Sample records for mechanical engineering science

  1. Mechanical Engineering | Classification | College of Engineering & Applied

    Science.gov Websites

    ProfessorMechanical Engineering(414) 229-6949avdeev@uwm.eduEng & Math Sciences 975 profile photo Robert Balmer, Sc . D.Professor EmeritusMechanical Engineering(414) 229-3374balmer@uwm.eduEng & Math Sciences E260 profile -6614wjchang@uwm.eduEng & Math Sciences 1113 profile photo Junhong Chen Ph.D.UWM Distinguished

  2. Dr. Johney Green Jr. - Associate Laboratory Director for Mechanical and

    Science.gov Websites

    Thermal Engineering Sciences | NREL Dr. Johney Green Jr. - Associate Laboratory Director for Mechanical and Thermal Engineering Sciences Dr. Johney Green Jr. - Associate Laboratory Director for Mechanical and Thermal Engineering Sciences A photo of Johney Green In his role, Johney Green oversees early

  3. The International Congress of Mechanical Engineering and Agricultural Sciences - CIIMCA 2013

    NASA Astrophysics Data System (ADS)

    Remolina-Millán, Aduljay; Hernández-Arroyo, Emil

    2014-06-01

    The organizing committee of The International Congress of Mechanical Engineering and Agricultural Sciences - CIIMCA 2013 - are pleased to present CIIMCA-2013: the first international conference focused on subjects of materials science, mechanical engineering and renewable energy organized by Mechanical Engineering Faculty of the ''Universidad Pontificia Bolivariana'' in Bucaramanga, Colombia. This conference aims to be a place to produce discussions on whole topics of the congress, between the scientists of Colombia and the world. We strongly believe that knowledge is fundamental to the development of our countries. For that reason this multidisciplinary conference is looking forward to integrate engineering, agricultural science and nanoscience and nanotechnology to produce a synergy of this area of knowledge and to achieve scientific and technological developments. Agriculture is a very important topic for our conference; in Colombia, agricultural science needs more attention from the scientific community and the government. In the Faculty of Mechanical Engineering we are beginning to work on these issues to produce knowledge and improve the conditions in our country. The CIIMCA conference is a great opportunity to create interpersonal relationships and networks between scientists around the world. The interaction between scientists is very important in the process of the construction of knowledge. The general chairman encourages and invites you to make friends, relationships and participate strongly in the symposia and all program activities. PhD Aduljay Remolina-Millán Principal Chairman, International Mechanical Engineering and Agricultural Sciences Congress - CIIMCA Msc Emil Hernández-Arroyo Principal Chairman, International Mechanical Engineering and Agricultural Sciences Congress - CIIMCA Conference photograph Conference photograph 'Universidad Pontificia Bolivariana seccional Bucaramanga' host of the first International Mechanical Engineering and Agricultural Sciences Congress - CIIMCA 2013 - Floridablanaca, Colombia. Conference photograph Closure of CIIMCA 2013. Details of the editorial committee and acknowledgements are available in the PDF.

  4. The Institute of Biological Engineering 2013 Annual Conference

    DTIC Science & Technology

    2014-10-30

    of Bioengineering University of Washington Presentation: Peptide-Based materials for Drug Delivery Dr. Ya-Ping Sun (Supported by the Grant) Frank...Professor of Biomedical Engineering and Mechanical Engineering and Materials Science Duke University Presentation: Acoustic Microfluidics and New...Triangle Materials Research Science and Engineering Center, Department of Biomedical Engineering, Duke University, Department of Mechanical Engineering

  5. Engineering a General Education Program: Designing Mechanical Engineering General Education Courses

    ERIC Educational Resources Information Center

    Fagette, Paul; Chen, Shih-Jiun; Baran, George R.; Samuel, Solomon P.; Kiani, Mohammad F.

    2013-01-01

    The Department of Mechanical Engineering at our institution created two engineering courses for the General Education Program that count towards second level general science credit (traditional science courses are first level). The courses were designed for the general student population based upon the requirements of our General Education Program…

  6. Activities report of the Department of Engineering

    NASA Astrophysics Data System (ADS)

    Acoustics, aerodynamics, fluid mechanics, design, electrical, materials science, mechanical, control, robotics, soil mechanics, structural engineering, thermodynamics, and turbomachine engineering research are described.

  7. The Process of Updating Engineering Management Science in an Australian Regional University Excellence in Developing E-Learning

    ERIC Educational Resources Information Center

    Ku, H.; Fulcher, R.

    2007-01-01

    The aim of the current paper is to share the processes in revising the courseware of the course of "Engineering Management Science" coded as ENG4004, in the Bachelor of Engineering (Mechanical, Mechatronics, Electrical and Electronic, Computer Systems, Instrumentation and Control), Bachelor of Engineering Technology (Mechanical, Building…

  8. Virtual laboratory learning media development to improve science literacy skills of mechanical engineering students on basic physics concept of material measurement

    NASA Astrophysics Data System (ADS)

    Jannati, E. D.; Setiawan, A.; Siahaan, P.; Rochman, C.

    2018-05-01

    This study aims to determine the description of virtual laboratory learning media development to improve science literacy skills of Mechanical Engineering students on the concept of basic Physics. Quasi experimental method was employed in this research. The participants of this research were first semester students of mechanical engineering in Majalengka University. The research instrument was readability test of instructional media. The results of virtual laboratory learning media readability test show that the average score is 78.5%. It indicates that virtual laboratory learning media development are feasible to be used in improving science literacy skill of Mechanical Engineering students in Majalengka University, specifically on basic Physics concepts of material measurement.

  9. A Summary of the Naval Postgraduate School Research Program.

    DTIC Science & Technology

    1984-06-01

    Administrative Sciences, Operations Research, National Security Affairs, Physics, Electrical Engineering , Meterology, Aeronautics, Oceanography and Mechanical ...Oceans and Major Seas -------------------------------- 290 DEPARTMENT OF MECHANICAL ENGINEERING 291 Mechanical Engineering Department Summary 293...in Buried Pipes Using Sulphur Hexaflouride as a Tracer Gas," American Society of Mechanical Engineers , The Journal of Engineering for Power

  10. 34 CFR Appendix to Part 648 - Academic Areas

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Electronic, and Communications Engineering 14.11Engineering Mechanics 14.12Engineering Physics 14.13Engineering Science 14.14Environmental/Environmental Health Engineering 14.15Geological Engineering 14... Arts and Art Studies 50.09Music 51.Health Professions and Related Sciences 51.01Chiropractic (D.C., D.C...

  11. Distance Learning and Skill Acquisition in Engineering Sciences: Present State and Prospects

    ERIC Educational Resources Information Center

    Potkonjak, Veljko; Jovanovic, Kosta; Holland, Owen; Uhomoibhi, James

    2013-01-01

    Purpose: The purpose of this paper is to present an improved concept of software-based laboratory exercises, namely a Virtual Laboratory for Engineering Sciences (VLES). Design/methodology/approach: The implementation of distance learning and e-learning in engineering sciences (such as Mechanical and Electrical Engineering) is still far behind…

  12. Lincoln Advanced Science and Engineering Reinforcement

    DTIC Science & Technology

    1989-01-01

    Chamblee Physics Lincoln University Kelvin Clark Physics Lincoln University Dwayne Cole Mechanical Engineering Howard University Francis Countiss Physics...Mathematics Lincoln University Spencer Lane Mechanical Engineering Howard University Edward Lawerence Physics Lincoln University Cyd Hall Actuarial Science...Pittsburgh Lloyd Hammond Ph.D., Bio-Chemistry Purdue University Timothy Moore M.S., Psychology Howard University * completedI During 1988, three (3

  13. The Physics of Living in Space: A Physicist's Attempt to Provide Science and Engineering Education for Non-Science Students.

    ERIC Educational Resources Information Center

    Holbrow, C. H.

    1983-01-01

    A course was developed to teach physics concepts and to help students understand mathematics, the nature and role of engineers and engineering in society, and to distinguish between science/technology from pseudo-science. Includes course goals/content, mechanics, start-up, and long-term projects. (JN)

  14. The Thermal Behavior of Film Cooled Turbulent Boundary Layers as Affected by Longitudinal Vortices.

    DTIC Science & Technology

    1987-09-01

    Turbulent Boundary Layers as Affected by Longitudinal Vortices by Alfredo Ortiz Lieutenant, Colombian iNav ’ B.S., Escuela Naval "ALMIRANTE PADILLA", 1983...Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN MECHANICAL ENGINEERING and MECHANICAL ENGINEER form the NAVAL...Engineering G. E. Schacher, Dean of Science and Engineering I .... . .. .. °,-, ,-,¢ -. .€ -. € ,- , - " % , ( 3 i=, -., =% .°.-"%’°’.%,. ABSTRACT Heat

  15. Engineering a Classroom Discussion.

    ERIC Educational Resources Information Center

    Smith, Walter E.

    1983-01-01

    Describes physical science activities that civil/mechanical engineers (serving as resource persons) can use with students during units on force, work, center of gravity, simple machines, and other basic mechanics concepts. Activities are adapted from Career Oriented Modules to Explore Topics in Science for grades 5-9 (COMETS). (Author/JN)

  16. [Research Conducted at the Institute for Computer Applications in Science and Engineering

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period 1 Oct. 1996 - 31 Mar. 1997.

  17. [Activities of Institute for Computer Applications in Science and Engineering (ICASE)

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics. fluid mechanics, and computer science during the period April 1, 1999 through September 30. 1999.

  18. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-07-01

    This interdisciplinary laboratory in the College of Engineering support research in areas of condensed matter physics, solid state chemistry, and materials science. These research programs are developed with the assistance of faculty, students, and research associates in the departments of Physics, Materials Science and Engineering, chemistry, Chemical Engineering, Electrical Engineering, Mechanical Engineering, and Nuclear Engineering.

  19. Science and Engineering Graphics I. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Craig, Jerry; Stapleton, Jerry

    This study guide is part of a program of studies entitled Science and Engineering Technician (SET) Curriculum. The SET Curriculum was developed for the purpose of training technicians in the use of electronic instruments and their applications. It integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology,…

  20. A Robust Damage Reporting Strategy for Polymeric Materials Enabled by Aggregation Induced Emission

    DTIC Science & Technology

    2016-08-17

    and Technology, ‡Department of Chemistry, ∥Department of Materials Science and Engineering, ⊥Department of Mechanical Science and Engineering, and...enabled by aggregation-induced emission (AIE). This simple, yet powerful system relies on a single active component, and the general mechanism ...delivers outstanding performance in a wide variety of materials with diverse chemical and mechanical properties. Small (micrometer) scale damage in

  1. Advances in engineering science, volume 1

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Proceedings from a conference on engineering advances are presented, including materials science, fracture mechanics, and impact and vibration testing. The tensile strength and moisture transport of laminates are also discussed.

  2. Shawn Sheng | NREL

    Science.gov Websites

    experience includes mechanical and electrical system modeling and analysis, data sensing and sensor placement . Education Ph.D. in Mechanical Engineering, University of Massachusetts at Amherst; M.S. in Electrical Engineering, Institute of Electrical Engineering, Chinese Academy of Sciences; B.S. in Electrical Engineering

  3. Research in Applied Mathematics, Fluid Mechanics and Computer Science

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1998 through March 31, 1999.

  4. [Research activities in applied mathematics, fluid mechanics, and computer science

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period April 1, 1995 through September 30, 1995.

  5. PREFACE: International Conference on Applied Sciences 2015 (ICAS2015)

    NASA Astrophysics Data System (ADS)

    Lemle, Ludovic Dan; Jiang, Yiwen

    2016-02-01

    The International Conference on Applied Sciences ICAS2015 took place in Wuhan, China on June 3-5, 2015 at the Military Economics Academy of Wuhan. The conference is regularly organized, alternatively in Romania and in P.R. China, by Politehnica University of Timişoara, Romania, and Military Economics Academy of Wuhan, P.R. China, with the joint aims to serve as a platform for exchange of information between various areas of applied sciences, and to promote the communication between the scientists of different nations, countries and continents. The topics of the conference cover a comprehensive spectrum of issues from: >Economical Sciences and Defense: Management Sciences, Business Management, Financial Management, Logistics, Human Resources, Crisis Management, Risk Management, Quality Control, Analysis and Prediction, Government Expenditure, Computational Methods in Economics, Military Sciences, National Security, and others... >Fundamental Sciences and Engineering: Interdisciplinary applications of physics, Numerical approximation and analysis, Computational Methods in Engineering, Metallic Materials, Composite Materials, Metal Alloys, Metallurgy, Heat Transfer, Mechanical Engineering, Mechatronics, Reliability, Electrical Engineering, Circuits and Systems, Signal Processing, Software Engineering, Data Bases, Modeling and Simulation, and others... The conference gathered qualified researchers whose expertise can be used to develop new engineering knowledge that has applicability potential in Engineering, Economics, Defense, etc. The number of participants was 120 from 11 countries (China, Romania, Taiwan, Korea, Denmark, France, Italy, Spain, USA, Jamaica, and Bosnia and Herzegovina). During the three days of the conference four invited and 67 oral talks were delivered. Based on the work presented at the conference, 38 selected papers have been included in this volume of IOP Conference Series: Materials Science and Engineering. These papers present new research in the various fields of Materials Engineering, Mechanical Engineering, Computers Engineering, and Electrical Engineering. It's our great pleasure to present this volume of IOP Conference Series: Materials Science and Engineering to the scientific community to promote further research in these areas. We sincerely hope that the papers published in this volume will contribute to the advancement of knowledge in the respective fields.

  6. Physics of Mechanical, Gaseous, and Fluid Systems. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Dixon, Peggy; And Others

    This study guide is part of a program of studies entitled Science and Engineering Technician (SET) Curriculum. The SET Curriculum integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology. The objective of this curriculum development project is to train technicians in the use of…

  7. Solid State Cooling with Advanced Oxide Materials

    DTIC Science & Technology

    2014-06-03

    Department of Materials Science and Engineering , Department of Mechanical Science and Engineering , and Department of Electrical and Computer... Engineering University of Illinois, Urbana-Champaign Program Overview The focus of this program was to probe electro-(magneto-)caloric materials for... engineering systems by developing theoretical and experimental approaches to study thermodynamic properties and effects in thin film systems. Despite

  8. [Research Conducted at the Institute for Computer Applications in Science and Engineering for the Period October 1, 1999 through March 31, 2000

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M. (Technical Monitor)

    2000-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, computer science, fluid mechanics, and structures and materials during the period October 1, 1999 through March 31, 2000.

  9. Composition-spread Growth and the Robust Topological Surface State of Kondo Insulator SmB6 Thin Films

    DTIC Science & Technology

    2014-01-01

    1,2 1 Center for Nanophysics & Advanced Materials , University of Maryland, College Park, Maryland 20742, USA 2 Department of physics, University of...Maryland, College Park, Maryland 20742, USA 3 Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 4...Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA 5 Department of Materials Science & Engineering

  10. Research and technology at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Cryogenic engineering, hypergolic engineering, hazardous warning, structures and mechanics, computer sciences, communications, meteorology, technology applications, safety engineering, materials analysis, biomedicine, and engineering management and training aids research are reviewed.

  11. Chemical Science and Technology I. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Ballinger, Jack T.; Wolf, Lawrence J.

    This study guide is part of an interdisciplinary program of studies entitled the Science and Engineering Technician (SET) Curriculum. This curriculum integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology with the objective of training technicians in the use of electronic…

  12. Cumulated UDC Supplement, 1965-1975. Volume III: Classes 6/62 (61 Medical Sciences, 62 Engineering and Technology Generally, 621 Mechanical and Electrical Engineering, 622 Mining, 623 Military and Naval Engineering, 624 Civil and Structural Engineering, 625 Railway and Highway Engineering, 626/627 Hydraulic Engineering Works, 628 Public Health Engineering, 629 Transport (Vehicle) Engineering).

    ERIC Educational Resources Information Center

    International Federation for Documentation, The Hague (Netherlands). Committee on Classification Research.

    In continuation of the "Cumulated UDC Supplement - 1964" published by the International Federation for Documentation, this document provides a cumulative supplement to the Universal Decimal Classification for 1965-1975. This third of five volumes lists new classification subdivisions in the following subject areas: (1) medical sciences; (2)…

  13. Gretchen Ohlhausen | NREL

    Science.gov Websites

    School of Mines studying Mechanical Engineering and Computer Science, expected to graduate in 2019 lithium-ion and lithium sulfur batteries. Education B.S. Mechanical Engineering, Colorado School of Mines Gretchen Ohlhausen Photo of Gretchen Ohlhausen Gretchen Ohlhausen Undergraduate III-Mechanical

  14. Current research activities: Applied and numerical mathematics, fluid mechanics, experiments in transition and turbulence and aerodynamics, and computer science

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, fluid mechanics including fluid dynamics, acoustics, and combustion, aerodynamics, and computer science during the period 1 Apr. 1992 - 30 Sep. 1992 is summarized.

  15. In Brief: Suresh slated to head U.S. National Science Foundation

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-06-01

    U.S. president Barack Obama announced on 3 June his intent to nominate Subra Suresh as the next director of the U.S. National Science Foundation (NSF). Arden Bement, who served as NSF director since 2004, resigned earlier this year to lead Purdue University's Global Policy Research Institute, in West Lafayette, Indiana. Suresh is dean of the School of Engineering and the Vannevar Bush Professor of Engineering at Massachusetts Institute of Technology (MIT), Cambridge. Suresh joined MIT in 1993 as the R. P. Simmons Professor of Materials Science and Engineering. Since then, he has held joint faculty appointments in the departments of Mechanical Engineering and Biological Engineering, as well as the Division of Health Sciences and Technology. He previously was head of the university's Department of Materials Science and Engineering. Suresh has a B.S. from the Indian Institute of Technology, Madras, India; an M.S. from Iowa State University of Science and Technology, Ames; and a Sc.D. from MIT.

  16. In Brief: Suresh confirmed as new head of U.S. National Science Foundation

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-10-01

    On 29 September, the U.S. Senate unanimously confirmed Subra Suresh to be the new director of the U.S. National Science Foundation (NSF) for a 6-year term. Suresh, nominated for the position by U.S. president Barack Obama on 8 June, could be sworn in by mid-October. Suresh has been dean of the School of Engineering and the Vannevar Bush Professor of Engineering at Massachusetts Institute of Technology, Cambridge. His work as a researcher, educator, and academic administrator has spanned a number of disciplines including mechanical engineering, materials science, and biomedical engineering.

  17. Summary of Research 2003

    DTIC Science & Technology

    2005-01-01

    Surface Tasks ................................................................................................... 250 Goali : Creep and Microstructural...SURFACE TASKS Morris Driels, Professor Department of Mechanical Engineering Sponsor: U.S. Army Materiel Systems Analysis Activity GOALI : CREEP AND...Professor Department of Mechanical Engineering Sponsor: National Science Foundation SUMMARY: This GOALI (Grant Opportunities for Academic Liaison

  18. NASA Tech Briefs, March 1993. Volume 17, No. 3

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Topics include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences;

  19. Flexible 2D RF Nanoelectronics based on Layered Semiconductor Transistor (NBIT III)

    DTIC Science & Technology

    2016-11-11

    Experimental and computational studies in multidisciplinary fields of electrical, mechanical engineering , and materials science were conducted to achieve...plan for this project. Experimental and computational studies in multidisciplinary fields of electrical, mechanical engineering , and materials...electrostatic or physisorption gating, defect engineering , and substitutional doping during the growth. These methods result in uniform doping or composition

  20. Safety engineering: KTA code of practice. Lifting mechanisms in nuclear plant

    NASA Astrophysics Data System (ADS)

    Lifting mechanisms safety requirements are discussed in accordance with the present state of development of science and engineering for the protection of life, health, and assets against the dangers of nuclear energy and the ill effects of ionizing radiation.

  1. NASA Tech Briefs, October 1993. Volume 17, No. 10

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Topics include: Sensors; esign and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication technology; Mathematics and Information Sciences; Life Sciences; Books and Reports.

  2. 1+1=3: Cross-Discipline Collaboration Really Adds Up!

    ERIC Educational Resources Information Center

    Breen, Mindy

    2006-01-01

    The Department of Engineering & Design at Eastern Washington University (EWU) offers a bachelor of arts degree in visual communication design and bachelor of science degrees in mechanical engineering technology, manufacturing technology, construction technology, design technology, electrical engineering, computer engineering technology and…

  3. [Activities of Institute for Computer Applications in Science and Engineering (ICASE)

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    This report summarizes research conducted at ICASE in applied mathematics, fluid mechanics, computer science, and structures and material sciences during the period April 1, 2000 through September 30, 2000.

  4. NASA Tech Briefs, March 1994. Volume 18, No. 3

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Topics include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports

  5. NASA Tech Briefs, March 2000. Volume 24, No. 3

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Topics include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports.

  6. NASA Tech Briefs, March 1997. Volume 21, No. 3

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Topics: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports.

  7. PREFACE: International Conference on Applied Sciences (ICAS2014)

    NASA Astrophysics Data System (ADS)

    Lemle, Ludovic Dan; Jiang, Yiwen

    2015-06-01

    The International Conference on Applied Sciences (ICAS2014) took place in Hunedoara, Romania from 2-4 October 2014 at the Engineering Faculty of Hunedoara. The conference takes place alternately in Romania and in P.R. China and is organized by "Politehnica" University of Timisoara, Romania, and Military Economics Academy of Wuhan, P.R. China, with the aim to serve as a platform for exchange of information between various areas of applied sciences and to promote the communication between scientists of different nations, countries and continents. The topics of the conference covered a comprehensive spectrum of issues: 1. Economical Sciences 2. Engineering Sciences 3. Fundamental Sciences 4. Medical Sciences The conference gathered qualified researchers whose expertise can be used to develop new engineering knowledge that has the potential for application in economics, defense, medicine, etc. There were nearly 100 registered participants from six countries, and four invited and 56 oral talks were delivered during the two days of the conference. Based on the work presented at the conference, selected papers are included in this volume of IOP Conference Series: Materials Science and Engineering. These papers present new research in the various fields of Materials Engineering, Mechanical Engineering, Computer Engineering, and Mathematical Engineering. It is our great pleasure to present this volume of IOP Conference Series: Materials Science and Engineering to the scientific community to promote further research in these areas. We sincerely hope that the papers published in this volume will contribute to the advancement of knowledge in their respective fields.

  8. Research and technology, 1984 report

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Research and technology projects in the following areas are described: cryogenic engineering, hypergolic engineering, hazardous warning instrumentation, structures and mechanics, sensors and controls, computer sciences, communications, material analysis, biomedicine, meteorology, engineering management, logistics, training and maintenance aids, and technology applications.

  9. Materials and Fabrication Methods II. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Lindberg, Andrew; Bay, Robert

    This study guide is part of a program of studies entitled Science and Engineering Technician (SET) Curriculum. The SET Curriculum integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology with the objective of training technicians in the use of electronic instruments and their…

  10. Materials and Fabrication Methods I. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Lindberg, Andrew; And Others

    This study guide is part of a curriculum entitled Science and Engineering Technician (SET) Curriculum, a program of studies which integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology. The purpose of this national curriculum development project was to provide a framework for…

  11. Preparing Your Students for Careers in Science and Engineering: How Is Your State Doing?

    NASA Astrophysics Data System (ADS)

    White, Susan; Cottle, Paul

    2011-10-01

    With one glance at the starting salaries of new bachelor's degree recipients in Fig. 1, a teacher or parent can see the career fields to which their high school students interested in the best economic opportunities might aspire: several engineering fields (chemical, electrical, mechanical), computer science, physics, and mathematics.

  12. Preparing Your Students for Careers in Science and Engineering: How Is Your State Doing?

    ERIC Educational Resources Information Center

    White, Susan; Cottle, Paul

    2011-01-01

    With one glance at the starting salaries of new bachelor's degree recipients in Fig. 1, a teacher or parent can see the career fields to which their high school students interested in the best economic opportunities might aspire: several engineering fields (chemical, electrical, mechanical), computer science, physics, and mathematics.

  13. United States Air Force Summer Faculty Research Program (1987). Program Technical Report. Volume 1.

    DTIC Science & Technology

    1987-12-01

    Mechanical Engineering Specialty: Engineering Science Rose-Hulman Institute Assigned: APL 5500 Wabash Avenue - Terre Haute, IN 47803 (812) 877-1511 Dr...Professor/Di rector 1973 Dept. of Humanities Specialty: Literature/Language Rose-Hulman Inst. of Technology Assigned: HRL/LR 5500 Wabash Avenue - Terre...1976 Assistant Professor Specialty: Computer Science Dept. of Computer Science Assigned: AL Rose-Hulman Inst. of Technology 5500 Wabash Ave. Terre Haute

  14. Sandia National Laboratories: Research: Research Foundations: Geoscience

    Science.gov Websites

    Materials Science Nanodevices & Microsystems Radiation Effects & High Energy Density Science Engineering Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High variety of scales, including mechanical, thermal, and chemical effects Improve the understanding of

  15. NASA Tech Briefs, July 1994. Volume 18, No. 7

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Topics covered include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports

  16. NASA Tech Briefs, October 1994. Volume 18, No. 10

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Topics: Data Acquisition and Analysis; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports

  17. Restructuring Graduate Engineering Education: The M.Eng. Program at Cornell.

    ERIC Educational Resources Information Center

    Cady, K. Bingham; And Others

    1988-01-01

    Discusses the restructuring of the graduate program to accommodate emerging fields in engineering. Notes half of the graduate degrees Cornell grants each year are M.Eng. degrees. Offers 12 specialties: aerospace, agriculture, chemical, civil, electrical, mechanical and nuclear engineering; computer science, engineering physics; geological…

  18. Institutional profile: the London Centre for Nanotechnology.

    PubMed

    Weston, David; Bontoux, Thierry

    2009-12-01

    Located in the London neighborhoods of Bloomsbury and South Kensington, the London Centre for Nanotechnology is a UK-based multidisciplinary research center that operates at the forefront of science and technology. It is a joint venture between two of the world's leading institutions, UCL and Imperial College London, uniting their strong capabilities in the disciplines that underpin nanotechnology: engineering, the physical sciences and biomedicine. The London Centre for Nanotechnology has a unique operating model that accesses and focuses the combined skills of the Departments of Chemistry, Physics, Materials, Medicine, Electrical and Electronic Engineering, Mechanical Engineering, Chemical Engineering, Biochemical Engineering and Earth Sciences across the two universities. It aims to provide the nanoscience and nanotechnology required to solve major problems in healthcare, information processing, energy and the environment.

  19. Applied aerodynamics experience for secondary science teachers and students

    NASA Technical Reports Server (NTRS)

    Abbitt, John D., III; Carroll, Bruce F.

    1992-01-01

    The Department of Aerospace Engineering, Mechanics & Engineering Science at the University of Florida in conjunction with the Alachua County, Florida School Board has embarked on a four-year project of university-secondary school collaboration designed to enhance mathematics and science instruction in secondary school classrooms. The goals are to provide teachers with a fundamental knowledge of flight sciences, and to stimulate interest among students, particularly women and minorities, toward careers in engineering, mathematics, and science. In the first year of the project, all thirteen of the eighth grade physical science teachers and all 1200 of the eighth grade physical science students in the county participated. The activities consisted of a three-day seminar taught at the college level for the teachers, several weeks of classroom instruction for all the students, and an airport field trip for a subgroup of about 430 students that included an orientation flight in a Cessna 172 aircraft. The project brought together large numbers of middle school students, teachers, undergraduate and graduate engineering students, school board administrators, and university engineering faculty.

  20. Semiannual report

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period 1 Oct. 1994 - 31 Mar. 1995.

  1. Using the Discipline of Agricultural Engineering to Integrate Math and Science

    ERIC Educational Resources Information Center

    Foutz, Tim; Navarro, Maria; Hill, Roger B.; Thompson, Sidney A.; Miller, Kathy; Riddleberger, Deborah

    2011-01-01

    An outcome of a 1998 forum sponsored by the National Research Council was a recognition that topics related to food production and agriculture are excellent mechanisms for integrating science topics taught in the K-12 education system and for providing many avenues for inquiry based and project based learning. The engineering design process is…

  2. Electronic Components, Transducers, and Basic Circuits. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Mowery, Donald R.

    This study guide is part of a program of studies entitled the Science and Engineering Technician (SET) Curriculum developed for the purpose of training technicians in the use of electronic instruments and their applications. The program integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and…

  3. Jobs for Women in Science. A Discussion for the Conference for Educating Women for Science: A Continuous Spectrum.

    ERIC Educational Resources Information Center

    Hanson, Marlys C.

    Opportunities for scientists in the near future will be very good in the fields of energy research and development, both for degreed scientists and for technicians. Geologists, geophysicists, mining engineers, rock mechanics, hydrologists, applied physicists, applied chemists, and nuclear engineers are among the types of personnel needed. These…

  4. Fundamental Research in Engineering Education. Identifying and Repairing Student Misconceptions in Thermal and Transport Science: Concept Inventories and Schema Training Studies

    ERIC Educational Resources Information Center

    Miller, Ronald L.; Streveler, Ruth A.; Yang, Dazhi; Roman, Aidsa I. Santiago

    2011-01-01

    This paper summarizes progress on two related lines of chemical engineering education research: 1) identifying persistent student misconceptions in thermal and transport science (fluid mechanics, heat transfer, and thermodynamics); and, 2) developing a method to help students repair these misconceptions. Progress on developing the Thermal and…

  5. Biomedical engineering - A means to add new dimension to medicine and research

    NASA Technical Reports Server (NTRS)

    Doerr, D. F.

    1992-01-01

    Biomedical engineering is an evolving science that seeks to insert technically oriented and trained personnel to assist medical professionals in solving technological problems in the pursuit of innovations in the delivery of health care. Consequently, engineering solutions are brought to bear on problems that previously were outside the training of physicians and beyond the understanding or appreciation of the conventionally educated electrical or mechanical engineers. This physician/scientist/engineer team has a capability to extend medicine and research far beyond the capability of a single entity operating alone. How biomedical engineering has added a new dimension to medical science at the Kennedy Space Center is described.

  6. Wind Energy Workforce Development: Engineering, Science, & Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesieutre, George A.; Stewart, Susan W.; Bridgen, Marc

    2013-03-29

    Broadly, this project involved the development and delivery of a new curriculum in wind energy engineering at the Pennsylvania State University; this includes enhancement of the Renewable Energy program at the Pennsylvania College of Technology. The new curricula at Penn State includes addition of wind energy-focused material in more than five existing courses in aerospace engineering, mechanical engineering, engineering science and mechanics and energy engineering, as well as three new online graduate courses. The online graduate courses represent a stand-alone Graduate Certificate in Wind Energy, and provide the core of a Wind Energy Option in an online intercollege professional Mastersmore » degree in Renewable Energy and Sustainability Systems. The Pennsylvania College of Technology erected a 10 kilowatt Xzeres wind turbine that is dedicated to educating the renewable energy workforce. The entire construction process was incorporated into the Renewable Energy A.A.S. degree program, the Building Science and Sustainable Design B.S. program, and other construction-related coursework throughout the School of Construction and Design Technologies. Follow-on outcomes include additional non-credit opportunities as well as secondary school career readiness events, community outreach activities, and public awareness postings.« less

  7. Engineering, technology and science disciplines and gender difference: a case study among Indian students

    NASA Astrophysics Data System (ADS)

    Cheruvalath, Reena

    2018-01-01

    It is proposed to examine the argument that females cannot perform better in engineering and science fields because of their poor mathematical or logical reasoning. The major reason for the reduced number of females in the above fields in India is the socio-cultural aversion towards females choosing the field and restriction in providing higher education for them by their parents. The present study shows that the females who get the opportunity to study engineering and science perform equal to or better than their male counterparts. An analysis of CGPA (Cumulative Grade Point Average) of 2631 students who have completed their engineering or science programme in one of the top engineering colleges in India for five years shows that female academic performance is equal to or better than that of males. Mathematical, logical, verbal and mechanical reasoning are tested while calculating CGPA.

  8. Educating and Training Accelerator Scientists and Technologists for Tomorrow

    NASA Astrophysics Data System (ADS)

    Barletta, William; Chattopadhyay, Swapan; Seryi, Andrei

    2012-01-01

    Accelerator science and technology is inherently an integrative discipline that combines aspects of physics, computational science, electrical and mechanical engineering. As few universities offer full academic programs, the education of accelerator physicists and engineers for the future has primarily relied on a combination of on-the-job training supplemented with intensive courses at regional accelerator schools. This article describes the approaches being used to satisfy the educational curiosity of a growing number of interested physicists and engineers.

  9. Educating and Training Accelerator Scientists and Technologists for Tomorrow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barletta, William A.; Chattopadhyay, Swapan; Seryi, Andrei

    2012-07-01

    Accelerator science and technology is inherently an integrative discipline that combines aspects of physics, computational science, electrical and mechanical engineering. As few universities offer full academic programs, the education of accelerator physicists and engineers for the future has primarily relied on a combination of on-the-job training supplemented with intense courses at regional accelerator schools. This paper describes the approaches being used to satisfy the educational interests of a growing number of interested physicists and engineers.

  10. NASA Tech Briefs, July 2000. Volume 24, No. 7

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Topics covered include: Data Acquisition; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Test and Measurement; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports.

  11. FOREWORD: 9th Curtin University of Technology Science and Engineering International Conference 2014 (CUTSE2014)

    NASA Astrophysics Data System (ADS)

    Chieng Chen, Vincent Lee

    2015-04-01

    A very warm welcome to all participants of the 9th Curtin University Technology, Science and Engineering (CUTSE) Conference 2014. This annual conference dates back to 2006 when the first Curtin University of Technology Science and Engineering (CUTSE) Conference was held in Curtin University, Miri Sarawak. CUTSE Conference was initially intended for Curtin's undergraduates such that they are able to experience the presentation of their work in a conference environment. As time passes and following the urge of knowledge dissemination, CUTSE Conference is hence open to public. This year the Department of Mechanical Engineering has been given the honour to organize the 9th CUTSE Conference. It has been a pleasure to watch CUTSE grow from strength to strength over the years. This year, our theme is "Discovering, Innovating and Engineering". We hope that it is in this spirit that CUTSE participants may align their respective work, such that we all aim for a greater and better implementation of "Discovering, Innovating and Engineering". The 9th CUTSE Conference 2014 is an excellent avenue for researchers, engineers, scientists, academicians, professionals from industry and students to share their research findings and initiate further collaborations in their respective fields. Parallel sessions in Mechanical, Electrical, Computer, Civil and Chemical engineering as well as the sciences will be hosted over a period of two days. Each year, the conference attracts participation from a number of countries in addition to Malaysia and Australia. In addition, student participants will get the opportunity to present their research projects and gain valuable feedback from industry professionals. This year the Conference will be organised by the Department of Mechanical Engineering of Curtin Sarawak's School of Engineering and Science in collaboration with The Institute of Engineers Malaysia, Miri Branch. On behalf of the organizing committee, I would like to thank this year's sponsors and supporters. We appreciate your support for CUTSE 2014 and in research and development, and your foresight in nurturing cutting edge research into industrial applications. CUTSE 2014 would not be possible without the dedicated work and efforts of the organizing committee, who worked tirelessly in all aspects of the conference organization. I thank you for your hard work and commitment towards making CUTSE 2014 a success. Selamat Datai (Welcome) and enjoy the conference. Dr Vincent Lee Chieng Chen Organizing Chairperson, 9th CUTSE Conference 2014

  12. Identifying and Investigating Difficult Concepts in Engineering Mechanics and Electric Circuits. Research Brief

    ERIC Educational Resources Information Center

    Streveler, Ruth; Geist, Monica; Ammerman, Ravel; Sulzbach, Candace; Miller, Ronald; Olds, Barbara; Nelson, Mary

    2007-01-01

    This study extends ongoing work to identify difficult concepts in thermal and transport science and measure students' understanding of those concepts via a concept inventory. Two research questions provided the focal point: "What important concepts in electric circuits and engineering mechanics do students find difficult to learn?" and…

  13. NASA Tech Briefs, September 1999. Volume 23, No. 9

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Topics discussed include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences;

  14. NASA Tech Briefs, March 1998. Volume 22, No. 3

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Topics include: special coverage of computer aided design and engineering, electronic components and circuits, electronic systems, physical sciences, materials, computer software, special coverage on mechanical technology, machinery/automation, manufacturing/fabrication, mathematics and information sciences, book and reports, and a special section of Electronics Tech Briefs. Profiles of the exhibitors at the National Design Engineering show are also included in this issue.

  15. Meteorology Meets Engineering: An Interdisciplinary STEM Module for Middle and Early Secondary School Students

    ERIC Educational Resources Information Center

    Barrett, Bradford S.; Moran, Angela L.; Woods, John E.

    2014-01-01

    Background: Given the continued need to educate the public on both the meteorological and engineering hazards posed by the severe winds of a tornado, an interdisciplinary science, technology, engineering, and mathematics (STEM) module designed by the faculty from the Oceanography and Mechanical Engineering Departments at the United States Naval…

  16. Case Study: Meeting the Demand for Skilled Precision Engineers

    ERIC Educational Resources Information Center

    Sansom, Chris; Shore, Paul

    2008-01-01

    Purpose: This paper aims to demonstrate how science and engineering graduates can be recruited and trained to Masters level in precision engineering as an aid to reducing the skills shortage of mechanical engineers in UK industry. Design/methodology/approach: The paper describes a partnership between three UK academic institutions and industry,…

  17. NASA Tech Briefs, November 1999. Volume 23, No. 11

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Topics covered include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Materials; Computer Programs; Mechanics; Machinery/Automation; Physical Sciences; Mathematics and Information Sciences; Books and Reports.

  18. Advances in Engineering Science, Volume 4

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The following areas of flight science are discussed in detail; (1) inviscid flow, (2) viscous flow, (3) aircraft aerodynamics, (4) fluid mechanics, (5) propulsion and combustion, and (6) flight dynamics and control.

  19. National Aeronautics and Space Administration Science and Engineering Apprentice Program

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The National Aeronautics and Space Administration's Science and Engineering Apprentice Program for high school students is one of NASA's many efforts toward a goal of scientific literacy. It embraces science, mathematics, and technology as keys to purposeful and sustained progress and security for our nation and its people. It serves as a model for helping reform education by striving to address mechanisms to influence the knowledge, skills, and attitudes of our students. It focuses on what to do today to meet the challenges of tomorrow.

  20. NASA Tech Briefs, January 2000. Volume 24, No. 1

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Topics include: Data Acquisition; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Bio-Medical; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Information Sciences; Books and reports.

  1. Direct Observation of Two Phase Flow Generated by an Alumina Seeded Grain in High Aspect Ratio Channels

    DTIC Science & Technology

    2010-06-01

    1999 Submitted in partial fulfillment of the requirements for the degrees of MECHANICAL ENGINEER and MASTERS OF SCIENCE IN MECHANICAL...Advisor Dr. Anthony Gannon Second Reader Dr. Knox Milsaps Chairman, Department of Mechanical and Aerospace Engineering iv THIS...within high aspect ratio regions of advanced propellant grain designs and how this behavior affects flow through the combustion chamber and impacts

  2. Research in progress in applied mathematics, numerical analysis, fluid mechanics, and computer science

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1993 through March 31, 1994. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.

  3. Engineering science and mechanics; Proceedings of the International Symposium, Tainan, Republic of China, December 29-31, 1981. Parts 1 & 2

    NASA Astrophysics Data System (ADS)

    Hsia, H.-M.; Chou, Y.-L.; Longman, R. W.

    1983-07-01

    The topics considered are related to measurements and controls in physical systems, the control of large scale and distributed parameter systems, chemical engineering systems, aerospace science and technology, thermodynamics and fluid mechanics, and computer applications. Subjects in structural dynamics are discussed, taking into account finite element approximations in transient analysis, buckling finite element analysis of flat plates, dynamic analysis of viscoelastic structures, the transient analysis of large frame structures by simple models, large amplitude vibration of an initially stressed thick plate, nonlinear aeroelasticity, a sensitivity analysis of a combined beam-spring-mass structure, and the optimal design and aeroelastic investigation of segmented windmill rotor blades. Attention is also given to dynamics and control of mechanical and civil engineering systems, composites, and topics in materials. For individual items see A83-44002 to A83-44061

  4. Summary of research in progress at ICASE

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1992 through March 31, 1993.

  5. NASA Tech Briefs, February 2000. Volume 24, No. 2

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Topics covered include: Test and Measurement; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Bio-Medical; Mathematics and Information Sciences; Computers and Peripherals.

