion phenomena on insulator hardware caused by direct current transmission due to the wide-range popularization of extra high voltage direct current transmission engineering in our country. Steel foot corrosion is the main corrosion for insulators on positive polarity side of transmission lines. On one hand, the corrosion leads to the tapering off of steel foot diameter, having a direct influence on mechanical property of insulators; on the other hand, in condition of corrosion on steel foot wrapped in porcelain ware, the volume of the corrosion product is at least 50% more than that of the original steel foot, leading to bursting of porcelain ware, threatening safe operation of transmission lines. Therefore, it is necessary to conduct research on the phenomenon and propose feasible measures for corrosion inhibition. Starting with the corrosion mechanism, this article proposes two measures for corrosion inhibition, and verifies the inhibition effect in laboratory conditions, providing reference for application in engineering.
Naturally Engineered Maturation of Cardiomyocytes
Scuderi, Gaetano J.; Butcher, Jonathan
2017-01-01
Ischemic heart disease remains one of the most prominent causes of mortalities worldwide with heart transplantation being the gold-standard treatment option. However, due to the major limitations associated with heart transplants, such as an inadequate supply and heart rejection, there remains a significant clinical need for a viable cardiac regenerative therapy to restore native myocardial function. Over the course of the previous several decades, researchers have made prominent advances in the field of cardiac regeneration with the creation of in vitro human pluripotent stem cell-derived cardiomyocyte tissue engineered constructs. However, these engineered constructs exhibit a functionally immature, disorganized, fetal-like phenotype that is not equivalent physiologically to native adult cardiac tissue. Due to this major limitation, many recent studies have investigated approaches to improve pluripotent stem cell-derived cardiomyocyte maturation to close this large functionality gap between engineered and native cardiac tissue. This review integrates the natural developmental mechanisms of cardiomyocyte structural and functional maturation. The variety of ways researchers have attempted to improve cardiomyocyte maturation in vitro by mimicking natural development, known as natural engineering, is readily discussed. The main focus of this review involves the synergistic role of electrical and mechanical stimulation, extracellular matrix interactions, and non-cardiomyocyte interactions in facilitating cardiomyocyte maturation. Overall, even with these current natural engineering approaches, pluripotent stem cell-derived cardiomyocytes within three-dimensional engineered heart tissue still remain mostly within the early to late fetal stages of cardiomyocyte maturity. Therefore, although the end goal is to achieve adult phenotypic maturity, more emphasis must be placed on elucidating how the in vivo fetal microenvironment drives cardiomyocyte maturation. This information can then be utilized to develop natural engineering approaches that can emulate this fetal microenvironment and thus make prominent progress in pluripotent stem cell-derived maturity toward a more clinically relevant model for cardiac regeneration. PMID:28529939
Tissue Engineering and Regenerative Repair in Wound Healing
Hu, Michael S.; Maan, Zeshaan N.; Wu, Jen-Chieh; Rennert, Robert C.; Hong, Wan Xing; Lai, Tiffany S.; Cheung, Alexander T. M.; Walmsley, Graham G.; Chung, Michael T.; McArdle, Adrian; Longaker, Michael T.; Lorenz, H. Peter
2014-01-01
Wound healing is a highly evolved defense mechanism against infection and further injury. It is a complex process involving multiple cell types and biological pathways. Mammalian adult cutaneous wound healing is mediated by a fibroproliferative response leading to scar formation. In contrast, early to mid-gestational fetal cutaneous wound healing is more akin to regeneration and occurs without scar formation. This early observation has led to extensive research seeking to unlock the mechanism underlying fetal scarless regenerative repair. Building upon recent advances in biomaterials and stem cell applications, tissue engineering approaches are working towards a recapitulation of this phenomenon. In this review, we describe the elements that distinguish fetal scarless and adult scarring wound healing, and discuss current trends in tissue engineering aimed at achieving scarless tissue regeneration. PMID:24788648
Critical review on the physical and mechanical factors involved in tissue engineering of cartilage.
Gaut, Carrie; Sugaya, Kiminobu
2015-01-01
Articular cartilage defects often progress to osteoarthritis, which negatively impacts quality of life for millions of people worldwide and leads to high healthcare expenditures. Tissue engineering approaches to osteoarthritis have concentrated on proliferation and differentiation of stem cells by activation and suppression of signaling pathways, and by using a variety of scaffolding techniques. Recent studies indicate a key role of environmental factors in the differentiation of mesenchymal stem cells to mature cartilage-producing chondrocytes. Therapeutic approaches that consider environmental regulation could optimize chondrogenesis protocols for regeneration of articular cartilage. This review focuses on the effect of scaffold structure and composition, mechanical stress and hypoxia in modulating mesenchymal stem cell fate and the current use of these environmental factors in tissue engineering research.
Career Goals and Decisions: An Intersectionality Approach
NASA Astrophysics Data System (ADS)
Bardon, Emma
This project explores the career paths to date of seven graduates of the University of Waterloo's Mechanical Engineering program, and examines the influences that led them to choose their university program. I particularly considered the participants' status as members of underrepresented or overrepresented groups, using the contexts of the history of the profession of Mechanical Engineering and prior research on underrepresentation in Science, Technology, Engineering, and Mathematics fields. I used semi-structured interviews and an intersectionality framework to investigate aspects of identity, interests, and career influences. I found three key themes among the participants: human influences, including information sources, role models, and mentors; influences of educational and outreach activities; and personal interests and aptitudes. I use the uncovered themes to recommend a combination of future studies and outreach programs.
Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering.
Narayanan, Ganesh; Vernekar, Varadraj N; Kuyinu, Emmanuel L; Laurencin, Cato T
2016-12-15
Regenerative engineering converges tissue engineering, advanced materials science, stem cell science, and developmental biology to regenerate complex tissues such as whole limbs. Regenerative engineering scaffolds provide mechanical support and nanoscale control over architecture, topography, and biochemical cues to influence cellular outcome. In this regard, poly (lactic acid) (PLA)-based biomaterials may be considered as a gold standard for many orthopaedic regenerative engineering applications because of their versatility in fabrication, biodegradability, and compatibility with biomolecules and cells. Here we discuss recent developments in PLA-based biomaterials with respect to processability and current applications in the clinical and research settings for bone, ligament, meniscus, and cartilage regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.
Seth, Ajay; Delp, Scott L.
2015-01-01
Biomechanics researchers often use multibody models to represent biological systems. However, the mapping from biology to mechanics and back can be problematic. OpenSim is a popular open source tool used for this purpose, mapping between biological specifications and an underlying generalized coordinate multibody system called Simbody. One quantity of interest to biomechanical researchers and clinicians is “muscle moment arm,” a measure of the effectiveness of a muscle at contributing to a particular motion over a range of configurations. OpenSim can automatically calculate these quantities for any muscle once a model has been built. For simple cases, this calculation is the same as the conventional moment arm calculation in mechanical engineering. But a muscle may span several joints (e.g., wrist, neck, back) and may follow a convoluted path over various curved surfaces. A biological joint may require several bodies or even a mechanism to accurately represent in the multibody model (e.g., knee, shoulder). In these situations we need a careful definition of muscle moment arm that is analogous to the mechanical engineering concept, yet generalized to be of use to biomedical researchers. Here we present some biomechanical modeling challenges and how they are resolved in OpenSim and Simbody to yield biologically meaningful muscle moment arms. PMID:25905111
Sherman, Michael A; Seth, Ajay; Delp, Scott L
2013-08-01
Biomechanics researchers often use multibody models to represent biological systems. However, the mapping from biology to mechanics and back can be problematic. OpenSim is a popular open source tool used for this purpose, mapping between biological specifications and an underlying generalized coordinate multibody system called Simbody. One quantity of interest to biomechanical researchers and clinicians is "muscle moment arm," a measure of the effectiveness of a muscle at contributing to a particular motion over a range of configurations. OpenSim can automatically calculate these quantities for any muscle once a model has been built. For simple cases, this calculation is the same as the conventional moment arm calculation in mechanical engineering. But a muscle may span several joints (e.g., wrist, neck, back) and may follow a convoluted path over various curved surfaces. A biological joint may require several bodies or even a mechanism to accurately represent in the multibody model (e.g., knee, shoulder). In these situations we need a careful definition of muscle moment arm that is analogous to the mechanical engineering concept, yet generalized to be of use to biomedical researchers. Here we present some biomechanical modeling challenges and how they are resolved in OpenSim and Simbody to yield biologically meaningful muscle moment arms.
Collaborative research in cardiovascular dynamics and bone elasticity
NASA Technical Reports Server (NTRS)
1974-01-01
A collaborative research program covering a variety of topics of biomechanics and biomedical engineering within the fields of cardiovascular dynamics, respiration, bone elasticity and vestibular physiology is described. The goals of the research were to promote: (1) a better understanding of the mechanical behavior of the circulatory system and its control mechanisms; (2) development of noninvasive methods of measuring the changes in the mechanical properties of blood vessels and other cardiovascular parameters in man; (3) application of these noninvasive methods to examine in man the physiological effects of environmental changes, including earth-simulated gravitational changes; and (4) development of in-flight methods for studying the events which lead to post-flight postural hypotension.
Raven-II: an open platform for surgical robotics research.
Hannaford, Blake; Rosen, Jacob; Friedman, Diana W; King, Hawkeye; Roan, Phillip; Cheng, Lei; Glozman, Daniel; Ma, Ji; Kosari, Sina Nia; White, Lee
2013-04-01
The Raven-II is a platform for collaborative research on advances in surgical robotics. Seven universities have begun research using this platform. The Raven-II system has two 3-DOF spherical positioning mechanisms capable of attaching interchangeable four DOF instruments. The Raven-II software is based on open standards such as Linux and ROS to maximally facilitate software development. The mechanism is robust enough for repeated experiments and animal surgery experiments, but is not engineered to sufficient safety standards for human use. Mechanisms in place for interaction among the user community and dissemination of results include an electronic forum, an online software SVN repository, and meetings and workshops at major robotics conferences.
[Activities of Institute for Computer Applications in Science and Engineering (ICASE)
NASA Technical Reports Server (NTRS)
Bushnell, Dennis M. (Technical Monitor)
2001-01-01
This report summarizes research conducted at ICASE in applied mathematics, fluid mechanics, computer science, and structures and material sciences during the period April 1, 2000 through September 30, 2000.
30 CFR 77.403-2 - Incorporation by reference.
Code of Federal Regulations, 2014 CFR
2014-07-01
... MINES Safeguards for Mechanical Equipment § 77.403-2 Incorporation by reference. In accordance with 5 U..., Engineering and Research Center, Denver, Colorado. SAE documents are available from the Society of Automotive...
30 CFR 77.403-2 - Incorporation by reference.
Code of Federal Regulations, 2012 CFR
2012-07-01
... MINES Safeguards for Mechanical Equipment § 77.403-2 Incorporation by reference. In accordance with 5 U..., Engineering and Research Center, Denver, Colorado. SAE documents are available from the Society of Automotive...
30 CFR 77.403-2 - Incorporation by reference.
Code of Federal Regulations, 2013 CFR
2013-07-01
... MINES Safeguards for Mechanical Equipment § 77.403-2 Incorporation by reference. In accordance with 5 U..., Engineering and Research Center, Denver, Colorado. SAE documents are available from the Society of Automotive...
Highway rail crossing prioritization.
DOT National Transportation Integrated Search
2015-03-01
Research team members at the University of Kentucky in the Department of Civil Engineering and the : Kentucky Transportation Center (KTC) worked with the Kentucky Transportation Cabinet (KYTC) to develop : a high-level mechanism for ranking highway-r...
NASA Astrophysics Data System (ADS)
Heeter, Ann E.
Gas turbine engines are an important part of power generation in modern society, especially in the field of aerospace. Aerospace engines are design to last approximately 30 years and the engine components must be designed to survive for the life of the engine or to be replaced at regular intervals to ensure consumer safety. Fatigue crack growth analysis is a vital component of design for an aerospace component. Crack growth modeling and design methods date back to an origin around 1950 with a high rate of accuracy. The new generation of aerospace engines is designed to be efficient as possible and require higher operating temperatures than ever seen before in previous generations. These higher temperatures place more stringent requirements on the material crack growth performance under creep and time dependent conditions. Typically the types of components which are subject to these requirements are rotating disk components which are made from advanced materials such as nickel base superalloys. Traditionally crack growth models have looked at high temperature crack growth purely as a function of temperature and assumed that all crack growth was either controlled by a cycle dependent or time dependent mechanism. This new analysis is trying to evaluate the transition between cycle-dependent and time-dependent mechanism and the microstructural markers that characterize this transitional behavior. The physical indications include both the fracture surface morphology as well as the shape of the crack front. The research will evaluate whether crack tunneling occurs and whether it consistently predicts a transition from cycle-dependent crack growth to time-dependent crack growth. The study is part of a larger research program trying to include the effects of geometry, mission profile and environmental effects, in addition to temperature effects, as a part of the overall crack growth system. The outcome will provide evidence for various transition types and correlate those physical attributes back to the material mechanisms to improve predictive modeling capability.
Environment assisted degradation mechanisms in aluminum-lithium alloys
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Stoner, Glenn E.; Swanson, Robert E.
1988-01-01
Section 1 of this report records the progress achieved on NASA-LaRC Grant NAG-1-745 (Environment Assisted Degradation Mechanisms in Al-Li Alloys), and is based on research conducted during the period April 1 to November 30, 1987. A discussion of work proposed for the project's second year is included. Section 2 provides an overview of the need for research on the mechanisms of environmental-mechanical degradation of advanced aerospace alloys based on aluminum and lithium. This research is to provide NASA with the basis necessary to permit metallurgical optimization of alloy performance and engineering design with respect to damage tolerance, long term durability and reliability. Section 3 reports on damage localization mechanisms in aqueous chloride corrosion fatigue of aluminum-lithium alloys. Section 4 reports on progress made on measurements and mechanisms of localized aqueous corrosion in aluminum-lithium alloys. Section 5 provides a detailed technical proposal for research on environmental degradation of Al-Li alloys, and the effect of hydrogen in this.
Deformation effect simulation and optimization for double front axle steering mechanism
NASA Astrophysics Data System (ADS)
Wu, Jungang; Zhang, Siqin; Yang, Qinglong
2013-03-01
This paper research on tire wear problem of heavy vehicles with Double Front Axle Steering Mechanism from the flexible effect of Steering Mechanism, and proposes a structural optimization method which use both traditional static structural theory and dynamic structure theory - Equivalent Static Load (ESL) method to optimize key parts. The good simulated and test results show this method has high engineering practice and reference value for tire wear problem of Double Front Axle Steering Mechanism design.
Ye, Yuan; Yuan, Yi; Lu, Feng; Gao, Jianhua
2015-12-01
In plastic and reconstructive surgery, adipose tissue is widely used as effective filler for tissue defects. Strategies for treating soft tissue deficiency, which include free adipose tissue grafts, use of hyaluronic acid, collagen injections, and implantation of synthetic materials, have several clinical limitations. With the aim of overcoming these limitations, researchers have recently utilized tissue engineering chambers to produce large volumes of engineered vascularized fat tissue. However, the process of growing fat tissue in a chamber is still relatively limited, and can result in unpredictable or dissatisfactory final tissue volumes. Therefore, detailed understanding of the process is both necessary and urgent. Many studies have shown that mechanical force can change the function of cells via mechanotransduction. Here, we hypothesized that, besides the inflammatory response, one of the key factors to control the regeneration of vascularized fat flap inside a tissue engineering chamber might be the balance of mechanical forces. To test our hypothesis, we intend to change the balance of forces by means of measures in order to make the equilibrium point in favor of the direction of regeneration. If those measures proved to be feasible, they could be applied in clinical practice to engineer vascularized adipose tissue of predictable size and shape, which would in turn help in the advancement of tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.
Locking mechanisms in degree-4 vertex origami structures
NASA Astrophysics Data System (ADS)
Fang, Hongbin; Li, Suyi; Xu, Jian; Wang, K. W.
2016-04-01
Origami has emerged as a potential tool for the design of mechanical metamaterials and metastructures whose novel properties originate from their crease patterns. Most of the attention in origami engineering has focused on the wellknown Miura-Ori, a folded tessellation that is flat-foldable for folded sheet and stacked blocks. This study advances the state of the art and expands the research field to investigate generic degree-4 vertex (4-vertex) origami, with a focus on facet-binding. In order to understand how facet-binding attributes to the mechanical properties of 4-vertex origami structures, geometries of the 4-vertex origami cells are analyzed and analytically expressed. Through repeating and stacking 4-vertex cells, origami sheets and stacked origami blocks can be constructed. Geometry analyses discover four mechanisms that will lead to the self-locking of 4-vertex origami cells, sheets, and stacked blocks: in-cell facet-binding, inlayer facet-binding, inter-layer facet binding, and in-layer and inter-layer facet-bindings. These mechanisms and the predicted self-locking phenomena are verified through 3D simulations and prototype experiments. Finally, this paper briefly introduces the unusual mechanical properties caused by the locking of 4-vertex origami structures. The research reported in this paper could foster a new breed of self-locking structures with various engineering applications.
Kinetics and Mechanism of Chemical Marker Formation and Water-Activated Heat Generation
1994-05-01
activated chemical heaters. It has recently been discovered at the Army’s Natick, Massachusetts Research, Development & Engineering Center that certain...FUNDING NUMBERS 0 i Kinetics and Mechanism of Chemical Marker Formation and Water-Activated Heat Generation ~~ 3 6. AUTHOR(S) I-GZ05 Kenneth Kustin DI N...unlimited. rpIC Q.UA y uI sECTED 5 13. ABSTRACT (Maximum 200 words) n Research has been conducted on two projects: intrinsic chemical markers and water
PREFACE: International Conference on Applied Sciences (ICAS2014)
NASA Astrophysics Data System (ADS)
Lemle, Ludovic Dan; Jiang, Yiwen
2015-06-01
The International Conference on Applied Sciences (ICAS2014) took place in Hunedoara, Romania from 2-4 October 2014 at the Engineering Faculty of Hunedoara. The conference takes place alternately in Romania and in P.R. China and is organized by "Politehnica" University of Timisoara, Romania, and Military Economics Academy of Wuhan, P.R. China, with the aim to serve as a platform for exchange of information between various areas of applied sciences and to promote the communication between scientists of different nations, countries and continents. The topics of the conference covered a comprehensive spectrum of issues: 1. Economical Sciences 2. Engineering Sciences 3. Fundamental Sciences 4. Medical Sciences The conference gathered qualified researchers whose expertise can be used to develop new engineering knowledge that has the potential for application in economics, defense, medicine, etc. There were nearly 100 registered participants from six countries, and four invited and 56 oral talks were delivered during the two days of the conference. Based on the work presented at the conference, selected papers are included in this volume of IOP Conference Series: Materials Science and Engineering. These papers present new research in the various fields of Materials Engineering, Mechanical Engineering, Computer Engineering, and Mathematical Engineering. It is our great pleasure to present this volume of IOP Conference Series: Materials Science and Engineering to the scientific community to promote further research in these areas. We sincerely hope that the papers published in this volume will contribute to the advancement of knowledge in their respective fields.
NASA Technical Reports Server (NTRS)
1997-01-01
Kenneth J. Szalai was Director of the NASA Hugh L. Dryden Flight Research Center, Edwards, Calif., from January 1994 through July 1998. He retired from NASA at the end of July to join IBP Aerospace Group, Inc., as the company's new president and chief operating officer. As NASA's primary installation for flight research for more than half a century, Dryden is chartered to conceive and conduct experimental flight research for integrated flight and propulsion controls; advanced optical sensors and controls; viscous drag reduction; advanced configurations; high-altitude, long-endurance aircraft; remotely piloted vehicle technology; hypersonic vehicle experiments; high-speed research for civil transportation; atmospheric tests of advanced rocket and airbreathing propulsion concepts; instrumentation systems; and flight loads predictions. In carrying out this mission, Dryden operates some of the most advanced research aircraft in the nation. When Dryden was administratively a part of the NASA Ames Research Center, Moffett Field, Calif., Szalai was director and also held the position of Ames Deputy Director for Dryden from December 1990 until assuming his current position From 1982 until December 1990, Szalai directed the Dryden Research Engineering Division. He served as Associate Director of the Ames Research Center in 1989. Prior to 1982 he was chief of the Research Engineering Division's Dynamics and Control Branch, and chief of the Flight Control Section. Szalai began his NASA career at Dryden in 1964 following graduation from the University of Wisconsin, where he attended both the Milwaukee and Madison campuses. His bachelor of science degree is in electrical engineering. He also received a master of science degree in mechanical engineering from the University of Southern California in 1970. Szalai was principal investigator on the F-8 Digital Fly-By-Wire program, which successfully flew the first aircraft equipped with a digital electronic flight control system without any mechanical reversion capability. Szalai also held research and systems engineering positions on several research aircraft programs investigating flying qualities, integrated flight controls, and fault tolerant-flight critical systems. He was also flight test engineer and principal investigator on the NASA Airborne Simulator before assuming management positions within the Research Engineering Division. Szalai has worked in various technical and management positions on such programs as the F-111 IPCS, AFTI/F-16, HiMAT, F-15 DEEC, F-15 HIDEC, X-29, X-31, F-16XL Laminar Flow, Space Shuttle Orbiter, Pathfinder Solar Powered Aircraft, SR-71 Sonic Boom, F-15 and MD-11 Propulsion Controlled Aircraft, X-33, and X-38. Szalai has authored over 25 papers and reports and has been a lecturer for the NATO Advisory Group for Aeronautical Research and Development (AGARD). He has served on various technical committees and subcommittees for the American Institute of Aeronautics and Astronautics (AIAA) and Society of Automotive Engineers (SAE). Szalai, a Fellow of the AIAA, also served on the National Academy of Science's 'Aeronautics-2000' study. Among the awards Szalai has received are NASA's Exceptional Service Medal, the NASA Outstanding Leadership Medal, and the Presidential Meritorious and Distinguished Rank awards. Szalai was born June 1, 1942, in Milwaukee, Wisc., where he graduated from West Division High School.
46 CFR 113.35-15 - Mechanical engine order telegraph systems; application.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Mechanical engine order telegraph systems; application...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-15 Mechanical engine order telegraph systems; application. If a mechanical engine order telegraph...
46 CFR 113.35-15 - Mechanical engine order telegraph systems; application.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Mechanical engine order telegraph systems; application...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-15 Mechanical engine order telegraph systems; application. If a mechanical engine order telegraph...
46 CFR 113.35-15 - Mechanical engine order telegraph systems; application.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Mechanical engine order telegraph systems; application...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-15 Mechanical engine order telegraph systems; application. If a mechanical engine order telegraph...
