Sample records for mechanical forces impeding

  1. Smart mug to measure hand's geometrical mechanical impedance.

    PubMed

    Hondori, Hossein Mousavi; Tech, Ang Wei

    2011-01-01

    A novel device, which looks like a mug, has been proposed for measuring the impedance of human hand. The device is designed to have convenient size and light weight similar to an ordinary coffee mug. It contains a 2-axis inertia sensor to monitor vibration and a small motor to carry an eccentric mass (m=100 gr, r=2 cm, rpm=600). The centrifugal force due to the rotating mass applies a dynamic force to the hand that holds the mug. Correlation of the acceleration signals with the perturbing force gives the geometrical mechanical impedance. Experimental results on a healthy subject shows that impedance is posture dependant while it changes with the direction of the applied perturbing force. For nine postures the geometrical impedance is obtained all of which have elliptical shapes. The method can be used for assessment of spasticity and monitoring stability in patients with stroke or similar problems.

  2. Validation of the force and frequency characteristics of the activator adjusting instrument: effectiveness as a mechanical impedance measurement tool.

    PubMed

    Keller, T S; Colloca, C J; Fuhr, A W

    1999-02-01

    To determine the dynamic force-time and force-frequency characteristics of the Activator Adjusting Instrument and to validate its effectiveness as a mechanical impedance measurement device; in addition, to refine or optimize the force-frequency characteristics of the Activator Adjusting Instrument to provide enhanced dynamic structural measurement reliability and accuracy. An idealized test structure consisting of a rectangular steel beam with a static stiffness similar to that of the human thoracolumbar spine was used for validation of a method to determine the dynamic mechanical response of the spine. The Activator Adjusting Instrument equipped with a load cell and accelerometer was used to measure forces and accelerations during mechanical excitation of the steel beam. Driving point and transfer mechanical impedance and resonant frequency of the beam were determined by use of a frequency spectrum analysis for different force settings, stylus masses, and stylus tips. Results were compared with beam theory and transfer impedance measurements obtained by use of a commercial electronic PCB impact hammer. The Activator Adjusting Instrument imparted a very complex dynamic impact comprising an initial high force (116 to 140 N), short duration pulse (<0.1 ms) followed by several lower force (30 to 100 N), longer duration impulses (1 to 5 ms). The force profile was highly reproducible in terms of the peak impulse forces delivered to the beam structure (<8% variance). Spectrum analysis of the Activator Adjusting Instrument impulse indicated that the Activator Adjusting Instrument has a variable force spectrum and delivers its peak energy at a frequency of 20 Hz. Added masses and different durometer stylus tips had very little influence on the Activator Adjusting Instrument force spectrum. The resonant frequency of the beam was accurately predicted by both the Activator Adjusting Instrument and electronic PCB impact hammer, but variations in the magnitude of the driving point impedance at the resonant frequency were high (67%) compared with the transfer impedance measurements obtained with the electronic PCB impact hammer, which had a more uniform force spectrum and was more repeatable (<10% variation). The addition of a preload-control frame to the Activator Adjusting Instrument improved the characteristics of the force frequency spectrum and repeatability of the driving point impedance measurements. These findings indicate that the Activator Adjusting Instrument combined with an integral load cell and accelerometer was able to obtain an accurate description of a steel beam with readily identifiable geometric and dynamic mechanical properties. These findings support the rationale for using the device to assess the dynamic mechanical behavior of the vertebral column. Such information would be useful for SMT and may ultimately be used to evaluate the [corrected] biomechanical effectiveness of various manipulative, surgical, and rehabilitative spinal procedures.

  3. Mechanical impedance and acoustic mobility measurement techniques of specifying vibration environments

    NASA Technical Reports Server (NTRS)

    Kao, G. C.

    1973-01-01

    Method has been developed for predicting interaction between components and corresponding support structures subjected to acoustic excitations. Force environments determined in spectral form are called force spectra. Force-spectra equation is determined based on one-dimensional structural impedance model.

  4. Maturation of Mechanical Impedance of the Skin-Covered Skull: Implications for Soft Band Bone-Anchored Hearing Systems Fitted in Infants and Young Children.

    PubMed

    Mackey, Allison R; Hodgetts, William E; Scott, Dylan; Small, Susan A

    2016-01-01

    Little is known about the maturational changes in the mechanical properties of the skull and how they might contribute to infant-adult differences in bone conduction hearing sensitivity. The objective of this study was to investigate the mechanical impedance of the skin-covered skull for different skull positions and contact forces for groups of infants, young children, and adults. These findings provide a better understanding of how changes in mechanical impedance might contribute to developmental changes in bone conduction hearing, and might provide insight into how fitting and output verification protocols for bone-anchored hearing systems (BAHS) could be adapted for infants and young children. Seventy-seven individuals participated in the study, including 63 infants and children (ages 1 month to 7 years) and 11 adults. Mechanical impedance magnitude for the forehead and temporal bone was collected for contact forces of 2, 4, and 5.4 N using an impedance head, a BAHS transducer, and a specially designed holding device. Mechanical impedance magnitude was determined across frequency using a stepped sine sweep from 100 to 10,000 Hz, and divided into low- and high-frequency sets for analysis. Mechanical impedance magnitude was lowest for the youngest infants and increased throughout maturation in the low frequencies. For high frequencies, the youngest infants had the highest impedance, but only for a temporal bone placement. Impedance increased with increasing contact force for low frequencies for each age group and for both skull positions. The effect of placement was significant for high frequencies for each contact force and for each age group, except for the youngest infants. Our findings show that mechanical impedance properties change systematically up to 7 years old. The significant age-related differences in mechanical impedance suggest that infant-adult differences in bone conduction thresholds may be related, at least in part, to properties of the immature skull and overlying skin and tissues. These results have important implications for fitting the soft band BAHS on infants and young children. For example, verification of output force form a BAHS on a coupler designed with adult values may not be appropriate for infants. This may also hold true for transducer calibration when assessing bone conduction hearing thresholds in infants for different skull locations. The results have two additional clinical implications for fitting soft band BAHSs. First, parents should be counseled to maintain sufficient and consistent tightness so that the output from the BAHS does not change as the child moves around during everyday activities. Second, placement of a BAHS on the forehead versus the temporal bone results in changes in mechanical impedance which may contribute to a decrease in signal level at the cochlea as it has been previously demonstrated that bone conduction thresholds are poorer at the forehead compared with a temporal placement.

  5. Mechanical Impedance Modeling of Human Arm: A survey

    NASA Astrophysics Data System (ADS)

    Puzi, A. Ahmad; Sidek, S. N.; Sado, F.

    2017-03-01

    Human arm mechanical impedance plays a vital role in describing motion ability of the upper limb. One of the impedance parameters is stiffness which is defined as the ratio of an applied force to the measured deformation of the muscle. The arm mechanical impedance modeling is useful in order to develop a better controller for system that interacts with human as such an automated robot-assisted platform for automated rehabilitation training. The aim of the survey is to summarize the existing mechanical impedance models of human upper limb so to justify the need to have an improved version of the arm model in order to facilitate the development of better controller of such systems with ever increase in complexity. In particular, the paper will address the following issue: Human motor control and motor learning, constant and variable impedance models, methods for measuring mechanical impedance and mechanical impedance modeling techniques.

  6. Servo-controlled pneumatic pressure oscillator for respiratory impedance measurements and high-frequency ventilation.

    PubMed

    Kaczka, David W; Lutchen, Kenneth R

    2004-04-01

    The ability to provide forced oscillatory excitation of the respiratory system can be useful in mechanical impedance measurements as well as high frequency ventilation (HFV). Experimental systems currently used for generating forced oscillations are limited in their ability to provide high amplitude flows or maintain the respiratory system at a constant mean pressure during excitation. This paper presents the design and implementation of a pneumatic pressure oscillator based on a proportional solenoid valve. The device is capable of providing forced oscillatory excitations to the respiratory system over a bandwidth suitable for mechanical impedance measurements and HVF. It delivers high amplitude flows (> 1.4 l/s) and utilizes a servo-control mechanism to maintain a load at a fixed mean pressure during simultaneous oscillation. Under open-loop conditions, the device exhibited a static hysteresis of approximately 7%, while its dynamic magnitude and phase responses were flat out to 10 Hz. Broad-band measurement of total harmonic distortion was approximately 19%. Under closed-loop conditions, the oscillator was able to maintain a mechanical test load at both positive and negative mean pressures during oscillatory excitations from 0.1 to 10.0 Hz. Impedance of the test load agreed closely with theoretical predictions. We conclude that this servo-controlled oscillator can be a useful tool for respiratory impedance measurements as well as HFV.

  7. Quantification of temperature effect on impedance monitoring via PZT interface for prestressed tendon anchorage

    NASA Astrophysics Data System (ADS)

    Huynh, Thanh-Canh; Kim, Jeong-Tae

    2017-12-01

    In this study, the quantification of temperature effect on impedance monitoring via a PZT interface for prestressed tendon-anchorage is presented. Firstly, a PZT interface-based impedance monitoring technique is selected to monitor impedance signatures by predetermining sensitive frequency bands. An analytical model is designed to represent coupled dynamic responses of the PZT interface-tendon anchorage system. Secondly, experiments on a lab-scaled tendon anchorage are described. Impedance signatures are measured via the PZT interface for a series of temperature and prestress-force changes. Thirdly, temperature effects on measured impedance responses of the tendon anchorage are estimated by quantifying relative changes in impedance features (such as RMSD and CCD indices) induced by temperature variation and prestress-force change. Finally, finite element analyses are conducted to investigate the mechanism of temperature variation and prestress-loss effects on the impedance responses of prestressed tendon anchorage. Temperature effects on impedance monitoring are filtered by effective frequency shift-based algorithm for distinguishing prestress-loss effects on impedance signatures.

  8. Novel compliant actuator for wearable robotics applications.

    PubMed

    Claros, M; Soto, R; Rodríguez, J J; Cantú, C; Contreras-Vidal, José L

    2013-01-01

    In the growing fields of wearable robotics, rehabilitation robotics, prosthetics, and walking robots, variable impedance and force actuators are being designed and implemented because of their ability to dynamically modulate the intrinsic viscoelastic properties such as stiffness and damping. This modulation is crucial to achieve an efficient and safe human-robot interaction that could lead to electronically generate useful emergent dynamical behaviors. In this work we propose a novel actuation system in which is implemented a control scheme based on equilibrium forces for an active joint capable to provide assistance/resistance as needed and also achieve minimal mechanical impedance when tracking the movement of the user limbs. The actuation system comprises a DC motor with a built in speed reducer, two force-sensing resistors (FSR), a mechanism which transmits to the FSRs the torque developed in the joint and a controller which regulate the amount of energy that is delivered to the DC motor. The proposed system showed more impedance reduction, by the effect of the controlled contact forces, compared with the ones in the reviewed literature.

  9. The relationship between dielectrophoretic and impedance response of dielectric particles immersed in aqueous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahaj, A.E.; Bailey, A.G.

    1985-09-01

    Dielectrophoretic force measurements on isolated 50-..mu..m diameter particles of divinylbenzene (DVB) suspended in aqueous solutions show that force is dependent on relaxation mechanisms present at the particle-liquid interface. Measurements on single particles have been extended to measurements on populations of particles. The impedance of aqueous suspensions of particles contained in a gold-plated electrode test cell has been measured over a range of frequency. Data are presented in the form of Cole-Cole plots. It is shown that the dielectrophoretic response of single particles can be related to the frequency-dependent impedance behavior of suspensions of similar particles.

  10. Bioinspired active whisker sensor for robotic vibrissal tactile sensing

    NASA Astrophysics Data System (ADS)

    Ju, Feng; Ling, Shih-Fu

    2014-12-01

    A whisker transducer (WT) inspired by rat’s vibrissal tactile perception is proposed based on a transduction matrix model characterizing the electro-mechanical transduction process in both forward and backward directions. It is capable of acting as an actuator to sweep the whisker and simultaneously as a sensor to sense the force, motion, and mechanical impedance at whisker tip. Its validity is confirmed by numerical simulation using a finite element model. A prototype is then fabricated and its transduction matrix is determined by parameter identification. The calibrated WT can accurately sense mechanical impedance which is directly related to stiffness, mass and damping. Subsequent vibrissal tactile sensing of sandpaper texture reveals that the real part of mechanical impedance sensed by WT is correlated with sandpaper roughness. Texture discrimination is successfully achieved by inputting the real part to a k-means clustering algorithm. The mechanical impedance sensing ability as well as other features of the WT such as simultaneous-actuation-and-sensing makes it a good solution to robotic tactile sensing.

  11. Measurement of Young’s Modulus and Internal Damping of Pork Muscle in Dynamic Mode

    NASA Astrophysics Data System (ADS)

    Chakroun, Moez; Ghozlen, Med Hédi Ben

    2016-09-01

    Automotive shocks involve various tiers’ speed for different human body tissues. Knowing the behavior of these tissues, including muscles, in different vibration frequency is therefore necessary. The muscle has viscoelatic properties. Dynamically, this material has variable mechanical properties depending on the vibration frequency. A novel technique is being employed to examine the variation of the mechanical impedance of pork muscle as a function of frequency. A force is imposed on the lower surface of the sample and acceleration is measured on its upper surface. These two parameters are measured using sensors. The sample is modeled by Kelvin-Voigt model. These measures allow deducing the change in the mechanical impedance modulus (/Zexp/ = /Force: Acceleration/) of pork muscle as a function of vibration frequency. The measured impedance has a resonance of approximately 60Hz. Best-fit parameters of theoretical impedance can be deduced by superposition with the experiment result. The variation of Young’s modulus and internal damping of pig’s muscle as a function of frequency are determined. The results obtained between 5Hz and 30Hz are the same as determined by Aimedieu and al in 2003, therefore validating our technique. The Young’s modulus of muscle increases with the frequency, on the other hand, we note a rating decrease of internal damping.

  12. Impedance-controlled ultrasound probe

    NASA Astrophysics Data System (ADS)

    Gilbertson, Matthew W.; Anthony, Brian W.

    2011-03-01

    An actuated hand-held impedance-controlled ultrasound probe has been developed. The controller maintains a prescribed contact state (force and velocity) between the probe and a patient's body. The device will enhance the diagnostic capability of free-hand elastography and swept-force compound imaging, and also make it easier for a technician to acquire repeatable (i.e. directly comparable) images over time. The mechanical system consists of an ultrasound probe, ball-screw-driven linear actuator, and a force/torque sensor. The feedback controller commands the motor to rotate the ball-screw to translate the ultrasound probe in order to maintain a desired contact force. It was found that users of the device, with the control system engaged, maintain a constant contact force with 15 times less variation than without the controller engaged. The system was used to determine the elastic properties of soft tissue.

  13. Implementation of robotic force control with position accommodation

    NASA Technical Reports Server (NTRS)

    Ryan, Michael J.

    1992-01-01

    As the need for robotic manipulation in fields such as manufacturing and telerobotics increases, so does the need for effective methods of controlling the interaction forces between the manipulators and their environment. Position Accommodation (PA) is a form of robotic force control where the nominal path of the manipulator is modified in response to forces and torques sensed at the tool-tip of the manipulator. The response is tailored such that the manipulator emulates a mechanical impedance to its environment. PA falls under the category of position-based robotic force control, and may be viewed as a form of Impedance Control. The practical implementations are explored of PA into an 18 degree-of-freedom robotic testbed consisting of two PUMA 560 arms mounted on two 3 DOF positioning platforms. Single and dual-arm architectures for PA are presented along with some experimental results. Characteristics of position-based force control are discussed, along with some of the limitations of PA.

  14. Series Elastic Actuators for legged robots

    NASA Astrophysics Data System (ADS)

    Pratt, Jerry E.; Krupp, Benjamin T.

    2004-09-01

    Series Elastic Actuators provide many benefits in force control of robots in unconstrained environments. These benefits include high force fidelity, extremely low impedance, low friction, and good force control bandwidth. Series Elastic Actuators employ a novel mechanical design architecture which goes against the common machine design principal of "stiffer is better." A compliant element is placed between the gear train and driven load to intentionally reduce the stiffness of the actuator. A position sensor measures the deflection, and the force output is accurately calculated using Hooke"s Law (F=Kx). A control loop then servos the actuator to the desired output force. The resulting actuator has inherent shock tolerance, high force fidelity and extremely low impedance. These characteristics are desirable in many applications including legged robots, exoskeletons for human performance amplification, robotic arms, haptic interfaces, and adaptive suspensions. We describe several variations of Series Elastic Actuators that have been developed using both electric and hydraulic components.

  15. Stochastic Estimation of Arm Mechanical Impedance During Robotic Stroke Rehabilitation

    PubMed Central

    Palazzolo, Jerome J.; Ferraro, Mark; Krebs, Hermano Igo; Lynch, Daniel; Volpe, Bruce T.; Hogan, Neville

    2009-01-01

    This paper presents a stochastic method to estimate the multijoint mechanical impedance of the human arm suitable for use in a clinical setting, e.g., with persons with stroke undergoing robotic rehabilitation for a paralyzed arm. In this context, special circumstances such as hypertonicity and tissue atrophy due to disuse of the hemiplegic limb must be considered. A low-impedance robot was used to bring the upper limb of a stroke patient to a test location, generate force perturbations, and measure the resulting motion. Methods were developed to compensate for input signal coupling at low frequencies apparently due to human–machine interaction dynamics. Data was analyzed by spectral procedures that make no assumption about model structure. The method was validated by measuring simple mechanical hardware and results from a patient's hemiplegic arm are presented. PMID:17436881

  16. Finger impedance evaluation by means of hand exoskeleton.

    PubMed

    Fiorilla, Angelo Emanuele; Nori, Francesco; Masia, Lorenzo; Sandini, Giulio

    2011-12-01

    Modulation of arm mechanical impedance is a fundamental aspect for interaction with the external environment and its regulation is essential for stability preservation during manipulation. Even though past research on human arm movements has suggested that models of human finger impedance would benefit the study of neural control mechanisms and the design of novel hand prostheses, relatively few studies have focused on finger and hand impedance. This article touches on the two main aspects of this research topic: first it introduces a mechanical refinement of a device that can be used to effectively measure finger impedance during manipulation tasks; then, it describes a pilot study aimed at identifying the inertia of the finger and the viscous and elastic properties of finger muscles. The proposed wearable exoskeleton, which has been designed to measure finger posture and impedance modulation while leaving the palm free, is capable of applying fast displacements while monitoring the interaction forces between the human finger and the robotic links. Moreover, due to the relatively small inertia of the fingers, it allows us to meet some stringent specifications, performing relatively large displacements (~45°) before the stretch reflex intervenes (~25 ms). The results of measurements on five subjects show that inertia, damping, and stiffness can be effectively identified and that the parameters obtained are comparable with values from previous studies.

  17. Control Software for a High-Performance Telerobot

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert J.; Finger, William

    2005-01-01

    A computer program for controlling a high-performance, force-reflecting telerobot has been developed. The goal in designing a telerobot-control system is to make the velocity of the slave match the master velocity, and the environmental force on the master match the force on the slave. Instability can arise from even small delays in propagation of signals between master and slave units. The present software, based on an impedance-shaping algorithm, ensures stability even in the presence of long delays. It implements a real-time algorithm that processes position and force measurements from the master and slave and represents the master/slave communication link as a transmission line. The algorithm also uses the history of the control force and the slave motion to estimate the impedance of the environment. The estimate of the impedance of the environment is used to shape the controlled slave impedance to match the transmission-line impedance. The estimate of the environmental impedance is used to match the master and transmission-line impedances and to estimate the slave/environment force in order to present that force immediately to the operator via the master unit.

  18. Grasping with a soft glove: intrinsic impedance control in pneumatic actuators

    PubMed Central

    2017-01-01

    The interaction of a robotic manipulator with unknown soft objects represents a significant challenge for traditional robotic platforms because of the difficulty in controlling the grasping force between a soft object and a stiff manipulator. Soft robotic actuators inspired by elephant trunks, octopus limbs and muscular hydrostats are suggestive of ways to overcome this fundamental difficulty. In particular, the large intrinsic compliance of soft manipulators such as ‘pneu-nets’—pneumatically actuated elastomeric structures—makes them ideal for applications that require interactions with an uncertain mechanical and geometrical environment. Using a simple theoretical model, we show how the geometric and material nonlinearities inherent in the passive mechanical response of such devices can be used to grasp soft objects using force control, and stiff objects using position control, without any need for active sensing or feedback control. Our study is suggestive of a general principle for designing actuators with autonomous intrinsic impedance control. PMID:28250097

  19. Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping

    PubMed Central

    Augustsson, Per; Karlsen, Jonas T.; Su, Hao-Wei; Bruus, Henrik; Voldman, Joel

    2016-01-01

    Mechanical phenotyping of single cells is an emerging tool for cell classification, enabling assessment of effective parameters relating to cells' interior molecular content and structure. Here, we present iso-acoustic focusing, an equilibrium method to analyze the effective acoustic impedance of single cells in continuous flow. While flowing through a microchannel, cells migrate sideways, influenced by an acoustic field, into streams of increasing acoustic impedance, until reaching their cell-type specific point of zero acoustic contrast. We establish an experimental procedure and provide theoretical justifications and models for iso-acoustic focusing. We describe a method for providing a suitable acoustic contrast gradient in a cell-friendly medium, and use acoustic forces to maintain that gradient in the presence of destabilizing forces. Applying this method we demonstrate iso-acoustic focusing of cell lines and leukocytes, showing that acoustic properties provide phenotypic information independent of size. PMID:27180912

  20. Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping.

    PubMed

    Augustsson, Per; Karlsen, Jonas T; Su, Hao-Wei; Bruus, Henrik; Voldman, Joel

    2016-05-16

    Mechanical phenotyping of single cells is an emerging tool for cell classification, enabling assessment of effective parameters relating to cells' interior molecular content and structure. Here, we present iso-acoustic focusing, an equilibrium method to analyze the effective acoustic impedance of single cells in continuous flow. While flowing through a microchannel, cells migrate sideways, influenced by an acoustic field, into streams of increasing acoustic impedance, until reaching their cell-type specific point of zero acoustic contrast. We establish an experimental procedure and provide theoretical justifications and models for iso-acoustic focusing. We describe a method for providing a suitable acoustic contrast gradient in a cell-friendly medium, and use acoustic forces to maintain that gradient in the presence of destabilizing forces. Applying this method we demonstrate iso-acoustic focusing of cell lines and leukocytes, showing that acoustic properties provide phenotypic information independent of size.

  1. Remote measurement of material properties from radiation force induced vibration of an embedded sphere.

    PubMed

    Chen, Shigao; Fatemi, Mostafa; Greenleaf, James F

    2002-09-01

    A quantitative model is presented for a sphere vibrated by two ultrasound beams of frequency omega1 and omega2. Due to the interference of two sound beams, the radiation force has a dynamic component of frequency omega2-omega1. The radiation impedance and mechanical impedance of the sphere are then used to compute the vibration speed of the sphere. Vibration speed versus vibration frequency is measured by laser vibrometer on several spheres, both in water and in gel phantom. These experimental results are used to verify the model. This method can be used to estimate the material properties of the medium (e.g., shear modulus) surrounding the sphere.

  2. Spatial and temporal modulation of joint stiffness during multijoint movement.

    PubMed

    Mah, C D

    2001-02-01

    Joint stiffness measurements during small transient perturbations have suggested that stiffness during movement is different from that observed during posture. These observations are problematic for theories like the classical equilibrium point hypothesis, which suggest that desired trajectories during movement are enforced by joint stiffness. We measured arm impedances during large, slow perturbations to obtain detailed information about the spatial and temporal modulation of stiffness and viscosity during movement. While our measurements of stiffness magnitudes during movement generally agreed with the results of measurements using fast perturbations, they revealed that joint stiffness undergoes stereotyped changes in magnitude and aspect ratio which depend on the direction of movement and show a strong dependence on joint angles. Movement simulations using measured parameters show that the measured modulation of impedance acts as an energy conserving force field to constrain movement. This mechanism allows for a computationally simplified account of the execution of multijoint movement. While our measurements do not rule out a role for afferent feedback in force generation, the observed stereotyped restoring forces can allow a dramatic relaxation of the accuracy requirements for forces generated by other control mechanisms, such as inverse dynamical models.

  3. Oscillation mechanics of the respiratory system.

    PubMed

    Bates, Jason H T; Irvin, Charles G; Farré, Ramon; Hantos, Zoltán

    2011-07-01

    The mechanical impedance of the respiratory system defines the pressure profile required to drive a unit of oscillatory flow into the lungs. Impedance is a function of oscillation frequency, and is measured using the forced oscillation technique. Digital signal processing methods, most notably the Fourier transform, are used to calculate impedance from measured oscillatory pressures and flows. Impedance is a complex function of frequency, having both real and imaginary parts that vary with frequency in ways that can be used empirically to distinguish normal lung function from a variety of different pathologies. The most useful diagnostic information is gained when anatomically based mathematical models are fit to measurements of impedance. The simplest such model consists of a single flow-resistive conduit connecting to a single elastic compartment. Models of greater complexity may have two or more compartments, and provide more accurate fits to impedance measurements over a variety of different frequency ranges. The model that currently enjoys the widest application in studies of animal models of lung disease consists of a single airway serving an alveolar compartment comprising tissue with a constant-phase impedance. This model has been shown to fit very accurately to a wide range of impedance data, yet contains only four free parameters, and as such is highly parsimonious. The measurement of impedance in human patients is also now rapidly gaining acceptance, and promises to provide a more comprehensible assessment of lung function than parameters derived from conventional spirometry. © 2011 American Physiological Society.

