Science.gov

Sample records for mechanical failure modes

  1. Mechanics of dual-mode dilative failure in subaqueous sediment deposits

    NASA Astrophysics Data System (ADS)

    You, Yao; Flemings, Peter; Mohrig, David

    2014-07-01

    We introduce dual-mode dilative failure with flume experiments. Dual-mode dilative failure combines slow and steady release of sediments by breaching with periodic sliding, which rapidly releases an internally coherent wedge of sediments. It occurs in dilative sandy deposits. This periodic slope failure results from cyclic evolution of the excess pore pressure in the deposit. Sliding generates large, transient, negative excess pore pressure that strengthens the deposit and allows breaching to occur. During breaching, negative excess pore pressure dissipates, the deposit weakens, and ultimately sliding occurs once again. We show that the sliding frequency is proportional to the coefficient of consolidation. We find that thicker deposits are more susceptible to dual-mode dilative failure. Discovery of dual-mode dilative failure provides a new mechanism to consider when interpreting the sedimentary deposits linked to submarine slope failures.

  2. Interface failure modes explain non-monotonic size-dependent mechanical properties in bioinspired nanolaminates.

    PubMed

    Song, Z Q; Ni, Y; Peng, L M; Liang, H Y; He, L H

    2016-03-31

    Bioinspired discontinuous nanolaminate design becomes an efficient way to mitigate the strength-ductility tradeoff in brittle materials via arresting the crack at the interface followed by controllable interface failure. The analytical solution and numerical simulation based on the nonlinear shear-lag model indicates that propagation of the interface failure can be unstable or stable when the interfacial shear stress between laminae is uniform or highly localized, respectively. A dimensionless key parameter defined by the ratio of two characteristic lengths governs the transition between the two interface-failure modes, which can explain the non-monotonic size-dependent mechanical properties observed in various laminate composites.

  3. Mechanical failure modes of chronically implanted planar silicon-based neural probes for laminar recording

    PubMed Central

    Kozai, Takashi D. Y.; Catt, Kasey; Li, Xia; Gugel, Zhannetta V.; Olafsson, Valur T.; Vazquez, Alberto L.; Cui, X. Tracy

    2014-01-01

    Penetrating intracortical electrode arrays that record brain activity longitudinally are powerful tools for basic neuroscience research and emerging clinical applications. However, regardless of the technology used, signals recorded by these electrodes degrade over time. The failure mechanisms of these electrodes are understood to be a complex combination of the biological reactive tissue response and material failure of the device over time. While mechanical mismatch between the brain tissue and implanted neural electrodes have been studied as a source of chronic inflammation and performance degradation, the electrode failure caused by mechanical mismatch between different material properties and different structural components within a device have remained poorly characterized. Using Finite Element Model (FEM) we simulate the mechanical strain on a planar silicon electrode. The results presented here demonstrate that mechanical mismatch between iridium and silicon leads to concentrated strain along the border of the two materials. This strain is further focused on small protrusions such as the electrical traces in planar silicon electrodes. These findings are confirmed with chronic in vivo data (133–189 days) in mice by correlating a combination of single-unit electrophysiology, evoked multi-unit recordings, electrochemical impedance spectroscopy, and scanning electron microscopy from traces and electrode sites with our modeling data. Several modes of mechanical failure of chronically implanted planar silicon electrodes are found that result in degradation and/or loss of recording. These findings highlight the importance of strains and material properties of various subcomponents within an electrode array. PMID:25453935

  4. Mechanical Failure Mode of Metal Nanowires: Global Deformation versus Local Deformation

    PubMed Central

    Ho, Duc Tam; Im, Youngtae; Kwon, Soon-Yong; Earmme, Youn Young; Kim, Sung Youb

    2015-01-01

    It is believed that the failure mode of metal nanowires under tensile loading is the result of the nucleation and propagation of dislocations. Such failure modes can be slip, partial slip or twinning and therefore they are regarded as local deformation. Here we provide numerical and theoretical evidences to show that global deformation is another predominant failure mode of nanowires under tensile loading. At the global deformation mode, nanowires fail with a large contraction along a lateral direction and a large expansion along the other lateral direction. In addition, there is a competition between global and local deformations. Nanowires loaded at low temperature exhibit global failure mode first and then local deformation follows later. We show that the global deformation originates from the intrinsic instability of the nanowires and that temperature is a main parameter that decides the global or local deformation as the failure mode of nanowires. PMID:26087445

  5. Mechanics of Unidirectional Fiber-Reinforced Composites: Buckling Modes and Failure Under Compression Along Fibers

    NASA Astrophysics Data System (ADS)

    Paimushin, V. N.; Kholmogorov, S. A.; Gazizullin, R. K.

    2018-01-01

    One-dimensional linearized problems on the possible buckling modes of an internal or peripheral layer of unidirectional multilayer composites with rectilinear fibers under compression in the fiber direction are considered. The investigations are carried out using the known Kirchhoff-Love and Timoshenko models for the layers. The binder, modeled as an elastic foundation, is described by the equations of elasticity theory, which are simplified in accordance to the model of a transversely soft layer and are integrated along the transverse coordinate considering the kinematic coupling relations for a layer and foundation layers. Exact analytical solutions of the problems formulated are found, which are used to calculate a composite made of an HSE 180 REM prepreg based on a unidirectional carbon fiber tape. The possible buckling modes of its internal and peripheral layers are identified. Calculation results are compared with experimental data obtained earlier. It is concluded that, for the composite studied, the flexural buckling of layers in the uniform axial compression of specimens along fibers is impossible — the failure mechanism is delamination with buckling of a fiber bundle according to the pure shear mode. It is realized (due to the low average transverse shear modulus) at the value of the ultimate compression stress equal to the average shear modulus. It is shown that such a shear buckling mode can be identified only on the basis of equations constructed using the Timoshenko shear model to describe the deformation process of layers.

  6. Mechanical behavior and localized failure modes in a porous basalt from the Azores

    NASA Astrophysics Data System (ADS)

    Loaiza, S.; Fortin, J.; Schubnel, A.; Gueguen, Y.; Vinciguerra, S.; Moreira, M.

    2012-10-01

    Basaltic rocks are the main component of the oceanic upper crust, thus of potential interest for water and geothermal resources, storage of CO2 and volcanic edifice stability. In this work, we investigated experimentally the mechanical behavior and the failure modes of a porous basalt, with an initial connected porosity of 18%. Results were acquired under triaxial compression experiments at confining pressure in the range of 25-200 MPa on water saturated samples. In addition, a purely hydrostatic test was also performed to reach the pore collapse critical pressure P*. During hydrostatic loading, our results show that the permeability is highly pressure dependent, which suggests that the permeability is mainly controlled by pre-existing cracks. When the sample is deformed at pressure higher than the pore collapse pressure P*, some very small dilatancy develops due to microcracking, and an increase in permeability is observed. Under triaxial loading, two modes of deformation can be highlighted. At low confining pressure (Pc < 50 MPa), the samples are brittle and shear localization occurs. For confining pressure > 50 MPa, the stress-strain curves are characterized by strain hardening and volumetric compaction. Stress drops are also observed, suggesting that compaction may be localized. The presence of compaction bands is confirmed by our microstructure analysis. In addition, the mechanical data allows us to plot the full yield surface for this porous basalt, which follows an elliptic cap as previously observed in high porosity sandstones and limestones.

  7. Mechanical behavior and localized failure modes in a porous basalt from the Azores

    NASA Astrophysics Data System (ADS)

    Loaiza, S.; Fortin, J.; Schubnel, A.; Guéguen, Y.; Moreira, M.; Vinciguerra, S.

    2012-04-01

    Basaltic rocks are the main component of the oceanic upper crust. This is of potential interest for water and geothermal resources, or for storage of CO2. The aim of our work is to investigate experimentally the mechanical behavior and the failure modes of porous basalt as well as the permeability evolution during deformation. Cylindrical basalt samples, from the Azores, of 30 mm in diameter and 60 mm in length were deformed the triaxial cell of the Laboratoire de Geologie at the Ecole Normale Supérieure (Paris) at room temperature and at a constant axial strain rate of 10-5 s-1. The initial porosity of the sample was 18%. The Geodesign triaxial cell can reach 300MPa confining pressure; axial load is performed through a piston and can reach 900 MPa (for a 30mm diameter sample); maximum pore pressure is 100MPa (applied using two precision volumetric pumps). In our study, a set of experiments were performed at confining pressure in the range of 25-290 MPa. The samples were deformed under saturated conditions at a constant pore pressure of 5MPa. Two volumetric pumps kept the pore pressure constant, and the pore volume variations were recorded. The evolution of the porosity was calculated from the total volume variation inside the volumetric pumps. Permeability measurements were performed using the steady-state technique. Our result shows that two modes of deformation can be highlighted in this basalt. At low confining pressure (Pc < 50 MPa), the differential stress attains a peak before the sample undergoes strain softening; the failure of sample occurs by shear localization. Yet, the brittle regime is commonly observed in this low Pc range, the experiments performed at confining pressure higher than 50 MPa, show a totally different mode of deformation. In this second mode of deformation, an appreciable inelastic porosity reduction is observed. Comparing to the hydrostatic loading, the rock sample started to compact beyond a critical stress state; and from then

  8. Contact Mechanics and Failure Modes of Compliant Polymeric Bearing Materials for Knee Cartilage Replacement

    NASA Astrophysics Data System (ADS)

    Tohfafarosh, Mariya Shabbir

    control samples. However, chemical spectra of electron beam sterilized samples revealed minor changes, which were absent in unsterilized and gamma sterilized samples. Upon successful sterilization evaluation, both polycarbonate urethane and the novel hydrogel were investigated for the contact mechanics of compliant-on-compliant artificial knee bearings using a finite element analysis approach. A simplified, axisymmetric, finite element model of a medial knee compartment was developed and validated, and a design of simulation experiments was carried out to evaluate the effect of implant conformity, implant thickness and material properties on the contact mechanics of compliant knee bearings under normal walking and stair climbing loads. All input parameters, namely, implant conformity, implant thickness and material properties, significantly (p<0.001) affected the maximum principal stress, Von Mises stress, maximum shear stress, maximum principal strain, maximum contact pressure and contact area. The knee implant contact mechanics demonstrated sensitivity to all the three design factors, and a correlation between resulting stresses and implant conformity as well as thickness was observed. However, the conformity had the highest effect-size on the contact mechanics. The maximum principal stress value halves and the contact area doubles when ≥ 95% implant conformity (i.e. the ratio of femoral to tibial surface’s radii of curvature) and ≥ 3mm thickness was used, hence, these parameters were recommended for the design of compliant knee bearings. Finally, a battery of mechanical tests was carried out to evaluate the failure criteria of the proposed compliant polymers under physiological loads and strain rates. Uniaxial tests, including tension and unconfined compression, and biaxial tests, such as plane strain compression, were carried out to characterize the mechanical behavior of different material formulations at physiologically relevant testing rates. The materials

  9. Failure mode analysis to predict product reliability.

    NASA Technical Reports Server (NTRS)

    Zemanick, P. P.

    1972-01-01

    The failure mode analysis (FMA) is described as a design tool to predict and improve product reliability. The objectives of the failure mode analysis are presented as they influence component design, configuration selection, the product test program, the quality assurance plan, and engineering analysis priorities. The detailed mechanics of performing a failure mode analysis are discussed, including one suggested format. Some practical difficulties of implementation are indicated, drawn from experience with preparing FMAs on the nuclear rocket engine program.

  10. Common Cause Failure Modes

    NASA Technical Reports Server (NTRS)

    Wetherholt, Jon; Heimann, Timothy J.; Anderson, Brenda

    2011-01-01

    High technology industries with high failure costs commonly use redundancy as a means to reduce risk. Redundant systems, whether similar or dissimilar, are susceptible to Common Cause Failures (CCF). CCF is not always considered in the design effort and, therefore, can be a major threat to success. There are several aspects to CCF which must be understood to perform an analysis which will find hidden issues that may negate redundancy. This paper will provide definition, types, a list of possible causes and some examples of CCF. Requirements and designs from NASA projects will be used in the paper as examples.

  11. Fracture - An Unforgiving Failure Mode

    NASA Technical Reports Server (NTRS)

    Goodin, James Ronald

    2006-01-01

    During the 2005 Conference for the Advancement for Space Safety, after a typical presentation of safety tools, a Russian in the audience simply asked, "How does that affect the hardware?" Having participated in several International System Safety Conferences, I recalled that most attention is dedicated to safety tools and little, if any, to hardware. The intent of this paper on the hazard of fracture and failure modes associated with fracture is my attempt to draw attention to the grass roots of system safety - improving hardware robustness and resilience.

  12. Photovoltaic failure and degradation modes

    DOE PAGES

    Jordan, Dirk C.; Silverman, Timothy J.; Wohlgemuth, John H.; ...

    2017-01-30

    The extensive photovoltaic field reliability literature was analyzed and reviewed. Future work is prioritized based upon information assembled from recent installations, and inconsistencies in degradation mode identification are discussed to help guide future publication on this subject. Reported failure rates of photovoltaic modules fall mostly in the range of other consumer products; however, the long expected useful life of modules may not allow for direct comparison. In general, degradation percentages are reported to decrease appreciably in newer installations that are deployed after the year 2000. However, these trends may be convoluted with varying manufacturing and installation quality world-wide. Modules inmore » hot and humid climates show considerably higher degradation modes than those in desert and moderate climates, which warrants further investigation. Delamination and diode/j-box issues are also more frequent in hot and humid climates than in other climates. The highest concerns of systems installed in the last 10 years appear to be hot spots followed by internal circuitry discoloration. Encapsulant discoloration was the most common degradation mode, particularly in older systems. In newer systems, encapsulant discoloration appears in hotter climates, but to a lesser degree. Lastly, thin-film degradation modes are dominated by glass breakage and absorber corrosion, although the breadth of information for thin-film modules is much smaller than for x-Si.« less

  13. Photovoltaic failure and degradation modes

    SciT

    Jordan, Dirk C.; Silverman, Timothy J.; Wohlgemuth, John H.

    The extensive photovoltaic field reliability literature was analyzed and reviewed. Future work is prioritized based upon information assembled from recent installations, and inconsistencies in degradation mode identification are discussed to help guide future publication on this subject. Reported failure rates of photovoltaic modules fall mostly in the range of other consumer products; however, the long expected useful life of modules may not allow for direct comparison. In general, degradation percentages are reported to decrease appreciably in newer installations that are deployed after the year 2000. However, these trends may be convoluted with varying manufacturing and installation quality world-wide. Modules inmore » hot and humid climates show considerably higher degradation modes than those in desert and moderate climates, which warrants further investigation. Delamination and diode/j-box issues are also more frequent in hot and humid climates than in other climates. The highest concerns of systems installed in the last 10 years appear to be hot spots followed by internal circuitry discoloration. Encapsulant discoloration was the most common degradation mode, particularly in older systems. In newer systems, encapsulant discoloration appears in hotter climates, but to a lesser degree. Lastly, thin-film degradation modes are dominated by glass breakage and absorber corrosion, although the breadth of information for thin-film modules is much smaller than for x-Si.« less

  14. The use of failure mode and effects analysis to construct an effective disposal and prevention mechanism for infectious hospital waste

    SciT

    Ho, Chao Chung, E-mail: ho919@pchome.com.tw; Liao, Ching-Jong

    Highlights: > This study is based on a real case in a regional teaching hospital in Taiwan. > We use Failure mode and effects analysis (FMEA) as the evaluation method. > We successfully identify the risk factors of infectious waste disposal. > We propose plans for the detection of exceptional cases of infectious waste. - Abstract: In recent times, the quality of medical care has been continuously improving in medical institutions wherein patient-centred care has been emphasized. Failure mode and effects analysis (FMEA) has also been promoted as a method of basic risk management and as part of total qualitymore » management (TQM) for improving the quality of medical care and preventing mistakes. Therefore, a study was conducted using FMEA to evaluate the potential risk causes in the process of infectious medical waste disposal, devise standard procedures concerning the waste, and propose feasible plans for facilitating the detection of exceptional cases of infectious waste. The analysis revealed the following results regarding medical institutions: (a) FMEA can be used to identify the risk factors of infectious waste disposal. (b) During the infectious waste disposal process, six items were scored over 100 in the assessment of uncontrolled risks: erroneous discarding of infectious waste by patients and their families, erroneous discarding by nursing staff, erroneous discarding by medical staff, cleaning drivers pierced by sharp articles, cleaning staff pierced by sharp articles, and unmarked output units. Therefore, the study concluded that it was necessary to (1) provide education and training about waste classification to the medical staff, patients and their families, nursing staff, and cleaning staff; (2) clarify the signs of caution; and (3) evaluate the failure mode and strengthen the effects.« less

  15. Failure Mode, Effects, and Criticality Analysis (FMECA)

    DTIC Science & Technology

    1993-04-01

    Preliminary Failure Modes, Effects and Criticality Analysis (FMECA) of the Brayton Isotope Power System Ground Demonstration System, Report No. TID 27301...No. TID/SNA - 3015, Aeroject Nuclear Systems Co., Sacramento, California: 1970. 95. Taylor , J.R. A Formalization of Failure Mode Analysis of Control...Roskilde, Denmark: 1973. 96. Taylor , J.R. A Semi-Automatic Method for Oualitative Failure Mode Analysis. Report No. RISO-M-1707. Available from a

  16. Investigation on the Mechanism and Failure Mode of Laser Transmission Spot Welding Using PMMA Material for the Automotive Industry

    PubMed Central

    Wang, Xiao; Liu, Baoguang; Liu, Wei; Zhong, Xuejiao; Jiang, Yingjie; Liu, Huixia

    2017-01-01

    To satisfy the need of polymer connection in lightweight automobiles, a study on laser transmission spot welding using polymethyl methacrylate (PMMA) is conducted by using an Nd:YAG pulse laser. The influence of three variables, namely peak voltages, defocusing distances and the welding type (type I (pulse frequency and the duration is 25 Hz, 0.6 s) and type II (pulse frequency and the duration is 5 Hz, 3 s)) to the welding quality was investigated. The result showed that, in the case of the same peak voltages and defocusing distances, the number of bubbles for type I was obviously more than type II. The failure mode of type I was the base plate fracture along the solder joint, and the connection strength of type I was greater than type II. The weld pool diameter:depth ratio for type I was significantly greater than type II. It could be seen that there was a certain relationship between the weld pool diameter:depth ratio and the welding strength. By the finite element simulation, the weld pool for type I was more slender than type II, which was approximately the same as the experimental results. PMID:28772383

  17. Investigation on the Mechanism and Failure Mode of Laser Transmission Spot Welding Using PMMA Material for the Automotive Industry.

    PubMed

    Wang, Xiao; Liu, Baoguang; Liu, Wei; Zhong, Xuejiao; Jiang, Yingjie; Liu, Huixia

    2017-01-01

    To satisfy the need of polymer connection in lightweight automobiles, a study on laser transmission spot welding using polymethyl methacrylate (PMMA) is conducted by using an Nd:YAG pulse laser. The influence of three variables, namely peak voltages, defocusing distances and the welding type (type I (pulse frequency and the duration is 25 Hz, 0.6 s) and type II (pulse frequency and the duration is 5 Hz, 3 s)) to the welding quality was investigated. The result showed that, in the case of the same peak voltages and defocusing distances, the number of bubbles for type I was obviously more than type II. The failure mode of type I was the base plate fracture along the solder joint, and the connection strength of type I was greater than type II. The weld pool diameter:depth ratio for type I was significantly greater than type II. It could be seen that there was a certain relationship between the weld pool diameter:depth ratio and the welding strength. By the finite element simulation, the weld pool for type I was more slender than type II, which was approximately the same as the experimental results.

  18. Modes of failure in disordered solids

    NASA Astrophysics Data System (ADS)

    Roy, Subhadeep; Biswas, Soumyajyoti; Ray, Purusattam

    2017-12-01

    The two principal ingredients determining the failure modes of disordered solids are the strength of heterogeneity and the length scale of the region affected in the solid following a local failure. While the latter facilitates damage nucleation, the former leads to diffused damage—the two extreme natures of the failure modes. In this study, using the random fiber bundle model as a prototype for disordered solids, we classify all failure modes that are the results of interplay between these two effects. We obtain scaling criteria for the different modes and propose a general phase diagram that provides a framework for understanding previous theoretical and experimental attempts of interpolation between these modes. As the fiber bundle model is a long-standing model for interpreting various features of stressed disordered solids, the general phase diagram can serve as a guiding principle in anticipating the responses of disordered solids in general.

  19. Failure Mode Identification Through Clustering Analysis

    NASA Technical Reports Server (NTRS)

    Arunajadai, Srikesh G.; Stone, Robert B.; Tumer, Irem Y.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Research has shown that nearly 80% of the costs and problems are created in product development and that cost and quality are essentially designed into products in the conceptual stage. Currently, failure identification procedures (such as FMEA (Failure Modes and Effects Analysis), FMECA (Failure Modes, Effects and Criticality Analysis) and FTA (Fault Tree Analysis)) and design of experiments are being used for quality control and for the detection of potential failure modes during the detail design stage or post-product launch. Though all of these methods have their own advantages, they do not give information as to what are the predominant failures that a designer should focus on while designing a product. This work uses a functional approach to identify failure modes, which hypothesizes that similarities exist between different failure modes based on the functionality of the product/component. In this paper, a statistical clustering procedure is proposed to retrieve information on the set of predominant failures that a function experiences. The various stages of the methodology are illustrated using a hypothetical design example.

  20. Optoelectronic Devices with Complex Failure Modes

    NASA Technical Reports Server (NTRS)

    Johnston, A.

    2000-01-01

    This part of the NSREC-2000 Short Course discusses radiation effects in basic photonic devices along with effects in more complex optoelectronic devices where the overall radiation response depends on several factors, with the possibility of multiple failure modes.

  1. Evaluation of Window Failure Modes

    DTIC Science & Technology

    1999-12-01

    U.S. Coast Guard Research and Development Center 1082 Shennecossett Road, Groton, CT 06340-6096 Report No. CG-D-08-00 EVALUATION OF WINDOW FAILURE...States Coast Guard Research & Development Center 1082 Shennecossett Road Groton, CT 06340-6096 11 I.Report No. CG-D-08-00 Technical Report...Development Center 1082 Shennecossett Road Groton,CT 06340-6096 12. Sponsoring Organization Name and Address U.S. Department of Transportation United

  2. A streamlined failure mode and effects analysis

    SciT

    Ford, Eric C., E-mail: eford@uw.edu; Smith, Koren; Terezakis, Stephanie

    Purpose: Explore the feasibility and impact of a streamlined failure mode and effects analysis (FMEA) using a structured process that is designed to minimize staff effort. Methods: FMEA for the external beam process was conducted at an affiliate radiation oncology center that treats approximately 60 patients per day. A structured FMEA process was developed which included clearly defined roles and goals for each phase. A core group of seven people was identified and a facilitator was chosen to lead the effort. Failure modes were identified and scored according to the FMEA formalism. A risk priority number,RPN, was calculated and usedmore » to rank failure modes. Failure modes with RPN > 150 received safety improvement interventions. Staff effort was carefully tracked throughout the project. Results: Fifty-two failure modes were identified, 22 collected during meetings, and 30 from take-home worksheets. The four top-ranked failure modes were: delay in film check, missing pacemaker protocol/consent, critical structures not contoured, and pregnant patient simulated without the team's knowledge of the pregnancy. These four failure modes hadRPN > 150 and received safety interventions. The FMEA was completed in one month in four 1-h meetings. A total of 55 staff hours were required and, additionally, 20 h by the facilitator. Conclusions: Streamlined FMEA provides a means of accomplishing a relatively large-scale analysis with modest effort. One potential value of FMEA is that it potentially provides a means of measuring the impact of quality improvement efforts through a reduction in risk scores. Future study of this possibility is needed.« less

  3. A streamlined failure mode and effects analysis.

    PubMed

    Ford, Eric C; Smith, Koren; Terezakis, Stephanie; Croog, Victoria; Gollamudi, Smitha; Gage, Irene; Keck, Jordie; DeWeese, Theodore; Sibley, Greg

    2014-06-01

    Explore the feasibility and impact of a streamlined failure mode and effects analysis (FMEA) using a structured process that is designed to minimize staff effort. FMEA for the external beam process was conducted at an affiliate radiation oncology center that treats approximately 60 patients per day. A structured FMEA process was developed which included clearly defined roles and goals for each phase. A core group of seven people was identified and a facilitator was chosen to lead the effort. Failure modes were identified and scored according to the FMEA formalism. A risk priority number,RPN, was calculated and used to rank failure modes. Failure modes with RPN > 150 received safety improvement interventions. Staff effort was carefully tracked throughout the project. Fifty-two failure modes were identified, 22 collected during meetings, and 30 from take-home worksheets. The four top-ranked failure modes were: delay in film check, missing pacemaker protocol/consent, critical structures not contoured, and pregnant patient simulated without the team's knowledge of the pregnancy. These four failure modes had RPN > 150 and received safety interventions. The FMEA was completed in one month in four 1-h meetings. A total of 55 staff hours were required and, additionally, 20 h by the facilitator. Streamlined FMEA provides a means of accomplishing a relatively large-scale analysis with modest effort. One potential value of FMEA is that it potentially provides a means of measuring the impact of quality improvement efforts through a reduction in risk scores. Future study of this possibility is needed.

  4. Failure mode and effects analysis: an empirical comparison of failure mode scoring procedures.

    PubMed

    Ashley, Laura; Armitage, Gerry

    2010-12-01

    To empirically compare 2 different commonly used failure mode and effects analysis (FMEA) scoring procedures with respect to their resultant failure mode scores and prioritization: a mathematical procedure, where scores are assigned independently by FMEA team members and averaged, and a consensus procedure, where scores are agreed on by the FMEA team via discussion. A multidisciplinary team undertook a Healthcare FMEA of chemotherapy administration. This included mapping the chemotherapy process, identifying and scoring failure modes (potential errors) for each process step, and generating remedial strategies to counteract them. Failure modes were scored using both an independent mathematical procedure and a team consensus procedure. Almost three-fifths of the 30 failure modes generated were scored differently by the 2 procedures, and for just more than one-third of cases, the score discrepancy was substantial. Using the Healthcare FMEA prioritization cutoff score, almost twice as many failure modes were prioritized by the consensus procedure than by the mathematical procedure. This is the first study to empirically demonstrate that different FMEA scoring procedures can score and prioritize failure modes differently. It found considerable variability in individual team members' opinions on scores, which highlights the subjective and qualitative nature of failure mode scoring. A consensus scoring procedure may be most appropriate for FMEA as it allows variability in individuals' scores and rationales to become apparent and to be discussed and resolved by the team. It may also yield team learning and communication benefits unlikely to result from a mathematical procedure.

  5. Failure modes and effects analysis automation

    NASA Technical Reports Server (NTRS)

    Kamhieh, Cynthia H.; Cutts, Dannie E.; Purves, R. Byron

    1988-01-01

    A failure modes and effects analysis (FMEA) assistant was implemented as a knowledge based system and will be used during design of the Space Station to aid engineers in performing the complex task of tracking failures throughout the entire design effort. The three major directions in which automation was pursued were the clerical components of the FMEA process, the knowledge acquisition aspects of FMEA, and the failure propagation/analysis portions of the FMEA task. The system is accessible to design, safety, and reliability engineers at single user workstations and, although not designed to replace conventional FMEA, it is expected to decrease by many man years the time required to perform the analysis.

  6. Microstructure-failure mode correlations in braided composites

    NASA Technical Reports Server (NTRS)

    Filatovs, G. J.; Sadler, Robert L.; El-Shiekh, Aly

    1992-01-01

    Explication of the fracture processes of braided composites is needed for modeling their behavior. Described is a systematic exploration of the relationship between microstructure, loading mode, and micro-failure mechanisms in carbon/epoxy braided composites. The study involved compression and fracture toughness tests and optical and scanning electron fractography, including dynamic in-situ testing. Principal failure mechanisms of low sliding, buckling, and unstable crack growth are correlated to microstructural parameters and loading modes; these are used for defining those microstructural conditions which are strength limiting.

  7. Failure modes and effects analysis (FMEA) for Gamma Knife radiosurgery.

    PubMed

    Xu, Andy Yuanguang; Bhatnagar, Jagdish; Bednarz, Greg; Flickinger, John; Arai, Yoshio; Vacsulka, Jonet; Feng, Wenzheng; Monaco, Edward; Niranjan, Ajay; Lunsford, L Dade; Huq, M Saiful

    2017-11-01

    techniques. The failure modes with the highest hazard scores are related to imperfect frame adaptor attachment, bad fiducial box assembly, unsecured plugs/inserts, overlooked target areas, and undetected machine mechanical failure during the morning QA process. The implementation of the FMEA approach for Gamma Knife radiosurgery enabled deeper understanding of the overall process among all professionals involved in the care of the patient and helped identify potential weaknesses in the overall process. The results of the present study give us a basis for the development of a risk based quality management program for Gamma Knife radiosurgery. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  8. Field failure mechanisms for photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Dumas, L. N.; Shumka, A.

    1981-01-01

    Beginning in 1976, Department of Energy field centers have installed and monitored a number of field tests and application experiments using current state-of-the-art photovoltaic modules. On-site observations of module physical and electrical degradation, together with in-depth laboratory analysis of failed modules, permits an overall assessment of the nature and causes of early field failures. Data on failure rates are presented, and key failure mechanisms are analyzed with respect to origin, effect, and prospects for correction. It is concluded that all failure modes identified to date are avoidable or controllable through sound design and production practices.

  9. Failure Mode/Mechanism Distributions

    DTIC Science & Technology

    1991-09-01

    circuits , hybrids, discrete semiconductors, microwave devices, optoelectronics and nonelectronic parts employed in military, space, industrial and...FMEA may be performed as a hardware analysis, a functional analysis, or a combination analysis and is ideally initiated at the part, circuit or...by a single replaceable module , a separate FMEA could be performed on the internal functions of the module , viewing the module as a system. The level

  10. TSS-1R Failure Mode Evaluation

    NASA Technical Reports Server (NTRS)

    Vaughn, Jason A.; McCollum, Matthew B.; Kamenetzky, Rachel R.

    1997-01-01

    Soon after the break of the tether during the Tethered Satellite System (TSS-1R) mission in February, 1996, a Tiger Team was assembled at the George C. Marshall Space Flight Center to determine the tether failure mode. One possible failure scenario was the Kevlar' strength member of the tether failed because of degradation due to electrical discharge or electrical arcing. During the next several weeks, extensive electrical discharge testing in low vacuum and plasma environments was conducted in an attempt to reproduce the electrical activity recorded by on-board science instruments during the mission. The results of these tests are presented in this paper.

  11. Mechanical characteristics of box-section beam made of sliced-laminated Asian bamboo (Dendrocalamus asper) in bending failure mode under transversal load

    NASA Astrophysics Data System (ADS)

    Karyadi, Susanto, Prijono Bagus

    2017-09-01

    A box-section beam has a larger moment of inertia than solid beam for the same amount of materials, so, it is expected the box-section beams has larger strength and stiffness compared to the solid beam. In other hand, research about the box-section beams, especially from bamboo lamination material, is limited. For the reason the research was done. The research aimed at finding mechanical characteristic of box-section beams made of sliced-laminated Asian bamboo in bending failure mode under transversal load. The results showed that the strength and stiffness of the box-section beams increase according to the increasing moment of inertia. The strength of the box-section beam increase up to ratio between the section height (h) and section width (b) reach 1.50. Larger than the ratio the strength of the beam will decrease. The average of bending stress at the time of beam collapse reached 106.5MPa and the average of flexural of elastic modulus reached 14.504MPa. The serviceability load reached 8.64% of the maximum load. Based on the results it can be concluded that the box-section beams made of sliced-laminated Asian bamboo more efficient in receiving the transversal load compared to the solid beam for the same amount of materials.

  12. Failure-Modes-And-Effects Analysis Of Software Logic

    NASA Technical Reports Server (NTRS)

    Garcia, Danny; Hartline, Thomas; Minor, Terry; Statum, David; Vice, David

    1996-01-01

    Rigorous analysis applied early in design effort. Method of identifying potential inadequacies and modes and effects of failures caused by inadequacies (failure-modes-and-effects analysis or "FMEA" for short) devised for application to software logic.

  13. Tube Failure Mechanisms.

    DTIC Science & Technology

    studies will be made: ( a ) An investigation of the factors influencing electrical breakdown in a vacuum and across the surface of a dielectric. (b) An...The purpose of this program is to investigate the nature and the principal causes of failures in microwave tubes. In this context, the following...investigation of the various electrical and surface properties of materials commonly used in microwave tubes, i.e., OFHC copper, alumina ceramic, tungsten

  14. Ageing and degradation determines failure mode on sea urchin spines.

    PubMed

    Merino, Monica; Vicente, Erika; Gonzales, Karen N; Torres, Fernando G

    2017-09-01

    Sea urchin spines are an example of a hard natural composite with mineral and organic phases. The role of the organic phase in the response to mechanical stress was assessed by promoting the degradation of such spines by exposing them to ageing and ultraviolet (UV) irradiation. Thermal and structural characterization of the irradiated samples show that this UV irradiation treatment promotes degradation of the organic and inorganic phase of spines. Uniaxial compression tests carried out on aged and UV irradiated samples showed that both treatments affected the mechanical properties of the spines. Scanning electron microscopy (SEM) images of failed specimens were used to analyze the failure mechanisms of the compressed spines. The analysis of the fracture surfaces showed that the failure mechanisms of spines were modified as a consequence of UV irradiation, leading in the last case to mostly brittle fracture surfaces. We suggest that the proteins responsible for the formation of calcite also determine the mechanical properties and the failure mode of spines. This system can be used as a model for the study of the failure modes of other natural and synthetic hard composites. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Metal Whiskers: Failure Modes and Mitigation Strategies

    NASA Technical Reports Server (NTRS)

    Brusse, Jay A.; Leidecker, Henning

    2007-01-01

    Metal coatings especially tin, zinc and cadmium are unpredictably susceptible to the formation of electrically conductive, crystalline filaments referred to as metal whiskers. The use of such coatings in and around electrical systems presents a risk of electrical shorting. Examples of metal whisker formation are shown with emphasis on optical inspection techniques to improve probability of detection. The failure modes (i.e., electrical shorting behavior) associated with metal whiskers are described. Based on an almost 9- year long study, the benefits of polyurethane conformal coat (namely, Arathane 5750) to protect electrical conductors from whisker-induced short circuit anomalies is discussed.

  16. Global Failure Modes in Composite Structures

    NASA Technical Reports Server (NTRS)

    Knauss, W. G.; Gonzalez, Luis

    2001-01-01

    Composite materials provide well-known advantages for space and aeronautical applications in terms of strength and rigidity to weight ratios and other mechanical properties. As a consequence, their use has experienced a constant increase in the past decades and it is anticipated that this trend will be maintained in the near future. At the same time, being these materials relatively new compared to metals, and having failure characteristics completely different from them, their damage growth and their failure mechanisms are not as well understood in a predictive sense. For example, while in metals fracture produces "clean" cracks with their well defined analytically stress fields at the crack tip, composite fracture is a more complex phenomenon. Instead of a crack, we confront a "damage zone" that may include fiber breakage, fiber microbuckling, fiber pullout, matrix cracking, delamination, debonding or any combination of all these different mechanisms. These phenomena are prevalent in any failure process through an aircraft structure, whether one addresses a global failure such as the ripping of a fuselage or wing section, or whether one is concerned with the failure initiation near a thickness change at stringers or other reinforcement. Thus the topic that has been under consideration has wide application in any real structure and is considered an essential contribution to the predictive failure analysis capability for aircraft containing composite components. The heterogeneity and the anisotropy of composites are not only advantageous but essential characteristics, yet these same features provide complex stress fields, especially in the presence of geometrical discontinuities such as notches, holes or cutouts or structural elements such as stiffeners, stringers, etc. To properly address the interaction between a damage/crack front and a hole with a stringer it is imperative that the stress and deformation fields of the former be (sufficiently well) characterized

  17. Characterization of mode 1 and mixed-mode failure of adhesive bonds between composite adherends

    NASA Technical Reports Server (NTRS)

    Mall, S.; Johnson, W. S.

    1985-01-01

    A combined experimental and analytical investigation of an adhesively bonded composite joint was conducted to characterize both the static and fatigue beyond growth mechanism under mode 1 and mixed-mode 1 and 2 loadings. Two bonded systems were studied: graphite/epoxy adherends bonded with EC 3445 and FM-300 adhesives. For each bonded system, two specimen types were tested: a double-cantilever-beam specimen for mode 1 loading and a cracked-lapshear specimen for mixed-mode 1 and 2 loading. In all specimens tested, failure occurred in the form of debond growth. Debonding always occurred in a cohesive manner with EC 3445 adhesive. The FM-300 adhesive debonded in a cohesive manner under mixed-mode 1 and 2 loading, but in a cohesive, adhesive, or combined cohesive and adhesive manner under mode 1 loading. Total strain-energy release rate appeared to be the driving parameter for debond growth under static and fatigue loadings.

  18. Basic failure mechanisms in advanced composites

    NASA Technical Reports Server (NTRS)

    Mullin, J. V.; Mazzio, V. F.; Mehan, R. L.

    1972-01-01

    Failure mechanisms in carbon-epoxy composites are identified as a basis for more reliable prediction of the performance of these materials. The approach involves both the study of local fracture events in model specimens containing small groups of filaments and fractographic examination of high fiber content engineering composites. Emphasis is placed on the correlation of model specimen observations with gross fracture modes. The effects of fiber surface treatment, resin modification and fiber content are studied and acoustic emission methods are applied. Some effort is devoted to analysis of the failure process in composite/metal specimens.

  19. Failure modes for pipelines in landslide areas

    SciT

    Bruschi, R.; Spinazze, M.; Tomassini, D.

    1995-12-31

    In recent years a number of incidences of pipelines affected by slow soil movements have been reported in the relevant literature. Further related issues such as soil-pipe interaction have been studied both theoretically and through experimental surveys, along with the environmental conditions which are responsible for hazard to the pipeline integrity. A suitable design criteria under these circumstances has been discussed by several authors, in particular in relation to a limit state approach and hence a strain based criteria. The scope of this paper is to describe the failure mechanisms which may affect the pipeline in the presence of slowmore » soil movements impacting on the pipeline, both in the longitudinal and transverse direction. Particular attention is paid to environmental, geometric and structural parameters which steer the process towards one or other failure mechanism. Criteria for deciding upon remedial measures required to guarantee the structural integrity of the pipeline, both in the short and in the long term, are discussed.« less

  20. Mod 1 wind turbine generator failure modes and effects analysis

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A failure modes and effects analysis (FMEA) was directed primarily at identifying those critical failure modes that would be hazardous to life or would result in major damage to the system. Each subsystem was approached from the top down, and broken down to successive lower levels where it appeared that the criticality of the failure mode warranted more detail analysis. The results were reviewed by specialists from outside the Mod 1 program, and corrective action taken wherever recommended.

  1. Failure Mode and Effects Analysis (FMEA) Introductory Overview

    DTIC Science & Technology

    2012-06-14

    Failure Mode and Effects Analysis ( FMEA ) Introductory Overview TARDEC Systems Engineering Risk Management Team POC: Kadry Rizk or Gregor Ratajczak...2. REPORT TYPE Briefing Charts 3. DATES COVERED 01-05-2012 to 23-05-2012 4. TITLE AND SUBTITLE Failure Mode and Effects Analysis ( FMEA ) 5a...18 WELCOME Welcome to “An introductory overview of Failure Mode and Effects Analysis ( FMEA )”, A brief concerning the use and benefits of FMEA

  2. Experimental methods for identifying failure mechanisms

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.

    1983-01-01

    Experimental methods for identifying failure mechanisms in fibrous composites are studied. Methods to identify failure in composite materials includes interferometry, holography, fractography and ultrasonics.

  3. On a common critical state in localized and diffuse failure modes

    NASA Astrophysics Data System (ADS)

    Zhu, Huaxiang; Nguyen, Hien N. G.; Nicot, François; Darve, Félix

    2016-10-01

    Accurately modeling the critical state mechanical behavior of granular material largely relies on a better understanding and characterizing the critical state fabric in different failure modes, i.e. localized and diffuse failure modes. In this paper, a mesoscopic scale is introduced, in which the organization of force-transmission paths (force-chains) and cells encompassed by contacts (meso-loops) can be taken into account. Numerical drained biaxial tests using a discrete element method are performed with different initial void ratios, in order to investigate the critical state fabric on the meso-scale in both localized and diffuse failure modes. According to the displacement and strain fields extracted from tests, the failure mode and failure area of each specimen are determined. Then convergent critical state void ratios are observed in failure area of specimens. Different mechanical features of two kinds of meso-structures (force-chains and meso-loops) are investigated, to clarify whether there exists a convergent meso-structure inside the failure area of granular material, as the signature of critical state. Numerical results support a positive answer. Failure area of both localized and diffuse failure modes therefore exhibits the same fabric in critical state. Hence, these two failure modes prove to be homological with respect to the concept of the critical state.

  4. High-throughput sequencing: a failure mode analysis.

    PubMed

    Yang, George S; Stott, Jeffery M; Smailus, Duane; Barber, Sarah A; Balasundaram, Miruna; Marra, Marco A; Holt, Robert A

    2005-01-04

    Basic manufacturing principles are becoming increasingly important in high-throughput sequencing facilities where there is a constant drive to increase quality, increase efficiency, and decrease operating costs. While high-throughput centres report failure rates typically on the order of 10%, the causes of sporadic sequencing failures are seldom analyzed in detail and have not, in the past, been formally reported. Here we report the results of a failure mode analysis of our production sequencing facility based on detailed evaluation of 9,216 ESTs generated from two cDNA libraries. Two categories of failures are described; process-related failures (failures due to equipment or sample handling) and template-related failures (failures that are revealed by close inspection of electropherograms and are likely due to properties of the template DNA sequence itself). Preventative action based on a detailed understanding of failure modes is likely to improve the performance of other production sequencing pipelines.

  5. Comprehensive Deployment Method for Technical Characteristics Base on Multi-failure Modes Correlation Analysis

    NASA Astrophysics Data System (ADS)

    Zheng, W.; Gao, J. M.; Wang, R. X.; Chen, K.; Jiang, Y.

    2017-12-01

    This paper put forward a new method of technical characteristics deployment based on Reliability Function Deployment (RFD) by analysing the advantages and shortages of related research works on mechanical reliability design. The matrix decomposition structure of RFD was used to describe the correlative relation between failure mechanisms, soft failures and hard failures. By considering the correlation of multiple failure modes, the reliability loss of one failure mode to the whole part was defined, and a calculation and analysis model for reliability loss was presented. According to the reliability loss, the reliability index value of the whole part was allocated to each failure mode. On the basis of the deployment of reliability index value, the inverse reliability method was employed to acquire the values of technology characteristics. The feasibility and validity of proposed method were illustrated by a development case of machining centre’s transmission system.

  6. [Failure mode effect analysis applied to preparation of intravenous cytostatics].

    PubMed

    Santos-Rubio, M D; Marín-Gil, R; Muñoz-de la Corte, R; Velázquez-López, M D; Gil-Navarro, M V; Bautista-Paloma, F J

    2016-01-01

    To proactively identify risks in the preparation of intravenous cytostatic drugs, and to prioritise and establish measures to improve safety procedures. Failure Mode Effect Analysis methodology was used. A multidisciplinary team identified potential failure modes of the procedure through a brainstorming session. The impact associated with each failure mode was assessed with the Risk Priority Number (RPN), which involves three variables: occurrence, severity, and detectability. Improvement measures were established for all identified failure modes, with those with RPN>100 considered critical. The final RPN (theoretical) that would result from the proposed measures was also calculated and the process was redesigned. A total of 34 failure modes were identified. The initial accumulated RPN was 3022 (range: 3-252), and after recommended actions the final RPN was 1292 (range: 3-189). RPN scores >100 were obtained in 13 failure modes; only the dispensing sub-process was free of critical points (RPN>100). A final reduction of RPN>50% was achieved in 9 failure modes. This prospective risk analysis methodology allows the weaknesses of the procedure to be prioritised, optimize use of resources, and a substantial improvement in the safety of the preparation of cytostatic drugs through the introduction of double checking and intermediate product labelling. Copyright © 2015 SECA. Published by Elsevier Espana. All rights reserved.

  7. Failure modes and materials design for biomechanical layer structures

    NASA Astrophysics Data System (ADS)

    Deng, Yan

    Ceramic materials are finding increasing usage in the area of biomechanical replacements---dental crowns, hip and bone implants, etc.---where strength, wear resistance, biocompatibility, chemical durability and even aesthetics are critical issues. Aesthetic ceramic crowns have been widely used in dentistry to replace damaged or missing teeth. However, the failure rates of ceramic crowns, especially all-ceramic crowns, can be 1%˜6% per year, which is not satisfactory to patients. The materials limitations and underlying fracture mechanisms of these prostheses are not well understood. In this thesis, fundamental fracture and damage mechanisms in model dental bilayer and trilayer structures are studied. Principle failure modes are identified from in situ experimentation and confirmed by fracture mechanics analysis. In bilayer structures of ceramic/polycarbonate (representative of ceramic crown/dentin structure), three major damage sources are identified: (i) top-surface cone cracks or (ii) quasiplasticity, dominating in thick ceramic bilayers; (iii) bottom-surface radial cracks, dominating in thin ceramic bilayers. Critical load P for each damage mode are measured in six dental ceramics: Y-TZP zirconia, glass-infiltrated zirconia and alumina (InCeram), glass-ceramic (Empress II), Porcelain (Mark II and Empress) bonded to polymer substrates, as a function of ceramic thickness d in the range of 100 mum to 10 mm. P is found independent of d for mode (i) and (ii), but has a d 2 relations for mode (iii)---bottom surface radial cracking. In trilayer structures of glass/core-ceramic/polycarbonate (representing veneer porcelain/core/dentin structures), three inner fracture origins are identified: radial cracks from the bottom surface in the (i) first and (ii) second layers; and (iii) quasiplasticity in core-ceramic layer. The role of relative veneer/core thickness, d1/d 2 and materials properties is investigated for three core materials with different modulus (114--270GPa

  8. Failure Modes and Effects Analysis (FMEA) Assistant Tool Feasibility Study

    NASA Technical Reports Server (NTRS)

    Flores, Melissa; Malin, Jane T.

    2013-01-01

    An effort to determine the feasibility of a software tool to assist in Failure Modes and Effects Analysis (FMEA) has been completed. This new and unique approach to FMEA uses model based systems engineering concepts to recommend failure modes, causes, and effects to the user after they have made several selections from pick lists about a component s functions and inputs/outputs. Recommendations are made based on a library using common failure modes identified over the course of several major human spaceflight programs. However, the tool could be adapted for use in a wide range of applications from NASA to the energy industry.

  9. Failure Modes and Effects Analysis (FMEA) Assistant Tool Feasibility Study

    NASA Astrophysics Data System (ADS)

    Flores, Melissa D.; Malin, Jane T.; Fleming, Land D.

    2013-09-01

    An effort to determine the feasibility of a software tool to assist in Failure Modes and Effects Analysis (FMEA) has been completed. This new and unique approach to FMEA uses model based systems engineering concepts to recommend failure modes, causes, and effects to the user after they have made several selections from pick lists about a component's functions and inputs/outputs. Recommendations are made based on a library using common failure modes identified over the course of several major human spaceflight programs. However, the tool could be adapted for use in a wide range of applications from NASA to the energy industry.

  10. Analysis of Gas Turbine Engine Failure Modes.

    DTIC Science & Technology

    1974-01-01

    failure due to factors ex- ternal (foreign to the power plant. Because in practice it is virtually impossible to distinguish accurately between the two, all...45 55 APPEN’DIX E WHEN DISCO ’=RED z z J-79 ENGINE AND HIGH FAILURE COMPONENTS H z Compressor R or242 Copeo R F4 -C H C s SeH UPi 0. 0- H U 4 C, Engine

  11. Compression failure mechanisms of composite structures

    NASA Technical Reports Server (NTRS)

    Hahn, H. T.; Sohi, M.; Moon, S.

    1986-01-01

    An experimental and analytical study was conducted to delineate the compression failure mechanisms of composite structures. The present report summarizes further results on kink band formation in unidirectional composites. In order to assess the compressive strengths and failure modes of fibers them selves, a fiber bundle was embedded in epoxy casting and tested in compression. A total of six different fibers were used together with two resins of different stiffnesses. The failure of highly anisotropic fibers such as Kevlar 49 and P-75 graphite was due to kinking of fibrils. However, the remaining fibers--T300 and T700 graphite, E-glass, and alumina--failed by localized microbuckling. Compressive strengths of the latter group of fibers were not fully utilized in their respective composite. In addition, acoustic emission monitoring revealed that fiber-matrix debonding did not occur gradually but suddenly at final failure. The kink band formation in unidirectional composites under compression was studied analytically and through microscopy. The material combinations selected include seven graphite/epoxy composites, two graphite/thermoplastic resin composites, one Kevlar 49/epoxy composite and one S-glass/epoxy composite.

  12. Stingray Failure Mode, Effects and Criticality Analysis: WEC Risk Registers

    DOE Data Explorer

    Ken Rhinefrank

    2016-07-25

    Analysis method to systematically identify all potential failure modes and their effects on the Stingray WEC system. This analysis is incorporated early in the development cycle such that the mitigation of the identified failure modes can be achieved cost effectively and efficiently. The FMECA can begin once there is enough detail to functions and failure modes of a given system, and its interfaces with other systems. The FMECA occurs coincidently with the design process and is an iterative process which allows for design changes to overcome deficiencies in the analysis.Risk Registers for major subsystems completed according to the methodology described in "Failure Mode Effects and Criticality Analysis Risk Reduction Program Plan.pdf" document below, in compliance with the DOE Risk Management Framework developed by NREL.

  13. UAV Swarm Behavior Modeling for Early Exposure of Failure Modes

    DTIC Science & Technology

    2016-09-01

    Systems Center Atlantic, for his patience with me through this two-year process. He worked with my schedule and was very understanding of the...emergence of new failure modes? The MP modeling environment provides a breakdown of all potential event traces. Given that the research questions call...for the revelation of potential failure modes, MP was selected as the modeling environment because it provides a substantial set of results and data

  14. Failure Modes and Effects Analysis (FMEA): A Bibliography

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Failure modes and effects analysis (FMEA) is a bottom-up analytical process that identifies process hazards, which helps managers understand vulnerabilities of systems, as well as assess and mitigate risk. It is one of several engineering tools and techniques available to program and project managers aimed at increasing the likelihood of safe and successful NASA programs and missions. This bibliography references 465 documents in the NASA STI Database that contain the major concepts, failure modes or failure analysis, in either the basic index of the major subject terms.

  15. Flexural strength and failure modes of layered ceramic structures.

    PubMed

    Borba, Márcia; de Araújo, Maico D; de Lima, Erick; Yoshimura, Humberto N; Cesar, Paulo F; Griggs, Jason A; Della Bona, Alvaro

    2011-12-01

    To evaluate the effect of the specimen design on the flexural strength (σ(f)) and failure mode of ceramic structures, testing the hypothesis that the ceramic material under tension controls the mechanical performance of the structure. Three ceramics used as framework materials for fixed partial dentures (YZ--Vita In-Ceram YZ; IZ--Vita In-Ceram Zirconia; AL--Vita In-Ceram AL) and two veneering porcelains (VM7 and VM9) were studied. Bar-shaped specimens were produced in three different designs (n=10): monolithic, two layers (porcelain-framework) and three layers (TRI) (porcelain-framework-porcelain). Specimens were tested for three-point flexural strength at 1MPa/s in 37°C artificial saliva. For bi-layered design, the specimens were tested in both conditions: with porcelain (PT) or framework ceramic (FT) layer under tension. Fracture surfaces were analyzed using stereomicroscope and scanning electron microscopy (SEM). Young's modulus (E) and Poisson's ratio (ν) were determined using ultrasonic pulse-echo method. Results were statistically analyzed by Kruskal-Wallis and Student-Newman-Keuls tests. Except for VM7 and VM9, significant differences were observed for E values among the materials. YZ showed the highest ν value followed by IZ and AL. YZ presented the highest σ(f). There was no statistical difference in the σ(f) value between IZ and IZ-FT and between AL and AL-FT. σ(f) values for YZ-PT, IZ-PT, IZ-TRI, AL-PT, AL-TRI were similar to the results obtained for VM7 and VM9. Two types of fracture mode were identified: total and partial failure. The mechanical performance of the specimens was determined by the material under tension during testing, confirming the study hypothesis. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Cycles till failure of silver-zinc cells with competing failure modes - Preliminary data analysis

    NASA Technical Reports Server (NTRS)

    Sidik, S. M.; Leibecki, H. F.; Bozek, J. M.

    1980-01-01

    The data analysis of cycles to failure of silver-zinc electrochemical cells with competing failure modes is presented. The test ran 129 cells through charge-discharge cycles until failure; preliminary data analysis consisted of response surface estimate of life. Batteries fail through low voltage condition and an internal shorting condition; a competing failure modes analysis was made using maximum likelihood estimation for the extreme value life distribution. Extensive residual plotting and probability plotting were used to verify data quality and selection of model.

  17. Pathological mechanisms of left main stent failure.

    PubMed

    Mori, Hiroyoshi; Torii, Sho; Harari, Emanuel; Jinnouchi, Hiroyuki; Brauman, Ryan; Smith, Samantha; Kutys, Robert; Fowler, David; Romero, Maria; Virmani, Renu; Finn, Aloke V

    2018-07-15

    Despite the increasing use of left main (LM) percutaneous coronary intervention (LM-PCI), there have been no pathological studies devoted to understanding the causes of LM stent failure. We aimed to systematically determine the pathological mechanisms of LM stent failure. From the CVPath Stent registry, a total of 46 lesions were identified to have LM-PCI. Pathologic stent failure (PSF) was defined as stent thrombosis, restenosis and in-stent chronic total occlusion (CTO). Failed and patent LM stented lesions were pathologically assessed to determine predictors of PSF. Malapposition and uncovered struts were numerically greater in the LM ostium, body, and bifurcation while neointimal thickness was relatively greater in bifurcation and proximal circumflex. In this study cohort, half of the lesions (n = 23) showed PSF. Stent thrombosis (ST, n = 18) was the major mode of PSF followed by in-stent CTO (n = 4) and restenosis (n = 1). Failed lesions showed significantly greater prevalence of malapposition >20% of struts/section (65% vs. 13%, P < 0.01), stent struts crossing an ostial side branch >30% of the circumference (48% vs. 13%, P < 0.01) and uncovered struts >30% (57% vs. 18%, P = 0.03). In multivariate analysis, the prevalence of malapposition >20% was the strongest risk factor for PSF (Odds ratio 8.0, 95% confidence interval 1.8-45.4, P < 0.01) followed by struts crossing an ostial side branch >30% (Odds ratio 4.2, 95% confidence interval 0.8-24.7, P = 0.09). Our data demonstrate the main pathological predictors for LM stent failure are malapposition and struts crossing an ostial side branch and suggest that imaging-guided PCI may be important. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Mode I Failure of Armor Ceramics: Experiments and Modeling

    NASA Astrophysics Data System (ADS)

    Meredith, Christopher; Leavy, Brian

    2017-06-01

    The pre-notched edge on impact (EOI) experiment is a technique for benchmarking the damage and fracture of ceramics subjected to projectile impact. A cylindrical projectile impacts the edge of a thin rectangular plate with a pre-notch on the opposite edge. Tension is generated at the notch tip resulting in the initiation and propagation of a mode I crack back toward the impact edge. The crack can be quantitatively measured using an optical method called Digital Gradient Sensing, which measures the crack-tip deformation by simultaneously quantifying two orthogonal surface slopes via measuring small deflections of light rays from a specularly reflective surface around the crack. The deflections in ceramics are small so the high speed camera needs to have a very high pixel count. This work reports on the results from pre-crack EOI experiments of SiC and B4 C plates. The experimental data are quantitatively compared to impact simulations using an advanced continuum damage model. The Kayenta ceramic model in Alegra will be used to compare fracture propagation speeds, bifurcations and inhomogeneous initiation of failure will be compared. This will provide insight into the driving mechanisms required for the macroscale failure modeling of ceramics.

  19. Sounds of Failure: Passive Acoustic Measurements of Excited Vibrational Modes

    NASA Astrophysics Data System (ADS)

    Brzinski, Theodore A.; Daniels, Karen E.

    2018-05-01

    Granular materials can fail through spontaneous events like earthquakes or brittle fracture. However, measurements and analytic models which forecast failure in this class of materials, while of both fundamental and practical interest, remain elusive. Materials including numerical packings of spheres, colloidal glasses, and granular materials have been known to develop an excess of low-frequency vibrational modes as the confining pressure is reduced. Here, we report experiments on sheared granular materials in which we monitor the evolving density of excited modes via passive monitoring of acoustic emissions. We observe a broadening of the distribution of excited modes coincident with both bulk and local plasticity, and evolution in the shape of the distribution before and after bulk failure. These results provide a new interpretation of the changing state of the material on its approach to stick-slip failure.

  20. Sounds of Failure: Passive Acoustic Measurements of Excited Vibrational Modes.

    PubMed

    Brzinski, Theodore A; Daniels, Karen E

    2018-05-25

    Granular materials can fail through spontaneous events like earthquakes or brittle fracture. However, measurements and analytic models which forecast failure in this class of materials, while of both fundamental and practical interest, remain elusive. Materials including numerical packings of spheres, colloidal glasses, and granular materials have been known to develop an excess of low-frequency vibrational modes as the confining pressure is reduced. Here, we report experiments on sheared granular materials in which we monitor the evolving density of excited modes via passive monitoring of acoustic emissions. We observe a broadening of the distribution of excited modes coincident with both bulk and local plasticity, and evolution in the shape of the distribution before and after bulk failure. These results provide a new interpretation of the changing state of the material on its approach to stick-slip failure.

  1. Failure modes and effects criticality analysis and accelerated life testing of LEDs for medical applications

    NASA Astrophysics Data System (ADS)

    Sawant, M.; Christou, A.

    2012-12-01

    While use of LEDs in Fiber Optics and lighting applications is common, their use in medical diagnostic applications is not very extensive. Since the precise value of light intensity will be used to interpret patient results, understanding failure modes [1-4] is very important. We used the Failure Modes and Effects Criticality Analysis (FMECA) tool to identify the critical failure modes of the LEDs. FMECA involves identification of various failure modes, their effects on the system (LED optical output in this context), their frequency of occurrence, severity and the criticality of the failure modes. The competing failure modes/mechanisms were degradation of: active layer (where electron-hole recombination occurs to emit light), electrodes (provides electrical contact to the semiconductor chip), Indium Tin Oxide (ITO) surface layer (used to improve current spreading and light extraction), plastic encapsulation (protective polymer layer) and packaging failures (bond wires, heat sink separation). A FMECA table is constructed and the criticality is calculated by estimating the failure effect probability (β), failure mode ratio (α), failure rate (λ) and the operating time. Once the critical failure modes were identified, the next steps were generation of prior time to failure distribution and comparing with our accelerated life test data. To generate the prior distributions, data and results from previous investigations were utilized [5-33] where reliability test results of similar LEDs were reported. From the graphs or tabular data, we extracted the time required for the optical power output to reach 80% of its initial value. This is our failure criterion for the medical diagnostic application. Analysis of published data for different LED materials (AlGaInP, GaN, AlGaAs), the Semiconductor Structures (DH, MQW) and the mode of testing (DC, Pulsed) was carried out. The data was categorized according to the materials system and LED structure such as AlGaInP-DH-DC, Al

  2. Procedure for Failure Mode, Effects, and Criticality Analysis (FMECA)

    NASA Technical Reports Server (NTRS)

    1966-01-01

    This document provides guidelines for the accomplishment of Failure Mode, Effects, and Criticality Analysis (FMECA) on the Apollo program. It is a procedure for analysis of hardware items to determine those items contributing most to system unreliability and crew safety problems.

  3. PV Degradation Curves: Non-Linearities and Failure Modes

    SciT

    Jordan, Dirk C.; Silverman, Timothy J.; Sekulic, Bill

    Photovoltaic (PV) reliability and durability have seen increased interest in recent years. Historically, and as a preliminarily reasonable approximation, linear degradation rates have been used to quantify long-term module and system performance. The underlying assumption of linearity can be violated at the beginning of the life, as has been well documented, especially for thin-film technology. Additionally, non-linearities in the wear-out phase can have significant economic impact and appear to be linked to different failure modes. In addition, associating specific degradation and failure modes with specific time series behavior will aid in duplicating these degradation modes in accelerated tests and, eventually,more » in service life prediction. In this paper, we discuss different degradation modes and how some of these may cause approximately linear degradation within the measurement uncertainty (e.g., modules that were mainly affected by encapsulant discoloration) while other degradation modes lead to distinctly non-linear degradation (e.g., hot spots caused by cracked cells or solder bond failures and corrosion). The various behaviors are summarized with the goal of aiding in predictions of what may be seen in other systems.« less

  4. Space tug propulsion system failure mode, effects and criticality analysis

    NASA Technical Reports Server (NTRS)

    Boyd, J. W.; Hardison, E. P.; Heard, C. B.; Orourke, J. C.; Osborne, F.; Wakefield, L. T.

    1972-01-01

    For purposes of the study, the propulsion system was considered as consisting of the following: (1) main engine system, (2) auxiliary propulsion system, (3) pneumatic system, (4) hydrogen feed, fill, drain and vent system, (5) oxygen feed, fill, drain and vent system, and (6) helium reentry purge system. Each component was critically examined to identify possible failure modes and the subsequent effect on mission success. Each space tug mission consists of three phases: launch to separation from shuttle, separation to redocking, and redocking to landing. The analysis considered the results of failure of a component during each phase of the mission. After the failure modes of each component were tabulated, those components whose failure would result in possible or certain loss of mission or inability to return the Tug to ground were identified as critical components and a criticality number determined for each. The criticality number of a component denotes the number of mission failures in one million missions due to the loss of that component. A total of 68 components were identified as critical with criticality numbers ranging from 1 to 2990.

  5. Mechanism of electromigration failure in Damascene processed copper interconnects

    NASA Astrophysics Data System (ADS)

    Michael, Nancy Lyn

    2002-11-01

    A major unresolved issue in Cu interconnect reliability is the interface role in the failure mechanism of real structures. The present study investigates failure in single-level damascene Cu interconnects with variations in interface condition, passivation and barrier, and linewidth. In the first phase, accelerated electromigration testing of 0.25mum Cu interconnects capped with SiN or SiCN, shows that lifetime and failure mode vary with capping layer. The first mode, seen primarily in SiN samples, is characterized by gradual resistance increase and extensive interface damage, believed to result from failure led by interface electromigration. The competing failure mode, found in SiCN capped samples, is characterized by abrupt resistance increase and localized voiding. The second phase fixes SiCN as the capping material and varies barrier material and line width. The three barrier materials, Ta, TaN, and Ta/TaN, produce similar lifetime statistics and failure is abrupt. Line width, however, does have a strong influence on failure time. The line width/grain size ratio ranged from 0.53 to 2.2 but does not correlate with mean time to failure (MTF). The strong dependence on interface fraction, combined with the conclusion from phase one that interface electromigration is not rate controlling, suggests another mechanism related to the interface is a controlling factor. The possibility that contamination and defects at the interface are key to this failure mode was investigated using electro-thermal fatigue (ETF). In ETF, where lines are simultaneously subjected to thermal cycling and constant current, damage caused by thermal stress is accelerated. Tests reveal that in 80 nm lines, transient failure occurs at times far below MTF in electromigration tests at higher temperatures. Failure found in ETF is clearly a result of damage growth due to thermal/mechanical stress rather than electromigration. At the stress levels created by the moderate ETF test conditions, the only

  6. Cycles till failure of silver-zinc cells with completing failures modes: Preliminary data analysis

    NASA Technical Reports Server (NTRS)

    Sidik, S. M.; Leibecki, H. F.; Bozek, J. M.

    1980-01-01

    One hundred and twenty nine cells were run through charge-discharge cycles until failure. The experiment design was a variant of a central composite factorial in five factors. Preliminary data analysis consisted of response surface estimation of life. Batteries fail under two basic modes; a low voltage condition and an internal shorting condition. A competing failure modes analysis using maximum likelihood estimation for the extreme value life distribution was performed. Extensive diagnostics such as residual plotting and probability plotting were employed to verify data quality and choice of model.

  7. Mechanical Failure in Colloidal Gels

    NASA Astrophysics Data System (ADS)

    Kodger, Thomas Edward

    When colloidal particles in a dispersion are made attractive, they aggregate into fractal clusters which grow to form a space-spanning network, or gel, even at low volume fractions. These gels are crucial to the rheological behavior of many personal care, food products and dispersion-based paints. The mechanical stability of these products relies on the stability of the colloidal gel network which acts as a scaffold to provide these products with desired mechanical properties and to prevent gravitational sedimentation of the dispersed components. Understanding the mechanical stability of such colloidal gels is thus of crucial importance to predict and control the properties of many soft solids. Once a colloidal gel forms, the heterogeneous structure bonded through weak physical interactions, is immediately subject to body forces, such as gravity, surface forces, such as adhesion to a container walls and shear forces; the interplay of these forces acting on the gel determines its stability. Even in the absence of external stresses, colloidal gels undergo internal rearrangements within the network that may cause the network structure to evolve gradually, in processes known as aging or coarsening or fail catastrophically, in a mechanical instability known as syneresis. Studying gel stability in the laboratory requires model colloidal system which may be tuned to eliminate these body or endogenous forces systematically. Using existing chemistry, I developed several systems to study delayed yielding by eliminating gravitational stresses through density matching and cyclic heating to induce attraction; and to study syneresis by eliminating adhesion to the container walls, altering the contact forces between colloids, and again, inducing gelation through heating. These results elucidate the varied yet concomitant mechanisms by which colloidal gels may locally or globally yield, but then reform due to the nature of the physical, or non-covalent, interactions which form

  8. New understandings of failure modes in SSL luminaires

    NASA Astrophysics Data System (ADS)

    Shepherd, Sarah D.; Mills, Karmann C.; Yaga, Robert; Johnson, Cortina; Davis, J. Lynn

    2014-09-01

    As SSL products are being rapidly introduced into the market, there is a need to develop standard screening and testing protocols that can be performed quickly and provide data surrounding product lifetime and performance. These protocols, derived from standard industry tests, are known as ALTs (accelerated life tests) and can be performed in a timeframe of weeks to months instead of years. Accelerated testing utilizes a combination of elevated temperature and humidity conditions as well as electrical power cycling to control aging of the luminaires. In this study, we report on the findings of failure modes for two different luminaire products exposed to temperature-humidity ALTs. LEDs are typically considered the determining component for the rate of lumen depreciation. However, this study has shown that each luminaire component can independently or jointly influence system performance and reliability. Material choices, luminaire designs, and driver designs all have significant impacts on the system reliability of a product. From recent data, it is evident that the most common failure modes are not within the LED, but instead occur within resistors, capacitors, and other electrical components of the driver. Insights into failure modes and rates as a result of ALTs are reported with emphasis on component influence on overall system reliability.

  9. Prediction of mode of death in heart failure: the Seattle Heart Failure Model.

    PubMed

    Mozaffarian, Dariush; Anker, Stefan D; Anand, Inder; Linker, David T; Sullivan, Mark D; Cleland, John G F; Carson, Peter E; Maggioni, Aldo P; Mann, Douglas L; Pitt, Bertram; Poole-Wilson, Philip A; Levy, Wayne C

    2007-07-24

    Prognosis and mode of death in heart failure patients are highly variable in that some patients die suddenly (often from ventricular arrhythmia) and others die of progressive failure of cardiac function (pump failure). Prediction of mode of death may facilitate decisions about specific medications or devices. We used the Seattle Heart Failure Model (SHFM), a validated prediction model for total mortality in heart failure, to assess the mode of death in 10,538 ambulatory patients with New York Heart Association class II to IV heart failure and predominantly systolic dysfunction enrolled in 6 randomized trials or registries. During 16,735 person-years of follow-up, 2014 deaths occurred, which included 1014 sudden deaths and 684 pump-failure deaths. Compared with a SHFM score of 0, patients with a score of 1 had a 50% higher risk of sudden death, patients with a score of 2 had a nearly 3-fold higher risk, and patients with a score of 3 or 4 had a nearly 7-fold higher risk (P<0.001 for all comparisons; 1-year area under the receiver operating curve, 0.68). Stratification of risk of pump-failure death was even more pronounced, with a 4-fold higher risk with a score of 1, a 15-fold higher risk with a score of 2, a 38-fold higher risk with a score of 3, and an 88-fold higher risk with a score of 4 (P<0.001 for all comparisons; 1-year area under the receiver operating curve, 0.85). The proportion of deaths caused by sudden death versus pump-failure death decreased from a ratio of 7:1 with a SHFM score of 0 to a ratio of 1:2 with a SHFM score of 4 (P trend <0.001). The SHFM score provides information about the likely mode of death among ambulatory heart failure patients. Investigation is warranted to determine whether such information might predict responses to or cost-effectiveness of specific medications or devices in heart failure patients.

  10. Finite element modelling of woven composite failure modes at the mesoscopic scale: deterministic versus stochastic approaches

    NASA Astrophysics Data System (ADS)

    Roirand, Q.; Missoum-Benziane, D.; Thionnet, A.; Laiarinandrasana, L.

