Sample records for mechanical engineering space

  1. Space transportation booster engine configuration study. Addendum: Design definition document

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Gas generator engine characteristics and results of engine configuration refinements are discussed. Updated component mechanical design, performance, and manufacturing information is provided. The results are also provided of ocean recovery studies and various engine integration tasks. The details are provided of the maintenance plan for the Space Transportation Booster Engine.

  2. Multi-functional Extreme Environment Surfaces: Nanotribology for Air and Space

    DTIC Science & Technology

    2010-09-14

    SPANNING THE PHYSICAL SCALES OF MODERN TRIBOLOGY ( QCM ) (STM) Fundamental Challenges and Unsolved Issues How do adsorbed and tribo-generated films impact...Space Applications Satellite bearings, InfraRed sensor mechanisms Jet engine bearings 2 mm NCD MCD 300 mm Thrust II: Cryotribology and...Nanocrystalline Diamond for Space Applications Satellite bearings, InfraRed sensor mechanisms Jet engine bearings 2 mm NCD MCD 300 mm Five Years ago: Three

  3. Testing of Twin Linear Aerospike XRS-2200 Engine

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The test of twin Linear Aerospike XRS-2200 engines, originally built for the X-33 program, was performed on August 6, 2001 at NASA's Sternis Space Center, Mississippi. The engines were fired for the planned 90 seconds and reached a planned maximum power of 85 percent. NASA's Second Generation Reusable Launch Vehicle Program , also known as the Space Launch Initiative (SLI), is making advances in propulsion technology with this third and final successful engine hot fire, designed to test electro-mechanical actuators. Information learned from this hot fire test series about new electro-mechanical actuator technology, which controls the flow of propellants in rocket engines, could provide key advancements for the propulsion systems for future spacecraft. The Second Generation Reusable Launch Vehicle Program, led by NASA's Marshall Space Flight Center in Huntsville, Alabama, is a technology development program designed to increase safety and reliability while reducing costs for space travel. The X-33 program was cancelled in March 2001.

  4. NASA Space Mechanisms Handbook and Reference Guide Expanded Into CD-ROM Set

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    2002-01-01

    Several NASA missions suffered failures and anomalies due to problems in applying space mechanisms technology to specific projects. Research shows that engineers often lack either adequate knowledge of mechanism design or sufficient understanding of how mechanisms affect sensitive systems. The Space Mechanisms Project conducted a Lessons Learned study and published a Space Mechanisms Handbook to help space industry engineers avoid recurring design, qualification, and application problems. The Space Mechanisms Handbook written at the NASA Glenn Research Center details the state-of-the-art in space mechanisms design as of 1998. NASA's objective in developing this Space Mechanisms Handbook was to provide readily accessible information on such areas as space mechanisms design, mechanical component availability and use, testing and qualification of mechanical systems, and a listing of worldwide space mechanisms experts and testing facilities in the United States. This handbook has been expanded into a two-volume CD-ROM set in an Adobe Acrobat format. In addition to the handbook, the CD's include (1) the two volume Space Mechanisms Lessons Learned Study, (2) proceedings from all the NASA hosted Aerospace Mechanisms Symposia held through the year 2000, (3) the Space Materials Handbook, (4) the Lubrication Handbook for the Space Industry, (5) the Structural & Mechanical Systems Long-Life Assurance Design Guidelines, (6) the Space Environments and Effects Source-Book, (7) the Spacecraft Deployable Appendages manual, (8) the Fastener Design Manual, (9) A Manual for Pyrotechnic Design, Development and Qualification, (10) the Report on Alternative Devices to Pyrotechnics on Spacecraft, and (11) Gearing (a manual). In addition, numerous other papers on tribology and lubrication are included.This technical summary of the project provides information on how to obtain the handbook and related information.

  5. NE TARDIS Banner Event

    NASA Image and Video Library

    2017-12-08

    Inside the Prototype Development Laboratory at NASA's Kennedy Space Center in Florida, engineers and technicians hold a banner marking the successful delivery of a liquid oxygen test tank called Tardis. From left, are Todd Steinrock, chief, Fabrication and Development Branch, Prototype Development Lab; David McLaughlin, electrical engineering technician; Phil Stroda, mechanical engineering technician; Perry Dickey, lead electrical engineering technician; and Harold McAmis, lead mechanical engineering technician. Engineers and technicians worked together to develop the tank and build it at the lab to support cryogenic testing at Johnson Space Center's White Sands Test Facility in Las Cruces, New Mexico. The 12-foot-tall, 3,810-pound aluminum tank will be shipped to White Sands for testing.

  6. NASA Center for Intelligent Robotic Systems for Space Exploration

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's program for the civilian exploration of space is a challenge to scientists and engineers to help maintain and further develop the United States' position of leadership in a focused sphere of space activity. Such an ambitious plan requires the contribution and further development of many scientific and technological fields. One research area essential for the success of these space exploration programs is Intelligent Robotic Systems. These systems represent a class of autonomous and semi-autonomous machines that can perform human-like functions with or without human interaction. They are fundamental for activities too hazardous for humans or too distant or complex for remote telemanipulation. To meet this challenge, Rensselaer Polytechnic Institute (RPI) has established an Engineering Research Center for Intelligent Robotic Systems for Space Exploration (CIRSSE). The Center was created with a five year $5.5 million grant from NASA submitted by a team of the Robotics and Automation Laboratories. The Robotics and Automation Laboratories of RPI are the result of the merger of the Robotics and Automation Laboratory of the Department of Electrical, Computer, and Systems Engineering (ECSE) and the Research Laboratory for Kinematics and Robotic Mechanisms of the Department of Mechanical Engineering, Aeronautical Engineering, and Mechanics (ME,AE,&M), in 1987. This report is an examination of the activities that are centered at CIRSSE.

  7. Design study of RL10 derivatives. Volume 3, part 1: Preliminary interface control document. [development of baseline engines for space tug vehicles

    NASA Technical Reports Server (NTRS)

    Adams, A.

    1973-01-01

    The Interface Control Document contains engine information necessary for installation of the baseline RL10 Derivative engines in the Space Tug vehicle. The ICD presents a description of the baseline engines and their operating characteristics, mass and load characteristics, and environmental criteria. The document defines the engine/vehicle mechanical, electrical, fluid and pneumatic interface requirements.

  8. Research and technology at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Cryogenic engineering, hypergolic engineering, hazardous warning, structures and mechanics, computer sciences, communications, meteorology, technology applications, safety engineering, materials analysis, biomedicine, and engineering management and training aids research are reviewed.

  9. Research Technology

    NASA Image and Video Library

    2001-08-06

    The test of twin Linear Aerospike XRS-2200 engines, originally built for the X-33 program, was performed on August 6, 2001 at NASA's Sternis Space Center, Mississippi. The engines were fired for the planned 90 seconds and reached a planned maximum power of 85 percent. NASA's Second Generation Reusable Launch Vehicle Program , also known as the Space Launch Initiative (SLI), is making advances in propulsion technology with this third and final successful engine hot fire, designed to test electro-mechanical actuators. Information learned from this hot fire test series about new electro-mechanical actuator technology, which controls the flow of propellants in rocket engines, could provide key advancements for the propulsion systems for future spacecraft. The Second Generation Reusable Launch Vehicle Program, led by NASA's Marshall Space Flight Center in Huntsville, Alabama, is a technology development program designed to increase safety and reliability while reducing costs for space travel. The X-33 program was cancelled in March 2001.

  10. Around Marshall

    NASA Image and Video Library

    2000-10-26

    This plaque, located on the grounds of Marshall Space Flight Center in Huntsville, Alabama,commemorates the designation of the Saturn V Rocket as a National Historic Mechanical Engineering Landmark by the American Society of Mechanical Engineers in 1980.

  11. Teaching Heliophysics Science to Undergraduates in an Engineering Context

    NASA Astrophysics Data System (ADS)

    Baker, J. B.; Sweeney, D. G.; Ruohoniemi, J.

    2013-12-01

    In recent years, space research at Virginia Tech has experienced rapid growth since the initiation of the Center for Space Science and Engineering Research (Space@VT) during the summer of 2007. The Space@VT center resides in the College of Engineering and currently comprises approximately 30-40 faculty and students. Space@VT research encompasses a wide spectrum of science and engineering activities including: magnetosphere-ionosphere data analysis; ground- and space-based instrument development; spacecraft design and environmental interactions; and numerical space plasma simulations. In this presentation, we describe how Space@VT research is being integrated into the Virginia Tech undergraduate engineering curriculum via classroom instruction and hands-on group project work. In particular, we describe our experiences teaching a new sophomore course titled 'Exploration of the Space Environment' which covers a broad range of scientific, engineering, and societal aspects associated with the exploration and technological exploitation of space. Topics covered include: science of the space environment; space weather hazards and societal impacts; elementary orbital mechanics and rocket propulsion; spacecraft engineering subsystems; and applications of space-based technologies. We also describe a high-altitude weather balloon project which has been offered as a 'hands-on' option for fulfilling the course project requirements of the course.

  12. Fracture control methods for space vehicles. Volume 2: Assessment of fracture mechanics technology for space shuttle applications

    NASA Technical Reports Server (NTRS)

    Ehret, R. M.

    1974-01-01

    The concepts explored in a state of the art review of those engineering fracture mechanics considered most applicable to the space shuttle vehicle include fracture toughness, precritical flaw growth, failure mechanisms, inspection methods (including proof test logic), and crack growth predictive analysis techniques.

  13. Modeling, Analysis, and Optimization Issues for Large Space Structures.

    DTIC Science & Technology

    1983-02-01

    There are numerous opportunities - provided by new advances in computer hardware, firmware, software , CAD/CAM systems, computational algorithms and...Institute Department of Mechanical Engineering Dept. of Civil Engineering & Mechanics Troy, NY 12181 Drexel University Philadelphia, PA 19104 Dr...Mechanical Engineering Hampton, VA 23665 Washington, DC 20059 Dr. K. T. Alfriend Mr. Siva S. Banda Department of the Navy Flight Dynamics LaboratoryNaval

  14. Lox/Gox related failures during Space Shuttle Main Engine development

    NASA Technical Reports Server (NTRS)

    Cataldo, C. E.

    1981-01-01

    Specific rocket engine hardware and test facility system failures are described which were caused by high pressure liquid and/or gaseous oxygen reactions. The failures were encountered during the development and testing of the space shuttle main engine. Failure mechanisms are discussed as well as corrective actions taken to prevent or reduce the potential of future failures.

  15. Advanced Plant Habitat

    NASA Image and Video Library

    2016-11-17

    A test unit, or prototype, of NASA's Advanced Plant Habitat (APH) was delivered to the Space Station Processing Facility at the agency's Kennedy Space Center in Florida. Inside a laboratory, Engineering Services Contract engineers set up test parameters on computers. From left, are Glenn Washington, ESC quality engineer; Claton Grosse, ESC mechanical engineer; and Jeff Richards, ESC project scientist. The APH is the largest plant chamber built for the agency. It will have 180 sensors and four times the light output of Veggie. The APH will be delivered to the International Space Station in March 2017.

  16. Applications of aerospace technology in the electric power industry

    NASA Technical Reports Server (NTRS)

    Johnson, F. D.; Heins, C. F.

    1974-01-01

    Existing applications of NASA contributions to disciplines such as combustion engineering, mechanical engineering, materials science, quality assurance and computer control are outlined to illustrate how space technology is used in the electric power industry. Corporate strategies to acquire relevant space technology are described.

  17. Summer Work Experience: Determining Methane Combustion Mechanisms and Sub-Scale Diffuser Properties for Space Transporation System Engine Testing

    NASA Technical Reports Server (NTRS)

    Williams, Powtawche N.

    1998-01-01

    To assess engine performance during the testing of Space Shuttle Main Engines (SSMEs), the design of an optimal altitude diffuser is studied for future Space Transportation Systems (STS). For other Space Transportation Systems, rocket propellant using kerosene is also studied. Methane and dodecane have similar reaction schemes as kerosene, and are used to simulate kerosene combustion processes at various temperatures. The equations for the methane combustion mechanism at high temperature are given, and engine combustion is simulated on the General Aerodynamic Simulation Program (GASP). The successful design of an altitude diffuser depends on the study of a sub-scaled diffuser model tested through two-dimensional (2-D) flow-techniques. Subroutines given calculate the static temperature and pressure at each Mach number within the diffuser flow. Implementing these subroutines into program code for the properties of 2-D compressible fluid flow determines all fluid characteristics, and will be used in the development of an optimal diffuser design.

  18. Multi-functional Extreme Environment Surfaces: Nanotribology for Air and Space

    DTIC Science & Technology

    2010-09-14

    TRIBOLOGY ( QCM ) (STM) Fundamental Challenges and Unsolved Issues How do adsorbed and tribo-generated films impact friction and wear? How is heat dissipated...InfraRed sensor mechanisms Jet engine bearings 2 mm NCD MCD 300 mm Thrust II: Cryotribology and Nanocrystalline Diamond for Space Applications...Satellite bearings, InfraRed sensor mechanisms Jet engine bearings 2 mm NCD MCD 300 mm Five Years ago: Three publications in the area of vacuum

  19. 20. Photocopy of drawing (1961 mechanical drawing by Kaiser Engineers) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Photocopy of drawing (1961 mechanical drawing by Kaiser Engineers) ELECTRICAL LAYOUTS FOR VEHICLE SUPPORT BUILDING, SHEET E-2 - Vandenberg Air Force Base, Space Launch Complex 3, Vehicle Support Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  20. Development of Mechanics in Support of Rocket Technology in Ukraine

    NASA Astrophysics Data System (ADS)

    Prisnyakov, Vladimir

    2003-06-01

    The paper analyzes the advances of mechanics made in Ukraine in resolving various problems of space and rocket technology such as dynamics and strength of rockets and rocket engines, rockets of different purpose, electric rocket engines, and nonstationary processes in various systems of rockets accompanied by phase transitions of working media. Achievements in research on the effect of vibrations and gravitational fields on the behavior of space-rocket systems are also addressed. Results obtained in investigating the reliability and structural strength durability conditions for nuclear installations, solid- and liquid-propellant engines, and heat pipes are presented

  1. Nespoli removes docking mechanism to the ATV Hatch

    NASA Image and Video Library

    2011-02-25

    ISS026-E-029722 (25 Feb. 2011) --- As part of inverse activities onboard the International Space Station, European Space Agency astronaut Paolo Nespoli, Expedition 26 flight engineer, removes the docking mechanism to gain access to the ATV hatch.

  2. Nespoli removes docking mechanism to the ATV Hatch

    NASA Image and Video Library

    2011-02-25

    ISS026-E-029725 (25 Feb. 2011) --- As part of inverse activities onboard the International Space Station, European Space Agency astronaut Paolo Nespoli, Expedition 26 flight engineer, removes the docking mechanism to gain access to the ATV hatch.

  3. Nespoli removes docking mechanism to the ATV Hatch

    NASA Image and Video Library

    2011-02-25

    ISS026-E-029719 (25 Feb. 2011) --- As part of inverse activities onboard the International Space Station, European Space Agency astronaut Paolo Nespoli, Expedition 26 flight engineer, removes the docking mechanism to gain access to the ATV hatch.

  4. Nespoli removes docking mechanism to the ATV Hatch

    NASA Image and Video Library

    2011-02-25

    ISS026-E-029718 (25 Feb. 2011) --- As part of inverse activities onboard the International Space Station, European Space Agency astronaut Paolo Nespoli, Expedition 26 flight engineer, removes the docking mechanism to gain access to the ATV hatch.

  5. Assessment of crack growth in a space shuttle main engine first-stage, high-pressure fuel turbopump blade

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali

    1993-01-01

    A two-dimensional finite element fracture mechanics analysis of a space shuttle main engine (SSME) turbine blade firtree was performed using the MARC finite element code. The analysis was conducted under combined effects of thermal and mechanical loads at steady-state conditions. Data from a typical engine stand cycle of the SSME were used to run a heat transfer analysis and, subsequently, a thermal structural fracture mechanics analysis. Temperature and stress contours for the firtree under these operating conditions were generated. High stresses were found at the firtree lobes where crack initiation was triggered. A life assessment of the firtree was done by assuming an initial and a final crack size.

  6. Accelerated testing of space mechanisms

    NASA Technical Reports Server (NTRS)

    Murray, S. Frank; Heshmat, Hooshang

    1995-01-01

    This report contains a review of various existing life prediction techniques used for a wide range of space mechanisms. Life prediction techniques utilized in other non-space fields such as turbine engine design are also reviewed for applicability to many space mechanism issues. The development of new concepts on how various tribological processes are involved in the life of the complex mechanisms used for space applications are examined. A 'roadmap' for the complete implementation of a tribological prediction approach for complex mechanical systems including standard procedures for test planning, analytical models for life prediction and experimental verification of the life prediction and accelerated testing techniques are discussed. A plan is presented to demonstrate a method for predicting the life and/or performance of a selected space mechanism mechanical component.

  7. Final Prep on SSME

    NASA Image and Video Library

    2005-10-25

    Alvin Pittman Sr., lead electronics technician with Pratt & Whitney Rocketdyne, and Janine Cuevas, a mechanical technician with PWR, perform final preparations on the space shuttle main engine tested Oct. 25, 2005, at NASA's Stennis Space Center. It was the first main engine test since Hurricane Katrina hit the Gulf Coast on Aug. 29.

  8. Final Prep on SSME

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Alvin Pittman Sr., lead electronics technician with Pratt & Whitney Rocketdyne, and Janine Cuevas, a mechanical technician with PWR, perform final preparations on the space shuttle main engine tested Oct. 25, 2005, at NASA's Stennis Space Center. It was the first main engine test since Hurricane Katrina hit the Gulf Coast on Aug. 29.

  9. Space Station Environmental Control/Life Support System engineering

    NASA Technical Reports Server (NTRS)

    Miller, C. W.; Heppner, D. B.

    1985-01-01

    The present paper is concerned with a systems engineering study which has provided an understanding of the overall Space Station ECLSS (Environmental Control and Life Support System). ECLSS/functional partitioning is considered along with function criticality, technology alternatives, a technology description, single thread systems, Space Station architectures, ECLSS distribution, mechanical schematics per space station, and Space Station ECLSS characteristics. Attention is given to trade studies and system synergism. The Space Station functional description had been defined by NASA. The ECLSS will utilize technologies which embody regenerative concepts to minimize the use of expendables.

  10. Thermal-structural analyses of Space Shuttle Main Engine (SSME) hot section components

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Thompson, Robert L.

    1988-01-01

    Three dimensional nonlinear finite element heat transfer and structural analyses were performed for the first stage high pressure fuel turbopump (HPFTP) blade of the space shuttle main engine (SSME). Directionally solidified (DS) MAR-M 246 and single crystal (SC) PWA-1480 material properties were used for the analyses. Analytical conditions were based on a typical test stand engine cycle. Blade temperature and stress strain histories were calculated by using the MARC finite element computer code. The structural response of an SSME turbine blade was assessed and a greater understanding of blade damage mechanisms, convective cooling effects, and thermal mechanical effects was gained.

  11. Mechanical Design of Spacecraft

    NASA Technical Reports Server (NTRS)

    1962-01-01

    In the spring of 1962, engineers from the Engineering Mechanics Division of the Jet Propulsion Laboratory gave a series of lectures on spacecraft design at the Engineering Design seminars conducted at the California Institute of Technology. Several of these lectures were subsequently given at Stanford University as part of the Space Technology seminar series sponsored by the Department of Aeronautics and Astronautics. Presented here are notes taken from these lectures. The lectures were conceived with the intent of providing the audience with a glimpse of the activities of a few mechanical engineers who are involved in designing, building, and testing spacecraft. Engineering courses generally consist of heavily idealized problems in order to allow the more efficient teaching of mathematical technique. Students, therefore, receive a somewhat limited exposure to actual engineering problems, which are typified by more unknowns than equations. For this reason it was considered valuable to demonstrate some of the problems faced by spacecraft designers, the processes used to arrive at solutions, and the interactions between the engineer and the remainder of the organization in which he is constrained to operate. These lecture notes are not so much a compilation of sophisticated techniques of analysis as they are a collection of examples of spacecraft hardware and associated problems. They will be of interest not so much to the experienced spacecraft designer as to those who wonder what part the mechanical engineer plays in an effort such as the exploration of space.

  12. CARBON DIOXIDE REDUCTION CONTACTORS IN SPACE VEHICLES AND OTHER ENCLOSED STRUCTURES,

    DTIC Science & Technology

    CONTROLLED ATMOSPHERES, CARBON DIOXIDE, REMOVAL, LIFE SUPPORT SYSTEMS, SPACE ENVIRONMENTS, CONFINED ENVIRONMENTS, OXYGEN CONSUMPTION, REGENERATION(ENGINEERING), CHEMISORPTION, MASS TRANSFER, FLUID MECHANICS, CENTRIFUGES .

  13. Sharipov holds the probe-and-cone docking mechanism in the SM during Expedition 10

    NASA Image and Video Library

    2005-03-03

    ISS010-E-19105 (3 March 2005) --- Cosmonaut Salizhan S. Sharipov, Expedition 10 flight engineer representing Russia's Federal Space Agency, holds the Progress supply vehicle probe-and-cone docking mechanism in the Zvezda Service Module of the International Space Station (ISS).

  14. Technical accomplishments of the NASA Lewis Research Center, 1989

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Topics addressed include: high-temperature composite materials; structural mechanics; fatigue life prediction for composite materials; internal computational fluid mechanics; instrumentation and controls; electronics; stirling engines; aeropropulsion and space propulsion programs, including a study of slush hydrogen; space power for use in the space station, in the Mars rover, and other applications; thermal management; plasma and radiation; cryogenic fluid management in space; microgravity physics; combustion in reduced gravity; test facilities and resources.

  15. CBCS

    NASA Image and Video Library

    2013-09-15

    ISS037-E-001110 (15 Sept. 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 37 flight engineer, installs the Common Berthing Mechanism (CBM) Centerline Berthing Camera System (CBCS) inside the International Space Station’s Harmony node.

  16. Research and technology 1995 annual report

    NASA Technical Reports Server (NTRS)

    1995-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1995 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as technology transfer activities. Major areas of research include environmental engineering, automation, robotics, advanced software, materials science, life sciences, mechanical engineering, nondestructive evaluation, and industrial engineering.

  17. Graduate engineering research participation in aeronautics

    NASA Technical Reports Server (NTRS)

    Roberts, A. S., Jr.

    1986-01-01

    The Aeronautics Graduate Research Program commenced in 1971, with the primary goal of engaging students who qualified for regular admission to the Graduate School of Engineering at Old Dominion University in a graduate engineering research and study program in collaboration with NASA Langley Research Center, Hampton, Virginia. The format and purposes of this program are discussed. Student selection and program statistics are summarized. Abstracts are presented in the folowing areas: aircraft design, aerodynamics, lift/drag characteristics; avionics; fluid mechanics; solid mechanics; instrumentation and measurement techniques; thermophysical properties experiments; large space structures; earth orbital dynamics; and environmental engineering.

  18. Parmitano in Node 2

    NASA Image and Video Library

    2013-09-15

    ISS037-E-001084 (15 Sept. 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 37 flight engineer, installs the Common Berthing Mechanism (CBM) Centerline Berthing Camera System (CBCS) inside the International Space Station’s Harmony node.

  19. Nonlinear Dynamics and Control of Flexible Structures

    DTIC Science & Technology

    1991-03-01

    of which might be used for space applications. This project was a collaborative one involving structural, electrical and mechanical engineers and...methods for vibration analysis and new models to analyze chaotic dynamics in nonlinear structures with large deformations and friction forces. Finally... electrical and mechanical engineers and resulted in nine doctoral dissertations and two masters theses wholly or partially supported by this grant

  20. NASA Hispanic Heritage Month Employee Profile- Gustavo Martinez - Marshall Space Flight Center

    NASA Image and Video Library

    2016-10-19

    In observance of National Hispanic Heritage Month, Gustavo Martinez, a propulsion engineer at NASA’s Marshall Space Flight Center, is featured in this video profile. Martinez, a first-generation American of Mexican descent, earned his bachelors and masters in mechanical engineering from the University of Texas at El Paso. He works in the Liquid Engine System Branch of Marshall’s Propulsion Systems Department, supporting RS-25 engine systems analysis and test preparations for NASA’s Space Launch System. National Hispanic Heritage Month honors the cultures and contributions of Americans whose ancestors originated from Spain, Mexico, the Caribbean and Central and South America. The observation started in 1968 as Hispanic Heritage Week under President Lyndon Johnson and was expanded into law by President Ronald Reagan in 1988.

  1. Design study of magnetic eddy-current vibration suppression dampers for application to cryogenic turbomachinery

    NASA Technical Reports Server (NTRS)

    Gunter, E. J.; Humphris, R. R.; Severson, S. J.

    1983-01-01

    Cryogenic turbomachinery used to pump high pressure fuel (liquid H2) and oxidizer (liquid O2) to the main engines of the Space Shuttle have experienced rotor instabilities. Subsynchronous whirl, an extremely destructive instability, has caused bearing failures and severe rubs in the seals. These failures have resulted in premature engine shutdowns or, in many instances, have limited the power level to which the turbopumps could be operated. The feasibility of using an eddy current type of damping mechanism for the Space Shuttle Main Engine is outlined.

  2. Microstructure, Mechanical Properties and Corrosion Behavior of Porous Mg-6 wt.% Zn Scaffolds for Bone Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Yan, Yang; Kang, Yijun; Li, Ding; Yu, Kun; Xiao, Tao; Wang, Qiyuan; Deng, Youwen; Fang, Hongjie; Jiang, Dayue; Zhang, Yu

    2018-03-01

    Porous Mg-based scaffolds have been extensively researched as biodegradable implants due to their attractive biological and excellent mechanical properties. In this study, porous Mg-6 wt.% Zn scaffolds were prepared by powder metallurgy using ammonium bicarbonate particles as space-holder particles. The effects of space-holder particle content on the microstructure, mechanical properties and corrosion resistance of the Mg-6 wt.% Zn scaffolds were studied. The mean porosity and pore size of the open-cellular scaffolds were within the range 6.7-52.2% and 32.3-384.2 µm, respectively. Slight oxidation was observed at the grain boundaries and on the pore walls. The Mg-6 wt.% Zn scaffolds were shown to possess mechanical properties comparable with those of natural bone and had variable in vitro degradation rates. Increased content of space-holder particles negatively affected the mechanical behavior and corrosion resistance of the Mg-6 wt.% Zn scaffolds, especially when higher than 20%. These results suggest that porous Mg-6 wt.% Zn scaffolds are promising materials for application in bone tissue engineering.

  3. Preliminary engineering report for design of a subscale ejector/diffuser system for high expansion ratio space engine testing

    NASA Technical Reports Server (NTRS)

    Wojciechowski, C. J.; Kurzius, S. C.; Doktor, M. F.

    1984-01-01

    The design of a subscale jet engine driven ejector/diffuser system is examined. Analytical results and preliminary design drawings and plans are included. Previously developed performance prediction techniques are verified. A safety analysis is performed to determine the mechanism for detonation suppression.

  4. Multi-Reflex Propulsion Systems for Space and Air Vehicles and Energy Transfer for Long Distance

    NASA Astrophysics Data System (ADS)

    Bolonkin, A.

    The purpose of this article is to call attention to the revolutionary idea of light multi-reflection. This idea allows the design of new engines, space and air propulsion systems, storage (of a beam and solar energy), transmitters of energy (to millions of kilometers), creation of new weapons, etc. This method and the main innovations were offered by the author in 1983 in the former USSR. Now the author shows in a series of articles the immense possibilities of this idea in many fields of engineering - astronautics, aviation, energy, optics, direct converter of light (laser beam) energy to mechanical energy (light engine), to name a few. This article considers the multi-reflex propulsion systems for space and air vehicles and energy transmitter for long distances in space.

  5. Computational fluid mechanics utilizing the variational principle of modeling damping seals

    NASA Technical Reports Server (NTRS)

    Abernathy, J. M.; Farmer, R.

    1985-01-01

    An analysis for modeling damping seals for use in Space Shuttle main engine turbomachinery is being produced. Development of a computational fluid mechanics code for turbulent, incompressible flow is required.

  6. Wave Propagation Problems in Certain Elastic Anisotropic Half Spaces.

    DTIC Science & Technology

    1980-12-01

    874-882. 33. Paul , S.L., and Robinson, A.R., "Interaction of Plane Elastic Waves with a Cylindrical Cavity," Technical Documentary Report Mo. RTD...Professor Paul M. Naghdi University of California Department of Mechanical Engineering Berkeley, California 94720 Professor A. J. Durelli Oakland...Burt Paul University of Pennsylvania Towne School of Civil and Mechanical Engineering Philadelphia, Pennsylvania 19104 Professor H. W. Liu Syracuse

  7. The 1991 research and technology report, Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald (Editor); Ottenstein, Howard (Editor); Montgomery, Harry (Editor); Truszkowski, Walter (Editor); Frost, Kenneth (Editor); Sullivan, Walter (Editor); Boyle, Charles (Editor)

    1991-01-01

    The 1991 Research and Technology Report for Goddard Space Flight Center is presented. Research covered areas such as (1) earth sciences including upper atmosphere, lower atmosphere, oceans, hydrology, and global studies; (2) space sciences including solar studies, planetary studies, Astro-1, gamma ray investigations, and astrophysics; (3) flight projects; (4) engineering including robotics, mechanical engineering, electronics, imaging and optics, thermal and cryogenic studies, and balloons; and (5) ground systems, networks, and communications including data and networks, TDRSS, mission planning and scheduling, and software development and test.

  8. Bioregenerative system

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The design course is an eight semester credit multi-disciplinary engineering design course taught primarily to Engineering Science, Aerospace, Electrical and Mechanical Engineering seniors. This year the course project involved the design of the three interrelated loops: atmospheric, liquid nutrient and solid waste management, associated with growing higher plants to support man during long-term space missions. The project is complementary to the NASA Kennedy Space Center Controlled Environmental Life Support System (CELSS) project. The first semester the class worked on a preliminary design for a complete system. This effort included means for monitoring and control of composition, temperature, flow rate, etc., for the atmosphere and liquid nutrient solution; disease and contaminant monitoring and control; plant mechanical support, propagation and harvesting; solid and liquid waste recycling; and system maintenance and refurbishing. The project has significant biological, mechanical, electrical and Al/Robotics aspects. The second semester a small number of subsystems or components, identified as important and interesting during the first semester, were selected for detail design, fabrication, and testing. The class was supported by close cooperation with The Kennedy Space Center and by two teaching assistants. The availability of a dedicated, well equipped project room greatly enhanced the communication and team spirit of the class.

  9. Advanced Combustor in the Four Burner Area

    NASA Image and Video Library

    1966-03-21

    Engineer Frank Kutina and a National Aeronautics and Space Administration (NASA) mechanic examine the setup of an advanced combustor rig inside one of the test cells at the Lewis Research Center’s Four Burner Area in the Engine Research Building. Kutina, of the Research Operations Branch, served as go-between for the researchers and the mechanics. He helped develop the test configurations and get the hardware installed. At the time of this photograph, Lewis Center Director Abe Silverstein had just established the Airbreathing Engine Division to address the new propulsion of the 1960s. After nearly a decade of focusing almost exclusively on space, NASA Lewis began tackling issues relating to the new turbofan engine, noise reduction, energy efficiency, supersonic transport, and the never-ending quest for higher performance levels with smaller and more lightweight engines. The Airbreathing Engine Division’s Combustion Branch was dedicated to the study and mitigation of the high temperatures and pressures found in advanced combustor designs. These high temperatures and pressures could destroy engine components. The Lewis investigation included film cooling, diffuser flow, and jet mixing. Components were tested in smaller test cells, but a full-scale augmenting burner rig, seen here, was tested extensively in the Four Burner Area test cell.

  10. Tyurin readies the NASDA exposure experiment cases for their EVA

    NASA Image and Video Library

    2001-10-14

    ISS003-E-6623 (14 October 2001) --- Cosmonaut Mikhail Tyurin, Expedition Three flight engineer representing Rosaviakosmos, works with hardware for the Micro-Particles Capturer (MPAC) and Space Environment Exposure Device (SEED) experiment and fixture mechanism in the Zvezda Service Module on the International Space Station (ISS). MPAC and SEED were developed by Japan’s National Space Development Agency (NASDA), and Russia developed the Fixture Mechanism. This image was taken with a digital still camera.

  11. Growing Tissues in Real and Simulated Microgravity: New Methods for Tissue Engineering

    PubMed Central

    Wehland, Markus; Pietsch, Jessica; Aleshcheva, Ganna; Wise, Petra; van Loon, Jack; Ulbrich, Claudia; Magnusson, Nils E.; Infanger, Manfred; Bauer, Johann

    2014-01-01

    Tissue engineering in simulated (s-) and real microgravity (r-μg) is currently a topic in Space medicine contributing to biomedical sciences and their applications on Earth. The principal aim of this review is to highlight the advances and accomplishments in the field of tissue engineering that could be achieved by culturing cells in Space or by devices created to simulate microgravity on Earth. Understanding the biology of three-dimensional (3D) multicellular structures is very important for a more complete appreciation of in vivo tissue function and advancing in vitro tissue engineering efforts. Various cells exposed to r-μg in Space or to s-μg created by a random positioning machine, a 2D-clinostat, or a rotating wall vessel bioreactor grew in the form of 3D tissues. Hence, these methods represent a new strategy for tissue engineering of a variety of tissues, such as regenerated cartilage, artificial vessel constructs, and other organ tissues as well as multicellular cancer spheroids. These aggregates are used to study molecular mechanisms involved in angiogenesis, cancer development, and biology and for pharmacological testing of, for example, chemotherapeutic drugs or inhibitors of neoangiogenesis. Moreover, they are useful for studying multicellular responses in toxicology and radiation biology, or for performing coculture experiments. The future will show whether these tissue-engineered constructs can be used for medical transplantations. Unveiling the mechanisms of microgravity-dependent molecular and cellular changes is an up-to-date requirement for improving Space medicine and developing new treatment strategies that can be translated to in vivo models while reducing the use of laboratory animals. PMID:24597549

  12. Growing tissues in real and simulated microgravity: new methods for tissue engineering.

    PubMed

    Grimm, Daniela; Wehland, Markus; Pietsch, Jessica; Aleshcheva, Ganna; Wise, Petra; van Loon, Jack; Ulbrich, Claudia; Magnusson, Nils E; Infanger, Manfred; Bauer, Johann

    2014-12-01

    Tissue engineering in simulated (s-) and real microgravity (r-μg) is currently a topic in Space medicine contributing to biomedical sciences and their applications on Earth. The principal aim of this review is to highlight the advances and accomplishments in the field of tissue engineering that could be achieved by culturing cells in Space or by devices created to simulate microgravity on Earth. Understanding the biology of three-dimensional (3D) multicellular structures is very important for a more complete appreciation of in vivo tissue function and advancing in vitro tissue engineering efforts. Various cells exposed to r-μg in Space or to s-μg created by a random positioning machine, a 2D-clinostat, or a rotating wall vessel bioreactor grew in the form of 3D tissues. Hence, these methods represent a new strategy for tissue engineering of a variety of tissues, such as regenerated cartilage, artificial vessel constructs, and other organ tissues as well as multicellular cancer spheroids. These aggregates are used to study molecular mechanisms involved in angiogenesis, cancer development, and biology and for pharmacological testing of, for example, chemotherapeutic drugs or inhibitors of neoangiogenesis. Moreover, they are useful for studying multicellular responses in toxicology and radiation biology, or for performing coculture experiments. The future will show whether these tissue-engineered constructs can be used for medical transplantations. Unveiling the mechanisms of microgravity-dependent molecular and cellular changes is an up-to-date requirement for improving Space medicine and developing new treatment strategies that can be translated to in vivo models while reducing the use of laboratory animals.

  13. The Physics of Living in Space: A Physicist's Attempt to Provide Science and Engineering Education for Non-Science Students.

    ERIC Educational Resources Information Center

    Holbrow, C. H.

    1983-01-01

    A course was developed to teach physics concepts and to help students understand mathematics, the nature and role of engineers and engineering in society, and to distinguish between science/technology from pseudo-science. Includes course goals/content, mechanics, start-up, and long-term projects. (JN)

  14. American & Soviet engineers examine ASTP docking set-up following tests

    NASA Image and Video Library

    1974-07-10

    S74-25394 (10 July 1974) --- A group of American and Soviet engineers of the Apollo-Soyuz Test Project working group three examines an ASTP docking set-up following a docking mechanism fitness test conducted in Building 13 at the Johnson Space Center. Working Group No. 3 is concerned with ASTP docking problems and techniques. The joint U.S.-USSR ASTP docking mission in Earth orbit is scheduled for the summer of 1975. The Apollo docking mechanism is atop the Soyuz docking mechanism.

  15. ATV Ingress

    NASA Image and Video Library

    2014-08-13

    ISS040-E-091979 (13 Aug. 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, is pictured in the hatch after removing the docking mechanism of the newly-attached "Georges Lemaitre" Automated Transfer Vehicle-5 (ATV-5) of the International Space Station.

  16. An Overview of contributions of NASA Space Shuttle to Space Science and Engineering education

    NASA Astrophysics Data System (ADS)

    Lulla, Kamlesh

    2012-07-01

    This paper provides an indepth overview of the enormous contrbutions made by the NASA Space Shuttle Program to Space science and engineering education over the past thirty years. The author has served as one of the major contributors and editors of NASA book "Wings In Orbit: Scientific and Engineering Legacies of the Space Shuttle program" (NASA SP-2010-3409). Every Space Shuttle mission was an education mission: student involvement programs such as Get Away Specials housed in Shuttle payload allowed students to propose research and thus enrich their university education experience. School students were able to operate "EarthKAM" to learn the intricacies of orbital mechanics, earth viewing opportunities and were able to master the science and art of proposal writing and scientific collaboration. The purpose of this presentation is to introduce the global student and teaching community in space sciences and engineering to the plethora of educational resources available to them for engaging a wide variety of students (from early school to the undergraduate and graduate level and to inspire them towards careers in Space sciences and technologies. The volume "Wings In Orbit" book is one example of these ready to use in classroom materials. This paper will highlight the educational payloads, experiments and on-orbit classroom activities conducted for space science and engineering students, teachers and non-traditional educators. The presentation will include discussions on the science content and its educational relevance in all major disiciplines in which the research was conducted on-board the Space Shuttle.

  17. The Synergistic Engineering Environment

    NASA Technical Reports Server (NTRS)

    Cruz, Jonathan

    2006-01-01

    The Synergistic Engineering Environment (SEE) is a system of software dedicated to aiding the understanding of space mission operations. The SEE can integrate disparate sets of data with analytical capabilities, geometric models of spacecraft, and a visualization environment, all contributing to the creation of an interactive simulation of spacecraft. Initially designed to satisfy needs pertaining to the International Space Station, the SEE has been broadened in scope to include spacecraft ranging from those in low orbit around the Earth to those on deep-space missions. The SEE includes analytical capabilities in rigid-body dynamics, kinematics, orbital mechanics, and payload operations. These capabilities enable a user to perform real-time interactive engineering analyses focusing on diverse aspects of operations, including flight attitudes and maneuvers, docking of visiting spacecraft, robotic operations, impingement of spacecraft-engine exhaust plumes, obscuration of instrumentation fields of view, communications, and alternative assembly configurations. .

  18. Development and Testing of Carbon-Carbon Nozzle Extensions for Upper Stage Liquid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Valentine, Peter G.; Gradl, Paul R.; Greene, Sandra E.

    2017-01-01

    Carbon-carbon (C-C) composite nozzle extensions are of interest for use on a variety of launch vehicle upper stage engines and in-space propulsion systems. The C-C nozzle extension technology and test capabilities being developed are intended to support National Aeronautics and Space Administration (NASA) and Department of Defense (DOD) requirements, as well as those of the broader Commercial Space industry. For NASA, C-C nozzle extension technology development primarily supports the NASA Space Launch System (SLS) and NASA's Commercial Space partners. Marshall Space Flight Center (MSFC) efforts are aimed at both (a) further developing the technology and databases needed to enable the use of composite nozzle extensions on cryogenic upper stage engines, and (b) developing and demonstrating low-cost capabilities for testing and qualifying composite nozzle extensions. Recent, on-going, and potential future work supporting NASA, DOD, and Commercial Space needs will be discussed. Information to be presented will include (a) recent and on-going mechanical, thermal, and hot-fire testing, as well as (b) potential future efforts to further develop and qualify domestic C-C nozzle extension solutions for the various upper stage engines under development.

  19. Engineering and Fabrication Considerations for Cost-Effective Space Reactor Shield Development

    NASA Astrophysics Data System (ADS)

    Berg, Thomas A.; Disney, Richard K.

    2004-02-01

    Investment in developing nuclear power for space missions cannot be made on the basis of a single mission. Current efforts in the design and fabrication of the reactor module, including the reactor shield, must be cost-effective and take into account scalability and fabricability for planned and future missions. Engineering considerations for the shield need to accommodate passive thermal management, varying radiation levels and effects, and structural/mechanical issues. Considering these challenges, design principles and cost drivers specific to the engineering and fabrication of the reactor shield are presented that contribute to lower recurring mission costs.

  20. Engineering and Fabrication Considerations for Cost-Effective Space Reactor Shield Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Thomas A.; Disney, Richard K.

    Investment in developing nuclear power for space missions cannot be made on the basis of a single mission. Current efforts in the design and fabrication of the reactor module, including the reactor shield, must be cost-effective and take into account scalability and fabricability for planned and future missions. Engineering considerations for the shield need to accommodate passive thermal management, varying radiation levels and effects, and structural/mechanical issues. Considering these challenges, design principles and cost drivers specific to the engineering and fabrication of the reactor shield are presented that contribute to lower recurring mission costs.

  1. Soyuz TMA-03M Docking Mechanism

    NASA Image and Video Library

    2012-07-01

    ISS032-E-005028 (1 July 2012) --- This close-up view shows the docking mechanism of the Soyuz TMA-03M spacecraft as it undocks from the International Space Station?s Rassvet Mini-Research Module 1 (MRM-1) on July 1, 2012. Russian cosmonaut Oleg Kononenko, Expedition 31 commander; along with European Space Agency astronaut Andre Kuipers and NASA astronaut Don Pettit, both flight engineers, are returning from more than six months aboard the space station where they served as members of the Expedition 30 and 31 crews.

  2. Soyuz TMA-03M Docking Mechanism

    NASA Image and Video Library

    2012-07-01

    ISS032-E-005023 (1 July 2012) --- This close-up view shows the docking mechanism of the Soyuz TMA-03M spacecraft as it undocks from the International Space Station?s Rassvet Mini-Research Module 1 (MRM-1) on July 1, 2012. Russian cosmonaut Oleg Kononenko, Expedition 31 commander; along with European Space Agency astronaut Andre Kuipers and NASA astronaut Don Pettit, both flight engineers, are returning from more than six months aboard the space station where they served as members of the Expedition 30 and 31 crews.

  3. High temperature solar photon engines. [heat engines for terrestrial and space-based solar power plants

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.; Decher, R.; Mattick, A. T.; Lau, C. V.

    1978-01-01

    High temperature heat engines designed to make maximum use of the thermodynamic potential of concentrated solar radiation are described. Plasmas between 2000 K and 4000 K can be achieved by volumetric absorption of radiation in alkali metal vapors, leading to thermal efficiencies up to 75% for terrestrial solar power plants and up to 50% for space power plants. Two machines capable of expanding hot plasmas using practical technology are discussed. A binary Rankine cycle uses fluid mechanical energy transfer in a device known as the 'Comprex' or 'energy exchanger.' The second machine utilizes magnetohydrodynamics in a Brayton cycle for space applications. Absorption of solar energy and plasma radiation losses are investigated for a solar superheater using potassium vapor.

  4. The 18th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Topics concerning aerospace mechanisms, their functional performance, and design specifications are presented. Discussed subjects include the design and development of release mechanisms, actuators, linear driver/rate controllers, antenna and appendage deployment systems, position control systems, and tracking mechanisms for antennas and solar arrays. Engine design, spaceborne experiments, and large space structure technology are also examined.

  5. Mechanical Technology Development on A 35-m Deployable Radar Antenna for Monitoring Hurricanes

    NASA Technical Reports Server (NTRS)

    Fang, Houfei; Im, Eastwood

    2006-01-01

    The NEXRAD in Space project develops a novel instrument concept and the associated antenna technologies for a 35-GHz Doppler radar to monitor hurricanes, cyclones, and severe storms from a geostationary orbit. Mechanical challenges of this concept include a 35-m diameter lightweight in space deployable spherical reflector and a feeder scanning mechanism. The feasibility of using shape memory polymer material to develop the large deployable reflector has been investigated by this study. A spiral scanning mechanism concept has been developed and demonstrated by an engineering model.

  6. 24 CFR 3285.310 - Pier location and spacing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... engineer or registered architect. (c) Piers supporting the frame must be no more than 24 inches from both....312, as applicable, unless alternative designs are provided by a professional engineer or registered..., electrical, mechanical, equipment, crawlspaces, or other devices. 3. Single-stack concrete block pier loads...

  7. 24 CFR 3285.310 - Pier location and spacing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... engineer or registered architect. (c) Piers supporting the frame must be no more than 24 inches from both....312, as applicable, unless alternative designs are provided by a professional engineer or registered..., electrical, mechanical, equipment, crawlspaces, or other devices. 3. Single-stack concrete block pier loads...

  8. 24 CFR 3285.310 - Pier location and spacing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... engineer or registered architect. (c) Piers supporting the frame must be no more than 24 inches from both....312, as applicable, unless alternative designs are provided by a professional engineer or registered..., electrical, mechanical, equipment, crawlspaces, or other devices. 3. Single-stack concrete block pier loads...

  9. 24 CFR 3285.310 - Pier location and spacing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... engineer or registered architect. (c) Piers supporting the frame must be no more than 24 inches from both....312, as applicable, unless alternative designs are provided by a professional engineer or registered..., electrical, mechanical, equipment, crawlspaces, or other devices. 3. Single-stack concrete block pier loads...

  10. 24 CFR 3285.310 - Pier location and spacing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... engineer or registered architect. (c) Piers supporting the frame must be no more than 24 inches from both....312, as applicable, unless alternative designs are provided by a professional engineer or registered..., electrical, mechanical, equipment, crawlspaces, or other devices. 3. Single-stack concrete block pier loads...

  11. National Aeronautics and Space Administration Science and Engineering Apprentice Program

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The National Aeronautics and Space Administration's Science and Engineering Apprentice Program for high school students is one of NASA's many efforts toward a goal of scientific literacy. It embraces science, mathematics, and technology as keys to purposeful and sustained progress and security for our nation and its people. It serves as a model for helping reform education by striving to address mechanisms to influence the knowledge, skills, and attitudes of our students. It focuses on what to do today to meet the challenges of tomorrow.

  12. Microgravity cultivation of cells and tissues

    NASA Technical Reports Server (NTRS)

    Freed, L. E.; Pellis, N.; Searby, N.; de Luis, J.; Preda, C.; Bordonaro, J.; Vunjak-Novakovic, G.

    1999-01-01

    In vitro studies of cells and tissues in microgravity, either simulated by cultivation conditions on earth or actual, during spaceflight, are expected to help identify mechanisms underlying gravity sensing and transduction in biological organisms. In this paper, we review rotating bioreactor studies of engineered skeletal and cardiovascular tissues carried out in unit gravity, a four month long cartilage tissue engineering study carried out aboard the Mir Space Station, and the ongoing laboratory development and testing of a system for cell and tissue cultivation aboard the International Space Station.

  13. Crew around hatch leading into the Soyuz spacecraft

    NASA Image and Video Library

    2006-09-28

    ISS014-E-05015 (28 Sept. 2006) --- European Space Agency (ESA) astronaut Thomas Reiter, Expedition 14 flight engineer, photographed near a docking port in the Pirs Docking Compartment of the International Space Station. A probe-and-cone docking mechanism is visible in the port.