  4. Remote measurement of material properties from radiation force induced vibration of an embedded sphere

    NASA Astrophysics Data System (ADS)

    Chen, Shigao; Fatemi, Mostafa; Greenleaf, James F.

    2002-09-01

    A quantitative model is presented for a sphere vibrated by two ultrasound beams of frequency omega1 and omega2. Due to the interference of two sound beams, the radiation force has a dynamic component of frequency omega]2-[omega1. The radiation impedance and mechanical impedance of the sphere are then used to compute the vibration speed of the sphere. Vibration speed versus vibration frequency is measured by laser vibrometer on several spheres, both in water and in gel phantom. These experimental results are used to verify the model. This method can be used to estimate the material properties of the medium (e.g., shear modulus) surrounding the sphere. copyright 2002 Acoustical Society of America.

  5. What the electrical impedance can tell about the intrinsic properties of an electrodynamic shaker

    PubMed Central

    Lütkenhöner, Bernd

    2017-01-01

    Small electrodynamic shakers are becoming increasingly popular for diagnostic investigations of the human vestibular system. More specifically, they are used as mechanical stimulators for eliciting a vestibular evoked myogenic potential (VEMP). However, it is largely unknown how shakers perform under typical measurement conditions, which considerably differ from the normal use of a shaker. Here, it is shown how the basic properties of a shaker can be determined without requiring special sensors such as accelerometers or force gauges. In essence, the mechanical parts of the shaker leave a signature in the electrical impedance, and an interpretation of this signature using a simple model allows for drawing conclusions about the properties of the shaker. The theory developed (which is quite general so that it is usable also in other contexts) is applied to experimental data obtained for the minishaker commonly used in VEMP measurements. It is shown that the experimental conditions substantially influence the properties of the shaker. Relevant factors are, in particular, the spatial orientation of the shaker (upright, horizontal or upside-down) and the static force acting on the table of the shaker (which in a real measurement corresponds to the force by which the shaker is pressed against the test person’s head). These results underline the desirability of a proper standardization of VEMP measurements. Direct measurements of displacement and acceleration prove the consistency of the conclusions derived from the electrical impedance. PMID:28328999

  6. Research on dynamic characteristics of motor vibration isolation system through mechanical impedance method

    NASA Astrophysics Data System (ADS)

    Zhao, Xingqian; Xu, Wei; Shuai, Changgeng; Hu, Zechao

    2017-12-01

    A mechanical impedance model of a coupled motor-shaft-bearing system has been developed to predict the dynamic characteristics and partially validated by comparing the computing results with finite element method (FEM), including the comparison of displacement amplitude in x and z directions at the two ends of the flexible coupling, the comparison of normalized vertical reaction force in z direction at bearing pedestals. The results demonstrate that the developed model can precisely predict the dynamic characteristics and the main advantage of such a method is that it can clearly illustrate the vibration property of the motor subsystem, which plays an important role in the isolation system design.

  7. Impedance hand controllers for increasing efficiency in teleoperations

    NASA Technical Reports Server (NTRS)

    Carignan, C.; Tarrant, J.

    1989-01-01

    An impedance hand controller with direct force feedback is examined as an alternative to bilateral force reflection in teleoperations involving force contact. Experimentation revealed an operator preference for direct force feedback which provided a better feel of contact with the environment. The advantages of variable arm impedance were also made clear in tracking tests where subjects preferred the larger hand controller inertias made possible by the acceleration feedback loop in the master arm. The ability to decouple the hand controller impedance from the slave arm dynamics is expected to be even more significant when the inertial properties of various payloads in the slave arm are considered.

  8. The effect of a braking device in reducing the ground impact forces inherent in plyometric training.

    PubMed

    Humphries, B J; Newton, R U; Wilson, G J

    1995-02-01

    As a consequence of performing plyometric type exercises, such as depth jumps, impact forces placed on the musculoskeletal system during landing can lead to a potential for injury. A reduction of impact forces upon landing could therefore contribute to reduce the risk of injury. Twenty subjects performed a series of loaded jumps for maximal height, with and without a brake mechanism designed to reduce impact force during landing. The braked jumps were performed on the Plyometric Power System (PPS) with its braking mechanism set at 75% of body weight during the downward phase. The non-braked condition involved jumps with no braking. Vertical ground reaction force data, sampled for 5.5 s at 550 Hz from a Kistler forceplate, were collected for each jump condition. The following parameters were then calculated: peak vertical force, time to peak force, passive impact impulse and maximum concentric force. The brake served to significantly (p < 0.01) reduce peak impact force by 155% and passive impact impulse by 200%. No significant differences were found for peak concentric force production. The braking mechanism of the PPS significantly reduced ground impact forces without impeding concentric force production. The reduction in eccentric loading, using the braking mechanism, may reduce the incidence of injury associated with landings from high intensity plyometric exercises.

  9. Noninvasive electrical impedance sensor for in vivo tissue discrimination at radio frequencies.

    PubMed

    Dai, Yu; Du, Jun; Yang, Qing; Zhang, Jianxun

    2014-09-01

    Compared to traditional open surgery, minimally invasive surgery (MIS) allows for a more rapid and less painful recovery. However, the lack of significant haptic feedback in MIS can make tissue discrimination difficult. This paper tests a noninvasive electrical impedance sensor for in vivo discrimination of tissue types in MIS. The sensor consists of two stainless steel spherical electrodes used to measure the impedance spectra over the frequency range of 200 kHz to 5 MHz. The sensor helps ensure free movement on an organ surface and prevents soft tissues from being injured during impedance measurement. Since the recorded electrical impedance is correlated with the force pressed on the electrode and the mechanical property of the tissue, the electrode-tissue contact impedance is calculated theoretically. We show that the standard deviation of the impedance ratio at each frequency point is sufficient to distinguish different tissue types. Both in vitro experiment in a pig kidney and in vivo experiment in rabbit organs were performed to demonstrate the feasibility of the electrical impedance sensor. The experimental results indicated that the sensor, used with the proposed data-processing method, provides accurate and reliable biological tissue discrimination. © 2014 Wiley Periodicals, Inc.

  10. Mechanical impedance of soil crusts and water content in loamy soils

    NASA Astrophysics Data System (ADS)

    Josa March, Ramon; Verdú, Antoni M. C.; Mas, Maria Teresa

    2013-04-01

    Soil crust development affects soil water dynamics and soil aeration. Soil crusts act as mechanical barriers to fluid flow and, as their mechanical impedance increases with drying, they also become obstacles to seedling emergence. As a consequence, the emergence of seedling cohorts (sensitive seeds) might be reduced. However, this may be of interest to be used as an effective system of weed control. Soil crusting is determined by several factors: soil texture, rain intensity, sedimentation processes, etc. There are different ways to characterize the crusts. One of them is to measure their mechanical impedance (MI), which is linked to their moisture level. In this study, we measured the evolution of the mechanical impedance of crusts formed by three loamy soil types (clay loam, loam and sandy clay loam, USDA) with different soil water contents. The aim of this communication was to establish a mathematical relationship between the crust water content and its MI. A saturated soil paste was prepared and placed in PVC cylinders (50 mm diameter and 10 mm height) arranged on a plastic tray. Previously the plastic tray was sprayed with a hydrophobic liquid to prevent the adherence of samples. The samples on the plastic tray were left to air-dry under laboratory conditions until their IM was measured. To measure IM, a food texture analyzer was used. The equipment incorporates a mobile arm, a load cell to apply force and a probe. The arm moves down vertically at a constant rate and the cylindrical steel probe (4 mm diameter) penetrates the soil sample vertically at a constant rate. The equipment is provided with software to store data (time, vertical distance and force values) at a rate of up to 500 points per second. Water content in crust soil samples was determined as the loss of weight after oven-drying (105°C). From the results, an exponential regression between MI and the water content was obtained (determination coefficient very close to 1). This methodology allows the prediction of the potential mechanical behaviour of soil crusts generated during soil drying, from initial saturated soil conditions (e.g. waterlogging conditions).

  11. Within-breath respiratory impedance and airway obstruction in patients with chronic obstructive pulmonary disease.

    PubMed

    Silva, Karla Kristine Dames da; Faria, Alvaro Camilo Dias; Lopes, Agnaldo José; Melo, Pedro Lopes de

    2015-07-01

    Recent work has suggested that within-breath respiratory impedance measurements performed using the forced oscillation technique may help to noninvasively evaluate respiratory mechanics. We investigated the influence of airway obstruction on the within-breath forced oscillation technique in smokers and chronic obstructive pulmonary disease patients and evaluated the contribution of this analysis to the diagnosis of chronic obstructive pulmonary disease. Twenty healthy individuals and 20 smokers were assessed. The study also included 74 patients with stable chronic obstructive pulmonary disease. We evaluated the mean respiratory impedance (Zm) as well as values for the inspiration (Zi) and expiration cycles (Ze) at the beginning of inspiration (Zbi) and expiration (Zbe), respectively. The peak-to-peak impedance (Zpp=Zbe-Zbi) and the respiratory cycle dependence (ΔZrs=Ze-Zi) were also analyzed. The diagnostic utility was evaluated by investigating the sensitivity, the specificity and the area under the receiver operating characteristic curve. ClinicalTrials.gov: NCT01888705. Airway obstruction increased the within-breath respiratory impedance parameters that were significantly correlated with the spirometric indices of airway obstruction (R=-0.65, p<0.0001). In contrast to the control subjects and the smokers, the chronic obstructive pulmonary disease patients presented significant expiratory-inspiratory differences (p<0.002). The adverse effects of moderate airway obstruction were detected based on the Zpp with an accuracy of 83%. Additionally, abnormal effects in severe and very severe patients were detected based on the Zm, Zi, Ze, Zbe, Zpp and ΔZrs with a high degree of accuracy (>90%). We conclude the following: (1) chronic obstructive pulmonary disease introduces higher respiratory cycle dependence, (2) this increase is proportional to airway obstruction, and (3) the within-breath forced oscillation technique may provide novel parameters that facilitate the diagnosis of respiratory abnormalities in chronic obstructive pulmonary disease.

  12. New horizons for orthotic and prosthetic technology: artificial muscle for ambulation

    NASA Astrophysics Data System (ADS)

    Herr, Hugh M.; Kornbluh, Roy D.

    2004-07-01

    The rehabilitation community is at the threshold of a new age in which orthotic and prosthetic devices will no longer be separate, lifeless mechanisms, but intimate extensions of the human body-structurally, neurologically, and dynamically. In this paper we discuss scientific and technological advances that promise to accelerate the merging of body and machine, including the development of actuator technologies that behave like muscle and control methodologies that exploit principles of biological movement. We present a state-of-the-art device for leg rehabilitation: a powered ankle-foot orthosis for stroke, cerebral palsy, or multiple sclerosis patients. The device employs a forcecontrollable actuator and a biomimetic control scheme that automatically modulates ankle impedance and motive torque to satisfy patient-specific gait requirements. Although the device has some clinical benefits, problems still remain. The force-controllable actuator comprises an electric motor and a mechanical transmission, resulting in a heavy, bulky, and noisy mechanism. As a resolution of this difficulty, we argue that electroactive polymer-based artificial muscle technologies may offer considerable advantages to the physically challenged, allowing for joint impedance and motive force controllability, noise-free operation, and anthropomorphic device morphologies.

  13. Robot assistance of motor learning: A neuro-cognitive perspective.

    PubMed

    Heuer, Herbert; Lüttgen, Jenna

    2015-09-01

    The last several years have seen a number of approaches to robot assistance of motor learning. Experimental studies have produced a range of findings from beneficial effects through null-effects to detrimental effects of robot assistance. In this review we seek an answer to the question under which conditions which outcomes should be expected. For this purpose we derive tentative predictions based on a classification of learning tasks in terms of the products of learning, the mechanisms involved, and the modulation of these mechanisms by robot assistance. Consistent with these predictions, the learning of dynamic features of trajectories is facilitated and the learning of kinematic and dynamic transformations is impeded by robotic guidance, whereas the learning of dynamic transformations can profit from robot assistance with error-amplifying forces. Deviating from the predictions, learning of spatial features of trajectories is impeded by haptic guidance, but can be facilitated by divergent force fields. The deviations point to the existence of additional effects of robot assistance beyond the modulation of learning mechanisms, e.g., the induction of a passive role of the motor system during practice with haptic guidance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Active control of sound radiation from a vibrating rectangular panel by sound sources and vibration inputs - An experimental comparison

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.; Hansen, C. H.; Snyder, S. D.

    1991-01-01

    Active control of sound radiation from a rectangular panel by two different methods has been experimentally studied and compared. In the first method a single control force applied directly to the structure is used with a single error microphone located in the radiated acoustic field. Global attenuation of radiated sound was observed to occur by two main mechanisms. For 'on-resonance' excitation, the control force had the effect of increasing the total panel input impedance presented to the nosie source, thus reducing all radiated sound. For 'off-resonance' excitation, the control force tends not significantly to modify the panel total response amplitude but rather to restructure the relative phases of the modes leading to a more complex vibration pattern and a decrease in radiation efficiency. For acoustic control, the second method, the number of acoustic sources required for global reduction was seen to increase with panel modal order. The mechanism in this case was that the acoustic sources tended to create an inverse pressure distribution at the panel surface and thus 'unload' the panel by reducing the panel radiation impedance. In general, control by structural inputs appears more effective than control by acoustic sources for structurally radiated noise.

  15. Effect of heterocyclic capping groups on the self-assembly of a dipeptide hydrogel.

    PubMed

    Martin, Adam D; Wojciechowski, Jonathan P; Warren, Holly; in het Panhuis, Marc; Thordarson, Pall

    2016-03-14

    The mechanism and design rules associated with the self-assembly of short peptides into hydrogels is currently not well understood. In this work, four diphenylalanine-based peptides have been synthesised, bearing heterocyclic capping groups which have different degrees of hydrogen bonding potential and nitrogen substitution. For these four peptides, zeta potential and electrical impedance spectroscopy measurements were undertaken to monitor gelation, with the impedance data showing different gelation times for each peptide hydrogel. Through a combination of atomic force microscopy and rheological measurmeents, including dynamic strain and frequency sweeps, and thixotropic tests, the relationship between the mechanism of self-assembly in these hydrogels and their macroscopic behaviour can be established. It is observed that the degree of nitrogen substitution affects the self-assembly mechanisms of the hydrogels and as such, that there is an interplay between branching and bundling self-assembly pathways that are responsible for the final properties of each hydrogel.

  16. Quantification of cellular penetrative forces using lab-on-a-chip technology and finite element modeling

    PubMed Central

    Sanati Nezhad, Amir; Naghavi, Mahsa; Packirisamy, Muthukumaran; Bhat, Rama; Geitmann, Anja

    2013-01-01

    Tip-growing cells have the unique property of invading living tissues and abiotic growth matrices. To do so, they exert significant penetrative forces. In plant and fungal cells, these forces are generated by the hydrostatic turgor pressure. Using the TipChip, a microfluidic lab-on-a-chip device developed for tip-growing cells, we tested the ability to exert penetrative forces generated in pollen tubes, the fastest-growing plant cells. The tubes were guided to grow through microscopic gaps made of elastic polydimethylsiloxane material. Based on the deformation of the gaps, the force exerted by the elongating tubes to permit passage was determined using finite element methods. The data revealed that increasing mechanical impedance was met by the pollen tubes through modulation of the cell wall compliance and, thus, a change in the force acting on the obstacle. Tubes that successfully passed a narrow gap frequently burst, raising questions about the sperm discharge mechanism in the flowering plants. PMID:23630253

  17. Acoustic and mechanical properties of renal calculi: implications in shock wave lithotripsy.

    PubMed

    Chuong, C J; Zhong, P; Preminger, G M

    1993-12-01

    The acoustic and mechanical properties of renal calculi dictate how a stone interacts with the mechanical forces produced by shock wave lithotripsy; thus, these properties are directly related to the success of the treatment. Using an ultrasound pulse transmission technique, we measured both longitudinal and transverse (or shear) wave propagation speeds in nine groups of renal calculi with different chemical compositions. We also measured stone density using a pycnometer based on Archimedes' principle. From these measurements, we calculated wave impedance and dynamic mechanical properties of the renal stones. Calcium oxalate monohydrate and cystine stones had higher longitudinal and transverse wave speeds, wave impedances, and dynamic moduli (bulk modulus, Young's modulus, and shear modulus), suggesting that these stones are more difficult to fragment. Phosphate stones (carbonate apatite and magnesium ammonium phosphate hydrogen) were found to have lower values of these properties, suggesting they are more amenable to shock wave fragmentation. These data provide a physical explanation for the significant differences in stone fragility observed clinically.

  18. Dynamics modeling for parallel haptic interfaces with force sensing and control.

    PubMed

    Bernstein, Nicholas; Lawrence, Dale; Pao, Lucy

    2013-01-01

    Closed-loop force control can be used on haptic interfaces (HIs) to mitigate the effects of mechanism dynamics. A single multidimensional force-torque sensor is often employed to measure the interaction force between the haptic device and the user's hand. The parallel haptic interface at the University of Colorado (CU) instead employs smaller 1D force sensors oriented along each of the five actuating rods to build up a 5D force vector. This paper shows that a particular manipulandum/hand partition in the system dynamics is induced by the placement and type of force sensing, and discusses the implications on force and impedance control for parallel haptic interfaces. The details of a "squaring down" process are also discussed, showing how to obtain reduced degree-of-freedom models from the general six degree-of-freedom dynamics formulation.

  19. Workspace Safe Operation of a Force- or Impedance-Controlled Robot

    NASA Technical Reports Server (NTRS)

    Abdallah, Muhammad E. (Inventor); Hargrave, Brian (Inventor); Strawser, Philip A. (Inventor); Yamokoski, John D. (Inventor)

    2013-01-01

    A method of controlling a robotic manipulator of a force- or impedance-controlled robot within an unstructured workspace includes imposing a saturation limit on a static force applied by the manipulator to its surrounding environment, and may include determining a contact force between the manipulator and an object in the unstructured workspace, and executing a dynamic reflex when the contact force exceeds a threshold to thereby alleviate an inertial impulse not addressed by the saturation limited static force. The method may include calculating a required reflex torque to be imparted by a joint actuator to a robotic joint. A robotic system includes a robotic manipulator having an unstructured workspace and a controller that is electrically connected to the manipulator, and which controls the manipulator using force- or impedance-based commands. The controller, which is also disclosed herein, automatically imposes the saturation limit and may execute the dynamic reflex noted above.

  20. Impedance Alterations in Healthy and Diseased Mice During Electrically Induced Muscle Contraction.

    PubMed

    Sanchez, Benjamin; Li, Jia; Geisbush, Tom; Bardia, Ramon Bragos; Rutkove, Seward B

    2016-08-01

    Alterations in the health of muscles can be evaluated through the use of electrical impedance myography (EIM). To date, however, nearly all work in this field has relied upon the measurement of muscle at rest. To provide an insight into the contractile mechanisms of healthy and disease muscle, we evaluated the alterations in the spectroscopic impedance behavior of muscle during the active process of muscle contraction. The gastrocnemii from a total of 13 mice were studied (five wild type, four muscular dystrophy animals, and four amyotrophic lateral sclerosis animals). Muscle contraction was induced via monophasic current pulse stimulation of the sciatic nerve. Simultaneously, multisine EIM (1 kHz to 1 MHz) and force measurements of the muscle were performed. Stimulation was applied at three different rates to produce mild, moderate, and strong contractions. We identified changes in both single and multifrequency data, as assessed by the Cole impedance model parameters. The processes of contraction and relaxation were clearly identified in the impedance spectra and quantified via derivative plots. Reductions in the center frequency fc were observed during the contraction consistent with the increasing muscle fiber diameter. Different EIM stimulation rate-dependencies were also detected across the three groups of animals.

  1. Limb Dominance Results from Asymmetries in Predictive and Impedance Control Mechanisms

    PubMed Central

    Yadav, Vivek; Sainburg, Robert L.

    2014-01-01

    Handedness is a pronounced feature of human motor behavior, yet the underlying neural mechanisms remain unclear. We hypothesize that motor lateralization results from asymmetries in predictive control of task dynamics and in control of limb impedance. To test this hypothesis, we present an experiment with two different force field environments, a field with a predictable magnitude that varies with the square of velocity, and a field with a less predictable magnitude that varies linearly with velocity. These fields were designed to be compatible with controllers that are specialized in predicting limb and task dynamics, and modulating position and velocity dependent impedance, respectively. Because the velocity square field does not change the form of the equations of motion for the reaching arm, we reasoned that a forward dynamic-type controller should perform well in this field, while control of linear damping and stiffness terms should be less effective. In contrast, the unpredictable linear field should be most compatible with impedance control, but incompatible with predictive dynamics control. We measured steady state final position accuracy and 3 trajectory features during exposure to these fields: Mean squared jerk, Straightness, and Movement time. Our results confirmed that each arm made straighter, smoother, and quicker movements in its compatible field. Both arms showed similar final position accuracies, which were achieved using more extensive corrective sub-movements when either arm performed in its incompatible field. Finally, each arm showed limited adaptation to its incompatible field. Analysis of the dependence of trajectory errors on field magnitude suggested that dominant arm adaptation occurred by prediction of the mean field, thus exploiting predictive mechanisms for adaptation to the unpredictable field. Overall, our results support the hypothesis that motor lateralization reflects asymmetries in specific motor control mechanisms associated with predictive control of limb and task dynamics, and modulation of limb impedance. PMID:24695543

  2. A review of adaptive change in musculoskeletal impedance during space flight and associated implications for postflight head movement control

    NASA Technical Reports Server (NTRS)

    McDonald, P. V.; Bloomberg, J. J.; Layne, C. S.

    1997-01-01

    We present a review of converging sources of evidence which suggest that the differences between loading histories experienced in 1-g and weightlessness are sufficient to stimulate adaptation in mechanical impedance of the musculoskeletal system. As a consequence of this adaptive change we argue that we should observe changes in the ability to attenuate force transmission through the musculoskeletal system both during and after space flight. By focusing attention on the relation between human sensorimotor activity and support surfaces, the importance of controlling mechanical energy flow through the musculoskeletal system is demonstrated. The implications of such control are discussed in light of visual-vestibular function in the specific context of head and gaze control during postflight locomotion. Evidence from locomotory biomechanics, visual-vestibular function, ergonomic evaluations of human vibration, and specific investigations of locomotion and head and gaze control after space flight, is considered.

  3. Design and control of a macro-micro robot for precise force applications

    NASA Technical Reports Server (NTRS)

    Wang, Yulun; Mangaser, Amante; Laby, Keith; Jordan, Steve; Wilson, Jeff

    1993-01-01

    Creating a robot which can delicately interact with its environment has been the goal of much research. Primarily two difficulties have made this goal hard to attain. The execution of control strategies which enable precise force manipulations are difficult to implement in real time because such algorithms have been too computationally complex for available controllers. Also, a robot mechanism which can quickly and precisely execute a force command is difficult to design. Actuation joints must be sufficiently stiff, frictionless, and lightweight so that desired torques can be accurately applied. This paper describes a robotic system which is capable of delicate manipulations. A modular high-performance multiprocessor control system was designed to provide sufficient compute power for executing advanced control methods. An 8 degree of freedom macro-micro mechanism was constructed to enable accurate tip forces. Control algorithms based on the impedance control method were derived, coded, and load balanced for maximum execution speed on the multiprocessor system. Delicate force tasks such as polishing, finishing, cleaning, and deburring, are the target applications of the robot.

  4. Respiratory impedance is correlated with airway narrowing in asthma using three-dimensional computed tomography.

    PubMed

    Karayama, M; Inui, N; Mori, K; Kono, M; Hozumi, H; Suzuki, Y; Furuhashi, K; Hashimoto, D; Enomoto, N; Fujisawa, T; Nakamura, Y; Watanabe, H; Suda, T

    2018-03-01

    Respiratory impedance comprises the resistance and reactance of the respiratory system and can provide detailed information on respiratory function. However, details of the relationship between impedance and morphological airway changes in asthma are unknown. We aimed to evaluate the correlation between imaging-based airway changes and respiratory impedance in patients with asthma. Respiratory impedance and spirometric data were evaluated in 72 patients with asthma and 29 reference subjects. We measured the intraluminal area (Ai) and wall thickness (WT) of third- to sixth-generation bronchi using three-dimensional computed tomographic analyses, and values were adjusted by body surface area (BSA, Ai/BSA, and WT/the square root (√) of BSA). Asthma patients had significantly increased respiratory impedance, decreased Ai/BSA, and increased WT/√BSA, as was the case in those without airflow limitation as assessed by spirometry. Ai/BSA was inversely correlated with respiratory resistance at 5 Hz (R5) and 20 Hz (R20). R20 had a stronger correlation with Ai/BSA than did R5. Ai/BSA was positively correlated with forced expiratory volume in 1 second/forced vital capacity ratio, percentage predicted forced expiratory volume in 1 second, and percentage predicted mid-expiratory flow. WT/√BSA had no significant correlation with spirometry or respiratory impedance. Respiratory resistance is associated with airway narrowing. © 2018 John Wiley & Sons Ltd.