    2017-09-01

    Textile composites are composed of 3D complex architecture. To assess the durability of such engineering structures, the failure mechanisms must be highlighted. Examinations of the degradation have been carried out thanks to tomography. The present work addresses a numerical damage model dedicated to the simulation of the crack initiation and propagation at the scale of the warp yarns. For the 3D woven composites under study, loadings in tension and combined tension and bending were considered. Based on an erosion procedure of broken elements, the failure mechanisms have been modelled on 3D periodic cells by finite element calculations. The breakage of one element was determined using a failure criterion at the mesoscopic scale based on the yarn stress at failure. The results were found to be in good agreement with the experimental data for the two kinds of macroscopic loadings. The deterministic approach assumed a homogeneously distributed stress at failure all over the integration points in the meshes of woven composites. A stochastic approach was applied to a simple representative elementary periodic cell. The distribution of the Weibull stress at failure was assigned to the integration points using a Monte Carlo simulation. It was shown that this stochastic approach allowed more realistic failure simulations avoiding the idealised symmetry due to the deterministic modelling. In particular, the stochastic simulations performed have shown several variations of the stress as well as strain at failure and the failure modes of the yarn.

  11. TU-AB-BRD-02: Failure Modes and Effects Analysis

    SciT

    Huq, M.

    2015-06-15

    Current quality assurance and quality management guidelines provided by various professional organizations are prescriptive in nature, focusing principally on performance characteristics of planning and delivery devices. However, published analyses of events in radiation therapy show that most events are often caused by flaws in clinical processes rather than by device failures. This suggests the need for the development of a quality management program that is based on integrated approaches to process and equipment quality assurance. Industrial engineers have developed various risk assessment tools that are used to identify and eliminate potential failures from a system or a process before amore » failure impacts a customer. These tools include, but are not limited to, process mapping, failure modes and effects analysis, fault tree analysis. Task Group 100 of the American Association of Physicists in Medicine has developed these tools and used them to formulate an example risk-based quality management program for intensity-modulated radiotherapy. This is a prospective risk assessment approach that analyzes potential error pathways inherent in a clinical process and then ranks them according to relative risk, typically before implementation, followed by the design of a new process or modification of the existing process. Appropriate controls are then put in place to ensure that failures are less likely to occur and, if they do, they will more likely be detected before they propagate through the process, compromising treatment outcome and causing harm to the patient. Such a prospective approach forms the basis of the work of Task Group 100 that has recently been approved by the AAPM. This session will be devoted to a discussion of these tools and practical examples of how these tools can be used in a given radiotherapy clinic to develop a risk based quality management program. Learning Objectives: Learn how to design a process map for a radiotherapy process Learn

  12. Epithelial and endothelial damage induced by mechanical ventilation modes.

    PubMed

    Suki, Béla; Hubmayr, Rolf

    2014-02-01

    The adult respiratory distress syndrome (ARDS) is a common cause of respiratory failure with substantial impact on public health. Patients with ARDS generally require mechanical ventilation, which risks further lung damage. Recent improvements in ARDS outcomes have been attributed to reductions in deforming stress associated with lung protective mechanical ventilation modes and settings. The following review details the mechanics of the lung parenchyma at different spatial scales and the response of its resident cells to deforming stress in order to provide the biologic underpinnings of lung protective care. Although lung injury is typically viewed through the lens of altered barrier properties and mechanical ventilation-associated immune responses, in this review, we call attention to the importance of heterogeneity and the physical failure of the load bearing cell and tissue elements in the pathogenesis of ARDS. Specifically, we introduce a simple elastic network model to better understand the deformations of lung regions, intra-acinar alveoli and cells within a single alveolus, and consider the role of regional distension and interfacial stress-related injury for various ventilation modes. Heterogeneity of stiffness and intercellular and intracellular stress failure are fundamental components of ARDS and their development also depends on the ventilation mode.

  13. Reliability and failure modes of narrow implant systems.

    PubMed

    Hirata, Ronaldo; Bonfante, Estevam A; Anchieta, Rodolfo B; Machado, Lucas S; Freitas, Gileade; Fardin, Vinicius P; Tovar, Nick; Coelho, Paulo G

    2016-09-01

    Narrow implants are indicated in areas of limited bone width or when grafting is nonviable. However, the reduction of implant diameter may compromise their performance. This study evaluated the reliability of several narrow implant systems under fatigue, after restored with single-unit crowns. Narrow implant systems were divided (n = 18 each), as follows: Astra (ASC); BioHorizons (BSC); Straumann Roxolid (SNC), Intra-Lock (IMC), and Intra-Lock one-piece abutment (ILO). Maxillary central incisor crowns were cemented and subjected to step-stress accelerated life testing in water. Use level probability Weibull curves and reliability for a mission of 100,000 cycles at 130- and 180-N loads (90 % two-sided confidence intervals) were calculated. Scanning electron microscopy was used for fractography. Reliability for 100,000 cycles at 130 N was ∼99 % in group ASC, ∼99 % in BSC, ∼96 % in SNC, ∼99 % in IMC, and ∼100 % in ILO. At 180 N, reliability of ∼34 % resulted for the ASC group, ∼91 % for BSC, ∼53 % for SNC, ∼70 % for IMC, and ∼99 % for ILO. Abutment screw fracture was the main failure mode for all groups. Reliability was not different between systems for 100,000 cycles at the 130-N load. A significant decrease was observed at the 180-N load for ASC, SNC, and IMC, whereas it was maintained for BSC and ILO. The investigated narrow implants presented mechanical performance under fatigue that suggests their safe use as single crowns in the anterior region.

  14. SNS STRIPPER FOIL FAILURE MODES AND THEIR CURES

    SciT

    Galambos, John D; Luck, Chris; Plum, Michael A

    2010-01-01

    The diamond stripper foils in use at the Spallation Neutron Source worked successfully with no failures until May 3, 2009, when we started experiencing a rash of foil system failures after increasing the beam power to ~840 kW. The main contributors to the failures are thought to be 1) convoy electrons, stripped from the incoming H beam, that strike the foil bracket and may also reflect back from the electron catcher, and 2) vacuum breakdown from the charge developed on the foil by secondary electron emission. In this paper we will detail these and other failure mechanisms, and describe themore » improvements we have made to mitigate them.« less

  15. Failure mode and effects analysis outputs: are they valid?

    PubMed

    Shebl, Nada Atef; Franklin, Bryony Dean; Barber, Nick

    2012-06-10

    Failure Mode and Effects Analysis (FMEA) is a prospective risk assessment tool that has been widely used within the aerospace and automotive industries and has been utilised within healthcare since the early 1990s. The aim of this study was to explore the validity of FMEA outputs within a hospital setting in the United Kingdom. Two multidisciplinary teams each conducted an FMEA for the use of vancomycin and gentamicin. Four different validity tests were conducted: Face validity: by comparing the FMEA participants' mapped processes with observational work. Content validity: by presenting the FMEA findings to other healthcare professionals. Criterion validity: by comparing the FMEA findings with data reported on the trust's incident report database. Construct validity: by exploring the relevant mathematical theories involved in calculating the FMEA risk priority number. Face validity was positive as the researcher documented the same processes of care as mapped by the FMEA participants. However, other healthcare professionals identified potential failures missed by the FMEA teams. Furthermore, the FMEA groups failed to include failures related to omitted doses; yet these were the failures most commonly reported in the trust's incident database. Calculating the RPN by multiplying severity, probability and detectability scores was deemed invalid because it is based on calculations that breach the mathematical properties of the scales used. There are significant methodological challenges in validating FMEA. It is a useful tool to aid multidisciplinary groups in mapping and understanding a process of care; however, the results of our study cast doubt on its validity. FMEA teams are likely to need different sources of information, besides their personal experience and knowledge, to identify potential failures. As for FMEA's methodology for scoring failures, there were discrepancies between the teams' estimates and similar incidents reported on the trust's incident

  16. Molecular Mechanisms of Right Ventricular Failure

    PubMed Central

    Reddy, Sushma; Bernstein, Daniel

    2015-01-01

    An abundance of data has provided insight into the mechanisms underlying the development of left ventricular (LV) hypertrophy and its progression to LV failure. In contrast, there is minimal data on the adaptation of the right ventricle (RV) to pressure and volume overload and the transition to RV failure. This is a critical clinical question, as the RV is uniquely at risk in many patients with repaired or palliated congenital heart disease and in those with pulmonary hypertension. Standard heart failure therapies have failed to improve function or survival in these patients, suggesting a divergence in the molecular mechanisms of RV vs. LV failure. Although, on the cellular level, the remodeling responses of the RV and LV to pressure overload are largely similar, there are several key differences: the stressed RV is more susceptible to oxidative stress, has a reduced angiogenic response, and is more likely to activate cell death pathways than the stressed LV. Together, these differences could explain the more rapid progression of the RV to failure vs. the LV. This review will highlight known molecular differences between the RV and LV responses to hemodynamic stress, the unique stressors on the RV associated with congenital heart disease, and the need to better understand these molecular mechanisms if we are to develop RV-specific heart failure therapeutics. PMID:26527692

  17. A Framework for Creating a Function-based Design Tool for Failure Mode Identification

    NASA Technical Reports Server (NTRS)

    Arunajadai, Srikesh G.; Stone, Robert B.; Tumer, Irem Y.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Knowledge of potential failure modes during design is critical for prevention of failures. Currently industries use procedures such as Failure Modes and Effects Analysis (FMEA), Fault Tree analysis, or Failure Modes, Effects and Criticality analysis (FMECA), as well as knowledge and experience, to determine potential failure modes. When new products are being developed there is often a lack of sufficient knowledge of potential failure mode and/or a lack of sufficient experience to identify all failure modes. This gives rise to a situation in which engineers are unable to extract maximum benefits from the above procedures. This work describes a function-based failure identification methodology, which would act as a storehouse of information and experience, providing useful information about the potential failure modes for the design under consideration, as well as enhancing the usefulness of procedures like FMEA. As an example, the method is applied to fifteen products and the benefits are illustrated.

  18. Mechanisms, predictors, and trends of electrical failure of Riata leads.

    PubMed

    Cheung, Jim W; Al-Kazaz, Mohamed; Thomas, George; Liu, Christopher F; Ip, James E; Bender, Seth R; Siddiqi, Faisal K; Markowitz, Steven M; Lerman, Bruce B

    2013-10-01

    Riata and Riata ST implantable cardioverter-defibrillator leads have been shown to be prone to structural and electrical failure. To determine predictors, mechanisms, and temporal patterns of Riata/ST lead electrical failure. All 314 patients who underwent Riata/ST lead implantation at our institution with greater than or equal to 90 days of follow-up were studied. The Kaplan-Meier analysis of lead survival was performed. Results from the returned product analysis of explanted leads with electrical lead failure were recorded. During a median follow-up of 4.1 years, the Riata lead electrical failure rate was 6.6%. The rate of externalized conductors among failed leads was 57%. The engineering analysis of 10 explanted leads revealed 5 (50%) leads with electrical failure owing to breach of ethylene tetrafluoroethylene conductor coating. Female gender (hazard ratio 2.7; 95% confidence interval 1.1-6.7; P = .04) and age (hazard ratio 0.95; 95% confidence interval 0.92-0.97; P < .001) were multivariate predictors of lead failure. By using log-log analysis, we noted that the rate of Riata lead failure initially increased exponentially with a power of 2.1 but leads surviving past 4 years had a linear pattern of lead failure with a power of 1.0. Younger age and female gender are independent predictors of Riata lead failure. Loss of integrity of conductor cables with ethylene tetrafluoroethylene coating is an important mode of electrical failure of the Riata lead. Further study of Riata lead failure trends is warranted to guide lead management. © 2013 Heart Rhythm Society. All rights reserved.

  19. Failure mode and effects analysis: too little for too much?

    PubMed

    Dean Franklin, Bryony; Shebl, Nada Atef; Barber, Nick

    2012-07-01

    Failure mode and effects analysis (FMEA) is a structured prospective risk assessment method that is widely used within healthcare. FMEA involves a multidisciplinary team mapping out a high-risk process of care, identifying the failures that can occur, and then characterising each of these in terms of probability of occurrence, severity of effects and detectability, to give a risk priority number used to identify failures most in need of attention. One might assume that such a widely used tool would have an established evidence base. This paper considers whether or not this is the case, examining the evidence for the reliability and validity of its outputs, the mathematical principles behind the calculation of a risk prioirty number, and variation in how it is used in practice. We also consider the likely advantages of this approach, together with the disadvantages in terms of the healthcare professionals' time involved. We conclude that although FMEA is popular and many published studies have reported its use within healthcare, there is little evidence to support its use for the quantitative prioritisation of process failures. It lacks both reliability and validity, and is very time consuming. We would not recommend its use as a quantitative technique to prioritise, promote or study patient safety interventions. However, the stage of FMEA involving multidisciplinary mapping process seems valuable and work is now needed to identify the best way of converting this into plans for action.

  20. Failure Mode Analysis of V-Shaped Pyrotechnically Actuated Valves

    NASA Technical Reports Server (NTRS)

    Sachdev, Jai S.; Hosangadi, A.; Chenoweth, James D.; Saulsberry, Regor L.; McDougle, Stephen H.

    2012-01-01

    Current V-shaped stainless steel pyrovalve initiators have rectified many of the deficiencies of the heritage Y-shaped aluminum design. However, a credible failure mode still exists for dual simultaneous initiator (NSI) firings in which low temperatures were detected at the booster cap and less consistent ignition was observed than when a single initiator was fired. In order to asses this issue, a numerical framework has been developed for predicting the flow through pyrotechnically actuated valves. This framework includes a fully coupled solution of the gas-phase equation with a non-equilibrium dispersed phase for solid particles as well as the capability to model conjugate gradient heat transfer to the booster cap. Through a hierarchy of increasingly complex simulations, a hypothesis for the failure mode of the nearly simultaneous dual NSI firings has been proven. The simulations indicate that the failure mode for simultaneous dual NSI firings may be caused by flow interactions between the flame channels. The shock waves from each initiator interact in the booster cavity resulting in a high pressure that prevents the gas and particulate velocity from rising in the booster cap region. This impedes the bulk of the particulate phase from impacting the booster cap and reduces the heat transfer to the booster cap since the particles do not impact it. Heat transfer calculations to the solid metal indicate that gas-phase convective heat transfer may not be adequate by itself and that energy transfer from the particulate phase may be crucial for the booster cap burn through.

  1. Failure modes and effects analysis for ocular brachytherapy.

    PubMed

    Lee, Yongsook C; Kim, Yongbok; Huynh, Jason Wei-Yeong; Hamilton, Russell J

    The aim of the study was to identify potential failure modes (FMs) having a high risk and to improve our current quality management (QM) program in Collaborative Ocular Melanoma Study (COMS) ocular brachytherapy by undertaking a failure modes and effects analysis (FMEA) and a fault tree analysis (FTA). Process mapping and FMEA were performed for COMS ocular brachytherapy. For all FMs identified in FMEA, risk priority numbers (RPNs) were determined by assigning and multiplying occurrence, severity, and lack of detectability values, each ranging from 1 to 10. FTA was performed for the major process that had the highest ranked FM. Twelve major processes, 121 sub-process steps, 188 potential FMs, and 209 possible causes were identified. For 188 FMs, RPN scores ranged from 1.0 to 236.1. The plaque assembly process had the highest ranked FM. The majority of FMs were attributable to human failure (85.6%), and medical physicist-related failures were the most numerous (58.9% of all causes). After FMEA, additional QM methods were included for the top 10 FMs and 6 FMs with severity values > 9.0. As a result, for these 16 FMs and the 5 major processes involved, quality control steps were increased from 8 (50%) to 15 (93.8%), and major processes having quality assurance steps were increased from 2 to 4. To reduce high risk in current clinical practice, we proposed QM methods. They mainly include a check or verification of procedures/steps and the use of checklists for both ophthalmology and radiation oncology staff, and intraoperative ultrasound-guided plaque positioning for ophthalmology staff. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  2. Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates

    NASA Astrophysics Data System (ADS)

    Barrese, James C.; Rao, Naveen; Paroo, Kaivon; Triebwasser, Corey; Vargas-Irwin, Carlos; Franquemont, Lachlan; Donoghue, John P.

    2013-12-01

    Objective. Brain-computer interfaces (BCIs) using chronically implanted intracortical microelectrode arrays (MEAs) have the potential to restore lost function to people with disabilities if they work reliably for years. Current sensors fail to provide reliably useful signals over extended periods of time for reasons that are not clear. This study reports a comprehensive retrospective analysis from a large set of implants of a single type of intracortical MEA in a single species, with a common set of measures in order to evaluate failure modes. Approach. Since 1996, 78 silicon MEAs were implanted in 27 monkeys (Macaca mulatta). We used two approaches to find reasons for sensor failure. First, we classified the time course leading up to complete recording failure as acute (abrupt) or chronic (progressive). Second, we evaluated the quality of electrode recordings over time based on signal features and electrode impedance. Failure modes were divided into four categories: biological, material, mechanical, and unknown. Main results. Recording duration ranged from 0 to 2104 days (5.75 years), with a mean of 387 days and a median of 182 days (n = 78). Sixty-two arrays failed completely with a mean time to failure of 332 days (median = 133 days) while nine array experiments were electively terminated for experimental reasons (mean = 486 days). Seven remained active at the close of this study (mean = 753 days). Most failures (56%) occurred within a year of implantation, with acute mechanical failures the most common class (48%), largely because of connector issues (83%). Among grossly observable biological failures (24%), a progressive meningeal reaction that separated the array from the parenchyma was most prevalent (14.5%). In the absence of acute interruptions, electrode recordings showed a slow progressive decline in spike amplitude, noise amplitude, and number of viable channels that predicts complete signal loss by about eight years. Impedance measurements showed

  3. Maximum likelihood estimation for life distributions with competing failure modes

    NASA Technical Reports Server (NTRS)

    Sidik, S. M.

    1979-01-01

    Systems which are placed on test at time zero, function for a period and die at some random time were studied. Failure may be due to one of several causes or modes. The parameters of the life distribution may depend upon the levels of various stress variables the item is subject to. Maximum likelihood estimation methods are discussed. Specific methods are reported for the smallest extreme-value distributions of life. Monte-Carlo results indicate the methods to be promising. Under appropriate conditions, the location parameters are nearly unbiased, the scale parameter is slight biased, and the asymptotic covariances are rapidly approached.

  4. New modes of assisted mechanical ventilation.

    PubMed

    Suarez-Sipmann, F

    2014-05-01

    Recent major advances in mechanical ventilation have resulted in new exciting modes of assisted ventilation. Compared to traditional ventilation modes such as assisted-controlled ventilation or pressure support ventilation, these new modes offer a number of physiological advantages derived from the improved patient control over the ventilator. By implementing advanced closed-loop control systems and using information on lung mechanics, respiratory muscle function and respiratory drive, these modes are specifically designed to improve patient-ventilator synchrony and reduce the work of breathing. Depending on their specific operational characteristics, these modes can assist spontaneous breathing efforts synchronically in time and magnitude, adapt to changing patient demands, implement automated weaning protocols, and introduce a more physiological variability in the breathing pattern. Clinicians have now the possibility to individualize and optimize ventilatory assistance during the complex transition from fully controlled to spontaneous assisted ventilation. The growing evidence of the physiological and clinical benefits of these new modes is favoring their progressive introduction into clinical practice. Future clinical trials should improve our understanding of these modes and help determine whether the claimed benefits result in better outcomes. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  5. Register of experts for information on mechanics of structural failure

    NASA Technical Reports Server (NTRS)

    Carpenter, J. L., Jr.; Stuhrke, W. F.

    1975-01-01

    This register is comprised of a list of approximately 300 experts from approximately 90 organizations who have published results of theoretical and/or experimental research related to six problem areas in the mechanics of structural failure: (1) life prediction for structural materials, (2) fracture toughness testing, (3) fracture mechanics analysis; (4) hydrogen embrittlement; (5) protective coatings; and (6) composite materials. The criteria for the selection of names for the register are recent contributions to the literature, participation in or support of relevant research programs, and referral by peers. Each author included is listed by organizational affiliation, address, and principal field of expertise. The purpose of the register is to present, in easy reference form, sources for dependable information regarding failure modes and mechanisms of aerospace structures. The register includes two indexes; an alphabetical listing of the experts and an alphabetical listing of the organizations with whom they are affiliated.

  6. Migratory gold resistive shorts - Chemical aspects of a failure mechanism

    NASA Technical Reports Server (NTRS)

    Grunthaner, F. J.; Griswold, T. W.; Clendening, P. J.

    1975-01-01

    Integrated-circuit devices using the Ti/W/Au metal system are subject to failure mechanisms based on electrolytic corrosion. The migratory gold resistive short (MGRS) failure mode is one example of this mechanism and results in the formation of filamentary or dendritic deposits of gold between adjacent stripes on the IC chip. This reaction requires the presence of a sufficient amount of water, a bias voltage between adjacent stripes, and the activation of the cathodic (-) stripe. Gold ions are transported from anode to cathode through a film of moisture adsorbed on the surface of the chip; halide ions are probably involved in the transfer. Their presence is verified experimentally by X-ray photoelectron spectroscopy. Some of the chemical and electrostatic factors involved in the MGRS mechanism are discussed in this paper, including the questions of a threshold level of moisture and contamination.

  7. Failure mode and effects analysis outputs: are they valid?

    PubMed Central

    2012-01-01

    Background Failure Mode and Effects Analysis (FMEA) is a prospective risk assessment tool that has been widely used within the aerospace and automotive industries and has been utilised within healthcare since the early 1990s. The aim of this study was to explore the validity of FMEA outputs within a hospital setting in the United Kingdom. Methods Two multidisciplinary teams each conducted an FMEA for the use of vancomycin and gentamicin. Four different validity tests were conducted: · Face validity: by comparing the FMEA participants’ mapped processes with observational work. · Content validity: by presenting the FMEA findings to other healthcare professionals. · Criterion validity: by comparing the FMEA findings with data reported on the trust’s incident report database. · Construct validity: by exploring the relevant mathematical theories involved in calculating the FMEA risk priority number. Results Face validity was positive as the researcher documented the same processes of care as mapped by the FMEA participants. However, other healthcare professionals identified potential failures missed by the FMEA teams. Furthermore, the FMEA groups failed to include failures related to omitted doses; yet these were the failures most commonly reported in the trust’s incident database. Calculating the RPN by multiplying severity, probability and detectability scores was deemed invalid because it is based on calculations that breach the mathematical properties of the scales used. Conclusion There are significant methodological challenges in validating FMEA. It is a useful tool to aid multidisciplinary groups in mapping and understanding a process of care; however, the results of our study cast doubt on its validity. FMEA teams are likely to need different sources of information, besides their personal experience and knowledge, to identify potential failures. As for FMEA’s methodology for scoring failures, there were discrepancies between the teams’ estimates

  8. A Critical Review of Landslide Failure Mechanisms

    NASA Astrophysics Data System (ADS)

    Stead, D.; Wolter, A.; Clague, J. J.

    2011-12-01

    During the last ten years several comprehensive geotechnical studies have been completed on major historic landslides including Randa in Switzerland, Frank in Canada, Aknes in Norway, La Clapiere in France and Vaiont in Italy. In addition, numerous researchers have documented deep-seated gravitational deformations and a wide variety of large prehistoric rock slope failures. The information provided by these studies is evidence of the significant advances made in our ability to map, monitor and model landslides. Over the same period, the mining industry has developed large open pits with slope heights exceeding 1000 m that provide important analogues to high mountain slopes. In this paper we analyse data from the literature to illustrate the importance of brittle fracture, 3D controls, anisotropy, overburden stress, geomorphic processes, groundwater and temperature in major landslides and provide some indicators as to the research required to further understand the complexity of rock slope failure mechanisms. The nature of the landslide failure surface has received inadequate attention in the past, with failure surfaces typically considered in 2D and simulated as discrete, smooth and often planar features. Current work shows that failure surfaces are inherently three-dimensional and have much structural variability across the area of the landslide scarp, reflecting complex structural histories. Such anisotropy and variations may result in multiple events or distinct blocks that move at different rates. Just as most failure surfaces vary spatially, they may also change with depth and thus should more realistically be considered failure zones rather than discrete surfaces. The increasing recognition of the importance of step-path failures, internal dilation and brittle fracture are indicative of the complexity in slope failure surfaces. Related to the variation in failure surface characteristics is the importance of 3D rotational displacements and both the

  9. Fractography, NDE, and fracture mechanics applications in failure analysis studies

    SciT

    Morin, C.R.; Shipley, R.J.; Wilkinson, J.A.

    1994-10-01

    While identification of the precise mode of a failure can lead logically to the underlying cause, a thorough failure investigation requires much more than just the identification of a specific metallurgical mechanism, for example, fatigue, creep, stress corrosion cracking, etc. Failures involving fracture provide good illustrations of this concept. An initial step in characterizing fracture surfaces is often the identification of an origin or origins. However, the analysis should not stop there. If the origin is associated with a discontinuity, the manner in which it was formed must also be addressed. The stresses that would have existed at the originmore » must be determined and compared with material properties to determine whether or not a crack should have initiated and propagated during normal operation. Many critical components are inspected throughout their lives by nondestructive methods. When a crack progresses to failure, its nondetection at earlier inspections must also be understood. Careful study of the fracture surface combined with crack growth analysis based on fracture mechanics can provide an estimate of the crack length at the times of previous inspections. An important issue often overlooked in such studies is how processing of parts during manufacture or rework affects the probability of detection of such cracks. The ultimate goal is to understand thoroughly the progression of the failure, to understand the root cause(s), and to design appropriate corrective action(s) to minimize recurrence.« less

  10. Use of failure mode and effects analysis for proactive identification of communication and handoff failures from organ procurement to transplantation.

    PubMed

    Steinberger, Dina M; Douglas, Stephen V; Kirschbaum, Mark S

    2009-09-01

    A multidisciplinary team from the University of Wisconsin Hospital and Clinics transplant program used failure mode and effects analysis to proactively examine opportunities for communication and handoff failures across the continuum of care from organ procurement to transplantation. The team performed a modified failure mode and effects analysis that isolated the multiple linked, serial, and complex information exchanges occurring during the transplantation of one solid organ. Failure mode and effects analysis proved effective for engaging a diverse group of persons who had an investment in the outcome in analysis and discussion of opportunities to improve the system's resilience for avoiding errors during a time-pressured and complex process.

  11. A structured analysis of in vitro failure loads and failure modes of fiber, metal, and ceramic post-and-core systems.

    PubMed

    Fokkinga, Wietske A; Kreulen, Cees M; Vallittu, Pekka K; Creugers, Nico H J

    2004-01-01

    This study sought to aggregate literature data on in vitro failure loads and failure modes of prefabricated fiber-reinforced composite (FRC) post systems and to compare them to those of prefabricated metal, custom-cast, and ceramic post systems. The literature was searched using MEDLINE from 1984 to 2003 for dental articles in English. Keywords used were (post or core or buildup or dowel) and (teeth or tooth). Additional inclusion/exclusion steps were conducted, each step by two independent readers: (1) Abstracts describing post-and-core techniques to reconstruct endodontically treated teeth and their mechanical and physical characteristics were included (descriptive studies or reviews were excluded); (2) articles that included FRC post systems were selected; (3) in vitro studies, single-rooted human teeth, prefabricated FRC posts, and composite as the core material were the selection criteria; and (4) failure loads and modes were extracted from the selected papers, and failure modes were dichotomized (distinction was made between "favorable failures," defined as reparable failures, and "unfavorable failures,"defined as irreparable [root] fractures). The literature search revealed 1,984 abstracts. Included were 244, 42, and 12 articles in the first, second, and third selection steps, respectively. Custom-cast post systems showed higher failure loads than prefabricated FRC post systems, whereas ceramic showed lower failure loads. Significantly more favorable failures occurred with prefabricated FRC post systems than with prefabricated and custom-cast metal post systems. The variable "post system" had a significant effect on mean failure loads. FRC post systems more frequently showed favorable failure modes than did metal post systems.

  12. Register of experts for information on mechanics of structural failure

    NASA Technical Reports Server (NTRS)

    Carpenter, J. L., Jr.; Moya, N.

    1973-01-01

    A list of approximately 150 experts from approximately 60 organizations who have published results of theoretical and/or experimental research related to six problem areas in the mechanics of structural failure is presented. Each author included is listed by organizational affiliation, address and principal field of expertise. The initial criteria for the selection of names for the register are recent contributions to the literature, participation in or support of relevant research programs, and referral by peers. The purpose of the register is to present, in easy reference form, sources for dependable information regarding failure modes and mechanisms of aerospace structures. The Register includes two indexes: an alphabetical listing of the experts and an alphabetical listing of the organizations with whom they are affiliated.

  13. Failure modes in electroactive polymer thin films with elastic electrodes

    NASA Astrophysics Data System (ADS)

    De Tommasi, D.; Puglisi, G.; Zurlo, G.

    2014-02-01

    Based on an energy minimization approach, we analyse the elastic deformations of a thin electroactive polymer (EAP) film sandwiched by two elastic electrodes with non-negligible stiffness. We analytically show the existence of a critical value of the electrode voltage for which non-homogeneous solutions bifurcate from the homogeneous equilibrium state, leading to the pull-in phenomenon. This threshold strongly decreases the limit value proposed in the literature considering only homogeneous deformations. We explicitly discuss the influence of geometric and material parameters together with boundary conditions in the attainment of the different failure modes observed in EAP devices. In particular, we obtain the optimum values of these parameters leading to the maximum activation performances of the device.

  14. Failure Modes in Capacitors When Tested Under a Time-Varying Stress

    NASA Technical Reports Server (NTRS)

    Liu, David (Donhang)

    2011-01-01

    Steady step surge testing (SSST) is widely applied to screen out potential power-on failures in solid tantalum capacitors. The test simulates the power supply's on and off characteristics. Power-on failure has been the prevalent failure mechanism for solid tantalum capacitors for decoupling applications. On the other hand, the SSST can also be reviewed as an electrically destructive test under a time-varying stress. It consists of rapidly charging the capacitor with incremental voltage increases, through a low resistance in series, until the capacitor under test is electrically shorted. Highly accelerated life testing (HALT) is usually a time-efficient method for determining the failure mechanism in capacitors; however, a destructive test under a time-varying stress like SSST is even more effective. It normally takes days to complete a HALT test, but it only takes minutes for a time-varying stress test to produce failures. The advantage of incorporating specific time-varying stress into a statistical model is significant in providing an alternative life test method for quickly revealing the failure modes in capacitors. In this paper, a time-varying stress has been incorporated into the Weibull model to characterize the failure modes. The SSST circuit and transient conditions to correctly test the capacitors is discussed. Finally, the SSST was applied for testing polymer aluminum capacitors (PA capacitors), Ta capacitors, and multi-layer ceramic capacitors with both precious metal electrode (PME) and base-metal-electrodes (BME). It appears that testing results are directly associated to the dielectric layer breakdown in PA and Ta capacitors and are independent on the capacitor values, the way the capacitors being built, and the manufactures. The testing results also reveal that ceramic capacitors exhibit breakdown voltages more than 20 times the rated voltage, and the breakdown voltages are inverse proportional to the dielectric layer thickness. The possibility of

  15. Failure mode and effects analysis: A community practice perspective.

    PubMed

    Schuller, Bradley W; Burns, Angi; Ceilley, Elizabeth A; King, Alan; LeTourneau, Joan; Markovic, Alexander; Sterkel, Lynda; Taplin, Brigid; Wanner, Jennifer; Albert, Jeffrey M

    2017-11-01

    To report our early experiences with failure mode and effects analysis (FMEA) in a community practice setting. The FMEA facilitator received extensive training at the AAPM Summer School. Early efforts focused on department education and emphasized the need for process evaluation in the context of high profile radiation therapy accidents. A multidisciplinary team was assembled with representation from each of the major department disciplines. Stereotactic radiosurgery (SRS) was identified as the most appropriate treatment technique for the first FMEA evaluation, as it is largely self-contained and has the potential to produce high impact failure modes. Process mapping was completed using breakout sessions, and then compiled into a simple electronic format. Weekly sessions were used to complete the FMEA evaluation. Risk priority number (RPN) values > 100 or severity scores of 9 or 10 were considered high risk. The overall time commitment was also tracked. The final SRS process map contained 15 major process steps and 183 subprocess steps. Splitting the process map into individual assignments was a successful strategy for our group. The process map was designed to contain enough detail such that another radiation oncology team would be able to perform our procedures. Continuous facilitator involvement helped maintain consistent scoring during FMEA. Practice changes were made responding to the highest RPN scores, and new resulting RPN scores were below our high-risk threshold. The estimated person-hour equivalent for project completion was 258 hr. This report provides important details on the initial steps we took to complete our first FMEA, providing guidance for community practices seeking to incorporate this process into their quality assurance (QA) program. Determining the feasibility of implementing complex QA processes into different practice settings will take on increasing significance as the field of radiation oncology transitions into the new TG-100 QA

  16. Reliability and Failure Modes of a Hybrid Ceramic Abutment Prototype.

    PubMed

    Silva, Nelson Rfa; Teixeira, Hellen S; Silveira, Lucas M; Bonfante, Estevam A; Coelho, Paulo G; Thompson, Van P

    2018-01-01

    A ceramic and metal abutment prototype was fatigue tested to determine the probability of survival at various loads. Lithium disilicate CAD-milled abutments (n = 24) were cemented to titanium sleeve inserts and then screw attached to titanium fixtures. The assembly was then embedded at a 30° angle in polymethylmethacrylate. Each (n = 24) was restored with a resin-cemented machined lithium disilicate all-ceramic central incisor crown. Single load (lingual-incisal contact) to failure was determined for three specimens. Fatigue testing (n = 21) was conducted employing the step-stress method with lingual mouth motion loading. Failures were recorded, and reliability calculations were performed using proprietary software. Probability Weibull curves were calculated with 90% confidence bounds. Fracture modes were classified with a stereomicroscope, and representative samples imaged with scanning electron microscopy. Fatigue results indicated that the limiting factor in the current design is the fatigue strength of the abutment screw, where screw fracture often leads to failure of the abutment metal sleeve and/or cracking in the implant fixture. Reliability for completion of a mission at 200 N load for 50K cycles was 0.38 (0.52% to 0.25 90% CI) and for 100K cycles was only 0.12 (0.26 to 0.05)-only 12% predicted to survive. These results are similar to those from previous studies on metal to metal abutment/fixture systems where screw failure is a limitation. No ceramic crown or ceramic abutment initiated fractures occurred, supporting the research hypothesis. The limiting factor in performance was the screw failure in the metal-to-metal connection between the prototyped abutment and the fixture, indicating that this configuration should function clinically with no abutment ceramic complications. The combined ceramic with titanium sleeve abutment prototype performance was limited by the fatigue degradation of the abutment screw. In fatigue, no ceramic crown or ceramic

  17. Rapid repair of severely earthquake-damaged bridge piers with flexural-shear failure mode

    NASA Astrophysics Data System (ADS)

    Sun, Zhiguo; Wang, Dongsheng; Du, Xiuli; Si, Bingjun

    2011-12-01

    An experimental study was conducted to investigate the feasibility of a proposed rapid repair technique for severely earthquake-damaged bridge piers with flexural-shear failure mode. Six circular pier specimens were first tested to severe damage in flexural-shear mode and repaired using early-strength concrete with high-fluidity and carbon fiber reinforced polymers (CFRP). After about four days, the repaired specimens were tested to failure again. The seismic behavior of the repaired specimens was evaluated and compared to the original specimens. Test results indicate that the proposed repair technique is highly effective. Both shear strength and lateral displacement of the repaired piers increased when compared to the original specimens, and the failure mechanism of the piers shifted from flexural-shear failure to ductile flexural failure. Finally, a simple design model based on the Seible formulation for post-earthquake repair design was compared to the experimental results. It is concluded that the design equation for bridge pier strengthening before an earthquake could be applicable to seismic repairs after an earthquake if the shear strength contribution of the spiral bars in the repaired piers is disregarded and 1.5 times more FRP sheets is provided.

  18. Modes of failure of Osteonics constrained tripolar implants: a retrospective analysis of forty-three failed implants.

    PubMed

    Guyen, Olivier; Lewallen, David G; Cabanela, Miguel E

    2008-07-01

    The Osteonics constrained tripolar implant has been one of the most commonly used options to manage recurrent instability after total hip arthroplasty. Mechanical failures were expected and have been reported. The purpose of this retrospective review was to identify the observed modes of failure of this device. Forty-three failed Osteonics constrained tripolar implants were revised at our institution between September 1997 and April 2005. All revisions related to the constrained acetabular component only were considered as failures. All of the devices had been inserted for recurrent or intraoperative instability during revision procedures. Seven different methods of implantation were used. Operative reports and radiographs were reviewed to identify the modes of failure. The average time to failure of the forty-three implants was 28.4 months. A total of five modes of failure were observed: failure at the bone-implant interface (type I), which occurred in eleven hips; failure at the mechanisms holding the constrained liner to the metal shell (type II), in six hips; failure of the retaining mechanism of the bipolar component (type III), in ten hips; dislocation of the prosthetic head at the inner bearing of the bipolar component (type IV), in three hips; and infection (type V), in twelve hips. The mode of failure remained unknown in one hip that had been revised at another institution. The Osteonics constrained tripolar total hip arthroplasty implant is a complex device involving many parts. We showed that failure of this device can occur at most of its interfaces. It would therefore appear logical to limit its application to salvage situations.

  19. Folded fabric tunes rock deformation and failure mode in the upper crust.

    PubMed

    Agliardi, F; Dobbs, M R; Zanchetta, S; Vinciguerra, S

    2017-11-10

    The micro-mechanisms of brittle failure affect the bulk mechanical behaviour and permeability of crustal rocks. In low-porosity crystalline rocks, these mechanisms are related to mineralogy and fabric anisotropy, while confining pressure, temperature and strain rates regulate the transition from brittle to ductile behaviour. However, the effects of folded anisotropic fabrics, widespread in orogenic settings, on the mechanical behaviour of crustal rocks are largely unknown. Here we explore the deformation and failure behaviour of a representative folded gneiss, by combining the results of triaxial deformation experiments carried out while monitoring microseismicity with microstructural and damage proxies analyses. We show that folded crystalline rocks in upper crustal conditions exhibit dramatic strength heterogeneity and contrasting failure modes at identical confining pressure and room temperature, depending on the geometrical relationships between stress and two different anisotropies associated to the folded rock fabric. These anisotropies modulate the competition among quartz- and mica-dominated microscopic damage processes, resulting in transitional brittle to semi-brittle modes under P and T much lower than expected. This has significant implications on scales relevant to seismicity, energy resources, engineering applications and geohazards.

  20. Role of failure-mechanism identification in accelerated testing

    NASA Technical Reports Server (NTRS)

    Hu, J. M.; Barker, D.; Dasgupta, A.; Arora, A.

    1993-01-01

    Accelerated life testing techniques provide a short-cut method to investigate the reliability of electronic devices with respect to certain dominant failure mechanisms that occur under normal operating conditions. However, accelerated tests have often been conducted without knowledge of the failure mechanisms and without ensuring that the test accelerated the same mechanism as that observed under normal operating conditions. This paper summarizes common failure mechanisms in electronic devices and packages and investigates possible failure mechanism shifting during accelerated testing.

  1. Deformation modes in an Icelandic basalt: From brittle failure to localized deformation bands

    NASA Astrophysics Data System (ADS)

    Adelinet, M.; Fortin, J.; Schubnel, A.; Guéguen, Y.

    2013-04-01

    According to the stress state, deformation mode observed in rocks may be very different. Even in the brittle part of the crust a differential stress can induce shear failure but also localized compacting deformation, such as compaction bands in porous sedimentary rocks. The mode of deformation controls many hydrodynamic factors, such as permeability and porosity. We investigate in this paper two different modes of deformation in an Icelandic basalt by using laboratory seismological tools (elastic waves and acoustic emissions) and microstructural observations. First of all, we show that at low effective confining pressure (Peff = 5 MPa) an axial loading induces a shear failure in the basalt with an angle of about 30° with respect to the main stress direction. On the contrary, at high effective confining pressure (Peff ≥ 75 MPa and more) an increase of the axial stress induces a localization of the deformation in the form of subhorizontal bands again with respect to the main stress direction. In this second regime, focal mechanisms of the acoustic emissions reveal an important number of compression events suggesting pore collapse mechanisms. Microstructural observations confirm this assumption. Similar compaction structures are usually obtained for porous sedimentary rocks (20-25%). However, the investigated basalt has an initial total porosity of only about 10% so that compaction structures were not expected. The pore size and the ratio of pore to grain size are likely to be key factors for the particular observed mechanical behavior.

  2. The Application of Failure Modes and Effects Analysis Methodology to Intrathecal Drug Delivery for Pain Management

    PubMed Central

    Patel, Teresa; Fisher, Stanley P.

    2016-01-01

    Objective This study aimed to utilize failure modes and effects analysis (FMEA) to transform clinical insights into a risk mitigation plan for intrathecal (IT) drug delivery in pain management. Methods The FMEA methodology, which has been used for quality improvement, was adapted to assess risks (i.e., failure modes) associated with IT therapy. Ten experienced pain physicians scored 37 failure modes in the following categories: patient selection for therapy initiation (efficacy and safety concerns), patient safety during IT therapy, and product selection for IT therapy. Participants assigned severity, probability, and detection scores for each failure mode, from which a risk priority number (RPN) was calculated. Failure modes with the highest RPNs (i.e., most problematic) were discussed, and strategies were proposed to mitigate risks. Results Strategic discussions focused on 17 failure modes with the most severe outcomes, the highest probabilities of occurrence, and the most challenging detection. The topic of the highest‐ranked failure mode (RPN = 144) was manufactured monotherapy versus compounded combination products. Addressing failure modes associated with appropriate patient and product selection was predicted to be clinically important for the success of IT therapy. Conclusions The methodology of FMEA offers a systematic approach to prioritizing risks in a complex environment such as IT therapy. Unmet needs and information gaps are highlighted through the process. Risk mitigation and strategic planning to prevent and manage critical failure modes can contribute to therapeutic success. PMID:27477689

  3. Precursory changes in seismic velocity for the spectrum of earthquake failure modes

    PubMed Central

    Scuderi, M.M.; Marone, C.; Tinti, E.; Di Stefano, G.; Collettini, C.

    2016-01-01

    Temporal changes in seismic velocity during the earthquake cycle have the potential to illuminate physical processes associated with fault weakening and connections between the range of fault slip behaviors including slow earthquakes, tremor and low frequency earthquakes1. Laboratory and theoretical studies predict changes in seismic velocity prior to earthquake failure2, however tectonic faults fail in a spectrum of modes and little is known about precursors for those modes3. Here we show that precursory changes of wave speed occur in laboratory faults for the complete spectrum of failure modes observed for tectonic faults. We systematically altered the stiffness of the loading system to reproduce the transition from slow to fast stick-slip and monitored ultrasonic wave speed during frictional sliding. We find systematic variations of elastic properties during the seismic cycle for both slow and fast earthquakes indicating similar physical mechanisms during rupture nucleation. Our data show that accelerated fault creep causes reduction of seismic velocity and elastic moduli during the preparatory phase preceding failure, which suggests that real time monitoring of active faults may be a means to detect earthquake precursors. PMID:27597879

  4. Analysis of Mechanical Failure of Polymer Microneedles by Axial Force

    PubMed Central

    Park, Jung-Hwan; Prausnitz, Mark R.

    2010-01-01

    A polymeric microneedle has been developed for drug delivery applications. The ultimate goal of the polymeric microneedle is insertion into the specified region without failure for effective transdermal drug delivery. Mechanical failure of various geometries of microneedles by axial load was modeled using the Euler formula and the Johnson formula to predict the failure force of tapered-column microneedles. These formulas were compared with measured data to identify the mechanical behavior of microneedles by determining the critical factors including the actual length and end-fixed factor. The comparison of the two formulas with the data showed good agreement at the end-fixity (K) of 0.7. This value means that a microneedle column has one fixed end and one pinned end, and that part of the microneedle was overloaded by axial load. When the aspect ratio of length to equivalent diameter is 12:1 at 3 GPa of Young’s modulus, there is a transition from the Euler region to the Johnson region by the decreased length and increased base diameter of the microneedle. A polymer having less than 3 GPa of stiffness would follow the Euler formula. A 12:1 aspect ratio of length to equivalent diameter of the microneedle was the mechanical indicator determining the failure mode between elastic buckling and inelastic buckling at less than 3 GPa of Young’s modulus of polymer. Microneedles with below a 12:1 aspect ratio of length-to-equivalent diameter and more than 3 GPa of Young’s were recommended for reducing sudden failure by buckling and for successfully inserting the microneedle into the skin. PMID:21218133

  5. True Triaxial Strength and Failure Modes of Cubic Rock Specimens with Unloading the Minor Principal Stress

    NASA Astrophysics Data System (ADS)

    Li, Xibing; Du, Kun; Li, Diyuan

    2015-11-01

    True triaxial tests have been carried out on granite, sandstone and cement mortar using cubic specimens with the process of unloading the minor principal stress. The strengths and failure modes of the three rock materials are studied in the processes of unloading σ 3 and loading σ 1 by the newly developed true triaxial test system under different σ 2, aiming to study the mechanical responses of the rock in underground excavation at depth. It shows that the rock strength increases with the raising of the intermediate principal stress σ 2 when σ 3 is unloaded to zero. The true triaxial strength criterion by the power-law relationship can be used to fit the testing data. The "best-fitting" material parameters A and n ( A > 1.4 and n < 1.0) are almost located in the same range as expected by Al-Ajmi and Zimmerman (Int J Rock Mech Min Sci 563 42(3):431-439, 2005). It indicates that the end effect caused by the height-to-width ratio of the cubic specimens will not significantly affect the testing results under true triaxial tests. Both the strength and failure modes of cubic rock specimens under true triaxial unloading condition are affected by the intermediate principal stress. When σ 2 increases to a critical value for the strong and hard rocks (R4, R5 and R6), the rock failure mode may change from shear to slabbing. However, for medium strong and weak rocks (R3 and R2), even with a relatively high intermediate principal stress, they tend to fail in shear after a large amount of plastic deformation. The maximum extension strain criterion Stacey (Int J Rock Mech Min Sci Geomech Abstr 651 18(6):469-474, 1981) can be used to explain the change of failure mode from shear to slabbing for strong and hard rocks under true triaxial unloading test condition.

  6. [Failure mode and effects analysis on computerized drug prescriptions].

    PubMed

    Paredes-Atenciano, J A; Roldán-Aviña, J P; González-García, Mercedes; Blanco-Sánchez, M C; Pinto-Melero, M A; Pérez-Ramírez, C; Calvo Rubio-Burgos, Miguel; Osuna-Navarro, F J; Jurado-Carmona, A M

    2015-01-01

    To identify and analyze errors in drug prescriptions of patients treated in a "high resolution" hospital by applying a Failure mode and effects analysis (FMEA).Material and methods A multidisciplinary group of medical specialties and nursing analyzed medical records where drug prescriptions were held in free text format. An FMEA was developed in which the risk priority index (RPI) was obtained from a cross-sectional observational study using an audit of the medical records, carried out in 2 phases: 1) Pre-intervention testing, and (2) evaluation of improvement actions after the first analysis. An audit sample size of 679 medical records from a total of 2,096 patients was calculated using stratified sampling and random selection of clinical events. Prescription errors decreased by 22.2% in the second phase. FMEA showed a greater RPI in "unspecified route of administration" and "dosage unspecified", with no significant decreases observed in the second phase, although it did detect, "incorrect dosing time", "contraindication due to drug allergy", "wrong patient" or "duplicate prescription", which resulted in the improvement of prescriptions. Drug prescription errors have been identified and analyzed by FMEA methodology, improving the clinical safety of these prescriptions. This tool allows updates of electronic prescribing to be monitored. To avoid such errors would require the mandatory completion of all sections of a prescription. Copyright © 2014 SECA. Published by Elsevier Espana. All rights reserved.

  7. Fatigue Failure Modes of the Grain Size Transition Zone in a Dual Microstructure Disk

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Kantzos, Pete T.; Palsa, Bonnie; Telesman, Jack; Gayda, John; Sudbrack, Chantal K.

    2012-01-01

    Mechanical property requirements vary with location in nickel-based superalloy disks. In order to maximize the associated mechanical properties, heat treatment methods have been developed for producing tailored grain microstructures. In this study, fatigue failure modes of a grain size transition zone in a dual microstructure disk were evaluated. A specialized heat treatment method was applied to produce varying grain microstructure in the bore to rim portions of a powder metallurgy processed nickel-based superalloy disk. The transition in grain size was concentrated in a zone of the disk web, between the bore and rim. Specimens were extracted parallel and transversely across this transition zone, and multiple fatigue tests were performed at 427 C and 704 C. Grain size distributions were characterized in the specimens, and related to operative failure initiation modes. Mean fatigue life decreased with increasing maximum grain size, going out through the transition zone. The scatter in limited tests of replicates was comparable for failures of uniform gage specimens in all transition zone locations examined.

  8. Decomposition-Based Failure Mode Identification Method for Risk-Free Design of Large Systems

    NASA Technical Reports Server (NTRS)

    Tumer, Irem Y.; Stone, Robert B.; Roberts, Rory A.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    When designing products, it is crucial to assure failure and risk-free operation in the intended operating environment. Failures are typically studied and eliminated as much as possible during the early stages of design. The few failures that go undetected result in unacceptable damage and losses in high-risk applications where public safety is of concern. Published NASA and NTSB accident reports point to a variety of components identified as sources of failures in the reported cases. In previous work, data from these reports were processed and placed in matrix form for all the system components and failure modes encountered, and then manipulated using matrix methods to determine similarities between the different components and failure modes. In this paper, these matrices are represented in the form of a linear combination of failures modes, mathematically formed using Principal Components Analysis (PCA) decomposition. The PCA decomposition results in a low-dimensionality representation of all failure modes and components of interest, represented in a transformed coordinate system. Such a representation opens the way for efficient pattern analysis and prediction of failure modes with highest potential risks on the final product, rather than making decisions based on the large space of component and failure mode data. The mathematics of the proposed method are explained first using a simple example problem. The method is then applied to component failure data gathered from helicopter, accident reports to demonstrate its potential.

  9. Failure Analysis and Mechanisms of Failure of Fibrous Composite Structures

    NASA Technical Reports Server (NTRS)

    Noor, A. K. (Compiler); Shuart, M. J. (Compiler); Starnes, J. H., Jr. (Compiler); Williams, J. G. (Compiler)

    1983-01-01

    The state of the art of failure analysis and current design practices, especially as applied to the use of fibrous composite materials in aircraft structures is discussed. Deficiencies in these technologies are identified, as are directions for future research.

  10. Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates

    PubMed Central

    Barrese, James C; Rao, Naveen; Paroo, Kaivon; Triebwasser, Corey; Vargas-Irwin, Carlos; Franquemont, Lachlan; Donoghue, John P

    2016-01-01

    Objective Brain–computer interfaces (BCIs) using chronically implanted intracortical microelectrode arrays (MEAs) have the potential to restore lost function to people with disabilities if they work reliably for years. Current sensors fail to provide reliably useful signals over extended periods of time for reasons that are not clear. This study reports a comprehensive retrospective analysis from a large set of implants of a single type of intracortical MEA in a single species, with a common set of measures in order to evaluate failure modes. Approach Since 1996, 78 silicon MEAs were implanted in 27 monkeys (Macaca mulatta). We used two approaches to find reasons for sensor failure. First, we classified the time course leading up to complete recording failure as acute (abrupt) or chronic (progressive). Second, we evaluated the quality of electrode recordings over time based on signal features and electrode impedance. Failure modes were divided into four categories: biological, material, mechanical, and unknown. Main results Recording duration ranged from 0 to 2104 days (5.75 years), with a mean of 387 days and a median of 182 days (n = 78). Sixty-two arrays failed completely with a mean time to failure of 332 days (median = 133 days) while nine array experiments were electively terminated for experimental reasons (mean = 486 days). Seven remained active at the close of this study (mean = 753 days). Most failures (56%) occurred within a year of implantation, with acute mechanical failures the most common class (48%), largely because of connector issues (83%). Among grossly observable biological failures (24%), a progressive meningeal reaction that separated the array from the parenchyma was most prevalent (14.5%). In the absence of acute interruptions, electrode recordings showed a slow progressive decline in spike amplitude, noise amplitude, and number of viable channels that predicts complete signal loss by about eight years. Impedance measurements showed

  11. Mode and mechanisms of plateau uplifts

    NASA Technical Reports Server (NTRS)

    Mcgetchin, T. R.; Burke, K. C.; Thompson, G. A.; Young, R. A.

    1980-01-01

    The mode and mechanisms of plateau uplifts are reported, based on discussions which occurred as part of a conference on plateau uplifts sponsored by the Inter-Union Commission on Geodynamics and the Lunar and Planetary Institute. Major plateaus and high plains of the world are discussed with emphasis on the Colorado Plateau, which possesses a shield-like crust 45 km thick and occupies most of eastern Utah and parts of Colorado, Arizona, and New Mexico. Several uplift mechanisms are described, including thermal expansion due to a deep mantle plume or hot spot, and hydration reactions such as serpentinization. It is concluded that uplifts are most commonly associated with either subduction and its direct effects, or deep-seated thermal disturbances.

  12. Mechanisms of fibrosis in acute liver failure.

    PubMed

    He, Yingli; Jin, Li; Wang, Jing; Yan, Zhi; Chen, Tianyan; Zhao, Yingren

    2015-07-01

    Acute liver failure (ALF) is a condition with high mortality and morbidity. Fibrosis in chronic liver disease was extensively researched, whereas fibrosis and underlying mechanism in acute liver failure remains unclear. Hepatitis B virus related ALF patients were recruited to investigate if there was ongoing fibrosis by liver histology and liver stiffness measurement(LSM) analysis as well as fibrosis markers assay. Sera HMGB1 were kinetically detected in progression and remission stage of ALF. Hepatic stellate cell(HSC) activation by HMGB1 was explored by testing mRNA and protein level of α-SMA and collagen 1a1 by using qPCR and western blot. Autophagy induction by HMGB1 was explored by LC3-II conversion, autophagy flux and fluorescence. Firstly, ongoing fibrosis in progression stage of ALF was confirmed by histological analysis, LS measurement as well as fibrosis markers detection. HSC activation and autophagy induction in explanted liver tissue also revealed. Next, kinetic monitoring sera HMGB1 revealed elevated HMGB1 in progression stage of ALF vs HBsAg carrier, and drop back to base level in remission stage. Thirdly, rHMGB1 dose dependently activated HSCs, as indicated by increased mRNA and proteins level in α-SMA and collagen 1a1. Moreover, autophagy was induced in HSC treated with rHMGB1, as illustrated by increased LC3 lipidation, elevated autophagy flux and GFP-LC3 puncta. Acute liver failure is accompanied by ongoing fibrosis, HSC activation and autophagy induction. Increased HMGB1 activates HSC via autophagy induction. Those findings integrate HMGB1, HSCs activation, autophagy into a common framework that underlies the fibrosis in ALF. © 2014 The Authors. Liver International Published by John Wiley & Sons Ltd.

  13. The assessment of low probability containment failure modes using dynamic PRA

    NASA Astrophysics Data System (ADS)

    Brunett, Acacia Joann

    Although low probability containment failure modes in nuclear power plants may lead to large releases of radioactive material, these modes are typically crudely modeled in system level codes and have large associated uncertainties. Conventional risk assessment techniques (i.e. the fault-tree/event-tree methodology) are capable of accounting for these failure modes to some degree, however, they require the analyst to pre-specify the ordering of events, which can vary within the range of uncertainty of the phenomena. More recently, dynamic probabilistic risk assessment (DPRA) techniques have been developed which remove the dependency on the analyst. Through DPRA, it is now possible to perform a mechanistic and consistent analysis of low probability phenomena, with the timing of the possible events determined by the computational model simulating the reactor behavior. The purpose of this work is to utilize DPRA tools to assess low probability containment failure modes and the driving mechanisms. Particular focus is given to the risk-dominant containment failure modes considered in NUREG-1150, which has long been the standard for PRA techniques. More specifically, this work focuses on the low probability phenomena occurring during a station blackout (SBO) with late power recovery in the Zion Nuclear Power Plant, a Westinghouse pressurized water reactor (PWR). Subsequent to the major risk study performed in NUREG-1150, significant experimentation and modeling regarding the mechanisms driving containment failure modes have been performed. In light of this improved understanding, NUREG-1150 containment failure modes are reviewed in this work using the current state of knowledge. For some unresolved mechanisms, such as containment loading from high pressure melt ejection and combustion events, additional analyses are performed using the accident simulation tool MELCOR to explore the bounding containment loads for realistic scenarios. A dynamic treatment in the

  14. Shear-induced mechanical failure of β -G a2O3 from quantum mechanics simulations

    NASA Astrophysics Data System (ADS)

    An, Qi; Li, Guodong

    2017-10-01

    Monoclinic gallium oxide (β -G a2O3 ) has important applications in power devices and deep UV optoelectronic devices because of such novel properties as a wide band gap, high breakdown electric field, and a wide range of n -type doping conductivity. However, the intrinsic failure mechanisms of β -G a2O3 remain unknown, which limits the fabrication and packaging of β -G a2O3 -based electronic devices. Here we used density-functional theory at the Perdew-Burke-Ernzerhof level to examine the shear-induced failure mechanisms of β -G a2O3 along various plausible slip systems. We found that the (001 )/〈010 〉 slip system has the lowest ideal shear strength of 3.8 GPa among five plausible slip systems, suggesting that (001 )/〈010 〉 is the most plausible activated slip system. This slip leads to an intrinsic failure mechanism arising from breaking the longest Ga-O bond between octahedral Ga and fourfold-coordinated O. Then we identified the same failure mechanism of β -G a2O3 under biaxial shear deformation that mimics indentation stress conditions. Finally, the general stacking fault energy (SFE) surface is calculated for the (001) surface from which we concluded that there is no intrinsic stacking fault structure for β -G a2O3 . The deformation modes and SFE calculations are essential to understand the intrinsic mechanical processes of this semiconductor material, which provides insightful guidance for designing high-performance semiconductor devices.

  15. A New Rock Strength Criterion from Microcracking Mechanisms Which Provides Theoretical Evidence of Hybrid Failure

    NASA Astrophysics Data System (ADS)

    Zhu, Qi-Zhi

    2017-02-01

    A proper criterion describing when material fails is essential for deep understanding and constitutive modeling of rock damage and failure by microcracking. Physically, such a criterion should be the global effect of local mechanical response and microstructure evolution inside the material. This paper aims at deriving a new mechanisms-based failure criterion for brittle rocks, based on micromechanical unilateral damage-friction coupling analyses rather than on the basic results from the classical linear elastic fracture mechanics. The failure functions respectively describing three failure modes (purely tensile mode, tensile-shear mode as well as compressive-shear mode) are achieved in a unified upscaling framework and illustrated in the Mohr plane and also in the plane of principal stresses. The strength envelope is proved to be continuous and smooth with a compressive to tensile strength ratio dependent on material properties. Comparisons with experimental data are finally carried out. By this work, we also provide a theoretical evidence on the hybrid failure and the smooth transition from tensile failure to compressive-shear failure.

  16. Failure mode and bending moment of canine pancarpal arthrodesis constructs stabilized with two different implant systems.

    PubMed

    Wininger, Fred A; Kapatkin, Amy S; Radin, Alex; Shofer, Frances S; Smith, Gail K

    2007-12-01

    To compare failure mode and bending moment of a canine pancarpal arthrodesis construct using either a 2.7 mm/3.5 mm hybrid dynamic compression plate (HDCP) or a 3.5 mm dynamic compression plate (DCP). Paired in vitro biomechanical testing of canine pancarpal arthrodesis constructs stabilized with either a 2.7/3.5 HDCP or 3.5 DCP. Paired cadaveric canine antebrachii (n=5). Pancarpal arthrodesis constructs were loaded to failure (point of maximum load) in 4-point bending using a materials-testing machine. Using this point of failure, bending moments were calculated from system variables for each construct and the 2 plating systems compared using a paired t-test. To examine the relationship between metacarpal diameter and screw diameter failure loads, linear regression was used and Pearson' correlation coefficient was calculated. Significance was set at P<.05. HDCP failed at higher loads than DCP for 9 of 10 constructs. The absolute difference in failure rates between the 2 plates was 0.552+/-0.182 N m, P=.0144 (95% confidence interval: -0.58 to 1.68). This is an 8.1% mean difference in bending strength. There was a significant linear correlation r=0.74 (P-slope=.014) and 0.8 (P-slope=.006) between metacarpal diameter and failure loads for the HDCP and 3.5 DCP, respectively. There was a small but significant difference between bending moment at failure between 2.7/3.5 HDCP and 3.5 DCP constructs; however, the difference may not be clinically evident in all patients. The 2.7/3.5 HDCP has physical and mechanical properties making it a more desirable plate for pancarpal arthrodesis.

  17. Predictions of High Strain Rate Failure Modes in Layered Aluminum Composites

    NASA Astrophysics Data System (ADS)

    Khanikar, Prasenjit; Zikry, M. A.

    2014-01-01

    A dislocation density-based crystalline plasticity formulation, specialized finite-element techniques, and rational crystallographic orientation relations were used to predict and characterize the failure modes associated with the high strain rate behavior of aluminum layered composites. Two alloy layers, a high strength alloy, aluminum 2195, and an aluminum alloy 2139, with high toughness, were modeled with representative microstructures that included precipitates, dispersed particles, and different grain boundary distributions. Different layer arrangements were investigated for high strain rate applications and the optimal arrangement was with the high toughness 2139 layer on the bottom, which provided extensive shear strain localization, and the high strength 2195 layer on the top for high strength resistance The layer thickness of the bottom high toughness layer also affected the bending behavior of the roll-bonded interface and the potential delamination of the layers. Shear strain localization, dynamic cracking, and delamination are the mutually competing failure mechanisms for the layered metallic composite, and control of these failure modes can be used to optimize behavior for high strain rate applications.

  18. Register of specialized sources for information on mechanics of structural failure

    NASA Technical Reports Server (NTRS)

    Carpenter, J. L., Jr.; Denny, F. J.

    1973-01-01

    Specialized information sources that generate information relative to six problem areas in aerospace mechanics of structural failure are identified. Selection for inclusion was based upon information obtained from the individual knowledge and professional contacts of Martin Marietta Aerospace staff members and the information uncovered by the staff of technical reviewers. Activities listed perform basic or applied research related to the mechanics of structural failure and publish the results of such research. The purpose of the register is to present, in easy reference form, original sources for dependable information regarding failure modes and mechanisms of aerospace structures.

  19. Lunar Module Electrical Power System Design Considerations and Failure Modes

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    This slide presentation reviews the design and redesign considerations of the Apollo lunar module electrical power system. Included in the work are graphics showing the lunar module power system. It describes the in-flight failures, and the lessons learned from these failures.

  20. Clinical risk analysis with failure mode and effect analysis (FMEA) model in a dialysis unit.

    PubMed

    Bonfant, Giovanna; Belfanti, Pietro; Paternoster, Giuseppe; Gabrielli, Danila; Gaiter, Alberto M; Manes, Massimo; Molino, Andrea; Pellu, Valentina; Ponzetti, Clemente; Farina, Massimo; Nebiolo, Pier E

    2010-01-01

    The aim of clinical risk management is to improve the quality of care provided by health care organizations and to assure patients' safety. Failure mode and effect analysis (FMEA) is a tool employed for clinical risk reduction. We applied FMEA to chronic hemodialysis outpatients. FMEA steps: (i) process study: we recorded phases and activities. (ii) Hazard analysis: we listed activity-related failure modes and their effects; described control measures; assigned severity, occurrence and detection scores for each failure mode and calculated the risk priority numbers (RPNs) by multiplying the 3 scores. Total RPN is calculated by adding single failure mode RPN. (iii) Planning: we performed a RPNs prioritization on a priority matrix taking into account the 3 scores, and we analyzed failure modes causes, made recommendations and planned new control measures. (iv) Monitoring: after failure mode elimination or reduction, we compared the resulting RPN with the previous one. Our failure modes with the highest RPN came from communication and organization problems. Two tools have been created to ameliorate information flow: "dialysis agenda" software and nursing datasheets. We scheduled nephrological examinations, and we changed both medical and nursing organization. Total RPN value decreased from 892 to 815 (8.6%) after reorganization. Employing FMEA, we worked on a few critical activities, and we reduced patients' clinical risk. A priority matrix also takes into account the weight of the control measures: we believe this evaluation is quick, because of simple priority selection, and that it decreases action times.

  1. Performance degradation mechanisms and modes in terrestrial photovoltaic arrays and technology for their diagnosis

    NASA Technical Reports Server (NTRS)

    Noel, G. T.; Sliemers, F. A.; Derringer, G. C.; Wood, V. E.; Wilkes, K. E.; Gaines, G. B.; Carmichael, D. C.

    1978-01-01

    Accelerated life-prediction test methodologies have been developed for the validation of a 20-year service life for low-cost photovoltaic arrays. Array failure modes, relevant materials property changes, and primary degradation mechanisms are discussed as a prerequisite to identifying suitable measurement techniques and instruments. Measurements must provide sufficient confidence to permit selection among alternative designs and materials and to stimulate widespread deployment of such arrays. Furthermore, the diversity of candidate materials and designs, and the variety of potential environmental stress combinations, degradation mechanisms and failure modes require that combinations of measurement techniques be identified which are suitable for the characterization of various encapsulation system-cell structure-environment combinations.

  2. WE-G-BRA-08: Failure Modes and Effects Analysis (FMEA) for Gamma Knife Radiosurgery

    SciT

    Xu, Y; Bhatnagar, J; Bednarz, G

    2015-06-15

    Purpose: To perform a failure modes and effects analysis (FMEA) study for Gamma Knife (GK) radiosurgery processes at our institution based on our experience with the treatment of more than 13,000 patients. Methods: A team consisting of medical physicists, nurses, radiation oncologists, neurosurgeons at the University of Pittsburgh Medical Center and an external physicist expert was formed for the FMEA study. A process tree and a failure mode table were created for the GK procedures using the Leksell GK Perfexion and 4C units. Three scores for the probability of occurrence (O), the severity (S), and the probability of no detectionmore » (D) for failure modes were assigned to each failure mode by each professional on a scale from 1 to 10. The risk priority number (RPN) for each failure mode was then calculated (RPN = OxSxD) as the average scores from all data sets collected. Results: The established process tree for GK radiosurgery consists of 10 sub-processes and 53 steps, including a sub-process for frame placement and 11 steps that are directly related to the frame-based nature of the GK radiosurgery. Out of the 86 failure modes identified, 40 failure modes are GK specific, caused by the potential for inappropriate use of the radiosurgery head frame, the imaging fiducial boxes, the GK helmets and plugs, and the GammaPlan treatment planning system. The other 46 failure modes are associated with the registration, imaging, image transfer, contouring processes that are common for all radiation therapy techniques. The failure modes with the highest hazard scores are related to imperfect frame adaptor attachment, bad fiducial box assembly, overlooked target areas, inaccurate previous treatment information and excessive patient movement during MRI scan. Conclusion: The implementation of the FMEA approach for Gamma Knife radiosurgery enabled deeper understanding of the overall process among all professionals involved in the care of the patient and helped identify

  3. A numerical procedure for failure mode detection of masonry arches reinforced with fiber reinforced polymeric materials

    NASA Astrophysics Data System (ADS)

    Galassi, S.

    2018-05-01

    In this paper a mechanical model of masonry arches strengthened with fibre-reinforced composite materials and the relevant numerical procedure for the analysis are proposed. The arch is modelled by using an assemblage of rigid blocks that are connected together and, also to the supporting structures, by mortar joints. The presence of the reinforcement, usually a sheet placed at the intrados or the extrados, prevents the occurrence of cracks that could activate possible collapse mechanisms, due to tensile failure of the mortar joints. Therefore, in a reinforced arch failure generally occurs in a different way from the URM arch. The numerical procedure proposed checks, as a function of an external incremental load, the inner stress state in the arch, in the reinforcement and in the adhesive layer. In so doing, it then provides a prediction of failure modes. Results obtained from experimental tests, carried out on four in-scale models performed in a laboratory, have been compared with those provided by the numerical procedure, implemented in ArchiVAULT, a software developed by the author. In this regard, the numerical procedure is an extension of previous works. Although additional experimental investigations are necessary, these former results confirm that the proposed numerical procedure is promising.

  4. Failure mode and effects analysis and fault tree analysis of surface image guided cranial radiosurgery.

    PubMed

    Manger, Ryan P; Paxton, Adam B; Pawlicki, Todd; Kim, Gwe-Ya

    2015-05-01

    Surface image guided, Linac-based radiosurgery (SIG-RS) is a modern approach for delivering radiosurgery that utilizes optical stereoscopic imaging to monitor the surface of the patient during treatment in lieu of using a head frame for patient immobilization. Considering the novelty of the SIG-RS approach and the severity of errors associated with delivery of large doses per fraction, a risk assessment should be conducted to identify potential hazards, determine their causes, and formulate mitigation strategies. The purpose of this work is to investigate SIG-RS using the combined application of failure modes and effects analysis (FMEA) and fault tree analysis (FTA), report on the effort required to complete the analysis, and evaluate the use of FTA in conjunction with FMEA. A multidisciplinary team was assembled to conduct the FMEA on the SIG-RS process. A process map detailing the steps of the SIG-RS was created to guide the FMEA. Failure modes were determined for each step in the SIG-RS process, and risk priority numbers (RPNs) were estimated for each failure mode to facilitate risk stratification. The failure modes were ranked by RPN, and FTA was used to determine the root factors contributing to the riskiest failure modes. Using the FTA, mitigation strategies were formulated to address the root factors and reduce the risk of the process. The RPNs were re-estimated based on the mitigation strategies to determine the margin of risk reduction. The FMEA and FTAs for the top two failure modes required an effort of 36 person-hours (30 person-hours for the FMEA and 6 person-hours for two FTAs). The SIG-RS process consisted of 13 major subprocesses and 91 steps, which amounted to 167 failure modes. Of the 91 steps, 16 were directly related to surface imaging. Twenty-five failure modes resulted in a RPN of 100 or greater. Only one of these top 25 failure modes was specific to surface imaging. The riskiest surface imaging failure mode had an overall RPN-rank of eighth

  5. Fractography can be used to analyze failure modes in polytetrafluoroethylene

    NASA Technical Reports Server (NTRS)

    Nerren, B. H.