  6. NASA Tech Briefs, May 2002. Volume 26, No. 5

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Topics include: a technology focus on engineering materials, electronic components and circuits, software, mechanics, machinery/automation, manufacturing, physical sciences, information sciences, book and reports, and a special section of Photonics Tech Briefs.

  7. Multifunctional Collaborative Modeling and Analysis Methods in Engineering Science

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.; Broduer, Steve (Technical Monitor)

    2001-01-01

    Engineers are challenged to produce better designs in less time and for less cost. Hence, to investigate novel and revolutionary design concepts, accurate, high-fidelity results must be assimilated rapidly into the design, analysis, and simulation process. This assimilation should consider diverse mathematical modeling and multi-discipline interactions necessitated by concepts exploiting advanced materials and structures. Integrated high-fidelity methods with diverse engineering applications provide the enabling technologies to assimilate these high-fidelity, multi-disciplinary results rapidly at an early stage in the design. These integrated methods must be multifunctional, collaborative, and applicable to the general field of engineering science and mechanics. Multifunctional methodologies and analysis procedures are formulated for interfacing diverse subdomain idealizations including multi-fidelity modeling methods and multi-discipline analysis methods. These methods, based on the method of weighted residuals, ensure accurate compatibility of primary and secondary variables across the subdomain interfaces. Methods are developed using diverse mathematical modeling (i.e., finite difference and finite element methods) and multi-fidelity modeling among the subdomains. Several benchmark scalar-field and vector-field problems in engineering science are presented with extensions to multidisciplinary problems. Results for all problems presented are in overall good agreement with the exact analytical solution or the reference numerical solution. Based on the results, the integrated modeling approach using the finite element method for multi-fidelity discretization among the subdomains is identified as most robust. The multiple-method approach is advantageous when interfacing diverse disciplines in which each of the method's strengths are utilized. The multifunctional methodology presented provides an effective mechanism by which domains with diverse idealizations are interfaced. This capability rapidly provides the high-fidelity results needed in the early design phase. Moreover, the capability is applicable to the general field of engineering science and mechanics. Hence, it provides a collaborative capability that accounts for interactions among engineering analysis methods.

  8. Research in progress and other activities of the Institute for Computer Applications in Science and Engineering

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics and computer science during the period April 1, 1993 through September 30, 1993. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustic and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.

  9. NASA Tech Briefs, November 2002. Volume 26, No. 11

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Topics include: a technology focus on engineering materials, electronic components and systems, software, mechanics, machinery/automation, manufacturing, bio-medical, physical sciences, information sciences book and reports, and a special section of Photonics Tech Briefs.

  10. NASA Tech Briefs, November 2000. Volume 24, No. 11

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Topics covered include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Test and Measurement; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Data Acquisition.

  11. Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering.

    PubMed

    Narayanan, Ganesh; Vernekar, Varadraj N; Kuyinu, Emmanuel L; Laurencin, Cato T

    2016-12-15

    Regenerative engineering converges tissue engineering, advanced materials science, stem cell science, and developmental biology to regenerate complex tissues such as whole limbs. Regenerative engineering scaffolds provide mechanical support and nanoscale control over architecture, topography, and biochemical cues to influence cellular outcome. In this regard, poly (lactic acid) (PLA)-based biomaterials may be considered as a gold standard for many orthopaedic regenerative engineering applications because of their versatility in fabrication, biodegradability, and compatibility with biomolecules and cells. Here we discuss recent developments in PLA-based biomaterials with respect to processability and current applications in the clinical and research settings for bone, ligament, meniscus, and cartilage regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. General Mechanical Repair. Minor Automotive Maintenance, Small Engine [Repair, and] Welding: Curriculum Guide and Lesson Plans.

    ERIC Educational Resources Information Center

    Hamlin, Larry

    This document contains a curriculum guide and lesson plans for a general mechanical repair course with three sections: minor automotive maintenance, small engine repair, and welding. The curriculum guide begins with a matrix that relates the lesson plans to essential elements of math, science, language arts, and social studies and to Texas…

  13. Department of Defense In-House RDT&E Activities. Management Analysis Report

    DTIC Science & Technology

    1987-10-30

    AIRCRAFT BY NAVY PERSONNEL; ESTABLISH HUMAN TOLERANCE LIMITS FOR THESE FORCES, DEVELOP PREVENTIVE AND THERAPEUTIC METHODS TO PROTECT PERSONNEL FROM...Engineering 436 Plant Protection and 830 Mechanical Engineering Quarantine 840 Nuclear Engineering 437 Horticulture S50 Electrical Engineering 440...Technician 648 Therapeutic Radiological 1311 Physical Science Technologist Technician 649 Medical Machine Technician 1316 Hydraulic Technician 650 Medical

  14. NASA Tech Briefs, August 2000. Volume 24, No. 8

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Topics include: Simulation/Virtual Reality; Test and Measurement; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Medical Design.

  15. NASA Tech Briefs, March 1995

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This issue contains articles with a special focus on Computer-Aided design and engineering amd a research report on the Ames Research Center. Other subjects in this issue are: Electronic Components and Circuits, Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Manufacturing/Fabrication, Mathematics and Information Sciences and Life Sciences

  16. Materials Science Laboratory

    NASA Technical Reports Server (NTRS)

    Jackson, Dionne

    2005-01-01

    The NASA Materials Science Laboratory (MSL) provides science and engineering services to NASA and Contractor customers at KSC, including those working for the Space Shuttle. International Space Station. and Launch Services Programs. These services include: (1) Independent/unbiased failure analysis (2) Support to Accident/Mishap Investigation Boards (3) Materials testing and evaluation (4) Materials and Processes (M&P) engineering consultation (5) Metrology (6) Chemical analysis (including ID of unknown materials) (7) Mechanical design and fabrication We provide unique solutions to unusual and urgent problems associated with aerospace flight hardware, ground support equipment and related facilities.

  17. Howard University Engineers Success: Interdisciplinary Study Keeps Howard on the Cutting Edge

    ERIC Educational Resources Information Center

    Chew, Cassie M.

    2004-01-01

    According to Engineering Workforce Commission annual reports, in 1999 Howard University graduated 108 students, 92 of whom were African American, in its chemical, civil, electrical, and mechanical engineering programs and computer science programs. After two more years of graduating approximately 100 students across programs, in 2002, according to…

  18. Hydrostatic Pressure Project: Linked-Class Problem-Based Learning in Engineering

    ERIC Educational Resources Information Center

    Davis, Freddie J.; Lockwood-Cooke, Pamela; Hunt, Emily M.

    2011-01-01

    Over the last few years, WTAMU Mathematics, Engineering and Science faculty has used interdisciplinary projects as the basis for implementation of a linked-class approach to Problem-Based Learning (PBL). A project that has significant relevance to engineering statics, fluid mechanics, and calculus is the Hydrostatic Pressure Project. This project…

  19. Teaching Heliophysics Science to Undergraduates in an Engineering Context

    NASA Astrophysics Data System (ADS)

    Baker, J. B.; Sweeney, D. G.; Ruohoniemi, J.

    2013-12-01

    In recent years, space research at Virginia Tech has experienced rapid growth since the initiation of the Center for Space Science and Engineering Research (Space@VT) during the summer of 2007. The Space@VT center resides in the College of Engineering and currently comprises approximately 30-40 faculty and students. Space@VT research encompasses a wide spectrum of science and engineering activities including: magnetosphere-ionosphere data analysis; ground- and space-based instrument development; spacecraft design and environmental interactions; and numerical space plasma simulations. In this presentation, we describe how Space@VT research is being integrated into the Virginia Tech undergraduate engineering curriculum via classroom instruction and hands-on group project work. In particular, we describe our experiences teaching a new sophomore course titled 'Exploration of the Space Environment' which covers a broad range of scientific, engineering, and societal aspects associated with the exploration and technological exploitation of space. Topics covered include: science of the space environment; space weather hazards and societal impacts; elementary orbital mechanics and rocket propulsion; spacecraft engineering subsystems; and applications of space-based technologies. We also describe a high-altitude weather balloon project which has been offered as a 'hands-on' option for fulfilling the course project requirements of the course.

  20. The role of gender on academic performance in STEM-related disciplines: Data from a tertiary institution.

    PubMed

    John, Temitope M; Badejo, Joke A; Popoola, Segun I; Omole, David O; Odukoya, Jonathan A; Ajayi, Priscilla O; Aboyade, Mary; Atayero, Aderemi A

    2018-06-01

    This data article presents data of academic performances of undergraduate students in Science, Technology, Engineering and Mathematics (STEM) disciplines in Covenant University, Nigeria. The data shows academic performances of Male and Female students who graduated from 2010 to 2014. The total population of samples in the observation is 3046 undergraduates mined from Biochemistry (BCH), Building technology (BLD), Computer Engineering (CEN), Chemical Engineering (CHE), Industrial Chemistry (CHM), Computer Science (CIS), Civil Engineering (CVE), Electrical and Electronics Engineering (EEE), Information and Communication Engineering (ICE), Mathematics (MAT), Microbiology (MCB), Mechanical Engineering (MCE), Management and Information System (MIS), Petroleum Engineering (PET), Industrial Physics-Electronics and IT Applications (PHYE), Industrial Physics-Applied Geophysics (PHYG) and Industrial Physics-Renewable Energy (PHYR). The detailed dataset is made available in form of a Microsoft Excel spreadsheet in the supplementary material of this article.

  1. E55_Inflight_Purdue_University_2018_0511_2329_651933

    NASA Image and Video Library

    2018-05-14

    SPACE STATION CREW MEMBER RECEIVES HONORARY DEGREE IN ORBIT----- Aboard the International Space Station, Expedition 55 Flight Engineer Drew Feustel of NASA received an honorary doctorate degree from his alma mater, Purdue University, during a unique ground-to-space ceremony on May 11. Feustel, who previously received a Bachelor of Science degree in Solid Earth Sciences and a Master of Science degree in Geophysics from Purdue, was hooded by his crewmate, Purdue graduate Scott Tingle of NASA, who has a Master of Science degree in Mechanical Engineering from the institution. The ceremony originated at Purdue, whose president, Mitch Daniels, introduced the crew members on orbit.

  2. Determination of Tafel Constants in Nonlinear Polarization Curves.

    DTIC Science & Technology

    1987-12-01

    resulted in difficulty in determining the Tafel constants from such plots. A FORTRAN based program involving numerical differentiation techniques was...MASTER OF SCIENCE IN MECHANICAL ENGINEERING from the NAVAL POSTGRADUATE SCHOOL December 1987 Auho:Th as Edr L~oughlin Approved by: J erkins hesis Advisor...Inthony J.f Healey, Chai man, Departm o Mhnical E gineering ’ Gordon E. Schacher Dean of Science and Engineering 21 ABSTRACT The presence of non-linear

  3. Teaching fluid mechanics to high schoolers: methods, challenges, and outcome

    NASA Astrophysics Data System (ADS)

    Manikantan, Harishankar

    2017-11-01

    This talk will summarize the goals, methods, and both short- and long-term feedback from two high-school-level courses in fluid mechanics involving 43 students and cumulatively spanning over 100 hours of instruction. The goals of these courses were twofold: (a) to spark an interest in science and engineering and attract a more diverse demographic into college-level STEM programs; and (b) to train students in a `college-like' method of approaching the physics of common phenomena, with fluid mechanics as the context. The methods of instruction included classes revolving around the idea of dispelling misconceptions, group activities, `challenge' rounds and mock design projects to use fluid mechanics phenomena to achieve a specified goal, and simple hands-on experiments. The feedback during instruction was overwhelmingly positive, particularly in terms of a changing and favorable attitude towards math and engineering. Long after the program, a visible impact lies in a diverse group of students acknowledging that the course had a positive effect in their decision to choose an engineering or science major in a four-year college.

  4. Bringing Career Education into Math and Science Classrooms: Sex Equitable Strategies.

    ERIC Educational Resources Information Center

    Shaw, Carol M.; Underiner, Tamara L.

    Designed for the use of high school personnel, especially mathematics and science teachers, this manual provides ideas and mechanisms that will help reduce inappropriate career decisions based on emotions, sex role stereotyping, and misinformation. Contents include sections which focus on: (1) where the jobs are in science and engineering; (2)…

  5. The Use of Physical and Virtual Manipulatives in an Undergraduate Mechanical Engineering (Dynamics) Course

    ERIC Educational Resources Information Center

    Pan, Edward A.

    2013-01-01

    Science, technology, engineering, and mathematics (STEM) education is a national focus. Engineering education, as part of STEM education, needs to adapt to meet the needs of the nation in a rapidly changing world. Using computer-based visualization tools and corresponding 3D printed physical objects may help nontraditional students succeed in…

  6. The quest for a comprehensive tanning mechanism

    USDA-ARS?s Scientific Manuscript database

    The conversion of animal hides into leather was one of mankind’s earliest ventures into biomaterial engineering. The methods for production of leather have evolved over many centuries as art and engineering with little understanding of the underlying science. Through empirical methods, several cla...

  7. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.

    1992-01-01

    The NASA-UVa Light Aerospace Alloy and Structure Technology (LAST) Program continues to maintain a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, Civil Engineering and Applied Mechanics, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between January 1 and June 30, 1992. The objectives of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of the next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with Langley researchers. Technical objectives are established for each research project. We aim to produce relevant data and basic understanding of material mechanical response, corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement advances; and critically, a pool of educated graduate students for aerospace technologies. The accomplishments presented in this report cover topics including: (1) Mechanical and Environmental Degradation Mechanisms in Advance Light Metals and Composites; (2) Aerospace Materials Science; (3) Mechanics of Materials and Composites for Aerospace Structures; and (4) Thermal Gradient Structures.

  8. Biomimetics: forecasting the future of science, engineering, and medicine.

    PubMed

    Hwang, Jangsun; Jeong, Yoon; Park, Jeong Min; Lee, Kwan Hong; Hong, Jong Wook; Choi, Jonghoon

    2015-01-01

    Biomimetics is the study of nature and natural phenomena to understand the principles of underlying mechanisms, to obtain ideas from nature, and to apply concepts that may benefit science, engineering, and medicine. Examples of biomimetic studies include fluid-drag reduction swimsuits inspired by the structure of shark's skin, velcro fasteners modeled on burrs, shape of airplanes developed from the look of birds, and stable building structures copied from the backbone of turban shells. In this article, we focus on the current research topics in biomimetics and discuss the potential of biomimetics in science, engineering, and medicine. Our report proposes to become a blueprint for accomplishments that can stem from biomimetics in the next 5 years as well as providing insight into their unseen limitations.

  9. A Comparison of the Development and Delivery of Two Short-Term Study-Abroad Thermal Sciences Courses

    NASA Astrophysics Data System (ADS)

    Jacobitz, Frank

    2014-11-01

    Short-term study-abroad engineering courses provide an opportunity to increase the international awareness and global competency of engineering students. Two different approaches have been taken in the past years in the development and delivery of two three-week long thermal sciences courses. A senior-level elective Topics in Fluid Mechanics course was taught twice in Marseille (France) in January 2010 and 2013. A sophomore-level Introduction to Thermal Sciences course was offered in London (United Kingdom) in July 2014. Both courses were developed due to a strong student desire for engineering study-abroad courses and an effort by the home institution to internationalize its curriculum. The common goals of the two courses are an effective teaching of their respective technical content combined with a meaningful international experience. The two courses differed in their respective settings: Topics in Fluid Mechanics was taught at Aix-Marseille University and included strong interactions with local faculty and students. Introduction to Thermal Sciences, however, was taught in a cluster of seven courses offered by the home institution in London. The courses were assessed using surveys, student reflection papers, course evaluations, and instructor observations.

  10. Mechanisms for Robust Cognition.

    PubMed

    Walsh, Matthew M; Gluck, Kevin A

    2015-08-01

    To function well in an unpredictable environment using unreliable components, a system must have a high degree of robustness. Robustness is fundamental to biological systems and is an objective in the design of engineered systems such as airplane engines and buildings. Cognitive systems, like biological and engineered systems, exist within variable environments. This raises the question, how do cognitive systems achieve similarly high degrees of robustness? The aim of this study was to identify a set of mechanisms that enhance robustness in cognitive systems. We identify three mechanisms that enhance robustness in biological and engineered systems: system control, redundancy, and adaptability. After surveying the psychological literature for evidence of these mechanisms, we provide simulations illustrating how each contributes to robust cognition in a different psychological domain: psychomotor vigilance, semantic memory, and strategy selection. These simulations highlight features of a mathematical approach for quantifying robustness, and they provide concrete examples of mechanisms for robust cognition. © 2014 Cognitive Science Society, Inc.

  11. CSM research: Methods and application studies

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.

    1989-01-01

    Computational mechanics is that discipline of applied science and engineering devoted to the study of physical phenomena by means of computational methods based on mathematical modeling and simulation, utilizing digital computers. The discipline combines theoretical and applied mechanics, approximation theory, numerical analysis, and computer science. Computational mechanics has had a major impact on engineering analysis and design. When applied to structural mechanics, the discipline is referred to herein as computational structural mechanics. Complex structures being considered by NASA for the 1990's include composite primary aircraft structures and the space station. These structures will be much more difficult to analyze than today's structures and necessitate a major upgrade in computerized structural analysis technology. NASA has initiated a research activity in structural analysis called Computational Structural Mechanics (CSM). The broad objective of the CSM activity is to develop advanced structural analysis technology that will exploit modern and emerging computers, such as those with vector and/or parallel processing capabilities. Here, the current research directions for the Methods and Application Studies Team of the Langley CSM activity are described.

  12. Applications of hybrid and digital computation methods in aerospace-related sciences and engineering. [problem solving methods at the University of Houston

    NASA Technical Reports Server (NTRS)

    Huang, C. J.; Motard, R. L.

    1978-01-01

    The computing equipment in the engineering systems simulation laboratory of the Houston University Cullen College of Engineering is described and its advantages are summarized. The application of computer techniques in aerospace-related research psychology and in chemical, civil, electrical, industrial, and mechanical engineering is described in abstracts of 84 individual projects and in reprints of published reports. Research supports programs in acoustics, energy technology, systems engineering, and environment management as well as aerospace engineering.

  13. The Effect of Flow Rate and Canister Geometry on the Effectiveness of Removing Carbon Dioxide with Soda Lime.

    DTIC Science & Technology

    1980-09-01

    1969 Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN MECHANICAL ENGINEERING from the NAVAL POSTGRADUATE... Science and Engineering 3 ABSTRACT A continuation of experiments initiated by Commander Calvin G. Miller, USN, on the effect of flow rate, flow geometry and...Salvage Department INaval Coastal Systems Center Panama City, Florida 32401 6. Commander, Naval Sea Systems Command 2 Supervisor of Diving (Code GOC

  14. Education Program for Ph.D. Course to Cultivate Literacy and Competency

    NASA Astrophysics Data System (ADS)

    Yokono, Yasuyuki; Mitsuishi, Mamoru

    The program aims to cultivate internationally competitive young researchers equipped with Fundamental attainment (mathematics, physics, chemistry and biology, and fundamental social sciences) , Specialized knowledge (mechanical dynamics, mechanics of materials, hydrodynamics, thermodynamics, design engineering, manufacturing engineering and material engineering, and bird‧s-eye view knowledge on technology, society and the environment) , Literacy (Language, information literacy, technological literacy and knowledge of the law) and Competency (Creativity, problem identification and solution, planning and execution, self-management, teamwork, leadership, sense of responsibility and sense of duty) to become future leaders in industry and academia.

  15. Get Students Excited--3D Printing Brings Designs to Life

    ERIC Educational Resources Information Center

    Lacey, Gary

    2010-01-01

    Students in technology education programs from middle school through high school around the nation are benefiting from--and enjoying--hands-on experience in mechanical engineering, applied mathematics, materials processing, basic electronics, robotics, industrial manufacturing, and other STEM (science, technology, engineering, and math)-focused…

  16. The Top Companies You Want to Work for Most and Why.

    ERIC Educational Resources Information Center

    Freedland, Marjorie

    1988-01-01

    Summarizes the results of the 1987 National Engineering Student Employer Preference Survey and compares them with those reported by three previous biennial surveys. Lists the top 25 employer choices in electrical, mechanical, computer science, industrial, chemical, civil and astro/aeronautical engineering. (TW)

  17. Applications of aerospace technology in the electric power industry

    NASA Technical Reports Server (NTRS)

    Johnson, F. D.; Heins, C. F.

    1974-01-01

    Existing applications of NASA contributions to disciplines such as combustion engineering, mechanical engineering, materials science, quality assurance and computer control are outlined to illustrate how space technology is used in the electric power industry. Corporate strategies to acquire relevant space technology are described.

  18. Universal Expression of Efficiency at Maximum Power: A Quantum-Mechanical Brayton Engine Working with a Single Particle Confined in a Power-Law Trap

    NASA Astrophysics Data System (ADS)

    Ye, Zhuo-Lin; Li, Wei-Sheng; Lai, Yi-Ming; He, Ji-Zhou; Wang, Jian-Hui

    2015-12-01

    We propose a quantum-mechanical Brayton engine model that works between two superposed states, employing a single particle confined in an arbitrary power-law trap as the working substance. Applying the superposition principle, we obtain the explicit expressions of the power and efficiency, and find that the efficiency at maximum power is bounded from above by the function: η+ = θ/(θ + 1), with θ being a potential-dependent exponent. Supported by the National Natural Science Foundation of China under Grant Nos. 11505091, 11265010, and 11365015, and the Jiangxi Provincial Natural Science Foundation under Grant No. 20132BAB212009

  19. Langley Aerospace Research Summer Scholars. Part 2

    NASA Technical Reports Server (NTRS)

    Schwan, Rafaela (Compiler)

    1995-01-01

    The Langley Aerospace Research Summer Scholars (LARSS) Program was established by Dr. Samuel E. Massenberg in 1986. The program has increased from 20 participants in 1986 to 114 participants in 1995. The program is LaRC-unique and is administered by Hampton University. The program was established for the benefit of undergraduate juniors and seniors and first-year graduate students who are pursuing degrees in aeronautical engineering, mechanical engineering, electrical engineering, material science, computer science, atmospheric science, astrophysics, physics, and chemistry. Two primary elements of the LARSS Program are: (1) a research project to be completed by each participant under the supervision of a researcher who will assume the role of a mentor for the summer, and (2) technical lectures by prominent engineers and scientists. Additional elements of this program include tours of LARC wind tunnels, computational facilities, and laboratories. Library and computer facilities will be available for use by the participants.

  20. Technical Reports: Langley Aerospace Research Summer Scholars. Part 1

    NASA Technical Reports Server (NTRS)

    Schwan, Rafaela (Compiler)

    1995-01-01

    The Langley Aerospace Research Summer Scholars (LARSS) Program was established by Dr. Samuel E. Massenberg in 1986. The program has increased from 20 participants in 1986 to 114 participants in 1995. The program is LaRC-unique and is administered by Hampton University. The program was established for the benefit of undergraduate juniors and seniors and first-year graduate students who are pursuing degrees in aeronautical engineering, mechanical engineering, electrical engineering, material science, computer science, atmospheric science, astrophysics, physics, and chemistry. Two primary elements of the LARSS Program are: (1) a research project to be completed by each participant under the supervision of a researcher who will assume the role of a mentor for the summer, and (2) technical lectures by prominent engineers and scientists. Additional elements of this program include tours of LARC wind tunnels, computational facilities, and laboratories. Library and computer facilities will be available for use by the participants.

  1. International Conference on Applied Sciences (ICAS2013)

    NASA Astrophysics Data System (ADS)

    Lemle, Ludovic Dan; Jiang, Yiwen

    2014-03-01

    The International Conference on Applied Sciences (ICAS2013) took place in Wuhan, P R China from 26-27 October 2013 at the Military Economics Academy. The conference is regularly organized, alternately in Romania and in P R China, by ''Politehnica'' University of Timişoara, Romania, and Military Economics Academy of Wuhan, P R China, with the aim to serve as a platform for the exchange of information between various areas of applied sciences, and to promote the communication between the scientists of different nations, countries and continents. The conference has been organized for the first time in 15-16 June 2012 at the Engineering Faculty of Hunedoara, Romania. The topics of the conference covered a comprehensive spectrum of issues: Economical sciences Engineering sciences Fundamental sciences Medical sciences The conference gathered qualified researchers whose expertise can be used to develop new engineering knowledge that has applicability potential in economics, defense, medicine, etc. The number of registered participants was nearly 90 from 5 countries. During the two days of the conference 4 invited and 36 oral talks were delivered. A few of the speakers deserve a special mention: Mircea Octavian Popoviciu, Academy of Romanian Scientist — Timişoara Branch, Correlations between mechanical properties and cavitation erosion resistance for stainless steels with 12% chromium and variable contents of nickel; Carmen Eleonora Hărău, ''Politehnica'' University of Timişoara, SWOT analysis of Romania's integration in EU; Ding Hui, Military Economics Academy of Wuhan, Design and engineering analysis of material procurement mobile operation platform; Serban Rosu, University of Medicine and Pharmacy ''Victor Babeş'' Timişoara, Cervical and facial infections — a real life threat, among others. Based on the work presented at the conference, 14 selected papers are included in this volume of IOP Conference Series: Materials Science and Engineering. These papers present new researches in the various fields of materials engineering, mechanical engineering, computers engineering, mathematical engineering and clinical engineering. It's our great pleasure to present this volume of IOP Conference Series: Materials Science and Engineering to the scientific community to promote further researches in these areas. We sincerely hope that the papers published in this volume will contribute to the advancement of knowledge in the respective fields. All papers published in this volume of IOP Conference Series: Materials Science and Engineering (MSE) have been peer reviewed through processes administered by the editors of the ICAS2013 proceedings, Ludovic Dan Lemle and Yiwen Jiang. Special thanks should be directed to the organizing committee for their tremendous efforts in organizing the conference: General Chair Zhou Laixin, Military Economics Academy of Wuhan Co-chairs Du Qifa, Military Economics Academy of Wuhan Serban Viorel-Aurel, ''Politehnica'' University of Timişoara Fen Youmei, Wuhan University Lin Pinghua, Huazhong University of Science and Technology Members Lin Darong, Military Economics Academy of Wuhan Guo Zhonghou, Military Economics Academy of Wuhan Sun Honghong, Military Economics Academy of Wuhan Liu Dong, Military Economics Academy of Wuhan We thank the authors for their contributions and we would also like to express our gratitude everyone who contributed to this conference, especially for the generous support of the sponsor: micromega S C Micro-Mega HD S A Ludovic Dan Lemle and Yiwen Jiang Coordinators of the Scientific Committee of ICAS2013 Deatails of organizers and members of the scientific commmittee are available in the PDF

  2. European aerospace science and technology, 1992: A bibliography with indexes

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography contains 1916 annotated references to reports and journal articles of European intellectual origin entered into the NASA Scientific and Technical Information System during 1992. Representative subject areas include: spacecraft and aircraft design, propulsion technology, chemistry and materials, engineering and mechanics, earth and life sciences, communications, computers and mathematics, and the natural space sciences.

  3. Wind energy curriculum development at GWU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Stephen M

    A wind energy curriculum has been developed at the George Washington University, School of Engineering and Applied Science. Surveys of student interest and potential employers expectations were conducted. Wind industry desires a combination of mechanical engineering training with electrical engineering training. The curriculum topics and syllabus were tested in several graduate/undergraduate elective courses. The developed curriculum was then submitted for consideration.

  4. Flipping Core Courses in the Undergraduate Mechanical Engineering Curriculum: Heat Transfer

    ERIC Educational Resources Information Center

    Schrlau, Michael G.; Stevens, Robert J.; Schley, Sara

    2016-01-01

    Flipped classrooms support learner-centered approaches to improve conceptualization, comprehension, and problem solving skills by delivering content outside the classroom and actively engaging students inside the classroom. While literature in engineering and science education supports and encourages the use of inverted instruction, many core…

  5. Midwest Structural Sciences Center 2010 Annual Report

    DTIC Science & Technology

    2011-06-01

    S. MICHAEL SPOTTSWOOD MICHAEL J. SHEPARD , Chief Senior Aerospace Engineer Analytical Mechanics Branch Analytical Mechanics Branch Structures...Structural Dynamics & Materials Confe- rence, Chicago , IL, Apr. 7-10, 2008. AIAA 2008-2077. Efstathiou C., Carroll J., Sehitoglu H., Lambros J

  6. Biomimetics: forecasting the future of science, engineering, and medicine

    PubMed Central

    Hwang, Jangsun; Jeong, Yoon; Park, Jeong Min; Lee, Kwan Hong; Hong, Jong Wook; Choi, Jonghoon

    2015-01-01

    Biomimetics is the study of nature and natural phenomena to understand the principles of underlying mechanisms, to obtain ideas from nature, and to apply concepts that may benefit science, engineering, and medicine. Examples of biomimetic studies include fluid-drag reduction swimsuits inspired by the structure of shark’s skin, velcro fasteners modeled on burrs, shape of airplanes developed from the look of birds, and stable building structures copied from the backbone of turban shells. In this article, we focus on the current research topics in biomimetics and discuss the potential of biomimetics in science, engineering, and medicine. Our report proposes to become a blueprint for accomplishments that can stem from biomimetics in the next 5 years as well as providing insight into their unseen limitations. PMID:26388692

  7. Recent advances in engineering science; Proceedings of the A. Cemal Eringen Symposium, University of California, Berkeley, June 20-22, 1988

    NASA Technical Reports Server (NTRS)

    Koh, Severino L. (Editor); Speziale, Charles G. (Editor)

    1989-01-01

    Various papers on recent advances in engineering science are presented. Some individual topics addressed include: advances in adaptive methods in computational fluid mechanics, mixtures of two medicomorphic materials, computer tests of rubber elasticity, shear bands in isotropic micropolar elastic materials, nonlinear surface wave and resonator effects in magnetostrictive crystals, simulation of electrically enhanced fibrous filtration, plasticity theory of granular materials, dynamics of viscoelastic media with internal oscillators, postcritical behavior of a cantilever bar, boundary value problems in nonlocal elasticity, stability of flexible structures with random parameters, electromagnetic tornadoes in earth's ionosphere and magnetosphere, helicity fluctuations and the energy cascade in turbulence, mechanics of interfacial zones in bonded materials, propagation of a normal shock in a varying area duct, analytical mechanics of fracture and fatigue.

  8. PREFACE: 9th World Congress on Computational Mechanics and 4th Asian Pacific Congress on Computational Mechanics

    NASA Astrophysics Data System (ADS)

    Khalili, N.; Valliappan, S.; Li, Q.; Russell, A.

    2010-07-01

    The use for mathematical models of natural phenomena has underpinned science and engineering for centuries, but until the advent of modern computers and computational methods, the full utility of most of these models remained outside the reach of the engineering communities. Since World War II, advances in computational methods have transformed the way engineering and science is undertaken throughout the world. Today, theories of mechanics of solids and fluids, electromagnetism, heat transfer, plasma physics, and other scientific disciplines are implemented through computational methods in engineering analysis, design, manufacturing, and in studying broad classes of physical phenomena. The discipline concerned with the application of computational methods is now a key area of research, education, and application throughout the world. In the early 1980's, the International Association for Computational Mechanics (IACM) was founded to promote activities related to computational mechanics and has made impressive progress. The most important scientific event of IACM is the World Congress on Computational Mechanics. The first was held in Austin (USA) in 1986 and then in Stuttgart (Germany) in 1990, Chiba (Japan) in 1994, Buenos Aires (Argentina) in 1998, Vienna (Austria) in 2002, Beijing (China) in 2004, Los Angeles (USA) in 2006 and Venice, Italy; in 2008. The 9th World Congress on Computational Mechanics is held in conjunction with the 4th Asian Pacific Congress on Computational Mechanics under the auspices of Australian Association for Computational Mechanics (AACM), Asian Pacific Association for Computational Mechanics (APACM) and International Association for Computational Mechanics (IACM). The 1st Asian Pacific Congress was in Sydney (Australia) in 2001, then in Beijing (China) in 2004 and Kyoto (Japan) in 2007. The WCCM/APCOM 2010 publications consist of a printed book of abstracts given to delegates, along with 247 full length peer reviewed papers published with free access online in IOP Conference Series: Materials Science and Engineering. The editors acknowledge the help of the paper reviewers in maintaining a high standard of assessment and the co-operation of the authors in complying with the requirements of the editors and the reviewers. We also would like to take this opportunity to thank the members of the Local Organising Committee and the International Scientific Committee for helping make WCCM/APCOM 2010 a successful event. We also thank The University of New South Wales, The University of Newcastle, the Centre for Infrastructure Engineering and Safety (CIES), IACM, APCAM, AACM for their financial support, along with the United States Association for Computational Mechanics for the Travel Awards made available. N. Khalili S. Valliappan Q. Li A. Russell 19 July 2010 Sydney, Australia

  9. Research and technology 1995 annual report

    NASA Technical Reports Server (NTRS)

    1995-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1995 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as technology transfer activities. Major areas of research include environmental engineering, automation, robotics, advanced software, materials science, life sciences, mechanical engineering, nondestructive evaluation, and industrial engineering.

  10. Hydrology

    NASA Astrophysics Data System (ADS)

    Brutsaert, Wilfried

    2005-08-01

    Water in its different forms has always been a source of wonder, curiosity and practical concern for humans everywhere. Hydrology - An Introduction presents a coherent introduction to the fundamental principles of hydrology, based on the course that Wilfried Brutsaert has taught at Cornell University for the last thirty years. Hydrologic phenomena are dealt with at spatial and temporal scales at which they occur in nature. The physics and mathematics necessary to describe these phenomena are introduced and developed, and readers will require a working knowledge of calculus and basic fluid mechanics. The book will be invaluable as a textbook for entry-level courses in hydrology directed at advanced seniors and graduate students in physical science and engineering. In addition, the book will be more broadly of interest to professional scientists and engineers in hydrology, environmental science, meteorology, agronomy, geology, climatology, oceanology, glaciology and other earth sciences. Emphasis on fundamentals Clarification of the underlying physical processes Applications of fluid mechanics in the natural environment

  11. An Overview of contributions of NASA Space Shuttle to Space Science and Engineering education

    NASA Astrophysics Data System (ADS)

    Lulla, Kamlesh

    2012-07-01

    This paper provides an indepth overview of the enormous contrbutions made by the NASA Space Shuttle Program to Space science and engineering education over the past thirty years. The author has served as one of the major contributors and editors of NASA book "Wings In Orbit: Scientific and Engineering Legacies of the Space Shuttle program" (NASA SP-2010-3409). Every Space Shuttle mission was an education mission: student involvement programs such as Get Away Specials housed in Shuttle payload allowed students to propose research and thus enrich their university education experience. School students were able to operate "EarthKAM" to learn the intricacies of orbital mechanics, earth viewing opportunities and were able to master the science and art of proposal writing and scientific collaboration. The purpose of this presentation is to introduce the global student and teaching community in space sciences and engineering to the plethora of educational resources available to them for engaging a wide variety of students (from early school to the undergraduate and graduate level and to inspire them towards careers in Space sciences and technologies. The volume "Wings In Orbit" book is one example of these ready to use in classroom materials. This paper will highlight the educational payloads, experiments and on-orbit classroom activities conducted for space science and engineering students, teachers and non-traditional educators. The presentation will include discussions on the science content and its educational relevance in all major disiciplines in which the research was conducted on-board the Space Shuttle.

  12. Dissolving the engineering moral dilemmas within the Islamic ethico-legal praxes.

    PubMed

    Solihu, Abdul Kabir Hussain; Ambali, Abdul Rauf

    2011-03-01

    The goal of responsible engineers is the creation of useful and safe technological products and commitment to public health, while respecting the autonomy of the clients and the public. Because engineers often face moral dilemma to resolve such issues, different engineers have chosen different course of actions depending on their respective moral value orientations. Islam provides a value-based mechanism rooted in the Maqasid al-Shari'ah (the objectives of Islamic law). This mechanism prioritizes some values over others and could help resolve the moral dilemmas faced in engineering. This paper introduces the Islamic interpretive-evaluative maxims to two core issues in engineering ethics: genetically modified foods and whistleblowing. The study aims primarily to provide problem-solving maxims within the Maqasid al-Shari'ah matrix through which such moral dilemmas in science and engineering could be studied and resolved.

  13. Science across Cultures.

    ERIC Educational Resources Information Center

    Selin, Helaine

    1993-01-01

    Describes scientific and technical accomplishments of the Chinese in developing earthquake detection procedures, paper making, and medicine and of Islamic people in developing astronomy and mechanical engineering. (PR)

  14. Department of Defense Laboratory Civilian Science and Engineering Workforce - 2013

    DTIC Science & Technology

    2013-10-01

    was completed by the Institute for Defense Analysis (IDA) in 20091 with an update prepared by the Defense Laboratories Office (DLO) in 2011. By...demographics will emerge giving decision- and policy-makers greater clarity about the impacts of budgets and macro scale policies on this important...Physiology 819 Environmental Engineering 1382 Food Technology 414 Entomology 830 Mechanical Engineering 1384 Textile Technology 415 Toxicology 840

  15. Curriculum optimization of College of Optical Science and Engineering

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoping; Zheng, Zhenrong; Wang, Kaiwei; Zheng, Xiaodong; Ye, Song; Zhu, Yuhui

    2017-08-01

    The optimized curriculum of College of Optical Science and Engineering is accomplished at Zhejiang University, based on new trends from both research and industry. The curriculum includes general courses, foundation courses such as mathematics and physics, major core courses, laboratory courses and several module courses. Module courses include optical system designing, optical telecommunication, imaging and vision, electronics and computer science, optoelectronic sensing and metrology, optical mechanics and materials, basics and extension. These curricula reflect the direction of latest researches and relates closely with optoelectronics. Therefore, students may combine flexibly compulsory courses with elective courses, and establish the personalized curriculum of "optoelectronics + X", according to their individual strengths and preferences.

  16. A Stress Analysis of Circular Cylindrical Shell Intersections, Including the Influences of Reinforcement, Cyclic Plasticity and Fatigue.

    DTIC Science & Technology

    1980-12-01

    Professor Paul M. Naghdi National Academy of Sciences University of California National Research Council Department of Mechanical Engineering Ship Hull...Angeles, California 90024 Department of Mechanical Engineering Washington, D.C. 20064 Professor Burt Paul University of Pennsylvania Dr. Samuel B...78u4 74 -6 19 Universities (Con’t) Universities (Con’t) Dr. V. K. Varadan Professor V. H. Neubert Ohio State University Research Foundation Pennsylvania

  17. Naval research fellowships

    NASA Astrophysics Data System (ADS)

    The American Society for Engineering Education (ASEE) is seeking applicants for 40 fellowships that will be awarded by the Office of Naval Research (ONR) in 1984. This program is designed to increase the number of U.S. citizens doing graduate work in such fields as ocean engineering, applied physics, electrical engineering, computer science, naval architecture, materials science) and aerospace a n d mechanical engineering. The fellowships are awarded on the recommendation of a panel of scientists and engineers convened by the ASEE. The deadline for applications is February 15, 1984.The program is open to graduating seniors who already have or will shortly have baccalaureates in disciplines vital to the research aims of the Navy and critical to national defense. As a reflection of the quality of the program, 1983 fellows had an average cummulative grade point average of 3.88; nine had a perfect 4.0.

  18. Jonathan J. Stickel | NREL

    Science.gov Websites

    research interests in fluid mechanics, rheology, separation science, reaction engineering, mathematical -established Newtonian fluid mechanics and solution reaction kinetics do not apply to these biomass slurries , and reaction kinetics of the biomass slurries in order to develop predictive modeling capabilities

  19. Workshop on the Mechanics of Ice and Its Applications

    DTIC Science & Technology

    1993-10-01

    Academy of Sciences Institute Moscow, USSR Leningrad, USSR V.P. Epifanov B.G. Korenev Institute for Problems in Mechanics Moscow Civil Engineering...Related to the Static Strength of Ice Cover Speakers: B.G. Korenev and E.B. Koreneva 10:30 - 11:00 The Mechanics of Pressure Ridge Building from a Wide

  20. Strengthening programs in science, engineering and mathematics. Third annual progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandhu, S.S.