  14. MSFC Three Point Docking Mechanism design review

    NASA Technical Reports Server (NTRS)

    Schaefer, Otto; Ambrosio, Anthony

    1992-01-01

    In the next few decades, we will be launching expensive satellites and space platforms that will require recovery for economic reasons, because of initial malfunction, servicing, repairs, or out of a concern for post lifetime debris removal. The planned availability of a Three Point Docking Mechanism (TPDM) is a positive step towards an operational satellite retrieval infrastructure. This study effort supports NASA/MSFC engineering work in developing an automated docking capability. The work was performed by the Grumman Space & Electronics Group as a concept evaluation/test for the Tumbling Satellite Retrieval Kit. Simulation of a TPDM capture was performed in Grumman's Large Amplitude Space Simulator (LASS) using mockups of both parts (the mechanism and payload). Similar TPDM simulation activities and more extensive hardware testing was performed at NASA/MSFC in the Flight Robotics Laboratory and Space Station/Space Operations Mechanism Test Bed (6-DOF Facility).

  15. Improved Rhenium Thrust Chambers

    NASA Technical Reports Server (NTRS)

    O'Dell, John Scott

    2015-01-01

    Radiation-cooled bipropellant thrust chambers are being considered for ascent/ descent engines and reaction control systems on various NASA missions and spacecraft, such as the Mars Sample Return and Orion Multi-Purpose Crew Vehicle (MPCV). Currently, iridium (Ir)-lined rhenium (Re) combustion chambers are the state of the art for in-space engines. NASA's Advanced Materials Bipropellant Rocket (AMBR) engine, a 150-lbf Ir-Re chamber produced by Plasma Processes and Aerojet Rocketdyne, recently set a hydrazine specific impulse record of 333.5 seconds. To withstand the high loads during terrestrial launch, Re chambers with improved mechanical properties are needed. Recent electrochemical forming (EL-Form"TM") results have shown considerable promise for improving Re's mechanical properties by producing a multilayered deposit composed of a tailored microstructure (i.e., Engineered Re). The Engineered Re processing techniques were optimized, and detailed characterization and mechanical properties tests were performed. The most promising techniques were selected and used to produce an Engineered Re AMBR-sized combustion chamber for testing at Aerojet Rocketdyne.

  16. Elements of Engineering Excellence

    NASA Technical Reports Server (NTRS)

    Blair, J. C.; Ryan, R. S.; Schutzenhofer

    2012-01-01

    The inspiration for this Contract Report (CR) originated in discussions with the director of Marshall Space Flight Center (MSFC) Engineering who asked that we investigate the question: "How do you achieve excellence in aerospace engineering?" Engineering a space system is a complex activity. Avoiding its inherent potential pitfalls and achieving a successful product is a challenge. This CR presents one approach to answering the question of how to achieve Engineering Excellence. We first investigated the root causes of NASA major failures as a basis for developing a proposed answer to the question of Excellence. The following discussions integrate a triad of Technical Understanding and Execution, Partnership with the Project, and Individual and Organizational Culture. The thesis is that you must focus on the whole process and its underlying culture, not just on the technical aspects. In addition to the engineering process, emphasis is given to the need and characteristics of a Learning Organization as a mechanism for changing the culture.

  17. Space power demonstrator engine, phase 1

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The design, analysis, and preliminary test results for a 25 kWe Free-Piston Stirling engine with integral linear alternators are described. The project is conducted by Mechanical Technology under the direction of LeRC as part of the SP-100 Nuclear Space Power Systems Program. The engine/alternator system is designed to demonstrate the following performance: (1) 25 kWe output at a specific weight less than 8 kg/kW; (2) 25 percent efficiency at a temperature ratio of 2.0; (3) low vibration (amplitude less than .003 in); (4) internal gas bearings (no wear, no external pump); and (5) heater temperature/cooler temperature from 630 to 315 K. The design approach to minimize vibration is a two-module engine (12.5 kWe per module) in a linearly-opposed configuration with a common expansion space. The low specific weight is obtained at high helium pressure (150 bar) and high frequency (105 Hz) and by using high magnetic strength (samarium cobalt) alternator magnets. Engine tests began in June 1985; 16 months following initiation of engine and test cell design. Hydrotest and consequent engine testing to date has been intentionally limited to half pressure, and electrical power output is within 15 to 20 percent of design predictions.

  18. A case study in technology utilization: Fracture mechanics

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This review of NASA contributions to the technology of fracture mechanics illustrates a fundamental role of the Space Agency in a single technical area. While primarily pursuing its goal of minimizing the weight of flight hardware, NASA engineers have generated innovations having broad impact in nonaerospace communities. A review is given of how these specific NASA innovations are communicated to the technical community outside the Space Agency, and current application areas are outlined.

  19. Preloaded joint analysis methodology for space flight systems

    NASA Technical Reports Server (NTRS)

    Chambers, Jeffrey A.

    1995-01-01

    This report contains a compilation of some of the most basic equations governing simple preloaded joint systems and discusses the more common modes of failure associated with such hardware. It is intended to provide the mechanical designer with the tools necessary for designing a basic bolted joint. Although the information presented is intended to aid in the engineering of space flight structures, the fundamentals are equally applicable to other forms of mechanical design.

  20. E55_Inflight_Purdue_University_2018_0511_2329_651933

    NASA Image and Video Library

    2018-05-14

    SPACE STATION CREW MEMBER RECEIVES HONORARY DEGREE IN ORBIT----- Aboard the International Space Station, Expedition 55 Flight Engineer Drew Feustel of NASA received an honorary doctorate degree from his alma mater, Purdue University, during a unique ground-to-space ceremony on May 11. Feustel, who previously received a Bachelor of Science degree in Solid Earth Sciences and a Master of Science degree in Geophysics from Purdue, was hooded by his crewmate, Purdue graduate Scott Tingle of NASA, who has a Master of Science degree in Mechanical Engineering from the institution. The ceremony originated at Purdue, whose president, Mitch Daniels, introduced the crew members on orbit.

  1. University Nanosatellite Program ION-F Constellation

    NASA Technical Reports Server (NTRS)

    Swenson, Charles; Fullmer, Rees; Redd, Frank

    2002-01-01

    The Space Engineering program at Utah State University has developed a small satellite, known as USUSat, under funding from AFOSR, AFRL, NASA and Utah State University's Space Dynamics Laboratory. This satellite was designed and significantly manufactured by students in the Mechanical and Aerospace Engineering and the Electrical and Computer Engineering Departments within the College of Engineering. USUSat is one of three spacecraft being designed for the Ionospheric Observation Nanosatellite Formation (ION- F). This formation comprises three 15 kg. spacecraft designed and built in cooperation by Utah State University, University of Washington, and Virginia Polytechnic Institute. The ION-F satellites are being designed and built by students at the three universities, with close coordination to insure compatibility for launch, deployment, and the formation flying mission. The JON-F mission is part of the U.S. Air Force Research Laboratory (AFRL) University Nanosatellite Program, which provides technology development and demonstrations for the TechSat2l Program. The University Nanosatellite Program involves 10 universities building nanosatellites for a launch in 2004 on two separate space shuttle missions. Additional support for the formation flying demonstration has been provided by NASA's Goddard Space Flight Center.

  2. GAIA payload module mechanical development

    NASA Astrophysics Data System (ADS)

    Touzeau, S.; Sein, E.; Lebranchu, C.

    2017-11-01

    Gaia is the European Space Agency's cornerstone mission for global space astrometry. Its goal is to make the largest, most precise three-dimensional map of our Galaxy by surveying an unprecedented number of stars. This paper gives an overview of the mechanical system engineering and verification of the payload module. This development includes several technical challenges. First of all, the very high stability performance as required for the mission is a key driver for the design, which incurs a high degree of stability. This is achieved through the extensive use of Silicon Carbide (Boostec® SiC) for both structures and mirrors, a high mechanical and thermal decoupling between payload and service modules, and the use of high-performance engineering tools. Compliance of payload mass and volume with launcher capability is another key challenge, as well as the development and manufacturing of the 3.2-meter diameter toroidal primary structure. The spacecraft mechanical verification follows an innovative approach, with direct testing on the flight model, without any dedicated structural model.

  3. Overview of Glenn Mechanical Components Branch Research

    NASA Astrophysics Data System (ADS)

    Zakrajsek, James

    2002-09-01

    Mr. James Zakrajsek, chief of the Mechanical Components Branch, gave an overview of research conducted by the branch. Branch members perform basic research on mechanical components and systems, including gears and bearings, turbine seals, structural and thermal barrier seals, and space mechanisms. The research is focused on propulsion systems for present and advanced aerospace vehicles. For rotorcraft and conventional aircraft, we conduct research to develop technology needed to enable the design of low noise, ultra safe geared drive systems. We develop and validate analytical models for gear crack propagation, gear dynamics and noise, gear diagnostics, bearing dynamics, and thermal analyses of gear systems using experimental data from various component test rigs. In seal research we develop and test advanced turbine seal concepts to increase efficiency and durability of turbine engines. We perform experimental and analytical research to develop advanced thermal barrier seals and structural seals for current and next generation space vehicles. Our space mechanisms research involves fundamental investigation of lubricants, materials, components and mechanisms for deep space and planetary environments.

  4. Design methodology and projects for space engineering

    NASA Technical Reports Server (NTRS)

    Nichols, S.; Kleespies, H.; Wood, K.; Crawford, R.

    1993-01-01

    NASA/USRA is an ongoing sponsor of space design projects in the senior design course of the Mechanical Engineering Department at The University of Texas at Austin. This paper describes the UT senior design sequence, consisting of a design methodology course and a capstone design course. The philosophical basis of this sequence is briefly summarized. A history of the Department's activities in the Advanced Design Program is then presented. The paper concludes with a description of the projects completed during the 1991-92 academic year and the ongoing projects for the Fall 1992 semester.

  5. Materials Science Laboratory

    NASA Technical Reports Server (NTRS)

    Jackson, Dionne

    2005-01-01

    The NASA Materials Science Laboratory (MSL) provides science and engineering services to NASA and Contractor customers at KSC, including those working for the Space Shuttle. International Space Station. and Launch Services Programs. These services include: (1) Independent/unbiased failure analysis (2) Support to Accident/Mishap Investigation Boards (3) Materials testing and evaluation (4) Materials and Processes (M&P) engineering consultation (5) Metrology (6) Chemical analysis (including ID of unknown materials) (7) Mechanical design and fabrication We provide unique solutions to unusual and urgent problems associated with aerospace flight hardware, ground support equipment and related facilities.

  6. The NASA Dryden 747 Shuttle Carrier Aircraft crew poses in an engine inlet

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The NASA Dryden 747 Shuttle Carrier Aircraft crew poses in an engine inlet; Standing L to R - aircraft mechanic John Goleno and SCA Team Leader Pete Seidl; Kneeling L to R - aircraft mechanics Todd Weston and Arvid Knutson, and avionics technician Jim Bedard NASA uses two modified Boeing 747 jetliners, originally manufactured for commercial use, as Space Shuttle Carrier Aircraft (SCA). One is a 747-100 model, while the other is designated a 747-100SR (short range). The two aircraft are identical in appearance and in their performance as Shuttle Carrier Aircraft. The 747 series of aircraft are four-engine intercontinental-range swept-wing 'jumbo jets' that entered commercial service in 1969. The SCAs are used to ferry space shuttle orbiters from landing sites back to the launch complex at the Kennedy Space Center, and also to and from other locations too distant for the orbiters to be delivered by ground transportation. The orbiters are placed atop the SCAs by Mate-Demate Devices, large gantry-like structures which hoist the orbiters off the ground for post-flight servicing, and then mate them with the SCAs for ferry flights.

  7. The NASA Dryden 747 Shuttle Carrier Aircraft crew poses in an engine inlet

    NASA Image and Video Library

    2000-02-03

    The NASA Dryden 747 Shuttle Carrier Aircraft crew poses in an engine inlet; Standing L to R - aircraft mechanic John Goleno and SCA Team Leader Pete Seidl; Kneeling L to R - aircraft mechanics Todd Weston and Arvid Knutson, and avionics technician Jim Bedard NASA uses two modified Boeing 747 jetliners, originally manufactured for commercial use, as Space Shuttle Carrier Aircraft (SCA). One is a 747-100 model, while the other is designated a 747-100SR (short range). The two aircraft are identical in appearance and in their performance as Shuttle Carrier Aircraft. The 747 series of aircraft are four-engine intercontinental-range swept-wing "jumbo jets" that entered commercial service in 1969. The SCAs are used to ferry space shuttle orbiters from landing sites back to the launch complex at the Kennedy Space Center, and also to and from other locations too distant for the orbiters to be delivered by ground transportation. The orbiters are placed atop the SCAs by Mate-Demate Devices, large gantry-like structures which hoist the orbiters off the ground for post-flight servicing, and then mate them with the SCAs for ferry flights.

  8. Training the Future - Interns Harvesting & Testing Plant Experim

    NASA Image and Video Library

    2017-07-19

    In the Space Life Sciences Laboratory at NASA's Kennedy Space Center in Florida, student interns such as Payton Barnwell are joining agency scientists, contributing in the area of plant growth research for food production in space. Barnwell is a mechanical engineering and nanotechnology major at Florida Polytechnic University. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.

  9. LEADER - An integrated engine behavior and design analyses based real-time fault diagnostic expert system for Space Shuttle Main Engine (SSME)

    NASA Technical Reports Server (NTRS)

    Gupta, U. K.; Ali, M.

    1989-01-01

    The LEADER expert system has been developed for automatic learning tasks encompassing real-time detection, identification, verification, and correction of anomalous propulsion system operations, using a set of sensors to monitor engine component performance to ascertain anomalies in engine dynamics and behavior. Two diagnostic approaches are embodied in LEADER's architecture: (1) learning and identifying engine behavior patterns to generate novel hypotheses about possible abnormalities, and (2) the direction of engine sensor data processing to perform resoning based on engine design and functional knowledge, as well as the principles of the relevant mechanics and physics.

  10. Wernher von Braun

    NASA Image and Video Library

    1965-11-05

    In this photograph, Marshall Space Flight Center Director, Dr. Wernher von Braun, presents a Co-Inventor’s award to MSFC employee Martin Hall of the Mechanical Engineering Laboratory during the NASA Anniversary ceremony.

  11. Water Reclamation Technology Development at Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Callahan, Michael R.; Pickering, Karen

    2014-01-01

    Who We Are: A staff of approximately 14 BS, MS, and PhD-Level Engineers and Scientists with experience in Aerospace, Civil, Environmental, and Mechanical Engineering, Chemistry, Physical Science and Water Pollution Microbiology. Our Primary Objective: To develop the next generation water recovery system technologies that will support NASA's long duration missions beyond low-earth orbit.

  12. Practical sliced configuration spaces for curved planar pairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sacks, E.

    1999-01-01

    In this article, the author presents a practical configuration-space computation algorithm for pairs of curved planar parts, based on the general algorithm developed by Bajaj and the author. The general algorithm advances the theoretical understanding of configuration-space computation, but is too slow and fragile for some applications. The new algorithm solves these problems by restricting the analysis to parts bounded by line segments and circular arcs, whereas the general algorithm handles rational parametric curves. The trade-off is worthwhile, because the restricted class handles most robotics and mechanical engineering applications. The algorithm reduces run time by a factor of 60 onmore » nine representative engineering pairs, and by a factor of 9 on two human-knee pairs. It also handles common special pairs by specialized methods. A survey of 2,500 mechanisms shows that these methods cover 90% of pairs and yield an additional factor of 10 reduction in average run time. The theme of this article is that application requirements, as well as intrinsic theoretical interest, should drive configuration-space research.« less

  13. Relocation of the Deep Space Network Maintenance Center

    NASA Technical Reports Server (NTRS)

    Beutler, K. F.

    1981-01-01

    The Jet Propulsion Laboratory maintains a Deep Space Network (DSN) maintenance center (DMC), whose task is to engineer and manage the repair and calibration program for the electronic and mechanical equipment used in the tracking stations located at Madrid, Spain, and Canberra, Australia. The DMC also manages the Goldstone complex maintenance facility (GCMF), whose task is to repair and calibrate the Goldstone electronic and mechanical equipment. The rationale for moving the facility to Barstow, California, and the benefits derived from the move are discussed.

  14. Space Vehicle Flight Mechanics (La Mecanique du Vol des Vehicules Spatiaux)

    DTIC Science & Technology

    1990-06-01

    uncertainties to a reasonably or a single-stage-to-orbit vehicle manageable level". Some of the (without supersonic combustion) chiof anxieties were as...their landing on the moon or to manning space stations orbiting Earth, there exists an enormous infrastructure of scientists, engineers, managers and...politicians who together allow these ventures to come to fruition. This paper addresses the evolution of space flight, the technical and management

  15. Celestial mechanics during the last two decades

    NASA Technical Reports Server (NTRS)

    Szebehely, V.

    1978-01-01

    The unprecedented progress in celestial mechanics (orbital mechanics, astrodynamics, space dynamics) is reviewed from 1957 to date. The engineering, astronomical and mathematical aspects are synthesized. The measuring and computational techniques developed parallel with the theoretical advances are outlined. Major unsolved problem areas are listed with proposed approaches for their solutions. Extrapolations and predictions of the progress for the future conclude the paper.

  16. Biomedical engineering - A means to add new dimension to medicine and research

    NASA Technical Reports Server (NTRS)

    Doerr, D. F.

    1992-01-01

    Biomedical engineering is an evolving science that seeks to insert technically oriented and trained personnel to assist medical professionals in solving technological problems in the pursuit of innovations in the delivery of health care. Consequently, engineering solutions are brought to bear on problems that previously were outside the training of physicians and beyond the understanding or appreciation of the conventionally educated electrical or mechanical engineers. This physician/scientist/engineer team has a capability to extend medicine and research far beyond the capability of a single entity operating alone. How biomedical engineering has added a new dimension to medical science at the Kennedy Space Center is described.

  17. Temperature-Dependent Effects on the Mechanical Behavior and Deformation Substructure of Haynes 188 Under Low-Cycle Fatigue

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The mechanical behavior of a cobalt-nickel-chromium-tungsten superalloy, Haynes 188, is being critically examined at the NASA Lewis Research Center. This dynamic, strain-aging (DSA) alloy is used for combustor liners in many military and commercial aircraft turbine engines and for the liquid oxygen posts in the main injectors of the space shuttle main engine. Its attractive features include a good combination of high monotonic yield and tensile strength, and excellent fabricability, weldability, and resistance to high-temperature oxidation for prolonged exposures.

  18. Space-based solar power conversion and delivery systems study. Volume 2: Engineering analysis of orbital systems

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Program plans, schedules, and costs are determined for a synchronous orbit-based power generation and relay system. Requirements for the satellite solar power station (SSPS) and the power relay satellite (PRS) are explored. Engineering analysis of large solar arrays, flight mechanics and control, transportation, assembly and maintenance, and microwave transmission are included.

  19. Expedition 6 flight engineer Nikolai Budarin in White Room before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- In the White Room on Launch Pad 39A, Expedition 6 flight engineer Nikolai Budarin is helped with his launch and entry suit before entering Space Shuttle Endeavour. Closeout Crew members helping are (left) Rene Arriens, United Space Alliance mechanical technician, (right) Danny Wyatt, NASA Quality Assurance specialist, and (background) Rick Welty, United Space Alliance Vehicle Closeout chief. The launch will carry the Expedition 6 crew to the Station and return the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 23 at 7:50 p.m. EST.

  20. Space Engineering Projects in Design Methodology

    NASA Technical Reports Server (NTRS)

    Crawford, R.; Wood, K.; Nichols, S.; Hearn, C.; Corrier, S.; DeKunder, G.; George, S.; Hysinger, C.; Johnson, C.; Kubasta, K.

    1993-01-01

    NASA/USRA is an ongoing sponsor of space design projects in the senior design courses of the Mechanical Engineering Department at The University of Texas at Austin. This paper describes the UT senior design sequence, focusing on the first-semester design methodology course. The philosophical basis and pedagogical structure of this course is summarized. A history of the Department's activities in the Advanced Design Program is then presented. The paper includes a summary of the projects completed during the 1992-93 Academic Year in the methodology course, and concludes with an example of two projects completed by student design teams.

  1. The astronaut of 1988. [training and selection

    NASA Technical Reports Server (NTRS)

    Slayton, D. K.

    1973-01-01

    Past space exploration history is reviewed for a projection of requirements in astronaut training and selection in 1988. The categories of talent required for those space missions are listed as test pilots and operational pilots for the test phase of programs; flight engineers and mechanics for Space Shuttle and Space Stations; medical doctors as experimentators and crew members; medical technicians and nurses for support medical service; veterinarians and veterinary technicians; physisits, chemists and geologists; and military men and administrators. Multinational crews and participation of both sexes are anticipated.

  2. Explicit Finite Element Techniques Used to Characterize Splashdown of the Space Shuttle Solid Rocket Booster Aft Skirt

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.

    2003-01-01

    NASA Glenn Research Center s Structural Mechanics Branch has years of expertise in using explicit finite element methods to predict the outcome of ballistic impact events. Shuttle engineers from the NASA Marshall Space Flight Center and NASA Kennedy Space Flight Center required assistance in assessing the structural loads that a newly proposed thrust vector control system for the space shuttle solid rocket booster (SRB) aft skirt would expect to see during its recovery splashdown.

  3. A sublimation heat engine

    PubMed Central

    Wells, Gary G.; Ledesma-Aguilar, Rodrigo; McHale, Glen; Sefiane, Khellil

    2015-01-01

    Heat engines are based on the physical realization of a thermodynamic cycle, most famously the liquid–vapour Rankine cycle used for steam engines. Here we present a sublimation heat engine, which can convert temperature differences into mechanical work via the Leidenfrost effect. Through controlled experiments, quantified by a hydrodynamic model, we show that levitating dry-ice blocks rotate on hot turbine-like surfaces at a rate controlled by the turbine geometry, temperature difference and solid material properties. The rotational motion of the dry-ice loads is converted into electric power by coupling to a magnetic coil system. We extend our concept to liquid loads, generalizing the realization of the new engine to both sublimation and the instantaneous vapourization of liquids. Our results support the feasibility of low-friction in situ energy harvesting from both liquids and ices. Our concept is potentially relevant in challenging situations such as deep drilling, outer space exploration or micro-mechanical manipulation. PMID:25731669

  4. Controllability of Free-piston Stirling Engine/linear Alternator Driving a Dynamic Load

    NASA Technical Reports Server (NTRS)

    Kankam, M. David; Rauch, Jeffrey S.

    1994-01-01

    This paper presents the dynamic behavior of a Free-Piston Stirling Engine/linear alternator (FPSE/LA) driving a single-phase fractional horse-power induction motor. The controllability and dynamic stability of the system are discussed by means of sensitivity effects of variations in system parameters, engine controller, operating conditions, and mechanical loading on the induction motor. The approach used expands on a combined mechanical and thermodynamic formulation employed in a previous paper. The application of state-space technique and frequency domain analysis enhances understanding of the dynamic interactions. Engine-alternator parametric sensitivity studies, similar to those of the previous paper, are summarized. Detailed discussions are provided for parametric variations which relate to the engine controller and system operating conditions. The results suggest that the controllability of a FPSE-based power system is enhanced by proper operating conditions and built-in controls.

  5. A sublimation heat engine.

    PubMed

    Wells, Gary G; Ledesma-Aguilar, Rodrigo; McHale, Glen; Sefiane, Khellil

    2015-03-03

    Heat engines are based on the physical realization of a thermodynamic cycle, most famously the liquid-vapour Rankine cycle used for steam engines. Here we present a sublimation heat engine, which can convert temperature differences into mechanical work via the Leidenfrost effect. Through controlled experiments, quantified by a hydrodynamic model, we show that levitating dry-ice blocks rotate on hot turbine-like surfaces at a rate controlled by the turbine geometry, temperature difference and solid material properties. The rotational motion of the dry-ice loads is converted into electric power by coupling to a magnetic coil system. We extend our concept to liquid loads, generalizing the realization of the new engine to both sublimation and the instantaneous vapourization of liquids. Our results support the feasibility of low-friction in situ energy harvesting from both liquids and ices. Our concept is potentially relevant in challenging situations such as deep drilling, outer space exploration or micro-mechanical manipulation.

  6. OSIRIS-REx Visible And Infrared Spectrometer - OVIRS

    NASA Technical Reports Server (NTRS)

    Hair, Jason

    2016-01-01

    Goddard Space Flight Center: Overall Instrument Responsibility; Instrument Scientist and Deputy Instrument Scientist; Management Systems Engineering; Mechanical Hardware; Harness Assemblies; SIDECAR Assembly Code; OVIRS Integration and Environmental Qualification; OVIRS Performance Testing, Calibration and Characterization.

  7. Overview of the Center for Space Construction

    NASA Technical Reports Server (NTRS)

    Hearth, Donald P.

    1989-01-01

    The purpose of this overview is to outline the position of the Center for Space Construction within the context of space-related programs at the University of Colorado. the University's historically strong research and graduate programs in space science and its strong undergraduate aerospace engineering program were the starting point in 1984 for a major expansion of space-related education and research programs at the Boulder campus. This initiative has resulted in a tripling of space-related research as well as a large increase in the enrollment of high quality engineering students, particularly at the graduate level. The Center for Space Construction is a major element of this initiative, since it represents a mechanism for interdisciplinary and system level research and education within the Engineering College, thus filling a major need. Seventeen faculty members and 37 students from 7 academic units are associated with the Center and are interacting with each other and with the CSC Associates (a group of industrial organizations and government laboratories). The first Ph.D. has been awarded to a student working in the Center; the second Ph.D. is expected later this year. Several new courses have been introduced in the College. Finally, excellent research is being conducted and Center participants are publishing in the open literature.

  8. Space tug point design study. Volume 3: Design definition. Part 1: Propulsion and mechanical, avionics, thermal control and electrical power subsystems

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A study was conducted to determine the configuration and performance of a space tug. Details of the space tug systems are presented to include: (1) propulsion systems, (2) avionics, (3) thermal control, and (4) electric power subsystems. The data generated include engineering drawings, schematics, subsystem operation, and component description. Various options investigated and the rational for the point design selection are analyzed.

  9. ATV Ingress

    NASA Image and Video Library

    2014-08-13

    ISS040-E-091921 (13 Aug. 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, prepares to remove the docking mechanism to gain access to the hatch of the newly attached "Georges Lemaitre" Automated Transfer Vehicle-5 (ATV-5).

  10. ATV Ingress

    NASA Image and Video Library

    2014-08-13

    ISS040-E-091918 (13 Aug. 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, prepares to remove the docking mechanism to gain access to the hatch of the newly attached "Georges Lemaitre" Automated Transfer Vehicle-5 (ATV-5).

  11. ATV Ingress

    NASA Image and Video Library

    2014-08-13

    ISS040-E-091919 (13 Aug. 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, prepares to remove the docking mechanism to gain access to the hatch of the newly attached "Georges Lemaitre" Automated Transfer Vehicle-5 (ATV-5).

  12. ATV Ingress

    NASA Image and Video Library

    2014-08-13

    ISS040-E-091922 (13 Aug. 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, prepares to remove the docking mechanism to gain access to the hatch of the newly attached "Georges Lemaitre" Automated Transfer Vehicle-5 (ATV-5).

  13. Initial comparison of single cylinder Stirling engine computer model predictions with test results

    NASA Technical Reports Server (NTRS)

    Tew, R. C., Jr.; Thieme, L. G.; Miao, D.

    1979-01-01

    A NASA developed digital computer code for a Stirling engine, modelling the performance of a single cylinder rhombic drive ground performance unit (GPU), is presented and its predictions are compared to test results. The GPU engine incorporates eight regenerator/cooler units and the engine working space is modelled by thirteen control volumes. The model calculates indicated power and efficiency for a given engine speed, mean pressure, heater and expansion space metal temperatures and cooler water inlet temperature and flow rate. Comparison of predicted and observed powers implies that the reference pressure drop calculations underestimate actual pressure drop, possibly due to oil contamination in the regenerator/cooler units, methane contamination in the working gas or the underestimation of mechanical loss. For a working gas of hydrogen, the predicted values of brake power are from 0 to 6% higher than experimental values, and brake efficiency is 6 to 16% higher, while for helium the predicted brake power and efficiency are 2 to 15% higher than the experimental.

  14. Space Operations Analysis Using the Synergistic Engineering Environment

    NASA Technical Reports Server (NTRS)

    Angster, Scott; Brewer, Laura

    2002-01-01

    The Synergistic Engineering Environment has been under development at the NASA Langley Research Center to aid in the understanding of the operations of spacecraft. This is accomplished through the integration of multiple data sets, analysis tools, spacecraft geometric models, and a visualization environment to create an interactive virtual simulation of the spacecraft. Initially designed to support the needs of the International Space Station, the SEE has broadened the scope to include spacecraft ranging from low-earth orbit to deep space missions. Analysis capabilities within the SEE include rigid body dynamics, kinematics, orbital mechanics, and payload operations. This provides the user the ability to perform real-time interactive engineering analyses in areas including flight attitudes and maneuvers, visiting vehicle docking scenarios, robotic operations, plume impingement, field of view obscuration, and alternative assembly configurations. The SEE has been used to aid in the understanding of several operational procedures related to the International Space Station. This paper will address the capabilities of the first build of the SEE, present several use cases of the SEE, and discuss the next build of the SEE.

  15. On-Orbit System Identification

    NASA Technical Reports Server (NTRS)

    Mettler, E.; Milman, M. H.; Bayard, D.; Eldred, D. B.

    1987-01-01

    Information derived from accelerometer readings benefits important engineering and control functions. Report discusses methodology for detection, identification, and analysis of motions within space station. Techniques of vibration and rotation analyses, control theory, statistics, filter theory, and transform methods integrated to form system for generating models and model parameters that characterize total motion of complicated space station, with respect to both control-induced and random mechanical disturbances.

  16. Mechanics of Granular Materials (MGM0 Flight Hardware in Bench Test

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Engineering bench system hardware for the Mechanics of Granular Materials (MGM) experiment is tested on a lab bench at the University of Colorado in Boulder. This is done in a horizontal arrangement to reduce pressure differences so the tests more closely resemble behavior in the microgravity of space. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. MGM experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: University of Colorado at Boulder).

  17. Modeling of rolling element bearing mechanics

    NASA Technical Reports Server (NTRS)

    Greenhill, L. M.

    1991-01-01

    Roller element bearings provide the primary mechanical interface between rotating and nonrotating components in the high performance turbomachinery of the Space Shuttle Main Engine (SSME). Knowledge of bearing behavior under various loading and environmental conditions is essential to predicting and understanding the overall behavior of turbopumps, including rotordynamic stability, critical speeds and bearing life. The objective is to develop mathematical models and computer programs to describe the mechanical behavior of ball and cylinder roller bearings under the loading and environmental conditions encountered in the SSME and future high performance rocket engines. This includes characteristics such as nonlinear load/motion relationships, stiffness and damping, rolling element loads for life prediction, and roller and cage stability.

  18. Space flight requirements for fiber optic components: qualification testing and lessons learned

    NASA Astrophysics Data System (ADS)

    Ott, Melanie N.; Jin, Xiaodan Linda; Chuska, Richard; Friedberg, Patricia; Malenab, Mary; Matuszeski, Adam

    2006-04-01

    "Qualification" of fiber optic components holds a very different meaning than it did ten years ago. In the past, qualification meant extensive prolonged testing and screening that led to a programmatic method of reliability assurance. For space flight programs today, the combination of using higher performance commercial technology, with shorter development schedules and tighter mission budgets makes long term testing and reliability characterization unfeasible. In many cases space flight missions will be using technology within years of its development and an example of this is fiber laser technology. Although the technology itself is not a new product the components that comprise a fiber laser system change frequently as processes and packaging changes occur. Once a process or the materials for manufacturing a component change, even the data that existed on its predecessor can no longer provide assurance on the newer version. In order to assure reliability during a space flight mission, the component engineer must understand the requirements of the space flight environment as well as the physics of failure of the components themselves. This can be incorporated into an efficient and effective testing plan that "qualifies" a component to specific criteria defined by the program given the mission requirements and the component limitations. This requires interaction at the very initial stages of design between the system design engineer, mechanical engineer, subsystem engineer and the component hardware engineer. Although this is the desired interaction what typically occurs is that the subsystem engineer asks the components or development engineers to meet difficult requirements without knowledge of the current industry situation or the lack of qualification data. This is then passed on to the vendor who can provide little help with such a harsh set of requirements due to high cost of testing for space flight environments. This presentation is designed to guide the engineers of design, development and components, and vendors of commercial components with how to make an efficient and effective qualification test plan with some basic generic information about many space flight requirements. Issues related to the physics of failure, acceptance criteria and lessons learned will also be discussed to assist with understanding how to approach a space flight mission in an ever changing commercial photonics industry.

  19. Space Flight Requirements for Fiber Optic Components; Qualification Testing and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Jin, Xiaodan Linda; Chuska, Richard; Friedberg, Patricia; Malenab, Mary; Matuszeski, Adam

    2007-01-01

    "Qualification" of fiber optic components holds a very different meaning than it did ten years ago. In the past, qualification meant extensive prolonged testing and screening that led to a programmatic method of reliability assurance. For space flight programs today, the combination of using higher performance commercial technology, with shorter development schedules and tighter mission budgets makes long term testing and reliability characterization unfeasible. In many cases space flight missions will be using technology within years of its development and an example of this is fiber laser technology. Although the technology itself is not a new product the components that comprise a fiber laser system change frequently as processes and packaging changes occur. Once a process or the materials for manufacturing a component change, even the data that existed on its predecessor can no longer provide assurance on the newer version. In order to assure reliability during a space flight mission, the component engineer must understand the requirements of the space flight environment as well as the physics of failure of the components themselves. This can be incorporated into an efficient and effective testing plan that "qualifies" a component to specific criteria defined by the program given the mission requirements and the component limitations. This requires interaction at the very initial stages of design between the system design engineer, mechanical engineer, subsystem engineer and the component hardware engineer. Although this is the desired interaction what typically occurs is that the subsystem engineer asks the components or development engineers to meet difficult requirements without knowledge of the current industry situation or the lack of qualification data. This is then passed on to the vendor who can provide little help with such a harsh set of requirements due to high cost of testing for space flight environments. This presentation is designed to guide the engineers of design, development and components, and vendors of commercial components with how to make an efficient and effective qualification test plan with some basic generic information about many space flight requirements. Issues related to the physics of failure, acceptance criteria and lessons learned will also be discussed to assist with understanding how to approach a space flight mission in an ever changing commercial photonics industry.

  20. SpaceX-3 KSC Payloads: Biotube, Bric, Apex2-2

    NASA Image and Video Library

    2014-03-07

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Allison Caron, a QinetiQ mechanical engineer, checks out part of the Biotube experiment which will be launched to the International Space Station aboard a SpaceX Dragon spacecraft. Scheduled for launch on March 16 atop a Falcon 9 rocket, Dragon will be marking its fourth trip to the space station. The SpaceX-3 mission is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett

  1. Nonlinear heat transfer and structural analyses of SSME turbine blades

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, A.; Kaufman, A.

    1987-01-01

    Three-dimensional nonlinear finite-element heat transfer and structural analyses were performed for the first stage high-pressure fuel turbopump blade of the space shuttle main engine (SSME). Directionally solidified (DS) MAR-M 246 material properties were considered for the analyses. Analytical conditions were based on a typical test stand engine cycle. Blade temperature and stress-strain histories were calculated using MARC finite-element computer code. The study was undertaken to assess the structural response of an SSME turbine blade and to gain greater understanding of blade damage mechanisms, convective cooling effects, and the thermal-mechanical effects.

  2. Structure and Mechanics

    NASA Technical Reports Server (NTRS)

    Sanger, George

    1991-01-01

    Artemis is a Common Lunar Lander (CLL) design for the Space Exploration Initiative (SEI). Structure factors for the CLL's primary and secondary structures are listed in tabular form. Additionally, engineering drawings of various systems, including the propulsion and landing systems, are presented.

  3. A World 2010: A Decline of Superpower Influence.

    DTIC Science & Technology

    1986-07-10

    mathematics o Environmental: terrestrial, oceanographics, atmospheric, space o Engineering: electronics, civil, mechanical, metallurgical o Life: biological ...while Yoneji Masuda (The Information Society As Postindustrial Society, Washington: World Future Society, 1981) and John Naisbitt ( Megatrends : Ten New

  4. Resilient and Corrosion-proof Rolling Element Bearings Made from Ni-ti Alloys for Aerospace Mechanism Applications and the Ultimate Space Technology Development Platform

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    2014-01-01

    The International Space Station provides a unique microgravity laboratory environment for research. The ISS also serves as an effective platform for the development of technologies and engineered solutions related to living and working in space. The space environment also challenges our capabilities related to lubrication and tribology. In this seminar, Dr. DellaCorte will review the basics of space mechanism tribology and the challenges of providing good lubrication and long-life in the harsh space environment. He will also discuss recent tribological challenges associated with the Solar Alpha Rotary Joint (SARJ) bearings and life support hardware that must operate under severe conditions that are literally out of this world. Each tribology challenge is unique and their solutions often result in new technologies that benefit the tribology community everywhere, even back on Earth

  5. Light Multi-Reflex Engine

    NASA Astrophysics Data System (ADS)

    Bolonkin, A.

    The purpose of this article is to call attention to the revolutionary idea of multi-reflection. This idea allows the design of new engines, space propulsion systems, storage of a beam and solar energy, transmission of energy over millions of kilometers, a new weapon, etc. This method and its main innovations were offered by the author in 1983 in the former USSR. Now the author shows in a series of articles the huge possibilities of this idea in many fields such as space, aviation, energy, energy transmission, beam amplification, light transformation and so on. This article considers the direct transfer of light beam energy to mechanical energy and back.

  6. Charter for Systems Engineer Working Group

    NASA Technical Reports Server (NTRS)

    Suffredini, Michael T.; Grissom, Larry

    2015-01-01

    This charter establishes the International Space Station Program (ISSP) Mobile Servicing System (MSS) Systems Engineering Working Group (SEWG). The MSS SEWG is established to provide a mechanism for Systems Engineering for the end-to-end MSS function. The MSS end-to-end function includes the Space Station Remote Manipulator System (SSRMS), the Mobile Remote Servicer (MRS) Base System (MBS), Robotic Work Station (RWS), Special Purpose Dexterous Manipulator (SPDM), Video Signal Converters (VSC), and Operations Control Software (OCS), the Mobile Transporter (MT), and by interfaces between and among these elements, and United States On-Orbit Segment (USOS) distributed systems, and other International Space Station Elements and Payloads, (including the Power Data Grapple Fixtures (PDGFs), MSS Capture Attach System (MCAS) and the Mobile Transporter Capture Latch (MTCL)). This end-to-end function will be supported by the ISS and MSS ground segment facilities. This charter defines the scope and limits of the program authority and document control that is delegated to the SEWG and it also identifies the panel core membership and specific operating policies.

  7. Computer program for a four-cylinder-Stirling-engine controls simulation

    NASA Technical Reports Server (NTRS)

    Daniels, C. J.; Lorenzo, C. F.

    1982-01-01

    A four cylinder Stirling engine, transient engine simulation computer program is presented. The program is intended for controls analysis. The associated engine model was simplified to shorten computer calculation time. The model includes engine mechanical drive dynamics and vehicle load effects. The computer program also includes subroutines that allow: (1) acceleration of the engine by addition of hydrogen to the system, and (2) braking of the engine by short circuiting of the working spaces. Subroutines to calculate degraded engine performance (e.g., due to piston ring and piston rod leakage) are provided. Input data required to run the program are described and flow charts are provided. The program is modular to allow easy modification of individual routines. Examples of steady state and transient results are presented.

  8. Space-charge-mediated anomalous ferroelectric switching in P(VDF-TrEE) polymer films.

    PubMed

    Hu, Weijin; Wang, Zhihong; Du, Yuanmin; Zhang, Xi-Xiang; Wu, Tom

    2014-11-12

    We report on the switching dynamics of P(VDF-TrEE) copolymer devices and the realization of additional substable ferroelectric states via modulation of the coupling between polarizations and space charges. The space-charge-limited current is revealed to be the dominant leakage mechanism in such organic ferroelectric devices, and electrostatic interactions due to space charges lead to the emergence of anomalous ferroelectric loops. The reliable control of ferroelectric switching in P(VDF-TrEE) copolymers opens doors toward engineering advanced organic memories with tailored switching characteristics.

  9. Mechanics of Granular Materials (MGM) Investigators

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Key persornel in the Mechanics of Granular Materials (MGM) experiment at the University of Colorado at Boulder include Tawnya Ferbiak (software engineer), Susan Batiste (research assistant), and Christina Winkler (graduate research assistant). Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. MGM experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that cannot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: University of Colorado at Boulder).

  10. Mentoring Undergraduate Students through the Space Shuttle Hitchhiker GoldHELOX Project

    NASA Astrophysics Data System (ADS)

    Moody, J. Ward; Barnes, Jonathan; Roming, Peter; Durfee, Dallin; Campbell, Branton; Turley, Steve; Eastman, Paul

    2015-01-01

    In the late 1980s a team of four BYU undergraduate students designed a space-based telescope to image the sun in soft x-rays from 171-181 Angstroms to gain information on microflares and their relation to the corona-chromosphere transition region. The telescope used a near-normal incidence multi-layered mirror imaging onto film through a micro-channel plate. The system was capable of 1.0 sec time resolution and 2.5 arcsec spatial resolution. Aided by a NASA grant in 1991, a system was built and successfully tested in 1998 at Marshall Space Flight Center. Originally designed to be deployed from a Get-Away-Special (GAS) canister in the bay of a space shuttle, the good results of this test elevated GoldHelox to greater-priority Hitchhiker status. Even so technical and procedural difficulties delayed a launch until after 2003. Unfortunately after the Columbia re-entry break-up in February 2003, the Hitchhiker program was cancelled and the GoldHelox project ended.Well over 200 undergraduate students worked on GoldHelox. Many of these have since earned advanced degrees in a variety of technical fields. Several have gone on to work in the space industry, becoming NASA scientists and engineers with one becoming a PI on the Swift satellite. The broad range of talent on the team has included students majoring in physics, astronomy, mechanical engineering, electrical engineering, manufacturing engineering, design engineering, business and even English majors who have written technical and public relations documents. We report on lessons learned and the pitfalls and successes of this unique mentoring experience.

  11. The James Webb Telescope Instrument Suite Layout: Optical System Engineering Considerations for a Large, Deployable Space Telescope

    NASA Technical Reports Server (NTRS)

    Bos, Brent; Davila, Pam; Jurotich, Matthew; Hobbs, Gurnie; Lightsey, Paul; Contreras, Jim; Whitman, Tony

    2003-01-01

    The James Webb Space Telescope (JWST) is a space-based, infrared observatory designed to study the early stages of galaxy formation in the Universe. The telescope will be launched into an elliptical orbit about the second Lagrange point and passively cooled to 30-50 K to enable astronomical observations from 0.6 to 28 microns. A group from the NASA Goddard Space Flight Center and the Northrop Grumman Space Technology prime contractor team has developed an optical and mechanical layout for the science instruments within the JWST field of view that satisfies the telescope s high-level performance requirements. Four instruments required accommodation within the telescope's field of view: a Near-Infrared Camera (NIRCam) provided by the University of Arizona; a Near-Mared Spectrometer (NIRSpec) provided by the European Space Agency; a Mid-Infrared Instrument (MIRI) provided by the Jet Propulsion Laboratory and a European consortium; and a Fine Guidance Sensor (FGS) with a tunable filter module provided by the Canadian Space Agency. The size and position of each instrument's field of view allocation were developed through an iterative, concurrent engineering process involving the key observatory stakeholders. While some of the system design considerations were those typically encountered during the development of an infrared observatory, others were unique to the deployable and controllable nature of JWST. This paper describes the optical and mechanical issues considered during the field of view layout development, as well as the supporting modeling and analysis activities.

  12. Creative brains: designing in the real world†

    PubMed Central

    Goel, Vinod

    2014-01-01

    The process of designing artifacts is a creative activity. It is proposed that, at the cognitive level, one key to understanding design creativity is to understand the array of symbol systems designers utilize. These symbol systems range from being vague, imprecise, abstract, ambiguous, and indeterminate (like conceptual sketches), to being very precise, concrete, unambiguous, and determinate (like contract documents). The former types of symbol systems support associative processes that facilitate lateral (or divergent) transformations that broaden the problem space, while the latter types of symbol systems support inference processes facilitating vertical (or convergent) transformations that deepen of the problem space. The process of artifact design requires the judicious application of both lateral and vertical transformations. This leads to a dual mechanism model of design problem-solving comprising of an associative engine and an inference engine. It is further claimed that this dual mechanism model is supported by an interesting hemispheric dissociation in human prefrontal cortex. The associative engine and neural structures that support imprecise, ambiguous, abstract, indeterminate representations are lateralized in the right prefrontal cortex, while the inference engine and neural structures that support precise, unambiguous, determinant representations are lateralized in the left prefrontal cortex. At the brain level, successful design of artifacts requires a delicate balance between the two hemispheres of prefrontal cortex. PMID:24817846

  13. Modular Gravitational Reference Sensor (MGRS) For Astrophysics and Astronomy

    NASA Astrophysics Data System (ADS)

    Sun, Ke-Xun; Buchman, S.; Byer, R. L.; DeBra, D.; Goebel, J.; Allen, G.; Conklin, J.; Gerardi, D.; Higuchi, S.; Leindecker, N.; Lu, P.; Swank, A.; Torres, E.; Trillter, M.; Zoellner, A.

    2009-01-01

    The study of space-time for gravitational wave detection and cosmology beyond Einstein will be an important theme for astrophysics and astronomy in decades to come. Laser Interferometric Space Antenna (LISA) is designed for detecting gravitational wave in space. The Modular Gravitational Reference Sensor (MGRS) is developed as the next generation core instrument for space-time research, including gravitational wave detection beyond LISA, and an array of precision experiments in space. The MGRS provide a stable gravitational cardinal point in space-time by using a test sphere, which eliminates the need for orientation control, minimizing disturbances. The MGRS measures the space-time variation via a two step process: measurement between test mass and housing, and between housings of two spacecraft. Our Stanford group is conducting systematic research and development on the MGRS. Our initial objectives are to gain a system perspective of the MGRS, to develop component technologies, and to establish test platforms. We will review our recent progress in system technologies, optical displacement and angle sensing, diffractive optics, proof mass characterization, UV LED charge management system and space qualification, thermal control and sensor development. Some highlights of our recent results are: Demonstration of the extreme radiation hardness of UV LED which sustained 2 trillion protons per square centimeter; measurement of mass center offset down to 300 nm, and measurement of small angle 0.2 nrad per root hertz using a compact grating angular sensor. The Stanford MGRS program has made exceptional contribution to education of next generation scientists and engineers. We have undergraduate and graduate students in aeronautical and astronautic engineering, applied physics, cybernetics, electrical engineering, mechanical engineering, and physics. We have also housed a number of high school students in our labs for education and public outreach.

  14. Guidelines and Metrics for Assessing Space System Cost Estimates

    DTIC Science & Technology

    2008-01-01

    analysis time, reuse tooling, models , mechanical ground-support equipment [MGSE]) High mass margin ( simplifying assumptions used to bound solution...engineering environment changes High reuse of architecture, design , tools, code, test scripts, and commercial real- time operating systems Simplified life...Coronal Explorer TWTA traveling wave tube amplifier USAF U.S. Air Force USCM Unmanned Space Vehicle Cost Model USN U.S. Navy UV ultraviolet UVOT UV

  15. The 58th Shock and Vibration Symposium, volume 1

    NASA Technical Reports Server (NTRS)

    Pilkey, Walter D. (Compiler); Pilkey, Barbara F. (Compiler)

    1987-01-01

    The proceedings of the 58th Shock and Vibration Symposium, held in Huntsville, Alabama, October 13 to 15, 1987 are given. Mechanical shock, dynamic analysis, space shuttle main engine vibration, isolation and damping, and analytical methods are discussed.