    1969-01-01

    Fractographic principles used for analyzing failure in metals are applied to the analysis of the microstructure and fracture of polytetrafluoroethylene. This material is used as seals in cryogenic systems.

  6. Compression failure mechanisms of uni-ply composite plates with a circular cutout

    NASA Technical Reports Server (NTRS)

    Khamseh, A. R.; Waas, A. M.

    1992-01-01

    The effect of circular-hole size on the failure mode of uniply graphite-epoxy composite plates is investigated experimentally and analytically for uniaxial compressive loading. The test specimens are sandwiched between polyetherimide plastic for nondestructive evaluations of the uniply failure mechanisms associated with a range of hole sizes. Finite-element modeling based on classical lamination theory is conducted for the corresponding materials and geometries to reproduce the experimental results analytically. The type of compressive failure is found to be a function of hole size, with fiber buckling/kinking at the hole being the dominant failure mechanism for hole diam/plate width ratios exceeding 0.062. The results of the finite-element analysis supported the experimental data for these failure mechanisms and for those corresponding to smaller hole sizes.

  7. Predicting the occurrence of mixed mode failure associated with hydraulic fracturing, part 2 water saturated tests

    SciT

    Bauer, Stephen J.; Broome, Scott Thomas; Choens, Charles

    2015-09-14

    Seven water-saturated triaxial extension experiments were conducted on four sedimentary rocks. This experimental condition was hypothesized more representative of that existing for downhole hydrofracture and thus it may improve our understanding of the phenomena. In all tests the pore pressure was 10 MPa and confirming pressure was adjusted to achieve tensile and transitional failure mode conditions. Using previous work in this LDRD for comparison, the law of effective stress is demonstrated in extension using this sample geometry. In three of the four lithologies, no apparent chemo-mechanical effect of water is apparent, and in the fourth lithology test results indicate somemore » chemo-mechanical effect of water.« less

  8. Weighted Fuzzy Risk Priority Number Evaluation of Turbine and Compressor Blades Considering Failure Mode Correlations

    NASA Astrophysics Data System (ADS)

    Gan, Luping; Li, Yan-Feng; Zhu, Shun-Peng; Yang, Yuan-Jian; Huang, Hong-Zhong

    2014-06-01

    Failure mode, effects and criticality analysis (FMECA) and Fault tree analysis (FTA) are powerful tools to evaluate reliability of systems. Although single failure mode issue can be efficiently addressed by traditional FMECA, multiple failure modes and component correlations in complex systems cannot be effectively evaluated. In addition, correlated variables and parameters are often assumed to be precisely known in quantitative analysis. In fact, due to the lack of information, epistemic uncertainty commonly exists in engineering design. To solve these problems, the advantages of FMECA, FTA, fuzzy theory, and Copula theory are integrated into a unified hybrid method called fuzzy probability weighted geometric mean (FPWGM) risk priority number (RPN) method. The epistemic uncertainty of risk variables and parameters are characterized by fuzzy number to obtain fuzzy weighted geometric mean (FWGM) RPN for single failure mode. Multiple failure modes are connected using minimum cut sets (MCS), and Boolean logic is used to combine fuzzy risk priority number (FRPN) of each MCS. Moreover, Copula theory is applied to analyze the correlation of multiple failure modes in order to derive the failure probabilities of each MCS. Compared to the case where dependency among multiple failure modes is not considered, the Copula modeling approach eliminates the error of reliability analysis. Furthermore, for purpose of quantitative analysis, probabilities importance weight from failure probabilities are assigned to FWGM RPN to reassess the risk priority, which generalize the definition of probability weight and FRPN, resulting in a more accurate estimation than that of the traditional models. Finally, a basic fatigue analysis case drawn from turbine and compressor blades in aeroengine is used to demonstrate the effectiveness and robustness of the presented method. The result provides some important insights on fatigue reliability analysis and risk priority assessment of structural

  9. Failure mechanisms of laminates transversely loaded by bolt push-through

    NASA Technical Reports Server (NTRS)

    Waters, W. A., Jr.; Williams, J. G.

    1985-01-01

    Stiffened composite panels proposed for fuselage and wing design utilize a variety of stiffener-to-skin attachment concepts including mechanical fasteners. The attachment concept is an important factor influencing the panel's strength and can govern its performance following local damage. Mechanical fasteners can be an effective method for preventing stiffener-skin separation. One potential failure mode for bolted panels occurs when the bolts pull through the stiffener attachment flange or skin. The resulting loss of support by the skin to the stiffener and by the stiffener to the skin can result in local buckling and subsequent panel collapse. The characteristic failure modes associated with bolt push-through failure are described and the results of a parametric study of the effects that different material systems, boundary conditions, and laminates have on the forces and displacements required to cause damage and bolt pushthrough failure are presented.

  10. An efficient scan diagnosis methodology according to scan failure mode for yield enhancement

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Tae; Seo, Nam-Sik; Oh, Ghil-Geun; Kim, Dae-Gue; Lee, Kyu-Taek; Choi, Chi-Young; Kim, InSoo; Min, Hyoung Bok

    2008-12-01

    Yield has always been a driving consideration during fabrication of modern semiconductor industry. Statistically, the largest portion of wafer yield loss is defective scan failure. This paper presents efficient failure analysis methods for initial yield ramp up and ongoing product with scan diagnosis. Result of our analysis shows that more than 60% of the scan failure dies fall into the category of shift mode in the very deep submicron (VDSM) devices. However, localization of scan shift mode failure is very difficult in comparison to capture mode failure because it is caused by the malfunction of scan chain. Addressing the biggest challenge, we propose the most suitable analysis method according to scan failure mode (capture / shift) for yield enhancement. In the event of capture failure mode, this paper describes the method that integrates scan diagnosis flow and backside probing technology to obtain more accurate candidates. We also describe several unique techniques, such as bulk back-grinding solution, efficient backside probing and signal analysis method. Lastly, we introduce blocked chain analysis algorithm for efficient analysis of shift failure mode. In this paper, we contribute to enhancement of the yield as a result of the combination of two methods. We confirm the failure candidates with physical failure analysis (PFA) method. The direct feedback of the defective visualization is useful to mass-produce devices in a shorter time. The experimental data on mass products show that our method produces average reduction by 13.7% in defective SCAN & SRAM-BIST failure rates and by 18.2% in wafer yield rates.

  11. Failure mechanism of hollow tree trunks due to cross-sectional flattening

    PubMed Central

    Huang, Yan-San; Hsu, Fu-Lan; Lee, Chin-Mei

    2017-01-01

    Failure of hollow trees in urban areas is a worldwide concern, and it can be caused by different mechanisms, i.e. bending stresses or flattening-related failures. Here we derive a new analytical expression for predicting the bending moment for tangential cracking, and compare the breaking moment of various failure modes, including Brazier buckling, tangential cracking, shear failure and conventional bending failure, as a function of t/R ratio, where t and R are the trunk wall thickness and trunk radius, respectively, of a hollow tree. We use Taiwan red cypress as an example and show that its failure modes and the corresponding t/R ratios are: Brazier buckling (Mode I), tangential cracking followed by longitudinal splitting (Mode II) and conventional bending failure (Mode III) for 0 < t/R < 0.06, 0.06 < t/R < 0.27 and 0.27 < t/R < 1, respectively. The exact values of those ratios may vary within and among species, but the variation is much smaller than individual mechanical properties. Also, shear failure, another type of cracking due to maximum shear stress near the neutral axis of the tree trunk, is unlikely to occur since it requires much larger bending moments. Hence, we conclude that tangential cracking due to cross-sectional flattening, followed by longitudinal splitting, is dominant for hollow trunks. Our equations are applicable to analyse straight hollow tree trunks and plant stems, but are not applicable to those with side openings or those with only heart decay. Our findings provide insights for those managing trees in urban situations and those managing for conservation of hollow-dependent fauna in both urban and rural settings. PMID:28484616

  12. EVALUATION OF SAFETY IN A RADIATION ONCOLOGY SETTING USING FAILURE MODE AND EFFECTS ANALYSIS

    PubMed Central

    Ford, Eric C.; Gaudette, Ray; Myers, Lee; Vanderver, Bruce; Engineer, Lilly; Zellars, Richard; Song, Danny Y.; Wong, John; DeWeese, Theodore L.

    2013-01-01

    Purpose Failure mode and effects analysis (FMEA) is a widely used tool for prospectively evaluating safety and reliability. We report our experiences in applying FMEA in the setting of radiation oncology. Methods and Materials We performed an FMEA analysis for our external beam radiation therapy service, which consisted of the following tasks: (1) create a visual map of the process, (2) identify possible failure modes; assign risk probability numbers (RPN) to each failure mode based on tabulated scores for the severity, frequency of occurrence, and detectability, each on a scale of 1 to 10; and (3) identify improvements that are both feasible and effective. The RPN scores can span a range of 1 to 1000, with higher scores indicating the relative importance of a given failure mode. Results Our process map consisted of 269 different nodes. We identified 127 possible failure modes with RPN scores ranging from 2 to 160. Fifteen of the top-ranked failure modes were considered for process improvements, representing RPN scores of 75 and more. These specific improvement suggestions were incorporated into our practice with a review and implementation by each department team responsible for the process. Conclusions The FMEA technique provides a systematic method for finding vulnerabilities in a process before they result in an error. The FMEA framework can naturally incorporate further quantification and monitoring. A general-use system for incident and near miss reporting would be useful in this regard. PMID:19409731

  13. Development of failure mechanisms for fasteners in the United States

    Douglas R. Rammer; Philip Line

    2006-01-01

    In the 2001 National Design Specifications® for Wood Construction (NDS), Appendix E was added to explicitly address wood failure mechanisms that may occur in fasteners. One approach to estimate design capacities for net section, row tear out, and group tear failure mechanisms is presented in Appendix E of the 2001 NDS. Since the 2001 NDS, efforts are being untaken to...

  14. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    SciT

    Lee C. Cadwallader

    2010-06-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.

  15. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    SciT

    Lee C. Cadwallader

    2007-08-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.

  16. SU-F-T-246: Evaluation of Healthcare Failure Mode And Effect Analysis For Risk Assessment

    SciT

    Harry, T; University of California, San Diego, La Jolla, CA; Manger, R

    Purpose: To evaluate the differences between the Veteran Affairs Healthcare Failure Modes and Effect Analysis (HFMEA) and the AAPM Task Group 100 Failure and Effect Analysis (FMEA) risk assessment techniques in the setting of a stereotactic radiosurgery (SRS) procedure were compared respectively. Understanding the differences in the techniques methodologies and outcomes will provide further insight into the applicability and utility of risk assessments exercises in radiation therapy. Methods: HFMEA risk assessment analysis was performed on a stereotactic radiosurgery procedure. A previous study from our institution completed a FMEA of our SRS procedure and the process map generated from this workmore » was used for the HFMEA. The process of performing the HFMEA scoring was analyzed, and the results from both analyses were compared. Results: The key differences between the two risk assessments are the scoring criteria for failure modes and identifying critical failure modes for potential hazards. The general consensus among the team performing the analyses was that scoring for the HFMEA was simpler and more intuitive then the FMEA. The FMEA identified 25 critical failure modes while the HFMEA identified 39. Seven of the FMEA critical failure modes were not identified by the HFMEA and 21 of the HFMEA critical failure modes were not identified by the FMEA. HFMEA as described by the Veteran Affairs provides guidelines on which failure modes to address first. Conclusion: HFMEA is a more efficient model for identifying gross risks in a process than FMEA. Clinics with minimal staff, time and resources can benefit from this type of risk assessment to eliminate or mitigate high risk hazards with nominal effort. FMEA can provide more in depth details but at the cost of elevated effort.« less

  17. Mechanical properties of resin cements with different activation modes.

    PubMed

    Braga, R R; Cesar, P F; Gonzaga, C C

    2002-03-01

    Dual-cured cements have been studied in terms of the hardness or degree of conversion achieved with different curing modes. However, little emphasis is given to the influence of the curing method on other mechanical properties. This study investigated the flexural strength, flexural modulus and hardness of four proprietary resin cements. Materials tested were: Enforce and Variolink II (light-, self- and dual-cured), RelyX ARC (self- and dual-cured) and C & B (self-cured). Specimens were fractured using a three-point bending test. Pre-failure loads corresponding to specific displacements of the cross-head were used for flexural modulus calculation. Knoop hardness (KHN) was measured on fragments obtained after the flexural test. Tests were performed after 24 h storage at 37 degrees C. RelyX ARC dual-cured showed higher flexural strength than the other groups. RelyX ARC and Variolink II depended upon photo-activation to achieve higher hardness values. Enforce showed similar hardness for dual- and self-curing modes. No correlation was found between flexural strength and hardness, indicating that other factors besides the degree of cure (e.g. filler content and monomer type) affect the flexural strength of composites. No statistical difference was detected in the flexural modulus among the different groups.

  18. Degradation analysis of anode-supported intermediate temperature-solid oxide fuel cells under various failure modes

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Hee; Park, Ka-Young; Kim, Ji-Tae; Seo, Yongho; Kim, Ki Buem; Song, Sun-Ju; Park, Byoungnam; Park, Jun-Young

    2015-02-01

    This study focuses on mechanisms and symptoms of several simulated failure modes, which may have significant influences on the long-term durability and operational stability of intermediate temperature-solid oxide fuel cells (IT-SOFCs), including fuel/oxidation starvation by breakdown of fuel/air supply components and wet and dry cycling atmospheres. Anode-supported IT-SOFCs consisting of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF)-Nd0.1Ce0.9O2-δ (NDC) composite cathode with an NDC electrolyte on a Ni-NDC anode substrate are fabricated via dry-pressings followed by the co-firing method. Comprehensive and systematic research based on the failure mode and effect analysis (FMEA) of anode-supported IT-SOFCs is conducted using various electrochemical and physiochemical analysis techniques to extend our understanding of the major mechanisms of performance deterioration under SOFC operating conditions. The fuel-starvation condition in the fuel-pump failure mode causes irreversible mechanical degradation of the electrolyte and cathode interface by the dimensional expansion of the anode support due to the oxidation of Ni metal to NiO. In contrast, the BSCF cathode shows poor stability under wet and dry cycling modes of cathode air due to the strong electroactivity of SrO with H2O. On the other hand, the air-depletion phenomena under air-pump failure mode results in the recovery of cell performance during the long-term operation without the visible microstructural transformation through the reduction of anode overvoltage.

  19. Subharmonic mechanism of the mode C instability

    NASA Astrophysics Data System (ADS)

    Sheard, G. J.; Thompson, M. C.; Hourigan, K.

    2005-11-01

    The perturbation field of the recently discovered subharmonic mode C instability in the wake behind a ring is compared via a side-by-side comparison to the perturbation fields of the modes A and B instabilities familiar from past studies of the vortex street behind a circular cylinder. Snapshots of the wake are presented over a full shedding cycle, along with evidence from a linear stability analysis, to verify and better understand how the subharmonic instability is sustained.

  20. Global Failure Modes in High Temperature Composite Structures

    NASA Technical Reports Server (NTRS)

    Knauss, W. G.

    1998-01-01

    Composite materials have been considered for many years as the major advance in the construction of energy efficient aerospace structures. Notable advances have been made in understanding the special design considerations that set composites apart from the usual "isotropic" engineering materials such as the metals. As a result, a number of significant engineering designs have been accomplished. However, one shortcoming of the currently favored composites is their relatively unforgiving behavior with respect to failure (brittleness) under seemingly mild impact conditions and large efforts are underway to rectify that situation, much along the lines of introducing thermoplastic matrix materials. Because of their relatively more pronounced (thermo) viscoelastic behavior these materials respond with "toughness" in fracture situations. From the point of view of applications requiring material strength, this property is highly desirable. This feature impacts several important and distinct engineering problems which have been' considered under this grant and cover the 1) effect of impact damage on structural (buckling) stability of composite panels, the 2) effect of time dependence on the progression of buckling instabilities, and the 3) evolution of damage and fracture at generic thickness discontinuities in structures. The latter topic has serious implications for structural stability problems (buckling failure in reinforced shell structures) as well as failure progression in stringer-reinforced shell structures. This grant has dealt with these issues. Polymer "toughness" is usually associated with uncrosslinked or thermo-plastic polymers. But, by comparison with their thermoset counterparts they tend to exhibit more pronounced time dependent material behavior; also, that time dependence can occur at lower temperatures which places restriction in the high temperature use of these "newer and tougher" materials that are not quite so serious with the thermoset matrix

  1. Excitation mechanisms for Jovian seismic modes

    NASA Astrophysics Data System (ADS)

    Markham, Steve; Stevenson, Dave

    2018-05-01

    Recent (2011) results from the Nice Observatory indicate the existence of global seismic modes on Jupiter in the frequency range between 0.7 and 1.5 mHz with amplitudes of tens of cm/s. Currently, the driving force behind these modes is a mystery; the measured amplitudes are many orders of magnitude larger than anticipated based on theory analogous to helioseismology (that is, turbulent convection as a source of stochastic excitation). One of the most promising hypotheses is that these modes are driven by Jovian storms. This work constructs a framework to analytically model the expected equilibrium normal mode amplitudes arising from convective columns in storms. We also place rough constraints on Jupiter's seismic modal quality factor. Using this model, neither meteor strikes, turbulent convection, nor water storms can feasibly excite the order of magnitude of observed amplitudes. Next we speculate about the potential role of rock storms deeper in Jupiter's atmosphere, because the rock storms' expected energy scales make them promising candidates to be the chief source of excitation for Jovian seismic modes, based on simple scaling arguments. We also suggest some general trends in the expected partition of energy between different frequency modes. Finally we supply some commentary on potential applications to gravity, Juno, Cassini and Saturn, and future missions to Uranus and Neptune.

  2. Mechanical Circulatory Support Devices for Acute Right Ventricular Failure.

    PubMed

    Kapur, Navin K; Esposito, Michele L; Bader, Yousef; Morine, Kevin J; Kiernan, Michael S; Pham, Duc Thinh; Burkhoff, Daniel

    2017-07-18

    Right ventricular (RV) failure remains a major cause of global morbidity and mortality for patients with advanced heart failure, pulmonary hypertension, or acute myocardial infarction and after major cardiac surgery. Over the past 2 decades, percutaneously delivered acute mechanical circulatory support pumps specifically designed to support RV failure have been introduced into clinical practice. RV acute mechanical circulatory support now represents an important step in the management of RV failure and provides an opportunity to rapidly stabilize patients with cardiogenic shock involving the RV. As experience with RV devices grows, their role as mechanical therapies for RV failure will depend less on the technical ability to place the device and more on improved algorithms for identifying RV failure, patient monitoring, and weaning protocols for both isolated RV failure and biventricular failure. In this review, we discuss the pathophysiology of acute RV failure and both the mechanism of action and clinical data exploring the utility of existing RV acute mechanical circulatory support devices. © 2017 American Heart Association, Inc.

  3. Failure mode and effects analysis drastically reduced potential risks in clinical trial conduct.

    PubMed

    Lee, Howard; Lee, Heechan; Baik, Jungmi; Kim, Hyunjung; Kim, Rachel

    2017-01-01

    Failure mode and effects analysis (FMEA) is a risk management tool to proactively identify and assess the causes and effects of potential failures in a system, thereby preventing them from happening. The objective of this study was to evaluate effectiveness of FMEA applied to an academic clinical trial center in a tertiary care setting. A multidisciplinary FMEA focus group at the Seoul National University Hospital Clinical Trials Center selected 6 core clinical trial processes, for which potential failure modes were identified and their risk priority number (RPN) was assessed. Remedial action plans for high-risk failure modes (RPN >160) were devised and a follow-up RPN scoring was conducted a year later. A total of 114 failure modes were identified with an RPN score ranging 3-378, which was mainly driven by the severity score. Fourteen failure modes were of high risk, 11 of which were addressed by remedial actions. Rescoring showed a dramatic improvement attributed to reduction in the occurrence and detection scores by >3 and >2 points, respectively. FMEA is a powerful tool to improve quality in clinical trials. The Seoul National University Hospital Clinical Trials Center is expanding its FMEA capability to other core clinical trial processes.

  4. Application of failure mode and effect analysis in an assisted reproduction technology laboratory.

    PubMed

    Intra, Giulia; Alteri, Alessandra; Corti, Laura; Rabellotti, Elisa; Papaleo, Enrico; Restelli, Liliana; Biondo, Stefania; Garancini, Maria Paola; Candiani, Massimo; Viganò, Paola

    2016-08-01

    Assisted reproduction technology laboratories have a very high degree of complexity. Mismatches of gametes or embryos can occur, with catastrophic consequences for patients. To minimize the risk of error, a multi-institutional working group applied failure mode and effects analysis (FMEA) to each critical activity/step as a method of risk assessment. This analysis led to the identification of the potential failure modes, together with their causes and effects, using the risk priority number (RPN) scoring system. In total, 11 individual steps and 68 different potential failure modes were identified. The highest ranked failure modes, with an RPN score of 25, encompassed 17 failures and pertained to "patient mismatch" and "biological sample mismatch". The maximum reduction in risk, with RPN reduced from 25 to 5, was mostly related to the introduction of witnessing. The critical failure modes in sample processing were improved by 50% in the RPN by focusing on staff training. Three indicators of FMEA success, based on technical skill, competence and traceability, have been evaluated after FMEA implementation. Witnessing by a second human operator should be introduced in the laboratory to avoid sample mix-ups. These findings confirm that FMEA can effectively reduce errors in assisted reproduction technology laboratories. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  5. Failure mode and effects analysis drastically reduced potential risks in clinical trial conduct

    PubMed Central

    Baik, Jungmi; Kim, Hyunjung; Kim, Rachel

    2017-01-01

    Background Failure mode and effects analysis (FMEA) is a risk management tool to proactively identify and assess the causes and effects of potential failures in a system, thereby preventing them from happening. The objective of this study was to evaluate effectiveness of FMEA applied to an academic clinical trial center in a tertiary care setting. Methods A multidisciplinary FMEA focus group at the Seoul National University Hospital Clinical Trials Center selected 6 core clinical trial processes, for which potential failure modes were identified and their risk priority number (RPN) was assessed. Remedial action plans for high-risk failure modes (RPN >160) were devised and a follow-up RPN scoring was conducted a year later. Results A total of 114 failure modes were identified with an RPN score ranging 3–378, which was mainly driven by the severity score. Fourteen failure modes were of high risk, 11 of which were addressed by remedial actions. Rescoring showed a dramatic improvement attributed to reduction in the occurrence and detection scores by >3 and >2 points, respectively. Conclusions FMEA is a powerful tool to improve quality in clinical trials. The Seoul National University Hospital Clinical Trials Center is expanding its FMEA capability to other core clinical trial processes. PMID:29089745

  6. Failure mechanism characterization of platinum alloy

    NASA Technical Reports Server (NTRS)

    Rosen, J. M.; Mcfarlen, W. T.

    1986-01-01

    This article describes procedures and results of testing performed on a platinum/10-percent rhodium, thin-wall tubular product. The purpose of the testing was to develop exemplar SEM fractographs to be used to characterize failures under various environmental conditions. Conditions evaluated for the platinum alloys included high temperature, hydrogen environment, braze metal contamination, and cyclic loading.

  7. Failure criterion for materials with spatially correlated mechanical properties

    NASA Astrophysics Data System (ADS)

    Faillettaz, J.; Or, D.

    2015-03-01

    The role of spatially correlated mechanical elements in the failure behavior of heterogeneous materials represented by fiber bundle models (FBMs) was evaluated systematically for different load redistribution rules. Increasing the range of spatial correlation for FBMs with local load sharing is marked by a transition from ductilelike failure characteristics into brittlelike failure. The study identified a global failure criterion based on macroscopic properties (external load and cumulative damage) that is independent of spatial correlation or load redistribution rules. This general metric could be applied to assess the mechanical stability of complex and heterogeneous systems and thus provide an important component for early warning of a class of geophysical ruptures.

  8. Application of failure mode and effects analysis to intracranial stereotactic radiation surgery by linear accelerator.

    PubMed

    Masini, Laura; Donis, Laura; Loi, Gianfranco; Mones, Eleonora; Molina, Elisa; Bolchini, Cesare; Krengli, Marco

    2014-01-01

    The aim of this study was to analyze the application of the failure modes and effects analysis (FMEA) to intracranial stereotactic radiation surgery (SRS) by linear accelerator in order to identify the potential failure modes in the process tree and adopt appropriate safety measures to prevent adverse events (AEs) and near-misses, thus improving the process quality. A working group was set up to perform FMEA for intracranial SRS in the framework of a quality assurance program. FMEA was performed in 4 consecutive tasks: (1) creation of a visual map of the process; (2) identification of possible failure modes; (3) assignment of a risk probability number (RPN) to each failure mode based on tabulated scores of severity, frequency of occurrence and detectability; and (4) identification of preventive measures to minimize the risk of occurrence. The whole SRS procedure was subdivided into 73 single steps; 116 total possible failure modes were identified and a score of severity, occurrence, and detectability was assigned to each. Based on these scores, RPN was calculated for each failure mode thus obtaining values from 1 to 180. In our analysis, 112/116 (96.6%) RPN values were <60, 2 (1.7%) between 60 and 125 (63, 70), and 2 (1.7%) >125 (135, 180). The 2 highest RPN scores were assigned to the risk of using the wrong collimator's size and incorrect coordinates on the laser target localizer frame. Failure modes and effects analysis is a simple and practical proactive tool for systematic analysis of risks in radiation therapy. In our experience of SRS, FMEA led to the adoption of major changes in various steps of the SRS procedure.

  9. Failure mechanisms in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Christensen, John Francis

    Lithium-ion batteries have become one of the leading candidates for energy storage in electric and hybrid-electric vehicles due to their high energy and power densities. However, the life of this class of rechargeable cells is limited, and is usually considerably shorter than the requirement for an economically feasible alternative to the internal combustion engine. The goal of this research is to explore specific mechanisms for cell failure via mathematical modeling of phenomena that occur in a broad assortment of lithium-ion cells. The theoretical framework of the models presented here is general enough to be applicable to most lithium-ion cells and even electrochemical cells that fall outside the realm of lithium-ion technology, but the properties and parameters that are used are specific enough that quantitative predictions can be made. Specifically, models for passive-film growth at the electrode/electrolyte interface and for particle fracture are presented. In addition, we discuss a framework for describing and understanding various types of capacity fade. Finally, we optimize the design of a lithium-titanate based cell using an existing full-cell model and compare its performance to that of a graphite based cell. The passive-film model indicates that the extent of film growth and impedance rise in a cell should depend strongly upon the state of charge (SOC) at which a battery is stored. We further show that current efficiency increases with the rate at which a cell is charged, although the cycling range of the cell decreases as the current is raised due to the impedance of the film. The particle-fracture model elucidates the conditions under which both graphitic and lithium-manganese-oxide particles surpass their yield strength, at which point cracking is initiated and particle fragmentation may occur. Higher rates of charge and larger particle size generally lead to a higher likelihood of fracture, although this dependence is absent in materials that

  10. Mechanical Failure Prognosis Through Oil Debris Monitoring

    DTIC Science & Technology

    1975-01-01

    laboratories. The writer first heard of it from Hakkenburg of the Caterpillar Tractor Company at the ASLE/ ASME 16 Chiu, Y. P., et al, "Refinement...34Examination of Abrasion Resistance Criteria for Some Ductile Metals," ASME Jour, of Lubr. Tech. 96F, 210-214 and 246 (1974). 21 Leonard, L...failures during five months in 1970. 28 Littmann, W. E., et al, "The role of Lubrication in Propagation of Con- tact Fatigue Cracks," Trans. ASME

  11. Failure Mechanism of Cemented Hydrate-bearing Sand at Microscales

    NASA Astrophysics Data System (ADS)

    Yoneda, J.; Jin, Y.; Katagiri, J.; Tenma, N.

    2016-12-01

    On the basis of hypothetical particle-level mechanisms, several constitutive models of hydrate-bearing sediments have been proposed previously for gas production. However, to the best of our knowledge, the microstructural large-strain behaviors of hydrate-bearing sediments has not been reported to date because of the experimental challenges posed by the high-pressure and low-temperature testing conditions. Herein, as a part of a Japanese National hydrate research program (MH21, funded by METI), a novel microtriaxial testing apparatus was developed, and the mechanical large strain behavior of hydrate-bearing sediments with various hydrate saturation values (Sh = 0%, 39%, and 62%) were analyzed using microfocus X-ray computed tomography. Patchy hydrates were observed in the sediments at Sh = 39%. The obtained stress-strain relationships indicated strengthening with increasing hydrate saturation and a brittle failure mode of the hydrate-bearing sand. Localized deformations were quantified via image processing at the submillimeter and micrometer scale. Shear planes and particle deformation and/or rotation were detected, and the shear band thickness decreased with increasing hydrate saturation.

  12. A Novel Damping Mechanism for Diocotron Modes

    NASA Astrophysics Data System (ADS)

    Chim, Chi Yung; O'Neil, Thomas M.

    2014-10-01

    Recent experiments with pure electron plasmas in a Malmberg-Penning trap have observed the algebraic damping of m = 1 and m = 2 diocotron modes. Transport due to small field asymmetries produces a low density halo of electrons moving radially outward from the plasma core, and the mode damping begins when the halo reaches the resonant radius, where f = mfE × B (r) . The damping rate is proportional to the flux of halo particles through the resonant layer. The damping is related to, but distinct from spatial Landau damping, in which a linear wave-particle resonance produces exponential damping. This poster explains with analytic theory and simulations the new algebraic damping due to both mobility and diffusive fluxes. The damping is due to transfer of canonical angular momentum from the mode to halo particles, as they are swept around the ``cat's eye'' orbits of resonant wave-particle interaction. Another picture is that the electrons in the resonant layer form a dipole (m = 1) or quadrupole (m = 2) density distribution, and the electric field for this distribution produces E × B drifts that symmetrizes the core and damps the mode. Supported by NSF/DOE Partnership Grants PHY-0903877 and DE-SC0002451.

  13. Comparison of mode of failure between primary and revision total knee arthroplasties.

    PubMed

    Liang, H; Bae, J K; Park, C H; Kim, K I; Bae, D K; Song, S J

    2018-04-01

    Cognizance of common reasons for failure in primary and revision TKA, together with their time course, facilitates prevention. However, there have been few reports specifically comparing modes of failure for primary vs. revision TKA using a single prosthesis. The goal of the study was to compare the survival rates, modes of failure, and time periods associated with each mode of failure, of primary vs. revision TKA. The survival rates, modes of failure, time period for each mode of failure, and risk factors would differ between primary and revision TKA. Data from a consecutive cohort comprising 1606 knees (1174 patients) of primary TKA patients, and 258 knees (224 patients) of revision TKA patients, in all of whom surgery involved a P.F.C ® prosthesis (Depuy, Johnson & Johnson, Warsaw, IN), was retrospectively reviewed. The mean follow-up periods of primary and revision TKAs were 9.2 and 9.8 years, respectively. The average 10- and 15-year survival rates for primary TKA were 96.7% (CI 95%,±0.7%) and 85.4% (CI 95%,±2.0%), and for revision TKA 91.4% (CI 95%,±2.5%) and 80.5% (CI 95%,±4.5%). Common modes of failure included polyethylene wear, loosening, and infection. The most common mode of failure was polyethylene wear in primary TKA, and infection in revision TKA. The mean periods (i.e., latencies) of polyethylene wear and loosening did not differ between primary and revision TKAs, but the mean period of infection was significantly longer for revision TKA (1.2 vs. 4.8 years, P=0.003). Survival rates decreased with time, particularly more than 10 years post-surgery, for both primary and revision TKAs. Continuous efforts are required to prevent and detect the various modes of failure during long-term follow-up. Greater attention is necessary to detect late infection-induced failure following revision TKA. Case-control study, Level III. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Failure Mode Classification for Life Prediction Modeling of Solid-State Lighting

    SciT

    Sakalaukus, Peter Joseph

    2015-08-01

    Since the passing of the Energy Independence and Security Act of 2007, the U.S. government has mandated greater energy independence which has acted as a catalyst for accelerating and facilitating research efforts toward the development and deployment of market-driven solutions for energy-saving homes, buildings and manufacturing, as well as sustainable transportation and renewable electricity generation. As part of this effort, an emphasis toward advancing solid-state lighting technology through research, development, demonstration, and commercial applications is assisting in the phase out of the common incandescent light bulb, as well as developing a more economical lighting source that is less toxic thanmore » compact fluorescent lighting. This has led lighting manufacturers to pursue SSL technologies for a wide range of consumer lighting applications. An SSL luminaire’s lifetime can be characterized in terms of lumen maintenance life. Lumen maintenance or lumen depreciation is the percentage decrease in the relative luminous flux from that of the original, pristine luminous flux value. Lumen maintenance life is the estimated operating time, in hours, when the desired failure threshold is projected to be reached at normal operating conditions. One accepted failure threshold of SSL luminaires is lumen maintenance of 70% -- a 30% reduction in the light output of the luminaire. Currently, the only approved lighting standard that puts forth a recommendation for long-term luminous flux maintenance projections towards a specified failure threshold of an SSL luminaire is the IES TM-28-14 (TM28) standard. iii TM28 was derived as a means to compare luminaires that have been tested at different facilities, research labs or companies. TM28 recommends the use of the Arrhenius equation to determine SSL device specific reaction rates from thermally driven failure mechanisms used to characterize a single failure mode – the relative change in the luminous flux output or

  15. Evaluating the operational risks of biomedical waste using failure mode and effects analysis.

    PubMed

    Chen, Ying-Chu; Tsai, Pei-Yi

    2017-06-01

    The potential problems and risks of biomedical waste generation have become increasingly apparent in recent years. This study applied a failure mode and effects analysis to evaluate the operational problems and risks of biomedical waste. The microbiological contamination of biomedical waste seldom receives the attention of researchers. In this study, the biomedical waste lifecycle was divided into seven processes: Production, classification, packaging, sterilisation, weighing, storage, and transportation. Twenty main failure modes were identified in these phases and risks were assessed based on their risk priority numbers. The failure modes in the production phase accounted for the highest proportion of the risk priority number score (27.7%). In the packaging phase, the failure mode 'sharp articles not placed in solid containers' had the highest risk priority number score, mainly owing to its high severity rating. The sterilisation process is the main difference in the treatment of infectious and non-infectious biomedical waste. The failure modes in the sterilisation phase were mainly owing to human factors (mostly related to operators). This study increases the understanding of the potential problems and risks associated with biomedical waste, thereby increasing awareness of how to improve the management of biomedical waste to better protect workers, the public, and the environment.

  16. An improved method for risk evaluation in failure modes and effects analysis of CNC lathe

    NASA Astrophysics Data System (ADS)

    Rachieru, N.; Belu, N.; Anghel, D. C.

    2015-11-01

    Failure mode and effects analysis (FMEA) is one of the most popular reliability analysis tools for identifying, assessing and eliminating potential failure modes in a wide range of industries. In general, failure modes in FMEA are evaluated and ranked through the risk priority number (RPN), which is obtained by the multiplication of crisp values of the risk factors, such as the occurrence (O), severity (S), and detection (D) of each failure mode. However, the crisp RPN method has been criticized to have several deficiencies. In this paper, linguistic variables, expressed in Gaussian, trapezoidal or triangular fuzzy numbers, are used to assess the ratings and weights for the risk factors S, O and D. A new risk assessment system based on the fuzzy set theory and fuzzy rule base theory is to be applied to assess and rank risks associated to failure modes that could appear in the functioning of Turn 55 Lathe CNC. Two case studies have been shown to demonstrate the methodology thus developed. It is illustrated a parallel between the results obtained by the traditional method and fuzzy logic for determining the RPNs. The results show that the proposed approach can reduce duplicated RPN numbers and get a more accurate, reasonable risk assessment. As a result, the stability of product and process can be assured.

  17. Failure mode and effect analysis in blood transfusion: a proactive tool to reduce risks.

    PubMed

    Lu, Yao; Teng, Fang; Zhou, Jie; Wen, Aiqing; Bi, Yutian

    2013-12-01

    The aim of blood transfusion risk management is to improve the quality of blood products and to assure patient safety. We utilize failure mode and effect analysis (FMEA), a tool employed for evaluating risks and identifying preventive measures to reduce the risks in blood transfusion. The failure modes and effects occurring throughout the whole process of blood transfusion were studied. Each failure mode was evaluated using three scores: severity of effect (S), likelihood of occurrence (O), and probability of detection (D). Risk priority numbers (RPNs) were calculated by multiplying the S, O, and D scores. The plan-do-check-act cycle was also used for continuous improvement. Analysis has showed that failure modes with the highest RPNs, and therefore the greatest risk, were insufficient preoperative assessment of the blood product requirement (RPN, 245), preparation time before infusion of more than 30 minutes (RPN, 240), blood transfusion reaction occurring during the transfusion process (RPN, 224), blood plasma abuse (RPN, 180), and insufficient and/or incorrect clinical information on request form (RPN, 126). After implementation of preventative measures and reassessment, a reduction in RPN was detected with each risk. The failure mode with the second highest RPN, namely, preparation time before infusion of more than 30 minutes, was shown in detail to prove the efficiency of this tool. FMEA evaluation model is a useful tool in proactively analyzing and reducing the risks associated with the blood transfusion procedure. © 2013 American Association of Blood Banks.

  18. [Failure modes and effects analysis in the prescription, validation and dispensing process].

    PubMed

    Delgado Silveira, E; Alvarez Díaz, A; Pérez Menéndez-Conde, C; Serna Pérez, J; Rodríguez Sagrado, M A; Bermejo Vicedo, T

    2012-01-01

    To apply a failure modes and effects analysis to the prescription, validation and dispensing process for hospitalised patients. A work group analysed all of the stages included in the process from prescription to dispensing, identifying the most critical errors and establishing potential failure modes which could produce a mistake. The possible causes, their potential effects, and the existing control systems were analysed to try and stop them from developing. The Hazard Score was calculated, choosing those that were ≥ 8, and a Severity Index = 4 was selected independently of the hazard Score value. Corrective measures and an implementation plan were proposed. A flow diagram that describes the whole process was obtained. A risk analysis was conducted of the chosen critical points, indicating: failure mode, cause, effect, severity, probability, Hazard Score, suggested preventative measure and strategy to achieve so. Failure modes chosen: Prescription on the nurse's form; progress or treatment order (paper); Prescription to incorrect patient; Transcription error by nursing staff and pharmacist; Error preparing the trolley. By applying a failure modes and effects analysis to the prescription, validation and dispensing process, we have been able to identify critical aspects, the stages in which errors may occur and the causes. It has allowed us to analyse the effects on the safety of the process, and establish measures to prevent or reduce them. Copyright © 2010 SEFH. Published by Elsevier Espana. All rights reserved.

  19. Failure mode prediction for composite structural insulated panels with MgO board facings

    NASA Astrophysics Data System (ADS)

    Smakosz, Łukasz; Kreja, Ireneusz

    2018-01-01

    Sandwich panels are readily used in civil engineering due to their high strength to weight ratio and the ease and speed of assembly. The idea of a sandwich section is to combine thin and durable facings with a light-weight core and the choice of materials used allows obtaining the desired behaviour. Panels in consideration consist of MgO (magnesium oxide) board facings and expanded polystyrene core and are characterized by immunity to biological corrosion, a high thermal insulation and a relatively low impact on environment. Customizing the range of panels to meet market needs requires frequent size changes, leading to different failure modes, which are identified in a series of costly full-scale laboratory tests. A nonlinear numerical model was created with a use of a commercial ABAQUS code and a user-defined procedure, which is able to reproduce observed failure mechanisms; its parameters were established on the basis of small-scale tests and numerical experiments. The model was validated by a comparison with the results of the full-scale bending and compression tests. The results obtained were in satisfactory agreement with the test data.

  20. Mechanistic failure mode investigation and resolution of parvovirus retentive filters.

    PubMed

    LaCasse, Daniel; Lute, Scott; Fiadeiro, Marcus; Basha, Jonida; Stork, Matthew; Brorson, Kurt; Godavarti, Ranga; Gallo, Chris

    2016-07-08

    Virus retentive filters are a key product safety measure for biopharmaceuticals. A simplistic perception is that they function solely based on a size-based particle removal mechanism of mechanical sieving and retention of particles based on their hydrodynamic size. Recent observations have revealed a more nuanced picture, indicating that changes in viral particle retention can result from process pressure and/or flow interruptions. In this study, a mechanistic investigation was performed to help identify a potential mechanism leading to the reported reduced particle retention in small virus filters. Permeate flow rate or permeate driving force were varied and analyzed for their impact on particle retention in three commercially available small virus retentive filters. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:959-970, 2016. © 2016 American Institute of Chemical Engineers.

  1. Failure Mechanisms of Hollow Fiber Supported Ionic Liquid Membranes

    PubMed Central

    Zeh, Matthew; Wickramanayake, Shan; Hopkinson, David

    2016-01-01

    Hollow fiber supported ionic liquid membranes (SILMs) were tested using the bubble point method to investigate potential failure modes, including the maximum transmembrane pressure before loss of the ionic liquid from the support. Porous hollow fiber supports were fabricated with different pore morphologies using Matrimid® and Torlon® as the polymeric material and 1-hexyl-3-methylimidalzolium bis(trifluoromethylsulfonyl)imide ([C6mim][Tf2N]) as the ionic liquid (IL) component. Hollow fiber SILMs were tested for their maximum pressure before failure, with pressure applied either from the bore side or shell side. It was found that the membranes exhibited one or more of three different modes of failure when pressurized: liquid loss (occurring at the bubble point), rupture, and collapse. PMID:27023620

  2. Use of Failure Mode and Effects Analysis to Improve Emergency Department Handoff Processes.

    PubMed

    Sorrentino, Patricia

    2016-01-01

    The purpose of this article is to describe a quality improvement process using failure mode and effects analysis (FMEA) to evaluate systems handoff communication processes, improve emergency department (ED) throughput and reduce crowding through development of a standardized handoff, and, ultimately, improve patient safety. Risk of patient harm through ineffective communication during handoff transitions is a major reason for breakdown of systems. Complexities of ED processes put patient safety at risk. An increased incidence of submitted patient safety event reports for handoff communication failures between the ED and inpatient units solidified a decision to implement the use of FMEA to identify handoff failures to mitigate patient harm through redesign. The clinical nurse specialist implemented an FMEA. Handoff failure themes were created from deidentified retrospective reviews. Weekly meetings were held over a 3-month period to identify failure modes and determine cause and effect on the process. A functional block diagram process map tool was used to illustrate handoff processes. An FMEA grid was used to list failure modes and assign a risk priority number to quantify results. Multiple areas with actionable failures were identified. A majority of causes for high-priority failure modes were specific to communications. Findings demonstrate the complexity of transition and handoff processes. The FMEA served to identify and evaluate risk of handoff failures and provide a framework for process improvement. A focus on mentoring nurses to quality handoff processes so that it becomes habitual practice is crucial to safe patient transitions. Standardizing content and hardwiring within the system are best practice. The clinical nurse specialist is prepared to provide strong leadership to drive and implement system-wide quality projects.

  3. Failure mode and effect analysis-based quality assurance for dynamic MLC tracking systems

    PubMed Central

    Sawant, Amit; Dieterich, Sonja; Svatos, Michelle; Keall, Paul

    2010-01-01

    Purpose: To develop and implement a failure mode and effect analysis (FMEA)-based commissioning and quality assurance framework for dynamic multileaf collimator (DMLC) tumor tracking systems. Methods: A systematic failure mode and effect analysis was performed for a prototype real-time tumor tracking system that uses implanted electromagnetic transponders for tumor position monitoring and a DMLC for real-time beam adaptation. A detailed process tree of DMLC tracking delivery was created and potential tracking-specific failure modes were identified. For each failure mode, a risk probability number (RPN) was calculated from the product of the probability of occurrence, the severity of effect, and the detectibility of the failure. Based on the insights obtained from the FMEA, commissioning and QA procedures were developed to check (i) the accuracy of coordinate system transformation, (ii) system latency, (iii) spatial and dosimetric delivery accuracy, (iv) delivery efficiency, and (v) accuracy and consistency of system response to error conditions. The frequency of testing for each failure mode was determined from the RPN value. Results: Failures modes with RPN≥125 were recommended to be tested monthly. Failure modes with RPN<125 were assigned to be tested during comprehensive evaluations, e.g., during commissioning, annual quality assurance, and after major software∕hardware upgrades. System latency was determined to be ∼193 ms. The system showed consistent and accurate response to erroneous conditions. Tracking accuracy was within 3%–3 mm gamma (100% pass rate) for sinusoidal as well as a wide variety of patient-derived respiratory motions. The total time taken for monthly QA was ∼35 min, while that taken for comprehensive testing was ∼3.5 h. Conclusions: FMEA proved to be a powerful and flexible tool to develop and implement a quality management (QM) framework for DMLC tracking. The authors conclude that the use of FMEA-based QM ensures efficient

  4. 76 FR 5494 - Pipeline Safety: Mechanical Fitting Failure Reporting Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-01

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part... Safety: Mechanical Fitting Failure Reporting Requirements AGENCY: Pipeline and Hazardous Materials Safety... tightening. A widely accepted industry guidance document, Gas Pipeline Technical Committee (GPTC) Guide, does...

  5. 77 FR 34457 - Pipeline Safety: Mechanical Fitting Failure Reports

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... notice provides clarification to owners and operators of gas distribution pipeline facilities when... of a gas distribution pipeline facility to file a written report for any mechanical fitting failure...

  6. Relationship Between Unusual High-Temperature Fatigue Crack Growth Threshold Behavior in Superalloys and Sudden Failure Mode Transitions

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Smith, T. M.; Gabb, T. P.; Ring, A. J.

    2017-01-01

    An investigation of high temperature cyclic fatigue crack growth (FCG) threshold behavior of two advanced nickel disk alloys was conducted. The focus of the study was the unusual crossover effect in the near-threshold region of these type of alloys where conditions which produce higher crack growth rates in the Paris regime, produce higher resistance to crack growth in the near threshold regime. It was shown that this crossover effect is associated with a sudden change in the fatigue failure mode from a predominant transgranular mode in the Paris regime to fully intergranular mode in the threshold fatigue crack growth region. This type of a sudden change in the fracture mechanisms has not been previously reported and is surprising considering that intergranular failure is typically associated with faster crack growth rates and not the slow FCG rates of the near-threshold regime. By characterizing this behavior as a function of test temperature, environment and cyclic frequency, it was determined that both the crossover effect and the onset of intergranular failure are caused by environmentally driven mechanisms which have not as yet been fully identified. A plausible explanation for the observed behavior is proposed.

  7. Predictions and Experimental Microstructural Characterization of High Strain Rate Failure Modes in Layered Aluminum Composites

    NASA Astrophysics Data System (ADS)

    Khanikar, Prasenjit

    Different aluminum alloys can be combined, as composites, for tailored dynamic applications. Most investigations pertaining to metallic alloy layered composites, however, have been based on quasi-static approaches. The dynamic failure of layered metallic composites, therefore, needs to be characterized in terms of strength, toughness, and fracture response. A dislocation-density based crystalline plasticity formulation, finite-element techniques, rational crystallographic orientation relations and a new fracture methodology were used to predict the failure modes associated with the high strain rate behavior of aluminum layered composites. Two alloy layers, a high strength alloy, aluminum 2195, and an aluminum alloy 2139, with high toughness, were modeled with representative microstructures that included precipitates, dispersed particles, and different grain boundary (GB) distributions. The new fracture methodology, based on an overlap method and phantom nodes, is used with a fracture criteria specialized for fracture on different cleavage planes. One of the objectives of this investigation, therefore, was to determine the optimal arrangements of the 2139 and 2195 aluminum alloys for a metallic layered composite that would combine strength, toughness and fracture resistance for high strain-rate applications. Different layer arrangements were investigated for high strain-rate applications, and the optimal arrangement was with the high toughness 2139 layer on the bottom, which provided extensive shear strain localization, and the high strength 2195 layer on the top for high strength resistance. The layer thickness of the bottom high toughness layer also affected the bending behavior of the roll-boned interface and the potential delamination of the layers. Shear strain localization, dynamic cracking and delamination were the mutually competing failure mechanisms for the layered metallic composite, and control of these failure modes can be optimized for high strain

  8. Mode-coupling mechanisms in nanocontact spin-torque oscillators

    DOE PAGES

    Iacocca, Ezio; Dürrenfeld, Philipp; Heinonen, Olle; ...

    2015-03-11

    Spin torque oscillators (STOs) are devices that allow for the excitation of a variety of magneto-dynamical modes at the nanoscale. Depending on both external conditions and intrinsic magnetic properties, STOs can exhibit regimes of mode-hopping and even mode coexistence. Whereas mode hopping has been extensively studied in STOs patterned as nanopillars, coexistence has been only recently observed for localized modes in nanocontact STOs (NC-STOs) where the current is confined to flow through a NC fabricated on an extended pseudo spin valve. We investigate the physical origin of the mode coupling mechanisms favoring coexistence, by means of electrical characterization and amore » multi-mode STO theory. Two coupling mechanisms are identified: (i) magnon mediated scattering and (ii) inter-mode interactions. These mechanisms can be physically disentangled by fabricating devices where the NCs have an elliptical cross-section. Furthermore, the generation power and linewidth from such devices are found to be in good qualitative agreement with the theoretical predictions, as well as provide evidence of the dominant mode coupling mechanisms.« less

  9. Global Failure Modes in Composite Structures for High Altitudes

    NASA Technical Reports Server (NTRS)

    Knauss, W. G.

    2004-01-01

    This report summarizes the accomplishments under the referenced grant. The work described was started under the guidance and supervision of the late Dr. James Stames as the technical contact. It was aimed at investigating the development of analysis tools to deal with the problem of rupture in reinforced structural skin of future composites-based aircraft. It was of particular interest to assess methods by which failure features reminiscent of cracks in metallic structures would develop and propagate in fiber reinforced structures in interaction with the reinforcing frame. To eventually achieve that goal it was necessary to first understand the stress or strain distribution at the front of such features so that interactions between such features and reinforcing agents could be assessed computationally. Thus the major emphasis here was on the assessment of damage front and methods on how to assess or characterize it. During the conduct of this research program Dr. Stames changed to a different NASA- internal assignment, which divorced him of the direct supervision of this grant. A student who was approximately % into the completion of his Ph.D. research needed to finish this work, and NASA funds were made available under Dr. Damodar Ambur, the successor Branch Manager for Dr. James Starnes, for the completion of this work. The current grant was the thus a new and fmal support increment for completion of the started research. Final reports for previous funding have been completed and submitted. Because of the interconnection of this last phase of the investigation with previous work it is deemed useful to make the Ph.D. thesis by Luis Gonzales the body of this report.

  10. Failure mechanisms of fibrin-based surgical tissue adhesives

    NASA Astrophysics Data System (ADS)

    Sierra, David Hugh

    A series of studies was performed to investigate the potential impact of heterogeneity in the matrix of multiple-component fibrin-based tissue adhesives upon their mechanical and biomechanical properties both in vivo and in vitro. Investigations into the failure mechanisms by stereological techniques demonstrated that heterogeneity could be measured quantitatively and that the variation in heterogeneity could be altered both by the means of component mixing and delivery and by the formulation of the sealant. Ex vivo tensile adhesive strength was found to be inversely proportional to the amount of heterogeneity. In contrast, in vivo tensile wound-closure strength was found to be relatively unaffected by the degree of heterogeneity, while in vivo parenchymal organ hemostasis in rabbits was found to be affected: greater heterogeneity appeared to correlate with an increase in hemostasis time and amount of sealant necessary to effect hemostasis. Tensile testing of the bulk sealant showed that mechanical parameters were proportional to fibrin concentration and that the physical characteristics of the failure supported a ductile mechanism. Strain hardening as a function of percentage of strain, and strain rate was observed for both concentrations, and syneresis was observed at low strain rates for the lower fibrin concentration. Blister testing demonstrated that burst pressure and failure energy were proportional to fibrin concentration and decreased with increasing flow rate. Higher fibrin concentration demonstrated predominately compact morphology debonds with cohesive failure loci, demonstrating shear or viscous failure in a viscoelastic rubbery adhesive. The lower fibrin concentration sealant exhibited predominately fractal morphology debonds with cohesive failure loci, supporting an elastoviscous material condition. The failure mechanism for these was hypothesized and shown to be flow-induced ductile fracture. Based on these findings, the failure mechanism was

  11. Tensile and compressive failure modes of laminated composites loaded by fatigue with different mean stress

    NASA Technical Reports Server (NTRS)

    Rotem, Assa

    1990-01-01

    Laminated composite materials tend to fail differently under tensile or compressive load. Under tension, the material accumulates cracks and fiber fractures, while under compression, the material delaminates and buckles. Tensile-compressive fatigue may cause either of these failure modes depending on the specific damage occurring in the laminate. This damage depends on the stress ratio of the fatigue loading. Analysis of the fatigue behavior of the composite laminate under tension-tension, compression-compression, and tension-compression had led to the development of a fatigue envelope presentation of the failure behavior. This envelope indicates the specific failure mode for any stress ratio and number of loading cycles. The construction of the fatigue envelope is based on the applied stress-cycles to failure (S-N) curves of both tensile-tensile and compressive-compressive fatigue. Test results are presented to verify the theoretical analysis.

  12. General Monte Carlo reliability simulation code including common mode failures and HARP fault/error-handling

    NASA Technical Reports Server (NTRS)

    Platt, M. E.; Lewis, E. E.; Boehm, F.

    1991-01-01

    A Monte Carlo Fortran computer program was developed that uses two variance reduction techniques for computing system reliability applicable to solving very large highly reliable fault-tolerant systems. The program is consistent with the hybrid automated reliability predictor (HARP) code which employs behavioral decomposition and complex fault-error handling models. This new capability is called MC-HARP which efficiently solves reliability models with non-constant failures rates (Weibull). Common mode failure modeling is also a specialty.

  13. Model-OA wind turbine generator - Failure modes and effects analysis

    NASA Technical Reports Server (NTRS)

    Klein, William E.; Lali, Vincent R.

    1990-01-01

    The results failure modes and effects analysis (FMEA) conducted for wind-turbine generators are presented. The FMEA was performed for the functional modes of each system, subsystem, or component. The single-point failures were eliminated for most of the systems. The blade system was the only exception. The qualitative probability of a blade separating was estimated at level D-remote. Many changes were made to the hardware as a result of this analysis. The most significant change was the addition of the safety system. Operational experience and need to improve machine availability have resulted in subsequent changes to the various systems, which are also reflected in this FMEA.

  14. Effects of soil-engineering properties on the failure mode of shallow landslides

    McKenna, Jonathan Peter; Santi, Paul Michael; Amblard, Xavier; Negri, Jacquelyn

    2012-01-01

    Some landslides mobilize into flows, while others slide and deposit material immediately down slope. An index based on initial dry density and fine-grained content of soil predicted failure mode of 96 landslide initiation sites in Oregon and Colorado with 79% accuracy. These material properties can be used to identify potential sources for debris flows and for slides. Field data suggest that loose soils can evolve from dense soils that dilate upon shearing. The method presented herein to predict failure mode is most applicable for shallow (depth 8), with few to moderate fines (fine-grained content <18%), and with liquid limits <40.

  15. Failure modes of single and multi-bolted joint in the pultruded fiber reinforced polymer composite members

    NASA Astrophysics Data System (ADS)

    Kim, S. Y.; Yoo, J. H.; Kim, H. K.; Shin, K. Y.; Yoon, S. J.

    2018-06-01

    In this paper, we discussed the structural behavior of bolted lap-joint connections in pultruded FRP structural members. Especially, bolted connections in pultruded FRP members are investigated for their failure modes and strength. Specimens with single and multiple bolt-holes are tested in tension under bolt-loading conditions. All of the specimens are instrumented with strain gages and the load-strain responses are monitored. The failed specimens are examined for the cracks and failure patterns. The purpose of this paper is to predict the failure strength by using the ratio of the results obtained by the experiment and the finite element analysis. In the study, several tests are conducted to determine the mechanical properties of pultruded FRP materials before the main experiment. The results are used in the finite element analysis for single and multiple bolted lap-joint specimens. The results obtained by the experiment are compared with the results obtained by the finite element analysis.

  16. Low frequency mechanical modes of viruses with atomic detail

    NASA Astrophysics Data System (ADS)

    Dykeman, Eric; Sankey, Otto

    2008-03-01

    The low frequency mechanical modes of viruses can provide important insights into the large global motions that a virus may exhibit. Recently it has been proposed that these large global motions may be excited using impulsive stimulated Raman scattering producing permanent damage to the virus. In order to understand the coupling of external probes to the capsid, vibrational modes with atomic detail are essential. The standard approach to find the atomic modes of a molecule with N atoms requires the formation and diagonlization of a 3Nx3N matrix. As viruses have 10^5 or more atoms, the standard approach is difficult. Using ideas from electronic structure theory, we have developed a method to construct the mechanical modes of large molecules such as viruses with atomic detail. Application to viruses such as the cowpea chlorotic mottle virus, satellite tobacco necrosis virus, and M13 bacteriophage show a fairly complicated picture of the mechanical modes.

  17. Dynamic Response and Failure Mechanism of Brittle Rocks Under Combined Compression-Shear Loading Experiments

    NASA Astrophysics Data System (ADS)

    Xu, Yuan; Dai, Feng

    2018-03-01

    A novel method is developed for characterizing the mechanical response and failure mechanism of brittle rocks under dynamic compression-shear loading: an inclined cylinder specimen using a modified split Hopkinson pressure bar (SHPB) system. With the specimen axis inclining to the loading direction of SHPB, a shear component can be introduced into the specimen. Both static and dynamic experiments are conducted on sandstone specimens. Given carefully pulse shaping, the dynamic equilibrium of the inclined specimens can be satisfied, and thus the quasi-static data reduction is employed. The normal and shear stress-strain relationships of specimens are subsequently established. The progressive failure process of the specimen illustrated via high-speed photographs manifests a mixed failure mode accommodating both the shear-dominated failure and the localized tensile damage. The elastic and shear moduli exhibit certain loading-path dependence under quasi-static loading but loading-path insensitivity under high loading rates. Loading rate dependence is evidently demonstrated through the failure characteristics involving fragmentation, compression and shear strength and failure surfaces based on Drucker-Prager criterion. Our proposed method is convenient and reliable to study the dynamic response and failure mechanism of rocks under combined compression-shear loading.

  18. Application of Failure Mode and Effects Analysis to Intraoperative Radiation Therapy Using Mobile Electron Linear Accelerators

    SciT

    Ciocca, Mario, E-mail: mario.ciocca@cnao.it; Cantone, Marie-Claire; Veronese, Ivan

    2012-02-01

    Purpose: Failure mode and effects analysis (FMEA) represents a prospective approach for risk assessment. A multidisciplinary working group of the Italian Association for Medical Physics applied FMEA to electron beam intraoperative radiation therapy (IORT) delivered using mobile linear accelerators, aiming at preventing accidental exposures to the patient. Methods and Materials: FMEA was applied to the IORT process, for the stages of the treatment delivery and verification, and consisted of three steps: 1) identification of the involved subprocesses; 2) identification and ranking of the potential failure modes, together with their causes and effects, using the risk probability number (RPN) scoring system,more » based on the product of three parameters (severity, frequency of occurrence and detectability, each ranging from 1 to 10); 3) identification of additional safety measures to be proposed for process quality and safety improvement. RPN upper threshold for little concern of risk was set at 125. Results: Twenty-four subprocesses were identified. Ten potential failure modes were found and scored, in terms of RPN, in the range of 42-216. The most critical failure modes consisted of internal shield misalignment, wrong Monitor Unit calculation and incorrect data entry at treatment console. Potential causes of failure included shield displacement, human errors, such as underestimation of CTV extension, mainly because of lack of adequate training and time pressures, failure in the communication between operators, and machine malfunctioning. The main effects of failure were represented by CTV underdose, wrong dose distribution and/or delivery, unintended normal tissue irradiation. As additional safety measures, the utilization of a dedicated staff for IORT, double-checking of MU calculation and data entry and finally implementation of in vivo dosimetry were suggested. Conclusions: FMEA appeared as a useful tool for prospective evaluation of patient safety in

  19. A Summary of Taxonomies of Digital System Failure Modes Provided by the DigRel Task Group

    SciT

    Chu T. L.; Yue M.; Postma, W.

    2012-06-25

    Recently, the CSNI directed WGRisk to set up a task group called DIGREL to initiate a new task on developing a taxonomy of failure modes of digital components for the purposes of PSA. It is an important step towards standardized digital I&C reliability assessment techniques for PSA. The objective of this paper is to provide a comparison of the failure mode taxonomies provided by the participants. The failure modes are classified in terms of their levels of detail. Software and hardware failure modes are discussed separately.

  20. Statistical-mechanics theory of active mode locking with noise.

    PubMed

    Gordon, Ariel; Fischer, Baruch

    2004-05-01

    Actively mode-locked lasers with noise are studied employing statistical mechanics. A mapping of the system to the spherical model (related to the Ising model) of ferromagnets in one dimension that has an exact solution is established. It gives basic features, such as analytical expressions for the correlation function between modes, and the widths and shapes of the pulses [different from the Kuizenga-Siegman expression; IEEE J. Quantum Electron. QE-6, 803 (1970)] and reveals the susceptibility to noise of mode ordering compared with passive mode locking.

  1. Risk assessment of failure modes of gas diffuser liner of V94.2 siemens gas turbine by FMEA method

    NASA Astrophysics Data System (ADS)

    Mirzaei Rafsanjani, H.; Rezaei Nasab, A.

    2012-05-01

    Failure of welding connection of gas diffuser liner and exhaust casing is one of the failure modes of V94.2 gas turbines which are happened in some power plants. This defect is one of the uncertainties of customers when they want to accept the final commissioning of this product. According to this, the risk priority of this failure evaluated by failure modes and effect analysis (FMEA) method to find out whether this failure is catastrophic for turbine performance and is harmful for humans. By using history of 110 gas turbines of this model which are used in some power plants, the severity number, occurrence number and detection number of failure determined and consequently the Risk Priority Number (RPN) of failure determined. Finally, critically matrix of potential failures is created and illustrated that failure modes are located in safe zone.

  2. Li-ion Battery Separators, Mechanical Integrity and Failure Mechanisms Leading to Soft and Hard Internal Shorts

    PubMed Central

    Zhang, Xiaowei; Sahraei, Elham; Wang, Kai

    2016-01-01

    Separator integrity is an important factor in preventing internal short circuit in lithium-ion batteries. Local penetration tests (nail or conical punch) often produce presumably sporadic results, where in exactly similar cell and test set-ups one cell goes to thermal runaway while the other shows minimal reactions. We conducted an experimental study of the separators under mechanical loading, and discovered two distinct deformation and failure mechanisms, which could explain the difference in short circuit characteristics of otherwise similar tests. Additionally, by investigation of failure modes, we provided a hypothesis about the process of formation of local “soft short circuits” in cells with undetectable failure. Finally, we proposed a criterion for predicting onset of soft short from experimental data. PMID:27581185

  3. Failure Mechanisms of High Temperature Semiconductor Lasers

    DTIC Science & Technology

    1993-12-01

    91 V.3.2. Facet Degradation 92 V.3.3. Dark Defect Degradation 95 V.3.4. Lasers Inoperational at Elevated Tempatur 96 V.3.5. Degradation Mechanism...they will be fairly easy to incorporate into the business of communications and control applications. The Air Force has a few of its own proposed uses ...demands a ho data processing Af~t which could be handled by lasems. A &W[ proposed use is a pilot chum•t-mo ited laer prwoicr to higgtthe portant dam2

  4. Using the failure mode and effects analysis model to improve parathyroid hormone and adrenocorticotropic hormone testing

    PubMed Central

    Magnezi, Racheli; Hemi, Asaf; Hemi, Rina

    2016-01-01

    Background Risk management in health care systems applies to all hospital employees and directors as they deal with human life and emergency routines. There is a constant need to decrease risk and increase patient safety in the hospital environment. The purpose of this article is to review the laboratory testing procedures for parathyroid hormone and adrenocorticotropic hormone (which are characterized by short half-lives) and to track failure modes and risks, and offer solutions to prevent them. During a routine quality improvement review at the Endocrine Laboratory in Tel Hashomer Hospital, we discovered these tests are frequently repeated unnecessarily due to multiple failures. The repetition of the tests inconveniences patients and leads to extra work for the laboratory and logistics personnel as well as the nurses and doctors who have to perform many tasks with limited resources. Methods A team of eight staff members accompanied by the Head of the Endocrine Laboratory formed the team for analysis. The failure mode and effects analysis model (FMEA) was used to analyze the laboratory testing procedure and was designed to simplify the process steps and indicate and rank possible failures. Results A total of 23 failure modes were found within the process, 19 of which were ranked by level of severity. The FMEA model prioritizes failures by their risk priority number (RPN). For example, the most serious failure was the delay after the samples were collected from the department (RPN =226.1). Conclusion This model helped us to visualize the process in a simple way. After analyzing the information, solutions were proposed to prevent failures, and a method to completely avoid the top four problems was also developed. PMID:27980440

  5. Failure mode and effects analysis: a comparison of two common risk prioritisation methods.

    PubMed

    McElroy, Lisa M; Khorzad, Rebeca; Nannicelli, Anna P; Brown, Alexandra R; Ladner, Daniela P; Holl, Jane L

    2016-05-01

    Failure mode and effects analysis (FMEA) is a method of risk assessment increasingly used in healthcare over the past decade. The traditional method, however, can require substantial time and training resources. The goal of this study is to compare a simplified scoring method with the traditional scoring method to determine the degree of congruence in identifying high-risk failures. An FMEA of the operating room (OR) to intensive care unit (ICU) handoff was conducted. Failures were scored and ranked using both the traditional risk priority number (RPN) and criticality-based method, and a simplified method, which designates failures as 'high', 'medium' or 'low' risk. The degree of congruence was determined by first identifying those failures determined to be critical by the traditional method (RPN≥300), and then calculating the per cent congruence with those failures designated critical by the simplified methods (high risk). In total, 79 process failures among 37 individual steps in the OR to ICU handoff process were identified. The traditional method yielded Criticality Indices (CIs) ranging from 18 to 72 and RPNs ranging from 80 to 504. The simplified method ranked 11 failures as 'low risk', 30 as medium risk and 22 as high risk. The traditional method yielded 24 failures with an RPN ≥300, of which 22 were identified as high risk by the simplified method (92% agreement). The top 20% of CI (≥60) included 12 failures, of which six were designated as high risk by the simplified method (50% agreement). These results suggest that the simplified method of scoring and ranking failures identified by an FMEA can be a useful tool for healthcare organisations with limited access to FMEA expertise. However, the simplified method does not result in the same degree of discrimination in the ranking of failures offered by the traditional method. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  6. [Failure mode and effects analysis to improve quality in clinical trials].

    PubMed

    Mañes-Sevilla, M; Marzal-Alfaro, M B; Romero Jiménez, R; Herranz-Alonso, A; Sanchez Fresneda, M N; Benedi Gonzalez, J; Sanjurjo-Sáez, M

    The failure mode and effects analysis (FMEA) has been used as a tool in risk management and quality improvement. The objective of this study is to identify the weaknesses in processes in the clinical trials area, of a Pharmacy Department (PD) with great research activity, in order to improve the safety of the usual procedures. A multidisciplinary team was created to analyse each of the critical points, identified as possible failure modes, in the development of clinical trial in the PD. For each failure mode, the possible cause and effect were identified, criticality was calculated using the risk priority number and the possible corrective actions were discussed. Six sub-processes were defined in the development of the clinical trials in PD. The FMEA identified 67 failure modes, being the dispensing and prescription/validation sub-processes the most likely to generate errors. All the improvement actions established in the AMFE were implemented in the Clinical Trials area. The FMEA is a useful tool in proactive risk management because it allows us to identify where we are making mistakes and analyze the causes that originate them, to prioritize and to adopt solutions to risk reduction. The FMEA improves process safety and quality in PD. Copyright © 2018 SECA. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Risk Assessment Planning for Airborne Systems: An Information Assurance Failure Mode, Effects and Criticality Analysis Methodology

    DTIC Science & Technology

    2012-06-01

    Visa Investigate Data Breach March 30, 2012 Visa and MasterCard are investigating whether a data security breach at one of the main companies that...30). MasterCard and Visa Investigate Data Breach . New York Times . Stamatis, D. (2003). Failure Mode Effect Analysis: FMEA from Theory to Execution

  8. Failure mode and effects analysis of witnessing protocols for ensuring traceability during IVF.

    PubMed

    Rienzi, Laura; Bariani, Fiorenza; Dalla Zorza, Michela; Romano, Stefania; Scarica, Catello; Maggiulli, Roberta; Nanni Costa, Alessandro; Ubaldi, Filippo Maria

    2015-10-01

    Traceability of cells during IVF is a fundamental aspect of treatment, and involves witnessing protocols. Failure mode and effects analysis (FMEA) is a method of identifying real or potential breakdowns in processes, and allows strategies to mitigate risks to be developed. To examine the risks associated with witnessing protocols, an FMEA was carried out in a busy IVF centre, before and after implementation of an electronic witnessing system (EWS). A multidisciplinary team was formed and moderated by human factors specialists. Possible causes of failures, and their potential effects, were identified and risk priority number (RPN) for each failure calculated. A second FMEA analysis was carried out after implementation of an EWS. The IVF team identified seven main process phases, 19 associated process steps and 32 possible failure modes. The highest RPN was 30, confirming the relatively low risk that mismatches may occur in IVF when a manual witnessing system is used. The introduction of the EWS allowed a reduction in the moderate-risk failure mode by two-thirds (highest RPN = 10). In our experience, FMEA is effective in supporting multidisciplinary IVF groups to understand the witnessing process, identifying critical steps and planning changes in practice to enable safety to be enhanced. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  9. Failure mechanism of THz GaAs photoconductive antenna

    NASA Astrophysics Data System (ADS)

    Qadri, Syed B.; Wu, Dong H.; Graber, Benjamin D.; Mahadik, Nadeemullah A.; Garzarella, Anthony

    2012-07-01

    We investigated the failure mechanism of THz GaAs photoconductive antenna using high resolution x-ray diffraction topography. From these studies, it was found that grain boundaries are formed during the high frequency device operation. This results in the segregation of gold at the boundaries causing electromigration of the metal between the gold micro-strips. This disrupts the photocurrents from being produced by femtosecond laser thus preventing terahertz beam generation from the photoconductive antennae leading to device failure.