    1997-09-30

    The Division of Natural Sciences and Mathematics at Claflin College consists of the Departments of Biology, Chemistry, Computer Science, Physics, Engineering and Mathematics. It offers a variety of major and minor academic programs designed to meet the mission and objectives of the college. The division`s pursuit to achieve excellence in science education is adversely impacted by the poor academic preparation of entering students and the lack of equipment, facilities and research participation, required to impart adequate academic training and laboratory skills to the students. Funds were received from the US Department of Energy to improve the divisional facilities and laboratorymore » equipment and establish mechanism at pre-college and college levels to increase (1) the pool of high school students who will enroll in Science and Mathematics courses (2) the pool of well qualified college freshmen who will seek careers in Science, Engineering and Mathematics (3) the graduation rate in Science,engineering and Mathematics at the undergraduate level and (4) the pool of well-qualified students who can successfully compete to enter the graduate schools of their choice in the fields of science, engineering, and mathematics. The strategies that were used to achieve the mentioned objectives include: (1) Improved Mentoring and Advisement, (2) Summer Science Camp for 7th and 8th graders, (3) Summer Research Internships for Claflin SEM Seniors, (4) Summer Internships for Rising High School Seniors, (5) Development of Mathematical Skills at Pre-college/Post-secondary Levels, (6) Expansion of Undergraduate Seminars, (7) Exposure of Undergraduates to Guest Speakers/Roll Models, (8) Visitations by Undergraduate Students to Graduate Schools, and (9) Expanded Academic Program in Environmental Chemistry.« less

  1. Mechanical and Thermal Engineering Sciences | Research | NREL

    Science.gov Websites

    . Geothermal Energy Developing cost-competitive technologies to advance the use of geothermal energy areas of energy efficiency, sustainable transportation, and renewable power. We provide engineering and scientific expertise to a variety of federal agencies, including the DOE Office of Energy Efficiency and

  2. Development and Evaluation of a Mass Conservation Laboratory Module in a Microfluidics Environment

    ERIC Educational Resources Information Center

    King, Andrew C.; Hidrovo, Carlos H.

    2015-01-01

    Laboratory-based instruction is a powerful educational tool that engages students in Science, Technology, Engineering and Mathematics (STEM) disciplines beyond textbook theory. This is true in mechanical engineering education and is often used to provide collegiate-level students a hands-on alternative to course theory. Module-based laboratory…

  3. EDITORIAL: Precision Measurement Technology at the 56th International Scientific Colloquium in Ilmenau Precision Measurement Technology at the 56th International Scientific Colloquium in Ilmenau

    NASA Astrophysics Data System (ADS)

    Manske, E.; Froehlich, T.

    2012-07-01

    The 56th International Scientific Colloquium was held from 12th to 16th September 2011 at the Ilmenau University of Technology in Germany. This event was organized by the Faculty of Mechanical Engineering under the title: 'Innovation in Mechanical Engineering—Shaping the Future' and was intended to reflect the entire scope of modern mechanical engineering. In three main topics many research areas, all involving innovative mechanical engineering, were addressed, especially in the fields of Precision Engineering and Precision Measurement Technology, Mechatronics and Ambient-Assisted Living and Systems Technology. The participants were scientists from 21 countries, and 166 presentations were given. This special issue of Measurement Science and Technology presents selected contributions on 'Precision Engineering and Precision Measurement Technology'. Over three days the conference participants discussed novel scientific results in two sessions. The main topics of these sessions were: Measurement and Sensor Technology Process measurement Laser measurement Force measurement Weighing technology Temperature measurement Measurement dynamics and Nanopositioning and Nanomeasuring Technology Nanopositioning and nanomeasuring machines Nanometrology Probes and tools Mechanical design Signal processing Control and visualization in NPM devices Significant research results from the Collaborative Research Centre SFB 622 'Nanopositioning and Nanomeasuring Machines' funded by the German Research Foundation (DFG) were presented as part of this topic. As the Chairmen, our special thanks are due to the International Programme Committee, the Organization Committee and the conference speakers as well as colleagues from the Institute of Process Measurement and Sensor Technology who helped make the conference a success. We would like to thank all the authors for their contributions, the referees for their time spent reviewing the contributions and their valuable comments, and the whole Editorial Board of Measurement Science and Technology for their support.

  4. An extension of fracture mechanics/technology to larger and smaller cracks/defects

    PubMed Central

    Abé, Hiroyuki

    2009-01-01

    Fracture mechanics/technology is a key science and technology for the design and integrity assessment of the engineering structures. However, the conventional fracture mechanics has mostly targeted a limited size of cracks/defects, say of from several hundred microns to several tens of centimeters. The author and his group has tried to extend that limited size and establish a new version of fracture technology for very large cracks used in geothermal energy extraction and for very small cracks/defects or damage often appearing in the combination of mechanical and electronic components of engineering structures. Those new versions are reviewed in this paper. PMID:19907123

  5. An extension of fracture mechanics/technology to larger and smaller cracks/defects.

    PubMed

    Abé, Hiroyuki

    2009-01-01

    Fracture mechanics/technology is a key science and technology for the design and integrity assessment of the engineering structures. However, the conventional fracture mechanics has mostly targeted a limited size of cracks/defects, say of from several hundred microns to several tens of centimeters. The author and his group has tried to extend that limited size and establish a new version of fracture technology for very large cracks used in geothermal energy extraction and for very small cracks/defects or damage often appearing in the combination of mechanical and electronic components of engineering structures. Those new versions are reviewed in this paper.

  6. Three Conceptions of Thermodynamics: Technical Matrices in Science and Engineering

    NASA Astrophysics Data System (ADS)

    Christiansen, Frederik V.; Rump, Camilla

    2008-11-01

    Introductory thermodynamics is a topic which is covered in a wide variety of science and engineering educations. However, very different teaching traditions have evolved within different scientific specialties. In this study we examine three courses in introductory thermodynamics within three different scientific specialties: physics, chemical engineering and mechanical engineering. Based on a generalization of Kuhn’s theory of disciplinary matrix, and the idea of boundary objects we analyse how basic thermodynamics theory is conceived in the different scientific specialties. The study is based on interviews with teachers and analysis of the different textbook traditions. It is concluded that teachers need to take into account how subject matter is conceived in other related scientific specialties when designing courses. Two examples demonstrating how this may be done are given.

  7. The 1991 research and technology report, Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald (Editor); Ottenstein, Howard (Editor); Montgomery, Harry (Editor); Truszkowski, Walter (Editor); Frost, Kenneth (Editor); Sullivan, Walter (Editor); Boyle, Charles (Editor)

    1991-01-01

    The 1991 Research and Technology Report for Goddard Space Flight Center is presented. Research covered areas such as (1) earth sciences including upper atmosphere, lower atmosphere, oceans, hydrology, and global studies; (2) space sciences including solar studies, planetary studies, Astro-1, gamma ray investigations, and astrophysics; (3) flight projects; (4) engineering including robotics, mechanical engineering, electronics, imaging and optics, thermal and cryogenic studies, and balloons; and (5) ground systems, networks, and communications including data and networks, TDRSS, mission planning and scheduling, and software development and test.

  8. The research on teaching reformation of photoelectric information science and engineering specialty experiments

    NASA Astrophysics Data System (ADS)

    Zhu, Zheng; Yang, Fan; Zhang, Yang; Geng, Tao; Li, Yuxiang

    2017-08-01

    This paper introduced the idea of teaching reformation of photoelectric information science and engineering specialty experiments. The teaching reformation of specialty experiments was analyzed from many aspects, such as construction of specialized laboratory, experimental methods, experiment content, experiment assessing mechanism, and so on. The teaching of specialty experiments was composed of four levels experiments: basic experiments, comprehensive and designing experiments, innovative research experiments and engineering experiments which are aiming at enterprise production. Scientific research achievements and advanced technology on photoelectric technology were brought into the teaching of specialty experiments, which will develop the students' scientific research ability and make them to be the talent suitable for photoelectric industry.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kornreich, Drew E; Vaidya, Rajendra U; Ammerman, Curtt N

    Integrated Computational Materials Engineering (ICME) is a novel overarching approach to bridge length and time scales in computational materials science and engineering. This approach integrates all elements of multi-scale modeling (including various empirical and science-based models) with materials informatics to provide users the opportunity to tailor material selections based on stringent application needs. Typically, materials engineering has focused on structural requirements (stress, strain, modulus, fracture toughness etc.) while multi-scale modeling has been science focused (mechanical threshold strength model, grain-size models, solid-solution strengthening models etc.). Materials informatics (mechanical property inventories) on the other hand, is extensively data focused. All of thesemore » elements are combined within the framework of ICME to create architecture for the development, selection and design new composite materials for challenging environments. We propose development of the foundations for applying ICME to composite materials development for nuclear and high-radiation environments (including nuclear-fusion energy reactors, nuclear-fission reactors, and accelerators). We expect to combine all elements of current material models (including thermo-mechanical and finite-element models) into the ICME framework. This will be accomplished through the use of a various mathematical modeling constructs. These constructs will allow the integration of constituent models, which in tum would allow us to use the adaptive strengths of using a combinatorial scheme (fabrication and computational) for creating new composite materials. A sample problem where these concepts are used is provided in this summary.« less

  10. NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders

    NASA Astrophysics Data System (ADS)

    Budney, C. J.; Lowes, L. L.; Sohus, A.; Wheeler, T.; Wessen, A.; Scalice, D.

    2010-12-01

    Sponsored by NASA’s Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor’s recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design sessions, during which their mentors aid them in finalizing their mission design and instrument suite, and in making the necessary trade-offs to stay within the cost cap. Tours of JPL facilities highlight the end-to-end life cycle of a mission. At week’s end, students present their Concept Study to a “proposal review board” of JPL scientists and engineers and NASA Headquarters executives, who feed back the strengths and weaknesses of their proposal and mission design. The majority of students come from top US universities with planetary science or engineering programs, such as Brown University, MIT, Georgia Tech, University of Colorado, Caltech, Stanford, University of Arizona, UCLA, and University of Michigan. Almost a third of Planetary Science Summer School alumni from the last 10 years of the program are currently employed by NASA or JPL. The Planetary Science Summer School is implemented by the JPL Education Office in partnership with JPL’s Team X Project Design Center.

  11. PREFACE: 1st International Conference on Mechanical Engineering Research 2011 (ICMER2011)

    NASA Astrophysics Data System (ADS)

    Abu Bakar, Rosli

    2012-09-01

    The year 2010 represented a significant milestone in the history of the Mechanical Engineering community with the organization of the first and second national level conferences (National Conference in Mechanical Engineering for Research, 1st and 2nd NCMER) at Universiti Malaysia Pahang on 26-27 May and 3-4 December 2010. The conferences attracted a large number of delegates from different premier academic and research institutions in the country to participate and share their research experiences at the conference. The International Conference on Mechanical Engineering Research (ICMER 2011) followed on from the first and second conferences due to good support from researchers. The ICMER 2011 is a good platform for researchers and postgraduate students to present their latest finding in research. The conference covers a wide range of topics including the internal combustion engine, machining processes, heat and mass transfer, fuel, biomechanical analysis, aerodynamic analysis, thermal comfort, computational techniques, design and simulation, automotive transmission, optimization techniques, hybrid electric vehicles, engine vibration, heat exchangers, finite element analysis, computational fluid dynamics, green energy, vehicle dynamics renewable energy, combustion, design, product development, advanced experimentation techniques, to name but a few. The international conference has helped to bridge the gap between researchers working at different institutions and in different countries to share their knowledge and has helped to motivate young scientists with their research. This has also given some clear direction for further research from the deliberations of the conference. Several people have contributed in different ways to the success of the conference. We thank the keynote speakers and all authors of the contributed papers, for the cooperation rendered to us in the publication of the CD conference proceedings. In particular, we would like to place on record our thanks to the expert reviewers who have spared their time reviewing the papers. We also highly appreciate the assistance offered by many volunteers in the preparation of the conference proceedings. All papers in ICMER 2011 have the opportunity to be published in IOP Conference Series: Materials Science and Engineering, (indexed by Scopus, Ei Compendex, Inspec), International Journal of Automotive and Mechanical Engineering (IJAME) and Journal of Mechanical Engineering and Sciences (JMES). Professor Dr Hj Rosli Abu Bakar Chairman ICMER 2011

  12. The AfterMath (and Science) of the Gulf War.

    ERIC Educational Resources Information Center

    Shaw, John M.; Sheahen, Thomas P.

    1991-01-01

    Discusses the science used in the war with Iraq. Explains principles of mechanics and feedback systems, and describes how they were used in war technology. Explains the need for engineers to know physics and chemistry, to understand the capabilities and limitations of their equipment, to make accurate measurements, and to work in teams. (PR)

  13. Career Commitment and African American Women in Undergraduate STEM Majors: The Role of Science

    ERIC Educational Resources Information Center

    Jenkins, Felysha L.

    2012-01-01

    Despite the odds, African American women are achieving some success in science, technology, engineering, and mathematics (STEM). However, a dearth of empirical evidence exists on the mechanisms that contribute to their persistence. This study contributes to understanding how African American women are successful in obtaining baccalaureate degrees…

  14. NGSS, Disposability, and the Ambivalence of Science in/under Neoliberalism

    ERIC Educational Resources Information Center

    Weinstein, Matthew

    2017-01-01

    This paper explores the ambivalence of the Next Generation Science Standards (NGSS) and its Framework towards neoliberal governance. The paper examines the ways that the NGSS serves as a mechanism within neoliberal governance: in its production of disposable populations through testing and through the infusion of engineering throughout the NGSS to…

  15. SIGNALING MECHANISMS IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES

    EPA Science Inventory

    SIGNALING MECHANISMS IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES
    Y.M. Kim, A.G. Lenz, R. Silbajoris, I. Jaspers and J.M. Samet. Department of Environmental Sciences and Engineering and Center for Environmental Medicine, University of North Carolina, ...

  16. Implementation of Nonhomogeneous Dirichlet Boundary Conditions in the p- Version of the Finite Element Method

    DTIC Science & Technology

    1988-09-01

    Institute for Physical Science and Teennology rUniversity of Maryland o College Park, MD 20742 B. Gix) Engineering Mechanics Research Corporation Troy...OF THE FINITE ELEMENT METHOD by Ivo Babuska Institute for Physical Science and Technology University of Maryland College Park, MD 20742 B. Guo 2...2Research partially supported by the National Science Foundation under Grant DMS-85-16191 during the stay at the Institute for Physical Science and

  17. Biological mechanisms beyond network analysis via mathematical modeling. Comment on "Network science of biological systems at different scales: A review" by Marko Gosak et al.

    NASA Astrophysics Data System (ADS)

    Pedersen, Morten Gram

    2018-03-01

    Methods from network theory are increasingly used in research spanning from engineering and computer science to psychology and the social sciences. In this issue, Gosak et al. [1] provide a thorough review of network science applications to biological systems ranging from the subcellular world via neuroscience to ecosystems, with special attention to the insulin-secreting beta-cells in pancreatic islets.

  18. A classification of the mechanisms producing pathological tissue changes.

    PubMed

    Grippo, John O; Oh, Daniel S

    2013-05-01

    The objectives are to present a classification of mechanisms which can produce pathological changes in body tissues and fluids, as well as to clarify and define the term biocorrosion, which has had a singular use in engineering. Considering the emerging field of biomedical engineering, it is essential to use precise definitions in the lexicons of engineering, bioengineering and related sciences such as medicine, dentistry and veterinary medicine. The mechanisms of stress, friction and biocorrosion and their pathological effects on tissues are described. Biocorrosion refers to the chemical, biochemical and electrochemical changes by degradation or induced growth of living body tissues and fluids. Various agents which can affect living tissues causing biocorrosion are enumerated which support the necessity and justify the use of this encompassing and more precise definition of biocorrosion. A distinction is made between the mechanisms of corrosion and biocorrosion.

  19. Water Reclamation Technology Development at Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Callahan, Michael R.; Pickering, Karen

    2014-01-01

    Who We Are: A staff of approximately 14 BS, MS, and PhD-Level Engineers and Scientists with experience in Aerospace, Civil, Environmental, and Mechanical Engineering, Chemistry, Physical Science and Water Pollution Microbiology. Our Primary Objective: To develop the next generation water recovery system technologies that will support NASA's long duration missions beyond low-earth orbit.

  20. NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders

    NASA Astrophysics Data System (ADS)

    Lowes, L. L.; Budney, C. J.; Sohus, A.; Wheeler, T.; Urban, A.; NASA Planetary Science Summer School Team

    2011-12-01

    Sponsored by NASA's Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor's recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design sessions, during which their mentors aid them in finalizing their mission design and instrument suite, and in making the necessary trade-offs to stay within the cost cap. Tours of JPL facilities highlight the end-to-end life cycle of a mission. At week's end, students present their Concept Study to a "proposal review board" of JPL scientists and engineers and NASA Headquarters executives, who feed back the strengths and weaknesses of their proposal and mission design. A survey of Planetary Science Summer School alumni administered in summer of 2011 provides information on the program's impact on students' career choices and leadership roles as they pursue their employment in planetary science and related fields. Preliminary results will be discussed during the session. Almost a third of the approximately 450 Planetary Science Summer School alumni from the last 10 years of the program are currently employed by NASA or JPL. The Planetary Science Summer School is implemented by the JPL Education Office in partnership with JPL's Team X Project Design Center.

  1. NEWS: And finally ...

    NASA Astrophysics Data System (ADS)

    1999-05-01

    UK A-level curriculum broadening announced by the Government in March has been welcomed by the Save British Science Society, which back in 1996 had called for the sixth-form course to require at least five subjects, including a mixture of arts and science subjects. The Society had noted that the percentage of students studying three science A-levels fell from around 44% in 1962 to less than half that figure by the mid-1990s; during the same period the proportion studying three arts and humanities remained roughly constant. The absence of any clear policy for steering young people into studying at least some science and some of the arts and humanities was still a cause for concern. Engineering Council statistics have shown that the take-up of engineering and technology courses at universities in 1998 had dropped by 7.2% on the previous year (the overall percentage figure for all subjects had declined by 2%). Much of the engineering decline had resulted from a decrease in overseas students, however, as the UK figures were much steadier. Individual engineering courses showed marked differences in student acceptances: civil and chemical engineering showed falls of 6% and 5% respectively, while mechanical engineering grew by 4%. Aeronautical engineering also showed a strong rise of 7%. ... And before you give up with 1999, the Eclipse and Millennium fever, remember that next year will be Maths Year 2000, with its emphasis on raising numeracy standards in the UK and changes to teaching and learning! Something to look forward to, perhaps?

  2. Efficiency Assessment of a Blended-Learning Educational Methodology in Engineering

    NASA Astrophysics Data System (ADS)

    Rogado, Ana Belén González; Conde, Ma José Rodríguez; Migueláñez, Susana Olmos; Riaza, Blanca García; Peñalvo, Francisco José García

    The content of this presentation highlights the importance of an active learning methodology in engineering university degrees in Spain. We present of some of the outcomes from an experimental study carried out during the academic years 2007/08 and 2008/09 with engineering students (Technical Industrial Engineering: Mechanics, Civical Design Engineering: Civical building, Technical Architecture and Technical Engineering on Computer Management.) at the University of Salamanca. In this research we select a subject which is common for the four degrees: Computer Science. This study has the aim of contributing to the improvement of education and teaching methods for a better performance of students in Engineering.

  3. An inquiry-based approach to the Franck-Hertz experiment

    NASA Astrophysics Data System (ADS)

    Persano Adorno, Dominique; Pizzolato, Nicola

    2016-05-01

    The practice of scientists and engineers is today exerted within interdisciplinary contexts, placed at the intersections of different research fields, including nanoscale science. The development of the required competences is based on an effective science and engineering instruction, which should be able to drive the students towards a deeper understanding of quantum mechanics fundamental concepts and, at the same time, strengthen their reasoning skills and transversal abilities. In this study we report the results of an inquiry-driven learning path experienced by a sample of 12 electronic engineering undergraduates engaged to perform the Franck-Hertz experiment. Before being involved in this experimental activity, the students received a traditional lecture-based instruction on the fundamental concepts of quantum mechanics, but their answers to an open-ended questionnaire, administered at the beginning of the inquiry activity, demonstrated that the acquired knowledge was characterized by a strictly theoretical vision of quantum science, basically in terms of an artificial mathematical framework having very poor connections with the real world. The Franck Hertz experiment was introduced to the students by starting from the problem of finding an experimental confirmation of the Bohr's postulates asserting that atoms can absorb energy only in quantum portions. The whole activity has been videotaped and this allowed us to deeply analyse the student perception's change about the main concepts of quantum mechanics. We have found that the active participation to this learning experience favored the building of cognitive links among student theoretical perceptions of quantum mechanics and their vision of quantum phenomena, within an everyday context of knowledge. Furthermore, our findings confirm the benefits of integrating traditional lecture-based instruction on quantum mechanics with learning experiences driven by inquiry-based teaching strategies.

  4. NASA Tech Briefs, March 1996. Volume 20, No. 3

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Topics: Computer-Aided Design and Engineering; Electronic Components and Cicuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information; Books and Reports.

  5. 34 CFR 406.5 - What definitions apply?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Provides technical preparation in at least one field of engineering technology, applied science, mechanical, industrial, or practical art or trade, or agriculture, health, or business; (3) Builds student competence in...

  6. 34 CFR 406.5 - What definitions apply?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Provides technical preparation in at least one field of engineering technology, applied science, mechanical, industrial, or practical art or trade, or agriculture, health, or business; (3) Builds student competence in...

  7. 34 CFR 406.5 - What definitions apply?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Provides technical preparation in at least one field of engineering technology, applied science, mechanical, industrial, or practical art or trade, or agriculture, health, or business; (3) Builds student competence in...

  8. 34 CFR 406.5 - What definitions apply?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Provides technical preparation in at least one field of engineering technology, applied science, mechanical, industrial, or practical art or trade, or agriculture, health, or business; (3) Builds student competence in...

  9. 34 CFR 406.5 - What definitions apply?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Provides technical preparation in at least one field of engineering technology, applied science, mechanical, industrial, or practical art or trade, or agriculture, health, or business; (3) Builds student competence in...

  10. Research on the Mechanism of Entrepreneurial Education Quality, Entrepreneurial Self-Efficacy and Entrepreneurial Intention in Social Sciences, Engineering and Science Education

    ERIC Educational Resources Information Center

    Jiang, He; Xiong, Wei; Cao, Yonghui

    2017-01-01

    Entrepreneurship Education in Colleges and universities is a profound reform of China's higher education paradigm. Which is a necessary choice for Chinese universities to break through the traditional educational model. It is an important measure to cultivate college students' entrepreneurial consciousness, entrepreneurship and entrepreneurial…

  11. ICASE

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in the areas of (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving Langley facilities and scientists; and (4) computer science.

  12. Wirth Chair Honors NREL's Dan Arvizu | News | NREL

    Science.gov Websites

    National Laboratories in Albuquerque, New Mexico, leading organizations in energy technologies, material Telephone Laboratories. Arvizu earned a bachelor of science degree in mechanical engineering from New Mexico

  13. Engineering science research issues in high power density transmission dynamics for aerospace applications. [rotorcraft geared rotors

    NASA Technical Reports Server (NTRS)

    Singh, Rajendra; Houser, Donald R.

    1993-01-01

    This paper discusses analytical and experimental approaches that will be needed to understand dynamic, vibro-acoustic and design characteristics of high power density rotorcraft transmissions. Complexities associated with mathematical modeling of such systems will be discussed. An overview of research work planned during the next several years will be presented, with emphasis on engineering science issues such as gear contact mechanics, multi-mesh drive dynamics, parameter uncertainties, vibration transmission through bearings, and vibro-acoustic characteristics of geared rotor systems and housing-mount structures. A few examples of work in progress are cited.

  14. Engineered elastomeric proteins with dual elasticity can be controlled by a molecular regulator.

    PubMed

    Cao, Yi; Li, Hongbin

    2008-08-01

    Elastomeric proteins are molecular springs that confer excellent mechanical properties to many biological tissues and biomaterials. Depending on the role performed by the tissue or biomaterial, elastomeric proteins can behave as molecular springs or shock absorbers. Here we combine single-molecule atomic force microscopy and protein engineering techniques to create elastomeric proteins that can switch between two distinct types of mechanical behaviour in response to the binding of a molecular regulator. The proteins are mechanically labile by design and behave as entropic springs with an elasticity that is governed by their configurational entropy. However, when a molecular regulator binds to the protein, it switches into a mechanically stable state and can act as a shock absorber. These engineered proteins effectively mimic and combine the two extreme forms of elastic behaviour found in natural elastomeric proteins, and thus represent a new type of smart nanomaterial that will find potential applications in nanomechanics and material sciences.

  15. White House Science Fair

    NASA Image and Video Library

    2014-05-27

    Girl Scout troop 2612 members from Tulsa, OK take photos of one another with Google Glass at the White House Science Fair Tuesday, May 27, 2014. Avery Dodson, 6; Natalie Hurley, 8; Miriam Schaffer, 8; Claire Winton, 8; and Lucy Claire Sharp, 8 participated in the Junior FIRST Lego League's Disaster Blaster Challenge, which invites elementary-school-aged students from across the country to explore how simple machines, engineering, and math can help solve problems posed by natural disasters. The girls invented the "Flood Proof Bridge" and built a model mechanizing the bridge using motors and developing a computer program to automatically retract the bridge when flood conditions are detected. The fourth White House Science Fair was held at the White House and included 100 students from more than 30 different states who competed in science, technology, engineering, and math (STEM) competitions. (Photo Credit: NASA/Aubrey Gemignani)

  16. Living on an Active Earth: Perspectives on Earthquake Science

    NASA Astrophysics Data System (ADS)

    Lay, Thorne

    2004-02-01

    The annualized long-term loss due to earthquakes in the United States is now estimated at $4.4 billion per year. A repeat of the 1923 Kanto earthquake, near Tokyo, could cause direct losses of $2-3 trillion. With such grim numbers, which are guaranteed to make you take its work seriously, the NRC Committee on the Science of Earthquakes begins its overview of the emerging multidisciplinary field of earthquake science. An up-to-date and forward-looking survey of scientific investigation of earthquake phenomena and engineering response to associated hazards is presented at a suitable level for a general educated audience. Perspectives from the fields of seismology, geodesy, neo-tectonics, paleo-seismology, rock mechanics, earthquake engineering, and computer modeling of complex dynamic systems are integrated into a balanced definition of earthquake science that has never before been adequately articulated.

  17. Land-Grant College Education 1910 to 1920 Part IV: Engineering and Mechanic Arts. Bulletin, 1925, No. 5

    ERIC Educational Resources Information Center

    Walton, C. John, Ed.

    1925-01-01

    This is the fourth part of a 5-part survey of land-grant college education. Other parts are: (1) History and Educational Objectives of Land-Grant College Education; (2) The Liberal Arts and Sciences and Miscellaneous Subjects in Land-Grant Colleges (3) Agricultural Education in Land-Grant Colleges (including agricultural engineering)(4); and Home…

  18. Particle in a Box: An Experiential Environment for Learning Introductory Quantum Mechanics

    ERIC Educational Resources Information Center

    Anupam, Aditya; Gupta, Ridhima; Naeemi, Azad; JafariNaimi, Nassim

    2018-01-01

    Quantum mechanics (QMs) is a foundational subject in many science and engineering fields. It is difficult to teach, however, as it requires a fundamental revision of the assumptions and laws of classical physics and probability. Furthermore, introductory QM courses and texts predominantly focus on the mathematical formulations of the subject and…

  19. Artificial Muscles Based on Electroactive Polymers as an Enabling Tool in Biomimetics

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.

    2007-01-01

    Evolution has resolved many of nature's challenges leading to working and lasting solutions that employ principles of physics, chemistry, mechanical engineering, materials science, and many other fields of science and engineering. Nature's inventions have always inspired human achievements leading to effective materials, structures, tools, mechanisms, processes, algorithms, methods, systems, and many other benefits. Some of the technologies that have emerged include artificial intelligence, artificial vision, and artificial muscles, where the latter is the moniker for electroactive polymers (EAPs). To take advantage of these materials and make them practical actuators, efforts are made worldwide to develop capabilities that are critical to the field infrastructure. Researchers are developing analytical model and comprehensive understanding of EAP materials response mechanism as well as effective processing and characterization techniques. The field is still in its emerging state and robust materials are still not readily available; however, in recent years, significant progress has been made and commercial products have already started to appear. In the current paper, the state-of-the-art and challenges to artificial muscles as well as their potential application to biomimetic mechanisms and devices are described and discussed.

  20. BioMEMS and Lab-on-a-Chip Course Education at West Virginia University

    PubMed Central

    Liu, Yuxin

    2011-01-01

    With the rapid growth of Biological/Biomedical MicroElectroMechanical Systems (BioMEMS) and microfluidic-based lab-on-a-chip (LOC) technology to biological and biomedical research and applications, demands for educated and trained researchers and technicians in these fields are rapidly expanding. Universities are expected to develop educational plans to address these specialized needs in BioMEMS, microfluidic and LOC science and technology. A course entitled BioMEMS and Lab-on-a-Chip was taught recently at the senior undergraduate and graduate levels in the Department of Computer Science and Electrical Engineering at West Virginia University (WVU). The course focused on the basic principles and applications of BioMEMS and LOC technology to the areas of biomedicine, biology, and biotechnology. The course was well received and the enrolled students had diverse backgrounds in electrical engineering, material science, biology, mechanical engineering, and chemistry. Student feedback and a review of the course evaluations indicated that the course was effective in achieving its objectives. Student presentations at the end of the course were a highlight and a valuable experience for all involved. The course proved successful and will continue to be offered regularly. This paper provides an overview of the course as well as some development and future improvements. PMID:25586697

  1. Undergraduate optics program for the 21st Century

    NASA Astrophysics Data System (ADS)

    Palmer, James M.

    2002-05-01

    We have been offering a successful BS degree in optical engineering for the past ten years. We have produced more than 100 graduates, highly trained in basic optics and electronics. Our Industrial Affiliates, while very pleased with our graduates, requested that we produce some with greater mechanical engineering skills and knowledge. Our response was the creation of a new degree program, retaining the virtues of the previous one, but allowing a high degree of flexibility through the inclusion of minors within the program. The new program allows sufficient room for a variety of minors. Engineering minors identified include aerospace, computer, electrical, materials and mechanical. Science minors include astronomy, computer science, math and physics. Non-science minors accommodated include business, pre-health and pre-law. The new BSO program features: (1) Better structure and flow, more tightly coupling related classes; (2) New laboratory classes for juniors, linked to lecture classes; (3) Expanded optical deign, fabrication and testing classes; (4) New class in electronics for optics; (5) New classes in fiber optics and optical communications; (6) New capstone/senior project class for ABET compliance. This new BSO program will produce better entry-level optical scientists and engineers, and better candidates for graduate school. Our interactions with the external community will provide inputs concerning industrial needs, leading towards improved student counseling and program development. We will better serve national needs for skilled personnel in optics, and contribute even more to the optics workforce pipeline.

  2. European Science Notes Information Bulletin Reports on Current European and Middle Eastern Science

    DTIC Science & Technology

    1992-01-01

    evclopment in the Abbey-Polymer Processing and Properties ................... 524 J, Magill Corrosion and Protection Centre at the University of...34* Software Engineering and microprocessors and communication chips. The Information Processing Systems recently announced T9000 microprocessor will...computational fluid dynamics, struc- In addition to general and special-purpose tural mechanics, partial differential equations, processing , Europe has a

  3. Technical Support. Focus on Careers.

    ERIC Educational Resources Information Center

    Thiers, Naomi

    1996-01-01

    Describes work conditions, education and training needs, and salaries of the following technician careers: auto/diesel technicians, auto body repairers, general maintenance mechanics, heating/air conditioning/refrigeration, paralegals, engineering technicians, science technicians, computer repairers, and drafters. (SK)

  4. NASA Tech Briefs, April 1996. Volume 20, No. 4

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Topics covered include: Advanced Composites and Plastics; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information; Books and Reports.

  5. SET Careers: An interactive science, engineering, and technology career education exhibit. Final report to the United States Department of Energy Science Museum Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, P.R.

    1994-04-01

    The New York Hall of Science in collaboration with the Educational Film Center and the Consortium for Mathematics and its Applications developed and pilot tested a unique interactive, video-based/hypermedia series on energy related and other science and engineering careers for middle and junior high school students. The United States Department of Energy Science Museum Program supported the development of one energy-related career profile (Susan Fancy--mechanical engineer) and the development and printing of 100 copies of a career-related workbook. Additional funding from the National Science Foundation and the Sloan Foundation resulted in the development of 3 additional career profiles, a relatedmore » Data Base and Career Match Self Assessment for 16 careers, available both on screen and in print in this pilot phase. The SET CAREERS Exhibit is a video-based/hypermedia series which contains profiles of people working in Science, Engineering and Technology fields, interactive opportunities for users including interviews with profiled persons, opportunities to attempt work-related tasks through animated simulations, a Data Base of career-related information available both on-screen and in print, and a Career Match Self Assessment. The screen is in an attract loop mode, inviting visitors to interact with the exhibit. A menu of choices is provided so that users may begin by selecting a profiled person, choosing the Career Match Self Assessment or the Data Base. The Data Base is available in print if the user chooses that mode.« less

  6. Bayesian Nonlinear Assimilation of Eulerian and Lagrangian Coastal Flow Data

    DTIC Science & Technology

    2015-09-30

    Lagrangian Coastal Flow Data Dr. Pierre F.J. Lermusiaux Department of Mechanical Engineering Center for Ocean Science and Engineering Massachusetts...Develop and apply theory, schemes and computational systems for rigorous Bayesian nonlinear assimilation of Eulerian and Lagrangian coastal flow data...coastal ocean fields, both in Eulerian and Lagrangian forms. - Further develop and implement our GMM-DO schemes for robust Bayesian nonlinear estimation

  7. Palmetto Academy: Undergraduates Exploring and Communicating the Multidisciplinary Nature of STEM

    NASA Astrophysics Data System (ADS)

    Hall, C.; Ali, A.; Runyon, C. J.; Colgan, M. W.

    2012-12-01

    One of the pillars of the US economy is a well-trained Science, Technology, Engineering and Math (STEM) workforce (National Academy of Sciences, 2007). The number of students choosing to study science and engineering has taken a dramatic decline. The percentage of those degrees conferred in SC was substantially lower than the national average and the percentage of those occupations within the SC workforce also falls below the national average, supporting the need for engaging and educational STEM programs. The NASA South Carolina Space Grant Consortium's Palmetto Research Academy (PRA) program is an immersive and integrated multidisciplinary exposure and training for undergraduate students with various backgrounds and career aspirations of critical importance to the Nation. This program offers exciting and inspiring hands-on research experiences that are aligned with NASA missions. The PRA advances NASA's research interest in areas such as aeronautics, biomedical science, sun-earth connections, planetary and Earth science. The PRA helps to develop the STEM workforce in STEM disciplines, a necessity in South Carolina. In addition, the PRA incorporates an education/outreach component, where the students engage secondary educators and students in NASA scientific and technical expertise. In 2012, the PRA had 10 research projects across the state in disciplines of mechanical and chemical engineering, bioengineering, chemistry, biogeooptical sciences, physics and astronomy and biomedical sciences. 18 undergraduates and 2 technical college students participated in authentic hands-on research mentored by leading scientists and engineers throughout the state. Examples projects include: A) Development of a series of astronomical telescopes to be mounted on a commercial human-tended suborbital rockets. The students built the instrument, including the power system and the mechanical interface, and performed function and fit testing on the XCOR Aerospace Lynx vehicle mock-up. B) Mechanical modeling and statistical analysis to understand effects of radiation exposure on the joints of astronauts. The students characterized the effect of radiation on porcine cartilage biomechanics and biosynthesis through nano and microscale soft tissue mechanical testing, histological staining, and tissue biological assay techniques. C) Spectroscopy and derivation of water quality parameters from satellite visible/near-infrared (VIR) spectral radiometry. The student analyzed data, which provided frequent spatial information critical to the understanding of biogeochemical processes of interest to climate studies. The student conducted an intensive sampling campaign aboard a research vessel measuring biogeooptical properties and developed bio-optical models using NASA's MODIS sensor aboard the Aqua satellite to characterize water quality parameters (phytoplankton, suspended sediment, and dissolved organic matter). The student outreach project centered around the NASA Mars Science Laboratory Curiosity Rover. The PRA interns organized an event with several general astronomy and Mars/Curiosity planetarium shows, space-related games, and a viewing of the landing for over 50 elementary-middle school students, their parents, and numerous undergraduates. The results and the opportunities provided by PRA will be discussed.

  8. The Role of Hydroxide and Metal Concentration on the Viscoelastic Properties of Metal Coordinated Gels

    NASA Astrophysics Data System (ADS)

    Cazzell, Seth; Holten-Andersen, Niels

    Nature uses metal binding amino acids to engineer mechanical properties. An example of this engineering can be found in the mussel byssal thread. This acellular thread contains reversible intermolecular protein-metal bonds, which allows the mussel to robustly anchor to rocks, while withstanding the mechanically demanding intertidal environment. Inspired by this metal-binding material, we present a synthetic hydrogel designed to mimic this bonding behavior. The mechanical properties of this hydrogel can be controlled independently by manipulating the amount of metal relative to the metal binding ligand, and the gel's pH. Here we report how high metal to ligand ratios and low pH can be used to induce the formation of a strong, slow relaxing gels. This gel has potential applications as an energy dissipating material, and furthers our understanding of the bio-inspired engineering techniques that are used to design viscoelastic soft materials. I was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  9. Microstrucutral Modeling of Hot Spot and Failure Mechanisms in RDX Energetic Aggregates

    DTIC Science & Technology

    2014-01-01

    with applications to disposable blood pressure cuffs . He graduated cum laude with a Bachelors of Science degree in Mechanical Engineering in May of...35 Figure 4.2. (a) Rotation , (b) Normal Stress, (c) Pressure, and (d...39 Figure 4.6. (a) Rotation , (b) Normal Stress, (c) Pressure, and (d) Accumulated plastic shear

  10. MIDWEST STRUCTURAL SCIENCES CENTER 2011 ANNUAL REPORT

    DTIC Science & Technology

    2011-10-01

    S. MICHAEL SPOTTSWOOD MICHAEL J. SHEPARD , Chief Senior Aerospace Engineer Analytical Mechanics Branch Analytical...49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Confe- rence, Chicago , IL, Apr. 7-10, 2008. AIAA 2008-2077. Efstathiou C

  11. Engineered passive bioreactive barriers: risk-managing the legacy of industrial soil and groundwater pollution.

    PubMed

    Kalin, Robert M

    2004-06-01

    Permeable reactive barriers are a technology that is one decade old, with most full-scale applications based on abiotic mechanisms. Though there is extensive literature on engineered bioreactors, natural biodegradation potential, and in situ remediation, it is only recently that engineered passive bioreactive barrier technology is being considered at the commercial scale to manage contaminated soil and groundwater risks. Recent full-scale studies are providing the scientific confidence in our understanding of coupled microbial (and genetic), hydrogeologic, and geochemical processes in this approach and have highlighted the need to further integrate engineering and science tools.

  12. Fundamentals of tribology at the atomic level

    NASA Technical Reports Server (NTRS)

    Ferrante, John; Pepper, Stephen V.

    1989-01-01

    Tribology, the science and engineering of solid surfaces in moving contact, is a field that encompasses many disciplines: solid state physics, chemistry, materials science, and mechanical engineering. In spite of the practical importance and maturity of the field, the fundamental understanding of basic phenomena has only recently been attacked. An attempt to define some of these problems and indicate some profitable directions for future research is presented. There are three broad classifications: (1) fluid properties (compression, rheology, additives and particulates); (2) material properties of the solids (deformation, defect formation and energy loss mechanisms); and (3) interfacial properties (adhesion, friction chemical reactions, and boundary films). Research in the categories has traditionally been approached by considering macroscopic material properties. Recent activity has shown that some issues can be approached at the atomic level: the atoms in the materials can be manipulated both experimentally and theoretically, and can produce results related to macroscopic phenomena.

  13. Resident research associateships. Postdoctoral and senior research awards: Opportunities for research at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Opportunities for research as part of NASA-sponsored programs at the JPL cover: Earth and space sciences; systems; telecommunications science and engineering; control and energy conversion; applied mechanics; information systems; and observational systems. General information on applying for an award for tenure as a guest investigator, conditions, of the award, and details of the application procedure are provided.