46 CFR 113.35-15 - Mechanical engine order telegraph systems; application.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Mechanical engine order telegraph systems; application...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-15 Mechanical engine order telegraph systems; application. If a mechanical engine order telegraph...
Design process of the nanofluid injection mechanism in nuclear power plants
NASA Astrophysics Data System (ADS)
Kang, Myoung-Suk; Jee, Changhyun; Park, Sangjun; Bang, In Choel; Heo, Gyunyoung
2011-04-01
Nanofluids, which are engineered suspensions of nanoparticles in a solvent such as water, have been found to show enhanced coolant properties such as higher critical heat flux and surface wettability at modest concentrations, which is a useful characteristic in nuclear power plants (NPPs). This study attempted to provide an example of engineering applications in NPPs using nanofluid technology. From these motivations, the conceptual designs of the emergency core cooling systems (ECCSs) assisted by nanofluid injection mechanism were proposed after following a design framework to develop complex engineering systems. We focused on the analysis of functional requirements for integrating the conventional ECCSs and nanofluid injection mechanism without loss of performance and reliability. Three candidates of nanofluid-engineered ECCS proposed in previous researches were investigated by applying axiomatic design (AD) in the manner of reverse engineering and it enabled to identify the compatibility of functional requirements and potential design vulnerabilities. The methods to enhance such vulnerabilities were referred from TRIZ and concretized for the ECCS of the Korean nuclear power plant. The results show a method to decouple the ECCS designs with the installation of a separate nanofluids injection tank adjacent to the safety injection tanks such that a low pH environment for nanofluids can be maintained at atmospheric pressure which is favorable for their injection in passive manner.
Design process of the nanofluid injection mechanism in nuclear power plants
2011-01-01
Nanofluids, which are engineered suspensions of nanoparticles in a solvent such as water, have been found to show enhanced coolant properties such as higher critical heat flux and surface wettability at modest concentrations, which is a useful characteristic in nuclear power plants (NPPs). This study attempted to provide an example of engineering applications in NPPs using nanofluid technology. From these motivations, the conceptual designs of the emergency core cooling systems (ECCSs) assisted by nanofluid injection mechanism were proposed after following a design framework to develop complex engineering systems. We focused on the analysis of functional requirements for integrating the conventional ECCSs and nanofluid injection mechanism without loss of performance and reliability. Three candidates of nanofluid-engineered ECCS proposed in previous researches were investigated by applying axiomatic design (AD) in the manner of reverse engineering and it enabled to identify the compatibility of functional requirements and potential design vulnerabilities. The methods to enhance such vulnerabilities were referred from TRIZ and concretized for the ECCS of the Korean nuclear power plant. The results show a method to decouple the ECCS designs with the installation of a separate nanofluids injection tank adjacent to the safety injection tanks such that a low pH environment for nanofluids can be maintained at atmospheric pressure which is favorable for their injection in passive manner. PMID:21711896
Design process of the nanofluid injection mechanism in nuclear power plants.
Kang, Myoung-Suk; Jee, Changhyun; Park, Sangjun; Bang, In Choel; Heo, Gyunyoung
2011-04-27
Nanofluids, which are engineered suspensions of nanoparticles in a solvent such as water, have been found to show enhanced coolant properties such as higher critical heat flux and surface wettability at modest concentrations, which is a useful characteristic in nuclear power plants (NPPs). This study attempted to provide an example of engineering applications in NPPs using nanofluid technology. From these motivations, the conceptual designs of the emergency core cooling systems (ECCSs) assisted by nanofluid injection mechanism were proposed after following a design framework to develop complex engineering systems. We focused on the analysis of functional requirements for integrating the conventional ECCSs and nanofluid injection mechanism without loss of performance and reliability. Three candidates of nanofluid-engineered ECCS proposed in previous researches were investigated by applying axiomatic design (AD) in the manner of reverse engineering and it enabled to identify the compatibility of functional requirements and potential design vulnerabilities. The methods to enhance such vulnerabilities were referred from TRIZ and concretized for the ECCS of the Korean nuclear power plant. The results show a method to decouple the ECCS designs with the installation of a separate nanofluids injection tank adjacent to the safety injection tanks such that a low pH environment for nanofluids can be maintained at atmospheric pressure which is favorable for their injection in passive manner.
NASA Technical Reports Server (NTRS)
Motevalli, Vahid
1994-01-01
This report contains the results of three projects conducted by undergraduate students from Worcester Polytechnic Institute at the NASA's Lewis Research Center under a NASA Award NCC3-312. The students involved in these projects spent part of the summer of 1993 at the Lewis Research Center (LeRC) under the direction of Dr. Howard Ross, head of the Combustion group and other NASA engineers and scientists. The Principal Investigator at Worcester Polytechnic Institute was Professor Vahid Motevalli. Professor Motevalli served as the principal project advisor for two of the three projects which were in Mechanical Engineering. The third project was advised by Professor Duckworth of Electrical and Computer Engineering, while Professor Motevalli acted as the co-advisor. These projects provided an excellent opportunity for the students to participate in the cutting edge research and engineering design, interact with NASA engineers and gain valuable exposure to a real working environment. Furthermore, the combustion group at LeRC was able to forward their goals by employing students to work on topics of immediate use and interest such as experimental research projects planned for the space shuttle, the future space station, or to develop demonstration tools to educate the public about LeRC activities.
MOD-OA 200 kW wind turbine generator engineeringing
NASA Technical Reports Server (NTRS)
Andersen, T. S.; Bodenschatz, C. A.; Eggers, A. G.; Hughes, P. S.; Lampe, R. F.
1980-01-01
Engineering drawings and the detailed mechanical and electrical design of a horizontal-axis wind turbine designed for DOE at the NASA Lewis Research Center and installed in Clayton, New Mexico are discussed. The drawings show the hub, pitch change mechanism, drive train, nacelle equipment, yaw drive system, tower, foundation, electrical power systems, and the control and safety systems.
ERIC Educational Resources Information Center
Audu, R.; Bin Kamin, Yusri; Bin Musta'amal, Aede Hatib; Bin Saud, Muhammad Sukri; Hamid, Mohd. Zolkifli Abd.
2014-01-01
This study is designed to identify the most significant teaching methods that influence the acquisition of generic skills of mechanical engineering trades students at technical college level. Descriptive survey research design was utilized in carrying out the study. One hundred and ninety (190) respondents comprised of mechanical engineering…
Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering
Gerhardt, Lutz-Christian; Boccaccini, Aldo R.
2010-01-01
Traditionally, bioactive glasses have been used to fill and restore bone defects. More recently, this category of biomaterials has become an emerging research field for bone tissue engineering applications. Here, we review and discuss current knowledge on porous bone tissue engineering scaffolds on the basis of melt-derived bioactive silicate glass compositions and relevant composite structures. Starting with an excerpt on the history of bioactive glasses, as well as on fundamental requirements for bone tissue engineering scaffolds, a detailed overview on recent developments of bioactive glass and glass-ceramic scaffolds will be given, including a summary of common fabrication methods and a discussion on the microstructural-mechanical properties of scaffolds in relation to human bone (structure-property and structure-function relationship). In addition, ion release effects of bioactive glasses concerning osteogenic and angiogenic responses are addressed. Finally, areas of future research are highlighted in this review. PMID:28883315
Regeneration of the anterior cruciate ligament: Current strategies in tissue engineering
Nau, Thomas; Teuschl, Andreas
2015-01-01
Recent advancements in the field of musculoskeletal tissue engineering have raised an increasing interest in the regeneration of the anterior cruciate ligament (ACL). It is the aim of this article to review the current research efforts and highlight promising tissue engineering strategies. The four main components of tissue engineering also apply in several ACL regeneration research efforts. Scaffolds from biological materials, biodegradable polymers and composite materials are used. The main cell sources are mesenchymal stem cells and ACL fibroblasts. In addition, growth factors and mechanical stimuli are applied. So far, the regenerated ACL constructs have been tested in a few animal studies and the results are encouraging. The different strategies, from in vitro ACL regeneration in bioreactor systems to bio-enhanced repair and regeneration, are under constant development. We expect considerable progress in the near future that will result in a realistic option for ACL surgery soon. PMID:25621217
NASA Technical Reports Server (NTRS)
Tiwari, S. N. (Principal Investigator); Massenberg, Samuel E. (Technical Monitor)
2002-01-01
The 'Institute for Scientific and Educational Technology' has been established to provide a mechanism through which universities and other research organizations may cooperate with one another and with different government agencies and industrial organizations to further and promote research, education, and training programs in science, engineering, and related fields. This effort has been undertaken consistent with the national vision to 'promote excellence in America s educational system through enhancing and expanding scientific and technological competence.' The specific programs are directed in promoting and achieving excellence for individuals at all levels (elementary and secondary schools, undergraduate and graduate education, and postdoctoral and faculty research). The program is consistent with the existing activities of the Institute for Computational and Applied Mechanics (ICAM) and the American Society for Engineering Education (ASEE) at NASA Langley Research Center (LaRC). The efforts will be directed to embark on other research, education, and training activities in various fields of engineering, scientific, and educational technologies. The specific objectives of the present program may be outlined briefly as follows: 1) Cooperate in the various research, education, and technology programs of the Office of Education at LaRC. 2) Develop procedures for interactions between precollege, college, and graduate students, and between faculty and students at all levels. 3) Direct efforts to increase the participation by women and minorities in educational programs at all levels. 4) Enhance existing activities of ICAM and ASEE in education, research, and training of graduate students and faculty. 5) Invite distinguished scholars as appropriate and consistent with ISET goals to spend their summers and/or sabbaticals at NASA Langley andor ODU and interact with different researchers and graduate students. Perform research and administrative activities as needed to carry out the above mentioned activities. 6) The implementation of various activities of the ISET programs is carried out through cooperative efforts between Old Dominion University (ODU) and the Office of Education at LaRC. At present, major efforts are directed on the following ISET Programs: ICAM Programs, Academic Programs, Educational Research, Outreach Programs, Educational Technology and Cooperative Programs. These programs are described in the following sections.
[Degradation and transformation of engineering carbon nanomaterials in the environment: A review].
Yue, Fang-Ning; Luo, Shui-Ming; Zhang, Cheng-Dong
2013-02-01
With the large amount production and application of engineering carbon nanomaterials, their potential ecological risk has attracted extensive attention. The degradation and transformation of the carbon nanomaterials in the environment directly affect the fates and eco-toxicity of the nanomaterials in the environment, and the research of the degradation and transformation processes of the nanomaterials in the environment is the key link for the determination of the environmental capacity of the nanomaterials and for the evaluation of the nanomaterials life cycle in the environment. This paper briefly introduced the chemical transformation, microbial degradation, and photodegradation of the major engineering carbon nanomaterials (carbon nanotubes and fullerene) in the environment, and summarized the environmental and structural factors affecting the degradation of the nanomaterials and the related intrinsic mechanisms. The shortcomings of the related researches and the directions of the future research were also put forward.
NASA Astrophysics Data System (ADS)
Ishii, Katsuya
2011-08-01
This issue includes a special section on computational fluid dynamics (CFD) in memory of the late Professor Kunio Kuwahara, who passed away on 15 September 2008, at the age of 66. In this special section, five articles are included that are based on the lectures and discussions at `The 7th International Nobeyama Workshop on CFD: To the Memory of Professor Kuwahara' held in Tokyo on 23 and 24 September 2009. Professor Kuwahara started his research in fluid dynamics under Professor Imai at the University of Tokyo. His first paper was published in 1969 with the title 'Steady Viscous Flow within Circular Boundary', with Professor Imai. In this paper, he combined theoretical and numerical methods in fluid dynamics. Since that time, he made significant and seminal contributions to computational fluid dynamics. He undertook pioneering numerical studies on the vortex method in 1970s. From then to the early nineties, he developed numerical analyses on a variety of three-dimensional unsteady phenomena of incompressible and compressible fluid flows and/or complex fluid flows using his own supercomputers with academic and industrial co-workers and members of his private research institute, ICFD in Tokyo. In addition, a number of senior and young researchers of fluid mechanics around the world were invited to ICFD and the Nobeyama workshops, which were held near his villa, and they intensively discussed new frontier problems of fluid physics and fluid engineering at Professor Kuwahara's kind hospitality. At the memorial Nobeyama workshop held in 2009, 24 overseas speakers presented their papers, including the talks of Dr J P Boris (Naval Research Laboratory), Dr E S Oran (Naval Research Laboratory), Professor Z J Wang (Iowa State University), Dr M Meinke (RWTH Aachen), Professor K Ghia (University of Cincinnati), Professor U Ghia (University of Cincinnati), Professor F Hussain (University of Houston), Professor M Farge (École Normale Superieure), Professor J Y Yong (National Taiwan University), and Professor H S Kwak (Kumoh National Institute of Technology). For his contributions to CFD, Professor Kuwahara received Awards from the Japan Society of Automobile Engineers and the Japan Society of Mechanical Engineers in 1992, the Computational Mechanics Achievement Award from the Japan Society of Mechanical Engineers in 1993, and the Max Planck Research Award in 1993. He received the Computational Mechanics Award from the Japan Society of Mechanical Engineers again in 2008. Professor Kuwahara also supported the development of the Japan Society of Fluid Mechanics, whose office is located in the same building as ICFD. In the proceedings of the 6th International Nobeyama Workshop on CFD to commemorate the 60th birthday of Professor Kuwahara, Professor Jae Min Hyun of KAIST wrote 'The major professional achievement of Professor Kuwahara may be compressed into two main categories. First and foremost, Professor Kuwahara will long be recorded as the front-line pioneer in using numerical computations to tackle complex problems in fluid mechanics. ...Another important contribution of Professor Kuwahara was in the training and fostering of talented manpower of computational mechanics research.'[1] Among the various topics of the five papers in this special section are examples of Professor Kuwahara's works mentioned by Professor Hyun. The main authors of all papers have grown up in the research circle of Professor Kuwahara. All the papers demostrate the challenge of new aspects of computational fluid dynamics; a new numerical method for compressible flows, thermo-acoustic flows of helium gas in a small tube, electro-osmic flows in a micro/nano channel, MHD flows over a wavy disk, and a new extraction method of multi-object aircraft design rules. Last but not least, this special section is cordially dedicated to the late Professor Kuwahara and his family. Reference [1] Hyun J M 2005 Preface of New Developments in Computational Fluid Dynamics vol 90 Notes on Numerical Fluid Mechanics and Multidisciplinary Design ed K Fujii et al (Berlin: Springer)
ERIC Educational Resources Information Center
Chen, Jing; Zhang, Mo; Bejar, Isaac I.
2017-01-01
Automated essay scoring (AES) generally computes essay scores as a function of macrofeatures derived from a set of microfeatures extracted from the text using natural language processing (NLP). In the "e-rater"® automated scoring engine, developed at "Educational Testing Service" (ETS) for the automated scoring of essays, each…
United States Air Force Summer Faculty Research Program (1987). Program Technical Report. Volume 1.
1987-12-01
Mechanical Engineering Specialty: Engineering Science Rose-Hulman Institute Assigned: APL 5500 Wabash Avenue - Terre Haute, IN 47803 (812) 877-1511 Dr...Professor/Di rector 1973 Dept. of Humanities Specialty: Literature/Language Rose-Hulman Inst. of Technology Assigned: HRL/LR 5500 Wabash Avenue - Terre...1976 Assistant Professor Specialty: Computer Science Dept. of Computer Science Assigned: AL Rose-Hulman Inst. of Technology 5500 Wabash Ave. Terre Haute
Summary of Research 1997, Department of Mechanical Engineering.
1999-01-01
Maintenance for Diesel Engines 49 Control Architectures and Non-Linear Controllers for Unmanned Underwater Vehicles 38 Creep of Fiber Reinforced Metal...Technology Demonstration (ATD) 50 Development of Delphi Visual Performance Model 25 Diffraction Methods for the Accurate Measurement of Structure Factors...literature. If this could be done, a U.S. version of ORACLE (to be called DELPHI ) could be developed and used. The result has been the development of a
Overview of Lightweight Structures for Rotorcraft Engines and Drivetrains
NASA Technical Reports Server (NTRS)
Roberts, Gary D.
2011-01-01
This is an overview presentation of research being performed in the Advanced Materials Task within the NASA Subsonic Rotary Wing Project. This research is focused on technology areas that address both national goals and project goals for advanced rotorcraft. Specific technology areas discussed are: (1) high temperature materials for advanced turbines in turboshaft engines; (2) polymer matrix composites for lightweight drive system components; (3) lightweight structure approaches for noise and vibration control; and (4) an advanced metal alloy for lighter weight bearings and more reliable mechanical components. An overview of the technology in each area is discussed, and recent accomplishments are presented.
NASA Technical Reports Server (NTRS)
Singh, Rajendra; Houser, Donald R.
1993-01-01
This paper discusses analytical and experimental approaches that will be needed to understand dynamic, vibro-acoustic and design characteristics of high power density rotorcraft transmissions. Complexities associated with mathematical modeling of such systems will be discussed. An overview of research work planned during the next several years will be presented, with emphasis on engineering science issues such as gear contact mechanics, multi-mesh drive dynamics, parameter uncertainties, vibration transmission through bearings, and vibro-acoustic characteristics of geared rotor systems and housing-mount structures. A few examples of work in progress are cited.
Reliability and Engineering of Thin-Film Photovoltaic Modules. Research forum proceedings
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr. (Editor); Royal, E. L. (Editor)
1985-01-01
A Research Forum on Reliability and Engineering of Thin Film Photovoltaic Modules, under sponsorship of the Jet Propulsion Laboratory's Flat Plate Solar Array (FSA) Project and the U.S. Department of Energy, was held in Washington, D.C., on March 20, 1985. Reliability attribute investigations of amorphous silicon cells, submodules, and modules were the subjects addressed by most of the Forum presentations. Included among the reliability research investigations reported were: Arrhenius-modeled accelerated stress tests on a Si cells, electrochemical corrosion, light induced effects and their potential effects on stability and reliability measurement methods, laser scribing considerations, and determination of degradation rates and mechanisms from both laboratory and outdoor exposure tests.
Reference Points: Engineering Technology Education Bibliography, 1987.
ERIC Educational Resources Information Center
Engineering Education, 1989
1989-01-01
Lists articles and books published in 1987. Selects the following headings: administration, aeronautical, architectural, CAD/CAM, civil, computers, curriculum, electrical/electronics, industrial, industry/government/employers, instructional technology, laboratories, liberal studies, manufacturing, mechanical, minorities, research, robotics,…
-6223 Research Interests Molecular mechanisms of cellulose-degrading enzymes Structure-function relationships of biomass-derived polymers Structure-function relationships in glycoside hydrolases Methane potential protein engineering targets. Structure-Function Relationships of Biomass-Derived Polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lottes, S.A.; Kulak, R.F.; Bojanowski, C.
2011-12-09
The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. Themore » analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water effects on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to assess them for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, CFD analysis of the operation of the wind tunnel in the TFCHR wind engineering laboratory, vehicle stability under high wind loading, and the use of electromagnetic shock absorbers to improve vehicle stability under high wind conditions. This quarterly report documents technical progress on the project tasks for the period of July through September 2011.« less
Leadership processes for re-engineering changes to the health care industry.
Guo, Kristina L
2004-01-01
As health care organizations seek innovative ways to change financing and delivery mechanisms due to escalated health care costs and increased competition, drastic changes are being sought in the form of re-engineering. This study discusses the leader's role of re-engineering in health care. It specifically addresses the reasons for failures in re-engineering and argues that success depends on senior level leaders playing a critical role. Existing studies lack comprehensiveness in establishing models of re-engineering and management guidelines. This research focuses on integrating re-engineering and leadership processes in health care by creating a step-by-step model. Particularly, it illustrates the four Es: Examination, Establishment, Execution and Evaluation, as a comprehensive re-engineering process that combines managerial roles and activities to result in successfully changed and reengineered health care organizations.
Research on EHN additive on the diesel engine combustion characteristics in plateau environment
NASA Astrophysics Data System (ADS)
Sun, Zhixin; Li, Ruoting; Wang, Xiancheng; Hu, Chuan
2017-03-01
Aiming at the combustion deterioration problem of diesel engine in plateau environment, a bench test was carried out for the effects of EHN additive on combustion characteristics of the diesel engine with intake pressure of 0.68 kPa. Test results showed that with the full load working condition of 1 400 r/min: Cylinder pressure and pressure uprising rate decreased with EHN additive added in, mechanical load on the engine could be relieved; peak value of the heat release rate decreased and its occurrence advanced, ignition delay and combustion duration were shortened; cylinder temperature and exhaust gas temperature declined, thermal load on the engine could be relieved, output torque increased while specific oil consumption decreased, and effective thermal efficiency of diesel engine increased.
Material recognition based on thermal cues: Mechanisms and applications.
Ho, Hsin-Ni
2018-01-01
Some materials feel colder to the touch than others, and we can use this difference in perceived coldness for material recognition. This review focuses on the mechanisms underlying material recognition based on thermal cues. It provides an overview of the physical, perceptual, and cognitive processes involved in material recognition. It also describes engineering domains in which material recognition based on thermal cues have been applied. This includes haptic interfaces that seek to reproduce the sensations associated with contact in virtual environments and tactile sensors aim for automatic material recognition. The review concludes by considering the contributions of this line of research in both science and engineering.
Material recognition based on thermal cues: Mechanisms and applications
Ho, Hsin-Ni
2018-01-01
ABSTRACT Some materials feel colder to the touch than others, and we can use this difference in perceived coldness for material recognition. This review focuses on the mechanisms underlying material recognition based on thermal cues. It provides an overview of the physical, perceptual, and cognitive processes involved in material recognition. It also describes engineering domains in which material recognition based on thermal cues have been applied. This includes haptic interfaces that seek to reproduce the sensations associated with contact in virtual environments and tactile sensors aim for automatic material recognition. The review concludes by considering the contributions of this line of research in both science and engineering. PMID:29687043
Electromechanical engineering in SnO2 nanoparticle tethered hybrid ionic liquid
NASA Astrophysics Data System (ADS)
Deb, Debalina; Bhattacharya, Subhratanu
2017-05-01
Challenge of developing electrolytes comprising synergic properties of high mechanical strength with superior electrical and electrochemical properties has so far been unmet towards the application of secondary storage devices. In this research, we have engineered the electromechanical properties of 2-(trimethylamino) ethyl methacrylate bis(trifluoromethylsulfonyl) imide [TMEM]TFSI ionic liquid by tethering silane modified SnO2 nanoparticles within it. Different percentages of tethering are employed to achieve improved ionic conductivity, better discharge/ charging ratio (40%) along with gel like mechanical properties. Our findings appear to provide an optimal solution towards the future prospects in application in a number of areas, notably in energy-related technologies.