  5. Dynamic primitives in the control of locomotion.

    PubMed

    Hogan, Neville; Sternad, Dagmar

    2013-01-01

    Humans achieve locomotor dexterity that far exceeds the capability of modern robots, yet this is achieved despite slower actuators, imprecise sensors, and vastly slower communication. We propose that this spectacular performance arises from encoding motor commands in terms of dynamic primitives. We propose three primitives as a foundation for a comprehensive theoretical framework that can embrace a wide range of upper- and lower-limb behaviors. Building on previous work that suggested discrete and rhythmic movements as elementary dynamic behaviors, we define submovements and oscillations: as discrete movements cannot be combined with sufficient flexibility, we argue that suitably-defined submovements are primitives. As the term "rhythmic" may be ambiguous, we define oscillations as the corresponding class of primitives. We further propose mechanical impedances as a third class of dynamic primitives, necessary for interaction with the physical environment. Combination of these three classes of primitive requires care. One approach is through a generalized equivalent network: a virtual trajectory composed of simultaneous and/or sequential submovements and/or oscillations that interacts with mechanical impedances to produce observable forces and motions. Reliable experimental identification of these dynamic primitives presents challenges: identification of mechanical impedances is exquisitely sensitive to assumptions about their dynamic structure; identification of submovements and oscillations is sensitive to their assumed form and to details of the algorithm used to extract them. Some methods to address these challenges are presented. Some implications of this theoretical framework for locomotor rehabilitation are considered.

  6. Multistage Mechanism of Lithium Intercalation into Graphite Anodes in the Presence of the Solid Electrolyte Interface.

    PubMed

    Dinkelacker, Franz; Marzak, Philipp; Yun, Jeongsik; Liang, Yunchang; Bandarenka, Aliaksandr S

    2018-04-25

    A so-called solid electrolyte interface (SEI) in a lithium-ion battery largely determines the performance of the whole system. However, it is one of the least understood objects in these types of batteries. SEIs are formed during the initial charge-discharge cycles, prevent the organic electrolytes from further decomposition, and at the same time govern lithium intercalation into the graphite anodes. In this work, we use electrochemical impedance spectroscopy and atomic force microscopy to investigate the properties of a SEI film and an electrified "graphite/SEI/electrolyte interface". We reveal a multistage mechanism of lithium intercalation and de-intercalation in the case of graphite anodes covered by SEI. On the basis of this mechanism, we propose a relatively simple model, which perfectly explains the impedance response of the "graphite/SEI/electrolyte" interface at different temperatures and states of charge. From the whole data obtained in this work, it is suggested that not only Li + but also negatively charged species, such as anions from the electrolyte or functional groups of the SEI, likely interact with the surface of the graphite anode.

  7. A macro-micro robot for precise force applications

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.; Wang, Yulun

    1993-01-01

    This paper describes an 8 degree-of-freedom macro-micro robot capable of performing tasks which require accurate force control. Applications such as polishing, finishing, grinding, deburring, and cleaning are a few examples of tasks which need this capability. Currently these tasks are either performed manually or with dedicated machinery because of the lack of a flexible and cost effective tool, such as a programmable force-controlled robot. The basic design and control of the macro-micro robot is described in this paper. A modular high-performance multiprocessor control system was designed to provide sufficient compute power for executing advanced control methods. An 8 degree of freedom macro-micro mechanism was constructed to enable accurate tip forces. Control algorithms based on the impedance control method were derived, coded, and load balanced for maximum execution speed on the multiprocessor system.

  8. Insights into linearized rotor dynamics, Part 2

    NASA Astrophysics Data System (ADS)

    Adams, M. L.

    1987-01-01

    This paper builds upon its 1981 namesake to extend and propose ideas which focus on some unique problems at the current center of interest in rotor vibration technology. These problems pertain to the ongoing extension of the linearized rotor-bearing model to include other rotor-stator interactive forces such as seals and turbomachinery stages. A unified linear model is proposed and contains an axiom which requires the coefficient matrix of the highest order term, in an interactive force model, to be symmetric. The paper ends on a fundamental question, namely, the potential weakness inherent in the whole idea of mechanical impedance modeling of rotor-stator interactive fluid flow fields.

  9. Mechanical impedance and absorbed power of hand-arm under x(h)-axis vibration and role of hand forces and posture.

    PubMed

    Aldien, Yasser; Marcotte, Pierre; Rakheja, Subhash; Boileau, Paul-Emile

    2005-07-01

    The biodynamic responses of the hand-arm system under x(h)-axis vibration are investigated in terms of the driving point mechanical impedance (DPMI) and absorbed power in a laboratory study. For this purpose, seven healthy male subjects are exposed to two levels of random vibration in the 8-1,000 Hz frequency range, using three instrumented cylindrical handles of different diameters (30, 40 and 50 mm), and different combinations of grip (10, 30 and 50 N) and push (0, 25 and 50 N) forces. The experiments involve grasping the handle while adopting two different postures, involving elbow flexion of 90 degrees and 180 degrees, with wrist in the neutral position for both postures. The analyses of the results revealed peak DPMI magnitude and absorbed power responses near 25 Hz and 150 Hz, for majority of the test conditions considered. The frequency corresponding to the peak response increased with increasing hand forces. Unlike the absorbed power, the DPMI response was mostly observed to be insensitive to variations in the excitation magnitude. The handle diameter revealed obvious effects on the DPMI magnitude, specifically at frequencies above 250 Hz, which was not evident in the absorbed power due to relatively low velocity at higher frequencies. The influence of hand forces was also evident on the DPMI magnitude response particularly at frequencies. above 100 Hz, while the effect of hand-arm posture on the DPMI magnitude was nearly negligible. The magnitude of power absorbed within the hand and arm was observed to be strongly dependent upon the excitation level over the entire frequency range, while the influence of hand-arm posture on the total absorbed power was observed to be important. The effect of variations in the hand forces on the absorbed power was relatively small for the bent elbow posture, while an increase in either the grip or the push force coupled with the extended arm posture resulted in considerably higher energy absorption. The results suggested that the handle size, hand-arm posture and hand forces, produce coupled effect on the biodynamic response of the hand-arm system.

  10. Induced polarization: Simulation and inversion of nonlinear mineral electrodics

    NASA Astrophysics Data System (ADS)

    Agunloye, Olu

    1983-02-01

    Graph-theoretic representations are used to model nonlinear electrodics, while forward and inverse simulations are based on reaction rate theory. The electrodic responses are presented as distorted elliptical Lissajous shapes obtained from dynamic impedance over a full cycle. Simulations show that asymmetry in reaction energy barrier causes slight asymmetry in the shape of the response ellipse and hardly affects the phase angle of the complex electrode impedance. The charge transfer resistance and the diffusion constraints tend to have opposite effects. The former causes reduction in the phase angle, tending to make the impedance purely resistive. Both of these mechanisms show saturation effects. Charge transfer resistance at its limit forces a thin S-type symmetry on the Lissajous patterns, while with diffusion control the size of the Lissajous patterns begins to reduce after saturation. The fixed layer causes substantial increase in the phase angle and tends to “enlarge” the Lissajous patterns. It is responsible for the hysteresis-like shapes of the Lissajous patterns when superimposed on strong charge transfer resistance. This study shows that it is quite possible to deduce the mechanisms that control the electrodic processes by inverting electrodic parameters from “observed” distorted, nonelliptical Lissajous patterns characteristic of nonlinear electrodics. The results and qualities of the inversion technique are discussed.

  11. Numerical Study of Three Dimensional Effects in Longitudinal Space-Charge Impedance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, A.; Piot, P.

    2015-06-01

    Longitudinal space-charge (LSC) effects are generally considered as detrimental in free-electron lasers as they can seed instabilities. Such “microbunching instabilities” were recently shown to be potentially useful to support the generation of broadband coherent radiation pulses [1, 2]. Therefore there has been an increasing interest in devising accelerator beamlines capable of sustaining this LSC instability as a mechanism to produce a coherent light source. To date most of these studies have been carried out with a one-dimensional impedance model for the LSC. In this paper we use a N-body “Barnes-Hut” algorithm [3] to simulate the 3D space charge force inmore » the beam combined with elegant [4] and explore the limitation of the 1D model often used« less

  12. [Coping mechanisms of police officers with mental and psychosomatic symptoms after an event of potential psychotraumatic nature].

    PubMed

    Schütte, Nils; Bär, Olaf; Weiss, Udo; Heuft, Gereon

    2009-01-01

    This prospective study analyzes the coping mechanisms of police officers directly after an event of potential traumatic nature in the line of duty (e. g. use of firearms) as well as 6 months later. 59 police officers were contacted by professional crisis intervention teams of the police force. After an extended interview, an ICD-10 diagnosis, if applicable, was assigned. Six months later a diagnosis was derived by a clinician (Diplom-Psychologe) using a structured interview. Coping strategies were accessed by the FKV (Freiburger Fragebogen zur Krankheitsverarbeitung) questionnaire. Fourteen police officers (28%) received the diagnosis of a PTSD (ICD-10: F43.1) at 6 months. The coping mechanisms of the traumatized police officers were significantly elevated in a dysfunctional manner in the areas "emotional control and social retreat" (only directly after the event), "regression", "mistrust and pessimism", and "depressive processing". Because dysfunctional coping mechanisms impede the decline of the symptoms, it may be considered adequate to strengthen the coping mechanisms for functional coping with these symptoms, thereby focusing on the dysfunctional coping strategy specific to the police force, namely, emotional control.

  13. Dynamic primitives in the control of locomotion

    PubMed Central

    Hogan, Neville; Sternad, Dagmar

    2013-01-01

    Humans achieve locomotor dexterity that far exceeds the capability of modern robots, yet this is achieved despite slower actuators, imprecise sensors, and vastly slower communication. We propose that this spectacular performance arises from encoding motor commands in terms of dynamic primitives. We propose three primitives as a foundation for a comprehensive theoretical framework that can embrace a wide range of upper- and lower-limb behaviors. Building on previous work that suggested discrete and rhythmic movements as elementary dynamic behaviors, we define submovements and oscillations: as discrete movements cannot be combined with sufficient flexibility, we argue that suitably-defined submovements are primitives. As the term “rhythmic” may be ambiguous, we define oscillations as the corresponding class of primitives. We further propose mechanical impedances as a third class of dynamic primitives, necessary for interaction with the physical environment. Combination of these three classes of primitive requires care. One approach is through a generalized equivalent network: a virtual trajectory composed of simultaneous and/or sequential submovements and/or oscillations that interacts with mechanical impedances to produce observable forces and motions. Reliable experimental identification of these dynamic primitives presents challenges: identification of mechanical impedances is exquisitely sensitive to assumptions about their dynamic structure; identification of submovements and oscillations is sensitive to their assumed form and to details of the algorithm used to extract them. Some methods to address these challenges are presented. Some implications of this theoretical framework for locomotor rehabilitation are considered. PMID:23801959

  14. Electromechanical impedance-based health diagnosis for tendon and anchorage zone in a nuclear containment structure

    NASA Astrophysics Data System (ADS)

    Min, Jiyoung; Shim, Hyojin; Yun, Chung-Bang

    2012-04-01

    For a nuclear containment structure, the structural health monitoring is essential because of its high potential risk and grave social impact. In particular, the tendon and anchorage zone are to be monitored because they are under high tensile or compressive stress. In this paper, a method to monitor the tendon force and the condition of the anchorage zone is presented by using the impedance-based health diagnosis system. First, numerical simulations were conducted for cases with various loose tensile forces on the tendon as well as damages on the bearing plate and concrete structure. Then, experimental studies were carried out on a scaled model of the anchorage system. The relationship between the loose tensile force and the impedance-based damage index was analyzed by a regression analysis. When a structure gets damaged, the damage index increases so that the status of damage can be identified. The results of the numerical and experimental studies indicate a big potential of the proposed impedance-based method for monitoring the tendon and anchorage system.

  15. Interaction force and motion estimators facilitating impedance control of the upper limb rehabilitation robot.

    PubMed

    Mancisidor, Aitziber; Zubizarreta, Asier; Cabanes, Itziar; Bengoa, Pablo; Jung, Je Hyung

    2017-07-01

    In order to enhance the performance of rehabilitation robots, it is imperative to know both force and motion caused by the interaction between user and robot. However, common direct measurement of both signals through force and motion sensors not only increases the complexity of the system but also impedes affordability of the system. As an alternative of the direct measurement, in this work, we present new force and motion estimators for the proper control of the upper-limb rehabilitation Universal Haptic Pantograph (UHP) robot. The estimators are based on the kinematic and dynamic model of the UHP and the use of signals measured by means of common low-cost sensors. In order to demonstrate the effectiveness of the estimators, several experimental tests were carried out. The force and impedance control of the UHP was implemented first by directly measuring the interaction force using accurate extra sensors and the robot performance was compared to the case where the proposed estimators replace the direct measured values. The experimental results reveal that the controller based on the estimators has similar performance to that using direct measurement (less than 1 N difference in root mean square error between two cases), indicating that the proposed force and motion estimators can facilitate implementation of interactive controller for the UHP in robotmediated rehabilitation trainings.

  16. Dynamic Primitives of Motor Behavior

    PubMed Central

    Hogan, Neville; Sternad, Dagmar

    2013-01-01

    We present in outline a theory of sensorimotor control based on dynamic primitives, which we define as attractors. To account for the broad class of human interactive behaviors—especially tool use—we propose three distinct primitives: submovements, oscillations and mechanical impedances, the latter necessary for interaction with objects. Due to fundamental features of the neuromuscular system, most notably its slow response, we argue that encoding in terms of parameterized primitives may be an essential simplification required for learning, performance, and retention of complex skills. Primitives may simultaneously and sequentially be combined to produce observable forces and motions. This may be achieved by defining a virtual trajectory composed of submovements and/or oscillations interacting with impedances. Identifying primitives requires care: in principle, overlapping submovements would be sufficient to compose all observed movements but biological evidence shows that oscillations are a distinct primitive. Conversely, we suggest that kinematic synergies, frequently discussed as primitives of complex actions, may be an emergent consequence of neuromuscular impedance. To illustrate how these dynamic primitives may account for complex actions, we briefly review three types of interactive behaviors: constrained motion, impact tasks, and manipulation of dynamic objects. PMID:23124919

  17. Planning U.S. General Purpose Forces: The Theater Nuclear Forces

    DTIC Science & Technology

    1977-01-01

    usefulness in combat. All U.S. nuclear weapons deployed in Europe are fitted with Permissive Action Links (PAL), coded devices designed to impede...may be proposed. The Standard Missile 2, the Harpoon missile, the Mk48 tor- pedo , and the SUBROC anti-submarine rocket are all being considered for...Permissive Action Link . A coded device attached to nuclear weapons deployed abroad that impedes the unauthorized arming or firing of the weapon. Pershing

  18. A new algorithm for modeling friction in dynamic mechanical systems

    NASA Technical Reports Server (NTRS)

    Hill, R. E.

    1988-01-01

    A method of modeling friction forces that impede the motion of parts of dynamic mechanical systems is described. Conventional methods in which the friction effect is assumed a constant force, or torque, in a direction opposite to the relative motion, are applicable only to those cases where applied forces are large in comparison to the friction, and where there is little interest in system behavior close to the times of transitions through zero velocity. An algorithm is described that provides accurate determination of friction forces over a wide range of applied force and velocity conditions. The method avoids the simulation errors resulting from a finite integration interval used in connection with a conventional friction model, as is the case in many digital computer-based simulations. The algorithm incorporates a predictive calculation based on initial conditions of motion, externally applied forces, inertia, and integration step size. The predictive calculation in connection with an external integration process provides an accurate determination of both static and Coulomb friction forces and resulting motions in dynamic simulations. Accuracy of the results is improved over that obtained with conventional methods and a relatively large integration step size is permitted. A function block for incorporation in a specific simulation program is described. The general form of the algorithm facilitates implementation with various programming languages such as FORTRAN or C, as well as with other simulation programs.

  19. Using impedance measurements for detecting pathogens trapped in an electric field

    DOEpatents

    Miles, Robin R.

    2004-07-20

    Impedance measurements between the electrodes in an electric field is utilized to detect the presence of pathogens trapped in the electric field. Since particles trapped in a field using the dielectiphoretic force changes the impedance between the electrodes by changing the dielectric material between the electrodes, the degree of particle trapping can be determined by measuring the impedance. This measurement is used to determine if sufficient pathogen have been collected to analyze further or potentially to identify the pathogen.

  20. Generalization in Adaptation to Stable and Unstable Dynamics

    PubMed Central

    Kadiallah, Abdelhamid; Franklin, David W.; Burdet, Etienne

    2012-01-01

    Humans skillfully manipulate objects and tools despite the inherent instability. In order to succeed at these tasks, the sensorimotor control system must build an internal representation of both the force and mechanical impedance. As it is not practical to either learn or store motor commands for every possible future action, the sensorimotor control system generalizes a control strategy for a range of movements based on learning performed over a set of movements. Here, we introduce a computational model for this learning and generalization, which specifies how to learn feedforward muscle activity in a function of the state space. Specifically, by incorporating co-activation as a function of error into the feedback command, we are able to derive an algorithm from a gradient descent minimization of motion error and effort, subject to maintaining a stability margin. This algorithm can be used to learn to coordinate any of a variety of motor primitives such as force fields, muscle synergies, physical models or artificial neural networks. This model for human learning and generalization is able to adapt to both stable and unstable dynamics, and provides a controller for generating efficient adaptive motor behavior in robots. Simulation results exhibit predictions consistent with all experiments on learning of novel dynamics requiring adaptation of force and impedance, and enable us to re-examine some of the previous interpretations of experiments on generalization. PMID:23056191

  1. Effect of impeded medial longitudinal arch drop on vertical ground reaction force and center of pressure during static loading.

    PubMed

    Chen, Shing-Jye; Gielo-Perczak, Krystyna

    2011-01-01

    Arch supports commonly used to alleviate foot pain can impede the normal drop of medial longitudinal arch (MLA) thereby altering its function. The purpose of the study was to examine the effect of using arch supports on vertical ground reaction force (GRF) and center of pressure (COP) during simulated midstance while the foot was statically loaded. Ten healthy young subjects were recruited. Two dimensional (2D) analysis of the MLA was captured for both barefoot (BF) and arch support conditions before and after loading via a custom made weight loading apparatus. The foot was loaded and positioned to simulate the midstance phase of walking. Two-dimensional reflective markers demarcated the MLA and captured with the loaded foot on a force platform. The impeded MLA drop was compared between the unloaded BF, loaded BF and loaded arch support conditions. The vertical GRF, the anterior-posterior and the medial-lateral COP displacements were also measured in response to the impeded MLA by the arch supports. The arch supports impeded the MLA drop (p<0.05) and shifted the COP toward the medial side (p<0.05), specifically for the rearfoot (calcaneal segment region), but no changes were determined for the vertical GRF (p>0.05). The impedance of MLA drop by the arch support altered the pattern of the ML COP shift in the rearfoot region. The use of arch supports may not relieve painful foot conditions that are associated with excessive calcaneal eversion indicated by altering COP shifts in localized foot regions.

  2. Overexpression of TGF-alpha increases lung tissue hysteresivity in transgenic mice.

    PubMed

    Pillow, J J; Korfhagen, T R; Ikegami, M; Sly, P D

    2001-12-01

    Increased transforming growth factor (TGF)-alpha has been observed in neonatal chronic lung disease. Lungs of transgenic mice that overexpress TGF-alpha develop enlarged air spaces and pulmonary fibrosis compared with wild-type mice. We hypothesized that these pathological changes may alter the mechanical coupling of viscous and elastic forces within lung parenchyma. Respiratory impedance was measured in open-chested, tracheostomized adult wild-type and TGF-alpha mice by using the forced oscillation technique (0.25-19.63 Hz) delivered by flexiVent (Scireq, Montreal, PQ). Estimates of airway resistance (Raw), inertance (I), and the coefficients of tissue damping (G(L)) and tissue elastance (H(L)) were obtained by fitting a model to each impedance spectrum. Hysteresivity (eta) was calculated as G(L)/H(L). There was a significant increase in eta (P < 0.01) and a trend to a decrease in H(L) (P = 0.07) of TGF-alpha mice compared with the wild-type group. There was no significant change in Raw, I, or G(L). Structural abnormality present in the lungs of adult TGF-alpha mice alters viscoelastic coupling of the tissues, as evidenced by a change in eta.

  3. UV-activated ZnO films on a flexible substrate for room temperature O 2 and H 2O sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, Christopher B.; Maksov, Artem B.; Muckley, Eric S.

    Here, we demonstrate that UV-light activation of polycrystalline ZnO films on flexible polyimide (Kapton) substrates can be used to detect and differentiate between environmental changes in oxygen and water vapor. The in-plane resistive and impedance properties of ZnO films, fabricated from bacteria-derived ZnS nanoparticles, exhibit unique resistive and capacitive responses to changes in O 2 and H 2O. We also propose that the distinctive responses to O 2 and H 2O adsorption on ZnO could be utilized to statistically discriminate between the two analytes. Molecular dynamic simulations (MD) of O 2 and H 2O adsorption energy on ZnO surfaces weremore » performed using the large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) with a reactive force-field (ReaxFF). Furthermore, these simulations suggest that the adsorption mechanisms differ for O 2 and H 2O adsorption on ZnO, and are governed by the surface termination and the extent of surface hydroxylation. Electrical response measurements, using DC resistance, AC impedance spectroscopy, and Kelvin Probe Force Microscopy (KPFM), demonstrate differences in response to O 2 and H 2O, confirming that different adsorption mechanisms are involved. Statistical and machine learning approaches were applied to demonstrate that by integrating the electrical and kinetic responses the flexible ZnO sensor can be used for detection and discrimination between O 2 and H 2O at low temperature.« less

  4. UV-activated ZnO films on a flexible substrate for room temperature O 2 and H 2O sensing

    DOE PAGES

    Jacobs, Christopher B.; Maksov, Artem B.; Muckley, Eric S.; ...

    2017-07-20

    Here, we demonstrate that UV-light activation of polycrystalline ZnO films on flexible polyimide (Kapton) substrates can be used to detect and differentiate between environmental changes in oxygen and water vapor. The in-plane resistive and impedance properties of ZnO films, fabricated from bacteria-derived ZnS nanoparticles, exhibit unique resistive and capacitive responses to changes in O 2 and H 2O. We also propose that the distinctive responses to O 2 and H 2O adsorption on ZnO could be utilized to statistically discriminate between the two analytes. Molecular dynamic simulations (MD) of O 2 and H 2O adsorption energy on ZnO surfaces weremore » performed using the large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) with a reactive force-field (ReaxFF). Furthermore, these simulations suggest that the adsorption mechanisms differ for O 2 and H 2O adsorption on ZnO, and are governed by the surface termination and the extent of surface hydroxylation. Electrical response measurements, using DC resistance, AC impedance spectroscopy, and Kelvin Probe Force Microscopy (KPFM), demonstrate differences in response to O 2 and H 2O, confirming that different adsorption mechanisms are involved. Statistical and machine learning approaches were applied to demonstrate that by integrating the electrical and kinetic responses the flexible ZnO sensor can be used for detection and discrimination between O 2 and H 2O at low temperature.« less

  5. UV-activated ZnO films on a flexible substrate for room temperature O2 and H2O sensing.

    PubMed

    Jacobs, Christopher B; Maksov, Artem B; Muckley, Eric S; Collins, Liam; Mahjouri-Samani, Masoud; Ievlev, Anton; Rouleau, Christopher M; Moon, Ji-Won; Graham, David E; Sumpter, Bobby G; Ivanov, Ilia N

    2017-07-20

    We demonstrate that UV-light activation of polycrystalline ZnO films on flexible polyimide (Kapton) substrates can be used to detect and differentiate between environmental changes in oxygen and water vapor. The in-plane resistive and impedance properties of ZnO films, fabricated from bacteria-derived ZnS nanoparticles, exhibit unique resistive and capacitive responses to changes in O 2 and H 2 O. We propose that the distinctive responses to O 2 and H 2 O adsorption on ZnO could be utilized to statistically discriminate between the two analytes. Molecular dynamic simulations (MD) of O 2 and H 2 O adsorption energy on ZnO surfaces were performed using the large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) with a reactive force-field (ReaxFF). These simulations suggest that the adsorption mechanisms differ for O 2 and H 2 O adsorption on ZnO, and are governed by the surface termination and the extent of surface hydroxylation. Electrical response measurements, using DC resistance, AC impedance spectroscopy, and Kelvin Probe Force Microscopy (KPFM), demonstrate differences in response to O 2 and H 2 O, confirming that different adsorption mechanisms are involved. Statistical and machine learning approaches were applied to demonstrate that by integrating the electrical and kinetic responses the flexible ZnO sensor can be used for detection and discrimination between O 2 and H 2 O at low temperature.