  14. Hydraulics for Royal Gardens: Water Art as a Challenge for 18th Century Science and 21st Century Physics Teaching

    ERIC Educational Resources Information Center

    Eckert, Michael

    2007-01-01

    Hydraulics is an engineering specialty and largely neglected as a topic in physics teaching. But the history of hydraulics from the Renaissance to the Baroque, merits our attention because hydraulics was then more broadly conceived as a practical "and" theoretical science; it served as a constant bone of contention for mechanics and…

  15. Nonlinear Ship Dynamics

    DTIC Science & Technology

    1992-07-07

    Engineering Science and Mechanics Virginia Polytechnic Institute and State University Blacksburg, VA 24061 Cognizant ONR Scientific Officer: Edwin P...June 1-3, 1988. 22. A. H. Nayfeh, B. Balachandran, M. A. Colbert . and M. A. Nayfeh. "Theoretical and Experimental Investigation of Complicated Responses

  16. NASA-UVA Light Aerospace Alloy and Structures Technology Program: LA(2)ST

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1993-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA(2)ST) Program continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, Civil Engineering and Applied Mechanics, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. We report on progress achieved between July 1 and December 31, 1992. The objective of the LA(2)ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement advances; and critically, a pool of educated graduate students for aerospace technologies.

  17. Solving ordinary differential equations by electrical analogy: a multidisciplinary teaching tool

    NASA Astrophysics Data System (ADS)

    Sanchez Perez, J. F.; Conesa, M.; Alhama, I.

    2016-11-01

    Ordinary differential equations are the mathematical formulation for a great variety of problems in science and engineering, and frequently, two different problems are equivalent from a mathematical point of view when they are formulated by the same equations. Students acquire the knowledge of how to solve these equations (at least some types of them) using protocols and strict algorithms of mathematical calculation without thinking about the meaning of the equation. The aim of this work is that students learn to design network models or circuits in this way; with simple knowledge of them, students can establish the association of electric circuits and differential equations and their equivalences, from a formal point of view, that allows them to associate knowledge of two disciplines and promote the use of this interdisciplinary approach to address complex problems. Therefore, they learn to use a multidisciplinary tool that allows them to solve these kinds of equations, even students of first course of engineering, whatever the order, grade or type of non-linearity. This methodology has been implemented in numerous final degree projects in engineering and science, e.g., chemical engineering, building engineering, industrial engineering, mechanical engineering, architecture, etc. Applications are presented to illustrate the subject of this manuscript.

  18. An Introduction to the Mechanical Properties of Ceramics

    NASA Astrophysics Data System (ADS)

    Green, David J.

    1998-09-01

    Over the past twenty-five years ceramics have become key materials in the development of many new technologies as scientists have been able to design these materials with new structures and properties. An understanding of the factors that influence their mechanical behavior and reliability is essential. This book will introduce the reader to current concepts in the field. It contains problems and exercises to help readers develop their skills. This is a comprehensive introduction to the mechanical properties of ceramics, and is designed primarily as a textbook for advanced undergraduates in materials science and engineering. It will also be of value as a supplementary text for more general courses and to industrial scientists and engineers involved in the development of ceramic-based products, materials selection and mechanical design.

  19. The 1975 NASA/ASEE summer faculty fellowship research program. [research in the areas of aerospace engineering, aerospace systems, and information systems

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A research program was conducted to further the professional knowledge of qualified engineering and science faculty members, to stimulate an exchange of ideas between participants and NASA engineers and scientists, and to enrich the research activities of the participants' institutions. Abstracts of reports submitted at the end of the program are presented. Topics investigated include multispectral photography, logic circuits, gravitation theories, information systems, fracture mechanics, holographic interferometry, surface acoustic wave technology, ion beams in the upper atmosphere, and hybrid microcircuits.

  20. 16 CFR 1000.29 - Directorate for Engineering Sciences.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Directorate for Engineering Sciences. 1000... ORGANIZATION AND FUNCTIONS § 1000.29 Directorate for Engineering Sciences. The Directorate for Engineering Sciences, which is managed by the Associate Executive Director for Engineering Sciences, is responsible for...

  1. 16 CFR 1000.29 - Directorate for Engineering Sciences.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Directorate for Engineering Sciences. 1000... ORGANIZATION AND FUNCTIONS § 1000.29 Directorate for Engineering Sciences. The Directorate for Engineering Sciences, which is managed by the Associate Executive Director for Engineering Sciences, is responsible for...

  2. Prognostic Health Management of DoD Assets

    DTIC Science & Technology

    2015-06-01

    34Acoustic emission for monitoring the mechanical behaviour of natural fibre composites: a literature review," Composites Part A: Applied Science and...34Acoustic emission of debonding between fibre and matrix to evaluate local adhesion," Composites Science and Technology, vol. 63, pp. 2155-2162, 2003...classification in carbon fibre composites using acoustic emission: A comparison of three techniques," Composites Part B: Engineering, vol. 68, pp. 424-430, 1

  3. NGSS, disposability, and the ambivalence of science in/under neoliberalism

    NASA Astrophysics Data System (ADS)

    Weinstein, Matthew

    2017-12-01

    This paper explores the ambivalence of the Next Generation Science Standards (NGSS) and its Framework towards neoliberal governance. The paper examines the ways that the NGSS serves as a mechanism within neoliberal governance: in its production of disposable populations through testing and through the infusion of engineering throughout the NGSS to resolve social problems through technical fixes. However, the NGSS, like earlier standards, is reactionary to forces diminishing the power of institutional science (e.g., the AAAS) including neoliberal prioritizing market value over evidence. The NGSS explicitly takes on neoliberal junk science such as the anti-global-warming Heartland Institute.

  4. Reliability Evaluation of Computer Systems

    DTIC Science & Technology

    1979-04-01

    detection mechanisms. The model rrvided values for the system availa bility, mean time before failure (VITBF) , and the proportion of time that the 4 system...Stanford University Comm~iuter Science 311, (also Electrical Engineering 482), Advanced Computer Organization. Graduate course in computer architeture

  5. Research in the aerospace physical sciences

    NASA Technical Reports Server (NTRS)

    Whitehurst, R. N.

    1973-01-01

    Research efforts are reported in various areas including dynamics of thin films, polymer chemistry, mechanical and chemical properties of materials, radar system engineering, stabilization of lasers, and radiation damage of organic crystals. Brief summaries of research accomplished and literature citations are included.

  6. Mechatronics: the future of mechanical engineering; past, present, and a vision for the future

    NASA Astrophysics Data System (ADS)

    Ramasubramanian, M. K.

    2001-08-01

    Mechatronics is the synergistic integration of precision mechanical engineering, electronics, computational hardware and software in the design of products and processes. Mechatronics, the term coined in Japan in the '70s, has evolved to symbolize what mechanical design engineers do today worldwide. The revolutionary introduction of the microprocessor (or microcontroller) in the early '80s and ever increasing performance-cost ratio has changed the paradigm of mechanical design forever, and has broadened the original definition of mechatronics to include intelligent control and autonomous decision-making. Today, increasing number of new products is being developed at the intersection between traditional disciplines of Engineering, and Computer and Material Sciences. New developments in these traditional disciplines are being absorbed into mechatronics design at an ever-increasing pace. In this paper, a brief history of mechatronics, and several examples of this rapid adaptation of technologies into product design is presented. With the ongoing information technology revolution, especially in wireless communication, smart sensors design (enabled by MEMS technology), and embedded systems engineering, mechatronics design is going through another step change in capabilities and scope. The implications of these developments in mechatronics design in the near future are discussed. Finally, deficiencies in our engineering curriculum to address the needs of the industry to cope up with these rapid changes, and proposed remedies, will also be discussed.

  7. Work of the Tamm-Sakharov group on the first hydrogen bomb

    NASA Astrophysics Data System (ADS)

    Ritus, V. I.

    2014-09-01

    This review is an extended version of a report delivered at a session of the Department of Physical Sciences, the Department of Energetics, Mechanical Engineering, Mechanics, and Control Processes, and the Coordination Council on Technical Sciences of the RAS devoted to the 60th anniversary of the first hydrogen bomb test. The significant physical ideas suggested by A D Sakharov and V L Ginzburg underlying our first hydrogen bomb, RDS-6s, and numerous concrete problems and difficulties that had to be solved and overcome in designing thermonuclear weapons are presented. The understanding of the country's leaders and the Atomic Project managers of the exceptional role of fundamental science in the appearance and implementation of our scientists' concrete ideas and suggestions is emphasized.

  8. 16 CFR § 1000.29 - Directorate for Engineering Sciences.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Directorate for Engineering Sciences. Â... ORGANIZATION AND FUNCTIONS § 1000.29 Directorate for Engineering Sciences. The Directorate for Engineering Sciences, which is managed by the Associate Executive Director for Engineering Sciences, is responsible for...

  9. Career Goals and Decisions: An Intersectionality Approach

    NASA Astrophysics Data System (ADS)

    Bardon, Emma

    This project explores the career paths to date of seven graduates of the University of Waterloo's Mechanical Engineering program, and examines the influences that led them to choose their university program. I particularly considered the participants' status as members of underrepresented or overrepresented groups, using the contexts of the history of the profession of Mechanical Engineering and prior research on underrepresentation in Science, Technology, Engineering, and Mathematics fields. I used semi-structured interviews and an intersectionality framework to investigate aspects of identity, interests, and career influences. I found three key themes among the participants: human influences, including information sources, role models, and mentors; influences of educational and outreach activities; and personal interests and aptitudes. I use the uncovered themes to recommend a combination of future studies and outreach programs.

  10. Science Outside the Lab: Helping Graduate Students in Science and Engineering Understand the Complexities of Science Policy.

    PubMed

    Bernstein, Michael J; Reifschneider, Kiera; Bennett, Ira; Wetmore, Jameson M

    2017-06-01

    Helping scientists and engineers challenge received assumptions about how science, engineering, and society relate is a critical cornerstone for macroethics education. Scientific and engineering research are frequently framed as first steps of a value-free linear model that inexorably leads to societal benefit. Social studies of science and assessments of scientific and engineering research speak to the need for a more critical approach to the noble intentions underlying these assumptions. "Science Outside the Lab" is a program designed to help early-career scientists and engineers understand the complexities of science and engineering policy. Assessment of the program entailed a pre-, post-, and 1 year follow up survey to gauge student perspectives on relationships between science and society, as well as a pre-post concept map exercise to elicit student conceptualizations of science policy. Students leave Science Outside the Lab with greater humility about the role of scientific expertise in science and engineering policy; greater skepticism toward linear notions of scientific advances benefiting society; a deeper, more nuanced understanding of the actors involved in shaping science policy; and a continued appreciation of the contributions of science and engineering to society. The study presents an efficacious program that helps scientists and engineers make inroads into macroethical debates, reframe the ways in which they think about values of science and engineering in society, and more thoughtfully engage with critical mediators of science and society relationships: policy makers and policy processes.

  11. Material recognition based on thermal cues: Mechanisms and applications.

    PubMed

    Ho, Hsin-Ni

    2018-01-01

    Some materials feel colder to the touch than others, and we can use this difference in perceived coldness for material recognition. This review focuses on the mechanisms underlying material recognition based on thermal cues. It provides an overview of the physical, perceptual, and cognitive processes involved in material recognition. It also describes engineering domains in which material recognition based on thermal cues have been applied. This includes haptic interfaces that seek to reproduce the sensations associated with contact in virtual environments and tactile sensors aim for automatic material recognition. The review concludes by considering the contributions of this line of research in both science and engineering.

  12. Material recognition based on thermal cues: Mechanisms and applications

    PubMed Central

    Ho, Hsin-Ni

    2018-01-01

    ABSTRACT Some materials feel colder to the touch than others, and we can use this difference in perceived coldness for material recognition. This review focuses on the mechanisms underlying material recognition based on thermal cues. It provides an overview of the physical, perceptual, and cognitive processes involved in material recognition. It also describes engineering domains in which material recognition based on thermal cues have been applied. This includes haptic interfaces that seek to reproduce the sensations associated with contact in virtual environments and tactile sensors aim for automatic material recognition. The review concludes by considering the contributions of this line of research in both science and engineering. PMID:29687043

  13. ViLLaGEs: opto-mechanical design of an on-sky visible-light MEMS-based AO system

    NASA Astrophysics Data System (ADS)

    Grigsby, Bryant; Lockwood, Chris; Baumann, Brian; Gavel, Don; Johnson, Jess; Ammons, S. Mark; Dillon, Daren; Morzinski, Katie; Reinig, Marc; Palmer, Dave; Severson, Scott; Gates, Elinor

    2008-07-01

    Visible Light Laser Guidestar Experiments (ViLLaGEs) is a new Micro-Electro Mechanical Systems (MEMS) based visible-wavelength adaptive optics (AO) testbed on the Nickel 1-meter telescope at Lick Observatory. Closed loop Natural Guide Star (NGS) experiments were successfully carried out during engineering during the fall of 2007. This is a major evolutionary step, signaling the movement of AO technologies into visible light with a MEMS mirror. With on-sky Strehls in I-band of greater than 20% during second light tests, the science possibilities have become evident. Described here is the advanced engineering used in the design and construction of the ViLLaGEs system, comparing it to the LickAO infrared system, and a discussion of Nickel dome infrastructural improvements necessary for this system. A significant portion of the engineering discussion revolves around the sizable effort that went towards eliminating flexure. Then, we detail upgrades to ViLLaGEs to make it a facility class instrument. These upgrades will focus on Nyquist sampling the diffraction limited point spread function during open loop operations, motorization and automation for technician level alignments, adding dithering capabilities and changes for near infrared science.

  14. DESIGN AND PROTOTYPE OF A SUSTAINABLE EGG-WASHER

    EPA Science Inventory

    This project is part of the senior design course for Engineering Science and Mechanics at Virginia Tech. Anticipated results will be a working prototype chosen from multiple designs. We will include test results supporting our selection. We will characterize the stresses ex...

  15. Air Tight: Building Inflatables/Inflatable Construction: Planning and Details

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.

    2016-01-01

    A design-build seminar consisting of students from Physics, Mechanical and Civil Engineering, Robotic, Material Science, Art, and Architecture who will work together on a deployable "closed-loop" inflatable greenhouse for Mars in theory, and an Earth analogue physical mockup on campus.

  16. New course in bioengineering and bioinspired design.

    PubMed

    Erickson, Jonathan C

    2012-01-01

    The past two years, a new interdisciplinary course has been offered at Washington and Lee University (Lexington, VA, USA), which seeks to surmount barriers that have traditionally existed between the physical and life sciences. The course explores the physiology leading to the physical mechanisms and engineering principles that endow the astonishing navigation abilities and sensory mechanisms of animal systems. The course also emphasizes how biological systems are inspiring novel engineering designs. Two (among many) examples are how the adhesion of the gecko foot inspired a new class of adhesives based on Van der Waals forces; and how the iridophore protein plates found in mimic octopus and squid act as tunable ¼ wave stacks, thus inspiring the engineering of optically tunable block copolymer gels for sensing temperature, pressure, or chemical gradients. A major component of this course is the integration of a 6-8 week long research project. To date, projects have included engineering: a soft-body robot whose motion mimics the inchworm; an electrical circuit to sense minute electric fields in aqueous environments based on the shark electrosensory system; and cyborg grasshoppers whose jump motion is controlled via an electronic-neural interface. Initial feedback has indicated that this course has served to increase student interaction and “cross-pollination” of ideas between the physical and life sciences. Student feedback also indicated a marked increase in desire and confidence to continue to pursue problems at the boundary of biology and engineering—bioengineering.

  17. 75 FR 62591 - Committee on Equal Opportunities in Science and Engineering (CEOSE); Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... NATIONAL SCIENCE FOUNDATION Committee on Equal Opportunities in Science and Engineering (CEOSE... Equal Opportunities in Science and Engineering (1173). Dates/Time: October 25, 2010, 8:30 a.m.-5:30 p.m... the National Science Foundation (NSF) concerning broadening participation in science and engineering...

  18. The Physics of Semiconductors

    NASA Astrophysics Data System (ADS)

    Brennan, Kevin F.

    1999-02-01

    Modern fabrication techniques have made it possible to produce semiconductor devices whose dimensions are so small that quantum mechanical effects dominate their behavior. This book describes the key elements of quantum mechanics, statistical mechanics, and solid-state physics that are necessary in understanding these modern semiconductor devices. The author begins with a review of elementary quantum mechanics, and then describes more advanced topics, such as multiple quantum wells. He then disusses equilibrium and nonequilibrium statistical mechanics. Following this introduction, he provides a thorough treatment of solid-state physics, covering electron motion in periodic potentials, electron-phonon interaction, and recombination processes. The final four chapters deal exclusively with real devices, such as semiconductor lasers, photodiodes, flat panel displays, and MOSFETs. The book contains many homework exercises and is suitable as a textbook for electrical engineering, materials science, or physics students taking courses in solid-state device physics. It will also be a valuable reference for practicing engineers in optoelectronics and related areas.

  19. The Impact of Design-Based STEM Integration Curricula on Student Achievement in Engineering, Science, and Mathematics

    NASA Astrophysics Data System (ADS)

    Selcen Guzey, S.; Harwell, Michael; Moreno, Mario; Peralta, Yadira; Moore, Tamara J.

    2017-04-01

    The new science education reform documents call for integration of engineering into K-12 science classes. Engineering design and practices are new to most science teachers, meaning that implementing effective engineering instruction is likely to be challenging. This quasi-experimental study explored the influence of teacher-developed, engineering design-based science curriculum units on learning and achievement among grade 4-8 students of different races, gender, special education status, and limited English proficiency (LEP) status. Treatment and control students ( n = 4450) completed pretest and posttest assessments in science, engineering, and mathematics as well as a state-mandated mathematics test. Single-level regression results for science outcomes favored the treatment for one science assessment (physical science, heat transfer), but multilevel analyses showed no significant treatment effect. We also found that engineering integration had different effects across race and gender and that teacher gender can reduce or exacerbate the gap in engineering achievement for student subgroups depending on the outcome. Other teacher factors such as the quality of engineering-focused science units and engineering instruction were predictive of student achievement in engineering. Implications for practice are discussed.

  20. Micro-Electro-Mechanical Systems (MEMS) Fabrication Course Projects Review for FY15

    DTIC Science & Technology

    2015-09-01

    TECHNICAL DOCUMENT 3298 September 2015 Micro-Electro-Mechanical Systems (MEMS) Fabrication Course Projects Review for FY15 Paul D. Swanson...Naval Warfare Systems Center Pacific (SSC Pacific), San Diego, CA. SSC Pacific’s Naval Innovative Science and Engineering (NISE) Program provided...for Miniaturized Flow Cytometer o Howard Dyckman: 71730 Infrared Waveguides o Teresa Emery: 55360 Bistable MEMS systems for Energy

  1. From Engineering Hydrology to Earth System Science: Milestones in the Transformation of Hydrologic Science (Alfred Wegener Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Sivapalan, Murugesu

    2017-04-01

    Hydrologic science has undergone almost transformative changes over the past 50 years. Huge strides have been made in the transition from early empirical approaches to rigorous approaches based on the fluid mechanics of water movement on and below the land surface. However, further progress has been hampered by problems posed by the presence of heterogeneity, especially subsurface heterogeneity, at all scales. The inability to measure or map subsurface heterogeneity everywhere prevented further development of balance equations and associated closure relations at the scales of interest, and has led to the virtual impasse we are presently in, in terms of development of physically based models needed for hydrologic predictions. An alternative to the mapping of subsurface heterogeneity everywhere is a new earth system science view, which sees the heterogeneity as the end result of co-evolutionary hydrological, geomorphological, ecological and pedological processes, each operating at a different rate, which have helped to shape the landscapes that we see in nature, including the heterogeneity below that we do not see. The expectation is that instead of specifying exact details of the heterogeneity in our models, we can replace it, without loss of information, with the ecosystem function they perform. Guided by this new earth system science perspective, development of hydrologic science is now guided by altogether new questions and new approaches to address them, compared to the purely physical, fluid mechanics based approaches that we inherited from the past. In the emergent Anthropocene, the co-evolutionary view is expanded further to involve interactions and feedbacks with human-social processes as well. In this lecture, I will present key milestones in the transformation of hydrologic science from Engineering Hydrology to Earth System Science, and what this means for hydrologic observations, theory development and predictions.

  2. The Colorado Student Space Weather Experiment: A successful student-run scientific spacecraft mission

    NASA Astrophysics Data System (ADS)

    Schiller, Q.; Li, X.; Palo, S. E.; Blum, L. W.; Gerhardt, D.

    2015-12-01

    The Colorado Student Space Weather Experiment is a spacecraft mission developed and operated by students at the University of Colorado, Boulder. The 3U CubeSat was launched from Vandenberg Air Force Base in September 2012. The massively successful mission far outlived its 4 month estimated lifetime and stopped transmitting data after over two years in orbit in December 2014. CSSWE has contributed to 15 scientific or engineering peer-reviewed journal publications. During the course of the project, over 65 undergraduate and graduate students from CU's Computer Science, Aerospace, and Mechanical Engineering Departments, as well as the Astrophysical and Planetary Sciences Department participated. The students were responsible for the design, development, build, integration, testing, and operations from component- to system-level. The variety of backgrounds on this unique project gave the students valuable experience in their own focus area, but also cross-discipline and system-level involvement. However, though the perseverance of the students brought the mission to fruition, it was only possible through the mentoring and support of professionals in the Aerospace Engineering Sciences Department and CU's Laboratory for Atmospheric and Space Physics.

  3. Accelerating the design of biomimetic materials by integrating RNA-seq with proteomics and materials science.

    PubMed

    Guerette, Paul A; Hoon, Shawn; Seow, Yiqi; Raida, Manfred; Masic, Admir; Wong, Fong T; Ho, Vincent H B; Kong, Kiat Whye; Demirel, Melik C; Pena-Francesch, Abdon; Amini, Shahrouz; Tay, Gavin Z; Ding, Dawei; Miserez, Ali

    2013-10-01

    Efforts to engineer new materials inspired by biological structures are hampered by the lack of genomic data from many model organisms studied in biomimetic research. Here we show that biomimetic engineering can be accelerated by integrating high-throughput RNA-seq with proteomics and advanced materials characterization. This approach can be applied to a broad range of systems, as we illustrate by investigating diverse high-performance biological materials involved in embryo protection, adhesion and predation. In one example, we rapidly engineer recombinant squid sucker ring teeth proteins into a range of structural and functional materials, including nanopatterned surfaces and photo-cross-linked films that exceed the mechanical properties of most natural and synthetic polymers. Integrating RNA-seq with proteomics and materials science facilitates the molecular characterization of natural materials and the effective translation of their molecular designs into a wide range of bio-inspired materials.

  4. Decision Analysis: Engineering Science or Clinical Art

    DTIC Science & Technology

    1979-11-01

    TECHNICAL REPORT TR 79-2-97 DECISION ANALYSIS: ENGINEERING SCIENCE OR CLINICAL ART ? by Dennis M. Buede Prepared for Defense Advanced Research...APPLICATIONS OF THE ENGINEER- ING SCIENCE AND CLINICAL ART EXTREMES 9 3.1 Applications of the Engineering Science Approach 9 3.1.1 Mexican electrical...DISCUSSION 29 4.1 Engineering Science versus Clinical Art : A Characterization of When Each is Most Attractive 30 4.2 The Implications of the Engineering

  5. The Impact of Engineering Integrated Science (EIS) Curricula on First-Year Technical High School Students' Attitudes toward Science and Perceptions of Engineering

    ERIC Educational Resources Information Center

    Nam, Younkyeong; Lee, Sun-Ju; Paik, Seoung-Hey

    2016-01-01

    This study investigated how engineering integrated science (EIS) curricula affect first-year technical high school students' attitudes toward science and perceptions of engineering. The effect of the EIS participation period on students' attitudes toward science was also investigated via experimental study design. Two engineering integrated…

  6. Science Teachers' Misconceptions in Science and Engineering Distinctions: Reflections on Modern Research Examples

    NASA Astrophysics Data System (ADS)

    Antink-Meyer, Allison; Meyer, Daniel Z.

    2016-10-01

    The aim of this exploratory study was to learn about the misconceptions that may arise for elementary and high school science teachers in their reflections on science and engineering practice. Using readings and videos of real science and engineering work, teachers' reflections were used to uncover the underpinnings of their understandings. This knowledge ultimately provides information about supporting professional development (PD) for science teachers' knowledge of engineering. Six science teachers (two elementary and four high school teachers) participated in the study as part of an online PD experience. Cunningham and Carlsen's (Journal of Science Teacher Education 25:197-210, 2014) relative emphases of science and engineering practices were used to frame the design of PD activities and the analyses of teachers' views. Analyses suggest misconceptions within the eight practices of science and engineering from the US Next Generation Science Standards in four areas. These are that: (1) the nature of the practices in both science and engineering research is determined by the long-term implications of the research regardless of the nature of the immediate work, (2) engineering and science are hierarchical, (3) creativity is inappropriate, and (4) research outcomes cannot be processes. We discuss the nature of these understandings among participants and the implications for engineering education PD for science teachers.

  7. 76 FR 4138 - Committee on Equal Opportunities in Science and Engineering (CEOSE); Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ... NATIONAL SCIENCE FOUNDATION Committee on Equal Opportunities in Science and Engineering (CEOSE... Opportunities in Science and Engineering (1173). Dates/Time: February 8, 2011, 9 a.m.-5:30 p.m. February 9, 2011... National Science Foundation (NSF) concerning broadening participation in science and engineering. Agenda...

  8. 78 FR 13384 - Advisory Committee for International Science and Engineering; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-27

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for International Science and Engineering; Notice... Science and Engineering (25104). Date/Time: March 14, 2013 9:30 a.m.-5:00 p.m. March 15, 2013 8:30 a.m.-12... of International Science and Engineering, National Science Foundation, 4201 Wilson Blvd., Arlington...

  9. Multimedia: Developing Creativity and Innovation in Engineering, Science,

    Science.gov Websites

    Find ScienceCinema Search Results Multimedia: Developing Creativity and Innovation in Engineering , Science, and Medicine Citation Details Title: Developing Creativity and Innovation in Engineering, Science , and Medicine Title: Developing Creativity and Innovation in Engineering, Science, and Medicine Authors

  10. Scientific Basis for Paint Stripping: Elucidated Combinatorial Mechanism of Methylene Chloride and Phenol Based Paint Removers

    DTIC Science & Technology

    2014-01-22

    Methylene Chloride and Phenol Based Paint Removers January 22, 2014 Approved for public release; distribution is unlimited. James H. Wynne Grant C...DOCUMENTATION PAGE Form ApprovedOMB No. 0704-0188 3. DATES COVERED (From - To) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 Public ... public release; distribution is unlimited. *Stony Brook University, Department of Materials Science and Engineering, 2275 SUNY Engineering Bldg 314, Stony

  11. CMC Research at NASA Glenn in 2015: Recent Progress and Plans

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    2015-01-01

    As part of NASAs Aeronautical Sciences project, Glenn Research Center has developed advanced fiber and matrix constituents for a 2700F CMC for turbine engine applications. Fiber and matrix development and characterization will be reviewed. Resulting improvements in CMC mechanical properties and durability will be summarized. Plans for 2015 will be described, including development and validation of models predicting effects of the engine environment on durability of SiC/SiC composites with Environmental Barrier Coatings

  12. Intelligent Monitoring of Rocket Test Systems

    NASA Technical Reports Server (NTRS)

    Duran, Esteban; Rocha, Stephanie; Figueroa, Fernando

    2016-01-01

    Stephanie Rocha is an undergraduate student pursuing a degree in Mechanical Engineering. Esteban Duran is pursuing a degree in Computer Science. Our mentor is Fernando Figueroa. Our project involved developing Intelligent Health Monitoring at the High Pressure Gas Facility (HPGF) utilizing the software GensymG2.

  13. Thomas D. Foust, Ph.D, P.E. | NREL

    Science.gov Websites

    -June 1997 Mechanical Systems Engineer, Nuclear Energy Program, DOE, August 1990-August 1992 Test Production," Science (2007) Heat Exchanger Performance Enhancement Methodologies, DOE Technical Report Separation Systems for Bioenergy Separations," presented at 24th Symposium on Biotechnology for Fuels

  14. COALA-System for Visual Representation of Cryptography Algorithms

    ERIC Educational Resources Information Center

    Stanisavljevic, Zarko; Stanisavljevic, Jelena; Vuletic, Pavle; Jovanovic, Zoran

    2014-01-01

    Educational software systems have an increasingly significant presence in engineering sciences. They aim to improve students' attitudes and knowledge acquisition typically through visual representation and simulation of complex algorithms and mechanisms or hardware systems that are often not available to the educational institutions. This paper…

  15. A Programming Environment for Parallel Vision Algorithms

    DTIC Science & Technology

    1990-04-11

    industrial arm on the market , while the unique head was designed by Rochester’s Computer Science and Mechanical Engineering Departments. 9a 4.1 Introduction...R. Constraining-Unification and the Programming Language Unicorn . In Logic Programming, Functions, Relations, and Equations, Degroot and Lind- strom

  16. Continuing Professional Education.

    ERIC Educational Resources Information Center

    Tucker, Barbara A.; Huerta, Carolyn G.

    Continuing professional education has proven to be an acceptable control mechanism to assure professional competence. Officially recognized first under the Engineering, Science, Management War Training Act of World War II, the continuing education movement is still gaining attention in the United States with 16 professions in the 50 states…

  17. Flight Mechanics Experiment Onboard NASA's Zero Gravity Aircraft

    ERIC Educational Resources Information Center

    Matthews, Kyle R.; Motiwala, Samira A.; Edberg, Donald L.; García-Llama, Eduardo

    2012-01-01

    This paper presents a method to promote STEM (Science, Technology, Engineering, and Mathematics) education through participation in a reduced gravity program with NASA (National Aeronautics and Space Administration). Microgravity programs with NASA provide students with a unique opportunity to conduct scientific research with innovative and…

  18. Quantifying Cyber-Resilience Against Resource-Exhaustion Attacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fink, Glenn A.; Griswold, Richard L.; Beech, Zachary W.

    2014-07-11

    Resilience in the information sciences is notoriously difficult to define much less to measure. But in mechanical engi- neering, the resilience of a substance is mathematically defined as the area under the stress vs. strain curve. We took inspiration from mechanics in an attempt to define resilience precisely for information systems. We first examine the meaning of resilience in language and engineering terms and then translate these definitions to information sciences. Then we tested our definitions of resilience for a very simple problem in networked queuing systems. We discuss lessons learned and make recommendations for using this approach in futuremore » work.« less

  19. Materials Science & Engineering | Classification | College of Engineering &

    Science.gov Websites

    ChairMaterials Science and Engineering(414) 229-2668nidal@uwm.eduEng & Math Sciences E351 profile photo (414) 229-2615jhchen@uwm.eduEng & Math Sciences 1225 profile photo Benjamin Church, Ph.D.Associate ProfessorMaterials Science & Engineering(414) 229-2825church@uwm.eduEng & Math Sciences EMS 1175 profile

  20. 78 FR 13743 - Requirements for the Recognizing Aviation and Aerospace Innovation in Science and Engineering...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ... Aerospace Innovation in Science and Engineering (RAISE) Award AGENCY: Office of the Secretary, U.S... demonstrate unique, innovative thinking in aerospace science and engineering. With this award, the Secretary... Science and Engineering) Award will recognize innovative scientific and engineering achievements that will...

  1. Engineering Encounters: Engineer It, Learn It--Science and Engineering Practices in Action

    ERIC Educational Resources Information Center

    Lachapelle, Cathy P.; Sargianis, Kristin; Cunningham, Christine M.

    2013-01-01

    Engineering is prominently included in the "Next Generation Science Standards" (Achieve Inc. 2013), as it was in "A Framework for K-12 Science Education" (NRC 2012). The National Research Council, authors of the "Framework," write, "Engineering and technology are featured alongside the natural sciences (physical…

  2. Science & Engineering Indicators. National Science Board. NSB 14-01

    ERIC Educational Resources Information Center

    National Science Foundation, 2014

    2014-01-01

    The "Science and Engineering Indicators" series was designed to provide a broad base of quantitative information about U.S. science, engineering, and technology for use by policymakers, researchers, and the general public. "Science and Engineering Indicators 2014" contains analyses of key aspects of the scope, quality, and…

  3. 77 FR 6143 - Committee on Equal Opportunities in Science and Engineering (CEOSE); Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-07

    ... NATIONAL SCIENCE FOUNDATION Committee on Equal Opportunities in Science and Engineering (CEOSE... Opportunities in Science and Engineering (1173). Dates/Time: February 28, 2012, 9 a.m.-5:30 p.m., February 29... provide advice and recommendations concerning broadening participation in science and engineering. Agenda...

  4. 76 FR 4138 - Committee on Equal Opportunity in Science and Engineering Solicitation of Recommendations for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ... NATIONAL SCIENCE FOUNDATION Committee on Equal Opportunity in Science and Engineering Solicitation... recommendations for membership on the Committee on Equal Opportunities in Science and Engineering (CEOSE) (1173... provides advice to NSF on the implementation of the provisions of the Science and Engineering Equal...

  5. 77 FR 30029 - Advisory Committee for International Science and Engineering; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for International Science and Engineering; Notice... Science and Engineering (25104). Date and Time: June 11, 2012, 10:00 a.m.-12:00 p.m. Place.... Contact Person for More Information: Robert Webber, Office of International Science and Engineering...

  6. 78 FR 60918 - Committee on Equal Opportunities in Science and Engineering; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-02

    ... NATIONAL SCIENCE FOUNDATION Committee on Equal Opportunities in Science and Engineering; Notice of... Engineering (1173). Dates/Time: October 30, 2013, 10:00 a.m.-3:30 p.m. Place: National Science Foundation... advice and recommendations concerning broadening participation in science and engineering. Agenda...

  7. Creating Learning Environment Connecting Engineering Design and 3D Printing

    NASA Astrophysics Data System (ADS)

    Pikkarainen, Ari; Salminen, Antti; Piili, Heidi

    Engineering education in modern days require continuous development in didactics, pedagogics and used practical methods. 3D printing provides excellent opportunity to connect different engineering areas into practice and produce learning by doing applications. The 3D-printing technology used in this study is FDM (Fused deposition modeling). FDM is the most used 3D-printing technology by commercial numbers at the moment and the qualities of the technology makes it popular especially in academic environments. For achieving the best result possible, students will incorporate the principles of DFAM (Design for additive manufacturing) into their engineering design studies together with 3D printing. This paper presents a plan for creating learning environment for mechanical engineering students combining the aspects of engineering design, 3D-CAD learning and AM (additive manufacturing). As a result, process charts for carrying out the 3D printing process from technological point of view and design process for AM from engineering design point of view were created. These charts are used in engineering design education. The learning environment is developed to work also as a platform for Bachelor theses, work-training environment for students, prototyping service centre for cooperation partners and source of information for mechanical engineering education in Lapland University of Applied Sciences.

  8. Cultivation mode research of practical application talents for optical engineering major

    NASA Astrophysics Data System (ADS)

    Liu, Zhiying

    2017-08-01

    The requirements on science and technology graduates are more and higher with modern science progress and society market economy development. Because optical engineering major is with very long practicality, practice should be paid more attention from analysis of optical engineering major and students' foundation. To play role of practice to a large amount, the practice need be systemic and correlation. It should be combination of foundation and profundity. Modern foundation professional knowledge is studied with traditional optical concept and technology at the same time. Systemic regularity and correlation should be embodied in the contents. Start from basic geometrical optics concept, the optical parameter of optical instrument is analyzed, the optical module is built and ray tracing is completed during geometrical optics practice. With foundation of primary aberration calculation, the optical system is further designed and evaluated during optical design practice course. With the optical model and given instrument functions and requirements, the optical-mechanism is matched. The accuracy is calculated, analyzed and distributed in every motion segment. And the mechanism should guarantee the alignment and adjustment. The optical mechanism is designed during the instrument and element design practice. When the optical and mechanism drawings are completed, the system is ready to be fabricated. Students can complete grinding, polishing and coating process by themselves through optical fabricating practice. With the optical and mechanical elements, the system can be assembled and aligned during the thesis practice. With a set of correlated and logical practices, the students can acquire the whole process knowledge about optical instrument. All details are contained in every practice process. These practical experiences provide students working ability. They do not need much adaption anymore when they go to work after graduation. It is favorable to both student talents and employer.

  9. Nanotechnology: emerging tool for diagnostics and therapeutics.

    PubMed

    Chakraborty, Mainak; Jain, Surangna; Rani, Vibha

    2011-11-01

    Nanotechnology is an emerging technology which is an amalgamation of different aspects of science and technology that includes disciplines such as electrical engineering, mechanical engineering, biology, physics, chemistry, and material science. It has potential in the fields of information and communication technology, biotechnology, and medicinal technology. It involves manipulating the dimensions of nanoparticles at an atomic scale to make use of its physical and chemical properties. All these properties are responsible for the wide application of nanoparticles in the field of human health care. Promising new technologies based on nanotechnology are being utilized to improve diverse aspects of medical treatments like diagnostics, imaging, and gene and drug delivery. This review summarizes the most promising nanomaterials and their application in human health.

  10. Effect of processing on Polymer/Composite structure and properties

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Advances in the vitality and economic health of the field of polymer forecasting are discussed. A consistent and rational point of view which considers processing as a participant in the underlying triad of relationships which comprise materials science and engineering is outlined. This triad includes processing as it influences material structure, and ultimately properties. Methods in processing structure properties, polymer science and engineering, polymer chemistry and synthesis, structure and modification and optimization through processing, and methods of melt flow modeling in processing structure property relations of polymer were developed. Mechanical properties of composites are considered, and biomedical materials research to include polymer processing effects are studied. An analysis of the design technology of advances graphite/epoxy composites is also reported.

  11. PREFACE: 3rd International Conference of Mechanical Engineering Research (ICMER 2015)

    NASA Astrophysics Data System (ADS)

    Mamat, Riazalman; Rahman, Mustafizur; Mohd. Zuki Nik Mohamed, Nik; Che Ghani, Saiful Anwar; Harun, Wan Sharuzi Wan

    2015-12-01

    The 3rd ICMER2015 is the continuity of the NCMER2010. The year 2010 represents a significant milestone in the history for Faculty of Mechanical Engineering, Universiti Malaysia Pahang (UMP) Malaysia with the organization of the first and second national level conferences (1st and 2nd NCMER) at UMP on May 26-27 and Dec 3-4 2010. The Faculty then changed the name from National Conference on Mechanical Engineering Research (NCMER) to International Conference on Mechanical Engineering Research (ICMER) in 2011 and this year, 2015 is our 3rd ICMER. These proceedings contain the selected scientific manuscripts submitted to the conference. It is with great pleasure to welcome you to the "International Conference on Mechanical Engineering Research (ICMER2015)" that is held at Zenith Hotel, Kuantan, Malaysia. The call for papers attracted submissions of over two hundred abstracts from twelve different countries including Japan, Iran, China, Kuwait, Indonesia, Norway, Philippines, Morocco, Germany, UAE and more. The scientific papers published in these proceedings have been revised and approved by the technical committee of the 3rd ICMER2015. All of the papers exhibit clear, concise, and precise expositions that appeal to a broad international readership interested in mechanical engineering, combustion, metallurgy, materials science as well as in manufacturing and biomechanics. The reports present original ideas or results of general significance supported by clear reasoning and compelling evidence, and employ methods, theories and practices relevant to the research. The authors clearly state the questions and the significance of their research to theory and practice, describe how the research contributes to new knowledge, and provide tables and figures that meaningfully add to the narrative. In this edition of ICMER representatives attending are from academia, industry, governmental and private sectors. The plenary and invited speakers will present, discuss, promote and disseminate research in all fields of mechanical engineering. Topics cover synthesis, applications, and fundamental studies of the topics related to mechanical engineering. In addition, booths for industries to showcase their state-of-the-art products are also provided. The organizing committee of the conference thanks all the participants for their fruitful work and personal contribution to the development of these conference proceedings.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulder, R.U.; Benneche, P.E.; Hosticka, B.

    The University of Virginia Reactor Facility is an integral part of the Department of Nuclear Engineering and Engineering Physics (to become the Department of Mechanical, Aerospace and Nuclear Engineering on July 1, 1992). As such, it is effectively used to support educational programs in engineering and science at the University of Virginia as well as those at other area colleges and universities. The expansion of support to educational programs in the mid-east region is a major objective. To assist in meeting this objective, the University of Virginia has been supported under the US Department of Energy (DOE) Reactor Sharing Programmore » since 1978. Due to the success of the program, this proposal requests continued DOE support through August 1993.« less

  13. Practical Strategy on the Subject of “Science and Ethics” for Overcoming Hybrid Engineering Ethics Education

    NASA Astrophysics Data System (ADS)

    Yasui, Yoshiaki

    The issue of economic globalization and JABEE (Japan Accreditation Board for Engineering Education) mean that education on engineering ethics has now become increasingly important for science-engineering students who will become the next generation of engineers. This is clearly indicated when engineers are made professionally responsible for various unfortunate accidents that happen during daily life in society. Learning hybrid engineering ethics is an essential part of the education of the humanities and sciences. This paper treats the contents for the subject of “Science and Ethics” drawing on several years of practice and the fruits of studying science and engineering ethics at the faculty of science-engineering in university. This paper can be considered to be a practical strategy to the formation of morality.