Marcucio, Ralph S; Qin, Ling; Alsberg, Eben; Boerckel, Joel D
2017-11-01
The fields of developmental biology and tissue engineering have been revolutionized in recent years by technological advancements, expanded understanding, and biomaterials design, leading to the emerging paradigm of "developmental" or "biomimetic" tissue engineering. While developmental biology and tissue engineering have long overlapping histories, the fields have largely diverged in recent years at the same time that crosstalk opportunities for mutual benefit are more salient than ever. In this perspective article, we will use musculoskeletal development and tissue engineering as a platform on which to discuss these emerging crosstalk opportunities and will present our opinions on the bright future of these overlapping spheres of influence. The multicellular programs that control musculoskeletal development are rapidly becoming clarified, represented by shifting paradigms in our understanding of cellular function, identity, and lineage specification during development. Simultaneously, advancements in bioartificial matrices that replicate the biochemical, microstructural, and mechanical properties of developing tissues present new tools and approaches for recapitulating development in tissue engineering. Here, we introduce concepts and experimental approaches in musculoskeletal developmental biology and biomaterials design and discuss applications in tissue engineering as well as opportunities for tissue engineering approaches to inform our understanding of fundamental biology. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2356-2368, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Animal models for bone tissue engineering and modelling disease
Griffin, Michelle
2018-01-01
ABSTRACT Tissue engineering and its clinical application, regenerative medicine, are instructing multiple approaches to aid in replacing bone loss after defects caused by trauma or cancer. In such cases, bone formation can be guided by engineered biodegradable and nonbiodegradable scaffolds with clearly defined architectural and mechanical properties informed by evidence-based research. With the ever-increasing expansion of bone tissue engineering and the pioneering research conducted to date, preclinical models are becoming a necessity to allow the engineered products to be translated to the clinic. In addition to creating smart bone scaffolds to mitigate bone loss, the field of tissue engineering and regenerative medicine is exploring methods to treat primary and secondary bone malignancies by creating models that mimic the clinical disease manifestation. This Review gives an overview of the preclinical testing in animal models used to evaluate bone regeneration concepts. Immunosuppressed rodent models have shown to be successful in mimicking bone malignancy via the implantation of human-derived cancer cells, whereas large animal models, including pigs, sheep and goats, are being used to provide an insight into bone formation and the effectiveness of scaffolds in induced tibial or femoral defects, providing clinically relevant similarity to human cases. Despite the recent progress, the successful translation of bone regeneration concepts from the bench to the bedside is rooted in the efforts of different research groups to standardise and validate the preclinical models for bone tissue engineering approaches. PMID:29685995
Chen, Bor-Sen; Wu, Chia-Chou
2013-01-01
Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering. PMID:24709875
Challenges in engineering osteochondral tissue grafts with hierarchical structures.
Gadjanski, Ivana; Vunjak-Novakovic, Gordana
2015-01-01
A major hurdle in treating osteochondral (OC) defects is the different healing abilities of two types of tissues involved - articular cartilage and subchondral bone. Biomimetic approaches to OC-construct engineering, based on recapitulation of biological principles of tissue development and regeneration, have potential for providing new treatments and advancing fundamental studies of OC tissue repair. This review on state of the art in hierarchical OC tissue graft engineering is focused on tissue engineering approaches designed to recapitulate the native milieu of cartilage and bone development. These biomimetic systems are discussed with relevance to bioreactor cultivation of clinically sized, anatomically shaped human cartilage/bone constructs with physiologic stratification and mechanical properties. The utility of engineered OC tissue constructs is evaluated for their use as grafts in regenerative medicine, and as high-fidelity models in biological research. A major challenge in engineering OC tissues is to generate a functionally integrated stratified cartilage-bone structure starting from one single population of mesenchymal cells, while incorporating perfusable vasculature into the bone, and in bone-cartilage interface. To this end, new generations of advanced scaffolds and bioreactors, implementation of mechanical loading regimens and harnessing of inflammatory responses of the host will likely drive the further progress.
Chen, Bor-Sen; Wu, Chia-Chou
2013-10-11
Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.
Multidisciplinary research in space sciences and engineering with emphasis on theoretical chemistry
NASA Technical Reports Server (NTRS)
Hirschfelder, J. O.; Curtiss, C. F.
1974-01-01
A broad program is reported of research in theoretical chemistry, particularly in molecular quantum and statistical mechanics, directed toward determination of the physical and chemical properties of materials, relation of these macroscopic properties to properties of individual molecules, and determination of the structure and properties of the individual molecules. Abstracts are presented for each research project conducted during the course of the program.
Institutional profile: the London Centre for Nanotechnology.
Weston, David; Bontoux, Thierry
2009-12-01
Located in the London neighborhoods of Bloomsbury and South Kensington, the London Centre for Nanotechnology is a UK-based multidisciplinary research center that operates at the forefront of science and technology. It is a joint venture between two of the world's leading institutions, UCL and Imperial College London, uniting their strong capabilities in the disciplines that underpin nanotechnology: engineering, the physical sciences and biomedicine. The London Centre for Nanotechnology has a unique operating model that accesses and focuses the combined skills of the Departments of Chemistry, Physics, Materials, Medicine, Electrical and Electronic Engineering, Mechanical Engineering, Chemical Engineering, Biochemical Engineering and Earth Sciences across the two universities. It aims to provide the nanoscience and nanotechnology required to solve major problems in healthcare, information processing, energy and the environment.
Environment assisted degradation mechanisms in advanced light metals
NASA Technical Reports Server (NTRS)
Gangloff, R. P.; Stoner, G. E.; Swanson, R. E.
1989-01-01
A multifaceted research program on the performance of advanced light metallic alloys in aggressive aerospace environments, and associated environmental failure mechanisms was initiated. The general goal is to characterize alloy behavior quantitatively and to develop predictive mechanisms for environmental failure modes. Successes in this regard will provide the basis for metallurgical optimization of alloy performance, for chemical control of aggressive environments, and for engineering life prediction with damage tolerance and long term reliability.
Reuse of coal mining wastes in civil engineering. Part 1: Properties of minestone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skarzynska, K.M.
1995-07-01
This review is intended to introduce the readers to the geotechnical properties of minestone obtained from various countries and to describe laboratory and field methods used to examine and evaluate such material. The contents of the paper consist of general information on the environmental consequences of coal mining, the origin of the by-product, and the classification of the material. Primary emphasis has been placed on describing the physical and mechanical properties with respect to geotechnical engineering. Characteristic properties, such as degradation, weathering, spontaneous heating, etc., are specific for this man-made soil and are discussed in relationship to civil engineering. Finally,more » the current and far-reaching effects of existing radioactivity is also presented. Preparation of the review is based on an extensive literature survey, as well as on the investigations of the author and practical applications. A general conclusion can be made from the reviewed data that a noticeable similarity does exist between the chemical, physical, and mechanical properties of minestone from different sources and countries. this is important because the research results and practical experience obtained in one country may then be applied to projects in another country. The review should be helpful in understanding the behavior of minestone during its transport for prospective utilization in different engineering projects. The author hopes that the information will be useful to those studying environmental, civil, and water engineering, as well as for designers and researchers investigating the potential use of this man-made (anthropogenic) soil in various fields of engineering.« less
Shamloo, Amir; Mohammadaliha, Negar; Mohseni, Mina
2015-10-20
This review aims to propose the integrative implementation of microfluidic devices, biomaterials, and computational methods that can lead to a significant progress in tissue engineering and regenerative medicine researches. Simultaneous implementation of multiple techniques can be very helpful in addressing biological processes. Providing controllable biochemical and biomechanical cues within artificial extracellular matrix similar to in vivo conditions is crucial in tissue engineering and regenerative medicine researches. Microfluidic devices provide precise spatial and temporal control over cell microenvironment. Moreover, generation of accurate and controllable spatial and temporal gradients of biochemical factors is attainable inside microdevices. Since biomaterials with tunable properties are a worthwhile option to construct artificial extracellular matrix, in vitro platforms that simultaneously utilize natural, synthetic, or engineered biomaterials inside microfluidic devices are phenomenally advantageous to experimental studies in the field of tissue engineering. Additionally, collaboration between experimental and computational methods is a useful way to predict and understand mechanisms responsible for complex biological phenomena. Computational results can be verified by using experimental platforms. Computational methods can also broaden the understanding of the mechanisms behind the biological phenomena observed during experiments. Furthermore, computational methods are powerful tools to optimize the fabrication of microfluidic devices and biomaterials with specific features. Here we present a succinct review of the benefits of microfluidic devices, biomaterial, and computational methods in the case of tissue engineering and regeneration medicine. Furthermore, some breakthroughs in biological phenomena including the neuronal axon development, cancerous cell migration and blood vessel formation via angiogenesis by virtue of the aforementioned approaches are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing
NASA Technical Reports Server (NTRS)
Grady, Joseph E.
2015-01-01
The Non-Metallic Gas Turbine Engine project, funded by NASA Aeronautics Research Institute, represents the first comprehensive evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. This will be achieved by assessing the feasibility of using additive manufacturing technologies to fabricate polymer matrix composite and ceramic matrix composite turbine engine components. The benefits include: 50 weight reduction compared to metallic parts, reduced manufacturing costs, reduced part count and rapid design iterations. Two high payoff metallic components have been identified for replacement with PMCs and will be fabricated using fused deposition modeling (FDM) with high temperature polymer filaments. The CMC effort uses a binder jet process to fabricate silicon carbide test coupons and demonstration articles. Microstructural analysis and mechanical testing will be conducted on the PMC and CMC materials. System studies will assess the benefits of fully nonmetallic gas turbine engine in terms of fuel burn, emissions, reduction of part count, and cost. The research project includes a multidisciplinary, multiorganization NASA - industry team that includes experts in ceramic materials and CMCs, polymers and PMCs, structural engineering, additive manufacturing, engine design and analysis, and system analysis.
Summary of semi-initiative and initiative control automobile engine vibration
NASA Astrophysics Data System (ADS)
Qu, Wei; Qu, Zhou
2009-07-01
Engine vibration accounts for around 55% of automobile vibration, separating the engine vibration from transmitting to automobile to the utmost extent is significant for improving NVH performance. Semi-initiative and initiative control of engine vibration is one of the hot spots of technical research in domestic and foreign automobile industry, especially luxury automobiles which adopt this technology to improve amenity and competitiveness. This article refers to a large amount of domestic and foreign related materials, fully introduces the research status of semi-initiative and initiative control suspension of engine vibration suspension and many kinds of structural style, and provides control policy and method of semi-initiative and initiative control suspension system. Compare and analyze the structural style of semi-initiative and initiative control and merits and demerits of current structures of semi-initiative and initiative control of mechanic electrorheological, magnetorheological, electromagnetic actuator, piezoelectric ceramics, electrostriction material, pneumatic actuator etc. Models of power assembly mounting system was classified.Calculation example indicated that reasonable selection of engine mounting system parameters is useful to reduce engine vibration transmission and to increase ride comfort. Finally we brought forward semi-initiative and initiative suspension which might be applied for automobiles, and which has a promising future.
46 CFR 12.15-13 - Deck engine mechanic.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Deck engine mechanic. 12.15-13 Section 12.15-13 Shipping... ENDORSEMENTS Qualified Member of the Engine Department § 12.15-13 Deck engine mechanic. (a) An applicant for an endorsement as deck engine mechanic shall be a person holding an MMC or MMD endorsed as junior engineer. The...
46 CFR 12.15-13 - Deck engine mechanic.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Deck engine mechanic. 12.15-13 Section 12.15-13 Shipping... ENDORSEMENTS Qualified Member of the Engine Department § 12.15-13 Deck engine mechanic. (a) An applicant for an endorsement as deck engine mechanic shall be a person holding an MMC or MMD endorsed as junior engineer. The...
46 CFR 12.15-13 - Deck engine mechanic.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Deck engine mechanic. 12.15-13 Section 12.15-13 Shipping... ENDORSEMENTS Qualified Member of the Engine Department § 12.15-13 Deck engine mechanic. (a) An applicant for an endorsement as deck engine mechanic shall be a person holding an MMC or MMD endorsed as junior engineer. The...
46 CFR 12.15-13 - Deck engine mechanic.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Deck engine mechanic. 12.15-13 Section 12.15-13 Shipping... ENDORSEMENTS Qualified Member of the Engine Department § 12.15-13 Deck engine mechanic. (a) An applicant for an endorsement as deck engine mechanic shall be a person holding an MMC or MMD endorsed as junior engineer. The...
(Surface engineering by high energy beams)
DOE Office of Scientific and Technical Information (OSTI.GOV)
McHargue, C.J.
1989-10-23
A paper entitled Structure-Mechanical Property relationships in Ion-Implanted Ceramics'' was presented at the 2nd International Seminar on Surface Engineering by High Energy Beams in Lisbon, Portugal. This seminar was sponsored by the International Federation of Heat Treatment and Surface Engineering and included discussions on surface modifications using laser, electron, and ion beams. The visit to the University of Lisbon and LNETI-Sacavem included discussions regarding collaborative research in which Professor J.C. Soares and Dr. M.F. da Silva would conduct perturbed angular correlation (PAC) studies on ion-implanted samples supplied by the traveler. The collaboration between researchers at ORNL and the University Claudemore » Bernard-Lyon 1 (France) continues. Data were analyzed during this visit, plans for further experiments were developed, and a paper was drafted for publication.« less
Experimental study on mechanism and shape characteristics of suspended flexible dam
NASA Astrophysics Data System (ADS)
Wang, Jian-zhong; Fan, Hong-xia; Zhu, Li-jun
2014-12-01
Hydraulic structures such as groin, longitudinal dike and seawall are common in water conservancy and water transportation engineering projects at home and abroad, which have long been dominated by solid mass structural form. With brush and stone as building materials, this kind of structure has an obvious engineering effect. However, it not only requires huge capital investments, but also has negative impacts on the ecological environment. The suspended flexible dam is an innovative engineering measure, and few theoretical and experimental researches of this type dam can be found at present. This paper studies the mechanism and shape characteristics of this dam and obtains the dynamic equilibrium equation of flexible dam, the float buoyancy expression, and the condition for transformation among three forms of the underwater shape of the dam. The results are valuable in engineering application and can be used as the reference for the future work due to the distinctive design philosophy, the small negative effects on environment and the consistency for sustainable development.
NASA Space Mechanisms Handbook and Reference Guide Expanded Into CD-ROM Set
NASA Technical Reports Server (NTRS)
Fusaro, Robert L.
2002-01-01
Several NASA missions suffered failures and anomalies due to problems in applying space mechanisms technology to specific projects. Research shows that engineers often lack either adequate knowledge of mechanism design or sufficient understanding of how mechanisms affect sensitive systems. The Space Mechanisms Project conducted a Lessons Learned study and published a Space Mechanisms Handbook to help space industry engineers avoid recurring design, qualification, and application problems. The Space Mechanisms Handbook written at the NASA Glenn Research Center details the state-of-the-art in space mechanisms design as of 1998. NASA's objective in developing this Space Mechanisms Handbook was to provide readily accessible information on such areas as space mechanisms design, mechanical component availability and use, testing and qualification of mechanical systems, and a listing of worldwide space mechanisms experts and testing facilities in the United States. This handbook has been expanded into a two-volume CD-ROM set in an Adobe Acrobat format. In addition to the handbook, the CD's include (1) the two volume Space Mechanisms Lessons Learned Study, (2) proceedings from all the NASA hosted Aerospace Mechanisms Symposia held through the year 2000, (3) the Space Materials Handbook, (4) the Lubrication Handbook for the Space Industry, (5) the Structural & Mechanical Systems Long-Life Assurance Design Guidelines, (6) the Space Environments and Effects Source-Book, (7) the Spacecraft Deployable Appendages manual, (8) the Fastener Design Manual, (9) A Manual for Pyrotechnic Design, Development and Qualification, (10) the Report on Alternative Devices to Pyrotechnics on Spacecraft, and (11) Gearing (a manual). In addition, numerous other papers on tribology and lubrication are included.This technical summary of the project provides information on how to obtain the handbook and related information.
Fundamentals of tribology at the atomic level
NASA Technical Reports Server (NTRS)
Ferrante, John; Pepper, Stephen V.
1989-01-01
Tribology, the science and engineering of solid surfaces in moving contact, is a field that encompasses many disciplines: solid state physics, chemistry, materials science, and mechanical engineering. In spite of the practical importance and maturity of the field, the fundamental understanding of basic phenomena has only recently been attacked. An attempt to define some of these problems and indicate some profitable directions for future research is presented. There are three broad classifications: (1) fluid properties (compression, rheology, additives and particulates); (2) material properties of the solids (deformation, defect formation and energy loss mechanisms); and (3) interfacial properties (adhesion, friction chemical reactions, and boundary films). Research in the categories has traditionally been approached by considering macroscopic material properties. Recent activity has shown that some issues can be approached at the atomic level: the atoms in the materials can be manipulated both experimentally and theoretically, and can produce results related to macroscopic phenomena.
Engines for experiment: laboratory revolution and industrial labor in the nineteenth-century city.
Dierig, Sven
2003-01-01
This article brings together what until now have been separate fields of nineteenth-century history: the development of experimental physiology, the growth of mechanized industry, and the city, where their threads intertwined. The main argument is that the laboratory in the city employed the same technological and organizational approaches to modernize that the city used to industrialize. To bring the adoption of technology into focus, the article discusses laboratory research as it developed after the introduction of small-scale power engines. With its machines, the industrialized city provided not only the key metaphor of the nineteenth-century life sciences but also a key technology that shifted experimental practices in animal research from a kind of preindustrial craft to a more mechanized production of knowledge. With its "factory-laboratories," the late-nineteenth-century city became the birthplace for the first living, data-producing hybird---part animal and part machine.
Introduction to the computational structural mechanics testbed
NASA Technical Reports Server (NTRS)
Lotts, C. G.; Greene, W. H.; Mccleary, S. L.; Knight, N. F., Jr.; Paulson, S. S.; Gillian, R. E.
1987-01-01
The Computational Structural Mechanics (CSM) testbed software system based on the SPAR finite element code and the NICE system is described. This software is denoted NICE/SPAR. NICE was developed at Lockheed Palo Alto Research Laboratory and contains data management utilities, a command language interpreter, and a command language definition for integrating engineering computational modules. SPAR is a system of programs used for finite element structural analysis developed for NASA by Lockheed and Engineering Information Systems, Inc. It includes many complementary structural analysis, thermal analysis, utility functions which communicate through a common database. The work on NICE/SPAR was motivated by requirements for a highly modular and flexible structural analysis system to use as a tool in carrying out research in computational methods and exploring computer hardware. Analysis examples are presented which demonstrate the benefits gained from a combination of the NICE command language with a SPAR computational modules.
NASA Aeronautics Multidisciplinary Analysis and Design Fellowship Program
NASA Technical Reports Server (NTRS)
Grossman, B.; Guerdal, Z.; Haftka, R. T.; Kapania, R. K.; Mason, W. H.; Mook, D. T.
1998-01-01
For a number of years, Virginia Tech had been on the forefront of research in the area of multidisciplinary analysis and design. In June of 1994, faculty members from aerospace and ocean engineering, engineering science and mechanics, mechanical engineering, industrial engineering, mathematics and computer sciences, at Virginia Tech joined together to form the Multidisciplinary Analysis and Design (MAD) Center for Advanced Vehicles. The center was established with the single goal: to perform research that is relevant to the needs of the US industry and to foster collaboration between the university, government and industry. In October of 1994, the center was chosen by NASA headquarters as one of the five university centers to establish a fellowship program to develop a graduate program in multidisciplinary analysis and design. The fellowship program provides full stipend and tuition support for seven U. S. students per year during their graduate studies. To advise us regarding the problems faced by the industry, an industrial advisory board has been formed consisting of representatives from industry as well as government laboratories. The function of the advisory board is to channel information from its member companies to faculty members concerning problems that need research attention in the general area of multidisciplinary design optimization (MDO). The faculty and their graduate students make proposals to the board on how to address these problems. At the annual board meeting in Blacksburg, the board discusses the proposals and suggests which students get funded under the NASA fellowship program. All students participating in the program are required to spend 3-6 months in industry working on their research projects. We are completing the third year of the fellowship program and have had three advisory board meetings in Blacksburg.
NASA Astrophysics Data System (ADS)
Lianhua, Yin
The heat shield of aircraft is made of the major thrusts structure with multilayer thermal insulation part. For protecting against thermo-radiation from larger thrusting force engine,the heat shield is installed around this engine nearby.The multilayer thermal insulation part with multilayer radiation/reflection structure is made of reflection layer and interval layer.At vacuum condition,these materials is higher heat insulation capability than other material,is applied for lots of pats on aircraft extensively.But because of these material is made of metal and nonmetal,it is impossible to receive it's mechanical properties of materials from mechanical tests.These paper describes a new measure of mechanical properties of materials in the heat shield based on model analysis test.At the requirement for the first order lateral frequency,these measure provide for the FEM analysis foundation on the optimization structure of the heat shield.
NASA Astrophysics Data System (ADS)
Yamaguchi, Kenji; Ohtuka, Sigeru; Morita, Shinichi; Matsumoto, Itaru; Yakabe, Masaki; Hayamizu, Yasutaka; Ohtuka, Kouichi
The importance of presentation skills rapidly increases in engineering education in Japan. The authors have applied various teaching-method of presentation skills to the course of graduation research for the fifth-grade students of the mechanical engineering program in Yonago National College of Technology. The lectures including teachers' demonstration and basic skills in presentation have resulted in improvement of students' skills. The meeting for announcing the results of graduation research has been opened to the public in cooperation with the Yonago Chamber of Commerce and Industry to give the students incentives to graduation research as well as presentation. The students have mutually evaluated their presentation to get good opportunities for even self-evaluation. This paper discusses the effects and problems of our educational practice.
46 CFR 113.35-9 - Mechanical engine order telegraph systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Mechanical engine order telegraph systems. 113.35-9... COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-9 Mechanical engine order telegraph systems. (a) Each mechanical engine order telegraph system must consist of transmitters and...
Opportunities in Mechnical Engineering. [VGM Career Horizons Series].
ERIC Educational Resources Information Center
Konzo, Seichi; Bayne, James W.
This book presents information on career opportunities in mechanical engineering. Chapter 1 describes the historical development of mechanical engineering and its interactions with society, considers the growth of the American Society of Mechanical Engineers, and discusses the relevance of mechanical engineering to present-day and future society.…
Novel optical methodologies in studying mechanical signal transduction in mammalian cells
NASA Technical Reports Server (NTRS)
Stamatas, G. N.; McIntire, L. V.