  16. Spaceflight 101: Explorer 1

    NASA Image and Video Library

    2018-05-09

    Aerospace pioneers who worked on the launch of Explorer 1 participate in a panel discussion with NASA Kennedy Space Center Director Bob Cabana at the center's Training Auditorium on Wednesday, May 9, 2018. Panelists, from left are William "Curly" Chandler, firing room engineer; Lionel (Ed) Fannin, mechanical and propulsion systems; Terry Greenfield, blockhouse engineer; Carl Jones, measuring branch engineer; and Ike Rigell, electrical networks systems chief. Explorer 1 was the first satellite launched by the U.S. It was launched by the Army Ballistic Missile Agency on Jan. 31, 1958 on a Juno I rocket from Launch Complex-26.

  17. Bioinspiration: applying mechanical design to experimental biology.

    PubMed

    Flammang, Brooke E; Porter, Marianne E

    2011-07-01

    The production of bioinspired and biomimetic constructs has fostered much collaboration between biologists and engineers, although the extent of biological accuracy employed in the designs produced has not always been a priority. Even the exact definitions of "bioinspired" and "biomimetic" differ among biologists, engineers, and industrial designers, leading to confusion regarding the level of integration and replication of biological principles and physiology. By any name, biologically-inspired mechanical constructs have become an increasingly important research tool in experimental biology, offering the opportunity to focus research by creating model organisms that can be easily manipulated to fill a desired parameter space of structural and functional repertoires. Innovative researchers with both biological and engineering backgrounds have found ways to use bioinspired models to explore the biomechanics of organisms from all kingdoms to answer a variety of different questions. Bringing together these biologists and engineers will hopefully result in an open discourse of techniques and fruitful collaborations for experimental and industrial endeavors.

  18. KSC-04pd1470

    NASA Image and Video Library

    2004-07-14

    KENNEDY SPACE CENTER, FLA. - The MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) spacecraft, mated to the Delta II third stage Payload Assist Module, is ready for presentation to the media at Astrotech Space Operations in Titusville, Fla. Spokespersons for the event are Dr. Robert Gold, MESSENGER payload manager with The Johns Hopkins University Applied Physics Laboratory (APL); and Ted Hartka, MESSENGER lead mechanical engineer, APL. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket from Pad 17-B, Cape Canaveral Air Force Station, Fla.

  19. KSC-04pd1471

    NASA Image and Video Library

    2004-07-14

    KENNEDY SPACE CENTER, FLA. - The MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) spacecraft, mated to the Delta II third stage Payload Assist Module, is on display at Astrotech Space Operations in Titusville, Fla., for the media. Spokespersons for the event are Dr. Robert Gold, MESSENGER payload manager with The Johns Hopkins University Applied Physics Laboratory (APL); and Ted Hartka, MESSENGER lead mechanical engineer, APL. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket from Pad 17-B, Cape Canaveral Air Force Station, Fla.

  20. Training the Future - Interns Harvesting & Testing Plant Experim

    NASA Image and Video Library

    2017-07-19

    In the Space Life Sciences Laboratory at NASA's Kennedy Space Center in Florida, student interns such as Ayla Grandpre, left, and Payton Barnwell are joining agency scientists, contributing in the area of plant growth research for food production in space. Grandpre is pursuing a degree in computer science and chemistry at Rocky Mountain College in Billings, Montana. Barnwell is a mechanical engineering and nanotechnology major at Florida Polytechnic University. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.

  1. Space civil engineering - A new discipline

    NASA Technical Reports Server (NTRS)

    Sadeh, Willy Z.; Criswell, Marvin E.

    1991-01-01

    Space Civil Engineering is an emerging engineering discipline that focuses on extending and expanding the Civil Engineering know-how and practice to the development and maintenance of infrastructure on celestial bodies. Space Civil Engineering is presently being developed as a new discipline within the Department of Civil Engineering at Colorado State University under a recently established NASA Space Grant College Program. Academic programs geared toward creating Space Civil Engineering Options at both undergraduate and graduate levels are being formulated. Basic ideas and concepts of the curriculum in the Space Civil Engineering Option at both undergraduate and graduate levels are presented. The role of Space Civil Engineering in the Space Program is discussed.

  2. Research Technology

    NASA Image and Video Library

    2001-08-01

    The electro-mechanical actuator, a new electronics technology, is an electronic system that provides the force needed to move valves that control the flow of propellant to the engine. It is proving to be advantageous for the main propulsion system plarned for a second generation reusable launch vehicle. Hydraulic actuators have been used successfully in rocket propulsion systems. However, they can leak when high pressure is exerted on such a fluid-filled hydraulic system. Also, hydraulic systems require significant maintenance and support equipment. The electro-mechanical actuator is proving to be low maintenance and the system weighs less than a hydraulic system. The electronic controller is a separate unit powering the actuator. Each actuator has its own control box. If a problem is detected, it can be replaced by simply removing one defective unit. The hydraulic systems must sustain significant hydraulic pressures in a rocket engine regardless of demand. The electro-mechanical actuator utilizes power only when needed. A goal of the Second Generation Reusable Launch Vehicle Program is to substantially improve safety and reliability while reducing the high cost of space travel. The electro-mechanical actuator was developed by the Propulsion Projects Office of the Second Generation Reusable Launch Vehicle Program at the Marshall Space Flight Center.

  3. Advanced Stirling Radioisotope Generator Life Certification Plan

    NASA Technical Reports Server (NTRS)

    Rusick, Jeffrey J.; Zampino, Edward J.

    2013-01-01

    An Advanced Stirling Radioisotope Generator (ASRG) power supply is being developed by the Department of Energy (DOE) in partnership with NASA for potential future deep space science missions. Unlike previous radioisotope power supplies for space exploration, such as the passive MMRTG used recently on the Mars Curiosity rover, the ASRG is an active dynamic power supply with moving Stirling engine mechanical components. Due to the long life requirement of 17 years and the dynamic nature of the Stirling engine, the ASRG project faced some unique challenges trying to establish full confidence that the power supply will function reliably over the mission life. These unique challenges resulted in the development of an overall life certification plan that emphasizes long-term Stirling engine test and inspection when analysis is not practical. The ASRG life certification plan developed is described.

  4. Thermal Energy Conversion Branch

    NASA Technical Reports Server (NTRS)

    Bielozer, Matthew C.; Schreiber, Jeffrey, G.; Wilson, Scott D.

    2004-01-01

    The Thermal Energy Conversion Branch (5490) leads the way in designing, conducting, and implementing research for the newest thermal systems used in space applications at the NASA Glenn Research Center. Specifically some of the most advanced technologies developed in this branch can be broken down into four main areas: Dynamic Power Systems, Primary Solar Concentrators, Secondary Solar Concentrators, and Thermal Management. Work was performed in the Dynamic Power Systems area, specifically the Stirling Engine subdivision. Today, the main focus of the 5490 branch is free-piston Stirling cycle converters, Brayton cycle nuclear reactors, and heat rejection systems for long duration mission spacecraft. All space exploring devices need electricity to operate. In most space applications, heat energy from radioisotopes is converted to electrical power. The Radioisotope Thermoelectric Generator (RTG) already supplies electricity for missions such as the Cassini Spacecraft. The focus of today's Stirling research at GRC is aimed at creating an engine that can replace the RTG. The primary appeal of the Stirling engine is its high system efficiency. Because it is so efficient, the Stirling engine will significantly reduce the plutonium fuel mission requirements compared to the RTG. Stirling is also being considered for missions such as the lunar/Mars bases and rovers. This project has focused largely on Stirling Engines of all types, particularly the fluidyne liquid piston engine. The fluidyne was developed by Colin D. West. This engine uses the same concepts found in any type of Stirling engine, with the exception of missing mechanical components. All the working components are fluid. One goal was to develop and demonstrate a working Stirling Fluidyne Engine at the 2nd Annual International Energy Conversion Engineering Conference in Providence, Rhode Island.

  5. Cancer cell motility: lessons from migration in confined spaces

    PubMed Central

    Paul, Colin D.; Mistriotis, Panagiotis; Konstantopoulos, Konstantinos

    2017-01-01

    Time-lapse, deep-tissue imaging made possible by advances in intravital microscopy has demonstrated the importance of tumour cell migration through confining tracks in vivo. These tracks may either be endogenous features of tissues or be created by tumour or tumour-associated cells. Importantly, migration mechanisms through confining microenvironments are not predicted by 2D migration assays. Engineered in vitro models have been used to delineate the mechanisms of cell motility through confining spaces encountered in vivo. Understanding cancer cell locomotion through physiologically relevant confining tracks could be useful in developing therapeutic strategies to combat metastasis. PMID:27909339

  6. Underwater striling engine design with modified one-dimensional model

    NASA Astrophysics Data System (ADS)

    Li, Daijin; Qin, Kan; Luo, Kai

    2015-09-01

    Stirling engines are regarded as an efficient and promising power system for underwater devices. Currently, many researches on one-dimensional model is used to evaluate thermodynamic performance of Stirling engine, but in which there are still some aspects which cannot be modeled with proper mathematical models such as mechanical loss or auxiliary power. In this paper, a four-cylinder double-acting Stirling engine for Unmanned Underwater Vehicles (UUVs) is discussed. And a one-dimensional model incorporated with empirical equations of mechanical loss and auxiliary power obtained from experiments is derived while referring to the Stirling engine computer model of National Aeronautics and Space Administration (NASA). The P-40 Stirling engine with sufficient testing results from NASA is utilized to validate the accuracy of this one-dimensional model. It shows that the maximum error of output power of theoretical analysis results is less than 18% over testing results, and the maximum error of input power is no more than 9%. Finally, a Stirling engine for UUVs is designed with Schmidt analysis method and the modified one-dimensional model, and the results indicate this designed engine is capable of showing desired output power.

  7. 46 CFR 28.340 - Ventilation of enclosed engine and fuel tank spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... prevent the entrapment of vapors or be ventilated by a mechanical exhaust system with a nonsparking fan. The fan motor must comply with 46 CFR 111.105-23. (c) Alternative standards. A vessel less than 65...

  8. SpaceX-3 KSC Payloads: Biotube, Bric, Apex2-2

    NASA Image and Video Library

    2014-03-07

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Terry Tullis, a QinetiQ North America mechanical engineer, places the Biological Research In Canisters, or BRIC, 18-1 and 18-2 experiments with others to be launched to the International Space Station aboard a SpaceX Dragon spacecraft. Scheduled for launch on March 16 atop a Falcon 9 rocket, Dragon will be marking its fourth trip to the space station. The SpaceX-3 mission is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett

  9. SpaceX-3 KSC Payloads: Biotube, Bric, Apex2-2

    NASA Image and Video Library

    2014-03-07

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, QinetiQ North America Project Manager Carole Miller, left, works with Allison Caron, a QinetiQ mechanical engineer in preparing the Biotube experiment which will be launched to the International Space Station aboard a SpaceX Dragon spacecraft. Scheduled for launch on March 16 atop a Falcon 9 rocket, Dragon will be marking its fourth trip to the space station. The SpaceX-3 mission is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett

  10. SpaceX-3 KSC Payloads: Biotube, Bric, Apex2-2

    NASA Image and Video Library

    2014-03-07

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Terry Tullis, a QinetiQ North America mechanical engineer, prepares the Biological Research In Canisters, or BRIC, 18-1 and 18-2 experiments which will be launched to the International Space Station aboard a SpaceX Dragon spacecraft. Scheduled for launch on March 16 atop a Falcon 9 rocket, Dragon will be marking its fourth trip to the space station. The SpaceX-3 mission is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett

  11. Nonlinear Analysis of Squeeze Film Dampers Applied to Gas Turbine Helicopter Engines.

    DTIC Science & Technology

    1980-11-01

    calculate the stability (complex roots) of a multi-level gas turbine with aero- dynamic excitation. This program has been applied to the space shuttle...such phenomena as oil film whirl. This paper devlops an analysis technique incorporating modal analysis and fast Fourier transform tech- niques to...USING A SQUEEZE FILM BEARING By M. A. Simpson Research Engineer L. E. Barrett Reserach Assistant Professor Department of Mechanical and Aerospace

  12. Real-world educational experience through project-oriented graduate classes in collaboration with industry

    NASA Astrophysics Data System (ADS)

    Zurbuchen, Thomas H.

    2007-04-01

    There is a need for a motivated and innovative work force for the U.S. aerospace industry. The education of such engineers and scientists typically revolves around a fundamental knowledge of basic important technologies, such as the mechanics relevant to orbit-design, structures, avionics, and many others. A few years ago, the University of Michigan developed a Masters of Engineering program that provides students with skills that are not taught as part of a typical engineering curriculum. This program is focused on open problem solving, space systems, and space policy, as well as other classes that further their understanding of the connections between technologies and the nontechnical aspects of managing a space mission. The value of such an education is substantially increased through a direct connection to industry. An innovative problem-oriented approach has been developed that enables direct connections between industry and classroom teaching. The class works as a system study group and addresses problems of interest to and defined by a company with a specific application. We discuss such an application, a near-space lidar wind measurement system to enhance weather predictions, as well as the approach taken to link educational rationales.

  13. Expedition 14 FE Williams performs the PMDIS in the U.S. Laboratory

    NASA Image and Video Library

    2006-12-12

    S116-E-05868 (12 Dec. 2006) --- Astronaut Sunita L. Williams, Expedition 14 flight engineer, works with the Perceptual Motor Deficits in Space (PMDIS) experiment in the Destiny laboratory of the International Space Station. The PMDIS experiment will measure the decline in hand-eye coordination of shuttle astronauts while on orbit. These measurements will be used to evaluate various mechanisms thought to be responsible for the decline.

  14. Expedition 10 Preflight

    NASA Image and Video Library

    2004-10-07

    Expedition 10 Commander Leroy Chiao undergoes physical testing on a mechanized tilt table at crew quarters in Baikonur, Kazakhstan, Friday, October 8, 2004, in preparation for launch with Flight Engineer and Soyuz Commander Salizhan Sharipov and Russian Space Forces Agency cosmonaut Yuri Shargin to the International Space Station on October 14. The tilt table is used to condition the crewmembers' cardiovascular system against the effects of weightlessness once on orbit. Photo Credit: (NASA/Bill Ingalls)

  15. Expedition 10 Preflight

    NASA Image and Video Library

    2004-10-07

    Expedition 10 Commander Leroy Chiao, left, and Russian Space Forces cosmonaut Yuri Shargin undergo physical testing on a mechanized tilt table at their crew quarters in Baikonur, Kazakhstan, Friday, October 8, 2004, in preparation for launch with Flight Engineer and Soyuz Commander Salizhan Sharipov to the International Space Station on October 14. The tilt table is used to condition the crewmembers' cardiovascular system against the effects of weightlessness once in orbit. Photo Credit: (NASA/Bill Ingalls)

  16. Effects of Exposures on Superalloys for Space Applications

    NASA Technical Reports Server (NTRS)

    Gabb, Tim; Garg, Anita; Gayda, John

    2007-01-01

    The industry is demanding longer term service at high temperatures for nickel-base superalloys in gas turbine engine as well as potential space applications. However, longer term service can severely tax alloy phase stability, to the potential detriment of mechanical properties. Cast Mar-M247LC and wrought Haynes 230 superalloys were exposed and creep tested for extended times at elevated temperature. Microstructure and phase evaluations were then undertaken for comparisons.

  17. CubeSat: Colorado Student Space Weather Experiment

    NASA Astrophysics Data System (ADS)

    Li, X.; Palo, S. E.; Turner, D. L.; Gerhardt, D.; Redick, T.; Tao, J.

    2009-12-01

    Energetic particles, electrons and protons either directly associated with solar flares or trapped in the terrestrial radiation belt, have a profound space weather impact. A 3U CubeSat mission with a single instrument, Relativistic Electrons and Proton Telescope integrated little experiment (REPTile), is proposed to address fundamental questions relating to the relationship between solar flares and energetic particles and the acceleration and loss mechanism of outer radiation belt electrons. REPTile, in a highly inclined low earth orbit, will measure differential fluxes of relativistic electrons in the energy range of 0.5-3.5 MeV and protons in 10-40 MeV. This project is a collaborative effort between the Laboratory for Atmospheric and Space Physics and the Department of Aerospace Engineering Sciences at the University of Colorado, which includes the integration of students, faculty, and professional engineers.

  18. Fourth Annual HEDS-UP Forum

    NASA Technical Reports Server (NTRS)

    Johnson, Kathleen M. (Editor)

    2001-01-01

    The HEDS-UP (Human Exploration and Development of Space-University Partners) program was instituted to build new relationships between university, faculty, students, and NASA in support of the Human Exploration and Development of Space. The program has provided a mechanism for university students to explore problems of interest to NASA through student engineering design projects, led by a university professor or mentor, and aided by the HEDS-UP staff. HEDS-UP program management advised teams on the selection of projects that were aligned with the goals of the HEDS strategic enterprise, and provided contacts with NASA and industry professionals who served as mentors. Students became acquainted with objectives, strategies, development issues, and technological characteristics of space exploration programs. In doing so, they prepared themselves for future engineering challenges, often discovering that the program was on their critical path to professional advancement. Many of the ideas were innovative and of interest to NASA. Industry benefitted from HEDS-UP as a mechanism to converge with talented students about to enter the work force. In addition, universities became more involved in the teaching of space exploration, and students were encouraged and mentored as they included education outreach as an element in their work. This in turn highlighted their performance to others and universities in their communities.

  19. Combustion Stability Verification for the Thrust Chamber Assembly of J-2X Developmental Engines 10001, 10002, and 10003

    NASA Technical Reports Server (NTRS)

    Morgan, C. J.; Hulka, J. R.; Casiano, M. J.; Kenny, R. J.; Hinerman, T. D.; Scholten, N.

    2015-01-01

    The J-2X engine, a liquid oxygen/liquid hydrogen propellant rocket engine available for future use on the upper stage of the Space Launch System vehicle, has completed testing of three developmental engines at NASA Stennis Space Center. Twenty-one tests of engine E10001 were conducted from June 2011 through September 2012, thirteen tests of the engine E10002 were conducted from February 2013 through September 2013, and twelve tests of engine E10003 were conducted from November 2013 to April 2014. Verification of combustion stability of the thrust chamber assembly was conducted by perturbing each of the three developmental engines. The primary mechanism for combustion stability verification was examining the response caused by an artificial perturbation (bomb) in the main combustion chamber, i.e., dynamic combustion stability rating. No dynamic instabilities were observed in the TCA, although a few conditions were not bombed. Additional requirements, included to guard against spontaneous instability or rough combustion, were also investigated. Under certain conditions, discrete responses were observed in the dynamic pressure data. The discrete responses were of low amplitude and posed minimal risk to safe engine operability. Rough combustion analyses showed that all three engines met requirements for broad-banded frequency oscillations. Start and shutdown transient chug oscillations were also examined to assess the overall stability characteristics, with no major issues observed.

  20. Space Shuttle Main Engine (SSME) LOX turbopump pump-end bearing analysis

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A simulation of the shaft/bearing system of the Space Shuttle Main Engine Liquid Oxygen turbopump was developed. The simulation model allows the thermal and mechanical characteristics to interact as a realistic simulation of the bearing operating characteristics. The model accounts for single and two phase coolant conditions, and includes the heat generation from bearing friction and fluid stirring. Using the simulation model, parametric analyses were performed on the 45 mm pump-end bearings to investigate the sensitivity of bearing characteristics to contact friction, axial preload, coolant flow rate, coolant inlet temperature and quality, heat transfer coefficients, outer race clearance and misalignment, and the effects of thermally isolating the outer race from the isolator.

  1. Design and verification for front mirror-body structure of on-axis three mirror anastigmatic space camera

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyong; Guo, Chongling; Hu, Yongli; He, Hongyan

    2017-11-01

    The primary and secondary mirrors of onaxis three mirror anastigmatic (TMA) space camera are connected and supported by its front mirror-body structure, which affects both imaging performance and stability of the camera. In this paper, the carbon fiber reinforced plastics (CFRP) thin-walled cylinder and titanium alloy connecting rod have been used for the front mirror-body opto-mechanical structure of the long-focus on-axis and TMA space camera optical system. The front mirror-body component structure has then been optimized by finite element analysis (FEA) computing. Each performance of the front mirror-body structure has been tested by mechanics and vacuum experiments in order to verify the validity of such structure engineering design.

  2. Installing Mechanics of Granular Materials (MGM) Experiment Test Cell

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Astronaut Carl Walz installs Mechanics of Granular Materials (MGM) test cell on STS-79. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditons that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: NASA/John Space Center

  3. 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties.

    PubMed

    Moroni, L; de Wijn, J R; van Blitterswijk, C A

    2006-03-01

    One of the main issues in tissue engineering is the fabrication of scaffolds that closely mimic the biomechanical properties of the tissues to be regenerated. Conventional fabrication techniques are not sufficiently suitable to control scaffold structure to modulate mechanical properties. Within novel scaffold fabrication processes 3D fiber deposition (3DF) showed great potential for tissue engineering applications because of the precision in making reproducible 3D scaffolds, characterized by 100% interconnected pores with different shapes and sizes. Evidently, these features also affect mechanical properties. Therefore, in this study we considered the influence of different structures on dynamic mechanical properties of 3DF scaffolds. Pores were varied in size and shape, by changing fibre diameter, spacing and orientation, and layer thickness. With increasing porosity, dynamic mechanical analysis (DMA) revealed a decrease in elastic properties such as dynamic stiffness and equilibrium modulus, and an increase of the viscous parameters like damping factor and creep unrecovered strain. Furthermore, the Poisson's ratio was measured, and the shear modulus computed from it. Scaffolds showed an adaptable degree of compressibility between sponges and incompressible materials. As comparison, bovine cartilage was tested and its properties fell in the fabricated scaffolds range. This investigation showed that viscoelastic properties of 3DF scaffolds could be modulated to accomplish mechanical requirements for tailored tissue engineered applications.

  4. Artificial Symmetry-Breaking for Morphogenetic Engineering Bacterial Colonies.

    PubMed

    Nuñez, Isaac N; Matute, Tamara F; Del Valle, Ilenne D; Kan, Anton; Choksi, Atri; Endy, Drew; Haseloff, Jim; Rudge, Timothy J; Federici, Fernan

    2017-02-17

    Morphogenetic engineering is an emerging field that explores the design and implementation of self-organized patterns, morphologies, and architectures in systems composed of multiple agents such as cells and swarm robots. Synthetic biology, on the other hand, aims to develop tools and formalisms that increase reproducibility, tractability, and efficiency in the engineering of biological systems. We seek to apply synthetic biology approaches to the engineering of morphologies in multicellular systems. Here, we describe the engineering of two mechanisms, symmetry-breaking and domain-specific cell regulation, as elementary functions for the prototyping of morphogenetic instructions in bacterial colonies. The former represents an artificial patterning mechanism based on plasmid segregation while the latter plays the role of artificial cell differentiation by spatial colocalization of ubiquitous and segregated components. This separation of patterning from actuation facilitates the design-build-test-improve engineering cycle. We created computational modules for CellModeller representing these basic functions and used it to guide the design process and explore the design space in silico. We applied these tools to encode spatially structured functions such as metabolic complementation, RNAPT7 gene expression, and CRISPRi/Cas9 regulation. Finally, as a proof of concept, we used CRISPRi/Cas technology to regulate cell growth by controlling methionine synthesis. These mechanisms start from single cells enabling the study of morphogenetic principles and the engineering of novel population scale structures from the bottom up.

  5. Veg-03 Pillows Preparation for Flight

    NASA Image and Video Library

    2016-03-23

    Inside a laboratory in the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, Michele Koralewicz, a mechanical technician with EASI on the Engineering Services Contract, sews up the end of a bag that contains one of the Veg-03 plant pillows. The Veg-03 experiment will be delivered to the International Space Station aboard the eighth SpaceX Dragon commercial resupply mission. The Veg-03 plant pillows will contain ‘Tokyo Bekana’ cabbage seeds and lettuce seeds for NASA’s third Veggie plant growth system experiment. The experiment will continue NASA’s deep space plant growth research to benefit the Earth and the agency’s journey to Mars.

  6. Veg-03 Pillows Preparation for Flight

    NASA Image and Video Library

    2016-03-23

    Inside a laboratory in the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, Michele Koralewicz, a mechanical technician with EASI on the Engineering Services Contract, precisely sews up the end of a bag that contains one of the Veg-03 plant pillows. The Veg-03 experiment will be delivered to the International Space Station aboard the eighth SpaceX Dragon commercial resupply mission. The Veg-03 plant pillows will contain ‘Tokyo Bekana’ cabbage seeds and lettuce seeds for NASA’s third Veggie plant growth system experiment. The experiment will continue NASA’s deep space plant growth research to benefit the Earth and the agency’s journey to Mars.

  7. Veg-03 Pillows Preparation for Flight

    NASA Image and Video Library

    2016-03-23

    Inside a laboratory in the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, Michele Koralewicz, a mechanical technician with EASI on the Engineering Services Contract, prepares to sew the end of a bag that contains one of the Veg-03 plant pillows. The Veg-03 experiment will be delivered to the International Space Station aboard the eighth SpaceX Dragon commercial resupply mission. The Veg-03 plant pillows will contain ‘Tokyo Bekana’ cabbage seeds and lettuce seeds for NASA’s third Veggie plant growth system experiment. The experiment will continue NASA’s deep space plant growth research to benefit the Earth and the agency’s journey to Mars.

  8. Engineering Ultimate Self-Protection in Autonomic Agents for Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Sterritt, Roy; Hinchey, Mike

    2005-01-01

    NASA's Exploration Initiative (EI) will push space exploration missions to the limit. Future missions will be required to be self-managing as well as self-directed, in order to meet the challenges of human and robotic space exploration. We discuss security and self protection in autonomic agent based-systems, and propose the ultimate self-protection mechanism for such systems-self-destruction. Like other metaphors in Autonomic Computing, this is inspired by biological systems, and is the analog of biological apoptosis. Finally, we discus the role it might play in future NASA space exploration missions.

  9. Coarse pointing mechanism assembly for satellite interlink experiment

    NASA Technical Reports Server (NTRS)

    Maeusli, P. A.; Ivorra, M. T.; Gass, V.; Berthoud, J. F.

    1996-01-01

    Since 1975, MECANEX S.A. has been manufacturing components for solar array drives and mechanisms used in space applications. In 1991, work was started in an early phase C (Engineering Model) on a Coarse Pointing Mechanism Assembly (CPMA) for the Semiconductor-laser Inter-satellite Link EXperiment (SILEX). This paper deals with the history, the evolution, and the lessons learned from taking over a pre-design in 1991 to the delivery of last flight models (FM 5 & 6) in 1995.

  10. A unified design space of synthetic stripe-forming networks

    PubMed Central

    Schaerli, Yolanda; Munteanu, Andreea; Gili, Magüi; Cotterell, James; Sharpe, James; Isalan, Mark

    2014-01-01

    Synthetic biology is a promising tool to study the function and properties of gene regulatory networks. Gene circuits with predefined behaviours have been successfully built and modelled, but largely on a case-by-case basis. Here we go beyond individual networks and explore both computationally and synthetically the design space of possible dynamical mechanisms for 3-node stripe-forming networks. First, we computationally test every possible 3-node network for stripe formation in a morphogen gradient. We discover four different dynamical mechanisms to form a stripe and identify the minimal network of each group. Next, with the help of newly established engineering criteria we build these four networks synthetically and show that they indeed operate with four fundamentally distinct mechanisms. Finally, this close match between theory and experiment allows us to infer and subsequently build a 2-node network that represents the archetype of the explored design space. PMID:25247316

  11. Duct flow nonuniformities study for space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Thoenes, J.

    1985-01-01

    To improve the Space Shuttle Main Engine (SSME) design and for future use in the development of generation rocket engines, a combined experimental/analytical study was undertaken with the goals of first, establishing an experimental data base for the flow conditions in the SSME high pressure fuel turbopump (HPFTP) hot gas manifold (HGM) and, second, setting up a computer model of the SSME HGM flow field. Using the test data to verify the computer model it should be possible in the future to computationally scan contemplated advanced design configurations and limit costly testing to the most promising design. The effort of establishing and using the computer model is detailed. The comparison of computational results and experimental data observed clearly demonstrate that computational fluid mechanics (CFD) techniques can be used successfully to predict the gross features of three dimensional fluid flow through configurations as intricate as the SSME turbopump hot gas manifold.

  12. Structural Evaluation of a Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump Turbine Blade

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali

    1996-01-01

    Thermal and structural finite-element analyses were performed on the first high pressure fuel turbopump turbine blade of the space shuttle main engine (SSME). A two-dimensional (2-D) finite-element model of the blade and firtree disk attachment was analyzed using the general purpose MARC (finite-element) code. The loading history applied is a typical test stand engine cycle mission, which consists of a startup condition with two thermal spikes, a steady state and a shutdown transient. The blade material is a directionally solidified (DS) Mar-M 246 alloy, the blade rotor is forged with waspalloy material. Thermal responses under steady-state and transient conditions were calculated. The stresses and strains under the influence of mechanical and thermal loadings were also determined. The critical regions that exhibited high stresses and severe localized plastic deformation were the blade-rotor gaps.

  13. Spaceflight 101: Explorer 1

    NASA Image and Video Library

    2018-05-09

    Aerospace pioneers who worked on the launch of Explorer 1 participate in a panel discussion with NASA Kennedy Space Center Director Bob Cabana, at far left, at the center's Training Auditorium on Wednesday, May 9, 2018. Panelists, from left are William "Curly" Chandler, firing room engineer; Lionel (Ed) Fannin, mechanical and propulsion systems; Terry Greenfield, blockhouse engineer; Carl Jones, measuring branch engineer; and Ike Rigell, electrical networks systems chief. Explorer 1 was the first satellite launched by the U.S. It was launched by the Army Ballistic Missile Agency on Jan. 31, 1958 on a Juno I rocket from Launch Complex-26.

  14. The Colorado Student Space Weather Experiment: A successful student-run scientific spacecraft mission

    NASA Astrophysics Data System (ADS)

    Schiller, Q.; Li, X.; Palo, S. E.; Blum, L. W.; Gerhardt, D.

    2015-12-01

    The Colorado Student Space Weather Experiment is a spacecraft mission developed and operated by students at the University of Colorado, Boulder. The 3U CubeSat was launched from Vandenberg Air Force Base in September 2012. The massively successful mission far outlived its 4 month estimated lifetime and stopped transmitting data after over two years in orbit in December 2014. CSSWE has contributed to 15 scientific or engineering peer-reviewed journal publications. During the course of the project, over 65 undergraduate and graduate students from CU's Computer Science, Aerospace, and Mechanical Engineering Departments, as well as the Astrophysical and Planetary Sciences Department participated. The students were responsible for the design, development, build, integration, testing, and operations from component- to system-level. The variety of backgrounds on this unique project gave the students valuable experience in their own focus area, but also cross-discipline and system-level involvement. However, though the perseverance of the students brought the mission to fruition, it was only possible through the mentoring and support of professionals in the Aerospace Engineering Sciences Department and CU's Laboratory for Atmospheric and Space Physics.

  15. Space Civil Engineering option - A progress report

    NASA Technical Reports Server (NTRS)

    Criswell, Marvin E.; Sadeh, Willy Z.

    1992-01-01

    Space Civil Engineering is an emerging engineering discipline that focuses on extending and expanding Civil Engineering to the development, operation, and maintenance of infrastructures on celestial bodies. Space Civil Engineering is presently being developed as a new discipline within the Department of Civil Engineering at Colorado State University and with support of the NASA Space Grant College Program. Academic programs geared toward creating Space Civil Engineering Options at both undergraduate and graduate levels are being formulated. Basic ideas and concepts and the current status of the curriculum in the Space Civil Engineering Option primarily at the undergraduate level are presented.

  16. Solar Sail Material Performance Property Response to Space Environmental Effects

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Semmel, Charles; Hovater, Mary; Nehls, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted to a solar sail can be increased, up to a factor of two if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (L1) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager' and the L1 Diamond '. The Environmental Effects Group at NASA's Marshall Space Fliglit Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail3-'. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar TM, Teonexm, and CP1 (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were characterized. The contribution of Near Ultraviolet (NUV) radiation combined with electron and proton radiation was also investigated. Conclusions will be presented providing a gauge of measure for engineering performance stability for sails operating in the L1 space environment.

  17. Nanomaterials for Space Exploration Applications

    NASA Technical Reports Server (NTRS)

    Moloney, Padraig G.

    2006-01-01

    Nano-engineered materials are multi-functional materials with superior mechanical, thermal and electrical properties. Nanomaterials may be used for a variety of space exploration applications, including ultracapacitors, active/passive thermal management materials, and nanofiltration for water recovery. Additional applications include electrical power/energy storage systems, hybrid systems power generation, advanced proton exchange membrane fuel cells, and air revitalization. The need for nanomaterials and their growth, characterization, processing and space exploration applications is discussed. Data is presented for developing solid-supported amine adsorbents based on carbon nanotube materials and functionalization of nanomaterials is examined.

  18. A brief overview of space applications for ultrasonics.

    PubMed

    Harkness, Patrick; Lucas, Margaret

    2012-12-01

    Sonics and space are two topics which are not commonly considered together. However, sonic and ultrasonic models, devices and systems have space applications in both science and engineering, as well as showing promise in fields such as cleaning, healthcare and construction. This short paper describes some of these activities and appears as results start to come in from the Curiosity rover, which landed on Mars on the 6th of August, 2012, with over 20 piezoelectric and mechanically-resonant components on board. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Structural Continuum Modeling of Space Shuttle External Tank Foam Insulation

    NASA Technical Reports Server (NTRS)

    Steeve, Brian; Ayala, Sam; Purlee, T. Eric; Shaw, Phillip

    2006-01-01

    This document is a viewgraph presentation reporting on work in modeling the foam insulation of the Space Shuttle External Tank. An analytical understanding of foam mechanics is required to design against structural failure. The Space Shuttle External Tank is covered primarily with closed cell foam to: Prevent ice, Protect structure from ascent aerodynamic and engine plume heating, and Delay break-up during re-entry. It is important that the foam does not shed unacceptable debris during ascent environment. Therefore a modeling of the foam insulation was undertaken.

  20. Robotics technology discipline

    NASA Technical Reports Server (NTRS)

    Montemerlo, Melvin D.

    1990-01-01

    Viewgraphs on robotics technology discipline for Space Station Freedom are presented. Topics covered include: mechanisms; sensors; systems engineering processes for integrated robotics; man/machine cooperative control; 3D-real-time machine perception; multiple arm redundancy control; manipulator control from a movable base; multi-agent reasoning; and surfacing evolution technologies.

  1. Flight Mechanics Experiment Onboard NASA's Zero Gravity Aircraft

    ERIC Educational Resources Information Center

    Matthews, Kyle R.; Motiwala, Samira A.; Edberg, Donald L.; García-Llama, Eduardo

    2012-01-01

    This paper presents a method to promote STEM (Science, Technology, Engineering, and Mathematics) education through participation in a reduced gravity program with NASA (National Aeronautics and Space Administration). Microgravity programs with NASA provide students with a unique opportunity to conduct scientific research with innovative and…

  2. Tackling sun intrusion: a challenge of close collaboration of thermal, mechanical, structural and optical engineers

    NASA Astrophysics Data System (ADS)

    Kroneberger, Monika; Calleri, Andrea; Ulfers, Hendrik; Klossek, Andreas; Goepel, Michael

    2017-09-01

    The Meteosat Third Generation (MTG) program will ensure the continuity and enhancement of meteorological data from geostationary orbit as currently provided by the Meteosat Second Generation (MSG) system. OHB-Munich, as part of the core team consortium of the industrial prime contractor for the space segment Thales Alenia Space (France), is responsible for the Flexible Combined Imager - Telescope Assembly (FCI-TA) as well as the Infrared Sounder (IRS).

  3. High-Performance electronics at ultra-low power consumption for space applications: From superconductor to nanoscale semiconductor technology

    NASA Technical Reports Server (NTRS)

    Duncan, Robert V.; Simmons, Jerry; Kupferman, Stuart; McWhorter, Paul; Dunlap, David; Kovanis, V.

    1995-01-01

    A detailed review of Sandia's work in ultralow power dissipation electronics for space flight applications, including superconductive electronics, new advances in quantum well structures, and ultra-high purity 3-5 materials, and recent advances in micro-electro-optical-mechanical systems (MEMS) is presented. The superconductive electronics and micromechanical devices are well suited for application in micro-robotics, micro-rocket engines, and advanced sensors.

  4. A Closed Brayton Power Conversion Unit Concept for Nuclear Electric Propulsion for Deep Space Missions

    NASA Astrophysics Data System (ADS)

    Joyner, Claude Russell; Fowler, Bruce; Matthews, John

    2003-01-01

    In space, whether in a stable satellite orbit around a planetary body or traveling as a deep space exploration craft, power is just as important as the propulsion. The need for power is especially important for in-space vehicles that use Electric Propulsion. Using nuclear power with electric propulsion has the potential to provide increased payload fractions and reduced mission times to the outer planets. One of the critical engineering and design aspects of nuclear electric propulsion at required mission optimized power levels is the mechanism that is used to convert the thermal energy of the reactor to electrical power. The use of closed Brayton cycles has been studied over the past 30 or years and shown to be the optimum approach for power requirements that range from ten to hundreds of kilowatts of power. It also has been found to be scalable to higher power levels. The Closed Brayton Cycle (CBC) engine power conversion unit (PCU) is the most flexible for a wide range of power conversion needs and uses state-of-the-art, demonstrated engineering approaches. It also is in use with many commercial power plants today. The long life requirements and need for uninterrupted operation for nuclear electric propulsion demands high reliability from a CBC engine. A CBC engine design for use with a Nuclear Electric Propulsion (NEP) system has been defined based on Pratt & Whitney's data from designing long-life turbo-machines such as the Space Shuttle turbopumps and military gas turbines and the use of proven integrated control/health management systems (EHMS). An integrated CBC and EHMS design that is focused on using low-risk and proven technologies will over come many of the life-related design issues. This paper will discuss the use of a CBC engine as the power conversion unit coupled to a gas-cooled nuclear reactor and the design trends relative to its use for powering electric thrusters in the 25 kWe to 100kWe power level.

  5. Overview of the Center for Space Construction

    NASA Technical Reports Server (NTRS)

    Hearth, Donald P.

    1990-01-01

    The purpose of this overview is to summarize the objectives and structure of the Center. The center is a major element of the University's initiative to upgrade space-related research and education on the Boulder campus. With the support of NASA's University Space Engineering Research Centers Program, we provide a mechanism for interdisciplinary and system-level space engineering research and training. Twenty faculty members and 56 students from seven academic units are associated with the Center and are interacting with each other and with the CSC Associates. As a result of feedback from the 1989 symposium, we have focused the efforts of the Center during the past several months on Lunar Base construction. This included a system level study of a Lunar Base in an Independent Study Project by a group of students from across the Center during the spring semester. This project is being continued this fall. During the two-year history of the Center, 13 students previously affiliated with the Center have graduated and there have been 55 publications from the Center.

  6. The Optical Fiber Array Bundle Assemblies for the NASA Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Switzer, Rob; Thomes, William Joe; Chuska, Richard; LaRocca, Frank; MacMurphy, Shawn

    2008-01-01

    The United States, National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), Fiber Optics Team in the Electrical Engineering Division of the Applied Engineering and Technology Directorate, designed, developed and integrated the space flight optical fiber array hardware assemblies for the Lunar Reconnaissance Orbiter (LRO). The two new assemblies that were designed and manufactured at NASA GSFC for the LRO exist in configurations that are unique in the world for the application of ranging and lidar. These assemblies were developed in coordination with Diamond Switzerland, and the NASA GSFC Mechanical Systems Division. The assemblies represent a strategic enhancement for NASA's Laser Ranging and Laser Radar (LIDAR) instrument hardware by allowing light to be moved to alternative locations that were not feasible in past space flight implementations. An account will be described of the journey and the lessons learned from design to integration for the Lunar Orbiter Laser Altimeter and the Laser Ranging Application on the LRO. The LRO is scheduled to launch end of 2008.

  7. A Multicomponent Blend as a Diesel Fuel Surrogate for Compression Ignition Engine Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Yuanjiang; Mehl, Marco; Liu, Wei

    A mixture of n-dodecane and m-xylene is investigated as a diesel fuel surrogate for compression ignition engine applications. Compared to neat n-dodecane, this binary mixture is more representative of diesel fuel because it contains an alkyl-benzene which represents an important chemical class present in diesel fuels. A detailed multi-component mechanism for n-dodecane and m-xylene was developed by combining a previously developed n-dodecane mechanism with a recently developed mechanism for xylenes. The xylene mechanism is shown to reproduce experimental ignition data from a rapid compression machine and shock tube, speciation data from the jet stirred reactor and flame speed data. Thismore » combined mechanism was validated by comparing predictions from the model with experimental data for ignition in shock tubes and for reactivity in a flow reactor. The combined mechanism, consisting of 2885 species and 11754 reactions, was reduced to a skeletal mechanism consisting 163 species and 887 reactions for 3D diesel engine simulations. The mechanism reduction was performed using directed relation graph (DRG) with expert knowledge (DRG-X) and DRG-aided sensitivity analysis (DRGASA) at a fixed fuel composition of 77% of n-dodecane and 23% m-xylene by volume. The sample space for the reduction covered pressure of 1 – 80 bar, equivalence ratio of 0.5 – 2.0, and initial temperature of 700 – 1600 K for ignition. The skeletal mechanism was compared with the detailed mechanism for ignition and flow reactor predictions. Finally, the skeletal mechanism was validated against a spray flame dataset under diesel engine conditions documented on the Engine Combustion Network (ECN) website. These multi-dimensional simulations were performed using a Representative Interactive Flame (RIF) turbulent combustion model. Encouraging results were obtained compared to the experiments with regards to the predictions of ignition delay and lift-off length at different ambient temperatures.« less

  8. CSM research: Methods and application studies

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.

    1989-01-01

    Computational mechanics is that discipline of applied science and engineering devoted to the study of physical phenomena by means of computational methods based on mathematical modeling and simulation, utilizing digital computers. The discipline combines theoretical and applied mechanics, approximation theory, numerical analysis, and computer science. Computational mechanics has had a major impact on engineering analysis and design. When applied to structural mechanics, the discipline is referred to herein as computational structural mechanics. Complex structures being considered by NASA for the 1990's include composite primary aircraft structures and the space station. These structures will be much more difficult to analyze than today's structures and necessitate a major upgrade in computerized structural analysis technology. NASA has initiated a research activity in structural analysis called Computational Structural Mechanics (CSM). The broad objective of the CSM activity is to develop advanced structural analysis technology that will exploit modern and emerging computers, such as those with vector and/or parallel processing capabilities. Here, the current research directions for the Methods and Application Studies Team of the Langley CSM activity are described.

  9. Effects of Gravity on Cell Movement and Development

    NASA Technical Reports Server (NTRS)

    Wang, Yu-Li

    2002-01-01

    The main purpose of this project was to understand how the migration and growth of cultured cells respond to mechanical forces. We have made significant progress on all the proposed aims. The most important discoveries are that changes in the environmental mechanical input, such as during space flight, can induce profound changes in cell migration, growth, and programmed cell death. In addition, using genetically engineered cells, we have gained important insight into the molecular mechanism underlying such mechanosensing processes. The results are summarized.

  10. High performance N2O4/amine elements: Blowapart

    NASA Technical Reports Server (NTRS)

    Lawver, B. R.

    1977-01-01

    The mechanisms controlling hypergolic propellant reactive stream separation (RRS) were studied and used to develop design criteria for injectors free from both steady state RSS and cyclic propellant stream separation. This was accomplished through the analysis of single element injectors using N204/MMH propellants; the injectors were representative of the space shuttle orbit maneuvering engine and space tug applications. A gas phase/surface reaction mechanism which controls RSS was identified. Injector design criteria were developed, which defined a critical chamber pressure for those operating conditions above which RSS occurs. It was found that the amount of interfacial surface area at impingement is controlled by injector hydraulics.

  11. Out-of-plane (SH) soil-structure interaction: a shear wall with rigid and flexible ring foundation

    NASA Astrophysics Data System (ADS)

    Le, Thang; Lee, Vincent W.; Luo, Hao

    2016-02-01

    Soil-structure interaction (SSI) of a building and shear wall above a foundation in an elastic half-space has long been an important research subject for earthquake engineers and strong-motion seismologists. Numerous papers have been published since the early 1970s; however, very few of these papers have analytic closed-form solutions available. The soil-structure interaction problem is one of the most classic problems connecting the two disciplines of earthquake engineering and civil engineering. The interaction effect represents the mechanism of energy transfer and dissipation among the elements of the dynamic system, namely the soil subgrade, foundation, and superstructure. This interaction effect is important across many structure, foundation, and subgrade types but is most pronounced when a rigid superstructure is founded on a relatively soft lower foundation and subgrade. This effect may only be ignored when the subgrade is much harder than a flexible superstructure: for instance a flexible moment frame superstructure founded on a thin compacted soil layer on top of very stiff bedrock below. This paper will study the interaction effect of the subgrade and the superstructure. The analytical solution of the interaction of a shear wall, flexible-rigid foundation, and an elastic half-space is derived for incident SH waves with various angles of incidence. It found that the flexible ring (soft layer) cannot be used as an isolation mechanism to decouple a superstructure from its substructure resting on a shaking half-space.

  12. Stiffening of deployable space booms: Automated Protein Crystal Growth Facility

    NASA Technical Reports Server (NTRS)

    Cruse, Thomas; Ward, Susan E.

    1993-01-01

    Part of the curriculum for the seniors at Vanderbilt University in the Mechanical Engineering Program is to take a design class. The purpose of the class is to expose the students to the open ended problems which working engineers are involved with every day. In the past, the students have been asked to work in a variety of projects developed by the professor. This year Vanderbilt was admitted into the Advanced Design Program (ADP) sponsored by the Universities Space Research Association (USRA) and the National Aeronautics and Space Association (NASA). The grant sponsored undergraduate design and research into new and innovative areas in which NASA is involved. The grant sponsors the Teaching Assistant as well as provides monies for travel and other expenses. The design and research of the seniors of the 1992-1993 school year in association with NASA and USRA is documented.

  13. 1986 Annual Conference on Nuclear and Space Radiation Effects, 23rd, Providence, RI, July 21-23, 1986, Proceedings

    NASA Technical Reports Server (NTRS)

    Ellis, Thomas D. (Editor)

    1986-01-01

    The present conference on the effects of nuclear and space radiation on electronic hardware gives attention to topics in the basic mechanisms of radiation effects, dosimetry and energy-dependent effects, electronic device radiation hardness assurance, SOI/SOS radiation effects, spacecraft charging and space radiation, IC radiation effects and hardening, single-event upset (SEU) phenomena and hardening, and EMP/SGEMP/IEMP phenomena. Specific treatments encompass the generation of interface states by ionizing radiation in very thin MOS oxides, the microdosimetry of meson energy deposited on 1-micron sites in Si, total dose radiation and engineering studies, plasma interactions with biased concentrator solar cells, the transient imprint memory effect in MOS memories, mechanisms leading to SEU, and the vaporization and breakdown of thin columns of water.

  14. Human Systems Engineering for Launch processing at Kennedy Space Center (KSC)

    NASA Technical Reports Server (NTRS)

    Henderson, Gena; Stambolian, Damon B.; Stelges, Katrine

    2012-01-01

    Launch processing at Kennedy Space Center (KSC) is primarily accomplished by human users of expensive and specialized equipment. In order to reduce the likelihood of human error, to reduce personal injuries, damage to hardware, and loss of mission the design process for the hardware needs to include the human's relationship with the hardware. Just as there is electrical, mechanical, and fluids, the human aspect is just as important. The focus of this presentation is to illustrate how KSC accomplishes the inclusion of the human aspect in the design using human centered hardware modeling and engineering. The presentations also explain the current and future plans for research and development for improving our human factors analysis tools and processes.

  15. Algae Farming in Low Earth Orbit: Past Present and Future

    NASA Astrophysics Data System (ADS)

    Morrison, N.