  6. Development of safe mechanism for surgical robots using equilibrium point control method.

    PubMed

    Park, Shinsuk; Lim, Hokjin; Kim, Byeong-sang; Song, Jae-bok

    2006-01-01

    This paper introduces a novel mechanism for surgical robotic systems to generate human arm-like compliant motion. The mechanism is based on the idea of the equilibrium point control hypothesis which claims that multi-joint limb movements are achieved by shifting the limbs' equilibrium positions defined by neuromuscular activity. The equilibrium point control can be implemented on a robot manipulator by installing two actuators at each joint of the manipulator, one to control the joint position, and the other to control the joint stiffness. This double-actuator mechanism allows us to arbitrarily manipulate the stiffness (or impedance) of a robotic manipulator as well as its position. Also, the force at the end-effector can be estimated based on joint stiffness and joint angle changes without using force transducers. A two-link manipulator and a three-link manipulator with the double-actuator units have been developed, and experiments and simulation results show the potential of the proposed approach. By creating the human arm-like behavior, this mechanism can improve the performance of robot manipulators to execute stable and safe movement in surgical environments by using a simple control scheme.

  7. Haptic device for a ventricular shunt insertion simulator.

    PubMed

    Panchaphongsaphak, Bundit; Stutzer, Diego; Schwyter, Etienne; Bernays, René-Ludwig; Riener, Robert

    2006-01-01

    In this paper we propose a new one-degree-of-freedom haptic device that can be used to simulate ventricular shunt insertion procedures. The device is used together with the BRAINTRAIN training simulator developed for neuroscience education, neurological data visualization and surgical planning. The design of the haptic device is based on a push-pull cable concept. The rendered forces produced by a linear motor connected at one end of the cable are transferred to the user via a sliding mechanism at the end-effector located at the other end of the cable. The end-effector provides the range of movement up to 12 cm. The force is controlled by an open-loop impedance algorithm and can become up to 15 N.

  8. Advances in imaging and quantification of electrical properties at the nanoscale using Scanning Microwave Impedance Microscopy (sMIM)

    NASA Astrophysics Data System (ADS)

    Friedman, Stuart; Stanke, Fred; Yang, Yongliang; Amster, Oskar

    Scanning Microwave Impedance Microscopy (sMIM) is a mode for Atomic Force Microscopy (AFM) enabling imaging of unique contrast mechanisms and measurement of local permittivity and conductivity at the 10's of nm length scale. sMIM has been applied to a variety of systems including nanotubes, nanowires, 2D materials, photovoltaics and semiconductor devices. Early results were largely semi-quantitative. This talk will focus on techniques for extracting quantitative physical parameters such as permittivity, conductivity, doping concentrations and thin film properties from sMIM data. Particular attention will be paid to non-linear materials where sMIM has been used to acquire nano-scale capacitance-voltage curves. These curves can be used to identify the dopant type (n vs p) and doping level in doped semiconductors, both bulk samples and devices. Supported in part by DOE-SBIR DE-SC0009856.

  9. Advances in imaging and quantification of electrical properties at the nanoscale using Scanning Microwave Impedance Microscopy (sMIM)

    NASA Astrophysics Data System (ADS)

    Friedman, Stuart; Yang, Yongliang; Amster, Oskar

    2015-03-01

    Scanning Microwave Impedance Microscopy (sMIM) is a mode for Atomic Force Microscopy (AFM) enabling imaging of unique contrast mechanisms and measurement of local permittivity and conductivity at the 10's of nm length scale. Recent results will be presented illustrating high-resolution electrical features such as sub 15 nm Moire' patterns in Graphene, carbon nanotubes of various electrical states and ferro-electrics. In addition to imaging, the technique is suited to a variety of metrology applications where specific physical properties are determined quantitatively. We will present research activities on quantitative measurements using multiple techniques to determine dielectric constant (permittivity) and conductivity (e.g. dopant concentration) for a range of materials. Examples include bulk dielectrics, low-k dielectric thin films, capacitance standards and doped semiconductors. Funded in part by DOE SBIR DE-SC0009586.

  10. Bilateral Impedance Control For Telemanipulators

    NASA Technical Reports Server (NTRS)

    Moore, Christopher L.

    1993-01-01

    Telemanipulator system includes master robot manipulated by human operator, and slave robot performing tasks at remote location. Two robots electronically coupled so slave robot moves in response to commands from master robot. Teleoperation greatly enhanced if forces acting on slave robot fed back to operator, giving operator feeling he or she manipulates remote environment directly. Main advantage of bilateral impedance control: enables arbitrary specification of desired performance characteristics for telemanipulator system. Relationship between force and position modulated at both ends of system to suit requirements of task.

  11. Modelling and characteristic analysis of tri-axle trucks with hydraulically interconnected suspensions

    NASA Astrophysics Data System (ADS)

    Ding, Fei; Han, Xu; Luo, Zhen; Zhang, Nong

    2012-12-01

    In this paper, a new hydraulically interconnected suspension (HIS) system is proposed for the implementation of a resistance control for the pitch and bounce modes of tri-axle heavy trucks. A lumped-mass half-truck model is established using the free-body diagram method. The equations of motion of a mechanical and hydraulic coupled system are developed by incorporating the hydraulic strut forces into the mechanical subsystem as externally applied forces. The transfer matrix method (TMM) is used to evaluate the impedance matrix of the hydraulic subsystem consisting of models of fluid pipes, damper valves, accumulators, and three-way junctions. The TMM is further applied to find the quantitative relationships between the hydraulic strut forces and boundary flow of the mechanical-fluid interactive subsystem. The modal analysis method is employed to perform the vibration analysis between the trucks with the conventional suspension and the proposed HIS. Comparison analysis focuses on free vibration with identified eigenvalues and eigenvectors, isolation vibration capacity, and force vibration in terms of the power spectrum density responses. The obtained results show the effectiveness of the proposed HIS system in reducing the pitch motion of sprung mass and simultaneously maintaining the ride comfort. The pitch stiffness is increased while the bounce stiffness is slightly softened. The peak values of sprung mass and wheel hop motions are greatly reduced, and the vibration decay rate of sprung mass is also significantly increased.

  12. Optical sensors based on the NiPc-CoPc composite films deposited by drop casting and under the action of centrifugal force

    NASA Astrophysics Data System (ADS)

    Fatima, Noshin; Ahmed, Muhammad M.; Karimov, Khasan S.; Ahmad, Zubair; Fariq Muhammad, Fahmi

    2017-06-01

    In this study, solution processed composite films of nickel phthalocyanine (NiPc) and cobalt phthalocyanine (CoPc) are deposited by drop casting and under centrifugal force. The films are deposited on surface-type inter-digitated silver electrodes on ceramic alumina substrates. The effects of illumination on the impedance and capacitance of the NiPc-CoPc composite samples are investigated. The samples deposited under centrifugal force show better conductivity than the samples deposited by drop casting technique. In terms of impedance and capacitance sensitivities the samples fabricated under centrifugal force are more sensitive than the drop casting samples. The values of impedance sensitivity ({S}z) are equal to (-1.83) {{M}}{{Ω }}\\cdot {{cm}}2/{mW} and (-5.365){{M}}{{Ω }}\\cdot {{cm}}2/{mW} for the samples fabricated using drop casting and under centrifugal force, respectively. Similarly, the values of capacitance sensitivity ({S}{{c}}) are equal to 0.083 {pF}\\cdot {{cm}}2/{mW} and 0.185 {pF}\\cdot {{cm}}2/{mW} for the samples fabricated by drop casting and under centrifugal force. The films deposited using the different procedures could potentially be viable for different operational modes (i.e., conductive or capacitive) of the optical sensors. Both experimental and simulated results are discussed. Project supported by the Center for Advanced Materials (CAM), Qatar University, Qatar.

  13. System-Level Biochip for Impedance Sensing and Programmable Manipulation of Bladder Cancer Cells

    PubMed Central

    Chuang, Cheng-Hsin; Huang, Yao-Wei; Wu, Yao-Tung

    2011-01-01

    This paper develops a dielectrophoretic (DEP) chip with multi-layer electrodes and a micro-cavity array for programmable manipulations of cells and impedance measurement. The DEP chip consists of an ITO top electrode, flow chamber, middle electrode on an SU-8 surface, micro-cavity arrays of SU-8 and distributed electrodes at the bottom of the micro-cavity. Impedance sensing of single cells could be performed as follows: firstly, cells were trapped in a micro-cavity array by negative DEP force provided by top and middle electrodes; then, the impedance measurement for discrimination of different stage of bladder cancer cells was accomplished by the middle and bottom electrodes. After impedance sensing, the individual releasing of trapped cells was achieved by negative DEP force using the top and bottom electrodes in order to collect the identified cells once more. Both cell manipulations and impedance measurement had been integrated within a system controlled by a PC-based LabVIEW program. In the experiments, two different stages of bladder cancer cell lines (grade III: T24 and grade II: TSGH8301) were utilized for the demonstration of programmable manipulation and impedance sensing; as the results show, the lower-grade bladder cancer cells (TSGH8301) possess higher impedance than the higher-grade ones (T24). In general, the multi-step manipulations of cells can be easily programmed by controlling the electrical signal in our design, which provides an excellent platform technology for lab-on-a-chip (LOC) or a micro-total-analysis-system (Micro TAS). PMID:22346685

  14. Substantial effects of epimuscular myofascial force transmission on muscular mechanics have major implications on spastic muscle and remedial surgery.

    PubMed

    Yucesoy, Can A; Huijing, Peter A

    2007-12-01

    The specific aim of this paper is to review the effects of epimuscular myofascial force transmission on muscular mechanics and present some new results on finite element modeling of non-isolated aponeurotomized muscle in order to discuss the dependency of mechanics of spastic muscle, as well as surgery for restoration of function on such force transmission. The etiology of the effects of spasticity on muscular mechanics is not fully understood. Clinically, such effects feature typically a limited joint range of motion, which at the muscle level must originate from altered muscle length-force characteristics, in particular a limited muscle length range of force exertion. In studies performed to understand what is different in spastic muscle and what the effects of remedial surgery are, muscle is considered as being independent of its surroundings. Conceivably, this is because the classical approach in muscle mechanics is built on experimenting with dissected muscles. Certainly, such approach allowed improving our understanding of fundamental muscle physiology yet it yielded implicitly a narrow point of view of considering muscle length-force characteristics as a fixed property of the muscle itself. However, within its context of its intact connective tissue surroundings (the in vivo condition) muscle is not an isolated and independent entity. Instead, collagenous linkages between epimysia of adjacent muscles provide direct intermuscular connections, and structures such as the neurovascular tracts provide indirect intermuscular connections. Moreover, compartmental boundaries (e.g., intermuscular septa, interosseal membranes, periost and compartmental fascia) are continuous with neurovascular tracts and connect muscular and non-muscular tissues at several locations additional to the tendon origins and insertions. Epimuscular myofascial force transmission occurring via this integral system of connections has major effects on muscular mechanics including substantial proximo-distal force differences, sizable changes in the determinants of muscle length-force characteristics (e.g. a condition dependent shift in muscle optimum length to a different length or variable muscle optimal force) explained by major serial and parallel distributions of sarcomere lengths. Therefore, due to epimuscular myofascial force transmission, muscle length-force characteristics are variable and muscle length range of force exertion cannot be considered as a fixed property of the muscle. The findings reviewed presently show that acutely, the mechanical mechanisms manipulated in remedial surgery are dominated by epimuscular myofascial force transmission. Conceivably, this is also true for the mechanism of adaptation during and after recovery from surgery. Moreover, stiffened epimuscular connections and therefore a stiffened integral system of intra- and epimuscular myofascial force transmission are indicated to affect the properties of spastic muscle. We suggest that important advancements in our present understanding of such properties, variability in the outcome of surgery and considerable recurrence of the impeded function after recovery cannot be made without taking into account the effects of epimuscular myofascial force transmission.

  15. Optimizing the performance of neural interface devices with hybrid poly(3,4-ethylene dioxythiophene) (PEDOT)

    NASA Astrophysics Data System (ADS)

    Kuo, Chin-chen

    This thesis describes methods for improving the performance of poly(3,4-ethylenedioxythiophene) (PEDOT) as a direct neural interfacing material. The chronic foreign body response is always a challenge for implanted bionic devices. After long-term implantation (typically 2-4 weeks), insulating glial scars form around the devices, inhibiting signal transmission, which ultimately leads to device failure. The mechanical mismatch at the device-tissue interface is one of the issues that has been associated with chronic foreign body response. Another challenge for using PEDOT as a neural interface material is its mechanical failure after implantation. We observed cracking and delamination of PEDOT coatings on devices after extended implantations. In the first part of this thesis, we present a novel method for directly measuring the mechanical properties of a PEDOT thin film. Before investigating methods to improve the mechanical behavior of PEDOT, a comprehensive understanding of the mechanical properties of PEDOT thin film is required. A PEDOT thin film was machined into a dog-bone shape specimen with a dual beam FIB-SEM. With an OmniProbe, this PEDOT specimen could be attached onto a force sensor, while the other side was attached to OmniProbe. By moving the OmniProbe, the specimen could be deformed in tension, and a force sensor recorded the applied load on the sample simultaneously. Mechanical tensile tests were conducted in the FIB-SEM chamber along with in situ observation. With precise force measurement from the force sensor and the corresponding high resolution SEM images, we were able to convert the data to a stress-strain curve for further analysis. By analyzing these stress-strain curves, we were able to obtain information about PEDOT including the Young's modulus, strength of failure, strain to failure, and toughness (energy to failure). This information should be useful for future material selection and molecular design for specific applications. The second section of this thesis is mainly focused on developing a soft and conductive material by in situ PEDOT polymerization into soft matrix. First, PEDOT was in situ polymerized into extracellular matrix (ECM) as a conductive, soft, and bioactive material for neural interfacing. ECM is basically a matrix of proteins which provides biological cues with the potential to promote neural attachment. We modified the electrode to a needle shape, which could be inserted into the ECM film. The limited surface area on the electrode and the close contact with ECM made it possible to polymerize PEDOT into the ECM more easily. The conductivity of PEDOT-ECM was confirmed to be similar to intrinsic PEDOT. A cell adhesion test using the PC12 cell line was used to evaluate its biocompatibility. PEDOT-ECM shows improved cell adhesion for PC12 cells, as compared either bare metal electrodes or PEDOT coated surfaces. In the future this approach may be elevated to an " autologous" concept, where the ECM could be derived from the host patients themselves to further reduce the foreign body response. Second, low modulus hydrogels were used as templates for PEDOT polymerization. EDOT monomers were premixed into agarose hydrogels. The electrochemical polymerization was typically conducted in potentiostatic (constant voltage) mode with working voltage of 2 V. After 0.8 C/cm2 charge density, a significant dark blue cloud was observed indicating that PEDOT was in situ polymerized into hydrogel matrix. A series of studies was conducted to confirm the improved mechanical properties, electrical properties and biocompatibility of the PEDOT-gel as compared to the typical solid PEDOT. Animal studies were conducted to evaluate the performance of PEDOT-gel coated electrode in vivo. Rats were used as the animal model with 3 rats in each group of bare electrode, PEDOT-coated, and PEDOT-gel coated electrode (n=9). The in vivo impedance was used to confirm the performance of the implanted electrodes. The results showed that the impedance had a significant increase after 4 weeks with the bare and solid PEDOT-coated electrode. This is consistent with the typical glial scar encapsulation around the electrode leading to an impedance increase. PEDOT-gel presents consistently low impedance along with 10 weeks implantation implying there was much less reactive response around the insertion site. These in vivo experiments on PEDOT-gels suggest that PEDOT-gels are promising neural interfacing materials for patients clinically.

  16. Force-induced chemical reactions on the metal centre in a single metalloprotein molecule.

    PubMed

    Zheng, Peng; Arantes, Guilherme M; Field, Martin J; Li, Hongbin

    2015-06-25

    Metalloproteins play indispensable roles in biology owing to the versatile chemical reactivity of metal centres. However, studying their reactivity in many metalloproteins is challenging, as protein three-dimensional structure encloses labile metal centres, thus limiting their access to reactants and impeding direct measurements. Here we demonstrate the use of single-molecule atomic force microscopy to induce partial unfolding to expose metal centres in metalloproteins to aqueous solution, thus allowing for studying their chemical reactivity in aqueous solution for the first time. As a proof-of-principle, we demonstrate two chemical reactions for the FeS4 centre in rubredoxin: electrophilic protonation and nucleophilic ligand substitution. Our results show that protonation and ligand substitution result in mechanical destabilization of the FeS4 centre. Quantum chemical calculations corroborated experimental results and revealed detailed reaction mechanisms. We anticipate that this novel approach will provide insights into chemical reactivity of metal centres in metalloproteins under biologically more relevant conditions.

  17. Force-induced chemical reactions on the metal centre in a single metalloprotein molecule

    PubMed Central

    Zheng, Peng; Arantes, Guilherme M.; Field, Martin J.; Li, Hongbin

    2015-01-01

    Metalloproteins play indispensable roles in biology owing to the versatile chemical reactivity of metal centres. However, studying their reactivity in many metalloproteins is challenging, as protein three-dimensional structure encloses labile metal centres, thus limiting their access to reactants and impeding direct measurements. Here we demonstrate the use of single-molecule atomic force microscopy to induce partial unfolding to expose metal centres in metalloproteins to aqueous solution, thus allowing for studying their chemical reactivity in aqueous solution for the first time. As a proof-of-principle, we demonstrate two chemical reactions for the FeS4 centre in rubredoxin: electrophilic protonation and nucleophilic ligand substitution. Our results show that protonation and ligand substitution result in mechanical destabilization of the FeS4 centre. Quantum chemical calculations corroborated experimental results and revealed detailed reaction mechanisms. We anticipate that this novel approach will provide insights into chemical reactivity of metal centres in metalloproteins under biologically more relevant conditions. PMID:26108369

  18. A Multi-Scale Approach to Airway Hyperresponsiveness: From Molecule to Organ

    PubMed Central

    Lauzon, Anne-Marie; Bates, Jason H. T.; Donovan, Graham; Tawhai, Merryn; Sneyd, James; Sanderson, Michael J.

    2012-01-01

    Airway hyperresponsiveness (AHR), a characteristic of asthma that involves an excessive reduction in airway caliber, is a complex mechanism reflecting multiple processes that manifest over a large range of length and time scales. At one extreme, molecular interactions determine the force generated by airway smooth muscle (ASM). At the other, the spatially distributed constriction of the branching airways leads to breathing difficulties. Similarly, asthma therapies act at the molecular scale while clinical outcomes are determined by lung function. These extremes are linked by events operating over intermediate scales of length and time. Thus, AHR is an emergent phenomenon that limits our understanding of asthma and confounds the interpretation of studies that address physiological mechanisms over a limited range of scales. A solution is a modular computational model that integrates experimental and mathematical data from multiple scales. This includes, at the molecular scale, kinetics, and force production of actin-myosin contractile proteins during cross-bridge and latch-state cycling; at the cellular scale, Ca2+ signaling mechanisms that regulate ASM force production; at the tissue scale, forces acting between contracting ASM and opposing viscoelastic tissue that determine airway narrowing; at the organ scale, the topographic distribution of ASM contraction dynamics that determine mechanical impedance of the lung. At each scale, models are constructed with iterations between theory and experimentation to identify the parameters that link adjacent scales. This modular model establishes algorithms for modeling over a wide range of scales and provides a framework for the inclusion of other responses such as inflammation or therapeutic regimes. The goal is to develop this lung model so that it can make predictions about bronchoconstriction and identify the pathophysiologic mechanisms having the greatest impact on AHR and its therapy. PMID:22701430

  19. Master-slave system with force feedback based on dynamics of virtual model

    NASA Technical Reports Server (NTRS)

    Nojima, Shuji; Hashimoto, Hideki

    1994-01-01

    A master-slave system can extend manipulating and sensing capabilities of a human operator to a remote environment. But the master-slave system has two serious problems: one is the mechanically large impedance of the system; the other is the mechanical complexity of the slave for complex remote tasks. These two problems reduce the efficiency of the system. If the slave has local intelligence, it can help the human operator by using its good points like fast calculation and large memory. The authors suggest that the slave is a dextrous hand with many degrees of freedom able to manipulate an object of known shape. It is further suggested that the dimensions of the remote work space be shared by the human operator and the slave. The effect of the large impedance of the system can be reduced in a virtual model, a physical model constructed in a computer with physical parameters as if it were in the real world. A method to determine the damping parameter dynamically for the virtual model is proposed. Experimental results show that this virtual model is better than the virtual model with fixed damping.

  20. Evaluation of Electrical Impedance as a Biomarker of Myostatin Inhibition in Wild Type and Muscular Dystrophy Mice.

    PubMed

    Sanchez, Benjamin; Li, Jia; Yim, Sung; Pacheck, Adam; Widrick, Jeffrey J; Rutkove, Seward B

    2015-01-01

    Non-invasive and effort independent biomarkers are needed to better assess the effects of drug therapy on healthy muscle and that affected by muscular dystrophy (mdx). Here we evaluated the use of multi-frequency electrical impedance for this purpose with comparison to force and histological parameters. Eight wild-type (wt) and 10 mdx mice were treated weekly with RAP-031 activin type IIB receptor at a dose of 10 mg kg-1 twice weekly for 16 weeks; the investigators were blinded to treatment and disease status. At the completion of treatment, impedance measurements, in situ force measurements, and histology analyses were performed. As compared to untreated animals, RAP-031 wt and mdx treated mice had greater body mass (18% and 17%, p < 0.001 respectively) and muscle mass (25% p < 0.05 and 22% p < 0.001, respectively). The Cole impedance parameters in treated wt mice, showed a 24% lower central frequency (p < 0.05) and 19% higher resistance ratio (p < 0.05); no significant differences were observed in the mdx mice. These differences were consistent with those seen in maximum isometric force, which was greater in the wt animals (p < 0.05 at > 70 Hz), but not in the mdx animals. In contrast, maximum force normalized by muscle mass was unchanged in the wt animals and lower in the mdx animals by 21% (p < 0.01). Similarly, myofiber size was only non-significantly higher in treated versus untreated animals (8% p = 0.44 and 12% p = 0.31 for wt and mdx animals, respectively). Our findings demonstrate electrical impedance of muscle reproduce the functional and histological changes associated with myostatin pathway inhibition and do not reflect differences in muscle size or volume. This technique deserves further study in both animal and human therapeutic trials.

  1. A comparative study to evaluate the effects of ligation methods on friction in sliding mechanics using 0.022" slot brackets in dry state: An In-vitro study

    PubMed Central

    Vinay, K; Venkatesh, M J; Nayak, Rabindra S; Pasha, Azam; Rajesh, M; Kumar, Pradeep

    2014-01-01

    Background: Friction between archwires and brackets is assuming greater importance for finishing with increased use of sliding mechanics in orthodontics as friction impedes the desired tooth movement. The following study is conducted to compare and evaluate the effect of ligation on friction in sliding mechanics using 0.022" slot bracket in dry condition. Materials & Methods: In the study 48 combinations of brackets, archwires and different ligation techniques were tested in order to provide best combination that offers less friction during sliding mechanics. Instron- 4467 machine was used to evaluate static and kinetic friction force values and the results were subjected to Statistical Analysis and Anova test. Results: The results of the study showed that 0.022" metal brackets, Stainless steel wires and Slick modules provided the optimum frictional resistance to sliding mechanics. It is observed that frictional forces of 0.019" x 0.025" were higher when compared with 0.016" x 0.022" Stainless steel archwire due to the increase in dimension. Self-ligating brackets offered least friction followed by mini twin, variable force, regular stainless steel, ceramic with metal insert bracket and ceramic brackets. The stainless steel ligature offered less resistance than slick and grey modules, and TMA wires recorded maximum friction. Conclusion: The stainless steel archwire of 0.019" x 0.025" dimension are preferred during sliding mechanics, these archwires with variable force brackets ligated with Slick Modules offer decreased friction and is cost effective combination which can be utilized during sliding mechanics. How to cite the article: Vinay K, Venkatesh MJ, Nayak RS, Pasha A, Rajesh M, Kumar P. A comparative study to evaluate the effects of ligation methods on friction in sliding mechanics using 0.022" slot brackets in dry state: An In-vitro study. J Int Oral Health 2014;6(2):76-83. PMID:24876706

  2. A comparative study to evaluate the effects of ligation methods on friction in sliding mechanics using 0.022" slot brackets in dry state: An In-vitro study.