1999-01-01
For the last 3 decades evidence has been accumulating that some types of mammalian cells respond to their mechanically active environment by altering their morphology, growth rate, and metabolism. The study of such responses is very important in understanding, physiological and pathological conditions ranging from bone formation to atherosclerosis. Obtaining this knowledge has been the goal for an active research area in bioengineering termed cell mechanotransduction. The advancement of optical methodologies used in cell biology research has given the tools to elucidate cellular mechanisms that would otherwise be impossible to visualize. Combined with molecular biology techniques, they give engineers invaluable tools in understanding the chemical pathways involved in mechanotransduction. Herein we briefly review the current knowledge on mechanical signal transduction in mammalian cells, focusing on the application of novel optical techniques in the ongoing research.
Molecular communication and networking: opportunities and challenges.
Nakano, Tadashi; Moore, Michael J; Wei, Fang; Vasilakos, Athanasios V; Shuai, Jianwei
2012-06-01
The ability of engineered biological nanomachines to communicate with biological systems at the molecular level is anticipated to enable future applications such as monitoring the condition of a human body, regenerating biological tissues and organs, and interfacing artificial devices with neural systems. From the viewpoint of communication theory and engineering, molecular communication is proposed as a new paradigm for engineered biological nanomachines to communicate with the natural biological nanomachines which form a biological system. Distinct from the current telecommunication paradigm, molecular communication uses molecules as the carriers of information; sender biological nanomachines encode information on molecules and release the molecules in the environment, the molecules then propagate in the environment to receiver biological nanomachines, and the receiver biological nanomachines biochemically react with the molecules to decode information. Current molecular communication research is limited to small-scale networks of several biological nanomachines. Key challenges to bridge the gap between current research and practical applications include developing robust and scalable techniques to create a functional network from a large number of biological nanomachines. Developing networking mechanisms and communication protocols is anticipated to introduce new avenues into integrating engineered and natural biological nanomachines into a single networked system. In this paper, we present the state-of-the-art in the area of molecular communication by discussing its architecture, features, applications, design, engineering, and physical modeling. We then discuss challenges and opportunities in developing networking mechanisms and communication protocols to create a network from a large number of bio-nanomachines for future applications.
An Overview of Innovative Strategies for Fracture Mechanics at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Ransom, Jonathan B.; Glaessgen, Edward H.; Ratcliffe, James G.
2010-01-01
Engineering fracture mechanics has played a vital role in the development and certification of virtually every aerospace vehicle that has been developed since the mid-20th century. NASA Langley Research Center s Durability, Damage Tolerance and Reliability Branch has contributed to the development and implementation of many fracture mechanics methods aimed at predicting and characterizing damage in both metallic and composite materials. This paper presents a selection of computational, analytical and experimental strategies that have been developed by the branch for assessing damage growth under monotonic and cyclic loading and for characterizing the damage tolerance of aerospace structures
Nonlinear Analysis of Squeeze Film Dampers Applied to Gas Turbine Helicopter Engines.
1980-11-01
calculate the stability (complex roots) of a multi-level gas turbine with aero- dynamic excitation. This program has been applied to the space shuttle...such phenomena as oil film whirl. This paper devlops an analysis technique incorporating modal analysis and fast Fourier transform tech- niques to...USING A SQUEEZE FILM BEARING By M. A. Simpson Research Engineer L. E. Barrett Reserach Assistant Professor Department of Mechanical and Aerospace
2010-01-07
many domains: mechanical load bearing and force transmission, immunogologic function (leukogenesis and lymphogenesis), mass transport (erythrogenesis...models including NHPs) does not reproduce upright posture of bipedal humans with respect to axial compression and rotational loading in the human lumbar...Schell, M. Mehta, M. A. Schuetz, G. N. Duda, D. W. Hutmacher. 2012. A Tissue Engineering Solution for Segmental Defect Regeneration in Load - Bearing
Powder metallurgy approaches to high temperature components for gas turbine engines
NASA Technical Reports Server (NTRS)
Probst, H. B.
1974-01-01
Research is reported for the tensile strength, ductility, and heat performance characterisitics of powder metallurgy (p/m) superalloys. Oxide dispersion strengthened alloys were also evaluated for their strength during thermal processing. The mechanical attributes evident in both p/m supperalloys and dispersion strengthened alloys are discussed in terms of research into their possible combination.
46 CFR 113.35-15 - Mechanical engine order telegraph systems; application.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Mechanical engine order telegraph systems; application...-15 Mechanical engine order telegraph systems; application. If a mechanical engine order telegraph... cables or other mechanical limitations must not prevent the efficient operation of the system. ...
Microbial fuel cells - Applications for generation of electrical power and beyond.
Mathuriya, Abhilasha Singh; Yakhmi, J V
2016-01-01
A Microbial Fuel Cell is a bioelectrochemical device that exploits metabolic activities of living microorganisms for generation of electric current. The usefulness and unique and exclusive architecture of this device has received wide attention recently of engineers and researchers of various disciplines such as microbiologists, chemical engineers, biotechnologists, environment engineers and mechanical engineers, and the subject of MFCs has thereby progressed as a well-developed technology. Sustained innovations and continuous development efforts have established the usefulness of MFCs towards many specialized and value-added applications beyond electricity generation, such as wastewater treatment and implantable body devices. This review is an attempt to provide an update on this rapidly growing technology.
2017-07-01
Lattice Boltzmann Method continues to garner interest in fluids research , particularly with its ability to accurately simulate laminar flows in the...Lattice- Boltzmann Method Report 2 in “Discrete Nano-Scale Mechanics and Simulations” Series In fo rm at io n Te ch no lo gy L ab or at or y...William P. England and Jeffrey B. Allen July 2017 Approved for public release; distribution is unlimited. The U.S. Army Engineer Research and
Hydraulic Fracture Extending into Network in Shale: Reviewing Influence Factors and Their Mechanism
Ren, Lan; Zhao, Jinzhou; Hu, Yongquan
2014-01-01
Hydraulic fracture in shale reservoir presents complex network propagation, which has essential difference with traditional plane biwing fracture at forming mechanism. Based on the research results of experiments, field fracturing practice, theory analysis, and numerical simulation, the influence factors and their mechanism of hydraulic fracture extending into network in shale have been systematically analyzed and discussed. Research results show that the fracture propagation in shale reservoir is influenced by the geological and the engineering factors, which includes rock mineral composition, rock mechanical properties, horizontal stress field, natural fractures, treating net pressure, fracturing fluid viscosity, and fracturing scale. This study has important theoretical value and practical significance to understand fracture network propagation mechanism in shale reservoir and contributes to improving the science and efficiency of shale reservoir fracturing design. PMID:25032240
2010-12-01
ADDRESS( ES ) Naval Postgraduate School 8. PERFORMING ORGANIZATION REPORT NUMBER Dept. of Mechanical & Aerospace Engineering 700 Dyer Rd...Monterey, CA 93943 NPS-MAE-10-006 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS( ES ) Defense Advanced Research...was done using a SATEC MII-20UD mechanical test frame with th e Bluehill A dvanced T est M odule control s oftware. T he displacement rate was 1.3mm
2017-03-30
Composite Damage and Failure Analysis Combining Synergistic Damage Mechanics and Peridynamics 5b. GRANT NUMBER NOOO 14-16-1-21 73 5c. PROGRAM...ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Texas A&M Engineering Experiment Station (TEES) 400 Harvey Mitchell Parkway, Suite 300 M160 1473 I...Failure Analysis Combining Synergistic Damage Mechanics and Peridynamics Award Number N00014-16-1-2173 DOD-NAVY- Office of Naval Research PI: Ramesh
Three-dimensional printing physiology laboratory technology.
Sulkin, Matthew S; Widder, Emily; Shao, Connie; Holzem, Katherine M; Gloschat, Christopher; Gutbrod, Sarah R; Efimov, Igor R
2013-12-01
Since its inception in 19th-century Germany, the physiology laboratory has been a complex and expensive research enterprise involving experts in various fields of science and engineering. Physiology research has been critically dependent on cutting-edge technological support of mechanical, electrical, optical, and more recently computer engineers. Evolution of modern experimental equipment is constrained by lack of direct communication between the physiological community and industry producing this equipment. Fortunately, recent advances in open source technologies, including three-dimensional printing, open source hardware and software, present an exciting opportunity to bring the design and development of research instrumentation to the end user, i.e., life scientists. Here we provide an overview on how to develop customized, cost-effective experimental equipment for physiology laboratories.
Thermal Energy Conversion Branch
NASA Technical Reports Server (NTRS)
Bielozer, Matthew C.; Schreiber, Jeffrey, G.; Wilson, Scott D.
2004-01-01
The Thermal Energy Conversion Branch (5490) leads the way in designing, conducting, and implementing research for the newest thermal systems used in space applications at the NASA Glenn Research Center. Specifically some of the most advanced technologies developed in this branch can be broken down into four main areas: Dynamic Power Systems, Primary Solar Concentrators, Secondary Solar Concentrators, and Thermal Management. Work was performed in the Dynamic Power Systems area, specifically the Stirling Engine subdivision. Today, the main focus of the 5490 branch is free-piston Stirling cycle converters, Brayton cycle nuclear reactors, and heat rejection systems for long duration mission spacecraft. All space exploring devices need electricity to operate. In most space applications, heat energy from radioisotopes is converted to electrical power. The Radioisotope Thermoelectric Generator (RTG) already supplies electricity for missions such as the Cassini Spacecraft. The focus of today's Stirling research at GRC is aimed at creating an engine that can replace the RTG. The primary appeal of the Stirling engine is its high system efficiency. Because it is so efficient, the Stirling engine will significantly reduce the plutonium fuel mission requirements compared to the RTG. Stirling is also being considered for missions such as the lunar/Mars bases and rovers. This project has focused largely on Stirling Engines of all types, particularly the fluidyne liquid piston engine. The fluidyne was developed by Colin D. West. This engine uses the same concepts found in any type of Stirling engine, with the exception of missing mechanical components. All the working components are fluid. One goal was to develop and demonstrate a working Stirling Fluidyne Engine at the 2nd Annual International Energy Conversion Engineering Conference in Providence, Rhode Island.
NASA Astrophysics Data System (ADS)
Kumar, Manoj; Srivastava, Akanksha
2013-01-01
This paper presents a survey of innovative approaches of the most effective computational techniques for solving singular perturbed partial differential equations, which are useful because of their numerical and computer realizations. Many applied problems appearing in semiconductors theory, biochemistry, kinetics, theory of electrical chains, economics, solid mechanics, fluid dynamics, quantum mechanics, and many others can be modelled as singularly perturbed systems. Here, we summarize a wide range of research articles published by numerous researchers during the last ten years to get a better view of the present scenario in this area of research.
1986-12-01
Engineering University of Wisconsin- Madison Mechanics, 1985 Dept. of Engineering Mechanics Specialty: Engineering Mechanics 1415 Johnson Drive Assigned: RPL... Madison , WI 53706 (608) 262-3990 Brian J. Doherty Degree: B.S.E., Bioenginnering, 1984 Duke University Specialty: Bloengineering Biomedical Engineering...Assigned: ML Kent, OH 44242 (216) 672-2246 Gregory L. Walker Degree: B.S., Engineering University of Wisconsin- Madison Mechanics, 1985 Engineering
Controls and guidance research
NASA Technical Reports Server (NTRS)
Homaifar, Abdollah; Dunn, Derome; Song, Yong-Duan; Lai, Steven H.-Y.
1992-01-01
The objectives of the control group are concentrated on research and education. The control problem of the hypersonic space vehicle represents an important and challenging issue in aerospace engineering. The work described in this report is part of our effort in developing advanced control strategies for such a system. In order to achieve the objectives stated in the NASA-CORE proposal, the tasks were divided among the group based upon their educational expertise. Within the educational component we are offering a Linear Systems and Control course for students in electrical and mechanical engineering. Also, we are proposing a new course in Digital Control Systems with a corresponding laboratory.
New Approaches to Multidisciplinary Design and Optimization
NASA Technical Reports Server (NTRS)
Schrage, D. P.; Craig, J. I.; Fulton, R. E.; Mistree, F.
1995-01-01
Research under the subject grant is being carried out in a jointly coordinated effort within three laboratories in the School of Aerospace Engineering and the George Woodruff School of Mechanical Engineering. The objectives and results for Year 2 of the research program are summarized. The "Objectives" and "Expected Significance" are taken directly from the Year 2 Proposal presented in October 1994, and "Results" summarize the what has been accomplished this year. A discussion of these results is provided in the following sections. A listing of papers, presentations and reports that acknowledge grant support, either in part or in whole, and that were prepared during this period is provided in an attachment.
Curriculum optimization of College of Optical Science and Engineering
NASA Astrophysics Data System (ADS)
Wang, Xiaoping; Zheng, Zhenrong; Wang, Kaiwei; Zheng, Xiaodong; Ye, Song; Zhu, Yuhui
2017-08-01
The optimized curriculum of College of Optical Science and Engineering is accomplished at Zhejiang University, based on new trends from both research and industry. The curriculum includes general courses, foundation courses such as mathematics and physics, major core courses, laboratory courses and several module courses. Module courses include optical system designing, optical telecommunication, imaging and vision, electronics and computer science, optoelectronic sensing and metrology, optical mechanics and materials, basics and extension. These curricula reflect the direction of latest researches and relates closely with optoelectronics. Therefore, students may combine flexibly compulsory courses with elective courses, and establish the personalized curriculum of "optoelectronics + X", according to their individual strengths and preferences.
Hillslope hydrology and stability
Lu, Ning; Godt, Jonathan
2012-01-01
Landslides are caused by a failure of the mechanical balance within hillslopes. This balance is governed by two coupled physical processes: hydrological or subsurface flow and stress. The stabilizing strength of hillslope materials depends on effective stress, which is diminished by rainfall. This book presents a cutting-edge quantitative approach to understanding hydro-mechanical processes across variably saturated hillslope environments and to the study and prediction of rainfall-induced landslides. Topics covered include historic synthesis of hillslope geomorphology and hydrology, total and effective stress distributions, critical reviews of shear strength of hillslope materials and different bases for stability analysis. Exercises and homework problems are provided for students to engage with the theory in practice. This is an invaluable resource for graduate students and researchers in hydrology, geomorphology, engineering geology, geotechnical engineering and geomechanics and for professionals in the fields of civil and environmental engineering and natural hazard analysis.
Toxicity, Uptake, and Translocation of Engineered Nanomaterials in Vascular plants.
Miralles, Pola; Church, Tamara L; Harris, Andrew T
2012-09-04
To exploit the promised benefits of engineered nanomaterials, it is necessary to improve our knowledge of their bioavailability and toxicity. The interactions between engineered nanomaterials and vascular plants are of particular concern, as plants closely interact with soil, water, and the atmosphere, and constitute one of the main routes of exposure for higher species, i.e. accumulation through the food chain. A review of the current literature shows contradictory evidence on the phytotoxicity of engineered nanomaterials. The mechanisms by which engineered nanomaterials penetrate plants are not well understood, and further research on their interactions with vascular plants is required to enable the field of phytotoxicology to keep pace with that of nanotechnology, the rapid evolution of which constantly produces new materials and applications that accelerate the environmental release of nanomaterials.
Seals/Secondary Fluid Flows Workshop 1997; Volume I
NASA Technical Reports Server (NTRS)
Hendricks, Robert C. (Editor)
2006-01-01
The 1997 Conference provided discussions and data on (a) program overviews, (b) developments in seals and secondary air management systems, (c) interactive seals flows with secondary air or fluid flows and powerstream flows, (d) views of engine externals and limitations, (e) high speed engine research sealing needs and demands, and (f) a short course on engine design development margins. Sealing concepts discussed include, mechanical rim and cavity seals, leaf, finger, air/oil, rope, floating-brush, floating-T-buffer, and brush seals. Engine externals include all components of engine fluid systems, sensors and their support structures that lie within or project through the nacelle. The clean features of the nacelle belie the minefield of challenges and opportunities that lie within. Seals; Secondary air flows; Rotordynamics; Gas turbine; Aircraft; CFD; Testing; Turbomachinery
Integration of Research Into Grade Nine-Graduate Level Curricula
NASA Astrophysics Data System (ADS)
Bonner, J.; Callicott, K.; Page, C.
2004-05-01
Research on the Kolb Learning Cycle, engineering education, and recent cognitive learning research indicates that learning occurs through knowledge application. Moreover, experts in a given discipline will differ from novices with regard to their ability to transfer their knowledge by application to new contexts. We have developed a suite of educational opportunities to bridge the gap between research and the classroom, with activities spanning the educational spectrum from high school through graduate school. One mechanism for transferring of research into undergraduate/graduate curricula is through our National Science Foundation (NSF) funded Combined Research-Curriculum Development (CRCD) project ("Environmental Informatics in Coastal Margins"). This project modifies engineering curricula to provide the nation with the next generation of engineers who can utilize the latest environmental modeling tools. The project revises/creates three undergraduate courses forming the environmental informatics (EI) track of the civil engineering curriculum and two graduate courses integrating GIS and environmental measurements. Curriculum development efforts are guided by an expert team drawn from nearby campuses and both regional and national industry, and includes an expert in assessing the pedagogical value of the curriculum and developing suitable metrics to evaluate student learning experiences. Another NSF-funded project integrating research into an undergraduate educational setting is our Research Experience for Undergraduates (REU) project ("Undergraduate Research in Biodiversity and Ecological Processes in Fluctuating Environments"). Research includes overlapping topics in environmental engineering and life sciences. The summer research experience provides students an opportunity to integrate engineering and life science technologies and to the study of ecological processes associated with biodiversity and environmental quality. Students orally present their project and submit in-depth papers. Over twenty publications/proceedings papers have been generated thus far. A third project involves our collaborations with the ITS Center ("Information Technology in Science Center for Teaching and Learning") on the A&M campus. As an investment in "project team growing", the Center is collaborating with us to collect data on implementation of an engineering science and math enhancement module in Hearne Independent School District. The specific activity involves a CRCD engineering class and an educational psychology undergraduate class. The engineering students give group presentations, where each presentation addresses a scenario that focuses on an environmental topic presented in the class. The students present the technical material to the education students who serve as a non-technical lay audience, emulating a city council, for example. The education students adapt the material for presentation to high school students, working with mentor teachers to enhance content, relevance and hands on experience while learning to apply teaching pedagogy.
Kinesin and Dynein Mechanics: Measurement Methods and Research Applications.
Abraham, Zachary; Hawley, Emma; Hayosh, Daniel; Webster-Wood, Victoria A; Akkus, Ozan
2018-02-01
Motor proteins play critical roles in the normal function of cells and proper development of organisms. Among motor proteins, failings in the normal function of two types of proteins, kinesin and dynein, have been shown to lead many pathologies, including neurodegenerative diseases and cancers. As such, it is critical to researchers to understand the underlying mechanics and behaviors of these proteins, not only to shed light on how failures may lead to disease, but also to guide research toward novel treatment and nano-engineering solutions. To this end, many experimental techniques have been developed to measure the force and motility capabilities of these proteins. This review will (a) discuss such techniques, specifically microscopy, atomic force microscopy (AFM), optical trapping, and magnetic tweezers, and (b) the resulting nanomechanical properties of motor protein functions such as stalling force, velocity, and dependence on adenosine triphosophate (ATP) concentrations will be comparatively discussed. Additionally, this review will highlight the clinical importance of these proteins. Furthermore, as the understanding of the structure and function of motor proteins improves, novel applications are emerging in the field. Specifically, researchers have begun to modify the structure of existing proteins, thereby engineering novel elements to alter and improve native motor protein function, or even allow the motor proteins to perform entirely new tasks as parts of nanomachines. Kinesin and dynein are vital elements for the proper function of cells. While many exciting experiments have shed light on their function, mechanics, and applications, additional research is needed to completely understand their behavior.
Averting Denver Airports on a Chip
NASA Technical Reports Server (NTRS)
Sullivan, Kevin J.
1995-01-01
As a result of recent advances in software engineering capabilities, we are now in a more stable environment. De-facto hardware and software standards are emerging. Work on software architecture and design patterns signals a consensus on the importance of early system-level design decisions, and agreements on the uses of certain paradigmatic software structures. We now routinely build systems that would have been risky or infeasible a few years ago. Unfortunately, technological developments threaten to destabilize software design again. Systems designed around novel computing and peripheral devices will spark ambitious new projects that will stress current software design and engineering capabilities. Micro-electro-mechanical systems (MEMS) and related technologies provide the physical basis for new systems with the potential to produce this kind of destabilizing effect. One important response to anticipated software engineering and design difficulties is carefully directed engineering-scientific research. Two specific problems meriting substantial research attention are: A lack of sufficient means to build software systems by generating, extending, specializing, and integrating large-scale reusable components; and a lack of adequate computational and analytic tools to extend and aid engineers in maintaining intellectual control over complex software designs.
Recent Advances in Tissue Engineering Strategies for the Treatment of Joint Damage.
Stephenson, Makeda K; Farris, Ashley L; Grayson, Warren L
2017-08-01
While the clinical potential of tissue engineering for treating joint damage has yet to be realized, research and commercialization efforts in the field are geared towards overcoming major obstacles to clinical translation, as well as towards achieving engineered grafts that recapitulate the unique structures, function, and physiology of the joint. In this review, we describe recent advances in technologies aimed at obtaining biomaterials, stem cells, and bioreactors that will enable the development of effective tissue-engineered treatments for repairing joint damage. 3D printing of scaffolds is aimed at improving the mechanical structure and microenvironment necessary for bone regeneration within a damaged joint. Advances in our understanding of stem cell biology and cell manufacturing processes are informing translational strategies for the therapeutic use of allogeneic and autologous cells. Finally, bioreactors used in combination with cells and biomaterials are promising strategies for generating large tissue grafts for repairing damaged tissues in pre-clinical models. Together, these advances along with ongoing research directions are making tissue engineering increasingly viable for the treatment of joint damage.
NASA Astrophysics Data System (ADS)
Spitznagel, J. A.; Wood, Susan
1988-08-01
The Software Engineering institute is a federally funded research and development center sponsored by the Department of Defense (DOD). It was chartered by the Undersecretary of Defense for Research and Engineering on June 15, 1984. The SEI was established and is operated by Carnegie Mellon University (CUM) under contract F19628-C-0003, which was competitively awarded on December 28, 1984, by the Air Force Electronic Systems Division. The mission of the SEI is to provide the means to bring the ablest minds and the most effective technology to bear on the rapid improvement of the quality of operational software in mission-critical computer systems; to accelerate the reduction to practice of modern software engineering techniques and methods; to promulgate the use of modern techniques and methods throughout the mission-critical systems community; and to establish standards of excellence for the practice of software engineering. This report provides a summary of the programs and projects, staff, facilities, and service accomplishments of the Software Engineering Institute during 1987.