    Algal strains used as a production engine represent a novel example of living mechanical systems with tremendous potential for applications in space. Algae use photosynthesis to create lipids, glycerin, and biomass, with different strains of algae producing different oils. Algae can be grown to produce many types of oils, with low, medium or long hydrocarbon chain lengths. This article examines the history of algae research, as well as its value to astronauts as both a food supplement and as an oxygen production and carbon sequester engine. Consideration is given to ways algae is currently being used and tested in space, followed by a look forward envisioning dynamic living technological systems that can help to sustain our race as we travel the void between stars.

  16. Recombination Catalysts for Hypersonic Fuels

    NASA Technical Reports Server (NTRS)

    Chinitz, W.

    1998-01-01

    The goal of commercially-viable access to space will require technologies that reduce propulsion system weight and complexity, while extracting maximum energy from the products of combustion. This work is directed toward developing effective nozzle recombination catalysts for the supersonic and hypersonic aeropropulsion engines used to provide such access to space. Effective nozzle recombination will significantly reduce rk=le length (hence, propulsion system weight) and reduce fuel requirements, further decreasing the vehicle's gross lift-off weight. Two such catalysts have been identified in this work, barium and antimony compounds, by developing chemical kinetic reaction mechanisms for these materials and determining the engine performance enhancement for a typical flight trajectory. Significant performance improvements are indicated, using only 2% (mole or mass) of these compounds in the combustor product gas.

  17. FLUID MECHANICS AND TANKAGE DESIGN FOR LOW GRAVITY ENVIRONMENT

    DTIC Science & Technology

    tankage delivers only single-phase propellants. The requirements for feed systems of electric engines are described briefly. Also, the 1.85-second drop...direction of mass transfer in tapered tubes and liquid-vapor interface shapes in an annular space between concentric cylinders. Possible feed systems

  18. Fincke holds the active docking assembly inside the SM during Expedition 9

    NASA Image and Video Library

    2004-08-14

    ISS009-E-18539 (14 August 2004) --- Astronaut Edward M. (Mike) Fincke, Expedition 9 NASA ISS science officer and flight engineer, holds the Progress 15 supply vehicle probe-and-cone docking mechanism in the Zvezda Service Module of the International Space Station (ISS).

  19. First-ever evening public engine test of a Space Shuttle Main Engine

    NASA Image and Video Library

    2001-04-21

    Thousands of people watch the first-ever evening public engine test of a Space Shuttle Main Engine at NASA's John C. Stennis Space Center. The spectacular test marked Stennis Space Center's 20th anniversary celebration of the first Space Shuttle mission.

  20. Systems Engineering Lessons Learned from Solar Array Structures and Mechanisms Deployment

    NASA Technical Reports Server (NTRS)

    Vipavetz, Kevin; Kraft, Thomas

    2013-01-01

    This report has been developed by the National Aeronautics and Space Administration (NASA) Human Exploration and Operations Mission Directorate (HEOMD) Risk Management team in close coordination with the Engineering Directorate at LaRC. This document provides a point-in-time, cumulative, summary of actionable key lessons learned derived from the design project. Lessons learned invariably address challenges and risks and the way in which these areas have been addressed. Accordingly the risk management thread is woven throughout the document.

  1. Expedition 37 Soyuz Rollout

    NASA Image and Video Library

    2013-09-23

    Large gantry mechanisms on either side of the Soyuz TMA-10M spacecraft are raised into position to secure the rocket at the launch pad on Monday, Sept. 23, 2013 at the Baikonur Cosmodrome in Kazakhstan. Launch of the Soyuz rocket is scheduled for September 26 and will send Expedition 37 Soyuz Commander Oleg Kotov, NASA Flight Engineer Michael Hopkins and Russian Flight Engineer Sergei Ryazansky on a five and a half-month mission aboard the International Space Station. Photo Credit: (NASA/Carla Cioffi)

  2. ESPACE - a geodetic Master's program for the education of Satellite Application Engineers

    NASA Astrophysics Data System (ADS)

    Hedman, K.; Kirschner, S.; Seitz, F.

    2012-04-01

    In the last decades there has been a rapid development of new geodetic and other Earth observation satellites. Applications of these satellites such as car navigation systems, weather predictions, and, digital maps (such as Google Earth or Google Maps) play a more and more important role in our daily life. For geosciences, satellite applications such as remote sensing and precise positioning/navigation have turned out to be extremely useful and are meanwhile indispensable. Today, researchers within geodesy, climatology, oceanography, meteorology as well as within Earth system science are all dependent on up-to-date satellite data. Design, development and handling of these missions require experts with knowledge not only in space engineering, but also in the specific applications. That gives rise to a new kind of engineers - satellite application engineers. The study program for these engineers combines parts of different classical disciplines such as geodesy, aerospace engineering or electronic engineering. The satellite application engineering program Earth Oriented Space Science and Technology (ESPACE) was founded in 2005 at the Technische Universität München, mainly from institutions involved in geodesy and aerospace engineering. It is an international, interdisciplinary Master's program, and is open to students with a BSc in both Science (e.g. Geodesy, Mathematics, Informatics, Geophysics) and Engineering (e.g. Aerospace, Electronical and Mechanical Engineering). The program is completely conducted in English. ESPACE benefits from and utilizes its location in Munich with its unique concentration of expertise related to space science and technology. Teaching staff from 3 universities (Technische Universität München, Ludwig-Maximilian University, University of the Federal Armed Forces), research institutions (such as the German Aerospace Center, DLR and the German Geodetic Research Institute, DGFI) and space industry (such as EADS or Kayser-Threde) are involved in ESPACE. This paper will first give the background and objectives of ESPACE with focus on its specific position in geodetic education programmes. Second, we will introduce the interdisciplinary study program and explain the involvement of external teaching staff. Further we will give an up-to-date description of current students and ESPACE alumni. The job market and international demand for satellite application engineers will be shown especially with focus to geodetic fields.

  3. Dynamic Mechanical Analysis (DMA) to Help Characterize Vespel SP-211 Polyimide Material for Use as a 750 F Valve Seal on the Ares I Upper Stage J-2X Engine

    NASA Technical Reports Server (NTRS)

    Wingard, Doug

    2013-01-01

    DuPont (TM) Vespel (R) SP-211 polyimide was selected as the top candidate seal material for use in the Oxidizer Turbine Bypass Valve (OTBV) on NASA's Ares I Upper Stage J-2X engine. In the OTBV, the seal material would get exposed to temperatures up to 750degF for approx 10 minutes at a time. Although the J-2X engine is not reusable, the valve material could be exposed to multiple temperature cycles up to 750 F during engine operation. The Constellation Program that included the Ares I rocket was eventually cancelled, but the J-2X engine was chosen for continued use for development of NASA's Space Launch System (SLS). The SLS is a heavy-lift launch vehicle that will have capability of taking astronauts and hardware to the Moon, Mars and asteroids. Dynamic mechanical analysis (DMA) was one of several test techniques used to characterize Vespel SP-211 to help prove its worthiness for use on the OTBV of the J-2X engine.

  4. Dynamic Mechanical Analysis (DMA) to Help Characterize Vespel SP-211 Polyimide Material for Use as a 750 F Valve Seal on the Ares I Upper Stage J-2X Engine

    NASA Technical Reports Server (NTRS)

    Wingard, Doug

    2013-01-01

    DuPont(tm) Vespel(R) SP-211 polyimide was selected as the top candidate seal material for use in the Oxidizer Turbine Bypass Valve (OTBV) on NASA's Ares I Upper Stage J-2X engine. In the OTBV, the seal material would get exposed to temperatures up to 750degF for approx 10 minutes at a time. Although the J-2X engine is not reusable, the valve material could be exposed to multiple temperature cycles up to 750degF during engine operation. The Constellation Program that included the Ares I rocket was eventually cancelled, but the J-2X engine was chosen for continued use for development of NASA's Space Launch System (SLS). The SLS is a heavy-lift launch vehicle that will have capability of taking astronauts and hardware to the Moon, Mars and asteroids. Dynamic mechanical analysis (DMA) was one of several test techniques used to characterize Vespel SP-211 to help prove its worthiness for use on the OTBV of the J-2X engine.

  5. Modeling and Characterization of Electrical Resistivity of Carbon Composite Laminates

    NASA Astrophysics Data System (ADS)

    Yasuda, Hiromi

    Origami has recently received significant interest from the scientific and engineering communities as a method for designing building blocks of engineered structures to enhance their mechanical properties. However, the primary focus has been placed on their kinematic applications by leveraging the compactness and auxeticity of planar origami platforms. In this thesis, we study two different types of volumetric origami structures, Tachi-Miura Polyhedron (TMP) and Triangulated Cylindrical Origami (TCO), hierarchically from a single unit cell level to an assembly of multi-origami cells. We strategically assemble these origami cells into mechanical metamaterials and demonstrate their unique static/dynamic mechanical responses. In particular, these origami structures exhibit tailorable stiffness and strain softening/hardening behaviors, which leads to rich wave dynamics in origami-based architectures such as tunable frequency bands and new types of nonlinear wave propagations. One of the novel waveforms investigated in this thesis is the rarefaction solitary wave arising from strain-softening nature of origami unit cell. This unique wave dynamic mechanism is analyzed in numerical, analytical, and experimental approaches. By leveraging their tailorable folding mechanisms, the origami-based mechanical metamaterials can be used for designing new types of engineering devices and structures, not only for deployable space and disaster relief applications, but also for vibration filtering, impact mitigation, and energy harvesting.

  6. KSC-04PD-1472

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Ted Hartka, MESSENGER lead mechanical engineer, with The Johns Hopkins University Applied Physics Laboratory (APL), talks about the MESSENGER spacecrafts mission to Mercury for the media at a special presentation at Astrotech Space Operations in Titusville, Fla. The spacecraft, mated to the Delta II third stage Payload Assist Module, is in the background. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket from Pad 17-B, Cape Canaveral Air Force Station, Fla.

  7. KSC-04pd1472

    NASA Image and Video Library

    2004-07-14

    KENNEDY SPACE CENTER, FLA. - Ted Hartka, MESSENGER lead mechanical engineer, with The Johns Hopkins University Applied Physics Laboratory (APL), talks about the MESSENGER spacecraft’s mission to Mercury for the media at a special presentation at Astrotech Space Operations in Titusville, Fla. The spacecraft, mated to the Delta II third stage Payload Assist Module, is in the background. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket from Pad 17-B, Cape Canaveral Air Force Station, Fla.

  8. KSC-2011-7393

    NASA Image and Video Library

    2011-10-14

    CAPE CANAVERAL, Fla. – Mechanical engineering students from Louisiana State University joined engineers and scientists at Launch Pad 39B at NASA's Kennedy Space Center in Florida as the students toured the facility to have a look at the flame trench. Designers are looking for new, flame and vibration-resistant materials to line the trench. To help in the search, a team of mechanical engineering students at Louisiana State University are to build a scaled-down version of the flame trench that Kennedy's scientists can use to try out sample materials for the trench. If the samples work in the lab, they can be tried out in the real flame trenches at Launch Pad 39A and 39B. The launch pad has been refurbished extensively and work is continuing to modify the pad to support a variety of launch vehicles in the future. Photo credit: NASA/Jim Grossmann

  9. KSC-2011-7394

    NASA Image and Video Library

    2011-10-14

    CAPE CANAVERAL, Fla. – Mechanical engineering students from Louisiana State University joined engineers and scientists at Launch Pad 39B at NASA's Kennedy Space Center in Florida as the students toured the facility to have a look at the flame trench. Designers are looking for new, flame and vibration-resistant materials to line the trench. To help in the search, a team of mechanical engineering students at Louisiana State University are to build a scaled-down version of the flame trench that Kennedy's scientists can use to try out sample materials for the trench. If the samples work in the lab, they can be tried out in the real flame trenches at Launch Pad 39A and 39B. The launch pad has been refurbished extensively and work is continuing to modify the pad to support a variety of launch vehicles in the future. Photo credit: NASA/Jim Grossmann

  10. KSC-2011-7395

    NASA Image and Video Library

    2011-10-14

    CAPE CANAVERAL, Fla. – Mechanical engineering students from Louisiana State University, the group on the left, joined engineers and scientists at Launch Pad 39B at NASA's Kennedy Space Center in Florida as the students toured the facility to have a look at the flame trench. Designers are looking for new, flame and vibration-resistant materials to line the trench. To help in the search, a team of mechanical engineering students at Louisiana State University are to build a scaled-down version of the flame trench that Kennedy's scientists can use to try out sample materials for the trench. If the samples work in the lab, they can be tried out in the real flame trenches at Launch Pad 39A and 39B. The launch pad has been refurbished extensively and work is continuing to modify the pad to support a variety of launch vehicles in the future. Photo credit: NASA/Jim Grossmann

  11. META II: Formal Co-Verification of Correctness of Large-Scale Cyber-Physical Systems during Design. Volume 1

    DTIC Science & Technology

    2011-08-01

    design space is large. His research contributions are to the field of Decision-based Design, specifically in linking consumer preferences and...Integrating Consumer Preferences into Engineering Design, to be published in 2012. He received his PhD from Northwestern University in Mechanical

  12. Stennis certifies final shuttle engine

    NASA Image and Video Library

    2008-10-22

    Steam blasts out of the A-2 Test Stand at Stennis Space Center on Oct. 22 as engineers begin a certification test on engine 2061, the last space shuttle main flight engine scheduled to be built. Since 1975, Stennis has tested every space shuttle main engine used in the program - about 50 engines in all. Those engines have powered more than 120 shuttle missions - and no mission has failed as a result of engine malfunction. For the remainder of 2008 and throughout 2009, Stennis will continue testing of various space shuttle main engine components.

  13. General view of a Space Shuttle Main Engine (SSME) mounted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of a Space Shuttle Main Engine (SSME) mounted on an SSME engine handler, taken in the SSME Processing Facility at Kennedy Space Center. The most prominent features of the engine assembly in this view are the Low-Pressure Oxidizer Turbopump Discharge Duct looping around the right side of the engine assembly then turning in and connecting to the High-Pressure Oxidizer Turbopump. The sphere in the approximate center of the assembly is the POGO System Accumulator, the Engine Controller is located on the bottom and slightly left of the center of the Engine Assembly in this view. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  14. Mechanics of Granular Materials (MGM) Test Cell

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A test cell for Mechanics of Granular Materials (MGM) experiment is shown approximately 20 and 60 minutes after the start of an experiment on STS-89. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditons that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: NASA/Marshall Space Flight Center (MSFC)

  15. Mechanics of Granular Materials Test Cell

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A test cell for Mechanics of Granular Materials (MGM) experiment is shown from all three sides by its video camera during STS-89. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditons that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: NASA/Marshall Space Flight Center (MSFC)

  16. Integration of a NASA faculty fellowship project within an undergraduate engineering capstone design class

    NASA Astrophysics Data System (ADS)

    Carmen, C.

    2012-11-01

    The United States (US) National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate (ESMD) provides university faculty fellowships that prepare the faculty to implement engineering design class projects that possess the potential to contribute to NASA ESMD objectives. The goal of the ESMD is to develop new capabilities, support technologies and research that will enable sustained and affordable human and robotic space exploration. In order to create a workforce that will have the desire and skills necessary to achieve these goals, the NASA ESMD faculty fellowship program enables university faculty to work on specific projects at a NASA field center and then implement the project within their capstone engineering design class. This allows the senior - or final year - undergraduate engineering design students, the opportunity to develop critical design experience using methods and design tools specified within NASA's Systems Engineering (SE) Handbook. The faculty fellowship projects focus upon four specific areas critical to the future of space exploration: spacecraft, propulsion, lunar and planetary surface systems and ground operations. As the result of a 2010 fellowship, whereby faculty research was conducted at Marshall Space Flight Center (MSFC) in Huntsville, Alabama (AL), senior design students in the Mechanical and Aerospace Engineering (MAE) department at the University of Alabama in Huntsville (UAH) had the opportunity to complete senior design projects that pertained to current work conducted to support ESMD objectives. Specifically, the UAH MAE students utilized X-TOOLSS (eXploration Toolset for the Optimization Of Launch and Space Systems), an Evolutionary Computing (EC) design optimization software, as well as design, analyze, fabricate and test a lunar regolith burrowing device - referred to as the Lunar Wormbot (LW) - that is aimed at exploring and retrieving samples of lunar regolith. These two projects were implemented during the 2010-2011 academic year at UAH and have proven to significantly motivate and enhance the students understanding of the design, development and optimization of space systems. The current paper provides an overview of the NASA ESMD faculty fellowship program, the 2010 fellowship projects, a detailed description of the means of integrating the X-TOOLSS and LW projects within the UAH MAE senior design class, the MAE student design project results, as well as the learning outcome and impact of the ESMD project had upon the engineering students.

  17. Development of a parallel FE simulator for modeling the whole trans-scale failure process of rock from meso- to engineering-scale

    NASA Astrophysics Data System (ADS)

    Li, Gen; Tang, Chun-An; Liang, Zheng-Zhao

    2017-01-01

    Multi-scale high-resolution modeling of rock failure process is a powerful means in modern rock mechanics studies to reveal the complex failure mechanism and to evaluate engineering risks. However, multi-scale continuous modeling of rock, from deformation, damage to failure, has raised high requirements on the design, implementation scheme and computation capacity of the numerical software system. This study is aimed at developing the parallel finite element procedure, a parallel rock failure process analysis (RFPA) simulator that is capable of modeling the whole trans-scale failure process of rock. Based on the statistical meso-damage mechanical method, the RFPA simulator is able to construct heterogeneous rock models with multiple mechanical properties, deal with and represent the trans-scale propagation of cracks, in which the stress and strain fields are solved for the damage evolution analysis of representative volume element by the parallel finite element method (FEM) solver. This paper describes the theoretical basis of the approach and provides the details of the parallel implementation on a Windows - Linux interactive platform. A numerical model is built to test the parallel performance of FEM solver. Numerical simulations are then carried out on a laboratory-scale uniaxial compression test, and field-scale net fracture spacing and engineering-scale rock slope examples, respectively. The simulation results indicate that relatively high speedup and computation efficiency can be achieved by the parallel FEM solver with a reasonable boot process. In laboratory-scale simulation, the well-known physical phenomena, such as the macroscopic fracture pattern and stress-strain responses, can be reproduced. In field-scale simulation, the formation process of net fracture spacing from initiation, propagation to saturation can be revealed completely. In engineering-scale simulation, the whole progressive failure process of the rock slope can be well modeled. It is shown that the parallel FE simulator developed in this study is an efficient tool for modeling the whole trans-scale failure process of rock from meso- to engineering-scale.

  18. Applications of MEMS for Space Exploration

    NASA Astrophysics Data System (ADS)

    Tang, William C.

    1998-03-01

    Space exploration in the coming century will emphasize cost effectiveness and highly focused mission objectives, which will result in frequent multiple missions that broaden the scope of space science and to validate new technologies on a timely basis. Micro Electro Mechanical Systems (MEMS) is one of the key enabling technologies to create cost-effective, ultra-miniaturized, robust, and functionally focused spacecraft for both robotic and human exploration programs. Examples of MEMS devices at various stages of development include microgyroscope, microseismometer, microhygrometer, quadrupole mass spectrometer, and micropropulsion engine. These devices, when proven successful, will serve as models for developing components and systems for new-millennium spacecraft.

  19. Leadership in Space: Selected Speeches of NASA Administrator Michael Griffin, May 2005 - October 2008

    NASA Technical Reports Server (NTRS)

    Griffin, Michael

    2008-01-01

    Speech topics include: Leadership in Space; Space Exploration: Real and Acceptable Reasons; Why Explore Space?; Space Exploration: Filling up the Canvas; Continuing the Voyage: The Spirit of Endeavour; Incorporating Space into Our Economic Sphere of Influence; The Role of Space Exploration in the Global Economy; Partnership in Space Activities; International Space Cooperation; National Strategy and the Civil Space Program; What the Hubble Space Telescope Teaches Us about Ourselves; The Rocket Team; NASA's Direction; Science and NASA; Science Priorities and Program Management; NASA and the Commercial Space Industry; NASA and the Business of Space; American Competitiveness: NASA's Role & Everyone's Responsibility; Space Exploration: A Frontier for American Collaboration; The Next Generation of Engineers; System Engineering and the "Two Cultures" of Engineering; Generalship of Engineering; NASA and Engineering Integrity; The Constellation Architecture; Then and Now: Fifty Years in Space; The Reality of Tomorrow; and Human Space Exploration: The Next 50 Years.

  20. Pip pin reliability and design

    NASA Technical Reports Server (NTRS)

    Skyles, Lane P.

    1994-01-01

    Pip pins are used in many engineering applications. Of particular interest to the aerospace industry is their use in various mechanism designs. Many payloads that fly aboard our nation's Space Shuttle have at least one actuated mechanism. Often these mechanisms incorporate pip pins in their design in order to fasten interfacing parts or joints. Pip pins are most often used when an astronaut will have a direct interface with the mechanism. This interfacing can be done during Space Shuttle mission EVA's (ExtraVehicular Activity). The main reason for incorporating pip pins is convenience and their ability to provide a quick release for interfacing parts. However, there are some issues that must be taken into account when using them in a design. These issues include documented failures and quality control problems when using substandard pip pins. A history of pip pins as they relate to the aerospace industry as well as general design features is discussed.

  1. Space engine safety system

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Meyer, Claudia M.

    1991-01-01

    A rocket engine safety system was designed to initiate control procedures to minimize damage to the engine or vehicle or test stand in the event of an engine failure. The features and the implementation issues associated with rocket engine safety systems are discussed, as well as the specific concerns of safety systems applied to a space-based engine and long duration space missions. Examples of safety system features and architectures are given, based on recent safety monitoring investigations conducted for the Space Shuttle Main Engine and for future liquid rocket engines. Also, the general design and implementation process for rocket engine safety systems is presented.

  2. Free-piston Stirling technology for space power

    NASA Technical Reports Server (NTRS)

    Slaby, Jack G.

    1989-01-01

    An overview is presented of the NASA Lewis Research Center free-piston Stirling engine activities directed toward space power. This work is being carried out under NASA's new Civil Space Technology Initiative (CSTI). The overall goal of CSTI's High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space missions. The Stirling cycle offers an attractive power conversion concept for space power needs. Discussed here is the completion of the Space Power Demonstrator Engine (SPDE) testing-culminating in the generation of 25 kW of engine power from a dynamically-balanced opposed-piston Stirling engine at a temperature ratio of 2.0. Engine efficiency was approximately 22 percent. The SPDE recently has been divided into two separate single-cylinder engines, called Space Power Research Engine (SPRE), that now serve as test beds for the evaluation of key technology disciplines. These disciplines include hydrodynamic gas bearings, high-efficiency linear alternators, space qualified heat pipe heat exchangers, oscillating flow code validation, and engine loss understanding.

  3. An Overview of NASA's Contributions to Energy Technology

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.; Levine, Arlene S.

    2009-01-01

    The National Aeronautics and Space Administration (NASA) is well known for its many contributions to advancing technology for the aviation and space industries. It may be surprising to some that it has also made a major impact in advancing energy technologies. This paper presents a historic overview of some of the energy programs that NASA was involved in, as well as presenting some current energy-related work that is relevant to both aerospace and non-aerospace needs. In the past, NASA developed prototype electric cars, low-emission gas turbines, wind turbines, and solar-powered villages, to name a few of the major energy projects. The fundamental expertise in fluid mechanics, heat transfer, thermodynamics, mechanical and electrical engineering, and other related fields, found in NASA s workforce, can easily be applied to develop creative solutions to energy problems in space, aviation, or terrestrial systems.

  4. Experience with synthetic fluorinated fluid lubricants

    NASA Technical Reports Server (NTRS)

    Conley, Peter L.; Bohner, John J.

    1990-01-01

    Since the late 1970's, the wet lubricant of choice for space mechanisms has been one of the family of synthetic perfluoro polyalkylether (PFPE) compounds, namely Fomblin Z-25 (Bray-815Z) or DuPont's Krytox 143xx series. While offering the advantages of extremely low vapor pressures and wide temperature ranges, these oils and derived greases have a complex chemistry compared to the more familiar natural and synthetic hydrocarbons. Many aerospace companies have conducted test programs to characterize the behavior of these compounds in a space environment, resulting in a large body of hard knowledge as well as considerable space lore concerning the suitability of the lubricants for particular applications and techniques for successful application. The facts are summarized and a few myths about the compounds are dispelled, and some performance guidelines for the mechanism design engineer are provided.

  5. Technology Innovations from NASA's Next Generation Launch Technology Program

    NASA Technical Reports Server (NTRS)

    Cook, Stephen A.; Morris, Charles E. K., Jr.; Tyson, Richard W.

    2004-01-01

    NASA's Next Generation Launch Technology Program has been on the cutting edge of technology, improving the safety, affordability, and reliability of future space-launch-transportation systems. The array of projects focused on propulsion, airframe, and other vehicle systems. Achievements range from building miniature fuel/oxygen sensors to hot-firings of major rocket-engine systems as well as extreme thermo-mechanical testing of large-scale structures. Results to date have significantly advanced technology readiness for future space-launch systems using either airbreathing or rocket propulsion.

  6. Materials Test Branch

    NASA Technical Reports Server (NTRS)

    Gordon, Gail

    2012-01-01

    The Materials Test Branch resides at Marshall Space Flight Center's Materials and Processing laboratory and has a long history of supporting NASA programs from Mercury to the recently retired Space Shuttle. The Materials Test Branch supports its customers by supplying materials testing expertise in a wide range of applications. The Materials Test Branch is divided into three Teams, The Chemistry Team, The Tribology Team and the Mechanical Test Team. Our mission and goal is to provide world-class engineering excellence in materials testing with a special emphasis on customer service.

  7. KSC-04pd1473

    NASA Image and Video Library

    2004-07-14

    KENNEDY SPACE CENTER, FLA. - At Astrotech Space Operations in Titusville, Fla., members of the media, wearing clean room suits, gather around Ted Hartka, MESSENGER lead mechanical engineer, with The Johns Hopkins University Applied Physics Laboratory (APL). Hartka is talking about the MESSENGER spacecraft’s mission to Mercury. The spacecraft, mated to the Delta II third stage Payload Assist Module, is in the background. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket from Pad 17-B, Cape Canaveral Air Force Station, Fla.

  8. Closeup View of the Space Shuttle Main Engine (SSME) 2044 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up View of the Space Shuttle Main Engine (SSME) 2044 mounted in a SSME Engine Handler in the SSME processing Facility at Kennedy Space Center. This view shows SSME 2044 with its expansion nozzle removed and an Engine Leak-Test Plug is set in the throat of the Main Combustion Chamber in the approximate center of the image, the insulated, High-Pressure Fuel Turbopump sits below that and the Low Pressure Oxidizer Turbopump Discharge Duct sits towards the top of the engine assembly in this view. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  9. KSC-04PD-2515

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In this view from the floor of the Orbiter Processing Facility, the first of three Space Shuttle Main Engines (SSME) is seen after installation. Discovery is the vehicle designated for the Return to Flight mission STS-114. Overall, an SSME weighs approximately 7,000 pounds. An SSME operates at greater temperature extremes than any mechanical system in common use today. The liquid hydrogen fuel is -423 degrees Fahrenheit, the second coldest liquid on Earth. When the hydrogen is burned with liquid oxygen, the temperature in the engine's combustion chamber reaches +6000 degrees Fahrenheit -- that's higher than the boiling point of Iron. The maximum equivalent horsepower developed by the three SSMEs is just over 37 million horsepower. The energy released by the three SSMEs is equivalent to the output of 23 Hoover Dams.

  10. KSC-04PD-2510

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility, technicians wait below while a Hyster lift moves the first of three Space Shuttle Main Engines (SSME) into position above for installation on Discovery, the vehicle designated for the Return to Flight mission STS-114. Overall, an SSME weighs approximately 7,000 pounds. An SSME operates at greater temperature extremes than any mechanical system in common use today. The liquid hydrogen fuel is -423 degrees Fahrenheit, the second coldest liquid on Earth. When the hydrogen is burned with liquid oxygen, the temperature in the engine's combustion chamber reaches +6000 degrees Fahrenheit -- that's higher than the boiling point of Iron. The maximum equivalent horsepower developed by the three SSMEs is just over 37 million horsepower. The energy released by the three SSMEs is equivalent to the output of 23 Hoover Dams.

  11. KSC-04PD-2516

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In this closeup view, the first of three Space Shuttle Main Engines (SSME) is seen after installation on Discovery in the Orbiter Processing Facility. Discovery is the vehicle designated for the Return to Flight mission STS-114. Overall, an SSME weighs approximately 7,000 pounds. An SSME operates at greater temperature extremes than any mechanical system in common use today. The liquid hydrogen fuel is -423 degrees Fahrenheit, the second coldest liquid on Earth. When the hydrogen is burned with liquid oxygen, the temperature in the engine's combustion chamber reaches +6000 degrees Fahrenheit -- that's higher than the boiling point of Iron. The maximum equivalent horsepower developed by the three SSMEs is just over 37 million horsepower. The energy released by the three SSMEs is equivalent to the output of 23 Hoover Dams.

  12. KSC-04PD-2514

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility, the Hyster lift backs away from the orbiter Discovery after placing a Space Shuttle Main Engine (SSME) into position for installation. Discovery is the vehicle designated for the Return to Flight mission STS-114. Overall, an SSME weighs approximately 7,000 pounds. An SSME operates at greater temperature extremes than any mechanical system in common use today. The liquid hydrogen fuel is -423 degrees Fahrenheit, the second coldest liquid on Earth. When the hydrogen is burned with liquid oxygen, the temperature in the engine's combustion chamber reaches +6000 degrees Fahrenheit -- that's higher than the boiling point of Iron. The maximum equivalent horsepower developed by the three SSMEs is just over 37 million horsepower. The energy released by the three SSMEs is equivalent to the output of 23 Hoover Dams.

  13. KSC-04PD-2512

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility, a technician (lower right) watches from inside as a Space Shuttle Main Engine (SSME) on the Hyster lift is maneuvered into position on Discovery, the vehicle designated for the Return to Flight mission STS-114. Overall, an SSME weighs approximately 7,000 pounds. An SSME operates at greater temperature extremes than any mechanical system in common use today. The liquid hydrogen fuel is -423 degrees Fahrenheit, the second coldest liquid on Earth. When the hydrogen is burned with liquid oxygen, the temperature in the engine's combustion chamber reaches +6000 degrees Fahrenheit -- that's higher than the boiling point of Iron. The maximum equivalent horsepower developed by the three SSMEs is just over 37 million horsepower. The energy released by the three SSMEs is equivalent to the output of 23 Hoover Dams.

  14. KSC-04PD-2509

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility, Discovery waits as the first of three Space Shuttle Main Engines (SSME) moves into position for installation on Discovery, the vehicle designated for the Return to Flight mission STS-114. Overall, an SSME weighs approximately 7,000 pounds. An SSME operates at greater temperature extremes than any mechanical system in common use today. The liquid hydrogen fuel is -423 degrees Fahrenheit, the second coldest liquid on Earth. When the hydrogen is burned with liquid oxygen, the temperature in the engine's combustion chamber reaches +6000 degrees Fahrenheit -- that's higher than the boiling point of Iron. The maximum equivalent horsepower developed by the three SSMEs is just over 37 million horsepower. The energy released by the three SSMEs is equivalent to the output of 23 Hoover Dams.

  15. General view of a Space Shuttle Main Engine (SSME) mounted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of a Space Shuttle Main Engine (SSME) mounted on an SSME engine handler, taken in the SSME Processing Facility at Kennedy Space Center. The most prominent features of the engine assembly in this view are the Low-Pressure Fuel Turbopump Discharge Duct looping around the right side and underneath the assembly, the High-Pressure Fuel Turbopump located on the lower left portion of the assembly, the Engine Controller and Main Fuel Valve Hydraulic Actuator located on the upper portion of the assembly and the Low-Pressure Oxidizer Turbopump Discharge Duct at the top of the engine assembly in this view. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  16. 40 HP Electro-Mechanical Actuator

    NASA Technical Reports Server (NTRS)

    Fulmer, Chris

    1996-01-01

    This report summarizes the work performed on the 40 BP electro-mechanical actuator (EMA) system developed on NASA contract NAS3-25799 for the NASA National Launch System and Electrical Actuation (ELA) Technology Bridging Programs. The system was designed to demonstrate the capability of large, high power linear ELA's for applications such as Thrust Vector Control (TVC) on rocket engines. It consists of a motor controller, high frequency power source, drive electronics and a linear actuator. The power source is a 25kVA 20 kHz Mapham inverter. The drive electronics are based on the pulse population modulation concept and operate at a nominal frequency of 40 kHz. The induction motor is a specially designed high speed, low inertia motor capable of a 68 peak HP. The actuator was originally designed by MOOG Aerospace under an internal R & D program to meet Space Shuttle Main Engine (SSME) TVC requirements. The design was modified to meet this programs linear rate specification of 7.4 inches/second. The motor and driver were tested on a dynamometer at the Martin Marietta Space Systems facility. System frequency response and step response tests were conducted at the Marshall Space Flight Center facility. A complete description of the system and all test results can be found in the body of the report.

  17. Ottawa Sand for Mechanics of Granular Materials (MGM) Experiment

    NASA Technical Reports Server (NTRS)

    2000-01-01

    What appear to be boulders fresh from a tumble down a mountain are really grains of Ottawa sand, a standard material used in civil engineering tests and also used in the Mechanics of Granular Materials (MGM) experiment. The craggy surface shows how sand grans have faces that can cause friction as they roll and slide against each other, or even causing sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. MGM uses the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. These images are from an Electron Spectroscopy for Chemical Analysis (ESCA) study conducted by Dr. Binayak Panda of IITRI for Marshall Space Flight Center (MSFC). (Credit: NASA/MSFC)

  18. Compendium of fracture mechanics problems

    NASA Technical Reports Server (NTRS)

    Stallworth, R.; Wilson, C.; Meyers, C.

    1990-01-01

    Fracture mechanics analysis results are presented from the following structures/components analyzed at Marshall Space Flight Center (MSFC) between 1982 and 1989: space shuttle main engine (SSME), Hubble Space Telescope (HST), external tank attach ring, B-1 stand LOX inner tank, and solid rocket booster (SRB). Results from the SSME high pressure fuel turbopump (HPFTP) second stage blade parametric analysis determine a critical flaw size for a wide variety of stress intensity values. The engine 0212 failure analysis was a time dependent fracture life assessment. Results indicated that the disk ruptured due to an overspeed condition. Results also indicated that very small flaws in the curvic coupling area could propagate and lead to failure under normal operating conditions. It was strongly recommended that a nondestructive evaluation inspection schedule be implemented. The main ring of the HST, scheduled to launch in 1990, was analyzed by safe-life and fail-safe analyses. First safe-life inspection criteria curves for the ring inner and outer skins and the fore and aft channels were derived. Afterwards the skins and channels were determined to be fail-safe by analysis. A conservative safe-life analysis was done on the 270 redesign external tank attach ring. Results from the analysis were used to determine the nondestructive evaluation technique required.

  19. Veg-03 Pillows Preparation for Flight

    NASA Image and Video Library

    2016-03-23

    Inside a laboratory in the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, Michele Koralewicz, a mechanical technician with EASI on the Engineering Services Contract, prepares to sew up the end of a bag that contains one of the Veg-03 plant pillows. In the foreground are all of the other plant pillows that need to be sealed. The Veg-03 experiment will be delivered to the International Space Station aboard the eighth SpaceX Dragon commercial resupply mission. The Veg-03 plant pillows will contain ‘Tokyo Bekana’ cabbage seeds and lettuce seeds for NASA’s third Veggie plant growth system experiment. The experiment will continue NASA’s deep space plant growth research to benefit the Earth and the agency’s journey to Mars.

  20. Engineering stategies and implications of using higher plants for throttling gas and water exchange in a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Chamberland, Dennis; Wheeler, Raymond M.; Corey, Kenneth A.

    1993-01-01

    Engineering stategies for advanced life support systems to be used on Lunar and Mars bases involve a wide spectrum of approaches. These range from purely physical-chemical life support strategies to purely biological approaches. Within the context of biological based systems, a bioengineered system can be devised that would utilize the metabolic mechanisms of plants to control the rates of CO2 uptake and O2 evolution (photosynthesis) and water production (transpiration). Such a mechanism of external engineering control has become known as throttling. Research conducted at the John F. Kennedy Space Center's Controlled Ecological Life Support System Breadboard Project has demonstrated the potential of throttling these fluxes by changing environmental parameters affecting the plant processes. Among the more effective environmental throttles are: light and CO2 concentration for controllingthe rate of photsynthesis and humidity and CO2 concentration for controlling transpiration. Such a bioengineered strategy implies control mechanisms that in the past have not been widely attributed to life support systems involving biological components and suggests a broad range of applications in advanced life support system design.

  1. Gene, Immune and Cellular Responses to Single and Combined Space Flight Conditions-B (TripleLux-B):

    NASA Image and Video Library

    2015-03-31

    ISS043E070945 (03/31/2015) --- ESA (European Space Agency) astronaut Samantha Cristoforetti, Expedition 43 flight engineer aboard the International Space Station, is seen working on a science experiment that includes photographic documentation of Cellular Responses to Single and Combined Space Flight Conditions. Some effects of the space environment level appear to act at the cellular level and it is important to understand the underlying mechanisms of these effects. This science project uses invertebrate hemocytes to focus on two aspects of cellular function which may have medical importance. The synergy between the effects of the space radiation environment and microgravity on cellular function is the goal of this experiment along with studying the impairment of immune functions under spaceflight conditions.

  2. The optical fiber array bundle assemblies for the NASA lunar reconnaissance orbiter; evaluation lessons learned for flight implementation from the NASA electronic parts and packaging program

    NASA Astrophysics Data System (ADS)

    Ott, Melanie N.; Switzer, Robert; Chuska, Richard; LaRocca, Frank; Thomes, William J.; Day, Lance W.; MacMurphy, Shawn

    2017-11-01

    The United States, National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), Fiber Optics Team in the Electrical Engineering Division of the Applied Engineering and Technology Directorate, designed, developed and integrated the space flight optical fiber array hardware assemblies for the Lunar Reconnaissance Orbiter (LRO). The two new assemblies that were designed and manufacturing at NASA GSFC for the LRO exist in configurations that are unique in the world for the application of ranging and lidar. These assemblies were developed in coordination with Diamond Switzerland, and the NASA GSFC Mechanical Systems Division. The assemblies represent a strategic enhancement for NASA's Laser Ranging and Laser Radar (LIDAR) instrument hardware by allowing light to be moved to alternative locations that were not feasible in past space flight implementations. An account will be described of the journey and the lessons learned from design to integration for the Lunar Orbiter Laser Altimeter and the Laser Ranging Application on the LRO. The LRO is scheduled to launch end of 2008.

  3. Fisheries Handbook of Engineering Requirements and Biological Criteria

    DTIC Science & Technology

    1990-01-01

    of eggs dividual species. When trays are used for chum fry, bio- in incubators where IHNV is found. Additional space or rings or flexi-saddles are...recommended. limited loading of eggs and fry are both means of reducing the infection of IHNV . It has been found that hatchery fry at swim-up time are...effects, 13.5 IHNV , 193, 19.4 Kaplan turbines, 25.1 Mechanical handling, Ch. 33 labor-saving devices, 19.4 Kokanee ,landiocked sockeye) Mechanical hauling

  4. KSC-05PD-0407

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. At the 2005 FIRST Robotics Regional Competition held at the University of Central Florida March 10- 12, Center Director Jim Kennedy (right) autographs the shirt of Dr. Woodie Flowers, who is a national advisor and co-founder of FIRST. Dr. Flowers is the Pappalardo Professor of Mechanical Engineering at the Massachusetts Institute of Technology.

  5. Characterization and Analyses of Valves, Feed Lines and Tanks used in Propellant Delivery Systems at NASA SSC

    NASA Technical Reports Server (NTRS)

    Ryan, Harry M.; Coote, David J.; Ahuja, Vineet; Hosangadi, Ashvin

    2006-01-01

    Accurate modeling of liquid rocket engine test processes involves assessing critical fluid mechanic and heat and mass transfer mechanisms within a cryogenic environment, and accurately modeling fluid properties such as vapor pressure and liquid and gas densities as a function of pressure and temperature. The Engineering and Science Directorate at the NASA John C. Stennis Space Center has developed and implemented such analytic models and analysis processes that have been used over a broad range of thermodynamic systems and resulted in substantial improvements in rocket propulsion testing services. In this paper, we offer an overview of the analyses techniques used to simulate pressurization and propellant fluid systems associated with the test stands at the NASA John C. Stennis Space Center. More specifically, examples of the global performance (one-dimensional) of a propellant system are provided as predicted using the Rocket Propulsion Test Analysis (RPTA) model. Computational fluid dynamic (CFD) analyses utilizing multi-element, unstructured, moving grid capability of complex cryogenic feed ducts, transient valve operation, and pressurization and mixing in propellant tanks are provided as well.

  6. Refurbishment and Automation of Thermal Vacuum Facilities at NASA/GSFC

    NASA Technical Reports Server (NTRS)

    Dunn, Jamie; Gomez, Carlos; Donohue, John; Johnson, Chris; Palmer, John; Sushon, Janet

    1999-01-01

    The thermal vacuum facilities located at the Goddard Space Flight Center (GSFC) have supported both manned and unmanned space flight since the 1960s. Of the eleven facilities, currently ten of the systems are scheduled for refurbishment or replacement as part of a five-year implementation. Expected return on investment includes the reduction in test schedules, improvements in safety of facility operations, and reduction in the personnel support required for a test. Additionally, GSFC will become a global resource renowned for expertise in thermal engineering, mechanical engineering, and for the automation of thermal vacuum facilities and tests. Automation of the thermal vacuum facilities includes the utilization of Programmable Logic Controllers (PLCs), the use of Supervisory Control and Data Acquisition (SCADA) systems, and the development of a centralized Test Data Management System. These components allow the computer control and automation of mechanical components such as valves and pumps. The project of refurbishment and automation began in 1996 and has resulted in complete computer control of one facility (Facility 281), and the integration of electronically controlled devices and PLCs in multiple others.

  7. Refurbishment and Automation of Thermal Vacuum Facilities at NASA/GSFC

    NASA Technical Reports Server (NTRS)

    Dunn, Jamie; Gomez, Carlos; Donohue, John; Johnson, Chris; Palmer, John; Sushon, Janet

    1998-01-01

    The thermal vacuum facilities located at the Goddard Space Flight Center (GSFC) have supported both manned and unmanned space flight since the 1960s. Of the eleven facilities, currently ten of the systems are scheduled for refurbishment or replacement as part of a five-year implementation. Expected return on investment includes the reduction in test schedules, improvements in safety of facility operations, and reduction in the personnel support required for a test. Additionally, GSFC will become a global resource renowned for expertise in thermal engineering, mechanical engineering, and for the automation of thermal vacuum facilities and tests. Automation of the thermal vacuum facilities includes the utilization of Programmable Logic Controllers (PLCs), the use of Supervisory Control and Data Acquisition (SCADA) systems, and the development of a centralized Test Data Management System. These components allow the computer control and automation of mechanical components such as valves and pumps. The project of refurbishment and automation began in 1996 and has resulted in complete computer control of one facility (Facility 281), and the integration of electronically controlled devices and PLCs in multiple others.

  8. General view of a Space Shuttle Main Engine (SSME) mounted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of a Space Shuttle Main Engine (SSME) mounted on an SSME engine handler, taken in the SSME Processing Facility at Kennedy Space Center. The most prominent features of the engine assembly in this view are the Low-Pressure Fuel Turbopump Discharge Duct looping diagonally across the top of the assembly and connecting to the High-Pressure Fuel Turbopump, the Low-Pressure Oxidizer Turbopump (LPOTP) located center right of the assembly and the LPOTP Discharge Duct looping around from the pump to the underside of the engine assembly in this view. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  9. High voltage series resonant inverter ion engine screen supply. [SCR series resonant inverter for space applications

    NASA Technical Reports Server (NTRS)

    Biess, J. J.; Inouye, L. Y.; Shank, J. H.

    1974-01-01

    A high-voltage, high-power LC series resonant inverter using SCRs has been developed for an Ion Engine Power Processor. The inverter operates within 200-400Vdc with a maximum output power of 2.5kW. The inverter control logic, the screen supply electrical and mechanical characteristics, the efficiency and losses in power components, regulation on the dual feedback principle, the SCR waveforms and the component weight are analyzed. Efficiency of 90.5% and weight density of 4.1kg/kW are obtained.

  10. NASA Propulsion Engineering Research Center, volume 2

    NASA Technical Reports Server (NTRS)

    1993-01-01

    On 8-9 Sep. 1993, the Propulsion Engineering Research Center (PERC) at The Pennsylvania State University held its Fifth Annual Symposium. PERC was initiated in 1988 by a grant from the NASA Office of Aeronautics and Space Technology as a part of the University Space Engineering Research Center (USERC) program; the purpose of the USERC program is to replenish and enhance the capabilities of our Nation's engineering community to meet its future space technology needs. The Centers are designed to advance the state-of-the-art in key space-related engineering disciplines and to promote and support engineering education for the next generation of engineers for the national space program and related commercial space endeavors. Research on the following areas was initiated: liquid, solid, and hybrid chemical propulsion, nuclear propulsion, electrical propulsion, and advanced propulsion concepts.

  11. Shuttle Systems 3-D Applications: Application of 3-D Graphics in Engineering Training for Shuttle Ground Processing

    NASA Technical Reports Server (NTRS)

    Godfrey, Gary S.

    2003-01-01

    This project illustrates an animation of the orbiter mate to the external tank, an animation of the OMS POD installation to the orbiter, and a simulation of the landing gear mechanism at the Kennedy Space Center. A detailed storyboard was created to reflect each animation or simulation. Solid models were collected and translated into Pro/Engineer's prt and asm formats. These solid models included computer files of the: orbiter, external tank, solid rocket booster, mobile launch platform, transporter, vehicle assembly building, OMS POD fixture, and landing gear. A depository of the above solid models was established. These solid models were translated into several formats. This depository contained the following files: stl for sterolithography, stp for neutral file work, shrinkwrap for compression, tiff for photoshop work, jpeg for Internet use, and prt and asm for Pro/Engineer use. Solid models were created of the material handling sling, bay 3 platforms, and orbiter contact points. Animations were developed using mechanisms to reflect each storyboard. Every effort was made to build all models technically correct for engineering use. The result was an animated routine that could be used by NASA for training material handlers and uncovering engineering safety issues.

  12. The cost of performance - A comparison of the space transportation main engine and the Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Barisa, B. B.; Flinchbaugh, G. D.; Zachary, A. T.

    1989-01-01

    This paper compares the cost of the Space Shuttle Main Engine (SSME) and the Space Transportation Main Engine (STME) proposed by the Advanced Launch System Program. A brief description of the SSME and STME engines is presented, followed by a comparison of these engines that illustrates the impact of focusing on acceptable performance at minimum cost (as for the STME) or on maximum performance (as for the SSME). Several examples of cost reduction methods are presented.

  13. Future space transport

    NASA Technical Reports Server (NTRS)

    Grishin, S. D.; Chekalin, S. V.

    1984-01-01

    Prospects for the mastery of space and the basic problems which must be solved in developing systems for both manned and cargo spacecraft are examined. The achievements and flaws of rocket boosters are discussed as well as the use of reusable spacecraft. The need for orbiting satellite solar power plants and related astrionics for active control of large space structures for space stations and colonies in an age of space industrialization is demonstrated. Various forms of spacecraft propulsion are described including liquid propellant rocket engines, nuclear reactors, thermonuclear rocket engines, electrorocket engines, electromagnetic engines, magnetic gas dynamic generators, electromagnetic mass accelerators (rail guns), laser rocket engines, pulse nuclear rocket engines, ramjet thermonuclear rocket engines, and photon rockets. The possibilities of interstellar flight are assessed.