    PubMed

    Vinay, K; Venkatesh, M J; Nayak, Rabindra S; Pasha, Azam; Rajesh, M; Kumar, Pradeep

    2014-04-01

    Friction between archwires and brackets is assuming greater importance for finishing with increased use of sliding mechanics in orthodontics as friction impedes the desired tooth movement. The following study is conducted to compare and evaluate the effect of ligation on friction in sliding mechanics using 0.022" slot bracket in dry condition. In the study 48 combinations of brackets, archwires and different ligation techniques were tested in order to provide best combination that offers less friction during sliding mechanics. Instron- 4467 machine was used to evaluate static and kinetic friction force values and the results were subjected to Statistical Analysis and Anova test. The results of the study showed that 0.022" metal brackets, Stainless steel wires and Slick modules provided the optimum frictional resistance to sliding mechanics. It is observed that frictional forces of 0.019" x 0.025" were higher when compared with 0.016" x 0.022" Stainless steel archwire due to the increase in dimension. Self-ligating brackets offered least friction followed by mini twin, variable force, regular stainless steel, ceramic with metal insert bracket and ceramic brackets. The stainless steel ligature offered less resistance than slick and grey modules, and TMA wires recorded maximum friction. The stainless steel archwire of 0.019" x 0.025" dimension are preferred during sliding mechanics, these archwires with variable force brackets ligated with Slick Modules offer decreased friction and is cost effective combination which can be utilized during sliding mechanics. How to cite the article: Vinay K, Venkatesh MJ, Nayak RS, Pasha A, Rajesh M, Kumar P. A comparative study to evaluate the effects of ligation methods on friction in sliding mechanics using 0.022" slot brackets in dry state: An In-vitro study. J Int Oral Health 2014;6(2):76-83.

  3. Time-domain representation of frequency-dependent foundation impedance functions

    USGS Publications Warehouse

    Safak, E.

    2006-01-01

    Foundation impedance functions provide a simple means to account for soil-structure interaction (SSI) when studying seismic response of structures. Impedance functions represent the dynamic stiffness of the soil media surrounding the foundation. The fact that impedance functions are frequency dependent makes it difficult to incorporate SSI in standard time-history analysis software. This paper introduces a simple method to convert frequency-dependent impedance functions into time-domain filters. The method is based on the least-squares approximation of impedance functions by ratios of two complex polynomials. Such ratios are equivalent, in the time-domain, to discrete-time recursive filters, which are simple finite-difference equations giving the relationship between foundation forces and displacements. These filters can easily be incorporated into standard time-history analysis programs. Three examples are presented to show the applications of the method.

  4. Temperature gating and competing temperature-dependent effects in DNA molecular wires

    NASA Astrophysics Data System (ADS)

    Wibowo, Denni; Narenji, Alaleh; Kassegne, Sam

    2017-02-01

    While recent research in electron-transport mechanism on a double strands DNA seems to converge into a consensus, experiments in direct electrical measurements on a long DNA molecules still lead to a conflicting result This study is the continuation of our previous research in electrical characterization of DNA molecular wires, where we furtherly investigate the effects of temperature on the electrical conductivity of DNA molecular wires by measuring its impedance response. We found that at higher temperatures, the expected increase in charge hopping mechanism may account for the decrease in impedance (and hence increase in conductivity) supporting the 'charge hopping mechanism' theory. UV light exposure, on the other hand, causes damage to GC base pairs reducing the path available for hopping mechanism and hence resulting in increased impedance - this again supporting the 'charge hopping mechanism' theory. We also report that λ-DNA molecular wires have differing impedance responses at two temperature regimes: impedance increases between 4 °C - 40 °C and then decreases between 40 °C - melting point (˜110 °C), after which λ-DNA denatures resulting in no current transduction. We submit that the low impedance of λ-DNA molecular wires observed at moderate to high frequencies may have significant implications to the field of DNA-based bionanoelectronics.

  5. Issues in impedance selection and input devices for multijoint powered orthotics.

    PubMed

    Lemay, M A; Hogan, N; van Dorsten, J W

    1998-03-01

    We investigated the applicability of impedance controllers to robotic orthoses for arm movements. We had tetraplegics turn a crank using their paralyzed arm propelled by a planar robot manipulandum. The robot was under impedance control, and chin motion served as command source. Stiffness varied between 50, 100, or 200 N/m and damping varied between 5 or 15 N/m/s. Results indicated that a low stiffness and high viscosity provided better directional control of the tangential force exerted on the crank.

  6. Learning to push and learning to move: the adaptive control of contact forces

    PubMed Central

    Casadio, Maura; Pressman, Assaf; Mussa-Ivaldi, Ferdinando A.

    2015-01-01

    To be successful at manipulating objects one needs to apply simultaneously well controlled movements and contact forces. We present a computational theory of how the brain may successfully generate a vast spectrum of interactive behaviors by combining two independent processes. One process is competent to control movements in free space and the other is competent to control contact forces against rigid constraints. Free space and rigid constraints are singularities at the boundaries of a continuum of mechanical impedance. Within this continuum, forces and motions occur in “compatible pairs” connected by the equations of Newtonian dynamics. The force applied to an object determines its motion. Conversely, inverse dynamics determine a unique force trajectory from a movement trajectory. In this perspective, we describe motor learning as a process leading to the discovery of compatible force/motion pairs. The learned compatible pairs constitute a local representation of the environment's mechanics. Experiments on force field adaptation have already provided us with evidence that the brain is able to predict and compensate the forces encountered when one is attempting to generate a motion. Here, we tested the theory in the dual case, i.e., when one attempts at applying a desired contact force against a simulated rigid surface. If the surface becomes unexpectedly compliant, the contact point moves as a function of the applied force and this causes the applied force to deviate from its desired value. We found that, through repeated attempts at generating the desired contact force, subjects discovered the unique compatible hand motion. When, after learning, the rigid contact was unexpectedly restored, subjects displayed after effects of learning, consistent with the concurrent operation of a motion control system and a force control system. Together, theory and experiment support a new and broader view of modularity in the coordinated control of forces and motions. PMID:26594163

  7. Impedance Spectroscopic Investigation of Proton Conductivity in Nafion Using Transient Electrochemical Atomic Force Microscopy (AFM)

    PubMed Central

    Hink, Steffen; Wagner, Norbert; Bessler, Wolfgang G.; Roduner, Emil

    2012-01-01

    Spatially resolved impedance spectroscopy of a Nafion polyelectrolyte membrane is performed employing a conductive and Pt-coated tip of an atomic force microscope as a point-like contact and electrode. The experiment is conducted by perturbing the system by a rectangular voltage step and measuring the incurred current, followed by Fourier transformation and plotting the impedance against the frequency in a conventional Bode diagram. To test the potential and limitations of this novel method, we present a feasibility study using an identical hydrogen atmosphere at a well-defined relative humidity on both sides of the membrane. It is demonstrated that good quality impedance spectra are obtained in a frequency range of 0.2–1000 Hz. The extracted polarization curves exhibit a maximum current which cannot be explained by typical diffusion effects. Simulation based on equivalent circuits requires a Nernst element for restricted diffusion in the membrane which suggests that this effect is based on the potential dependence of the electrolyte resistance in the high overpotential region. PMID:24958175

  8. Novel strategies in feedforward adaptation to a position-dependent perturbation.

    PubMed

    Hinder, Mark R; Milner, Theodore E

    2005-08-01

    To investigate the control mechanisms used in adapting to position-dependent forces, subjects performed 150 horizontal reaching movements over 25 cm in the presence of a position-dependent parabolic force field (PF). The PF acted only over the first 10 cm of the movement. On every fifth trial, a virtual mechanical guide (double wall) constrained subjects to move along a straight-line path between the start and target positions. Its purpose was to register lateral force to track formation of an internal model of the force field, and to look for evidence of possible alternative adaptive strategies. The force field produced a force to the right, which initially caused subjects to deviate in that direction. They reacted by producing deviations to the left, "into" the force field, as early as the second trial. Further adaptation resulted in rapid exponential reduction of kinematic error in the latter portion of the movement, where the greatest perturbation to the handpath was initially observed, whereas there was little modification of the handpath in the region where the PF was active. Significant force directed to counteract the PF was measured on the first guided trial, and was modified during the first half of the learning set. The total force impulse in the region of the PF increased throughout the learning trials, but it always remained less than that produced by the PF. The force profile did not resemble a mirror image of the PF in that it tended to be more trapezoidal than parabolic in shape. As in previous studies of force-field adaptation, we found that changes in muscle activation involved a general increase in the activity of all muscles, which increased arm stiffness, and selectively-greater increases in the activation of muscles which counteracted the PF. With training, activation was exponentially reduced, albeit more slowly than kinematic error. Progressive changes in kinematics and EMG occurred predominantly in the region of the workspace beyond the force field. We suggest that constraints on muscle mechanics limit the ability of the central nervous system to employ an inverse dynamics model to nullify impulse-like forces by generating mirror-image forces. Consequently, subjects adopted a strategy of slightly overcompensating for the first half of the force field, then allowing the force field to push them in the opposite direction. Muscle activity patterns in the region beyond the boundary of the force field were subsequently adjusted because of the relatively-slow response of the second-order mechanics of muscle impedance to the force impulse.

  9. New Approaches in Force-Limited Vibration Testing of Flight Hardware

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Kern, Dennis L.

    2012-01-01

    To qualify flight hardware for random vibration environments the following methods are used to limit the loads in the aerospace industry: (1) Response limiting and notching (2) Simple TDOF model (3) Semi-empirical force limits (4) Apparent mass, etc. and (5) Impedance method. In all these methods attempts are made to remove conservatism due to the mismatch in impedances between the test and the flight configurations of the hardware that are being qualified. Assumption is the hardware interfaces have correlated responses. A new method that takes into account the un-correlated hardware interface responses are described in this presentation.

  10. Ion transport restriction in mechanically strained separator membranes

    NASA Astrophysics Data System (ADS)

    Cannarella, John; Arnold, Craig B.

    2013-03-01

    We use AC impedance methods to investigate the effect of mechanical deformation on ion transport in commercial separator membranes and lithium-ion cells as a whole. A Bruggeman type power law relationship is found to provide an accurate correlation between porosity and tortuosity of deformed separators, which allows the impedance of a separator membrane to be predicted as a function of deformation. By using mechanical compression to vary the porosity of the separator membranes during impedance measurements it is possible to determine both the α and γ parameters from the modified Bruggeman relation for individual separator membranes. From impedance testing of compressed pouch cells it is found that separator deformation accounts for the majority of the transport restrictions arising from compressive stress in a lithium-ion cell. Finally, a charge state dependent increase in the impedance associated with charge transfer is observed with increasing cell compression.

  11. Comprehensive Study of Microgel Electrode for On-Chip Electrophoretic Cell Sorting

    NASA Astrophysics Data System (ADS)

    Akihiro Hattori,; Kenji Yasuda,

    2010-06-01

    We have developed an on-chip cell sorting system and microgel electrode for applying electrostatic force in microfluidic pathways in the chip. The advantages of agarose electrodes are 1) current-driven electrostatic force generation, 2) stability against pH change and chemicals, and 3) no bubble formation caused by electrolysis. We examined the carrier ion type and concentration dependence of microgel electrode impedance, and found that CoCl2 has less than 1/10 of the impedance from NaCl, and the reduction of the impedance of NaCl gel electrode was plateaued at 0.5 M. The structure control of the microgel electrode exploiting the surface tension of sol-state agarose was also introduced. The addition of 1% (w/v) trehalose into the microgel electrode allowed the frozen storage of the microgel electrode chip. The experimental results demonstrate the potential of our system and microgel electrode for practical applications in microfluidic chips.

  12. Impact of exacerbations on respiratory system impedance measured by a forced oscillation technique in COPD: a prospective observational study.

    PubMed

    Kamada, Takahiro; Kaneko, Masahiro; Tomioka, Hiromi

    2017-01-01

    Forced oscillation technique (FOT) has been reported to be useful in the evaluation and management of obstructive lung disease, including COPD. To date, no data are available concerning long-term changes in respiratory system impedance measured by FOT. Additionally, although exacerbations have been reported to be associated with excessive lung function decline in COPD, the impact of exacerbations on the results of FOT has not been demonstrated. The aim of this study was to investigate the longitudinal changes in respiratory system impedance and the influence of exacerbations thereon. Between March 2011 and March 2012, outpatients who attended Kobe City Medical Center West Hospital with a diagnosis of COPD were assessed for eligibility. Baseline patient characteristics (age, sex, body mass index, smoking history, current smoking status, COPD stage), lung function (post-bronchodilator forced expiratory volume in 1 second [FEV 1 ]), blood tests (neutrophils and eosinophils), FOT, and COPD assessment test results were collected at enrollment. Lung function and FOT were examined every 6 months until March 2016. Annual changes in FEV 1 and FOT parameters were obtained from the slope of the linear regression curve. The patients were divided into 2 groups based on exacerbation history. Fifty-one of 58 patients with COPD were enrolled in this study. The median follow-up period was 57 (52-59) months. Twenty-five (49%) patients experienced exacerbations. A significant annual decline in FEV 1 and respiratory system impedance were shown. Additionally, annual changes in FEV 1 , respiratory system resistance at 5 Hz, respiratory system reactance at 5 Hz, and resonant frequency were greater in patients with exacerbations than in those without exacerbations. Exacerbations of COPD lead not only to a decline in lung function but also to an increase in respiratory system impedance.

  13. Relationship between catheter contact force and radiofrequency lesion size and incidence of steam pop in the beating canine heart: electrogram amplitude, impedance, and electrode temperature are poor predictors of electrode-tissue contact force and lesion size.

    PubMed

    Ikeda, Atsushi; Nakagawa, Hiroshi; Lambert, Hendrik; Shah, Dipen C; Fonck, Edouard; Yulzari, Aude; Sharma, Tushar; Pitha, Jan V; Lazzara, Ralph; Jackman, Warren M

    2014-12-01

    Electrode-tissue contact force (CF) is believed to be a major factor in radiofrequency lesion size. The purpose of this study was to determine, in the beating canine heart, the relationship between CF and radiofrequency lesion size and the accuracy of predicting CF and lesion size by measuring electrogram amplitude, impedance, and electrode temperature. Eight dogs were studied closed chest. Using a 7F catheter with a 3.5 mm irrigated electrode and CF sensor (TactiCath, St. Jude Medical), radiofrequency applications were delivered to 3 separate sites in the right ventricle (30 W, 60 seconds, 17 mL/min irrigation) and 3 sites in the left ventricle (40 W, 60 seconds, 30 mL/min irrigation) at (1) low CF (median 8 g); (2) moderate CF (median 21 g); and (3) high CF (median 60 g). Dogs were euthanized and lesion size was measured. At constant radiofrequency and time, lesion size increased significantly with increasing CF (P<0.01). The incidence of a steam pop increased with both increasing CF and higher power. Peak electrode temperature correlated poorly with lesion size. The decrease in impedance during the radiofrequency application correlated well with lesion size for lesions in the left ventricle but less well for lesions in the right ventricle. There was a poor relationship between CF and the amplitude of the bipolar or unipolar ventricular electrogram, unipolar injury current, and impedance. Radiofrequencylesion size and the incidence of steam pop increase strikingly with increasing CF. Electrogram parameters and initial impedance are poor predictors of CF for radiofrequency ablation. © 2014 American Heart Association, Inc.

  14. Resistivity changes in conductive silicone sheets under stretching.

    PubMed

    González-Correa, C A; Screaton, G; Hose, D R; Brown, B H; Avis, N J; Kleinermann, F

    2002-02-01

    This paper reports a preliminary finding associated with an investigation of how tissues respond to mechanical stress. The stress distribution within the tissue may be the result of normal function, for example, joint forces, or it may result from interventions such as tissue suturing during or after surgery. We sought to combine electrical and mechanical computational models in order to better understand the interaction between the two. For example, if mechanical stress is applied to tissue this may change the cell arrangements within the tissue matrix and hence change the electrical properties. If this interaction could be determined, then it should be possible to use electrical impedance tomography measurements to identify stress patterns in tissues. Measurements of resistivity changes have been made in conductive silicone rubber sheets when subject to a uniaxial stress of up to 10%. Relatively large changes in resistivity are produced (up to 200%). These changes are far larger than those predicted arising from topological changes alone. It is suggested that under stress the conductive islands of carbon within the silicone rubber sheet undergo a reversible disassociation from their neighbours and that the material's electrical properties change under load. If similar stress-resistivity relationships occur within biological materials it may be possible to recover the stress fields within tissues from transfer impedance measurements and thereby predict if actions such as inappropriate suture tension will compromise tissue viability.

  15. Monovalent Strep-Tactin for strong and site-specific tethering in nanospectroscopy.

    PubMed

    Baumann, Fabian; Bauer, Magnus S; Milles, Lukas F; Alexandrovich, Alexander; Gaub, Hermann E; Pippig, Diana A

    2016-01-01

    Strep-Tactin, an engineered form of streptavidin, binds avidly to the genetically encoded peptide Strep-tag II in a manner comparable to streptavidin binding to biotin. These interactions have been used in protein purification and detection applications. However, in single-molecule studies, for example using atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS), the tetravalency of these systems impedes the measurement of monodispersed data. Here, we introduce a monovalent form of Strep-Tactin that harbours a unique binding site for Strep-tag II and a single cysteine that allows Strep-Tactin to specifically attach to the atomic force microscope cantilever and form a consistent pulling geometry to obtain homogeneous rupture data. Using AFM-SMFS, the mechanical properties of the interaction between Strep-tag II and monovalent Strep-Tactin were characterized. Rupture forces comparable to biotin:streptavidin unbinding were observed. Using titin kinase and green fluorescent protein, we show that monovalent Strep-Tactin is generally applicable to protein unfolding experiments. We expect monovalent Strep-Tactin to be a reliable anchoring tool for a range of single-molecule studies.

  16. Monovalent Strep-Tactin for strong and site-specific tethering in nanospectroscopy

    NASA Astrophysics Data System (ADS)

    Baumann, Fabian; Bauer, Magnus S.; Milles, Lukas F.; Alexandrovich, Alexander; Gaub, Hermann E.; Pippig, Diana A.

    2016-01-01

    Strep-Tactin, an engineered form of streptavidin, binds avidly to the genetically encoded peptide Strep-tag II in a manner comparable to streptavidin binding to biotin. These interactions have been used in protein purification and detection applications. However, in single-molecule studies, for example using atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS), the tetravalency of these systems impedes the measurement of monodispersed data. Here, we introduce a monovalent form of Strep-Tactin that harbours a unique binding site for Strep-tag II and a single cysteine that allows Strep-Tactin to specifically attach to the atomic force microscope cantilever and form a consistent pulling geometry to obtain homogeneous rupture data. Using AFM-SMFS, the mechanical properties of the interaction between Strep-tag II and monovalent Strep-Tactin were characterized. Rupture forces comparable to biotin:streptavidin unbinding were observed. Using titin kinase and green fluorescent protein, we show that monovalent Strep-Tactin is generally applicable to protein unfolding experiments. We expect monovalent Strep-Tactin to be a reliable anchoring tool for a range of single-molecule studies.

  17. Importance of catheter contact force during irrigated radiofrequency ablation: evaluation in a porcine ex vivo model using a force-sensing catheter.

    PubMed

    Thiagalingam, Aravinda; D'Avila, Andre; Foley, Lori; Guerrero, J Luis; Lambert, Hendrik; Leo, Giovanni; Ruskin, Jeremy N; Reddy, Vivek Y

    2010-07-01

    Ablation electrode-tissue contact has been shown to be an important determinant of lesion size and safety during nonirrigated ablation but little data are available during irrigated ablation. We aimed to determine the importance of contact force during irrigated-tip ablation. Freshly excised hearts from 11 male pigs were perfused and superfused using fresh, heparinized, oxygenated swine blood in an ex vivo model. One-minute ablations were placed using one of 3 different power control strategies (impedance control-15 Omega target impedance drop, and 20 W or 30 W fixed power) and 3 different contact forces (2 g, 20 g, and 60 g) to give a grid of 9 ablation groups. The force sensing catheter (Tacticath, Endosense SA) was irrigated at 17 mL/min for all of the ablations. Of a total 101 ablations, no thrombus formation was noted but popping was seen in 17 lesions. The lesion depth and incidence of pops was 5.0 +/- 1.3 mm /0%, 5.0 +/- 1.6 mm /10% and 6.7 +/- 2.5 mm /45% for the 15 Omega, 20 W, and 30 W groups (P < 0.01), respectively, and 4.4 +/- 1.8 mm /3%, 5.8 +/- 1.6 mm /17% and 6.6 +/- 2.0 mm /37% for the 2 g, 20 g, and 60 g groups, respectively (P < 0.01). The impedance drop in the first 5 seconds was significantly correlated to catheter contact force: 9.7 +/- 9.9 Omega, 22.3 +/- 11.0 Omega, and 41.7 +/- 22.1 Omega, respectively, for the 2 g, 20 g, and 60 g groups (Pearson's r = 0.65, P < 0.01). Catheter contact force has an important impact on both ablation lesion size and the incidence of pops.

  18. Passive vibration suppression using inerters for a multi-storey building structure

    NASA Astrophysics Data System (ADS)

    Zhang, Sara Ying; Jiang, Jason Zheng; Neild, Simon

    2016-09-01

    This paper investigates the use of inerters for vibration suppression of a multistorey building structure. The inerter was proposed as a two-terminal replacement for the mass element, with the property that the applied force is proportional to the relative acceleration across its terminals. It completes the force-current mechanical-electrical network analogy, providing the mechanical equivalent to a capacitor. Thus allows all passive mechanical impedances to be synthesised. The inerter has been used in Formula 1 racing cars and applications to various systems such as vehicle suspension have been identified. Several devices that incoporate inerter(s), as well as spring(s) and damper(s), have also been identified for vibration suppression of building structures. These include the tuned inerter damper (TID) and the tuned viscous mass damper (TVMD). In this paper, a three-storey building model with an absorber located at the bottom subjected to base excitation is studied. Four simple absorber layouts, in terms of how spring, damper and inerter components should be arranged, have been studied. In order to minimise the maximum relative displacement of the building, the optimum parameter values for each of the layouts have been obtained with respect to the inerter's size.

  19. Relative Roles of Soil Moisture, Nutrient Supply, Depth, and Mechanical Impedance in Determining Composition and Structure of Wisconsin Prairies

    PubMed Central

    Wernerehl, Robert W.; Givnish, Thomas J.

    2015-01-01

    Ecologists have long classified Midwestern prairies based on compositional variation assumed to reflect local gradients in moisture availability. The best known classification is based on Curtis’ continuum index (CI), calculated using the presence of indicator species thought centered on different portions of an underlying moisture gradient. Direct evidence of the extent to which CI reflects differences in moisture availability has been lacking, however. Many factors that increase moisture availability (e.g., soil depth, silt content) also increase nutrient supply and decrease soil mechanical impedance; the ecological effects of the last have rarely been considered in any ecosystem. Decreased soil mechanical impedance should increase the availability of soil moisture and nutrients by reducing the root costs of retrieving both. Here we assess the relative importance of soil moisture, nutrient supply, and mechanical impedance in determining prairie composition and structure. We used leaf δ13C of C3 plants as a measure of growing-season moisture availability, cation exchange capacity (CEC) x soil depth as a measure of mineral nutrient availability, and penetrometer data as a measure of soil mechanical impedance. Community composition and structure were assessed in 17 remnant prairies in Wisconsin which vary little in annual precipitation. Ordination and regression analyses showed that δ13C increased with CI toward “drier” sites, and decreased with soil depth and % silt content. Variation in δ13C among remnants was 2.0‰, comparable to that along continental gradients from ca. 500–1500 mm annual rainfall. As predicted, LAI and average leaf height increased significantly toward “wetter” sites. CI accounted for 54% of compositional variance but δ13C accounted for only 6.2%, despite the strong relationships of δ13C to CI and CI to composition. Compositional variation reflects soil fertility and mechanical impedance more than moisture availability. This study is the first to quantify the effects of soil mechanical impedance on community ecology. PMID:26368936

  20. Relative Roles of Soil Moisture, Nutrient Supply, Depth, and Mechanical Impedance in Determining Composition and Structure of Wisconsin Prairies.

    PubMed

    Wernerehl, Robert W; Givnish, Thomas J

    2015-01-01

    Ecologists have long classified Midwestern prairies based on compositional variation assumed to reflect local gradients in moisture availability. The best known classification is based on Curtis' continuum index (CI), calculated using the presence of indicator species thought centered on different portions of an underlying moisture gradient. Direct evidence of the extent to which CI reflects differences in moisture availability has been lacking, however. Many factors that increase moisture availability (e.g., soil depth, silt content) also increase nutrient supply and decrease soil mechanical impedance; the ecological effects of the last have rarely been considered in any ecosystem. Decreased soil mechanical impedance should increase the availability of soil moisture and nutrients by reducing the root costs of retrieving both. Here we assess the relative importance of soil moisture, nutrient supply, and mechanical impedance in determining prairie composition and structure. We used leaf δ13C of C3 plants as a measure of growing-season moisture availability, cation exchange capacity (CEC) x soil depth as a measure of mineral nutrient availability, and penetrometer data as a measure of soil mechanical impedance. Community composition and structure were assessed in 17 remnant prairies in Wisconsin which vary little in annual precipitation. Ordination and regression analyses showed that δ13C increased with CI toward "drier" sites, and decreased with soil depth and % silt content. Variation in δ13C among remnants was 2.0‰, comparable to that along continental gradients from ca. 500-1500 mm annual rainfall. As predicted, LAI and average leaf height increased significantly toward "wetter" sites. CI accounted for 54% of compositional variance but δ13C accounted for only 6.2%, despite the strong relationships of δ13C to CI and CI to composition. Compositional variation reflects soil fertility and mechanical impedance more than moisture availability. This study is the first to quantify the effects of soil mechanical impedance on community ecology.