Data Documentation for Navy Civilian Manpower Study,
1986-09-01
Engineering 0830 Mechanical Engineer 0840 Nuclear Engineering 0850 Electrical Engineering 0855 Electronics Engineering 0856 Electronics ...OCCUPATIONAL LEVEL (DONOL) CODES DONOL code Title 1060 Engineering Drafting 1061 Electronics Technician w 1062 Engineering Technician 1063 Industrial...Architect 2314 Electrical Engineer 2315 Electronic Engineer 2316 Industrial Engineer 2317 Mechanical Engineer 2318
Biomaterials for Tissue Engineering
Lee, Esther J.; Kasper, F. Kurtis; Mikos, Antonios G.
2013-01-01
Biomaterials serve as an integral component of tissue engineering. They are designed to provide architectural framework reminiscent of native extracellular matrix in order to encourage cell growth and eventual tissue regeneration. Bone and cartilage represent two distinct tissues with varying compositional and mechanical properties. Despite these differences, both meet at the osteochondral interface. This article presents an overview of current biomaterials employed in bone and cartilage applications, discusses some design considerations, and alludes to future prospects within this field of research. PMID:23820768
Popoola, Segun I; Atayero, Aderemi A; Badejo, Joke A; John, Temitope M; Odukoya, Jonathan A; Omole, David O
2018-04-01
Empirical measurement, monitoring, analysis, and reporting of learning outcomes in higher institutions of developing countries may lead to sustainable education in the region. In this data article, data about the academic performances of undergraduates that studied engineering programs at Covenant University, Nigeria are presented and analyzed. A total population sample of 1841 undergraduates that studied Chemical Engineering (CHE), Civil Engineering (CVE), Computer Engineering (CEN), Electrical and Electronics Engineering (EEE), Information and Communication Engineering (ICE), Mechanical Engineering (MEE), and Petroleum Engineering (PET) within the year range of 2002-2014 are randomly selected. For the five-year study period of engineering program, Grade Point Average (GPA) and its cumulative value of each of the sample were obtained from the Department of Student Records and Academic Affairs. In order to encourage evidence-based research in learning analytics, detailed datasets are made publicly available in a Microsoft Excel spreadsheet file attached to this article. Descriptive statistics and frequency distributions of the academic performance data are presented in tables and graphs for easy data interpretations. In addition, one-way Analysis of Variance (ANOVA) and multiple comparison post-hoc tests are performed to determine whether the variations in the academic performances are significant across the seven engineering programs. The data provided in this article will assist the global educational research community and regional policy makers to understand and optimize the learning environment towards the realization of smart campuses and sustainable education.
USNCTAM perspectives on mechanics in medicine
Bao, Gang; Bazilevs, Yuri; Chung, Jae-Hyun; Decuzzi, Paolo; Espinosa, Horacio D.; Ferrari, Mauro; Gao, Huajian; Hossain, Shaolie S.; Hughes, Thomas J. R.; Kamm, Roger D.; Liu, Wing Kam; Marsden, Alison; Schrefler, Bernhard
2014-01-01
Over decades, the theoretical and applied mechanics community has developed sophisticated approaches for analysing the behaviour of complex engineering systems. Most of these approaches have targeted systems in the transportation, materials, defence and energy industries. Applying and further developing engineering approaches for understanding, predicting and modulating the response of complicated biomedical processes not only holds great promise in meeting societal needs, but also poses serious challenges. This report, prepared for the US National Committee on Theoretical and Applied Mechanics, aims to identify the most pressing challenges in biological sciences and medicine that can be tackled within the broad field of mechanics. This echoes and complements a number of national and international initiatives aiming at fostering interdisciplinary biomedical research. This report also comments on cultural/educational challenges. Specifically, this report focuses on three major thrusts in which we believe mechanics has and will continue to have a substantial impact. (i) Rationally engineering injectable nano/microdevices for imaging and therapy of disease. Within this context, we discuss nanoparticle carrier design, vascular transport and adhesion, endocytosis and tumour growth in response to therapy, as well as uncertainty quantification techniques to better connect models and experiments. (ii) Design of biomedical devices, including point-of-care diagnostic systems, model organ and multi-organ microdevices, and pulsatile ventricular assistant devices. (iii) Mechanics of cellular processes, including mechanosensing and mechanotransduction, improved characterization of cellular constitutive behaviour, and microfluidic systems for single-cell studies. PMID:24872502
Code of Federal Regulations, 2013 CFR
2013-07-01
... controls means any combination of engineering, mechanical, procedural, or biological controls designed and... purposes other than research and development. Genome means the sum total of chromosomal and... surveys, tests, and studies of: Survival and transport in air, water, and soil; ability to exchange...
Code of Federal Regulations, 2011 CFR
2011-07-01
... controls means any combination of engineering, mechanical, procedural, or biological controls designed and... purposes other than research and development. Genome means the sum total of chromosomal and... surveys, tests, and studies of: Survival and transport in air, water, and soil; ability to exchange...
Code of Federal Regulations, 2010 CFR
2010-07-01
... controls means any combination of engineering, mechanical, procedural, or biological controls designed and... purposes other than research and development. Genome means the sum total of chromosomal and... surveys, tests, and studies of: Survival and transport in air, water, and soil; ability to exchange...
Code of Federal Regulations, 2012 CFR
2012-07-01
... controls means any combination of engineering, mechanical, procedural, or biological controls designed and... purposes other than research and development. Genome means the sum total of chromosomal and... surveys, tests, and studies of: Survival and transport in air, water, and soil; ability to exchange...
Code of Federal Regulations, 2014 CFR
2014-07-01
... controls means any combination of engineering, mechanical, procedural, or biological controls designed and... purposes other than research and development. Genome means the sum total of chromosomal and... surveys, tests, and studies of: Survival and transport in air, water, and soil; ability to exchange...
Corona-Gomez, Jesus; Chen, Xiongbiao; Yang, Qiaoqin
2016-01-01
Mechanical properties of a scaffold play an important role in its in vivo performance in bone tissue engineering, due to the fact that implanted scaffolds are typically subjected to stress including compression, tension, torsion, and shearing. Unfortunately, not all the materials used to fabricate scaffolds are strong enough to mimic native bones. Extensive research has been conducted in order to increase scaffold strength and mechanical performance by incorporating nanoparticles and/or coatings. An incredible improvement has been achieved; and some outstanding examples are the usage of nanodiamond, hydroxyapatite, bioactive glass particles, SiO2, MgO, and silver nanoparticles. This review paper aims to present the results, to summarize significant findings, and to give perspective for future work, which could be beneficial to future bone tissue engineering. PMID:27420104
US Air Force 1989 Research Initiation Program. Volume 4.
1992-06-25
Kentucky University Specialty: Mechanical Engineering Svecialty: Analytical Chemistry 760-7MG-079 and 210-IOMG-095 Dr. Thomas Lalk Texas A&M University...Base) Dr. Peter Armendarez Mr. William Newbold (GSRP) Brescia College University of Florida Secialty: Physical Chemistry Specialty: Aerospace...Research Dr. Roger Bunting Dr. Steven Trogdon Illinois State University University of Minnesota-Duluth Specialty: Inorganic Chemistry Specialty
ERIC Educational Resources Information Center
Estaji, Masoomeh; Vafaeimehr, Roya
2015-01-01
Academic writing, particularly writing research articles, is an indispensable part of every major in higher education. Hyland (2004) argued that a valuable means of exploring academic writing, and comparing the rhetorical features and preferences of different discourse communities, is through the metadiscourse analysis of the text. The present…
Wallace L. Fons: fire research pioneer
David R. Weise; Ted R. Fons
2014-01-01
During his 30-year career with the U.S. Forest Service, Wally Fons laid the foundation for much of the understanding we have today of forest fire's many properties by applying his mechanical engineering background. He left a legacy of research that formed the basis for the fire behavior and danger systems still used in the United States. In addition to fire...
SUSTAINABLE ALLOY DESIGN: SEARCHING FOR RARE EARTH ELEMENT ALTERNATIVES THROUGH CRYSTAL ENGINEERING
2016-02-26
Property Maps to Guide Materials Design via Statistical Learning Summer Research Group Meeting – Materials by Design Los Alamos National Laboratory, July...Informatics, Rational design , Quantitative correlative spectroscopy and imaging, DFT, In situ high pressure mechanical property measurements, Superalloy...final, technical, interim, memorandum, master’s thesis, progress, quarterly, research , special, group study, etc. 3. DATES COVERED. Indicate the
ERIC Educational Resources Information Center
Olimpo, Jeffrey T.; Fisher, Ginger R.; DeChenne-Peters, Sue Ellen
2016-01-01
Within the past decade, course-based undergraduate research experiences (CUREs) have emerged as a viable mechanism to enhance novices' development of scientific reasoning and process skills in the science, technology, engineering, and mathematics disciplines. Recent evidence within the bioeducation literature suggests that student engagement in…
Mammalian Synthetic Biology: Engineering Biological Systems.
Black, Joshua B; Perez-Pinera, Pablo; Gersbach, Charles A
2017-06-21
The programming of new functions into mammalian cells has tremendous application in research and medicine. Continued improvements in the capacity to sequence and synthesize DNA have rapidly increased our understanding of mechanisms of gene function and regulation on a genome-wide scale and have expanded the set of genetic components available for programming cell biology. The invention of new research tools, including targetable DNA-binding systems such as CRISPR/Cas9 and sensor-actuator devices that can recognize and respond to diverse chemical, mechanical, and optical inputs, has enabled precise control of complex cellular behaviors at unprecedented spatial and temporal resolution. These tools have been critical for the expansion of synthetic biology techniques from prokaryotic and lower eukaryotic hosts to mammalian systems. Recent progress in the development of genome and epigenome editing tools and in the engineering of designer cells with programmable genetic circuits is expanding approaches to prevent, diagnose, and treat disease and to establish personalized theranostic strategies for next-generation medicines. This review summarizes the development of these enabling technologies and their application to transforming mammalian synthetic biology into a distinct field in research and medicine.
Capacitive sensor for engine oil deterioration measurement
NASA Astrophysics Data System (ADS)
Shinde, Harish; Bewoor, Anand
2018-04-01
A simple system or mechanism for engine Oil (lubricating oil) deterioration monitoring is a need. As engine oil is an important element in I C engines and it is exposed to various strains depending on the operating conditions. If it becomes contaminated with dirt and metal particles, it can become too thick or thin and loses its protective properties, leads to unwanted friction. In turn, to avoid an engine failure, the oil must be changed before it loses its protective properties, which may be harmful to engine which deteriorates vehicle performance. At the same time, changing the lubricant too early, cause inefficient use of already depleting resources, also unwanted impact on the environment and economic reasons. Hence, it will be always helpful to know the quality of the oil under use. With this objective, the research work had been undertaken to develop a simple capacitance sensor for quantification of the quality of oil under use. One of the investigated parameter to quantify oil degradation is Viscosity (as per standard testing procedure: DIN 51562-1). In this research work, an alternative method proposed which analyzing change in capacitance of oil, to quantify the quality of oil underuse and compared to a conventional standard method. The experimental results reported in this paper shows trend for the same. Engine oil of grade SAE 15W40 used for light-duty vehicle, vans and passenger cars is used for experimentation. Suggested method can form a base for further research to develop a cost-effective method for indicating the time to change in engine oil quality have been presented.
Wang, Yanqing; Chong, Heap-Yih; Liao, Pin-Chao; Ren, Hantao
2017-09-25
Unsafe behavior is a leading factor in accidents, and the working environment significantly affects behaviors. However, few studies have focused on detailed mechanisms for addressing unsafe behaviors resulting from environmental constraints. This study aims to delineate these mechanisms using cognitive work analysis (CWA) for an elevator installation case study. Elevator installation was selected for study because it involves operations at heights: falls from heights remain a major cause of construction worker mortality. This study adopts a mixed research approach based on three research methodology stages. This research deconstructs the details of the working environment, the workers' decision-making processes, the strategies chosen given environmental conditions and the conceptual model for workers' behaviors, which jointly depict environment-behavior mechanisms at length. By applying CWA to the construction industry, environmental constraints can easily be identified, and targeted engineering suggestions can be generated.
NASA Technical Reports Server (NTRS)
Chamberland, Dennis; Wheeler, Raymond M.; Corey, Kenneth A.
1993-01-01
Engineering stategies for advanced life support systems to be used on Lunar and Mars bases involve a wide spectrum of approaches. These range from purely physical-chemical life support strategies to purely biological approaches. Within the context of biological based systems, a bioengineered system can be devised that would utilize the metabolic mechanisms of plants to control the rates of CO2 uptake and O2 evolution (photosynthesis) and water production (transpiration). Such a mechanism of external engineering control has become known as throttling. Research conducted at the John F. Kennedy Space Center's Controlled Ecological Life Support System Breadboard Project has demonstrated the potential of throttling these fluxes by changing environmental parameters affecting the plant processes. Among the more effective environmental throttles are: light and CO2 concentration for controllingthe rate of photsynthesis and humidity and CO2 concentration for controlling transpiration. Such a bioengineered strategy implies control mechanisms that in the past have not been widely attributed to life support systems involving biological components and suggests a broad range of applications in advanced life support system design.
Update on Area Production in Mixing of Supercritical Fluids
NASA Technical Reports Server (NTRS)
Okongo, Nora; Bellan, Josette
2003-01-01
The focus of this research is on supercritical C7H16/N2 and O2/H2 mixing layers undergoing transitions to turbulence. The C7H16/N2 system serves as a simplified model of hydrocarbon/air systems in gas-turbine and diesel engines; the O2/H2 system is representative of liquid rocket engines. One goal of this research is to identify ways of controlling area production to increase disintegration of fluids and enhance combustion in such engines. As used in this research, "area production" signifies the fractional rate of change of surface area oriented perpendicular to the mass-fraction gradient of a mixing layer. In the study, a database of transitional states obtained from direct numerical simulations of the aforementioned mixing layers was analyzed to investigate global layer characteristics, phenomena in regions of high density-gradient magnitude (HDGM), irreversible entropy production and its relationship to the HDGM regions, and mechanisms leading to area production.
Gadjanski, Ivana; Vunjak-Novakovic, Gordana
2015-01-01
Introduction A major hurdle in treating osteochondral (OC) defects are the different healing abilities of two types of tissues involved - articular cartilage and subchondral bone. Biomimetic approaches to OC-construct-engineering, based on recapitulation of biological principles of tissue development and regeneration, have potential for providing new treatments and advancing fundamental studies of OC tissue repair. Areas covered This review on state of the art in hierarchical OC tissue graft engineering is focused on tissue engineering approaches designed to recapitulate the native milieu of cartilage and bone development. These biomimetic systems are discussed with relevance to bioreactor cultivation of clinically sized, anatomically shaped human cartilage/bone constructs with physiologic stratification and mechanical properties. The utility of engineered OC tissue constructs is evaluated for their use as grafts in regenerative medicine, and as high-fidelity models in biological research. Expert opinion A major challenge in engineering OC tissues is to generate a functionally integrated stratified cartilage-bone structure starting from one single population of mesenchymal cells, while incorporating perfusable vasculature into the bone, and in bone-cartilage interface. To this end, new generations of advanced scaffolds and bioreactors, implementation of mechanical loading regimens, and harnessing of inflammatory responses of the host will likely drive the further progress. PMID:26195329
Kh. A. Rakhmatulin's scientific legacy in the field of mechanics of deformable rigid bodies
NASA Astrophysics Data System (ADS)
Goldstein, R. V.; Dem'yanov, Yu. A.; Nikitin, L. V.; Smirnov, N. N.; Shemyakin, E. I.
2010-02-01
Kh. A. Rakhmatulin's scientific activity was aimed at solving the most important scientific and technical problems encountered by the country. Khalil Akhmetovich was a unique combination of a theorist and an experimenter, an engineer and an inventor, a talented teacher and a scientific research manager. He fruitfully worked in mechanics of deformable solids (the corresponding results are surveyed in the present paper) as well as in fluid mechanics (as described in detail in the journal [1] dedicated to his memory).
Research on the energy and ecological efficiency of mechanical equipment remanufacturing systems
NASA Astrophysics Data System (ADS)
Shi, Junli; Cheng, Jinshi; Ma, Qinyi; Wang, Yajun
2017-08-01
According to the characteristics of mechanical equipment remanufacturing system, the dynamic performance of energy consumption and emission is explored, the equipment energy efficiency and emission analysis model is established firstly, and then energy and ecological efficiency analysis method of the remanufacturing system is put forward, at last, the energy and ecological efficiency of WD615.87 automotive diesel engine remanufacturing system as an example is analyzed, the way of energy efficiency improvementnt and environmental friendly mechanism of remanufacturing process is put forward.
1991-10-01
Mechanic;Il Engineering, University of Liverpool, 1990. II IMPACT STUDIES ON S-2 GLASS /PHENOLIC S. J. Bless B.M. Azzi N.S.Brar University of Dayton...Research Institute Dayton, OH 45469-0180 Impact failure of S-2 Glass ® composites was studied. Target resistance to penetration was determined by...There appear to be five penetration modes of glass composites - shock, double shear, single shear, cavity expansion, and tensile stretching. Two of
Protein–Hydrogel Interactions in Tissue Engineering: Mechanisms and Applications
Zustiak, Silviya P.; Wei, Yunqian
2013-01-01
Recent advances in our understanding of the sophistication of the cellular microenvironment and the dynamics of tissue remodeling during development, disease, and regeneration have increased our appreciation of the current challenges facing tissue engineering. As this appreciation advances, we are better equipped to approach problems in the biology and therapeutics of even more complex fields, such as stem cells and cancer. To aid in these studies, as well as the established areas of tissue engineering, including cardiovascular, musculoskeletal, and neural applications, biomaterials scientists have developed an extensive array of materials with specifically designed chemical, mechanical, and biological properties. Herein, we highlight an important topic within this area of biomaterials research, protein–hydrogel interactions. Due to inherent advantages of hydrated scaffolds for soft tissue engineering as well as specialized bioactivity of proteins and peptides, this field is well-posed to tackle major needs within emerging areas of tissue engineering. We provide an overview of the major modes of interactions between hydrogels and proteins (e.g., weak forces, covalent binding, affinity binding), examples of applications within growth factor delivery and three-dimensional scaffolds, and finally future directions within the area of hydrogel–protein interactions that will advance our ability to control the cell–biomaterial interface. PMID:23150926
Standardized Curriculum for Diesel Engine Mechanics.
ERIC Educational Resources Information Center
Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.
Standardized curricula are provided for two courses for the secondary vocational education program in Mississippi: diesel engine mechanics I and II. The eight units in diesel engine mechanics I are as follows: orientation; shop safety; basic shop tools; fasteners; measurement; engine operating principles; engine components; and basic auxiliary…
An Evaluation of EHD Enhancement and Thermoacoustic Refrigeration for Naval Applications
1991-12-01
unlimited FedDocs D 208. 14/2 NPS-ME-91-05 *d for: Taylor Research Center, Annapolis, MD NAVAL POSTGRADUATE SCHOOL Monterey, California Rear Admiral R. W...West, Jr H. Shull Superintendent Provost This report was prepared for and funded by the David Taylor Research Center, Annapolis, MD 21402-5067...MONITORING ORGANIZATION David Taylor Research Center 6c. ADDRESS [City, State, and ZIP Code) Mechanical Engineering Department (Code ME] Monterey, CA
EUROGRAM: European Office of Aerospace Research and Development, 00-06, Nov-Dec 2000
2000-12-01
Aeronautical Research Institute ( FFA ), in Bromma, near Stockholm, Sweden. Major Solti was an Associate Professor of Engineering Mechanics at the US Air...with the electric propulsion group and brief the NASA Breakthrough Propulsion Physics Program ( BPP ). The ESTEC personnel were very interested and said...release of this study. The objective of this workshop would be to invite European researchers with ideas in the BPP area to give talks and receive
NASA Astrophysics Data System (ADS)
Zuhrie, M. S.; Basuki, I.; Asto, B. I. G. P.; Anifah, L.
2018-04-01
The development of robotics in Indonesia has been very encouraging. The barometer is the success of the Indonesian Robot Contest. The focus of research is a teaching module manufacturing, planning mechanical design, control system through microprocessor technology and maneuverability of the robot. Contextual Teaching and Learning (CTL) strategy is the concept of learning where the teacher brings the real world into the classroom and encourage students to make connections between knowledge possessed by its application in everyday life. This research the development model used is the 4-D model. This Model consists of four stages: Define Stage, Design Stage, Develop Stage, and Disseminate Stage. This research was conducted by applying the research design development with the aim to produce a tool of learning in the form of smart educational robot modules and kit based on Contextual Teaching and Learning at the Department of Electrical Engineering to improve the skills of the Electrical Engineering student. Socialization questionnaires showed that levels of the student majoring in electrical engineering competencies image currently only limited to conventional machines. The average assessment is 3.34 validator included in either category. Modules developed can give hope to the future are able to produce Intelligent Robot Tool for Teaching.
Mechanical Engineering Senior Design Project Final Presentations | College
Mechanical Engineering Senior Design Project Final Presentations December 7, 2015 Mechanical Engineering On Wednesday, Dec. 9th, the mechanical engineering senior design project final presentations will be made in and Steven Keller Objective: Design a temperature controlled unit that would cool and maintain a
High-CO 2 Requirement as a Mechanism for the Containment of Genetically Modified Cyanobacteria
Clark, Ryan L.; Gordon, Gina C.; Bennett, Nathaniel R.; ...
2018-01-10
As researchers engineer cyanobacteria for biotechnological applications, we must consider potential environmental release of these organisms. Previous theoretical work has considered cyanobacterial containment through elimination of the CO 2-concentrating mechanism (CCM) to impose a high-CO 2 requirement (HCR), which could be provided in the cultivation environment but not in the surroundings. In this work, we experimentally implemented an HCR containment mechanism in Synechococcus sp. strain PCC7002 (PCC7002) through deletion of carboxysome shell proteins and showed that this mechanism contained cyanobacteria in a 5% CO 2 environment. We considered escape through horizontal gene transfer (HGT) and reduced the risk of HGTmore » escape by deleting competence genes. We showed that the HCR containment mechanism did not negatively impact the performance of a strain of PCC7002 engineered for L-lactate production. In conclusion, we showed through coculture experiments of HCR strains with ccm-containing strains that this HCR mechanism reduced the frequency of escape below the NIH recommended limit for recombinant organisms of one escape event in 10 8 CFU.« less
High-CO 2 Requirement as a Mechanism for the Containment of Genetically Modified Cyanobacteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Ryan L.; Gordon, Gina C.; Bennett, Nathaniel R.