  14. Physics and chemistry of plasma-assisted combustion.

    PubMed

    Starikovskiy, Andrey

    2015-08-13

    There are several mechanisms that affect a gas when using discharge plasma to initiate combustion or to stabilize a flame. There are two thermal mechanisms-the homogeneous and inhomogeneous heating of the gas due to 'hot' atom thermalization and vibrational and electronic energy relaxation. The homogeneous heating causes the acceleration of the chemical reactions. The inhomogeneous heating generates flow perturbations, which promote increased turbulence and mixing. Non-thermal mechanisms include the ionic wind effect (the momentum transfer from an electric field to the gas due to the space charge), ion and electron drift (which can lead to additional fluxes of active radicals in the gradient flows in the electric field) and the excitation, dissociation and ionization of the gas by e-impact, which leads to non-equilibrium radical production and changes the kinetic mechanisms of ignition and combustion. These mechanisms, either together or separately, can provide additional combustion control which is necessary for ultra-lean flames, high-speed flows, cold low-pressure conditions of high-altitude gas turbine engine relight, detonation initiation in pulsed detonation engines and distributed ignition control in homogeneous charge-compression ignition engines, among others. Despite the lack of knowledge in mechanism details, non-equilibrium plasma demonstrates great potential for controlling ultra-lean, ultra-fast, low-temperature flames and is extremely promising technology for a very wide range of applications. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. General view in the Horizontal Processing Area of the Space ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view in the Horizontal Processing Area of the Space Shuttle Main Engine (SSME) Processing Facility at Kennedy Space Center. This view is looking at SSME number 2048 mounted on an SSME engine Handler. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  16. Developing Avionics Hardware and Software for Rocket Engine Testing

    NASA Technical Reports Server (NTRS)

    Aberg, Bryce Robert

    2014-01-01

    My summer was spent working as an intern at Kennedy Space Center in the Propulsion Avionics Branch of the NASA Engineering Directorate Avionics Division. The work that I was involved with was part of Rocket University's Project Neo, a small scale liquid rocket engine test bed. I began by learning about the layout of Neo in order to more fully understand what was required of me. I then developed software in LabView to gather and scale data from two flowmeters and integrated that code into the main control software. Next, I developed more LabView code to control an igniter circuit and integrated that into the main software, as well. Throughout the internship, I performed work that mechanics and technicians would do in order to maintain and assemble the engine.

  17. Implementation of a Goal-Based Systems Engineering Process Using the Systems Modeling Language (SysML)

    NASA Technical Reports Server (NTRS)

    Breckenridge, Jonathan T.; Johnson, Stephen B.

    2013-01-01

    This paper describes the core framework used to implement a Goal-Function Tree (GFT) based systems engineering process using the Systems Modeling Language. It defines a set of principles built upon by the theoretical approach described in the InfoTech 2013 ISHM paper titled "Goal-Function Tree Modeling for Systems Engineering and Fault Management" presented by Dr. Stephen B. Johnson. Using the SysML language, the principles in this paper describe the expansion of the SysML language as a baseline in order to: hierarchically describe a system, describe that system functionally within success space, and allocate detection mechanisms to success functions for system protection.

  18. Design and Experimental Verification of Deployable/Inflatable Ultra-Lightweight Structures

    NASA Technical Reports Server (NTRS)

    Pai, P. Frank

    2004-01-01

    Because launch cost of a space structural system is often proportional to the launch volume and mass and there is no significant gravity in space, NASA's space exploration programs and various science missions have stimulated extensive use of ultra-lightweight deployable/inflatable structures. These structures are named here as Highly Flexible Structures (HFSs) because they are designed to undergo large displacements, rotations, and/or buckling without plastic deformation under normal operation conditions. Except recent applications to space structural systems, HFSs have been used in many mechanical systems, civil structures, aerospace vehicles, home appliances, and medical devices to satisfy space limitations, provide special mechanisms, and/or reduce structural weight. The extensive use of HFSs in today's structural engineering reveals the need of a design and analysis software and a database system with design guidelines for practicing engineers to perform computer-aided design and rapid prototyping of HFSs. Also to prepare engineering students for future structural engineering requires a new and easy-to- understand method of presenting the complex mathematics of the modeling and analysis of HFSs. However, because of the high flexibility of HFSs, many unique challenging problems in the modeling, design and analysis of HFSs need to be studied. The current state of research on HFSs needs advances in the following areas: (1) modeling of large rotations using appropriate strain measures, (2) modeling of cross-section warpings of structures, (3) how to account for both large rotations and cross- section warpings in 2D (two-dimensional) and 1D structural theories, (4) modeling of thickness thinning of membranes due to inflation pressure, pretension, and temperature change, (5) prediction of inflated shapes and wrinkles of inflatable structures, (6) development of efficient numerical methods for nonlinear static and dynamic analyses, and (7) filling the gap between geometrically exact elastic analysis and elastoplastic analysis. The objectives of this research project were: (1) to study the modeling, design, and analysis of deployable/inflatable ultra-lightweight structures, (2) to perform numerical and experimental studies on the static and dynamic characteristics and deployability of HFSs, (3) to derive guidelines for designing HFSs, (4) to develop a MATLAB toolbox for the design, analysis, and dynamic animation of HFSs, and (5) to perform experiments and establish an adequate database of post-buckling characteristics of HFSs.

  19. Diametral compression behavior of biomedical titanium scaffolds with open, interconnected pores prepared with the space holder method.

    PubMed

    Arifvianto, B; Leeflang, M A; Zhou, J

    2017-04-01

    Scaffolds with open, interconnected pores and appropriate mechanical properties are required to provide mechanical support and to guide the formation and development of new tissue in bone tissue engineering. Since the mechanical properties of the scaffold tend to decrease with increasing porosity, a balance must be sought in order to meet these two conflicting requirements. In this research, open, interconnected pores and mechanical properties of biomedical titanium scaffolds prepared by using the space holder method were characterized. Micro-computed tomography (micro-CT) and permeability analysis were carried out to quantify the porous structures and ascertain the presence of open, interconnected pores in the scaffolds fabricated. Diametral compression (DC) tests were performed to generate stress-strain diagrams that could be used to determine the elastic moduli and yield strengths of the scaffolds. Deformation and failure mechanisms involved in the DC tests of the titanium scaffolds were examined. The results of micro-CT and permeability analyses confirmed the presence of open, interconnected pores in the titanium scaffolds with porosity over a range of 31-61%. Among these scaffolds, a maximum specific surface area could be achieved in the scaffold with a total porosity of 5-55%. DC tests showed that the titanium scaffolds with elastic moduli and yield strengths of 0.64-3.47GPa and 28.67-80MPa, respectively, could be achieved. By comprehensive consideration of specific surface area, permeability and mechanical properties, the titanium scaffolds with porosities in a range of 50-55% were recommended to be used in cancellous bone tissue engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Microgravity

    NASA Image and Video Library

    1998-01-25

    Astronaut James Reilly uses a laptop computer monitor the Mechanics of Granular Materials (MGM) experiment during STS-89. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditons that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: NASA/Marshall Space Flight Center (MSFC)

  1. Microgravity

    NASA Image and Video Library

    1996-09-18

    Astronaut Carl Walz installs Mechanics of Granular Materials (MGM) test cell on STS-79. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditons that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: NASA/John Space Center

  2. Installing Mechanics of Granular Materials (MGM) experiment Test Cell

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Astronaut Jay Apt installs Mechanics of Granular Materials (MGM0 test cell on STS-79. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. MGM experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: NASA/John Space Center).

  3. Mechanics of Granular Materials labeled hardware

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Mechanics of Granular Materials (MGM) flight hardware takes two twin double locker assemblies in the Space Shuttle middeck or the Spacehab module. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. MGM experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: NASA/MSFC).

  4. Developing Technologies for Space Resource Utilization: Concept for a Planetary Engineering Research Institute

    NASA Astrophysics Data System (ADS)

    Blacic, J. D.; Dreesen, D.; Mockler, T.

    2000-01-01

    There are two principal factors that control the economics and ultimate utilization of space resources: 1) space transportation, and 2) space resource utilization technologies. Development of space transportation technology is driven by major government (military and civilian) programs and, to a lesser degree, private industry-funded research. Communication within the propulsion and spacecraft engineering community is aided by an effective independent professional organization, the American Institute of Aeronautics and Astronautics (AIAA). The many aerospace engineering programs in major university engineering schools sustain professional-level education in these fields. NASA does an excellent job of public education in space science and engineering at all levels. Planetary science, a precursor and supporting discipline for space resource utilization, has benefited from the establishment of the Lunar and Planetary Institute (LPI) which has served, since the early post-Apollo days, as a focus for both professional and educational development in the geosciences of the Moon and other planets. The closest thing the nonaerospace engineering disciplines have had to this kind of professional nexus is the sponsorship by the American Society of Civil Engineers of a series of space engineering conferences that have had a predominantly space resource orientation. However, many of us with long-standing interests in space resource development have felt that an LPI-like, independent institute was needed to focus and facilitate both research and education on the specific engineering disciplines needed to develop space resource utilization technologies on an on-going basis.

  5. Thousands gather to watch a Space Shuttle Main Engine Test

    NASA Image and Video Library

    2001-04-21

    Approximately 13,000 people fill the grounds at NASA's John C. Stennis Space Center for the first-ever evening public engine test of a Space Shuttle Main Engine. The test marked Stennis Space Center's 20th anniversary celebration of the first Space Shuttle mission.

  6. Orbit Transfer Rocket Engine Technology Program: Advanced engine study, task D.1/D.3

    NASA Technical Reports Server (NTRS)

    Martinez, A.; Erickson, C.; Hines, B.

    1986-01-01

    Concepts for space maintainability of OTV engines were examined. An engine design was developed which was driven by space maintenance requirements and by a failure mode and effects (FME) analysis. Modularity within the engine was shown to offer cost benefits and improved space maintenance capabilities. Space operable disconnects were conceptualized for both engine change-out and for module replacement. Through FME mitigation the modules were conceptualized to contain the least reliable and most often replaced engine components. A preliminary space maintenance plan was developed around a controls and condition monitoring system using advanced sensors, controls, and condition monitoring concepts. A complete engine layout was prepared satisfying current vehicle requirements and utilizing projected component advanced technologies. A technology plan for developing the required technology was assembled.

  7. Design and development of experimental facilities for short duration, low-gravity combustion and fire experiments

    NASA Technical Reports Server (NTRS)

    Motevalli, Vahid

    1994-01-01

    This report contains the results of three projects conducted by undergraduate students from Worcester Polytechnic Institute at the NASA's Lewis Research Center under a NASA Award NCC3-312. The students involved in these projects spent part of the summer of 1993 at the Lewis Research Center (LeRC) under the direction of Dr. Howard Ross, head of the Combustion group and other NASA engineers and scientists. The Principal Investigator at Worcester Polytechnic Institute was Professor Vahid Motevalli. Professor Motevalli served as the principal project advisor for two of the three projects which were in Mechanical Engineering. The third project was advised by Professor Duckworth of Electrical and Computer Engineering, while Professor Motevalli acted as the co-advisor. These projects provided an excellent opportunity for the students to participate in the cutting edge research and engineering design, interact with NASA engineers and gain valuable exposure to a real working environment. Furthermore, the combustion group at LeRC was able to forward their goals by employing students to work on topics of immediate use and interest such as experimental research projects planned for the space shuttle, the future space station, or to develop demonstration tools to educate the public about LeRC activities.

  8. Enhancements to the Engine Data Interpretation System (EDIS)

    NASA Technical Reports Server (NTRS)

    Hofmann, Martin O.

    1993-01-01

    The Engine Data Interpretation System (EDIS) expert system project assists the data review personnel at NASA/MSFC in performing post-test data analysis and engine diagnosis of the Space Shuttle Main Engine (SSME). EDIS uses knowledge of the engine, its components, and simple thermodynamic principles instead of, and in addition to, heuristic rules gathered from the engine experts. EDIS reasons in cooperation with human experts, following roughly the pattern of logic exhibited by human experts. EDIS concentrates on steady-state static faults, such as small leaks, and component degradations, such as pump efficiencies. The objective of this contract was to complete the set of engine component models, integrate heuristic rules into EDIS, integrate the Power Balance Model into EDIS, and investigate modification of the qualitative reasoning mechanisms to allow 'fuzzy' value classification. The results of this contract is an operational version of EDIS. EDIS will become a module of the Post-Test Diagnostic System (PTDS) and will, in this context, provide system-level diagnostic capabilities which integrate component-specific findings provided by other modules.

  9. Enhancements to the Engine Data Interpretation System (EDIS)

    NASA Technical Reports Server (NTRS)

    Hofmann, Martin O.

    1993-01-01

    The Engine Data Interpretation System (EDIS) expert system project assists the data review personnel at NASA/MSFC in performing post-test data analysis and engine diagnosis of the Space Shuttle Main Engine (SSME). EDIS uses knowledge of the engine, its components, and simple thermodynamic principles instead of, and in addition to, heuristic rules gathered from the engine experts. EDIS reasons in cooperation with human experts, following roughly the pattern of logic exhibited by human experts. EDIS concentrates on steady-state static faults, such as small leaks, and component degradations, such as pump efficiencies. The objective of this contract was to complete the set of engine component models, integrate heuristic rules into EDIS, integrate the Power Balance Model into EDIS, and investigate modification of the qualitative reasoning mechanisms to allow 'fuzzy' value classification. The result of this contract is an operational version of EDIS. EDIS will become a module of the Post-Test Diagnostic System (PTDS) and will, in this context, provide system-level diagnostic capabilities which integrate component-specific findings provided by other modules.

  10. MISSE 5 Thin Films Space Exposure Experiment

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.; Kinard, William H.; Jones, James L.

    2007-01-01

    The Materials International Space Station Experiment (MISSE) is a set of space exposure experiments using the International Space Station (ISS) as the flight platform. MISSE 5 is a co-operative endeavor by NASA-LaRC, United Stated Naval Academy, Naval Center for Space Technology (NCST), NASA-GRC, NASA-MSFC, Boeing, AZ Technology, MURE, and Team Cooperative. The primary experiment is performance measurement and monitoring of high performance solar cells for U.S. Navy research and development. A secondary experiment is the telemetry of this data to ground stations. A third experiment is the measurement of low-Earth-orbit (LEO) low-Sun-exposure space effects on thin film materials. Thin films can provide extremely efficacious thermal control, designation, and propulsion functions in space to name a few applications. Solar ultraviolet radiation and atomic oxygen are major degradation mechanisms in LEO. This paper is an engineering report of the MISSE 5 thm films 13 months space exposure experiment.

  11. Closeup view of the top of Space Shuttle Main Engine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the top of Space Shuttle Main Engine (SSME) 2057 mounted in a SSME Engine Handler in the Vertical Processing area of the SSME Processing Facility at Kennedy Space Center. The most prominent components in this view is the large Low-Pressure Oxidizer Turbopump (LPOTP) Discharge Duct wrapping itself around the right side of the engine assembly. The smaller tube to the left of LPOTP Discharge Duct is the High-Pressure Oxidizer Duct used to supply the turbine of the LPOTP. The other major feature in this view is the Low-Pressure Fuel Turbopump at the top of the engine assembly. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  12. International Space Station Centrifuge Rotor Models A Comparison of the Euler-Lagrange and the Bond Graph Modeling Approach

    NASA Technical Reports Server (NTRS)

    Nguyen, Louis H.; Ramakrishnan, Jayant; Granda, Jose J.

    2006-01-01

    The assembly and operation of the International Space Station (ISS) require extensive testing and engineering analysis to verify that the Space Station system of systems would work together without any adverse interactions. Since the dynamic behavior of an entire Space Station cannot be tested on earth, math models of the Space Station structures and mechanical systems have to be built and integrated in computer simulations and analysis tools to analyze and predict what will happen in space. The ISS Centrifuge Rotor (CR) is one of many mechanical systems that need to be modeled and analyzed to verify the ISS integrated system performance on-orbit. This study investigates using Bond Graph modeling techniques as quick and simplified ways to generate models of the ISS Centrifuge Rotor. This paper outlines the steps used to generate simple and more complex models of the CR using Bond Graph Computer Aided Modeling Program with Graphical Input (CAMP-G). Comparisons of the Bond Graph CR models with those derived from Euler-Lagrange equations in MATLAB and those developed using multibody dynamic simulation at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) are presented to demonstrate the usefulness of the Bond Graph modeling approach for aeronautics and space applications.

  13. RS-25 engine

    NASA Image and Video Library

    2012-04-10

    The last of 15 RS-25 rocket engines arrived at Stennis Space Center from Kennedy Space Center in Flordia , on April 10, 2012. The engines will be stored at Stennis until testing begins for the engines to be used on NASA's new Space Launch System.

  14. General view in the Horizontal Processing Area of the Space ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view in the Horizontal Processing Area of the Space Shuttle Main Engine (SSME) Processing Facility at Kennedy Space Center. This view is looking at SSME 2052 and 2051 mounted on their SSME Engine Handlers. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  15. Resiman during Expedition 16/STS-123 EVA 1

    NASA Image and Video Library

    2008-03-14

    ISS016-E-032705 (13/14 March 2008) --- Astronaut Garrett Reisman, Expedition 16 flight engineer, uses a digital camera to expose a photo of his helmet visor during the mission's first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. Also visible in the reflections in the visor are various components of the station, the docked Space Shuttle Endeavour and a blue and white portion of Earth. During the seven-hour and one-minute spacewalk, Reisman and astronaut Rick Linnehan (out of frame), STS-123 mission specialist, prepared the Japanese logistics module-pressurized section (JLP) for removal from Space Shuttle Endeavour's payload bay; opened the Centerline Berthing Camera System on top of the Harmony module; removed the Passive Common Berthing Mechanism and installed both the Orbital Replacement Unit (ORU) tool change out mechanisms on the Canadian-built Dextre robotic system, the final element of the station's Mobile Servicing System.

  16. Monopropellant engine investigation for space shuttle reaction control. Volume 2: Design, fabrication, and demonstration test of a catalytic gas generator for the space shuttle APU

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The capability of a catalytic gas generator to meet the requirement specified for the space shuttle APU is established. A full-scale gas generator, designed to operate at a chamber pressure of 750 psia and a flow rate of 0.36 lbm/sec, was fabricated and subjected to three separate life test series. The nickel foam metal used for catalyst retention was investigated. Inspection of the foam metal following the first life test revealed significant degradation. Consequently an investigation was conducted to determine the mechanism of degradation and to provide an improved foam metal.

  17. Reaction Control Engine for Space Launch Initiative

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Engineers at the Marshall Space Flight Center (MSFC) have begun a series of engine tests on a new breed of space propulsion: a Reaction Control Engine developed for the Space Launch Initiative (SLI). The engine, developed by TRW Space and Electronics of Redondo Beach, California, is an auxiliary propulsion engine designed to maneuver vehicles in orbit. It is used for docking, reentry, attitude control, and fine-pointing while the vehicle is in orbit. The engine uses nontoxic chemicals as propellants, a feature that creates a safer environment for ground operators, lowers cost, and increases efficiency with less maintenance and quicker turnaround time between missions. Testing includes 30 hot-firings. This photograph shows the first engine test performed at MSFC that includes SLI technology. Another unique feature of the Reaction Control Engine is that it operates at dual thrust modes, combining two engine functions into one engine. The engine operates at both 25 and 1,000 pounds of force, reducing overall propulsion weight and allowing vehicles to easily maneuver in space. The low-level thrust of 25 pounds of force allows the vehicle to fine-point maneuver and dock while the high-level thrust of 1,000 pounds of force is used for reentry, orbit transfer, and coarse positioning. SLI is a NASA-wide research and development program, managed by the MSFC, designed to improve safety, reliability, and cost effectiveness of space travel for second generation reusable launch vehicles.

  18. NASA Marches on with Test of RS-25 Engine for New Space Launch System

    NASA Image and Video Library

    2016-07-29

    NASA engineers conducted a successful developmental test of RS-25 rocket engine No. 0528 July 29, 2016, to collect critical performance data for the most powerful rocket in the world – the Space Launch System (SLS). The engine roared to life for a full 650-second test on the A-1 Test Stand at NASA’s Stennis Space Center, near Bay St. Louis, Mississippi, marking another step forward in development of the SLS, which will launch humans deeper into space than ever before, including on the journey to Mars. Four RS-25 engines, joined with a pair of solid rocket boosters, will power the SLS core stage at launch. The RS-25 engines used on the first four SLS flights are former space shuttle main engines, modified to operate at a higher performance level and with a new engine controller, which allows communication between the vehicle and engine.

  19. Closeup view of a Space Shuttle Main Engine (SSME) installed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of a Space Shuttle Main Engine (SSME) installed in position number one on the Orbiter Discovery. A ground-support mobile platform is in place below the engine to assist in technicians with the installation of the engine. This Photograph was taken in the Orbiter Processing Facility at the Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  20. Liquid-Propellant Rocket Engine Throttling: A Comprehensive Review

    NASA Technical Reports Server (NTRS)

    Casiano, Matthew; Hulka, James; Yang, Virog

    2009-01-01

    Liquid-Propellant Rocket Engines (LREs) are capable of on-command variable thrust or thrust modulation, an operability advantage that has been studied intermittently since the late 1930s. Throttleable LREs can be used for planetary entry and descent, space rendezvous, orbital maneuvering including orientation and stabilization in space, and hovering and hazard avoidance during planetary landing. Other applications have included control of aircraft rocket engines, limiting of vehicle acceleration or velocity using retrograde rockets, and ballistic missile defense trajectory control. Throttleable LREs can also continuously follow the most economical thrust curve in a given situation, compared to discrete throttling changes over a few select operating points. The effects of variable thrust on the mechanics and dynamics of an LRE as well as difficulties and issues surrounding the throttling process are important aspects of throttling behavior. This review provides a detailed survey of LRE throttling centered around engines from the United States. Several LRE throttling methods are discussed, including high-pressure-drop systems, dual-injector manifolds, gas injection, multiple chambers, pulse modulation, throat throttling, movable injector components, and hydrodynamically dissipative injectors. Concerns and issues surrounding each method are examined, and the advantages and shortcomings compared.

  1. Phillips with probe-and-cone docking mechanism (StM) in the Zvezda module

    NASA Image and Video Library

    2005-06-19

    ISS011-E-09205 (19 June 2005) --- Astronaut John L. Phillips, Expedition 11 NASA ISS science officer and flight engineer, works on the dismantled probe-and-cone docking mechanism from the Progress 18 spacecraft in the Zvezda Service Module of the International Space Station (ISS). The Progress docked to the aft port of the Service Module at 7:42 p.m. (CDT) as the two spacecraft flew approximately 225 statute miles, above a point near Beijing, China.

  2. BMTC: --A Tool for Standardized Tissue Engineering on Ground and in Space ---

    NASA Astrophysics Data System (ADS)

    Kern, Peter; Kemmerle, Kurt; Jones, David

    ESA is developing the BMTC (Biotechnology Mammalian Tissue Culture Facility) as ground demonstrator in order to: • establish a well characterised terrestrial platform for tissue engineer-ing under defined, reproducible conditions • prepare for future tissue engineering experiments in space using proven, well characterised, modular equipment. In the beginning the facility will be dedicated to support research of bone and cartilage growth under controlled mechanical and/or biochemical stimulation. Meanwhile, the industrial BMTC team has finalised the first model. The BMTC is highly automated system which provides standardized experiment hardware for tissue cultivation and stimulation under controlled conditions and the reproducible execution of the experiment according pre-programmed protocols. The BMTC consists of an incubator for the control of the experiment environment. Internally it offers all experiment relevant subsystems: • two Cultivation Units, each with eight Experiment Chamber Modules optical in-situ sensors for pO2 and pH • the Liquid Handling Device for medium exchange and sample taking • the handling devices for the internal transport of the experiment chamber modules to different experiment services • workstations for uni-axial loading of tissue samples; ZETOS (for bone tissue) / CHONDROS (for cartilage tissue) provision of reproducible displacement profiles measurement of the resulting forces computation of the visco-eleastic properties of the samples provision of flow induced shear stress fluorescence microscope • two different reactor types are included in the baseline flat reactor for 2D-and flat 3D-cultures with flow induced shear stress stimulation compatible with microscope cylindrical 3D-reactor for cultivation of vital bone and cartilage samples compatible with un-directional stimulation / analysis by ZETOS / CHONDROS. The modular, flexible design of the system allows the servicing and accommodation of a wide range of other experiment specific reactors. The functional principles and the essential features for controlled experiments will be reported. This facility complements the research done on ground on osteoporosis and the bone and muscle loss during bed rest studies during space flights. It is considered to become a new in-orbit research tool for tissue engineering and the verification of mechanical or pharmaceutical countermeasures.

  3. Design of a Lunar Quick-Attach Mechanism to Hummer Vehicle Mounting Interface

    NASA Technical Reports Server (NTRS)

    Grismore, David A.

    2010-01-01

    This report presents my work experiences while I was an intern with NASA (National Aeronautic and Space Administration) in the Spring of2010 at the Kennedy Space Center (KSC) launch facility in Cape Canaveral, Florida as a member of the NASA USRP (Undergraduate Student Research Program) program. I worked in the Surface Systems (NE-S) group during the internship. Within NE-S, two ASRC (Arctic Slope Regional Corporation) contract engineers, A.J. Nick and Jason Schuler, had developed a "Quick-Attach" mechanism for the Chariot Rover, the next generation lunar rover. My project was to design, analyze, and possibly fabricate a mounting interface between their "Quick-Attach" and a Hummer vehicle. This interface was needed because it would increase their capabilities to test the Quick Attach and its various attachments, as they do not have access to a Chariot Rover at KSC. I utilized both Pro Engineer, a 3D CAD software package, and a Coordinate Measuring Machine (CMM) known as a FAROarm to collect data and create my design. I relied on hand calculations and the Mechanica analysis tool within Pro Engineer to perform stress analysis on the design. After finishing the design, I began working on creating professional level CAD drawings and issuing them into the KSC design database known as DDMS before the end of the internship.

  4. Lunar base and Mars base design projects

    NASA Technical Reports Server (NTRS)

    Amos, J.; Campbell, J.; Hudson, C.; Kenny, E.; Markward, D.; Pham, C.; Wolf, C.

    1989-01-01

    The space design classes at the University of Texas at Austin undertook seven projects in support of the NASA/USRA advanced space design program during the 1988-89 year. A total of 51 students, including 5 graduate students, participated in the design efforts. Four projects were done within the Aerospace Engineering (ASE) design program and three within the Mechanical Engineering (ME) program. Both lunar base and Mars base design efforts were studied, and the specific projects were as follows: Lunar Crew Emergency Rescue Vehicle (ASE); Mars Logistics Lander Convertible to a Rocket Hopper (ME); A Robotically Constructed Production and Supply Base on Phobos (ASE); A Mars/Phobos Transportation System (ASE); Manned Base Design and Related Construction Issues for Mars/Phobos Mission (ME); and Health Care Needs for a Lunar Colony and Design of Permanent Medical Facility (ME).

  5. KSC-04PD-2511

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility, a technician appears to ride the Space Shuttle Main Engine (SSME) as he maneuvers the SSME on the Hyster lift into position for installation on Discovery, the vehicle designated for the Return to Flight mission STS-114. Overall, an SSME weighs approximately 7,000 pounds. An SSME operates at greater temperature extremes than any mechanical system in common use today. The liquid hydrogen fuel is -423 degrees Fahrenheit, the second coldest liquid on Earth. When the hydrogen is burned with liquid oxygen, the temperature in the engine's combustion chamber reaches +6000 degrees Fahrenheit -- that's higher than the boiling point of Iron. The maximum equivalent horsepower developed by the three SSMEs is just over 37 million horsepower. The energy released by the three SSMEs is equivalent to the output of 23 Hoover Dams.

  6. KSC-04PD-2513

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility, a technician appears to ride the Space Shuttle Main Engine (SSME) as he maneuvers the SSME on the Hyster lift into position for installation on Discovery, the vehicle designated for the Return to Flight mission STS-114. Overall, an SSME weighs approximately 7,000 pounds. An SSME operates at greater temperature extremes than any mechanical system in common use today. The liquid hydrogen fuel is -423 degrees Fahrenheit, the second coldest liquid on Earth. When the hydrogen is burned with liquid oxygen, the temperature in the engine's combustion chamber reaches +6000 degrees Fahrenheit -- that's higher than the boiling point of Iron. The maximum equivalent horsepower developed by the three SSMEs is just over 37 million horsepower. The energy released by the three SSMEs is equivalent to the output of 23 Hoover Dams.

  7. Development of Electrothermal Pulsed Plasma Thrusters for Osaka-Institute-of-Technology Electric-Rocket-Engine onboard Small Space Ship

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishii, Yushuke; Yamamoto, Tsuyoshi; Yamada, Minetsugu

    2008-12-31

    The Project of Osaka-Institute-of-Technology Electric-Rocket-Engine onboard Small Space Ship (PROITERES) was started at Osaka Institute of Technology. In PROITERES, a 10-kg small satellite with electrothermal pulsed plasma thrusters (PPTs), named JOSHO, will be launched in 2010. The main mission is powered flight of small satellite by electric thruster itself. Electrothermal PPTs were studied with both experiments and numerical simulations. An electrothermal PPT with a side-fed propellant feeding mechanism achieved a total impulse of 3.6 Ns with a repetitive 10000-shot operation. An unsteady numerical simulation showed the existence of considerable amount of ablation delaying to the discharge. However, it was alsomore » shown that this phenomenon should not be regarded as the 'late time ablation' for electrothermal PPTs.« less

  8. Band engineering in twisted molybdenum disulfide bilayers

    NASA Astrophysics Data System (ADS)

    Zhao, Yipeng; Liao, Chengwei; Ouyang, Gang

    2018-05-01

    In order to explore the theoretical relationship between interlayer spacing, interaction and band offset at the atomic level in vertically stacked two-dimensional (2D) van der Waals (vdW) structures, we propose an analytical model to address the evolution of interlayer vdW coupling with random stacking configurations in MoS2 bilayers based on the atomic-bond-relaxation correlation mechanism. We found that interlayer spacing changes substantially with respect to the orientations, and the bandgap increases from 1.53 eV (AB stacking) to 1.68 eV (AA stacking). Our results reveal that the evolution of interlayer vdW coupling originates from the interlayer interaction, leading to interlayer separations and electronic properties changing with stacking configurations. Our predictions constitute a demonstration of twist engineering the band shift in the emergent class of 2D crystals, transition-metal dichalcogenides.

  9. The 2003 Goddard Rocket Replica Project: A Reconstruction of the World's First Functional Liquid Rocket System

    NASA Technical Reports Server (NTRS)

    Farr, R. A.; Elam, S. K.; Hicks, G. D.; Sanders, T. M.; London, J. R.; Mayne, A. W.; Christensen, D. L.

    2003-01-01

    As a part of NASA s 2003 Centennial of Flight celebration, engineers and technicians at Marshall Space Flight Center (MSFC), Huntsville, Alabama, in cooperation with the Alabama-Mississippi AIAA Section, have reconstructed historically accurate, functional replicas of Dr. Robert H. Goddard s 1926 first liquid- fuel rocket. The purposes of this project were to clearly understand, recreate, and document the mechanisms and workings of the 1926 rocket for exhibit and educational use, creating a vital resource for researchers studying the evolution of liquid rocketry for years to come. The MSFC team s reverse engineering activity has created detailed engineering-quality drawings and specifications describing the original rocket and how it was built, tested, and operated. Static hot-fire tests, as well as flight demonstrations, have further defined and quantified the actual performance and engineering actual performance and engineering challenges of this major segment in early aerospace history.

  10. Application of single crystal superalloys for Earth-to-orbit propulsion systems

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Parr, R. A.

    1987-01-01

    Single crystal superalloys were first identified as potentially useful engineering materials for aircraft gas turbine engines in the mid-1960's. Although they were not introduced into service as turbine blades in commercial aircraft engines until the early 1980's, they have subsequently accumulated tens of millions of flight hours in revenue producing service. The space shuttle main engine (SSME) and potential advanced earth-to-orbit propulsion systems impose severe conditions on turbopump turbine blades which for some potential failure modes are more severe than in aircraft gas turbines. Research activities which are directed at evaluating the potential for single crystal superalloys for application as turbopump turbine blades in the SSME and advanced rocket engines are discussed. The mechanical properties of these alloys are summarized and the effects of hydrogen are noted. The use of high gradient directional solidification and hot isostatic pressing to improve fatigue properties is also addressed.

  11. Lockable Knee Brace Speeds Rehabilitation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Marshall Space Flight Center develops key transportation and propulsion technologies for the Space Agency. The Center manages propulsion hardware and technologies of the space shuttle, develops the next generation of space transportation and propulsion systems, oversees science and hardware development for the International Space Station, manages projects and studies that will help pave the way back to the Moon, and handles a variety of associated scientific endeavors to benefit space exploration and improve life here on Earth. It is a large and diversified center, and home to a great wealth of design skill. Some of the same mechanical design skill that made its way into the plans for rocket engines and advanced propulsion at this Alabama-based NASA center also worked its way into the design of an orthotic knee joint that is changing the lives of people with weakened quadriceps.

  12. Evaluation of Engineering Properties of AL-Li Alloy X2096-T8A3 Extrusion Products

    NASA Technical Reports Server (NTRS)

    Flom, Y.; Viens, M.; Wang, L.

    1999-01-01

    Mechanical, thermal fatigue and stress corrosion properties were determined for the two lots of Al-Li X2096-T8A3 extruded beams. Based on the test results, the beams were accepted as the construction material for fabrication of the Hubble Space Telescope new Solar Array Support Structure.

  13. European aerospace science and technology, 1992: A bibliography with indexes

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography contains 1916 annotated references to reports and journal articles of European intellectual origin entered into the NASA Scientific and Technical Information System during 1992. Representative subject areas include: spacecraft and aircraft design, propulsion technology, chemistry and materials, engineering and mechanics, earth and life sciences, communications, computers and mathematics, and the natural space sciences.

  14. Fincke inside the Progress Vehicle with open SM/Progress transfer hatch during Expedition 9

    NASA Image and Video Library

    2004-08-14

    ISS009-E-18533 (14 August 2004) --- Astronaut Edward M. (Mike) Fincke, Expedition 9 NASA ISS science officer and flight engineer, appears behind the probe-and-cone mechanism on the hatch of the Progress 15 supply vehicle docked to the aft port on the Zvezda Service Module of the International Space Station (ISS).

  15. Hard X-ray imaging facility for space shuttle: A scientific and conceptual engineering study

    NASA Technical Reports Server (NTRS)

    Peterson, L. E.; Hudson, H. S.; Hurford, G.; Schneible, D.

    1976-01-01

    A shuttle-accommodated instrument for imaging hard X-rays in the study of nonthermal particles and high temperature particles in various solar and cosmic phenomena was defined and its feasibility demonstrated. The imaging system configuration is described as well as the electronics, aspect systems, mechanical and thermal properties and the ground support equipment.

  16. Aerospace Mechanisms and Tribology Technology: Case Studies

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1999-01-01

    This chapter focuses attention on tribology technology practice related to vacuum tribology and space tribology. Two case studies describe aspects of real problems in sufficient detail for the engineer and the scientist to understand the tribological situations and the failures. The nature of the problems is analyzed and the range of potential solutions is evaluated. Courses of action are recommended.

  17. Training the Future - Swamp Work Activities

    NASA Image and Video Library

    2017-07-19

    In the Swamp Works laboratory at NASA's Kennedy Space Center in Florida, student interns such as Maddy Olson are joining agency scientists, contributing in the area of Exploration Research and Technology. Olson is majoring in mechanical engineering at the University of North Dakota. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.

  18. Training the Future - Swamp Work Activities

    NASA Image and Video Library

    2017-07-19

    In the Swamp Works laboratory at NASA's Kennedy Space Center in Florida, student interns such as Kevin Murphy are joining agency scientists, contributing in the area of Exploration Research and Technology. Murphy is majoring in mechanical engineering at the University of Illinois at Urbana-Champaign. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.

  19. Training the Future - Swamp Work Activities

    NASA Image and Video Library

    2017-07-19

    In the Swamp Works laboratory at NASA's Kennedy Space Center in Florida, student interns such as Andrew Thoesen are joining agency scientists, contributing in the area of Exploration Research and Technology. Thoesen is studying mechanical engineering at Arizona State University in Tempe, Arizona. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program

  20. a Matter of Confidence: Gender Differences in Attitudes Toward Engaging in Lab and Course Work in Undergraduate Engineering

    NASA Astrophysics Data System (ADS)

    Micari, Marina; Pazos, Pilar; Hartmann, Mitra J. Z.

    Although there has been a great deal of research on women's experiences in engineering study, there has been little attempt to connect experiential factors to performance in both course and lab. This two-phase study investigated gender differences in undergraduates' experiences in a fluid mechanics course as well as the relationship between experiential factors and student performance in that course. One hundred forty-seven students at a Midwestern research university completed questionnaires related to course experience and perceived engagement. Data were also collected on final grade for 89 students in the second round of data collection. Relative to men, women reported less confidence that they could avoid mistakes in the lab, less experience with mechanical items, less perceived ability in engineering relative to classmates, and less perceived skill in tasks requiring navigation or maneuvering through space. Feelings of engagement were related to grade, but no gender differences were found in either engagement or grade.

  1. Space Transportation Main Engine

    NASA Technical Reports Server (NTRS)

    Monk, Jan C.

    1992-01-01

    The topics are presented in viewgraph form and include the following: Space Transportation Main Engine (STME) definition, design philosophy, robust design, maximum design condition, casting vs. machined and welded forgings, operability considerations, high reliability design philosophy, engine reliability enhancement, low cost design philosophy, engine systems requirements, STME schematic, fuel turbopump, liquid oxygen turbopump, main injector, and gas generator. The major engine components of the STME and the Space Shuttle Main Engine are compared.

  2. Preparing for Flight Engine Test

    NASA Image and Video Library

    2015-11-04

    The first RS-25 flight engine, engine No. 2059, is lifted onto the A-1 Test Stand at Stennis Space Center on Nov. 4, 2015. The engine was tested in early 2016 to certify it for use on NASA’s new Space Launch System (SLS). The SLS core stage will be powered by four RS-25 engines, all tested at Stennis Space Center. NASA is developing the SLS to carry humans deeper into space than ever before, including on a journey to Mars.

  3. Printing Outside the Box: Additive Manufacturing Processes for Fabrication of Large Aerospace Structures

    NASA Technical Reports Server (NTRS)

    Babai, Majid; Peters, Warren

    2015-01-01

    To achieve NASA's mission of space exploration, innovative manufacturing processes are being applied to the fabrication of propulsion elements. Liquid rocket engines (LREs) are comprised of a thrust chamber and nozzle extension as illustrated in figure 1 for the J2X upper stage engine. Development of the J2X engine, designed for the Ares I launch vehicle, is currently being incorporated on the Space Launch System. A nozzle extension is attached to the combustion chamber to obtain the expansion ratio needed to increase specific impulse. If the nozzle extension could be printed as one piece using free-form additive manufacturing (AM) processes, rather than the current method of forming welded parts, a considerable time savings could be realized. Not only would this provide a more homogenous microstructure than a welded structure, but could also greatly shorten the overall fabrication time. The main objective of this study is to fabricate test specimens using a pulsed arc source and solid wire as shown in figure 2. The mechanical properties of these specimens will be compared with those fabricated using the powder bed, selective laser melting technology at NASA Marshall Space Flight Center. As printed components become larger, maintaining a constant temperature during the build process becomes critical. This predictive capability will require modeling of the moving heat source as illustrated in figure 3. Predictive understanding of the heat profile will allow a constant temperature to be maintained as a function of height from substrate while printing complex shapes. In addition, to avoid slumping, this will also allow better control of the microstructural development and hence the properties. Figure 4 shows a preliminary comparison of the mechanical properties obtained.

  4. Space Station Engineering and Technology Development: Proceedings of the Panel on In-Space Engineering Research and Technology Development

    NASA Technical Reports Server (NTRS)

    1985-01-01

    In 1984 the ad hoc committee on Space Station Engineering and Technology Development of the Aeronautics and Space Engineering Board (ASEB) conducted a review of the National Aeronautics and Space Administration's (NASA's) space station program planning. The review addressed the initial operating configuration (IOC) of the station. The ASEB has reconstituted the ad hoc committee which then established panels to address each specific related subject. The participants of the panels come from the committee, industry, and universities. The proceedings of the Panel on In Space Engineering Research and Technology Development are presented in this report. Activities, and plans for identifying and developing R&T programs to be conducted by the space station and related in space support needs including module requirements are addressed. Consideration is given to use of the station for R&T for other government agencies, universities, and industry.

  5. Technology transfer: The key to successful space engineering education

    NASA Astrophysics Data System (ADS)

    Fletcher, L. S.; Page, R. H.

    The 1990s are the threshold of the space revolution for the next century. This space revolution was initiated by space pioneers like Tsiolkovsky, Goddard, and Oberth, who contributed a great deal to the evolution of space exploration, and more importantly, to space education. Recently, space engineering education programs for all ages have been advocated around the world, especially in Asia and Europe, as well as the U.S.A. and the Soviet Union. And yet, although space related technologies are developing rapidly, these technologies are not being incorporated successfully into space education programs. Timely technology transfer is essential to assure the continued education of professionals. This paper reviews the evolution of space engineering education and identifies a number of initiatives which could strengthen space engineering education for the next century.

  6. Multi-Attribute Tradespace Exploration in Space System Design

    NASA Astrophysics Data System (ADS)

    Ross, A. M.; Hastings, D. E.

    2002-01-01

    The complexity inherent in space systems necessarily requires intense expenditures of resources both human and monetary. The high level of ambiguity present in the early design phases of these systems causes long, highly iterative, and costly design cycles. This paper looks at incorporating decision theory methods into the early design processes to streamline communication of wants and needs among stakeholders and between levels of design. Communication channeled through formal utility interviews and analysis enables engineers to better understand the key drivers for the system and allows a more thorough exploration of the design tradespace. Multi-Attribute Tradespace Exploration (MATE), an evolving process incorporating decision theory into model and simulation- based design, has been applied to several space system case studies at MIT. Preliminary results indicate that this process can improve the quality of communication to more quickly resolve project ambiguity, and enable the engineer to discover better value designs for multiple stakeholders. MATE is also being integrated into a concurrent design environment to facilitate the transfer knowledge of important drivers into higher fidelity design phases. Formal utility theory provides a mechanism to bridge the language barrier between experts of different backgrounds and differing needs (e.g. scientists, engineers, managers, etc). MATE with concurrent design couples decision makers more closely to the design, and most importantly, maintains their presence between formal reviews.

  7. Component improvement of free-piston Stirling engine key technology for space power

    NASA Technical Reports Server (NTRS)

    Alger, Donald L.

    1988-01-01

    The successful performance of the 25 kW Space Power Demonstrator (SPD) engine during an extensive testing period has provided a baseline of free piston Stirling engine technology from which future space Stirling engines may evolve. Much of the success of the engine was due to the initial careful selection of engine materials, fabrication and joining processes, and inspection procedures. Resolution of the few SPD engine problem areas that did occur has resulted in the technological advancement of certain key free piston Stirling engine components. Derivation of two half-SPD, single piston engines from the axially opposed piston SPD engine, designated as Space Power Research (SPR) engines, has made possible the continued improvement of these engine components. The two SPR engines serve as test bed engines for testing of engine components. Some important fabrication and joining processes are reviewed. Also, some component deficiencies that were discovered during SPD engine testing are described and approaches that were taken to correct these deficiencies are discussed. Potential component design modifications, based upon the SPD and SPR engine testing, are also reported.

  8. Methodological advances in predicting flow-induced dynamics of plants using mechanical-engineering theory.

    PubMed

    de Langre, Emmanuel

    2012-03-15

    The modeling of fluid-structure interactions, such as flow-induced vibrations, is a well-developed field of mechanical engineering. Many methods exist, and it seems natural to apply them to model the behavior of plants, and potentially other cantilever-like biological structures, under flow. Overcoming this disciplinary divide, and the application of such models to biological systems, will significantly advance our understanding of ecological patterns and processes and improve our predictive capabilities. Nonetheless, several methodological issues must first be addressed, which I describe here using two practical examples that have strong similarities: one from agricultural sciences and the other from nuclear engineering. Very similar issues arise in both: individual and collective behavior, small and large space and time scales, porous modeling, standard and extreme events, trade-off between the surface of exchange and individual or collective risk of damage, variability, hostile environments and, in some aspects, evolution. The conclusion is that, although similar issues do exist, which need to be exploited in some detail, there is a significant gap that requires new developments. It is obvious that living plants grow in and adapt to their environment, which certainly makes plant biomechanics fundamentally distinct from classical mechanical engineering. Moreover, the selection processes in biology and in human engineering are truly different, making the issue of safety different as well. A thorough understanding of these similarities and differences is needed to work efficiently in the application of a mechanistic approach to ecology.

  9. The Vanderbilt University nanoscale science and engineering fabrication laboratory

    NASA Astrophysics Data System (ADS)

    Hmelo, Anthony B.; Belbusti, Edward F.; Smith, Mark L.; Brice, Sean J.; Wheaton, Robert F.

    2005-08-01

    Vanderbilt University has realized the design and construction of a 1635 sq. ft. Class 10,000 cleanroom facility to support the wide-ranging research mission associated with the Vanderbilt Institute for Nanoscale Science and Engineering (VINSE). By design we have brought together disparate technologies and researchers formerly dispersed across the campus to work together in a small contiguous space intended to foster interaction and synergy of nano-technologies not often found in close proximity. The space hosts a variety of tools for lithographic patterning of substrates, the deposition of thin films, the synthesis of diamond nanostructures and carbon nanotubes, and a variety of reactive ion etchers for the fabrication of nanostructures on silicon substrates. In addition, a separate 911 sq. ft. chemistry laboratory supports nanocrystal synthesis and the investigation of biomolecular films. The design criteria required an integrated space that would support the scientific agenda of the laboratory while satisfying all applicable code and safety concerns. This project required the renovation of pre-existing laboratory space with minimal disruption to ongoing activities in a mixed-use building, while meeting the requirements of the 2000 edition of the International Building Code for the variety of potentially hazardous processes that have been programmed for the space. In this paper we describe how architectural and engineering challenges were met in the areas of mitigating floor vibration issues, shielding our facility against EMI emanations, design of the contamination control facility itself, chemical storage and handling, toxic gas use and management, as well as mechanical, electrical, plumbing, lab security, fire and laboratory safety issues.

  10. Space Shuttle Project

    NASA Image and Video Library

    1981-01-01

    A Space Shuttle Main Engine undergoes test-firing at the National Space Technology Laboratories (now the Sternis Space Center) in Mississippi. The Marshall Space Flight Center had management responsibility of Space Shuttle propulsion elements, including the Main Engines.

  11. Systems Engineering and Reusable Avionics

    NASA Technical Reports Server (NTRS)

    Conrad, James M.; Murphy, Gloria

    2010-01-01

    One concept for future space flights is to construct building blocks for a wide variety of avionics systems. Once a unit has served its original purpose, it can be removed from the original vehicle and reused in a similar or dissimilar function, depending on the function blocks the unit contains. For example: Once a lunar lander has reached the moon's surface, an engine controller for the Lunar Decent Module would be removed and used for a lunar rover motor control unit or for a Environmental Control Unit for a Lunar Habitat. This senior design project included the investigation of a wide range of functions of space vehicles and possible uses. Specifically, this includes: (1) Determining and specifying the basic functioning blocks of space vehicles. (2) Building and demonstrating a concept model. (3) Showing high reliability is maintained. The specific implementation of this senior design project included a large project team made up of Systems, Electrical, Computer, and Mechanical Engineers/Technologists. The efforts were made up of several sub-groups that each worked on a part of the entire project. The large size and complexity made this project one of the more difficult to manage and advise. Typical projects only have 3-4 students, but this project had 10 students from five different disciplines. This paper describes the difference of this large project compared to typical projects, and the challenges encountered. It also describes how the systems engineering approach was successfully implemented so that the students were able to meet nearly all of the project requirements.

  12. Using the brain's fight-or-flight response for predicting mental illness on the human space flight program

    NASA Astrophysics Data System (ADS)

    Losik, L.