  1. Electromechanical Impedance Response of a Cracked Timoshenko Beam

    PubMed Central

    Zhang, Yuxiang; Xu, Fuhou; Chen, Jiazhao; Wu, Cuiqin; Wen, Dongdong

    2011-01-01

    Typically, the Electromechanical Impedance (EMI) technique does not use an analytical model for basic damage identification. However, an accurate model is necessary for getting more information about any damage. In this paper, an EMI model is presented for predicting the electromechanical impedance of a cracked beam structure quantitatively. A coupled system of a cracked Timoshenko beam with a pair of PZT patches bonded on the top and bottom surfaces has been considered, where the bonding layers are assumed as a Kelvin-Voigt material. The shear lag model is introduced to describe the load transfer between the PZT patches and the beam structure. The beam crack is simulated as a massless torsional spring; the dynamic equations of the coupled system are derived, which include the crack information and the inertial forces of both PZT patches and adhesive layers. According to the boundary conditions and continuity conditions, the analytical expression of the admittance of PZT patch is obtained. In the case study, the influences of crack and the inertial forces of PZT patches are analyzed. The results show that: (1) the inertial forces affects significantly in high frequency band; and (2) the use of appropriate frequency range can improve the accuracy of damage identification. PMID:22164017

  2. Shunt effect of gas compression inside pneumotachographs during forced oscillations.

    PubMed

    Louis, B; Harf, A; Lorino, H; Isabey, D

    1991-01-01

    Determination of the frequency response of pneumotachographs is needed whenever they are used to measure high-frequency flows, such as in the forced oscillation method. When screen and capillary pneumotachographs are calibrated using an adiabatic compression in a closed box as a reference impedance, they can be adequately described by a series of inertial-resistive elements. However, this type of reference impedance strongly differs from the actual respiratory impedance (ZL). We studied the frequency response of pneumotachographs up to 250 Hz in reference to the impedance of a compressible gas oscillating in a long tube, taken as a more generalizable model of actual ZL. We found that, with this device, the series resistance-inertance models fail to describe the frequency response of the pneumotachograph. However, when compressible effects in the pneumotachograph are taken into account by adding to the resistive models a compliance (Cpn) corresponding to the compression in half of the inner volume of the pneumotachograph, the agreement with experiments becomes satisfactory. Gas compression-related phenomena were demonstrated to be negligible only when the parameter omega Cpn magnitude of ZL is much smaller than 1 (omega pulsation). Results obtained in normal humans have shown that such a correction is required above 100 Hz. Similar correction at lower frequency might also be necessary in cases of large respiratory impedance (e.g., babies, subjects with pathological lungs, and intubated subjects).

  3. Teleoperation System with Hybrid Pneumatic-Piezoelectric Actuation for MRI-Guided Needle Insertion with Haptic Feedback

    PubMed Central

    Shang, Weijian; Su, Hao; Li, Gang; Fischer, Gregory S.

    2014-01-01

    This paper presents a surgical master-slave tele-operation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. This system consists of a piezoelectrically actuated slave robot for needle placement with integrated fiber optic force sensor utilizing Fabry-Perot interferometry (FPI) sensing principle. The sensor flexure is optimized and embedded to the slave robot for measuring needle insertion force. A novel, compact opto-mechanical FPI sensor interface is integrated into an MRI robot control system. By leveraging the complementary features of pneumatic and piezoelectric actuation, a pneumatically actuated haptic master robot is also developed to render force associated with needle placement interventions to the clinician. An aluminum load cell is implemented and calibrated to close the impedance control loop of the master robot. A force-position control algorithm is developed to control the hybrid actuated system. Teleoperated needle insertion is demonstrated under live MR imaging, where the slave robot resides in the scanner bore and the user manipulates the master beside the patient outside the bore. Force and position tracking results of the master-slave robot are demonstrated to validate the tracking performance of the integrated system. It has a position tracking error of 0.318mm and sine wave force tracking error of 2.227N. PMID:25126446

  4. Teleoperation System with Hybrid Pneumatic-Piezoelectric Actuation for MRI-Guided Needle Insertion with Haptic Feedback.

    PubMed

    Shang, Weijian; Su, Hao; Li, Gang; Fischer, Gregory S

    2013-01-01

    This paper presents a surgical master-slave tele-operation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. This system consists of a piezoelectrically actuated slave robot for needle placement with integrated fiber optic force sensor utilizing Fabry-Perot interferometry (FPI) sensing principle. The sensor flexure is optimized and embedded to the slave robot for measuring needle insertion force. A novel, compact opto-mechanical FPI sensor interface is integrated into an MRI robot control system. By leveraging the complementary features of pneumatic and piezoelectric actuation, a pneumatically actuated haptic master robot is also developed to render force associated with needle placement interventions to the clinician. An aluminum load cell is implemented and calibrated to close the impedance control loop of the master robot. A force-position control algorithm is developed to control the hybrid actuated system. Teleoperated needle insertion is demonstrated under live MR imaging, where the slave robot resides in the scanner bore and the user manipulates the master beside the patient outside the bore. Force and position tracking results of the master-slave robot are demonstrated to validate the tracking performance of the integrated system. It has a position tracking error of 0.318mm and sine wave force tracking error of 2.227N.

  5. Sterically controlled mechanochemistry under hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Yan, Hao; Yang, Fan; Pan, Ding; Lin, Yu; Hohman, J. Nathan; Solis-Ibarra, Diego; Li, Fei Hua; Dahl, Jeremy E. P.; Carlson, Robert M. K.; Tkachenko, Boryslav A.; Fokin, Andrey A.; Schreiner, Peter R.; Galli, Giulia; Mao, Wendy L.; Shen, Zhi-Xun; Melosh, Nicholas A.

    2018-02-01

    Mechanical stimuli can modify the energy landscape of chemical reactions and enable reaction pathways, offering a synthetic strategy that complements conventional chemistry. These mechanochemical mechanisms have been studied extensively in one-dimensional polymers under tensile stress using ring-opening and reorganization, polymer unzipping and disulfide reduction as model reactions. In these systems, the pulling force stretches chemical bonds, initiating the reaction. Additionally, it has been shown that forces orthogonal to the chemical bonds can alter the rate of bond dissociation. However, these bond activation mechanisms have not been possible under isotropic, compressive stress (that is, hydrostatic pressure). Here we show that mechanochemistry through isotropic compression is possible by molecularly engineering structures that can translate macroscopic isotropic stress into molecular-level anisotropic strain. We engineer molecules with mechanically heterogeneous components—a compressible (‘soft’) mechanophore and incompressible (‘hard’) ligands. In these ‘molecular anvils’, isotropic stress leads to relative motions of the rigid ligands, anisotropically deforming the compressible mechanophore and activating bonds. Conversely, rigid ligands in steric contact impede relative motion, blocking reactivity. We combine experiments and computations to demonstrate hydrostatic-pressure-driven redox reactions in metal-organic chalcogenides that incorporate molecular elements that have heterogeneous compressibility, in which bending of bond angles or shearing of adjacent chains activates the metal-chalcogen bonds, leading to the formation of the elemental metal. These results reveal an unexplored reaction mechanism and suggest possible strategies for high-specificity mechanosynthesis.

  6. Effect of Applying Force to Self-Adhesive Electrodes on Transthoracic Impedance: Implications for Electrical Cardioversion.

    PubMed

    Ramirez, F Daniel; Fiset, Sandra L; Cleland, Mark J; Zakutney, Timothy J; Nery, Pablo B; Nair, Girish M; Redpath, Calum J; Sadek, Mouhannad M; Birnie, David H

    2016-10-01

    Current guidelines disagree on the role for applying force to electrodes during electrical cardioversion (ECV) for atrial fibrillation, particularly when using self-adhesive pads. We evaluated the impact of this practice on transthoracic impedance (TTI) with varying force and in individuals with differing body mass indices (BMI). We additionally assessed whether specific prompts could improve physicians' ECV technique. The study comprised three parts: (1) TTI was measured in 11 participants throughout the respiratory cycle and with variable force applied to self-adhesive electrodes in anteroposterior (AP) and anterolateral (AL) configurations. (2) Three participants in different BMI classes then had TTI measured with prespecified incremental force applied. (3) Ten blinded cardiology trainees simulated ECV on one participant with and without prompting (guideline reminders and force analogies) while force applied and TTI were measured. The AP approach was associated with 13% lower TTI than AL (P < 0.001). Strongly negative correlations were observed between force applied and TTI in the AL position, irrespective of BMI (P ≤ 0.003). In all cases, 80% of the total reduction in TTI observed was achieved with 8 kg-force (∼80 N). All prompts resulted in significantly greater force applied and modest reductions in TTI. Applying force to self-adhesive electrodes reduces TTI and should be considered as a means of improving ECV success. Numerically greater mean force applied with a "push-up" force analogy suggests that "concrete" cues may be useful in improving ECV technique. © 2016 Wiley Periodicals, Inc.

  7. Muscle contributions to propulsion and braking during walking and running: insight from external force perturbations.

    PubMed

    Ellis, Richard G; Sumner, Bonnie J; Kram, Rodger

    2014-09-01

    There remains substantial debate as to the specific contributions of individual muscles to center of mass accelerations during walking and running. To gain insight, we altered the demand for muscular propulsion and braking by applying external horizontal impeding and aiding forces near the center of mass as subjects walked and ran on a treadmill. We recorded electromyographic activity of the gluteus maximus (superior and inferior portions), the gluteus medius, biceps femoris, semitendinosus/membrinosus, vastus medialis, lateral and medial gastrocnemius and soleus. We reasoned that activity in a propulsive muscle would increase with external impeding force and decrease with external aiding force whereas activity in a braking muscle would show the opposite. We found that during walking the gastrocnemius and gluteus maximus provide propulsion while the vasti are central in providing braking. During running, we found that the gluteus maximus, vastus medialis, gastrocnemius and soleus all contribute to propulsion. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. A flight investigation of oscillating air forces: Equipment and technique

    NASA Technical Reports Server (NTRS)

    Reed, W. H., III

    1975-01-01

    The equipment and techniques are described which are to be used in a project aimed at measuring oscillating air forces and dynamic aeroelastic response of a swept wing airplane at high subsonic speeds. Electro-hydraulic inertia type shakers installed in the wing tips will excite various elastic airplane modes while the related oscillating chordwise pressures at two spanwise wing stations and the wing mode shapes are recorded on magnetic tape. The data reduction technique, following the principle of a wattmeter harmonic analyzer employed by Bratt, Wight, and Tilly, utilizes magnetic tape and high speed electronic multipliers to record directly the real and imaginary components of oscillatory data signals relative to a simple harmonic reference signal. Through an extension of this technique an automatic flight-flutter-test data analyzer is suggested in which vector plots of mechanical admittance or impedance would be plotted during the flight test.

  9. Multivariable Dynamic Ankle Mechanical Impedance With Active Muscles

    PubMed Central

    Lee, Hyunglae; Krebs, Hermano Igo; Hogan, Neville

    2015-01-01

    Multivariable dynamic ankle mechanical impedance in two coupled degrees-of-freedom (DOFs) was quantified when muscles were active. Measurements were performed at five different target activation levels of tibialis anterior and soleus, from 10% to 30% of maximum voluntary contraction (MVC) with increments of 5% MVC. Interestingly, several ankle behaviors characterized in our previous study of the relaxed ankle were observed with muscles active: ankle mechanical impedance in joint coordinates showed responses largely consistent with a second-order system consisting of inertia, viscosity, and stiffness; stiffness was greater in the sagittal plane than in the frontal plane at all activation conditions for all subjects; and the coupling between dorsiflexion–plantarflexion and inversion–eversion was small—the two DOF measurements were well explained by a strictly diagonal impedance matrix. In general, ankle stiffness increased linearly with muscle activation in all directions in the 2-D space formed by the sagittal and frontal planes, but more in the sagittal than in the frontal plane, resulting in an accentuated “peanut shape.” This characterization of young healthy subjects’ ankle mechanical impedance with active muscles will serve as a baseline to investigate pathophysiological ankle behaviors of biomechanically and/or neurologically impaired patients. PMID:25203497

  10. Optimal critic learning for robot control in time-varying environments.

    PubMed

    Wang, Chen; Li, Yanan; Ge, Shuzhi Sam; Lee, Tong Heng

    2015-10-01

    In this paper, optimal critic learning is developed for robot control in a time-varying environment. The unknown environment is described as a linear system with time-varying parameters, and impedance control is employed for the interaction control. Desired impedance parameters are obtained in the sense of an optimal realization of the composite of trajectory tracking and force regulation. Q -function-based critic learning is developed to determine the optimal impedance parameters without the knowledge of the system dynamics. The simulation results are presented and compared with existing methods, and the efficacy of the proposed method is verified.

  11. Mechanical Impedance of the Human Body in the Horizontal Direction

    NASA Astrophysics Data System (ADS)

    Holmlund, P.; Lundström, R.

    1998-08-01

    The mechanical impedance of the seated human body in horizontal directions (fore-and-aft and lateral) was measured during different experimental conditions, such as vibration level (0·25-1·4 m/s2r.m.s.), frequency (1·13-80 Hz), body weight (54-93 kg), upper body posture (relaxed and erect) and gender. The outcome showed that impedance, normalized by the sitting weight, varies with direction, level, posture and gender. Generally the impedance spectra show one peak for the fore-and-aft (X) direction while two peaks are found in the lateral (Y) direction. Males showed a lower normalized impedance than females. Increasing fore-and-aft vibration decreases the frequency at which maximum impedance occurs but also reduces the overall magnitude. For the lateral direction a more complex pattern was found. The frequency of impedance peaks are constant with increasing vibration level. The magnitude of the second peak decreases when changing posture from erect to relaxed. Males showed a higher impedance magnitude than females and a greater dip between the two peaks. The impedance spectra for the two horizontal directions have different shapes. This supports the idea of treating them differently; such as with respect to risk assessments and development of preventative measures.

  12. A novel mechatronic system for measuring end-point stiffness: mechanical design and preliminary tests.

    PubMed

    Masia, L; Sandini, G; Morasso, P G

    2011-01-01

    Measuring arm stiffness is of great interest for many disciplines from biomechanics to medicine especially because modulation of impedance represents one of the main mechanism underlying control of movement and interaction with external environment. Previous works have proposed different methods to identify multijoint hand stiffness by using planar or even tridimensional haptic devices, but the associated computational burden makes them not easy to implement. We present a novel mechanism conceived for measuring multijoint planar stiffness by a single measurement and in a reduced execution time. A novel mechanical rotary device applies cyclic radial perturbation to human arm of a known displacement and the force is acquired by means of a 6-axes commercial load cell. The outcomes suggest that the system is not only reliable but allows obtaining a bi-dimensional estimation of arm stiffness in reduced amount of time and the results are comparable with those reported in previous researches. © 2011 IEEE

  13. Assessment of upper airway mechanics during sleep.

    PubMed

    Farré, Ramon; Montserrat, Josep M; Navajas, Daniel

    2008-11-30

    Obstructive sleep apnea, which is the most prevalent sleep breathing disorder, is characterized by recurrent episodes of upper airway collapse and reopening. However, the mechanical properties of the upper airway are not directly measured in routine polysomnography because only qualitative sensors (thermistors for flow and thoraco-abdominal bands for pressure) are used. This review focuses on two techniques that quantify upper airway obstruction during sleep. A Starling model of collapsible conduit allows us to interpret the mechanics of the upper airway by means of two parameters: the critical pressure (Pcrit) and the upstream resistance (Rup). A simple technique to measure Pcrit and Rup involves the application of different levels of continuous positive airway pressure (CPAP) during sleep. The forced oscillation technique is another non-invasive procedure for quantifying upper airway impedance during the breathing cycle in sleep studies. The latest developments in these two methods allow them to be easily applied on a routine basis in order to more fully characterize upper airway mechanics in patients with sleep breathing disorders.

  14. A theoretical and experimental investigation of impact control for manipulators

    NASA Technical Reports Server (NTRS)

    Volpe, Richard; Khosla, Pradeep

    1993-01-01

    This article describes a simple control strategy for stable hardon-hard contact of a manipulator with the environment. The strategy is motivated by recognition of the equivalence of proportional gain explicit force control and impedance control. It is shown that negative proportional force gains, or impedance mass ratios less than unity, can equivalently provide excellent impact response without bouncing. This result is indicated by an analysis performed with an experimentally determined arm/sensor/environment model. The results are corroborated by experimental data from implementation of the control algorithms on the CMU DD Arm II system. The results confirm that manipulator impact against a stiff environment without bouncing can be readily handled by this novel control strategy.

  15. A New Approach in Force-Limited Vibration Testing of Flight Hardware

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Kern, Dennis L.

    2012-01-01

    The force-limited vibration test approaches discussed in NASA-7004C were developed to reduce overtesting associated with base shake vibration tests of aerospace hardware where the interface responses are excited coherently. This handbook outlines several different methods of specifying the force limits. The rationale for force limiting is based on the disparity between the impedances of typical aerospace mounting structures and the large impedances of vibration test shakers when the interfaces in general are coherently excited. Among these approaches, the semi-empirical method is presently the most widely used method to derive the force limits. The inclusion of the incoherent excitation of the aerospace structures at mounting interfaces has not been accounted for in the past and provides the basis for more realistic force limits for qualifying the hardware using shaker testing. In this paper current methods for defining the force limiting specifications discussed in the NASA handbook are reviewed using data from a series of acoustic and vibration tests. A new approach based on considering the incoherent excitation of the structural mounting interfaces using acoustic test data is also discussed. It is believed that the new approach provides much more realistic force limits that may further remove conservatism inherent in shaker vibration testing not accounted for by methods discussed in the NASA handbook. A discussion on using FEM/BEM analysis to obtain realistic force limits for flight hardware is provided.

  16. Updates on Force Limiting Improvements

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Scharton, Terry

    2013-01-01

    The following conventional force limiting methods currently practiced in deriving force limiting specifications assume one-dimensional translation source and load apparent masses: Simple TDOF model; Semi-empirical force limits; Apparent mass, etc.; Impedance method. Uncorrelated motion of the mounting points for components mounted on panels and correlated, but out-of-phase, motions of the support structures are important and should be considered in deriving force limiting specifications. In this presentation "rock-n-roll" motions of the components supported by panels, which leads to a more realistic force limiting specifications are discussed.

  17. Novel method to form adaptive internal impedance profiles in walkers.

    PubMed

    Escudero Morland, Maximilano F; Althoefer, Kaspar; Nanayakkara, Thrishantha

    2015-01-01

    This paper proposes a novel approach to improve walking in prosthetics, orthotics and robotics without closed loop controllers. The approach requires impedance profiles to be formed in a walker and uses state feedback to update the profiles in real-time via a simple policy. This approach is open loop and inherently copes with the challenge of uncertain environment. In application it could be used either online for a walker to adjust its impedance profiles in real-time to compensate for environmental changes, or offline to learn suitable profiles for specific environments. So far we have conducted simulations and experiments to investigate the transient and steady state gaits obtained using two simple update policies to form damping profiles in a passive dynamic walker known as the rimless wheel (RW). The damping profiles are formed in the motor that moves the RW vertically along a rail, analogous to a knee joint, and the two update equations were designed to a) control the angular velocity profile and b) minimise peak collision forces. Simulation results show that the velocity update equation works within limits and can cope with varying ground conditions. Experiment results show the angular velocity average reaching the target as well as the peak force update equation reducing peak collision forces in real-time.

  18. Transduction channels' gating can control friction on vibrating hair-cell bundles in the ear.

    PubMed

    Bormuth, Volker; Barral, Jérémie; Joanny, Jean-François; Jülicher, Frank; Martin, Pascal

    2014-05-20

    Hearing starts when sound-evoked mechanical vibrations of the hair-cell bundle activate mechanosensitive ion channels, giving birth to an electrical signal. As for any mechanical system, friction impedes movements of the hair bundle and thus constrains the sensitivity and frequency selectivity of auditory transduction. Friction is generally thought to result mainly from viscous drag by the surrounding fluid. We demonstrate here that the opening and closing of the transduction channels produce internal frictional forces that can dominate viscous drag on the micrometer-sized hair bundle. We characterized friction by analyzing hysteresis in the force-displacement relation of single hair-cell bundles in response to periodic triangular stimuli. For bundle velocities high enough to outrun adaptation, we found that frictional forces were maximal within the narrow region of deflections that elicited significant channel gating, plummeted upon application of a channel blocker, and displayed a sublinear growth for increasing bundle velocity. At low velocity, the slope of the relation between the frictional force and velocity was nearly fivefold larger than the hydrodynamic friction coefficient that was measured when the transduction machinery was decoupled from bundle motion by severing tip links. A theoretical analysis reveals that channel friction arises from coupling the dynamics of the conformational change associated with channel gating to tip-link tension. Varying channel properties affects friction, with faster channels producing smaller friction. We propose that this intrinsic source of friction may contribute to the process that sets the hair cell's characteristic frequency of responsiveness.

  19. Impedance modulation and feedback corrections in tracking targets of variable size and frequency.

    PubMed

    Selen, Luc P J; van Dieën, Jaap H; Beek, Peter J

    2006-11-01

    Humans are able to adjust the accuracy of their movements to the demands posed by the task at hand. The variability in task execution caused by the inherent noisiness of the neuromuscular system can be tuned to task demands by both feedforward (e.g., impedance modulation) and feedback mechanisms. In this experiment, we studied both mechanisms, using mechanical perturbations to estimate stiffness and damping as indices of impedance modulation and submovement scaling as an index of feedback driven corrections. Eight subjects tracked three differently sized targets (0.0135, 0.0270, and 0.0405 rad) moving at three different frequencies (0.20, 0.25, and 0.33 Hz). Movement variability decreased with both decreasing target size and movement frequency, whereas stiffness and damping increased with decreasing target size, independent of movement frequency. These results are consistent with the theory that mechanical impedance acts as a filter of noisy neuromuscular signals but challenge stochastic theories of motor control that do not account for impedance modulation and only partially for feedback control. Submovements during unperturbed cycles were quantified in terms of their gain, i.e., the slope between their duration and amplitude in the speed profile. Submovement gain decreased with decreasing movement frequency and increasing target size. The results were interpreted to imply that submovement gain is related to observed tracking errors and that those tracking errors are expressed in units of target size. We conclude that impedance and submovement gain modulation contribute additively to tracking accuracy.

  20. Electrical stimulation causes rapid changes in electrode impedance of cell-covered electrodes

    NASA Astrophysics Data System (ADS)

    Newbold, Carrie; Richardson, Rachael; Millard, Rodney; Seligman, Peter; Cowan, Robert; Shepherd, Robert

    2011-06-01

    Animal and clinical observations of a reduction in electrode impedance following electrical stimulation encouraged the development of an in vitro model of the electrode-tissue interface. This model was used previously to show an increase in impedance with cell and protein cover over electrodes. In this paper, the model was used to assess the changes in electrode impedance and cell cover following application of a charge-balanced biphasic current pulse train. Following stimulation, a large and rapid drop in total impedance (Zt) and access resistance (Ra) occurred. The magnitude of this impedance change was dependent on the current amplitude used, with a linear relationship determined between Ra and the resulting cell cover over the electrodes. The changes in impedance due to stimulation were shown to be transitory, with impedance returning to pre-stimulation levels several hours after cessation of stimulation. A loss of cells over the electrode surface was observed immediately after stimulation, suggesting that the level of stimulation applied was creating localized changes to cell adhesion. Similar changes in electrode impedance were observed for in vivo and in vitro work, thus helping to verify the in vitro model, although the underlying mechanisms may differ. A change in the porosity of the cellular layer was proposed to explain the alterations in electrode impedance in vitro. These in vitro studies provide insight into the possible mechanisms occurring at the electrode-tissue interface in association with electrical stimulation.

  1. Point source moving above a finite impedance reflecting plane - Experiment and theory

    NASA Technical Reports Server (NTRS)

    Norum, T. D.; Liu, C. H.

    1978-01-01

    A widely used experimental version of the acoustic monopole consists of an acoustic driver of restricted opening forced by a discrete frequency oscillator. To investigate the effects of forward motion on this source, it was mounted above an automobile and driven over an asphalt surface at constant speed past a microphone array. The shapes of the received signal were compared to results computed from an analysis of a fluctuating-mass-type point source moving above a finite impedance reflecting plane. Good agreement was found between experiment and theory when a complex normal impedance representative of a fairly hard acoustic surface was used in the analysis.