  10. Quantitative Approach to Failure Mode and Effect Analysis for Linear Accelerator Quality Assurance

    SciT

    O'Daniel, Jennifer C., E-mail: jennifer.odaniel@duke.edu; Yin, Fang-Fang

    Purpose: To determine clinic-specific linear accelerator quality assurance (QA) TG-142 test frequencies, to maximize physicist time efficiency and patient treatment quality. Methods and Materials: A novel quantitative approach to failure mode and effect analysis is proposed. Nine linear accelerator-years of QA records provided data on failure occurrence rates. The severity of test failure was modeled by introducing corresponding errors into head and neck intensity modulated radiation therapy treatment plans. The relative risk of daily linear accelerator QA was calculated as a function of frequency of test performance. Results: Although the failure severity was greatest for daily imaging QA (imaging vsmore » treatment isocenter and imaging positioning/repositioning), the failure occurrence rate was greatest for output and laser testing. The composite ranking results suggest that performing output and lasers tests daily, imaging versus treatment isocenter and imaging positioning/repositioning tests weekly, and optical distance indicator and jaws versus light field tests biweekly would be acceptable for non-stereotactic radiosurgery/stereotactic body radiation therapy linear accelerators. Conclusions: Failure mode and effect analysis is a useful tool to determine the relative importance of QA tests from TG-142. Because there are practical time limitations on how many QA tests can be performed, this analysis highlights which tests are the most important and suggests the frequency of testing based on each test's risk priority number.« less

  11. Application of failure mode and effect analysis in a radiology department.

    PubMed

    Thornton, Eavan; Brook, Olga R; Mendiratta-Lala, Mishal; Hallett, Donna T; Kruskal, Jonathan B

    2011-01-01

    With increasing deployment, complexity, and sophistication of equipment and related processes within the clinical imaging environment, system failures are more likely to occur. These failures may have varying effects on the patient, ranging from no harm to devastating harm. Failure mode and effect analysis (FMEA) is a tool that permits the proactive identification of possible failures in complex processes and provides a basis for continuous improvement. This overview of the basic principles and methodology of FMEA provides an explanation of how FMEA can be applied to clinical operations in a radiology department to reduce, predict, or prevent errors. The six sequential steps in the FMEA process are explained, and clinical magnetic resonance imaging services are used as an example for which FMEA is particularly applicable. A modified version of traditional FMEA called Healthcare Failure Mode and Effect Analysis, which was introduced by the U.S. Department of Veterans Affairs National Center for Patient Safety, is briefly reviewed. In conclusion, FMEA is an effective and reliable method to proactively examine complex processes in the radiology department. FMEA can be used to highlight the high-risk subprocesses and allows these to be targeted to minimize the future occurrence of failures, thus improving patient safety and streamlining the efficiency of the radiology department. RSNA, 2010

  12. Application of multi attribute failure mode analysis of milk production using analytical hierarchy process method

    NASA Astrophysics Data System (ADS)

    Rucitra, A. L.

    2018-03-01

    Pusat Koperasi Induk Susu (PKIS) Sekar Tanjung, East Java is one of the modern dairy industries producing Ultra High Temperature (UHT) milk. A problem that often occurs in the production process in PKIS Sekar Tanjung is a mismatch between the production process and the predetermined standard. The purpose of applying Analytical Hierarchy Process (AHP) was to identify the most potential cause of failure in the milk production process. Multi Attribute Failure Mode Analysis (MAFMA) method was used to eliminate or reduce the possibility of failure when viewed from the failure causes. This method integrates the severity, occurrence, detection, and expected cost criteria obtained from depth interview with the head of the production department as an expert. The AHP approach was used to formulate the priority ranking of the cause of failure in the milk production process. At level 1, the severity has the highest weight of 0.41 or 41% compared to other criteria. While at level 2, identifying failure in the UHT milk production process, the most potential cause was the average mixing temperature of more than 70 °C which was higher than the standard temperature (≤70 ° C). This failure cause has a contributes weight of 0.47 or 47% of all criteria Therefore, this study suggested the company to control the mixing temperature to minimise or eliminate the failure in this process.

  13. Numerical Model for the Study of the Strength and Failure Modes of Rock Containing Non-Persistent Joints

    NASA Astrophysics Data System (ADS)

    Vergara, Maximiliano R.; Van Sint Jan, Michel; Lorig, Loren

    2016-04-01

    The mechanical behavior of rock containing parallel non-persistent joint sets was studied using a numerical model. The numerical analysis was performed using the discrete element software UDEC. The use of fictitious joints allowed the inclusion of non-persistent joints in the model domain and simulating the progressive failure due to propagation of existing fractures. The material and joint mechanical parameters used in the model were obtained from experimental results. The results of the numerical model showed good agreement with the strength and failure modes observed in the laboratory. The results showed the large anisotropy in the strength resulting from variation of the joint orientation. Lower strength of the specimens was caused by the coalescence of fractures belonging to parallel joint sets. A correlation was found between geometrical parameters of the joint sets and the contribution of the joint sets strength in the global strength of the specimen. The results suggest that for the same dip angle with respect to the principal stresses; the uniaxial strength depends primarily on the joint spacing and the angle between joints tips and less on the length of the rock bridges (persistency). A relation between joint geometrical parameters was found from which the resulting failure mode can be predicted.

  14. [Neurally adjusted ventilatory assist (NAVA). A new mode of assisted mechanical ventilation].

    PubMed

    Moerer, O; Barwing, J; Quintel, M

    2008-10-01

    The aim of mechanical ventilation is to assure gas exchange while efficiently unloading the respiratory muscles and mechanical ventilation is an integral part of the care of patients with acute respiratory failure. Modern lung protective strategies of mechanical ventilation include low-tidal-volume ventilation and the continuation of spontaneous breathing which has been shown to be beneficial in reducing atelectasis and improving oxygenation. Poor patient-ventilator interaction is a major issue during conventional assisted ventilation. Neurally adjusted ventilator assist (NAVA) is a new mode of mechanical ventilation that uses the electrical activity of the diaphragm (EAdi) to control the ventilator. First experimental studies showed an improved patient-ventilator synchrony and an efficient unloading of the respiratory muscles. Future clinical studies will have to show that NAVA is of clinical advantage when compared to conventional modes of assisted mechanical ventilation. This review characterizes NAVA according to current publications on this topic.

  15. Failure mode analysis in adrenal vein sampling: a single-center experience.

    PubMed

    Trerotola, Scott O; Asmar, Melissa; Yan, Yan; Fraker, Douglas L; Cohen, Debbie L

    2014-10-01

    To analyze failure modes in a high-volume adrenal vein sampling (AVS) practice in an effort to identify preventable causes of nondiagnostic sampling. A retrospective database was constructed containing 343 AVS procedures performed over a 10-year period. Each nondiagnostic AVS procedure was reviewed for failure mode and correlated with results of any repeat AVS. Data collected included selectivity index, lateralization index, adrenalectomy outcomes if performed, and details of AVS procedure. All AVS procedures were performed after cosyntropin stimulation, using sequential technique. AVS was nondiagnostic in 12 of 343 (3.5%) primary procedures and 2 secondary procedures. Failure was right-sided in 8 (57%) procedures, left-sided in 4 (29%) procedures, bilateral in 1 procedure, and neither in 1 procedure (laboratory error). Failure modes included diluted sample from correctly identified vein (n = 7 [50%]; 3 right and 4 left), vessel misidentified as adrenal vein (n = 3 [21%]; all right), failure to locate an adrenal vein (n = 2 [14%]; both right), cosyntropin stimulation failure (n = 1 [7%]; diagnostic by nonstimulated criteria), and laboratory error (n = 1 [7%]; specimen loss). A second AVS procedure was diagnostic in three of five cases (60%), and a third AVS procedure was diagnostic in one of one case (100%). Among the eight patients in whom AVS ultimately was not diagnostic, four underwent adrenalectomy based on diluted AVS samples, and one underwent adrenalectomy based on imaging; all five experienced improvement in aldosteronism. A substantial percentage of AVS failures occur on the left, all related to dilution. Even when technically nondiagnostic per strict criteria, some "failed" AVS procedures may be sufficient to guide therapy. Repeat AVS has a good yield. Copyright © 2014 SIR. Published by Elsevier Inc. All rights reserved.

  16. Failure Mechanisms of Brittle Rocks under Uniaxial Compression

    NASA Astrophysics Data System (ADS)

    Liu, Taoying; Cao, Ping

    2017-09-01

    The behaviour of a rock mass is determined not only by the properties of the rock matrix, but mostly by the presence and properties of discontinuities or fractures within the mass. The compression test on rock-like specimens with two prefabricated transfixion fissures, made by pulling out the embedded metal inserts in the pre-cured period was carried out on the servo control uniaxial loading tester. The influence of the geometry of pre-existing cracks on the cracking processes was analysed with reference to the experimental observation of crack initiation and propagation from pre-existing flaws. Based on the rock fracture mechanics and the stress-strain curves, the evolution failure mechanism of the fissure body was also analyzed on the basis of exploring the law of the compression-shear crack initiation, wing crack growth and rock bridge connection. Meanwhile, damage fracture mechanical models of a compression-shear rock mass are established when the rock bridge axial transfixion failure, tension-shear combined failure, or wing crack shear connection failure occurs on the specimen under axial compression. This research was of significance in studying the failure mechanism of fractured rock mass.

  17. Failure mechanisms in energy-absorbing composite structures

    NASA Astrophysics Data System (ADS)

    Johnson, Alastair F.; David, Matthew

    2010-11-01

    Quasi-static tests are described for determination of the energy-absorption properties of composite crash energy-absorbing segment elements under axial loads. Detailed computer tomography scans of failed specimens were used to identify local compression crush failure mechanisms at the crush front. These mechanisms are important for selecting composite materials for energy-absorbing structures, such as helicopter and aircraft sub-floors. Finite element models of the failure processes are described that could be the basis for materials selection and future design procedures for crashworthy structures.

  18. Failure mode and effect analysis: improving intensive care unit risk management processes.

    PubMed

    Askari, Roohollah; Shafii, Milad; Rafiei, Sima; Abolhassani, Mohammad Sadegh; Salarikhah, Elaheh

    2017-04-18

    Purpose Failure modes and effects analysis (FMEA) is a practical tool to evaluate risks, discover failures in a proactive manner and propose corrective actions to reduce or eliminate potential risks. The purpose of this paper is to apply FMEA technique to examine the hazards associated with the process of service delivery in intensive care unit (ICU) of a tertiary hospital in Yazd, Iran. Design/methodology/approach This was a before-after study conducted between March 2013 and December 2014. By forming a FMEA team, all potential hazards associated with ICU services - their frequency and severity - were identified. Then risk priority number was calculated for each activity as an indicator representing high priority areas that need special attention and resource allocation. Findings Eight failure modes with highest priority scores including endotracheal tube defect, wrong placement of endotracheal tube, EVD interface, aspiration failure during suctioning, chest tube failure, tissue injury and deep vein thrombosis were selected for improvement. Findings affirmed that improvement strategies were generally satisfying and significantly decreased total failures. Practical implications Application of FMEA in ICUs proved to be effective in proactively decreasing the risk of failures and corrected the control measures up to acceptable levels in all eight areas of function. Originality/value Using a prospective risk assessment approach, such as FMEA, could be beneficial in dealing with potential failures through proposing preventive actions in a proactive manner. The method could be used as a tool for healthcare continuous quality improvement so that the method identifies both systemic and human errors, and offers practical advice to deal effectively with them.

  19. Mechanics of rainfall-induced flow failure in unsaturated shallow slopes (Invited)

    NASA Astrophysics Data System (ADS)

    Buscarnera, G.

    2013-12-01

    The increase in pore water pressure due to rain infiltration can be a dominant component in the activation of slope instabilities. This work shows an application of the theory of material stability to the triggering analysis of this important class of natural hazards. The goal is to identify the mechanisms through which the process of rain infiltration promotes instabilities of the flow-type in the soil covers. The interplay between increase in pore water pressure and failure mechanisms is investigated at material point level. To account for multiple failure mechanisms, the second-order energy input is linked to the controllability theory and used to define different types of stability indices, each associated with a specific mode of slope failure. It is shown that the theory can be used to assess both shear failure and static liquefaction in saturated and unsaturated soil covers. In particular, it is shown that these instability modes are regulated by the hydro-mechanical characteristics of the soil covers, as well as by their mutual coupling. This finding discloses the importance of the constitutive functions that simulate the interaction between the response of the solid skeleton and the fluid-retention characteristics of the soil. As a consequence, they suggest that even material properties that are not be to directly associated with the shearing resistance (e.g., the potential for wetting compaction) may play a role in the initiation of catastrophic slope failures. According to the proposed interpretation, the process of pore pressure increase can be seen as the trigger of uncontrolled strains, which can anticipate the onset of frictional failure and promote a solid-to-fluid transition.

  20. Mechanical failure probability of glasses in Earth orbit

    NASA Technical Reports Server (NTRS)

    Kinser, Donald L.; Wiedlocher, David E.

    1992-01-01

    Results of five years of earth-orbital exposure on mechanical properties of glasses indicate that radiation effects on mechanical properties of glasses, for the glasses examined, are less than the probable error of measurement. During the 5 year exposure, seven micrometeorite or space debris impacts occurred on the samples examined. These impacts were located in locations which were not subjected to effective mechanical testing, hence limited information on their influence upon mechanical strength was obtained. Combination of these results with micrometeorite and space debris impact frequency obtained by other experiments permits estimates of the failure probability of glasses exposed to mechanical loading under earth-orbit conditions. This probabilistic failure prediction is described and illustrated with examples.

  1. Failure mode and effects analysis using intuitionistic fuzzy hybrid weighted Euclidean distance operator

    NASA Astrophysics Data System (ADS)

    Liu, Hu-Chen; Liu, Long; Li, Ping

    2014-10-01

    Failure mode and effects analysis (FMEA) has shown its effectiveness in examining potential failures in products, process, designs or services and has been extensively used for safety and reliability analysis in a wide range of industries. However, its approach to prioritise failure modes through a crisp risk priority number (RPN) has been criticised as having several shortcomings. The aim of this paper is to develop an efficient and comprehensive risk assessment methodology using intuitionistic fuzzy hybrid weighted Euclidean distance (IFHWED) operator to overcome the limitations and improve the effectiveness of the traditional FMEA. The diversified and uncertain assessments given by FMEA team members are treated as linguistic terms expressed in intuitionistic fuzzy numbers (IFNs). Intuitionistic fuzzy weighted averaging (IFWA) operator is used to aggregate the FMEA team members' individual assessments into a group assessment. IFHWED operator is applied thereafter to the prioritisation and selection of failure modes. Particularly, both subjective and objective weights of risk factors are considered during the risk evaluation process. A numerical example for risk assessment is given to illustrate the proposed method finally.

  2. Failure modes and conditions of a cohesive, spherical body due to YORP spin-up

    NASA Astrophysics Data System (ADS)

    Hirabayashi, Masatoshi

    2015-12-01

    This paper presents transition of the failure mode of a cohesive, spherical body due to The Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) spin-up. On the assumption that the distribution of materials in the body is homogeneous, failed regions first appearing in the body at different spin rates are predicted by comparing the yield condition of an elastic stress in the body. It is found that as the spin rate increases, the locations of the failed regions move from the equatorial surface to the central region. To avoid such failure modes, the body should have higher cohesive strength. The results by this model are consistent with those by a plastic finite element model. Then, this model and a two-layered-cohesive model first proposed by Hirabayashi et al. are used to classify possible evolution and disruption of a spherical body. There are three possible pathways to disruption. First, because of a strong structure, failure of the central region is dominant and eventually leads to a breakup into multiple components. Secondly, a weak surface and a weak interior make the body oblate. Thirdly, a strong internal core prevents the body from failing and only allows surface shedding. This implies that observed failure modes may highly depend on the internal structure of an asteroid, which could provide crucial information for giving constraints on the physical properties.

  3. The Utility of Failure Modes and Effects Analysis of Consultations in a Tertiary, Academic, Medical Center.

    PubMed

    Niv, Yaron; Itskoviz, David; Cohen, Michal; Hendel, Hagit; Bar-Giora, Yonit; Berkov, Evgeny; Weisbord, Irit; Leviron, Yifat; Isasschar, Assaf; Ganor, Arian

    Failure modes and effects analysis (FMEA) is a tool used to identify potential risks in health care processes. We used the FMEA tool for improving the process of consultation in an academic medical center. A team of 10 staff members-5 physicians, 2 quality experts, 2 organizational consultants, and 1 nurse-was established. The consultation process steps, from ordering to delivering, were computed. Failure modes were assessed for likelihood of occurrence, detection, and severity. A risk priority number (RPN) was calculated. An interventional plan was designed according to the highest RPNs. Thereafter, we compared the percentage of completed computer-based documented consultations before and after the intervention. The team identified 3 main categories of failure modes that reached the highest RPNs: initiation of consultation by a junior staff physician without senior approval, failure to document the consultation in the computerized patient registry, and asking for consultation on the telephone. An interventional plan was designed, including meetings to update knowledge of the consultation request process, stressing the importance of approval by a senior physician, training sessions for closing requests in the patient file, and reporting of telephone requests. The number of electronically documented consultation results and recommendations significantly increased (75%) after intervention. FMEA is an important and efficient tool for improving the consultation process in an academic medical center.

  4. Utility of Failure Mode and Effect Analysis to Improve Safety in Suctioning by Orotracheal Tube.

    PubMed

    Vázquez-Valencia, Agustín; Santiago-Sáez, Andrés; Perea-Pérez, Bernardo; Labajo-González, Elena; Albarrán-Juan, Maria Elena

    2017-02-01

    The objective of the study was to use the Failure Mode and Effect Analysis (FMEA) tool to analyze the technique of secretion suctioning on patients with an endotracheal tube who were admitted into an intensive care unit. Brainstorming was carried out within the service to determine the potential errors most frequent in the process. After this, the FMEA was applied, including its stages, prioritizing risk in accordance with the risk prioritization number (RPN), selecting improvement actions in which they have an RPN of more than 300. We obtained 32 failure modes, of which 13 surpassed an RPN of 300. After our result, 21 improvement actions were proposed for those failure modes with RPN scores above 300. FMEA allows us to ascertain possible failures so as to later propose improvement actions for those which have an RPN of more than 300. Copyright © 2016 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.

  5. The future of mechanical circulatory support for advanced heart failure.

    PubMed

    Marinescu, Karolina K; Uriel, Nir; Adatya, Sirtaz

    2016-05-01

    Mechanical circulatory support (MCS) has become the main focus of heart replacement therapy for end stage heart failure patients. Advances in technology are moving towards miniaturization, biventricular support devices, complete internalization, improved hemocompatibility profiles, and responsiveness to cardiac loading conditions. This review will discuss the recent advances and investigational devices in MCS for advanced heart failure. The demand for both short-term and long-term durable devices for advanced heart failure is increasing. The current devices are still fraught with an unacceptably high incidence of gastrointestinal bleeding and thromboembolic and infectious complications. New devices are on the horizon focusing on miniaturization, versatility for biventricular support, improved hemocompatibility, use of alternate energy sources, and incorporation of continuous hemodynamic monitoring. The role for MCS in advanced heart replacement therapy is steadily increasing. With the advent of newer generation devices on the horizon, the potential exists for MCS to surpass heart transplantation as the primary therapy for advanced heart failure.

  6. Use of failure mode, effect and criticality analysis to improve safety in the medication administration process.

    PubMed

    Rodriguez-Gonzalez, Carmen Guadalupe; Martin-Barbero, Maria Luisa; Herranz-Alonso, Ana; Durango-Limarquez, Maria Isabel; Hernandez-Sampelayo, Paloma; Sanjurjo-Saez, Maria

    2015-08-01

    To critically evaluate the causes of preventable adverse drug events during the nurse medication administration process in inpatient units with computerized prescription order entry and profiled automated dispensing cabinets in order to prioritize interventions that need to be implemented and to evaluate the impact of specific interventions on the criticality index. This is a failure mode, effects and criticality analysis (FMECA) study. A multidisciplinary consensus committee composed of pharmacists, nurses and doctors evaluated the process of administering medications in a hospital setting in Spain. By analysing the process, all failure modes were identified and criticality was determined by rating severity, frequency and likelihood of failure detection on a scale of 1 to 10, using adapted versions of already published scales. Safety strategies were identified and prioritized. Through consensus, the committee identified eight processes and 40 failure modes, of which 20 were classified as high risk. The sum of the criticality indices was 5254. For the potential high-risk failure modes, 21 different potential causes were found resulting in 24 recommendations. Thirteen recommendations were prioritized and developed over a 24-month period, reducing total criticality from 5254 to 3572 (a 32.0% reduction). The recommendations with a greater impact on criticality were the development of an electronic medication administration record (-582) and the standardization of intravenous drug compounding in the unit (-168). Other improvements, such as barcode medication administration technology (-1033), were scheduled for a longer period of time because of lower feasibility. FMECA is a useful approach that can improve the medication administration process. © 2015 John Wiley & Sons, Ltd.

  7. Failure Modes and Effects Analysis of bilateral same-day cataract surgery

    PubMed Central

    Shorstein, Neal H.; Lucido, Carol; Carolan, James; Liu, Liyan; Slean, Geraldine; Herrinton, Lisa J.

    2017-01-01

    PURPOSE To systematically analyze potential process failures related to bilateral same-day cataract surgery toward the goal of improving patient safety. SETTING Twenty-one Kaiser Permanente surgery centers, Northern California, USA. DESIGN Retrospective cohort study. METHODS Quality experts performed a Failure Modes and Effects Analysis (FMEA) that included an evaluation of sterile processing, pharmaceuticals, perioperative clinic and surgical center visits, and biometry. Potential failures in human factors and communication (modes) were identified. Rates of endophthalmitis, toxic anterior segment syndrome (TASS), and unintended intraocular lens (IOL) implantation were assessed in eyes having bilateral same-day surgery from 2010 through 2014. RESULTS The study comprised 4754 eyes. The analysis identified 15 significant potential failure modes. These included lapses in instrument processing and compounding error of intracameral antibiotic that could lead to endophthalmitis or TASS and ambiguous documentation of IOL selection by surgeons, which could lead to unintended IOL implantation. Of the study sample, 1 eye developed endophthalmitis, 1 eye had unintended IOL implantation (rates, 2 per 10 000; 95% confidence intervals [CI] 0.1–12.0 per 10 000), and no eyes developed TASS (upper 95% CI, 8 per 10 000). Recommendations included improving oversight of cleaning and sterilization practices, separating lots of compounded drugs for each eye, and enhancing IOL verification procedures. CONCLUSIONS Potential failure modes and recommended actions in bilateral same-day cataract surgery were determined using a FMEA. These findings might help improve the reliability and safety of bilateral same-day cataract surgery based on current evidence and standards. PMID:28410711

  8. A multiscale structural investigation of the annulus-endplate anchorage system and its mechanisms of failure.

    PubMed

    Rodrigues, Samantha A; Thambyah, Ashvin; Broom, Neil D

    2015-03-01

    The annulus-endplate anchorage system performs a critical role in the disc, creating a strong structural link between the compliant annulus and the rigid vertebrae. Endplate failure is thought to be associated with disc herniation, a recent study indicating that this failure mode occurs more frequently than annular rupture. The aim was to investigate the structural principles governing annulus-endplate anchorage and the basis of its strength and mechanisms of failure. Loading experiments were performed on ovine lumbar motion segments designed to induce annulus-endplate failure, followed by macro- to micro- to fibril-level structural analyses. The study was funded by a doctoral scholarship from our institution. Samples were loaded to failure in three modes: torsion using intact motion segments, in-plane tension of the anterior annulus-endplate along one of the oblique fiber angles, and axial tension of the anterior annulus-endplate. The anterior region was chosen for its ease of access. Decalcification was used to investigate the mechanical influence of the mineralized component. Structural analysis was conducted on both the intact and failed samples using differential interference contrast optical microscopy and scanning electron microscopy. Two main modes of anchorage failure were observed--failure at the tidemark or at the cement line. Samples subjected to axial tension contained more tidemark failures compared with those subjected to torsion and in-plane tension. Samples decalcified before testing frequently contained damage at the cement line, this being more extensive than in fresh samples. Analysis of the intact samples at their anchorage sites revealed that annular subbundle fibrils penetrate beyond the cement line to a limited depth and appear to merge with those in the vertebral and cartilaginous endplates. Annulus-endplate anchorage is more vulnerable to failure in axial tension compared with both torsion and in-plane tension and is probably due to acute

  9. Application of failure mode and effects analysis to treatment planning in scanned proton beam radiotherapy

    PubMed Central

    2013-01-01

    Background A multidisciplinary and multi-institutional working group applied the Failure Mode and Effects Analysis (FMEA) approach to the actively scanned proton beam radiotherapy process implemented at CNAO (Centro Nazionale di Adroterapia Oncologica), aiming at preventing accidental exposures to the patient. Methods FMEA was applied to the treatment planning stage and consisted of three steps: i) identification of the involved sub-processes; ii) identification and ranking of the potential failure modes, together with their causes and effects, using the risk probability number (RPN) scoring system, iii) identification of additional safety measures to be proposed for process quality and safety improvement. RPN upper threshold for little concern of risk was set at 125. Results Thirty-four sub-processes were identified, twenty-two of them were judged to be potentially prone to one or more failure modes. A total of forty-four failure modes were recognized, 52% of them characterized by an RPN score equal to 80 or higher. The threshold of 125 for RPN was exceeded in five cases only. The most critical sub-process appeared related to the delineation and correction of artefacts in planning CT data. Failures associated to that sub-process were inaccurate delineation of the artefacts and incorrect proton stopping power assignment to body regions. Other significant failure modes consisted of an outdated representation of the patient anatomy, an improper selection of beam direction and of the physical beam model or dose calculation grid. The main effects of these failures were represented by wrong dose distribution (i.e. deviating from the planned one) delivered to the patient. Additional strategies for risk mitigation, easily and immediately applicable, consisted of a systematic information collection about any known implanted prosthesis directly from each patient and enforcing a short interval time between CT scan and treatment start. Moreover, (i) the investigation of

  10. Some failure modes and analysis techniques for terrestrial solar cell modules

    NASA Technical Reports Server (NTRS)

    Shumka, A.; Stern, K. H.

    1978-01-01

    Analysis data are presented on failed/defective silicon solar cell modules of various types and produced by different manufacturers. The failure mode (e.g., internal short and open circuits, output power degradation, isolation resistance degradation, etc.) are discussed in detail and in many cases related to the type of technology used in the manufacture of the modules; wherever applicable, appropriate corrective actions are recommended. Consideration is also given to some failure analysis techniques that are applicable to such modules, including X-ray radiography, capacitance measurement, cell shunt resistance measurement by the shadowing technique, steady-state illumination test station for module performance illumination, laser scanning techniques, and the SEM.

  11. Sliding Mode Control of the X-33 with an Engine Failure

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri B.; Hall, Charles E.

    2000-01-01

    Ascent flight control of the X-3 is performed using two XRS-2200 linear aerospike engines. in addition to aerosurfaces. The baseline control algorithms are PID with gain scheduling. Flight control using an innovative method. Sliding Mode Control. is presented for nominal and engine failed modes of flight. An easy to implement, robust controller. requiring no reconfiguration or gain scheduling is demonstrated through high fidelity flight simulations. The proposed sliding mode controller utilizes a two-loop structure and provides robust. de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of engine failure, bounded external disturbances (wind gusts) and uncertain matrix of inertia. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues. Conditions that restrict engine failures to robustness domain of the sliding mode controller are derived. Overall stability of a two-loop flight control system is assessed. Simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in the presence of external disturbances and vehicle inertia uncertainties, as well as the single engine failed case. The designed robust controller will significantly reduce the time and cost associated with flying new trajectory profiles or orbits, with new payloads, and with modified vehicles

  12. Mechanical Failure of Endocrowns Manufactured with Different Ceramic Materials: An In Vitro Biomechanical Study.

    PubMed

    Aktas, Guliz; Yerlikaya, Hatice; Akca, Kivanc

    2018-04-01

    To evaluate the effect of different silica-based ceramic materials on the mechanical failure behavior of endocrowns used in the restoration of endodontically treated mandibular molar teeth. Thirty-six intact mandibular molar teeth extracted because of a loss of periodontal support received root canal treatment. The teeth were prepared with a central cavity to support the endocrowns, replacing the occlusal surface with mesial-lingual-distal walls. Data acquisition of the prepared tooth surfaces was carried out digitally with a powder-free intraoral scanner. Restoration designs were completed on manufactured restorations from three silicate ceramics: alumina-silicate (control), zirconia-reinforced (Zr-R), and polymer-infiltrated (P-I). Following adhesive cementation, endocrowns were subjected to thermal aging, and then, each specimen was obliquely loaded to record the fracture strength and define the mechanical failure. For the failure definition, the fracture type characteristics were identified, and further analytic measurements were made on the fractured tooth and ceramic structure. Load-to-fracture failure did not differ significantly, and the calculated mean values were 1035.08 N, 1058.33 N, and 1025.00 N for control, Zr-R, and P-I groups, respectively; however, the stiffness of the restoration-tooth complex was significantly higher than that in both test groups. No statistically significant correlation was established in paired comparisons of the failure strength, restorative stiffness, and fractured tooth distance parameters. The failure mode for teeth restored with zirconia-reinforced glass ceramics was identified as non-restorable. The resin interface in the control and P-I groups presented similar adhesive failure behavior. Mechanical failure of endocrown restorations does not significantly differ for silica-based ceramics modified either with zirconia or polymer. © 2016 by the American College of Prosthodontists.

  13. Failure modes of vacuum plasma spray tungsten coating created on carbon fibre composites under thermal loads

    NASA Astrophysics Data System (ADS)

    Hirai, T.; Bekris, N.; Coad, J. P.; Grisolia, C.; Linke, J.; Maier, H.; Matthews, G. F.; Philipps, V.; Wessel, E.

    2009-07-01

    Vacuum plasma spray tungsten (VPS-W) coating created on a carbon fibre reinforced composite (CFC) was tested under two thermal load schemes in the electron beam facility to examine the operation limits and failure modes. In cyclic ELM-like short transient thermal loads, the VPS-W coating was destroyed sub-layer by sub-layer at 0.33 GW/m 2 for 1 ms pulse duration. At longer single pulses, simulating steady-state thermal loads, the coating was destroyed at surface temperatures above 2700 °C by melting of the rhenium containing multilayer at the interface between VPS-W and CFC. The operation limits and failure modes of the VPS-W coating in the thermal load schemes are discussed in detail.

  14. Using Failure Mode and Effects Analysis to design a comfortable automotive driver seat.

    PubMed

    Kolich, Mike

    2014-07-01

    Given enough time and use, all designs will fail. There are no fail-free designs. This is especially true when it comes to automotive seating comfort where the characteristics and preferences of individual customers are many and varied. To address this problem, individuals charged with automotive seating comfort development have, traditionally, relied on iterative and, as a result, expensive build-test cycles. Cost pressures being placed on today's vehicle manufacturers have necessitated the search for more efficient alternatives. This contribution aims to fill this need by proposing the application of an analytical technique common to engineering circles (but new to seating comfort development), namely Design Failure Mode and Effects Analysis (DFMEA). An example is offered to describe how development teams can use this systematic and disciplined approach to highlight potential seating comfort failure modes, reduce their risk, and bring capable designs to life. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  15. Shear Fracture of Dual Phase AHSS in the Process of Stamping: Macroscopic Failure Mode and Micro-level Metallographical Observation

    NASA Astrophysics Data System (ADS)

    Wang, Wurong; Wei, Xicheng; Yang, Jun; Shi, Gang

    2011-08-01

    Due to its excellent strength and formability combinations, dual phase (DP) steels offer the potential to improve the vehicle crashworthiness performance without increasing car body weight and have been increasingly used into new vehicles. However, a new type of crack mode termed as shear fracture is accompanied with the application of these high strength DP steel sheets. With the cup drawing experiment to identify the limit drawing ratio (LDR) of three DP AHSS with strength level from 600 MPa to 1000 MPa, the study compared and categorized the macroscopic failure mode of these three types of materials. The metallographical observation along the direction of crack was conducted for the DP steels to discover the micro-level propagation mechanism of the fracture.

  16. Investigation of accelerated stress factors and failure/degradation mechanisms in terrestrial solar cells

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.

    1983-01-01

    Results of an ongoing research program into the reliability of terrestrial solar cells are presented. Laboratory accelerated testing procedures are used to identify failure/degradation modes which are then related to basic physical, chemical, and metallurgical phenomena. In the most recent tests, ten different types of production cells, both with and without encapsulation, from eight different manufacturers were subjected to a variety of accelerated tests. Results indicated the presence of a number of hitherto undetected failure mechanisms, including Schottky barrier formation at back contacts and loss of adhesion of grid metallization. The mechanism of Schottky barrier formation is explained by hydrogen, formed by the dissociation of water molecules at the contact surface, diffusing to the metal semiconductor interface. This same mechanism accounts for the surprising increase in sensitivity to accelerated stress conditions that was observed in some cells when encapsulated.

  17. Margins Associated with Loss of Assured Safety for Systems with Multiple Time-Dependent Failure Modes.

    SciT

    Helton, Jon C.; Brooks, Dusty Marie; Sallaberry, Cedric Jean-Marie.

    Representations for margins associated with loss of assured safety (LOAS) for weak link (WL)/strong link (SL) systems involving multiple time-dependent failure modes are developed. The following topics are described: (i) defining properties for WLs and SLs, (ii) background on cumulative distribution functions (CDFs) for link failure time, link property value at link failure, and time at which LOAS occurs, (iii) CDFs for failure time margins defined by (time at which SL system fails) – (time at which WL system fails), (iv) CDFs for SL system property values at LOAS, (v) CDFs for WL/SL property value margins defined by (property valuemore » at which SL system fails) – (property value at which WL system fails), and (vi) CDFs for SL property value margins defined by (property value of failing SL at time of SL system failure) – (property value of this SL at time of WL system failure). Included in this presentation is a demonstration of a verification strategy based on defining and approximating the indicated margin results with (i) procedures based on formal integral representations and associated quadrature approximations and (ii) procedures based on algorithms for sampling-based approximations.« less

  18. Memories and NASA Spacecraft: A Description of Memories, Radiation Failure Modes, and System Design Considerations

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Ladbury, Ray; Oldhamm, Timothy

    2010-01-01

    As NASA has evolved it's usage of spaceflight computing, memory applications have followed as well. In this slide presentation, the history of NASA's memories from magnetic core and tape recorders to current semiconductor approaches is discussed. There is a brief description of current functional memory usage in NASA space systems followed by a description of potential radiation-induced failure modes along with considerations for reliable system design.

  19. Minimizing treatment planning errors in proton therapy using failure mode and effects analysis

    SciT

    Zheng, Yuanshui, E-mail: yuanshui.zheng@okc.procure.com; Johnson, Randall; Larson, Gary

    Purpose: Failure mode and effects analysis (FMEA) is a widely used tool to evaluate safety or reliability in conventional photon radiation therapy. However, reports about FMEA application in proton therapy are scarce. The purpose of this study is to apply FMEA in safety improvement of proton treatment planning at their center. Methods: The authors performed an FMEA analysis of their proton therapy treatment planning process using uniform scanning proton beams. The authors identified possible failure modes in various planning processes, including image fusion, contouring, beam arrangement, dose calculation, plan export, documents, billing, and so on. For each error, the authorsmore » estimated the frequency of occurrence, the likelihood of being undetected, and the severity of the error if it went undetected and calculated the risk priority number (RPN). The FMEA results were used to design their quality management program. In addition, the authors created a database to track the identified dosimetric errors. Periodically, the authors reevaluated the risk of errors by reviewing the internal error database and improved their quality assurance program as needed. Results: In total, the authors identified over 36 possible treatment planning related failure modes and estimated the associated occurrence, detectability, and severity to calculate the overall risk priority number. Based on the FMEA, the authors implemented various safety improvement procedures into their practice, such as education, peer review, and automatic check tools. The ongoing error tracking database provided realistic data on the frequency of occurrence with which to reevaluate the RPNs for various failure modes. Conclusions: The FMEA technique provides a systematic method for identifying and evaluating potential errors in proton treatment planning before they result in an error in patient dose delivery. The application of FMEA framework and the implementation of an ongoing error tracking system at

  20. Lunar Module ECS (Environmental Control System) - Design Considerations and Failure Modes. Part 1

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    Design considerations and failure modes for the Lunar Module (LM) Environmental Control System (ECS) are described. An overview of the the oxygen supply and cabin pressurization, atmosphere revitalization, water management and heat transport systems are provided. Design considerations including reliability, flight instrumentation, modularization and the change to the use of batteries instead of fuel cells are discussed. A summary is provided for the LM ECS general testing regime.

  1. Minimizing treatment planning errors in proton therapy using failure mode and effects analysis.

    PubMed

    Zheng, Yuanshui; Johnson, Randall; Larson, Gary

    2016-06-01

    Failure mode and effects analysis (FMEA) is a widely used tool to evaluate safety or reliability in conventional photon radiation therapy. However, reports about FMEA application in proton therapy are scarce. The purpose of this study is to apply FMEA in safety improvement of proton treatment planning at their center. The authors performed an FMEA analysis of their proton therapy treatment planning process using uniform scanning proton beams. The authors identified possible failure modes in various planning processes, including image fusion, contouring, beam arrangement, dose calculation, plan export, documents, billing, and so on. For each error, the authors estimated the frequency of occurrence, the likelihood of being undetected, and the severity of the error if it went undetected and calculated the risk priority number (RPN). The FMEA results were used to design their quality management program. In addition, the authors created a database to track the identified dosimetric errors. Periodically, the authors reevaluated the risk of errors by reviewing the internal error database and improved their quality assurance program as needed. In total, the authors identified over 36 possible treatment planning related failure modes and estimated the associated occurrence, detectability, and severity to calculate the overall risk priority number. Based on the FMEA, the authors implemented various safety improvement procedures into their practice, such as education, peer review, and automatic check tools. The ongoing error tracking database provided realistic data on the frequency of occurrence with which to reevaluate the RPNs for various failure modes. The FMEA technique provides a systematic method for identifying and evaluating potential errors in proton treatment planning before they result in an error in patient dose delivery. The application of FMEA framework and the implementation of an ongoing error tracking system at their clinic have proven to be useful in error

  2. Application of failure mode and effects analysis (FMEA) to pretreatment phases in tomotherapy

    PubMed Central

    Broggi, Sara; Cantone, Marie Claire; Chiara, Anna; Muzio, Nadia Di; Longobardi, Barbara; Mangili, Paola

    2013-01-01

    The aim of this paper was the application of the failure mode and effects analysis (FMEA) approach to assess the risks for patients undergoing radiotherapy treatments performed by means of a helical tomotherapy unit. FMEA was applied to the preplanning imaging, volume determination, and treatment planning stages of the tomotherapy process and consisted of three steps: 1) identification of the involved subprocesses; 2) identification and ranking of the potential failure modes, together with their causes and effects, using the risk probability number (RPN) scoring system; and 3) identification of additional safety measures to be proposed for process quality and safety improvement. RPN upper threshold for little concern of risk was set at 125. A total of 74 failure modes were identified: 38 in the stage of preplanning imaging and volume determination, and 36 in the stage of planning. The threshold of 125 for RPN was exceeded in four cases: one case only in the phase of preplanning imaging and volume determination, and three cases in the stage of planning. The most critical failures appeared related to (i) the wrong or missing definition and contouring of the overlapping regions, (ii) the wrong assignment of the overlap priority to each anatomical structure, (iii) the wrong choice of the computed tomography calibration curve for dose calculation, and (iv) the wrong (or not performed) choice of the number of fractions in the planning station. On the basis of these findings, in addition to the safety strategies already adopted in the clinical practice, novel solutions have been proposed for mitigating the risk of these failures and to increase patient safety. PACS number: 87.55.Qr PMID:24036868

  3. Using failure mode and effects analysis to plan implementation of smart i.v. pump technology.

    PubMed

    Wetterneck, Tosha B; Skibinski, Kathleen A; Roberts, Tanita L; Kleppin, Susan M; Schroeder, Mark E; Enloe, Myra; Rough, Steven S; Hundt, Ann Schoofs; Carayon, Pascale

    2006-08-15

    Failure mode and effects analysis (FMEA) was used to evaluate a smart i.v. pump as it was implemented into a redesigned medication-use process. A multidisciplinary team conducted a FMEA to guide the implementation of a smart i.v. pump that was designed to prevent pump programming errors. The smart i.v. pump was equipped with a dose-error reduction system that included a pre-defined drug library in which dosage limits were set for each medication. Monitoring for potential failures and errors occurred for three months postimplementation of FMEA. Specific measures were used to determine the success of the actions that were implemented as a result of the FMEA. The FMEA process at the hospital identified key failure modes in the medication process with the use of the old and new pumps, and actions were taken to avoid errors and adverse events. I.V. pump software and hardware design changes were also recommended. Thirteen of the 18 failure modes reported in practice after pump implementation had been identified by the team. A beneficial outcome of FMEA was the development of a multidisciplinary team that provided the infrastructure for safe technology implementation and effective event investigation after implementation. With the continual updating of i.v. pump software and hardware after implementation, FMEA can be an important starting place for safe technology choice and implementation and can produce site experts to follow technology and process changes over time. FMEA was useful in identifying potential problems in the medication-use process with the implementation of new smart i.v. pumps. Monitoring for system failures and errors after implementation remains necessary.

  4. Application of failure mode and effects analysis (FMEA) to pretreatment phases in tomotherapy.

    PubMed

    Broggi, Sara; Cantone, Marie Claire; Chiara, Anna; Di Muzio, Nadia; Longobardi, Barbara; Mangili, Paola; Veronese, Ivan

    2013-09-06

    The aim of this paper was the application of the failure mode and effects analysis (FMEA) approach to assess the risks for patients undergoing radiotherapy treatments performed by means of a helical tomotherapy unit. FMEA was applied to the preplanning imaging, volume determination, and treatment planning stages of the tomotherapy process and consisted of three steps: 1) identification of the involved subprocesses; 2) identification and ranking of the potential failure modes, together with their causes and effects, using the risk probability number (RPN) scoring system; and 3) identification of additional safety measures to be proposed for process quality and safety improvement. RPN upper threshold for little concern of risk was set at 125. A total of 74 failure modes were identified: 38 in the stage of preplanning imaging and volume determination, and 36 in the stage of planning. The threshold of 125 for RPN was exceeded in four cases: one case only in the phase of preplanning imaging and volume determination, and three cases in the stage of planning. The most critical failures appeared related to (i) the wrong or missing definition and contouring of the overlapping regions, (ii) the wrong assignment of the overlap priority to each anatomical structure, (iii) the wrong choice of the computed tomography calibration curve for dose calculation, and (iv) the wrong (or not performed) choice of the number of fractions in the planning station. On the basis of these findings, in addition to the safety strategies already adopted in the clinical practice, novel solutions have been proposed for mitigating the risk of these failures and to increase patient safety.

  5. Recent Advances In Structural Vibration And Failure Mode Control In Mainland China: Theory, Experiments And Applications

    NASA Astrophysics Data System (ADS)

    Li, Hui; Ou, Jinping

    2008-07-01

    A number of researchers have been focused on structural vibration control in the past three decades over the world and fruit achievements have been made. This paper introduces the recent advances in structural vibration control including passive, active and semiactive control in mainland China. Additionally, the co-author extends the structural vibration control to failure mode control. The research on the failure mode control is also involved in this paper. For passive control, this paper introduces full scale tests of buckling-restrained braces conducted to investigate the performance of the dampers and the second-editor of the Code of Seismic Design for Buildings. For active control, this paper introduces the HMD system for wind-induced vibration control of the Guangzhou TV tower. For semiactive control, the smart damping devices, algorithms for semi-active control, design methods and applications of semi-active control for structures are introduced in this paper. The failure mode control for bridges is also introduced.

  6. SU-E-T-420: Failure Effects Mode Analysis for Trigeminal Neuralgia Frameless Radiosurgery

    SciT

    Howe, J

    2015-06-15

    Purpose: Functional radiosurgery has been used successfully in the treatment of trigeminal neuralgia but presents significant challenges to ensuring the high prescription dose is delivered accurately. A review of existing practice should help direct the focus of quality improvement for this treatment regime. Method: Failure modes and effects analysis was used to identify the processes in preparing radiosurgery treatment for TN. The map was developed by a multidisciplinary team including: neurosurgeon, radiation oncology, physicist and therapist. Potential failure modes were identified for each step in the process map as well as potential causes and end effect. A risk priority numbermore » was assigned to each cause. Results: The process map identified 66 individual steps (see attached supporting document). Corrective actions were developed for areas of high risk priority number. Wrong site treatment is at higher risk for trigeminal neuralgia treatment due to the lack of site specific pathologic imaging on MR and CT – additional site specific checks were implemented to minimize the risk of wrong site treatment. Failed collision checks resulted from an insufficient collision model in the treatment planning system and a plan template was developed to address this problem. Conclusion: Failure modes and effects analysis is an effective tool for developing quality improvement in high risk radiotherapy procedures such as functional radiosurgery.« less

  7. A new system for understanding modes of mechanical ventilation.

    PubMed

    Chatburn, R L; Primiano, F P

    2001-06-01

    Numerous ventilation modes and ventilation options have become available as new mechanical ventilators have reached the market. Ventilator manufacturers have no standardized terminology for ventilator modes and ventilation options, and ventilator operator's manuals do not help the clinician compare the modes of ventilators from different manufacturers. This article proposes a standardized system for classifying ventilation modes, based on general engineering principles and a small set of explicit definitions. Though there may be resistance by ventilator manufacturers to a standardized system of ventilation terminology, clinicians and health care equipment purchasers should adopt such a system in the interest of clear communication--the lack of which prevents clinicians from fully understanding the therapies they administer and could compromise the quality of patient care.

  8. Some Aspects of the Failure Mechanisms in BaTiO3-Based Multilayer Ceramic Capacitors

    NASA Technical Reports Server (NTRS)

    Liu, David Donhang; Sampson, Michael J.

    2012-01-01

    The objective of this presentation is to gain insight into possible failure mechanisms in BaTiO3-based ceramic capacitors that may be associated with the reliability degradation that accompanies a reduction in dielectric thickness, as reported by Intel Corporation in 2010. The volumetric efficiency (microF/cm3) of a multilayer ceramic capacitor (MLCC) has been shown to not increase limitlessly due to the grain size effect on the dielectric constant of ferroelectric ceramic BaTiO3 material. The reliability of an MLCC has been discussed with respect to its structure. The MLCCs with higher numbers of dielectric layers will pose more challenges for the reliability of dielectric material, which is the case for most base-metal-electrode (BME) capacitors. A number of MLCCs manufactured using both precious-metal-electrode (PME) and BME technology, with 25 V rating and various chip sizes and capacitances, were tested at accelerated stress levels. Most of these MLCCs had a failure behavior with two mixed failure modes: the well-known rapid dielectric wearout, and so-called 'early failures." The two failure modes can be distinguished when the testing data were presented and normalized at use-level using a 2-parameter Weibull plot. The early failures had a slope parameter of Beta >1, indicating that the early failures are not infant mortalities. Early failures are triggered due to external electrical overstress and become dominant as dielectric layer thickness decreases, accompanied by a dramatic reduction in reliability. This indicates that early failures are the main cause of the reliability degradation in MLCCs as dielectric layer thickness decreases. All of the early failures are characterized by an avalanche-like breakdown leakage current. The failures have been attributed to the extrinsic minor construction defects introduced during fabrication of the capacitors. A reliability model including dielectric thickness and extrinsic defect feature size is proposed in this

  9. Long-term lumen depreciation behavior and failure modes of multi-die array LEDs

    NASA Astrophysics Data System (ADS)

    Jayawardena, Asiri; Marcus, Daniel; Prugue, Ximena; Narendran, Nadarajah

    2013-09-01

    One of the main advantages of multi-die array light-emitting diodes (LEDs) is their high flux density. However, a challenge for using such a product in lighting fixture applications is the heat density and the need for thermal management to keep the junction temperatures of all the dies low for long-term reliable performance. Ten multi-die LED array samples for each product from four different manufacturers were subjected to lumen maintenance testing (as described in IES-LM-80-08), and their resulting lumen depreciation and failure modes were studied. The products were tested at the maximum case (or pin) temperature reported by the respective manufacturer by appropriately powering the LEDs. In addition, three samples for each product from two different manufacturers were subjected to rapid thermal cycling, and the resulting lumen depreciation and failure modes were studied. The results showed that the exponential lumen decay model using long-term lumen maintenance data as recommended in IES TM-21 does not fit for all package types. The failure of a string of dies and single die failure in a string were observed in some of the packages.

  10. Failure Mode and Effect Analysis for Delivery of Lung Stereotactic Body Radiation Therapy

    SciT

    Perks, Julian R., E-mail: julian.perks@ucdmc.ucdavis.edu; Stanic, Sinisa; Stern, Robin L.

    2012-07-15

    Purpose: To improve the quality and safety of our practice of stereotactic body radiation therapy (SBRT), we analyzed the process following the failure mode and effects analysis (FMEA) method. Methods: The FMEA was performed by a multidisciplinary team. For each step in the SBRT delivery process, a potential failure occurrence was derived and three factors were assessed: the probability of each occurrence, the severity if the event occurs, and the probability of detection by the treatment team. A rank of 1 to 10 was assigned to each factor, and then the multiplied ranks yielded the relative risks (risk priority numbers).more » The failure modes with the highest risk priority numbers were then considered to implement process improvement measures. Results: A total of 28 occurrences were derived, of which nine events scored with significantly high risk priority numbers. The risk priority numbers of the highest ranked events ranged from 20 to 80. These included transcription errors of the stereotactic coordinates and machine failures. Conclusion: Several areas of our SBRT delivery were reconsidered in terms of process improvement, and safety measures, including treatment checklists and a surgical time-out, were added for our practice of gantry-based image-guided SBRT. This study serves as a guide for other users of SBRT to perform FMEA of their own practice.« less

  11. Practical Implementation of Failure Mode and Effects Analysis for Safety and Efficiency in Stereotactic Radiosurgery

    SciT

    Younge, Kelly Cooper, E-mail: kyounge@med.umich.edu; Wang, Yizhen; Thompson, John

    2015-04-01

    Purpose: To improve the safety and efficiency of a new stereotactic radiosurgery program with the application of failure mode and effects analysis (FMEA) performed by a multidisciplinary team of health care professionals. Methods and Materials: Representatives included physicists, therapists, dosimetrists, oncologists, and administrators. A detailed process tree was created from an initial high-level process tree to facilitate the identification of possible failure modes. Group members were asked to determine failure modes that they considered to be the highest risk before scoring failure modes. Risk priority numbers (RPNs) were determined by each group member individually and then averaged. Results: A totalmore » of 99 failure modes were identified. The 5 failure modes with an RPN above 150 were further analyzed to attempt to reduce these RPNs. Only 1 of the initial items that the group presumed to be high-risk (magnetic resonance imaging laterality reversed) was ranked in these top 5 items. New process controls were put in place to reduce the severity, occurrence, and detectability scores for all of the top 5 failure modes. Conclusions: FMEA is a valuable team activity that can assist in the creation or restructuring of a quality assurance program with the aim of improved safety, quality, and efficiency. Performing the FMEA helped group members to see how they fit into the bigger picture of the program, and it served to reduce biases and preconceived notions about which elements of the program were the riskiest.« less

  12. SU-E-T-627: Failure Modes and Effect Analysis for Monthly Quality Assurance of Linear Accelerator

    SciT

    Xie, J; Xiao, Y; Wang, J

    2014-06-15

    Purpose: To develop and implement a failure mode and effect analysis (FMEA) on routine monthly Quality Assurance (QA) tests (physical tests part) of linear accelerator. Methods: A systematic failure mode and effect analysis method was performed for monthly QA procedures. A detailed process tree of monthly QA was created and potential failure modes were defined. Each failure mode may have many influencing factors. For each factor, a risk probability number (RPN) was calculated from the product of probability of occurrence (O), the severity of effect (S), and detectability of the failure (D). The RPN scores are in a range ofmore » 1 to 1000, with higher scores indicating stronger correlation to a given influencing factor of a failure mode. Five medical physicists in our institution were responsible to discuss and to define the O, S, D values. Results: 15 possible failure modes were identified and all RPN scores of all influencing factors of these 15 failue modes were from 8 to 150, and the checklist of FMEA in monthly QA was drawn. The system showed consistent and accurate response to erroneous conditions. Conclusion: The influencing factors of RPN greater than 50 were considered as highly-correlated factors of a certain out-oftolerance monthly QA test. FMEA is a fast and flexible tool to develop an implement a quality management (QM) frame work of monthly QA, which improved the QA efficiency of our QA team. The FMEA work may incorporate more quantification and monitoring fuctions in future.« less

  13. Operations analysis (study 2.1). Contingency analysis. [of failure modes anticipated during space shuttle upper stage planning

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Future operational concepts for the space transportation system were studied in terms of space shuttle upper stage failure contingencies possible during deployment, retrieval, or space servicing of automated satellite programs. Problems anticipated during mission planning were isolated using a modified 'fault tree' technique, normally used in safety analyses. A comprehensive space servicing hazard analysis is presented which classifies possible failure modes under the catagories of catastrophic collision, failure to rendezvous and dock, servicing failure, and failure to undock. The failure contingencies defined are to be taken into account during design of the upper stage.

  14. Muscle wasting and cachexia in heart failure: mechanisms and therapies.

    PubMed

    von Haehling, Stephan; Ebner, Nicole; Dos Santos, Marcelo R; Springer, Jochen; Anker, Stefan D

    2017-06-01

    Body wasting is a serious complication that affects a large proportion of patients with heart failure. Muscle wasting, also known as sarcopenia, is the loss of muscle mass and strength, whereas cachexia describes loss of weight. After reaching guideline-recommended doses of heart failure therapies, the most promising approach to treating body wasting seems to be combined therapy that includes exercise, nutritional counselling, and drug treatment. Nutritional considerations include avoiding excessive salt and fluid intake, and replenishment of deficiencies in trace elements. Administration of omega-3 polyunsaturated fatty acids is beneficial in selected patients. High-calorific nutritional supplements can also be useful. The prescription of aerobic exercise training that provokes mild or moderate breathlessness has good scientific support. Drugs with potential benefit in the treatment of body wasting that have been tested in clinical studies in patients with heart failure include testosterone, ghrelin, recombinant human growth hormone, essential amino acids, and β 2 -adrenergic receptor agonists. In this Review, we summarize the pathophysiological mechanisms of muscle wasting and cachexia in heart failure, and highlight the potential treatment strategies. We aim to provide clinicians with the relevant information on body wasting to understand and treat these conditions in patients with heart failure.

  15. Topological modes bound to dislocations in mechanical metamaterials

    NASA Astrophysics Data System (ADS)

    Paulose, Jayson; Chen, Bryan Gin-Ge; Vitelli, Vincenzo

    2015-02-01

    Mechanical metamaterials are artificial structures with unusual properties, such as negative Poisson ratio, bistability or tunable vibrational properties, that originate in the geometry of their unit cell. Often at the heart of such unusual behaviour is a soft mode: a motion that does not significantly stretch or compress the links between constituent elements. When activated by motors or external fields, soft modes become the building blocks of robots and smart materials. Here, we demonstrate the existence of topological soft modes that can be positioned at desired locations in a metamaterial while being robust against a wide range of structural deformations or changes in material parameters. These protected modes, localized at dislocations in deformed kagome and square lattices, are the mechanical analogue of topological states bound to defects in electronic systems. We create physical realizations of the topological modes in prototypes of kagome lattices built out of rigid triangular plates. We show mathematically that they originate from the interplay between two Berry phases: the Burgers vector of the dislocation and the topological polarization of the lattice. Our work paves the way towards engineering topologically protected nanomechanical structures for molecular robotics or information storage and read-out.

  16. Using failure mode and effects analysis to improve the safety of neonatal parenteral nutrition.

    PubMed

    Arenas Villafranca, Jose Javier; Gómez Sánchez, Araceli; Nieto Guindo, Miriam; Faus Felipe, Vicente

    2014-07-15

    Failure mode and effects analysis (FMEA) was used to identify potential errors and to enable the implementation of measures to improve the safety of neonatal parenteral nutrition (PN). FMEA was used to analyze the preparation and dispensing of neonatal PN from the perspective of the pharmacy service in a general hospital. A process diagram was drafted, illustrating the different phases of the neonatal PN process. Next, the failures that could occur in each of these phases were compiled and cataloged, and a questionnaire was developed in which respondents were asked to rate the following aspects of each error: incidence, detectability, and severity. The highest scoring failures were considered high risk and identified as priority areas for improvements to be made. The evaluation process detected a total of 82 possible failures. Among the phases with the highest number of possible errors were transcription of the medical order, formulation of the PN, and preparation of material for the formulation. After the classification of these 82 possible failures and of their relative importance, a checklist was developed to achieve greater control in the error-detection process. FMEA demonstrated that use of the checklist reduced the level of risk and improved the detectability of errors. FMEA was useful for detecting medication errors in the PN preparation process and enabling corrective measures to be taken. A checklist was developed to reduce errors in the most critical aspects of the process. Copyright © 2014 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  17. Advanced composites: Design and application. Proceedings of the meeting of the Mechanical Failures Prevention Group

    NASA Technical Reports Server (NTRS)

    Shives, T. R.; Willard, W. A.

    1979-01-01

    The design and application of advanced composites is discussed with emphasis on aerospace, aircraft, automotive, marine, and industrial applications. Failure modes in advanced composites are also discussed.

  18. Burst mode pumping: A new mechanism of drinking in mosquitoes

    DOE PAGES

    Kikuchi, Kenji; Stremler, Mark A.; Chatterjee, Souvick; ...

    2018-03-20

    Mosquitoes transport liquid foods into the body using two muscular pumps in the head. In normal drinking, these pumps reciprocate in a stereotyped pattern of oscillation, with a high frequency but small stroke volume. Do mosquitoes modulate their neuromotor programs for pumping to produce different drinking modes? More broadly, what are the mechanical consequences of a two-pump system in insects? To address these questions, we used synchrotron x-ray imaging and fluid mechanical modeling to investigate drinking performance in mosquitoes. X-ray imaging of the pumps during drinking revealed two modes of pumping: continuous reciprocation with multiple small strokes, and a newlymore » discovered ‘burst mode’ involving a single, large-volume stroke. Results from modeling demonstrate that burst mode pumping creates a very large pressure drop and high volume flow rate, but requires a massive increase in power, suggesting that continuous pumping is more economical for drinking. Modeling also demonstrates that, from one mode of pumping to the other, the mechanical role of the individual pumps changes. Furthermore, these results suggest that the advantage of a two-pump system in insects lies in its flexibility, enabling the animal to pump efficiently or powerfully as demanded by environmental considerations.« less

  19. Burst mode pumping: A new mechanism of drinking in mosquitoes

    SciT

    Kikuchi, Kenji; Stremler, Mark A.; Chatterjee, Souvick

    Mosquitoes transport liquid foods into the body using two muscular pumps in the head. In normal drinking, these pumps reciprocate in a stereotyped pattern of oscillation, with a high frequency but small stroke volume. Do mosquitoes modulate their neuromotor programs for pumping to produce different drinking modes? More broadly, what are the mechanical consequences of a two-pump system in insects? To address these questions, we used synchrotron x-ray imaging and fluid mechanical modeling to investigate drinking performance in mosquitoes. X-ray imaging of the pumps during drinking revealed two modes of pumping: continuous reciprocation with multiple small strokes, and a newlymore » discovered ‘burst mode’ involving a single, large-volume stroke. Results from modeling demonstrate that burst mode pumping creates a very large pressure drop and high volume flow rate, but requires a massive increase in power, suggesting that continuous pumping is more economical for drinking. Modeling also demonstrates that, from one mode of pumping to the other, the mechanical role of the individual pumps changes. Furthermore, these results suggest that the advantage of a two-pump system in insects lies in its flexibility, enabling the animal to pump efficiently or powerfully as demanded by environmental considerations.« less

  20. Material wear and failure mode analysis of breakfast cereal extruder barrels and screw elements

    NASA Astrophysics Data System (ADS)

    Mastio, Michael Joseph, Jr.

    2005-11-01

    Nearly seventy-five years ago, the single screw extruder was introduced as a means to produce metal products. Shortly after that, the extruder found its way into the plastics industry. Today much of the world's polymer industry utilizes extruders to produce items such as soda bottles, PVC piping, and toy figurines. Given the significant economical advantages of extruders over conventional batch flow systems, extruders have also migrated into the food industry. Food applications include the meat, pet food, and cereal industries to name just a few. Cereal manufacturers utilize extruders to produce various forms of Ready-to-Eat (RTE) cereals. These cereals are made from grains such as rice, oats, wheat, and corn. The food industry has been incorrectly viewed as an extruder application requiring only minimal energy control and performance capability. This misconception has resulted in very little research in the area of material wear and failure mode analysis of breakfast cereal extruders. Breakfast cereal extruder barrels and individual screw elements are subjected to the extreme pressures and temperatures required to shear and cook the cereal ingredients, resulting in excessive material wear and catastrophic failure of these components. Therefore, this project focuses on the material wear and failure mode analysis of breakfast cereal extruder barrels and screw elements, modeled as a Discrete Time Markov Chain (DTMC) process in which historical data is used to predict future failures. Such predictive analysis will yield cost savings opportunities by providing insight into extruder maintenance scheduling and interchangeability of screw elements. In this DTMC wear analysis, four states of wear are defined and a probability transition matrix is determined based upon 24,041 hours of operational data. This probability transition matrix is used to predict when an extruder component will move to the next state of wear and/or failure. This information can be used to determine

  1. Mechanism of force mode dip-pen nanolithography

    SciT

    Yang, Haijun, E-mail: yanghaijun@sinap.ac.cn, E-mail: swguo@sjtu.edu.cn, E-mail: wanghuabin@cigit.ac.cn; Interfacial Water Division and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, CAS, Shanghai 201800; Xie, Hui

    In this work, the underlying mechanism of the force mode dip-pen nanolithography (FMDPN) is investigated in depth by analyzing force curves, tapping mode deflection signals, and “Z-scan” voltage variations during the FMDPN. The operation parameters including the relative “trigger threshold” and “surface delay” parameters are vital to control the loading force and dwell time for ink deposition during FMDPN. A model is also developed to simulate the interactions between the atomic force microscope tip and soft substrate during FMDPN, and verified by its good performance in fitting our experimental data.

  2. Acoustic emission spectral analysis of fiber composite failure mechanisms

    NASA Technical Reports Server (NTRS)

    Egan, D. M.; Williams, J. H., Jr.

    1978-01-01

    The acoustic emission of graphite fiber polyimide composite failure mechanisms was investigated with emphasis on frequency spectrum analysis. Although visual examination of spectral densities could not distinguish among fracture sources, a paired-sample t statistical analysis of mean normalized spectral densities did provide quantitative discrimination among acoustic emissions from 10 deg, 90 deg, and plus or minus 45 deg, plus or minus 45 deg sub s specimens. Comparable discrimination was not obtained for 0 deg specimens.

  3. Annular Mode Dynamics: Eddy Feedbacks and the Underlying Mechanisms

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, P.; Ma, D.; Kuang, Z.

    2017-12-01

    Annular modes are the leading modes the extratropical circulation variability in both hemispheres on intraseasonal to interannual timescales. Temporal persistence and an equivalent-barotropic dipolar wind anomaly are the key spatio-temporal characteristics of the annular modes. The potential source(s) of this persistence, and in particular, whether there is a contribution from a positive eddy-jet feedback, are still unclear (e.g., Lorenz and Hartmann, 2001; Byrne et al., 2016). The mechanism of this feedback, and how it depends on processes such as surface friction, is also not well understood (e.g., Robinson, 2000; Gerber et al., 2007). In this study, we utilize the recently calculated Linear Response Function (LRF) of an idealized GCM (Hassanzadeh and Kuang, 2016). The LRF enables us to accurately calculate the response of eddy momentum/heat fluxes to the zonal-mean zonal wind and temperature anomalies of the annular mode. Using this information: 1) We confirm the existence of a positive eddy-jet feedback in the annular mode of the idealized GCM and accurately quantify the magnitude of this feedback; 2) We quantify the contribution of key processes (e.g., eddy momentum/heat fluxes and surface friction) to the annular mode dynamics in the idealized GCM. We show that as proposed by Robinson (2000), the baroclinic component of the annular mode and surface friction are essential for the positive eddy-jet feedback. Results show that this feedback increases the persistence of the annular mode by a factor of two. We also show that the barotropic component of the annular mode alone does not lead to persistence. In fact, the eddy-jet feedback for the barotropic component is negative because of the dominance of the barotropic governor effect. 3) Using the results of 1, we evaluate the underlying assumptions and accuracy of the statistical methods previously developed for quantifying the eddy-jet feedback (Lorenz and Hartmann, 2001; Simpson et al., 2013) and introduce a new

  4. Accretion mode of oceanic ridges governed by axial mechanical strength

    NASA Astrophysics Data System (ADS)

    Sibrant, A. L. R.; Mittelstaedt, E.; Davaille, A.; Pauchard, L.; Aubertin, A.; Auffray, L.; Pidoux, R.

    2018-04-01

    Oceanic spreading ridges exhibit structural changes as a function of spreading rate, mantle temperature and the balance of tectonic and magmatic accretion. The role that these or other processes have in governing the overall shape of oceanic ridges is unclear. Here, we use laboratory experiments to simulate ridge spreading in colloidal aqueous dispersions whose rheology evolves from purely viscous to elastic and brittle when placed in contact with a saline water solution. We find that ridge shape becomes increasingly linear with spreading rate until reaching a minimum tortuosity. This behaviour is predicted by the axial failure parameter ΠF, a dimensionless number describing the balance of brittle and plastic failure of axial lithosphere. Slow-spreading, fault-dominated and fast-spreading, fluid intrusion-dominated ridges on Earth and in the laboratory are separated by the same critical ΠF value, suggesting that the axial failure mode governs ridge geometry. Values of ΠF can also be calculated for different mantle temperatures and applied to other planets or the early Earth. For higher mantle temperatures during the Archaean, our results preclude the predicted formation of large tectonic plates at high spreading velocity.

  5. Use of failure mode effect analysis (FMEA) to improve medication management process.

    PubMed

    Jain, Khushboo

    2017-03-13

    Purpose Medication management is a complex process, at high risk of error with life threatening consequences. The focus should be on devising strategies to avoid errors and make the process self-reliable by ensuring prevention of errors and/or error detection at subsequent stages. The purpose of this paper is to use failure mode effect analysis (FMEA), a systematic proactive tool, to identify the likelihood and the causes for the process to fail at various steps and prioritise them to devise risk reduction strategies to improve patient safety. Design/methodology/approach The study was designed as an observational analytical study of medication management process in the inpatient area of a multi-speciality hospital in Gurgaon, Haryana, India. A team was made to study the complex process of medication management in the hospital. FMEA tool was used. Corrective actions were developed based on the prioritised failure modes which were implemented and monitored. Findings The percentage distribution of medication errors as per the observation made by the team was found to be maximum of transcription errors (37 per cent) followed by administration errors (29 per cent) indicating the need to identify the causes and effects of their occurrence. In all, 11 failure modes were identified out of which major five were prioritised based on the risk priority number (RPN). The process was repeated after corrective actions were taken which resulted in about 40 per cent (average) and around 60 per cent reduction in the RPN of prioritised failure modes. Research limitations/implications FMEA is a time consuming process and requires a multidisciplinary team which has good understanding of the process being analysed. FMEA only helps in identifying the possibilities of a process to fail, it does not eliminate them, additional efforts are required to develop action plans and implement them. Frank discussion and agreement among the team members is required not only for successfully conducing

  6. Failure mechanism of the polymer infiltration of carbon nanotube forests

    NASA Astrophysics Data System (ADS)

    Buchheim, Jakob; Park, Hyung Gyu

    2016-11-01

    Polymer melt infiltration is one of the feasible methods for manufacturing filter membranes out of carbon nanotubes (CNTs) on large scales. Practically, however, its process suffers from low yields, and the mechanism behind this failure is rather poorly understood. Here, we investigate a failure mechanism of polymer melt infiltration of vertical aligned (VA-) CNTs. In penetrating the VA-CNT interstices, polymer melts exert a capillarity-induced attractive force laterally on CNTs at the moving meniscus, leading to locally agglomerated macroscale bunches. Such a large configurational change can deform and distort individual CNTs so much as to cause buckling or breakdown of the alignment. In view of membrane manufacturing, this irreversible distortion of nanotubes is detrimental, as it could block the transport path of the membranes. The failure mechanism of the polymer melt infiltration is largely attributed to steric hindrance and an energy penalty of confined polymer chains. Euler beam theory and scaling analysis affirm that CNTs with low aspect ratio, thick walls and sparse distribution can maintain their vertical alignment. Our results can enrich a mechanistic understanding of the polymer melt infiltration process and offer guidelines to the facile large-scale manufacturing of the CNT-polymer filter membranes.