    A predictive medicine program allows disease and illness including mental illness to be predicted using tools created to identify the presence of accelerated aging (a.k.a. disease) in electrical and mechanical equipment. When illness and disease can be predicted, actions can be taken so that the illness and disease can be prevented and eliminated. A predictive medicine program uses the same tools and practices from a prognostic and health management program to process biological and engineering diagnostic data provided in analog telemetry during prelaunch readiness and space exploration missions. The biological and engineering diagnostic data necessary to predict illness and disease is collected from the pre-launch spaceflight readiness activities and during space flight for the ground crew to perform a prognostic analysis on the results from a diagnostic analysis. The diagnostic, biological data provided in telemetry is converted to prognostic (predictive) data using the predictive algorithms. Predictive algorithms demodulate telemetry behavior. They illustrate the presence of accelerated aging/disease in normal appearing systems that function normally. Mental illness can predicted using biological diagnostic measurements provided in CCSDS telemetry from a spacecraft such as the ISS or from a manned spacecraft in deep space. The measurements used to predict mental illness include biological and engineering data from an astronaut's circadian and ultranian rhythms. This data originates deep in the brain that is also damaged from the long-term exposure to cortisol and adrenaline anytime the body's fight or flight response is activated. This paper defines the brain's FOFR; the diagnostic, biological and engineering measurements needed to predict mental illness, identifies the predictive algorithms necessary to process the behavior in CCSDS analog telemetry to predict and thus prevent mental illness from occurring on human spaceflight missions.

  13. KSC-2012-1025

    NASA Image and Video Library

    2012-01-12

    CAPE CANAVERAL, Fla. – In the Space Shuttle Main Engine Processing Facility at NASA’s Kennedy Space Center in Florida, a technician oversees the closure of a transportation canister containing a Pratt Whitney Rocketdyne space shuttle main engine (SSME). This is the second of the 15 engines used during the Space Shuttle Program to be prepared for transfer to NASA's Stennis Space Center in Mississippi. The engines will be stored at Stennis for future use on NASA's new heavy-lift rocket, the Space Launch System (SLS), which will carry NASA's new Orion spacecraft, cargo, equipment and science experiments to space. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Gianni Woods

  14. KSC-2011-6523

    NASA Image and Video Library

    2011-08-19

    CAPE CANAVERAL, Fla. -- In Orbiter Processing Facility-2 at NASA’s Kennedy Space Center in Florida, technicians monitor the progress as they use a Hyster forklift to position an engine removal device on Engine #3 on space shuttle Atlantis. Inside the aft section, a technician disconnects hydraulic, fluid and electrical lines. The forklift will be used to remove the engine and transport it to the Engine Shop for possible future use. Each of the three space shuttle main engines is 14 feet long and weighs 7,800 pounds. Removal of the space shuttle main engines is part of the Transition and Retirement work that is being performed in order to prepare Atlantis for eventual display at the Kennedy Space Center Visitor Complex in Florida. Photo credit: Frankie Martin

  15. Strategies for adding adaptive learning mechanisms to rule-based diagnostic expert systems

    NASA Technical Reports Server (NTRS)

    Stclair, D. C.; Sabharwal, C. L.; Bond, W. E.; Hacke, Keith

    1988-01-01

    Rule-based diagnostic expert systems can be used to perform many of the diagnostic chores necessary in today's complex space systems. These expert systems typically take a set of symptoms as input and produce diagnostic advice as output. The primary objective of such expert systems is to provide accurate and comprehensive advice which can be used to help return the space system in question to nominal operation. The development and maintenance of diagnostic expert systems is time and labor intensive since the services of both knowledge engineer(s) and domain expert(s) are required. The use of adaptive learning mechanisms to increment evaluate and refine rules promises to reduce both time and labor costs associated with such systems. This paper describes the basic adaptive learning mechanisms of strengthening, weakening, generalization, discrimination, and discovery. Next basic strategies are discussed for adding these learning mechanisms to rule-based diagnostic expert systems. These strategies support the incremental evaluation and refinement of rules in the knowledge base by comparing the set of advice given by the expert system (A) with the correct diagnosis (C). Techniques are described for selecting those rules in the in the knowledge base which should participate in adaptive learning. The strategies presented may be used with a wide variety of learning algorithms. Further, these strategies are applicable to a large number of rule-based diagnostic expert systems. They may be used to provide either immediate or deferred updating of the knowledge base.

  16. Integrated Evaluation of Closed Loop Air Revitalization System Components

    NASA Technical Reports Server (NTRS)

    Murdock, K.

    2010-01-01

    NASA s vision and mission statements include an emphasis on human exploration of space, which requires environmental control and life support technologies. This Contractor Report (CR) describes the development and evaluation of an Air Revitalization System, modeling and simulation of the components, and integrated hardware testing with the goal of better understanding the inherent capabilities and limitations of this closed loop system. Major components integrated and tested included a 4-Bed Modular Sieve, Mechanical Compressor Engineering Development Unit, Temperature Swing Adsorption Compressor, and a Sabatier Engineering and Development Unit. The requisite methodolgy and technical results are contained in this CR.

  17. High Speed Prototype Car Test

    NASA Image and Video Library

    2014-01-10

    CAPE CANAVERAL, Fla. - Mechanics, engineers and Driver Brian Smith, in jumpsuit, ready a Hennessey Venom GT for test runs on the 3.5-mile long runway at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The flat concrete runway is one of the few places in the world where high performance automobiles can be tested for aerodynamic and safety designs. Hennessey Performance of Sealy, Texas, worked with Performance Power Racing in West Palm Beach to arrange use of the NASA facility. Performance Power Racing has conducted numerous engineering tests on the runway with a variety of vehicles. Photo credit: NASA/Kim Shiflett

  18. High Speed Prototype Car Test

    NASA Image and Video Library

    2014-01-10

    CAPE CANAVERAL, Fla. - Mechanics and engineers ready a Hennessey Venom GT for test runs on the 3.5-mile long runway at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The flat concrete runway is one of the few places in the world where high performance automobiles can be tested for aerodynamic and safety designs. Hennessey Performance of Sealy, Texas, worked with Performance Power Racing in West Palm Beach to arrange use of the NASA facility. Performance Power Racing has conducted numerous engineering tests on the runway with a variety of vehicles. Photo credit: NASA/Kim Shiflett

  19. Conceptual design of a Mars transportation system

    NASA Astrophysics Data System (ADS)

    1992-08-01

    In conjunction with NASA Marshall Space Flight Center and several major aerospace corporations the University of Minnesota has developed a scenario to place humans on Mars by the year 2016. The project took the form of a year-long design course in the senior design curricula at the University's Aerospace Engineering and Mechanics Department. Students worked with the instructor, teaching assistants and engineers in industry to develop a vehicle and the associated mission profile to fulfill the requirements of the Mars Transportation System. This report is a summary of the final design and the process though which the final product was developed.

  20. Shape memory alloy heat engines and energy harvesting systems

    DOEpatents

    Browne, Alan L; Johnson, Nancy L; Keefe, Andrew C; Alexander, Paul W; Sarosi, Peter Maxwell; Herrera, Guillermo A; Yates, James Ryan

    2013-12-17

    A heat engine includes a first rotatable pulley and a second rotatable pulled spaced from the first rotatable pulley. A shape memory alloy (SMA) element is disposed about respective portions of the pulleys at an SMA pulley ratio. The SMA element includes first spring coil and a first fiber core within the first spring coil. A timing cable is disposed about disposed about respective portions of the pulleys at a timing pulley ratio, which is different than the SMA pulley ratio. The SMA element converts a thermal energy gradient between the hot region and the cold region into mechanical energy.

  1. Inference Engine in an Intelligent Ship Course-Keeping System

    PubMed Central

    2017-01-01

    The article presents an original design of an expert system, whose function is to automatically stabilize ship's course. The focus is put on the inference engine, a mechanism that consists of two functional components. One is responsible for the construction of state space regions, implemented on the basis of properly processed signals recorded by sensors from the input and output of an object. The other component is responsible for generating a control decision based on the knowledge obtained in the first module. The computing experiments described herein prove the effective and correct operation of the proposed system. PMID:29317859

  2. Conceptual design of a Mars transportation system

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In conjunction with NASA Marshall Space Flight Center and several major aerospace corporations the University of Minnesota has developed a scenario to place humans on Mars by the year 2016. The project took the form of a year-long design course in the senior design curricula at the University's Aerospace Engineering and Mechanics Department. Students worked with the instructor, teaching assistants and engineers in industry to develop a vehicle and the associated mission profile to fulfill the requirements of the Mars Transportation System. This report is a summary of the final design and the process though which the final product was developed.

  3. Engineering Research and Technology Development on the Space Station

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report identifies and assesses the kinds of engineering research and technology development applicable to national, NASA, and commercial needs that can appropriately be performed on the space station. It also identifies the types of instrumentation that should be included in the space station design to support engineering research. The report contains a preliminary assessment of the potential benefits to U.S. competitiveness of engineering research that might be conducted on a space station, reviews NASA's current approach to jointly funded or cooperative experiments, and suggests modifications that might facilitate university and industry participation in engineering research and technology development activities on the space station.

  4. Final RS-25 Engine Test of the Summer

    NASA Image and Video Library

    2017-08-30

    On Aug. 30, engineers at our Stennis Space Center wrapped up a summer of hot fire testing for flight controllers on RS-25 engines that will help power the new Space Launch System rocket being built to carry astronauts to deep-space destinations, including Mars. The 500-second hot fire of a flight controller or “brain” of the engine marked another step toward the nation’s return to human deep-space exploration missions. Four RS-25 engines, equipped with flight-worthy controllers will help power the first integrated flight of our Space Launch System rocket with our Orion spacecraft, known as Exploration Mission One.

  5. 46 CFR 182.465 - Ventilation of spaces containing diesel machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Ventilation of spaces containing diesel machinery. 182... Ventilation of spaces containing diesel machinery. (a) A space containing diesel machinery must be fitted with... operation of main engines and auxiliary engines. (b) Air-cooled propulsion and auxiliary diesel engines...

  6. 46 CFR 182.465 - Ventilation of spaces containing diesel machinery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Ventilation of spaces containing diesel machinery. 182... Ventilation of spaces containing diesel machinery. (a) A space containing diesel machinery must be fitted with... operation of main engines and auxiliary engines. (b) Air-cooled propulsion and auxiliary diesel engines...

  7. NASA Tests RS-25 Flight Engine for Space Launch System

    NASA Image and Video Library

    2017-10-19

    Engineers at NASA’s Stennis Space Center in Mississippi on Oct. 19 completed a hot-fire test of RS-25 rocket engine E2063, a flight engine for NASA’s new Space Launch System (SLS) rocket. Engine E2063 is scheduled to help power SLS on its Exploration Mission-2 (EM-2), the first flight of the new rocket to carry humans.

  8. High frequency data acquisition system for space shuttle main engine testing

    NASA Technical Reports Server (NTRS)

    Lewallen, Pat

    1987-01-01

    The high frequency data acquisition system developed for the Space Shuttle Main Engine (SSME) single engine test facility at the National Space Technology Laboratories is discussed. The real time system will provide engineering data for a complete set of SSME instrumentation (approx. 100 measurements) within 4 hours following engine cutoff, a decrease of over 48 hours from the previous analog tape based system.

  9. J-2X engine

    NASA Image and Video Library

    2012-05-16

    On May 16, 2012, engineers at Stennis Space Center conducted a test of the next-generation J-2X engine that will help power NASA's new Space Launch System, moving NASA even closer to a return to deep space.

  10. NASA Tests 2nd RS-25 Flight Engine for Space Launch System

    NASA Image and Video Library

    2018-01-16

    On Jan. 16, 2018, engineers at NASA’s Stennis Space Center in Mississippi conducted a certification test of another RS-25 engine flight controller on the A-1 Test Stand at Stennis Space Center. The 365-second, full-duration test came a month after the space agency capped a year of RS-25 testing with a flight controller test in mid-December. For the “green run” test the flight controller was installed on RS-25 developmental engine E0528 and fired just as during an actual launch. Once certified, the flight controller will be removed and installed on a flight engine for use by NASA’s new deep-space rocket, the Space Launch System (SLS).

  11. Microgravity

    NASA Image and Video Library

    2000-07-01

    Engineering bench system hardware for the Mechanics of Granular Materials (MGM) experiment is tested on a lab bench at the University of Colorado in Boulder. This is done in a horizontal arrangement to reduce pressure differences so the tests more closely resemble behavior in the microgravity of space. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. MGM experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: University of Colorado at Boulder).

  12. Fault-Detection Tool Has Companies 'Mining' Own Business

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A successful launching of NASA's Space Shuttle hinges heavily on the three Space Shuttle Main Engines (SSME) that power the orbiter. These critical components must be monitored in real time, with sensors, and compared against expected behaviors that could scrub a launch or, even worse, cause in- flight hazards. Since 1981, SSME faults have caused 23 scrubbed launches and 29 percent of total Space Shuttle downtime, according to a compilation of analysis reports. The most serious cases typically occur in the last few seconds before ignition; a launch scrub that late in the countdown usually means a period of investigation of a month or more. For example, during the launch attempt of STS-41D in 1984, an anomaly was detected in the number three engine, causing the mission to be scrubbed at T-4 seconds. This not only affected STS-41D, but forced the cancellation of another mission and caused a 2-month flight delay. In 2002, NASA s Kennedy Space Center, the Florida Institute of Technology, and Interface & Control Systems, Inc., worked together to attack this problem by creating a system that could automate the detection of mechanical failures in the SSMEs fuel control valves.

  13. Geometric modeling of space-optimal unit-cell-based tissue engineering scaffolds

    NASA Astrophysics Data System (ADS)

    Rajagopalan, Srinivasan; Lu, Lichun; Yaszemski, Michael J.; Robb, Richard A.

    2005-04-01

    Tissue engineering involves regenerating damaged or malfunctioning organs using cells, biomolecules, and synthetic or natural scaffolds. Based on their intended roles, scaffolds can be injected as space-fillers or be preformed and implanted to provide mechanical support. Preformed scaffolds are biomimetic "trellis-like" structures which, on implantation and integration, act as tissue/organ surrogates. Customized, computer controlled, and reproducible preformed scaffolds can be fabricated using Computer Aided Design (CAD) techniques and rapid prototyping devices. A curved, monolithic construct with minimal surface area constitutes an efficient substrate geometry that promotes cell attachment, migration and proliferation. However, current CAD approaches do not provide such a biomorphic construct. We address this critical issue by presenting one of the very first physical realizations of minimal surfaces towards the construction of efficient unit-cell based tissue engineering scaffolds. Mask programmability, and optimal packing density of triply periodic minimal surfaces are used to construct the optimal pore geometry. Budgeted polygonization, and progressive minimal surface refinement facilitate the machinability of these surfaces. The efficient stress distributions, as deduced from the Finite Element simulations, favor the use of these scaffolds for orthopedic applications.

  14. Analysis of internal flows relative to the space shuttle main engine

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Cooperative efforts between the Lockheed-Huntsville Computational Mechanics Group and the NASA-MSFC Computational Fluid Dynamics staff has resulted in improved capabilities for numerically simulating incompressible flows generic to the Space Shuttle Main Engine (SSME). A well established and documented CFD code was obtained, modified, and applied to laminar and turbulent flows of the type occurring in the SSME Hot Gas Manifold. The INS3D code was installed on the NASA-MSFC CRAY-XMP computer system and is currently being used by NASA engineers. Studies to perform a transient analysis of the FPB were conducted. The COBRA/TRAC code is recommended for simulating the transient flow of oxygen into the LOX manifold. Property data for modifying the code to represent LOX/GOX flow was collected. The ALFA code was developed and recommended for representing the transient combustion in the preburner. These two codes will couple through the transient boundary conditions to simulate the startup and/or shutdown of the fuel preburner. A study, NAS8-37461, is currently being conducted to implement this modeling effort.

  15. 1st SSME test of 2006

    NASA Image and Video Library

    2006-01-09

    Water vapor surges from the flame deflector of the A-2 Test Stand at NASA's Stennis Space Center on Jan. 9 during the first space shuttle main engine test of the year. The test was an engine acceptance test of flight engine 2058. It's the first space shuttle main engine to be completely assembled at Kennedy Space Center. Objectives also included first-time (green run) tests of a high-pressure oxidizer turbo pump and an Advanced Health System Monitor engine controller. The test ran for the planned duration of 520 seconds.

  16. RS-25 engine

    NASA Image and Video Library

    2012-04-10

    RS-25 series rocket engine No. 2059 is unloaded and positioned at Stennis Space Center on April 10, 2012, for future testing and use on NASA's new Space Launch System. The engine was the last of 15 RS-25 engines to be delivered from NASA's Kennedy Space Center in Florida to Stennis, where all will be stored until testing begins.

  17. Laser engines operating by resonance absorption.

    PubMed

    Garbuny, M; Pechersky, M J

    1976-05-01

    The coherence properties and power levels of lasers available at present lend themselves to the remote operation of mechanical engines by resonance absorption in a working gas. Laser radiation is capable of producing extremely high temperatures in a gas. Limits to the achievable temperatures in the working gas of an engine are imposed by the solid walls and by loss of resonance absorption due to thermal saturation, bleaching, and dissociation. However, it is shown that by proper control of the laser beam in space, time, and frequency, as well as by choice of the absorbing gas, these limits are to a great extent removed so that very high temperatures are indeed attainable. The working gas is largely monatomic, preferably helium with the addition of a few volume percent of an absorber. Such a gas mixture, internally heated, permits an optimization of the expansion ratio, with resulting thermal efficiencies and work ratios, not achievable in conventional engines. A relationship between thermal efficiency and work ratio is derived that is quite general for the optimization condition. The performance of laser piston engines, turbines, and the Stirling cycle based on these principles is discussed and compared with conventional engine operation. Finally, a brief discussion is devoted to the possibility and concepts for the direct conversion of selective vibrational or electronic excitation into mechanical work, bypassing the translational degrees of freedom.

  18. The 1994 NASA/USRA/ADP Design Projects

    NASA Technical Reports Server (NTRS)

    Cruse, Thomas; Richardson, Joseph; Tryon, Robert

    1994-01-01

    The NASA/USRA/ADP Design Projects from Vanderbilt University, Department of Mechanical Engineering (1994) are enclosed in this final report. Design projects include: (1) Protein Crystal Growth, both facilities and methodology; (2) ACES Deployable Space Boom; (3) Hybrid Launch System designs for both manned and unmanned systems; (4) LH2 Fuel Tank design (SSTO); (5) SSTO design; and (6) Pressure Tank Feed System design.

  19. Terminal Homing for Autonomous Underwater Vehicle Docking

    DTIC Science & Technology

    2016-06-01

    underwater domain, accurate navigation. Above the water, light and electromagnetic signals travel well through air and space, mediums that allow for a...DISTRIBUTION CODE 13. ABSTRACT The use of docking stations for autonomous underwater vehicles (AUV) provides the ability to keep a vehicle on...Mechanical and Aerospace Engineering iv THIS PAGE INTENTIONALLY LEFT BLANK v ABSTRACT The use of docking stations for autonomous underwater

  20. An assessment of space shuttle flight software development processes

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In early 1991, the National Aeronautics and Space Administration's (NASA's) Office of Space Flight commissioned the Aeronautics and Space Engineering Board (ASEB) of the National Research Council (NRC) to investigate the adequacy of the current process by which NASA develops and verifies changes and updates to the Space Shuttle flight software. The Committee for Review of Oversight Mechanisms for Space Shuttle Flight Software Processes was convened in Jan. 1992 to accomplish the following tasks: (1) review the entire flight software development process from the initial requirements definition phase to final implementation, including object code build and final machine loading; (2) review and critique NASA's independent verification and validation process and mechanisms, including NASA's established software development and testing standards; (3) determine the acceptability and adequacy of the complete flight software development process, including the embedded validation and verification processes through comparison with (1) generally accepted industry practices, and (2) generally accepted Department of Defense and/or other government practices (comparing NASA's program with organizations and projects having similar volumes of software development, software maturity, complexity, criticality, lines of code, and national standards); (4) consider whether independent verification and validation should continue. An overview of the study, independent verification and validation of critical software, and the Space Shuttle flight software development process are addressed. Findings and recommendations are presented.

  1. Fibre-reinforced hydrogels for tissue engineering

    NASA Astrophysics Data System (ADS)

    Waters, Sarah; Byrne, Helen; Chen, Mike; Dias Castilho, Miguel; Kimpton, Laura; Please, Colin; Whiteley, Jonathan

    2017-11-01

    Tissue engineers aim to grow replacement tissues in vitro to replace those in the body that have been damaged through age, trauma or disease. One approach is to seed cells within a scaffold consisting of an interconnected 3D-printed lattice of polymer fibres, cast in a hydrogel, and subject the construct (cell-seeded scaffold) to an applied load in a bioreactor. A key question is to understand how this applied load is distributed throughout the construct to the mechanosensitive cells. To address this, we exploit the disparate length scales (small inter-fibre spacing compared with construct dimensions). The fibres are treated as a linear elastic material and the hydrogel as a poroelastic material. We employ homogenisation theory to derive equations governing the material properties of a periodic, elastic-poroelastic composite. To validate the mobel, model solutions are compared to experimental data describing the unconfined compression of the fibre-reinforced hydrogels. The model is used to derive the bulk mechanical properties of a cylindrical construct of the composite material for a range of fibre spacings, and the local mechanical environment experienced by cells embedded within the construct is determined. Funded by the European Union Seventh Framework Programme (FP7/2007-2013).

  2. Electro-Mechanical Actuator. DC Resonant Link Controller

    NASA Technical Reports Server (NTRS)

    Schreiner, Kenneth E.

    1996-01-01

    This report summarizes the work performed on the 68 HP electro-mechanical actuator (EMA) system developed on NASA contract for the Electrical Actuation (ELA) Technology Bridging Program. The system was designed to demonstrate the capability of large, high power linear ELAs for applications such as Thrust Vector Control (TVC) on rocket engines. It consists of a motor controller, drive electronics and a linear actuator capable of up to 32,00 lbs loading at 7.4 inches/second. The drive electronics are based on the Resonant DC link concept and operate at a nominal frequency of 55 kHz. The induction motor is a specially designed high speed, low inertia motor capable of a 68 peak HP. The actuator was originally designed by MOOG Aerospace under an internal R & D program to meet Space Shuttle Main Engine (SSME) TVC requirements. The design was modified to meet this programs linear rate specification of 7.4 inches/second. The motor and driver were tested on a dynamometer at the Martin Marietta Space Systems facility. System frequency response, step response and force-velocity tests were conducted at the MOOG Aerospace facility. A complete description of the system and all test results can be found in the body of the report.

  3. Development and mechanical properties of structural materials from lunar simulant

    NASA Technical Reports Server (NTRS)

    Desai, Chandra S.

    1991-01-01

    Development of versatile engineering materials from locally available materials in space is an important step toward establishment of outposts such as on the moon and Mars. Here development of the technologies for manufacture of structural and construction materials on the moon, utilizing local lunar soil (regolith), without the use of water, is an important element for habitats and explorations in space. It is also vital that the mechanical behavior such as strength and flexural properties, fracture toughness, ductility, and deformation characteristics are defined toward establishment of the ranges of engineering applications of the materials developed. The objectives include two areas: (1) thermal liquefaction of lunar simulant (at about 1100 C) with different additives (fibers, powders, etc.); and (2) development and use of a traxial test device in which lunar simulants are first compacted under cycles of loading, and then tested with different vacuums and initial confining or insitu stress. The second area was described in previous progress reports and publications; since the presently available device allows vacuum levels up to only 10(exp -4) torr, it is recommended that a vacuum pump that can allow higher levels of vacuum is acquired.

  4. Power turbine ventilation system

    NASA Technical Reports Server (NTRS)

    Wakeman, Thomas G. (Inventor); Brown, Richard W. (Inventor)

    1991-01-01

    Air control mechanism within a power turbine section of a gas turbine engine. The power turbine section includes a rotor and at least one variable pitch propulsor blade. The propulsor blade is coupled to and extends radially outwardly of the rotor. A first annular fairing is rotatable with the propulsor blade and interposed between the propulsor blade and the rotor. A second fairing is located longitudinally adjacent to the first fairing. The first fairing and the second fairing are differentially rotatable. The air control mechanism includes a platform fixedly coupled to a radially inner end of the propulsor blade. The platform is generally positioned in a first opening and a first fairing. The platform and the first fairing define an outer space. In a first position corresponding with a first propulsor blade pitch, the platform is substantially conformal with the first fairing. In a second position corresponding with the second propulsor blade pitch, an edge portion of the platform is displaced radially outwardly from the first fairing. When the blades are in the second position and rotating about the engine axis, the displacement of the edge portion with respect to the first fairing allows air to flow from the outer space to the annular cavity.

  5. Return to flight SSME test at A2 test stand

    NASA Image and Video Library

    2004-07-16

    The Space Shuttle Main Engine (SSME) reached a historic milestone July 16, 2004, when a successful flight acceptance test was conducted at NASA Stennis Space Center (SSC). The engine tested today is the first complete engine to be tested and shipped in its entirety to Kennedy Space Center for installation on Space Shuttle Discovery for STS-114, NASA's Return to Flight mission. The engine test, which began about 3:59 p.m. CDT, ran for 520 seconds (8 minutes), the length of time it takes for the Space Shuttle to reach orbit.

  6. Can molecular diffusion explain Space Shuttle plume spreading?

    NASA Astrophysics Data System (ADS)

    Meier, R. R.; Plane, John M. C.; Stevens, Michael H.; Paxton, L. J.; Christensen, A. B.; Crowley, G.

    2010-04-01

    The satellite-borne Global Ultraviolet Imager (GUVI) has produced more than 20 images of NASA Space Shuttle main engine plumes in the lower thermosphere. These reveal atomic hydrogen and, by inference, water vapor transport over hemispherical-scale distances with speeds much faster than expected from models of thermospheric wind motions. Furthermore, the hydrogen plumes expand rapidly. We find rates that exceed the horizontal diffusion speed at nominal plume altitudes of 104-112 km. Kelley et al. (2009) have proposed a 2-D turbulence mechanism to explain the observed spreading rates (and rapid advection) of the plumes. But upon further investigation, we conclude that H atom diffusion can indeed account for the observed expansion rates by recognizing that vertical diffusion quickly conveys atoms to higher altitudes where horizontal diffusion is much more rapid. We also find evidence for H atom production directly during the Shuttle's main engine burn.

  7. Research and technology

    NASA Technical Reports Server (NTRS)

    1990-01-01

    As the NASA center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, Kennedy Space Center (KSC) is placing increasing emphasis on KSC's research and technology program. In addition to strengthening those areas of engineering and operations technology that contribute to safer, more efficient, and more economical execution of the current mission, the technological tools needed to execute KSC's mission relative to future programs are being developed. The Engineering Development Directorate encompasses most of the laboratories and other KSC resources that are key elements of research and technology program implementation and is responsible for implementation of the majority of the projects in this KSC 1990 annual report. Projects under the following topics are covered: (1) materials science; (2) hazardous emissions and contamination monitoring; (3) biosciences; (4) autonomous systems; (5) communications and control; (6) meteorology; (7) technology utilization; and (8) mechanics, structures, and cryogenics.

  8. Comparisons of Kinematics and Dynamics Simulation Software Tools

    NASA Technical Reports Server (NTRS)

    Shiue, Yeu-Sheng Paul

    2002-01-01

    Kinematic and dynamic analyses for moving bodies are essential to system engineers and designers in the process of design and validations. 3D visualization and motion simulation plus finite element analysis (FEA) give engineers a better way to present ideas and results. Marshall Space Flight Center (MSFC) system engineering researchers are currently using IGRIP from DELMIA Inc. as a kinematic simulation tool for discrete bodies motion simulations. Although IGRIP is an excellent tool for kinematic simulation with some dynamic analysis capabilities in robotic control, explorations of other alternatives with more powerful dynamic analysis and FEA capabilities are necessary. Kinematics analysis will only examine the displacement, velocity, and acceleration of the mechanism without considering effects from masses of components. With dynamic analysis and FEA, effects such as the forces or torques at the joint due to mass and inertia of components can be identified. With keen market competition, ALGOR Mechanical Event Simulation (MES), MSC visualNastran 4D, Unigraphics Motion+, and Pro/MECHANICA were chosen for explorations. In this study, comparisons between software tools were presented in terms of following categories: graphical user interface (GUI), import capability, tutorial availability, ease of use, kinematic simulation capability, dynamic simulation capability, FEA capability, graphical output, technical support, and cost. Propulsion Test Article (PTA) with Fastrac engine model exported from IGRIP and an office chair mechanism were used as examples for simulations.

  9. Qualification of Electrical Ground Support Equipment for New Space Programs

    NASA Technical Reports Server (NTRS)

    SotoToro, Felix A.; Vu, Bruce T.; Hamilton, Mark S.

    2011-01-01

    With the Space Shuttle program coming to an end, the National Aeronautics and Space Administration (NASA) is moving to a new space flight program that will allow expeditions beyond low earth orbit. The space vehicles required to comply with these missions will be carrying heavy payloads. This implies that the Earth departure stage capabilities must be of higher magnitudes, given the current propulsion technology. The engineering design of the new flight hardware comes with some structural, thermal, propulsion and other subsystems' challenges. Meanwhile, the necessary ground support equipment (GSE) used to test, validate, verify and process the flight hardware must withstand the new program specifications. This paper intends to provide the qualification considerations during implementation of new electrical GSE for space programs. A team of engineers was formed to embark on this task, and facilitate the logistics process and ensure that the electrical, mechanical and fluids subsystems conduct the proper level of testing. Ultimately, each subsystem must certify that each piece of ground support equipment used in the field is capable of withstanding the strenuous vibration, acoustics, environmental, thermal and Electromagnetic Interference (EMf) levels experienced during pre-launch, launch and post-launch activities. The benefits of capturing and sharing these findings will provide technical, cost savings and schedule impacts infon11ation to both the technical and management community. Keywords: Qualification; Testing; Ground Support Equipment; Electromagnetic Interference Testing; Vibration Testing; Acoustic Testing; Power Spectral Density.

  10. Fabrication of Metallic Biomedical Scaffolds with the Space Holder Method: A Review

    PubMed Central

    Arifvianto, Budi; Zhou, Jie

    2014-01-01

    Bone tissue engineering has been increasingly studied as an alternative approach to bone defect reconstruction. In this approach, new bone cells are stimulated to grow and heal the defect with the aid of a scaffold that serves as a medium for bone cell formation and growth. Scaffolds made of metallic materials have preferably been chosen for bone tissue engineering applications where load-bearing capacities are required, considering the superior mechanical properties possessed by this type of materials to those of polymeric and ceramic materials. The space holder method has been recognized as one of the viable methods for the fabrication of metallic biomedical scaffolds. In this method, temporary powder particles, namely space holder, are devised as a pore former for scaffolds. In general, the whole scaffold fabrication process with the space holder method can be divided into four main steps: (i) mixing of metal matrix powder and space-holding particles; (ii) compaction of granular materials; (iii) removal of space-holding particles; (iv) sintering of porous scaffold preform. In this review, detailed procedures in each of these steps are presented. Technical challenges encountered during scaffold fabrication with this specific method are addressed. In conclusion, strategies are yet to be developed to address problematic issues raised, such as powder segregation, pore inhomogeneity, distortion of pore sizes and shape, uncontrolled shrinkage and contamination. PMID:28788638

  11. Technology transfer and the NASA Technology Utilization Program - An overview

    NASA Technical Reports Server (NTRS)

    Clarks, Henry J.; Rose, James T.; Mangum, Stephen D.

    1989-01-01

    The goal of the NASA Technology Utilization (TU) Program is to broaden and accelerate the transfer of aerospace technology and to develop new commercial products and processes that represent additional return on the national investment in the U.S. space programs. The mechanisms established by the TU Program includes TU offices, publications, the information retrieval, software dissemination, and the NASA Applications Engineering Program. These mechanisms are implemented through a nationwide NASA TU Network, working closely with industry and public sector organizations to encourage and facilitate their access and utilization of the results of the U.S space programs. Examples of TU are described, including a method for the reduction of metal fatigue in textile equipment and a method for the management of wandering behavior in Alzheimer's patients.

  12. Telemetry Boards Interpret Rocket, Airplane Engine Data

    NASA Technical Reports Server (NTRS)

    2009-01-01

    For all the data gathered by the space shuttle while in orbit, NASA engineers are just as concerned about the information it generates on the ground. From the moment the shuttle s wheels touch the runway to the break of its electrical umbilical cord at 0.4 seconds before its next launch, sensors feed streams of data about the status of the vehicle and its various systems to Kennedy Space Center s shuttle crews. Even while the shuttle orbiter is refitted in Kennedy s orbiter processing facility, engineers constantly monitor everything from power levels to the testing of the mechanical arm in the orbiter s payload bay. On the launch pad and up until liftoff, the Launch Control Center, attached to the large Vehicle Assembly Building, screens all of the shuttle s vital data. (Once the shuttle clears its launch tower, this responsibility shifts to Mission Control at Johnson Space Center, with Kennedy in a backup role.) Ground systems for satellite launches also generate significant amounts of data. At Cape Canaveral Air Force Station, across the Banana River from Kennedy s location on Merritt Island, Florida, NASA rockets carrying precious satellite payloads into space flood the Launch Vehicle Data Center with sensor information on temperature, speed, trajectory, and vibration. The remote measurement and transmission of systems data called telemetry is essential to ensuring the safe and successful launch of the Agency s space missions. When a launch is unsuccessful, as it was for this year s Orbiting Carbon Observatory satellite, telemetry data also provides valuable clues as to what went wrong and how to remedy any problems for future attempts. All of this information is streamed from sensors in the form of binary code: strings of ones and zeros. One small company has partnered with NASA to provide technology that renders raw telemetry data intelligible not only for Agency engineers, but also for those in the private sector.

  13. Space transportation booster engine configuration study. Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The objective of the Space Transportation Booster Engine (STBE) Configuration Study is to contribute to the Advanced Launch System (ALS) development effort by providing highly reliable, low cost booster engine concepts for both expendable and reusable rocket engines. The objectives of the Space Transportation Booster Engine (STBE) Configuration Study were to identify engine configurations which enhance vehicle performance and provide operational flexibility at low cost, and to explore innovative approaches to the follow-on full-scale development (FSD) phase for the STBE.

  14. NASA Tests 2nd RS-25 Flight Engine for Space Launch System

    NASA Image and Video Library

    2017-10-19

    Engineers at NASA’s Stennis Space Center in Mississippi on Oct. 19 completed a hot-fire test of RS-25 rocket engine E2063, a flight engine for NASA’s new Space Launch System (SLS) rocket. Engine E2063 is scheduled to help power SLS on its Exploration Mission-2 (EM-2), the first flight of the new rocket to carry humans. Flight engine E2059 was tested on March 10, 2016, also for use on the EM-2 flight.

  15. NASA Tests 2nd RS-25 Flight Engine For Space Launch System

    NASA Image and Video Library

    2017-10-19

    Engineers at NASA’s Stennis Space Center in Mississippi on Oct. 19 completed a hot-fire test of RS-25 rocket engine E2063, a flight engine for NASA’s new Space Launch System (SLS) rocket. Engine E2063 is scheduled to help power SLS on its Exploration Mission-2 (EM-2), the first flight of the new rocket to carry humans. Flight engine E2059 was tested on March 10, 2016, also for use on the EM-2 flight.

  16. Video File - NASA Tests 2nd RS-25 Flight Engine for Space Launch System

    NASA Image and Video Library

    2017-10-19

    Engineers at NASA’s Stennis Space Center in Mississippi on Oct. 19 completed a hot-fire test of RS-25 rocket engine E2063, a flight engine for NASA’s new Space Launch System (SLS) rocket. Engine E2063 is scheduled to help power SLS on its Exploration Mission-2 (EM-2), the first flight of the new rocket to carry humans. Flight engine E2059 was tested on March 10, 2016, also for use on the EM-2 flight.

  17. NASA Prepares Webb Telescope Pathfinder for Famous Chamber

    NASA Image and Video Library

    2015-04-13

    Engineers and technicians manually deployed the secondary mirror support structure (SMSS) of the James Webb Space Telescope's Pathfinder backplane test model, outside of a giant space simulation chamber called Chamber A, at NASA's Johnson Space Center in Houston. This historic test chamber was previously used in manned spaceflight missions and is being readied for a cryogenic test of a Webb telescope component. In the weightless environment of space, the SMSS is deployed by electric motors. On the ground, specially trained operators use a hand crank and a collection of mechanical ground support equipment to overcome the force of gravity. "This structure needs to be in the deployed configuration during the cryogenic test to see how the structure will operate in the frigid temperatures of space," said Will Rowland, senior mechanical test engineer for Northrop Grumman Aerospace Systems, Redondo Beach, California. "The test also demonstrates that the system works and can be successfully deployed." After the deployment was completed, Chamber A's circular door was opened and the rails (seen in the background of the photo) were installed so that the Pathfinder unit could be lifted, installed and rolled into the chamber on a cart. The team completed a fit check for the Pathfinder. Afterwards they readied the chamber for the cryogenic test, which will simulate the frigid temperatures the Webb telescope will encounter in space. “The team has been doing a great job keeping everything on schedule to getting our first optical test results, " said Lee Feinberg, NASA Optical Telescope Element Manager. The James Webb Space Telescope is the scientific successor to NASA's Hubble Space Telescope. It will be the most powerful space telescope ever built. Webb is an international project led by NASA with its partners, the European Space Agency and the Canadian Space Agency. Image credit: NASA/Desiree Stover Text credit: Laura Betz, NASA's Goddard Space Flight Center, Greenbelt, Maryland NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Open-source three-dimensional printing of biodegradable polymer scaffolds for tissue engineering.

    PubMed

    Trachtenberg, Jordan E; Mountziaris, Paschalia M; Miller, Jordan S; Wettergreen, Matthew; Kasper, Fred K; Mikos, Antonios G

    2014-12-01

    The fabrication of scaffolds for tissue engineering requires elements of customization depending on the application and is often limited due to the flexibility of the processing technique. This investigation seeks to address this obstacle by utilizing an open-source three-dimensional printing (3DP) system that allows vast customizability and facilitates reproduction of experiments. The effects of processing parameters on printed poly(ε-caprolactone) scaffolds with uniform and gradient pore architectures have been characterized with respect to fiber and pore morphology and mechanical properties. The results demonstrate the ability to tailor the fiber diameter, pore size, and porosity through modification of pressure, printing speed, and programmed fiber spacing. A model was also used to predict the compressive mechanical properties of uniform and gradient scaffolds, and it was found that modulus and yield strength declined with increasing porosity. The use of open-source 3DP technologies for printing tissue-engineering scaffolds provides a flexible system that can be readily modified at a low cost and is supported by community documentation. In this manner, the 3DP system is more accessible to the scientific community, which further facilitates the translation of these technologies toward successful tissue-engineering strategies.

  19. A Rainbow View of NASA's RS-25 Engine Test

    NASA Image and Video Library

    2017-02-22

    NASA engineers conducted their first RS-25 test of 2017 on the A-1 Test Stand at Stennis Space Center near Bay St. Louis, Mississippi, on Feb. 22, continuing to collect data on the performance of the rocket engine that will help power the new Space Launch System (SLS) rocket. Shown from the viewpoint of an overhead drone, the test of development engine No. 0528 ran the scheduled 380 seconds (six minutes and 20 seconds), allowing engineers to monitor various engine operating conditions. The test represents another step forward in development of the rocket that will launch humans aboard Orion deeper into space than ever before. Four RS-25 engines, together with a pair of solid rocket boosters, will power the SLS at launch on its deep-space missions. The engines for the first four SLS flights are former space shuttle main engines, which were tested extensively at Stennis and are some of the most proven engines in the world. Engineers are conducting an ongoing series of tests this year for SLS on both development and flight engines for future flights to ensure the engine, outfitted with a new controller, can perform at the higher level under a variety of conditions and situations. Stennis is also preparing its B-2 Test Stand to test the core stage for the first SLS flight with Orion, known as Exploration Mission-1. That testing will involve installing the flight stage on the stand and firing its four RS-25 engines simultaneously, just as during an actual launch. The Feb. 22 test was conducted by Aerojet Rocketdyne and Syncom Space Services engineers and operators. Aerojet Rocketdyne is the prime contractor for the RS-25 engines. Syncom Space Services is the prime contractor for Stennis facilities and operations. PAO Name:Kim Henry Phone Number:256-544-1899 Email Address: kimberly.m.henry@nasa.gov

  20. General view of the Space Shuttle Main Engine (SSME) assembly ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the Space Shuttle Main Engine (SSME) assembly with the expansion nozzle removed and resting on a cushioned mat on the floor of the SSME Processing Facility. The most prominent features in this view are the Low-Pressure Fuel Turbopump (LPFTP) on the upper left of the engine assembly, the LPFTP Discharge Duct looping around the assembly, the Gimbal Bearing on the top center of the assembly, the Electrical Interface Panel sits just below the Gimbal Bearing and the Low-Pressure Oxidizer Turbopump is mounted on the top right of the engine assembly in this view. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  1. Research Technology

    NASA Image and Video Library

    2002-03-11

    Engineers at the Marshall Space Flight Center (MSFC) have begun a series of engine tests on a new breed of space propulsion: a Reaction Control Engine developed for the Space Launch Initiative (SLI). The engine, developed by TRW Space and Electronics of Redondo Beach, California, is an auxiliary propulsion engine designed to maneuver vehicles in orbit. It is used for docking, reentry, attitude control, and fine-pointing while the vehicle is in orbit. The engine uses nontoxic chemicals as propellants, a feature that creates a safer environment for ground operators, lowers cost, and increases efficiency with less maintenance and quicker turnaround time between missions. Testing includes 30 hot-firings. This photograph shows the first engine test performed at MSFC that includes SLI technology. Another unique feature of the Reaction Control Engine is that it operates at dual thrust modes, combining two engine functions into one engine. The engine operates at both 25 and 1,000 pounds of force, reducing overall propulsion weight and allowing vehicles to easily maneuver in space. The low-level thrust of 25 pounds of force allows the vehicle to fine-point maneuver and dock while the high-level thrust of 1,000 pounds of force is used for reentry, orbit transfer, and coarse positioning. SLI is a NASA-wide research and development program, managed by the MSFC, designed to improve safety, reliability, and cost effectiveness of space travel for second generation reusable launch vehicles.

  2. Ceramic technology for advanced heat engines project. Semiannual progress report, October 1985-March 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-08-01

    Significant accomplishments in fabricating cermaic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, additional research is needed in materials and processing development, design methodology, and data base and life prediction. An assessment of needs was completed, and a five-year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotivemore » heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.« less

  3. Process Optimization of Bismaleimide (BMI) Resin Infused Carbon Fiber Composite

    NASA Technical Reports Server (NTRS)

    Ehrlich, Joshua W.; Tate, LaNetra C.; Cox, Sarah B.; Taylor, Brian J.; Wright, M. Clara; Faughnan, Patrick D.; Batterson, Lawrence M.; Caraccio, Anne J.; Sampson, Jeffery W.

    2013-01-01

    Engineers today are presented with the opportunity to design and build the next generation of space vehicles out of the lightest, strongest, and most durable materials available. Composites offer excellent structural characteristics and outstanding reliability in many forms that will be utilized in future aerospace applications including the Commercial Crew and Cargo Program and the Orion space capsule. NASA's Composites for Exploration (CoEx) project researches the various methods of manufacturing composite materials of different fiber characteristics while using proven infusion methods of different resin compositions. Development and testing on these different material combinations will provide engineers the opportunity to produce optimal material compounds for multidisciplinary applications. Through the CoEx project, engineers pursue the opportunity to research and develop repair patch procedures for damaged spacecraft. Working in conjunction with Raptor Resins Inc., NASA engineers are utilizing high flow liquid infusion molding practices to manufacture high-temperature composite parts comprised of intermediate modulus 7 (IM7) carbon fiber material. IM7 is a continuous, high-tensile strength composite with outstanding structural qualities such as high shear strength, tensile strength and modulus as well as excellent corrosion, creep, and fatigue resistance. IM7 carbon fiber, combined with existing thermoset and thermoplastic resin systems, can provide improvements in material strength reinforcement and deformation-resistant properties for high-temperature applications. Void analysis of the different layups of the IM7 material discovered the largest total void composition within the [ +45 , 90 , 90 , -45 ] composite panel. Tensile and compressional testing proved the highest mechanical strength was found in the [0 4] layup. This paper further investigates the infusion procedure of a low-cost/high-performance BMI resin into an IM7 carbon fiber material and the optical, chemical, and mechanical analyses performed.

  4. Advanced space design program to the Universities Space Research Association and the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Nevill, Gale E., Jr.

    1988-01-01

    The goal of the Fall 1987 class of EGM 4000 was the investigation of engineering aspects contributing to the development of NASA's Controlled Ecological Life Support System (CELSS). The areas investigated were the geometry of plant growth chambers, automated seeding of plants, remote sensing of plant health, and processing of grain into edible forms. The group investigating variable spacing of individual soybean plants designed growth trays consisting of three dimensional trapezoids arranged in a compact circular configuration. The automated seed manipulation and planting group investigated the electrical and mechanical properties of wheat seeds and developed three seeding concepts based upon these properties. The plant health and disease sensing group developed a list of reliable plant health indicators and investigated potential detection technologies.

  5. Origin of Marshall Space Flight Center (MSFC)

    NASA Image and Video Library

    2004-04-15

    Twelve scientific specialists of the Peenemuende team at the front of Building 4488, Redstone Arsenal, Huntsville, Alabama. They led the Army's space efforts at ABMA before transfer of the team to National Aeronautic and Space Administration (NASA), George C. Marshall Space Flight Center (MSFC). (Left to right) Dr. Ernst Stuhlinger, Director, Research Projects Office; Dr. Helmut Hoelzer, Director, Computation Laboratory: Karl L. Heimburg, Director, Test Laboratory; Dr. Ernst Geissler, Director, Aeroballistics Laboratory; Erich W. Neubert, Director, Systems Analysis Reliability Laboratory; Dr. Walter Haeussermarn, Director, Guidance and Control Laboratory; Dr. Wernher von Braun, Director Development Operations Division; William A. Mrazek, Director, Structures and Mechanics Laboratory; Hans Hueter, Director, System Support Equipment Laboratory;Eberhard Rees, Deputy Director, Development Operations Division; Dr. Kurt Debus, Director Missile Firing Laboratory; Hans H. Maus, Director, Fabrication and Assembly Engineering Laboratory

  6. Microgravity

    NASA Image and Video Library

    2000-07-01

    Key persornel in the Mechanics of Granular Materials (MGM) experiment at the University of Colorado at Boulder include Tawnya Ferbiak (software engineer), Susan Batiste (research assistant), and Christina Winkler (graduate research assistant). Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. MGM experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that cannot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: University of Colorado at Boulder).

  7. Microgravity

    NASA Image and Video Library

    1998-01-25

    A test cell for Mechanics of Granular Materials (MGM) experiment is shown approximately 20 and 60 minutes after the start of an experiment on STS-89. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditons that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: NASA/Marshall Space Flight Center (MSFC)

  8. NASA’s Stennis Space Center Conducts RS-25 Engine Test

    NASA Image and Video Library

    2017-03-24

    On March 23, NASA conducted a test of an RS-25 engine at the agency’s Stennis Space Center in Bay St. Louis, Mississippi. Four RS-25’s will help power NASA’s Space Launch System (SLS) rocket to space. During this test, engineers evaluated the engine’s new controller or “brain”, which communicates with the SLS vehicle. Once test data is certified, the engine controller will be removed and installed on one of the four flight engines that will help power the first integrated flight of SLS and the Orion spacecraft.

  9. Space Shuttle Main Engine Public Test Firing

    NASA Image and Video Library

    2000-07-25

    A new NASA Space Shuttle Main Engine (SSME) roars to the approval of more than 2,000 people who came to John C. Stennis Space Center in Hancock County, Miss., on July 25 for a flight-certification test of the SSME Block II configuration. The engine, a new and significantly upgraded shuttle engine, was delivered to NASA's Kennedy Space Center in Florida for use on future shuttle missions. Spectators were able to experience the 'shake, rattle and roar' of the engine, which ran for 520 seconds - the length of time it takes a shuttle to reach orbit.

  10. 14 CFR 63.42 - Flight engineer certificate issued on basis of a foreign flight engineer license.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flight engineer certificate issued on basis of a foreign flight engineer license. 63.42 Section 63.42 Aeronautics and Space FEDERAL AVIATION... PILOTS Flight Engineers § 63.42 Flight engineer certificate issued on basis of a foreign flight engineer...