As researchers engineer cyanobacteria for biotechnological applications, we must consider potential environmental release of these organisms. Previous theoretical work has considered cyanobacterial containment through elimination of the CO 2-concentrating mechanism (CCM) to impose a high-CO 2 requirement (HCR), which could be provided in the cultivation environment but not in the surroundings. In this work, we experimentally implemented an HCR containment mechanism in Synechococcus sp. strain PCC7002 (PCC7002) through deletion of carboxysome shell proteins and showed that this mechanism contained cyanobacteria in a 5% CO 2 environment. We considered escape through horizontal gene transfer (HGT) and reduced the risk of HGTmore » escape by deleting competence genes. We showed that the HCR containment mechanism did not negatively impact the performance of a strain of PCC7002 engineered for L-lactate production. In conclusion, we showed through coculture experiments of HCR strains with ccm-containing strains that this HCR mechanism reduced the frequency of escape below the NIH recommended limit for recombinant organisms of one escape event in 10 8 CFU.« less
Altitude Test Cell in the Four Burner Area
1947-10-21
One of the two altitude simulating-test chambers in Engine Research Building at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The two chambers were collectively referred to as the Four Burner Area. NACA Lewis’ Altitude Wind Tunnel was the nation’s first major facility used for testing full-scale engines in conditions that realistically simulated actual flight. The wind tunnel was such a success in the mid-1940s that there was a backlog of engines waiting to be tested. The Four Burner chambers were quickly built in 1946 and 1947 to ease the Altitude Wind Tunnel’s congested schedule. The Four Burner Area was located in the southwest wing of the massive Engine Research Building, across the road from the Altitude Wind Tunnel. The two chambers were 10 feet in diameter and 60 feet long. The refrigeration equipment produced the temperatures and the exhauster equipment created the low pressures present at altitudes up to 60,000 feet. In 1947 the Rolls Royce Nene was the first engine tested in the new facility. The mechanic in this photograph is installing a General Electric J-35 engine. Over the next ten years, a variety of studies were conducted using the General Electric J-47 and Wright Aeronautical J-65 turbojets. The two test cells were occasionally used for rocket engines between 1957 and 1959, but other facilities were better suited to the rocket engine testing. The Four Burner Area was shutdown in 1959. After years of inactivity, the facility was removed from the Engine Research Building in late 1973 in order to create the High Temperature and Pressure Combustor Test Facility.
Interactive training model of TRIZ for mechanical engineers in China
NASA Astrophysics Data System (ADS)
Tan, Runhua; Zhang, Huangao
2014-03-01
Innovation is a process of taking an original idea and converting it into a business value, in which the engineers face some inventive problems which can be solved hardly by experience. TRIZ, as a new theory for companies in China, provides both conceptual and procedural knowledge for finding and solving inventive problems. Because the government plays a leading role in the diffusion of TRIZ, too many companies from different industries are waiting to be trained, but the quantity of the trainers mastering TRIZ is incompatible with that requirement. In this context, to improve the training effect, an interactive training model of TRIZ for the mechanical engineers in China is developed and the implementation in the form of training classes is carried out. The training process is divided into 6 phases as follows: selecting engineers, training stage-1, finding problems, training stage-2, finding solutions and summing up. The government, TRIZ institutions and companies to join the programs interact during the process. The government initiates and monitors a project in form of a training class of TRIZ and selects companies to join the programs. Each selected companies choose a few engineers to join the class and supervises the training result. The TRIZ institutions design the training courses and carry out training curriculum. With the beginning of the class, an effective communication channel is established by means of interview, discussion face to face, E-mail, QQ and so on. After two years training practices, the results show that innovative abilities of the engineers to join and pass the final examinations increased distinctly, and most of companies joined the training class have taken congnizance of the power of TRIZ for product innovation. This research proposes an interactive training model of TRIZ for mechanical engineers in China to expedite the knowledge diffusion of TRIZ.
Mechatronics as a technological basis for an innovative learning environment in engineering
NASA Astrophysics Data System (ADS)
Garner, Gavin Thomas
Mechatronic systems that couple mechanical and electrical systems with the help of computer control are forcing a paradigm shift in the design, manufacture, and implementation of mechanical devices. The inherently interdisciplinary nature of these systems generates exciting new opportunities for developing a hands-on, inventive, and creativity-focused educational program while still embracing rigorous scientific fundamentals. The technologies associated with mechatronics are continually evolving (e.g., integrated circuit chips, miniature and new types of sensors, and state-of-the-art actuators). As a result, a mechatronics curriculum must prepare students to adapt along with these rapidly changing technologies---and perhaps even advance these technologies themselves. Such is the inspiring and uncharted new world that is presented for student exploration and experimentation in the University of Virginia's Mechatronics Laboratory. The underlying goal of this research has been to develop a framework for teaching mechatronics that helps students master fundamental concepts and build essential technical and analytical skills. To this end, two courses involving over fifty hours worth of technologically-innovative and educationally-effective laboratory experiments have been developed along with open-ended projects in response to the unique and new challenges associated with teaching mechatronics. These experiments synthesize an unprecedentedly vast array of skills from many different disciplines and enable students to haptically absorb the fundamental concepts involved in designing mechatronic systems. They have been optimized through several iterations to become highly efficient. Perspectives on the development of these courses and on the field of mechatronics in general are included. Furthermore, this dissertation demonstrates the integration of new technologies within a learning environment specifically designed to teach mechatronics to mechanical engineers. For mechanical engineering in particular, mechatronics poses considerable challenges, and necessitates a fundamental evolution in the understanding of the relationship between the various engineering disciplines. Consequently, this dissertation helps to define the role that mechatronics must play in mechanical engineering and presents unique laboratory experiments, creative projects, and modeling and simulation exercises as effective tools for teaching mechatronics to the modern mechanical engineering student.
Tissue Engineering of Blood Vessels: Functional Requirements, Progress, and Future Challenges.
Kumar, Vivek A; Brewster, Luke P; Caves, Jeffrey M; Chaikof, Elliot L
2011-09-01
Vascular disease results in the decreased utility and decreased availability of autologus vascular tissue for small diameter (< 6 mm) vessel replacements. While synthetic polymer alternatives to date have failed to meet the performance of autogenous conduits, tissue-engineered replacement vessels represent an ideal solution to this clinical problem. Ongoing progress requires combined approaches from biomaterials science, cell biology, and translational medicine to develop feasible solutions with the requisite mechanical support, a non-fouling surface for blood flow, and tissue regeneration. Over the past two decades interest in blood vessel tissue engineering has soared on a global scale, resulting in the first clinical implants of multiple technologies, steady progress with several other systems, and critical lessons-learned. This review will highlight the current inadequacies of autologus and synthetic grafts, the engineering requirements for implantation of tissue-engineered grafts, and the current status of tissue-engineered blood vessel research.
From Structure-Function Analyses to Protein Engineering for Practical Applications of DNA Ligase
Tanabe, Maiko; Nishida, Hirokazu
2015-01-01
DNA ligases are indispensable in all living cells and ubiquitous in all organs. DNA ligases are broadly utilized in molecular biology research fields, such as genetic engineering and DNA sequencing technologies. Here we review the utilization of DNA ligases in a variety of in vitro gene manipulations, developed over the past several decades. During this period, fewer protein engineering attempts for DNA ligases have been made, as compared to those for DNA polymerases. We summarize the recent progress in the elucidation of the DNA ligation mechanisms obtained from the tertiary structures solved thus far, in each step of the ligation reaction scheme. We also present some examples of engineered DNA ligases, developed from the viewpoint of their three-dimensional structures. PMID:26508902
NASA Astrophysics Data System (ADS)
Wood, Shaunda L.
Women face many obstacles in their academic careers but there is a gap in the research with regards to their perceptions of science and engineering education and how non/participation in the culture of engineering affects their identities. Moreover, little research has been conducted with female Ph.D. students especially with regard to the reasons they have continued their studies, and their level of satisfaction with their career and lives. This study was guided by the sociocultural approach and theories of learning and identity. Methodologically, the design adopted is a naturalistic qualitative inquiry using two open-ended interviews with participant verification after the first interview. The life history narratives (Mishler, 1999) obtained from the seven doctoral electrical and mechanical women engineers, at various stages in their programs, were the primary source of data. By examining the path of becoming a doctoral woman engineer, this study makes the educational experiences of women intelligible to the general public as well as policy makers. It gives voice to the women engineers whose perspectives are rarely heard in academic settings or mainstream society. The findings of the study lend insight to the importance and necessity of more inclusive engineering education, incorporating not only women's studies courses into the curriculum but anti-racism education as well as including the perspective of 'Other' people of difference. Moreover, multi-perspective approaches to increasing enrolment and retention of women in engineering were more effective and in keeping with addressing notions of 'difference' in engineering populations.
Wavelet Analysis for Molecular Dynamics
2015-06-01
Research Directorate, ARL Jaydeep P Bardhan Dept. of Mechanical and Industrial Engineering, Northeastern University Boston, MA Ahmed E Ismail Dept. of...Rinderspacher, Jaydeep P Bardhan , and Ahmed E Ismail ARL-MR-0891 Approved for public release; distribution is unlimited. October 2013–September 2014 US Army
Life modeling of thermal barrier coatings for aircraft gas turbine engines
NASA Technical Reports Server (NTRS)
Miller, Robert A.
1988-01-01
Thermal barrier coating life models developed under the NASA Lewis Research Center's Hot Section Technology (HOST) program are summarized. An initial laboratory model and three design-capable models are discussed. Current understanding of coating failure mechanisms are also summarized.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-20
... Industrial (H.K.) Limited, Kowloon, Hong Kong-China, have withdrawn as parties to this venture. In addition, Kenmec Mechanical Engineering Co., Ltd. has changed its name to Kentec, Inc., Taipei, Taiwan. No other...
PRODUCTION ENGINEERING AND MARKETING ANALYSIS OF THE ROTATING DISK EVAPORATOR
Recent EPA-funded research into the onsite, mechanical evaporation of wastewater from single family homes revealed that a rotating disk evaporator (RDE) could function in a nondischarging mode. Such a device has potential use where site limitations preclude conventional methods o...
Expose Mechanical Engineering Students to Biomechanics Topics
ERIC Educational Resources Information Center
Shen, Hui
2011-01-01
To adapt the focus of engineering education to emerging new industries and technologies nationwide and in the local area, a biomechanics module has been developed and incorporated into a mechanical engineering technical elective course to expose mechanical engineering students at ONU (Ohio Northern University) to the biomedical engineering topics.…
46 CFR 113.35-9 - Mechanical engine order telegraph systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Mechanical engine order telegraph systems. 113.35-9 Section 113.35-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-9 Mechanical engine order...
46 CFR 113.35-13 - Mechanical engine order telegraph systems; operation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Mechanical engine order telegraph systems; operation...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-13 Mechanical engine order telegraph systems; operation. If more than one transmitter operates a...
46 CFR 113.35-9 - Mechanical engine order telegraph systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Mechanical engine order telegraph systems. 113.35-9 Section 113.35-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-9 Mechanical engine order...
46 CFR 113.35-13 - Mechanical engine order telegraph systems; operation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Mechanical engine order telegraph systems; operation...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-13 Mechanical engine order telegraph systems; operation. If more than one transmitter operates a...
46 CFR 113.35-13 - Mechanical engine order telegraph systems; operation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Mechanical engine order telegraph systems; operation...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-13 Mechanical engine order telegraph systems; operation. If more than one transmitter operates a...
46 CFR 113.35-9 - Mechanical engine order telegraph systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Mechanical engine order telegraph systems. 113.35-9 Section 113.35-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-9 Mechanical engine order...
46 CFR 113.35-13 - Mechanical engine order telegraph systems; operation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Mechanical engine order telegraph systems; operation...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-13 Mechanical engine order telegraph systems; operation. If more than one transmitter operates a...
46 CFR 113.35-9 - Mechanical engine order telegraph systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Mechanical engine order telegraph systems. 113.35-9 Section 113.35-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-9 Mechanical engine order...
Possible Mechanisms for Turbofan Engine Ice Crystal Icing at High Altitude
NASA Technical Reports Server (NTRS)
Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael
2014-01-01
A thermodynamic model is presented to describe possible mechanisms of ice formation on unheated surfaces inside a turbofan engine compression system from fully glaciated ice crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of ice formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted ice crystals, the ice structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of ice crystals, the ice structure is formed from accumulation of un-melted ice crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental ice-crystal icing phenomenon reported earlier1,2 from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine ice crystal icing test3 conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of ice formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the ice crystal ice formation process in the tested engine low pressure compressor (LPC) targeted area under different icing conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.
Possible Mechanisms for Turbofan Engine Ice Crystal Icing at High Altitude
NASA Technical Reports Server (NTRS)
Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael J.
2016-01-01
A thermodynamic model is presented to describe possible mechanisms of ice formation on unheated surfaces inside a turbofan engine compression system from fully glaciated ice crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of ice formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted ice crystals, the ice structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of ice crystals, the ice structure is formed from accumulation of un-melted ice crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental ice-crystal icing phenomenon reported earlier (Refs. 1 and 2) from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine ice crystal icing test (Ref. 3) conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of ice formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the ice crystal ice formation process in the tested engine low pressure compressor (LPC) targeted area under different icing conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.
Throttle pneumatic impact mechanism equipped with afterburner idle-stroke chamber
NASA Astrophysics Data System (ADS)
Dedov, Alexey; Frantseva, Eleanor; Dmitriev, Mikhail
2017-01-01
Pneumatic impact mechanisms are widely used in construction, mining and other economic sectors of a country. Such mechanisms are a base for a wide range of machines of various types and dimensions from hand-held tools to mounted piling hammers with impact energy up to 10 000 J. This paper is aimed at creation of pneumatic impact mechanism with the improved characteristics, including operation, energy use, weight and size which is especially important in space-limited working conditions. The research methods include development of computer mathematical model that can solve equations system and test a prototype model at the experimental stand. As a result of conducted research the pneumatic impact mechanism with the improved characteristics was developed. An engineering method for calculating throttle pneumatic impact mechanisms with a preset value of impact energy from 1 to 20 000 was investigated. This method allows creating percussive machines of a wide range of application.
Advanced Monobore Concept, Development of CFEX Self-Expanding Tubular Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeff Spray
2007-09-30
The Advanced Monobore Concept--CFEX{copyright} Self-Expanding Tubular Technology Development was a successfully executed fundamental research through field demonstration project. This final report is presented as a progression, according to basic technology development steps. For this project, the research and development steps used were: concept development, engineering analysis, manufacturing, testing, demonstration, and technology transfer. The CFEX{copyright} Technology Development--Advanced Monobore Concept Project successfully completed all of the steps for technology development, covering fundamental research, conceptual development, engineering design, advanced-level prototype construction, mechanical testing, and downhole demonstration. Within an approximately two year period, a partially defined, broad concept was evolved into a substantial newmore » technological area for drilling and production engineering applicable a variety of extractive industries--which was also successfully demonstrated in a test well. The demonstration achievement included an actual mono-diameter placement of two self-expanding tubulars. The fundamental result is that an economical and technically proficient means of casing any size of drilling or production well or borehole is indicated as feasible based on the results of the project. Highlighted major accomplishments during the project's Concept, Engineering, Manufacturing, Demonstration, and Technology Transfer phases, are given.« less
Characterization of the Temperature Capabilities of Advanced Disk Alloy ME3
NASA Technical Reports Server (NTRS)
Gabb, Timothy P.; Telesman, Jack; Kantzos, Peter T.; OConnor, Kenneth
2002-01-01
The successful development of an advanced powder metallurgy disk alloy, ME3, was initiated in the NASA High Speed Research/Enabling Propulsion Materials (HSR/EPM) Compressor/Turbine Disk program in cooperation with General Electric Engine Company and Pratt & Whitney Aircraft Engines. This alloy was designed using statistical screening and optimization of composition and processing variables to have extended durability at 1200 F in large disks. Disks of this alloy were produced at the conclusion of the program using a realistic scaled-up disk shape and processing to enable demonstration of these properties. The objective of the Ultra-Efficient Engine Technologies disk program was to assess the mechanical properties of these ME3 disks as functions of temperature in order to estimate the maximum temperature capabilities of this advanced alloy. These disks were sectioned, machined into specimens, and extensively tested. Additional sub-scale disks and blanks were processed and selectively tested to explore the effects of several processing variations on mechanical properties. Results indicate the baseline ME3 alloy and process can produce 1300 to 1350 F temperature capabilities, dependent on detailed disk and engine design property requirements.
Carbon-Based Nanomaterials: Multi-Functional Materials for Biomedical Engineering
Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R.; Khademhosseini, Ali
2013-01-01
Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications. PMID:23560817
Carbon-based nanomaterials: multifunctional materials for biomedical engineering.
Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R; Khademhosseini, Ali
2013-04-23
Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), and extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications.
Integrating post-manufacturing issues into design and manufacturing decisions
NASA Technical Reports Server (NTRS)
Eubanks, Charles F.
1996-01-01
An investigation is conducted on research into some of the fundamental issues underlying the design for manufacturing, service and recycling that affect engineering decisions early in the conceptual design phase of mechanical systems. The investigation focuses on a system-based approach to material selection, manufacturing methods and assembly processes related to overall product requirements, performance and life-cycle costs. Particular emphasis is placed on concurrent engineering decision support for post-manufacturing issues such as serviceability, recyclability, and product retirement.
Investigation of the fundamentals of low-energy nanosecond pulse ignition: Final CRADA Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallner, Thomas; Scarcelli, Riccardo; Zhang, Anqi
A detailed investigation of the fundamentals of low-energy nanosecond pulse ignition was performed with the objective to overcome the barrier presented by limited knowledge and characterization of nonequilibrium plasma ignition for realistic internal combustion engine applications (be it in the automotive or power generation field) and shed light on the mechanisms which improve the performance of the advanced TPS ignition system compared to conventional state-of-the-art hardware. Three main tasks of the research included experimental evaluation on a single-cylinder automotive gasoline engine, experimental evaluation on a single-cylinder stationary natural gas engine and energy quantification using x-ray diagnostics.
Calculation and analysis on bolts on the slope of Xigeda soil
NASA Astrophysics Data System (ADS)
Wang, Wei; Chen, Wei; Long, Wei; Die, Jian
2018-03-01
In this paper, the commonly-used full-length bonded bolt in Xigeda soil and its slope support engineering is taken as the research object, applying the mechanical property indicator of Xigeda soil and two existing bolt load transmission mechanism and calculation theory, so that two calculation formulas of anchoring forces can be deduced, and verified by the experimental data. This paper has certain practical significance.
Biocorrosion rate and mechanism of metallic magnesium in model arterial environments
NASA Astrophysics Data System (ADS)
Bowen, Patrick K.
A new paradigm in biomedical engineering calls for biologically active implants that are absorbed by the body over time. One popular application for this concept is in the engineering of endovascular stents that are delivered concurrently with balloon angioplasty. These devices enable the injured vessels to remain patent during healing, but are not needed for more than a few months after the procedure. Early studies of iron- and magnesium-based stents have concluded that magnesium is a potentially suitable base material for such a device; alloys can achieve acceptable mechanical properties and do not seem to harm the artery during degradation. Research done up to the onset of research contained in this dissertation, for the most part, failed to define realistic physiological corrosion mechanisms, and failed to correlate degradation rates between in vitro and in vivo environments. Six previously published works form the basis of this dissertation. The topics of these papers include (1) a method by which tensile testing may be applied to evaluate biomaterial degradation; (2) a suite of approaches that can be used to screen candidate absorbable magnesium biomaterials; (3) in vivo-in vitro environmental correlations based on mechanical behavior; (4) a similar correlation on the basis of penetration rate; (5) a mid-to-late stage physiological corrosion mechanism for magnesium in an arterial environment; and (6) the identification of corrosion products in degradable magnesium using transmission electron microscopy.
The NASA-sponsored Maryland center for hypersonic education and research
NASA Technical Reports Server (NTRS)
Lewis, Mark J.; Gupta, Ashwani K.
1995-01-01
The Office of Aeronautics of the National Aeronautics and Space Administration has established a program to support university programs in the field of hypersonic flight. Beginning in the fall of 1993, three universities, including the University of Maryland at College Park, were selected to participate in this activity. The program at the University of Maryland includes faculty in the Department of Aerospace Engineering and Department of Mechanical Engineering, and provides a multidisciplinary environment for graduate and undergraduate students to study and conduct research in the field of hypersonic flight. Ongoing projects cover the range of applications from cruisers through transatmospheric and reentry vehicles. Research activities, focused on propulsion, fluid dynamics, inverse design, and vehicle optimization and integration, are conducted in conjuntion with industrial partners and government laboratories.
The Educational Needs of Graduate Mechanical Engineers in New Zealand.
ERIC Educational Resources Information Center
Deans, J.
1999-01-01
Surveys graduate and undergraduate mechanical engineering students at the University of Auckland. Shows that the dominant work activities of New Zealand mechanical engineers include design and consultancy and that graduate engineers rapidly migrate into management. (Author/CCM)
Realization of station for testing asynchronous three-phase motors
NASA Astrophysics Data System (ADS)
Wróbel, A.; Surma, W.
2016-08-01
Nowadays, you cannot imagine the construction and operation of machines without the use of electric motors [13-15]. The proposed position is designed to allow testing of asynchronous three-phase motors. The position consists of a tested engine and the engine running as a load, both engines combined with a mechanical clutch [2]. The value of the load is recorded by measuring shaft created with Strain Gauge Bridge. This concept will allow to study the basic parameters of the engines, visualization motor parameters both vector and scalar controlled, during varying load drive system. In addition, registration during the variable physical parameters of the working electric motor, controlled by a frequency converter or controlled by a contactor will be possible. Position is designed as a teaching and research position to characterize the engines. It will be also possible selection of inverter parameters.
NASA Technical Reports Server (NTRS)
Pampreen, R. C.
1977-01-01
Mechanical design and fabrication of two splitter-bladed centrifugal compressor impellers were completed for rig testing at NASA Lewis Research Center. These impellers were designed for automotive gas turbine application. The mechanical design was based on NASA specifications for blade-shape and flowpath configurations. The contractor made engineering drawings and performed calculations for mass and center-of-gravity, for stress and vibration analyses, and for shaft critical speed analysis. One impeller was machined to print; the other had a blade height and exit radius of 2.54 mm larger than print dimensions.
Multi-source and ontology-based retrieval engine for maize mutant phenotypes
Green, Jason M.; Harnsomburana, Jaturon; Schaeffer, Mary L.; Lawrence, Carolyn J.; Shyu, Chi-Ren
2011-01-01
Model Organism Databases, including the various plant genome databases, collect and enable access to massive amounts of heterogeneous information, including sequence data, gene product information, images of mutant phenotypes, etc, as well as textual descriptions of many of these entities. While a variety of basic browsing and search capabilities are available to allow researchers to query and peruse the names and attributes of phenotypic data, next-generation search mechanisms that allow querying and ranking of text descriptions are much less common. In addition, the plant community needs an innovative way to leverage the existing links in these databases to search groups of text descriptions simultaneously. Furthermore, though much time and effort have been afforded to the development of plant-related ontologies, the knowledge embedded in these ontologies remains largely unused in available plant search mechanisms. Addressing these issues, we have developed a unique search engine for mutant phenotypes from MaizeGDB. This advanced search mechanism integrates various text description sources in MaizeGDB to aid a user in retrieving desired mutant phenotype information. Currently, descriptions of mutant phenotypes, loci and gene products are utilized collectively for each search, though expansion of the search mechanism to include other sources is straightforward. The retrieval engine, to our knowledge, is the first engine to exploit the content and structure of available domain ontologies, currently the Plant and Gene Ontologies, to expand and enrich retrieval results in major plant genomic databases. Database URL: http:www.PhenomicsWorld.org/QBTA.php PMID:21558151
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC.