  7. Notch strengthening or weakening governed by transition of shear failure to normal mode fracture

    PubMed Central

    Lei, Xianqi; Li, Congling; Shi, Xinghua; Xu, Xianghong; Wei, Yujie

    2015-01-01

    It is generally observed that the existence of geometrical discontinuity like notches in materials will lead to strength weakening, as a resultant of local stress concentration. By comparing the influence of notches to the strength of three typical materials, aluminum alloys with intermediate tensile ductility, metallic glasses with no tensile ductility, and brittle ceramics, we observed strengthening in aluminum alloys and metallic glasses: Tensile strength of the net section in circumferentially notched cylinders increases with the constraint quantified by the ratio of notch depth over notch root radius; in contrast, the ceramic exhibit notch weakening. The strengthening in the former two is due to resultant deformation transition: Shear failure occurs in intact samples while samples with deep notches break in normal mode fracture. No such deformation transition was observed in the ceramic, and stress concentration leads to its notch weakening. The experimental results are confirmed by theoretical analyses and numerical simulation. The results reported here suggest that the conventional criterion to use brittleness and/or ductility to differentiate notch strengthening or weakening is not physically sound. Notch strengthening or weakening relies on the existence of failure mode transition and materials exhibiting shear failure while subjected to tension will notch strengthen. PMID:26022892

  8. A novel approach for evaluating the risk of health care failure modes.

    PubMed

    Chang, Dong Shang; Chung, Jenq Hann; Sun, Kuo Lung; Yang, Fu Chiang

    2012-12-01

    Failure mode and effects analysis (FMEA) can be employed to reduce medical errors by identifying the risk ranking of the health care failure modes and taking priority action for safety improvement. The purpose of this paper is to propose a novel approach of data analysis. The approach is to integrate FMEA and a mathematical tool-Data envelopment analysis (DEA) with "slack-based measure" (SBM), in the field of data analysis. The risk indexes (severity, occurrence, and detection) of FMEA are viewed as multiple inputs of DEA. The practicality and usefulness of the proposed approach is illustrated by one case of health care. Being a systematic approach for improving the service quality of health care, the approach can offer quantitative corrective information of risk indexes that thereafter reduce failure possibility. For safety improvement, these new targets of the risk indexes could be used for management by objectives. But FMEA cannot provide quantitative corrective information of risk indexes. The novel approach can surely overcome this chief shortcoming of FMEA. After combining DEA SBM model with FMEA, the two goals-increase of patient safety, medical cost reduction-can be together achieved.

  9. Failure mechanics in low-velocity impacts on thin composite plates

    NASA Technical Reports Server (NTRS)

    Elber, W.

    1983-01-01

    Eight-ply quasi-isotropic composite plates of Thornel 300 graphite in Narmco 5208 epoxy resin (T300/5208) were tested to establish the degree of equivalence between low-velocity impact and static testing. Both the deformation and failure mechanics under impact were representable by static indentation tests. Under low-velocity impacts such as tool drops, the dominant deformation mode of the plates was the first, or static, mode. Higher modes are excited on contact, but they decay significantly by the time the first-mode load reaches a maximum. The delamination patterns were observed by X-ray analysis. The areas of maximum delamination patterns were observed by X-ray analysis. The areas of maximum delamination coincided with the areas of highest peel stresses. The extent of delamination was similar for static and impact tests. Fiber failure damage was established by tensile tests on small fiber bundles obtained by deplying test specimens. The onset of fiber damage was in internal plies near the lower surface of the plates. The distribution and amount of fiber damage was similar fo impact and static tests.

  10. A failure modes and effects analysis study for gynecologic high-dose-rate brachytherapy.

    PubMed

    Mayadev, Jyoti; Dieterich, Sonja; Harse, Rick; Lentz, Susan; Mathai, Mathew; Boddu, Sunita; Kern, Marianne; Courquin, Jean; Stern, Robin L

    2015-01-01

    To improve the quality of our gynecologic brachytherapy practice and reduce reportable events, we performed a process analysis after the failure modes and effects analysis (FMEA). The FMEA included a multidisciplinary team specifically targeting the tandem and ring brachytherapy procedure. The treatment process was divided into six subprocesses and failure modes (FMs). A scoring guideline was developed based on published FMEA studies and assigned through team consensus. FMs were ranked according to overall and severity scores. FM ranking >5% of the highest risk priority number (RPN) score was selected for in-depth analysis. The efficiency of each existing quality assurance to detect each FM was analyzed. We identified 170 FMs, and 99 were scored. RPN scores ranged from 1 to 192. Of the 13 highest-ranking FMs with RPN scores >80, half had severity scores of 8 or 9, with no mode having severity of 10. Of these FM, the originating process steps were simulation (5), treatment planning (5), treatment delivery (2), and insertion (1). Our high-ranking FM focused on communication and the potential for applicator movement. Evaluation of the efficiency and the comprehensiveness of our quality assurance program showed coverage of all but three of the top 49 FMs ranked by RPN. This is the first reported FMEA process for a comprehensive gynecologic brachytherapy procedure overview. We were able to identify FMs that could potentially and severely impact the patient's treatment. We continue to adjust our quality assurance program based on the results of our FMEA analysis. Published by Elsevier Inc.

  11. Bibliography of information on mechanics of structural failure

    NASA Technical Reports Server (NTRS)

    Carpenter, J. L., Jr.; Moya, N.; Shaffer, R. A.; Smith, D. M.

    1973-01-01

    A bibliography of approximately 1500 reference citations related to six problem areas in the mechanics of failure in aerospace structures is presented. The bibliography represents a search of the literature published in the ten year period 1962-1972 and is largely limited to documents published in the United States. Listings are subdivided into the six problem areas: (1) life prediction of structural materials; (2) fracture toughness data; (3) fracture mechanics analysis; (4) hydrogen embrittlement; (5) protective coatings; and (6) composite materials. An author index is included.

  12. Mechanical behavior and failure mechanisms of Li-ion battery separators

    DOE PAGES

    Kalnaus, Sergiy; Wang, Yanli; Turner, John A.

    2017-03-09

    We determine and compare anisotropic mechanical properties for three types of commercially available Li-ion battery separators: Celgard 2325, Celgard PP2075 dry-processed polymer separators, and DreamWeaver Gold 40 non-woven separator. Significant amount of anisotropy of properties was determined, with the Young's modulus being different by up to a factor of 5 and ultimate strength being different by a factor of 10 between orthogonal directions within a polymer separator layer. Strain rate sensitivity was investigated by applying strain rates ranging from 1•10 -4 s -1 to 0.1 s -1. Significant strengthening was observed and the strain rate strengthening coefficients were determined formore » both elastic modulus and yield stress in case of polymer separators. Digital image correlation technique was used to measure and map the strains over the specimen's gage section. A significant strain concentration in bands running perpendicular to the tensile axis was observed in polymer separator samples oriented in transverse direction. Such localized necking allows for extremely high strains close to 300% to develop in the material. Furthermore, the failure mode was remarkably different for all three types of separators which adds additional variable in safe design of Li-ion batteries for prevention of internal short circuits.« less

  13. Reliability and mode of failure of bonded monolithic and multilayer ceramics.

    PubMed

    Alessandretti, Rodrigo; Borba, Marcia; Benetti, Paula; Corazza, Pedro Henrique; Ribeiro, Raissa; Della Bona, Alvaro

    2017-02-01

    To evaluate the reliability of monolithic and multilayer ceramic structures used in the CAD-on technique (Ivoclar), and the mode of failure produced in ceramic structures bonded to a dentin analog material (NEMA-G10). Ceramic specimens were fabricated as follows (n=30): CAD-on- trilayer structure (IPS e.max ZirCAD/IPS e.max Crystall./Connect/IPS e.max CAD); YLD- bilayer structure (IPS e.max ZirCAD/IPS e.max Ceram); LDC- monolithic structure (IPS e.max CAD); and YZW- monolithic structure (Zenostar Zr Translucent). All ceramic specimens were bonded to G10 and subjected to compressive load in 37°C distilled water until the sound of the first crack, monitored acoustically. Failure load (L f ) values were recorded (N) and statistically analyzed using Weibull distribution, Kruskal-Wallis test, and Student-Newman-Keuls test (α=0.05). L f values of CAD-on and YZW structures were statistically similar (p=0.917), but higher than YLD and LDC (p<0.01). Weibull modulus (m) values were statistically similar for all experimental groups. Monolithic structures (LDC and YZW) failed from radial cracks. Failures in the CAD-on and YLD groups showed, predominantly, both radial and cone cracks. Monolithic zirconia (YZW) and CAD-on structures showed similar failure resistance and reliability, but a different fracture behavior. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Statistical analysis of lithium iron sulfide status cell cycle life and failure mode

    SciT

    Gay, E.C.; Battles, J.E.; Miller, W.E.

    1983-08-01

    A statistical model was developed for life cycle testing of electrochemical cell life cycle trials and verified experimentally. The Weibull distribution was selected to predict the end of life for a cell, based on a 20 percent loss of initial stabilized capacity or a decrease to less than 95 percent coulombic efficiency. Groups of 12 or more Li-alloy/FeS cells were cycled to determine the mean time to failure (MTTF) and also to identify the failure modes. The cells were all full size electric vehicle batteries with 150-350 A-hr capacity. The Weibull shape factors were determined and verified in prediction ofmore » the number of cell failures in two 10 cell modules. The short circuit failure in the cells with BN-felt and MgO powder separators were found to be caused by the formation of Li-Al protrusions that penetrated the BN-felt separators, and the extrusion of active material at the edge of the electrodes.« less

  15. Failure mode and effects analysis of skin electronic brachytherapy using Esteya® unit

    PubMed Central

    Bautista-Ballesteros, Juan Antonio; Bonaque, Jorge; Celada, Francisco; Lliso, Françoise; Carmona, Vicente; Gimeno-Olmos, Jose; Ouhib, Zoubir; Rosello, Joan; Perez-Calatayud, Jose

    2016-01-01

    Purpose Esteya® (Nucletron, an Elekta company, Elekta AB, Stockholm, Sweden) is an electronic brachytherapy device used for skin cancer lesion treatment. In order to establish an adequate level of quality of treatment, a risk analysis of the Esteya treatment process has been done, following the methodology proposed by the TG-100 guidelines of the American Association of Physicists in Medicine (AAPM). Material and methods A multidisciplinary team familiar with the treatment process was formed. This team developed a process map (PM) outlining the stages, through which a patient passed when subjected to the Esteya treatment. They identified potential failure modes (FM) and each individual FM was assessed for the severity (S), frequency of occurrence (O), and lack of detection (D). A list of existing quality management tools was developed and the FMs were consensually reevaluated. Finally, the FMs were ranked according to their risk priority number (RPN) and their S. Results 146 FMs were identified, 106 of which had RPN ≥ 50 and 30 had S ≥ 7. After introducing the quality management tools, only 21 FMs had RPN ≥ 50. The importance of ensuring contact between the applicator and the surface of the patient’s skin was emphasized, so the setup was reviewed by a second individual before each treatment session with periodic quality control to ensure stability of the applicator pressure. Some of the essential quality management tools are already being implemented in the installation are the simple templates for reproducible positioning of skin applicators, that help marking the treatment area and positioning of X-ray tube. Conclusions New quality management tools have been established as a result of the application of the failure modes and effects analysis (FMEA) treatment. However, periodic update of the FMEA process is necessary, since clinical experience has suggested occurring of further new possible potential failure modes. PMID:28115958

  16. Mean flow generation mechanism by inertial waves and normal modes

    NASA Astrophysics Data System (ADS)

    Will, Andreas; Ghasemi, Abouzar

    2016-04-01

    The mean flow generation mechanism by nonlinearity of the inertial normal modes and inertial wave beams in a rotating annular cavity with longitudinally librating walls in stable regime is discussed. Inertial normal modes (standing waves) are excited when libration frequency matches eigenfrequencies of the system. Inertial wave beams are produced by Ekman pumping and suction in a rotating cylinder and form periodic orbits or periodic ray trajectories at selected frequencies. Inertial wave beams emerge as concentrated shear layers in a librating annular cavity, while normal modes appear as global recirculation cells. Both (inertial wave beam and mode) are helical and thus intrinsically non-linear flow structures. No second mode or wave is necessary for non-linearity. We considered the low order normal modes (1,1), (2,1) and (2,2) which are expected to be excited in the planetary objects and investigate the mean flow generation mechanism using two independent solutions: 1) analytical solution (Borcia 2012) and 2) the wave component of the flow (ω0 component) obtained from the direct numerical simulation (DNS). It is well known that a retrograde bulk mean flow is generated by the Ekman boundary layer and E1/4-Stewartson layer close to the outer cylinder side wall due to libration. At and around the normal mode resonant frequencies we found additionally a prograde azimuthal mean flow (Inertial Normal Mode Mean Flow: INMMF) in the bulk of the fluid. The fluid in the bulk is in geostrophic balance in the absence of the inertial normal modes. However, when INMMF is excited, we found that the geostrophic balance does not hold in the region occupied by INMMF. We hypothesize that INMMF is generated by the nonlinearity of the normal modes or by second order effects. Expanding the velocity {V}(u_r,u_θ,u_z) and pressure (p) in a power series in ɛ (libration amplitude), the Navier-Stokes equations are segregated into the linear and nonlinear parts at orders ɛ1 and ɛ^2

  17. Influence of surface finishing on fracture load and failure mode of glass ceramic crowns.

    PubMed

    Mores, Rafael Tagliari; Borba, Márcia; Corazza, Pedro Henrique; Della Bona, Álvaro; Benetti, Paula

    2017-10-01

    Ceramic restorations often require adjustments using diamond rotary instruments, which damage the glazed surface. The effect of these adjustments on the fracture behavior of these restorations is unclear. The purpose of this in vitro study was to evaluate the influence of induced surface defects on the fracture load and mode of failure of lithium disilicate-based (LDS) glass ceramic restorations. Premolar crowns were obtained from LDS computer-aided design and computer-aided manufacturing blocks (n=60) and glazed. The crowns were bonded to dentin analog dies and divided into 5 groups (n=12), as follows: glaze; abrasion (diamond rotary instrument 2135); abrasion and reglaze; abrasion and polishing (diamond rotary instrument 2135F, 2135 FF, and polishing devices); and polishing. The topography of the crowns was examined by scanning electron microscopy, and roughness was measured. A compressive load (0.5 mm/min) was applied by a piston to the center of the lingual cusp until fracture. The fracture load was recorded and data were statistically analyzed by ANOVA and the Tukey HSD test (α=.05). Fractured crowns were examined to determine the fracture origin. Polishing and/or reglazing resulted in lower roughness than for the abraded group (P<.05), which did not affect the fracture loads (P=.696). Catastrophic fracture with origin at the intaglio surface was the mode of failure for all the crowns. The experiment design successfully submitted the crowns to a clinical stress state, resulting in a clinically relevant failure. Reglazing or polishing were effective in reducing surface defects. Surface treatments had no effect on the immediate catastrophic failure of LDS crowns. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  18. Direct modeling parameter signature analysis and failure mode prediction of physical systems using hybrid computer optimization

    NASA Technical Reports Server (NTRS)

    Drake, R. L.; Duvoisin, P. F.; Asthana, A.; Mather, T. W.

    1971-01-01

    High speed automated identification and design of dynamic systems, both linear and nonlinear, are discussed. Special emphasis is placed on developing hardware and techniques which are applicable to practical problems. The basic modeling experiment and new results are described. Using the improvements developed successful identification of several systems, including a physical example as well as simulated systems, was obtained. The advantages of parameter signature analysis over signal signature analysis in go-no go testing of operational systems were demonstrated. The feasibility of using these ideas in failure mode prediction in operating systems was also investigated. An improved digital controlled nonlinear function generator was developed, de-bugged, and completely documented.

  19. Hazards/Failure Modes and Effects Analysis MK 1 MOD 0 LSO-HUD Console System.

    DTIC Science & Technology

    1980-03-24

    AsI~f~ ! 127 = 3gc Z Isre -0 -q ~sI I I 𔃻~~~ ~ _ _ 3_______ II! -0udC Z Z’ P4 12 d-U * ~s ’:i~i42 S- 60 -, Uh ~ U3l I OM -C ~ . - U 4~ dcd 8U-q Ali...8 VI SCOPE AND METHODOLOGY OF ANALYSIS ........ 1O FIGURE 1: H/ FMEA /(SSA) WORK SHEET FORMAT ........... 14 APPENDIX A: HAZARD/FAILURE MODES AND...EFFECTS ANALYSIS (H/ FMEA ) -- WORK SHEETS ......... 15(A-O) TABLE: SUBSYSTEM: UNIT I Heads-Up Display Console .............. 17(A-1) UNIT 2 Auxiliary

  20. [Failure mode and effects analysis (FMEA) of insulin in a mother-child university-affiliated health center].

    PubMed

    Berruyer, M; Atkinson, S; Lebel, D; Bussières, J-F

    2016-01-01

    Insulin is a high-alert drug. The main objective of this descriptive cross-sectional study was to evaluate the risks associated with insulin use in healthcare centers. The secondary objective was to propose corrective measures to reduce the main risks associated with the most critical failure modes in the analysis. We conducted a failure mode and effects analysis (FMEA) in obstetrics-gynecology, neonatology and pediatrics. Five multidisciplinary meetings occurred in August 2013. A total of 44 out of 49 failure modes were analyzed. Nine out of 44 (20%) failure modes were deemed critical, with a criticality score ranging from 540 to 720. Following the multidisciplinary meetings, everybody agreed that an FMEA was a useful tool to identify failure modes and their relative importance. This approach identified many corrective measures. This shared experience increased awareness of safety issues with insulin in our mother-child center. This study identified the main failure modes and associated corrective measures. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  1. Proposal on How To Conduct a Biopharmaceutical Process Failure Mode and Effect Analysis (FMEA) as a Risk Assessment Tool.

    PubMed

    Zimmermann, Hartmut F; Hentschel, Norbert

    2011-01-01

    With the publication of the quality guideline ICH Q9 "Quality Risk Management" by the International Conference on Harmonization, risk management has already become a standard requirement during the life cycle of a pharmaceutical product. Failure mode and effect analysis (FMEA) is a powerful risk analysis tool that has been used for decades in mechanical and electrical industries. However, the adaptation of the FMEA methodology to biopharmaceutical processes brings about some difficulties. The proposal presented here is intended to serve as a brief but nevertheless comprehensive and detailed guideline on how to conduct a biopharmaceutical process FMEA. It includes a detailed 1-to-10-scale FMEA rating table for occurrence, severity, and detectability of failures that has been especially designed for typical biopharmaceutical processes. The application for such a biopharmaceutical process FMEA is widespread. It can be useful whenever a biopharmaceutical manufacturing process is developed or scaled-up, or when it is transferred to a different manufacturing site. It may also be conducted during substantial optimization of an existing process or the development of a second-generation process. According to their resulting risk ratings, process parameters can be ranked for importance and important variables for process development, characterization, or validation can be identified. Health authorities around the world ask pharmaceutical companies to manage risk during development and manufacturing of pharmaceuticals. The so-called failure mode and effect analysis (FMEA) is an established risk analysis tool that has been used for decades in mechanical and electrical industries. However, the adaptation of the FMEA methodology to pharmaceutical processes that use modern biotechnology (biopharmaceutical processes) brings about some difficulties, because those biopharmaceutical processes differ from processes in mechanical and electrical industries. The proposal presented here

  2. Fatigue of the Resin-Enamel Bonded Interface and the Mechanisms of Failure

    PubMed Central

    Yahyazadehfar, Mobin; Mutluay, Mustafa Murat; Majd, Hessam; Ryou, Heonjune; Arola, Dwayne

    2013-01-01

    The durability of adhesive bonds to enamel and dentin and the mechanisms of degradation caused by cyclic loading are important to the survival of composite restorations. In this study a novel method of evaluation was used to determine the strength of resin-enamel bonded interfaces under both static and cyclic loading, and to identify the mechanisms of failure. Specimens with twin interfaces of enamel bonded to commercial resin composite were loaded in monotonic and cyclic 4-point flexure to failure within a hydrated environment. Results for the resin-enamel interface were compared with those for the resin composite (control) and values reported for resin-dentin adhesive bonds. Under both modes of loading the strength of the resin-enamel interface was significantly (p≤0.0001) lower than that of the resin composite and the resin-dentin bonded interface. Fatigue failure of the interface occurred predominately by fracture of enamel, adjacent to the interface, and not due to adhesive failures. In the absence of water aging or acid production of biofilms, the durability of adhesive bonds to enamel is lower than that achieved in dentin bonding. PMID:23571321

  3. Failure Modes in Capacitors When Tested Under a Time-Varying Stress

    NASA Technical Reports Server (NTRS)

    Liu, David (Donhang)

    2011-01-01

    Power-on failure has been the prevalent failure mechanism for solid tantalum capacitors in decoupling applications. A surge step stress test (SSST) has been previously applied to identify the critical stress level of a capacitor batch to give some predictability to the power-on failure mechanism [1]. But SSST can also be viewed as an electrically destructive test under a time-varying stress (voltage). It consists of rapidly charging the capacitor with incremental voltage increases, through a low resistance in series, until the capacitor under test is electrically shorted. When the reliability of capacitors is evaluated, a highly accelerated life test (HALT) is usually adopted since it is a time-efficient method of determining the failure mechanism; however, a destructive test under a time-varying stress such as SSST is even more time efficient. It usually takes days or weeks to complete a HALT test, but it only takes minutes for a time-varying stress test to produce failures. The advantage of incorporating a specific time-varying stress profile into a statistical model is significant in providing an alternative life test method for quickly revealing the failure mechanism in capacitors. In this paper, a time-varying stress that mimics a typical SSST has been incorporated into the Weibull model to characterize the failure mechanism in different types of capacitors. The SSST circuit and transient conditions for correctly surge testing capacitors are discussed. Finally, the SSST was applied for testing Ta capacitors, polymer aluminum capacitors (PA capacitors), and multi-layer ceramic (MLC) capacitors with both precious metal electrodes (PME) and base metal electrodes (BME). The test results are found to be directly associated with the dielectric layer breakdown in Ta and PA capacitors and are independent of the capacitor values, the way the capacitors were built, and the capacitors manufacturers. The test results also show that MLC capacitors exhibit surge breakdown

  4. How to make the most of failure mode and effect analysis.

    PubMed

    Stalhandske, Erik; DeRosier, Joseph; Patail, Bryanne; Gosbee, John

    2003-01-01

    Current accreditation standards issued by the Joint Commission for the Accreditation of Healthcare Organizations (JCAHO) require hospitals to carry out a proactive risk assessment on at least 1 high-risk activity each year for each accredited program. Because hospital risk managers and patient safety managers generally do not have the knowledge or level of comfort for conducting a proactive risk assessment, they will appreciate the expertise offered by biomedical equipment technicians (BMETs), occupational safety and health professionals, and others. The skills that have been developed by BMETs and others while conducting job safety analyses or failure mode effect analysis can now be applied to a health care proactive analysis. This article touches on the Health Care Failure Mode and Effect Analysis (HFMEA) model that the Department of Veterans Affairs (VA) National Center for Patient Safety developed for proactive risk assessment within the health care community. The goal of this article is to enlighten BMETs and others on the growth of proactive risk assessment within health care and also on the support documents and materials produced by the VA. For additional information on HFMEA, visit the VA website at www.patientsafety.gov/HFMEA.html.

  5. Effect of Different Groundwater Levels on Seismic Dynamic Response and Failure Mode of Sandy Slope

    PubMed Central

    Huang, Shuai; Lv, Yuejun; Peng, Yanju; Zhang, Lifang; Xiu, Liwei

    2015-01-01

    Heavy seismic damage tends to occur in slopes when groundwater is present. The main objectives of this paper are to determine the dynamic response and failure mode of sandy slope subjected simultaneously to seismic forces and variable groundwater conditions. This paper applies the finite element method, which is a fast and efficient design tool in modern engineering analysis, to evaluate dynamic response of the slope subjected simultaneously to seismic forces and variable groundwater conditions. Shaking table test is conducted to analyze the failure mode and verify the accuracy of the finite element method results. The research results show that dynamic response values of the slope have different variation rules under near and far field earthquakes. And the damage location and pattern of the slope are different in varying groundwater conditions. The destruction starts at the top of the slope when the slope is in no groundwater, which shows that the slope appears obvious whipping effect under the earthquake. The destruction starts at the toe of the slope when the slope is in the high groundwater levels. Meanwhile, the top of the slope shows obvious seismic subsidence phenomenon after earthquake. Furthermore, the existence of the groundwater has a certain effect of damping. PMID:26560103

  6. Risk management for outsourcing biomedical waste disposal – Using the failure mode and effects analysis

    SciT

    Liao, Ching-Jong; Ho, Chao Chung, E-mail: ho919@pchome.com.tw

    Highlights: • This study is based on a real case in hospital in Taiwan. • We use Failure Mode and Effects Analysis (FMEA) as the evaluation method. • We successfully identify the evaluation factors of bio-medical waste disposal risk. - Abstract: Using the failure mode and effects analysis, this study examined biomedical waste companies through risk assessment. Moreover, it evaluated the supervisors of biomedical waste units in hospitals, and factors relating to the outsourcing risk assessment of biomedical waste in hospitals by referring to waste disposal acts. An expert questionnaire survey was conducted on the personnel involved in waste disposalmore » units in hospitals, in order to identify important factors relating to the outsourcing risk of biomedical waste in hospitals. This study calculated the risk priority number (RPN) and selected items with an RPN value higher than 80 for improvement. These items included “availability of freezing devices”, “availability of containers for sharp items”, “disposal frequency”, “disposal volume”, “disposal method”, “vehicles meeting the regulations”, and “declaration of three lists”. This study also aimed to identify important selection factors of biomedical waste disposal companies by hospitals in terms of risk. These findings can serve as references for hospitals in the selection of outsourcing companies for biomedical waste disposal.« less

  7. Outcomes of a Failure Mode and Effects Analysis for medication errors in pediatric anesthesia.

    PubMed

    Martin, Lizabeth D; Grigg, Eliot B; Verma, Shilpa; Latham, Gregory J; Rampersad, Sally E; Martin, Lynn D

    2017-06-01

    The Institute of Medicine has called for development of strategies to prevent medication errors, which are one important cause of preventable harm. Although the field of anesthesiology is considered a leader in patient safety, recent data suggest high medication error rates in anesthesia practice. Unfortunately, few error prevention strategies for anesthesia providers have been implemented. Using Toyota Production System quality improvement methodology, a multidisciplinary team observed 133 h of medication practice in the operating room at a tertiary care freestanding children's hospital. A failure mode and effects analysis was conducted to systematically deconstruct and evaluate each medication handling process step and score possible failure modes to quantify areas of risk. A bundle of five targeted countermeasures were identified and implemented over 12 months. Improvements in syringe labeling (73 to 96%), standardization of medication organization in the anesthesia workspace (0 to 100%), and two-provider infusion checks (23 to 59%) were observed. Medication error reporting improved during the project and was subsequently maintained. After intervention, the median medication error rate decreased from 1.56 to 0.95 per 1000 anesthetics. The frequency of medication error harm events reaching the patient also decreased. Systematic evaluation and standardization of medication handling processes by anesthesia providers in the operating room can decrease medication errors and improve patient safety. © 2017 John Wiley & Sons Ltd.

  8. Failure Mechanisms for III-Nitride HEMT Devices

    DTIC Science & Technology

    2013-11-19

    rf plasma-assisted molecular beam epitaxy on freestanding GaN substrates, J. Cryst. Growth 380, 14-17 (2013). ii) Conference presentations (Invited...1 eFinal Report – AOARD Grant FA-2386-11-1-4107 Failure Mechanisms for III-nitride HEMT devices 19 November 2013 Principal Investigators: Martha...aspects of III-nitride HEMT materials and devices. Energy-filtered imaging of unstressed and stressed Ni/Au-gated AlGaN/GaN HEMTs indicated that

  9. Biomarkers of myocardial stress and fibrosis as predictors of mode of death in patients with chronic heart failure.

    PubMed

    Ahmad, Tariq; Fiuzat, Mona; Neely, Benjamin; Neely, Megan L; Pencina, Michael J; Kraus, William E; Zannad, Faiez; Whellan, David J; Donahue, Mark P; Piña, Ileana L; Adams, Kirkwood F; Kitzman, Dalane W; O'Connor, Christopher M; Felker, G Michael

    2014-06-01

    The aim of this study was to determine whether biomarkers of myocardial stress and fibrosis improve prediction of the mode of death in patients with chronic heart failure. The 2 most common modes of death in patients with chronic heart failure are pump failure and sudden cardiac death. Prediction of the mode of death may facilitate treatment decisions. The relationship between amino-terminal pro-brain natriuretic peptide (NT-proBNP), galectin-3, and ST2, biomarkers that reflect different pathogenic pathways in heart failure (myocardial stress and fibrosis), and mode of death is unknown. HF-ACTION (Heart Failure: A Controlled Trial Investigating Outcomes of Exercise Training) was a randomized controlled trial of exercise training versus usual care in patients with chronic heart failure due to left ventricular systolic dysfunction (left ventricular ejection fraction ≤35%). An independent clinical events committee prospectively adjudicated mode of death. NT-proBNP, galectin-3, and ST2 levels were assessed at baseline in 813 subjects. Associations between biomarkers and mode of death were assessed using cause-specific Cox proportional hazards modeling, and interaction testing was used to measure differential associations between biomarkers and pump failure versus sudden cardiac death. Discrimination and risk reclassification metrics were used to assess the added value of galectin-3 and ST2 in predicting mode of death risk beyond a clinical model that included NT-proBNP. After a median follow-up period of 2.5 years, there were 155 deaths: 49 from pump failure, 42 from sudden cardiac death, and 64 from other causes. Elevations in all biomarkers were associated with increased risk for both pump failure and sudden cardiac death in both adjusted and unadjusted analyses. In each case, increases in the biomarker had a stronger association with pump failure than sudden cardiac death, but this relationship was attenuated after adjustment for clinical risk factors. Clinical

  10. Ambulatory heart rate range predicts mode-specific mortality and hospitalisation in chronic heart failure.

    PubMed

    Cubbon, Richard M; Ruff, Naomi; Groves, David; Eleuteri, Antonio; Denby, Christine; Kearney, Lorraine; Ali, Noman; Walker, Andrew M N; Jamil, Haqeel; Gierula, John; Gale, Chris P; Batin, Phillip D; Nolan, James; Shah, Ajay M; Fox, Keith A A; Sapsford, Robert J; Witte, Klaus K; Kearney, Mark T

    2016-02-01

    We aimed to define the prognostic value of the heart rate range during a 24 h period in patients with chronic heart failure (CHF). Prospective observational cohort study of 791 patients with CHF associated with left ventricular systolic dysfunction. Mode-specific mortality and hospitalisation were linked with ambulatory heart rate range (AHRR; calculated as maximum minus minimum heart rate using 24 h Holter monitor data, including paced and non-sinus complexes) in univariate and multivariate analyses. Findings were then corroborated in a validation cohort of 408 patients with CHF with preserved or reduced left ventricular ejection fraction. After a mean 4.1 years of follow-up, increasing AHRR was associated with reduced risk of all-cause, sudden, non-cardiovascular and progressive heart failure death in univariate analyses. After accounting for characteristics that differed between groups above and below median AHRR using multivariate analysis, AHRR remained strongly associated with all-cause mortality (HR 0.991/bpm increase in AHRR (95% CI 0.999 to 0.982); p=0.046). AHRR was not associated with the risk of any non-elective hospitalisation, but was associated with heart-failure-related hospitalisation. AHRR was modestly associated with the SD of normal-to-normal beats (R(2)=0.2; p<0.001) and with peak exercise-test heart rate (R(2)=0.33; p<0.001). Analysis of the validation cohort revealed AHRR to be associated with all-cause and mode-specific death as described in the derivation cohort. AHRR is a novel and readily available prognosticator in patients with CHF, which may reflect autonomic tone and exercise capacity. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  11. Ambulatory heart rate range predicts mode-specific mortality and hospitalisation in chronic heart failure

    PubMed Central

    Cubbon, Richard M; Ruff, Naomi; Groves, David; Eleuteri, Antonio; Denby, Christine; Kearney, Lorraine; Ali, Noman; Walker, Andrew M N; Jamil, Haqeel; Gierula, John; Gale, Chris P; Batin, Phillip D; Nolan, James; Shah, Ajay M; Fox, Keith A A; Sapsford, Robert J; Witte, Klaus K; Kearney, Mark T

    2016-01-01

    Objective We aimed to define the prognostic value of the heart rate range during a 24 h period in patients with chronic heart failure (CHF). Methods Prospective observational cohort study of 791 patients with CHF associated with left ventricular systolic dysfunction. Mode-specific mortality and hospitalisation were linked with ambulatory heart rate range (AHRR; calculated as maximum minus minimum heart rate using 24 h Holter monitor data, including paced and non-sinus complexes) in univariate and multivariate analyses. Findings were then corroborated in a validation cohort of 408 patients with CHF with preserved or reduced left ventricular ejection fraction. Results After a mean 4.1 years of follow-up, increasing AHRR was associated with reduced risk of all-cause, sudden, non-cardiovascular and progressive heart failure death in univariate analyses. After accounting for characteristics that differed between groups above and below median AHRR using multivariate analysis, AHRR remained strongly associated with all-cause mortality (HR 0.991/bpm increase in AHRR (95% CI 0.999 to 0.982); p=0.046). AHRR was not associated with the risk of any non-elective hospitalisation, but was associated with heart-failure-related hospitalisation. AHRR was modestly associated with the SD of normal-to-normal beats (R2=0.2; p<0.001) and with peak exercise-test heart rate (R2=0.33; p<0.001). Analysis of the validation cohort revealed AHRR to be associated with all-cause and mode-specific death as described in the derivation cohort. Conclusions AHRR is a novel and readily available prognosticator in patients with CHF, which may reflect autonomic tone and exercise capacity. PMID:26674986

  12. An unusual mode of failure of a tripolar constrained acetabular liner: a case report.

    PubMed

    Banks, Louisa N; McElwain, John P

    2010-04-01

    Dislocation after primary total hip arthroplasty (THA) is the most commonly encountered complication and is unpleasant for both the patient and the surgeon. Constrained acetabular components can be used to treat or prevent instability after primary total hip arthroplasty. We present the case of a 42-year-old female with a BMI of 41. At 18 months post-primary THA the patient underwent further revision hip surgery after numerous (more than 20) dislocations. She had a tripolar Trident acetabular cup (Stryker-Howmedica-Osteonics, Rutherford, New Jersey) inserted. Shortly afterwards the unusual mode of failure of the constrained acetabular liner was noted from radiographs in that the inner liner had dissociated from the outer. The reinforcing ring remained intact and in place. We believe that the patient's weight, combined with poor abductor musculature caused excessive demand on the device leading to failure at this interface when the patient flexed forward. Constrained acetabular components are useful implants to treat instability but have been shown to have up to 42% long-term failure rates with problems such as dissociated inserts, dissociated constraining rings and dissociated femoral rings being sited. Sometimes they may be the only option left in difficult cases such as illustrated here, but still unfortunately have the capacity to fail in unusual ways.

  13. Failure modes of microstructured fibers with sacrificial bonds made by instability-assisted 3D printing

    NASA Astrophysics Data System (ADS)

    Zou, Shibo; Therriault, Daniel; Gosselin, Frederick

    A simple modification by increasing the deposition height on a commercially available 3D printer makes it a mechanical sewing machine due to the fluid mechanical instability. A variety of stitches-like patterns can be produced, similar to those by the Newtonian fluid mechanical sewing machine\\x9D, but with more interesting characteristics in the additional third dimension, which creates weakly fused bonds in some patterns. With these bonds, the fabricated fibers exhibit improved toughness in uniaxial tensile test. The toughening mechanism is found to be similar to the one in spider silk - the breaking of sacrificial bonds and the releasing of hidden length contribute significant dissipated energy to the system. However, the mechanical performance of these microstructured fibers is restricted by early fiber breakage as the number of sacrificial bonds increases. Here, we seek to understand the failure mechanisms of the microstructured fibers through tensile tests and finite element simulations. Static and dynamic failure are both found to cause early fiber breakage. These findings are helpful for the design optimization of microstructured fibers with high toughness and ductility, which can find potential use in impact protection and safety-critical applications.

  14. Fundamental aspects of and failure modes in high-temperature composites

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Ginty, Carol A.

    1990-01-01

    Fundamental aspects of and attendant failure mechanisms for high temperature composites are summarized. These include: (1) in-situ matrix behavior; (2) load transfer; (3) limits on matrix ductility to survive a given number of cyclic loadings; (4) fundamental parameters which govern thermal stresses; (5) vibration stresses; and (6) impact resistance. The resulting guidelines are presented in terms of simple equations which are suitable for the preliminary assessment of the merits of a particular high temperature composite in a specific application.

  15. Mechanisms and pathways of growth failure in primordial dwarfism.

    PubMed

    Klingseisen, Anna; Jackson, Andrew P

    2011-10-01

    The greatest difference between species is size; however, the developmental mechanisms determining organism growth remain poorly understood. Primordial dwarfism is a group of human single-gene disorders with extreme global growth failure (which includes Seckel syndrome, microcephalic osteodysplastic primordial dwarfism I [MOPD] types I and II, and Meier-Gorlin syndrome). Ten genes have now been identified for microcephalic primordial dwarfism, encoding proteins involved in fundamental cellular processes including genome replication (ORC1 [origin recognition complex 1], ORC4, ORC6, CDT1, and CDC6), DNA damage response (ATR [ataxia-telangiectasia and Rad3-related]), mRNA splicing (U4atac), and centrosome function (CEP152, PCNT, and CPAP). Here, we review the cellular and developmental mechanisms underlying the pathogenesis of these conditions and address whether further study of these genes could provide novel insight into the physiological regulation of organism growth.

  16. Mechanisms and pathways of growth failure in primordial dwarfism

    PubMed Central

    Klingseisen, Anna; Jackson, Andrew P.

    2011-01-01

    The greatest difference between species is size; however, the developmental mechanisms determining organism growth remain poorly understood. Primordial dwarfism is a group of human single-gene disorders with extreme global growth failure (which includes Seckel syndrome, microcephalic osteodysplastic primordial dwarfism I [MOPD] types I and II, and Meier-Gorlin syndrome). Ten genes have now been identified for microcephalic primordial dwarfism, encoding proteins involved in fundamental cellular processes including genome replication (ORC1 [origin recognition complex 1], ORC4, ORC6, CDT1, and CDC6), DNA damage response (ATR [ataxia-telangiectasia and Rad3-related]), mRNA splicing (U4atac), and centrosome function (CEP152, PCNT, and CPAP). Here, we review the cellular and developmental mechanisms underlying the pathogenesis of these conditions and address whether further study of these genes could provide novel insight into the physiological regulation of organism growth. PMID:21979914

  17. Biomarkers of Myocardial Stress and Fibrosis as Predictors of Mode of Death in Patients with Chronic Heart Failure

    PubMed Central

    Ahmad, Tariq; Fiuzat, Mona; Neely, Ben; Neely, Megan; Pencina, Michael J.; Kraus, William E.; Zannad, Faiez; Whellan, David J.; Donahue, Mark; Piña, Ileana L.; Adams, Kirkwood; Kitzman, Dalane W.; O’Connor, Christopher M.; Felker, G. Michael

    2014-01-01

    Objective To determine whether biomarkers of myocardial stress and fibrosis improve prediction of mode of death in patients with chronic heart failure. Background The two most common modes of death in patients with chronic heart failure are pump failure and sudden cardiac death. Prediction of mode of death may facilitate treatment decisions. The relationship between NT-proBNP, galectin-3, and ST2, biomarkers that reflect different pathogenic pathways in heart failure (myocardial stress and fibrosis), and mode of death is unknown. Methods HF-ACTION was a randomized controlled trial of exercise training vs. usual care in patients with chronic heart failure due to left ventricular systolic dysfunction (LVEF<35%). An independent clinical events committee prospectively adjudicated mode of death. NT-proBNP, galectin-3, and ST2 levels were assessed at baseline in 813 subjects. Associations between biomarkers and mode of death were assessed using cause-specific Cox-proportional hazards modeling, and interaction testing was used to measure differential association between biomarkers and pump failure versus sudden cardiac death. Discrimination and risk reclassification metrics were used to assess the added value of galectin-3 and ST2 in predicting mode of death risk beyond a clinical model that included NT-proBNP. Results After a median follow up of 2.5 years, there were 155 deaths: 49 from pump failure 42 from sudden cardiac death, and 64 from other causes. Elevations in all biomarkers were associated with increased risk of both pump failure and sudden cardiac death in both adjusted and unadjusted analyses. In each case, increases in the biomarker had a stronger association with pump failure than sudden cardiac death but this relationship was attenuated after adjustment for clinical risk factors. Clinical variables along with NT-proBNP levels were stronger predictors of pump failure (C statistic: 0.87) than sudden cardiac death (C statistic: 0.73). Addition of ST2 and

  18. Association between bilirubin and mode of death in severe systolic heart failure.

    PubMed

    Wu, Audrey H; Levy, Wayne C; Welch, Kathleen B; Neuberg, Gerald W; O'Connor, Christopher M; Carson, Peter E; Miller, Alan B; Ghali, Jalal K

    2013-04-15

    The bilirubin level has been associated with worse outcomes, but it has not been studied as a predictor for the mode of death in patients with systolic heart failure. The Prospective Randomized Amlodipine Evaluation Study (PRAISE) cohort (including New York Heart Association class IIIB-IV patients with left ventricular ejection fraction <30%, n = 1,135) was analyzed, divided by bilirubin level: ≤0.6 mg/dl, group 1; >0.6 to 1.2 mg/dl, group 2; and >1.2 mg/dl, group 3. Multivariate Cox proportional hazards models were used to determine the association of bilirubin with the risk of sudden or pump failure death. Total bilirubin was entered as a base 2 log-transformed variable (log2 bilirubin), indicating doubling of the bilirubin level corresponding to each increase in variable value. The higher bilirubin groups had a lower ejection fraction (range 19% to 21%), sodium (range 138 to 139 mmol/L), and systolic blood pressure (range 111 to 120 mm Hg), a greater heart rate (range 79 to 81 beats/min), and greater diuretic dosages (range 86 to 110 furosemide-equivalent total daily dose in mg). The overall survival rates declined with increasing bilirubin (24.3, 31.3, and 44.3 deaths per 100 person-years, respectively, for groups 1, 2, and 3). Although a positive relation was seen between log2 bilirubin and both pump failure risk and sudden death risk, the relation in multivariate modeling was significant only for pump failure mortality (hazard ratio 1.47, 95% confidence interval 1.19 to 1.82, p = 0.0004), not for sudden death mortality (hazard ratio 1.21, 95% confidence interval 0.98 to 1.49, p = 0.08). In conclusion, an increasing bilirubin level was significantly associated with the risk of pump failure death but not for sudden death in patients with severe systolic heart failure. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Failure mechanisms of additively manufactured porous biomaterials: Effects of porosity and type of unit cell.

    PubMed

    Kadkhodapour, J; Montazerian, H; Darabi, A Ch; Anaraki, A P; Ahmadi, S M; Zadpoor, A A; Schmauder, S

    2015-10-01

    Since the advent of additive manufacturing techniques, regular porous biomaterials have emerged as promising candidates for tissue engineering scaffolds owing to their controllable pore architecture and feasibility in producing scaffolds from a variety of biomaterials. The architecture of scaffolds could be designed to achieve similar mechanical properties as in the host bone tissue, thereby avoiding issues such as stress shielding in bone replacement procedure. In this paper, the deformation and failure mechanisms of porous titanium (Ti6Al4V) biomaterials manufactured by selective laser melting from two different types of repeating unit cells, namely cubic and diamond lattice structures, with four different porosities are studied. The mechanical behavior of the above-mentioned porous biomaterials was studied using finite element models. The computational results were compared with the experimental findings from a previous study of ours. The Johnson-Cook plasticity and damage model was implemented in the finite element models to simulate the failure of the additively manufactured scaffolds under compression. The computationally predicted stress-strain curves were compared with the experimental ones. The computational models incorporating the Johnson-Cook damage model could predict the plateau stress and maximum stress at the first peak with less than 18% error. Moreover, the computationally predicted deformation modes were in good agreement with the results of scaling law analysis. A layer-by-layer failure mechanism was found for the stretch-dominated structures, i.e. structures made from the cubic unit cell, while the failure of the bending-dominated structures, i.e. structures made from the diamond unit cells, was accompanied by the shearing bands of 45°. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Stripper foil failure modes and cures at the Spallation Neutron Source

    SciT

    Cousineau, Sarah M; Galambos, John D; Kim, Sang-Ho

    2011-01-01

    The Spallation Neutron Source comprises a 1 GeV, 1.4 MW linear accelerator followed by an accumulator ring and a liquid mercury target. To manage the beam loss caused by the $H^0$ excited states created during the $H^-$ charge exchange injection into the accumulator ring, the stripper foil is located inside one of the chicane dipoles. This has some interesting consequences that were not fully appreciated until the beam power reached about 840 kW. One consequence was sudden failure of the stripper foil system due to convoy electrons stripped from the incoming $H^-$ beam, which circled around to strike the foilmore » bracket and cause bracket failure. Another consequence is that convoy electrons can reflect back up from the electron catcher and strike the foil and bracket. An additional contributor to foil system failure is vacuum breakdown due to the charge developed on the foil by secondary electron emission. In this paper we detail these and other interesting failure mechanisms and describe the improvements we have made to mitigate them.« less

  1. Stripper foil failure modes and cures at the Oak Rdige Spallation Neutron Source

    SciT

    Plum, M.A.; Raparia, D.; Cousineau, S.M.

    2011-03-28

    The Oak Ridge Spallation Neutron Source comprises a 1 GeV, 1.5 MW linear accelerator followed by an accumulator ring and a liquid mercury target. To manage the beam loss caused by the H{sup 0} excited states created during the H{sup -} charge-exchange injection into the accumulator ring, the stripper foil is located inside one of the chicane dipoles. This has some interesting consequences that were not fully appreciated until the beam power reached about 840 kW. One consequence was sudden failure of the stripper foil system due to convoy electrons stripped from the incoming H{sup -} beam, which circled aroundmore » to strike the foil bracket and cause bracket failure. Another consequence is that convoy electrons can reflect back up from the electron catcher and strike the foil and bracket. An additional contributor to foil system failure is vacuum breakdown due to the charge developed on the foil by secondary electron emission. In this paper we detail these and other interesting failure mechanisms and describe the improvements we have made to mitigate them.« less

  2. Mechanical Ventilation in Acute Hypoxemic Respiratory Failure: A Review of New Strategies for the Practicing Hospitalist

    PubMed Central

    Wilson, Jennifer G.; Matthay, Michael A.

    2014-01-01

    BACKGROUND The goal of mechanical ventilation in acute hypoxemic respiratory failure is to support adequate gas exchange without harming the lungs. How patients are mechanically ventilated can significantly impact their ultimate outcomes. METHODS This review focuses on emerging evidence regarding strategies for mechanical ventilation in patients with acute hypoxemic respiratory failure including: low tidal volume ventilation in the acute respiratory distress syndrome (ARDS), novel ventilator modes as alternatives to low tidal volume ventilation, adjunctive strategies that may enhance recovery in ARDS, the use of lung-protective strategies in patients without ARDS, rescue therapies in refractory hypoxemia, and an evidence-based approach to weaning from mechanical ventilation. RESULTS Once a patient is intubated and mechanically ventilated, low tidal volume ventilation remains the best strategy in ARDS. Adjunctive therapies in ARDS include a conservative fluid management strategy, as well as neuromuscular blockade and prone positioning in moderate-to-severe disease. There is also emerging evidence that a lung-protective strategy may benefit non-ARDS patients. For patients with refractory hypoxemia, extracorporeal membrane oxygenation should be considered. Once the patient demonstrates signs of recovery, the best approach to liberation from mechanical ventilation involves daily spontaneous breathing trials and protocolized assessment of readiness for extubation. CONCLUSIONS Prompt recognition of ARDS and use of lung-protective ventilation, as well as evidence-based adjunctive therapies, remain the cornerstones of caring for patients with acute hypoxemic respiratory failure. In the absence of contraindications, it is reasonable to consider lung-protective ventilation in non-ARDS patients as well, though the evidence supporting this practice is less conclusive. PMID:24733692

  3. Modes of mechanical ventilation for the operating room.

    PubMed

    Ball, Lorenzo; Dameri, Maddalena; Pelosi, Paolo

    2015-09-01

    Most patients undergoing surgical procedures need to be mechanically ventilated, because of the impact of several drugs administered at induction and during maintenance of general anaesthesia on respiratory function. Optimization of intraoperative mechanical ventilation can reduce the incidence of post-operative pulmonary complications and improve the patient's outcome. Preoxygenation at induction of general anaesthesia prolongs the time window for safe intubation, reducing the risk of hypoxia and overweighs the potential risk of reabsorption atelectasis. Non-invasive positive pressure ventilation delivered through different interfaces should be considered at the induction of anaesthesia morbidly obese patients. Anaesthesia ventilators are becoming increasingly sophisticated, integrating many functions that were once exclusive to intensive care. Modern anaesthesia machines provide high performances in delivering the desired volumes and pressures accurately and precisely, including assisted ventilation modes. Therefore, the physicians should be familiar with the potential and pitfalls of the most commonly used intraoperative ventilation modes: volume-controlled, pressure-controlled, dual-controlled and assisted ventilation. Although there is no clear evidence to support the advantage of any one of these ventilation modes over the others, protective mechanical ventilation with low tidal volume and low levels of positive end-expiratory pressure (PEEP) should be considered in patients undergoing surgery. The target tidal volume should be calculated based on the predicted or ideal body weight rather than on the actual body weight. To optimize ventilation monitoring, anaesthesia machines should include end-inspiratory and end-expiratory pause as well as flow-volume loop curves. The routine administration of high PEEP levels should be avoided, as this may lead to haemodynamic impairment and fluid overload. Higher PEEP might be considered during surgery longer than 3 h

  4. Numerical model of thermo-mechanical coupling for the tensile failure process of brittle materials

    NASA Astrophysics Data System (ADS)

    Fu, Yu; Wang, Zhe; Ren, Fengyu; Wang, Daguo

    2017-10-01

    A numerical model of thermal cracking with a thermo-mechanical coupling effect was established. The theory of tensile failure and heat conduction is used to study the tensile failure process of brittle materials, such as rock and concrete under high temperature environment. The validity of the model is verified by thick-wall cylinders with analytical solutions. The failure modes of brittle materials under thermal stresses caused by temperature gradient and different thermal expansion coefficient were studied by using a thick-wall cylinder model and an embedded particle model, respectively. In the thick-wall cylinder model, different forms of cracks induced by temperature gradient were obtained under different temperature boundary conditions. In the embedded particle model, radial cracks were produced in the medium part with lower tensile strength when temperature increased because of the different thermal expansion coefficient. Model results are in good agreement with the experimental results, thereby providing a new finite element method for analyzing the thermal damage process and mechanism of brittle materials.

  5. Human factors process failure modes and effects analysis (HF PFMEA) software tool

    NASA Technical Reports Server (NTRS)

    Chandler, Faith T. (Inventor); Relvini, Kristine M. (Inventor); Shedd, Nathaneal P. (Inventor); Valentino, William D. (Inventor); Philippart, Monica F. (Inventor); Bessette, Colette I. (Inventor)

    2011-01-01

    Methods, computer-readable media, and systems for automatically performing Human Factors Process Failure Modes and Effects Analysis for a process are provided. At least one task involved in a process is identified, where the task includes at least one human activity. The human activity is described using at least one verb. A human error potentially resulting from the human activity is automatically identified, the human error is related to the verb used in describing the task. A likelihood of occurrence, detection, and correction of the human error is identified. The severity of the effect of the human error is identified. The likelihood of occurrence, and the severity of the risk of potential harm is identified. The risk of potential harm is compared with a risk threshold to identify the appropriateness of corrective measures.

  6. Optimisation of shock absorber process parameters using failure mode and effect analysis and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Mariajayaprakash, Arokiasamy; Senthilvelan, Thiyagarajan; Vivekananthan, Krishnapillai Ponnambal

    2013-07-01

    The various process parameters affecting the quality characteristics of the shock absorber during the process were identified using the Ishikawa diagram and by failure mode and effect analysis. The identified process parameters are welding process parameters (squeeze, heat control, wheel speed, and air pressure), damper sealing process parameters (load, hydraulic pressure, air pressure, and fixture height), washing process parameters (total alkalinity, temperature, pH value of rinsing water, and timing), and painting process parameters (flowability, coating thickness, pointage, and temperature). In this paper, the process parameters, namely, painting and washing process parameters, are optimized by Taguchi method. Though the defects are reasonably minimized by Taguchi method, in order to achieve zero defects during the processes, genetic algorithm technique is applied on the optimized parameters obtained by Taguchi method.

  7. Failure mode effect analysis and fault tree analysis as a combined methodology in risk management

    NASA Astrophysics Data System (ADS)

    Wessiani, N. A.; Yoshio, F.

    2018-04-01

    There have been many studies reported the implementation of Failure Mode Effect Analysis (FMEA) and Fault Tree Analysis (FTA) as a method in risk management. However, most of the studies usually only choose one of these two methods in their risk management methodology. On the other side, combining these two methods will reduce the drawbacks of each methods when implemented separately. This paper aims to combine the methodology of FMEA and FTA in assessing risk. A case study in the metal company will illustrate how this methodology can be implemented. In the case study, this combined methodology will assess the internal risks that occur in the production process. Further, those internal risks should be mitigated based on their level of risks.

  8. Random safety auditing, root cause analysis, failure mode and effects analysis.

    PubMed

    Ursprung, Robert; Gray, James

    2010-03-01

    Improving quality and safety in health care is a major concern for health care providers, the general public, and policy makers. Errors and quality issues are leading causes of morbidity and mortality across the health care industry. There is evidence that patients in the neonatal intensive care unit (NICU) are at high risk for serious medical errors. To facilitate compliance with safe practices, many institutions have established quality-assurance monitoring procedures. Three techniques that have been found useful in the health care setting are failure mode and effects analysis, root cause analysis, and random safety auditing. When used together, these techniques are effective tools for system analysis and redesign focused on providing safe delivery of care in the complex NICU system. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Failure mode and effects analysis (FMEA) for the Space Shuttle solid rocket motor

    NASA Technical Reports Server (NTRS)

    Russell, D. L.; Blacklock, K.; Langhenry, M. T.

    1988-01-01

    The recertification of the Space Shuttle Solid Rocket Booster (SRB) and Solid Rocket Motor (SRM) has included an extensive rewriting of the Failure Mode and Effects Analysis (FMEA) and Critical Items List (CIL). The evolution of the groundrules and methodology used in the analysis is discussed and compared to standard FMEA techniques. Especially highlighted are aspects of the FMEA/CIL which are unique to the analysis of an SRM. The criticality category definitions are presented and the rationale for assigning criticality is presented. The various data required by the CIL and contribution of this data to the retention rationale is also presented. As an example, the FMEA and CIL for the SRM nozzle assembly is discussed in detail. This highlights some of the difficulties associated with the analysis of a system with the unique mission requirements of the Space Shuttle.

  10. Comparison of Failure Modes in 2-D and 3-D Woven Carbon Phenolic Systems

    NASA Technical Reports Server (NTRS)

    Rossman, Grant A.; Stackpoole, Mairead; Feldman, Jay; Venkatapathy, Ethiraj; Braun, Robert D.

    2013-01-01

    NASA Ames Research Center is developing Woven Thermal Protection System (WTPS) materials as a new class of heatshields for entry vehicles (Stackpoole). Currently, there are few options for ablative entry heatshield materials, none of which is ideally suited to the planetary probe missions currently of interest to NASA. While carbon phenolic was successfully used for the missions Pioneer Venus and Galileo (to Jupiter), the heritage constituents are no longer available. An alternate carbon phenolic would need to be qualified for probe missions, which is most efficient at heat fluxes greater than those currently of interest. Additional TPS materials such as Avcoat and PICA are not sufficiently robust for the heat fluxes required. As a result, there is a large TPS gap between the materials efficient at very high conditions (carbon phenolic) and those that are effective at low-moderate conditions (all others). Development of 3D Woven TPS is intended to fill this gap, targeting mid-density weaves that could with withstand mid-range heat fluxes between 1100 W/sq cm and 8000 W/sq cm (Venkatapathy (2012). Preliminary experimental studies have been performed to show the feasibility of WTPS as a future mid-range TPS material. One study performed in the mARC Jet Facility at NASA Ames Research Center characterized the performance of a 3D Woven TPS sample and compared it to 2D carbon phenolic samples at ply angles of 0deg, 23.5deg, and 90deg. Each sample contained similar compositions of phenolic and carbon fiber volume fractions for experimental consistency. The goal of this study was to compare the performance of the TPS materials by evaluating resulting recession and failure modes. After exposing both samples to similar heat flux and pressure conditions, the 2D carbon phenolic laminate was shown to experience significant delamination between layers and further pocketing underneath separated layers. The 3D Woven TPS sample did not experience the delamination or pocketing

  11. SU-F-P-07: Applying Failure Modes and Effects Analysis to Treatment Planning System QA

    SciT

    Mathew, D; Alaei, P

    2016-06-15

    Purpose: A small-scale implementation of Failure Modes and Effects Analysis (FMEA) for treatment planning system QA by utilizing methodology of AAPM TG-100 report. Methods: FMEA requires numerical values for severity (S), occurrence (O) and detectability (D) of each mode of failure. The product of these three values gives a risk priority number (RPN). We have implemented FMEA for the treatment planning system (TPS) QA for two clinics which use Pinnacle and Eclipse TPS. Quantitative monthly QA data dating back to 4 years for Pinnacle and 1 year for Eclipse have been used to determine values for severity (deviations from predeterminedmore » doses at points or volumes), and occurrence of such deviations. The TPS QA protocol includes a phantom containing solid water and lung- and bone-equivalent heterogeneities. Photon and electron plans have been evaluated in both systems. The dose values at multiple distinct points of interest (POI) within the solid water, lung, and bone-equivalent slabs, as well as mean doses to several volumes of interest (VOI), have been re-calculated monthly using the available algorithms. Results: The computed doses vary slightly month-over-month. There have been more significant deviations following software upgrades, especially if the upgrade involved re-modeling of the beams. TG-100 guidance and the data presented here suggest an occurrence (O) of 2 depending on the frequency of re-commissioning the beams, severity (S) of 3, and detectability (D) of 2, giving an RPN of 12. Conclusion: Computerized treatment planning systems could pose a risk due to dosimetric errors and suboptimal treatment plans. The FMEA analysis presented here suggests that TPS QA should immediately follow software upgrades, but does not need to be performed every month.« less

  12. Incident Learning and Failure-Mode-and-Effects-Analysis Guided Safety Initiatives in Radiation Medicine

    PubMed Central

    Kapur, Ajay; Goode, Gina; Riehl, Catherine; Zuvic, Petrina; Joseph, Sherin; Adair, Nilda; Interrante, Michael; Bloom, Beatrice; Lee, Lucille; Sharma, Rajiv; Sharma, Anurag; Antone, Jeffrey; Riegel, Adam; Vijeh, Lili; Zhang, Honglai; Cao, Yijian; Morgenstern, Carol; Montchal, Elaine; Cox, Brett; Potters, Louis

    2013-01-01

    By combining incident learning and process failure-mode-and-effects-analysis (FMEA) in a structure-process-outcome framework we have created a risk profile for our radiation medicine practice and implemented evidence-based risk-mitigation initiatives focused on patient safety. Based on reactive reviews of incidents reported in our departmental incident-reporting system and proactive FMEA, high safety-risk procedures in our paperless radiation medicine process and latent risk factors were identified. Six initiatives aimed at the mitigation of associated severity, likelihood-of-occurrence, and detectability risks were implemented. These were the standardization of care pathways and toxicity grading, pre-treatment-planning peer review, a policy to thwart delay-rushed processes, an electronic whiteboard to enhance coordination, and the use of six sigma metrics to monitor operational efficiencies. The effectiveness of these initiatives over a 3-years period was assessed using process and outcome specific metrics within the framework of the department structure. There has been a 47% increase in incident-reporting, with no increase in adverse events. Care pathways have been used with greater than 97% clinical compliance rate. The implementation of peer review prior to treatment-planning and use of the whiteboard have provided opportunities for proactive detection and correction of errors. There has been a twofold drop in the occurrence of high-risk procedural delays. Patient treatment start delays are routinely enforced on cases that would have historically been rushed. Z-scores for high-risk procedures have steadily improved from 1.78 to 2.35. The initiatives resulted in sustained reductions of failure-mode risks as measured by a set of evidence-based metrics over a 3-years period. These augment or incorporate many of the published recommendations for patient safety in radiation medicine by translating them to clinical practice. PMID:24380074

  13. Mechanical properties and failure behavior of unidirectional porous ceramics

    NASA Astrophysics Data System (ADS)

    Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J.

    2016-04-01

    We show that the honeycomb out-of-plane model derived by Gibson and Ashby can be applied to describe the compressive behavior of unidirectional porous materials. Ice-templating allowed us to process samples with accurate control over pore volume, size, and morphology. These samples allowed us to evaluate the effect of this microstructural variations on the compressive strength in a porosity range of 45-80%. The maximum strength of 286 MPa was achieved in the least porous ice-templated sample (P(%) = 49.9), with the smallest pore size (3 μm). We found that the out-of-plane model only holds when buckling is the dominant failure mode, as should be expected. Furthermore, we controlled total pore volume by adjusting solids loading and sintering temperature. This strategy allows us to independently control macroporosity and densification of walls, and the compressive strength of ice-templated materials is exclusively dependent on total pore volume.

  14. Mechanical properties and failure behavior of unidirectional porous ceramics.

    PubMed

    Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J

    2016-04-14

    We show that the honeycomb out-of-plane model derived by Gibson and Ashby can be applied to describe the compressive behavior of unidirectional porous materials. Ice-templating allowed us to process samples with accurate control over pore volume, size, and morphology. These samples allowed us to evaluate the effect of this microstructural variations on the compressive strength in a porosity range of 45-80%. The maximum strength of 286 MPa was achieved in the least porous ice-templated sample (P(%) = 49.9), with the smallest pore size (3 μm). We found that the out-of-plane model only holds when buckling is the dominant failure mode, as should be expected. Furthermore, we controlled total pore volume by adjusting solids loading and sintering temperature. This strategy allows us to independently control macroporosity and densification of walls, and the compressive strength of ice-templated materials is exclusively dependent on total pore volume.

  15. Failure mode and effects analysis based risk profile assessment for stereotactic radiosurgery programs at three cancer centers in Brazil.

    PubMed

    Teixeira, Flavia C; de Almeida, Carlos E; Saiful Huq, M

    2016-01-01

    The goal of this study was to evaluate the safety and quality management program for stereotactic radiosurgery (SRS) treatment processes at three radiotherapy centers in Brazil by using three industrial engineering tools (1) process mapping, (2) failure modes and effects analysis (FMEA), and (3) fault tree analysis. The recommendations of Task Group 100 of American Association of Physicists in Medicine were followed to apply the three tools described above to create a process tree for SRS procedure for each radiotherapy center and then FMEA was performed. Failure modes were identified for all process steps and values of risk priority number (RPN) were calculated from O, S, and D (RPN = O × S × D) values assigned by a professional team responsible for patient care. The subprocess treatment planning was presented with the highest number of failure modes for all centers. The total number of failure modes were 135, 104, and 131 for centers I, II, and III, respectively. The highest RPN value for each center is as follows: center I (204), center II (372), and center III (370). Failure modes with RPN ≥ 100: center I (22), center II (115), and center III (110). Failure modes characterized by S ≥ 7, represented 68% of the failure modes for center III, 62% for center II, and 45% for center I. Failure modes with RPNs values ≥100 and S ≥ 7, D ≥ 5, and O ≥ 5 were considered as high priority in this study. The results of the present study show that the safety risk profiles for the same stereotactic radiotherapy process are different at three radiotherapy centers in Brazil. Although this is the same treatment process, this present study showed that the risk priority is different and it will lead to implementation of different safety interventions among the centers. Therefore, the current practice of applying universal device-centric QA is not adequate to address all possible failures in clinical processes at different radiotherapy centers. Integrated approaches to

  16. Chemical failure modes of AlQ3-based OLEDs: AlQ3 hydrolysis.

    PubMed

    Knox, John E; Halls, Mathew D; Hratchian, Hrant P; Schlegel, H Bernhard

    2006-03-28

    Tris(8-hydroxyquinoline)aluminum(III), AlQ3, is used in organic light-emitting diodes (OLEDs) as an electron-transport material and emitting layer. The reaction of AlQ3 with trace H2O has been implicated as a major failure pathway for AlQ3-based OLEDs. Hybrid density functional calculations have been carried out to characterize the hydrolysis of AlQ3. The thermochemical and atomistic details for this important reaction are reported for both the neutral and oxidized AlQ3/AlQ3+ systems. In support of experimental conclusions, the neutral hydrolysis reaction pathway is found to be a thermally activated process, having a classical barrier height of 24.2 kcal mol(-1). First-principles infrared and electronic absorption spectra are compared to further characterize AlQ3 and the hydrolysis pathway product, AlQ2OH. The activation energy for the cationic AlQ3 hydrolysis pathway is found to be 8.5 kcal mol(-1) lower than for the neutral reaction, which is significant since it suggests a role for charge imbalance in promoting chemical failure modes in OLED devices.

  17. Failure Modes Effects and Criticality Analysis, an Underutilized Safety, Reliability, Project Management and Systems Engineering Tool

    NASA Astrophysics Data System (ADS)

    Mullin, Daniel Richard

    2013-09-01

    The majority of space programs whether manned or unmanned for science or exploration require that a Failure Modes Effects and Criticality Analysis (FMECA) be performed as part of their safety and reliability activities. This comes as no surprise given that FMECAs have been an integral part of the reliability engineer's toolkit since the 1950s. The reasons for performing a FMECA are well known including fleshing out system single point failures, system hazards and critical components and functions. However, in the author's ten years' experience as a space systems safety and reliability engineer, findings demonstrate that the FMECA is often performed as an afterthought, simply to meet contract deliverable requirements and is often started long after the system requirements allocation and preliminary design have been completed. There are also important qualitative and quantitative components often missing which can provide useful data to all of project stakeholders. These include; probability of occurrence, probability of detection, time to effect and time to detect and, finally, the Risk Priority Number. This is unfortunate as the FMECA is a powerful system design tool that when used effectively, can help optimize system function while minimizing the risk of failure. When performed as early as possible in conjunction with writing the top level system requirements, the FMECA can provide instant feedback on the viability of the requirements while providing a valuable sanity check early in the design process. It can indicate which areas of the system will require redundancy and which areas are inherently the most risky from the onset. Based on historical and practical examples, it is this author's contention that FMECAs are an immense source of important information for all involved stakeholders in a given project and can provide several benefits including, efficient project management with respect to cost and schedule, system engineering and requirements management

  18. Mechanisms of compressive failure in woven composites and stitched laminates

    NASA Technical Reports Server (NTRS)

    Cox, B. N.; Dadkhah, M. S.; Inman, R. V.; Morris, W. L.; Schroeder, S.

    1992-01-01

    Stitched laminates and angle interlock woven composites have been studied in uniaxial, in-plane, monotonic compression. Failure mechanisms have been found to depend strongly on both the reinforcement architecture and the degree of constraint imposed by the loading grips. Stitched laminates show higher compressive strength, but are brittle, possessing no load bearing capacity beyond the strain for peak load. Post-mortem inspection shows a localized shear band of buckled and broken fibers, which is evidently the product of an unstably propagating kink band. Similar shear bands are found in the woven composites if the constraint of lateral displacements is weak; but, under strong constraint, damage is not localized but distributed throughout the gauge section. While the woven composites tested are weaker than the stitched laminates, they continue to bear significant loads to compressive strains of approx. 15 percent, even when most damage is confined to a shear band.

  19. Effectiveness and predictors of failure of noninvasive mechanical ventilation in acute respiratory failure.

    PubMed

    Martín-González, F; González-Robledo, J; Sánchez-Hernández, F; Moreno-García, M N; Barreda-Mellado, I

    2016-01-01

    To assess the effectiveness and identify predictors of failure of noninvasive ventilation. A retrospective, longitudinal descriptive study was made. Adult patients with acute respiratory failure. A total of 410 consecutive patients with noninvasive ventilation treated in an Intensive Care Unit of a tertiary university hospital from 2006 to 2011. Noninvasive ventilation. Demographic variables and clinical and laboratory test parameters at the start and two hours after the start of noninvasive ventilation. Evolution during admission to the Unit and until hospital discharge. The failure rate was 50%, with an overall mortality rate of 33%. A total of 156 patients had hypoxemic respiratory failure, 87 postextubation respiratory failure, 78 exacerbation of chronic obstructive pulmonary disease, 61 hypercapnic respiratory failure without chronic obstructive pulmonary disease, and 28 had acute pulmonary edema. The failure rates were 74%, 54%, 27%, 31% and 21%, respectively. The etiology of respiratory failure, serum bilirubin at the start, APACHEII score, radiological findings, the need for sedation to tolerate noninvasive ventilation, changes in level of consciousness, PaO2/FIO2 ratio, respiratory rate and heart rate from the start and two hours after the start of noninvasive ventilation were independently associated to failure. The effectiveness of noninvasive ventilation varies according to the etiology of respiratory failure. Its use in hypoxemic respiratory failure and postextubation respiratory failure should be assessed individually. Predictors of failure could be useful to prevent delayed intubation. Copyright © 2015 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.