  11. 14 CFR 63.42 - Flight engineer certificate issued on basis of a foreign flight engineer license.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Flight engineer certificate issued on basis of a foreign flight engineer license. 63.42 Section 63.42 Aeronautics and Space FEDERAL AVIATION... PILOTS Flight Engineers § 63.42 Flight engineer certificate issued on basis of a foreign flight engineer...

  12. 14 CFR 63.42 - Flight engineer certificate issued on basis of a foreign flight engineer license.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight engineer certificate issued on basis of a foreign flight engineer license. 63.42 Section 63.42 Aeronautics and Space FEDERAL AVIATION... PILOTS Flight Engineers § 63.42 Flight engineer certificate issued on basis of a foreign flight engineer...

  13. 14 CFR 63.42 - Flight engineer certificate issued on basis of a foreign flight engineer license.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Flight engineer certificate issued on basis of a foreign flight engineer license. 63.42 Section 63.42 Aeronautics and Space FEDERAL AVIATION... PILOTS Flight Engineers § 63.42 Flight engineer certificate issued on basis of a foreign flight engineer...

  14. 14 CFR 63.42 - Flight engineer certificate issued on basis of a foreign flight engineer license.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight engineer certificate issued on basis of a foreign flight engineer license. 63.42 Section 63.42 Aeronautics and Space FEDERAL AVIATION... PILOTS Flight Engineers § 63.42 Flight engineer certificate issued on basis of a foreign flight engineer...

  15. 14 CFR 33.21 - Engine cooling.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine cooling. 33.21 Section 33.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; General § 33.21 Engine cooling. Engine design and...

  16. 14 CFR 33.21 - Engine cooling.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine cooling. 33.21 Section 33.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; General § 33.21 Engine cooling. Engine design and...

  17. 14 CFR 33.21 - Engine cooling.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine cooling. 33.21 Section 33.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; General § 33.21 Engine cooling. Engine design and...

  18. 14 CFR 33.21 - Engine cooling.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine cooling. 33.21 Section 33.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; General § 33.21 Engine cooling. Engine design and...

  19. 14 CFR 33.21 - Engine cooling.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine cooling. 33.21 Section 33.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; General § 33.21 Engine cooling. Engine design and...

  20. 46 CFR 25.40-1 - Tanks and engine spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Tanks and engine spaces. 25.40-1 Section 25.40-1...-1 Tanks and engine spaces. (a) All motorboats or motor vessels, except open boats and as provided in..., and other spaces to which explosive or flammable gases and vapors from these compartments may flow...

  1. 46 CFR 25.40-1 - Tanks and engine spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Tanks and engine spaces. 25.40-1 Section 25.40-1...-1 Tanks and engine spaces. (a) All motorboats or motor vessels, except open boats and as provided in..., and other spaces to which explosive or flammable gases and vapors from these compartments may flow...

  2. 46 CFR 25.40-1 - Tanks and engine spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Tanks and engine spaces. 25.40-1 Section 25.40-1...-1 Tanks and engine spaces. (a) All motorboats or motor vessels, except open boats and as provided in..., and other spaces to which explosive or flammable gases and vapors from these compartments may flow...

  3. 46 CFR 25.40-1 - Tanks and engine spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Tanks and engine spaces. 25.40-1 Section 25.40-1...-1 Tanks and engine spaces. (a) All motorboats or motor vessels, except open boats and as provided in..., and other spaces to which explosive or flammable gases and vapors from these compartments may flow...

  4. 46 CFR 25.40-1 - Tanks and engine spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Tanks and engine spaces. 25.40-1 Section 25.40-1...-1 Tanks and engine spaces. (a) All motorboats or motor vessels, except open boats and as provided in..., and other spaces to which explosive or flammable gases and vapors from these compartments may flow...

  5. Space Transportation Booster Engine (STBE) configuration study

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The overall objective of this Space Transportation Booster Engine (STBE) study is to identify candidate engine configurations which enhance vehicle performance and provide operational flexibility at low cost. The specific objectives are as follows: (1) to identify and evaluate candidate LOX/HC engine configurations for the Advanced Space Transportation System for an early 1995 IOC and a late 2000 IOC; (2) to select one optimum engine for each time period; 3) to prepare a conceptual design for each configuration; (4) to develop a technology plan for the 2000 IOC engine; and, (5) to prepare preliminary programmatic planning and analysis for the 1995 IOC engine.

  6. Video File - RS-25 Engine Test 2017-08-30

    NASA Image and Video Library

    2017-08-30

    NASA engineers closed a summer of hot fire testing Aug. 30 for flight controllers on RS-25 engines that will help power the new Space Launch System (SLS) rocket being built to carry astronauts to deep-space destinations, including Mars. The 500-second hot fire an RS-25 engine flight controller unit on the A-1 Test Stand at Stennis Space Center near Bay St. Louis, Mississippi marked another step toward the nation’s return to human deep-space exploration missions.

  7. NASA's Ares I and Ares V Launch Vehicles -- Effective Space Operations Through Efficient Ground Operations

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.; Singer, Christopher E.; Onken, Jay F.

    2008-01-01

    The United States (U.S.) plans to return to the Moon by 2020, with the development of a new human-rated space transportation system to replace the Space Shuttle, which is due for retirement in 2010 after it completes its missions of building the International Space Station and servicing the Hubble Space Telescope. Powering the future of space-based scientific exploration will be the Ares I Crew Launch Vehicle, which will transport the Orion Crew Exploration Vehicle to orbit where it will rendezvous with the Lunar Lander. which will be delivered by the Ares V Cargo Launch Vehicle. This new transportation infrastructure, developed by the National Aeronautics and Space Administration (NASA), will allow astronauts to leave low-Earth orbit for extended lunar exploration and preparation for the first footprint on Mars. All space-based operations begin and are controlled from Earth. NASA's philosophy is to deliver safe, reliable, and cost-effective solutions to sustain a multi-billion-dollar program across several decades. Leveraging 50 years of lessons learned, NASA is partnering with private industry, while building on proven hardware experience. This paper will discuss how the Engineering Directorate at NASA's Marshall Space Flight Center is working with the Ares Projects Office to streamline ground operations concepts and reduce costs. Currently, NASA's budget is around $17 billion, which is less than 1 percent of the U.S. Federal budget. Of this amount, NASA invests approximately $4.5 billion each year in Space Shuttle operations, regardless of whether the spacecraft is flying or not. The affordability requirement is for the Ares I to reduce this expense by 50 percent, in order to allow NASA to invest more in space-based scientific operations. Focusing on this metric, the Engineering Directorate provides several solutions-oriented approaches, including Lean/Six Sigma practices and streamlined hardware testing and integration, such as assembling major hardware elements before shipping to the Kennedy Space Center for launch operations. This paper provides top-level details for several cost saving initiatives, including both process and product improvements that will result in space transportation systems that are designed with operations efficiencies in mind. The Engineering Directorate provides both the intellectual capital embodied in an experienced workforce and unique facilities in which to validate the information technology tools that allow a nationwide team to collaboratively connect across miles that separate them and the engineering disciplines that integrate various piece parts into a whole system. As NASA transforms ground-based operations, it also is transitioning its workforce from an era of intense hands-on labor to a new one of mechanized conveniences and robust hardware with simpler interfaces. Ensuring that space exploration is on sound footing requires that operations efficiencies be designed into the transportation system and implemented in the development stage. Applying experience gained through decades of ground and space op'erations, while using value-added processes and modern business and engineering tools, is the philosophy upon which a new era of exploration will be built to solve some of the most pressing exploration challenges today -- namely, safety, reliability, and affordability.

  8. The 1988 overview of free-piston Stirling technology for space power at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Slaby, Jack G.

    1988-01-01

    The completion of the Space Power Demonstrator Engine (SPDE) testing is discussed, terminating with the generation of 25 kW of engine power from a dynamically-balanced opposed-piston Stirling engine at a temperature ratio of 2.0. Engine efficiency was greater than 22 percent. The SPDE recently was divided into 2 separate single cylinder engines, Space Power Research Engine (SPRE), that serves as test beds for the evaluation of key technology disciplines, which include hydrodynamic gas bearings, high efficiency linear alternators, space qualified heat pipe heat exchangers, oscillating flow code validation, and engine loss understanding. The success of the SPDE at 650 K has resulted in a more ambitious Stirling endeavor, the design, fabrication, test, and evaluation of a designed-for-space 25 kW per cylinder Stirling Space Engine (SSE) to operate at a hot metal temperature of 1050 K using superalloy materials. This design is a low temperature confirmation of the 1300 K design. It is the 1300 K free-piston Stirling power conversion system that is the ultimate goal. The first two phases of this program, the 650 K SPDE and the 1050 K SSE are emphasized.

  9. Smoke and fire Rocket-engine ablaze on This Week @NASA – August 14, 2015

    NASA Image and Video Library

    2015-08-14

    On Aug. 13, NASA conducted a test firing of the RS-25 rocket engine at Stennis Space Center. The 535 second test was the sixth in the current series of seven developmental tests of the former space shuttle main engine. Four RS-25 engines will power the core stage of the new Space Launch System (SLS) rocket, which will carry humans deeper into space than ever before, including to an asteroid and Mars. Also, Veggies in space, Russian spacewalk, Supply ship undocks from ISS, Smallest giant black hole, 10th anniversary of MRO launch and more!

  10. Bioreactors Drive Advances in Tissue Engineering

    NASA Technical Reports Server (NTRS)

    2012-01-01

    It was an unlikely moment for inspiration. Engineers David Wolf and Ray Schwarz stopped by their lab around midday. Wolf, of Johnson Space Center, and Schwarz, with NASA contractor Krug Life Sciences (now Wyle Laboratories Inc.), were part of a team tasked with developing a unique technology with the potential to enhance medical research. But that wasn t the focus at the moment: The pair was rounding up colleagues interested in grabbing some lunch. One of the lab s other Krug engineers, Tinh Trinh, was doing something that made Wolf forget about food. Trinh was toying with an electric drill. He had stuck the barrel of a syringe on the bit; it spun with a high-pitched whirr when he squeezed the drill s trigger. At the time, a multidisciplinary team of engineers and biologists including Wolf, Schwarz, Trinh, and project manager Charles D. Anderson, who formerly led the recovery of the Apollo capsules after splashdown and now worked for Krug was pursuing the development of a technology called a bioreactor, a cylindrical device used to culture human cells. The team s immediate goal was to grow human kidney cells to produce erythropoietin, a hormone that regulates red blood cell production and can be used to treat anemia. But there was a major barrier to the technology s success: Moving the liquid growth media to keep it from stagnating resulted in turbulent conditions that damaged the delicate cells, causing them to quickly die. The team was looking forward to testing the bioreactor in space, hoping the device would perform more effectively in microgravity. But on January 28, 1986, the Space Shuttle Challenger broke apart shortly after launch, killing its seven crewmembers. The subsequent grounding of the shuttle fleet had left researchers with no access to space, and thus no way to study the effects of microgravity on human cells. As Wolf looked from Trinh s syringe-capped drill to where the bioreactor sat on a workbench, he suddenly saw a possible solution to both problems. It dawned on me that rotating the wall of the reactor would solve one of our fundamental fluid mechanical problems, specifically by removing the velocity gradient of the tissue culture fluid media near the reactor s walls, says Wolf. It looked as though it would allow us to suspend the growing cells within the reactor without introducing turbulent fluid mechanical conditions.

  11. Refurbishment and Automation of the Thermal/Vacuum Facilities at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Donohue, John T.; Johnson, Chris; Ogden, Rick; Sushon, Janet

    1998-01-01

    The thermal/vacuum facilities located at the Goddard Space Flight Center (GSFC) have supported both manned and unmanned space flight since the 1960s. Of the 11 facilities, currently 10 of the systems are scheduled for refurbishment and/or replacement as part of a 5-year implementation. Expected return on investment includes the reduction in test schedules, improvements in the safety of facility operations, reduction in the complexity of a test and the reduction in personnel support required for a test. Additionally, GSFC will become a global resource renowned for expertise in thermal engineering, mechanical engineering and for the automation of thermal/vacuum facilities and thermal/vacuum tests. Automation of the thermal/vacuum facilities includes the utilization of Programmable Logic Controllers (PLCs) and the use of Supervisory Control and Data Acquisition (SCADA) systems. These components allow the computer control and automation of mechanical components such as valves and pumps. In some cases, the chamber and chamber shroud require complete replacement while others require only mechanical component retrofit or replacement. The project of refurbishment and automation began in 1996 and has resulted in the computer control of one Facility (Facility #225) and the integration of electronically controlled devices and PLCs within several other facilities. Facility 225 has been successfully controlled by PLC and SCADA for over one year. Insignificant anomalies have occurred and were resolved with minimal impact to testing and operations. The amount of work remaining to be performed will occur over the next four to five years. Fiscal year 1998 includes the complete refurbishment of one facility, computer control of the thermal systems in two facilities, implementation of SCADA and PLC systems to support multiple facilities and the implementation of a Database server to allow efficient test management and data analysis.

  12. Advanced Space Surface Systems Operations

    NASA Technical Reports Server (NTRS)

    Huffaker, Zachary Lynn; Mueller, Robert P.

    2014-01-01

    The importance of advanced surface systems is becoming increasingly relevant in the modern age of space technology. Specifically, projects pursued by the Granular Mechanics and Regolith Operations (GMRO) Lab are unparalleled in the field of planetary resourcefulness. This internship opportunity involved projects that support properly utilizing natural resources from other celestial bodies. Beginning with the tele-robotic workstation, mechanical upgrades were necessary to consider for specific portions of the workstation consoles and successfully designed in concept. This would provide more means for innovation and creativity concerning advanced robotic operations. Project RASSOR is a regolith excavator robot whose primary objective is to mine, store, and dump regolith efficiently on other planetary surfaces. Mechanical adjustments were made to improve this robot's functionality, although there were some minor system changes left to perform before the opportunity ended. On the topic of excavator robots, the notes taken by the GMRO staff during the 2013 and 2014 Robotic Mining Competitions were effectively organized and analyzed for logistical purposes. Lessons learned from these annual competitions at Kennedy Space Center are greatly influential to the GMRO engineers and roboticists. Another project that GMRO staff support is Project Morpheus. Support for this project included successfully producing mathematical models of the eroded landing pad surface for the vertical testbed vehicle to predict a timeline for pad reparation. And finally, the last project this opportunity made contribution to was Project Neo, a project exterior to GMRO Lab projects, which focuses on rocket propulsion systems. Additions were successfully installed to the support structure of an original vertical testbed rocket engine, thus making progress towards futuristic test firings in which data will be analyzed by students affiliated with Rocket University. Each project will be explained in further detail, as well as the full scope of the contributions made during this opportunity.

  13. Orbiter Atlantis (STS-110) Launch With New Block II Engines

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Powered by three newly-enhanced Space Shuttle Maine Engines (SSMEs), called the Block II Maine Engines, the Space Shuttle Orbiter Atlantis lifted off from the Kennedy Space Center launch pad on April 8, 2002 for the STS-110 mission. The Block II Main Engines incorporate an improved fuel pump featuring fewer welds, a stronger integral shaft/disk, and more robust bearings, making them safer and more reliable, and potentially increasing the number of flights between major overhauls. NASA continues to increase the reliability and safety of Shuttle flights through a series of enhancements to the SSME. The engines were modified in 1988 and 1995. Developed in the 1970s and managed by the Space Shuttle Projects Office at the Marshall Space Flight Center, the SSME is the world's most sophisticated reusable rocket engine. The new turbopump made by Pratt and Whitney of West Palm Beach, Florida, was tested at NASA's Stennis Space Center in Mississippi. Boeing Rocketdyne in Canoga Park, California, manufactures the SSME. This image was extracted from engineering motion picture footage taken by a tracking camera.

  14. INFLIGHT (MISSION CONTROL CENTER [MCC]) - STS-2 - JSC

    NASA Image and Video Library

    1981-11-14

    S81-39508 (14 Nov. 1981) --- The successful STS-2 landing at Edwards Air Force Base in California was cause for celebration in the Johnson Space Center?s Mission Control Center shortly before 3:30 p.m. (CST) on Nov. 14, 1981. JSC Director Christopher C. Kraft Jr. (center), enjoys a traditional ?touchdown? cigar. He is flanked by retiring lead engineer Maxime Faget (left) and Thomas L. Moser of the structures and mechanics division, who join the celebration. The second flight of the space shuttle Columbia lasted two days, six hours, 13 minutes and a few seconds. Photo credit: NASA

  15. Space Transportation Booster Engine Configuration Study. Volume 3: Program Cost estimates and work breakdown structure and WBS dictionary

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The objective of the Space Transportation Booster Engine Configuration Study is to contribute to the ALS development effort by providing highly reliable, low cost booster engine concepts for both expendable and reusable rocket engines. The objectives of the Space Transportation Booster Engine (STBE) Configuration Study were: (1) to identify engine development configurations which enhance vehicle performance and provide operational flexibility at low cost; and (2) to explore innovative approaches to the follow-on Full-Scale Development (FSD) phase for the STBE.

  16. Space transportation booster engine configuration study. Volume 2: Design definition document and environmental analysis

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The objective of the Space Transportation Booster Engine (STBE) Configuration Study is to contribute to the Advanced Launch System (ALS) development effort by providing highly reliable, low cost booster engine concepts for both expendable and reusable rocket engines. The objectives of the space Transportation Booster Engine (STBE) Configuration Study were: (1) to identify engine configurations which enhance vehicle performance and provide operational flexibility at low cost, and (2) to explore innovative approaches to the follow-on Full-Scale Development (FSD) phase for the STBE.

  17. KSC-04pd2086

    NASA Image and Video Library

    2004-10-05

    KENNEDY SPACE CENTER, FLA. - Inside the KSC Engine Shop, Boeing-Rocketdyne technicians attach an overhead crane to the container enclosing the third Space Shuttle Main Engine for Discovery’s Return to Flight mission STS-114 arrives at the KSC Engine Shop aboard a trailer. The engine is returning from NASA’s Stennis Space Center in Mississippi where it underwent a hot fire acceptance test. Typically, the engines are installed on an orbiter in the Orbiter Processing Facility approximately five months before launch.

  18. A Basic Comparison of the Space Shuttle Main Engine and the J-2X Engine

    NASA Technical Reports Server (NTRS)

    Ayer, Adam

    2007-01-01

    With the introduction of the new manned space effort through the Constellation Program, there is an interest to have a basic comparison of the current Space Shuttle Main Engine (SSME) to the J-2X engine used for the second stage of both the Ares I and Ares V rockets. This paper seeks to compare size, weight and thrust capabilities while drawing simple conclusions on differences between the two engines.

  19. Space Launch Initiative (SLI) Engine Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, has begun a series of engine tests on the Reaction Control Engine developed by TRW Space and Electronics for NASA's Space Launch Initiative (SLI). SLI is a technology development effort aimed at improving the safety, reliability, and cost effectiveness of space travel for reusable launch vehicles. The engine in this photo, the first engine tested at MSFC that includes SLI technology, was tested for two seconds at a chamber pressure of 185 pounds per square inch absolute (psia). Propellants used were liquid oxygen as an oxidizer and liquid hydrogen as fuel. Designed to maneuver vehicles in orbit, the engine is used as an auxiliary propulsion system for docking, reentry, fine-pointing, and orbit transfer while the vehicle is in orbit. The Reaction Control Engine has two unique features. It uses nontoxic chemicals as propellants, which creates a safer environment with less maintenance and quicker turnaround time between missions, and it operates in dual thrust modes, combining two engine functions into one engine. The engine operates at both 25 and 1,000 pounds of force, reducing overall propulsion weight and allowing vehicles to easily maneuver in space. The force of low level thrust allows the vehicle to fine-point maneuver and dock, while the force of the high level thrust is used for reentry, orbital transfer, and course positioning.

  20. Space Station Freedom as an engineering experiment station: An overview

    NASA Technical Reports Server (NTRS)

    Rose, M. Frank

    1992-01-01

    In this presentation, the premise that Space Station Freedom has great utility as an engineering experiment station will be explored. There are several modes in which it can be used for this purpose. The most obvious are space qualification, process development, in space satellite repair, and materials engineering. The range of engineering experiments which can be done at Space Station Freedom run the gamut from small process oriented experiments to full exploratory development models. A sampling of typical engineering experiments are discussed in this session. First and foremost, Space Station Freedom is an elaborate experiment itself, which, if properly instrumented, will provide engineering guidelines for even larger structures which must surely be built if humankind is truly 'outward bound.' Secondly, there is the test, evaluation and space qualification of advanced electric thruster concepts, advanced power technology and protective coatings which must of necessity be tested in the vacuum of space. The current approach to testing these technologies is to do exhaustive laboratory simulation followed by shuttle or unmanned flights. Third, the advanced development models of life support systems intended for future space stations, manned mars missions, and lunar colonies can be tested for operation in a low gravity environment. Fourth, it will be necessary to develop new protective coatings, establish construction techniques, evaluate new materials to be used in the upgrading and repair of Space Station Freedom. Finally, the industrial sector, if it is ever to build facilities for the production of commercial products, must have all the engineering aspects of the process evaluated in space prior to a commitment to such a facility.

  1. Space Shuttle Project

    NASA Image and Video Library

    1977-08-01

    A workman reams holes to the proper size and aligment in the Space Shuttle Main Engine's main injector body, through which propellants will pass through on their way into the engine's combustion chamber. Rockwell International's Rocketdyne Division plant produced the engines under contract to the Marshall Space Flight Center.

  2. Space Shuttle Main Engine: Thirty Years of Innovation

    NASA Technical Reports Server (NTRS)

    Jue, F. H.; Hopson, George (Technical Monitor)

    2002-01-01

    The Space Shuttle Main Engine (SSME) is the first reusable, liquid booster engine designed for human space flight. This paper chronicles the 30-year history and achievements of the SSME from authority to proceed up to the latest flight configuration - the Block 2 SSME.

  3. Closeup view of the bottom area of Space Shuttle Main ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the bottom area of Space Shuttle Main Engine (SSME) 2052 engine assembly mounted in a SSME Engine Handler in the Horizontal Processing area of the SSME Processing Facility at Kennedy Space Center. The most prominent features in this view are the Low-Pressure Oxidizer Discharge Duct toward the bottom of the assembly, the SSME Engine Controller and the Main Fuel Valve Hydraulic Actuator are in the approximate center of the assembly in this view, the Low-Pressure Fuel Turbopump (LPFTP), the LPFTP Discharge Duct are to the left on the assembly in this view and the High-Pressure Fuel Turbopump is located toward the top of the engine assembly in this view. The ring of tabs in the right side of the image, at the approximate location of the Nozzle and the Coolant Outlet Manifold interface is the Heat Shield Support Ring. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  4. A reverse engineering algorithm for neural networks, applied to the subthalamopallidal network of basal ganglia.

    PubMed

    Floares, Alexandru George

    2008-01-01

    Modeling neural networks with ordinary differential equations systems is a sensible approach, but also very difficult. This paper describes a new algorithm based on linear genetic programming which can be used to reverse engineer neural networks. The RODES algorithm automatically discovers the structure of the network, including neural connections, their signs and strengths, estimates its parameters, and can even be used to identify the biophysical mechanisms involved. The algorithm is tested on simulated time series data, generated using a realistic model of the subthalamopallidal network of basal ganglia. The resulting ODE system is highly accurate, and results are obtained in a matter of minutes. This is because the problem of reverse engineering a system of coupled differential equations is reduced to one of reverse engineering individual algebraic equations. The algorithm allows the incorporation of common domain knowledge to restrict the solution space. To our knowledge, this is the first time a realistic reverse engineering algorithm based on linear genetic programming has been applied to neural networks.

  5. 14 CFR 33.70 - Engine life-limited parts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine life-limited parts. 33.70 Section 33.70 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.70 Engine life...

  6. 14 CFR 33.70 - Engine life-limited parts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine life-limited parts. 33.70 Section 33.70 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.70 Engine life...

  7. Fatigue Behavior and Deformation Mechanisms in Inconel 718 Superalloy Investigated

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The nickel-base superalloy Inconel 718 (IN 718) is used as a structural material for a variety of components in the space shuttle main engine (SSME) and accounts for more than half of the total weight of this engine. IN 718 is the bill-of-material for the pressure vessels of nickel-hydrogen batteries for the space station. In the case of the space shuttle main engine, structural components are typically subjected to startup and shutdown load transients and occasional overloads in addition to high-frequency vibratory loads from routine operation. The nickel-hydrogen battery cells are prooftested before service and are subjected to fluctuating pressure loads during operation. In both of these applications, the structural material is subjected to a monotonic load initially, which is subsequently followed by fatigue. To assess the life of these structural components, it is necessary to determine the influence of a prior monotonic load on the subsequent fatigue life of the superalloy. An insight into the underlying deformation and damage mechanisms is also required to properly account for the interaction between the prior monotonic load and the subsequent fatigue loading. An experimental investigation was conducted to establish the effect of prior monotonic straining on the subsequent fatigue behavior of wrought, double-aged, IN 718 at room temperature. First, monotonic strain tests and fully-reversed, strain-controlled fatigue tests were conducted on uniform-gage-section IN 718 specimens. Next, fully reversed fatigue tests were conducted under strain control on specimens that were monotonically strained in tension. Results from this investigation indicated that prior monotonic straining reduced the fatigue resistance of the superalloy particularly at the lowest strain range. Some of the tested specimens were sectioned and examined by transmission electron microscopy to reveal typical microstructures as well as the active deformation and damage mechanisms under each of the loading conditions. In monotonically strained specimens, deformation during the subsequent fatigue loading was mainly confined to the deformation bands initiated during the prior monotonic straining. This can cause dislocations to move more readily along the previously activated deformation bands and to pile up near grain boundaries, eventually making the grain boundaries susceptible to fatigue crack initiation. The mechanisms inferred from the microstructural investigation were extremely valuable in interpreting the influence of prior monotonic straining on the subsequent fatigue life of Inconel 718 superalloy.

  8. Design of a Facility to Test the Advanced Stirling Radioisotope Generator Engineering Unit

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Schreiber, Jeffrey G.; Oriti, Salvatore M.; Meer, David W.; Brace, Michael H.; Dugala, Gina

    2010-01-01

    The Advanced Stirling Radioisotope Generator (ASRG), a high efficiency generator, is being considered for space missions. An engineering unit, the ASRG engineering unit (EU), was designed and fabricated by Lockheed Martin under contract to the Department of Energy. This unit is currently under extended operation test at the NASA Glenn Research Center (GRC) to generate performance data and validate the life and reliability predictions for the generator and the Stirling convertors. A special test facility was designed and built for the ASRG EU. This paper summarizes details of the test facility design, including the mechanical mounting, heat-rejection system, argon system, control systems, and maintenance. The effort proceeded from requirements definition through design, analysis, build, and test. Initial testing and facility performance results are discussed.

  9. Military Space Mission Design and Analysis in a Multi-Body Environment: An Investigation of High-Altitude Orbits as Alternative Transfer Paths, Parking Orbits for Reconstitution, and Unconventional Mission Orbits

    DTIC Science & Technology

    2017-03-23

    Dynamical Astronomy , vol. 90, no. January 2004, pp. 165–178, 2004. [Online]. Available: https://www.researchgate.net/publication/ 225231299 On The...Celestial Mechanics and Dynamical Astronomy , vol. 32, no. 1, pp. 53–71, 1984. [Online]. Available: https://engineering.purdue.edu/people/kathleen.howell

  10. Resident research associateships. Postdoctoral and senior research awards: Opportunities for research at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Opportunities for research as part of NASA-sponsored programs at the JPL cover: Earth and space sciences; systems; telecommunications science and engineering; control and energy conversion; applied mechanics; information systems; and observational systems. General information on applying for an award for tenure as a guest investigator, conditions, of the award, and details of the application procedure are provided.

  11. Multidisciplinary research in space sciences and engineering with emphasis on theoretical chemistry

    NASA Technical Reports Server (NTRS)

    Hirschfelder, J. O.; Curtiss, C. F.

    1974-01-01

    A broad program is reported of research in theoretical chemistry, particularly in molecular quantum and statistical mechanics, directed toward determination of the physical and chemical properties of materials, relation of these macroscopic properties to properties of individual molecules, and determination of the structure and properties of the individual molecules. Abstracts are presented for each research project conducted during the course of the program.

  12. Mechanical Computing in Microelectromechanical Systems (MEMS)

    DTIC Science & Technology

    2003-03-01

    New York: John Wiley and Sons, Inc., 1968. 25. Helvajian , H . and S. Janson, Microengineering Aerospace Systems, ch. Micro- engineering Space Systems...sacrificial layer. (g)Strip remaining resist. ( h ) Deposit a structural layer(conformal deposition is shown). (i) Deposit resist. (j) Expose resist...layer is then deposited, and assuming a conformal process, the structural layer will follow the topography of the sacrificial layer (Figure 2.9( h

  13. Destination: Space

    NASA Image and Video Library

    2016-05-20

    RS-25 rocket engine No. 2059 is removed from the A-1 Test Stand at Stennis Space Center on May 19, 2016. The engine was tested March 10 on the stand and is ready for use on NASA’s new Space Launch System (SLS) vehicle. NASA is developing the SLS to carry humans deeper into space than ever before. The SLS core stage will be powered by four RS-25 engines. Engine No. 2059 is scheduled for use on the first crewed SLS mission, Exploration Mission-2, which will carry American astronauts beyond low-Earth orbit for the first time since 1972. The photo above shows the engine, as well as the yellow thrust frame adapter above it, which holds the engine in place for testing.

  14. RS-25D engine

    NASA Image and Video Library

    2012-01-17

    Employees unload a RS25D rocket engine at NASA's John C. Stennis Space Center on Jan. 17. The engine - and 14 others - will be stored at the facility for future testing and use on NASA's new Space Launch System (SLS). The SLS is a new heavy-lift launch vehicle that will expand human presence beyond low-Earth orbit and enable new missions of exploration across the solar system. NASA's Marshall Space Flight Center in Huntsville, Ala., is leading the design and development of the Space Launch System for NASA, including the engine testing program. Delivery of the 15 RS-25 engines will continue throughout the next few months

  15. KSC-07pd1271

    NASA Image and Video Library

    2007-05-24

    KENNEDY SPACE CENTER, FLA. -- In Space Shuttle Maine Engine Shop, workers get ready to install an engine controller in one of the three main engines (behind them) of the orbiter Discovery. The controller is an electronics package mounted on each space shuttle main engine. It contains two digital computers and the associated electronics to control all main engine components and operations. The controller is attached to the main combustion chamber by shock-mounted fittings. Discovery is the designated orbiter for mission STS-120 to the International Space Station. It will carry a payload that includes the Node 2 module, named Harmony. Launch is targeted for no earlier than Oct. 20. Photo credit: NASA/Cory Huston

  16. KSC-07pd1272

    NASA Image and Video Library

    2007-05-24

    KENNEDY SPACE CENTER, FLA. -- In the Space Shuttle Maine Engine Shop, workers are installing an engine controller in one of the three main engines of the orbiter Discovery. The controller is an electronics package mounted on each space shuttle main engine. It contains two digital computers and the associated electronics to control all main engine components and operations. The controller is attached to the main combustion chamber by shock-mounted fittings. Discovery is the designated orbiter for mission STS-120 to the International Space Station. It will carry a payload that includes the Node 2 module, named Harmony. Launch is targeted for no earlier than Oct. 20. Photo credit: NASA/Cory Huston

  17. KSC-07pd1274

    NASA Image and Video Library

    2007-05-24

    KENNEDY SPACE CENTER, FLA. -- In the Space Shuttle Maine Engine Shop, workers check the installation of an engine controller in one of the three main engines of the orbiter Discovery. The controller is an electronics package mounted on each space shuttle main engine. It contains two digital computers and the associated electronics to control all main engine components and operations. The controller is attached to the main combustion chamber by shock-mounted fittings. Discovery is the designated orbiter for mission STS-120 to the International Space Station. It will carry a payload that includes the Node 2 module, named Harmony. Launch is targeted for no earlier than Oct. 20. Photo credit: NASA/Cory Huston

  18. KSC-07pd1273

    NASA Image and Video Library

    2007-05-24

    KENNEDY SPACE CENTER, FLA. -- In the Space Shuttle Maine Engine Shop, workers are installing an engine controller in one of the three main engines of the orbiter Discovery. The controller is an electronics package mounted on each space shuttle main engine. It contains two digital computers and the associated electronics to control all main engine components and operations. The controller is attached to the main combustion chamber by shock-mounted fittings. Discovery is the designated orbiter for mission STS-120 to the International Space Station. It will carry a payload that includes the Node 2 module, named Harmony. Launch is targeted for no earlier than Oct. 20. Photo credit: NASA/Cory Huston

  19. KSC-07pd1270

    NASA Image and Video Library

    2007-05-24

    KENNEDY SPACE CENTER, FLA. -- In the Space Shuttle Maine Engine Shop, workers get ready to install an engine controller in one of the three main engines of the orbiter Discovery. The controller is an electronics package mounted on each space shuttle main engine. It contains two digital computers and the associated electronics to control all main engine components and operations. The controller is attached to the main combustion chamber by shock-mounted fittings. Discovery is the designated orbiter for mission STS-120 to the International Space Station. It will carry a payload that includes the Node 2 module, named Harmony. Launch is targeted for no earlier than Oct. 20. Photo credit: NASA/Cory Huston

  20. Sodium heat engine system: Space application

    NASA Astrophysics Data System (ADS)

    Betz, Bryan H.; Sungu, Sabri; Vu, Hung V.

    1994-08-01

    This paper explores the possibility of utilizing the Sodium Heat Engine (SHE) or known as AMTEC (Alkali Metal Thermoelectric Converter), for electrical power generation in ``near earth'' geosynchronous orbit. The Sodium Heat Engine principle is very flexible and adapts well to a variety of physical geometries. The proposed system can be easily folded and then deployed into orbit without the need for on site assembly in space. Electric power generated from SHE engine can be used in communication satellites, in space station, and other applications such as electrical recharging of vehicles in space is one of the applications the Sodium Heat Engine could be adapted to serve.

  1. Engineering Education's Contribution to the Space Program.

    ERIC Educational Resources Information Center

    Stever, H. Guyford

    1988-01-01

    States that an expanding future in space requires new technology. Stresses that from engineering education, space requires people with a fundamental knowledge of modern science instruments, all engineering sciences, an appreciation and capability for detail and systems design, and an understanding of costs and competitiveness, machines, materials,…

  2. An engine awaits processing in the new engine shop at KSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Shuttle Main Engine Processing Facility (SSMEPF), a new Block 2A engine sits on the workstand as technicians process it. The engine is scheduled to fly on the Space Shuttle Endeavour during the STS-88 mission in December 1998. The SSMEPF officially opened on July 6, replacing the Shuttle Main Engine Shop.

  3. Mariner-Venus 1967

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Detailed information on the spacecraft performance, mission operations, and tracking and data acquisition is presented for the Mariner Venus 1967 and Mariner Venus 1967 extension projects. Scientific and engineering results and conclusions are discussed, and include the scientific mission, encounter with Venus, observations near Earth, and cruise phase of the mission. Flight path analysis, spacecraft subsystems, and mission-related hardware and computer program development are covered. The scientific experiments carried by Mariner 5 were ultraviolet photometer, solar plasma probe, helium magnetometer, trapped radiation detector, S-band radio occultation, dual-frequency radio propagation, and celestial mechanics. The engineering experience gained by converting a space Mariner Mars 1964 spacecraft into one flown to Venus is also described.

  4. Do-It-Yourself Additives Recharge Auto Air Conditioning

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In planning for a return mission to the Moon, NASA aimed to improve the thermal control systems that keep astronauts comfortable and cool while inside a spacecraft. Goddard Space Flight Center awarded a Small Business Innovation Research (SBIR) contract to Mainstream Engineering Corporation, of Rockledge, Florida, to develop a chemical/mechanical heat pump. IDQ Inc., of Garland, Texas, exclusively licensed the technology and incorporates it into its line of Arctic Freeze products for automotive air conditioning applications. While working on the design, Mainstream Engineering came up with a unique liquid additive called QwikBoost to enhance the performance of the advanced heat pump design.

  5. Damage-mitigating control of space propulsion systems for high performance and extended life

    NASA Technical Reports Server (NTRS)

    Ray, Asok; Wu, Min-Kuang; Dai, Xiaowen; Carpino, Marc; Lorenzo, Carl F.

    1993-01-01

    Calculations are presented showing that a substantial improvement in service life of a reusable rocket engine can be achieved by an insignificant reduction in the system dynamic performance. The paper introduces the concept of damage mitigation and formulates a continuous-time model of fatigue damage dynamics. For control of complex mechanical systems, damage prediction and damage mitigation are carried out based on the available sensory and operational information such that the plant can be inexpensively maintained and safely and efficiently steered under diverse operating conditions. The results of simulation experiments are presented for transient operations of a reusable rocket engine.

  6. Controls and guidance research

    NASA Technical Reports Server (NTRS)

    Homaifar, Abdollah; Dunn, Derome; Song, Yong-Duan; Lai, Steven H.-Y.

    1992-01-01

    The objectives of the control group are concentrated on research and education. The control problem of the hypersonic space vehicle represents an important and challenging issue in aerospace engineering. The work described in this report is part of our effort in developing advanced control strategies for such a system. In order to achieve the objectives stated in the NASA-CORE proposal, the tasks were divided among the group based upon their educational expertise. Within the educational component we are offering a Linear Systems and Control course for students in electrical and mechanical engineering. Also, we are proposing a new course in Digital Control Systems with a corresponding laboratory.

  7. 14 CFR 33.53 - Engine system and component tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine system and component tests. 33.53 Section 33.53 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.53 Engine system and...

  8. 14 CFR 34.62 - Test procedure (propulsion engines).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Test procedure (propulsion engines). 34.62 Section 34.62 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... (propulsion engines). (a)(1) The engine shall be tested in each of the following engine operating modes which...

  9. 14 CFR 33.91 - Engine system and component tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine system and component tests. 33.91 Section 33.91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.91 Engine system and...

  10. 14 CFR 33.91 - Engine system and component tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine system and component tests. 33.91 Section 33.91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.91 Engine system and...

  11. 14 CFR 33.91 - Engine system and component tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine system and component tests. 33.91 Section 33.91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.91 Engine system and...

  12. Failure Analysis at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Salazar, Victoria L.; Wright, M. Clara

    2010-01-01

    History has shown that failures occur in every engineering endeavor, and what we learn from those failures contributes to the knowledge base to safely complete future missions. The necessity of failure analysis is at its apex at the end of one aged program and at the beginning of a new and untested program. The information that we gain through failure analysis corrects the deficiencies in the current vehicle to make the next generation of vehicles more efficient and safe. The Failure Analysis and Materials Evaluation Branch in the Materials Science Division at the Kennedy Space Center performs metallurgical, mechanical, electrical, and non-metallic materials failure analyses and accident investigations on both flight hardware and ground support equipment for the Space Shuttle, International Space Station, Constellation, and Launch Services Programs. This paper will explore a variety of failure case studies at the Kennedy Space Center and the lessons learned that can be applied in future programs.

  13. Reusable rocket engine turbopump health monitoring system, part 3

    NASA Technical Reports Server (NTRS)

    Perry, John G.

    1989-01-01

    Degradation mechanisms and sensor identification/selection resulted in a list of degradation modes and a list of sensors that are utilized in the diagnosis of these degradation modes. The sensor list is divided into primary and secondary indicators of the corresponding degradation modes. The signal conditioning requirements are discussed, describing the methods of producing the Space Shuttle Main Engine (SSME) post-hot-fire test data to be utilized by the Health Monitoring System. Development of the diagnostic logic and algorithms is also presented. The knowledge engineering approach, as utilized, includes the knowledge acquisition effort, characterization of the expert's problem solving strategy, conceptually defining the form of the applicable knowledge base, and rule base, and identifying an appropriate inferencing mechanism for the problem domain. The resulting logic flow graphs detail the diagnosis/prognosis procedure as followed by the experts. The nature and content of required support data and databases is also presented. The distinction between deep and shallow types of knowledge is identified. Computer coding of the Health Monitoring System is shown to follow the logical inferencing of the logic flow graphs/algorithms.

  14. KSC-2011-6515

    NASA Image and Video Library

    2011-08-18

    CAPE CANAVERAL, Fla. -- In the Engine Shop at NASA’s Kennedy Space Center in Florida, space shuttle main engine #2 sits on a transporter after technicians removed it from space shuttle Atlantis in Orbiter Processing Facility-2. All three main engines are being removed from Atlantis so that the vehicle can be decommissioned and prepared for eventual display at the Kennedy Space Center Visitor Complex in Florida. Photo credit: Frankie Martin

  15. KSC-2013-3238

    NASA Image and Video Library

    2013-08-09

    CAPE CANAVERAL, Fla. – As seen on Google Maps, a Space Shuttle Main Engine, or SSME, stands inside the Engine Shop at Orbiter Processing Facility 3 at NASA's Kennedy Space Center. Each orbiter used three of the engines during launch and ascent into orbit. The engines burn super-cold liquid hydrogen and liquid oxygen and each one produces 155,000 pounds of thrust. The engines, known in the industry as RS-25s, could be reused on multiple shuttle missions. They will be used again later this decade for NASA's Space Launch System rocket. Google precisely mapped the space center and some of its historical facilities for the company's map page. The work allows Internet users to see inside buildings at Kennedy as they were used during the space shuttle era. Photo credit: Google/Wendy Wang

  16. The QBito CubeSat: Applications in Space Engineering Education at Technical University of Madrid

    NASA Astrophysics Data System (ADS)

    Fernandez Fraile, Jose Javier; Laverón-Simavilla, Ana; Calvo, Daniel; Moreno Benavides, Efren

    The QBito CubeSat is one of the 50 CubeSats that is being developed for the QB50 project. The project is funded by the 7 (th) Frame Program to launch 50 CubeSats in a ‘string-of-pearls’ configuration for multi-point, in-situ measurements in the lower thermosphere and re-entry research. The 50 CubeSats, developed by an international network of universities and research institutions, will comprise 40 double CubeSats with atmospheric sensors and 10 double or triple CubeSats for science and technology demonstration. It will be the first large-scale CubeSat constellation in orbit; a concept that has been under discussion for several years but not implemented up to now. This project has a high educational interest for universities; beyond the scientific and technological results, being part of an international group of over 90 universities all over the world working and sharing knowledge to achieve a successful mission represents an exciting opportunity. The QBito project main educational motivation is to educate students in space technologies and in space systems engineering. The Universidad Politécnica de Madrid (UPM) is designing, developing, building and testing one of the double CubeSats carrying as payload a kit of atmospheric sensors from the consortium, and other payloads developed by the team such as an IR non-refrigerated sensor, a Phase Change Material (PCM) for thermal control applications, a Fuzzy Logic Attitude Control System and other technological developments such as an optimized antenna deployment mechanism, a lightweight multi-mission configurable structure, and an efficient Electric Power System (EPS) with a Maximum Peak Power Tracker (MPPT). This project has been integrated in the training of the Aerospatiale Engineering, Master and PhD degree students by involving them in the complete engineering process, from its conceptual design to the post-flight conclusions. Three subsystems have been selected for being developed from the conceptual design stage to the flight device: structure, electrical power system and antenna deployment mechanism. In this work, the main characteristics adopted for structure are presented. The project has already provided very interesting lessons to all the people involved, not only students.

  17. Aerodynamic and engineering design of a 1.5 s high quality microgravity drop tower facility

    NASA Astrophysics Data System (ADS)

    Belser, Valentin; Breuninger, Jakob; Reilly, Matthew; Laufer, René; Dropmann, Michael; Herdrich, Georg; Hyde, Truell; Röser, Hans-Peter; Fasoulas, Stefanos

    2016-12-01

    Microgravity experiments are essential for research in space science, biology, fluid mechanics, combustion, and material sciences. One way to conduct microgravity experiments on Earth is by using drop tower facilities. These facilities combine a high quality of microgravity, adequate payload masses and have the advantage of virtually unlimited repeatability under same experimental conditions, at a low cost. In a collaboration between the Institute of Space Systems (IRS) at the University of Stuttgart and Baylor University (BU) in Waco, Texas, a new drop tower is currently under development at the Center for Astrophysics, Space Physics and Engineering Research (CASPER). The design parameters of the drop tower ask for at least 1.5 s in free fall duration while providing a quality of at least 10-5 g. Previously, this quality has only been achieved in vacuum drop tower facilities where the capsule experiences virtually zero aerodynamic drag during its free fall. Since this design comes at high costs, a different drop tower design concept, which does not require an evacuated drop shaft, was chosen. It features a dual-capsule system in which the experiment capsule is shielded from aerodynamic forces by surrounding it with a drag shield during the drop. As no other dual-capsule drop tower has been able to achieve a quality as good as or better than 10-5 g previous work optimized the design with an aerodynamic perspective by using computational fluid dynamics (CFD) simulations to determine the ideal shape and size of the outer capsule and to specify the aerodynamically crucial dimensions for the overall system. Experiments later demonstrated that the required quality of microgravity can be met with the proposed design. The main focus of this paper is the mechanical realization of the capsule as well as the development and layout of the surrounding components, such as the release mechanism, the deceleration device and the drop shaft. Because the drop tower facility is a complex system with many interdependencies between all of the components, several engineering challenges had to be addressed. For example, initial disturbances that are caused by the release mechanism are a common issue that arises at drop tower facilities. These vibrations may decrease the quality of microgravity during the initial segment of free fall. Because this would reduce the free fall time experiencing high quality microgravity, a mechanism has been developed to provide a soft release. Challenges and proposed solutions for all components are highlighted in this paper.

  18. 5 Things You Didn't Know About Astronaut Scott Tingle

    NASA Image and Video Library

    2017-12-15

    The next crew to launch to the International Space Station includes one American astronaut making his first spaceflight: U.S. Navy Captain Scott Tingle, a Massachusetts native with a mechanical engineering education and a resume that includes deployments as an operational pilot plus the Navy Test Pilot School. Even though he’s been an astronaut for eight years, there are a few things we didn’t know about him—until now. Listen here for details on Tingle’s childhood in New England, including the motor vehicles he raced and the floors he swept to earn the money to pay for it. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  19. Rotating Space Elevators: Classical and Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Knudsen, Steven

    We investigate a novel and unique dynamical system, the Rotating Space Elevator (RSE). The RSE is a multiply rotating system of strings reaching beyond the Earth geo-synchronous satellite orbit. Objects sliding along the RSE string ("climbers") do not require internal engines or propulsion to be transported far away from the Earth's surface. The RSE thus solves a major problem in the space elevator technology which is how to supply the energy to the climbers moving along the string. The RSE is a double rotating floppy string. The RSE can be made in various shapes that are stabilized by an approximate equilibrium between the gravitational and inertial forces acting in the double rotating frame. The RSE exhibits a variety of interesting dynamical phenomena studied in this thesis.

  20. HAL/SM language specification. [programming languages and computer programming for space shuttles

    NASA Technical Reports Server (NTRS)

    Williams, G. P. W., Jr.; Ross, C.

    1975-01-01

    A programming language is presented for the flight software of the NASA Space Shuttle program. It is intended to satisfy virtually all of the flight software requirements of the space shuttle. To achieve this, it incorporates a wide range of features, including applications-oriented data types and organizations, real time control mechanisms, and constructs for systems programming tasks. It is a higher order language designed to allow programmers, analysts, and engineers to communicate with the computer in a form approximating natural mathematical expression. Parts of the English language are combined with standard notation to provide a tool that readily encourages programming without demanding computer hardware expertise. Block diagrams and flow charts are included. The semantics of the language is discussed.