  14. Tissue engineering therapy for cardiovascular disease.

    PubMed

    Nugent, Helen M; Edelman, Elazer R

    2003-05-30

    The present treatments for the loss or failure of cardiovascular function include organ transplantation, surgical reconstruction, mechanical or synthetic devices, or the administration of metabolic products. Although routinely used, these treatments are not without constraints and complications. The emerging and interdisciplinary field of tissue engineering has evolved to provide solutions to tissue creation and repair. Tissue engineering applies the principles of engineering, material science, and biology toward the development of biological substitutes that restore, maintain, or improve tissue function. Progress has been made in engineering the various components of the cardiovascular system, including blood vessels, heart valves, and cardiac muscle. Many pivotal studies have been performed in recent years that may support the move toward the widespread application of tissue-engineered therapy for cardiovascular diseases. The studies discussed include endothelial cell seeding of vascular grafts, tissue-engineered vascular conduits, generation of heart valve leaflets, cardiomyoplasty, genetic manipulation, and in vitro conditions for optimizing tissue-engineered cardiovascular constructs.

  15. Effects of Engineering Design-Based Science on Elementary School Science Students' Engineering Identity Development across Gender and Grade

    NASA Astrophysics Data System (ADS)

    Capobianco, Brenda M.; Yu, Ji H.; French, Brian F.

    2015-04-01

    The integration of engineering concepts and practices into elementary science education has become an emerging concern for science educators and practitioners, alike. Moreover, how children, specifically preadolescents (grades 1-5), engage in engineering design-based learning activities may help science educators and researchers learn more about children's earliest identification with engineering. The purpose of this study was to examine the extent to which engineering identity differed among preadolescents across gender and grade, when exposing students to engineering design-based science learning activities. Five hundred fifty preadolescent participants completed the Engineering Identity Development Scale (EIDS), a recently developed measure with validity evidence that characterizes children's conceptions of engineering and potential career aspirations. Data analyses of variance among four factors (i.e., gender, grade, and group) indicated that elementary school students who engaged in the engineering design-based science learning activities demonstrated greater improvements on the EIDS subscales compared to those in the comparison group. Specifically, students in the lower grade levels showed substantial increases, while students in the higher grade levels showed decreases. Girls, regardless of grade level and participation in the engineering learning activities, showed higher scores in the academic subscale compared to boys. These findings suggest that the integration of engineering practices in the science classroom as early as grade one shows potential in fostering and sustaining student interest, participation, and self-concept in engineering and science.

  16. 34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 3 2014-07-01 2014-07-01 false What is the Minority Science and Engineering... ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering Improvement Program (MSEIP)? The Minority Science and Engineering Improvement Program (MSEIP) is designed to effect...

  17. 34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What is the Minority Science and Engineering... ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering Improvement Program (MSEIP)? The Minority Science and Engineering Improvement Program (MSEIP) is designed to effect...

  18. 34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false What is the Minority Science and Engineering... ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering Improvement Program (MSEIP)? The Minority Science and Engineering Improvement Program (MSEIP) is designed to effect...

  19. 34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What is the Minority Science and Engineering... ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering Improvement Program (MSEIP)? The Minority Science and Engineering Improvement Program (MSEIP) is designed to effect...

  20. 34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 3 2013-07-01 2013-07-01 false What is the Minority Science and Engineering... ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering Improvement Program (MSEIP)? The Minority Science and Engineering Improvement Program (MSEIP) is designed to effect...

  1. Fincke holds the active docking assembly inside the SM during Expedition 9

    NASA Image and Video Library

    2004-08-14

    ISS009-E-18539 (14 August 2004) --- Astronaut Edward M. (Mike) Fincke, Expedition 9 NASA ISS science officer and flight engineer, holds the Progress 15 supply vehicle probe-and-cone docking mechanism in the Zvezda Service Module of the International Space Station (ISS).

  2. NREL Receives Editors' Choice Awards for Supercomputer Research | News |

    Science.gov Websites

    function," Beckham said. "We followed up these molecular simulations with experimental work to Award. The awards recognize outstanding research in computational molecular science and engineering Mechanisms of Cellulose-Active Enzymes Using Molecular Simulation" at the AIChE 2014 Annual Meeting

  3. 77 FR 61790 - Committee on Equal Opportunities in Science and Engineering (CEOSE); Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-11

    ... NATIONAL SCIENCE FOUNDATION Committee on Equal Opportunities in Science and Engineering (CEOSE... Opportunities in Science and Engineering (1173). Dates/Time: October 30, 2012, 10 a.m.-5:30 p.m.; October 31... science and engineering. Agenda Tuesday, October 30, 2012 Opening Statement by the CEOSE Chair...

  4. 77 FR 13367 - Advisory Committee for International Science and Engineering; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-06

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for International Science and Engineering; Notice... Science and Engineering (25104). Date and Time: March 19, 2012, 8:30 a.m.-5 p.m. March 20, 2012, 8:30 a.m.... Type of Meeting: Open. Contact Person: Robert Webber, Office of International Science and Engineering...

  5. 78 FR 8596 - Committee on Equal Opportunities in Science and Engineering #1173; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-06

    ... NATIONAL SCIENCE FOUNDATION Committee on Equal Opportunities in Science and Engineering 1173... Science and Engineering (CEOSE). Dates/Time: February 25, 2013, 9:00 a.m.-5:30 p.m.; February 26, 2013, 9... participation in science and engineering. Agenda: Opening Statement by the CEOSE Chair Discussions: Concurrence...

  6. 77 FR 61644 - Advisory Committee for International Science and Engineering; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-10

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for International Science and Engineering; Notice... Science and Engineering (25104). Date and Time: October 25, 2012 8:30 a.m.-5 p.m. October 26, 2012 8:30 a...: Open. Contact Person: Robert Webber, NSF Office of International Science and Engineering, 4201 Wilson...

  7. 75 FR 33652 - Committee on Equal Opportunities in Science and Engineering (CEOSE); Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-14

    ... NATIONAL SCIENCE FOUNDATION Committee on Equal Opportunities in Science and Engineering (CEOSE... Opportunities in Science and Engineering (1173). Dates/Time: June 29, 2010, 8:30 p.m.-5:30 p.m. June 30, 2010, 8... NSF concerning broadening participation in science and engineering. Agenda Monday, June 29, 2010...

  8. 77 FR 31893 - Committee on Equal Opportunities in Science and Engineering (CEOSE); Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... NATIONAL SCIENCE FOUNDATION Committee on Equal Opportunities in Science and Engineering (CEOSE... Opportunities in Science and Engineering (1173) Dates/Time: June 19, 2012, 1:00 p.m.-6:00 p.m.; June 20, 2012, 9... advice and recommendations concerning broadening participation in science and engineering. Agenda Tuesday...

  9. 76 FR 55951 - Committee on Equal Opportunities in Science and Engineering (CEOSE); Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... NATIONAL SCIENCE FOUNDATION Committee on Equal Opportunities in Science and Engineering (CEOSE... Opportunities in Science and Engineering (1173). Dates/Time: October 17, 2011, 9 a.m.-5:30 p.m. October 18, 2011... science and engineering. Agenda: Monday, Oct 17, 2011 Opening Statement by the CEOSE Chair Presentations...

  10. 75 FR 6063 - Committee on Equal Opportunities in Science and Engineering (CEOSE); Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ... NATIONAL SCIENCE FOUNDATION Committee on Equal Opportunities in Science and Engineering (CEOSE... Opportunities in Science and Engineering (1173). Dates/Time: March 8, 2010, 8:30 a.m.-5:30 p.m.; March 9, 2010... concerning broadening participation in science and engineering. Agenda Primary Focus of This Meeting...

  11. EDITORIAL: Molecular Imaging Technology

    NASA Astrophysics Data System (ADS)

    Asai, Keisuke; Okamoto, Koji

    2006-06-01

    'Molecular Imaging Technology' focuses on image-based techniques using nanoscale molecules as sensor probes to measure spatial variations of various species (molecular oxygen, singlet oxygen, carbon dioxide, nitric monoxide, etc) and physical properties (pressure, temperature, skin friction, velocity, mechanical stress, etc). This special feature, starting on page 1237, contains selected papers from The International Workshop on Molecular Imaging for Interdisciplinary Research, sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan, which was held at the Sendai Mediatheque, Sendai, Japan, on 8 9 November 2004. The workshop was held as a sequel to the MOSAIC International Workshop that was held in Tokyo in 2003, to summarize the outcome of the 'MOSAIC Project', a five-year interdisciplinary project supported by Techno-Infrastructure Program, the Special Coordination Fund for Promotion of Science Technology to develop molecular sensor technology for aero-thermodynamic research. The workshop focused on molecular imaging technology and its applications to interdisciplinary research areas. More than 110 people attended this workshop from various research fields such as aerospace engineering, automotive engineering, radiotechnology, fluid dynamics, bio-science/engineering and medical engineering. The purpose of this workshop is to stimulate intermixing of these interdisciplinary fields for further development of molecular sensor and imaging technology. It is our pleasure to publish the seven papers selected from our workshop as a special feature in Measurement and Science Technology. We will be happy if this issue inspires people to explore the future direction of molecular imaging technology for interdisciplinary research.

  12. Optimizing Chemical-Vapor-Deposition Diamond for Nitrogen-Vacancy Center Ensemble Magnetrometry

    DTIC Science & Technology

    2017-06-01

    Ju Li Battelle Energy Alliance Professor of Nuclear Science and Engineering Professor of Materials Science and Engineering...Sciences, U. S. Air Force Academy (2015) Submitted to the Department of Nuclear Science and Engineering in partial fulfillment of the requirements for the...degree of Master of Science in Nuclear Science and Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2017 c○ Massachusetts Institute of

  13. ESPACE - a geodetic Master's program for the education of Satellite Application Engineers

    NASA Astrophysics Data System (ADS)

    Hedman, K.; Kirschner, S.; Seitz, F.

    2012-04-01

    In the last decades there has been a rapid development of new geodetic and other Earth observation satellites. Applications of these satellites such as car navigation systems, weather predictions, and, digital maps (such as Google Earth or Google Maps) play a more and more important role in our daily life. For geosciences, satellite applications such as remote sensing and precise positioning/navigation have turned out to be extremely useful and are meanwhile indispensable. Today, researchers within geodesy, climatology, oceanography, meteorology as well as within Earth system science are all dependent on up-to-date satellite data. Design, development and handling of these missions require experts with knowledge not only in space engineering, but also in the specific applications. That gives rise to a new kind of engineers - satellite application engineers. The study program for these engineers combines parts of different classical disciplines such as geodesy, aerospace engineering or electronic engineering. The satellite application engineering program Earth Oriented Space Science and Technology (ESPACE) was founded in 2005 at the Technische Universität München, mainly from institutions involved in geodesy and aerospace engineering. It is an international, interdisciplinary Master's program, and is open to students with a BSc in both Science (e.g. Geodesy, Mathematics, Informatics, Geophysics) and Engineering (e.g. Aerospace, Electronical and Mechanical Engineering). The program is completely conducted in English. ESPACE benefits from and utilizes its location in Munich with its unique concentration of expertise related to space science and technology. Teaching staff from 3 universities (Technische Universität München, Ludwig-Maximilian University, University of the Federal Armed Forces), research institutions (such as the German Aerospace Center, DLR and the German Geodetic Research Institute, DGFI) and space industry (such as EADS or Kayser-Threde) are involved in ESPACE. This paper will first give the background and objectives of ESPACE with focus on its specific position in geodetic education programmes. Second, we will introduce the interdisciplinary study program and explain the involvement of external teaching staff. Further we will give an up-to-date description of current students and ESPACE alumni. The job market and international demand for satellite application engineers will be shown especially with focus to geodetic fields.

  14. 76 FR 46769 - Applications for New Awards; Minority Science and Engineering Improvement Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    ... DEPARTMENT OF EDUCATION Applications for New Awards; Minority Science and Engineering Improvement... Information: Minority Science and Engineering Improvement Program (MSEIP) Notice inviting applications for new... effect long-range improvement in science and engineering education at predominantly minority institutions...

  15. Astrobiobound! Search for Life in the Solar System: Scientists and Engineers Bringing their Challenges to K-12 Students

    NASA Astrophysics Data System (ADS)

    Klug Boonstra, S. L.; Swann, J.; Manfredi, L.; Zippay, A.; Boonstra, D.

    2014-12-01

    The Next Generation Science Standards (NGSS) brought many dynamic opportunities and capabilities to the K-12 science classroom - especially with the inclusion of engineering. Using science as a context to help students engage in the engineering practices and engineering disciplinary core ideas is an essential step to students' understanding of how science drives engineering and how engineering enables science. Real world examples and applications are critical for students to see how these disciplines are integrated. Furthermore, the interface of science and engineering raise the level of science understanding, and facilitate higher order thinking skills through relevant experiences. Astrobiobound! is designed for the NGSS (Next Generation Science Standards) and CCSS (Common Core State Standards). Students also practice and build 21st Century Skills. Astrobiobound! help students see how science and systems engineering are integrated to achieve a focused scientific goal. Students engage in the engineering design process to design a space mission which requires them to balance the return of their science data with engineering limitations such as power, mass and budget. Risk factors also play a role during this simulation and adds to the excitement and authenticity. Astrobiobound! presents the authentic first stages of NASA mission design process. This simulation mirrors the NASA process in which the science goals, type of mission, and instruments to return required data to meet mission goals are proposed within mission budget before any of the construction part of engineering can begin. NASA scientists and engineers were consulted in the development of this activity as an authentic simulation of their mission proposal process.

  16. CMC Research at NASA Glenn in 2016: Recent Progress and Plans

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    2016-01-01

    As part of NASA's Aeronautical Sciences project, Glenn Research Center has developed advanced fiber and matrix constituents for a 2700 degrees Fahrenheit CMC (Ceramic Matrix Composite) for turbine engine applications. Fiber and matrix development and characterization will be reviewed. Resulting improvements in CMC mechanical properties and durability will be summarized. Plans for 2015 will be described, including development and validation of models predicting effects of the engine environment on durability of SiCSiC composites with Environmental Barrier Coatings (EBCs).

  17. Programmatic Efforts Affect Retention of Women in Science and Engineering

    NASA Astrophysics Data System (ADS)

    Hathaway, Russel S.; Sharp, Sally; Davis, Cinda-Sue

    This article presents findings from a study that investigated the impact of a women in science and engineering residence program (WISE-RP) on the retention of women in science and engineering disciplines. From a matched sample of 1,852 science and engineering students, the authors compared WISE-RP participants with male and female control students for science and engineering retention. The findings suggest a strong connection between WISE-KP participation and science retention, but not engineering retention. The results also indicate that a WISE-RP is more effective in retaining White and Asian students than underrepresented students of color. The authors highlight the importance of combining academic and personal support in a residential learning program and draw implications for retaining women т science, mathematics, and engineering disciplines.

  18. Anticipating Change: An Exploratory Analysis of Teachers' Conceptions of Engineering in an Era of Science Education Reform

    ERIC Educational Resources Information Center

    Sengupta-Irving, Tesha; Mercado, Janet

    2017-01-01

    While integrating engineering into science education is not new in the United States, technology and engineering have not been well emphasized in the preparation and professional development of science teachers. Recent science education reforms integrate science and engineering throughout K-12 education, making it imperative to explore the…

  19. How the Discovery Channel Television Show "Mythbusters" Accurately Depicts Science and Engineering Culture

    ERIC Educational Resources Information Center

    Zavrel, Erik A.

    2011-01-01

    High school science teachers, of course, want to motivate their students to consider studying science and engineering (S&E) in college. However, many high school students are not familiar with what science and engineering actually entail. They may know science as little more than "systematic discovery" and engineering as nothing but…

  20. Effects of Engineering Design-Based Science on Elementary School Science Students' Engineering Identity Development across Gender and Grade

    ERIC Educational Resources Information Center

    Capobianco, Brenda M.; Yu, Ji H.; French, Brian F.

    2015-01-01

    The integration of engineering concepts and practices into elementary science education has become an emerging concern for science educators and practitioners, alike. Moreover, how children, specifically preadolescents (grades 1-5), engage in engineering design-based learning activities may help science educators and researchers learn more about…

  1. The Science of Solubility: Using Reverse Engineering to Brew a Perfect Cup of Coffee

    ERIC Educational Resources Information Center

    West, Andrew B.; Sickel, Aaron J.; Cribbs, Jennifer D.

    2015-01-01

    The Next Generation Science Standards call for the integration of science and engineering. Often, the introduction of engineering activities occurs after instruction in the science content. That is, engineering is used as a way for students to elaborate on science ideas that have already been explored. However, using only this sequence of…

  2. Digest of Key Science and Engineering Indicators, 2008. NSB-08-2

    ERIC Educational Resources Information Center

    National Science Foundation, 2008

    2008-01-01

    This digest of key science and engineering indicators draws primarily from the National Science Board's two-volume "Science and Engineering Indicators, 2008" report. The digest serves two purposes: (1) to draw attention to important trends and data points from across the chapters and volumes of "Science and Engineering Indicators, 2008," and (2)…

  3. Earth Science Research at the Homestake Deep Underground Science and Engineering Laboratory

    NASA Astrophysics Data System (ADS)

    Roggenthen, W.; Wang, J.

    2004-12-01

    The Homestake Mine in South Dakota ceased gold production in 2002 and was sealed for entry in 2003. The announcement of mine closure triggered the revival of a national initiative to establish a deep underground facility, currently known as the Deep Underground Science and Engineering Laboratory (DUSEL). The National Science Foundation announced that solicitations were to be issued in 2004 and 2005, with the first one (known as S-1) issued in June, 2004. The focus of S-1 is on site non-specific technical requirements to define the scientific program at DUSEL. Earth scientists and physicists participated in an S-1 workshop at Berkeley in August, 2004. This abstract presents the prospects of the Homestake Mine to accommodate the earth science scientific programs defined at the S-1 workshop. The Homestake Mine has hundreds of kilometers of drifts over fifty levels accessible (upon mine reopening) for water evaluation, seepage quantification, seismic monitoring, geophysical imaging, geological mapping, mineral sampling, ecology and geo-microbiology. The extensive network of drifts, ramps, and vertical shafts allows installation of 10-kilometer-scale seismograph and electromagnetic networks. Ramps connecting different levels, typically separated by 150 ft, could be instrumented for flow and transport studies, prior to implementation of coupled thermal-hydro-chemical-mechanical-biological processes testing. Numerous large rooms are available for ecological and introduced-material evaluations. Ideas for installing instruments in cubic kilometers of rock mass can be realized over multiple levels. Environmental assessment, petroleum recovery, carbon sequestration were among the applications discussed in the S-1 workshop. If the Homestake Mine can be expediently reopened, earth scientists are ready to perform important tests with a phased approach. The drifts and ramps directly below the large open pit could be the first area for shallow testing. The 4,850 ft level is the next target area, which has a large lateral extent. Geophysical sensor stations could be installed at this level, together with stations along two main shafts accessing this level, and one winze below. After dewatering, rock mechanics and geotechnical engineering investigators could actively participate in room siting and excavation, at depths up to 8,000 ft. Geochemistry and geo-microbiology scientists would prefer additional drilling in deep zones beyond the mining and flooding perturbations. Additional earth science programs are being developed for the Homestake Mine, utilizing multiple levels and shafts. Many physics experiments require a site "as deep as possible" and special conditions to reduce background and cosmic rays. The Homestake Mine offers a very deep site and a vast amount of data and knowledge associated with its 125 years of mining operation. The cores from exploratory drilling into a mechanical strong unit, the Yates Formation, are available for scientific and engineering evaluations. A team from many institutions is being formed by Kevin Lesko, a neutrino scientist with experience in detecting neutrino oscillations with deep detectors in Canada and Japan. It is time for the United States to establish a DUSEL deep and large enough for next-generation physics and earth science long-term experiments. The Homestake Mine has these necessary attributes. The collaboration welcomes participation and contribution from scientists and engineers in the physics and earth science community for multi-disciplinary research during and after the restoration and conversion of the Homestake Mine.

  4. The History of the Planar Elastica: Insights into Mechanics and Scientific Method

    NASA Astrophysics Data System (ADS)

    Goss, Victor Geoffrey Alan

    2009-08-01

    Euler’s formula for the buckling of an elastic column is widely used in engineering design. However, only a handful of engineers will be familiar with Euler’s classic paper De Curvis Elasticis in which the formula is derived. In addition to the Euler Buckling Formula, De Curvis Elasticis classifies all the bent configurations of elastic rod—a landmark in the development of a rational theory of continuum mechanics. As a historical case study, Euler’s work on elastic rods offers an insight into some important concepts which underlie mechanics. It sheds light on the search for unifying principles of mechanics and the role of analysis. The connection between results obtained from theory and those obtained from experiments on rods, highlights two different approaches to scientific discovery, which can be traced back to Bacon, Descartes and Galileo. The bent rod also has an analogy in dynamics, with a pendulum, which highlights the crucial distinctions between initial value and boundary value problems and between linear and nonlinear differential equations. In addition to benefiting from the overview which a historical study provides, the particular problem of the elastica offers students of science and engineering a clear elucidation of the connection between mathematics and real-world engineering, issues which still have relevance today.

  5. Pre-Service Science Teachers' Cognitive Structures Regarding Science, Technology, Engineering, Mathematics (STEM) and Science Education

    ERIC Educational Resources Information Center

    Hacioglu, Yasemin; Yamak, Havva; Kavak, Nusret

    2016-01-01

    The aim of this study is to reveal pre-service science teachers' cognitive structures regarding Science, Technology, Engineering, Mathematics (STEM) and science education. The study group of the study consisted of 192 pre-service science teachers. A Free Word Association Test (WAT) consisting of science, technology, engineering, mathematics and…

  6. A Five-Year University/Community College Collaboration to Build STEM Pipeline Capacity

    ERIC Educational Resources Information Center

    Strawn, Clare; Livelybrooks, Dean

    2012-01-01

    This article investigates the mechanisms through which undergraduate research experiences for community college students can have second-order and multiplier effects on other students and home community college science, technology, engineering, and mathematics (STEM) departments and thus build STEM pipeline capacity. Focus groups with the science…

  7. Mathematical Description and Mechanistic Reasoning: A Pathway toward STEM Integration

    ERIC Educational Resources Information Center

    Weinberg, Paul J.

    2017-01-01

    Because reasoning about mechanism is critical to disciplined inquiry in science, technology, engineering, and mathematics (STEM) domains, this study focuses on ways to support the development of this form of reasoning. This study attends to how mechanistic reasoning is constituted through mathematical description. This study draws upon Smith's…

  8. Beta Testing in Social Work

    ERIC Educational Resources Information Center

    Traube, Dorian E.; Begun, Stephanie; Petering, Robin; Flynn, Marilyn L.

    2017-01-01

    The field of social work does not currently have a widely adopted method for expediting innovations into micro- or macropractice. Although it is common in fields such as engineering and business to have formal processes for accelerating scientific advances into consumer markets, few comparable mechanisms exist in the social sciences or social…

  9. Moire strain analysis of paper

    Treesearch

    R. E. Rowlands; P. K. Beasley; D. E. Gunderson

    1983-01-01

    Efficient use of paper products involves using modern aspects of materials science and engineering mechanics. This implies the ability to determine simultaneously different components of strain at multiple locations and under static or dynamic conditions. Although measuring strains in paper has been a topic of interest for over 40 years, present capability remains...

  10. NREL Investigates Coatings Needed for Concentrating Solar Power | News |

    Science.gov Websites

    these systems," said Johney Green, associate laboratory director for mechanical and thermal engineering sciences. CSP plants with low-cost thermal storage enable facilities to deliver electricity heat-transfer fluid and thermal energy storage because they can withstand high temperatures and retain

  11. Insights into STEM Education Praxis: An Assessment Scheme for Course Syllabi

    ERIC Educational Resources Information Center

    Corlu, M. Sencer

    2013-01-01

    Post-secondary institutions within the European Higher Education Area have been adapting quality assurance mechanisms for course design, delivery, and evaluation following a learner-centered approach. The purpose of this exploratory study was to delineate the teaching practices in science, technology, engineering, and mathematics at the…

  12. The Many Faces of a Software Engineer in a Research Community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marinovici, Maria C.; Kirkham, Harold

    2013-10-14

    The ability to gather, analyze and make decisions based on real world data is changing nearly every field of human endeavor. These changes are particularly challenging for software engineers working in a scientific community, designing and developing large, complex systems. To avoid the creation of a communications gap (almost a language barrier), the software engineers should possess an ‘adaptive’ skill. In the science and engineering research community, the software engineers must be responsible for more than creating mechanisms for storing and analyzing data. They must also develop a fundamental scientific and engineering understanding of the data. This paper looks atmore » the many faces that a software engineer should have: developer, domain expert, business analyst, security expert, project manager, tester, user experience professional, etc. Observations made during work on a power-systems scientific software development are analyzed and extended to describe more generic software development projects.« less

  13. Forensic engineering: applying materials and mechanics principles to the investigation of product failures.

    PubMed

    Hainsworth, S V; Fitzpatrick, M E

    2007-06-01

    Forensic engineering is the application of engineering principles or techniques to the investigation of materials, products, structures or components that fail or do not perform as intended. In particular, forensic engineering can involve providing solutions to forensic problems by the application of engineering science. A criminal aspect may be involved in the investigation but often the problems are related to negligence, breach of contract, or providing information needed in the redesign of a product to eliminate future failures. Forensic engineering may include the investigation of the physical causes of accidents or other sources of claims and litigation (for example, patent disputes). It involves the preparation of technical engineering reports, and may require giving testimony and providing advice to assist in the resolution of disputes affecting life or property.This paper reviews the principal methods available for the analysis of failed components and then gives examples of different component failure modes through selected case studies.

  14. Nanoelectronics, Nanophotonics, and Nanomagnetics: Report of the National Nanotechnology Initiative Workshop February 11-13, 2004

    DTIC Science & Technology

    2004-02-01

    National Science and Technology Council Committee on Technology Subcommittee on Nanoscale Science, Engineering , and Technology National...18 About the Nanoscale Science, Engineering , and Technology Subcommittee The Nanoscale Science, Engineering , and Technology (NSET) Subcommittee is the...workshop was to examine trends and opportunities in nanoscale science and engineering as applied to electronic, photonic, and magnetic technologies

  15. Arctic Science, Engineering and Education. Awards: Fiscal Years 1987 and 1988.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    This document summarizes the dispersal of funds on Arctic research by the National Science Foundation during fiscal years 1987 and 1988. Major areas considered were: atmospheric sciences; oceanography; biological sciences; earth sciences; science and engineering education; small business research; engineering and permafrost; Arctic information and…

  16. Atlas 1.1: An Update to the Theory of Effective Systems Engineers

    DTIC Science & Technology

    2018-01-16

    Proficiency Model ........................................................................................................... 21 5.1.1 Area 1: Math ... Math /Science/General Engineering: Foundational concepts from mathematics, physical sciences, and general engineering; 2. System’s Domain...Table 5. Atlas Proficiency Areas, Categories, and Topics Area Category Topic 1. Math / Science / General Engineering 1.1. Natural Science

  17. Integrating Engineering into an Urban Science Classroom

    ERIC Educational Resources Information Center

    Meyer, Helen

    2017-01-01

    This article presents a single case study of an experienced physical science teacher (Janet) integrating engineering practices into her urban science classroom over a two-year time frame. The article traces how Janet's understanding of the role engineering in her teaching expanded beyond engineering as an application of science and mathematics to…

  18. Students' Attitudes towards Interdisciplinary Education: A Course on Interdisciplinary Aspects of Science and Engineering Education

    ERIC Educational Resources Information Center

    Gero, Aharon

    2017-01-01

    A course entitled "Science and Engineering Education: Interdisciplinary Aspects" was designed to expose undergraduate students of science and engineering education to the attributes of interdisciplinary education which integrates science and engineering. The core of the course is an interdisciplinary lesson, which each student is…

  19. How the Discovery Channel Television Show Mythbusters Accurately Depicts Science and Engineering Culture

    NASA Astrophysics Data System (ADS)

    Zavrel, Erik A.

    2011-04-01

    High school science teachers, of course, want to motivate their students to consider studying science and engineering (S&E) in college. However, many high school students are not familiar with what science and engineering actually entail. They may know science as little more than "systematic discovery" and engineering as nothing but "math-intensive design." Without appreciation for the rich culture of science and engineering, students will be unlikely to choose such a field of study. The Discovery Channel television show Mythbusters helps remedy the lack of understanding many people, especially young people, have about S&E. Mythbusters presents a highly accurate vignette of the culture of science and engineering. Episodes of the show were analyzed for instances in which the culture of science and engineering was accurately depicted. Many resources, including several publications of the National Research Council, informed the media analysis. To encourage more high school students to pursue S&E in college, they need to be exposed to the culture of S&E. Mythbusters provides a window into the often unseen realm of science and engineering, allowing its viewers, who are disproportionately represented among the young adult age bracket, to see what it means to conduct science and engineering on a routine basis. High school science instructors should look to Mythbusters to provide insight into the culture of S&E that textbooks often have difficulty conveying to students.

  20. Elementary metallography

    NASA Technical Reports Server (NTRS)

    Kazem, Sayyed M.

    1992-01-01

    Materials and Processes 1 (MET 141) is offered to freshmen by the Mechanical Engineering Department at Purdue University. The goal of MET 141 is to broaden the technical background of students who have not had any college science courses. Hence, applied physics, chemistry, and mathematics are included and quantitative problem solving is involved. In the elementary metallography experiment of this course, the objectives are: (1) introduce the vocabulary and establish outlook; (2) make qualitative observations and quantitative measurements; (3) demonstrate the proper use of equipment; and (4) review basic mathematics and science.

  1. Training the Future - Interns Harvesting & Testing Plant Experim

    NASA Image and Video Library

    2017-07-19

    In the Space Life Sciences Laboratory at NASA's Kennedy Space Center in Florida, student interns such as Ayla Grandpre, left, and Payton Barnwell are joining agency scientists, contributing in the area of plant growth research for food production in space. Grandpre is pursuing a degree in computer science and chemistry at Rocky Mountain College in Billings, Montana. Barnwell is a mechanical engineering and nanotechnology major at Florida Polytechnic University. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.

  2. Multiscale assembly for tissue engineering and regenerative medicine

    PubMed Central

    Inci, Fatih; Tasoglu, Savas; Erkmen, Burcu; Demirci, Utkan

    2015-01-01

    Our understanding of cell biology and its integration with materials science has led to technological innovations in the bioengineering of tissue-mimicking grafts that can be utilized in clinical and pharmaceutical applications. Bio-engineering of native-like multiscale building blocks provides refined control over the cellular microenvironment, thus enabling functional tissues. In this review, we focus on assembling building blocks from the biomolecular level to the millimeter scale. We also provide an overview of techniques for assembling molecules, cells, spheroids, and microgels and achieving bottom-up tissue engineering. Additionally, we discuss driving mechanisms for self- and guided assembly to create micro-to-macro scale tissue structures. PMID:25796488

  3. Negotiating Science and Engineering: An Exploratory Case Study of a Reform-Minded Science Teacher

    ERIC Educational Resources Information Center

    Guzey, S. Selcen; Ring-Whalen, Elizabeth A.

    2018-01-01

    Engineering has been slowly integrated into K-12 science classrooms in the United States as the result of recent science education reforms. Such changes in science teaching require that a science teacher is confident with and committed to content, practices, language, and cultures related to both science and engineering. However, from the…

  4. Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part I: from three-dimensional cell growth to biomimetics of in vivo development.

    PubMed

    Lenas, Petros; Moos, Malcolm; Luyten, Frank P

    2009-12-01

    Recent advances in developmental biology, systems biology, and network science are converging to poise the heretofore largely empirical field of tissue engineering on the brink of a metamorphosis into a rigorous discipline based on universally accepted engineering principles of quality by design. Failure of more simplistic approaches to the manufacture of cell-based therapies has led to increasing appreciation of the need to imitate, at least to some degree, natural mechanisms that control cell fate and differentiation. The identification of many of these mechanisms, which in general are based on cell signaling pathways, is an important step in this direction. Some well-accepted empirical concepts of developmental biology, such as path-dependence, robustness, modularity, and semiautonomy of intermediate tissue forms, that appear sequentially during tissue development are starting to be incorporated in process design.

  5. Simulated Microstructure-Sensitive Extreme Value Probabilities for High Cycle Fatigue of Duplex Ti-6Al-4V

    DTIC Science & Technology

    2010-04-01

    of texture on  mechanical   properties  in an advanced  titanium  alloy,"  Materials Science and Engineering A, vol. 319‐321, pp. 409‐414, 2001.  Simulated... mechanisms  of fatigue facet nucleation in  titanium  alloys," Fatigue  and Fracture of Engineering Materials and  Structures , vol. 31, pp. 949‐958, 2008...crack initiation in Ti‐6Al‐4V  titanium   alloy," Fatigue and Fracture of Engineering Materials and  Structures , vol. 25, pp. 527‐545, 2002.  [20]  I

  6. Knowledge Integration and Wise Engineering

    ERIC Educational Resources Information Center

    Chiu, Jennifer L.; Linn, M. C.

    2011-01-01

    Recent efforts in engineering education focus on introducing engineering into secondary math and science courses to improve science, technology, engineering, and math (STEM) education (NAS, 2010). Infusing engineering into secondary classrooms can increase awareness of and interest in STEM careers, help students see the relevance of science and…

  7. The Study of Philosophy in Innovative Power Engineering Post-graduate Course

    NASA Astrophysics Data System (ADS)

    Sokolova, J. V.

    2017-11-01

    Training of highly qualified personnel for the innovative high-tech fields of power engineering is one of the most important tasks of modern education. A number of special features of modern power engineering necessitate not only a highly specialized training but a wider approach in teaching postgraduate students of this field. These special features include a high degree of integration of science, industry, economic and social spheres, and the breadth of interdisciplinary connections in high-tech industries. The postgraduate philosophical training plays an important role in the educational process. The breadth of the problem field and the universality of philosophical knowledge reveal the methods and mechanisms of integration of such sub-disciplines that have significant methodological and structural differences: science, logical-mathematical, socio-economic, technological and human knowledge. Appeal to the philosophy at the stage of postgraduate training has a number of reasons. First of all, it is aimed at integrating of the specific content of different areas of knowledge into a holistic worldview. Secondly, it contributes in developing a critical attitude towards reality and science. What is more, the study of philosophy helps young researches to acquire the definition of their ideological position.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Second SIAM Conference on Computational Science and Engineering was held in San Diego from February 10-12, 2003. Total conference attendance was 553. This is a 23% increase in attendance over the first conference. The focus of this conference was to draw attention to the tremendous range of major computational efforts on large problems in science and engineering, to promote the interdisciplinary culture required to meet these large-scale challenges, and to encourage the training of the next generation of computational scientists. Computational Science & Engineering (CS&E) is now widely accepted, along with theory and experiment, as a crucial third modemore » of scientific investigation and engineering design. Aerospace, automotive, biological, chemical, semiconductor, and other industrial sectors now rely on simulation for technical decision support. For federal agencies also, CS&E has become an essential support for decisions on resources, transportation, and defense. CS&E is, by nature, interdisciplinary. It grows out of physical applications and it depends on computer architecture, but at its heart are powerful numerical algorithms and sophisticated computer science techniques. From an applied mathematics perspective, much of CS&E has involved analysis, but the future surely includes optimization and design, especially in the presence of uncertainty. Another mathematical frontier is the assimilation of very large data sets through such techniques as adaptive multi-resolution, automated feature search, and low-dimensional parameterization. The themes of the 2003 conference included, but were not limited to: Advanced Discretization Methods; Computational Biology and Bioinformatics; Computational Chemistry and Chemical Engineering; Computational Earth and Atmospheric Sciences; Computational Electromagnetics; Computational Fluid Dynamics; Computational Medicine and Bioengineering; Computational Physics and Astrophysics; Computational Solid Mechanics and Materials; CS&E Education; Meshing and Adaptivity; Multiscale and Multiphysics Problems; Numerical Algorithms for CS&E; Discrete and Combinatorial Algorithms for CS&E; Inverse Problems; Optimal Design, Optimal Control, and Inverse Problems; Parallel and Distributed Computing; Problem-Solving Environments; Software and Wddleware Systems; Uncertainty Estimation and Sensitivity Analysis; and Visualization and Computer Graphics.« less

  9. Editors' overview perspectives on teaching social responsibility to students in science and engineering.

    PubMed

    Zandvoort, Henk; Børsen, Tom; Deneke, Michael; Bird, Stephanie J

    2013-12-01

    Global society is facing formidable current and future problems that threaten the prospects for justice and peace, sustainability, and the well-being of humanity both now and in the future. Many of these problems are related to science and technology and to how they function in the world. If the social responsibility of scientists and engineers implies a duty to safeguard or promote a peaceful, just and sustainable world society, then science and engineering education should empower students to fulfil this responsibility. The contributions to this special issue present European examples of teaching social responsibility to students in science and engineering, and provide examples and discussion of how this teaching can be promoted, and of obstacles that are encountered. Speaking generally, education aimed at preparing future scientists and engineers for social responsibility is presently very limited and seemingly insufficient in view of the enormous ethical and social problems that are associated with current science and technology. Although many social, political and professional organisations have expressed the need for the provision of teaching for social responsibility, important and persistent barriers stand in the way of its sustained development. What is needed are both bottom-up teaching initiatives from individuals or groups of academic teachers, and top-down support to secure appropriate embedding in the university. Often the latter is lacking or inadequate. Educational policies at the national or international level, such as the Bologna agreements in Europe, can be an opportunity for introducing teaching for social responsibility. However, frequently no or only limited positive effect of such policies can be discerned. Existing accreditation and evaluation mechanisms do not guarantee appropriate attention to teaching for social responsibility, because, in their current form, they provide no guarantee that the curricula pay sufficient attention to teaching goals that are desirable for society as a whole.

  10. Resilin-like polypeptide-poly(ethylene gylcol) hybrid hydrogels for mechanically-demanding tissue engineering applications

    NASA Astrophysics Data System (ADS)

    McGann, Christopher Leland

    Technological progress in the life sciences and engineering has combined with important insights in the fields of biology and material science to make possible the development of biological substitutes which aim to restore function to damaged tissue. Numerous biomimetic hydrogels have been developed with the purpose of harnessing the regenerative capacity of cells and tissue through the rational deployment of biological signals. Aided by recombinant DNA technology and protein engineering methods, a new class of hydrogel precursor, the biosynthetic protein polymer, has demonstrated great promise towards the development of highly functional tissue engineering materials. In particular, protein polymers based upon resilin, a natural protein elastomer, have demonstrated outstanding mechanical properties that would have great value in soft tissue applications. This dissertation introduces hybrid hydrogels composed of recombinant resilin-like polypeptides (RLPs) cross-linked with multi-arm PEG macromers. Two different chemical strategies were employed to form RLP-PEG hydrogels: one utilized a Michael-type addition reaction between the thiols of cysteine residues present within the RLP and vinyl sulfone moieties functionalized on a multi-arm PEG macromer; the second system cross-links a norbornene-functionalized RLP with a thiol-functionalized multi-arm PEG macromer via a photoinitiated thiol-ene step polymerization. Oscillatory rheology and tensile testing confirmed the formation of elastic, resilient hydrogels in the RLP-PEG system cross-linked via Michael-type addition. These hydrogels supported the encapsulation and culture of both human aortic adventitial fibroblasts and human mesenchymal stem cells. Additionally, these RLP-PEG hydrogels exhibited phase separation behavior during cross-linking that led to the formation of a heterogeneous microstructure. Degradation could be triggered through incubation with matrix metalloproteinase. Photocross-linking was conferred to RLPs through the successful conjugation of norbornene acid to the protein. Oscillatory rheology characterized the gelation and subsequent mechanical properties of the photoreactive RLP-PEG hydrogels while the cytocompatibility was confirmed via the successful encapsulation and culture of human mesenchymal stem cells. Both strategies demonstrate the utility of hybrid materials that combine biosynthetic proteins with synthetic polymers. As resilient and cytocompatible materials, RLP-PEG hybrid hydrogels offer an exciting strategy towards the development of biomimetic tissue engineering scaffolds for mechanically-demanding applications.

  11. Ames Engineering Directorate

    NASA Technical Reports Server (NTRS)

    Phillips, Veronica J.