  20. A Study of Energy Management Systems and its Failure Modes in Smart Grid Power Distribution

    NASA Astrophysics Data System (ADS)

    Musani, Aatif

    The subject of this thesis is distribution level load management using a pricing signal in a smart grid infrastructure. The project relates to energy management in a spe-cialized distribution system known as the Future Renewable Electric Energy Delivery and Management (FREEDM) system. Energy management through demand response is one of the key applications of smart grid. Demand response today is envisioned as a method in which the price could be communicated to the consumers and they may shift their loads from high price periods to the low price periods. The development and deployment of the FREEDM system necessitates controls of energy and power at the point of end use. In this thesis, the main objective is to develop the control model of the Energy Management System (EMS). The energy and power management in the FREEDM system is digitally controlled therefore all signals containing system states are discrete. The EMS is modeled as a discrete closed loop transfer function in the z-domain. A breakdown of power and energy control devices such as EMS components may result in energy con-sumption error. This leads to one of the main focuses of the thesis which is to identify and study component failures of the designed control system. Moreover, H-infinity ro-bust control method is applied to ensure effectiveness of the control architecture. A focus of the study is cyber security attack, specifically bad data detection in price. Test cases are used to illustrate the performance of the EMS control design, the effect of failure modes and the application of robust control technique. The EMS was represented by a linear z-domain model. The transfer function be-tween the pricing signal and the demand response was designed and used as a test bed. EMS potential failure modes were identified and studied. Three bad data detection meth-odologies were implemented and a voting policy was used to declare bad data. The run-ning mean and standard deviation analysis method proves to be

  1. Compressive failure modes and parameter optimization of the trabecular structure of biomimetic fully integrated honeycomb plates.

    PubMed

    Chen, Jinxiang; Tuo, Wanyong; Zhang, Xiaoming; He, Chenglin; Xie, Juan; Liu, Chang

    2016-12-01

    To develop lightweight biomimetic composite structures, the compressive failure and mechanical properties of fully integrated honeycomb plates were investigated experimentally and through the finite element method. The results indicated that: fracturing of the fully integrated honeycomb plates primarily occurred in the core layer, including the sealing edge structure. The morphological failures can be classified into two types, namely dislocations and compactions, and were caused primarily by the stress concentrations at the interfaces between the core layer and the upper and lower laminations and secondarily by the disordered short-fiber distribution in the material; although the fully integrated honeycomb plates manufactured in this experiment were imperfect, their mass-specific compressive strength was superior to that of similar biomimetic samples. Therefore, the proposed bio-inspired structure possesses good overall mechanical properties, and a range of parameters, such as the diameter of the transition arc, was defined for enhancing the design of fully integrated honeycomb plates and improving their compressive mechanical properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Investigation of short-circuit failure mechanisms of SiC MOSFETs by varying DC bus voltage

    NASA Astrophysics Data System (ADS)

    Namai, Masaki; An, Junjie; Yano, Hiroshi; Iwamuro, Noriyuki

    2018-07-01

    In this study, the experimental evaluation and numerical analysis of short-circuit mechanisms of 1200 V SiC planar and trench MOSFETs were conducted at various DC bus voltages from 400 to 800 V. Investigation of the impact of DC bus voltage on short-circuit capability yielded results that are extremely useful for many existing power electronics applications. Three failure mechanisms were identified in this study: thermal runaway, MOS channel current following device turn-off, and rupture of the gate oxide layer (gate oxide layer damage). The SiC MOSFETs experienced lattice temperatures exceeding 1000 K during the short-circuit transient; as Si insulated gate bipolar transistors (IGBTs) are not typically subject to such temperatures, the MOSFETs experienced distinct failure modes, and the mode experienced was significantly influenced by the DC bus voltage. In conclusion, suggestions regarding the SiC MOSFET design and operation methods that would enhance device robustness are proposed.

  3. Comprehensive protocol of traceability during IVF: the result of a multicentre failure mode and effect analysis.

    PubMed

    Rienzi, L; Bariani, F; Dalla Zorza, M; Albani, E; Benini, F; Chamayou, S; Minasi, M G; Parmegiani, L; Restelli, L; Vizziello, G; Costa, A Nanni

    2017-08-01

    Can traceability of gametes and embryos be ensured during IVF? The use of a simple and comprehensive traceability system that includes the most susceptible phases during the IVF process minimizes the risk of mismatches. Mismatches in IVF are very rare but unfortunately possible with dramatic consequences for both patients and health care professionals. Traceability is thus a fundamental aspect of the treatment. A clear process of patient and cell identification involving witnessing protocols has to be in place in every unit. To identify potential failures in the traceability process and to develop strategies to mitigate the risk of mismatches, previously failure mode and effects analysis (FMEA) has been used effectively. The FMEA approach is however a subjective analysis, strictly related to specific protocols and thus the results are not always widely applicable. To reduce subjectivity and to obtain a widespread comprehensive protocol of traceability, a multicentre centrally coordinated FMEA was performed. Seven representative Italian centres (three public and four private) were selected. The study had a duration of 21 months (from April 2015 to December 2016) and was centrally coordinated by a team of experts: a risk analysis specialist, an expert embryologist and a specialist in human factor. Principal investigators of each centre were first instructed about proactive risk assessment and FMEA methodology. A multidisciplinary team to perform the FMEA analysis was then formed in each centre. After mapping the traceability process, each team identified the possible causes of mistakes in their protocol. A risk priority number (RPN) for each identified potential failure mode was calculated. The results of the FMEA analyses were centrally investigated and consistent corrective measures suggested. The teams performed new FMEA analyses after the recommended implementations. In each centre, this study involved: the laboratory director, the Quality Control & Quality

  4. A Case Study on Improving Intensive Care Unit (ICU) Services Reliability: By Using Process Failure Mode and Effects Analysis (PFMEA)

    PubMed Central

    Yousefinezhadi, Taraneh; Jannesar Nobari, Farnaz Attar; Goodari, Faranak Behzadi; Arab, Mohammad

    2016-01-01

    Introduction: In any complex human system, human error is inevitable and shows that can’t be eliminated by blaming wrong doers. So with the aim of improving Intensive Care Units (ICU) reliability in hospitals, this research tries to identify and analyze ICU’s process failure modes at the point of systematic approach to errors. Methods: In this descriptive research, data was gathered qualitatively by observations, document reviews, and Focus Group Discussions (FGDs) with the process owners in two selected ICUs in Tehran in 2014. But, data analysis was quantitative, based on failures’ Risk Priority Number (RPN) at the base of Failure Modes and Effects Analysis (FMEA) method used. Besides, some causes of failures were analyzed by qualitative Eindhoven Classification Model (ECM). Results: Through FMEA methodology, 378 potential failure modes from 180 ICU activities in hospital A and 184 potential failures from 99 ICU activities in hospital B were identified and evaluated. Then with 90% reliability (RPN≥100), totally 18 failures in hospital A and 42 ones in hospital B were identified as non-acceptable risks and then their causes were analyzed by ECM. Conclusions: Applying of modified PFMEA for improving two selected ICUs’ processes reliability in two different kinds of hospitals shows that this method empowers staff to identify, evaluate, prioritize and analyze all potential failure modes and also make them eager to identify their causes, recommend corrective actions and even participate in improving process without feeling blamed by top management. Moreover, by combining FMEA and ECM, team members can easily identify failure causes at the point of health care perspectives. PMID:27157162

  5. Simulated Hail Ice Mechanical Properties and Failure Mechanism at Quasi-Static Strain Rates

    NASA Astrophysics Data System (ADS)

    Swift, Jonathan M.

    Hail is a significant threat to aircraft both on the ground and in the air. Aeronautical engineers are interested in better understanding the properties of hail to improve the safety of new aircraft. However, the failure mechanism and mechanical properties of hail, as opposed to clear ice, are not well understood. A literature review identifies basic mechanical properties of ice and a failure mechanism based upon the state of stress within an ice sphere is proposed. To better understand the properties of Simulated Hail Ice (SHI), several tests were conducted using both clear and cotton fiber reinforced ice. Pictures were taken to show the internal crystal structure of SHI. SHI crush tests were conducted to identify the overall force-displacement trends at various quasi-static strain rates. High speed photography was also used to visually track the failure mechanism of spherical SHI. Compression tests were done to measure the compression strength of SHI and results were compared to literature data. Fracture toughness tests were conducted to identify the crack resistance of SHI. Results from testing clear ice samples were successfully compared to previously published literature data to instill confidence in the testing methods. The methods were subsequently used to test and characterize the cotton fiber reinforced ice.

  6. Antithrombin III is associated with acute liver failure in patients with end-stage heart failure undergoing mechanical circulatory support.

    PubMed

    Hoefer, Judith; Ulmer, Hanno; Kilo, Juliane; Margreiter, Raimund; Grimm, Michael; Mair, Peter; Ruttmann, Elfriede

    2017-06-01

    There are few data on the role of liver dysfunction in patients with end-stage heart failure supported by mechanical circulatory support. The aim of our study was to investigate predictors for acute liver failure in patients with end-stage heart failure undergoing mechanical circulatory support. A consecutive 164 patients with heart failure with New York Heart Association class IV undergoing mechanical circulatory support were investigated for acute liver failure using the King's College criteria. Clinical characteristics of heart failure together with hemodynamic and laboratory values were analyzed by logistic regression. A total of 45 patients (27.4%) with heart failure developed subsequent acute liver failure with a hospital mortality of 88.9%. Duration of heart failure, cause, cardiopulmonary resuscitation, use of vasopressors, central venous pressure, pulmonary capillary wedge pressure, pulmonary pulsatility index, cardiac index, and transaminases were not significantly associated with acute liver failure. Repeated decompensation, atrial fibrillation (P < .001) and the use of inotropes (P = .007), mean arterial (P = .005) and pulmonary pressures (P = .042), cholinesterase, international normalized ratio, bilirubin, lactate, and pH (P < .001) were predictive of acute liver failure in univariate analysis only. In multivariable analysis, decreased antithrombin III was the strongest single measurement indicating acute liver failure (relative risk per %, 0.84; 95% confidence interval, 0.77-0.93; P = .001) and remained an independent predictor when adjustment for the Model for End-Stage Liver Disease score was performed (relative risk per %, 0.89; 95% confidence interval, 0.80-0.99; P = .031). Antithrombin III less than 59.5% was identified as a cutoff value to predict acute liver failure with a corresponding sensitivity of 81% and specificity of 87%. In addition to the Model for End-Stage Liver Disease score, decreased antithrombin III activity tends

  7. Comparison of fracture strength and failure mode of different ceramic implant abutments.

    PubMed

    Elsayed, Adham; Wille, Sebastian; Al-Akhali, Majed; Kern, Matthias

    2017-04-01

    The whitish color of zirconia (ZrO 2 ) abutments offers favorable esthetics compared with the grayish color of titanium (Ti) abutments. Nonetheless, ZrO 2 has greater opacity, making it difficult to achieve natural tooth color. Therefore, lithium disilicate (LaT) abutments have been suggested to replace metal abutments. The purpose of this in vitro study was to evaluate the fracture strength and failure mode of single-tooth implant restorations using ZrO 2 and LaT abutments, and to compare them with titanium (Ti) abutments. Five different types of abutments, Ti; ZrO 2 with no metal base; ZrO 2 with a metal base (ZrT); LaT; and LaT combination abutment and crown (LcT) were assembled on 40 Ti implants and restored with LaT crowns. Specimens were subjected to quasistatic loading using a universal testing machine, until the implant-abutment connection failed. As bending of the metal would be considered a clinical failure, the values of force (N) at which the plastic deformation of the metal occurred were calculated, and the rate of deformation was analyzed. Statistical analysis was done using the Mann-Whitney U test (α=.05). Group ZrO 2 revealed the lowest resistance to failure with a mean of 202 ±33 N. Groups ZrT, LaT, and LaC withstood higher forces without fracture or debonding of the ceramic suprastructure, and failure was due to deformation of metal bases, with no statistically significant differences between these groups regarding the bending behavior. Within the limitations of this in vitro study, it was concluded that LaT abutments have the potential to withstand the physiological occlusal forces that occur in the anterior region and that ZrO 2 abutments combined with Ti inserts have much higher fracture strength than pure ZrO 2 abutments. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  8. Failure mechanisms and closed reduction of a constrained tripolar acetabular liner.

    PubMed

    Robertson, William J; Mattern, Christopher J; Hur, John; Su, Edwin P; Pellicci, Paul M

    2009-02-01

    Unlike traditional bipolar constrained liners, the Osteonics Omnifit constrained acetabular insert is a tripolar device, consisting of an inner bipolar bearing articulating within an outer, true liner. Every reported failure of the Omnifit tripolar implant has been by failure at the shell-bone interface (Type I failure), failure at the shell-liner interface (Type II failure), or failure of the locking mechanism resulting in dislocation of the bipolar-liner interface (Type III failure). In this report we present two cases of failure of the Omnifit tripolar at the bipolar-femoral head interface. To our knowledge, these are the first reported cases of failure at the bipolar-femoral head interface (Type IV failure). In addition, we described the first successful closed reduction of a Type IV failure.

  9. Failure mechanisms of uni-ply composite plates with a circular hole under static compressive loading

    NASA Technical Reports Server (NTRS)

    Khamseh, A. R.; Waas, A. M.

    1992-01-01

    The objective of the study was to identify and study the failure mechanisms associated with compressive-loaded uniply graphite/epoxy square plates with a central circular hole. It is found that the type of compressive failure depends on the hole size. For large holes with the diameter/width ratio exceeding 0.062, fiber buckling/kinking initiated at the hole is found to be the dominant failure mechanism. In plates with smaller hole sizes, failure initiates away from the hole edge or complete global failure occurs. Critical buckle wavelengths at failure are presented as a function of the normalized hole diameter.

  10. Fundamental mechanisms of growth failure in inflammatory bowel disease.

    PubMed

    Ballinger, Anne

    2002-01-01

    Growth failure is common in children with inflammatory bowel disease (IBD) and has been attributed chiefly to undernutrition. Liquid enteral feeding can reverse the calorie deficit and increase growth velocity. The inflammatory process per se may also directly inhibit linear growth. After institution of enteral nutrition, significant changes in serum growth factors and inflammatory indices have been observed before any changes in nutritional parameters [Bannerjee et al., Gastroenterology 2000;118:A526]. In rats with trinitrobenzenesulphonic acid (TNBS)-induced colitis, about 60% of the final growth impairment can be attributed to undernutrition, inflammation accounting for the remaining growth deficit. Young patients with Crohn's disease and growth failure have normal stimulated and spontaneous growth hormone (GH) secretion and reduced plasma concentrations of insulin-like growth factor-1 (IGF-I), suggesting a degree of GH resistance. Rats with TNBS colitis also have normal plasma GH and reduced IGF-I concentrations, mediated by a combination of undernutrition and active inflammation. Immunoneutralization of interleukin-6 (IL-6) increases hepatic IGF-I mRNA expression, plasma concentrations of IGF-I and linear growth. In contrast, administration of anti-tumour necrosis factor-alpha antibodies (TNF-ab) had no effect on IGF-I in this model. TNFab did, however, increase linear growth, suggesting inhibitory effects of TNF-alpha on the growth axis by mechanisms other than reduction in IGF-I. Preliminary data suggests that TNF-alpha inhibits maturation of growth plate chondrocytes. We have identified IL-6 receptors on growth plate chondrocytes but to date have not identified the effect, if any, of IL-6 directly at the growth plate. Copyright 2002 S. Karger AG, Basel

  11. Shale Failure Mechanics and Intervention Measures in Underground Coal Mines: Results From 50 Years of Ground Control Safety Research

    PubMed Central

    2015-01-01

    Ground control research in underground coal mines has been ongoing for over 50 years. One of the most problematic issues in underground coal mines is roof failures associated with weak shale. This paper will present a historical narrative on the research the National Institute for Occupational Safety and Health has conducted in relation to rock mechanics and shale. This paper begins by first discussing how shale is classified in relation to coal mining. Characterizing and planning for weak roof sequences is an important step in developing an engineering solution to prevent roof failures. Next, the failure mechanics associated with the weak characteristics of shale will be discussed. Understanding these failure mechanics also aids in applying the correct engineering solutions. The various solutions that have been implemented in the underground coal mining industry to control the different modes of failure will be summarized. Finally, a discussion on current and future research relating to rock mechanics and shale is presented. The overall goal of the paper is to share the collective ground control experience of controlling roof structures dominated by shale rock in underground coal mining. PMID:26549926

  12. Shale Failure Mechanics and Intervention Measures in Underground Coal Mines: Results From 50 Years of Ground Control Safety Research.

    PubMed

    Murphy, M M

    2016-02-01

    Ground control research in underground coal mines has been ongoing for over 50 years. One of the most problematic issues in underground coal mines is roof failures associated with weak shale. This paper will present a historical narrative on the research the National Institute for Occupational Safety and Health has conducted in relation to rock mechanics and shale. This paper begins by first discussing how shale is classified in relation to coal mining. Characterizing and planning for weak roof sequences is an important step in developing an engineering solution to prevent roof failures. Next, the failure mechanics associated with the weak characteristics of shale will be discussed. Understanding these failure mechanics also aids in applying the correct engineering solutions. The various solutions that have been implemented in the underground coal mining industry to control the different modes of failure will be summarized. Finally, a discussion on current and future research relating to rock mechanics and shale is presented. The overall goal of the paper is to share the collective ground control experience of controlling roof structures dominated by shale rock in underground coal mining.

  13. Shale Failure Mechanics and Intervention Measures in Underground Coal Mines: Results From 50 Years of Ground Control Safety Research

    NASA Astrophysics Data System (ADS)

    Murphy, M. M.

    2016-02-01

    Ground control research in underground coal mines has been ongoing for over 50 years. One of the most problematic issues in underground coal mines is roof failures associated with weak shale. This paper will present a historical narrative on the research the National Institute for Occupational Safety and Health has conducted in relation to rock mechanics and shale. This paper begins by first discussing how shale is classified in relation to coal mining. Characterizing and planning for weak roof sequences is an important step in developing an engineering solution to prevent roof failures. Next, the failure mechanics associated with the weak characteristics of shale will be discussed. Understanding these failure mechanics also aids in applying the correct engineering solutions. The various solutions that have been implemented in the underground coal mining industry to control the different modes of failure will be summarized. Finally, a discussion on current and future research relating to rock mechanics and shale is presented. The overall goal of the paper is to share the collective ground control experience of controlling roof structures dominated by shale rock in underground coal mining.

  14. WE-G-BRA-09: Microsphere Brachytherapy Failure Mode and Effects Analysis in a Dual-Vendor Environment

    SciT

    Younge, K C; Lee, C I; Feng, M

    2015-06-15

    Purpose: To improve the safety and quality of a dual-vendor microsphere brachytherapy program with failure mode and effects analysis (FMEA). Methods: A multidisciplinary team including physicists, dosimetrists, a radiation oncologist, an interventional radiologist, and radiation safety personnel performed an FMEA for our dual-vendor microsphere brachytherapy program employing SIR-Spheres (Sirtex Medical Limited, Australia) and Theraspheres (BTG, England). We developed a program process tree and step-by-step instructions which were used to generate a comprehensive list of failure modes. These modes were then ranked according to severity, occurrence rate, and detectability. Risk priority numbers (RPNs) were calculated by multiplying these three scores together.more » Three different severity scales were created: one each for harmful effects to the patient, staff, or the institution. Each failure mode was ranked on one or more of these scales. Results: The group identified 164 failure modes for the microsphere program. 113 of these were ranked using the patient severity scale, 52 using the staff severity scale, and 50 using the institution severity scale. The highest ranked items on the patient severity scale were an error in the automated dosimetry worksheet (RPN = 297.5), and the incorrect target specified on the planning study (RPN = 135). Some failure modes ranked differently between vendors, especially those corresponding to dose vial preparation because of the different methods used. Based on our findings, we made several improvements to our QA program, including documentation to easily identify which product is being used, an additional hand calculation during planning, and reorganization of QA steps before treatment delivery. We will continue to periodically review and revise the FMEA. Conclusion: We have applied FMEA to our dual-vendor microsphere brachytherapy program to identify potential key weaknesses in the treatment chain. Our FMEA results were used

  15. Deformation and Failure Mechanisms of Shape Memory Alloys

    SciT

    Daly, Samantha Hayes

    2015-04-15

    The goal of this research was to understand the fundamental mechanics that drive the deformation and failure of shape memory alloys (SMAs). SMAs are difficult materials to characterize because of the complex phase transformations that give rise to their unique properties, including shape memory and superelasticity. These phase transformations occur across multiple length scales (one example being the martensite-austenite twinning that underlies macroscopic strain localization) and result in a large hysteresis. In order to optimize the use of this hysteretic behavior in energy storage and damping applications, we must first have a quantitative understanding of this transformation behavior. Prior resultsmore » on shape memory alloys have been largely qualitative (i.e., mapping phase transformations through cracked oxide coatings or surface morphology). The PI developed and utilized new approaches to provide a quantitative, full-field characterization of phase transformation, conducting a comprehensive suite of experiments across multiple length scales and tying these results to theoretical and computational analysis. The research funded by this award utilized new combinations of scanning electron microscopy, diffraction, digital image correlation, and custom testing equipment and procedures to study phase transformation processes at a wide range of length scales, with a focus at small length scales with spatial resolution on the order of 1 nanometer. These experiments probe the basic connections between length scales during phase transformation. In addition to the insights gained on the fundamental mechanisms driving transformations in shape memory alloys, the unique experimental methodologies developed under this award are applicable to a wide range of solid-to-solid phase transformations and other strain localization mechanisms.« less

  16. Influence of preparation design and ceramic thicknesses on fracture resistance and failure modes of premolar partial coverage restorations

    PubMed Central

    Guess, Petra C.; Schultheis, Stefan; Wolkewitz, Martin; Zhang; Strub, Joerg R.

    2015-01-01

    Statement of problem Preparation designs and ceramic thicknesses are key factors for the long-term success of minimally invasive premolar partial coverage restorations. However, only limited information is presently available on this topic. Purpose The aim of this in vitro study was to evaluate the fracture resistance and failure modes of ceramic premolar partial coverage restorations with different preparation designs and ceramic thicknesses. Material and methods Caries-free human premolars (n= 144) were divided into 9 groups. Palatal onlay preparation comprised reduction of the palatal cusp by 2 mm (Palatal-Onlay-Standard), 1 mm (Palatal-Onlay-Thin), or 0.5 mm (Palatal-Onlay-Ultra-Thin). Complete-coverage onlay preparation additionally included the buccal cusp (Occlusal-Onlay-Standard; Occlusal-Onlay-Thin; Occlusal-Onlay-Ultra-Thin). Labial surface preparations with chamfer reductions of 0.8 mm (Complete-Veneer-Standard), 0.6 mm (Complete-Veneer-Thin) and 0.4 mm (Complete-Veneer-Ultra-Thin) were implemented for complete veneer restorations. Restorations were fabricated from a pressable lithium-disilicate ceramic (IPS-e.max-Press) and cemented adhesively (Syntac-Classic/Variolink-II). All specimens were subjected to cyclic mechanical loading (F= 49 N, 1.2 million cycles) and simultaneous thermocycling (5°C to 55°C) in a mouth-motion simulator. After fatigue, restorations were exposed to single-load-to-failure. Two-way ANOVA was used to identify statistical differences. Pair-wise differences were calculated and P-values were adjusted by the Tukey–Kramer method (α= .05). Results All specimens survived fatigue. Mean (SD) load to failure values (N) were as follows: 837 (320/Palatal-Onlay-Standard), 1055 (369/Palatal-Onlay-Thin), 1192 (342/Palatal-Onlay-Ultra-Thin), 963 (405/Occlusal-Onlay-Standard), 1108 (340/Occlusal-Onlay-Thin), 997 (331/Occlusal-Onlay-Ultra-Thin), 1361 (333/Complete-Veneer-Standard), 1087 (251/Complete-Veneer-Thin), 883 (311/Complete

  17. Entanglement between exciton and mechanical modes via dissipation-induced coupling

    NASA Astrophysics Data System (ADS)

    Sete, Eyob A.; Eleuch, H.; Ooi, C. H. Raymond

    2015-09-01

    We analyze the entanglement between two matter modes in a hybrid quantum system consisting of a microcavity, a quantum well, and a mechanical oscillator. Although the exciton mode in the quantum well and the mechanical oscillator are initially uncoupled, their interaction through the microcavity field results in an indirect exciton-mode-mechanical-mode coupling. We show that this coupling is a Fano-Agarwal-type coupling induced by the decay of the exciton and the mechanical modes caused by the leakage of photons through the microcavity to the environment. Using experimental parameters and for slowly varying microcavity field, we show that the generated coupling leads to an exciton-mode-mechanical-mode entanglement. The maximum entanglement is achieved at the avoided level crossing frequency, where the hybridization of the two modes is maximum. The entanglement is also robust against the phonon thermal bath temperature.

  18. Multi-institutional application of Failure Mode and Effects Analysis (FMEA) to CyberKnife Stereotactic Body Radiation Therapy (SBRT).

    PubMed

    Veronese, Ivan; De Martin, Elena; Martinotti, Anna Stefania; Fumagalli, Maria Luisa; Vite, Cristina; Redaelli, Irene; Malatesta, Tiziana; Mancosu, Pietro; Beltramo, Giancarlo; Fariselli, Laura; Cantone, Marie Claire

    2015-06-13

    A multidisciplinary and multi-institutional working group applied the Failure Mode and Effects Analysis (FMEA) approach to assess the risks for patients undergoing Stereotactic Body Radiation Therapy (SBRT) treatments for lesions located in spine and liver in two CyberKnife® Centres. The various sub-processes characterizing the SBRT treatment were identified to generate the process trees of both the treatment planning and delivery phases. This analysis drove to the identification and subsequent scoring of the potential failure modes, together with their causes and effects, using the risk probability number (RPN) scoring system. Novel solutions aimed to increase patient safety were accordingly considered. The process-tree characterising the SBRT treatment planning stage was composed with a total of 48 sub-processes. Similarly, 42 sub-processes were identified in the stage of delivery to liver tumours and 30 in the stage of delivery to spine lesions. All the sub-processes were judged to be potentially prone to one or more failure modes. Nineteen failures (i.e. 5 in treatment planning stage, 5 in the delivery to liver lesions and 9 in the delivery to spine lesions) were considered of high concern in view of the high RPN and/or severity index value. The analysis of the potential failures, their causes and effects allowed to improve the safety strategies already adopted in the clinical practice with additional measures for optimizing quality management workflow and increasing patient safety.

  19. Heart failure and kidney dysfunction: epidemiology, mechanisms and management.

    PubMed

    Schefold, Joerg C; Filippatos, Gerasimos; Hasenfuss, Gerd; Anker, Stefan D; von Haehling, Stephan

    2016-10-01

    Heart failure (HF) is a major health-care problem and the prognosis of affected patients is poor. HF often coexists with a number of comorbidities of which declining renal function is of particular importance. A loss of glomerular filtration rate, as in acute kidney injury (AKI) or chronic kidney disease (CKD), independently predicts mortality and accelerates the overall progression of cardiovascular disease and HF. Importantly, cardiac and renal diseases interact in a complex bidirectional and interdependent manner in both acute and chronic settings. From a pathophysiological perspective, cardiac and renal diseases share a number of common pathways, including inflammatory and direct, cellular immune-mediated mechanisms; stress-mediated and (neuro)hormonal responses; metabolic and nutritional changes including bone and mineral disorder, altered haemodynamic and acid-base or fluid status; and the development of anaemia. In an effort to better understand the important crosstalk between the two organs, classifications such as the cardio-renal syndromes were developed. This classification might lead to a more precise understanding of the complex interdependent pathophysiology of cardiac and renal diseases. In light of exceptionally high mortality associated with coexisting HF and kidney disease, this Review describes important crosstalk between the heart and kidney, with a focus on HF and kidney disease in the acute and chronic settings. Underlying molecular and cellular pathomechanisms in HF, AKI and CKD are discussed in addition to current and future therapeutic approaches.

  20. Mechanisms of bee venom-induced acute renal failure.

    PubMed

    Grisotto, Luciana S D; Mendes, Glória E; Castro, Isac; Baptista, Maria A S F; Alves, Venancio A; Yu, Luis; Burdmann, Emmanuel A

    2006-07-01

    The spread of Africanized bees in the American continent has increased the number of severe envenomation after swarm attacks. Acute renal failure (ARF) is one of the major hazards in surviving patients. To assess the mechanisms of bee venom-induced ARF, rats were evaluated before, up to 70 min and 24h after 0.5mg/kg of venom injection. Control rats received saline. Bee venom caused an early and significant reduction in glomerular filtration rate (GFR, inulin clearance, 0.84+/-0.05 to 0.40+/-0.08 ml/min/100g, p<0.0001) and renal blood flow (RBF, laser Doppler flowmetry), which was more severe in the cortical (-72%) than in the medullary area (-48%), without systemic blood pressure decrease. Creatine phosphokinase, lactic dehydrogenase (LDH) and serum glutamic oxaloacetic transaminase increased significantly, pointing to rhabdomyolysis, whereas serum glutamic pyruvic transaminase and hematocrit remained stable. Twenty-four hours after venom, RBF recovered but GFR remained significantly impaired. Renal histology showed acute tubular injury and a massive tubular deposition of myoglobin. Venom was added to isolated rat proximal tubules (PT) suspension subjected to normoxia and hypoxia/reoxygenation (H/R) for direct nephrotoxicity evaluation. After 60 min of incubation, 0.1, 2 and 10 microg of venom induced significant increases in LDH release: 47%, 64% and 86%, respectively, vs. 21% in control PT while 2 microg of venom enhanced H/R injury (85% vs. 55%, p<0.01). These results indicate that vasoconstriction, direct nephrotoxicity and rhabdomyolysis are important mechanisms in the installation of bee venom-induced ARF that may occur even without hemolysis or hypotension.

  1. Risk management for outsourcing biomedical waste disposal - using the failure mode and effects analysis.

    PubMed

    Liao, Ching-Jong; Ho, Chao Chung

    2014-07-01

    Using the failure mode and effects analysis, this study examined biomedical waste companies through risk assessment. Moreover, it evaluated the supervisors of biomedical waste units in hospitals, and factors relating to the outsourcing risk assessment of biomedical waste in hospitals by referring to waste disposal acts. An expert questionnaire survey was conducted on the personnel involved in waste disposal units in hospitals, in order to identify important factors relating to the outsourcing risk of biomedical waste in hospitals. This study calculated the risk priority number (RPN) and selected items with an RPN value higher than 80 for improvement. These items included "availability of freezing devices", "availability of containers for sharp items", "disposal frequency", "disposal volume", "disposal method", "vehicles meeting the regulations", and "declaration of three lists". This study also aimed to identify important selection factors of biomedical waste disposal companies by hospitals in terms of risk. These findings can serve as references for hospitals in the selection of outsourcing companies for biomedical waste disposal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Independent Review of the Failure Modes of F-1 Engine and Propellants System

    NASA Technical Reports Server (NTRS)

    Ray, Paul

    2003-01-01

    The F-1 is the powerful engine, that hurdled the Saturn V launch vehicle from the Earth to the moon on July 16,1969. The force that lifted the rocket overcoming the gravitational force during the first stage of the flight was provided by a cluster of five F-1 rocket engines, each of them developing over 1.5 million pounds of thrust (MSFC-MAN-507). The F-1 Rocket engine used RP-1 (Rocket Propellant-1, commercially known as Kerosene), as fuel with lox (liquid Oxygen) as oxidizer. NASA terminated Saturn V activity and has focused on Space Shuttle since 1972. The interest in rocket system has been revived to meet the National Launch System (NLS) program and a directive from the President to return to the Moon and exploration of the space including Mars. The new program Space Launch Initiative (SLI) is directed to drastically reduce the cost of flight for payloads, and adopt a reusable launch vehicle (RLV). To achieve this goal it is essential to have the ability of lifting huge payloads into low earth orbit. Probably requiring powerful boosters as strap-ons to a core vehicle, as was done for the Saturn launch vehicle. The logic in favor of adopting Saturn system, a proven technology, to meet the SLI challenge is very strong. The F-1 engine was the largest and most powerful liquid rocket engine ever built, and had exceptional performance. This study reviews the failure modes of the F-1 engine and propellant system.

  3. Critical laboratory value notification: a failure mode effects and criticality analysis.

    PubMed

    Saxena, Sunita; Kempf, Raymond; Wilcox, Susan; Shulman, Ira A; Wong, Louise; Cunningham, Glenn; Vega, Elaine; Hall, Stephanie

    2005-09-01

    The Failure Mode Effects and Criticality Analysis (FMECA) was applied to improve the timeliness of reporting and the timeliness of receipt by the responsible licensed caregiver of critical laboratory values (CLVs) for outpatients and non-critical care inpatients. Through a risk prioritization process, the most important areas for improvement, including contacting the provider, assisting the provider in contacting the patient, and educating the provider in follow-up options available during off hours, were identified. A variety of systemic improvements were made; for example, the CLV notification process was centralized in the customer service center, with databases to help providers select options and make arrangements for follow-up care and an electronic abstract form to document the CLV notification process. Review of documentation and appropriateness of CLV follow-up care was integrated into the quality monitoring process to detect any variations or problems. The average CLV notification time for the month steadily declined during an eight-month period. Compliance was 100% for the "read-back" requirement and documentation in patient's health record. This proactive risk assessment project successfully modified the CLV notification program from a high- to a low-risk process, identified activities to further improve the process, and helped ensure compliance with a variety of requirements.

  4. Fatigue properties on the failure mode of a dental implant in a simulated body environment

    NASA Astrophysics Data System (ADS)

    Kim, Min Gun

    2011-10-01

    This study undertook a fatigue test in a simulated body environment that has reflected the conditions (such as the body fluid conditions, the micro-current of cell membranes, and the chewing force) within a living body. First, the study sought to evaluate the fatigue limit under normal conditions and in a simulated body environment, looking into the governing factors of implant fatigue strength through an observation of the fracture mode. In addition, the crack initiation behavior of a tungsten-carbide-coated abutment screw was examined. The fatigue limit of an implant within the simulated body environment decreased by 19 % compared to the limit noted under normal conditions. Several corrosion pits were observed on the abutment screw after the fatigue test in the simulated body environment. For the model used in this study, the implant fracture was mostly governed by the fatigue failure of the abutment screw; accordingly, the influence by the fixture on the fatigue strength of the implant was noted to be low. For the abutment screw coated with tungsten carbide, several times the normal amount of stress was found to be concentrated on the contact part due to the elastic interaction between the coating material and the base material.

  5. Strain distribution and failure mode of polymer separators for Li-ion batteries under biaxial loading

    NASA Astrophysics Data System (ADS)

    Kalnaus, Sergiy; Kumar, Abhishek; Wang, Yanli; Li, Jianlin; Simunovic, Srdjan; Turner, John A.; Gorney, Phillip

    2018-02-01

    Deformation of polymer separators for Li-ion batteries has been studied under biaxial tension by using a dome test setup. This deformation mode provides characterization of separator strength under more complex loading conditions, closer representing deformation of an electric vehicle battery during crash event, compared to uniaxial tension or compression. Two polymer separators, Celgard 2325 and Celgard 2075 were investigated by deformation with spheres of three different diameters. Strains in separators were measured in situ by using Digital Image Correlation (DIC) technique. The results show consistent rupture of separators along the machine direction coinciding with areas of high strain accumulation. The critical first principal strain for failure was independent of the sphere diameter and was determined to be approximately 34% and 43% for Celgard 2325 and Celgard 2075 respectively. These values can be taken as a criterion for internal short circuit in a battery following an out-of-plane impact. A Finite Element (FE) model was built with the anisotropic description of separator behavior, derived from tensile tests in orthogonal directions. The results of simulations predicted the response of separator rather well when compared to experimental results for various sizes of rigid sphere.

  6. Strain distribution and failure mode of polymer separators for Li-ion batteries under biaxial loading

    DOE PAGES

    Kalnaus, Sergiy; Kumar, Abhishek; Wang, Yanli; ...

    2017-12-16

    Deformation of polymer separators for Li-ion batteries has been studied under biaxial tension by using a dome test setup. This deformation mode provides characterization of separator strength under more complex loading conditions, closer representing deformation of an electric vehicle battery during crash event, compared to uniaxial tension or compression. Two polymer separators, Celgard 2325 and Celgard 2075 were investigated by deformation with spheres of three different diameters. Strains in separators were measured in situ by using Digital Image Correlation (DIC) technique. The results show consistent rupture of separators along the machine direction coinciding with areas of high strain accumulation. Themore » critical first principal strain for failure was independent of the sphere diameter and was determined to be approximately 34% and 43% for Celgard 2325 and Celgard 2075 respectively. These values can be taken as a criterion for internal short circuit in a battery following an out-of-plane impact. A Finite Element (FE) model was built with the anisotropic description of separator behavior, derived from tensile tests in orthogonal directions. In conclusion, the results of simulations predicted the response of separator rather well when compared to experimental results for various sizes of rigid sphere.« less

  7. Evaluating the application of failure mode and effects analysis technique in hospital wards: a systematic review

    PubMed Central

    Asgari Dastjerdi, Hoori; Khorasani, Elahe; Yarmohammadian, Mohammad Hossein; Ahmadzade, Mahdiye Sadat

    2017-01-01

    Abstract: Background: Medical errors are one of the greatest problems in any healthcare systems. The best way to prevent such problems is errors identification and their roots. Failure Mode and Effects Analysis (FMEA) technique is a prospective risk analysis method. This study is a review of risk analysis using FMEA technique in different hospital wards and departments. Methods: This paper has systematically investigated the available databases. After selecting inclusion and exclusion criteria, the related studies were found. This selection was made in two steps. First, the abstracts and titles were investigated by the researchers and, after omitting papers which did not meet the inclusion criteria, 22 papers were finally selected and the text was thoroughly examined. At the end, the results were obtained. Results: The examined papers had focused mostly on the process and had been conducted in the pediatric wards and radiology departments, and most participants were nursing staffs. Many of these papers attempted to express almost all the steps of model implementation; and after implementing the strategies and interventions, the Risk Priority Number (RPN) was calculated to determine the degree of the technique’s effect. However, these papers have paid less attention to the identification of risk effects. Conclusions: The study revealed that a small number of studies had failed to show the FMEA technique effects. In general, however, most of the studies recommended this technique and had considered it a useful and efficient method in reducing the number of risks and improving service quality. PMID:28039688

  8. Leveraging electronic health record documentation for Failure Mode and Effects Analysis team identification

    PubMed Central

    Carson, Matthew B; Lee, Young Ji; Benacka, Corrine; Mutharasan, R. Kannan; Ahmad, Faraz S; Kansal, Preeti; Yancy, Clyde W; Anderson, Allen S; Soulakis, Nicholas D

    2017-01-01

    Objective: Using Failure Mode and Effects Analysis (FMEA) as an example quality improvement approach, our objective was to evaluate whether secondary use of orders, forms, and notes recorded by the electronic health record (EHR) during daily practice can enhance the accuracy of process maps used to guide improvement. We examined discrepancies between expected and observed activities and individuals involved in a high-risk process and devised diagnostic measures for understanding discrepancies that may be used to inform quality improvement planning. Methods: Inpatient cardiology unit staff developed a process map of discharge from the unit. We matched activities and providers identified on the process map to EHR data. Using four diagnostic measures, we analyzed discrepancies between expectation and observation. Results: EHR data showed that 35% of activities were completed by unexpected providers, including providers from 12 categories not identified as part of the discharge workflow. The EHR also revealed sub-components of process activities not identified on the process map. Additional information from the EHR was used to revise the process map and show differences between expectation and observation. Conclusion: Findings suggest EHR data may reveal gaps in process maps used for quality improvement and identify characteristics about workflow activities that can identify perspectives for inclusion in an FMEA. Organizations with access to EHR data may be able to leverage clinical documentation to enhance process maps used for quality improvement. While focused on FMEA protocols, findings from this study may be applicable to other quality activities that require process maps. PMID:27589944

  9. Effectiveness and cost of failure mode and effects analysis methodology to reduce neurosurgical site infections.

    PubMed

    Hover, Alexander R; Sistrunk, William W; Cavagnol, Robert M; Scarrow, Alan; Finley, Phillip J; Kroencke, Audrey D; Walker, Judith L

    2014-01-01

    Mercy Hospital Springfield is a tertiary care facility with 32 000 discharges and 15 000 inpatient surgeries in 2011. From June 2009 through January 2011, a stable inpatient elective neurosurgery infection rate of 2.15% was observed. The failure mode and effects analysis (FMEA) methodology to reduce inpatient neurosurgery infections was utilized. Following FMEA implementation, overall elective neurosurgery infection rates were reduced to 1.51% and sustained through May 2012. Compared with baseline, the post-FMEA deep-space and organ infection rate was reduced by 41% (P = .052). Overall hospital inpatient clean surgery infection rates for the same time frame did not decrease to the same extent, suggesting a specific effect of the FMEA. The study team believes that the FMEA interventions resulted in 14 fewer expected infections, $270 270 in savings, a 168-day reduction in expected length of stay, and 22 fewer readmissions. Given the serious morbidity and cost of health care-associated infections, the study team concludes that FMEA implementation was clinically cost-effective. © 2013 by the American College of Medical Quality.

  10. Failure Mode and Effects Analysis: views of hospital staff in the UK.

    PubMed

    Shebl, Nada; Franklin, Bryony; Barber, Nick; Burnett, Susan; Parand, Anam

    2012-01-01

    To explore health care professionals' experiences and perceptions of Failure Mode and Effects Analysis (FMEA), a team-based, prospective risk analysis technique. Semi-structured interviews were conducted with 21 operational leads (20 pharmacists, one nurse) in medicines management teams of hospitals participating in a national quality improvement programme. Interviews were transcribed, coded and emergent themes identified using framework analysis. Themes identified included perceptions and experiences of participants with FMEA, validity and reliability issues, and FMEA's use in practice. FMEA was considered to be a structured but subjective process that helps health care professionals get together to identify high risk areas of care. Both positive and negative opinions were expressed, with the majority of interviewees expressing positive views towards FMEA in relation to its structured nature and the use of a multidisciplinary team. Other participants criticised FMEA for being subjective and lacking validity. Most likely to restrict its widespread use were its time consuming nature and its perceived lack of validity and reliability. FMEA is a subjective but systematic tool that helps identify high risk areas, but its time consuming nature, difficulty with the scores and perceived lack of validity and reliability may limit its widespread use.

  11. A mechanics framework for a progressive failure methodology for laminated composites

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Allen, David H.; Lo, David C.

    1989-01-01

    A laminate strength and life prediction methodology has been postulated for laminated composites which accounts for the progressive development of microstructural damage to structural failure. A damage dependent constitutive model predicts the stress redistribution in an average sense that accompanies damage development in laminates. Each mode of microstructural damage is represented by a second-order tensor valued internal state variable which is a strain like quantity. The mechanics framework together with the global-local strategy for predicting laminate strength and life is presented in the paper. The kinematic effects of damage are represented by effective engineering moduli in the global analysis and the results of the global analysis provide the boundary conditions for the local ply level stress analysis. Damage evolution laws are based on experimental results.

  12. Fracture Resistance and Mode of Failure of Ceramic versus Titanium Implant Abutments and Single Implant-Supported Restorations.

    PubMed

    Sghaireen, Mohd G

    2015-06-01

    The material of choice for implant-supported restorations is affected by esthetic requirements and type of abutment. This study compares the fracture resistance of different types of implant abutments and implant-supported restorations and their mode of failure. Forty-five Oraltronics Pitt-Easy implants (Oraltronics Dental Implant Technology GmbH, Bremen, Germany) (4 mm diameter, 10 mm length) were embedded in clear autopolymerizing acrylic resin. The implants were randomly divided into three groups, A, B and C, of 15 implants each. In group A, titanium abutments and metal-ceramic crowns were used. In group B, zirconia ceramic abutments and In-Ceram Alumina crowns were used. In group C, zirconia ceramic abutments and IPS Empress Esthetic crowns were used. Specimens were tested to failure by applying load at 130° from horizontal plane using an Instron Universal Testing Machine. Subsequently, the mode of failure of each specimen was identified. Fracture resistance was significantly different between groups (p < .05). The highest fracture loads were associated with metal-ceramic crowns supported by titanium abutments (p = .000). IPS Empress crowns supported by zirconia abutments had the lowest fracture loads (p = .000). Fracture modes of metal-ceramic crowns supported by titanium abutments included screw fracture and screw bending. Fracture of both crown and abutment was the dominant mode of failure of In-Ceram/IPS Empress crowns supported by zirconia abutments. Metal-ceramic crowns supported by titanium abutments were more resistant to fracture than In-Ceram crowns supported by zirconia abutments, which in turn were more resistant to fracture than IPS Empress crowns supported by zirconia abutments. In addition, failure modes of restorations supported by zirconia abutments were more catastrophic than those for restorations supported by titanium abutments. © 2013 Wiley Periodicals, Inc.

  13. Failure Mode and Effect Analysis (FMEA) may enhance implementation of clinical practice guidelines: An experience from the Middle East.

    PubMed

    Babiker, Amir; Amer, Yasser S; Osman, Mohamed E; Al-Eyadhy, Ayman; Fatani, Solafa; Mohamed, Sarar; Alnemri, Abdulrahman; Titi, Maher A; Shaikh, Farheen; Alswat, Khalid A; Wahabi, Hayfaa A; Al-Ansary, Lubna A

    2018-02-01

    Implementation of clinical practice guidelines (CPGs) has been shown to reduce variation in practice and improve health care quality and patients' safety. There is a limited experience of CPG implementation (CPGI) in the Middle East. The CPG program in our institution was launched in 2009. The Quality Management department conducted a Failure Mode and Effect Analysis (FMEA) for further improvement of CPGI. This is a prospective study of a qualitative/quantitative design. Our FMEA included (1) process review and recording of the steps and activities of CPGI; (2) hazard analysis by recording activity-related failure modes and their effects, identification of actions required, assigned severity, occurrence, and detection scores for each failure mode and calculated the risk priority number (RPN) by using an online interactive FMEA tool; (3) planning: RPNs were prioritized, recommendations, and further planning for new interventions were identified; and (4) monitoring: after reduction or elimination of the failure mode. The calculated RPN will be compared with subsequent analysis in post-implementation phase. The data were scrutinized from a feedback of quality team members using a FMEA framework to enhance the implementation of 29 adapted CPGs. The identified potential common failure modes with the highest RPN (≥ 80) included awareness/training activities, accessibility of CPGs, fewer advocates from clinical champions, and CPGs auditing. Actions included (1) organizing regular awareness activities, (2) making CPGs printed and electronic copies accessible, (3) encouraging senior practitioners to get involved in CPGI, and (4) enhancing CPGs auditing as part of the quality sustainability plan. In our experience, FMEA could be a useful tool to enhance CPGI. It helped us to identify potential barriers and prepare relevant solutions. © 2017 John Wiley & Sons, Ltd.

  14. Proactive risk assessment of blood transfusion process, in pediatric emergency, using the Health Care Failure Mode and Effects Analysis (HFMEA).

    PubMed

    Dehnavieh, Reza; Ebrahimipour, Hossein; Molavi-Taleghani, Yasamin; Vafaee-Najar, Ali; Noori Hekmat, Somayeh; Esmailzdeh, Hamid

    2014-12-25

    Pediatric emergency has been considered as a high risk area, and blood transfusion is known as a unique clinical measure, therefore this study was conducted with the purpose of assessing the proactive risk assessment of blood transfusion process in Pediatric Emergency of Qaem education- treatment center in Mashhad, by the Healthcare Failure Mode and Effects Analysis (HFMEA) methodology. This cross-sectional study analyzed the failure mode and effects of blood transfusion process by a mixture of quantitative-qualitative method. The proactive HFMEA was used to identify and analyze the potential failures of the process. The information of the items in HFMEA forms was collected after obtaining a consensus of experts' panel views via the interview and focus group discussion sessions. The Number of 77 failure modes were identified for 24 sub-processes enlisted in 8 processes of blood transfusion. Totally 13 failure modes were identified as non-acceptable risk (a hazard score above 8) in the blood transfusion process and were transferred to the decision tree. Root causes of high risk modes were discussed in cause-effect meetings and were classified based on the UK national health system (NHS) approved classifications model. Action types were classified in the form of acceptance (11.6%), control (74.2%) and elimination (14.2%). Recommendations were placed in 7 categories using TRIZ ("Theory of Inventive Problem Solving.") The re-engineering process for the required changes, standardizing and updating the blood transfusion procedure, root cause analysis of blood transfusion catastrophic events, patient identification bracelet, training classes and educational pamphlets for raising awareness of personnel, and monthly gathering of transfusion medicine committee have all been considered as executive strategies in work agenda in pediatric emergency.

  15. Proactive Risk Assessment of Blood Transfusion Process, in Pediatric Emergency, Using the Health Care Failure Mode and Effects Analysis (HFMEA)

    PubMed Central

    Dehnavieh, Reza; Ebrahimipour, Hossein; Molavi-Taleghani, Yasamin; Vafaee-Najar, Ali; Hekmat, Somayeh Noori; Esmailzdeh, Hamid

    2015-01-01

    Introduction: Pediatric emergency has been considered as a high risk area, and blood transfusion is known as a unique clinical measure, therefore this study was conducted with the purpose of assessing the proactive risk assessment of blood transfusion process in Pediatric Emergency of Qaem education- treatment center in Mashhad, by the Healthcare Failure Mode and Effects Analysis (HFMEA) methodology. Methodology: This cross-sectional study analyzed the failure mode and effects of blood transfusion process by a mixture of quantitative-qualitative method. The proactive HFMEA was used to identify and analyze the potential failures of the process. The information of the items in HFMEA forms was collected after obtaining a consensus of experts’ panel views via the interview and focus group discussion sessions. Results: The Number of 77 failure modes were identified for 24 sub-processes enlisted in 8 processes of blood transfusion. Totally 13 failure modes were identified as non-acceptable risk (a hazard score above 8) in the blood transfusion process and were transferred to the decision tree. Root causes of high risk modes were discussed in cause-effect meetings and were classified based on the UK national health system (NHS) approved classifications model. Action types were classified in the form of acceptance (11.6%), control (74.2%) and elimination (14.2%). Recommendations were placed in 7 categories using TRIZ (“Theory of Inventive Problem Solving.”) Conclusion: The re-engineering process for the required changes, standardizing and updating the blood transfusion procedure, root cause analysis of blood transfusion catastrophic events, patient identification bracelet, training classes and educational pamphlets for raising awareness of personnel, and monthly gathering of transfusion medicine committee have all been considered as executive strategies in work agenda in pediatric emergency. PMID:25560332

  16. Investigating Deformation and Failure Mechanisms in Nanoscale Multilayer Metallic Composites

    SciT

    Zbib, Hussein M.; Bahr, David F.

    2014-10-22

    Over the history of materials science there are many examples of materials discoveries that have made superlative materials; the strongest, lightest, or toughest material is almost always a goal when we invent new materials. However, often these have been a result of enormous trial and error approaches. A new methodology, one in which researchers design, from the atoms up, new ultra-strong materials for use in energy applications, is taking hold within the science and engineering community. This project focused on one particular new classification of materials; nanolaminate metallic composites. These materials, where two metallic materials are intimately bonded and layeredmore » over and over to form sheets or coatings, have been shown over the past decade to reach strengths over 10 times that of their constituents. However, they are not yet widely used in part because while extremely strong (they don’t permanently bend), they are also not particularly tough (they break relatively easily when notched). Our program took a coupled approach to investigating new materials systems within the laminate field. We used computational materials science to explore ways to institute new deformation mechanisms that occurred when a tri-layer, rather than the more common bi-layer system was created. Our predictions suggested that copper-nickel or copper-niobium composites (two very common bi-layer systems) with layer thicknesses on the order of 20 nm and then layered 100’s of times, would be less tough than a copper-nickel-niobium metallic composite of similar thicknesses. In particular, a particular mode of permanent deformation, cross-slip, could be activated only in the tri-layer system; the crystal structure of the other bi-layers would prohibit this particular mode of deformation. We then experimentally validated this predication using a wide range of tools. We utilized a DOE user facility, the Center for Integrated Nanotechnology (CINT), to fabricate, for the first

  17. The global mechanical properties and multi-scale failure mechanics of heterogeneous human stratum corneum.

    PubMed

    Liu, X; Cleary, J; German, G K

    2016-10-01

    The outermost layer of skin, or stratum corneum, regulates water loss and protects underlying living tissue from environmental pathogens and insults. With cracking, chapping or the formation of exudative lesions, this functionality is lost. While stratum corneum exhibits well defined global mechanical properties, macroscopic mechanical testing techniques used to measure them ignore the structural heterogeneity of the tissue and cannot provide any mechanistic insight into tissue fracture. As such, a mechanistic understanding of failure in this soft tissue is lacking. This insight is critical to predicting fracture risk associated with age or disease. In this study, we first quantify previously unreported global mechanical properties of isolated stratum corneum including the Poisson's ratio and mechanical toughness. African American breast stratum corneum is used for all assessments. We show these parameters are highly dependent on the ambient humidity to which samples are equilibrated. A multi-scale investigation assessing the influence of structural heterogeneities on the microscale nucleation and propagation of cracks is then performed. At the mesoscale, spatially resolved equivalent strain fields within uniaxially stretched stratum corneum samples exhibit a striking heterogeneity, with localized peaks correlating closely with crack nucleation sites. Subsequent crack propagation pathways follow inherent topographical features in the tissue and lengthen with increased tissue hydration. At the microscale, intact corneocytes and polygonal shaped voids at crack interfaces highlight that cracks propagate in superficial cell layers primarily along intercellular junctions. Cellular fracture does occur however, but is uncommon. Human stratum corneum protects the body against harmful environmental pathogens and insults. Upon mechanical failure, this barrier function is lost. Previous studies characterizing the mechanics of stratum corneum have used macroscopic testing

  18. Fuzzy Risk Evaluation in Failure Mode and Effects Analysis Using a D Numbers Based Multi-Sensor Information Fusion Method.

    PubMed

    Deng, Xinyang; Jiang, Wen

    2017-09-12

    Failure mode and effect analysis (FMEA) is a useful tool to define, identify, and eliminate potential failures or errors so as to improve the reliability of systems, designs, and products. Risk evaluation is an important issue in FMEA to determine the risk priorities of failure modes. There are some shortcomings in the traditional risk priority number (RPN) approach for risk evaluation in FMEA, and fuzzy risk evaluation has become an important research direction that attracts increasing attention. In this paper, the fuzzy risk evaluation in FMEA is studied from a perspective of multi-sensor information fusion. By considering the non-exclusiveness between the evaluations of fuzzy linguistic variables to failure modes, a novel model called D numbers is used to model the non-exclusive fuzzy evaluations. A D numbers based multi-sensor information fusion method is proposed to establish a new model for fuzzy risk evaluation in FMEA. An illustrative example is provided and examined using the proposed model and other existing method to show the effectiveness of the proposed model.

  19. Fuzzy Risk Evaluation in Failure Mode and Effects Analysis Using a D Numbers Based Multi-Sensor Information Fusion Method

    PubMed Central

    Deng, Xinyang

    2017-01-01

    Failure mode and effect analysis (FMEA) is a useful tool to define, identify, and eliminate potential failures or errors so as to improve the reliability of systems, designs, and products. Risk evaluation is an important issue in FMEA to determine the risk priorities of failure modes. There are some shortcomings in the traditional risk priority number (RPN) approach for risk evaluation in FMEA, and fuzzy risk evaluation has become an important research direction that attracts increasing attention. In this paper, the fuzzy risk evaluation in FMEA is studied from a perspective of multi-sensor information fusion. By considering the non-exclusiveness between the evaluations of fuzzy linguistic variables to failure modes, a novel model called D numbers is used to model the non-exclusive fuzzy evaluations. A D numbers based multi-sensor information fusion method is proposed to establish a new model for fuzzy risk evaluation in FMEA. An illustrative example is provided and examined using the proposed model and other existing method to show the effectiveness of the proposed model. PMID:28895905

  20. SU-F-T-247: Collision Risks in a Modern Radiation Oncology Department: An Efficient Approach to Failure Modes and Effects Analysis

    SciT

    Schubert, L; Westerly, D; Vinogradskiy, Y

    Purpose: Collisions between treatment equipment and patients are potentially catastrophic. Modern technology now commonly involves automated remote motion during imaging and treatment, yet a systematic assessment to identify and mitigate collision risks has yet to be performed. Failure modes and effects analysis (FMEA) is a method of risk assessment that has been increasingly used in healthcare, yet can be resource intensive. This work presents an efficient approach to FMEA to identify collision risks and implement practical interventions within a modern radiation therapy department. Methods: Potential collisions (e.g. failure modes) were assessed for all treatment and simulation rooms by teams consistingmore » of physicists, therapists, and radiation oncologists. Failure modes were grouped into classes according to similar characteristics. A single group meeting was held to identify implementable interventions for the highest priority classes of failure modes. Results: A total of 60 unique failure modes were identified by 6 different teams of physicists, therapists, and radiation oncologists. Failure modes were grouped into four main classes: specific patient setups, automated equipment motion, manual equipment motion, and actions in QA or service mode. Two of these classes, unusual patient setups and automated machine motion, were identified as being high priority in terms severity of consequence and addressability by interventions. The two highest risk classes consisted of 33 failure modes (55% of the total). In a single one hour group meeting, 6 interventions were identified. Those interventions addressed 100% of the high risk classes of failure modes (55% of all failure modes identified). Conclusion: A class-based approach to FMEA was developed to efficiently identify collision risks and implement interventions in a modern radiation oncology department. Failure modes and interventions will be listed, and a comparison of this approach against traditional FMEA

  1. Application of failure mode and effect analysis in managing catheter-related blood stream infection in intensive care unit

    PubMed Central

    Li, Xixi; He, Mei; Wang, Haiyan

    2017-01-01

    Abstract In this study, failure mode and effect analysis (FMEA), a proactive tool, was applied to reduce errors associated with the process which begins with assessment of patient and ends with treatment of complications. The aim of this study is to assess whether FMEA implementation will significantly reduce the incidence of catheter-related bloodstream infections (CRBSIs) in intensive care unit. The FMEA team was constructed. A team of 15 medical staff from different departments were recruited and trained. Their main responsibility was to analyze and score all possible processes of central venous catheterization failures. Failure modes with risk priority number (RPN) ≥100 (top 10 RPN scores) were deemed as high-priority-risks, meaning that they needed immediate corrective action. After modifications were put, the resulting RPN was compared with the previous one. A centralized nursing care system was designed. A total of 25 failure modes were identified. High-priority risks were “Unqualified medical device sterilization” (RPN, 337), “leukopenia, very low immunity” (RPN, 222), and “Poor hand hygiene Basic diseases” (RPN, 160). The corrective measures that we took allowed a decrease in the RPNs, especially for the high-priority risks. The maximum reduction was approximately 80%, as observed for the failure mode “Not creating the maximal barrier for patient.” The averaged incidence of CRBSIs was reduced from 5.19% to 1.45%, with 3 months of 0 infection rate. The FMEA can effectively reduce incidence of CRBSIs, improve the security of central venous catheterization technology, decrease overall medical expenses, and improve nursing quality. PMID:29390515

  2. Application of failure mode and effect analysis in managing catheter-related blood stream infection in intensive care unit.

    PubMed

    Li, Xixi; He, Mei; Wang, Haiyan

    2017-12-01

    In this study, failure mode and effect analysis (FMEA), a proactive tool, was applied to reduce errors associated with the process which begins with assessment of patient and ends with treatment of complications. The aim of this study is to assess whether FMEA implementation will significantly reduce the incidence of catheter-related bloodstream infections (CRBSIs) in intensive care unit.The FMEA team was constructed. A team of 15 medical staff from different departments were recruited and trained. Their main responsibility was to analyze and score all possible processes of central venous catheterization failures. Failure modes with risk priority number (RPN) ≥100 (top 10 RPN scores) were deemed as high-priority-risks, meaning that they needed immediate corrective action. After modifications were put, the resulting RPN was compared with the previous one. A centralized nursing care system was designed.A total of 25 failure modes were identified. High-priority risks were "Unqualified medical device sterilization" (RPN, 337), "leukopenia, very low immunity" (RPN, 222), and "Poor hand hygiene Basic diseases" (RPN, 160). The corrective measures that we took allowed a decrease in the RPNs, especially for the high-priority risks. The maximum reduction was approximately 80%, as observed for the failure mode "Not creating the maximal barrier for patient." The averaged incidence of CRBSIs was reduced from 5.19% to 1.45%, with 3 months of 0 infection rate.The FMEA can effectively reduce incidence of CRBSIs, improve the security of central venous catheterization technology, decrease overall medical expenses, and improve nursing quality. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  3. Failure mechanisms of thermal barrier coatings exposed to elevated temperatures

    NASA Technical Reports Server (NTRS)

    Miller, R. A.; Lowell, C. E.

    1982-01-01

    The failure of a ZrO2-8%Y2O3/Ni-14% Al-0.1% Zr coating system on Rene 41 in Mach 0.3 burner rig tests was characterized. High flame and metal temperatures were employed in order to accelerate coating failure. Failure by delamination was shown to precede surface cracking or spalling. This type of failure could be duplicated by cooling down the specimen after a single long duration isothermal high temperature cycle in a burner rig or a furnace, but only if the atmosphere was oxidizing. Stresses due to thermal expansion mismatch on cooling coupled with the effects of plastic deformation of the bond coat and oxidation of the irregular bond coat are the probable life limiting factors. Heat up stresses alone could not fail the coating in the burner rig tests. Spalling eventually occurs on heat up but only after the coating has already failed through delamination.

  4. Failure mode and effects analysis as a performance improvement tool in trauma.

    PubMed

    Day, Suzanne; Dalto, Joseph; Fox, Jolene; Turpin, Melinda

    2006-01-01

    Performance improvement (PI) in the multiple systems injured patient frequently highlights areas for improvement in overall hospital care processes. Failure mode effects analysis (FMEA) is an effective tool to assess and prioritize areas of risk in clinical practice. Failure mode effects analysis is often initiated by a "near-miss" or concern for risk as opposed to a root cause analysis that is initiated solely after a sentinel event. In contrast to a root cause analysis, the FMEA looks more broadly at processes involved in the delivery of care. The purpose of this abstract was to demonstrate the usefulness of FMEA as a PI tool by describing an event and following the event through the healthcare delivery PI processes involved. During routine chart abstraction, a trauma registrar found that an elderly trauma patient admitted with a subdural hematoma inadvertently received heparin during the course of a dialysis treatment. Although heparin use was contraindicated in this patient, there were no sequelae as a result of the error. This case was reviewed by the trauma service PI committee and the quality improvement team, which initiated FMEA. An FMEA of inpatient dialysis process was conducted following this incident. The process included physician, nursing, and allied health representatives involved in dialysis. As part of the process, observations of dialysis treatments and staff interviews were conducted. Observation revealed that nurses generally left the patient's room and did not involve themselves in the dialysis process. A formal patient "pass-off" report was not done. Nurses did not review dialysis orders or reevaluate the treatment plan before treatment. We found that several areas of our current practice placed our patients at risk. 1. The nephrology consult/dialysis communication process was inconsistent. 2. Scheduling of treatments for chronic dialysis patients could occur without a formal consult or order. 3. RNs were not consistently involved in dialysis

  5. Mechanics and complications of reverse shoulder arthroplasty: morse taper failure analysis and prospective rectification

    NASA Astrophysics Data System (ADS)

    Hoskin, HLD; Furie, E.; Collins, W.; Ganey, TM; Schlatterer, DR

    2017-05-01

    and O are used as stabilizers that help raise the temperature at which titanium can be cast. Since the presence of stabilizers reduces ductility and fatigue strength, all interstitial elements are removed after casting. Considering this, the presence of C and O suggests that not all of the interstitials were removed during the manufacturing process, resulting in decreased fatigue strength. Further destructive analytical testing would verify weld quality and failure mode. RTSSs are quite successful in select patients not amenable to traditional shoulder arthroplasty options. This case report highlights how an implant may function well for several years and then suddenly fail without warning. SEM and EDS analysis suggest that residual C and O in the taper lowered the metal implant’s integrity, leading to torsional cracking at the weld junction of the humeral tray and the taper. The elevated levels of C and O measured at fracture sites on both the tray and the taper suggest poor quality filler metal or failure to remove all interstitial elements after casting. In both cases, the results would be decreased fatigue strength and overall toughness, leading to mechanical failure. A manufacturer’s recall of all implants soon followed the reporting of this implant failure; subsequently, the metal materials were changed from Ti6Al4V to both titanium alloy and cobalt-chrome alloy (Co-Cr-Mo). Time will tell if the alterations were sufficient.

  6. Coupled Mechanical-Electrochemical-Thermal Analysis of Failure Propagation in Lithium-ion Batteries

    SciT

    Zhang, Chao; Santhanagopalan, Shriram; Pesaran, Ahmad

    2016-07-28

    This is a presentation given at the 12th World Congress for Computational Mechanics on coupled mechanical-electrochemical-thermal analysis of failure propagation in lithium-ion batteries for electric vehicles.

  7. Default Mode Network Mechanisms of Transcranial Magnetic Stimulation in Depression

    PubMed Central

    Liston, Conor; Chen, Ashley C.; Zebley, Benjamin D.; Drysdale, Andrew T.; Gordon, Rebecca; Leuchter, Bruce; Voss, Henning U.; Casey, B.J.; Etkin, Amit; Dubin, Marc J.

    2014-01-01

    Background Repetitive transcranial magnetic stimulation (TMS) of the dorsolateral prefrontal cortex (DLPFC) is an established treatment for depression, but its underlying mechanism of action remains unknown. Abnormalities in two large-scale neuronal networks—the frontoparietal central executive network (CEN) and the medial prefrontal-medial parietal default mode network (DMN)—are consistent findings in depression and potential therapeutic targets for TMS. Here, we assessed the impact of TMS on activity in these networks and their relation to treatment response. Methods We used resting state functional magnetic resonance imaging (rs-fMRI) to measure functional connectivity within and between the DMN and CEN in 17 depressed patients, before and after a five-week course of TMS. Motivated by prior reports, we focused on connectivity seeded from the DLPFC and the subgenual cingulate, a key region closely aligned with the DMN in depression. Connectivity was also compared to a cohort of 35 healthy controls. Results Prior to treatment, functional connectivity in depressed patients was abnormally elevated within the DMN and diminished within the CEN, and connectivity between these two networks was altered. TMS normalized depression-related subgenual hyperconnectivity in the DMN but did not alter connectivity in the CEN. TMS also induced anticorrelated connectivity between the DLPFC and medial prefrontal DMN nodes. Baseline subgenual connectivity predicted subsequent clinical improvement. Conclusions TMS selectively modulates functional connectivity both within and between the CEN and DMN, and modulation of subgenual cingulate connectivity may play an important mechanistic role in alleviating depression. The results also highlight potential neuroimaging biomarkers for predicting treatment response. PMID:24629537

  8. Revision Distal Femoral Arthroplasty With the Compress(®) Prosthesis Has a Low Rate of Mechanical Failure at 10 Years.

    PubMed

    Zimel, Melissa N; Farfalli, German L; Zindman, Alexandra M; Riedel, Elyn R; Morris, Carol D; Boland, Patrick J; Healey, John H

    2016-02-01

    Patients with failed distal femoral megaprostheses often have bone loss that limits reconstructive options and contributes to the high failure rate of revision surgery. The Compress(®) Compliant Pre-stress (CPS) implant can reconstruct the femur even when there is little remaining bone. It differs from traditional stemmed prostheses because it requires only 4 to 8 cm of residual bone for fixation. Given the poor long-term results of stemmed revision constructs, we sought to determine the failure rate and functional outcomes of the CPS implant in revision surgery. (1) What is the cumulative incidence of mechanical and other types of implant failure when used to revise failed distal femoral arthroplasties placed after oncologic resection? (2) What complications are characteristic of this prosthesis? (3) What function do patients achieve after receiving this prosthesis? We retrospectively reviewed 27 patients who experienced failure of a distal femoral prosthesis and were revised to a CPS implant from April 2000 to February 2013. Indications for use included a minimum 2.5 mm cortical thickness of the remaining proximal femur, no prior radiation, life expectancy > 10 years, and compliance with protected weightbearing for 3 months. The cumulative incidence of failure was calculated for both mechanical (loss of compression between the implant anchor plug and spindle) and other failure modes using a competing risk analysis. Failure was defined as removal of the CPS implant. Followup was a minimum of 2 years or until implant removal. Median followup for patients with successful revision arthroplasty was 90 months (range, 24-181 months). Functional outcomes were measured with the Musculoskeletal Tumor Society (MSTS) functional assessment score. The cumulative incidence of mechanical failure was 11% (95% confidence interval [CI], 4%-33%) at both 5 and 10 years. These failures occurred early at a median of 5 months. The cumulative incidence of other failures was 18% (95% CI

  9. An Abrupt Transition to an Intergranular Failure Mode in the Near-Threshold Fatigue Crack Growth Regime in Ni-Based Superalloys

    NASA Astrophysics Data System (ADS)

    Telesman, J.; Smith, T. M.; Gabb, T. P.; Ring, A. J.

    2018-06-01

    Cyclic near-threshold fatigue crack growth (FCG) behavior of two disk superalloys was evaluated and was shown to exhibit an unexpected sudden failure mode transition from a mostly transgranular failure mode at higher stress intensity factor ranges to an almost completely intergranular failure mode in the threshold regime. The change in failure modes was associated with a crossover of FCG resistance curves in which the conditions that produced higher FCG rates in the Paris regime resulted in lower FCG rates and increased ΔK th values in the threshold region. High-resolution scanning and transmission electron microscopy were used to carefully characterize the crack tips at these near-threshold conditions. Formation of stable Al-oxide followed by Cr-oxide and Ti-oxides was found to occur at the crack tip prior to formation of unstable oxides. To contrast with the threshold failure mode regime, a quantitative assessment of the role that the intergranular failure mode has on cyclic FCG behavior in the Paris regime was also performed. It was demonstrated that even a very limited intergranular failure content dominates the FCG response under mixed mode failure conditions.