Four aspects of preassembled building components are discussed--(1) attitudes on preassembled components, (2) principles of preassembled components construction, (3) structural component case studies, and (4) mechanical component case studies. In section 1, various views on preassembled components are discussed including--(1) the architect's view,…
Three-Dimensional Material Properties of Composites with S2-Glass Fibers or Ductile Hybrid Fabric
2013-01-13
RDECOM-TARDEC 6501 E. Eleven Mile Rd. Warren, MI 48397-5000 ABSTRACT Material properties were determined for fiber - reinforced polymers (FRPs) with...Research Development and Engineering Center (TARDEC) funded a research project to determine the mechanical properties of seven fiber reinforced ...Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Material properties were determined for fiber - reinforced
Targeting Biological Sensing with Commercial SERS Substrates
2012-09-01
ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army Research Laboratory ATTN: RDRL-SEE-E 2800 Powder Mill Road Adelphi, MD 20783-1197 8. PERFORMING...Pellegrino* *U.S. Army Research Laboratories, RDRL-SEE-E, 2800 Powder Mill Road, Adelphi, Maryland 20783 Department of Mechanical Engineering and...demonstrated typical RSDs ranging from 10-15% under drop and dry conditions. While these standard Klarite substrates do demonstrate a high
Albanna, Mohammad Z; Bou-Akl, Therese H; Blowytsky, Oksana; Walters, Henry L; Matthew, Howard W T
2013-04-01
The low mechanical properties of hydrogel materials such as chitosan hinder their broad utility for tissue engineering applications. Previous research efforts improved the mechanical properties of chitosan fiber through chemical and physical modifications; however, unfavorable toxicity effects on cells were reported. In this paper, we report the preparation of chitosan fibers with improved mechanical and biocompatibility properties. The structure-property relationships of extruded chitosan fibers were explored by varying acetic acid (AA) concentration, ammonia concentration, annealing temperature and degree of heparin crosslinking. Results showed that optimizing AA concentration to 2vol% improved fiber strength and stiffness by 2-fold. Extruding chitosan solution into 25wt% of ammonia solution reduced fiber diameters and improved fiber strength by 2-fold and stiffness by 3-fold, due to an increase in crystallinity as confirmed by XRD. Fiber annealing further reduced fiber diameter and improved fiber strength and stiffness as temperature increased. Chitosan fibers crosslinked with heparin had increased diameter but lower strength and stiffness properties and higher breaking strain values. When individual parameters were combined, further improvement in fiber mechanical properties was achieved. All mechanically improved fibers and heparin crosslinked fibers promoted valvular interstitial cells (VIC) attachment and growth over 10 day cultures. Our results demonstrate the ability to substantially improve the mechanical properties of chitosan fibers without adversely affecting their biological properties. The investigated treatments offer numerous advantages over previous physical/chemical modifications and thus are expected to expand the utility of chitosan fibers with tunable mechanical properties in various tissue engineering applications. Copyright © 2012 Elsevier Ltd. All rights reserved.
Wave Phase-Sensitive Transformation of 3d-Straining of Mechanical Fields
NASA Astrophysics Data System (ADS)
Smirnov, I. N.; Speranskiy, A. A.
2015-11-01
It is the area of research of oscillatory processes in elastic mechanical systems. Technical result of innovation is creation of spectral set of multidimensional images which reflect time-correlated three-dimensional vector parameters of metrological, and\\or estimated, and\\or design parameters of oscillations in mechanical systems. Reconstructed images of different dimensionality integrated in various combinations depending on their objective function can be used as homeostatic profile or cybernetic image of oscillatory processes in mechanical systems for an objective estimation of current operational conditions in real time. The innovation can be widely used to enhance the efficiency of monitoring and research of oscillation processes in mechanical systems (objects) in construction, mechanical engineering, acoustics, etc. Concept method of vector vibrometry based on application of vector 3D phase- sensitive vibro-transducers permits unique evaluation of real stressed-strained states of power aggregates and loaded constructions and opens fundamental innovation opportunities: conduct of continuous (on-line regime) reliable monitoring of turboagregates of electrical machines, compressor installations, bases, supports, pipe-lines and other objects subjected to damaging effect of vibrations; control of operational safety of technical systems at all the stages of life cycle including design, test production, tuning, testing, operational use, repairs and resource enlargement; creation of vibro-diagnostic systems of authentic non-destructive control of anisotropic characteristics of materials resistance of power aggregates and loaded constructions under outer effects and operational flaws. The described technology is revolutionary, universal and common for all branches of engineering industry and construction building objects.
Computational and analytical methods in nonlinear fluid dynamics
NASA Astrophysics Data System (ADS)
Walker, James
1993-09-01
The central focus of the program was on the application and development of modern analytical and computational methods to the solution of nonlinear problems in fluid dynamics and reactive gas dynamics. The research was carried out within the Division of Engineering Mathematics in the Department of Mechanical Engineering and Mechanics and principally involved Professors P.A. Blythe, E. Varley and J.D.A. Walker. In addition. the program involved various international collaborations. Professor Blythe completed work on reactive gas dynamics with Professor D. Crighton FRS of Cambridge University in the United Kingdom. Professor Walker and his students carried out joint work with Professor F.T. Smith, of University College London, on various problems in unsteady flow and turbulent boundary layers.
NASA Technical Reports Server (NTRS)
Saravanos, Dimitris A.
1997-01-01
The development of aeropropulsion components that incorporate "smart" composite laminates with embedded piezoelectric actuators and sensors is expected to ameliorate critical problems in advanced aircraft engines related to vibration, noise emission, and thermal stability. To facilitate the analytical needs of this effort, the NASA Lewis Research Center has developed mechanics and multidisciplinary computational models to analyze the complicated electromechanical behavior of realistic smart-structure configurations operating in combined mechanical, thermal, and acoustic environments. The models have been developed to accommodate the particular geometries, environments, and technical challenges encountered in advanced aircraft engines, yet their unique analytical features are expected to facilitate application of this new technology in a variety of commercial applications.
Biomimetic tissue-engineered anterior cruciate ligament replacement
Cooper, James A.; Sahota, Janmeet S.; Gorum, W. Jay; Carter, Janell; Doty, Stephen B.; Laurencin, Cato T.
2007-01-01
There are >200,000 anterior cruciate ligament (ACL) ruptures each year in the United States, and, due to the poor healing properties of the ACL, surgical reconstruction with autograft or allograft tissue is the current treatment of these injuries. To regenerate the ACL, the ideal matrix should be biodegradable, porous, and exhibit sufficient mechanical strength to allow formation of neoligament tissue. Researchers have developed ACL scaffolds with collagen fibers, silk, biodegradable polymers, and composites with limited success. Our group has developed a biomimetic ligament replacement by using 3D braiding technology. In this preliminary in vivo rabbit model study for ACL reconstruction, the histological and mechanical evaluation demonstrated excellent healing and regeneration with our cell-seeded, tissue-engineered ligament replacement. PMID:17360607
DEPOSITION DISTRICUTION AMONG THE PARALLEL PATHWAYS IN THE HUMAN LUNG CONDUCTING AIRWAY STRUCTURE.
DEPOSITION DISTRIBUTION AMONG THE PARALLEL PATHWAYS IN THE HUMAN LUNG CONDUCTING AIRWAY STRUCTURE. Chong S. Kim*, USEPA National Health and Environmental Effects Research Lab. RTP, NC 27711; Z. Zhang and C. Kleinstreuer, Department of Mechanical and Aerospace Engineering, North C...
Flight Mechanics Experiment Onboard NASA's Zero Gravity Aircraft
ERIC Educational Resources Information Center
Matthews, Kyle R.; Motiwala, Samira A.; Edberg, Donald L.; García-Llama, Eduardo
2012-01-01
This paper presents a method to promote STEM (Science, Technology, Engineering, and Mathematics) education through participation in a reduced gravity program with NASA (National Aeronautics and Space Administration). Microgravity programs with NASA provide students with a unique opportunity to conduct scientific research with innovative and…
Methodology of Education and R&D in Mechatronics.
ERIC Educational Resources Information Center
Yamazaki, K.; And Others
1985-01-01
Describes the concept and methodology of "mechatronics" (application of microelectronics to mechanism control) and research and development (R&D) projects through the activities initiated at the Precision Machining Laboratory of the Department of Production Systems Engineering of the new Toyohashi University of Technology. (JN)
NASA Technical Reports Server (NTRS)
2001-01-01
Analytical Mechanics Associates, Inc. (AMA), of Hampton, Virginia, created the EZopt software application through Small Business Innovation Research (SBIR) funding from NASA's Langley Research Center. The new software is a user-friendly tool kit that provides quick and logical solutions to complex optimal control problems. In its most basic form, EZopt converts process data into math equations and then proceeds to utilize those equations to solve problems within control systems. EZopt successfully proved its advantage when applied to short-term mission planning and onboard flight computer implementation. The technology has also solved multiple real-life engineering problems faced in numerous commercial operations. For instance, mechanical engineers use EZopt to solve control problems with robots, while chemical plants implement the application to overcome situations with batch reactors and temperature control. In the emerging field of commercial aerospace, EZopt is able to optimize trajectories for launch vehicles and perform potential space station- keeping tasks. Furthermore, the software also helps control electromagnetic devices in the automotive industry.
Probabilistic analysis for fatigue strength degradation of materials
NASA Technical Reports Server (NTRS)
Royce, Lola
1989-01-01
This report presents the results of the first year of a research program conducted for NASA-LeRC by the University of Texas at San Antonio. The research included development of methodology that provides a probabilistic treatment of lifetime prediction of structural components of aerospace propulsion systems subjected to fatigue. Material strength degradation models, based on primitive variables, include both a fatigue strength reduction model and a fatigue crack growth model. Linear elastic fracture mechanics is utilized in the latter model. Probabilistic analysis is based on simulation, and both maximum entropy and maximum penalized likelihood methods are used for the generation of probability density functions. The resulting constitutive relationships are included in several computer programs, RANDOM2, RANDOM3, and RANDOM4. These programs determine the random lifetime of an engine component, in mechanical load cycles, to reach a critical fatigue strength or crack size. The material considered was a cast nickel base superalloy, one typical of those used in the Space Shuttle Main Engine.
NASA Astrophysics Data System (ADS)
Otsuka, Yuichi; Ohta, Kazuhide; Noguchi, Hiroshi
The 21st century Center of Excellence (COE) program in Department of Mechanical Engineering Science at Kyushu University construct the training framework of learning “Integrating Techniques” by research presentations for students in different majors and accident analyses for practical cases by Ph.D course students. The training framework is composed of three processes : 1) Peer review among Ph.D course students for the presentations, 2) Instructions by teachers in order to improve the quality of the presentations based on the result of the peer-reviews, 3) Final evaluation for the improved presentations by teachers and the students. This research has elucidated the quantitative effectiveness of the framework by the evaluations using questionnaires for the presentations. Furthermore, the result of investigation for the course students has observed positive correlation between the significance of integration techniques and the enthusiasm for participating the course, which reveals the efficacy of the learning framework proposed.
Applicability of Online Education to Large Undergraduate Engineering Courses
NASA Astrophysics Data System (ADS)
Bir, Devayan Debashis
With the increase in undergraduate engineering enrollment, many universities have chosen to teach introductory engineering courses such as Statics of Engineering and Mechanics of Materials in large classes due to budget limitations. With the overwhelming literature against traditionally taught large classes, this study aims to see the effects of the trending online pedagogy. Online courses are the latest trend in education due to the flexibility they provide to students in terms of schedule and pace of learning with the added advantage of being less expensive for the university over a period. In this research, the effects of online lectures on engineering students' course performances and students' attitudes towards online learning were examined. Specifically, the academic performances of students enrolled in a traditionally taught, lecture format Mechanics of Materials course with the performance of students in an online Mechanics of Materials course in summer 2016 were compared. To see the effect of the two different teaching approaches across student types, students were categorized by gender, enrollment status, nationality, and by the grades students obtained for Statics, one of the prerequisite courses for Mechanics of Materials. Student attitudes towards the online course will help to keep the process of continuously improving the online course, specifically, to provide quality education through the online medium in terms of course content and delivery. The findings of the study show that the online pedagogy negatively affects student academic performance when compared to the traditional face-to-face pedagogy across all categories, except for the high scoring students. Student attitudes reveal that while they enjoyed the flexibility schedule and control over their pace of studying, they faced issues with self-regulation and face-to-face interaction.
SimBRS: A University/Industry Consortium Focused on Simulation Based Solutions for Ground Vehicles
2009-07-29
plan is to use the SimBRS contract mechanism to streamline a process that applies research funds into a managed program, that is cognizant to the... designs . Therefore, the challenge for the SimBRS team is to establish an approach based on the capacity of measured data and simulations to support ...by systematically relating appropriate results from measurements and applied research in engineering and science. In turn, basic research and
Seeing through the lens of social justice: A threshold for engineering
NASA Astrophysics Data System (ADS)
Kabo, Jens David
In recent times the need for educational research dedicated to engineering education has been recognised. This PhD project is a contribution to the development of engineering education scholarship and the growing body of engineering education research. In this project it was recognised that problem solving is a central activity to engineering. However, it was also recognised that the conditions for doing engineering are changing, especially in light of pressing issues of poverty and environmental sustainability that humanity currently faces, and as a consequence, engineering education needs to emphasise problem definition to a greater extent. One mechanism for achieving this, which has been adopted by some engineering educators in recent years, is through courses that explicitly relate engineering to social justice. However, creating this relationship requires critical interdisciplinary thinking that is alien to most engineering students. In this dissertation it is suggested that for engineering students, and more generally, engineers, looking at their practice and profession through a social justice lens might be seen as a threshold that needs to be crossed. By studying the variation present among students in three different courses at three different North American universities, the intention was to understand how students approach and internalise social justice as a perspective on engineering and/or develop their abilities to think critically. A conceptual model to frame the study was developed by combining elements of threshold concept theory and the educational research methodology, phenomenographic variation theory. All three of the courses studied operated on a similar basic pedagogical model, however, the courses were framed differently, with social justice in the foreground or in the background with the focus on, in one case, ethics and in the other, sustainability. All courses studied appeared to be successful in encouraging engineering students to engage in critical thinking and a similar general trend in the development of students' conceptions of social justice was observed in each of the three courses. However, it does appear that if one is interested in developing an articulated understanding of social justice, with respect to engineering, that an explicit focus on social justice is preferable.
Collaborative-Large scale Engineering Assessment Networks for Environmental Research: The Overview
NASA Astrophysics Data System (ADS)
Moo-Young, H.
2004-05-01
A networked infrastructure for engineering solutions and policy alternatives is necessary to assess, manage, and protect complex, anthropogenic ally stressed environmental resources effectively. Reductionist and discrete disciplinary methodologies are no longer adequate to evaluate and model complex environmental systems and anthropogenic stresses. While the reductonist approach provides important information regarding individual mechanisms, it cannot provide complete information about how multiple processes are related. Therefore, it is not possible to make accurate predictions about system responses to engineering interventions and the effectiveness of policy options. For example, experts cannot agree on best management strategies for contaminated sediments in riverine and estuarine systems. This is due, in part to the fact that existing models do not accurately capture integrated system dynamics. In addition, infrastructure is not available for investigators to exchange and archive data, to collaborate on new investigative methods, and to synthesize these results to develop engineering solutions and policy alternatives. Our vision for the future is to create a network comprising field facilities and a collaboration of engineers, scientists, policy makers, and community groups. This will allow integration across disciplines, across different temporal and spatial scales, surface and subsurface geographies, and air sheds and watersheds. Benefits include fast response to changes in system health, real-time decision making, and continuous data collection that can be used to anticipate future problems, and to develop sound engineering solutions and management decisions. CLEANER encompasses four general aspects: 1) A Network of environmental field facilities instrumented for the acquisition and analysis of environmental data; 2) A Virtual Repository of Data and information technology for engineering modeling, analysis and visualization of data, i.e. an environmental cyber-infrastructure; 3) A Mechanism for multidisciplinary research and education activities designed to exploit the output of the instrumented sites and networked information technology, to formulate engineering and policy options directed toward the protection, remediation, and restoration of stressed environments and sustainability of environmental resources; and 4) A Collaboration among engineers, natural and social scientists, educators, policy makers, industry, non-governmental organizations, the public, and other stakeholders.
NASA Astrophysics Data System (ADS)
Khalili, N.; Valliappan, S.; Li, Q.; Russell, A.
2010-07-01
The use for mathematical models of natural phenomena has underpinned science and engineering for centuries, but until the advent of modern computers and computational methods, the full utility of most of these models remained outside the reach of the engineering communities. Since World War II, advances in computational methods have transformed the way engineering and science is undertaken throughout the world. Today, theories of mechanics of solids and fluids, electromagnetism, heat transfer, plasma physics, and other scientific disciplines are implemented through computational methods in engineering analysis, design, manufacturing, and in studying broad classes of physical phenomena. The discipline concerned with the application of computational methods is now a key area of research, education, and application throughout the world. In the early 1980's, the International Association for Computational Mechanics (IACM) was founded to promote activities related to computational mechanics and has made impressive progress. The most important scientific event of IACM is the World Congress on Computational Mechanics. The first was held in Austin (USA) in 1986 and then in Stuttgart (Germany) in 1990, Chiba (Japan) in 1994, Buenos Aires (Argentina) in 1998, Vienna (Austria) in 2002, Beijing (China) in 2004, Los Angeles (USA) in 2006 and Venice, Italy; in 2008. The 9th World Congress on Computational Mechanics is held in conjunction with the 4th Asian Pacific Congress on Computational Mechanics under the auspices of Australian Association for Computational Mechanics (AACM), Asian Pacific Association for Computational Mechanics (APACM) and International Association for Computational Mechanics (IACM). The 1st Asian Pacific Congress was in Sydney (Australia) in 2001, then in Beijing (China) in 2004 and Kyoto (Japan) in 2007. The WCCM/APCOM 2010 publications consist of a printed book of abstracts given to delegates, along with 247 full length peer reviewed papers published with free access online in IOP Conference Series: Materials Science and Engineering. The editors acknowledge the help of the paper reviewers in maintaining a high standard of assessment and the co-operation of the authors in complying with the requirements of the editors and the reviewers. We also would like to take this opportunity to thank the members of the Local Organising Committee and the International Scientific Committee for helping make WCCM/APCOM 2010 a successful event. We also thank The University of New South Wales, The University of Newcastle, the Centre for Infrastructure Engineering and Safety (CIES), IACM, APCAM, AACM for their financial support, along with the United States Association for Computational Mechanics for the Travel Awards made available. N. Khalili S. Valliappan Q. Li A. Russell 19 July 2010 Sydney, Australia
Modulating Cytotoxic Effector Functions by Fc Engineering to Improve Cancer Therapy.
Kellner, Christian; Otte, Anna; Cappuzzello, Elisa; Klausz, Katja; Peipp, Matthias
2017-09-01
In the last two decades, monoclonal antibodies have revolutionized the therapy of cancer patients. Although antibody therapy has continuously been improved, still a significant number of patients do not benefit from antibody therapy. Therefore, rational optimization of the antibody molecule by Fc engineering represents a major area of translational research to further improve this potent therapeutic option. Monoclonal antibodies are able to trigger a variety of effector mechanisms. Especially Fc-mediated effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement- dependent cytotoxicity (CDC) are considered important in antibody therapy of cancer. Novel mechanistic insights into the action of monoclonal antibodies allowed the development of various Fc engineering approaches to modulate antibodies' effector functions. Strategies in modifying the Fc glycosylation profile (Fc glyco-engineering) or approaches in engineering the protein backbone (Fc protein engineering) have been intensively evaluated. In the current review, Fc engineering strategies resulting in improved ADCC, ADCP and CDC activity are summarized and discussed.
Khristov, Vladimir; Wan, Qin; Sharma, Ruchi; Jha, Balendu Shekhar; Lotfi, Mostafa; Maminishkis, Arvydas; Simon, Carl G.
2016-01-01
Abstract Clinical-grade manufacturing of a functional retinal pigment epithelium (RPE) monolayer requires reproducing, as closely as possible, the natural environment in which RPE grows. In vitro, this can be achieved by a tissue engineering approach, in which the RPE is grown on a nanofibrous biological or synthetic scaffold. Recent research has shown that nanofiber scaffolds perform better for cell growth and transplantability compared with their membrane counterparts and that the success of the scaffold in promoting cell growth/function is not heavily material dependent. With these strides, the field has advanced enough to begin to consider implementation of one, or a combination, of the tissue engineering strategies discussed herein. In this study, we review the current state of tissue engineering research for in vitro culture of RPE/scaffolds and the parameters for optimal scaffold design that have been uncovered during this research. Next, we discuss production methods and manufacturers that are capable of producing the nanofiber scaffolds in such a way that would be biologically, regulatory, clinically, and commercially viable. Then, a discussion of how the scaffolds could be characterized, both morphologically and mechanically, to develop a testing process that is viable for regulatory screening is performed. Finally, an example of a tissue-engineered RPE/scaffold construct is given to provide the reader a framework for understanding how these pieces could fit together to develop a tissue-engineered RPE/scaffold construct that could pass regulatory scrutiny and can be commercially successful. PMID:27110730
Introductory Education for Mechanical Engineering by Exercise in Mechanical Disassembly
NASA Astrophysics Data System (ADS)
Matsui, Yoshio; Asakawa, Naoki; Iwamori, Satoru
An introductory program “Exercise for engineers in mechanical disassembly” is an exercise that ten students of every team disassemble a motor scooter to the components and then assemble again to the initial form in 15 weeks. The purpose of this program is to introduce mechanical engineering by touching the real machine and learning how it is composed from various mechanical parts to the students at the early period after the entrance into the university. Additional short lectures by young teachers and a special lecture by a top engineer in the industry encourage the students to combine the actual machine and the mechanical engineering subjects. Furthermore, various educations such as group leader system, hazard prediction training, parts filing are included in this program. As a result, students recognize the importance of the mechanical engineering study and the way of group working.