  1. On three-dimensional misorientation spaces.

    PubMed

    Krakow, Robert; Bennett, Robbie J; Johnstone, Duncan N; Vukmanovic, Zoja; Solano-Alvarez, Wilberth; Lainé, Steven J; Einsle, Joshua F; Midgley, Paul A; Rae, Catherine M F; Hielscher, Ralf

    2017-10-01

    Determining the local orientation of crystals in engineering and geological materials has become routine with the advent of modern crystallographic mapping techniques. These techniques enable many thousands of orientation measurements to be made, directing attention towards how such orientation data are best studied. Here, we provide a guide to the visualization of misorientation data in three-dimensional vector spaces, reduced by crystal symmetry, to reveal crystallographic orientation relationships. Domains for all point group symmetries are presented and an analysis methodology is developed and applied to identify crystallographic relationships, indicated by clusters in the misorientation space, in examples from materials science and geology. This analysis aids the determination of active deformation mechanisms and evaluation of cluster centres and spread enables more accurate description of transformation processes supporting arguments regarding provenance.

  2. On three-dimensional misorientation spaces

    NASA Astrophysics Data System (ADS)

    Krakow, Robert; Bennett, Robbie J.; Johnstone, Duncan N.; Vukmanovic, Zoja; Solano-Alvarez, Wilberth; Lainé, Steven J.; Einsle, Joshua F.; Midgley, Paul A.; Rae, Catherine M. F.; Hielscher, Ralf

    2017-10-01

    Determining the local orientation of crystals in engineering and geological materials has become routine with the advent of modern crystallographic mapping techniques. These techniques enable many thousands of orientation measurements to be made, directing attention towards how such orientation data are best studied. Here, we provide a guide to the visualization of misorientation data in three-dimensional vector spaces, reduced by crystal symmetry, to reveal crystallographic orientation relationships. Domains for all point group symmetries are presented and an analysis methodology is developed and applied to identify crystallographic relationships, indicated by clusters in the misorientation space, in examples from materials science and geology. This analysis aids the determination of active deformation mechanisms and evaluation of cluster centres and spread enables more accurate description of transformation processes supporting arguments regarding provenance.

  3. Space Station tethered elevator system

    NASA Technical Reports Server (NTRS)

    Haddock, Michael H.; Anderson, Loren A.; Hosterman, K.; Decresie, E.; Miranda, P.; Hamilton, R.

    1989-01-01

    The optimized conceptual engineering design of a space station tethered elevator is presented. The tethered elevator is an unmanned, mobile structure which operates on a ten-kilometer tether spanning the distance between Space Station Freedom and a platform. Its capabilities include providing access to residual gravity levels, remote servicing, and transportation to any point along a tether. The report discusses the potential uses, parameters, and evolution of the spacecraft design. Emphasis is placed on the elevator's structural configuration and three major subsystem designs. First, the design of elevator robotics used to aid in elevator operations and tethered experimentation is presented. Second, the design of drive mechanisms used to propel the vehicle is discussed. Third, the design of an onboard self-sufficient power generation and transmission system is addressed.

  4. KSC-2011-7397

    NASA Image and Video Library

    2011-10-14

    CAPE CANAVERAL, Fla. – Louisiana State University mechanical engineering students Kevin Schenker, from left, and Jacob Koch join Luz Marina Calle, a scientist at NASA's Kennedy Space in Florida, as they examine a portion of the wall of the flame trench at Launch Pad 39B. Designers are looking for new, flame and vibration-resistant materials to line the trench. To help in the search, a team of mechanical engineering students at Louisiana State University are to build a scaled-down version of the flame trench that Kennedy's scientists can use to try out sample materials for the trench. If the samples work in the lab, they can be tried out in the real flame trenches at Launch Pad 39A and 39B. The launch pad has been refurbished extensively and work is continuing to modify the pad to support a variety of launch vehicles in the future. Photo credit: NASA/Jim Grossmann

  5. Closeup side view of Space Shuttle Main Engine (SSME) 2059 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up side view of Space Shuttle Main Engine (SSME) 2059 mounted in a SSME Engine Handler near the Drying Area in the High Bay section of the SSME Processing Facility. The prominent features of the SSME in this view are the hot-gas expansion nozzle extending from the approximate image center toward the image right. The main-engine components extend from the approximate image center toward image right until it meets up with the mount for the SSME Engine Handler. The engine is rotated to a position where the major components in the view are the Low-Pressure Fuel Turbopump Discharge Duct with reflective foil insulation on the upper side of the engine, the Low-Pressure Oxidizer Turbopump and its Discharge Duct on the right side of the engine assembly extending itself down and wrapping under the bottom side of the assembly to the High-Pressure Oxidizer Turbopump pump. The High-Pressure Oxidizer Turbopump Discharge Duct exists the turbopump and extends up to the top side of the assembly where it enters the main oxidizer valve. The sphere on the lower side of the engine assembly is an accumulator that is part of the SSMEs POGO suppression system. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  6. General view of a Space Shuttle Main Engine (SSME) mounted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of a Space Shuttle Main Engine (SSME) mounted on an SSME engine handler, taken in the SSME Processing Facility at Kennedy Space Center. The most prominent feature in this view is the Expansion Nozzle . The rings that loop around the nozzle, vertically in this view, add structural stability to the nozzle walls and are referred to Hatbands. The ring on the left most edge of the nozzle is the Coolant Inlet Manifold. The tubes that branch off and connect to the manifold are Coolant Transfer Ducts and the tubes that terminate with a visible opening at the manifold are Drain Lines. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  7. Closeup view of a Space Shuttle Main Engine (SSME) mounted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of a Space Shuttle Main Engine (SSME) mounted on an SSME engine handler, taken in the SSME Processing Facility at Kennedy Space Center. The most prominent feature in this view is the Expansion Nozzle . The rings that loop around the nozzle, vertically in this view, add structural stability to the nozzle walls and are referred to Hatbands. The ring on the left most edge of the nozzle is the Coolant Inlet Manifold. The tubes that branch off and connect to the manifold are Coolant Transfer Ducts and the tubes that terminate with a visible opening at the manifold are Drain Lines. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  8. Mechanics of Granular Materials (MGM) Test Cell

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A test cell for Mechanics of Granular Materials (MGM) experiment is tested for long-term storage with water in the system as plarned for STS-107. This view shows the compressed sand column with the protective water jacket removed. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditons that cannot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: University of Colorado at Boulder

  9. Mechanics of Granular Materials (MGM) Cell

    NASA Technical Reports Server (NTRS)

    1996-01-01

    One of three Mechanics of Granular Materials (MGM) test cells after flight on STS-79 and before impregnation with resin. Note that the sand column has bulged in the middle, and that the top of the column is several inches lower than the top of the plastic enclosure. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditons that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: University of Colorado at Boulder

  10. Mechanics of Granular Materials (MGM) Test Cell

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A test cell for Mechanics of Granular Materials (MGM) experiment is tested for long-term storage with water in the system as plarned for STS-107. This view shows the top of the sand column with the metal platten removed. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditons that cannot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: University of Colorado at Boulder

  11. Mechanical design problems associated with turbopump fluid film bearings

    NASA Technical Reports Server (NTRS)

    Evces, Charles R.

    1990-01-01

    Most high speed cryogenic turbopumps for liquid propulsion rocket engines currently use ball or roller contact bearings for rotor support. The operating speeds, loads, clearances, and environments of these pumps combine to make bearing wear a limiting factor on turbopump life. An example is the high pressure oxygen turbopump (HPOTP) used in the Space Shuttle Main Engine (SSME). Although the HPOTP design life is 27,000 seconds at 30,000 rpms, or approximately 50 missions, bearings must currently be replaced after 2 missions. One solution to the bearing wear problem in the HPOTP, as well as in future turbopump designs, is the utilization of fluid film bearings in lieu of continuous contact bearings. Hydrostatic, hydrodynamic, and damping seal bearings are all replacement candidates for contact bearings in rocket engine high speed turbomachinery. These three types of fluid film bearings have different operating characteristics, but they share a common set of mechanical design opportunities and difficulties. Results of research to define some of the mechanical design issues are given. Problems considered include transient strat/stop rub, non-operational rotor support, bearing wear inspection and measurement, and bearing fluid supply route. Emphasis is given to the HPOTP preburner pump (PBP) bearing, but the results are pertinent to high-speed cryogenic turbomachinery in general.

  12. Engineering cell wall synthesis mechanism for enhanced PHB accumulation in E. coli.

    PubMed

    Zhang, Xing-Chen; Guo, Yingying; Liu, Xu; Chen, Xin-Guang; Wu, Qiong; Chen, Guo-Qiang

    2018-01-01

    The rigidity of bacterial cell walls synthesized by a complicated pathway limit the cell shapes as coccus, bar or ellipse or even fibers. A less rigid bacterium could be beneficial for intracellular accumulation of poly-3-hydroxybutyrate (PHB) as granular inclusion bodies. To understand how cell rigidity affects PHB accumulation, E. coli cell wall synthesis pathway was reinforced and weakened, respectively. Cell rigidity was achieved by thickening the cell walls via insertion of a constitutive gltA (encoding citrate synthase) promoter in front of a series of cell wall synthesis genes on the chromosome of several E. coli derivatives, resulting in 1.32-1.60 folds increase of Young's modulus in mechanical strength for longer E. coli cells over-expressing fission ring FtsZ protein inhibiting gene sulA. Cell rigidity was weakened by down regulating expressions of ten genes in the cell wall synthesis pathway using CRISPRi, leading to elastic cells with more spaces for PHB accumulation. The regulation on cell wall synthesis changes the cell rigidity: E. coli with thickened cell walls accumulated only 25% PHB while cell wall weakened E. coli produced 93% PHB. Manipulation on cell wall synthesis mechanism adds another possibility to morphology engineering of microorganisms. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  13. An engine awaits processing in the new engine shop at KSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Shuttle Main Engine Processing Facility (SSMEPF), a new Block 2A engine sits on the transport cradle before being moved to the workstand. The engine is scheduled to fly on the Space Shuttle Endeavour during the STS-88 mission in December 1998. The SSMEPF officially opened on July 6, replacing the Shuttle Main Engine Shop.

  14. Spacecraft Systems Engineering, 3rd Edition

    NASA Astrophysics Data System (ADS)

    Fortescue, Peter; Stark, John; Swinerd, Graham

    2003-03-01

    Following on from the hugely successful previous editions, the third edition of Spacecraft Systems Engineering incorporates the most recent technological advances in spacecraft and satellite engineering. With emphasis on recent developments in space activities, this new edition has been completely revised. Every chapter has been updated and rewritten by an expert engineer in the field, with emphasis on the bus rather than the payload. Encompassing the fundamentals of spacecraft engineering, the book begins with front-end system-level issues, such as environment, mission analysis and system engineering, and progresses to a detailed examination of subsystem elements which represent the core of spacecraft design - mechanical, electrical, propulsion, thermal, control etc. This quantitative treatment is supplemented by an appreciation of the interactions between the elements, which deeply influence the process of spacecraft systems design. In particular the revised text includes * A new chapter on small satellites engineering and applications which has been contributed by two internationally-recognised experts, with insights into small satellite systems engineering. * Additions to the mission analysis chapter, treating issues of aero-manouevring, constellation design and small body missions. In summary, this is an outstanding textbook for aerospace engineering and design students, and offers essential reading for spacecraft engineers, designers and research scientists. The comprehensive approach provides an invaluable resource to spacecraft manufacturers and agencies across the world.

  15. 14 CFR 121.193 - Airplanes: Turbine engine powered: En route limitations: Two engines inoperative.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplanes: Turbine engine powered: En route limitations: Two engines inoperative. 121.193 Section 121.193 Aeronautics and Space FEDERAL AVIATION... Performance Operating Limitations § 121.193 Airplanes: Turbine engine powered: En route limitations: Two...

  16. 14 CFR 121.191 - Airplanes: Turbine engine powered: En route limitations: One engine inoperative.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplanes: Turbine engine powered: En route limitations: One engine inoperative. 121.191 Section 121.191 Aeronautics and Space FEDERAL AVIATION... Performance Operating Limitations § 121.191 Airplanes: Turbine engine powered: En route limitations: One...

  17. 14 CFR 121.191 - Airplanes: Turbine engine powered: En route limitations: One engine inoperative.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplanes: Turbine engine powered: En route limitations: One engine inoperative. 121.191 Section 121.191 Aeronautics and Space FEDERAL AVIATION... Performance Operating Limitations § 121.191 Airplanes: Turbine engine powered: En route limitations: One...

  18. 14 CFR 121.193 - Airplanes: Turbine engine powered: En route limitations: Two engines inoperative.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplanes: Turbine engine powered: En route limitations: Two engines inoperative. 121.193 Section 121.193 Aeronautics and Space FEDERAL AVIATION... Performance Operating Limitations § 121.193 Airplanes: Turbine engine powered: En route limitations: Two...

  19. NASA on a Strong Roll in Preparing Space Launch System Flight Engines

    NASA Image and Video Library

    2017-08-09

    NASA is on a roll when it comes to testing engines for its new Space Launch System (SLS) rocket that will send astronauts to deep-space destinations, including Mars. Just two weeks after the third test of a new RS-25 engine flight controller, the space agency recorded its fourth full-duration controller test Aug. 9 at Stennis Space Center near Bay St. Louis, Mississippi. Engineers conducted a 500-second test of the RS-25 engine controller on the A-1 Test Stand at Stennis. The test involved installing the controller on an RS-25 development engine and firing it in the same manner, and for the same length of time, as needed during an actual SLS launch. The test marked another milestone toward launch of the first integrated flight of the SLS rocket and Orion crew vehicle. Exploration Mission-1 will be an uncrewed mission into lunar orbit, designed to provide a final check-out test of rocket and Orion capabilities before astronauts are returned to deep space. The SLS rocket will be powered at launch by four RS-25 engines, providing a combined 2 million pounds of thrust, and with a pair of solid rocket boosters, providing more than 8 million pounds of total thrust. The RS-25 engines for the initial SLS flights are former space shuttle main engines that are now being used to launch the larger and heavier SLS rocket and with the new controller. The controller is a critical component that operates as the engine “brain” that communicates with SLS flight computers to receive operation performance commands and to provide diagnostic data on engine health and status. Engineers conducted early prototype tests at Stennis to collect data for development of the new controller by NASA, RS-25 prime contractor Aerojet Rocketdyne and subcontractor Honeywell. Testing of actual flight controllers began at Stennis in March. NASA is testing all controllers and engines designated for the EM-1 flight at Stennis. It also will test the SLS core stage for the flight at Stennis, which will involve installing the stage on the B-2 Test Stand and firing its four RS-25 engines simultaneously, as during an actual launch. RS-25 tests at Stennis are conducted by a team of NASA, Aerojet Rocketdyne and Syncom Space Services engineers and operators. Aerojet Rocketdyne is the RS-25 prime contractor. Syncom Space Services is the prime contractor for Stennis facilities and operations.

  20. KENNEDY SPACE CENTER, FLA. - Boeing workers perform a 3D digital scan of the actuator on the table. At left is Dan Clark. At right are Alden Pitard (seated at computer) and John Macke, from Boeing, St. Louis. . There are two actuators per engine on the Shuttle, one for pitch motion and one for yaw motion. The Space Shuttle Main Engine hydraulic servoactuators are used to gimbal the main engine.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Boeing workers perform a 3D digital scan of the actuator on the table. At left is Dan Clark. At right are Alden Pitard (seated at computer) and John Macke, from Boeing, St. Louis. . There are two actuators per engine on the Shuttle, one for pitch motion and one for yaw motion. The Space Shuttle Main Engine hydraulic servoactuators are used to gimbal the main engine.

  1. Flight Testing of the Space Launch System (SLS) Adaptive Augmenting Control (AAC) Algorithm on an F/A-18

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; VanZwieten, Tannen S.; Hanson, Curtis E.; Wall, John H.; Miller, Chris J.; Gilligan, Eric T.; Orr, Jeb S.

    2014-01-01

    The Marshall Space Flight Center (MSFC) Flight Mechanics and Analysis Division developed an adaptive augmenting control (AAC) algorithm for launch vehicles that improves robustness and performance on an as-needed basis by adapting a classical control algorithm to unexpected environments or variations in vehicle dynamics. This was baselined as part of the Space Launch System (SLS) flight control system. The NASA Engineering and Safety Center (NESC) was asked to partner with the SLS Program and the Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP) to flight test the AAC algorithm on a manned aircraft that can achieve a high level of dynamic similarity to a launch vehicle and raise the technology readiness of the algorithm early in the program. This document reports the outcome of the NESC assessment.

  2. Design concepts for bioreactors in space

    NASA Technical Reports Server (NTRS)

    Seshan, P. K.; Peterson, G. R.; Beard, B.; Dunlop, E. H.

    1986-01-01

    Microbial food sources are becoming viable and more efficient alternatives to conventional food sources especially in the context of Closed Ecological Life Support Systems (CELSS) in space habitats. Since bioreactor designs for terrestrial operation will not readily apply to conditions of microgravity, there is an urgent need to learn about the differences. These differences cannot be easily estimated due to the complex nature of the mass transport and mixing mechanisms in fermenters. Therefore, a systematic and expeditious experimental program must be undertaken to obtain the engineering data necessary to lay down the foundations of designing bioreactors for microgravity. Two bioreactor design concepts presented represent two dissimilar approaches to grappling with the absence of gravity in space habitats and deserve to be tested for adoption as important components of the life support function aboard spacecrafts, space stations and other extra-terrestrial habitats.

  3. Around Marshall

    NASA Image and Video Library

    2003-01-16

    After four decades of contribution to America's space program, George Hopson, manager of the Space Shuttle Main Engine Project at Marshall Space Flight Center, accepted NASA's Distinguished Service Medal. Awarded to those who, by distinguished ability or courage, have made a personal contribution to the NASA mission, NASA's Distinguished Service Medal is the highest honor NASA confers. Hopson's contributions to America's space program include work on the country's first space station, Skylab; the world's first reusable space vehicle, the Space Shuttle; and the International Space Station. Hopson joined NASA's Marshall team as chief of the Fluid and Thermal Systems Branch in the Propulsion Division in 1962, and later served as chief of the Engineering Analysis Division of the Structures and Propulsion Laboratory. In 1979, he was named director of Marshall's Systems Dynamics Laboratory. In 1981, he was chosen to head the Center's Systems Analysis and Integration. Seven years later, in 1988, Hopson was appointed associate director for Space Transportation Systems and one year later became the manager of the Space Station Projects Office at Marshall. In 1994, Hopson was selected as deputy director for Space Systems in the Science and Engineering Directorate at Marshall where he supervised the Chief Engineering Offices of both marned and unmanned space systems. He was named manager of the Space Shuttle Main Engine Project in 1997. In addition to the Distinguished Service Medal, Hopson has also been recognized with the NASA Outstanding Leadership Medal and NASA's Exceptional Service Medal.

  4. KSC-2009-6123

    NASA Image and Video Library

    2009-11-05

    CAPE CANAVERAL, Fla. – Pratt & Whitney Rocketdyne technicians install a space shuttle main engine on space shuttle Endeavour in Orbiter Processing Facility Bay 2 at NASA's Kennedy Space Center in Florida. The engine will fly on the shuttle's STS-130 mission to the International Space Station. Even though this engine weighs one-seventh as much as a locomotive engine, its high-pressure fuel pump alone delivers as much horsepower as 28 locomotives, while its high-pressure oxidizer pump delivers the equivalent horsepower of an additional 11 locomotives. The maximum equivalent horsepower developed by the shuttle's three main engines is more than 37 million horsepower. Endeavour is targeted to launch Feb. 4, 2010. Photo credit: NASA/Jim Grossmann

  5. KSC-2009-6125

    NASA Image and Video Library

    2009-11-05

    CAPE CANAVERAL, Fla. – A Pratt & Whitney Rocketdyne technician carefully maneuvers a space shuttle main engine into position on space shuttle Endeavour in Orbiter Processing Facility Bay 2 at NASA's Kennedy Space Center in Florida. The engine will fly on the shuttle's STS-130 mission to the International Space Station. Even though this engine weighs one-seventh as much as a locomotive engine, its high-pressure fuel pump alone delivers as much horsepower as 28 locomotives, while its high-pressure oxidizer pump delivers the equivalent horsepower of an additional 11 locomotives. The maximum equivalent horsepower developed by the shuttle's three main engines is more than 37 million horsepower. Endeavour is targeted to launch Feb. 4, 2010. Photo credit: NASA/Jim Grossmann

  6. KSC-2009-6124

    NASA Image and Video Library

    2009-11-05

    CAPE CANAVERAL, Fla. – A Pratt & Whitney Rocketdyne technician carefully maneuvers a space shuttle main engine into position on space shuttle Endeavour in Orbiter Processing Facility Bay 2 at NASA's Kennedy Space Center in Florida. The engine will fly on the shuttle's STS-130 mission to the International Space Station. Even though this engine weighs one-seventh as much as a locomotive engine, its high-pressure fuel pump alone delivers as much horsepower as 28 locomotives, while its high-pressure oxidizer pump delivers the equivalent horsepower of an additional 11 locomotives. The maximum equivalent horsepower developed by the shuttle's three main engines is more than 37 million horsepower. Endeavour is targeted to launch Feb. 4, 2010. Photo credit: NASA/Jim Grossmann

  7. Center for Space Construction

    NASA Technical Reports Server (NTRS)

    Su, Renjeng

    1998-01-01

    The Center for Space Construction (CSC) at University of Colorado at Boulder is one of eight University Space Engineering Research Centers established by NASA in 1988. The mission of the Center is to conduct research into space technology and to directly contribute to space engineering education. The Center reports to the Department of Aerospace Engineering Sciences and resides in the College of Engineering and Applied Sciences. The College has a long and successful track record of cultivating multi-disciplinary research and education programs. The Center for Space Construction represents prominent evidence of this record. The basic concept on which the Center was founded is the in-space construction of large space systems, such as space stations, interplanetary space vehicles, and extraterrestrial space structures. Since 1993, the scope of CSC research has evolved to include the design and construction of all spacecraft, large and small. With the broadened scope our research projects seek to impact the technological basis for spacecraft such as remote sensing satellites, communication satellites and other special-purpose spacecraft, as well as large space platforms. A summary of accomplishments, including student participation and degrees awarded, during the contract period is presented.

  8. A Framework for Assessing the Reusability of Hardware (Reusable Rocket Engines)

    NASA Technical Reports Server (NTRS)

    Childress-Thompson, Rhonda; Thomas, Dale; Farrington, Philip

    2016-01-01

    Within the past few years, there has been a renewed interest in reusability as it applies to space flight hardware. Commercial companies such as Space Exploration Technologies Corporation (SpaceX), Blue Origin, and United Launch Alliance (ULA) are pursuing reusable hardware. Even foreign companies are pursuing this option. The Indian Space Research Organization (ISRO) launched a reusable space plane technology demonstrator and Airbus Defense and Space is planning to recover the main engines and avionics from its Advanced Expendable Launcher with Innovative engine Economy [1] [2]. To date, the Space Shuttle remains as the only Reusable Launch (RLV) to have flown repeated missions and the Space Shutte Main Engine (SSME) is the only demonstrated reusable engine. Whether the hardware being considered for reuse is a launch vehicle (fully reusable), a first stage (partially reusable), or a booster engine (single component), the overall governing process is the same; it must be recovered and recertified for flight. Therefore, there is a need to identify the key factors in determining the reusability of flight hardware. This paper begins with defining reusability to set the context, addresses the significance of reuse, and discusses areas that limit successful implementation. Finally, this research identifies the factors that should be considered when incorporating reuse.

  9. SpaceTech—Postgraduate space education

    NASA Astrophysics Data System (ADS)

    de Bruijn, Ferdi J.; Ashford, Edward W.; Larson, Wiley J.

    2008-07-01

    SpaceTech is a postgraduate program geared primarily for mid-career space professionals seeking to gain or improve their expertise in space systems engineering and in business engineering. SpaceTech provides a lifelong impact on its participants by broadening their capabilities, encouraging systematic "end-to-end" thinking and preparing them for any technical or business-related engineering challenges they may encounter. This flexible 1-year program offers high competency gain and increased business skills. It is held in attractive locations in a flexible, multi-cultural environment. SpaceTech is a highly effective master's program certified by the esteemed Technical University of Delft (TUD), Netherlands. SpaceTech provides expert instructors who place no barriers between themselves and participants. The program combines innovative and flexible new approaches with time-tested methods to give participants the skills required for future missions and new business, while allowing participants to meet their work commitments at the same time as they study for their master's degree. The SpaceTech program is conducted in separate sessions, generally each of 2-week duration, separated by periods of some 6-8 weeks, during which time participants may return to their normal jobs. It also includes introductory online course material that the participants can study at their leisure. The first session is held at the TUD, with subsequent sessions held at strategic space agency locations. By participating at two or more of these sessions, attendees can earn certificates of satisfactory completion from TU Delft. By participating in all of the sessions, as well as taking part in the companion Central Case Project (CCP), participants earn an accredited and highly respected master's degree in Space Systems Engineering from the TUD. Seven distinct SpaceTech modules are provided during these sessions: Space Mission Analysis and Design, Systems Engineering, Business Engineering, Interpersonal Skills, Telecommunications, Earth Observation and Navigation. A group CCP, a major asset of this unique program, is a focused project, aimed at the formation of a credible virtual commercial space-related business. Participants exercise space systems engineering fundamentals as well as marketing and business engineering tools, with the goal of creating a financially viable business opportunity. They then present the result, in the form of an unsolicited proposal to potential investors, as well as a varied group of engineers, managers and executives from the space community. During the CCP, participants learn the ties between mission and system design and the potential return to investors. They develop an instinct for the technical concepts and which of the parameters to adjust to make their newly conceived business more effective and profitable.

  10. AJ26 engine test

    NASA Image and Video Library

    2011-12-15

    Stennis Space Center test-fired Aerojet AJ26 flight engine No. 8 on Dec. 15, continuing a commercial partnership with Orbital Services Corporation. Orbital has partnered with NASA to provide commercial cargo flights to the International Space Station. The AJ26 engines tested at Stennis will power the company's Taurus II space launch vehicle on the flights.

  11. A feasibility assessment of magnetic bearings for free-piston Stirling space power converters

    NASA Technical Reports Server (NTRS)

    Curwen, Peter W.; Rao, Dantam K.; Wilson, Donald R.

    1992-01-01

    This report describes a design and analysis study performed by Mechanical Technology Incorporated (MTI) under NASA Contract NAS3-26061. The objective of the study was to assess the feasibility and efficacy of applying magnetic bearings to free-piston Stirling-cycle power conversion machinery of the type currently being evaluated for possible use in long-term space missions. The study was performed for a 50-kWe Reference Stirling Space Power Converter (RSSPC) system consisting of two 25-kWe free-piston Stirling engine modules. Two different versions of the RSSPC engine modules have been defined under NASA Contract NAS3-25463. These modules currently use hydrostatic gas bearings to support the reciprocating displacer and power piston assemblies. Results of this study show that active magnetic bearings of the attractive electromagnetic type are technically feasible for RSSPC application provided that wire insulation with 60,000-hr life capability at 300 C can be developed for the bearing coils. From a design integration standpoint, both versions of the RSSPC were found to be conceptually amenable to magnetic support of the power piston assembly. However, only one version of the RSSPC was found to be amendable to magnetic support of the displacer assembly. Unacceptable changes to the basic engine design would be required to incorporate magnetic displacer bearings into the second version. Complete magnetic suspension of the RSSPC can potentially increase overall efficiency of the Stirling cycle power converter by 0.53 to 1.4 percent (0.15 to 0.4 efficiency points). Magnetic bearings will also overcome several operational concerns associated with hydrostatic gas bearing systems. However, these advantages are accompanied by a 5 to 8 percent increase in specific mass of the RSSPC, depending on the RSSPC version employed. Additionally, magnetic bearings are much more complex, both mechanically and particularly electronically, than hydrostatic bearings. Accordingly, long-term stability and reliability represent areas of uncertainty for magnetic bearings. Considerable development effort will be required to establish the long-term suitability of these bearings for Stirling space power applications.

  12. AJ26 engine test

    NASA Image and Video Library

    2011-03-19

    A team of engineers from NASA's John C. Stennis Space Center, Orbital Sciences Corporation and Aerojet conduct a successful test of an Aerojet AJ26 rocket engine on March 19. Stennis is testing AJ26 engines for Orbital Sciences to power commercial cargo missions to the International Space Station. Orbital has partnered with NASA through the Commercial Orbital Transportation Services initiative to carry out eight cargo missions to the space station by 2015, using Taurus II rockets.

  13. Stennis Space Center goes to Washington Folklife Festival

    NASA Image and Video Library

    2008-07-03

    A visitor to the Smithsonian Folklife Festival in Washington, D.C., examines a space shuttle main engine display provided by Stennis Space Center. Since 1975, Stennis has been responsible for testing every engine used in NASA's Space Shuttle Program.

  14. Stennis Space Center goes to Washington Folklife Festival

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A visitor to the Smithsonian Folklife Festival in Washington, D.C., examines a space shuttle main engine display provided by Stennis Space Center. Since 1975, Stennis has been responsible for testing every engine used in NASA's Space Shuttle Program.

  15. J-2X engine assembly

    NASA Image and Video Library

    2011-03-03

    Pratt & Whitney Rocketdyne employees Carlos Alfaro (l) and Oliver Swanier work on the main combustion element of the J-2X rocket engine at their John C. Stennis Space Center facility. Assembly of the J-2X rocket engine to be tested at the site is under way, with completion and delivery to the A-2 Test Stand set for June. The J-2X is being developed as a next-generation engine that can carry humans into deep space. Stennis Space Center is preparing a trio of stands to test the new engine.

  16. J-2X engine

    NASA Image and Video Library

    2012-09-14

    NASA engineers continued to collect test performance data on the new J-2X rocket engine at Stennis Space Center with a 250-second test Sept. 14. The test on the A-2 Test Stand was the 19th in a series of firings to gather critical data for continued development of the engine. The J-2X is being developed by Pratt and Whitney Rocketdyne for NASA's Marshall Space Flight Center in Huntsville, Ala. It is the first liquid oxygen and liquid hydrogen rocket engine rated to carry humans into space to be developed in 40 years.

  17. Space Electric Research Test in the Electric Propulsion Laboratory

    NASA Image and Video Library

    1964-06-21

    Technicians prepare the Space Electric Research Test (SERT-I) payload for a test in Tank Number 5 of the Electric Propulsion Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis researchers had been studying different methods of electric rocket propulsion since the mid-1950s. Harold Kaufman created the first successful engine, the electron bombardment ion engine, in the early 1960s. These electric engines created and accelerated small particles of propellant material to high exhaust velocities. Electric engines have a very small amount of thrust, but once lofted into orbit by workhorse chemical rockets, they are capable of small, continuous thrust for periods up to several years. The electron bombardment thruster operated at a 90-percent efficiency during testing in the Electric Propulsion Laboratory. The package was rapidly rotated in a vacuum to simulate its behavior in space. The SERT-I mission, launched from Wallops Island, Virginia, was the first flight test of Kaufman’s ion engine. SERT-I had one cesium engine and one mercury engine. The suborbital flight was only 50 minutes in duration but proved that the ion engine could operate in space. The Electric Propulsion Laboratory included two large space simulation chambers, one of which is seen here. Each uses twenty 2.6-foot diameter diffusion pumps, blowers, and roughing pumps to remove the air inside the tank to create the thin atmosphere. A helium refrigeration system simulates the cold temperatures of space.

  18. 14 CFR 33.64 - Pressurized engine static parts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Pressurized engine static parts. 33.64 Section 33.64 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.64 Pressurized...

  19. 14 CFR 33.64 - Pressurized engine static parts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Pressurized engine static parts. 33.64 Section 33.64 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.64 Pressurized...

  20. 14 CFR 33.64 - Pressurized engine static parts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Pressurized engine static parts. 33.64 Section 33.64 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.64 Pressurized...

  1. 14 CFR 33.64 - Pressurized engine static parts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Pressurized engine static parts. 33.64 Section 33.64 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.64 Pressurized...

  2. 14 CFR 33.64 - Pressurized engine static parts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Pressurized engine static parts. 33.64 Section 33.64 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.64 Pressurized...

  3. 14 CFR 21.128 - Tests: aircraft engines.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tests: aircraft engines. 21.128 Section 21.128 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... engine (except rocket engines for which the manufacturer must establish a sampling technique) to an...

  4. 14 CFR 21.128 - Tests: aircraft engines.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Tests: aircraft engines. 21.128 Section 21.128 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... engine (except rocket engines for which the manufacturer must establish a sampling technique) to an...

  5. KSC-04pd1646

    NASA Image and Video Library

    2004-08-03

    KENNEDY SPACE CENTER, FLA. - In the Space Shuttle Main Engine (SSME) Processing Facility, Boeing-Rocketdyne crane operator Joe Ferrante (left) lowers SSME 2058, the first SSME fully assembled at KSC, onto an engine stand with the assistance of other technicians on his team. The engine is being moved from its vertical work stand into a horizontal position in preparation for shipment to NASA’s Stennis Space Center in Mississippi to undergo a hot fire acceptance test. It is the first of five engines to be fully assembled on site to reach the desired number of 15 engines ready for launch at any given time in the Space Shuttle program. A Space Shuttle has three reusable main engines. Each is 14 feet long, weighs about 7,800 pounds, is seven-and-a-half feet in diameter at the end of its nozzle, and generates almost 400,000 pounds of thrust. Historically, SSMEs were assembled in Canoga Park, Calif., with post-flight inspections performed at KSC. Both functions were consolidated in February 2002. The Rocketdyne Propulsion and Power division of The Boeing Co. manufactures the engines for NASA.

  6. KSC-04PD-1648

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Shuttle Main Engine (SSME) Processing Facility, Boeing-Rocketdyne quality inspector Nick Grimm (center) monitors the work of technicians on his team as they lower SSME 2058, the first SSME fully assembled at KSC, onto an engine stand. The engine is being placed into a horizontal position in preparation for shipment to NASAs Stennis Space Center in Mississippi to undergo a hot fire acceptance test. It is the first of five engines to be fully assembled on site to reach the desired number of 15 engines ready for launch at any given time in the Space Shuttle program. A Space Shuttle has three reusable main engines. Each is 14 feet long, weighs about 7,800 pounds, is seven-and-a-half feet in diameter at the end of its nozzle, and generates almost 400,000 pounds of thrust. Historically, SSMEs were assembled in Canoga Park, Calif., with post-flight inspections performed at KSC. Both functions were consolidated in February 2002. The Rocketdyne Propulsion and Power division of The Boeing Co. manufactures the engines for NASA.

  7. KSC-04pd1648

    NASA Image and Video Library

    2004-08-03

    KENNEDY SPACE CENTER, FLA. - In the Space Shuttle Main Engine (SSME) Processing Facility, Boeing-Rocketdyne quality inspector Nick Grimm (center) monitors the work of technicians on his team as they lower SSME 2058, the first SSME fully assembled at KSC, onto an engine stand. The engine is being placed into a horizontal position in preparation for shipment to NASA’s Stennis Space Center in Mississippi to undergo a hot fire acceptance test. It is the first of five engines to be fully assembled on site to reach the desired number of 15 engines ready for launch at any given time in the Space Shuttle program. A Space Shuttle has three reusable main engines. Each is 14 feet long, weighs about 7,800 pounds, is seven-and-a-half feet in diameter at the end of its nozzle, and generates almost 400,000 pounds of thrust. Historically, SSMEs were assembled in Canoga Park, Calif., with post-flight inspections performed at KSC. Both functions were consolidated in February 2002. The Rocketdyne Propulsion and Power division of The Boeing Co. manufactures the engines for NASA.

  8. Evidence of Facilitation Cascade Processes as Drivers of Successional Patterns of Ecosystem Engineers at the Upper Altitudinal Limit of the Dry Puna.

    PubMed

    Malatesta, Luca; Tardella, Federico Maria; Piermarteri, Karina; Catorci, Andrea

    2016-01-01

    Facilitation processes constitute basic elements of vegetation dynamics in harsh systems. Recent studies in tropical alpine environments demonstrated how pioneer plant species defined as "ecosystem engineers" are capable of enhancing landscape-level richness by adding new species to the community through the modification of microhabitats, and also provided hints about the alternation of different ecosystem engineers over time. Nevertheless, most of the existing works analysed different ecosystem engineers separately, without considering the interaction of different ecosystem engineers. Focusing on the altitudinal limit of Peruvian Dry Puna vegetation, we hypothesized that positive interactions structure plant communities by facilitation cascades involving different ecosystem engineers, determining the evolution of the microhabitat patches in terms of abiotic resources and beneficiary species hosted. To analyze successional mechanisms, we used a "space-for-time" substitution to account for changes over time, and analyzed data on soil texture, composition, and temperature, facilitated species and their interaction with nurse species, and surface area of engineered patches by means of chemical analyses, indicator species analysis, and rarefaction curves. A successional process, resulting from the dynamic interaction of different ecosystem engineers, which determined a progressive amelioration of soil conditions (e.g. nitrogen and organic matter content, and temperature), was the main driver of species assemblage at the community scale, enhancing species richness. Cushion plants act as pioneers, by starting the successional processes that continue with shrubs and tussocks. Tussock grasses have sometimes been found to be capable of creating microhabitat patches independently. The dynamics of species assemblage seem to follow the nested assemblage mechanism, in which the first foundation species to colonize a habitat provides a novel substrate for colonization by other foundation species through a facilitation cascade process.

  9. Recent Status of SIM Lite Astrometric Observatory Mission: Flight Engineering Risk Reduction Activities

    NASA Technical Reports Server (NTRS)

    Goullioud, Renaud; Dekens, Frank; Nemati, Bijan; An, Xin; Carson, Johnathan

    2010-01-01

    The SIM Lite Astrometric Observatory is a mission concept for a space-borne instrument to perform micro-arc-second narrow-angle astrometry to search 60 to 100 nearby stars for Earth-like planets, and to perform global astrometry for a broad astrophysics program. The instrument consists of two Michelson stellar interferometers and a telescope. The first interferometer chops between the target star and a set of reference stars. The second interferometer monitors the attitude of the instrument in the direction of the target star. The telescope monitors the attitude of the instrument in the other two directions. The main enabling technology development for the mission was completed during phases A & B. The project is currently implementing the developed technology onto flight-ready engineering models. These key engineering tasks will significantly reduce the implementation risks during the flight phases C & D of the mission. The main optical interferometer components, including the astrometric beam combiner, the fine steering optical mechanism, the path-length-control and modulation optical mechanisms, focal-plane camera electronics and cooling heat pipe, are currently under development. Main assemblies are built to meet flight requirements and will be subjected to flight qualification level environmental testing (random vibration and thermal cycling) and performance testing. This paper summarizes recent progress in engineering risk reduction activities.

  10. Analysis of Big Data from Space

    NASA Astrophysics Data System (ADS)

    Tan, J.; Osborne, B.

    2017-09-01

    Massive data have been collected through various space mission. To maximize the investment, the data need to be exploited to the fullest. In this paper, we address key topics on big data from space about the status and future development using the system engineering method. First, we summarized space data including operation data and mission data, on their sources, access way, characteristics of 5Vs and application models based on the concept of big data, as well as the challenges they faced in application. Second, we gave proposals on platform design and architecture to meet the demand and challenges on space data application. It has taken into account of features of space data and their application models. It emphasizes high scalability and flexibility in the aspects of storage, computing and data mining. Thirdly, we suggested typical and promising practices for space data application, that showed valuable methodologies for improving intelligence on space application, engineering, and science. Our work will give an interdisciplinary knowledge to space engineers and information engineers.

  11. 46 CFR 69.121 - Engine room deduction.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Engine room deduction. 69.121 Section 69.121 Shipping... MEASUREMENT OF VESSELS Standard Measurement System § 69.121 Engine room deduction. (a) General. The engine...) Space below the crown. The crown is the top of the main space of the engine room to which the heights of...

  12. 46 CFR 69.121 - Engine room deduction.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Engine room deduction. 69.121 Section 69.121 Shipping... MEASUREMENT OF VESSELS Standard Measurement System § 69.121 Engine room deduction. (a) General. The engine...) Space below the crown. The crown is the top of the main space of the engine room to which the heights of...

  13. Research Technology

    NASA Image and Video Library

    2002-03-13

    NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, has begun a series of engine tests on the Reaction Control Engine developed by TRW Space and Electronics for NASA's Space Launch Initiative (SLI). SLI is a technology development effort aimed at improving the safety, reliability, and cost effectiveness of space travel for reusable launch vehicles. The engine in this photo, the first engine tested at MSFC that includes SLI technology, was tested for two seconds at a chamber pressure of 185 pounds per square inch absolute (psia). Propellants used were liquid oxygen as an oxidizer and liquid hydrogen as fuel. Designed to maneuver vehicles in orbit, the engine is used as an auxiliary propulsion system for docking, reentry, fine-pointing, and orbit transfer while the vehicle is in orbit. The Reaction Control Engine has two unique features. It uses nontoxic chemicals as propellants, which creates a safer environment with less maintenance and quicker turnaround time between missions, and it operates in dual thrust modes, combining two engine functions into one engine. The engine operates at both 25 and 1,000 pounds of force, reducing overall propulsion weight and allowing vehicles to easily maneuver in space. The force of low level thrust allows the vehicle to fine-point maneuver and dock, while the force of the high level thrust is used for reentry, orbital transfer, and course positioning.

  14. NHQ_2018_0627_E56_NASM Inflight

    NASA Image and Video Library

    2018-06-27

    SPACE STATION CREW MEMBER DISCUSSES LIFE IN SPACE WITH FUTURE ENGINEERS----- Aboard the International Space Station, Expedition 56 Flight Engineer Serena Aunon-Chancellor discussed life and research onboard the orbital complex with future engineers gathered at the Smithsonian Air and Space Museum in Washington, D.C. during an in-flight educational event June 27. Aunon-Chancellor arrived at the complex on June 8 at the start of a six and a half month mission.

  15. Synthetic metabolism: metabolic engineering meets enzyme design.

    PubMed

    Erb, Tobias J; Jones, Patrik R; Bar-Even, Arren

    2017-04-01

    Metabolic engineering aims at modifying the endogenous metabolic network of an organism to harness it for a useful biotechnological task, for example, production of a value-added compound. Several levels of metabolic engineering can be defined and are the topic of this review. Basic 'copy, paste and fine-tuning' approaches are limited to the structure of naturally existing pathways. 'Mix and match' approaches freely recombine the repertoire of existing enzymes to create synthetic metabolic networks that are able to outcompete naturally evolved pathways or redirect flux toward non-natural products. The space of possible metabolic solution can be further increased through approaches including 'new enzyme reactions', which are engineered on the basis of known enzyme mechanisms. Finally, by considering completely 'novel enzyme chemistries' with de novo enzyme design, the limits of nature can be breached to derive the most advanced form of synthetic pathways. We discuss the challenges and promises associated with these different metabolic engineering approaches and illuminate how enzyme engineering is expected to take a prime role in synthetic metabolic engineering for biotechnology, chemical industry and agriculture of the future. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Carbon Nanotube Composites: Strongest Engineering Material Ever?

    NASA Technical Reports Server (NTRS)

    Mayeaux, Brian; Nikolaev, Pavel; Proft, William; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    The primary goal of the carbon nanotube project at Johnson Space Center (JSC) is to fabricate structural materials with a much higher strength-to-weight ratio than any engineered material today, Single-wall nanotubes present extraordinary mechanical properties along with new challenges for materials processing. Our project includes nanotube production, characterization, purification, and incorporation into applications studies. Now is the time to move from studying individual nanotubes to applications work. Current research at JSC focuses on structural polymeric materials to attempt to lower the weight of spacecraft necessary for interplanetary missions. These nanoscale fibers present unique new challenges to composites engineers. Preliminary studies show good nanotube dispersion and wetting by the epoxy materials. Results of tensile strength tests will also be reported. Other applications of nanotubes are also of interest for energy storage, gas storage, nanoelectronics, field emission, and biomedical uses.

  17. Status and summary of laser energy conversion. [for space power transmission systems

    NASA Technical Reports Server (NTRS)

    Lee, G.

    1978-01-01

    This paper presents a survey of the status of laser energy converters. Since the inception of these devices in the early 1970's, significant advances have been made in understanding the basic conversion processes. Numerous theoretical and experimental studies have indicated that laser energy can be converted at wavelengths from the ultraviolet to the far-infrared. These converters can be classified into five general categories: photovoltaics, heat engines, thermoelectronic, optical diode, and photochemical. The conversion can be directly into electricity (such as the photovoltaic, thermoelectronic, and optical diode) or it can go through an intermediate stage of conversion to mechanical energy, as in the heat engines. The photochemical converters result in storable energy such as hydrogen. Projected conversion efficiencies range from about 30% for the photochemical to nearly 75% for the heat engines.

  18. Overview of NASA Lewis Research Center free-piston Stirling engine technology activities applicable to space power systems

    NASA Technical Reports Server (NTRS)

    Slaby, Jack G.

    1987-01-01

    A brief overview is presented of the development and technological activities of the free-piston Stirling engine. The engine started as a small scale fractional horsepower engine which demonstrated basic engine operating principles and the advantages of being hermetically sealed, highly efficient, and simple. It eventually developed into the free piston Stirling engine driven heat pump, and then into the SP-100 Space Reactor Power Program from which came the Space Power Demonstrator Engine (SPDE). The SPDE successfully operated for over 300 hr and delivered 20 kW of PV power to an alternator plunger. The SPDE demonstrated that a dynamic power conversion system can, with proper design, be balanced; and the engine performed well with externally pumped hydrostatic gas bearings.

  19. Advanced Health Management System for the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Davidson, Matt; Stephens, John

    2004-01-01

    Boeing-Canoga Park (BCP) and NASA-Marshall Space Flight Center (NASA-MSFC) are developing an Advanced Health Management System (AHMS) for use on the Space Shuttle Main Engine (SSME) that will improve Shuttle safety by reducing the probability of catastrophic engine failures during the powered ascent phase of a Shuttle mission. This is a phased approach that consists of an upgrade to the current Space Shuttle Main Engine Controller (SSMEC) to add turbomachinery synchronous vibration protection and addition of a separate Health Management Computer (HMC) that will utilize advanced algorithms to detect and mitigate predefined engine anomalies. The purpose of the Shuttle AHMS is twofold; one is to increase the probability of successfully placing the Orbiter into the intended orbit, and the other is to increase the probability of being able to safely execute an abort of a Space Transportation System (STS) launch. Both objectives are achieved by increasing the useful work envelope of a Space Shuttle Main Engine after it has developed anomalous performance during launch and the ascent phase of the mission. This increase in work envelope will be the result of two new anomaly mitigation options, in addition to existing engine shutdown, that were previously unavailable. The added anomaly mitigation options include engine throttle-down and performance correction (adjustment of engine oxidizer to fuel ratio), as well as enhanced sensor disqualification capability. The HMC is intended to provide the computing power necessary to diagnose selected anomalous engine behaviors and for making recommendations to the engine controller for anomaly mitigation. Independent auditors have assessed the reduction in Shuttle ascent risk to be on the order of 40% with the combined system and a three times improvement in mission success.

  20. Decoupling local mechanics from large-scale structure in modular metamaterials.

    PubMed

    Yang, Nan; Silverberg, Jesse L

    2017-04-04

    A defining feature of mechanical metamaterials is that their properties are determined by the organization of internal structure instead of the raw fabrication materials. This shift of attention to engineering internal degrees of freedom has coaxed relatively simple materials into exhibiting a wide range of remarkable mechanical properties. For practical applications to be realized, however, this nascent understanding of metamaterial design must be translated into a capacity for engineering large-scale structures with prescribed mechanical functionality. Thus, the challenge is to systematically map desired functionality of large-scale structures backward into a design scheme while using finite parameter domains. Such "inverse design" is often complicated by the deep coupling between large-scale structure and local mechanical function, which limits the available design space. Here, we introduce a design strategy for constructing 1D, 2D, and 3D mechanical metamaterials inspired by modular origami and kirigami. Our approach is to assemble a number of modules into a voxelized large-scale structure, where the module's design has a greater number of mechanical design parameters than the number of constraints imposed by bulk assembly. This inequality allows each voxel in the bulk structure to be uniquely assigned mechanical properties independent from its ability to connect and deform with its neighbors. In studying specific examples of large-scale metamaterial structures we show that a decoupling of global structure from local mechanical function allows for a variety of mechanically and topologically complex designs.

Top