  10. Fracture mechanics analyses of ceramic/veneer interface under mixed-mode loading.

    PubMed

    Wang, Gaoqi; Zhang, Song; Bian, Cuirong; Kong, Hui

    2014-11-01

    Few studies have focused on the interface fracture performance of zirconia/veneer bilayered structure, which plays an important role in dental all-ceramic restorations. The purpose of this study was to evaluate the fracture mechanics performance of zirconia/veneer interface in a wide range of mode-mixities (at phase angles ranging from 0° to 90°), and to examine the effect of mechanical properties of the materials and the interface on the fracture initiation and crack path of an interfacial crack. A modified sandwich test configuration with an oblique interfacial crack was proposed and calibrated to choose the appropriate geometry dimensions by means of finite element analysis. The specimens with different interface inclination angles were tested to failure under three-point bending configuration. Interface fracture parameters were obtained with finite element analyses. Based on the interfacial fracture mechanics, three fracture criteria for crack kinking were used to predict crack initiation and propagation. In addition, the effects of residual stresses due to coefficient of thermal expansion mismatch between zirconia and veneer on the crack behavior were evaluated. The crack initiation and propagation were well predicted by the three fracture criteria. For specimens at phase angle of 0, the cracks propagated in the interface; whereas for all the other specimens the cracks kinked into the veneer. Compressive residual stresses in the veneer can improve the toughness of the interface structure. The results suggest that, in zirconia/veneer bilayered structure the veneer is weaker than the interface, which can be used to explain the clinical phenomenon that veneer chipping rate is larger than interface delamination rate. Consequently, a veneer material with larger fracture toughness is needed to decrease the failure rate of all-ceramic restorations. And the coefficient of thermal expansion mismatch of the substrates can be larger to produce larger compressive

  11. Matrix Failure Modes and Effects Analysis as a Knowledge Base for a Real Time Automated Diagnosis Expert System

    NASA Technical Reports Server (NTRS)

    Herrin, Stephanie; Iverson, David; Spukovska, Lilly; Souza, Kenneth A. (Technical Monitor)

    1994-01-01

    Failure Modes and Effects Analysis contain a wealth of information that can be used to create the knowledge base required for building automated diagnostic Expert systems. A real time monitoring and diagnosis expert system based on an actual NASA project's matrix failure modes and effects analysis was developed. This Expert system Was developed at NASA Ames Research Center. This system was first used as a case study to monitor the Research Animal Holding Facility (RAHF), a Space Shuttle payload that is used to house and monitor animals in orbit so the effects of space flight and microgravity can be studied. The techniques developed for the RAHF monitoring and diagnosis Expert system are general enough to be used for monitoring and diagnosis of a variety of other systems that undergo a Matrix FMEA. This automated diagnosis system was successfully used on-line and validated on the Space Shuttle flight STS-58, mission SLS-2 in October 1993.

  12. Study on the Failure and Energy Absorption Mechanism of Multilayer Explosively Welded Plates Impacted by Spherical Fragments

    NASA Astrophysics Data System (ADS)

    Zhou, N.; Wang, J. X.; Tang, S. Z.; Tao, Q. C.; Wang, M. X.

    2018-01-01

    A stereomicroscope, microscopic metallograph, scanning electron microscope, and the ANSYS/LS-DYNA 3D finite-element code were employed to investigate the failure and energy absorption mechanism of two-layer steel/aluminum and three-layer steel/aluminum/steel and aluminum/steel/aluminum explosively welded composite plates impacted by spherical fragments. The effects of layer number, target order, and the combination state of interfaces on the failure and energy absorption mechanism are analyzed based on experimental and numerical results. Results showed that the effect of the combination state of interfaces on the failure mode was pronounced the most compared with other factors. The failure mechanism of the front and middle plates were shearing and plugging, and that of rear plate was ductile deformation when the tied interface failed by tension (or by shearing and plugging when the interface combination remained connected). A narrow adiabatic shear band was formed in the locally yielding plate damaged by shearing and plugging during the penetration process. The amount of energy needed to completely perforate the three-layer composite target was greater than that for a two-layer composite target with the same areal density and total thickness. The protective performance of the steel/aluminum/steel target was better than that of the aluminum/steel/aluminum target with the same areal density.

  13. Application of ISO22000 and Failure Mode and Effect Analysis (fmea) for Industrial Processing of Poultry Products

    NASA Astrophysics Data System (ADS)

    Varzakas, Theodoros H.; Arvanitoyannis, Ioannis S.

    Failure Mode and Effect Analysis (FMEA) model has been applied for the risk assessment of poultry slaughtering and manufacturing. In this work comparison of ISO22000 analysis with HACCP is carried out over poultry slaughtering, processing and packaging. Critical Control points and Prerequisite programs (PrPs) have been identified and implemented in the cause and effect diagram (also known as Ishikawa, tree diagram and fishbone diagram).

  14. Constitutive behavior and progressive mechanical failure of electrodes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Xu, Jun; Cao, Lei; Wu, Zenan; Santhanagopalan, Shriram

    2017-07-01

    The electrodes of lithium-ion batteries (LIB) are known to be brittle and to fail earlier than the separators during an external crush event. Thus, the understanding of mechanical failure mechanism for LIB electrodes (anode and cathode) is critical for the safety design of LIB cells. In this paper, we present experimental and numerical studies on the constitutive behavior and progression of failure in LIB electrodes. Mechanical tests were designed and conducted to evaluate the constitutive properties of porous electrodes. Constitutive models were developed to describe the stress-strain response of electrodes under uniaxial tensile and compressive loads. The failure criterion and a damage model were introduced to model their unique tensile and compressive failure behavior. The failure mechanism of LIB electrodes was studied using the blunt rod test on dry electrodes, and numerical models were built to simulate progressive failure. The different failure processes were examined and analyzed in detail numerically, and correlated with experimentally observed failure phenomena. The test results and models improve our understanding of failure behavior in LIB electrodes, and provide constructive insights on future development of physics-based safety design tools for battery structures under mechanical abuse.

  15. Constitutive behavior and progressive mechanical failure of electrodes in lithium-ion batteries

    DOE PAGES

    Zhang, Chao; Xu, Jun; Cao, Lei; ...

    2017-05-05

    The electrodes of lithium-ion batteries (LIB) are known to be brittle and to fail earlier than the separators during an external crush event. Thus, the understanding of mechanical failure mechanism for LIB electrodes (anode and cathode) is critical for the safety design of LIB cells. In this paper, we present experimental and numerical studies on the constitutive behavior and progression of failure in LIB electrodes. Mechanical tests were designed and conducted to evaluate the constitutive properties of porous electrodes. Constitutive models were developed to describe the stress-strain response of electrodes under uniaxial tensile and compressive loads. The failure criterion andmore » a damage model were introduced to model their unique tensile and compressive failure behavior. The failure mechanism of LIB electrodes was studied using the blunt rod test on dry electrodes, and numerical models were built to simulate progressive failure. The different failure processes were examined and analyzed in detail numerically, and correlated with experimentally observed failure phenomena. Finally, the test results and models improve our understanding of failure behavior in LIB electrodes, and provide constructive insights on future development of physics-based safety design tools for battery structures under mechanical abuse.« less

  16. Probability of loss of assured safety in systems with multiple time-dependent failure modes.

    SciT

    Helton, Jon Craig; Pilch, Martin.; Sallaberry, Cedric Jean-Marie.

    2012-09-01

    Weak link (WL)/strong link (SL) systems are important parts of the overall operational design of high-consequence systems. In such designs, the SL system is very robust and is intended to permit operation of the entire system under, and only under, intended conditions. In contrast, the WL system is intended to fail in a predictable and irreversible manner under accident conditions and render the entire system inoperable before an accidental operation of the SL system. The likelihood that the WL system will fail to deactivate the entire system before the SL system fails (i.e., degrades into a configuration that could allowmore » an accidental operation of the entire system) is referred to as probability of loss of assured safety (PLOAS). Representations for PLOAS for situations in which both link physical properties and link failure properties are time-dependent are derived and numerically evaluated for a variety of WL/SL configurations, including PLOAS defined by (i) failure of all SLs before failure of any WL, (ii) failure of any SL before failure of any WL, (iii) failure of all SLs before failure of all WLs, and (iv) failure of any SL before failure of all WLs. The effects of aleatory uncertainty and epistemic uncertainty in the definition and numerical evaluation of PLOAS are considered.« less

  17. Comparative Evaluation of Fracture Resistance and Mode of Failure of Zirconia and Titanium Abutments with Different Diameters.

    PubMed

    Shabanpour, Reza; Mousavi, Niloufar; Ghodsi, Safoura; Alikhasi, Marzieh

    2015-08-01

    The purpose of the current study was to compare the fracture resistance and mode of failure of zirconia and titanium abutments with different diameters. Fourteen groups of abutments including prefabricated zirconia, copy-milled zirconia and titanium abutments of an implant system (XiVE, Dentsply) were prepared in different diameters. An increasing vertical load was applied to each specimen until failure occurred. Fracture resistance was measured in each group using the universal testing machine. Moreover, the failure modes were studied and categorized as abutment screw fracture, connection area fracture, abutment body fracture, abutment body distortion, screw distortion and connection area distortion. Groups were statistically compared using univariate and post-hoc tests. The level of statistical significance was set at 5%. Fabrication method (p = 0.03) and diameter (p < 0.001) had significant effect on the fracture resistance of abutments. Fracture resistance of abutments with 5.5 mm diameter was higher than other diameters (p < 0.001). The observed modes of failure were dependent on the abutment material as well. All of the prefabricated titanium abutments fractured within the abutment screw. Abutment screw distortion, connection area fracture, and abutment body fracture were the common failure type in other groups. Diameter had a significant effect on fracture resistance of implant abutments, as abutments with greater diameters were more resistant to static loads. Copy-milled abutments showed lower fracture resistance as compared to other experimental groups. Although zirconia abutments have received great popularity among clinicians and even patients selecting them for narrow implants should be with caution.

  18. Reliability and failure modes of implant-supported zirconium-oxide fixed dental prostheses related to veneering techniques

    PubMed Central

    Baldassarri, Marta; Zhang, Yu; Thompson, Van P.; Rekow, Elizabeth D.; Stappert, Christian F. J.

    2011-01-01

    Summary Objectives To compare fatigue failure modes and reliability of hand-veneered and over-pressed implant-supported three-unit zirconium-oxide fixed-dental-prostheses(FDPs). Methods Sixty-four custom-made zirconium-oxide abutments (n=32/group) and thirty-two zirconium-oxide FDP-frameworks were CAD/CAM manufactured. Frameworks were veneered with hand-built up or over-pressed porcelain (n=16/group). Step-stress-accelerated-life-testing (SSALT) was performed in water applying a distributed contact load at the buccal cusp-pontic-area. Post failure examinations were carried out using optical (polarized-reflected-light) and scanning electron microscopy (SEM) to visualize crack propagation and failure modes. Reliability was compared using cumulative-damage step-stress analysis (Alta-7-Pro, Reliasoft). Results Crack propagation was observed in the veneering porcelain during fatigue. The majority of zirconium-oxide FDPs demonstrated porcelain chipping as the dominant failure mode. Nevertheless, fracture of the zirconium-oxide frameworks was also observed. Over-pressed FDPs failed earlier at a mean failure load of 696 ± 149 N relative to hand-veneered at 882 ± 61 N (profile I). Weibull-stress-number of cycles-unreliability-curves were generated. The reliability (2-sided at 90% confidence bounds) for a 400N load at 100K cycles indicated values of 0.84 (0.98-0.24) for the hand-veneered FDPs and 0.50 (0.82-0.09) for their over-pressed counterparts. Conclusions Both zirconium-oxide FDP systems were resistant under accelerated-life-time-testing. Over-pressed specimens were more susceptible to fatigue loading with earlier veneer chipping. PMID:21557985

  19. Hydrogen in Ti and Zr alloys: industrial perspective, failure modes and mechanistic understanding.

    PubMed

    Chapman, T P; Dye, D; Rugg, D

    2017-07-28

    Titanium is widely used in demanding applications, such as in aerospace. Its strength-to-weight ratio and corrosion resistance make it well suited to highly stressed rotating components. Zirconium has a no less critical application where its low neutron capture cross section and good corrosion resistance in hot water and steam make it well suited to reactor core use, including fuel cladding and structures. The similar metallurgical behaviour of these alloy systems makes it alluring to compare and contrast their behaviour. This is rarely undertaken, mostly because the industrial and academic communities studying these alloys have little overlap. The similarities with respect to hydrogen are remarkable, albeit potentially unsurprising, and so this paper aims to provide an overview of the role hydrogen has to play through the material life cycle. This includes the relationship between alloy design and manufacturing process windows, the role of hydrogen in degradation and failure mechanisms and some of the underpinning metallurgy. The potential role of some advanced experimental and modelling techniques will also be explored to give a tentative view of potential for advances in this field in the next decade or so.This article is part of the themed issue 'The challenges of hydrogen and metals'. © 2017 The Author(s).

  20. Hydrogen in Ti and Zr alloys: industrial perspective, failure modes and mechanistic understanding

    NASA Astrophysics Data System (ADS)

    Chapman, T. P.; Dye, D.; Rugg, D.

    2017-06-01

    Titanium is widely used in demanding applications, such as in aerospace. Its strength-to-weight ratio and corrosion resistance make it well suited to highly stressed rotating components. Zirconium has a no less critical application where its low neutron capture cross section and good corrosion resistance in hot water and steam make it well suited to reactor core use, including fuel cladding and structures. The similar metallurgical behaviour of these alloy systems makes it alluring to compare and contrast their behaviour. This is rarely undertaken, mostly because the industrial and academic communities studying these alloys have little overlap. The similarities with respect to hydrogen are remarkable, albeit potentially unsurprising, and so this paper aims to provide an overview of the role hydrogen has to play through the material life cycle. This includes the relationship between alloy design and manufacturing process windows, the role of hydrogen in degradation and failure mechanisms and some of the underpinning metallurgy. The potential role of some advanced experimental and modelling techniques will also be explored to give a tentative view of potential for advances in this field in the next decade or so. This article is part of the themed issue 'The challenges of hydrogen and metals'.

  1. Improved understanding of the hot cathode current modes and mode transitions [Mechanism of the hot cathode current mode transitions

    DOE PAGES

    Campanell, Michael D.; Umansky, M. V.

    2017-11-22

    Hot cathodes are crucial components in a variety of plasma sources and applications, but they induce mode transitions and oscillations that are not fully understood. It is often assumed that negatively biased hot cathodes have a space-charge limited (SCL) sheath whenever the current is limited. Here, we show on theoretical grounds that a SCL sheath cannot persist. First, charge-exchange ions born within the virtual cathode (VC) region get trapped and build up. After the ion density reaches the electron density at a point in the VC, a new neutral region is formed and begins growing in space. In planar geometry,more » this 'new plasma' containing cold trapped ions and cold thermoelectrons grows towards the anode and fills the gap, leaving behind an inverse cathode sheath. This explains how transitions from temperature-limited mode to anode glow mode occur in thermionic discharge experiments with magnetic fields. If the hot cathode is a small filament in an unmagnetized plasma, the trapped ion region is predicted to grow radially in both directions, get expelled if it reaches the cathode, and reform periodically. Filament-induced current oscillations consistent with this prediction have been reported in experiments. Here, we set up planar geometry simulations of thermionic discharges and demonstrate several mode transition phenomena for the first time. Lastly, our continuum kinetic code lacks the noise of particle simulations, enabling a closer study of the temporal dynamics.« less

  2. Improved understanding of the hot cathode current modes and mode transitions [Mechanism of the hot cathode current mode transitions

    SciT

    Campanell, Michael D.; Umansky, M. V.

    Hot cathodes are crucial components in a variety of plasma sources and applications, but they induce mode transitions and oscillations that are not fully understood. It is often assumed that negatively biased hot cathodes have a space-charge limited (SCL) sheath whenever the current is limited. Here, we show on theoretical grounds that a SCL sheath cannot persist. First, charge-exchange ions born within the virtual cathode (VC) region get trapped and build up. After the ion density reaches the electron density at a point in the VC, a new neutral region is formed and begins growing in space. In planar geometry,more » this 'new plasma' containing cold trapped ions and cold thermoelectrons grows towards the anode and fills the gap, leaving behind an inverse cathode sheath. This explains how transitions from temperature-limited mode to anode glow mode occur in thermionic discharge experiments with magnetic fields. If the hot cathode is a small filament in an unmagnetized plasma, the trapped ion region is predicted to grow radially in both directions, get expelled if it reaches the cathode, and reform periodically. Filament-induced current oscillations consistent with this prediction have been reported in experiments. Here, we set up planar geometry simulations of thermionic discharges and demonstrate several mode transition phenomena for the first time. Lastly, our continuum kinetic code lacks the noise of particle simulations, enabling a closer study of the temporal dynamics.« less

  3. Decentralized Sliding Mode Observer Based Dual Closed-Loop Fault Tolerant Control for Reconfigurable Manipulator against Actuator Failure.

    PubMed

    Zhao, Bo; Li, Chenghao; Liu, Derong; Li, Yuanchun

    2015-01-01

    This paper considers a decentralized fault tolerant control (DFTC) scheme for reconfigurable manipulators. With the appearance of norm-bounded failure, a dual closed-loop trajectory tracking control algorithm is proposed on the basis of the Lyapunov stability theory. Characterized by the modularization property, the actuator failure is estimated by the proposed decentralized sliding mode observer (DSMO). Moreover, the actuator failure can be treated in view of the local joint information, so its control performance degradation is independent of other normal joints. In addition, the presented DFTC scheme is significantly simplified in terms of the structure of the controller due to its dual closed-loop architecture, and its feasibility is highly reflected in the control of reconfigurable manipulators. Finally, the effectiveness of the proposed DFTC scheme is demonstrated using simulations.

  4. Decentralized Sliding Mode Observer Based Dual Closed-Loop Fault Tolerant Control for Reconfigurable Manipulator against Actuator Failure

    PubMed Central

    Zhao, Bo; Li, Yuanchun

    2015-01-01

    This paper considers a decentralized fault tolerant control (DFTC) scheme for reconfigurable manipulators. With the appearance of norm-bounded failure, a dual closed-loop trajectory tracking control algorithm is proposed on the basis of the Lyapunov stability theory. Characterized by the modularization property, the actuator failure is estimated by the proposed decentralized sliding mode observer (DSMO). Moreover, the actuator failure can be treated in view of the local joint information, so its control performance degradation is independent of other normal joints. In addition, the presented DFTC scheme is significantly simplified in terms of the structure of the controller due to its dual closed-loop architecture, and its feasibility is highly reflected in the control of reconfigurable manipulators. Finally, the effectiveness of the proposed DFTC scheme is demonstrated using simulations. PMID:26181826

  5. Cooling flexural modes of a mechanical oscillator by magnetically trapped Bose-Einstein-condensate atoms

    NASA Astrophysics Data System (ADS)

    Xu, Donghong; Xue, Fei

    2017-12-01

    We theoretically study cooling of flexural modes of a mechanical oscillator by Bose-Einstein-condensate (BEC) atoms (Rb87) trapped in a magnetic trap. The mechanical oscillator with a tiny magnet attached on one of its free ends produces an oscillating magnetic field. When its oscillating frequency matches certain hyperfine Zeeman energy of Rb87 atoms, the trapped BEC atoms are coupled out of the magnetic trap by the mechanical oscillator, flying away from the trap with stolen energy from the mechanical oscillator. Thus the mode temperature of the mechanical oscillator is reduced. The mode temperature of the steady state of mechanical oscillator, measured by the mean steady-state phonon number in the flexural mode of the mechanical oscillator, is analyzed. It is found that ground state (phonon number less than 1) may be accessible with optimal parameters of the hybrid system of mechanical oscillator and trapped BEC atoms.

  6. Macroscopic Crosslinked Neat Carbon Nanotube Materials and CNT/Carbon Fiber Hybrid Composites: Supermolecular Structure and New Failure Mode Study

    DTIC Science & Technology

    2015-10-01

    Materials; CRC Press, 1997. (70) Zhang, Y.; Zheng, L.; Sun , G.; Zhan, Z.; Liao, K. Failure Mechanisms of Carbon Nanotube Fibers under Different...Buehler, M. J. Mesoscale Modeling of Mechanics of Carbon Nanotubes: Self-Assembly, Self-Folding, and Fracture . J. Mater. Res. 2006, 21 (11), 2855–2869...close surface contact between CNTs to substantially improve the load transfer and mechanical properties. We also revealed that extremely low

  7. The Slip Behavior of Serpentinite and its Significance in Controlling the Mode of Fault Failure

    NASA Astrophysics Data System (ADS)

    Scuderi, M.; Carpenter, B. M.; Marone, C.; Saffer, D. M.

    2013-12-01

    Recent observations of deep tremor and low-frequency earthquakes (LFE) have raised fundamental questions about the physics and processes responsible for such slip behaviors. Current hypotheses propose that these events represent shear failure on a critically stressed fault, possibly in the presence of near-lithostatic pore fluid pressure. The presence of serpentinite at characteristic P-T conditions where most deep tremor and LFE are located is suggested by slow seismic velocities, high Poisson`s ratios, and studies of exhumed fault systems. Despite the inferred presence of serpentinite and its role in the generation of tremors and LFE, little is known about its physical and mechanical properties under conditions of extremely low effective stress. Here, we report on experiments designed to investigate the frictional behavior of intact serpentinite recovered from New Idria, California. These serpentinites were emplaced as diapirs associated with Cretaceous subduction predating the formation of the SAF. They currently outcrop along the SAF, and are believed to represent protolith for material present at depth along the fault zone. In this context, they serve as important natural analogs for serpentinites associated with both subduction megathrusts and the SAF. We cut samples parallel to the original foliation from intact blocks, and sheared them in a single direct shear configuration (SDS) using a true triaxial deformation apparatus. To simulate shear between oceanic and continental wall rocks, we sheared intact wafers of serpentine against intact Westerly granite. To simulate internal deformation within the serpentine body, we sheared two intact blocks of serpentinite against each other. Additional experiments were performed on pulverized serpentinite gouge in a double direct shear configuration and under similar boundary conditions for comparison. Effective normal stress (σ'n = σ n - Pp) was kept constant throughout our experiments at values of 2 MPa (with Pp = 1

  8. Friction Stir Weld Failure Mechanisms in Aluminum-Armor Structures Under Ballistic Impact Loading Conditions

    DTIC Science & Technology

    2013-01-01

    REPORT Friction Stir Weld Failure Mechanisms in Aluminum -Armor Structures Under Ballistic Impact Loading Conditions 14. ABSTRACT 16. SECURITY...Stir Weld Failure Mechanisms in Aluminum -Armor Structures Under Ballistic Impact Loading Conditions M. Grujicic, B. Pandurangan, A. Arakere, C-F. Yen...K.O. Pedersen, Fracture Mechanisms of Aluminum Alloy AA7075-T651 Under Various Loading Conditions , Int. J. Impact Eng., 2010, 37, p 537–551 24. T

  9. Mode of action and effects of standardized collaborative disease management on mortality and morbidity in patients with systolic heart failure: the Interdisciplinary Network for Heart Failure (INH) study.

    PubMed

    Angermann, Christiane E; Störk, Stefan; Gelbrich, Götz; Faller, Hermann; Jahns, Roland; Frantz, Stefan; Loeffler, Markus; Ertl, Georg

    2012-01-01

    Trials investigating efficacy of disease management programs (DMP) in heart failure reported contradictory results. Features rendering specific interventions successful are often ill defined. We evaluated the mode of action and effects of a nurse-coordinated DMP (HeartNetCare-HF, HNC). Patients hospitalized for systolic heart failure were randomly assigned to HNC or usual care (UC). Besides telephone-based monitoring and education, HNC addressed individual problems raised by patients, pursued networking of health care providers and provided training for caregivers. End points were time to death or rehospitalization (combined primary), heart failure symptoms, and quality of life (SF-36). Of 1007 consecutive patients, 715 were randomly assigned (HNC: n=352; UC: n=363; age, 69±12 years; 29% female; 40% New York Heart Association class III-IV). Within 180 days, 130 HNC and 137 UC patients reached the primary end point (hazard ratio, 1.02; 95% confidence interval, 0.81-1.30; P=0.89), since more HNC patients were readmitted. Overall, 32 HNC and 52 UC patients died (1 UC patient and 4 HNC patients after dropout); thus, uncensored hazard ratio was 0.62 (0.40-0.96; P=0.03). HNC patients improved more regarding New York Heart Association class (P=0.05), physical functioning (P=0.03), and physical health component (P=0.03). Except for HNC, health care utilization was comparable between groups. However, HNC patients requested counseling for noncardiac problems even more frequently than for cardiovascular or heart-failure-related issues. The primary end point of this study was neutral. However, mortality risk and surrogates of well-being improved significantly. Quantitative assessment of patient requirements suggested that besides (tele)monitoring individualized care considering also noncardiac problems should be integrated in efforts to achieve more sustainable improvement in heart failure outcomes. URL: http://www.controlled-trials.com. Unique identifier: ISRCTN23325295.

  10. Method of Testing and Predicting Failures of Electronic Mechanical Systems

    NASA Technical Reports Server (NTRS)

    Iverson, David L.; Patterson-Hine, Frances A.

    1996-01-01

    A method employing a knowledge base of human expertise comprising a reliability model analysis implemented for diagnostic routines is disclosed. The reliability analysis comprises digraph models that determine target events created by hardware failures human actions, and other factors affecting the system operation. The reliability analysis contains a wealth of human expertise information that is used to build automatic diagnostic routines and which provides a knowledge base that can be used to solve other artificial intelligence problems.

  11. A motivational counseling approach to improving heart failure self-care: mechanisms of effectiveness.

    PubMed

    Riegel, Barbara; Dickson, Victoria V; Hoke, Linda; McMahon, Janet P; Reis, Brendali F; Sayers, Steven

    2006-01-01

    Self-care is an integral component of successful heart failure (HF) management. Engaging patients in self-care can be challenging. Fifteen patients with HF enrolled during hospitalization received a motivational intervention designed to improve HF self-care. A mixed method, pretest posttest design was used to evaluate the proportion of patients in whom the intervention was beneficial and the mechanism of effectiveness. Participants received, on average, 3.0 +/- 1.5 home visits (median 3, mode 3, range 1-6) over a three-month period from an advanced practice nurse trained in motivational interviewing and family counseling. Quantitative and qualitative data were used to judge individual patients in whom the intervention produced a clinically significant improvement in HF self-care. Audiotaped intervention sessions were analyzed using qualitative methods to assess the mechanism of intervention effectiveness. Congruence between quantitative and qualitative judgments of improved self-care revealed that 71.4% of participants improved in self-care after receiving the intervention. Analysis of transcribed intervention sessions revealed themes of 1) communication (reflective listening, empathy); 2) making it fit (acknowledging cultural beliefs, overcoming barriers and constraints, negotiating an action plan); and, 3) bridging the transition from hospital to home (providing information, building skills, activating support resources). An intervention that incorporates the core elements of motivational interviewing may be effective in improving HF self-care, but further research is needed.

  12. Comprehensive reliability allocation method for CNC lathes based on cubic transformed functions of failure mode and effects analysis

    NASA Astrophysics Data System (ADS)

    Yang, Zhou; Zhu, Yunpeng; Ren, Hongrui; Zhang, Yimin

    2015-03-01

    Reliability allocation of computerized numerical controlled(CNC) lathes is very important in industry. Traditional allocation methods only focus on high-failure rate components rather than moderate failure rate components, which is not applicable in some conditions. Aiming at solving the problem of CNC lathes reliability allocating, a comprehensive reliability allocation method based on cubic transformed functions of failure modes and effects analysis(FMEA) is presented. Firstly, conventional reliability allocation methods are introduced. Then the limitations of direct combination of comprehensive allocation method with the exponential transformed FMEA method are investigated. Subsequently, a cubic transformed function is established in order to overcome these limitations. Properties of the new transformed functions are discussed by considering the failure severity and the failure occurrence. Designers can choose appropriate transform amplitudes according to their requirements. Finally, a CNC lathe and a spindle system are used as an example to verify the new allocation method. Seven criteria are considered to compare the results of the new method with traditional methods. The allocation results indicate that the new method is more flexible than traditional methods. By employing the new cubic transformed function, the method covers a wider range of problems in CNC reliability allocation without losing the advantages of traditional methods.

  13. Revised Risk Priority Number in Failure Mode and Effects Analysis Model from the Perspective of Healthcare System

    PubMed Central

    Rezaei, Fatemeh; Yarmohammadian, Mohmmad H.; Haghshenas, Abbas; Fallah, Ali; Ferdosi, Masoud

    2018-01-01

    Background: Methodology of Failure Mode and Effects Analysis (FMEA) is known as an important risk assessment tool and accreditation requirement by many organizations. For prioritizing failures, the index of “risk priority number (RPN)” is used, especially for its ease and subjective evaluations of occurrence, the severity and the detectability of each failure. In this study, we have tried to apply FMEA model more compatible with health-care systems by redefining RPN index to be closer to reality. Methods: We used a quantitative and qualitative approach in this research. In the qualitative domain, focused groups discussion was used to collect data. A quantitative approach was used to calculate RPN score. Results: We have studied patient's journey in surgery ward from holding area to the operating room. The highest priority failures determined based on (1) defining inclusion criteria as severity of incident (clinical effect, claim consequence, waste of time and financial loss), occurrence of incident (time - unit occurrence and degree of exposure to risk) and preventability (degree of preventability and defensive barriers) then, (2) risks priority criteria quantified by using RPN index (361 for the highest rate failure). The ability of improved RPN scores reassessed by root cause analysis showed some variations. Conclusions: We concluded that standard criteria should be developed inconsistent with clinical linguistic and special scientific fields. Therefore, cooperation and partnership of technical and clinical groups are necessary to modify these models. PMID:29441184

  14. Apollo CSM Power Generation System Design Considerations, Failure Modes and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    The objectives of this slide presentation are to: review the basic design criteria for fuel cells (FC's), review design considerations during developmental phase that affected Block I and Block II vehicles, summarize the conditions that led to the failure of components in the FC's, and state the solution implemented for each failure. It reviews the location of the fuel cells, the fuel cell theory the design criteria going into development phase and coming from the development phase, failures and solutions of Block I and II, and the lessons learned.

  15. Failure modes for compression loaded angle-ply plates with holes

    NASA Technical Reports Server (NTRS)

    Burns, S. W.; Herakovich, C. T.; Williams, J. G.

    1987-01-01

    A combined theoretical-experimental investigation of failure in notched, graphite-epoxy, angle-ply laminates subjected to far-field compression loading indicates that failure generally initiates on the hole boundary and propagates along a line parallel to the fiber orientation of the laminate. The strength of notched laminates with specimen width-to-hole diameter ratios of 5 and 10 are compared to the strength of unnotched laminates. The experimental results are complemented by a three-dimensional finite element stress analysis that includes interlaminar stresses around holes in (+/- theta)s laminates. The finite element predictions indicate that failure is initiated by shear stresses at the hole boundary.

  16. Mechanical conditions and modes of paraglacial deep-seated gravitational spreading in Valles Marineris, Mars

    NASA Astrophysics Data System (ADS)

    Makowska, Magdalena; Mège, Daniel; Gueydan, Frédéric; Chéry, Jean

    2016-09-01

    Deep-seated gravitational spreading (DSGS) affects the slopes of formerly glaciated mountain ridges. On Mars, DSGS has played a key role in shaping the landforms of the giant Valles Marineris troughs. Though less spectacular, DSGS is common in terrestrial orogens, where understanding its mechanics is critical in the light of the ongoing climate change because it is a potential source of catastrophic landslides in deglaciated valleys. We conducted parametric numerical studies in order to identify important factors responsible for DSGS initiation. DSGS models are computed using an elastoviscoplastic finite element code. Using ADELI's software, we reproduce topographic ridge spreading under the effect of valley unloading. Two types of spreading topographic ridges are investigated, homogeneous or with horizontal rheological layering. We find that gravitational instabilities are enhanced by high slopes, which increase gravitational stress, and low friction and cohesion, which decrease yield stress. In the unlayered ridge, instability is triggered by glacial unloading with plastic strain concentration inside the ridge and at the base of the high slopes. Vertical fractures develop in the upper part of the slope, potentially leading to fault scarps. Ridge homogeneity promotes a deformation mode controlled by uphill-facing normal faulting and basal bulging. In the second case, the ridge encompasses horizontal geological discontinuities that induce rock mass anisotropy. Discontinuity located at the base of the slope accumulates plastic strain, leading to the formation of a sliding plane evolving into a landslide. The presence of a weak layer at ridge base therefore promotes another slope deformation mode ending up with catastrophic failure. Mechanical conditions and slope height being equal, these conclusions can probably be extrapolated to Earth. Compared with Mars, DSGS on Earth is inhibited because terrestrial topographic gradients are lower than in Valles Marineris, an

  17. Failure and Degradation Modes of PV modules in a Hot Dry Climate: Results after 4 and 12 years of field exposure

    NASA Astrophysics Data System (ADS)

    Mallineni, Jaya krishna

    This study evaluates two photovoltaic (PV) power plants based on electrical performance measurements, diode checks, visual inspections and infrared scanning. The purpose of this study is to measure degradation rates of performance parameters (Pmax, Isc, Voc, Vmax, Imax and FF) and to identify the failure modes in a "hot-dry desert" climatic condition along with quantitative determination of safety failure rates and reliability failure rates. The data obtained from this study can be used by module manufacturers in determining the warranty limits of their modules and also by banks, investors, project developers and users in determining appropriate financing or decommissioning models. In addition, the data obtained in this study will be helpful in selecting appropriate accelerated stress tests which would replicate the field failures for the new modules and would predict the lifetime for new PV modules. The study was conducted at two, single axis tracking monocrystalline silicon (c-Si) power plants, Site 3 and Site 4c of Salt River Project (SRP). The Site 3 power plant is located in Glendale, Arizona and the Site 4c power plant is located in Mesa, Arizona both considered a "hot-dry" field condition. The Site 3 power plant has 2,352 modules (named as Model-G) which was rated at 250 kW DC output. The mean and median degradation of these 12 years old modules are 0.95%/year and 0.96%/year, respectively. The major cause of degradation found in Site 3 is due to high series resistance (potentially due to solder-bond thermo-mechanical fatigue) and the failure mode is ribbon-ribbon solder bond failure/breakage. The Site 4c power plant has 1,280 modules (named as Model-H) which provide 243 kW DC output. The mean and median degradation of these 4 years old modules are 0.96%/year and 1%/year, respectively. At Site 4c, practically, none of the module failures are observed. The average soiling loss is 6.9% in Site 3 and 5.5% in Site 4c. The difference in soiling level is attributed

  18. WE-H-BRC-01: Failure Mode and Effects Analysis of Skin Electronic Brachytherapy Using Esteya Unit

    SciT

    Ibanez-Rosello, B; Bautista-Ballesteros, J; Bonaque, J

    Purpose: A failure mode and effect analysis (FMEA) of skin lesions treatment process using Esteya™ device (Elekta Brachyterapy, Veenendaal, The Netherlands) was performed, with the aim of increasing the quality of the treatment and reducing the likelihood of unwanted events. Methods: A multidisciplinary team with experience in the treatment process met to establish the process map, which outlines the flow of various stages for such patients undergoing skin treatment. Potential failure modes (FM) were identified and the value of severity (S), frequency of occurrence (O), and lack of detectability (D) of the proposed FM were scored individually, each on amore » scale of 1 to 10 following TG-100 guidelines of the AAPM. These failure modes were ranked according to our risk priority number (RPN) and S scores. The efficiency of existing quality management tools was analyzed through a reassessment of the O and D made by consensus. Results: 149 FM were identified, 43 of which had RPN ≥ 100 and 30 had S ≥ 7. After introduction of the tools of quality management, only 3 FM had RPN ≥ 100 and 22 FM had RPN ≥ 50. These 22 FM were thoroughly analyzed and new tools for quality management were proposed. The most common cause of highest RPN FM was associated with the heavy patient workload and the continuous and accurate applicator-patient skin contact during the treatment. To overcome this second item, a regular quality control and setup review by a second individual before each treatment session was proposed. Conclusion: FMEA revealed some of the FM potentials that were not predicted during the initial implementation of the quality management tools. This exercise was useful in identifying the need of periodic update of the FMEA process as new potential failures can be identified.« less

  19. SU-F-T-245: The Investigation of Failure Mode and Effects Analysis and PDCA for the Radiotherapy Risk Reduction

    SciT

    Xie, J; Wang, J; P, J

    2016-06-15

    Purpose: To optimize the clinical processes of radiotherapy and to reduce the radiotherapy risks by implementing the powerful risk management tools of failure mode and effects analysis(FMEA) and PDCA(plan-do-check-act). Methods: A multidiciplinary QA(Quality Assurance) team from our department consisting of oncologists, physicists, dosimetrists, therapists and administrator was established and an entire workflow QA process management using FMEA and PDCA tools was implemented for the whole treatment process. After the primary process tree was created, the failure modes and Risk priority numbers(RPNs) were determined by each member, and then the RPNs were averaged after team discussion. Results: 3 of 9 failuremore » modes with RPN above 100 in the practice were identified in the first PDCA cycle, which were further analyzed to investigate the RPNs: including of patient registration error, prescription error and treating wrong patient. New process controls reduced the occurrence, or detectability scores from the top 3 failure modes. Two important corrective actions reduced the highest RPNs from 300 to 50, and the error rate of radiotherapy decreased remarkably. Conclusion: FMEA and PDCA are helpful in identifying potential problems in the radiotherapy process, which was proven to improve the safety, quality and efficiency of radiation therapy in our department. The implementation of the FMEA approach may improve the understanding of the overall process of radiotherapy while may identify potential flaws in the whole process. Further more, repeating the PDCA cycle can bring us closer to the goal: higher safety and accuracy radiotherapy.« less

  20. Lunar Module Environmental Control System Design Considerations and Failure Modes. Part 2

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael A.

    2009-01-01

    This viewgraph presentation seeks to describe the Lunar Module Environmental Control System (ECS) subsystem testing and redesign and seeks to summarize the in-flight failures of the Lunar Module (LM) Environmental Control System (ECS).

  1. Meteorological Satellites (METSAT) and Earth Observing System (EOS) Advanced Microwave Sounding Unit-A (AMSU-A) Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This Failure Modes and Effects Analysis (FMEA) is for the Advanced Microwave Sounding Unit-A (AMSU-A) instruments that are being designed and manufactured for the Meteorological Satellites Project (METSAT) and the Earth Observing System (EOS) integrated programs. The FMEA analyzes the design of the METSAT and EOS instruments as they currently exist. This FMEA is intended to identify METSAT and EOS failure modes and their effect on spacecraft-instrument and instrument-component interfaces. The prime objective of this FMEA is to identify potential catastrophic and critical failures so that susceptibility to the failures and their effects can be eliminated from the METSAT/EOS instruments.

  2. Plastic Pipe Failure, Risk, and Threat Analysis

    DOT National Transportation Integrated Search

    2009-04-29

    The three primary failure modes that may be exhibited by polyethylene (PE) gas pipe materials were described in detail. The modes are: ductile rupture, slow crack growth (SCG), and rapid crack propagation (RCP). Short term mechanical tests were evalu...

  3. Exocytosis and Endocytosis: Modes, Functions, and Coupling Mechanisms*

    PubMed Central

    Wu, Ling-Gang; Hamid, Edaeni; Shin, Wonchul; Chiang, Hsueh-Cheng

    2016-01-01

    Vesicle exocytosis releases content to mediate many biological events, including synaptic transmission essential for brain functions. Following exocytosis, endocytosis is initiated to retrieve exocytosed vesicles within seconds to minutes. Decades of studies in secretory cells reveal three exocytosis modes coupled to three endocytosis modes: (a) full-collapse fusion, in which vesicles collapse into the plasma membrane, followed by classical endocytosis involving membrane invagination and vesicle reformation; (b) kiss-and-run, in which the fusion pore opens and closes; and (c) compound exocytosis, which involves exocytosis of giant vesicles formed via vesicle-vesicle fusion, followed by bulk endocytosis that retrieves giant vesicles. Here we review these exo- and endocytosis modes and their roles in regulating quantal size and synaptic strength, generating synaptic plasticity, maintaining exocytosis, and clearing release sites for vesicle replenishment. Furthermore, we highlight recent progress in understanding how vesicle endocytosis is initiated and is thus coupled to exocytosis. The emerging model is that calcium influx via voltage-dependent calcium channels at the calcium microdomain triggers endocytosis and controls endocytosis rate; calmodulin and synaptotagmin are the calcium sensors; and the exocytosis machinery, including SNARE proteins (synaptobrevin, SNAP25, and syntaxin), is needed to coinitiate endocytosis, likely to control the amount of endocytosis. PMID:24274740

  4. SU-E-T-421: Failure Mode and Effects Analysis (FMEA) of Xoft Electronic Brachytherapy for the Treatment of Superficial Skin Cancers

    SciT

    Hoisak, J; Manger, R; Dragojevic, I

    Purpose: To perform a failure mode and effects analysis (FMEA) of the process for treating superficial skin cancers with the Xoft Axxent electronic brachytherapy (eBx) system, given the recent introduction of expanded quality control (QC) initiatives at our institution. Methods: A process map was developed listing all steps in superficial treatments with Xoft eBx, from the initial patient consult to the completion of the treatment course. The process map guided the FMEA to identify the failure modes for each step in the treatment workflow and assign Risk Priority Numbers (RPN), calculated as the product of the failure mode’s probability ofmore » occurrence (O), severity (S) and lack of detectability (D). FMEA was done with and without the inclusion of recent QC initiatives such as increased staffing, physics oversight, standardized source calibration, treatment planning and documentation. The failure modes with the highest RPNs were identified and contrasted before and after introduction of the QC initiatives. Results: Based on the FMEA, the failure modes with the highest RPN were related to source calibration, treatment planning, and patient setup/treatment delivery (Fig. 1). The introduction of additional physics oversight, standardized planning and safety initiatives such as checklists and time-outs reduced the RPNs of these failure modes. High-risk failure modes that could be mitigated with improved hardware and software interlocks were identified. Conclusion: The FMEA analysis identified the steps in the treatment process presenting the highest risk. The introduction of enhanced QC initiatives mitigated the risk of some of these failure modes by decreasing their probability of occurrence and increasing their detectability. This analysis demonstrates the importance of well-designed QC policies, procedures and oversight in a Xoft eBx programme for treatment of superficial skin cancers. Unresolved high risk failure modes highlight the need for non

  5. Fracture resistance and failure mode of posterior fixed dental prostheses fabricated with two zirconia CAD/CAM systems

    PubMed Central

    López-Suárez, Carlos; Gonzalo, Esther; Peláez, Jesús; Rodríguez, Verónica

    2015-01-01

    Background In recent years there has been an improvement of zirconia ceramic materials to replace posterior missing teeth. To date little in vitro studies has been carried out on the fracture resistance of zirconia veneered posterior fixed dental prostheses. This study investigated the fracture resistance and the failure mode of 3-unit zirconia-based posterior fixed dental prostheses fabricated with two CAD/CAM systems. Material and Methods Twenty posterior fixed dental prostheses were studied. Samples were randomly divided into two groups (n=10 each) according to the zirconia ceramic analyzed: Lava and Procera. Specimens were loaded until fracture under static load. Data were analyzed using Wilcoxon´s rank sum test and Wilcoxon´s signed-rank test (P<0.05). Results Partial fracture of the veneering porcelain occurred in 100% of the samples. Within each group, significant differences were shown between the veneering and the framework fracture resistance (P=0.002). The failure occurred in the connector cervical area in 80% of the cases. Conclusions All fracture load values of the zirconia frameworks could be considered clinically acceptable. The connector area is the weak point of the restorations. Key words:Fixed dental prostheses, zirconium-dioxide, zirconia, fracture resistance, failure mode. PMID:26155341

  6. Establishment of design criteria for acceptable failure modes and fail safe considerations for the space shuttle structural system

    NASA Technical Reports Server (NTRS)

    Westrup, R. W.

    1971-01-01

    The application of general design approaches for preventing failures due to repeated load cycles is briefly discussed. Program objective, mission requirements, and structural design criteria are summarized. Discrete structural elements and associated sections were selected for detailed strength, fatigue, and fracture mechanics investigations.

  7. Mechanism of valve failure and efficacy of reintervention through catheterization in patients with bioprosthetic valves in the pulmonary position

    PubMed Central

    Callahan, Ryan; Bergersen, Lisa; Baird, Christopher W; Porras, Diego; Esch, Jesse J; Lock, James E; Marshall, Audrey C

    2017-01-01

    Background: Surgical and transcatheter bioprosthetic valves (BPVs) in the pulmonary position in patients with congenital heart disease may ultimately fail and undergo transcatheter reintervention. Angiographic assessment of the mechanism of BPV failure has not been previously described. Aims: The aim of this study was to determine the mode of BPV failure (stenosis/regurgitation) requiring transcatheter reintervention and to describe the angiographic characteristics of the failed BPVs and report the types and efficacy of reinterventions. Materials and Methods: This is a retrospective single-center review of consecutive patients who previously underwent pulmonary BPV placement (surgical or transcatheter) and subsequently underwent percutaneous reintervention from 2005 to 2014. Results: Fifty-five patients with surgical (41) and transcutaneous pulmonary valve (TPV) (14) implantation of BPVs underwent 66 catheter reinterventions. The surgically implanted valves underwent fifty reinterventions for indications including 16 for stenosis, seven for regurgitation, and 27 for both, predominantly associated with leaflet immobility, calcification, and thickening. Among TPVs, pulmonary stenosis (PS) was the exclusive failure mode, mainly due to loss of stent integrity (10) and endocarditis (4). Following reintervention, there was a reduction of right ventricular outflow tract gradient from 43 ± 16 mmHg to 16 ± 10 mmHg (P < 0.001) and RVp/AO ratio from 0.8 ± 0.2 to 0.5 ± 0.2 (P < 0.001). Reintervention with TPV placement was performed in 45 (82%) patients (34 surgical, 11 transcatheter) with no significant postintervention regurgitation or paravalvular leak. Conclusion: Failing surgically implanted BPVs demonstrate leaflet calcification, thickness, and immobility leading to PS and/or regurgitation while the mechanism of TPV failure in the short- to mid-term is stenosis, mainly from loss of stent integrity. This can be effectively treated with a catheter-based approach

  8. Characterization of ultrathin insulators in CMOS technology: Wearout and failure mechanisms due to processing and operation

    NASA Astrophysics Data System (ADS)

    Okandan, Murat

    In the CMOS technology the gate dielectric is the most critical layer, as its condition directly dictates the ultimate performance of the devices. In this thesis, the wear-out and failure mechanisms in ultra-thin (around 50A and lower) oxides are investigated. A new degradation phenomenon, quasi-breakdown (or soft-breakdown), and the annealing and stressing behavior of devices after quasi-breakdown are considered in detail. Devices that are in quasi-breakdown continue to operate as switches, but the gate leakage current is two orders of magnitude higher than the leakage in healthy devices and the stressing/annealing behavior of the devices are completely altered. This phenomenon is of utmost interest, since the reduction in SiO2 dielectric thickness has reached its physical limits, and the quasi-breakdown behavior is seen to dominate as a failure mode in this regime. The quasi-breakdown condition can be brought on by stresses during operation or processing. To further study this evolution through stresses and anneals, cyclic current-voltage (I-V) measurement has been further developed and utilized in this thesis. Cyclic IV is a simple and fast, two terminal measurement technique that looks at the transient current flowing in an MOS system during voltage sweeps from accumulation to inversion and back. During these sweeps, carrier trapping/detrapping, generation and recombination are observed. An experimental setup using a fast electrometer and analog to digital conversion (A/D) card and the software for control of the setup and data analysis were also developed to gain further insight into the detailed physics involved. Overall, the crucial aspects of wear-out and quasi-breakdown of ultrathin dielectrics, along with the methods for analyzing this evolution are presented in this thesis.

  9. Laboratory and 3-D-distinct element analysis of failure mechanism of slope under external surcharge

    NASA Astrophysics Data System (ADS)

    Li, N.; Cheng, Y. M.

    2014-09-01

    Landslide is a major disaster resulting in considerable loss of human lives and property damages in hilly terrain in Hong Kong, China and many other countries. The factor of safety and the critical slip surface for slope stabilization are the main considerations for slope stability analysis in the past, while the detailed post-failure conditions of the slopes have not been considered in sufficient details. There are however increasing interest on the consequences after the initiation of failure which includes the development and propagation of the failure surfaces, the amount of failed mass and runoff and the affected region. To assess the development of slope failure in more details and to consider the potential danger of slopes after failure has initiated, the slope stability problem under external surcharge is analyzed by the distinct element method (DEM) and laboratory model test in the present research. A more refined study about the development of failure, microcosmic failure mechanism and the post-failure mechanism of slope will be carried out. The numerical modeling method and the various findings from the present work can provide an alternate method of analysis of slope failure which can give additional information not available from the classical methods of analysis.

  10. A Hybrid Approach to Composite Damage and Failure Analysis Combining Synergistic Damage Mechanics and Peridynamics

    DTIC Science & Technology

    2017-03-30

    Composite Damage and Failure Analysis Combining Synergistic Damage Mechanics and Peridynamics 5b. GRANT NUMBER NOOO 14-16-1-21 73 5c. PROGRAM...ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Texas A&M Engineering Experiment Station (TEES) 400 Harvey Mitchell Parkway, Suite 300 M160 1473 I...Failure Analysis Combining Synergistic Damage Mechanics and Peridynamics Award Number N00014-16-1-2173 DOD-NAVY- Office of Naval Research PI: Ramesh

  11. Power scaling limits in high power fiber amplifiers due to transverse mode instability, thermal lensing, and fiber mechanical reliability

    NASA Astrophysics Data System (ADS)

    Zervas, Michalis N.

    2018-02-01

    We introduced a simple formula providing the mode-field diameter shrinkage, due to heat load in fiber amplifiers, and used it to compare the traditional thermal-lensing power limit (PTL) to a newly developed transverse-mode instability (TMI) power limit (PTMI), giving a fixed ratio of PTMI/PTL≍0.6, in very good agreement with experiment. Using a failure-in-time analysis we also introduced a new power limiting factor due to mechanical reliability of bent fibers. For diode (tandem) pumping power limits of 28kW (52kW) are predicted. Setting a practical limit of maximum core diameter to 35μm, the limits reduce to 15kW (25kW).

  12. Accelerated Thermal Cycling and Failure Mechanisms for BGA and CSP Assemblies

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2000-01-01

    This paper reviews the accelerated thermal cycling test methods that are currently used by industry to characterize the interconnect reliability of commercial-off-the-shelf (COTS) ball grid array (BGA) and chip scale package (CSP) assemblies. Acceleration induced failure mechanisms varied from conventional surface mount (SM) failures for CSPs. Examples of unrealistic life projections for other CSPs are also presented. The cumulative cycles to failure for ceramic BGA assemblies performed under different conditions, including plots of their two Weibull parameters, are presented. The results are for cycles in the range of -30 C to 100 C, -55 C to 100 C, and -55 C to 125 C. Failure mechanisms as well as cycles to failure for thermal shock and thermal cycling conditions in the range of -55 C to 125 C were compared. Projection to other temperature cycling ranges using a modified Coffin-Manson relationship is also presented.

  13. Agent autonomy approach to probabilistic physics-of-failure modeling of complex dynamic systems with interacting failure mechanisms

    NASA Astrophysics Data System (ADS)

    Gromek, Katherine Emily

    A novel computational and inference framework of the physics-of-failure (PoF) reliability modeling for complex dynamic systems has been established in this research. The PoF-based reliability models are used to perform a real time simulation of system failure processes, so that the system level reliability modeling would constitute inferences from checking the status of component level reliability at any given time. The "agent autonomy" concept is applied as a solution method for the system-level probabilistic PoF-based (i.e. PPoF-based) modeling. This concept originated from artificial intelligence (AI) as a leading intelligent computational inference in modeling of multi agents systems (MAS). The concept of agent autonomy in the context of reliability modeling was first proposed by M. Azarkhail [1], where a fundamentally new idea of system representation by autonomous intelligent agents for the purpose of reliability modeling was introduced. Contribution of the current work lies in the further development of the agent anatomy concept, particularly the refined agent classification within the scope of the PoF-based system reliability modeling, new approaches to the learning and the autonomy properties of the intelligent agents, and modeling interacting failure mechanisms within the dynamic engineering system. The autonomous property of intelligent agents is defined as agent's ability to self-activate, deactivate or completely redefine their role in the analysis. This property of agents and the ability to model interacting failure mechanisms of the system elements makes the agent autonomy fundamentally different from all existing methods of probabilistic PoF-based reliability modeling. 1. Azarkhail, M., "Agent Autonomy Approach to Physics-Based Reliability Modeling of Structures and Mechanical Systems", PhD thesis, University of Maryland, College Park, 2007.

  14. Failure mode and effects analysis to reduce risk of anticoagulation levels above the target range during concurrent antimicrobial therapy.

    PubMed

    Daniels, Lisa M; Barreto, Jason N; Kuth, John C; Anderson, Jeremy R; Zhang, Beilei; Majka, Andrew J; Morgenthaler, Timothy I; Tosh, Pritish K

    2015-07-15

    A failure mode and effects analysis (FMEA) was conducted to analyze the clinical and operational processes leading to above-target International Normalized Ratios (INRs) in warfarin-treated patients receiving concurrent antimicrobial therapy. The INRs of patients on long-term warfarin therapy who received a course of trimethoprim-sulfamethoxazole, metronidazole, fluconazole, miconazole, or voriconazole (highly potentiating antimicrobials, or HPAs) between September 1 and December 31, 2011, were compared with patients on long-term warfarin therapy who did not receive any antimicrobial during the same period. A multidisciplinary team of physicians, pharmacists, and a systems analyst was then formed to complete a step-by-step outline of the processes involved in warfarin management and concomitant HPA therapy, followed by an FMEA. Patients taking trimethoprim-sulfamethoxazole, metronidazole, or fluconazole demonstrated a significantly increased risk of having an INR of >4.5. The FMEA identified 134 failure modes. The most common failure modes were as follows: (1) electronic medical records did not identify all patients receiving warfarin, (2) HPA prescribers were unaware of recommended warfarin therapy when HPAs were prescribed, (3) HPA prescribers were unaware that a patient was taking warfarin and that the drug interaction is significant, and (4) warfarin managers were unaware that an HPA had been prescribed for a patient. An FMEA determined that the risk of adverse events caused by concomitantly administering warfarin and HPAs can be decreased by preemptively identifying patients receiving warfarin, having a care process in place, alerting providers about the patient's risk status, and notifying providers at the anticoagulation clinic. Copyright © 2015 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  15. Key performance outcomes of patient safety curricula: root cause analysis, failure mode and effects analysis, and structured communications skills.

    PubMed

    Fassett, William E

    2011-10-10

    As colleges and schools of pharmacy develop core courses related to patient safety, course-level outcomes will need to include both knowledge and performance measures. Three key performance outcomes for patient safety coursework, measured at the course level, are the ability to perform root cause analyses and healthcare failure mode effects analyses, and the ability to generate effective safety communications using structured formats such as the Situation-Background-Assessment-Recommendation (SBAR) situational briefing model. Each of these skills is widely used in patient safety work and competence in their use is essential for a pharmacist's ability to contribute as a member of a patient safety team.

  16. Independent backup mode transfer and mechanism for digital control computers

    NASA Technical Reports Server (NTRS)

    Tulpule, Bhalchandra R. (Inventor); Oscarson, Edward M. (Inventor)

    1992-01-01

    An interrupt is provided to a signal processor having a non-maskable interrupt input, in response to the detection of a request for transfer to backup software. The signal processor provides a transfer signal to a transfer mechanism only after completion of the present machine cycle. Transfer to the backup software is initiated by the transfer mechanism only upon reception of the transfer signal.

  17. Failure Mechanism of a Stellite Coating on Heat-Resistant Steel

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Zhao, Haixing; Wang, Huang; Li, Yuyan; Liu, Xia; He, Guo

    2017-09-01

    The Stellite 21 coating on the heat-resistant steel X12CrMoWVNbN10-1-1 (so-called COSTE) used in a steam turbine valve was found to be fatigue broken after service at around 873 K (600 °C) for about 8 years. In order to investigate the failure mechanism, a fresh Stellite 21 coating was also prepared on the same COSTE steel substrate by using the similar deposition parameters for comparison. It was found that the Stellite 21 coating was significantly diluted by the steel, resulting in a thin Fe-rich layer in the coating close to the fusion line. Such high Fe concentration together with the incessant Fe diffusion from the steel substrate to the coating during the service condition (about 873 K (600 °C) for long time) induced the eutectoid decomposition of the fcc α-Co(Fe,Cr,Mo) solid solution, forming an irregular eutectoid microstructure that was composed of the primitive cubic α'-FeCo(Cr,Mo) phase and the tetragonal σ-CrCo(Fe,Mo) phase. The brittle nature of such α'/ σ eutectoid microstructure contributed to the fatigue fracture of the Stellite 21 coating, resulting in an intergranular rupture mode.

  18. Reliability measurement for mixed mode failures of 33/11 kilovolt electric power distribution stations.

    PubMed

    Alwan, Faris M; Baharum, Adam; Hassan, Geehan S

    2013-01-01

    The reliability of the electrical distribution system is a contemporary research field due to diverse applications of electricity in everyday life and diverse industries. However a few research papers exist in literature. This paper proposes a methodology for assessing the reliability of 33/11 Kilovolt high-power stations based on average time between failures. The objective of this paper is to find the optimal fit for the failure data via time between failures. We determine the parameter estimation for all components of the station. We also estimate the reliability value of each component and the reliability value of the system as a whole. The best fitting distribution for the time between failures is a three parameter Dagum distribution with a scale parameter [Formula: see text] and shape parameters [Formula: see text] and [Formula: see text]. Our analysis reveals that the reliability value decreased by 38.2% in each 30 days. We believe that the current paper is the first to address this issue and its analysis. Thus, the results obtained in this research reflect its originality. We also suggest the practicality of using these results for power systems for both the maintenance of power systems models and preventive maintenance models.

  19. Reliability Measurement for Mixed Mode Failures of 33/11 Kilovolt Electric Power Distribution Stations

    PubMed Central

    Alwan, Faris M.; Baharum, Adam; Hassan, Geehan S.

    2013-01-01

    The reliability of the electrical distribution system is a contemporary research field due to diverse applications of electricity in everyday life and diverse industries. However a few research papers exist in literature. This paper proposes a methodology for assessing the reliability of 33/11 Kilovolt high-power stations based on average time between failures. The objective of this paper is to find the optimal fit for the failure data via time between failures. We determine the parameter estimation for all components of the station. We also estimate the reliability value of each component and the reliability value of the system as a whole. The best fitting distribution for the time between failures is a three parameter Dagum distribution with a scale parameter and shape parameters and . Our analysis reveals that the reliability value decreased by 38.2% in each 30 days. We believe that the current paper is the first to address this issue and its analysis. Thus, the results obtained in this research reflect its originality. We also suggest the practicality of using these results for power systems for both the maintenance of power systems models and preventive maintenance models. PMID:23936346

  20. Effect of Strain Rate on Joint Strength and Failure Mode of Lead-Free Solder Joints

    NASA Astrophysics Data System (ADS)

    Lin, Jian; Lei, Yongping; Fu, Hanguang; Guo, Fu

    2018-03-01

    In surface mount technology, the Sn-3.0Ag-0.5Cu solder joint has a shorter impact lifetime than a traditional lead-tin solder joint. In order to improve the impact property of SnAgCu lead-free solder joints and identify the effect of silver content on tensile strength and impact property, impact experiments were conducted at various strain rates on three selected SnAgCu based solder joints. It was found that joint failure mainly occurred in the solder material with large plastic deformation under low strain rate, while joint failure occurred at the brittle intermetallic compound layer without any plastic deformation at a high strain rate. Joint strength increased with the silver content in SnAgCu alloys in static tensile tests, while the impact property of the solder joint decreased with increasing silver content. When the strain rate was low, plastic deformation occurred with failure and the tensile strength of the Sn-3.0Ag-0.5Cu solder joint was higher than that of Sn-0.3Ag-0.7Cu; when the strain rate was high, joint failure mainly occurred at the brittle interface layer and the Sn-0.3Ag-0.7Cu solder joint had a better impact resistance with a thinner intermetallic compound layer.

  1. Deformation and failure mechanisms of graphite/epoxy composites under static loading

    NASA Technical Reports Server (NTRS)

    Clements, L. L.

    1981-01-01

    The mechanisms of deformation and failure of graphite epoxy composites under static loading were clarified. The influence of moisture and temperature upon these mechanisms were also investigated. Because the longitudinal tensile properties are the most critical to the performance of the composite, these properties were investigated in detail. Both ultimate and elastic mechanical properties were investigated, but the study of mechanisms emphasized those leading to failure of the composite. The graphite epoxy composite selected for study was the system being used in several NASA sponsored flight test programs.

  2. Evaluating Failure Mechanics of the Malpais Landslide, Eureka County, Nevada

    NASA Astrophysics Data System (ADS)

    Wilhite, C. P.; Carr, J. R.; Wallace, A. R.; Watters, R. J.

    2008-12-01

    The Malpais Landslide is located on the northeast end of the Shoshone Mountains in north-central Nevada. The 2.3 square kilometer slide originated near the crest of the Malpais Rim and flowed north into Whirlwind Valley. Given the proximity to Holocene faulting and active geothermal conditions, destabilizing forces include seismic activity, hydrothermal alteration, and changes in groundwater conditions. Approximately 3 km west of the slide is the Beowawe Geothermal Field, which is partially recharged along local faults and has altered geologic units throughout the slide area. The area contains two major normal faults (the approximately east striking Malpais Fault and the approximately north striking Dunphy Pass Fault) and numerous smaller faults. The most recent offset along the Malpais fault was approximately 7450 years B.P. (Wesnousky et al., 2005). The resulting scarp cannot be traced through the slide, therefore sliding occurred after that time (though previous sliding has not been ruled out). The stratigraphy in the slide area consists of a basal Paleozoic quartzite, unconformably overlain by Oligocene to Miocene conglomeratic to tuffaceous sediments with interbedded volcanic flows, capped by a sequence of mafic flow units. Except for the lowest sedimentary unit, Tts, all units dip approximately 25 degrees southeast. Tts was measured in outcrops east of the site and dips approximately 20 degrees north; since these outcrops could not be traced into the slide area, the dip of Tts at the slide is unknown. Point-load testing showed Tts to have a tensile strength of 3.12 MPa which is 55% weaker than the next weakest unit in the area. These factors, as well as Tts" semiconsolidated nature, suggest that Tts was the unit of failure. Further testing of the Malpais Landslide, as well as computer simulation, will be used to determine the cause of failure. This information and the examination of other nearby landslides may be helpful in assessing landslide risk in north

  3. Caveolae Protect Notochord Cells against Catastrophic Mechanical Failure during Development.

    PubMed

    Lim, Ye-Wheen; Lo, Harriet P; Ferguson, Charles; Martel, Nick; Giacomotto, Jean; Gomez, Guillermo A; Yap, Alpha S; Hall, Thomas E; Parton, Robert G

    2017-07-10

    The embryonic notochord is a flexible structure present during development that serves as scaffold for formation of the vertebrate spine. This rod-like organ is thought to have evolved in non-vertebrate chordates to facilitate locomotion by providing a rigid but flexible midline structure against which the axial muscles can contract. This hydrostatic "skeleton" is exposed to a variety of mechanical forces during oscillation of the body. There is evidence that caveolae, submicroscopic cup-shaped plasma membrane pits, can buffer tension in cells that undergo high levels of mechanical stress. Indeed, caveolae are particularly abundant in the embryonic notochord. In this study, we used the CRISPR/Cas9 system to generate a mutant zebrafish line lacking Cavin1b, a coat protein required for caveola formation. Our cavin1b -/- zebrafish line exhibits reduced locomotor capacity and prominent notochord lesions characterized by necrotic, damaged, and membrane-permeable cells. Notochord diameter and body length are reduced, but remarkably, the mutants recover and are homozygous viable. By manipulating mechanical stress using a number of different assays, we show that progression of lesion severity in the mutant notochord is directly dependent on locomotion. We also demonstrate changes in caveola morphology in vivo in response to mechanical stress. Finally, induction of a catastrophic collapse of live cavin1b -/- mutant notochord cells provides the first real-time observation of caveolae mediating cellular mechanoprotection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Joint loads resulting in ACL rupture: Effects of age, sex, and body mass on injury load and mode of failure in a mouse model.

    PubMed

    Blaker, Carina L; Little, Christopher B; Clarke, Elizabeth C

    2017-08-01

    Anterior cruciate ligament (ACL) tears are a common knee injury with a known but poorly understood association with secondary joint injuries and post-traumatic osteoarthritis (OA). Female sex and age are known risk factors for ACL injury but these variables are rarely explored in mouse models of injury. This study aimed to further characterize a non-surgical ACL injury model to determine its clinical relevance across a wider range of mouse specifications. Cadaveric and anesthetized C57BL/6 mice (9-52 weeks of age) underwent joint loading to investigate the effects of age, sex, and body mass on ACL injury mechanisms. The ACL injury load (whole joint load required to rupture the ACL) was measured from force-displacement data, and mode of failure was assessed using micro-dissection and histology. ACL injury load was found to increase with body mass and age (p < 0.001) but age was not significant when controlling for mass. Sex had no effect. In contrast, the mode of ACL failure varied with both age and sex groups. Avulsion fractures (complete or mixed with mid-substance tears) were common in all age groups but the proportion of mixed and mid-substance failures increased with age. Females were more likely than males to have a major avulsion relative to a mid-substance tear (p < 0.01). This data compliments studies in human cadaveric knees, and provides a basis for determining the severity of joint injury relative to a major ACL tear in mice, and for selecting joint loading conditions in future experiments using this model. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1754-1763, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. Defect induced plasticity and failure mechanism of boron nitride nanotubes under tension

    SciT

    Anoop Krishnan, N. M., E-mail: anoopnm@civil.iisc.ernet.in; Ghosh, Debraj

    2014-07-28

    The effects of Stone-Wales (SW) and vacancy defects on the failure behavior of boron nitride nanotubes (BNNTs) under tension are investigated using molecular dynamics simulations. The Tersoff-Brenner potential is used to model the atomic interaction and the temperature is maintained close to 300 K. The effect of a SW defect is studied by determining the failure strength and failure mechanism of nanotubes with different radii. In the case of a vacancy defect, the effect of an N-vacancy and a B-vacancy is studied separately. Nanotubes with different chiralities but similar diameter is considered first to evaluate the chirality dependence. The variation ofmore » failure strength with the radius is then studied by considering nanotubes of different diameters but same chirality. It is observed that the armchair BNNTs are extremely sensitive to defects, whereas the zigzag configurations are the least sensitive. In the case of pristine BNNTs, both armchair and zigzag nanotubes undergo brittle failure, whereas in the case of defective BNNTs, only the zigzag ones undergo brittle failure. An interesting defect induced plastic behavior is observed in defective armchair BNNTs. For this nanotube, the presence of a defect triggers mechanical relaxation by bond breaking along the closest zigzag helical path, with the defect as the nucleus. This mechanism results in a plastic failure.« less

  6. Mechanisms Explaining the Influence of Subclinical Hypothyroidism on the Onset and Progression of Chronic Heart Failure.

    PubMed

    Triggiani, Vincenzo; Angelo Giagulli, Vito; De Pergola, Giovanni; Licchelli, Brunella; Guastamacchia, Edoardo; Iacoviello, Massimo

    2016-01-01

    Subclinical hypothyroidism can be associated with the onset and progression of chronic heart failure. We undertook a careful search of the literature aiming to review the possible pathogenetic mechanisms explaining the influence of subclinical hypothyroidism on the onset and progression of chronic heart failure. Thyroid hormones can influence the expression of genes involved in calcium handling and contractile properties of myocardiocytes. Subclinical hypothyroidism, therefore, can alter both cardiovascular morphology and function leading to changes in myocardiocytes shape and structure, and to alterations of both contractile and relaxing properties, impairing systolic as well as diastolic functions. Furthermore, it can favour dyslipidemia, endothelial dysfunction and diastolic hypertension, favouring atherogenesis and coronary heart disease, possibly evolving into chronic heart failure. Beside an influence on the onset of chronic heart failure, subclinical hypothyroidism can represent a risk factor for its progression, in particular hospitalization and mortality but the mechanisms involved need to be fully elucidated. Subclinical hypothyroidism can be associated with the onset of chronic heart failure, because it can favour two frequent conditions that can evolve in heart failure: coronary heart disease and hypertension; it can also alter both cardiovascular morphology and function leading to heart failure progression in patients already affected through mechanisms still not completely understood.

  7. Mechanical Circulatory Support of the Right Ventricle for Adult and Pediatric Patients With Heart Failure.

    PubMed

    Chopski, Steven G; Murad, Nohra M; Fox, Carson S; Stevens, Randy M; Throckmorton, Amy L

    2018-05-10

    The clinical implementation of mechanical circulatory assistance for a significantly dysfunctional or failing left ventricle as a bridge-to-transplant or bridge-to-recovery is on the rise. Thousands of patients with left-sided heart failure are readily benefitting from these life-saving technologies, and left ventricular failure often leads to severe right ventricular dysfunction or failure. Right ventricular failure (RVF) has a high rate of mortality caused by the risk of multisystem organ failure and prolonged hospitalization for patients after treatment. The use of a blood pump to support the left ventricle also typically results in an increase in right ventricular preload and may impair right ventricular contractility during left ventricular unloading. Patients with RVF might also suffer from severe pulmonary dysfunction, cardiac defects, congenital heart disease states, or a heterogeneity of cardiophysiologic challenges because of symptomatic congestive heart failure. Thus, the uniqueness and complexity of RVF is emerging as a new domain of significant clinical interest that motivates the development of right ventricular assist devices. In this review, we present the current state-of-the-art for clinically used blood pumps to support adults and pediatric patients with right ventricular dysfunction or failure concomitant with left ventricular failure. New innovative devices specifically for RVF are also highlighted. There continues to be a compelling need for novel treatment options to support patients with significant right heart dysfunction or failure.