Spectrally queued feature selection for robotic visual odometery
NASA Astrophysics Data System (ADS)
Pirozzo, David M.; Frederick, Philip A.; Hunt, Shawn; Theisen, Bernard; Del Rose, Mike
2011-01-01
Over the last two decades, research in Unmanned Vehicles (UV) has rapidly progressed and become more influenced by the field of biological sciences. Researchers have been investigating mechanical aspects of varying species to improve UV air and ground intrinsic mobility, they have been exploring the computational aspects of the brain for the development of pattern recognition and decision algorithms and they have been exploring perception capabilities of numerous animals and insects. This paper describes a 3 month exploratory applied research effort performed at the US ARMY Research, Development and Engineering Command's (RDECOM) Tank Automotive Research, Development and Engineering Center (TARDEC) in the area of biologically inspired spectrally augmented feature selection for robotic visual odometry. The motivation for this applied research was to develop a feasibility analysis on multi-spectrally queued feature selection, with improved temporal stability, for the purposes of visual odometry. The intended application is future semi-autonomous Unmanned Ground Vehicle (UGV) control as the richness of data sets required to enable human like behavior in these systems has yet to be defined.
NASA Technical Reports Server (NTRS)
Renaud, John E.; Batill, Stephen M.; Brockman, Jay B.
1998-01-01
This research effort is a joint program between the Departments of Aerospace and Mechanical Engineering and the Computer Science and Engineering Department at the University of Notre Dame. Three Principal Investigators; Drs. Renaud, Brockman and Batill directed this effort. During the four and a half year grant period, six Aerospace and Mechanical Engineering Ph.D. students and one Masters student received full or partial support, while four Computer Science and Engineering Ph.D. students and one Masters student were supported. During each of the summers up to four undergraduate students were involved in related research activities. The purpose of the project was to develop a framework and systematic methodology to facilitate the application of Multidisciplinary Design Optimization (N4DO) to a diverse class of system design problems. For all practical aerospace systems, the design of a systems is a complex sequence of events which integrates the activities of a variety of discipline "experts" and their associated "tools". The development, archiving and exchange of information between these individual experts is central to the design task and it is this information which provides the basis for these experts to make coordinated design decisions (i.e., compromises and trade-offs) - resulting in the final product design. Grant efforts focused on developing and evaluating frameworks for effective design coordination within a MDO environment. Central to these research efforts was the concept that the individual discipline "expert", using the most appropriate "tools" available and the most complete description of the system should be empowered to have the greatest impact on the design decisions and final design. This means that the overall process must be highly interactive and efficiently conducted if the resulting design is to be developed in a manner consistent with cost and time requirements. The methods developed as part of this research effort include; extensions to a sensitivity based Concurrent Subspace Optimization (CSSO) MDO algorithm; the development of a neural network response surface based CSSO-MDO algorithm; and the integration of distributed computing and process scheduling into the MDO environment. This report overviews research efforts in each of these focus. A complete bibliography of research produced with support of this grant is attached.
USNCTAM perspectives on mechanics in medicine.
Bao, Gang; Bazilevs, Yuri; Chung, Jae-Hyun; Decuzzi, Paolo; Espinosa, Horacio D; Ferrari, Mauro; Gao, Huajian; Hossain, Shaolie S; Hughes, Thomas J R; Kamm, Roger D; Liu, Wing Kam; Marsden, Alison; Schrefler, Bernhard
2014-08-06
Over decades, the theoretical and applied mechanics community has developed sophisticated approaches for analysing the behaviour of complex engineering systems. Most of these approaches have targeted systems in the transportation, materials, defence and energy industries. Applying and further developing engineering approaches for understanding, predicting and modulating the response of complicated biomedical processes not only holds great promise in meeting societal needs, but also poses serious challenges. This report, prepared for the US National Committee on Theoretical and Applied Mechanics, aims to identify the most pressing challenges in biological sciences and medicine that can be tackled within the broad field of mechanics. This echoes and complements a number of national and international initiatives aiming at fostering interdisciplinary biomedical research. This report also comments on cultural/educational challenges. Specifically, this report focuses on three major thrusts in which we believe mechanics has and will continue to have a substantial impact. (i) Rationally engineering injectable nano/microdevices for imaging and therapy of disease. Within this context, we discuss nanoparticle carrier design, vascular transport and adhesion, endocytosis and tumour growth in response to therapy, as well as uncertainty quantification techniques to better connect models and experiments. (ii) Design of biomedical devices, including point-of-care diagnostic systems, model organ and multi-organ microdevices, and pulsatile ventricular assistant devices. (iii) Mechanics of cellular processes, including mechanosensing and mechanotransduction, improved characterization of cellular constitutive behaviour, and microfluidic systems for single-cell studies. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Makris, Eleftherios A.; Hadidi, Pasha; Athanasiou, Kyriacos A.
2011-01-01
Extensive scientific investigations in recent decades have established the anatomical, biomechanical, and functional importance that the meniscus holds within the knee joint. As a vital part of the joint, it acts to prevent the deterioration and degeneration of articular cartilage, and the onset and development of osteoarthritis. For this reason, research into meniscus repair has been the recipient of particular interest from the orthopedic and bioengineering communities. Current repair techniques are only effective in treating lesions located in the peripheral vascularized region of the meniscus. Healing lesions found in the inner avascular region, which functions under a highly demanding mechanical environment, is considered to be a significant challenge. An adequate treatment approach has yet to be established, though many attempts have been undertaken. The current primary method for treatment is partial meniscectomy, which commonly results in the progressive development of osteoarthritis. This drawback has shifted research interest towards the fields of biomaterials and bioengineering, where it is hoped that meniscal deterioration can be tackled with the help of tissue engineering. So far, different approaches and strategies have contributed to the in vitro generation of meniscus constructs, which are capable of restoring meniscal lesions to some extent, both functionally as well as anatomically. The selection of the appropriate cell source (autologous, allogeneic, or xenogeneic cells, or stem cells) is undoubtedly regarded as key to successful meniscal tissue engineering. Furthermore, a large variation of scaffolds for tissue engineering have been proposed and produced in experimental and clinical studies, although a few problems with these (e.g., byproducts of degradation, stress shielding) have shifted research interest towards new strategies (e.g., scaffoldless approaches, self-assembly). A large number of different chemical (e.g., TGF-β1, C-ABC) and mechanical stimuli (e.g., direct compression, hydrostatic pressure) have also been investigated, both in terms of encouraging functional tissue formation, as well as in differentiating stem cells. Even though the problems accompanying meniscus tissue engineering research are considerable, we are undoubtedly in the dawn of a new era, whereby recent advances in biology, engineering, and medicine are leading to the successful treatment of meniscal lesions. PMID:21764438
Teaching Continuum Mechanics in a Mechanical Engineering Program
ERIC Educational Resources Information Center
Liu, Yucheng
2011-01-01
This paper introduces a graduate course, continuum mechanics, which is designed for and taught to graduate students in a Mechanical Engineering (ME) program. The significance of continuum mechanics in engineering education is demonstrated and the course structure is described. Methods used in teaching this course such as topics, class…
Fast nastic motion of plants and bioinspired structures
Guo, Q.; Dai, E.; Han, X.; Xie, S.; Chao, E.; Chen, Z.
2015-01-01
The capability to sense and respond to external mechanical stimuli at various timescales is essential to many physiological aspects in plants, including self-protection, intake of nutrients and reproduction. Remarkably, some plants have evolved the ability to react to mechanical stimuli within a few seconds despite a lack of muscles and nerves. The fast movements of plants in response to mechanical stimuli have long captured the curiosity of scientists and engineers, but the mechanisms behind these rapid thigmonastic movements are still not understood completely. In this article, we provide an overview of such thigmonastic movements in several representative plants, including Dionaea, Utricularia, Aldrovanda, Drosera and Mimosa. In addition, we review a series of studies that present biomimetic structures inspired by fast-moving plants. We hope that this article will shed light on the current status of research on the fast movements of plants and bioinspired structures and also promote interdisciplinary studies on both the fundamental mechanisms of plants' fast movements and biomimetic structures for engineering applications, such as artificial muscles, multi-stable structures and bioinspired robots. PMID:26354828
NASA Technical Reports Server (NTRS)
1995-01-01
November 27, 1995 Photograph of the F-16XL Ship #1 Cranked-Arrow Wing Aerodynamic Project (CAWAP) Test Team; from left to right, Ron Wilcox; Operations Engineer, Art Cope; Aircraft Mechanic, Dave Fisher; Chief Project Engineer, Dick Denman; Aircraft Mechanic, Bob Garcia; A/C Crew Chief, Susan Ligon; Aircraft Mechanic, Rodger Tarango; Mobile Operations Facility (MOF) Staff, Jerry Cousins; Aircraft Mechanic, Bruce Gallmeyer; MOF Staff, and Mike Reardon; Aircraft Mechanic/Helper. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The first flight of CAWAP occurred at NASA's Dryden Flight Research Center, Edwards, California, on November 21, 1995, and the test program ended in April 1996.
NASA Astrophysics Data System (ADS)
Yan, Yang; Kang, Yijun; Li, Ding; Yu, Kun; Xiao, Tao; Wang, Qiyuan; Deng, Youwen; Fang, Hongjie; Jiang, Dayue; Zhang, Yu
2018-03-01
Porous Mg-based scaffolds have been extensively researched as biodegradable implants due to their attractive biological and excellent mechanical properties. In this study, porous Mg-6 wt.% Zn scaffolds were prepared by powder metallurgy using ammonium bicarbonate particles as space-holder particles. The effects of space-holder particle content on the microstructure, mechanical properties and corrosion resistance of the Mg-6 wt.% Zn scaffolds were studied. The mean porosity and pore size of the open-cellular scaffolds were within the range 6.7-52.2% and 32.3-384.2 µm, respectively. Slight oxidation was observed at the grain boundaries and on the pore walls. The Mg-6 wt.% Zn scaffolds were shown to possess mechanical properties comparable with those of natural bone and had variable in vitro degradation rates. Increased content of space-holder particles negatively affected the mechanical behavior and corrosion resistance of the Mg-6 wt.% Zn scaffolds, especially when higher than 20%. These results suggest that porous Mg-6 wt.% Zn scaffolds are promising materials for application in bone tissue engineering.
Fast nastic motion of plants and bioinspired structures.
Guo, Q; Dai, E; Han, X; Xie, S; Chao, E; Chen, Z
2015-09-06
The capability to sense and respond to external mechanical stimuli at various timescales is essential to many physiological aspects in plants, including self-protection, intake of nutrients and reproduction. Remarkably, some plants have evolved the ability to react to mechanical stimuli within a few seconds despite a lack of muscles and nerves. The fast movements of plants in response to mechanical stimuli have long captured the curiosity of scientists and engineers, but the mechanisms behind these rapid thigmonastic movements are still not understood completely. In this article, we provide an overview of such thigmonastic movements in several representative plants, including Dionaea, Utricularia, Aldrovanda, Drosera and Mimosa. In addition, we review a series of studies that present biomimetic structures inspired by fast-moving plants. We hope that this article will shed light on the current status of research on the fast movements of plants and bioinspired structures and also promote interdisciplinary studies on both the fundamental mechanisms of plants' fast movements and biomimetic structures for engineering applications, such as artificial muscles, multi-stable structures and bioinspired robots. © 2015 The Author(s).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raboin, P J
1998-01-01
The Computational Mechanics thrust area is a vital and growing facet of the Mechanical Engineering Department at Lawrence Livermore National Laboratory (LLNL). This work supports the development of computational analysis tools in the areas of structural mechanics and heat transfer. Over 75 analysts depend on thrust area-supported software running on a variety of computing platforms to meet the demands of LLNL programs. Interactions with the Department of Defense (DOD) High Performance Computing and Modernization Program and the Defense Special Weapons Agency are of special importance as they support our ParaDyn project in its development of new parallel capabilities for DYNA3D.more » Working with DOD customers has been invaluable to driving this technology in directions mutually beneficial to the Department of Energy. Other projects associated with the Computational Mechanics thrust area include work with the Partnership for a New Generation Vehicle (PNGV) for ''Springback Predictability'' and with the Federal Aviation Administration (FAA) for the ''Development of Methodologies for Evaluating Containment and Mitigation of Uncontained Engine Debris.'' In this report for FY-97, there are five articles detailing three code development activities and two projects that synthesized new code capabilities with new analytic research in damage/failure and biomechanics. The article this year are: (1) Energy- and Momentum-Conserving Rigid-Body Contact for NIKE3D and DYNA3D; (2) Computational Modeling of Prosthetics: A New Approach to Implant Design; (3) Characterization of Laser-Induced Mechanical Failure Damage of Optical Components; (4) Parallel Algorithm Research for Solid Mechanics Applications Using Finite Element Analysis; and (5) An Accurate One-Step Elasto-Plasticity Algorithm for Shell Elements in DYNA3D.« less
Porous magnesium-based scaffolds for tissue engineering.
Yazdimamaghani, Mostafa; Razavi, Mehdi; Vashaee, Daryoosh; Moharamzadeh, Keyvan; Boccaccini, Aldo R; Tayebi, Lobat
2017-02-01
Significant amount of research efforts have been dedicated to the development of scaffolds for tissue engineering. Although at present most of the studies are focused on non-load bearing scaffolds, many scaffolds have also been investigated for hard tissue repair. In particular, metallic scaffolds are being studied for hard tissue engineering due to their suitable mechanical properties. Several biocompatible metallic materials such as stainless steels, cobalt alloys, titanium alloys, tantalum, nitinol and magnesium alloys have been commonly employed as implants in orthopedic and dental treatments. They are often used to replace and regenerate the damaged bones or to provide structural support for healing bone defects. Among the common metallic biomaterials, magnesium (Mg) and a number of its alloys are effective because of their mechanical properties close to those of human bone, their natural ionic content that may have important functional roles in physiological systems, and their in vivo biodegradation characteristics in body fluids. Due to such collective properties, Mg based alloys can be employed as biocompatible, bioactive, and biodegradable scaffolds for load-bearing applications. Recently, porous Mg and Mg alloys have been specially suggested as metallic scaffolds for bone tissue engineering. With further optimization of the fabrication techniques, porous Mg is expected to make a promising hard substitute scaffold. The present review covers research conducted on the fabrication techniques, surface modifications, properties and biological characteristics of Mg alloys based scaffolds. Furthermore, the potential applications, challenges and future trends of such degradable metallic scaffolds are discussed in detail. Copyright © 2016 Elsevier B.V. All rights reserved.
Modulation of Phytoalexin Biosynthesis in Engineered Plants for Disease Resistance
Jeandet, Philippe; Clément, Christophe; Courot, Eric; Cordelier, Sylvain
2013-01-01
Phytoalexins are antimicrobial substances of low molecular weight produced by plants in response to infection or stress, which form part of their active defense mechanisms. Starting in the 1950’s, research on phytoalexins has begun with biochemistry and bio-organic chemistry, resulting in the determination of their structure, their biological activity as well as mechanisms of their synthesis and their catabolism by microorganisms. Elucidation of the biosynthesis of numerous phytoalexins has permitted the use of molecular biology tools for the exploration of the genes encoding enzymes of their synthesis pathways and their regulators. Genetic manipulation of phytoalexins has been investigated to increase the disease resistance of plants. The first example of a disease resistance resulting from foreign phytoalexin expression in a novel plant has concerned a phytoalexin from grapevine which was transferred to tobacco. Transformations were then operated to investigate the potential of other phytoalexin biosynthetic genes to confer resistance to pathogens. Unexpectedly, engineering phytoalexins for disease resistance in plants seem to have been limited to exploiting only a few phytoalexin biosynthetic genes, especially those encoding stilbenes and some isoflavonoids. Research has rather focused on indirect approaches which allow modulation of the accumulation of phytoalexin employing transcriptional regulators or components of upstream regulatory pathways. Genetic approaches using gain- or less-of functions in phytoalexin engineering together with modulation of phytoalexin accumulation through molecular engineering of plant hormones and defense-related marker and elicitor genes have been reviewed. PMID:23880860
Biomedical engineering education at Politecnico di Milano: development and recent changes.
Baselli, G
2009-05-01
The biomedical engineering (BME) programme at the Politecnico di Milano (POLIMI) is characterized by a strong interdisciplinary background in a broad range of engineering subjects applied to biology and medicine. Accordingly, the undergraduate level (3 years) provides a general education, which includes mechanics, chemistry and materials, electronics, and information technology both in the context of general engineering and within BME foundations. In contrast, the postgraduate programme (2 years) offers a broad choice of specializations in BME fields in close connection with the BME research activities and laboratories of the campus and with active interchange with the other engineering disciplines. The history of BME development at POLIMI is briefly recalled, together with the characteristics of educational and research work, which is strongly biased by a large polytechnic university with no medical school within the same campus; points of strength and weakness due to this background are discussed. The introduction of a double cycle (undergraduate and postgraduate) according to the Bologna process (2000) and the effects on the programme structure is considered. An early phase in which professional education was emphasized at undergraduate level is recalled, which was followed by the actual revision fostering basic engineering and BME education at the first level while leaving in-depth specialization to postgraduate studies or to on-the-job training.
Digital design of scaffold for mandibular defect repair based on tissue engineering*
Liu, Yun-feng; Zhu, Fu-dong; Dong, Xing-tao; Peng, Wei
2011-01-01
Mandibular defect occurs more frequently in recent years, and clinical repair operations via bone transplantation are difficult to be further improved due to some intrinsic flaws. Tissue engineering, which is a hot research field of biomedical engineering, provides a new direction for mandibular defect repair. As the basis and key part of tissue engineering, scaffolds have been widely and deeply studied in regards to the basic theory, as well as the principle of biomaterial, structure, design, and fabrication method. However, little research is targeted at tissue regeneration for clinic repair operations. Since mandibular bone has a special structure, rather than uniform and regular structure in existing studies, a methodology based on tissue engineering is proposed for mandibular defect repair in this paper. Key steps regarding scaffold digital design, such as external shape design and internal microstructure design directly based on triangular meshes are discussed in detail. By analyzing the theoretical model and the measured data from the test parts fabricated by rapid prototyping, the feasibility and effectiveness of the proposed methodology are properly verified. More works about mechanical and biological improvements need to be done to promote its clinical application in future. PMID:21887853
Digital design of scaffold for mandibular defect repair based on tissue engineering.
Liu, Yun-feng; Zhu, Fu-dong; Dong, Xing-tao; Peng, Wei
2011-09-01
Mandibular defect occurs more frequently in recent years, and clinical repair operations via bone transplantation are difficult to be further improved due to some intrinsic flaws. Tissue engineering, which is a hot research field of biomedical engineering, provides a new direction for mandibular defect repair. As the basis and key part of tissue engineering, scaffolds have been widely and deeply studied in regards to the basic theory, as well as the principle of biomaterial, structure, design, and fabrication method. However, little research is targeted at tissue regeneration for clinic repair operations. Since mandibular bone has a special structure, rather than uniform and regular structure in existing studies, a methodology based on tissue engineering is proposed for mandibular defect repair in this paper. Key steps regarding scaffold digital design, such as external shape design and internal microstructure design directly based on triangular meshes are discussed in detail. By analyzing the theoretical model and the measured data from the test parts fabricated by rapid prototyping, the feasibility and effectiveness of the proposed methodology are properly verified. More works about mechanical and biological improvements need to be done to promote its clinical application in future.
Combined analytical and numerical approaches in Dynamic Stability analyses of engineering systems
NASA Astrophysics Data System (ADS)
Náprstek, Jiří
2015-03-01
Dynamic Stability is a widely studied area that has attracted many researchers from various disciplines. Although Dynamic Stability is usually associated with mechanics, theoretical physics or other natural and technical disciplines, it is also relevant to social, economic, and philosophical areas of our lives. Therefore, it is useful to occasionally highlight the general aspects of this amazing area, to present some relevant examples and to evaluate its position among the various branches of Rational Mechanics. From this perspective, the aim of this study is to present a brief review concerning the Dynamic Stability problem, its basic definitions and principles, important phenomena, research motivations and applications in engineering. The relationships with relevant systems that are prone to stability loss (encountered in other areas such as physics, other natural sciences and engineering) are also noted. The theoretical background, which is applicable to many disciplines, is presented. In this paper, the most frequently used Dynamic Stability analysis methods are presented in relation to individual dynamic systems that are widely discussed in various engineering branches. In particular, the Lyapunov function and exponent procedures, Routh-Hurwitz, Liénard, and other theorems are outlined together with demonstrations. The possibilities for analytical and numerical procedures are mentioned together with possible feedback from experimental research and testing. The strengths and shortcomings of these approaches are evaluated together with examples of their effective complementing of each other. The systems that are widely encountered in engineering are presented in the form of mathematical models. The analyses of their Dynamic Stability and post-critical behaviour are also presented. The stability limits, bifurcation points, quasi-periodic response processes and chaotic regimes are discussed. The limit cycle existence and stability are examined together with their separating roles as attractors and repulsers. Two levels of stability loss (recovery of the system is possible or final collapse is inevitable) as can be observed in softening systems are noted. Time-limited excitation and relevant transition effects (e.g., seismic excitation) are also discussed, together with the evaluation of possible system reliability improvement. The Dynamic Stability investigation of two degrees-of-freedom aero-elastic systems in a linear formulation using several approaches is briefly highlighted. Further systems modelling problems that arise in transport engineering are also outlined. A few hints for applications are given. Some open problems and possible future research strategies are outlined.
Wang, Bo; Williams, Lakiesha N; de Jongh Curry, Amy L; Liao, Jun
2014-01-01
Cardiac tissue engineering/regeneration using decellularized myocardium has attracted great research attention due to its potential benefit for myocardial infarction (MI) treatment. Here we describe an optimal decellularization protocol to generate 3D porcine myocardial scaffolds with well-preserved cardiomyocyte lacunae and a multi-stimulation bioreactor that is able to provide coordinated mechanical and electrical stimulation for facilitating cardiac construct development.
Technical accomplishments of the NASA Lewis Research Center, 1989
NASA Technical Reports Server (NTRS)
1990-01-01
Topics addressed include: high-temperature composite materials; structural mechanics; fatigue life prediction for composite materials; internal computational fluid mechanics; instrumentation and controls; electronics; stirling engines; aeropropulsion and space propulsion programs, including a study of slush hydrogen; space power for use in the space station, in the Mars rover, and other applications; thermal management; plasma and radiation; cryogenic fluid management in space; microgravity physics; combustion in reduced gravity; test facilities and resources.
Human Factors Design Principles for Instrument Approach Procedure Charts. Volume 1. Readability
1992-08-01
discovery of mechanical type (Spencer, 1969). Not surprisingly, there is a substantial body of research and accepted practice that addresses...Swey for Automotive Engieer ARP4032 (April, 1988). Human engineering considerations in the application of cobr to electronic aircmjl dLspkp. Warrenlale