  2. Investigation of the Impedance Characteristic of Human Arm for Development of Robots to Cooperate with Humans

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Mozasser; Ikeura, Ryojun; Mizutani, Kazuki

    In the near future many aspects of our lives will be encompassed by tasks performed in cooperation with robots. The application of robots in home automation, agricultural production and medical operations etc. will be indispensable. As a result robots need to be made human-friendly and to execute tasks in cooperation with humans. Control systems for such robots should be designed to work imitating human characteristics. In this study, we have tried to achieve these goals by means of controlling a simple one degree-of-freedom cooperative robot. Firstly, the impedance characteristic of the human arm in a cooperative task is investigated. Then, this characteristic is implemented to control a robot in order to perform cooperative task with humans. A human followed the motion of an object, which is moved through desired trajectories. The motion is actuated by the linear motor of the one degree-of-freedom robot system. Trajectories used in the experiments of this method were minimum jerk (the rate of change of acceleration) trajectory, which was found during human and human cooperative task and optimum for muscle movement. As the muscle is mechanically analogous to a spring-damper system, a simple second-order equation is used as models for the arm dynamics. In the model, we considered mass, stiffness and damping factor. Impedance parameter is calculated from the position and force data obtained from the experiments and based on the “Estimation of Parametric Model”. Investigated impedance characteristic of human arm is then implemented to control a robot, which performed cooperative task with human. It is observed that the proposed control methodology has given human like movements to the robot for cooperating with human.

  3. Rate limiting mechanisms in lithium-molybdenum disulfide batteries

    NASA Astrophysics Data System (ADS)

    Laman, F. C.; Stiles, J. A. R.; Brandt, K.; Shank, R. J.

    1985-03-01

    One limitation of secondary lithium batteries using intercalation cathodes is generally related to relatively low power densities. Significant advances towards overcoming this limitation have been made in cells based on a utilization of lithium-molybdenum disulfide technology. Rate limiting mechanisms in cells of the lithium-molybdenum disulfide system have been studied with the aid of a frequency response analysis. It was found that diffusion-related contributions to cell impedance, and interfacial and resistive contributions to cell impedance, can be readily segregated by virtue of the fact that the diffusion-controlled mechanisms dominate the low frequency end of the impedance spectra, while the other mechanisms dominate the high frequency end. The present investigation is concerned with rate limitations at the high end of the frequency spectrum in lithium-molybdenum disulfide cathodes.

  4. Coupled dynamics of a viscoelastically supported infinite string and a number of discrete mechanical systems moving with uniform speed

    NASA Astrophysics Data System (ADS)

    Roy, Soumyajit; Chakraborty, G.; DasGupta, Anirvan

    2018-02-01

    The mutual interaction between a number of multi degrees of freedom mechanical systems moving with uniform speed along an infinite taut string supported by a viscoelastic layer has been studied using the substructure synthesis method when base excitations of a common frequency are given to the mechanical systems. The mobility or impedance matrices of the string have been calculated analytically by Fourier transform method as well as wave propagation technique. The above matrices are used to calculate the response of the discrete mechanical systems. Special attention is paid to the contact forces between the discrete and the continuous systems which are estimated by numerical simulation. The effects of phase difference, the distance between the systems and different base excitation amplitudes on the collective behaviour of the mechanical systems are also studied. The present study has relevance to the coupled dynamic problem of more than one railway pantographs and an overhead catenary system where the pantographs are modelled as discrete systems and the catenary is modelled as a taut string supported by continuous viscoelastic layer.

  5. Split D Differential Probe Model Validation Using an Impedance Analyzer (Preprint)

    DTIC Science & Technology

    2014-02-01

    AIR FORCE RESEARCH LABORATORY MATERIALS AND MANUFACTURING DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7750 AIR FORCE MATERIEL COMMAND... manufacture , use, or sell any patented invention that may relate to them. This report was cleared for public release by the USAF 88th Air Base Wing (88...Materials Division Materials and Manufacturing Directorate This report is published in the interest of scientific and technical information

  6. Time resolved impedance spectroscopy analysis of lithium phosphorous oxynitride - LiPON layers under mechanical stress

    NASA Astrophysics Data System (ADS)

    Glenneberg, Jens; Bardenhagen, Ingo; Langer, Frederieke; Busse, Matthias; Kun, Robert

    2017-08-01

    In this paper we present investigations on the morphological and electrochemical changes of lithium phosphorous oxynitride (LiPON) under mechanically bent conditions. Therefore, two types of electrochemical cells with LiPON thin films were prepared by physical vapor deposition. First, symmetrical cells with two blocking electrodes (Cu/LiPON/Cu) were fabricated. Second, to simulate a more application-related scenario cells with one blocking and one non-blocking electrode (Cu/LiPON/Li/Cu) were analyzed. In order to investigate mechanical distortion induced transport property changes in LiPON layers the cells were deposited on a flexible polyimide substrate. Morphology of the as-prepared samples and deviations from the initial state after applying external stress by bending the cells over different radii were investigated by Focused Ion Beam- Scanning Electron Microscopy (FIB-SEM) cross-section and surface images. Mechanical stress induced changes in the impedance were evaluated by time-resolved electrochemical impedance spectroscopy (EIS). Due to the formation of a stable, ion-conducting solid electrolyte interphase (SEI), cells with lithium show decreased impedance values. Furthermore, applying mechanical stress to the cells results in a further reduction of the electrolyte resistance. These results are supported by finite element analysis (FEA) simulations.

  7. Prediction of radiofrequency ablation lesion formation using a novel temperature sensing technology incorporated in a force sensing catheter.

    PubMed

    Rozen, Guy; Ptaszek, Leon; Zilberman, Israel; Cordaro, Kevin; Heist, E Kevin; Beeckler, Christopher; Altmann, Andres; Ying, Zhang; Liu, Zhenjiang; Ruskin, Jeremy N; Govari, Assaf; Mansour, Moussa

    2017-02-01

    Real-time radiofrequency (RF) ablation lesion assessment is a major unmet need in cardiac electrophysiology. The purpose of this study was to assess whether improved temperature measurement using a novel thermocoupling (TC) technology combined with information derived from impedance change, contact force (CF) sensing, and catheter orientation allows accurate real-time prediction of ablation lesion formation. RF ablation lesions were delivered in the ventricles of 15 swine using a novel externally irrigated-tip catheter containing 6 miniature TC sensors in addition to force sensing technology. Ablation duration, power, irrigation rate, impedance drop, CF, and temperature from each sensor were recorded. The catheter "orientation factor" was calculated using measurements from the different TC sensors. Information derived from all the sources was included in a mathematical model developed to predict lesion depth and validated against histologic measurements. A total of 143 ablation lesions were delivered to the left ventricle (n = 74) and right ventricle (n = 69). Mean CF applied during the ablations was 14.34 ± 3.55g, and mean impedance drop achieved during the ablations was 17.5 ± 6.41 Ω. Mean difference between predicted and measured ablation lesion depth was 0.72 ± 0.56 mm. In the majority of lesions (91.6%), the difference between estimated and measured depth was ≤1.5 mm. Accurate real-time prediction of RF lesion depth is feasible using a novel ablation catheter-based system in conjunction with a mathematical prediction model, combining elaborate temperature measurements with information derived from catheter orientation, CF sensing, impedance change, and additional ablation parameters. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  8. Multivariable Dynamic Ankle Mechanical Impedance With Relaxed Muscles

    PubMed Central

    Lee, Hyunglae; Krebs, Hermano Igo; Hogan, Neville

    2015-01-01

    Neurological or biomechanical disorders may distort ankle mechanical impedance and thereby impair locomotor function. This paper presents a quantitative characterization of multivariable ankle mechanical impedance of young healthy subjects when their muscles were relaxed, to serve as a baseline to compare with pathophysiological ankle properties of biomechanically and/or neurologically impaired patients. Measurements using a highly backdrivable wearable ankle robot combined with multi-input multi-output stochastic system identification methods enabled reliable characterization of ankle mechanical impedance in two degrees-of-freedom (DOFs) simultaneously, the sagittal and frontal planes. The characterization included important ankle properties unavailable from single DOF studies: coupling between DOFs and anisotropy as a function of frequency. Ankle impedance in joint coordinates showed responses largely consistent with a second-order system consisting of inertia, viscosity, and stiffness in both seated (knee flexed) and standing (knee straightened) postures. Stiffness in the sagittal plane was greater than in the frontal plane and furthermore, was greater when standing than when seated, most likely due to the stretch of bi-articular muscles (medial and lateral gastrocnemius). Very low off-diagonal partial coherences implied negligible coupling between dorsiflexion-plantarflexion and inversion-eversion. The directions of principal axes were tilted slightly counterclockwise from the original joint coordinates. The directional variation (anisotropy) of ankle impedance in the 2-D space formed by rotations in the sagittal and frontal planes exhibited a characteristic “peanut” shape, weak in inversion-eversion over a wide range of frequencies from the stiffness dominated region up to the inertia dominated region. Implications for the assessment of neurological and biomechanical impairments are discussed. PMID:24686292

  9. Sensitivity of PZT Impedance Sensors for Damage Detection of Concrete Structures

    PubMed Central

    Yang, Yaowen; Hu, Yuhang; Lu, Yong

    2008-01-01

    Piezoelectric ceramic Lead Zirconate Titanate (PZT) based electro-mechanical impedance (EMI) technique for structural health monitoring (SHM) has been successfully applied to various engineering systems. However, fundamental research work on the sensitivity of the PZT impedance sensors for damage detection is still in need. In the traditional EMI method, the PZT electro-mechanical (EM) admittance (inverse of the impedance) is used as damage indicator, which is difficult to specify the effect of damage on structural properties. This paper uses the structural mechanical impedance (SMI) extracted from the PZT EM admittance signature as the damage indicator. A comparison study on the sensitivity of the EM admittance and the structural mechanical impedance to the damages in a concrete structure is conducted. Results show that the SMI is more sensitive to the damage than the EM admittance thus a better indicator for damage detection. Furthermore, this paper proposes a dynamic system consisting of a number of single-degree-of-freedom elements with mass, spring and damper components to model the SMI. A genetic algorithm is employed to search for the optimal value of the unknown parameters in the dynamic system. An experiment is carried out on a two-storey concrete frame subjected to base vibrations that simulate earthquake. A number of PZT sensors are regularly arrayed and bonded to the frame structure to acquire PZT EM admittance signatures. The relationship between the damage index and the distance of the PZT sensor from the damage is studied. Consequently, the sensitivity of the PZT sensors is discussed and their sensing region in concrete is derived. PMID:27879711

  10. Multivariable dynamic ankle mechanical impedance with relaxed muscles.

    PubMed

    Lee, Hyunglae; Krebs, Hermano Igo; Hogan, Neville

    2014-11-01

    Neurological or biomechanical disorders may distort ankle mechanical impedance and thereby impair locomotor function. This paper presents a quantitative characterization of multivariable ankle mechanical impedance of young healthy subjects when their muscles were relaxed, to serve as a baseline to compare with pathophysiological ankle properties of biomechanically and/or neurologically impaired patients. Measurements using a highly backdrivable wearable ankle robot combined with multi-input multi-output stochastic system identification methods enabled reliable characterization of ankle mechanical impedance in two degrees-of-freedom (DOFs) simultaneously, the sagittal and frontal planes. The characterization included important ankle properties unavailable from single DOF studies: coupling between DOFs and anisotropy as a function of frequency. Ankle impedance in joint coordinates showed responses largely consistent with a second-order system consisting of inertia, viscosity, and stiffness in both seated (knee flexed) and standing (knee straightened) postures. Stiffness in the sagittal plane was greater than in the frontal plane and furthermore, was greater when standing than when seated, most likely due to the stretch of bi-articular muscles (medial and lateral gastrocnemius). Very low off-diagonal partial coherences implied negligible coupling between dorsiflexion-plantarflexion and inversion-eversion. The directions of principal axes were tilted slightly counterclockwise from the original joint coordinates. The directional variation (anisotropy) of ankle impedance in the 2-D space formed by rotations in the sagittal and frontal planes exhibited a characteristic "peanut" shape, weak in inversion-eversion over a wide range of frequencies from the stiffness dominated region up to the inertia dominated region. Implications for the assessment of neurological and biomechanical impairments are discussed.

  11. Lung volume changes during cleaning of closed endotracheal suction catheters: a randomized crossover study using electrical impedance tomography.

    PubMed

    Corley, Amanda; Sharpe, Nicola; Caruana, Lawrence R; Spooner, Amy J; Fraser, John F

    2014-04-01

    Airway suctioning in mechanically ventilated patients is required to maintain airway patency. Closed suction catheters (CSCs) minimize lung volume loss during suctioning but require cleaning post-suction. Despite their widespread use, there is no published evidence examining lung volumes during CSC cleaning. The study objectives were to quantify lung volume changes during CSC cleaning and to determine whether these changes were preventable using a CSC with a valve in situ between the airway and catheter cleaning chamber. This prospective randomized crossover study was conducted in a metropolitan tertiary ICU. Ten patients mechanically ventilated via volume-controlled synchronized intermittent mandatory ventilation (SIMV-VC) and requiring manual hyperinflation (MHI) were included in this study. CSC cleaning was performed using 2 different brands of CSC (one with a valve [Ballard Trach Care 72, Kimberly-Clark, Roswell, Georgia] and one without [Portex Steri-Cath DL, Smiths Medical, Dublin, Ohio]). The maneuvers were performed during both SIMV-VC and MHI. Lung volume change was measured via impedance change using electrical impedance tomography. A mixed model was used to compare the estimated means. During cleaning of the valveless CSC, significant decreases in lung impedance occurred during MHI (-2563 impedance units, 95% CI 2213-2913, P < .001), and significant increases in lung impedance occurred during SIMV (762 impedance units, 95% CI 452-1072, P < .001). In contrast, cleaning of the CSC with a valve in situ resulted in non-significant lung volume changes and maintenance of normal ventilation during MHI and SIMV-VC, respectively (188 impedance units, 95% CI -136 to 511, P = .22; and 22 impedance units, 95% CI -342 to 299, P = .89). When there is no valve between the airway and suction catheter, cleaning of the CSC results in significant derangements in lung volume. Therefore, the presence of such a valve should be considered essential in preserving lung volumes and uninterrupted ventilation in mechanically ventilated patients.

  12. Anisotropy of human muscle via non invasive impedance measurements. Frequency dependence of the impedance changes during isometric contractions

    NASA Astrophysics Data System (ADS)

    Kashuri, Hektor

    In this thesis we present non invasive muscle impedance measurements using rotatable probes extending the work done by Aaron et al. (1997) by measuring not only the real part of the impedance but the imaginary part as well. The results reveal orientations of underlying muscle fibers via minima in resistance and reactance versus angle curves, suggesting this method as potentially useful for studying muscle properties in clinical and physiological research. Calculations of the current distribution for a slab of material with anisotropic conductivity show that the current distribution depends strongly on the separation of two current electrodes and as well as on its conducting anisotropy. Forearm muscle impedance measurements at 50 kHz done by Shiffman et al. (2003) had shown that both resistance (R) and reactance (X) increase during isometric contraction. We have extended these measurements in the 3 to 100 kHz range and we found that resistance (R) and reactance (X) both increase and their changes increased or decreased at frequency dependent rates. Analysis based on circuit models of changes in R and X during the short contraction pulses showed that the extra cellular fluid resistance increased by 3.9 +/- 1.4 %, while the capacitance increased by 5.6 +/- 2 %. For long contraction pulses at very low frequencies: (1) there was practically no change in R during contraction, which implies that these changes are due to cellular membrane or intracellular effects with the extra cellular water component not participating, and (2) in post contraction stage there were no morphological changes which means that drifts in R can only be due to physiological changes. Following Shiffman et al. (2003) we measured impedance changes of R and X during a triangular shaped pulse of force generated via isometric forearm muscle contraction at 50 kHz. We measured these changes in 3-100 kHz frequency range for a stair case pulse of forces and the results showed that they are frequency dependent. Analysis based on circuit models suggest that the increase of isometric forearm muscle contraction is accompanied with both extra and intra cellular effects. The decrease following it is accompanied with changes in the extra cellular components and with intracellular elements remaining at the values they have at the maximum contraction force.

  13. Implications of low mechanical impedance in upper limb reaching motion.

    PubMed

    Popescu, Florin C; Rymeri, W Zev

    2003-10-01

    The equilibrium point hypothesis (EPH), much discussed in recent years, is central in a class of theories that posits an important role for muscular mechanical and reflex properties in the control of voluntary movement. We review briefly the findings of our studies testing the idea of equifinality, a major tenet of the EPH, which predicts that terminal limb position will be achieved regardless of transient perturbations in initial position or during ongoing movement. Our observations do not support this prediction of equifinality. We also report our findings that joint viscosity and elastic stiffness estimated during ballistic motion are unexpectedly low, limiting their potential contributions to the regulation either of limb movement trajectory or of limb stability. Taken together, our results imply that neuromuscular mechanical properties are unlikely to be used for regulating voluntary motion, and that other control strategies, most notably the use of feedforward controllers in which muscles act as force generators acting primarily on inertial loads, are more consistent with our observations.

  14. Method to tune electrical impedance of LSMO/PMN-PT by nanocontact

    NASA Astrophysics Data System (ADS)

    Zhou, Hao; Pei, Yongmao; Wang, Yaobing; Lei, Hongshuai

    2018-01-01

    Electromagnetic composites have wide application in the functional devices. For the best performance of devices, the regulation of the electrical impedance has been being desired for the impedance matching in service. However, the keeping of impedance matching in service is quite challenging. In the present work, a mechanical method for tuning the electrical impedance of La0.7Sr0.3MnO3/0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 (LSMO/PMN-PT) based on the nanocontact technique is proposed. It is found that the electrical impedance reduces with the increase of the nanocontact load. A linear relationship is found between the square of impedance magnitude and the inverse of nanocontact depth. Furthermore, a method for predicting the contact-depth-dependent impedance magnitude of LSMO/PMN-PT is proposed.

  15. Performance and stability of telemanipulators using bilateral impedance control. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Moore, Christopher Lane

    1991-01-01

    A new method of control for telemanipulators called bilateral impedance control is investigated. This new method differs from previous approaches in that interaction forces are used as the communication signals between the master and slave robots. The new control architecture has several advantages: (1) It allows the master robot and the slave robot to be stabilized independently without becoming involved in the overall system dynamics; (2) It permits the system designers to arbitrarily specify desired performance characteristics such as the force and position ratios between the master and slave; (3) The impedance at both ends of the telerobotic system can be modulated to suit the requirements of the task. The main goals of the research are to characterize the performance and stability of the new control architecture. The dynamics of the telerobotic system are described by a bond graph model that illustrates how energy is transformed, stored, and dissipated. Performance can be completely described by a set of three independent parameters. These parameters are fundamentally related to the structure of the H matrix that regulates the communication of force signals within the system. Stability is analyzed with two mathematical techniques: the Small Gain Theorem and the Multivariable Nyquist Criterion. The theoretical predictions for performance and stability are experimentally verified by implementing the new control architecture on a multidegree of freedom telemanipulator.

  16. Review of pantograph and catenary interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Weihua; Zou, Dong; Tan, Mengying; Zhou, Ning; Li, Ruiping; Mei, Guiming

    2018-06-01

    The application of electrified railway directly promotes relevant studies on pantograph-catenary interaction. With the increase of train running speed, the operating conditions for pantograph and catenary have become increasingly complex. This paper reviews the related achievements contributed by groups and institutions around the world. This article specifically focuses on three aspects: The dynamic characteristics of the pantograph and catenary components, the systems' dynamic properties, and the environmental influences on the pantograph-catenary interaction. In accordance with the existing studies, future research may prioritize the task of identifying the mechanism of contact force variation. This kind of study can be carried out by simplifying the pantograph-catenary interaction into a moving load problem and utilizing the theory of matching mechanical impedance. In addition, developing a computational platform that accommodates environmental interferences and multi-field coupling effects is necessary in order to further explore applications based on fundamental studies.

  17. A comparison of linear respiratory system models based on parameter estimates from PRN forced oscillation data.

    PubMed

    Diong, B; Grainger, J; Goldman, M; Nazeran, H

    2009-01-01

    The forced oscillation technique offers some advantages over spirometry for assessing pulmonary function. It requires only passive patient cooperation; it also provides data in a form, frequency-dependent impedance, which is very amenable to engineering analysis. In particular, the data can be used to obtain parameter estimates for electric circuit-based models of the respiratory system, which can in turn aid the detection and diagnosis of various diseases/pathologies. In this study, we compare the least-squares error performance of the RIC, extended RIC, augmented RIC, augmented RIC+I(p), DuBois, Nagels and Mead models in fitting 3 sets of impedance data. These data were obtained by pseudorandom noise forced oscillation of healthy subjects, mild asthmatics and more severe asthmatics. We found that the aRIC+I(p) and DuBois models yielded the lowest fitting errors (for the healthy subjects group and the 2 asthmatic patient groups, respectively) without also producing unphysiologically large component estimates.

  18. Feedforward compensation for novel dynamics depends on force field orientation but is similar for the left and right arms.

    PubMed

    Reuter, Eva-Maria; Cunnington, Ross; Mattingley, Jason B; Riek, Stephan; Carroll, Timothy J

    2016-11-01

    There are well-documented differences in the way that people typically perform identical motor tasks with their dominant and the nondominant arms. According to Yadav and Sainburg's (Neuroscience 196: 153-167, 2011) hybrid-control model, this is because the two arms rely to different degrees on impedance control versus predictive control processes. Here, we assessed whether differences in limb control mechanisms influence the rate of feedforward compensation to a novel dynamic environment. Seventy-five healthy, right-handed participants, divided into four subsamples depending on the arm (left, right) and direction of the force field (ipsilateral, contralateral), reached to central targets in velocity-dependent curl force fields. We assessed the rate at which participants developed predictive compensation for the force field using intermittent error-clamp trials and assessed both kinematic errors and initial aiming angles in the field trials. Participants who were exposed to fields that pushed the limb toward ipsilateral space reduced kinematic errors more slowly, built up less predictive field compensation, and relied more on strategic reaiming than those exposed to contralateral fields. However, there were no significant differences in predictive field compensation or kinematic errors between limbs, suggesting that participants using either the left or the right arm could adapt equally well to novel dynamics. It therefore appears that the distinct preferences in control mechanisms typically observed for the dominant and nondominant arms reflect a default mode that is based on habitual functional requirements rather than an absolute limit in capacity to access the controller specialized for the opposite limb. Copyright © 2016 the American Physiological Society.

  19. Feedforward compensation for novel dynamics depends on force field orientation but is similar for the left and right arms

    PubMed Central

    Cunnington, Ross; Mattingley, Jason B.; Riek, Stephan; Carroll, Timothy J.

    2016-01-01

    There are well-documented differences in the way that people typically perform identical motor tasks with their dominant and the nondominant arms. According to Yadav and Sainburg's (Neuroscience 196: 153–167, 2011) hybrid-control model, this is because the two arms rely to different degrees on impedance control versus predictive control processes. Here, we assessed whether differences in limb control mechanisms influence the rate of feedforward compensation to a novel dynamic environment. Seventy-five healthy, right-handed participants, divided into four subsamples depending on the arm (left, right) and direction of the force field (ipsilateral, contralateral), reached to central targets in velocity-dependent curl force fields. We assessed the rate at which participants developed predictive compensation for the force field using intermittent error-clamp trials and assessed both kinematic errors and initial aiming angles in the field trials. Participants who were exposed to fields that pushed the limb toward ipsilateral space reduced kinematic errors more slowly, built up less predictive field compensation, and relied more on strategic reaiming than those exposed to contralateral fields. However, there were no significant differences in predictive field compensation or kinematic errors between limbs, suggesting that participants using either the left or the right arm could adapt equally well to novel dynamics. It therefore appears that the distinct preferences in control mechanisms typically observed for the dominant and nondominant arms reflect a default mode that is based on habitual functional requirements rather than an absolute limit in capacity to access the controller specialized for the opposite limb. PMID:27582293

  20. Impedance Control of the Rehabilitation Robot Based on Sliding Mode Control

    NASA Astrophysics Data System (ADS)

    Zhou, Jiawang; Zhou, Zude; Ai, Qingsong

    As an auxiliary treatment, the 6-DOF parallel robot plays an important role in lower limb rehabilitation. In order to improve the efficiency and flexibility of the lower limb rehabilitation training, this paper studies the impedance controller based on the position control. A nonsingular terminal sliding mode control is developed to ensure the trajectory tracking precision and in contrast to traditional PID control strategy in the inner position loop, the system will be more stable. The stability of the system is proved by Lyapunov function to guarantee the convergence of the control errors. Simulation results validate the effectiveness of the target impedance model and show that the parallel robot can adjust gait trajectory online according to the human-machine interaction force to meet the gait request of patients, and changing the impedance parameters can meet the demands of different stages of rehabilitation training.

  1. Thermal and Lorentz Force Analysis of Beryllium Windows for the Rectilinear Muon Cooling Channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Tianhuan; Li, D.; Virostek, S.