    2017-01-01

    The Ames Engineering Directorate is the principal engineering organization supporting aerospace systems and spaceflight projects at NASA's Ames Research Center in California's Silicon Valley. The Directorate supports all phases of engineering and project management for flight and mission projects-from R&D to Close-out-by leveraging the capabilities of multiple divisions and facilities.The Mission Design Center (MDC) has full end-to-end mission design capability with sophisticated analysis and simulation tools in a collaborative concurrent design environment. Services include concept maturity level (CML) maturation, spacecraft design and trades, scientific instruments selection, feasibility assessments, and proposal support and partnerships. The Engineering Systems Division provides robust project management support as well as systems engineering, mechanical and electrical analysis and design, technical authority and project integration support to a variety of programs and projects across NASA centers. The Applied Manufacturing Division turns abstract ideas into tangible hardware for aeronautics, spaceflight and science applications, specializing in fabrication methods and management of complex fabrication projects. The Engineering Evaluation Lab (EEL) provides full satellite or payload environmental testing services including vibration, temperature, humidity, immersion, pressure/altitude, vacuum, high G centrifuge, shock impact testing and the Flight Processing Center (FPC), which includes cleanrooms, bonded stores and flight preparation resources. The Multi-Mission Operations Center (MMOC) is composed of the facilities, networks, IT equipment, software and support services needed by flight projects to effectively and efficiently perform all mission functions, including planning, scheduling, command, telemetry processing and science analysis.

  12. Engineering Encounters: Blasting off with Engineering

    ERIC Educational Resources Information Center

    Dare, Emily A.; Childs, Gregory T.; Cannaday, E. Ashley; Roehrig, Gillian H

    2014-01-01

    What better way to engage young students in physical science concepts than to have them engineer flying toy rockets? The integration of engineering into science classrooms is advocated by the "Next Generation Science Standards" (NGSS) and researchers alike (Brophy et al. 2008), as engineering provides: (1) A "real-world…

  13. That None Shall Perish

    NASA Astrophysics Data System (ADS)

    Mack, Kelly

    2010-03-01

    Despite efforts to increase the number of women faculty in the STEM disciplines, the representation of women, particularly in higher academic ranks remains disproportionately low. As a means of addressing this issue, the National Science Foundation (NSF) ADVANCE Program has as its mission to increase the participation and advancement of women in academic science and engineering careers. As such, the Program utilizes advances in social science research, as well as both demonstrated and novel strategies rooted in organizational change theory as a means of targeting gender diversity issues in the science, technology, engineering, and mathematics (STEM) disciplines. This presentation will provide an overview of the current status of women faculty, as well as the ADVANCE Program and the mechanisms by which it has supported institutions of higher education. Additionally, vital best practices and the concomitant incorporation of them into the institutional infrastructure will be discussed. These include, but are not limited to: strategic training on implicit bias, programmatic focus on departmental leadership, use of professional development grants, institutionalization of mentoring, incorporation of transparency in policies and procedures, demonstration of sensitivities toward work-life balance issues and women of color.

  14. Foreign Science and Engineering Doctoral Attainment at American Universities

    ERIC Educational Resources Information Center

    Hamilton, Robert V.

    2010-01-01

    This dissertation analyzes the nearly 100,000 foreign students who attained science and engineering (S&E) doctorates in the five fields of physical sciences, life sciences, engineering, mathematics and computer sciences, and social and behavioral sciences at American universities from 1994 to 2005. Two models are presented. In the first model…

  15. 75 FR 9000 - Comment Request: National Science Foundation Proposal/Award Information-Grant Proposal Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... process; Programs to strengthen scientific and engineering research potential; Science and engineering..., authority to support applied research was added to the Organic Act. In 1980, The Science and Engineering... NATIONAL SCIENCE FOUNDATION Comment Request: National Science Foundation Proposal/Award...

  16. 77 FR 13159 - Nanoscale Science, Engineering, and Technology Subcommittee of the Committee on Technology...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Nanoscale Science, Engineering, and Technology Subcommittee of the Committee on Technology, National Science and Technology Council Workshop ACTION: Notice of... Nanoscale Science, Engineering, and Technology (NSET) Subcommittee of the Committee on Technology, National...

  17. Building Alaska's Science and Engineering Pipeline: Evaluation of the Alaska Native Science & Engineering Program

    ERIC Educational Resources Information Center

    Bernstein, Hamutal; Martin, Carlos; Eyster, Lauren; Anderson, Theresa; Owen, Stephanie; Martin-Caughey, Amanda

    2015-01-01

    The Urban Institute conducted an implementation and participant-outcomes evaluation of the Alaska Native Science & Engineering Program (ANSEP). ANSEP is a multi-stage initiative designed to prepare and support Alaska Native students from middle school through graduate school to succeed in science, technology, engineering, and math (STEM)…

  18. Studying Science and Engineering Learning in Practice

    ERIC Educational Resources Information Center

    Penuel, William R.

    2016-01-01

    A key goal of science and engineering education is to provide opportunities for people to access, interpret, and make use of science and engineering to address practical human needs. Most education research, however, focuses on how best to prepare students in schools to participate in forms of science and engineering practices that resemble those…

  19. Committee on Women in Science, Engineering, and Medicine (CWSEM)

    Science.gov Websites

    Skip to Main Content Contact Us | Search: Search The National Academies of Sciences, Engineering and Medicine Committee on Women in Science, Engineering, and Medicine Committee on Women in Science , Engineering, and Medicine Policy and Global Affairs Home About Us Members Subscribe to CWSEM Alerts Resources

  20. 76 FR 20051 - Advisory Committee for International Science & Engineering; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-11

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for International Science & Engineering; Notice of... Engineering ( 25104). Date/Time: April 25, 2011; 8:30 a.m. to 5 p.m. April 26, 2011; 8:30 a.m. to 12 p.m... International Science and Engineering, Reports from Advisory Committee Working Groups. April 26, 2011 AM...

  1. 75 FR 13313 - Advisory Committee for International Science and Engineering; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for International Science and Engineering; Notice... Science and Engineering ( 25104). Date/Time: April 19, 2010--8:30 a.m. to 5 p.m. April 20, 2010--8:30 a.m... Engineering. Agenda April 19, 2010 AM: Introductions and Updates--Presentation and Discussion of 2010...

  2. 78 FR 32475 - Committee on Equal Opportunities in Science and Engineering; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-30

    ... NATIONAL SCIENCE FOUNDATION Committee on Equal Opportunities in Science and Engineering; Notice of... Engineering (CEOSE) Advisory Committee Meeting, 1173. Dates/Time: June 19, 2013, 9:00 a.m.-5:30 p.m. June 20... participation in science and engineering. Agenda: Opening Statement by the CEOSE Chair [[Page 32476...

  3. 75 FR 52996 - Advisory Committee for International Science & Engineering; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for International Science & Engineering; Notice of... Engineering ( 25104). Date/Time: September 20, 2010; 9 a.m. to 5:15 p.m.; September 21, 2009; 8:30 a.m. to 12..., education and related activities involving U.S. science and engineering working within a global context, as...

  4. Site Characterization Report (Building 202). Volume 2. Appendicies A-H.

    DTIC Science & Technology

    1996-04-01

    Bionetics,Groundwater and Wells, Environmental Science and Engineering, Inc., Installation Assessment of ERADCOM Activities, Environmental Science and...Engineering, Inc., Plan for the Assessment of Contamination at Woodbridge Research Facility, Environmental Science and Engineering, Inc., Remedial...Action Plan for the Woodbridge Research Facility PCB Disposal Site, Environmental Science and Engineering, Inc., Remedial Investigation and

  5. Restoration of neurological functions by neuroprosthetic technologies: future prospects and trends towards micro-, nano-, and biohybrid systems.

    PubMed

    Stieglitz, T

    2007-01-01

    Today applications of neural prostheses that successfully help patients to increase their activities of daily living and participate in social life again are quite simple implants that yield definite tissue response and are well recognized as foreign body. Latest developments in genetic engineering, nanotechnologies and materials sciences have paved the way to new scenarios towards highly complex systems to interface the human nervous system. Combinations of neural cells with microimplants promise stable biohybrid interfaces. Nanotechnology opens the door to macromolecular landscapes on implants that mimic the biologic topology and surface interaction of biologic cells. Computer sciences dream of technical cognitive systems that act and react due to knowledge-based conclusion mechanisms to a changing or adaptive environment. Different sciences start to interact and discuss the synergies when methods and paradigms from biology, computer sciences and engineering, neurosciences, psychology will be combined. They envision the era of "converging technologies" to completely change the understanding of science and postulate a new vision of humans. In this chapter, these research lines will be discussed on some examples as well as the societal implications and ethical questions that arise from these new opportunities.

  6. Math, Science, and Engineering Integration in a High School Engineering Course: A Qualitative Study

    ERIC Educational Resources Information Center

    Valtorta, Clara G.; Berland, Leema K.

    2015-01-01

    Engineering in K-12 classrooms has been receiving expanding emphasis in the United States. The integration of science, mathematics, and engineering is a benefit and goal of K-12 engineering; however, current empirical research on the efficacy of K-12 science, mathematics, and engineering integration is limited. This study adds to this growing…

  7. Analysing the Integration of Engineering in Science Lessons with the Engineering-Infused Lesson Rubric

    ERIC Educational Resources Information Center

    Peterman, Karen; Daugherty, Jenny L.; Custer, Rodney L.; Ross, Julia M.

    2017-01-01

    Science teachers are being called on to incorporate engineering practices into their classrooms. This study explores whether the Engineering-Infused Lesson Rubric, a new rubric designed to target best practices in engineering education, could be used to evaluate the extent to which engineering is infused into online science lessons. Eighty lessons…

  8. Pre-Engineering Program: Science, Technology, Engineering and Mathematics (STEM)

    DTIC Science & Technology

    2013-08-29

    educators in the Urbana-Champaign area. 15. SUBJECT TERMS STEM: science, technology , engineering, mathematics 16. SECURITY CLASSIFICATION OF: 19a. NAME...9132T-13-1-0002 4. TITLE AND SUBTITLE Pre-Engineering Program: Science, Technology , Engineering and Mathematics (STEM) 5c. PROGRAM ELEMENT NUMBER N...project was focused on underserved children in grades 1-6 who need, but have limited access to, out-of-school time STEM (science, technology

  9. Kinetics and fracture resistance of lithiated silicon nanostructure pairs controlled by their mechanical interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seok Woo; /Stanford U., Geballe Lab.; Lee, Hyun-Wook

    2015-06-01

    Following an explosion of studies of silicon as a negative electrode for Li-ion batteries, the anomalous volumetric changes and fracture of lithiated single Si particles have attracted significant attention in various fields, including mechanics. However, in real batteries, lithiation occurs simultaneously in clusters of Si in a confined medium. Hence, understanding how the individual Si structures interact during lithiation in a closed space is necessary. Herein, we demonstrate physical/mechanical interactions of swelling Si structures during lithiation using well-defined Si nanopillar pairs. Ex situ SEM and in situ TEM studies reveal that compressive stresses change the reaction kinetics so that preferentialmore » lithiation occurs at free surfaces when the pillars are mechanically clamped. Such mechanical interactions enhance the fracture resistance of This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Contract No. DE-AC02-76SF00515. SLAC-PUB-16300 2 lithiated Si by lessening the tensile stress concentrations in Si structures. This study will contribute to improved design of Si structures at the electrode level for high performance Li-ion batteries.« less

  10. Engineering Encounters: An Engineering Design Process for Early Childhood

    ERIC Educational Resources Information Center

    Lottero-Perdue, Pamela; Bowditch, Michelle; Kagan, Michelle; Robinson-Cheek, Linda; Webb, Tedra; Meller, Megan; Nosek, Theresa

    2016-01-01

    This column presents ideas and techniques to enhance your science teaching. This month's issue shares information about trying (again) to engineer an egg package. Engineering is an essential part of science education, as emphasized in the "Next Generation Science Standards" (NGSS Lead States 2013). Engineering practices and performance…

  11. Engineering Design Skills Coverage in K-12 Engineering Program Curriculum Materials in the USA

    ERIC Educational Resources Information Center

    Chabalengula, Vivien M.; Mumba, Frackson

    2017-01-01

    The current "K-12 Science Education framework" and "Next Generation Science Standards" (NGSS) in the United States emphasise the integration of engineering design in science instruction to promote scientific literacy and engineering design skills among students. As such, many engineering education programmes have developed…

  12. Differentiating between Women in Hard and Soft Science and Engineering Disciplines

    ERIC Educational Resources Information Center

    Camp, Amanda G.; Gilleland, Diane S.; Pearson, Carolyn; Vander Putten, James

    2010-01-01

    The intent of this study was to investigate characteristics that differentiate between women in soft (social, psychological, and life sciences) and hard (engineering, mathematics, computer science, physical science) science and engineering disciplines. Using the Beginning Postsecondary Students Longitudinal Study: 1996-2001 (2002), a descriptive…

  13. 76 FR 4947 - Comment Request: National Science Foundation Proposal & Award Policies and Procedures Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-27

    ... process; Programs to strengthen scientific and engineering research potential; Science and engineering..., authority to support applied research was added to the Organic Act. In 1980, The Science and Engineering... NATIONAL SCIENCE FOUNDATION Comment Request: National Science Foundation Proposal & Award Policies...

  14. Formative Assessment Probes: Pendulums and Crooked Swings--Connecting Science and Engineering

    ERIC Educational Resources Information Center

    Keeley, Page

    2013-01-01

    The "Next Generation Science Standards" provide opportunities for students to experience the link between science and engineering. In the December 2011 issue of "Science and Children," Rodger Bybee explains: "The relationship between science and engineering practices is one of complementarity. Given the inclusion of…

  15. Returning to the Moon: Building the Systems Engineering Base for Successful Science Missions

    NASA Astrophysics Data System (ADS)

    Eppler, D.; Young, K.; Bleacher, J.; Klaus, K.; Barker, D.; Evans, C.; Tewksbury, B.; Schmitt, H.; Hurtado, J.; Deans, M.; Yingst, A.; Spudis, P.; Bell, E.; Skinner, J.; Cohen, B.; Head, J.

    2018-04-01

    Enabling science return on future lunar missions will require coordination between the science community, design engineers, and mission operators. Our chapter is based on developing science-based systems engineering and operations requirements.

  16. Developing the Next Generation of Science Data System Engineers

    NASA Technical Reports Server (NTRS)

    Moses, John F.; Behnke, Jeanne; Durachka, Christopher D.

    2016-01-01

    At Goddard, engineers and scientists with a range of experience in science data systems are needed to employ new technologies and develop advances in capabilities for supporting new Earth and Space science research. Engineers with extensive experience in science data, software engineering and computer-information architectures are needed to lead and perform these activities. The increasing types and complexity of instrument data and emerging computer technologies coupled with the current shortage of computer engineers with backgrounds in science has led the need to develop a career path for science data systems engineers and architects.The current career path, in which undergraduate students studying various disciplines such as Computer Engineering or Physical Scientist, generally begins with serving on a development team in any of the disciplines where they can work in depth on existing Goddard data systems or serve with a specific NASA science team. There they begin to understand the data, infuse technologies, and begin to know the architectures of science data systems. From here the typical career involves peermentoring, on-the-job training or graduate level studies in analytics, computational science and applied science and mathematics. At the most senior level, engineers become subject matter experts and system architect experts, leading discipline-specific data centers and large software development projects. They are recognized as a subject matter expert in a science domain, they have project management expertise, lead standards efforts and lead international projects. A long career development remains necessary not only because of the breadth of knowledge required across physical sciences and engineering disciplines, but also because of the diversity of instrument data being developed today both by NASA and international partner agencies and because multidiscipline science and practitioner communities expect to have access to all types of observational data.This paper describes an approach to defining career-path guidance for college-bound high school and undergraduate engineering students, junior and senior engineers from various disciplines.

  17. Developing the Next Generation of Science Data System Engineers

    NASA Astrophysics Data System (ADS)

    Moses, J. F.; Durachka, C. D.; Behnke, J.

    2015-12-01

    At Goddard, engineers and scientists with a range of experience in science data systems are needed to employ new technologies and develop advances in capabilities for supporting new Earth and Space science research. Engineers with extensive experience in science data, software engineering and computer-information architectures are needed to lead and perform these activities. The increasing types and complexity of instrument data and emerging computer technologies coupled with the current shortage of computer engineers with backgrounds in science has led the need to develop a career path for science data systems engineers and architects. The current career path, in which undergraduate students studying various disciplines such as Computer Engineering or Physical Scientist, generally begins with serving on a development team in any of the disciplines where they can work in depth on existing Goddard data systems or serve with a specific NASA science team. There they begin to understand the data, infuse technologies, and begin to know the architectures of science data systems. From here the typical career involves peer mentoring, on-the-job training or graduate level studies in analytics, computational science and applied science and mathematics. At the most senior level, engineers become subject matter experts and system architect experts, leading discipline-specific data centers and large software development projects. They are recognized as a subject matter expert in a science domain, they have project management expertise, lead standards efforts and lead international projects. A long career development remains necessary not only because of the breath of knowledge required across physical sciences and engineering disciplines, but also because of the diversity of instrument data being developed today both by NASA and international partner agencies and because multi-discipline science and practitioner communities expect to have access to all types of observational data. This paper describes an approach to defining career-path guidance for college-bound high school and undergraduate engineering students, junior and senior engineers from various disciplines.

  18. Biopreparedness in the Age of Genetically Engineered Pathogens and Open Access Science: An Urgent Need for a Paradigm Shift.

    PubMed

    MacIntyre, C Raina

    2015-09-01

    Our systems, thinking, training, legislation, and policies are lagging far behind momentous changes in science, and leaving us vulnerable in biosecurity. Synthetic viruses and genetic engineering of pathogens are a reality, with a rapid acceleration of dual-use science. The public availability of methods for dual-use genetic engineering, coupled with the insider threat, poses an unprecedented risk for biosecurity. Case studies including the 1984 Rajneesh salmonella bioterrorism attack and the controversy over engineered transmissible H5N1 influenza are analyzed. Simple probability analysis shows that the risks of dual-use research are likely to outweigh potential benefits, yet this type of analysis has not been done to date. Many bioterrorism agents may also occur naturally. Distinguishing natural from unnatural epidemics is far more difficult than other types of terrorism. Public health systems do not have mechanisms for routinely considering bioterrorism, and an organizational culture that is reluctant to consider it. A collaborative model for flagging aberrant outbreak patterns and referral from the health to security sectors is proposed. Vulnerabilities in current approaches to biosecurity need to be reviewed and strengthened collaboratively by all stakeholders. New systems, legislation, collaborative operational models, and ways of thinking are required to effectively address the threat to global biosecurity. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  19. Reconstructing the Antikythera Mechanism

    NASA Astrophysics Data System (ADS)

    Freeth, Tony

    The Antikythera Mechanism is a geared astronomical calculating machine from ancient Greece. The extraordinary nature of this device has become even more apparent in recent years as a result of research under the aegis of the Antikythera Mechanism Research Project (AMRP) - an international collaboration of scientists, historians, museum staff, engineers, and imaging specialists. Though many questions still remain, we may now be close to reconstructing the complete machine. As a technological artifact, it is unique in the ancient world. Its brilliant design conception means that it is a landmark in the history of science and technology.

  20. USA Science and Engineering Festival

    NASA Image and Video Library

    2010-10-22

    Visitors crowd the NASA exhibits during the USA Science and Engineering Festival, Saturday, Oct. 23, 2010, on the National Mall in Washington. NASA, joined with more than 500 science organizations this weekend to inspire the next generation of scientists and engineers during the first national science and engineering festival held in the nation's capital. Photo Credit: (NASA/Paul E. Alers)

  1. USA Science and Engineering Festival

    NASA Image and Video Library

    2010-10-22

    Visitors to the USA Science and Engineering Festival look over the many exhibits, Saturday, Oct. 23, 2010, at Freedom Plaza in Washington. NASA, joined with more than 500 science organizations this weekend to inspire the next generation of scientists and engineers during the first national science and engineering festival held in the nation's capital. Photo Credit: (NASA/Paul E. Alers)

  2. The Impact of Design-Based STEM Integration Curricula on Student Achievement in Engineering, Science, and Mathematics

    ERIC Educational Resources Information Center

    Selcen Guzey, S.; Harwell, Michael; Moreno, Mario; Peralta, Yadira; Moore, Tamara J.

    2017-01-01

    The new science education reform documents call for integration of engineering into K-12 science classes. Engineering design and practices are new to most science teachers, meaning that implementing effective engineering instruction is likely to be challenging. This quasi-experimental study explored the influence of teacher-developed, engineering…

  3. 77 FR 24538 - Advisory Committee for Computer and Information Science And Engineering; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-24

    ... Engineering; Notice of Meeting In accordance with the Federal Advisory Committee Act (Pub. L. 92- 463, as... Computer and Information Science and Engineering (1115). Date and Time: May 10, 2012 12 p.m.-5:30 p.m., May... Science and Engineering, National Science Foundation, 4201 Wilson Blvd., Suite 1105, Arlington VA 22230...

  4. 76 FR 61118 - Advisory Committee for Computer and Information Science and Engineering; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-03

    ... Engineering; Notice of Meeting In accordance with the Federal Advisory Committee Act (Pub. L. 92- 463, as... Computer and Information Science and Engineering (1115). Date and Time: November 1, 2011 from 12 p.m.-5:30... Computer and Information Science and Engineering, National Science Foundation, 4201 Wilson Blvd., Suite...

  5. Examining Elementary School Students' Mental Models of Sun-Earth Relationships as a Result of Engaging in Engineering Design

    ERIC Educational Resources Information Center

    Dankenbring, Chelsey; Capobianco, Brenda M.

    2016-01-01

    Current reform efforts in science education in the United States call for students to learn science through the integration of science and engineering practices. Studies have examined the effect of engineering design on students' understanding of engineering, technology, and science concepts. However, the majority of studies emphasize the accuracy…

  6. USA Science and Engineering Festival

    NASA Image and Video Library

    2010-10-22

    Participants look through telescopes to observe the Sun during the USA Science and Engineering Festival, Saturday, Oct. 23, 2010, at Freedom Plaza in Washington. NASA, joined with more than 500 science organizations this weekend to inspire the next generation of scientists and engineers during the first national science and engineering festival held in the nation's capital. Photo Credit: (NASA/Paul E. Alers)

  7. Associations and Committees of or for Women in Science, Engineering, Mathematics and Medicine.

    ERIC Educational Resources Information Center

    Aldrich, Michele, Comp.; Leach, Alicia, Comp.

    Provided is a list of associations and committees of or for women in science, engineering, mathematics, and medicine. The list is organized by discipline, with cross-referencing to cognate specialties. The disciplines include: anthropology; astronomy; atmospheric sciences; biology; chemistry; computer sciences; earth sciences; energy; engineering;…

  8. Brains--Computers--Machines: Neural Engineering in Science Classrooms

    ERIC Educational Resources Information Center

    Chudler, Eric H.; Bergsman, Kristen Clapper

    2016-01-01

    Neural engineering is an emerging field of high relevance to students, teachers, and the general public. This feature presents online resources that educators and scientists can use to introduce students to neural engineering and to integrate core ideas from the life sciences, physical sciences, social sciences, computer science, and engineering…

  9. Biological aspects of tissue-engineered cartilage.

    PubMed

    Hoshi, Kazuto; Fujihara, Yuko; Yamawaki, Takanori; Harai, Motohiro; Asawa, Yukiyo; Hikita, Atsuhiko

    2018-04-01

    Cartilage regenerative medicine has been progressed well, and it reaches the stage of clinical application. Among various techniques, tissue engineering, which incorporates elements of materials science, is investigated earnestly, driven by high clinical needs. The cartilage tissue engineering using a poly lactide scaffold has been exploratorily used in the treatment of cleft lip-nose patients, disclosing good clinical results during 3-year observation. However, to increase the reliability of this treatment, not only accumulation of clinical evidence on safety and usefulness of the tissue-engineered products, but also establishment of scientific background on biological mechanisms, are regarded essential. In this paper, we reviewed recent trends of cartilage tissue engineering in clinical practice, summarized experimental findings on cellular and matrix changes during the cartilage regeneration, and discussed the importance of further studies on biological aspects of tissue-engineered cartilage, especially by the histological and the morphological methods.

  10. Tissue Engineering of Blood Vessels: Functional Requirements, Progress, and Future Challenges.

    PubMed

    Kumar, Vivek A; Brewster, Luke P; Caves, Jeffrey M; Chaikof, Elliot L

    2011-09-01

    Vascular disease results in the decreased utility and decreased availability of autologus vascular tissue for small diameter (< 6 mm) vessel replacements. While synthetic polymer alternatives to date have failed to meet the performance of autogenous conduits, tissue-engineered replacement vessels represent an ideal solution to this clinical problem. Ongoing progress requires combined approaches from biomaterials science, cell biology, and translational medicine to develop feasible solutions with the requisite mechanical support, a non-fouling surface for blood flow, and tissue regeneration. Over the past two decades interest in blood vessel tissue engineering has soared on a global scale, resulting in the first clinical implants of multiple technologies, steady progress with several other systems, and critical lessons-learned. This review will highlight the current inadequacies of autologus and synthetic grafts, the engineering requirements for implantation of tissue-engineered grafts, and the current status of tissue-engineered blood vessel research.

  11. Metabolic Regulation of a Bacterial Cell System with Emphasis on Escherichia coli Metabolism

    PubMed Central

    Shimizu, Kazuyuki

    2013-01-01

    It is quite important to understand the overall metabolic regulation mechanism of bacterial cells such as Escherichia coli from both science (such as biochemistry) and engineering (such as metabolic engineering) points of view. Here, an attempt was made to clarify the overall metabolic regulation mechanism by focusing on the roles of global regulators which detect the culture or growth condition and manipulate a set of metabolic pathways by modulating the related gene expressions. For this, it was considered how the cell responds to a variety of culture environments such as carbon (catabolite regulation), nitrogen, and phosphate limitations, as well as the effects of oxygen level, pH (acid shock), temperature (heat shock), and nutrient starvation. PMID:25937963

  12. Thrust Area Report, Engineering Research, Development and Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langland, R. T.

    1997-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Programmore » has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.« less

  13. CASE: A Configurable Argumentation Support Engine

    ERIC Educational Resources Information Center

    Scheuer, O.; McLaren, B. M.

    2013-01-01

    One of the main challenges in tapping the full potential of modern educational software is to devise mechanisms to automatically analyze and adaptively support students' problem solving and learning. A number of such approaches have been developed to teach argumentation skills in domains as diverse as science, the Law, and ethics. Yet,…

  14. Tribology.

    PubMed

    Spencer, Nicholas D

    2012-01-01

    The 156th Faraday Discussion covered the field of tribology, focussing on the subtopics of biotribology, predictive modelling, smart surfaces, and future lubricated systems. The papers themselves covered topics that drew on the fields of biology, medicine, chemistry, physics, materials science and mechanical engineering, providing a challenging and fascinating insight into the current state of the field of tribology.

  15. Design and Development of a Web-Based Interactive Software Tool for Teaching Operating Systems

    ERIC Educational Resources Information Center

    Garmpis, Aristogiannis

    2011-01-01

    Operating Systems (OS) is an important and mandatory discipline in many Computer Science, Information Systems and Computer Engineering curricula. Some of its topics require a careful and detailed explanation from the instructor as they often involve theoretical concepts and somewhat complex mechanisms, demanding a certain degree of abstraction…

  16. Biomimetic robots using EAP as artificial muscles - progress and challenges

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    2004-01-01

    Biology offers a great model for emulation in areas ranging from tools, computational algorithms, materials science, mechanisms and information technology. In recent years, the field of biomimetics, namely mimicking biology, has blossomed with significant advances enabling the reverse engineering of many animals' functions and implementation of some of these capabilities.

  17. A DESCRIPTION AND SOURCE LISTING OF PROFESSIONAL INFORMATION IN AGRICULTURAL EDUCATION, 1963-64.

    ERIC Educational Resources Information Center

    SLEDGE, GEORGE W.; AND OTHERS

    BRIEF ANNOTATIONS ARE GIVEN FOR MANY OF THE 107 REFERENCES LISTED UNDER THE FOLLOWING CATEGORIES -- (1) ADULT EDUCATION, (2) AGRICULTURAL ENGINEERING, (3) ANIMAL SCIENCE, (4) CURRICULUM DEVELOPMENT AND CURRICULUM IN CROPS, ENTOMOLOGY, FARM MANAGEMENT, FARM MECHANICS, AND LIVESTOCK, (5) FARM BUSINESS MANAGEMENT AND MARKETING, (6) FORESTRY, (7)…

  18. Science-Relatedness and Gender-Appropriateness of Careers: Some Pupil Perceptions.

    ERIC Educational Resources Information Center

    Taber, Keith S.

    1992-01-01

    Presents findings that young secondary students have stereotyped ideas about the appropriateness of certain careers for men and women. Indicates that careers such as pilot, engine mechanic, electrician, and computer technician are viewed by all students as more suitable for males. Considers the consequences of these results relative to the…

  19. Women in science & engineering and minority engineering scholarships : year 5.

    DOT National Transportation Integrated Search

    2011-06-01

    Support will make scholarships available to minority and women students interested in engineering and science and will increase : significantly the number of minority and female students that Missouri S&T can recruit to its science and engineering pr...

  20. Women in science & engineering and minority engineering scholarships : year 4.

    DOT National Transportation Integrated Search

    2010-04-01

    Support will make scholarships available to minority and women students interested in engineering and science and will increase : significantly the number of minority and female students that Missouri S&T can recruit to its science and engineering pr...

  1. 34 CFR 637.4 - What definitions apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Engineering Improvement Program? 637.4 Section 637.4 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.4 What definitions apply to the Minority Science and Engineering... American origin), Pacific Islander or other ethnic group underrepresented in science and engineering...

  2. 34 CFR 637.4 - What definitions apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Engineering Improvement Program? 637.4 Section 637.4 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.4 What definitions apply to the Minority Science and Engineering... American origin), Pacific Islander or other ethnic group underrepresented in science and engineering...

  3. 34 CFR 637.4 - What definitions apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Engineering Improvement Program? 637.4 Section 637.4 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.4 What definitions apply to the Minority Science and Engineering... American origin), Pacific Islander or other ethnic group underrepresented in science and engineering...

  4. 34 CFR 637.3 - What regulations apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Engineering Improvement Program? 637.3 Section 637.3 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.3 What regulations apply to the Minority Science and Engineering Improvement Program? The following regulations apply to the Minority Science and Engineering Improvement...

  5. 34 CFR 637.3 - What regulations apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Engineering Improvement Program? 637.3 Section 637.3 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.3 What regulations apply to the Minority Science and Engineering Improvement Program? The following regulations apply to the Minority Science and Engineering Improvement...

  6. 34 CFR 637.3 - What regulations apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Engineering Improvement Program? 637.3 Section 637.3 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.3 What regulations apply to the Minority Science and Engineering Improvement Program? The following regulations apply to the Minority Science and Engineering Improvement...

  7. 34 CFR 637.4 - What definitions apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Engineering Improvement Program? 637.4 Section 637.4 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.4 What definitions apply to the Minority Science and Engineering... American origin), Pacific Islander or other ethnic group underrepresented in science and engineering...

  8. 34 CFR 637.3 - What regulations apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Engineering Improvement Program? 637.3 Section 637.3 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.3 What regulations apply to the Minority Science and Engineering Improvement Program? The following regulations apply to the Minority Science and Engineering Improvement...

  9. 34 CFR 637.3 - What regulations apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Engineering Improvement Program? 637.3 Section 637.3 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.3 What regulations apply to the Minority Science and Engineering Improvement Program? The following regulations apply to the Minority Science and Engineering Improvement...

  10. 34 CFR 637.4 - What definitions apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Engineering Improvement Program? 637.4 Section 637.4 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.4 What definitions apply to the Minority Science and Engineering... American origin), Pacific Islander or other ethnic group underrepresented in science and engineering...

  11. Environmental Science and Engineering Merit Badges: An Exploratory Case Study of a Non-Formal Science Education Program and the U.S. Scientific and Engineering Practices

    ERIC Educational Resources Information Center

    Vick, Matthew E.; Garvey, Michael P.

    2016-01-01

    The Boy Scouts of America's Environmental Science and Engineering merit badges are two of their over 120 merit badges offered as a part of a non-formal educational program to U.S. boys. The Scientific and Engineering Practices of the U.S. Next Generation Science Standards provide a vision of science education that includes integrating eight…

  12. A successful intervention program for high ability minority students

    NASA Technical Reports Server (NTRS)

    Coleman, Winson R.

    1989-01-01

    Among professional occupations in the United States, non-Asian minorities are least represented in science and engineering fields. The Bureau of Labor Statistics predicts that over the next decade, civilian employment of scientists and engineers has the potential to grow by 40 percent. Furthermore, projections for the year 2000 indicate that 100,000 fewer B.S. and B.A. degrees will be awarded than were awarded in 1984. The latter projection takes into consideration the overall declining proportion of all 18 year old college students. Within this shrinking pool of 18 year old potential college students will be an increasing proportion of Blacks and Hispanics. In order to change the educational patterns for minority youth, an intense look at the factors that affect the science and mathematics performance of minorities. Furthermore, the work of programs that are successful at producing minority scientists and engineers must be examined and documented with the intent of replicating these programs. The fundamental concern at this time appears to be the quality of precollege experience because research has shown that lack of precollege preparation is the single most important cause of underrepresentation of minorities in science and engineering careers. For many years, intervention programs have attempted to improve the quality of the minority precollege experience by latter year intervention in grades eleven and twelve. Later efforts, such as this one, have concentrated on earlier years. The effectiveness of intervention programs is widely accepted but not rigorously documented. The mechanisms these programs have developed need to be identified and their potential for broader use evaluated. The ultimate goal of such studies would be to provide the different educational communities with a set of proven cost-effective state of the art mechanisms designed to increase participation and success of minority students in science and mathematics-related courses. One such intervention program is the Saturday Academy program for high ability minority students in the Washington, D.C. area. A description of the Saturday Academy is provided with the intent of making it available to personnel who are considering the development of similar projects. The effect of participation in the program on high school graduate rates, college enrollment, and choice of quantitative major is examined.

  13. FY 1999 Laboratory Directed Research and Development annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PJ Hughes

    2000-06-13

    A short synopsis of each project is given covering the following main areas of research and development: Atmospheric sciences; Biotechnology; Chemical and instrumentation analysis; Computer and information science; Design and manufacture engineering; Ecological science; Electronics and sensors; Experimental technology; Health protection and dosimetry; Hydrologic and geologic science; Marine sciences; Materials science; Nuclear science and engineering; Process science and engineering; Sociotechnical systems analysis; Statistics and applied mathematics; and Thermal and energy systems.

  14. Argonne Chemical Sciences & Engineering - Awards Home

    Science.gov Websites

    Argonne National Laboratory Chemical Sciences & Engineering DOE Logo CSE Home About CSE Argonne Home > Chemical Sciences & Engineering > Fundamental Interactions Catalysis & Energy Computational Postdoctoral Fellowships Contact Us CSE Intranet Awards Argonne's Chemical Sciences and

  15. Integration of Research Into Grade Nine-Graduate Level Curricula

    NASA Astrophysics Data System (ADS)

    Bonner, J.; Callicott, K.; Page, C.

    2004-05-01

    Research on the Kolb Learning Cycle, engineering education, and recent cognitive learning research indicates that learning occurs through knowledge application. Moreover, experts in a given discipline will differ from novices with regard to their ability to transfer their knowledge by application to new contexts. We have developed a suite of educational opportunities to bridge the gap between research and the classroom, with activities spanning the educational spectrum from high school through graduate school. One mechanism for transferring of research into undergraduate/graduate curricula is through our National Science Foundation (NSF) funded Combined Research-Curriculum Development (CRCD) project ("Environmental Informatics in Coastal Margins"). This project modifies engineering curricula to provide the nation with the next generation of engineers who can utilize the latest environmental modeling tools. The project revises/creates three undergraduate courses forming the environmental informatics (EI) track of the civil engineering curriculum and two graduate courses integrating GIS and environmental measurements. Curriculum development efforts are guided by an expert team drawn from nearby campuses and both regional and national industry, and includes an expert in assessing the pedagogical value of the curriculum and developing suitable metrics to evaluate student learning experiences. Another NSF-funded project integrating research into an undergraduate educational setting is our Research Experience for Undergraduates (REU) project ("Undergraduate Research in Biodiversity and Ecological Processes in Fluctuating Environments"). Research includes overlapping topics in environmental engineering and life sciences. The summer research experience provides students an opportunity to integrate engineering and life science technologies and to the study of ecological processes associated with biodiversity and environmental quality. Students orally present their project and submit in-depth papers. Over twenty publications/proceedings papers have been generated thus far. A third project involves our collaborations with the ITS Center ("Information Technology in Science Center for Teaching and Learning") on the A&M campus. As an investment in "project team growing", the Center is collaborating with us to collect data on implementation of an engineering science and math enhancement module in Hearne Independent School District. The specific activity involves a CRCD engineering class and an educational psychology undergraduate class. The engineering students give group presentations, where each presentation addresses a scenario that focuses on an environmental topic presented in the class. The students present the technical material to the education students who serve as a non-technical lay audience, emulating a city council, for example. The education students adapt the material for presentation to high school students, working with mentor teachers to enhance content, relevance and hands on experience while learning to apply teaching pedagogy.

  16. The Nexus between Science Literacy & Technical Literacy: A State by State Analysis of Engineering Content in State Science Standards

    ERIC Educational Resources Information Center

    Koehler, Catherine M.; Faraclas, Elias; Giblin, David; Moss, David M.; Kazerounian, Kazem

    2013-01-01

    This study explores how engineering concepts are represented in secondary science standards across the nation by examining how engineering and technical concepts are infused into these frameworks. Secondary science standards from 49 states plus the District of Columbia were analyzed and ranked based on how many engineering concepts were found.…

  17. Engineering Science--Raising Awareness of Engineering through Key Stage 3 (Age 11-14) Science

    ERIC Educational Resources Information Center

    Mannion, Ken

    2012-01-01

    During 2011, a team from the Centre for Science Education (CSE) worked with four local schools and five Sheffield city region engineering organisations on a project to identify ways to increase the input into young people's awareness of engineering that comes from activities they do in school science. The project also tested an hypothesis that…

  18. 76 FR 31642 - Committee on Equal Opportunities in Science and Engineering; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... NATIONAL SCIENCE FOUNDATION Committee on Equal Opportunities in Science and Engineering; Notice of... Engineering (1173). Dates/Time: June 13, 2011, 9 a.m.-4:30 p.m. June 14, 2011, 9 a.m.-2 p.m. Places: June 13... participation in science and engineering. Agenda Monday, June 13, 2011 Opening Statement by the CEOSE Chair...

  19. USA Science and Engineering Festival

    NASA Image and Video Library

    2010-10-22

    Visitors to the USA Science and Engineering Festival look on at one of the many exhibits, Saturday, Oct. 23, 2010, on the National Mall in Washington. NASA, joined with more than 500 science organizations this weekend to inspire the next generation of scientists and engineers during the first national science and engineering festival held in the nation's capital. Photo Credit: (NASA/Paul E. Alers)

  20. USA Science and Engineering Festival

    NASA Image and Video Library

    2010-10-22

    Children react as a tiny Mars Rover rolls over their backs at the USA Science and Engineering Festival, Saturday, Oct. 23, 2010, at Freedom Plaza in Washington. NASA, joined with more than 500 science organizations this weekend to inspire the next generation of scientists and engineers during the first national science and engineering festival held in the nation's capital. Photo Credit: (NASA/Paul E. Alers)

  1. Rheology of Soft Materials

    NASA Astrophysics Data System (ADS)

    Chen, Daniel T. N.; Wen, Qi; Janmey, Paul A.; Crocker, John C.; Yodh, Arjun G.

    2010-04-01

    Research on soft materials, including colloidal suspensions, glasses, pastes, emulsions, foams, polymer networks, liquid crystals, granular materials, and cells, has captured the interest of scientists and engineers in fields ranging from physics and chemical engineering to materials science and cell biology. Recent advances in rheological methods to probe mechanical responses of these complex media have been instrumental for producing new understanding of soft matter and for generating novel technological applications. This review surveys these technical developments and current work in the field, with partial aim to illustrate open questions for future research.

  2. Research progress of microbial corrosion of reinforced concrete structure

    NASA Astrophysics Data System (ADS)

    Li, Shengli; Li, Dawang; Jiang, Nan; Wang, Dongwei

    2011-04-01

    Microbial corrosion of reinforce concrete structure is a new branch of learning. This branch deals with civil engineering , environment engineering, biology, chemistry, materials science and so on and is a interdisciplinary area. Research progress of the causes, research methods and contents of microbial corrosion of reinforced concrete structure is described. The research in the field is just beginning and concerted effort is needed to go further into the mechanism of reinforce concrete structure and assess the security and natural life of reinforce concrete structure under the special condition and put forward the protective methods.