  8. Seismicity, shear failure and modes of deformation in deep subduction zones

    NASA Technical Reports Server (NTRS)

    Lundgren, Paul R.; Giardini, Domenico

    1992-01-01

    The joint hypocentral determination method is used to relocate deep seismicity reported in the International Seismological Center catalog for earthquakes deeper than 400 km in the Honshu, Bonin, Mariannas, Java, Banda, and South America subduction zones. Each deep seismic zone is found to display planar features of seismicity parallel to the Harvard centroid-moment tensor nodal planes, which are identified as planes of shear failure. The sense of displacement on these planes is one of resistance to deeper penetration.

  9. Microstructurally Based Prediction of High Strain Failure Modes in Crystalline Solids

    DTIC Science & Technology

    2016-07-05

    SECURITY CLASSIFICATION OF: New three-dimensional dislocation-density based crystalline plasticity formulations was used with grain-boundary (GB...Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 High strain-rate; failure, crsytalline plasticity , dislocation-density...Solids Report Title New three-dimensional dislocation-density based crystalline plasticity formulations was used with grain-boundary (GB) kinematic

  10. Application of fracture mechanics to failure in manatee rib bone.

    PubMed

    Yan, Jiahau; Clifton, Kari B; Reep, Roger L; Mecholsky, John J

    2006-06-01

    The Florida manatee (Trichechus manatus latirostris) is listed as endangered by the U.S. Department of the Interior. Manatee ribs have different microstructure from the compact bone of other mammals. Biomechanical properties of the manatee ribs need to be better understood. Fracture toughness (K(C)) has been shown to be a good index to assess the mechanical performance of bone. Quantitative fractography can be used in concert with fracture mechanics equations to identify fracture initiating defects/cracks and to calculate the fracture toughness of bone materials. Fractography is a standard technique for analyzing fracture behavior of brittle and quasi-brittle materials. Manatee ribs are highly mineralized and fracture in a manner similar to quasi-brittle materials. Therefore, quantitative fractography was applied to determine the fracture toughness of manatee ribs. Average fracture toughness values of small flexure specimens from six different sizes of manatees ranged from 1.3 to 2.6 MPa(m)(12). Scanning electron microscope (SEM) images show most of the fracture origins were at openings for blood vessels and interlayer spaces. Quantitative fractography and fracture mechanics can be combined to estimate the fracture toughness of the material in manatee rib bone. Fracture toughness of subadult and calf manatees appears to increase as the size of the manatee increases. Average fracture toughness of the manatee rib bone materials is less than the transverse fracture toughness of human and bovine tibia and femur.

  11. Failure mode and effects analysis of the universal anaesthesia machine in two tertiary care hospitals in Sierra Leone

    PubMed Central

    Rosen, M. A.; Sampson, J. B.; Jackson, E. V.; Koka, R.; Chima, A. M.; Ogbuagu, O. U.; Marx, M. K.; Koroma, M.; Lee, B. H.

    2014-01-01

    Background Anaesthesia care in developed countries involves sophisticated technology and experienced providers. However, advanced machines may be inoperable or fail frequently when placed into the austere medical environment of a developing country. Failure mode and effects analysis (FMEA) is a method for engaging local staff in identifying real or potential breakdowns in processes or work systems and to develop strategies to mitigate risks. Methods Nurse anaesthetists from the two tertiary care hospitals in Freetown, Sierra Leone, participated in three sessions moderated by a human factors specialist and an anaesthesiologist. Sessions were audio recorded, and group discussion graphically mapped by the session facilitator for analysis and commentary. These sessions sought to identify potential barriers to implementing an anaesthesia machine designed for austere medical environments—the universal anaesthesia machine (UAM)—and also engaging local nurse anaesthetists in identifying potential solutions to these barriers. Results Participating Sierra Leonean clinicians identified five main categories of failure modes (resource availability, environmental issues, staff knowledge and attitudes, and workload and staffing issues) and four categories of mitigation strategies (resource management plans, engaging and educating stakeholders, peer support for new machine use, and collectively advocating for needed resources). Conclusions We identified factors that may limit the impact of a UAM and devised likely effective strategies for mitigating those risks. PMID:24833727

  12. Identification and classification of failure modes in laminated composites by using a multivariate statistical analysis of wavelet coefficients

    NASA Astrophysics Data System (ADS)

    Baccar, D.; Söffker, D.

    2017-11-01

    Acoustic Emission (AE) is a suitable method to monitor the health of composite structures in real-time. However, AE-based failure mode identification and classification are still complex to apply due to the fact that AE waves are generally released simultaneously from all AE-emitting damage sources. Hence, the use of advanced signal processing techniques in combination with pattern recognition approaches is required. In this paper, AE signals generated from laminated carbon fiber reinforced polymer (CFRP) subjected to indentation test are examined and analyzed. A new pattern recognition approach involving a number of processing steps able to be implemented in real-time is developed. Unlike common classification approaches, here only CWT coefficients are extracted as relevant features. Firstly, Continuous Wavelet Transform (CWT) is applied to the AE signals. Furthermore, dimensionality reduction process using Principal Component Analysis (PCA) is carried out on the coefficient matrices. The PCA-based feature distribution is analyzed using Kernel Density Estimation (KDE) allowing the determination of a specific pattern for each fault-specific AE signal. Moreover, waveform and frequency content of AE signals are in depth examined and compared with fundamental assumptions reported in this field. A correlation between the identified patterns and failure modes is achieved. The introduced method improves the damage classification and can be used as a non-destructive evaluation tool.

  13. Failure modes of Y-TZP abutments with external hex implant-abutment connection determined by fractographic analysis.

    PubMed

    Basílio, Mariana de Almeida; Delben, Juliana Aparecida; Cesar, Paulo Francisco; Rizkalla, Amin Sami; Santos Junior, Gildo Coelho; Arioli Filho, João Neudenir

    2016-07-01

    Yttria-stabilized tetragonal zirconia (Y-TZP) was introduced as ceramic implant abutments due to its excellent mechanical properties. However, the damage patterns for Y-TZP abutments are limited in the literature. Fractographic analyses can provide insights as to the failure origin and related mechanisms. The purpose of this study was to analyze fractured Y-TZP abutments to establish fractographic patterns and then possible reasons for failure. Thirty two prefabricated Y-TZP abutments on external hex implants were retrieved from a single-load-to failure test according to the ISO 14801. Fractographic analyses were conducted under polarized-light estereo and scanning electro microscopy. The predominant fracture pattern was abutment fracture at the connecting region. Classic fractographic features such as arrest lines, hackle, and twist hackle established that failure started where Y-TZP abutments were in contact with the retention screw edges. The abutment screw design and the loading point were the reasons for localized stress concentration and fracture patterns. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. MO-D-213-02: Quality Improvement Through a Failure Mode and Effects Analysis of Pediatric External Beam Radiotherapy

    SciT

    Gray, J; Lukose, R; Bronson, J

    2015-06-15

    Purpose: To conduct a failure mode and effects analysis (FMEA) as per AAPM Task Group 100 on clinical processes associated with teletherapy, and the development of mitigations for processes with identified high risk. Methods: A FMEA was conducted on clinical processes relating to teletherapy treatment plan development and delivery. Nine major processes were identified for analysis. These steps included CT simulation, data transfer, image registration and segmentation, treatment planning, plan approval and preparation, and initial and subsequent treatments. Process tree mapping was utilized to identify the steps contained within each process. Failure modes (FM) were identified and evaluated with amore » scale of 1–10 based upon three metrics: the severity of the effect, the probability of occurrence, and the detectability of the cause. The analyzed metrics were scored as follows: severity – no harm = 1, lethal = 10; probability – not likely = 1, certainty = 10; detectability – always detected = 1, undetectable = 10. The three metrics were combined multiplicatively to determine the risk priority number (RPN) which defined the overall score for each FM and the order in which process modifications should be deployed. Results: Eighty-nine procedural steps were identified with 186 FM accompanied by 193 failure effects with 213 potential causes. Eighty-one of the FM were scored with a RPN > 10, and mitigations were developed for FM with RPN values exceeding ten. The initial treatment had the most FM (16) requiring mitigation development followed closely by treatment planning, segmentation, and plan preparation with fourteen each. The maximum RPN was 400 and involved target delineation. Conclusion: The FMEA process proved extremely useful in identifying previously unforeseen risks. New methods were developed and implemented for risk mitigation and error prevention. Similar to findings reported for adult patients, the process leading to the initial treatment has

  15. SU-E-T-179: Clinical Impact of IMRT Failure Modes at Or Near TG-142 Tolerance Criteria Levels

    SciT

    Faught, J Tonigan; Balter, P; Johnson, J

    2015-06-15

    Purpose: Quantitatively assess the clinical impact of 11 critical IMRT dose delivery failure modes. Methods: Eleven step-and-shoot IMRT failure modes (FMs) were introduced into twelve Pinnacle v9.8 treatment plans. One standard and one highly modulated plan on the IROC IMRT phantom and ten previous H&N patient treatment plans were used. FMs included physics components covered by basic QA near tolerance criteria levels (TG-142) such as beam energy, MLC positioning, and MLC modeling. Resultant DVHs were compared to those of failure-free plans and the severity of plan degradation was assessed considering PTV coverage and OAR and normal tissue tolerances and usedmore » for FMEA severity scoring. Six of these FMs were physically simulated and phantom irradiations performed. TLD and radiochromic film results are used for comparison to treatment planning studies. Results: Based on treatment planning studies, the largest clinical impact from the phantom cases was induced by 2 mm systematic MLC shift in one bank with the combination of a D95% target under dose near 16% and OAR overdose near 8%. Cord overdoses of 5%–11% occurred with gantry angle, collimator angle, couch angle, MLC leaf end modeling, and MLC transmission and leakage modeling FMs. PTV coverage and/or OAR sparing was compromised in all FMs introduced in phantom plans with the exception of CT number to electron density tables, MU linearity, and MLC tongue-and-groove modeling. Physical measurements did not entirely agree with treatment planning results. For example, symmetry errors resulted in the largest physically measured discrepancies of up to 3% in the PTVs while a maximum of 0.5% deviation was seen in the treatment planning studies. Patient treatment plan study results are under analysis. Conclusion: Even in the simplistic anatomy of the IROC phantom, some basic physics FMs, just outside of TG-142 tolerance criteria, appear to have the potential for large clinical implications.« less

  16. Asymmetric linear efficiency and bunching mechanisms of TM modes for electron cyclotron maser

    NASA Astrophysics Data System (ADS)

    Chang, T. H.; Huang, W. C.; Yao, H. Y.; Hung, C. L.; Chen, W. C.; Su, B. Y.

    2017-02-01

    This study examines the transverse magnetic (TM) waveguide modes, which have long been considered as the unsuitable ones for the operation of the electron cyclotron maser. The beam-wave coupling strength of the TM modes, as expected, is found to be relatively weak as compared with that of the transverse electric (TE) waveguide modes. Unlike TE modes, surprisingly, the linear behavior of the TM modes depends on the sign of the wave number kz. The negative kz has a much stronger linear efficiency than that of the positive kz. The bunching mechanism analysis further exhibits that the azimuthal bunching and axial bunching do not compete but cooperate with each other for the backward-wave operation (negative kz). The current findings are encouraging and imply that TM modes might be advantageous to the gyrotron backward-wave oscillators.

  17. Fuzzy-based failure mode and effect analysis (FMEA) of a hybrid molten carbonate fuel cell (MCFC) and gas turbine system for marine propulsion

    NASA Astrophysics Data System (ADS)

    Ahn, Junkeon; Noh, Yeelyong; Park, Sung Ho; Choi, Byung Il; Chang, Daejun

    2017-10-01

    This study proposes a fuzzy-based FMEA (failure mode and effect analysis) for a hybrid molten carbonate fuel cell and gas turbine system for liquefied hydrogen tankers. An FMEA-based regulatory framework is adopted to analyze the non-conventional propulsion system and to understand the risk picture of the system. Since the participants of the FMEA rely on their subjective and qualitative experiences, the conventional FMEA used for identifying failures that affect system performance inevitably involves inherent uncertainties. A fuzzy-based FMEA is introduced to express such uncertainties appropriately and to provide flexible access to a risk picture for a new system using fuzzy modeling. The hybrid system has 35 components and has 70 potential failure modes, respectively. Significant failure modes occur in the fuel cell stack and rotary machine. The fuzzy risk priority number is used to validate the crisp risk priority number in the FMEA.

  18. [THE FAILURE MODES AND EFFECTS ANALYSIS FACILITATES A SAFE, TIME AND MONEY SAVING OPEN ACCESS COLONOSCOPY SERVICE].

    PubMed

    Gingold-Belfer, Rachel; Niv, Yaron; Horev, Nehama; Gross, Shuli; Sahar, Nadav; Dickman, Ram

    2017-04-01

    Failure modes and effects analysis (FMEA) is used for the identification of potential risks in health care processes. We used a specific FMEA - based form for direct referral for colonoscopy and assessed it for procedurerelated perforations. Ten experts in endoscopy evaluated and computed the entire referral process, modes of preparation for the endoscopic procedure, the endoscopic procedure itself and the discharge process. We used FMEA assessing for likelihood of occurrence, detection and severity and calculated the risk profile number (RPN) for each of the above points. According to the highest RPN results we designed a specific open access referral form and then compared the occurrence of colonic perforations (between 2010 and 2013) in patients who were referred through the open access arm (Group 1) to those who had a prior clinical consultation (non-open access, Group 2). Our experts in endoscopy (5 physicians and 5 nurses) identified 3 categories of failure modes that, on average, reached the highest RPNs. We identified 9,558 colonoscopies in group 1, and 12,567 in group 2. Perforations were identified in three patients from the open access group (1:3186, 0.03%) and in 10 from group 2 (1:1256, 0.07%) (p = 0.024). Direct referral for colonoscopy saved 9,558 pre-procedure consultations and the sum of $850,000. The FMEA tool-based specific referral form facilitates a safe, time and money saving open access colonoscopy service. Our form may be adopted by other gastroenterological clinics in Israel.

  19. Structural deterioration of the Freestyle aortic valve: mode of presentation and mechanisms.

    PubMed

    Mohammadi, Siamak; Baillot, Richard; Voisine, Pierre; Mathieu, Patrick; Dagenais, François

    2006-08-01

    Structural valve deterioration is the major cause of bioprosthetic valve failure. Because of the unique design features and anti-calcification treatment of the Freestyle (Medtronic Inc, Minneapolis, Minn) stentless bioprosthesis, development of structural valve deterioration may differ in comparison with other bioprosthetic valves. This study evaluates the mechanisms and clinical presentation of structural valve deterioration in the Freestyle stentless bioprosthesis. Between January 1993 and August 2005, 608 patients underwent aortic valve replacement with a Freestyle stentless bioprosthesis. The implantation technique was subcoronary in 475 patients and a root replacement in 133 patients. Mean overall follow-up was 5.6 +/- 3.4 years. Follow-up was complete in all patients. Clinical and echocardiographic follow-ups were conducted prospectively. Freedom from structural valve deterioration was 95.8% at 10 years. Twelve patients showed evidence of structural valve deterioration and underwent reoperation for aortic regurgitation (n = 10) or aortic stenosis (n = 2). The mean age of patients with structural valve deterioration was significantly lower than patients without structural valve deterioration (62.6 +/- 8.2 years vs 68.6 +/- 8.3 years, P = .02). The median time between implantation and explantation was 8.7 years (range: 1.9-13.3 years). Eleven structural valve deteriorations occurred after subcoronary implantation, and 1 structural valve deterioration occurred after root implantation (P = .4). The mechanisms of structural valve deterioration were leaflet tears in 10 patients (6 in the left coronary cusp and 4 in the right coronary cusp), severe valve calcification in 1 patient, and cusp fibrosis in 1 patient. The interval between onset of symptoms and reoperation was acute or subacute in 10 patients. At 10 years, the Freestyle stentless bioprosthesis shows excellent freedom from structural valve deterioration. Structural valve deterioration in the Freestyle

  20. Identification of fundamental deformation and failure mechanisms in armor ceramics

    NASA Astrophysics Data System (ADS)

    Muller, Andrea Marie

    Indentation of a surface with a hard sphere can be used to examine micromechanical response of a wide range of materials and has been shown to generate loading conditions resembling early stages of ballistic impact events. Cracking morphologies also show similarities, particularly with formation of cone cracks at the contact site. The approach in this thesis is to use this indentation technique to characterize contact damage and deformation processes in armor ceramics, as well as identify the role of cone cracking and inelastic behavior. To accomplish these objectives, an instrumented indentation system was designed and fabricated, extending depth-sensing capabilities originally developed for nano-indentation to higher forces. This system is also equipped with an acoustic emission system to detect onset of cone cracking and subsequent failure. Once calibrated and verified the system was used to evaluate elastic modulus and cone crack initiation forces of two commercial float glasses. As-received air and tin surfaces of soda-lime-silica and borosilicate float glass were tested to determine differences in elastic and fracture behavior. Information obtained from load--displacement curves and visual inspection of indentation sites were used to determine elastic modulus, and conditions for onset of cone cracking as a function of surface roughness. No difference in reduced modulus or cone cracking loads on as-received air and tin surfaces were observed. Abraded surfaces showed the tin surface to be slightly more resistant to cone cracking. A study focusing on the transition from elastic to inelastic deformation in two transparent fine-grained polycrystalline spinels with different grain sizes was then conducted. Congruent experiments included observations on evolution of damage, examinations of sub-surface damage and inspection of remnant surface profiles. Indentation stress--strain behavior obtained from load--displacement curves revealed a small difference in yielding

  1. An autonomous recovery mechanism against optical distribution network failures in EPON

    NASA Astrophysics Data System (ADS)

    Liem, Andrew Tanny; Hwang, I.-Shyan; Nikoukar, AliAkbar

    2014-10-01

    Ethernet Passive Optical Network (EPON) is chosen for servicing diverse applications with higher bandwidth and Quality-of-Service (QoS), starting from Fiber-To-The-Home (FTTH), FTTB (business/building) and FTTO (office). Typically, a single OLT can provide services to both residential and business customers on the same Optical Line Terminal (OLT) port; thus, any failures in the system will cause a great loss for both network operators and customers. Network operators are looking for low-cost and high service availability mechanisms that focus on the failures that occur within the drop fiber section because the majority of faults are in this particular section. Therefore, in this paper, we propose an autonomous recovery mechanism that provides protection and recovery against Drop Distribution Fiber (DDF) link faults or transceiver failure at the ONU(s) in EPON systems. In the proposed mechanism, the ONU can automatically detect any signal anomalies in the physical layer or transceiver failure, switching the working line to the protection line and sending the critical event alarm to OLT via its neighbor. Each ONU has a protection line, which is connected to the nearest neighbor ONU, and therefore, when failure occurs, the ONU can still transmit and receive data via the neighbor ONU. Lastly, the Fault Dynamic Bandwidth Allocation for recovery mechanism is presented. Simulation results show that our proposed autonomous recovery mechanism is able to maintain the overall QoS performance in terms of mean packet delay, system throughput, packet loss and EF jitter.

  2. Novel mechanism of premature battery failure due to lithium cluster formation in implantable cardioverter-defibrillators.

    PubMed

    Pokorney, Sean D; Greenfield, Ruth Ann; Atwater, Brett D; Daubert, James P; Piccini, Jonathan P

    2014-12-01

    Battery failure is an uncommon complication of implantable cardioverter-defibrillators (ICDs), but unanticipated battery depletion can have life-threatening consequences. The purpose of this study was to describe the prevalence of a novel mechanism of battery failure in St. Jude Medical Fortify and Unify ICDs. Cases of premature Fortify battery failure from a single center are reported. A search (January 1, 2010 through November 30, 2013) for Fortify and Unify premature batter failure was conducted of the Food and Drug Administration's Manufacturer and User Facility Device Experience Database (MAUDE). These findings were supplemented with information provided by St. Jude Medical. Premature battery failure for 2 Fortify ICDs in our practice were attributed to the presence of lithium clusters near the cathode, causing a short circuit and high current drain. The prevalence of this mechanism of premature battery failure was 0.6% in our practice. A MAUDE search identified 39 cases of Fortify (30) and Unify (9) premature battery depletion confirmed by the manufacturer, representing a 0.03% prevalence. Four additional Fortify and 2 Unify cases were identified in MAUDE as suspected premature battery depletion, but in these cases the pulse generator was not returned to the manufacturer for evaluation. St. Jude Medical identified 10 cases of premature battery failure due to lithium clusters in Fortify devices (9) and Unify devices (1), representing a 0.004% prevalence. The deposition of lithium clusters near the cathode is a novel mechanism of premature battery failure. The prevalence of this problem is unknown. Providers should be aware of this mechanism for patient management. Copyright © 2014 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  3. Development Testing and Subsequent Failure Investigation of a Spring Strut Mechanism

    NASA Technical Reports Server (NTRS)

    Dervan, Jared; Robertson, Brandan; Staab, Lucas; Culberson, Michael; Pellicciotti, Joseph

    2014-01-01

    The NASA Engineering and Safety Center (NESC) and Lockheed Martin (LM) performed random vibration testing on a single spring strut development unit to assess its ability to withstand qualification level random vibration environments. Failure of the strut while exposed to random vibration resulted in a follow-on failure investigation, design changes, and additional development tests. This paper focuses on the results of the failure investigations referenced in detail in the NESC final report [1] including identified lessons learned to aid in future design iterations of the spring strut and to help other mechanism developers avoid similar pitfalls.

  4. Development Testing and Subsequent Failure Investigation of a Spring Strut Mechanism

    NASA Technical Reports Server (NTRS)

    Dervan, Jared; Robertson, Brandon; Staab, Lucas; Culberson, Michael; Pellicciotti, Joseph

    2014-01-01

    The NASA Engineering and Safety Center (NESC) and Lockheed Martin (LM) performed random vibration testing on a single spring strut development unit to assess its ability to withstand qualification level random vibration environments. Failure of the strut while exposed to random vibration resulted in a follow-on failure investigation, design changes, and additional development tests. This paper focuses on the results of the failure investigations referenced in detail in the NESC final report including identified lessons learned to aid in future design iterations of the spring strut and to help other mechanism developers avoid similar pitfalls.

  5. Safety and feasibility of STAT RAD: Improvement of a novel rapid tomotherapy-based radiation therapy workflow by failure mode and effects analysis.

    PubMed

    Jones, Ryan T; Handsfield, Lydia; Read, Paul W; Wilson, David D; Van Ausdal, Ray; Schlesinger, David J; Siebers, Jeffrey V; Chen, Quan

    2015-01-01

    The clinical challenge of radiation therapy (RT) for painful bone metastases requires clinicians to consider both treatment efficacy and patient prognosis when selecting a radiation therapy regimen. The traditional RT workflow requires several weeks for common palliative RT schedules of 30 Gy in 10 fractions or 20 Gy in 5 fractions. At our institution, we have created a new RT workflow termed "STAT RAD" that allows clinicians to perform computed tomographic (CT) simulation, planning, and highly conformal single fraction treatment delivery within 2 hours. In this study, we evaluate the safety and feasibility of the STAT RAD workflow. A failure mode and effects analysis (FMEA) was performed on the STAT RAD workflow, including development of a process map, identification of potential failure modes, description of the cause and effect, temporal occurrence, and team member involvement in each failure mode, and examination of existing safety controls. A risk probability number (RPN) was calculated for each failure mode. As necessary, workflow adjustments were then made to safeguard failure modes of significant RPN values. After workflow alterations, RPN numbers were again recomputed. A total of 72 potential failure modes were identified in the pre-FMEA STAT RAD workflow, of which 22 met the RPN threshold for clinical significance. Workflow adjustments included the addition of a team member checklist, changing simulation from megavoltage CT to kilovoltage CT, alteration of patient-specific quality assurance testing, and allocating increased time for critical workflow steps. After these modifications, only 1 failure mode maintained RPN significance; patient motion after alignment or during treatment. Performing the FMEA for the STAT RAD workflow before clinical implementation has significantly strengthened the safety and feasibility of STAT RAD. The FMEA proved a valuable evaluation tool, identifying potential problem areas so that we could create a safer workflow

  6. Validation and Potential Mechanisms of Red Cell Distribution Width as a Prognostic Marker in Heart Failure

    PubMed Central

    ALLEN, LARRY A.; FELKER, G. MICHAEL; MEHRA, MANDEEP R.; CHIONG, JUN R.; DUNLAP, STEPHANIE H.; GHALI, JALAL K.; LENIHAN, DANIEL J.; OREN, RON M.; WAGONER, LYNNE E.; SCHWARTZ, TODD A.; ADAMS, KIRKWOOD F.

    2014-01-01

    Background: Adverse outcomes have recently been linked to elevated red cell distribution width (RDW) in heart failure. Our study sought to validate the prognostic value of RDW in heart failure and to explore the potential mechanisms underlying this association. Methods and Results: Data from the Study of Anemia in a Heart Failure Population (STAMINA-HFP) registry, a prospective, multicenter cohort of ambulatory patients with heart failure supported multivariable modeling to assess relationships between RDW and outcomes. The association between RDW and iron metabolism, inflammation, and neurohormonal activation was studied in a separate cohort of heart failure patients from the United Investigators to Evaluate Heart Failure (UNITE-HF) Biomarker registry. RDW was independently predictive of outcome (for each 1% increase in RDW, hazard ratio for mortality 1.06, 95% CI 1.01-1.12; hazard ratio for hospitalization or mortality 1.06; 95% CI 1.02-1.10) after adjustment for other covariates. Increasing RDW correlated with decreasing hemoglobin, increasing interleukin-6, and impaired iron mobilization. Conclusions: Our results confirm previous observations that RDW is a strong, independent predictor of adverse outcome in chronic heart failure and suggest elevated RDW may indicate inflammatory stress and impaired iron mobilization. These findings encourage further research into the relationship between heart failure and the hematologic system. PMID:20206898

  7. Validation and potential mechanisms of red cell distribution width as a prognostic marker in heart failure.

    PubMed

    Allen, Larry A; Felker, G Michael; Mehra, Mandeep R; Chiong, Jun R; Dunlap, Stephanie H; Ghali, Jalal K; Lenihan, Daniel J; Oren, Ron M; Wagoner, Lynne E; Schwartz, Todd A; Adams, Kirkwood F

    2010-03-01

    Adverse outcomes have recently been linked to elevated red cell distribution width (RDW) in heart failure. Our study sought to validate the prognostic value of RDW in heart failure and to explore the potential mechanisms underlying this association. Data from the Study of Anemia in a Heart Failure Population (STAMINA-HFP) registry, a prospective, multicenter cohort of ambulatory patients with heart failure supported multivariable modeling to assess relationships between RDW and outcomes. The association between RDW and iron metabolism, inflammation, and neurohormonal activation was studied in a separate cohort of heart failure patients from the United Investigators to Evaluate Heart Failure (UNITE-HF) Biomarker registry. RDW was independently predictive of outcome (for each 1% increase in RDW, hazard ratio for mortality 1.06, 95% CI 1.01-1.12; hazard ratio for hospitalization or mortality 1.06; 95% CI 1.02-1.10) after adjustment for other covariates. Increasing RDW correlated with decreasing hemoglobin, increasing interleukin-6, and impaired iron mobilization. Our results confirm previous observations that RDW is a strong, independent predictor of adverse outcome in chronic heart failure and suggest elevated RDW may indicate inflammatory stress and impaired iron mobilization. These findings encourage further research into the relationship between heart failure and the hematologic system. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  8. Mixed-mode sorption of hydroxylated atrazine degradation products to sell: A mechanism for bound residue

    Lerch, R.N.; Thurman, E.M.; Kruger, E.L.

    1997-01-01

    This study tested the hypothesis that sorption of hydroxylated atrazine degradation products (HADPs: hydroxyatrazine, HA; deethylhydroxyatrazine, DEHA; and deisopropylhydroxyatrazine, DIHA) to soils occurs by mixed-mode binding resulting from two simultaneous mechanisms: (1) cation exchange and (2) hydrophobic interaction. The objective was to use liquid chromatography and soil extraction experiments to show that mixed-mode binding is the mechanism controlling HADP sorption to soils and is also a mechanism for bound residue. Overall, HADP binding to solid-phase extraction (SPE) sorbents occurred in the order: cation exchange >> octadecyl (C18) >> cyanopropyl. Binding to cation exchange SPE and to a high-performance liquid chromatograph octyl (C8) column showed evidence for mixed-mode binding. Comparison of soil extracted by 0.5 M KH2P04, pH 7.5, or 25% aqueous CH3CN showed that, for HA and DIHA, cation exchange was a more important binding mechanism to soils than hydrophobic interaction. Based on differences between several extractants, the extent of HADP mixed-mode binding to soil occurred in the following order: HA > DIHA > DEHA. Mixed-mode extraction recovered 42.8% of bound atrazine residues from aged soil, and 88% of this fraction was identified as HADPs. Thus, a significant portion of bound atrazine residues in soils is sorbed by the mixed-mode binding mechanisms.

  9. Canonical failure modes of real-time control systems: insights from cognitive theory

    NASA Astrophysics Data System (ADS)

    Wallace, Rodrick

    2016-04-01

    Newly developed necessary conditions statistical models from cognitive theory are applied to generalisation of the data-rate theorem for real-time control systems. Rather than graceful degradation under stress, automatons and man/machine cockpits appear prone to characteristic sudden failure under demanding fog-of-war conditions. Critical dysfunctions span a spectrum of phase transition analogues, ranging from a ground state of 'all targets are enemies' to more standard data-rate instabilities. Insidious pathologies also appear possible, akin to inattentional blindness consequent on overfocus on an expected pattern. Via no-free-lunch constraints, different equivalence classes of systems, having structure and function determined by 'market pressures', in a large sense, will be inherently unreliable under different but characteristic canonical stress landscapes, suggesting that deliberate induction of failure may often be relatively straightforward. Focusing on two recent military case histories, these results provide a caveat emptor against blind faith in the current path-dependent evolutionary trajectory of automation for critical real-time processes.

  10. Spaceflight-Induced Bone Loss Alters Failure Mode and Reduces Bending Strength in Murine Spinal Segments

    PubMed Central

    Berg-Johansen, Britta; Liebenberg, Ellen C.; Li, Alfred; Macias, Brandon R.; Hargens, Alan R.; Lotz, Jeffrey C.

    2017-01-01

    Intervertebral disc herniation rates are quadrupled in astronauts following spaceflight. While bending motions are main contributors to herniation, the effects of microgravity on the bending properties of spinal discs are unknown. Consequently, the goal of this study was to quantify the bending properties of tail discs from mice with or without microgravity exposure. Caudal motion segments from six mice returned from a 30-day Bion M1 mission and eight vivarium controls were loaded to failure in four-point bending. After testing, specimens were processed using histology to determine the location of failure, and adjacent motion segments were scanned with micro-computed tomography (μCT) to quantify bone properties. We observed that spaceflight significantly shortened the nonlinear toe region of the force-displacement curve by 32% and reduced the bending strength by 17%. Flight mouse spinal segments tended to fail within the growth plate and epiphyseal bone, while controls tended to fail at the disc-vertebra junction. Spaceflight significantly reduced vertebral bone volume fraction, bone mineral density, and trabecular thickness, which may explain the tendency of flight specimens to fail within the epiphyseal bone. Together, these results indicate that vertebral bone loss during spaceflight may degrade spine bending properties and contribute to increased disc herniation risk in astronauts. PMID:26285046

  11. Evidence of an emerging levee failure mechanism causing disastrous floods in Italy

    NASA Astrophysics Data System (ADS)

    Orlandini, Stefano; Moretti, Giovanni; Albertson, John D.

    2015-10-01

    A levee failure occurred along the Secchia River, Northern Italy, on 19 January 2014, resulting in flood damage in excess of $500 million. In response to this failure, immediate surveillance of other levees in the region led to the identification of a second breach developing on the neighboring Panaro River, where rapid mitigation efforts were successful in averting a full levee failure. The paired breach events that occurred along the Secchia and Panaro Rivers provided an excellent window on an emerging levee failure mechanism. In the Secchia River, by combining the information content of photographs taken from helicopters in the early stage of breach development and 10 cm resolution aerial photographs taken in 2010 and 2012, animal burrows were found to exist in the precise levee location where the breach originated. In the Panaro River, internal erosion was observed to occur at a location where a crested porcupine den was known to exist and this erosion led to the collapse of the levee top. This paper uses detailed numerical modeling of rainfall, river flow, and variably saturated flow in the levee to explore the hydraulic and geotechnical mechanisms that were triggered along the Secchia and Panaro Rivers by activities of burrowing animals leading to levee failures. As habitats become more fragmented and constrained along river corridors, it is possible that this failure mechanism could become more prevalent and, therefore, will demand greater attention in both the design and maintenance of earthen hydraulic structures as well as in wildlife management.

  12. Evidence of an emerging levee failure mechanism causing disastrous floods in Italy

    NASA Astrophysics Data System (ADS)

    Orlandini, Stefano; Moretti, Giovanni; Albertson, John

    2017-04-01

    A levee failure occurred along the Secchia River, Northern Italy, on January 19, 2014, resulting in flood damage in excess of 500 Million. In response to this failure, immediate surveillance of other levees in the region led to the identification of a second breach developing on the neighboring Panaro River, where rapid mitigation efforts were successful in averting a full levee failure. The paired breach events that occurred along the Secchia and Panaro Rivers provided an excellent window on an emerging levee failure mechanism. In the Secchia River, by combining the information content of photographs taken from helicopters in the early stage of breach development and 10-cm resolution aerial photographs taken in 2010 and 2012, animal burrows were found to exist in the precise levee location where the breach originated. In the Panaro River, internal erosion was observed to occur at a location where a crested porcupine den was known to exist and this erosion led to the collapse of the levee top. This paper uses detailed numerical modeling of rainfall, river flow, and variably saturated flow in the levee to explore the hydraulic and geotechnical mechanisms that were triggered along the Secchia and Panaro Rivers by activities of burrowing animals leading to levee failures. As habitats become more fragmented and constrained along river corridors it is possible that this failure mechanism could become more prevalent and, therefore, will demand greater attention in both the design and maintenance of earthen hydraulic structures as well as in wildlife management.

  13. Mechanisms of Diagonal-Shear Failure in Reinforced Concrete Beams analyzed by AE-SiGMA

    NASA Astrophysics Data System (ADS)

    Ohno, Kentaro; Shimozono, Shinichiro; Sawada, Yosuke; Ohtsu, Masayasu

    Serious shear failures in reinforced concrete (RC) structures were reported in the Hanshin-Awaji Earthquake. In particular, it was demonstrated that a diagonal-shear failure could lead to disastrous damage. However, mechanisms of the diagonal-shear failure in RC beams have not been completely clarified yet. In this study, the diagonal-shear failure in RC beams is investigated, applying acoustic emission (AE) method. To identify source mechanisms of AE signals, SiGMA (Simplified Green's functions for Moment tensor Analysis) procedure was applied. Prior to four-point bending tests of RC beams, theoretical waveforms were calculated to determine the optimal arrangement of AE sensors. Then, cracking mechanisms in experiments were investigated by applying the SiGMA procedure to AE waveforms. From results of the SiGMA analysis, dominant motions of micro-cracks are found to be of shear crack in all the loading stages. As the load increased, the number of tensile cracks increased and eventually the diagonal-shear failure occurred in the shear span. Prior to final failure, AE cluster of micro-cracks was intensely observed in the shear span. To classify AE sources into tensile and shear cracks, AE parameter analysis was also applied. As a result, most of AE hits are classified into tensile cracks. The difference between results obtained by the AE parameter analysis and by the SiGMA analysis is investigated and discussed.

  14. Mechanical Properties and Failure of Biopolymers: Atomistic Reactions to Macroscale Response

    PubMed Central

    Jung, GangSeob; Qin, Zhao

    2017-01-01

    The behavior of chemical bonding under various mechanical loadings is an intriguing mechanochemical property of biological materials, and the property plays a critical role in determining their deformation and failure mechanisms. Because of their astonishing mechanical properties and roles in constituting the basis of a variety of physiologically relevant materials, biological protein materials have been intensively studied. Understanding the relation between chemical bond networks (structures) and their mechanical properties offers great possibilities to enable new materials design in nanotechnology and new medical treatments for human diseases. Here we focus on how the chemical bonds in biological systems affect mechanical properties and how they change during mechanical deformation and failure. Three representative cases of biomaterials related to the human diseases are discussed in case studies, including: amyloids, intermediate filaments, and collagen, each describing mechanochemical features and how they relate to the pathological conditions at multiple scales. PMID:26108895

  15. Product Reliability Trends, Derating Considerations and Failure Mechanisms with Scaled CMOS

    NASA Technical Reports Server (NTRS)

    White, Mark; Vu, Duc; Nguyen, Duc; Ruiz, Ron; Chen, Yuan; Bernstein, Joseph B.

    2006-01-01

    As microelectronics is scaled into the deep sub-micron regime, space and aerospace users of advanced technology CMOS are reassessing how scaling effects impact long-term product reliability. The effects of electromigration (EM), time-dependent-dielectric-breakdown (TDDB) and hot carrier degradation (HCI and NBTI) wearout mechanisms on scaled technologies and product reliability are investigated, accelerated stress testing across several technology nodes is performed, and FA is conducted to confirm the failure mechanism(s).

  16. Understanding cracking failures of coatings: A fracture mechanics approach

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Ryong

    A fracture mechanics analysis of coating (paint) cracking was developed. A strain energy release rate (G(sub c)) expression due to the formation of a new crack in a coating was derived for bending and tension loadings in terms of the moduli, thicknesses, Poisson's ratios, load, residual strain, etc. Four-point bending and instrumented impact tests were used to determine the in-situ fracture toughness of coatings as functions of increasing baking (drying) time. The system used was a thin coating layer on a thick substrate layer. The substrates included steel, aluminum, polycarbonate, acrylonitrile-butadiene-styrene (ABS), and Noryl. The coatings included newly developed automotive paints. The four-point bending configuration promoted nice transversed multiple coating cracks on both steel and polymeric substrates. The crosslinked type automotive coatings on steel substrates showed big cracks without microcracks. When theoretical predictions for energy release rate were compared to experimental data for coating/steel substrate samples with multiple cracking, the agreement was good. Crosslinked type coatings on polymeric substrates showed more cracks than theory predicted and the G(sub c)'s were high. Solvent evaporation type coatings on polymeric substrates showed clean multiple cracking and the G(sub c)'s were higher than those obtained by tension analysis of tension experiments with the same substrates. All the polymeric samples showed surface embrittlement after long baking times using four-point bending tests. The most apparent surface embrittlement was observed in the acrylonitrile-butadiene-styrene (ABS) substrate system. The impact properties of coatings as a function of baking time were also investigated. These experiments were performed using an instrumented impact tester. There was a rapid decrease in G(sub c) at short baking times and convergence to a constant value at long baking times. The surface embrittlement conditions and an embrittlement toughness

  17. Malleable Curie Temperatures of Natural Titanomagnetites: Occurrences, Modes, and Mechanisms

    NASA Astrophysics Data System (ADS)

    Jackson, Mike; Bowles, Julie

    2018-02-01

    Intermediate-composition titanomagnetites have Curie temperatures (Tc) that depend not only on composition but also on thermal history, with increases of 100°C or more in Tc produced by moderate-temperature (300-400°C) annealing in the laboratory or in slow natural cooling and comparable decreases produced by more rapid cooling ("quenching") from higher temperatures. New samples spanning a range of titanomagnetite compositions exhibit reversible changes in Tc comparable to those previously documented for pyroclastic samples from Mt. St. Helens and Novarupta. Additional high- and low-temperature measurements help to shed light on the nanoscale mechanisms responsible for the observed changes in Tc. High-T hysteresis measurements exhibit a peak in high-field slope khf(T) at the Curie temperature, and the peak magnitude decreases as Tc increases with annealing. Sharp changes in low-T magnetic behavior are also strongly affected by prior annealing or quenching, suggesting that these treatments affect the intrasite cation distributions. We have examined the effects of oxidation state and nonstoichiometry on the magnitude of Tc changes produced by quenching/annealing in different atmospheres. Treatments in air generally cause large changes (ΔTc > 100°). In an inert atmosphere, the changes are similar in many samples but strongly diminished in others. When the samples are embedded in a reducing material, ΔTc becomes insignificant. These results strongly suggest that cation vacancies play an essential role in the cation rearrangements responsible for the observed changes in Tc. Some form of octahedral-site chemical clustering or short-range ordering appears to be the best way to explain the large observed changes in Tc.

  18. Influence of remaining coronal tooth structure on fracture resistance and failure mode of restored endodontically treated maxillary incisors.

    PubMed

    Santos Pantaleón, Domingo; Morrow, Brian R; Cagna, David R; Pameijer, Cornelis H; Garcia-Godoy, Franklin

    2018-03-01

    Limited information is available on the effect of an incomplete ferrule because of the varying residual axial wall heights and the volume of residual tooth structure on the fracture resistance of endodontically treated and restored maxillary incisors. The purpose of this in vitro investigation was to examine the effect of varying residual axial wall heights, residual coronal tooth structure, and the absence of 1 proximal axial wall on the fracture resistance and failure mode of endodontically treated teeth restored with metal posts. Sixty intact human maxillary central incisors were divided into 6 groups (n=10): no ferrule (NF), 2-mm complete ferrule (CF2), 2-mm (IF2), 3-mm (IF3), and 4-mm (IF4) incomplete ferrules missing a single interproximal wall, and a control group that had a 6-mm incomplete ferrule (IF6). Cast metal post-and-cores were placed in all experimental specimens except for controls. Control specimens received 1 interproximal cavity preparation extending to the root canal access and a composite resin restoration. Complete metal crowns were then cemented on all specimens. Completed specimens were subjected to thermocycling (6000 cycles, 5°C/55°C) followed by the immediate testing of fracture resistance. Failed specimens were sectioned buccolingually and evaluated to identify the failure mode. The data were analyzed with an analysis of variance (ANOVA) and the Student-Newman-Keuls multiple comparison test (α=.05). An incomplete ferrule (IF2) with 1 interproximal wall missing had significantly reduced fracture resistance (697 N) compared with a complete ferrule (932 N). An increase of 3 to 4 mm of remaining wall height improved fracture resistance, from 844 N (IF3) to 853 N (IF4). Partial decementation was noticed in 8 NF and 5 IF2 specimens. IF3 and IF4 had no decementations. Radicular fractures and cracks (catastrophic failure) were observed in all IF2, IF3, and IF4, 9 CF2, and 6 NF specimens. In 7 specimens without posts (IF6, control

  19. On metaheuristic "failure modes": a case study in Tabu search for job-shop scheduling.

    SciT

    Watson, Jean-Paul

    2005-06-01

    In this paper, we analyze the relationship between pool maintenance schemes, long-term memory mechanisms, and search space structure, with the goal of placing metaheuristic design on a more concrete foundation.

  20. The role of failure modes and effects analysis in showing the benefits of automation in the blood bank.

    PubMed

    Han, Tae Hee; Kim, Moon Jung; Kim, Shinyoung; Kim, Hyun Ok; Lee, Mi Ae; Choi, Ji Seon; Hur, Mina; St John, Andrew

    2013-05-01

    Failure modes and effects analysis (FMEA) is a risk management tool used by the manufacturing industry but now being applied in laboratories. Teams from six South Korean blood banks used this tool to map their manual and automated blood grouping processes and determine the risk priority numbers (RPNs) as a total measure of error risk. The RPNs determined by each of the teams consistently showed that the use of automation dramatically reduced the RPN compared to manual processes. In addition, FMEA showed where the major risks occur in each of the manual processes and where attention should be prioritized to improve the process. Despite no previous experience with FMEA, the teams found the technique relatively easy to use and the subjectivity associated with assigning risk numbers did not affect the validity of the data. FMEA should become a routine technique for improving processes in laboratories. © 2012 American Association of Blood Banks.

  1. Electromigration failure mode concerning negative resistance shift of Cu interconnects buried in porous low-k dielectric

    NASA Astrophysics Data System (ADS)

    Zheng, Hui; Yin, Binfeng; Yu, Hewei; Chen, Leigang; Gao, Lin; Zhou, Ke; Kuo, Chinte

    2017-02-01

    Electromigration failure mode concerning a negative resistance shift of 4%-11% and cathode burnout was reported for Cu interconnects buried in porous low-k in this paper. Evidence for oxidation and debonding of Ta/TaN liner at high temperature was revealed, which was demonstrated to have been enabled by the unsealed porous low-k due to moisture uptake. The cathode burnout was thus attributed to severe Joule heating induced in the insulated liner after oxidation. The resistance decay of Cu also exhibited to be mainly consistent with the calculation from specularity recovery of electron scattering at the Cu/Ta interface after oxidation and debonding of the liner, although other factors like strain relaxation may also have some contribution.

  2. Early laparotomy wound failure as the mechanism for incisional hernia formation

    PubMed Central

    Xing, Liyu; Culbertson, Eric J.; Wen, Yuan; Franz, Michael G.

    2015-01-01

    Background Incisional hernia is the most common complication of abdominal surgery leading to reoperation. In the United States, 200,000 incisional hernia repairs are performed annually, often with significant morbidity. Obesity is increasing the risk of laparotomy wound failure. Methods We used a validated animal model of incisional hernia formation. We intentionally induced laparotomy wound failure in otherwise normal adult, male Sprague-Dawley rats. Radio-opaque, metal surgical clips served as markers for the use of x-ray images to follow the progress of laparotomy wound failure. We confirmed radiographic findings of the time course for mechanical laparotomy wound failure by necropsy. Results Noninvasive radiographic imaging predicts early laparotomy wound failure and incisional hernia formation. We confirmed both transverse and craniocaudad migration of radio-opaque markers at necropsy after 28 d that was uniformly associated with the clinical development of incisional hernias. Conclusions Early laparotomy wound failure is a primary mechanism for incisional hernia formation. A noninvasive radiographic method for studying laparotomy wound healing may help design clinical trials to prevent and treat this common general surgical complication. PMID:23036516

  3. A calibration method for the higher modes of a micro-mechanical cantilever

    NASA Astrophysics Data System (ADS)

    Shatil, N. R.; Homer, M. E.; Picco, L.; Martin, P. G.; Payton, O. D.

    2017-05-01

    Micro-mechanical cantilevers are increasingly being used as a characterisation tool in both material and biological sciences. New non-destructive applications are being developed that rely on the information encoded within the cantilever's higher oscillatory modes, such as atomic force microscopy techniques that measure the non-topographic properties of a sample. However, these methods require the spring constants of the cantilever at higher modes to be known in order to quantify their results. Here, we show how to calibrate the micro-mechanical cantilever and find the effective spring constant of any mode. The method is uncomplicated to implement, using only the properties of the cantilever and the fundamental mode that are straightforward to measure.

  4. Clinical implementation and failure mode and effects analysis of HDR skin brachytherapy using Valencia and Leipzig surface applicators.

    PubMed

    Sayler, Elaine; Eldredge-Hindy, Harriet; Dinome, Jessie; Lockamy, Virginia; Harrison, Amy S

    2015-01-01

    The planning procedure for Valencia and Leipzig surface applicators (VLSAs) (Nucletron, Veenendaal, The Netherlands) differs substantially from CT-based planning; the unfamiliarity could lead to significant errors. This study applies failure modes and effects analysis (FMEA) to high-dose-rate (HDR) skin brachytherapy using VLSAs to ensure safety and quality. A multidisciplinary team created a protocol for HDR VLSA skin treatments and applied FMEA. Failure modes were identified and scored by severity, occurrence, and detectability. The clinical procedure was then revised to address high-scoring process nodes. Several key components were added to the protocol to minimize risk probability numbers. (1) Diagnosis, prescription, applicator selection, and setup are reviewed at weekly quality assurance rounds. Peer review reduces the likelihood of an inappropriate treatment regime. (2) A template for HDR skin treatments was established in the clinic's electronic medical record system to standardize treatment instructions. This reduces the chances of miscommunication between the physician and planner as well as increases the detectability of an error. (3) A screen check was implemented during the second check to increase detectability of an error. (4) To reduce error probability, the treatment plan worksheet was designed to display plan parameters in a format visually similar to the treatment console display, facilitating data entry and verification. (5) VLSAs are color coded and labeled to match the electronic medical record prescriptions, simplifying in-room selection and verification. Multidisciplinary planning and FMEA increased detectability and reduced error probability during VLSA HDR brachytherapy. This clinical model may be useful to institutions implementing similar procedures. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  5. Application of ISO 22000 and Failure Mode and Effect Analysis (FMEA) for industrial processing of salmon: a case study.

    PubMed

    Arvanitoyannis, Ioannis S; Varzakas, Theodoros H

    2008-05-01

    The Failure Mode and Effect Analysis (FMEA) model was applied for risk assessment of salmon manufacturing. A tentative approach of FMEA application to the salmon industry was attempted in conjunction with ISO 22000. Preliminary Hazard Analysis was used to analyze and predict the occurring failure modes in a food chain system (salmon processing plant), based on the functions, characteristics, and/or interactions of the ingredients or the processes, upon which the system depends. Critical Control points were identified and implemented in the cause and effect diagram (also known as Ishikawa, tree diagram and fishbone diagram). In this work, a comparison of ISO 22000 analysis with HACCP is carried out over salmon processing and packaging. However, the main emphasis was put on the quantification of risk assessment by determining the RPN per identified processing hazard. Fish receiving, casing/marking, blood removal, evisceration, filet-making cooling/freezing, and distribution were the processes identified as the ones with the highest RPN (252, 240, 210, 210, 210, 210, 200 respectively) and corrective actions were undertaken. After the application of corrective actions, a second calculation of RPN values was carried out resulting in substantially lower values (below the upper acceptable limit of 130). It is noteworthy that the application of Ishikawa (Cause and Effect or Tree diagram) led to converging results thus corroborating the validity of conclusions derived from risk assessment and FMEA. Therefore, the incorporation of FMEA analysis within the ISO 22000 system of a salmon processing industry is anticipated to prove advantageous to industrialists, state food inspectors, and consumers.

  6. Deformation and failure mechanism of secondary cell wall in Spruce late wood

    NASA Astrophysics Data System (ADS)

    Adusumalli, Ramesh-Babu; Raghavan, Rejin; Ghisleni, Rudy; Zimmermann, Tanja; Michler, Johann

    2010-08-01

    The deformation and failure of the secondary cell wall of Spruce wood was studied by in-situ SEM compression of micropillars machined by the focused ion beam technique. The cell wall exhibited yield strength values of approximately 160 MPa and large scale plasticity. High resolution SEM imaging post compression revealed bulging of the pillars followed by shear failure. With additional aid of cross-sectional analysis of the micropillars post compression, a model for deformation and failure mechanism of the cell wall has been proposed. The cell wall consists of oriented cellulose microfibrils with high aspect ratio embedded in a hemicellulose-lignin matrix. The deformation of the secondary wall occurs by asymmetric out of plane bulging because of buckling of the microfibrils. Failure of the cell wall following the deformation occurs by the formation of a shear or kink band.

  7. Survival and failure modes: platform-switching for internal and external hexagon cemented fixed dental prostheses.

    PubMed

    Anchieta, Rodolfo B; Machado, Lucas S; Hirata, Ronaldo; Coelho, Paulo G; Bonfante, Estevam A

    2016-10-01

    This study evaluated the probability of survival (reliability) of platform-switched fixed dental prostheses (FDPs) cemented on different implant-abutment connection designs. Eighty-four-three-unit FDPs (molar pontic) were cemented on abutments connected to two implants of external or internal hexagon connection. Four groups (n = 21 each) were established: external hexagon connection and regular platform (ERC); external hexagon connection and switched platform (ESC); internal hexagon and regular platform (IRC); and internal hexagon and switched platform (ISC). Prostheses were subjected to step-stress accelerated life testing in water. Weibull curves and probability of survival for a mission of 100,000 cycles at 400 N (two-sided 90% CI) were calculated. The beta values of 0.22, 0.48, 0.50, and 1.25 for groups ERC, ESC, IRC, and ISC, respectively, indicated a limited role of fatigue in damage accumulation, except for group ISC. Survival decreased for both platform-switched groups (ESC: 74%, and ISC: 59%) compared with the regular matching platform counterparts (ERC: 95%, and IRC: 98%). Characteristic strength was higher only for ERC compared with ESC, but not different between internal connections. Failures chiefly involved the abutment screw. Platform switching decreased the probability of survival of FDPs on both external and internal connections. The absence in loss of characteristic strength observed in internal hexagon connections favor their use compared with platform-switched external hexagon connections. © 2016 Eur J Oral Sci.

  8. Reliability and Failure Modes of Solid-State Lighting Electrical Drivers Subjected to Accelerated Aging

    DOE PAGES

    Lall, Pradeep; Sakalaukus, Peter; Davis, Lynn

    2015-02-19

    An investigation of an off-the-shelf solid-state lighting device with the primary focus on the accompanied light-emitting diode (LED) electrical driver (ED) has been conducted. A set of 10 EDs were exposed to temperature humidity life testing of 85% RH and 85 C (85/85) without an electrical bias per the JEDEC standard JESD22-A101C in order to accelerate the ingress of moisture into the aluminum electrolytic capacitor (AEC) and the EDs in order to assess the reliability of the LED drivers for harsh environment applications. The capacitance and equivalent series resistance for each AEC inside the ED were measured using a handheldmore » LCR meter as possible leading indications of failure. The photometric quantities of a single pristine light engine were monitored in order to investigate the interaction between the light engine and the EDs. These parameters were used in assessing the overall reliability of the EDs. In addition, a comparative analysis has been conducted between the 85/85 accelerated test data and a previously published high-temperature storage life accelerated test of 135°C. The results of the 85/85 acceleration test and the comparative analysis are presented in this paper.« less

  9. Aging and failure mode of electrochemical double layer capacitors during accelerated constant load tests

    NASA Astrophysics Data System (ADS)

    Kötz, R.; Ruch, P. W.; Cericola, D.

    Electrochemical double layer capacitors of the BCAP0350 type (Maxwell Technologies) were tested under constant load conditions at different voltages and temperatures. The aging of the capacitors was monitored during the test in terms of capacitance, internal resistance and leakage current. Aging was significantly accelerated by elevated temperature or increased voltage. Only for extreme conditions at voltages of 3.5 V or temperatures above 70 °C the capacitors failed due to internal pressure build-up. No other failure events such as open circuit or short circuit were detected. Impedance measurements after the tests showed increased high frequency resistance, an increased distributed resistance and most likely an increase in contact resistance between electrode and current collector together with a loss of capacitance. Capacitors aged at elevated voltages (3.3 V) exhibited a tilting of the low frequency component, which implies an increase in the heterogeneity of the electrode surface. This feature was not observed upon aging at elevated temperatures (70 °C).

  10. An adaptive two-stage energy-efficiency mechanism for the doze mode in EPON

    NASA Astrophysics Data System (ADS)

    Nikoukar, AliAkbar; Hwang, I.-Shyan; Su, Yu-Min; Liem, Andrew Tanny

    2016-07-01

    Sleep and doze power-saving modes are the common ways to reduce power consumption of optical network units (ONUs) in Ethernet passive optical network (EPON). The doze mode turns off the ONU transmitter when there is no traffic in the upstream direction while the sleep mode turns off the ONU transmitter and receiver. As the result, the sleep mode is more efficient compared to the doze mode, but it introduces additional complexity of scheduling and signaling, losses the clock synchronization and requires long clock recovery time; furthermore, it requires the cooperation of the optical line terminal (OLT) in the downstream direction to queue frames. To improve the energy-saving in the doze mode, a new two-stage mechanism is introduced that the doze sleep duration is extended for longer time with acceptable quality-of-services (QoS) metrics when ONU is idle in the current cycle. By this way the ONU enters the doze mode even in the high load traffic; moreover, the green dynamic bandwidth allocation (GBA) is proposed to calculate the doze sleep duration based on the ONU queue state and incoming traffic ratio. Simulation results show that the proposed mechanism significantly improves the energy-saving 74% and 54% when traffic load is from the light load to the high load in different traffic situations, and also promises the QoS performance.

  11. Evaluation of shear bond strength of porcelain bonded to laser welded titanium surface and determination of mode of bond failure.

    PubMed

    Patil, Narendra P; Dandekar, Minal; Nadiger, Ramesh K; Guttal, Satyabodh S

    2010-09-01

    The aim of this study was to evaluate the shear bond strength of porcelain to laser welded titanium surface and to determine the mode of bond failure through scanning electron microscopy (SEM) and energy dispersive spectrophotometry (EDS). Forty five cast rectangular titanium specimens with the dimension of 10 mm x 8 mm x 1 mm were tested. Thirty specimens had a perforation of 2 mm diameter in the centre. These were randomly divided into Group A and B. The perforations in the Group B specimens were repaired by laser welding using Cp Grade II titanium wire. The remaining 15 specimens were taken as control group. All the test specimens were layered with low fusing porcelain and tested for shear bond strength. The debonded specimens were subjected to SEM and EDS. Data were analysed with 1-way analysis of variance and Student's t-test for comparison among the different groups. One-way analysis of variance (ANOVA) showed no statistically significant difference in shear bond strength values at a 5% level of confidence. The mean shear bond strength values for control group, Group A and B was 8.4 +/- 0.5 Mpa, 8.1 +/- 0.4 Mpa and 8.3 +/- 0.3 Mpa respectively. SEM/EDS analysis of the specimens showed mixed and cohesive type of bond failure. Within the limitations of the study laser welding did not have any effect on the shear bond strength of porcelain bonded to titanium.

  12. [Applying healthcare failure mode and effect analysis to improve the surgical specimen transportation process and rejection rate].

    PubMed

    Hu, Pao-Hsueh; Hu, Hsiao-Chen; Huang, Hui-Ju; Chao, Hui-Lin; Lei, Ei-Fang

    2014-04-01

    Because surgical pathology specimens are crucial to the diagnosis and treatment of disease, it is critical that they be collected and transported safely and securely. Due to recent near-miss events in our department, we used the healthcare failure model and effect analysis to identify 14 potential perils in the specimen collection and transportation process. Improvement and prevention strategies were developed accordingly to improve quality of care. Using health care failure mode and effect analysis (HFMEA) may improve the surgical specimen transportation process and reduce the rate of surgical specimen rejection. Rectify standard operating procedures for surgical pathology specimen collection and transportation. Create educational videos and posters. Rectify methods of specimen verification. Organize and create an online and instantaneous management system for specimen tracking and specimen rejection. Implementation of the new surgical specimen transportation process effectively eliminated the 14 identified potential perils. In addition, the specimen rejection fell from 0.86% to 0.03%. This project was applied to improve the specimen transportation process, enhance interdisciplinary cooperation, and improve the patient-centered healthcare system. The creation and implementation of an online information system significantly facilitates specimen tracking, hospital cost reductions, and patient safety improvements. The success in our department is currently being replicated across all departments in our hospital that transport specimens. Our experience and strategy may be applied to inter-hospital specimen transportation in the future.

  13. The use of failure mode and effect analysis in a radiation oncology setting: the Cancer Treatment Centers of America experience.

    PubMed

    Denny, Diane S; Allen, Debra K; Worthington, Nicole; Gupta, Digant

    2014-01-01

    Delivering radiation therapy in an oncology setting is a high-risk process where system failures are more likely to occur because of increasing utilization, complexity, and sophistication of the equipment and related processes. Healthcare failure mode and effect analysis (FMEA) is a method used to proactively detect risks to the patient in a particular healthcare process and correct potential errors before adverse events occur. FMEA is a systematic, multidisciplinary team-based approach to error prevention and enhancing patient safety. We describe our experience of using FMEA as a prospective risk-management technique in radiation oncology at a national network of oncology hospitals in the United States, capitalizing not only on the use of a team-based tool but also creating momentum across a network of collaborative facilities seeking to learn from and share best practices with each other. The major steps of our analysis across 4 sites and collectively were: choosing the process and subprocesses to be studied, assembling a multidisciplinary team at each site responsible for conducting the hazard analysis, and developing and implementing actions related to our findings. We identified 5 areas of performance improvement for which risk-reducing actions were successfully implemented across our enterprise. © 2012 National Association for Healthcare Quality.

  14. Modeling Freedom From Progression for Standard-Risk Medulloblastoma: A Mathematical Tumor Control Model With Multiple Modes of Failure

    SciT

    Brodin, N. Patrik, E-mail: nils.patrik.brodin@rh.dk; Niels Bohr Institute, University of Copenhagen, Copenhagen; Vogelius, Ivan R.

    2013-10-01

    Purpose: As pediatric medulloblastoma (MB) is a relatively rare disease, it is important to extract the maximum information from trials and cohort studies. Here, a framework was developed for modeling tumor control with multiple modes of failure and time-to-progression for standard-risk MB, using published pattern of failure data. Methods and Materials: Outcome data for standard-risk MB published after 1990 with pattern of relapse information were used to fit a tumor control dose-response model addressing failures in both the high-dose boost volume and the elective craniospinal volume. Estimates of 5-year event-free survival from 2 large randomized MB trials were used tomore » model the time-to-progression distribution. Uncertainty in freedom from progression (FFP) was estimated by Monte Carlo sampling over the statistical uncertainty in input data. Results: The estimated 5-year FFP (95% confidence intervals [CI]) for craniospinal doses of 15, 18, 24, and 36 Gy while maintaining 54 Gy to the posterior fossa was 77% (95% CI, 70%-81%), 78% (95% CI, 73%-81%), 79% (95% CI, 76%-82%), and 80% (95% CI, 77%-84%) respectively. The uncertainty in FFP was considerably larger for craniospinal doses below 18 Gy, reflecting the lack of data in the lower dose range. Conclusions: Estimates of tumor control and time-to-progression for standard-risk MB provides a data-driven setting for hypothesis generation or power calculations for prospective trials, taking the uncertainties into account. The presented methods can also be applied to incorporate further risk-stratification for example based on molecular biomarkers, when the necessary data become available.« less

  15. Fracture resistance and primary failure mode of endodontically treated teeth restored with a carbon fiber-reinforced resin post system in vitro.

    PubMed

    Raygot, C G; Chai, J; Jameson, D L

    2001-01-01

    This study was undertaken to characterize the fracture resistance and mode of fracture of endodontically treated incisors restored with cast post-and-core, prefabricated stainless steel post, or carbon fiber-reinforced composite post systems. Ten endodontically treated teeth restored with each technique were subjected to a compressive load delivered at a 130-degree angle to the long axis until the first sign of failure was noted. The fracture load and the mode of fracture were recorded. The failure loads registered in the three groups were not significantly different. Between 70%, and 80% of teeth from any of the three groups displayed fractures that were located above the simulated bone level. The use of carbon fiber-reinforced composite posts did not change the fracture resistance or the failure mode of endodontically treated central incisors compared to the use of metallic posts.

  16. Preliminary Analysis of Perfusionists’ Strategies for Managing Routine and Failure Mode Scenarios in Cardiopulmonary Bypass

    PubMed Central

    Power, Gerald; Miller, Anne

    2007-01-01

    Abstract: Cardiopulmonary bypass (CPB) is a complex task requiring high levels of practitioner expertise. Although some education standards exist, few are based on an analysis of perfusionists’ problem-solving needs. This study shows the efficacy of work domain analysis (WDA) as a framework for analyzing perfusionists’ conceptualization and problem-solving strategies. A WDA model of a CPB circuit was developed. A high-fidelity CPB simulator (Manbit) was used to present routine and oxygenator failure scenarios to six proficient perfusionists. The video-cued recall technique was used to elicit perfusionists’ conceptualization strategies. The resulting recall transcripts were coded using the WDA model and analyzed for associations between task completion times and patterns of conceptualization. The WDA model developed was successful in being able to account for and describe the thought process followed by each participant. It was also shown that, although there was no correlation between experience with CPB and ability to change an oxygenator, there was a link between the between specific thought patterns and the efficiency in undertaking this task. Simulators are widely used in many fields of human endeavor, and in this research, the attempt was made to use WDA to gain insights into the complexities of the human thought process when engaged in the complex task of conducting CPB. The assumption that experience equates with ability is challenged, and rather, it is shown that thought process is a more significant determinant of success when engaged in complex tasks. WDA analysis in combination with a CPB simulator may be used to elucidate successful strategies for completing complex tasks. PMID:17972450

  17. Risk assessment of component failure modes and human errors using a new FMECA approach: application in the safety analysis of HDR brachytherapy.

    PubMed

    Giardina, M; Castiglia, F; Tomarchio, E

    2014-12-01

    Failure mode, effects and criticality analysis (FMECA) is a safety technique extensively used in many different industrial fields to identify and prevent potential failures. In the application of traditional FMECA, the risk priority number (RPN) is determined to rank the failure modes; however, the method has been criticised for having several weaknesses. Moreover, it is unable to adequately deal with human errors or negligence. In this paper, a new versatile fuzzy rule-based assessment model is proposed to evaluate the RPN index to rank both component failure and human error. The proposed methodology is applied to potential radiological over-exposure of patients during high-dose-rate brachytherapy treatments. The critical analysis of the results can provide recommendations and suggestions regarding safety provisions for the equipment and procedures required to reduce the occurrence of accidental events.

  18. Metal matrix composites: Testing, analysis, and failure modes; Proceedings of the Symposium, Sparks, NV, Apr. 25, 26, 1988

    NASA Technical Reports Server (NTRS)

    Johnson, W. S. (Editor)

    1989-01-01

    The present conference discusses the tension and compression testing of MMCs, the measurement of advanced composites' thermal expansion, plasticity theory for fiber-reinforced composites, a deformation analysis of boron/aluminum specimens by moire interferometry, strength prediction methods for MMCs, and the analysis of notched MMCs under tensile loading. Also discussed are techniques for the mechanical and thermal testing of Ti3Al/SCS-6 MMCs, damage initiation and growth in fiber-reinforced MMCs, the shear testing of MMCs, the crack growth and fracture of continuous fiber-reinforced MMCs in view of analytical and experimental results, and MMC fiber-matrix interface failures.

  19. Failure mechanisms in wood joints bonded with urea-formaldehyde adhesives

    B.H. River; R.O. Ebewele; G.E. Myers

    1994-01-01

    Wood joints bonded with urea-formaldehyde (UF) are weakened by cyclic swelling and shrinking. To study the failure mechanisms in UF-bonded joints, specimens were bonded with unmodified, modified (amine), or phenol formaldehyde adhesive and subjected to accelerated aging. Modification of the adhesive properties increased the cleavage fracture toughness and shear...

  20. 49 CFR 191.12 - Distribution Systems: Mechanical Fitting Failure Reports

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Distribution Systems: Mechanical Fitting Failure Reports 191.12 Section 191.12 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER...

  1. Poster - Thur Eve - 05: Safety systems and failure modes and effects analysis for a magnetic resonance image guided radiation therapy system.

    PubMed

    Lamey, M; Carlone, M; Alasti, H; Bissonnette, J P; Borg, J; Breen, S; Coolens, C; Heaton, R; Islam, M; van Proojen, M; Sharpe, M; Stanescu, T; Jaffray, D

    2012-07-01

    An online Magnetic Resonance guided Radiation Therapy (MRgRT) system is under development. The system is comprised of an MRI with the capability of travel between and into HDR brachytherapy and external beam radiation therapy vaults. The system will provide on-line MR images immediately prior to radiation therapy. The MR images will be registered to a planning image and used for image guidance. With the intention of system safety we have performed a failure modes and effects analysis. A process tree of the facility function was developed. Using the process tree as well as an initial design of the facility as guidelines possible failure modes were identified, for each of these failure modes root causes were identified. For each possible failure the assignment of severity, detectability and occurrence scores was performed. Finally suggestions were developed to reduce the possibility of an event. The process tree consists of nine main inputs and each of these main inputs consisted of 5 - 10 sub inputs and tertiary inputs were also defined. The process tree ensures that the overall safety of the system has been considered. Several possible failure modes were identified and were relevant to the design, construction, commissioning and operating phases of the facility. The utility of the analysis can be seen in that it has spawned projects prior to installation and has lead to suggestions in the design of the facility. © 2012 American Association of Physicists in Medicine.

  2. Progress and prospect on failure mechanisms of solid-state lithium batteries

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Chen, Bingbing; Wang, Longlong; Cui, Guanglei

    2018-07-01

    By replacing traditional liquid organic electrolyte with solid-state electrolyte, the solid-state lithium batteries powerfully come back to the energy storage field due to their eminent safety and energy density. In recent years, a variety of solid-state lithium batteries based on excellent solid-state electrolytes are developed. However, the performance degradation of solid-state lithium batteries during cycling and storing is still a serious challenge for practical application. Therefore, this review summarizes the research progress of solid-state lithium batteries from the perspectives of failure phenomena and failure mechanisms. Additionally, the development of methodologies on studying the failure mechanisms of solid-state lithium batteries is also reviewed. Moreover, some perspectives on the remaining questions for understanding the failure behaviors and achieving long cycle life, high safety and high energy density solid-state lithium batteries are presented. This review will help researchers to recognize the status of solid-state lithium batteries objectively and attract much more research interest in conquering the failure issues of solid-state lithium batteries.

  3. Cascading failures mechanism based on betweenness-degree ratio distribution with different connecting preferences

    NASA Astrophysics Data System (ADS)

    Wang, Xiao Juan; Guo, Shi Ze; Jin, Lei; Chen, Mo

    We study the structural robustness of the scale free network against the cascading failure induced by overload. In this paper, a failure mechanism based on betweenness-degree ratio distribution is proposed. In the cascading failure model we built the initial load of an edge which is proportional to the node betweenness of its ends. During the edge random deletion, we find a phase transition. Then based on the phase transition, we divide the process of the cascading failure into two parts: the robust area and the vulnerable area, and define the corresponding indicator to measure the performance of the networks in both areas. From derivation, we find that the vulnerability of the network is determined by the distribution of betweenness-degree ratio. After that