  3. The founding of ISOTT: the Shamattawa of engineering science and medical science.

    PubMed

    Bruley, Duane F

    2014-01-01

    The founding of ISOTT was based upon the blending of Medical and Engineering sciences. This occurrence is portrayed by the Shamattawa, the joining of the Chippewa and Flambeau rivers. Beginning with Carl Scheele's discovery of oxygen, the medical sciences advanced the knowledge of its importance to physiological phenomena. Meanwhile, engineering science was evolving as a mathematical discipline used to define systems quantitatively from basic principles. In particular, Adolf Fick's employment of a gradient led to the formalization of transport phenomena. These two rivers of knowledge were blended to found ISOTT at Clemson/Charleston, South Carolina, USA, in 1973.The establishment of our society with a mission to support the collaborative work of medical scientists, clinicians and all disciplines of engineering was a supporting step in the evolution of bioengineering. Traditional engineers typically worked in areas not requiring knowledge of biology or the life sciences. By encouraging collaboration between medical science and traditional engineering, our society became one of the forerunners in establishing bioengineering as the fifth traditional discipline of engineering.

  4. Negotiating science and engineering: an exploratory case study of a reform-minded science teacher

    NASA Astrophysics Data System (ADS)

    Guzey, S. Selcen; Ring-Whalen, Elizabeth A.

    2018-05-01

    Engineering has been slowly integrated into K-12 science classrooms in the United States as the result of recent science education reforms. Such changes in science teaching require that a science teacher is confident with and committed to content, practices, language, and cultures related to both science and engineering. However, from the perspective of the science teacher, this would require not only the development of knowledge and pedagogies associated with engineering, but also the construction of new identities operating within the reforms and within the context of their school. In this study, a middle school science teacher was observed and interviewed over a period of nine months to explore his experiences as he adopted new values, discourses, and practices and constructed his identity as a reform-minded science teacher. Our findings revealed that, as the teacher attempted to become a reform-minded science teacher, he constantly negotiated his professional identities - a dynamic process that created conflicts in his classroom practices. Several differences were observed between the teacher's science and engineering instruction: hands-on activities, depth and detail of content, language use, and the way the teacher positioned himself and his students with respect to science and engineering. Implications for science teacher professional development are discussed.

  5. Introduction to USRA

    NASA Technical Reports Server (NTRS)

    Davis, M. H. (Editor); Singy, A. (Editor)

    1994-01-01

    The Universities Space Research Association (USRA) was incorporated 25 years ago in the District of Columbia as a private nonprofit corporation under the auspices of the National Academy of Sciences. Institutional membership in the association has grown from 49 colleges and universities, when it was founded, to 76 in 1993. USRA provides a mechanism through which universities can cooperate effectively with one another, with the government, and with other organizations to further space science and technology and to promote education in these areas. Its mission is carried out through the institutes, centers, divisions, and programs that are described in detail in this booklet. These include the Lunar and Planetary Institute, the Institute for Computer Applications in Science and Engineering (ICASE), the Research Institute for Advanced Computer Science (RIACS), and the Center of Excellence in Space Data and Information Sciences (CESDIS).

  6. A study of the historical role of African Americans in science, engineering and technology

    NASA Astrophysics Data System (ADS)

    Jones, Keith Wayne

    2000-11-01

    The purpose of this study was to determine if there is adequate documentation of an historical role of African and African American involvement in science, engineering, and technology. Through the use of history of science and technology research methodology, along with an examination of the sociological and economic impacts of adequately accredited innovations and inventions contributed by Africans and African Americans, the researcher investigated their contributions to the following areas of science and technology: life science, physical sciences and chemistry, engineering, and science education. In regard to the timeframe for this study, the researcher specifically investigated African and African American involvement in science and technology that includes periods prior to black enslavement, scientific racism and colonialism, as well as during and after those periods. This research study reveals that there are adequate historical data regarding African and African American contributions to science, engineering, and technology. The data reveals that for many millennia African peoples have been continually involved in science and world science histories. The data further show that the numbers of African Americans acquiring BS, MS, Ph.D., Doctor of Science and Doctor of Engineering degrees in science and engineering disciplines are increasing. That these increases are not happening at a rate representative of the present or future African American percentages of the population. Consequently, because of future changes in our nation's demographics, increasing the numbers of people from under-represented groups who pursue scientific and engineering professions has become a matter of national security at the highest levels of government. Moreover, African Americans, Hispanics, and Native Americans are not pursuing careers or taking courses in science and engineering at a rate high enough to fulfill the prospective needs for the United States' industries, government, and military. Projections are that, in the 21st century, there will be even greater needs for more scientists, engineers, information technologists, and other types of scientific workers. The data from this study indicate that more inclusive history of science and technology can be used as a means for encouraging more people from under-represented groups to become scientifically literate and to pursue science and engineering careers.

  7. AMTD: Update of Engineering Specifications Derived from Science Requirements for Future UVOIR Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2014-01-01

    AMTD is using a Science Driven Systems Engineering approach to develop Engineering Specifications based on Science Measurement Requirements and Implementation Constraints. Science requirements meet the needs of both Exoplanet and General Astrophysics science. Engineering Specifications are guiding our effort to mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review.

  8. Women in science & engineering and minority engineering scholarships : year 2 report for 2007-2008 activities.

    DOT National Transportation Integrated Search

    2008-08-01

    Support will make scholarships available to minority and women students interested in engineering and science and will increase : significantly the number of minority and female students that Missouri S&T can recruit to its science and engineering pr...

  9. Women in science & engineering and minority engineering scholarships : year 3, report for 2008-2009 activities.

    DOT National Transportation Integrated Search

    2009-05-01

    Support made scholarships available to minority and women students interested in engineering and science and significantly increased : the number of minority and female students that Missouri S&T can recruit to its science and engineering programs. R...

  10. Essays on the History of Rocketry and Astronautics: Proceedings of the Third through the Sixth History Symposia of the International Academy of Astronautics, volume 1

    NASA Technical Reports Server (NTRS)

    Hall, R. C. (Editor)

    1977-01-01

    This two volume publication presents the proceedings of the third through sixth history symposia of the International Academy of Astronautics. Thirty-nine papers are divided into four categories: (1) Early Solid Propellant Rocketry; (2) Rocketry and Astronautics: Concepts, Theory, and Analyses after 1880; (3) The Development of Liquid and Solid Propellant Rockets from 1880 to 1945; and (4) Rocketry and Astronautics after 1945. Categories 1 and 2 will be found in volume 1 and the remainder in volume 2. Among other diciplines, Rocketry and Astronautics encompasses the physical and engineering sciences including fluid mechanics, thermodynamics, vibration theory, structural mechanics, and celestial mechanics. Papers presented in these two volumes range from those of empirical experimenters who used the time-honored cut and try methods to scientists wielding theoretical principles. The work traces the coupling of the physical and engineering sciences, industrial advances, and state support that produced the awesome progress in rocketry and astronautics for the most part within living memory. The proceedings of the four symposia present in these two volumes contain information on the work of leading investigators and their associates carried out in the first two-thirds of the twentieth century.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slattery, Stuart R

    ExaMPM is a mini-application for the Material Point Method (MPM) for studying the application of MPM to future exascale computing systems. MPM is a general method for computational mechanics and fluids and is used in a wide variety of science and engineering disciplines to study problems with large deformations, phase change, fracture, and other phenomena. ExaMPM provides a reference implementation of MPM as described in the 1994 work of Sulsky et.al. (Sulsky, Deborah, Zhen Chen, and Howard L. Schreyer. "A particle method for history-dependent materials." Computer methods in applied mechanics and engineering 118.1-2 (1994): 179-196.). The software can solve basicmore » MPM problems in solid mechanics using the original algorithm of Sulsky with explicit time integration, basic geometries, and free-slip and no-slip boundary conditions as described in the reference. ExaMPM is intended to be used as a starting point to design new parallel algorithms for the next generation of DOE supercomputers.« less

  12. Science/Engineering: Open Doors

    NASA Technical Reports Server (NTRS)

    White, Susan; Arnold, James O. (Technical Monitor)

    1999-01-01

    Trends in American society are changing the role of women in science and engineering, but all the elements in our society change at different rates. Women, like men, must choose during their teenage years to continue their training in math or science, or they close the door that can lead them to futures in the interesting and satisfying fields of science and engineering. The key is to keep girls involved in the hard sciences through the adolescent crisis. Many mentoring and outreach programs exist to help young women cross this threshold. These programs include hands-on science experiences, mentoring or putting young women in contact with women scientists and engineers, and internships, Viewpoints and histories of contemporary women engineers are discussed.

  13. Make Room for Engineering

    ERIC Educational Resources Information Center

    Boesdorfer, Sarah; Greenhalgh, Scott

    2014-01-01

    The "Next Generation Science Standards" (NGSS Lead States 2013) urge science teachers to include engineering practices and ideas in their already full science curriculum, but many teachers do not know where to start. Only 7% of high school science teachers report feeling "very well prepared" to teach engineering. The…

  14. USA Science and Engineering Festival

    NASA Image and Video Library

    2010-10-22

    A young girl watches as her paper airplane is flown in a small wind tunnel during the USA Science and Engineering Festival, Saturday, Oct. 23, 2010, at Freedom Plaza in Washington. NASA, joined with more than 500 science organizations this weekend to inspire the next generation of scientists and engineers during the first national science and engineering festival held in the nation's capital. Photo Credit: (NASA/Paul E. Alers)

  15. USA Science and Engineering Festival

    NASA Image and Video Library

    2010-10-22

    Priniciples of air flow are explained to visitors to the wind tunnel exhibit at the USA Science and Engineering Festival, Saturday, Oct. 23, 2010, at Freedom Plaza in Washington. NASA, joined with more than 500 science organizations this weekend to inspire the next generation of scientists and engineers during the first national science and engineering festival held in the nation's capital. Photo Credit: (NASA/Paul E. Alers)

  16. Engineering Approaches to Illuminating Brain Structure and Dynamics

    PubMed Central

    Deisseroth, Karl; Schnitzer, Mark J.

    2017-01-01

    Historical milestones in neuroscience have come in diverse forms, ranging from the resolution of specific biological mysteries via creative experimentation to broad technological advances allowing neuroscientists to ask new kinds of questions. The continuous development of tools is driven with a special necessity by the complexity, fragility, and inaccessibility of intact nervous systems, such that inventive technique development and application drawing upon engineering and the applied sciences has long been essential to neuroscience. Here we highlight recent technological directions in neuroscience spurred by progress in optical, electrical, mechanical, chemical, and biological engineering. These research areas are poised for rapid growth and will likely be central to the practice of neuroscience well into the future. PMID:24183010

  17. Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances.

    PubMed

    Shadjou, Nasrin; Hasanzadeh, Mohammad

    2016-05-01

    Tissue engineering and regenerative medicine represent areas of increasing interest because of the major progress in cell and organ transplantation, as well as advances in materials science and engineering. Tissue-engineered bone constructs have the potential to alleviate the demand arising from the shortage of suitable autograft and allograft materials for augmenting bone healing. Graphene and its derivatives have attracted much interest for applications in bone tissue engineering. For this purpose, this review focuses on more recent advances in tissue engineering based on graphene-biomaterials from 2013 to May 2015. The purpose of this article was to give a general description of studies of nanostructured graphene derivatives for bone tissue engineering. In this review, we highlight how graphene family nanomaterials are being exploited for bone tissue engineering. Firstly, the main requirements for bone tissue engineering were discussed. Then, the mechanism by which graphene based materials promote new bone formation was explained, following which the current research status of main types of nanostructured scaffolds for bone tissue engineering was reviewed and discussed. In addition, graphene-based bioactive glass, as a potential drug/growth factor carrier, was reviewed which includes the composition-structure-drug delivery relationship and the functional effect on the tissue-stimulation properties. Also, the effect of structural and textural properties of graphene based materials on development of new biomaterials for production of bone implants and bone cements were discussed. Finally, the present review intends to provide the reader an overview of the current state of the graphene based biomaterials in bone tissue engineering, its limitations and hopes as well as the future research trends for this exciting field of science. © 2016 Wiley Periodicals, Inc.

  18. 75 FR 22576 - Minority Science and Engineering Improvement Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... DEPARTMENT OF EDUCATION [CFDA No. 84.120A] Minority Science and Engineering Improvement Program... the fiscal year (FY) 2009 grant slate for the Minority Science and Engineering Improvement Program... Engineering Improvement Program (MSEIP), authorized by Title III, Part E of the Higher Education Act of 1965...

  19. Is It Engineering or Not?

    ERIC Educational Resources Information Center

    Whitworth, Brooke A.; Wheeler, Lindsay B.

    2017-01-01

    With the widespread adoption of the "Next Generation Science Standards" (NGSS Lead States 2013), science teachers now aspire to integrate engineering into science instruction, as the standards suggest, yet many do not know how. The first steps are to define engineering and identify tasks that incorporate engineering, which can be…

  20. Stationary Engineering. Science Manual--2.

    ERIC Educational Resources Information Center

    Frost, Harold J.; Steingress, Frederick M.

    This second-year student manual contains 140 brief related science lessons applying science and math to trade activities in the field of stationary engineering. The lessons are organized into 16 units: (1) Introduction to Stationary Engineering, (2) Engineering Fundamentals, (3) Steam Boilers, (4) Boiler Fittings, (5) Boilerroom System, (6)…

  1. Science Teachers' Misconceptions in Science and Engineering Distinctions: Reflections on Modern Research Examples

    ERIC Educational Resources Information Center

    Antink-Meyer, Allison; Meyer, Daniel Z.

    2016-01-01

    The aim of this exploratory study was to learn about the misconceptions that may arise for elementary and high school science teachers in their reflections on science and engineering practice. Using readings and videos of real science and engineering work, teachers' reflections were used to uncover the underpinnings of their understandings. This…

  2. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  3. Genetic tool development and systemic regulation in biosynthetic technology.

    PubMed

    Dai, Zhongxue; Zhang, Shangjie; Yang, Qiao; Zhang, Wenming; Qian, Xiujuan; Dong, Weiliang; Jiang, Min; Xin, Fengxue

    2018-01-01

    With the increased development in research, innovation, and policy interest in recent years, biosynthetic technology has developed rapidly, which combines engineering, electronics, computer science, mathematics, and other disciplines based on classical genetic engineering and metabolic engineering. It gives a wider perspective and a deeper level to perceive the nature of life via cell mechanism, regulatory networks, or biological evolution. Currently, synthetic biology has made great breakthrough in energy, chemical industry, and medicine industries, particularly in the programmable genetic control at multiple levels of regulation to perform designed goals. In this review, the most advanced and comprehensive developments achieved in biosynthetic technology were represented, including genetic engineering as well as synthetic genomics. In addition, the superiority together with the limitations of the current genome-editing tools were summarized.

  4. Science and Engineering Indicators 2010

    ERIC Educational Resources Information Center

    National Science Foundation, 2010

    2010-01-01

    The Science Indicators series was designed to provide a broad base of quantitative information about U.S. science, engineering, and technology for use by policymakers, researchers, and the general public. "Science and Engineering Indicators 2010" contains analyses of key aspects of the scope, quality, and vitality of the Nation's science…

  5. USNCTAM perspectives on mechanics in medicine

    PubMed Central

    Bao, Gang; Bazilevs, Yuri; Chung, Jae-Hyun; Decuzzi, Paolo; Espinosa, Horacio D.; Ferrari, Mauro; Gao, Huajian; Hossain, Shaolie S.; Hughes, Thomas J. R.; Kamm, Roger D.; Liu, Wing Kam; Marsden, Alison; Schrefler, Bernhard

    2014-01-01

    Over decades, the theoretical and applied mechanics community has developed sophisticated approaches for analysing the behaviour of complex engineering systems. Most of these approaches have targeted systems in the transportation, materials, defence and energy industries. Applying and further developing engineering approaches for understanding, predicting and modulating the response of complicated biomedical processes not only holds great promise in meeting societal needs, but also poses serious challenges. This report, prepared for the US National Committee on Theoretical and Applied Mechanics, aims to identify the most pressing challenges in biological sciences and medicine that can be tackled within the broad field of mechanics. This echoes and complements a number of national and international initiatives aiming at fostering interdisciplinary biomedical research. This report also comments on cultural/educational challenges. Specifically, this report focuses on three major thrusts in which we believe mechanics has and will continue to have a substantial impact. (i) Rationally engineering injectable nano/microdevices for imaging and therapy of disease. Within this context, we discuss nanoparticle carrier design, vascular transport and adhesion, endocytosis and tumour growth in response to therapy, as well as uncertainty quantification techniques to better connect models and experiments. (ii) Design of biomedical devices, including point-of-care diagnostic systems, model organ and multi-organ microdevices, and pulsatile ventricular assistant devices. (iii) Mechanics of cellular processes, including mechanosensing and mechanotransduction, improved characterization of cellular constitutive behaviour, and microfluidic systems for single-cell studies. PMID:24872502

  6. Multiple case studies of STEM teachers' orientations to science teaching through engineering design

    NASA Astrophysics Data System (ADS)

    Rupp, Madeline

    The following master's thesis is composed of two manuscripts describing STEM teachers' orientations to science teaching through engineering within the context of the Science Learning through Engineering Design (SLED) partnership. The framework guiding both studies was science teaching orientations, a component of pedagogical content knowledge. Data were collected via semi-structured interviews, multi-day classroom observations, pre- and post-observation interviews, implementation plans, and written reflections. Data sources were analyzed to generate two orientations to science teaching through engineering design for each participant. The first manuscript illustrates a single case study conducted with a sixth grade STEM teacher. Results of this study revealed a detailed picture of the teacher's goals, practices, assessments, and general views when teaching science through engineering design. Common themes across the teacher's instruction were used to characterize her orientations to science teaching through engineering design. Overall, the teacher's orientations showed a shift in her practice from didactic to student-centered methods of teaching as a result of integrating engineering design-based curriculum. The second manuscript describes a comparative case study of two sixth grade SLED participants. Results of this study revealed more complex and diverse relationships between the teachers' orientations to teaching science through engineering design and their instruction. Participants' orientations served as filters for instruction, guided by their divergent purposes for science teaching. Furthermore, their orientations and resulting implementation were developed from knowledge gained in teacher education, implying that teacher educators and researchers can use this framework to learn more about how teachers' knowledge is used to integrate engineering and science practices in the K-12 classroom.

  7. STEM Integration in Middle School Life Science: Student Learning and Attitudes

    NASA Astrophysics Data System (ADS)

    Guzey, S. Selcen; Moore, Tamara J.; Harwell, Michael; Moreno, Mario

    2016-08-01

    In many countries around the world, there has been an increasing emphasis on improving science education. Recent reform efforts in the USA call for teachers to integrate scientific and engineering practices into science teaching; for example, science teachers are asked to provide learning experiences for students that apply crosscutting concepts (e.g., patterns, scale) and increase understanding of disciplinary core ideas (e.g., physical science, earth science). Engineering practices and engineering design are essential elements of this new vision of science teaching and learning. This paper presents a research study that evaluates the effects of an engineering design-based science curriculum on student learning and attitudes. Three middle school life science teachers and 275 seventh grade students participated in the study. Content assessments and attitude surveys were administered before and after the implementation of the curriculum unit. Statewide mathematics test proficiency scores were included in the data analysis as well. Results provide evidence of the positive effects of implementing the engineering design-based science unit on student attitudes and learning.

  8. Cumulative reports and publications

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A complete list of Institute for Computer Applications in Science and Engineering (ICASE) reports are listed. Since ICASE reports are intended to be preprints of articles that will appear in journals or conference proceedings, the published reference is included when it is available. The major categories of the current ICASE research program are: applied and numerical mathematics, including numerical analysis and algorithm development; theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustics and combustion; experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and computer science.

  9. Biological materials: a materials science approach.

    PubMed

    Meyers, Marc A; Chen, Po-Yu; Lopez, Maria I; Seki, Yasuaki; Lin, Albert Y M

    2011-07-01

    The approach used by Materials Science and Engineering is revealing new aspects in the structure and properties of biological materials. The integration of advanced characterization, mechanical testing, and modeling methods can rationalize heretofore unexplained aspects of these structures. As an illustration of the power of this methodology, we apply it to biomineralized shells, avian beaks and feathers, and fish scales. We also present a few selected bioinspired applications: Velcro, an Al2O3-PMMA composite inspired by the abalone shell, and synthetic attachment devices inspired by gecko. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Phillips with probe-and-cone docking mechanism (StM) in the Zvezda module

    NASA Image and Video Library

    2005-06-19

    ISS011-E-09205 (19 June 2005) --- Astronaut John L. Phillips, Expedition 11 NASA ISS science officer and flight engineer, works on the dismantled probe-and-cone docking mechanism from the Progress 18 spacecraft in the Zvezda Service Module of the International Space Station (ISS). The Progress docked to the aft port of the Service Module at 7:42 p.m. (CDT) as the two spacecraft flew approximately 225 statute miles, above a point near Beijing, China.

  11. GaAs-based micro/nanomechanical resonators

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hiroshi

    2017-10-01

    Micro/nanomechanical resonators have been extensively studied both for device applications, such as high-performance sensors and high-frequency devices, and for fundamental science, such as quantum physics in macroscopic objects. The advantages of GaAs-based semiconductor heterostructures include improved mechanical properties through strain engineering, highly controllable piezoelectric transduction, carrier-mediated optomechanical coupling, and hybridization with quantum low-dimensional structures. This article reviews our recent activities, as well as those of other groups, on the physics and applications of mechanical resonators fabricated using GaAs-based heterostructures.

  12. Benefiting Female Students in Science, Math, and Engineering: The Nuts and Bolts of Establishing a WISE (Women in Science and Engineering) Learning Community

    ERIC Educational Resources Information Center

    Pace, Diana; Witucki, Laurie; Blumreich, Kathleen

    2008-01-01

    This paper describes the rationale and the step by step process for setting up a WISE (Women in Science and Engineering) learning community at one institution. Background information on challenges for women in science and engineering and the benefits of a learning community for female students in these major areas are described. Authors discuss…

  13. Engineering Protein Hydrogels Using SpyCatcher-SpyTag Chemistry.

    PubMed

    Gao, Xiaoye; Fang, Jie; Xue, Bin; Fu, Linglan; Li, Hongbin

    2016-09-12

    Constructing hydrogels from engineered proteins has attracted significant attention within the material sciences, owing to their myriad potential applications in biomedical engineering. Developing efficient methods to cross-link tailored protein building blocks into hydrogels with desirable mechanical, physical, and functional properties is of paramount importance. By making use of the recently developed SpyCatcher-SpyTag chemistry, we successfully engineered protein hydrogels on the basis of engineered tandem modular elastomeric proteins. Our resultant protein hydrogels are soft but stable, and show excellent biocompatibility. As the first step, we tested the use of these hydrogels as a drug carrier, as well as in encapsulating human lung fibroblast cells. Our results demonstrate the robustness of the SpyCatcher-SpyTag chemistry, even when the SpyTag (or SpyCatcher) is flanked by folded globular domains. These results demonstrate that SpyCatcher-SpyTag chemistry can be used to engineer protein hydrogels from tandem modular elastomeric proteins that can find applications in tissue engineering, in fundamental mechano-biological studies, and as a controlled drug release vehicle.

  14. 75 FR 14128 - Center for Nanoscale Science and Technology Postdoctoral Researcher and Visiting Fellow...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ... Measurement Science and Engineering Program; Availability of Funds AGENCY: National Institute of Standards and... Measurement Science and Engineering Program. This program is intended to promote research, training, and... Visiting Fellow Measurement Science and Engineering Program are as follows: 1. To advance, through...

  15. Science & Engineering Indicators 2016. National Science Board

    ERIC Educational Resources Information Center

    National Science Foundation, 2016

    2016-01-01

    "Science and Engineering Indicators" (SEI) is first and foremost a volume of record comprising high-quality quantitative data on the U.S. and international science and engineering enterprise. SEI includes an overview and seven chapters that follow a generally consistent pattern. The chapter titles are as follows: (1) Elementary and…

  16. 78 FR 64255 - Committee on Equal Opportunities in Science and Engineering; Cancellation of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    ... NATIONAL SCIENCE FOUNDATION Committee on Equal Opportunities in Science and Engineering; Cancellation of Meeting SUMMARY: As a result of the impact of the recent government shutdown, the National... in Science and Engineering meeting. The public notice for this committee was published in the Federal...

  17. 78 FR 64255 - Advisory Committee for Computer and Information Science and Engineering; Cancellation of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Computer and Information Science and Engineering; Cancellation of Meeting SUMMARY: As a result of the impact of the recent government shutdown, the... Committee for Computer and Information Science and Engineering meeting. The public notice for this committee...

  18. 34 CFR 637.2 - Who is eligible to receive a grant?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM General § 637.2 Who... defined in § 637.4; (3) Have a curriculum that includes science or engineering subjects; and (4) Enter... baccalaureate degrees in science and engineering. (c) Nonprofit science-oriented organizations, professional...

  19. 34 CFR 637.2 - Who is eligible to receive a grant?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM General § 637.2 Who... defined in § 637.4; (3) Have a curriculum that includes science or engineering subjects; and (4) Enter... baccalaureate degrees in science and engineering. (c) Nonprofit science-oriented organizations, professional...

  20. 34 CFR 637.2 - Who is eligible to receive a grant?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM General § 637.2 Who... defined in § 637.4; (3) Have a curriculum that includes science or engineering subjects; and (4) Enter... baccalaureate degrees in science and engineering. (c) Nonprofit science-oriented organizations, professional...

  1. 34 CFR 637.2 - Who is eligible to receive a grant?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM General § 637.2 Who... defined in § 637.4; (3) Have a curriculum that includes science or engineering subjects; and (4) Enter... baccalaureate degrees in science and engineering. (c) Nonprofit science-oriented organizations, professional...

  2. 34 CFR 637.2 - Who is eligible to receive a grant?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM General § 637.2 Who... defined in § 637.4; (3) Have a curriculum that includes science or engineering subjects; and (4) Enter... baccalaureate degrees in science and engineering. (c) Nonprofit science-oriented organizations, professional...

  3. Fincke inside the Progress Vehicle with open SM/Progress transfer hatch during Expedition 9

    NASA Image and Video Library

    2004-08-14

    ISS009-E-18533 (14 August 2004) --- Astronaut Edward M. (Mike) Fincke, Expedition 9 NASA ISS science officer and flight engineer, appears behind the probe-and-cone mechanism on the hatch of the Progress 15 supply vehicle docked to the aft port on the Zvezda Service Module of the International Space Station (ISS).

  4. Demonstration Experiments for Solid-State Physics Using a Table-Top Mechanical Stirling Refrigerator

    ERIC Educational Resources Information Center

    Osorio, M. R.; Morales, A. Palacio; Rodrigo, J. G.; Suderow, H.; Vieira, S.

    2012-01-01

    Liquid-free cryogenic devices are acquiring importance in basic science and engineering. But they can also lead to improvements in teaching low temperature and solid-state physics to graduate students and specialists. Most of the devices are relatively expensive, but small-sized equipment is slowly becoming available. Here, we have designed…

  5. From Senior Student to Novice Worker: Learning Trajectories in Political Science, Psychology and Mechanical Engineering

    ERIC Educational Resources Information Center

    Dahlgren, Madeleine Abrandt; Hult, Hakan; Dahlgren, Lars Owe; Hard af Segerstad, Helene; Johansson, Kristina

    2006-01-01

    This longitudinal study focuses on the transition from higher education to working life. Research has hitherto described the transition in rather general terms, and there is still only limited knowledge about how graduates construe themselves as professionals, or how they experience the transition to the sociocultural contexts of working life. In…

  6. Carl Hempel's Philosophy of Science: How to Avoid Epistemic Discontinuity and Pedagogical Pitfalls

    ERIC Educational Resources Information Center

    Vemulapalli, G. Krishna; Byerly, Henry C.

    2004-01-01

    Mathematical theories are essential for explanations in physics, chemistry and engineering. These theories often incorporate functions that are defined by the irrelation to other variables in the theory but not with reference to experimental observations. The wave function in quantum mechanics is perhaps one of the best known example of such…

  7. From engineering hydrology to Earth system science: milestones in the transformation of hydrologic science

    NASA Astrophysics Data System (ADS)

    Sivapalan, Murugesu

    2018-03-01

    Hydrology has undergone almost transformative changes over the past 50 years. Huge strides have been made in the transition from early empirical approaches to rigorous approaches based on the fluid mechanics of water movement on and below the land surface. However, progress has been hampered by problems posed by the presence of heterogeneity, including subsurface heterogeneity present at all scales. The inability to measure or map the heterogeneity everywhere prevented the development of balance equations and associated closure relations at the scales of interest, and has led to the virtual impasse we are presently in, in terms of development of physically based models needed for hydrologic predictions. An alternative to the mapping of heterogeneity everywhere is a new Earth system science view, which sees the heterogeneity as the end result of co-evolutionary hydrological, geomorphological, ecological, and pedological processes, each operating at a different rate, which help to shape the landscapes that we find in nature, including the heterogeneity that we do not readily see. The expectation is that instead of specifying exact details of the heterogeneity in our models, we can replace it (without loss of information) with the ecosystem function that they perform. Guided by this new Earth system science perspective, development of hydrologic science is now addressing new questions using novel holistic co-evolutionary approaches as opposed to the physical, fluid mechanics based reductionist approaches that we inherited from the recent past. In the emergent Anthropocene, the co-evolutionary view has expanded further to involve interactions and feedbacks with human-social processes as well. In this paper, I present my own perspective of key milestones in the transformation of hydrologic science from engineering hydrology to Earth system science, drawn from the work of several students and colleagues of mine, and discuss their implication for hydrologic observations, theory development, and predictions.

  8. Optical Science and Engineering. New Directions and Opportunities in Research and Education. NSF Workshop (Arlington, VA, May 23-24, 1994).

    ERIC Educational Resources Information Center

    National Science Foundation, Arlington, VA.

    The National Science Foundation (NSF) workshop on Optical Science and Engineering was organized to examine approaches NSF could use to identify opportunities in optical science, engineering, and education that meet both the mission of NSF and its broader national goals. The workshop participants identified opportunities where optical science and…

  9. Does it matter what we call it?

    USDA-ARS?s Scientific Manuscript database

    Agronomy, soil science, plant science, crop science, agricultural science, computer science, environmental science, environmental engineering, agricultural and irrigation engineering, hydrology, meteorology – all are names that describe fields of study relevant to agriculture and the environment in ...

  10. Kenneth J. Szalai

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Kenneth J. Szalai is Director of the NASA Hugh L. Dryden Flight Research Center, Edwards, California. He was named Center director in January 1994 assuming the position on March 1, 1994. Before that, he served as Ames-Dryden Deputy Center Director and Director of the Dryden Flight Research Facility from December 3, 1990, to March 1, 1994. Ken began his NASA career at Dryden in 1964 following graduation from the University of Wisconsin with a bachelor of science degree in electrical engineering. He also received a master of science degree in mechanical engineering from the University of Southern California in 1970. Szalai was principal investigator on the F-8 Digital Fly-By-Wire program, which successfully flew the first aircraft equipped with a digital electronic flight control system without any mechanical reversion capability. He has worked in various technical and management positions on such programs as the F-111 IPCS, AFTI/F-16, HiMAT, F-15 DEEC, F-15 HIDEC, X-29, X-31, F-16XL Laminar Flow, Space Shuttle Orbiter, Pathfinder Solar Powered Aircraft, SR-71 Sonic Boom, F-15 and MD-11 Propulsion Controlled Aircraft, X-33, and X-38. Szalai has authored over 25 papers and reports and has been a lecturer for the NATO Advisory Group for Aeronautical Research and Development (AGARD). He has served on various technical committees and subcommittees for the American Institute of Aeronautics and Astronautics (AIAA) and Society of Automotive Engineers (SAE). Szalai, a Fellow of the AIAA, also served on the National Academy of Science's 'Aeronautics-2000' study. Among the awards Szalai has received are NASA's Exceptional Service Medal, the NASA Outstanding Leadership Medal, and the Presidential Meritorious and Distinguished Rank Awards.

  11. Hierarchy curriculum for practical skills training in optics and photonics

    NASA Astrophysics Data System (ADS)

    Zheng, XiaoDong; Wang, XiaoPing; Liu, Xu; Liu, XiangDong; Lin, YuanFang

    2017-08-01

    The employers in optical engineering fields hope to recruit students who are capable of applying optical principles to solve engineering problems and have strong laboratory skills. In Zhejiang University, a hierarchy curriculum for practical skill training has been constructed to satisfy this demand. This curriculum includes "Introductive practicum" for freshmen, "Opto-mechanical systems design", "Engineering training", "Electronic system design", "Student research training program (SRTP)", "National University Students' Optical-Science-Technology Competition game", and "Offcampus externship". Without cutting optical theory credit hours, this hierarchy curriculum provides a step-by-step solution to enhance students' practical skills. By following such a hierarchy curriculum, students can smoothly advance from a novice to a qualified professional expert in optics. They will be able to utilize optical engineering tools to design, build, analyze, improve, and test systems, and will be able to work effectively in teams to solve problems in engineering and design.

  12. The role of a creative "joint assignment" project in biomedical engineering bachelor degree education.

    PubMed

    Jiehui Jiang; Yuting Zhang; Mi Zhou; Xiaosong Zheng; Zhuangzhi Yan

    2017-07-01

    Biomedical Engineering (BME) bachelor education aims to train qualified engineers who devote themselves to addressing biological and medical problems by integrating the technological, medical and biological knowledge. Design thinking and teamwork with other disciplines are necessary for biomedical engineers. In the current biomedical engineering education system of Shanghai University (SHU), however, such design thinking and teamwork through a practical project is lacking. This paper describes a creative "joint assignment" project in Shanghai University, China, which has provided BME bachelor students a two-year practical experience to work with students from multidisciplinary departments including sociology, mechanics, computer sciences, business and art, etc. To test the feasibility of this project, a twenty-month pilot project has been carried out from May 2015 to December 2016. The results showed that this pilot project obviously enhanced competitive power of BME students in Shanghai University, both in the capabilities of design thinking and teamwork.

  13. Reaching Students: What Research Says about Effective Instruction in Undergraduate Science and Engineering

    ERIC Educational Resources Information Center

    Kober, Nancy

    2015-01-01

    The undergraduate years are a turning point in producing scientifically literate citizens and future scientists and engineers. Evidence from research about how students learn science and engineering shows that teaching strategies that motivate and engage students will improve their learning. So how do students best learn science and engineering?…

  14. A Global Assessment of Stem Cell Engineering

    PubMed Central

    Loring, Jeanne F.; McDevitt, Todd C.; Palecek, Sean P.; Schaffer, David V.; Zandstra, Peter W.

    2014-01-01

    Over the last 2 years a global assessment of stem cell engineering (SCE) was conducted with the sponsorship of the National Science Foundation, the National Cancer Institute at the National Institutes of Health, and the National Institute of Standards and Technology. The purpose was to gather information on the worldwide status and trends in SCE, that is, the involvement of engineers and engineering approaches in the stem cell field, both in basic research and in the translation of research into clinical applications and commercial products. The study was facilitated and managed by the World Technology Evaluation Center. The process involved site visits in both Asia and Europe, and it also included several different workshops. From this assessment, the panel concluded that there needs to be an increased role for engineers and the engineering approach. This will provide a foundation for the generation of new markets and future economic growth. To do this will require an increased investment in engineering, applied research, and commercialization as it relates to stem cell research and technology. It also will require programs that support interdisciplinary teams, new innovative mechanisms for academic–industry partnerships, and unique translational models. In addition, the global community would benefit from forming strategic partnerships between countries that can leverage existing and emerging strengths in different institutions. To implement such partnerships will require multinational grant programs with appropriate review mechanisms. PMID:24428577

  15. A global assessment of stem cell engineering.

    PubMed

    Loring, Jeanne F; McDevitt, Todd C; Palecek, Sean P; Schaffer, David V; Zandstra, Peter W; Nerem, Robert M

    2014-10-01

    Over the last 2 years a global assessment of stem cell engineering (SCE) was conducted with the sponsorship of the National Science Foundation, the National Cancer Institute at the National Institutes of Health, and the National Institute of Standards and Technology. The purpose was to gather information on the worldwide status and trends in SCE, that is, the involvement of engineers and engineering approaches in the stem cell field, both in basic research and in the translation of research into clinical applications and commercial products. The study was facilitated and managed by the World Technology Evaluation Center. The process involved site visits in both Asia and Europe, and it also included several different workshops. From this assessment, the panel concluded that there needs to be an increased role for engineers and the engineering approach. This will provide a foundation for the generation of new markets and future economic growth. To do this will require an increased investment in engineering, applied research, and commercialization as it relates to stem cell research and technology. It also will require programs that support interdisciplinary teams, new innovative mechanisms for academic-industry partnerships, and unique translational models. In addition, the global community would benefit from forming strategic partnerships between countries that can leverage existing and emerging strengths in different institutions. To implement such partnerships will require multinational grant programs with appropriate review mechanisms.

  16. 32 CFR 22.105 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... knowledge and understanding in science and engineering, rather than the practical application of that... part, basic research includes: (1) Research-related, science and engineering education, including... to enhance the infrastructure for science and engineering research. Claim. A written demand or...

  17. 32 CFR 22.105 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... knowledge and understanding in science and engineering, rather than the practical application of that... part, basic research includes: (1) Research-related, science and engineering education, including... to enhance the infrastructure for science and engineering research. Claim. A written demand or...

  18. 32 CFR 22.105 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... knowledge and understanding in science and engineering, rather than the practical application of that... part, basic research includes: (1) Research-related, science and engineering education, including... to enhance the infrastructure for science and engineering research. Claim. A written demand or...

  19. 32 CFR 22.105 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... knowledge and understanding in science and engineering, rather than the practical application of that... part, basic research includes: (1) Research-related, science and engineering education, including... to enhance the infrastructure for science and engineering research. Claim. A written demand or...

  20. The role of ethics in science and engineering.

    PubMed

    Johnson, Deborah G

    2010-12-01

    It is generally thought that science and engineering should never cross certain ethical lines. The idea connects ethics to science and engineering, but it frames the relationship in a misleading way. Moral notions and practices inevitably influence and are influenced by science and engineering. The important question is how such interactions should take place. Anticipatory ethics is a new approach that integrates ethics into technological development. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Nanomaterials and nanofabrication for biomedical applications

    NASA Astrophysics Data System (ADS)

    Cheng, Chao-Min; Chia-Wen Wu, Kevin

    2013-08-01

    Traditional boundaries between materials science and engineering and life sciences are rapidly disintegrating as interdisciplinary research teams develop new materials-science-based tools for exploring fundamental issues in both medicine and biology. With recent technological advances in multiple research fields such as materials science, cell and molecular biology and micro-/nano-technology, much attention is shifting toward evaluating the functional advantages of nanomaterials and nanofabrication, at the cellular and molecular levels, for specific, biomedically relevant applications. The pursuit of this direction enhances the understanding of the mechanisms of, and therapeutic potentials for, some of the most lethal diseases, including cardiovascular diseases, organ fibrosis and cancers. This interdisciplinary approach has generated great interest among researchers working in a wide variety of communities including industry, universities and research laboratories. The purpose of this focus issue in Science and Technology of Advanced Materials is to bridge nanotechnology and biology with medicine, focusing more on the applications of nanomaterials and nanofabrication in biomedically relevant issues. This focus issue, we believe, will provide a more comprehensive understanding of (i) the preparation of nanomaterials and the underlying mechanisms of nanofabrication, and (ii) the linkage of nanomaterials and nanofabrication with biomedical applications. The multidisciplinary focus issue that we have attempted to organize is of interest to various research fields including biomaterials and tissue engineering, bioengineering, nanotechnology and nanomaterials, i.e. chemistry, physics and engineering. Nanomaterials and nanofabrication topics addressed in this focus issue include sensing and diagnosis (e.g. immunosensing and diagnostic devices for diseases), cellular and molecular biology (e.g. probing cellular behaviors and stem cell differentiation) and drug delivery carriers (e.g. polymers, gold nanoparticles, Prussian blue nanoparticles, mesoporous silica nanoparticles and carbon-based nanomaterials). Here, we would like to show our deep appreciation to all authors and reviewers. Without their great help and contributions, this focus issue, including the review and original papers, would not have been published on schedule. This focus issue may not cover all issues in this emerging scientific field; however, we believe that our efforts have great potential 'to hurl a boulder to draw a jade' and ignite innovation and challenging discussion in the relevant scientific communities.

  2. Atomistic modeling of BN nanofillers for mechanical and thermal properties: a review.

    PubMed

    Kumar, Rajesh; Parashar, Avinash

    2016-01-07

    Due to their exceptional mechanical properties, thermal conductivity and a wide band gap (5-6 eV), boron nitride nanotubes and nanosheets have promising applications in the field of engineering and biomedical science. Accurate modeling of failure or fracture in a nanomaterial inherently involves coupling of atomic domains of cracks and voids as well as a deformation mechanism originating from grain boundaries. This review highlights the recent progress made in the atomistic modeling of boron nitride nanofillers. Continuous improvements in computational power have made it possible to study the structural properties of these nanofillers at the atomistic scale.

  3. Projections of Science and Engineering Doctorate Supply and Utilization 1982 and 1987.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Div. of Science Resources Studies.

    This report represents the National Science Foundation's fourth projection analysis of science and engineering doctorate supply and utilization through 1987. The 1979 study incorporates the effect of the domestic market for highly trained science and engineering (S/E) personnel upon the numbers of S/E doctorates awarded by American universities.…

  4. Student Interest in Engineering Design-Based Science

    ERIC Educational Resources Information Center

    Selcen Guzey, S.; Moore, Tamara J.; Morse, Gillian

    2016-01-01

    Current reform efforts in science education around the world call on teachers to use integrated approaches to teach science. As a part of such reform efforts in the United States, engineering practices and engineering design have been identified in K-12 science education standards. However, there is relatively little is known about effective ways…

  5. 78 FR 61870 - Advisory Committee for Computer and Information Science and Engineering; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-04

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Computer and Information Science and Engineering; Notice of Meeting In accordance with Federal Advisory Committee Act (Pub. L. 92-463, as amended... Committee for Computer and Information Science and Engineering (1115). Date/Time: Oct 31, 2013: 12:30 p.m...

  6. 78 FR 79014 - Advisory Committee for Computer and Information Science and Engineering Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Computer and Information Science and Engineering Notice of Meeting In accordance with Federal Advisory Committee Act (Pub. L. 92-463, as amended... and Information Science and Engineering (1115) DATE/TIME: January 14, 2014, 3:00 p.m. to 5:00 p.m...

  7. Mentor awards

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The Association of Women in Science (AWIS) and the American Indian Science and Engineering Society (AISES) were two of 19 institutions and individuals that received presidential awards for excellence in science, mathematics, and engineering mentoring, on September 11.Neal Lane, Director of the National Science Foundation, says the awards, which include $10,000 grants, recognize “individuals and institutions working to heighten the participation of underrepresented groups in science, mathematics, and engineering.”

  8. Deconvolution of the role of metal and pH in metal coordinating polymers

    NASA Astrophysics Data System (ADS)

    Cazzell, Seth; Holten-Andersen, Niels

    Nature uses metal binding amino acids to engineer both mechanical properties and structural functionality. Some examples of this metal binding behavior can be found in both mussel foot protein and DNA binding protein. The mussel byssal thread contains reversible intermolecular protein-metal bonds, allowing it to withstand harsh intertidal environments. Zinc fingers form intramolecular protein-metal bonds to stabilize the tertiary structure of DNA binding proteins, allowing specific structural functionality. Inspired by both these metal-binding materials, we present mechanical and spectroscopic characterization of a model polymer system, designed to mimic this bonding. Through these studies, we are able to answer fundamental polymer physics questions, such as the role of pH and metal to ligand ratio, illuminating both the macroscopic and microscopic material behavior. These understandings further bio-inspired engineering techniques that are used to design viscoelastic soft materials. I was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  9. FlowGo: An Educational Kit for Fluid Dynamics and Heat Transfer

    NASA Astrophysics Data System (ADS)

    Guri, Dominic; Portsmore, Merredith; Kemmerling, Erica

    2015-11-01

    The authors have designed and prototyped an educational toolkit that will help middle-school-aged students learn fundamental fluid mechanics and heat transfer concepts in a hands-on play environment. The kit allows kids to build arbitrary flow rigs to solve fluid mechanics and heat transfer challenge problems. Similar kits for other engineering fields, such as structural and electrical engineering, have resulted in pedagogical improvements, particularly in early engineering education, where visual demonstrations have a significant impact. Using the FlowGo kit, students will be able to conduct experiments and develop new design ideas to solve challenge problems such as building plant watering systems or modeling water and sewage reticulation. The toolkit consists of components such as tubes, junctions, and reservoirs that easily snap together via a modular, universal connector. Designed with the Massachusetts K-12 science standards in mind, this kit is intended to be affordable and suitable for classroom use. Results and user feedback from students conducting preliminary tests of the kit will be presented.

  10. 78 FR 32474 - Agency Information Collection Activities: Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-30

    ...; Programs to strengthen scientific and engineering research potential; Science and engineering education... support applied research was added to the Organic Act. In 1980, The Science and Engineering Equal... NATIONAL SCIENCE FOUNDATION Agency Information Collection Activities: Comment Request AGENCY...

  11. 77 FR 31401 - Agency Information Collection Activities: Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ...; Programs to strengthen scientific and engineering research potential; Science and engineering education... support applied research was added to the Organic Act. In 1980, The Science and Engineering Equal... NATIONAL SCIENCE FOUNDATION Agency Information Collection Activities: Comment Request AGENCY...

  12. 76 FR 20051 - Advisory Committee for Computer and Information; Science and Engineering; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-11

    ... Engineering; Notice of Meeting In accordance with the Federal Advisory Committee Act (Pub. L. 92- 463, as... Committee for Computer and Information Science and Engineering--(1115). Date and Time: May 6, 2011 8:30 a.m... Engineering, National Science Foundation, 4201 Wilson Blvd., Suite 1105, Arlington, VA 22230. Telephone: (703...

  13. From Scarcity to Visibility: Gender Differences in the Careers of Doctoral Scientists and Engineers.

    ERIC Educational Resources Information Center

    Long, J. Scott, Ed.

    This study documents the changes that have occurred in the representation of women in science and engineering and the characteristics of women scientists and engineers. Data from two National Science Foundation databases, the Survey of Earned Doctorates for New Ph.D.s and the Survey of Doctoral Recipients for the science & engineering doctoral…

  14. Biomedical Engineering | Classification | College of Engineering & Applied

    Science.gov Websites

    Engineering, Biomedical Engineering(414) 229-6614wjchang@uwm.eduEng & Math Sciences 1113 profile photo Malkoc, Ph.D.Visiting Assistant ProfessorBiomedical Engineering414-229-6919malkoc@uwm.eduEng & Math Engineering / Electrical Engineering(414) 229-3327misra@uwm.eduEng & Math Sciences E-314 profile photo

  15. Recruitment and Retention of Indians in Science and Engineering (RISE)

    NASA Technical Reports Server (NTRS)

    Karnawat, Sunil

    1997-01-01

    Fifteen students from Turtle Mountain Community College were selected to participate in activities of the RISE project last summer. Eight students successfully completed project activities and received stipends for their participation. These eight students are (1) Jamie Gable, (2) John Morin, (3) Patrick Belgarde, (4) Jason Laducer, (5) Alex Johnson, (6) Eric Houle, (7) Gary Renault, and (8) Kenny DeCoteau. In the fall of 1998, Jamie Gable and Gary Renault went to North Dakota State University to pursue their undergraduate degrees in mechanical engineering, and John Morin and Alex Johnson joined the University of North Dakota's electrical engineering and industrial technology programs, respectively. Remaining four students will continue to participate in the RISE activities this year and transfer to the universities next year. Seven students who failed to complete the RISE project activities during the current award period are encouraged to participate again this fall. The RISE students were enrolled in a special course called "Introduction to Engineering Materials." The project director, Dr. Kamawat, taught the course on Saturdays and Sundays. Theoretical and mathematical background on engineering materials and careers in various engineering professions were discussed in this course. The students attended guest lectures given by engineers and professors and visited local industries. In addition, the students went to North Dakota State University (NDSU) at Fargo, ND, and the University of Minnesota (UMN) at Minneapolis, MN, to tour their engineering departments. At NDSU, they conducted laboratory tests on various engineering materials, such as concrete, steel, wood, plastics, and carbon composites. The students investigated the mechanical behavior of these materials under various loading conditions, collected data, interpreted data, identified possible errors, determined the mechanical properties, and wrote reports on their findings. The students created posters describing their results on the behavior of engineering material. The posters were displayed in the TMCC's student lounge.

  16. Atlas Career Path Guidebook: Patterns and Common Practices in Systems Engineers’ Development

    DTIC Science & Technology

    2018-01-16

    Overview of Atlas Proficiency Model .............................................................................. 68 5.1.2. Math /Science/General... Math /Science/General Engineering ................................ 72 Figure 42. Distribution for individuals with highest proficiency self...assessment in Math /Science/General Engineering ..................................................................................... 73 Figure 43

  17. Final Progress Report for Award DE-FG07-05ID14637.pdf

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cathy Dixon

    2012-03-09

    2004-2011 Final Report for AFCI University Fellowship Program. The goal of this effort was to be supportive of university students and university programs - particularly those students and programs that will help to strengthen the development of nuclear-related fields. The program also supported the stability of the nuclear infrastructure and developed research partnerships that are helping to enlarge the national nuclear science technology base. In this fellowship program, the U.S. Department of Energy sought master's degree students in nuclear, mechanical, or chemical engineering, engineering/applied physics, physics, chemistry, radiochemistry, or fields of science and engineering applicable to the AFCI/Gen IV/GNEP missionsmore » in order to meet future U.S. nuclear program needs. The fellowship program identified candidates and selected full time students of high-caliber who were taking nuclear courses as part of their degree programs. The DOE Academic Program Managers encouraged fellows to pursue summer internships at national laboratories and supported the students with appropriate information so that both the fellows and the nation's nuclear energy objectives were successful.« less

  18. Altus II high altitude science aircraft decending toward U.S. Navy's Pacific Missile Range Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Altus II descending from a flight over Kauai, Hawaii. The Altus II was flown as a performance and propulsion testbed for future high-altitude science platform aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program at the Dryden Flight Research Center, Edwards, Calif. The rear-engined Altus II and its sister ship, the Altus I, were built by General Atomics/Aeronautical Systems, Inc., of San Diego, Calif. They are designed for high-altitude, long-duration scientific sampling missions, and are powered by turbocharged piston engines. The Altus I, built for the Naval Postgraduate School, reached over 43,500 feet with a single-stage turbocharger feeding its four-cylinder Rotax engine in 1997, while the Altus II, incorporating a two-stage turbocharger built by Thermo-Mechanical Systems, reached and sustained an altitudeof 55,000 feet for four hours in 1999. A pilot in a control station on the ground flies the craft by radio signals, using visual cues from a video camera in the nose of the Altus and information from the craft's air data system.

  19. Altus II high altitude science aircraft decending toward U.S. Navy's Pacific Missile Range Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Altus II descends towards the Navy's Pacific Missile Range Facility, Kauai, Hawaii. The Altus II was flown as a performance and propulsion testbed for future high-altitude science platform aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program at the Dryden Flight Research Center, Edwards, Calif. The rear-engined Altus II and its sister ship, the Altus I, were built by General Atomics/Aeronautical Systems, Inc., of San Diego, Calif. They are designed for high-altitude, long-duration scientific sampling missions, and are powered by turbocharged piston engines. The Altus I, built for the Naval Postgraduate School, reached over 43,500 feet with a single-stage turbocharger feeding its four-cylinder Rotax engine in 1997, while the Altus II, incorporating a two-stage turbocharger built by Thermo-Mechanical Systems, reached and sustained an altitudeof 55,000 feet for four hours in 1999. A pilot in a control station on the ground flies the craft by radio signals, using visual cues from a video camera in the nose of the Altus and information from the craft's air data system.

  20. Sandia National Laboratories: Exceptional Service in the National Interest

    Science.gov Websites

    Electromagnetics Engineering Science Geoscience Materials Science Nanodevices & Microsystems Radiation Effects Electromagnetics Engineering Science Geoscience Materials Science Nanodevices & Microsystems Radiation Effects Geoscience Materials Science Nanodevices & Microsystems Radiation Effects & High Energy Density

  1. Myths and Motives behind STEM (Science, Technology, Engineering, and Mathematics) Education and the STEM-Worker Shortage Narrartive

    ERIC Educational Resources Information Center

    Stevenson, Heidi J.

    2014-01-01

    The Business Roundtable (2013) website presents a common narrative in regard to STEM (Science, Technology, Engineering and Mathematics) education, "American students are falling behind in math and science. Fewer and fewer students are pursuing careers in science, technology, engineering and mathematics, and American students are performing at…

  2. Characterizing Elementary Teachers' Enactment of High-Leverage Practices through Engineering Design-Based Science Instruction

    ERIC Educational Resources Information Center

    Capobianco, Brenda M.; DeLisi, Jacqueline; Radloff, Jeffrey

    2018-01-01

    In an effort to document teachers' enactments of new reform in science teaching, valid and scalable measures of science teaching using engineering design are needed. This study describes the development and testing of an approach for documenting and characterizing elementary science teachers' multiday enactments of engineering design-based science…

  3. Identifying and Verifying Earthquake Engineering Concepts to Create a Knowledge Base in STEM Education: A Modified Delphi Study

    ERIC Educational Resources Information Center

    Cavlazoglu, Baki; Stuessy, Carol L.

    2017-01-01

    Stakeholders in STEM education have called for integrating engineering content knowledge into STEM-content classrooms. To answer the call, stakeholders in science education announced a new framework, Next Generation Science Standards, which focuses on the integration of science and engineering in K-12 science education. However, research indicates…

  4. Creating technical heritage object replicas in a virtual environment

    NASA Astrophysics Data System (ADS)

    Egorova, Olga; Shcherbinin, Dmitry

    2016-03-01

    The paper presents innovative informatics methods for creating virtual technical heritage replicas, which are of significant scientific and practical importance not only to researchers but to the public in general. By performing 3D modeling and animation of aircrafts, spaceships, architectural-engineering buildings, and other technical objects, the process of learning is achieved while promoting the preservation of the replicas for future generations. Modern approaches based on the wide usage of computer technologies attract a greater number of young people to explore the history of science and technology and renew their interest in the field of mechanical engineering.

  5. Engineering Research and Development and Technology thrust area report FY92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langland, R.T.; Minichino, C.

    1993-03-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) to conduct high-quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, theymore » are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year 1992. Its intent is to provide timely summaries of objectives, theories, methods, and results. The nine thrust areas for this fiscal year are: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Emerging Technologies; Fabrication Technology; Materials Science and Engineering; Microwave and Pulsed Power; Nondestructive Evaluation; and Remote Sensing and Imaging, and Signal Engineering.« less

  6. Innovation in robotic surgery: the Indian scenario.

    PubMed

    Deshpande, Suresh V

    2015-01-01

    Robotics is the science. In scientific words a "Robot" is an electromechanical arm device with a computer interface, a combination of electrical, mechanical, and computer engineering. It is a mechanical arm that performs tasks in Industries, space exploration, and science. One such idea was to make an automated arm - A robot - In laparoscopy to control the telescope-camera unit electromechanically and then with a computer interface using voice control. It took us 5 long years from 2004 to bring it to the level of obtaining a patent. That was the birth of the Swarup Robotic Arm (SWARM) which is the first and the only Indian contribution in the field of robotics in laparoscopy as a total voice controlled camera holding robotic arm developed without any support by industry or research institutes.

  7. Science& Technology Review September 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMahon, D

    2003-09-01

    This September 2003 issue of ''Science and Technology Review'' covers the following articles: (1) ''The National Ignition Facility Is Born''; (2) ''The National Ignition Facility Comes to Life'' Over the last 15 years, thousands of Livermore engineers, scientists, and technicians as well as hundreds of industrial partners have worked to bring the National Ignition Facility into being. (3) ''Tracking the Activity of Bacteria Underground'' Using real-time polymerase chain reaction and liquid chromatography/tandem mass spectrometry, researchers at Livermore are gaining knowledge on how bacteria work underground to break down compounds of environmental concern. (4) ''When Every Second Counts--Pathogen Identification in Lessmore » Than a Minute'' Livermore has developed a system that can quickly identify airborne pathogens such as anthrax. (5) ''Portable Radiation Detector Provides Laboratory-Scale Precision in the Field'' A team of Livermore physicists and engineers has developed a handheld, mechanically cooled germanium detector designed to identify radioisotopes.« less

  8. The psychological disengagement model among women in science, engineering, and technology.

    PubMed

    Beaton, Ann M; Tougas, Francine; Rinfret, Natalie; Monger, Tanya

    2015-09-01

    Psychological responses to personal relative deprivation based on self/outgroup comparisons (named self/outgroup PRD) were explored among women in science, engineering, and technology according to the Psychological Disengagement Model. Three studies revealed that the experience of self/outgroup PRD increased women's likelihood of discounting the feedback they received at work. In turn, discounting led them to devalue their profession. Each study further documented the damaging effect of both psychological disengagement mechanisms. Study 1 (N = 93) revealed that discounting and devaluing were associated with decreased self-esteem. These results were replicated in Studies 2 and 3. Study 2 (N = 163) demonstrated that discounting and devaluing were also associated with reduced self-esteem stability. Study 3 (N = 187) further showed that psychological disengagement was also associated with women's occupational commitment. Theoretical and practical implications of these results are considered. © 2014 The British Psychological Society.

  9. Interdisciplinary cantilever physics: Elasticity of carrot, celery, and plasticware

    NASA Astrophysics Data System (ADS)

    Pestka, Kenneth A.

    2014-05-01

    This article presents several simple cantilever-based experiments using common household items (celery, carrot, and a plastic spoon) that are appropriate for introductory undergraduate laboratories or independent student projects. By applying Hooke's law and Euler beam theory, students are able to determine Young's modulus, fracture stress, yield stress, strain energy, and sound speed of these apparently disparate materials. In addition, a cellular foam elastic model is introduced—applicable to biologic materials as well as an essential component in the development of advanced engineering composites—that provides a mechanism to determine Young's modulus of the cell wall material found in celery and carrot. These experiments are designed to promote exploration of the similarities and differences between common inorganic and organic materials, fill a void in the typical undergraduate curriculum, and provide a foundation for more advanced material science pursuits within biology, botany, and food science as well as physics and engineering.

  10. The National Space Science and Technology Center (NSSTC)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA);Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. This photo shows the completed center with the additional arnex (right of building) that added an additional 80,000 square feet (7,432 square meters) to the already existent NSSTC, nearly doubling the size of the core facility. At full capacity, the NSSTC tops 200,000 square feet (18,580 square meters) and houses approximately 550 employees.

  11. The National Space Science and Technology Center (NSSTC)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA); Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. An arnex, scheduled for completion by summer 2002, will add an additional 80,000 square feet (7,432 square meters) to NSSTC nearly doubling the size of the core facility. At full capacity, the completed NSSTC will top 200,000 square feet (18,580 square meters) and house approximately 550 employees.

  12. Comparing the Attitudes of Pre-Health Professional and Engineering Students in Introductory Physics Courses

    NASA Astrophysics Data System (ADS)

    McKinney, Meghan

    2015-04-01

    This talk will discuss using the Colorado Learning Attitudes about Science Survey (CLASS) to compare student attitudes towards the study of physics of two different groups. Northern Illinois University has two levels of introductory mechanics courses, one geared towards biology majors and pre-health professionals, and one for engineering and physics majors. The course for pre-health professionals is an algebra based course, while the course for engineering and physics majors is a calculus based course. We've adapted the CLASS into a twenty question survey that measures student attitudes towards the practice of and conceptions about physics. The survey is administered as a pre and post assessment to look at student attitudes before and after their first course in physics.

  13. Engineering approaches to illuminating brain structure and dynamics.

    PubMed

    Deisseroth, Karl; Schnitzer, Mark J

    2013-10-30

    Historical milestones in neuroscience have come in diverse forms, ranging from the resolution of specific biological mysteries via creative experimentation to broad technological advances allowing neuroscientists to ask new kinds of questions. The continuous development of tools is driven with a special necessity by the complexity, fragility, and inaccessibility of intact nervous systems, such that inventive technique development and application drawing upon engineering and the applied sciences has long been essential to neuroscience. Here we highlight recent technological directions in neuroscience spurred by progress in optical, electrical, mechanical, chemical, and biological engineering. These research areas are poised for rapid growth and will likely be central to the practice of neuroscience well into the future. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Women in science & engineering scholarships and summer camp outreach programs : year 6.

    DOT National Transportation Integrated Search

    2012-08-01

    Support will make scholarships available to minority and women students interested in engineering and science and will increase : significantly the number of minority and female students that Missouri S&T can recruit to its science and engineering pr...

  15. 76 FR 12763 - Agency Information Collection Activities: Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-08

    ... mandated reports such as Science and Engineering Indicators and Women, Minorities and Persons with Disabilities in Science and Engineering. Description of Respondents: Individuals. Number of Respondents: 51,000..., ``Science and Engineering Doctorate Awards'' and the Interagency Report, ``Doctorate Recipients from U.S...

  16. USA Science and Engineering Festival 2014

    NASA Image and Video Library

    2014-04-25

    Attendees of the USA Science and Engineering Festival explore all of the exhibits at the NASA Stage. The USA Science and Engineering Festival took place at the Washington Convention Center in Washington, DC on April 26 and 27, 2014. Photo Credit: (NASA/Aubrey Gemignani)

  17. Land-Grant College Education, 1910 to 1920. Part III: Agriculture. Bulletin, 1925, No. 4

    ERIC Educational Resources Information Center

    Walton, C. John, Ed.

    1925-01-01

    This bulletin represents the third of a 5-part survey of land-grant college education. Other parts are: (1) History and Educational Objectives of Land-Grant College Education; (2) The Liberal Arts and Sciences and Miscellaneous Subjects in Land-Grant Colleges; (4) Engineering and Mechanic Arts in Land-Grant Colleges; and (5) Home Economics in…

  18. How Long Does It Take for a Satellite to Fall to Earth?

    ERIC Educational Resources Information Center

    Lira, Antonio

    2015-01-01

    The purpose of this paper is to introduce students of science and engineering to the orbital lifetimes of satellites in circular low Earth orbits. It is only necessary to know about classical mechanics for this calculation. The orbital decay of satellites is due to the interaction of the satellite with the surrounding gas, atmospheric drag.…

  19. Evaluating Psychosocial Mechanisms Underlying STEM Persistence in Undergraduates: Evidence of Impact from a Six-Day Pre-College Engagement STEM Academy Program

    ERIC Educational Resources Information Center

    Findley-Van Nostrand, Danielle; Pollenz, Richard S.

    2017-01-01

    The persistence of undergraduate students in science, technology, engineering, and mathematics (STEM) disciplines is a national issue based on STEM workforce projections. We implemented a weeklong pre-college engagement STEM Academy (SA) program aimed at addressing several areas related to STEM retention. We validated an instrument that was…

  20. Development and Evaluation of the "Tigriopus" Course-Based Undergraduate Research Experience: Impacts on Students' Content Knowledge, Attitudes, and Motivation in a Majors Introductory Biology Course

    ERIC Educational Resources Information Center

    Olimpo, Jeffrey T.; Fisher, Ginger R.; DeChenne-Peters, Sue Ellen

    2016-01-01

    Within the past decade, course-based undergraduate research experiences (CUREs) have emerged as a viable mechanism to enhance novices' development of scientific reasoning and process skills in the science, technology, engineering, and mathematics disciplines. Recent evidence within the bioeducation literature suggests that student engagement in…

  1. Beneath the numbers: A review of gender disparities in undergraduate education across science, technology, engineering, and math disciplines

    NASA Astrophysics Data System (ADS)

    Eddy, Sarah L.; Brownell, Sara E.

    2016-12-01

    [This paper is part of the Focused Collection on Gender in Physics.] This focused collection explores inequalities in the experiences of women in physics. Yet, it is important for researchers to also be aware of and draw insights from common patterns in the experiences of women across science, technology, engineering and mathematics (STEM) disciplines. Here, we review studies on gender disparities across college STEM on measures that have been correlated with retention. These include disparities in academic performance, engagement, self-efficacy, belonging, and identity. We argue that observable factors such as persistence, performance, and engagement can inform researchers about what populations are disadvantaged in a STEM classroom or program, but we need to measure underlying mechanisms to understand how these inequalities arise. We present a framework that helps connect larger sociocultural factors, including stereotypes and gendered socialization, to student affect and observable behaviors in STEM contexts. We highlight four mechanisms that demonstrate how sociocultural factors could impact women in STEM classrooms and majors. We end with a set of recommendations for how we can more holistically evaluate the experiences of women in STEM to help mitigate the underlying inequities instead of applying a quick fix.

  2. Methodological advances in predicting flow-induced dynamics of plants using mechanical-engineering theory.

    PubMed

    de Langre, Emmanuel

    2012-03-15

    The modeling of fluid-structure interactions, such as flow-induced vibrations, is a well-developed field of mechanical engineering. Many methods exist, and it seems natural to apply them to model the behavior of plants, and potentially other cantilever-like biological structures, under flow. Overcoming this disciplinary divide, and the application of such models to biological systems, will significantly advance our understanding of ecological patterns and processes and improve our predictive capabilities. Nonetheless, several methodological issues must first be addressed, which I describe here using two practical examples that have strong similarities: one from agricultural sciences and the other from nuclear engineering. Very similar issues arise in both: individual and collective behavior, small and large space and time scales, porous modeling, standard and extreme events, trade-off between the surface of exchange and individual or collective risk of damage, variability, hostile environments and, in some aspects, evolution. The conclusion is that, although similar issues do exist, which need to be exploited in some detail, there is a significant gap that requires new developments. It is obvious that living plants grow in and adapt to their environment, which certainly makes plant biomechanics fundamentally distinct from classical mechanical engineering. Moreover, the selection processes in biology and in human engineering are truly different, making the issue of safety different as well. A thorough understanding of these similarities and differences is needed to work efficiently in the application of a mechanistic approach to ecology.

  3. Examining the Extent to Which Select Teacher Preparation Experiences Inform Technology and Engineering Educators' Teaching of Science Content and Practices

    ERIC Educational Resources Information Center

    Love, Tyler S.

    2015-01-01

    With the recent release of the "Next Generation Science Standards" (NGSS) (NGSS Lead States, 2014b) science educators were expected to teach engineering content and practices within their curricula. However, technology and engineering (T&E) educators have been expected to teach content and practices from engineering and other…

  4. 75 FR 19428 - Advisory Committee for Computer and Information Science and Engineering; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-14

    ... Engineering; Notice of Meeting In accordance with the Federal Advisory Committee Act (Pub. L. 92- 463, as... Computer and Information Science and Engineering--(1115). Date and Time: May 7, 2010, 8:30 a.m.-5 p.m... Information Science and Engineering at 703/292-8900 prior to the meeting so that a visitor's badge may be...

  5. Introducing Engineering Design to a Science Teaching Methods Course through Educational Robotics and Exploring Changes in Views of Preservice Elementary Teachers

    ERIC Educational Resources Information Center

    Kaya, Erdogan; Newley, Anna; Deniz, Hasan; Yesilyurt, Ezgi; Newley, Patrick

    2017-01-01

    Engineering has become an important subject in the Next Generation Science Standards (NGSS), which have raised engineering design to the same level as scientific inquiry when teaching science disciplines at all levels. Therefore, preservice elementary teachers (PSTs) need to know how to integrate the engineering design process (EDP) into their…

  6. 77 FR 66873 - Advisory Committee for Computer and Information Science and Engineering; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-07

    ... Engineering; Notice of Meeting In accordance with Federal Advisory Committee Act (Pub. L. 92-463, as amended... and Information Science and Engineering (1115). Date/Time: November 28, 2012: 12:00 p.m. to 5:30 p.m... Information Science and Engineering (CISE) community. To provide advice to the Assistant Director for CISE on...

  7. Reviews of Data on Science Resources, No. 25. Doctoral Scientists and Engineers in Private Industry, 1973.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Div. of Science Resources Studies.

    Reported are manpower data needed by those engaged in science and engineering policy activities. The information is collected from scientists and engineers themselves. The basis of this report is the first survey, in a biennial series, of the Doctoral Roster of Scientists and Engineers, conducted for the National Science Foundation by the…

  8. The Humanistic Side of Engineering: Considering Social Science and Humanities Dimensions of Engineering in Education and Research

    ERIC Educational Resources Information Center

    Hynes, Morgan; Swenson, Jessica

    2013-01-01

    Mathematics and science knowledge/skills are most commonly associated with engineering's pre-requisite knowledge. Our goals in this paper are to argue for a more systematic inclusion of social science and humanities knowledge in the introduction of engineering to K-12 students. As part of this argument, we present a construct for framing the…

  9. Science in support of the Deepwater Horizon response

    USGS Publications Warehouse

    Lubchenco, Jane; McNutt, Marcia K.; Dreyfus, Gabrielle; Murawski, Steven A.; Kennedy, David M.; Anastas, Paul T.; Chu, Steven; Hunter, Tom

    2012-01-01

    This introduction to the Special Feature presents the context for science during the Deepwater Horizon oil spill response, summarizes how scientific knowledge was integrated across disciplines and statutory responsibilities, identifies areas where scientific information was accurate and where it was not, and considers lessons learned and recommendations for future research and response. Scientific information was integrated within and across federal and state agencies, with input from nongovernmental scientists, across a diverse portfolio of needs—stopping the flow of oil, estimating the amount of oil, capturing and recovering the oil, tracking and forecasting surface oil, protecting coastal and oceanic wildlife and habitat, managing fisheries, and protecting the safety of seafood. Disciplines involved included atmospheric, oceanographic, biogeochemical, ecological, health, biological, and chemical sciences, physics, geology, and mechanical and chemical engineering. Platforms ranged from satellites and planes to ships, buoys, gliders, and remotely operated vehicles to laboratories and computer simulations. The unprecedented response effort depended directly on intense and extensive scientific and engineering data, information, and advice. Many valuable lessons were learned that should be applied to future events.

  10. Science in support of the Deepwater Horizon response

    PubMed Central

    Lubchenco, Jane; McNutt, Marcia K.; Dreyfus, Gabrielle; Murawski, Steven A.; Kennedy, David M.; Anastas, Paul T.; Chu, Steven; Hunter, Tom

    2012-01-01

    This introduction to the Special Feature presents the context for science during the Deepwater Horizon oil spill response, summarizes how scientific knowledge was integrated across disciplines and statutory responsibilities, identifies areas where scientific information was accurate and where it was not, and considers lessons learned and recommendations for future research and response. Scientific information was integrated within and across federal and state agencies, with input from nongovernmental scientists, across a diverse portfolio of needs—stopping the flow of oil, estimating the amount of oil, capturing and recovering the oil, tracking and forecasting surface oil, protecting coastal and oceanic wildlife and habitat, managing fisheries, and protecting the safety of seafood. Disciplines involved included atmospheric, oceanographic, biogeochemical, ecological, health, biological, and chemical sciences, physics, geology, and mechanical and chemical engineering. Platforms ranged from satellites and planes to ships, buoys, gliders, and remotely operated vehicles to laboratories and computer simulations. The unprecedented response effort depended directly on intense and extensive scientific and engineering data, information, and advice. Many valuable lessons were learned that should be applied to future events. PMID:23213250

  11. A culture of technical knowledge: Professionalizing science and engineering education in late-nineteenth century America

    NASA Astrophysics Data System (ADS)

    Nienkamp, Paul

    This manuscript examines the intellectual, cultural, and practical approaches to science and engineering education as a part of the land-grant college movement in the Midwest between the 1850s and early 1900s. These land-grant institutions began and grew within unique frontier societies that both cherished self-reliance and diligently worked to make themselves part of the larger national experience. College administrators and professors encountered rapidly changing public expectations, regional needs, and employment requirements. They recognized a dire need for technically skilled men and women who could quickly adapt to changes in equipment and processes, and implement advances in scientific knowledge in American homes, fields, and factories. Charged with educating the "industrial classes in the several pursuits and professions in life," land-grant college supporters and professors sought out the most modern and innovative instructional methods. Combining the humanities, sciences, and practical skills that they believed uniquely suited student needs, these pioneering educators formulated new curricula and training programs that advanced both the knowledge and the social standing of America's agricultural and mechanical working classes.

  12. Students' attitudes towards interdisciplinary education: a course on interdisciplinary aspects of science and engineering education

    NASA Astrophysics Data System (ADS)

    Gero, Aharon

    2017-05-01

    A course entitled 'Science and Engineering Education: Interdisciplinary Aspects' was designed to expose undergraduate students of science and engineering education to the attributes of interdisciplinary education which integrates science and engineering. The core of the course is an interdisciplinary lesson, which each student is supposed to teach his/her peers. Sixteen students at advanced stages of their studies attended the course. The research presented here used qualitative instruments to characterise students' attitudes towards interdisciplinary learning and teaching of science and engineering. According to the findings, despite the significant challenge which characterises interdisciplinary teaching, a notable improvement was evident throughout the course in the percentage of students who expressed willingness to teach interdisciplinary classes in future.

  13. The Gender Differences: Hispanic Females and Males Majoring in Science or Engineering

    NASA Astrophysics Data System (ADS)

    Brown, Susan Wightman

    Documented by national statistics, female Hispanic students are not eagerly rushing to major in science or engineering. Using Seidman's in-depth interviewing method, 22 Hispanic students, 12 female and 10 male, majoring in science or engineering were interviewed. Besides the themes that emerged with all 22 Hispanic students, there were definite differences between the female and male Hispanic students: role and ethnic identity confusion, greater college preparation, mentoring needed, and the increased participation in enriched additional education programs by the female Hispanic students. Listening to these stories from successful female Hispanic students majoring in science and engineering, educators can make changes in our school learning environments that will encourage and enable more female Hispanic students to choose science or engineering careers.

  14. Bioregenerative system

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The design course is an eight semester credit multi-disciplinary engineering design course taught primarily to Engineering Science, Aerospace, Electrical and Mechanical Engineering seniors. This year the course project involved the design of the three interrelated loops: atmospheric, liquid nutrient and solid waste management, associated with growing higher plants to support man during long-term space missions. The project is complementary to the NASA Kennedy Space Center Controlled Environmental Life Support System (CELSS) project. The first semester the class worked on a preliminary design for a complete system. This effort included means for monitoring and control of composition, temperature, flow rate, etc., for the atmosphere and liquid nutrient solution; disease and contaminant monitoring and control; plant mechanical support, propagation and harvesting; solid and liquid waste recycling; and system maintenance and refurbishing. The project has significant biological, mechanical, electrical and Al/Robotics aspects. The second semester a small number of subsystems or components, identified as important and interesting during the first semester, were selected for detail design, fabrication, and testing. The class was supported by close cooperation with The Kennedy Space Center and by two teaching assistants. The availability of a dedicated, well equipped project room greatly enhanced the communication and team spirit of the class.

  15. Integration of NASA Research into Undergraduate Education in Math, Science, Engineering and Technology at North Carolina A&T State University

    NASA Technical Reports Server (NTRS)

    Monroe, Joseph; Kelkar, Ajit

    2003-01-01

    The NASA PAIR program incorporated the NASA-Sponsored research into the undergraduate environment at North Carolina Agricultural and Technical State University. This program is designed to significantly improve undergraduate education in the areas of mathematics, science, engineering, and technology (MSET) by directly benefiting from the experiences of NASA field centers, affiliated industrial partners and academic institutions. The three basic goals of the program were enhancing core courses in MSET curriculum, upgrading core-engineering laboratories to compliment upgraded MSET curriculum, and conduct research training for undergraduates in MSET disciplines through a sophomore shadow program and through Research Experience for Undergraduates (REU) programs. Since the inception of the program nine courses have been modified to include NASA related topics and research. These courses have impacted over 900 students in the first three years of the program. The Electrical Engineering circuit's lab is completely re-equipped to include Computer controlled and data acquisition equipment. The Physics lab is upgraded to implement better sensory data acquisition to enhance students understanding of course concepts. In addition a new instrumentation laboratory in the department of Mechanical Engineering is developed. Research training for A&T students was conducted through four different programs: Apprentice program, Developers program, Sophomore Shadow program and Independent Research program. These programs provided opportunities for an average of forty students per semester.

  16. Using Arts Integration to Make Science Learning Memorable in the Upper Elementary Grades: A Quasi-Experimental Study

    ERIC Educational Resources Information Center

    Graham, Nicholas James; Brouillette, Liane

    2016-01-01

    The Next Generation Science Standards (NGSS) have brought a stronger emphasis on engineering into K-12 STEM (science, technology, engineering and mathematics) instruction. Introducing the design process used in engineering into science classrooms simulated a dialogue among some educators about adding the arts to the mix. This led to proposals for…

  17. Activities of Science and Engineering Faculty in Universities and 4-Year Colleges: 1978/79. Final Report.

    ERIC Educational Resources Information Center

    Lacy, Larry W.; And Others

    National estimates of activities of science and engineering faculty in universities and four-year colleges for 1978-1979 are examined, based on a National Science Foundation survey of faculty members in 20 science and engineering (S/E) fields. Individual respondents provided information for only one 7-day period; however, the survey sample was…

  18. Building a Community of Scholars: One University's Story of Students Engaged in Learning Science, Mathematics, and Engineering through a NSF S-STEM Grant

    ERIC Educational Resources Information Center

    Kalevitch, Maria; Maurer, Cheryl; Badger, Paul; Holdan, Greg; Iannelli, Joe; Sirinterlikci, Arif; Semich, George; Bernauer, James

    2012-01-01

    The School of Engineering, Mathematics, and Science (SEMS) at Robert Morris University (RMU) was awarded a five-year grant from the National Science Foundation (NSF) to fund scholarships to 21 academically talented but financially challenged students majoring in the disciplines of science, technology, engineering, and mathematics (STEM). Each…

  19. The Quantum Engineering Conundrum

    NASA Astrophysics Data System (ADS)

    Monroe, Christopher

    2017-04-01

    There is newfound rush and excitement in Quantum Information Science, as this field seems to be moving toward an industrial/engineering phase. However, this evolution will require that quantum science, long the domain of academics and other researchers, make the leap to sustained engineering efforts in order to fabricate practical devices. I will address the conundrum, that full-blooded engineering does not generally happen on campuses, while many in the professional engineering and computer science community do not believe in quantum physics!

  20. Characterization of the mechanical properties of skin by inverse analysis combined with the indentation test.

    PubMed

    Delalleau, Alexandre; Josse, Gwendal; Lagarde, Jean-Michel; Zahouani, Hassan; Bergheau, Jean-Michel

    2006-01-01

    This study proposes a new method to determine the mechanical properties of human skin by the use of the indentation test [Pailler-Mattei, 2004. Caractérisation mécanique et tribologique de la peau humaine in vivo, Ph.D. Thesis, ECL-no. 2004-31; Pailler-Mattei, Zahouani, 2004. Journal of Adhesion Science and Technology 18, 1739-1758]. The principle of the measurements consists in applying an in vivo compressive stress [Zhang et al., 1994. Proceedings of the Institution of Mechanical Engineers 208, 217-222; Bosboom et al., 2001. Journal of Biomechanics 34, 1365-1368; Oomens et al., 1984. Selected Proceedings of Meetings of European Society of Biomechanics, pp. 227-232; Oomens et al., 1987. Journal of Biomechanics 20(9), 877-885] on the skin tissue of an individual's forearm. These measurements show an increase in the normal contact force as a function of the indentation depth. The interpretation of such results usually requires a long and tedious phenomenological study. We propose a new method to determine the mechanical parameters which control the response of skin tissue. This method is threefold: experimental, numerical, and comparative. It consists combining experimental results with a numerical finite elements model in order to find out the required parameters. This process uses a scheme of extended Kalman filters (EKF) [Gu et al., 2003. Materials Science and Engineering A345, 223-233; Nakamura et al., 2000. Acta Mater 48, 4293-4306; Leustean and Rosu, 2003. Certifying Kalman filters. RIACS Technical Report 03.02, 27pp. http://gureni.cs.uiuc.edu/~grosu/download/luta + leo.pdf; Welch and Bishop, An introduction to Kalman filter, University of North Carolina at Chapel Hill, 16p. http://www.cs.unc.edu/~welch/kalman/]. The first results presented in this study correspond to a simplified numerical modeling of the global system. The skin is assumed to be a semi-infinite layer with an isotropic linear elastic mechanical behavior [Zhang et al., 1994. Proceedings of the Institution of Mechanical Engineers 208, 217-222] This analysis will be extended to more realistic models in further works.

Top