    Reduction of the 6-dimensional phase-space of a muon beam by several orders of magnitude is a key requirement for a Muon Collider. Recently, a 12-stage rectilinear ionization cooling channel has been proposed to achieve that goal. The channel consists of a series of low frequency (325 MHz-650 MHz) normal conducting pillbox cavities, which are enclosed with thin beryllium windows (foils) to increase shunt impedance and give a higher field on-axis for a given amount of power. These windows are subject to ohmic heating from RF currents and Lorentz force from the EM field in the cavity, both of which willmore » produce out of the plane displacements that can detune the cavity frequency. In this study, using the TEM3P code, we report on a detailed thermal and mechanical analysis for the actual Be windows used on a 325 MHz cavity in a vacuum ionization cooling rectilinear channel for a Muon Collider.« less

  2. Thermal and Lorentz force analysis of beryllium windows for a rectilinear muon cooling channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, T.; Stratakis, D.; Li, D.

    Reduction of the 6-dimensional phase-space of a muon beam by several orders of magnitude is a key requirement for a Muon Collider. Recently, a 12-stage rectilinear ionization cooling channel has been proposed to achieve that goal. The channel consists of a series of low frequency (325 MHz-650 MHz) normal conducting pillbox cavities, which are enclosed with thin beryllium windows (foils) to increase shunt impedance and give a higher field on-axis for a given amount of power. These windows are subject to ohmic heating from RF currents and Lorentz force from the EM field in the cavity, both of which willmore » produce out of the plane displacements that can detune the cavity frequency. In this study, using the TEM3P code, we report on a detailed thermal and mechanical analysis for the actual Be windows used on a 325 MHz cavity in a vacuum ionization cooling rectilinear channel for a Muon Collider.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Hui; Wei, Yang; Wang, Cheng

    The excessive volume changes during cell cycling of Si-based anode in lithium ion batteries impeded its application. One major reason for the cell failure is particle isolation during volume shrinkage in delithiation process, which makes strong adhesion between polymer binder and anode active material particles a highly desirable property. Here, a biomimetic side-chain conductive polymer incorporating catechol, a key adhesive component of the mussel holdfast protein, was synthesized. Atomic force microscopy-based single-molecule force measurements of mussel-inspired conductive polymer binder contacting a silica surface revealed a similar adhesion toward substrate when compared with an effective Si anode binder, homo-poly(acrylic acid), withmore » the added benefit of being electronically conductive. Electrochemical experiments showed a very stable cycling of Si-alloy anodes realized via this biomimetic conducting polymer binder, leading to a high loading Si anode with a good rate performance. We attribute the ability of the Si-based anode to tolerate the volume changes during cycling to the excellent mechanical integrity afforded by the strong interfacial adhesion of the biomimetic conducting polymer.« less

  4. Osmotic forces and gap junctions in spreading depression: a computational model

    NASA Technical Reports Server (NTRS)

    Shapiro, B. E.

    2001-01-01

    In a computational model of spreading depression (SD), ionic movement through a neuronal syncytium of cells connected by gap junctions is described electrodiffusively. Simulations predict that SD will not occur unless cells are allowed to expand in response to osmotic pressure gradients and K+ is allowed to move through gap junctions. SD waves of [K+]out approximately 25 to approximately 60 mM moving at approximately 2 to approximately 18 mm/min are predicted over the range of parametric values reported in gray matter, with extracellular space decreasing up to approximately 50%. Predicted waveform shape is qualitatively similar to laboratory reports. The delayed-rectifier, NMDA, BK, and Na+ currents are predicted to facilitate SD, while SK and A-type K+ currents and glial activity impede SD. These predictions are consonant with recent findings that gap junction poisons block SD and support the theories that cytosolic diffusion via gap junctions and osmotic forces are important mechanisms underlying SD.

  5. A flexible and biocompatible triboelectric nanogenerator with tunable internal resistance for powering wearable devices

    PubMed Central

    Zhu, Yanbo; Yang, Bin; Liu, Jingquan; Wang, Xingzhao; Wang, Luxian; Chen, Xiang; Yang, Chunsheng

    2016-01-01

    Recently, triboelectric energy nanogenerators (TENGs) have been paid the most attention by many researchers to convert mechanical energy into electrical energy. TENGs usually have a simple structure and a high output voltage. However, their high internal resistance results in low output power. In this work, we propose a flexible triboelectric energy nanogenerator with the double-side tribological layers of polydimethlysiloxane (PDMS) and PDMS/multiwall carbon nanotube (MWCNT). MWCNTs with different concentrations have been doped into PDMS to tune the internal resistance of triboelectric nanogenerator and optimize its output power. The dimension of the fabricated prototype is ~3.6 cm3. Three-axial force sensor is used to monitor the applied vertical forces on the device under vertical contact-separation working mode. The Prototype with 10 wt% MWCNT (Prototype I) produces higher output voltage than one with 2 wt% MWCNT (Prototype II) due to its higher dielectric parameter measured by LRC impedance analyzer. The triboelectric output voltages of Prototype I and Prototype II are 30 V and 25 V under the vertical force of 3.0 N, respectively. Their maximum triboelectric output powers are ~130 μW at 6 MΩ and ~120 μW at 8.6 MΩ under vertical forces, respectively. PMID:26916819

  6. Rock deformation equations and application to the study on slantingly installed disc cutter

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao-Huang; Meng, Liang; Sun, Fei

    2014-08-01

    At present the mechanical model of the interaction between a disc cutter and rock mainly concerns indentation experiment, linear cutting experiment and tunnel boring machine (TBM) on-site data. This is not in line with the actual rock-breaking movement of the disc cutter and impedes to some extent the research on the rock-breaking mechanism, wear mechanism and design theory. Therefore, our study focuses on the interaction between the slantingly installed disc cutter and rock, developing a model in accordance with the actual rock-breaking movement. Displacement equations are established through an analysis of the velocity vector at the rock-breaking point of the disc cutter blade; the functional relationship between the displacement parameters at the rock-breaking point and its rectangular coordinates is established through an analysis of micro-displacement vectors at the rock-breaking point, thus leading to the geometric equations of rock deformation caused by the slantingly installed disc cutter. Considering the basically linear relationship between the cutting force of disc cutters and the rock deformation before and after the leap break of rock, we express the constitutive relations of rock deformation as generalized Hooke's law and analyze the effect of the slanting installation angle of disc cutters on the rock-breaking force. This will, as we hope, make groundbreaking contributions to the development of the design theory and installation practice of TBM.

  7. A Model for Axial Magnetic Bearings Including Eddy Currents

    NASA Technical Reports Server (NTRS)

    Kucera, Ladislav; Ahrens, Markus

    1996-01-01

    This paper presents an analytical method of modelling eddy currents inside axial bearings. The problem is solved by dividing an axial bearing into elementary geometric forms, solving the Maxwell equations for these simplified geometries, defining boundary conditions and combining the geometries. The final result is an analytical solution for the flux, from which the impedance and the force of an axial bearing can be derived. Several impedance measurements have shown that the analytical solution can fit the measured data with a precision of approximately 5%.

  8. Motorized CPM/CAM physiotherapy device with sliding-mode Fuzzy Neural Network control loop.

    PubMed

    Ho, Hung-Jung; Chen, Tien-Chi

    2009-11-01

    Continuous passive motion (CPM) and controllable active motion (CAM) physiotherapy devices promote rehabilitation of damaged joints. This paper presents a computerized CPM/CAM system that obviates the need for mechanical resistance devices such as springs. The system is controlled by a computer which performs sliding-mode Fuzzy Neural Network (FNN) calculations online. CAM-type resistance force is generated by the active performance of an electric motor which is controlled so as to oppose the motion of the patient's leg. A force sensor under the patient's foot on the device pedal provides data for feedback in a sliding-mode FNN control loop built around the motor. Via an active impedance control feedback system, the controller drives the motor to behave similarly to a damped spring by generating and controlling the amplitude and direction of the pedal force in relation to the patient's leg. Experiments demonstrate the high sensitivity and speed of the device. The PC-based feedback nature of the control loop means that sophisticated auto-adaptable CPM/CAM custom-designed physiotherapy becomes possible. The computer base also allows extensive data recording, data analysis and network-connected remote patient monitoring.

  9. Membrane Disruption Mechanism of a Prion Peptide (106-126) Investigated by Atomic Force Microscopy, Raman and Electron Paramagnetic Resonance Spectroscopy.

    PubMed

    Pan, Jianjun; Sahoo, Prasana K; Dalzini, Annalisa; Hayati, Zahra; Aryal, Chinta M; Teng, Peng; Cai, Jianfeng; Rodriguez Gutierrez, Humberto; Song, Likai

    2017-05-18

    A fragment of the human prion protein spanning residues 106-126 (PrP106-126) recapitulates many essential properties of the disease-causing protein such as amyloidogenicity and cytotoxicity. PrP106-126 has an amphipathic characteristic that resembles many antimicrobial peptides (AMPs). Therefore, the toxic effect of PrP106-126 could arise from a direct association of monomeric peptides with the membrane matrix. Several experimental approaches are employed to scrutinize the impacts of monomeric PrP106-126 on model lipid membranes. Porous defects in planar bilayers are observed by using solution atomic force microscopy. Adding cholesterol does not impede defect formation. A force spectroscopy experiment shows that PrP106-126 reduces Young's modulus of planar lipid bilayers. We use Raman microspectroscopy to study the effect of PrP106-126 on lipid atomic vibrational dynamics. For phosphatidylcholine lipids, PrP106-126 disorders the intrachain conformation, while the interchain interaction is not altered; for phosphatidylethanolamine lipids, PrP106-126 increases the interchain interaction, while the intrachain conformational order remains similar. We explain the observed differences by considering different modes of peptide insertion. Finally, electron paramagnetic resonance spectroscopy shows that PrP106-126 progressively decreases the orientational order of lipid acyl chains in magnetically aligned bicelles. Together, our experimental data support the proposition that monomeric PrP106-126 can disrupt lipid membranes by using similar mechanisms found in AMPs.

  10. Membrane Disruption Mechanism of a Prion Peptide (106-126) Investigated by Atomic Force Microscopy, Raman and Electron Paramagnetic Resonance Spectroscopy

    PubMed Central

    Pan, Jianjun; Sahoo, Prasana K.; Dalzini, Annalisa; Hayati, Zahra; Aryal, Chinta M.; Teng, Peng; Cai, Jianfeng; Gutierrez, Humberto Rodriguez; Song, Likai

    2018-01-01

    A fragment of the human prion protein spanning residues 106-126 (PrP106-126) recapitulates many essential properties of the disease-causing protein such as amyloidogenicity and cytotoxicity. PrP106-126 has an amphipathic characteristic that resembles many antimicrobial peptides (AMPs). Therefore, the toxic effect of PrP106-126 could arise from a direct association of monomeric peptides with membrane matrix. Several experimental approaches are employed to scrutinize the impacts of monomeric PrP106-126 on model lipid membranes. Porous defects in planar bilayers are observed by using solution atomic force microscopy. Adding cholesterol does not impede defect formation. Force spectroscopy experiment shows that PrP106-126 reduces Young’s modulus of planar lipid bilayers. We use Raman microspectroscopy to study the effect of PrP106-126 on lipid vibrational dynamics. For phosphatidylcholine lipids, PrP106-126 disorders the intra-chain conformation, while the inter-chain interaction is not altered; for phosphatidylethanolamine lipids, PrP106-126 increases the inter-chain interaction, while the intra-chain conformational order remains similar. We explain the observed differences by considering different modes of peptide insertion. Finally, electron paramagnetic resonance spectroscopy shows that PrP106-126 progressively decreases the orientational order of lipid acyl chains in magnetically aligned bicelles. Together, our experimental data support the proposition that monomeric PrP106-126 can disrupt lipid membranes by using similar mechanisms found in AMPs. PMID:28459565

  11. Transduction channels’ gating can control friction on vibrating hair-cell bundles in the ear

    PubMed Central

    Bormuth, Volker; Barral, Jérémie; Joanny, Jean-François; Jülicher, Frank; Martin, Pascal

    2014-01-01

    Hearing starts when sound-evoked mechanical vibrations of the hair-cell bundle activate mechanosensitive ion channels, giving birth to an electrical signal. As for any mechanical system, friction impedes movements of the hair bundle and thus constrains the sensitivity and frequency selectivity of auditory transduction. Friction is generally thought to result mainly from viscous drag by the surrounding fluid. We demonstrate here that the opening and closing of the transduction channels produce internal frictional forces that can dominate viscous drag on the micrometer-sized hair bundle. We characterized friction by analyzing hysteresis in the force–displacement relation of single hair-cell bundles in response to periodic triangular stimuli. For bundle velocities high enough to outrun adaptation, we found that frictional forces were maximal within the narrow region of deflections that elicited significant channel gating, plummeted upon application of a channel blocker, and displayed a sublinear growth for increasing bundle velocity. At low velocity, the slope of the relation between the frictional force and velocity was nearly fivefold larger than the hydrodynamic friction coefficient that was measured when the transduction machinery was decoupled from bundle motion by severing tip links. A theoretical analysis reveals that channel friction arises from coupling the dynamics of the conformational change associated with channel gating to tip-link tension. Varying channel properties affects friction, with faster channels producing smaller friction. We propose that this intrinsic source of friction may contribute to the process that sets the hair cell’s characteristic frequency of responsiveness. PMID:24799674

  12. Instrumentation for the analysis of respiratory system disorders during sleep: Design and application

    NASA Astrophysics Data System (ADS)

    de Melo, Pedro Lopes; de Andrade Lemes, Lucas Neves

    2002-11-01

    Sleep breathing disorders are estimated to be present in 2%-4% of middle-aged adults. Serious adverse consequences, such as systemic arterial hypertension, myocardial infraction, and cerebrovascular disease, can be related to these conditions. Intellectual deficits associated with attention, memory, and problem-solving have also been associated with a poor quality of sleep. The main causes of these disorders are obstructions resulting from repetitive narrowing and closure of the pharyngeal airway, which have been monitored by indirect measurements of temperature, displacement, and other highly invasive procedures. The measurement of mechanical impedance of the respiratory system by the forced oscillation technique (FOT) has recently been suggested to quantify the respiratory obstruction during sleep. It is claimed that the noninvasive and dynamic characteristics of this technique would allow a noninvasive and accurate analysis of these events. In spite of this high scientific and clinical potential, there is no detailed description of a complete instrumentation system to implement this promising technique in sleep studies. In this context, the purpose of this study was twofold: (1) describe the development of a new computer-based system for identification of the mechanical impedance of the respiratory system during sleep by the FOT and (2) evaluate the performance of this device in the description of respiratory events in conditions including no, mild, serious disease, and therapeutic procedures. These evaluations confirmed the desirable features achieved in laboratory tests and the high scientific and clinical potential of this system.

  13. Bilateral force reflection for teleoperators with masters and slaves with dissimilar and possibly redundant kinematics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jansen, J.F.; Babcock, S.M.

    1989-11-01

    Several bilateral control techniques and methods for exploiting redundant slaves are investigated as a part of research to develop and analyze bilateral, force-reflecting control methodologies for teleoperator systems with kinematic dissimilar masters and slaves. The study indicates that, with force/torque sensing at the wrist, and an impedance type of controller with the appropriate joint compensation, a significant improvement in performance and controllability of a teleoperator system can be achieved. 32 refs., 6 figs., 2 tabs.

  14. Improvement of force factor of magnetostrictive vibration power generator for high efficiency

    NASA Astrophysics Data System (ADS)

    Kita, Shota; Ueno, Toshiyuki; Yamada, Sotoshi

    2015-05-01

    We develop high power magnetostrictive vibration power generator for battery-free wireless electronics. The generator is based on a cantilever of parallel beam structure consisting of coil-wound Galfenol and stainless plates with permanent magnet for bias. Oscillating force exerted on the tip bends the cantilever in vibration yields stress variation of Galfenol plate, which causes flux variation and generates voltage on coil due to the law of induction. This generator has advantages over conventional, such as piezoelectric or moving magnet types, in the point of high efficiency, highly robust, and low electrical impedance. Our concern is the improvement of energy conversion efficiency dependent on the dimension. Especially, force factor, the conversion ratio of the electromotive force (voltage) on the tip velocity in vibration, has an important role in energy conversion process. First, the theoretical value of the force factor is formulated and then the validity was verified by experiments, where we compare four types of prototype with parameters of the dimension using 7.0 × 1.5 × 50 mm beams of Galfenol with 1606-turn wound coil. In addition, the energy conversion efficiency of the prototypes depending on load resistance was measured. The most efficient prototype exhibits the maximum instantaneous power of 0.73 W and energy of 4.7 mJ at a free vibration of frequency of 202 Hz in the case of applied force is 25 N. Further, it was found that energy conversion efficiency depends not only on the force factor but also on the damping (mechanical loss) of the vibration.

  15. Method and apparatus for deflection measurements using eddy current effects

    NASA Astrophysics Data System (ADS)

    Chern, Engmin J.

    1993-05-01

    A method and apparatus for inserting and moving a sensing assembly with a mechanical positioning assembly to a desired remote location of a surface of a specimen under test and measuring angle and/or deflection by sensing the change in the impedance of at least one sensor coil located in a base plate which has a rotatable conductive plate pivotally mounted thereon so as to uncover the sensor coil(s) whose impedance changes as a function of deflection away from the center line of the base plate in response to the movement of the rotator plate when contacting the surface of the specimen under test is presented. The apparatus includes the combination of a system controller, a sensing assembly, an eddy current impedance measuring apparatus, and a mechanical positioning assembly driven by the impedance measuring apparatus to position the sensing assembly at a desired location of the specimen.

  16. Method and apparatus for deflection measurements using eddy current effects

    NASA Technical Reports Server (NTRS)

    Chern, Engmin J. (Inventor)

    1993-01-01

    A method and apparatus for inserting and moving a sensing assembly with a mechanical positioning assembly to a desired remote location of a surface of a specimen under test and measuring angle and/or deflection by sensing the change in the impedance of at least one sensor coil located in a base plate which has a rotatable conductive plate pivotally mounted thereon so as to uncover the sensor coil(s) whose impedance changes as a function of deflection away from the center line of the base plate in response to the movement of the rotator plate when contacting the surface of the specimen under test is presented. The apparatus includes the combination of a system controller, a sensing assembly, an eddy current impedance measuring apparatus, and a mechanical positioning assembly driven by the impedance measuring apparatus to position the sensing assembly at a desired location of the specimen.

  17. Effects of Zoledronate and Mechanical Loading during Simulated Weightlessness on Bone Structure and Mechanical Properties

    NASA Technical Reports Server (NTRS)

    Scott, R. T.; Nalavadi, M. O.; Shirazi-Fard, Y.; Castillo, A. B.; Alwood, J. S.

    2016-01-01

    Space flight modulates bone remodeling to favor bone resorption. Current countermeasures include an anti-resorptive drug class, bisphosphonates (BP), and high-force loading regimens. Does the combination of anti-resorptives and high-force exercise during weightlessness have negative effects on the mechanical and structural properties of bone? In this study, we implemented an integrated model to mimic mechanical strain of exercise via cyclical loading (CL) in mice treated with the BP Zoledronate (ZOL) combined with hindlimb unloading (HU). Our working hypothesis is that CL combined with ZOL in the HU model induces additive structural and mechanical changes. Thirty-two C57BL6 mice (male,16 weeks old, n8group) were exposed to 3 weeks of either HU or normal ambulation (NA). Cohorts of mice received one subcutaneous injection of ZOL (45gkg), or saline vehicle, prior to experiment. The right tibia was axially loaded in vivo, 60xday to 9N in compression, repeated 3xweek during HU. During the application of compression, secant stiffness (SEC), a linear estimate of slope of the force displacement curve from rest (0.5N) to max load (9.0N), was calculated for each cycle once per week. Ex vivo CT was conducted on all subjects. For ex vivo mechanical properties, non-CL left femurs underwent 3-point bending. In the proximal tibial metaphysis, HU decreased, CL increased, and ZOL increased the cancellous bone volume to total volume ratio by -26, +21, and +33, respectively. Similar trends held for trabecular thickness and number. Ex vivo left femur mechanical properties revealed HU decreased stiffness (-37),and ZOL mitigated the HU stiffness losses (+78). Data on the ex vivo Ultimate Force followed similar trends. After 3 weeks, HU decreased in vivo SEC (-16). The combination of CL+HU appeared additive in bone structure and mechanical properties. However, when HU + CL + ZOL were combined, ZOL had no additional effect (p0.05) on in vivo SEC. Structural data followed this trend with ZOL not modulating trabecular thickness in CL + NAHU mice. In summary, our integrated model simulates the combination of weightlessness, exercise-induced mechanical strain, and anti-resorptive treatment that astronauts experience during space missions. Based on these results, we conclude that, at the structural and stiffness level, zoledronate treatment during simulated spaceflight does not impede the skeletal response to axial compression. In contrast to our hypothesis, our data show that zoledronate confers no additional mechanical or structural benefit beyond those gained from cyclical loading.

  18. AC electrical characterisation and insight to charge transfer mechanisms in DNA molecular wires through temperature and UV effects.

    PubMed

    Kassegne, Sam; Wibowo, Denni; Chi, James; Ramesh, Varsha; Narenji, Alaleh; Khosla, Ajit; Mokili, John

    2015-06-01

    In this study, AC characterisation of DNA molecular wires, effects of frequency, temperature and UV irradiation on their conductivity is presented. λ-DNA molecular wires suspended between high aspect-ratio electrodes exhibit highly frequency-dependent conductivity that approaches metal-like behaviour at high frequencies (∼MHz). Detailed temperature dependence experiments were performed that traced the impedance response of λ-DNA until its denaturation. UV irradiation experiments where conductivity was lost at higher and longer UV exposures helped to establish that it is indeed λ-DNA molecular wires that generate conductivity. The subsequent renaturation of λ-DNA resulted in the recovery of current conduction, providing yet another proof of the conducting DNA molecular wire bridge. The temperature results also revealed hysteretic and bi-modal impedance responses that could make DNA a candidate for nanoelectronics components like thermal transistors and switches. Further, these experiments shed light on the charge transfer mechanism in DNA. At higher temperatures, the expected increase in thermal-induced charge hopping may account for the decrease in impedance supporting the 'charge hopping mechanism' theory. UV light, on the other hand, causes damage to GC base-pairs and phosphate groups reducing the path available both for hopping and short-range tunneling mechanisms, and hence increasing impedance--this again supporting both the 'charge hopping' and 'tunneling' mechanism theories.

  19. Dielectric, Impedance and Conduction Behavior of Double Perovskite Pr2CuTiO6 Ceramics

    NASA Astrophysics Data System (ADS)

    Mahato, Dev K.; Sinha, T. P.

    2017-01-01

    Polycrystalline Pr2CuTiO6 (PCT) ceramics exhibits dielectric, impedance and modulus characteristics as a possible material for microelectronic devices. PCT was synthesized through the standard solid-state reaction method. The dielectric permittivity, impedance and electric modulus of PCT have been studied in a wide frequency (100 Hz-1 MHz) and temperature (303-593 K) range. Structural analysis of the compound revealed a monoclinic phase at room temperature. Complex impedance Cole-Cole plots are used to interpret the relaxation mechanism, and grain boundary contributions towards conductivity have been estimated. From electrical modulus formalism polarization and conductivity relaxation behavior in PCT have been discussed. Normalization of the imaginary part of impedance ( Z″) and the normalized imaginary part of modulus ( M″) indicates contributions from both long-range and localized relaxation effects. The grain boundary resistance along with their relaxation frequencies are plotted in the form of an Arrhenius plot with activation energy 0.45 eV and 0.46 eV, respectively. The ac conductivity mechanism has been discussed.

  20. Damage Assessment of Aerospace Structural Components by Impedance Based Health Monitoring

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Martin, Richard E.; Sawicki, Jerzy T.; Baaklini, George Y.

    2005-01-01

    This paper addresses recent efforts at the NASA Glenn Research Center at Lewis Field relating to the set-up and assessment of electro-mechanical (E/M) impedance based structural health monitoring. The overall aim is the application of the impedance based technique to aeronautic and space based structural components. As initial steps, a laboratory was created, software written, and experiments conducted on aluminum plates in undamaged and damaged states. A simulated crack, in the form of a narrow notch at various locations, was analyzed using piezoelectric-ceramic (PZT: lead, zirconate, titarate) patches as impedance measuring transducers. Descriptions of the impedance quantifying hardware and software are provided as well as experimental results. In summary, an impedance based health monitoring system was assembled and tested. The preliminary data showed that the impedance based technique was successful in recognizing the damage state of notched aluminum plates.

  1. Impeller leakage flow modeling for mechanical vibration control

    NASA Technical Reports Server (NTRS)

    Palazzolo, Alan B.

    1996-01-01

    HPOTP and HPFTP vibration test results have exhibited transient and steady characteristics which may be due to impeller leakage path (ILP) related forces. For example, an axial shift in the rotor could suddenly change the ILP clearances and lengths yielding dynamic coefficient and subsequent vibration changes. ILP models are more complicated than conventional-single component-annular seal models due to their radial flow component (coriolis and centrifugal acceleration), complex geometry (axial/radial clearance coupling), internal boundary (transition) flow conditions between mechanical components along the ILP and longer length, requiring moment as well as force coefficients. Flow coupling between mechanical components results from mass and energy conservation applied at their interfaces. Typical components along the ILP include an inlet seal, curved shroud, and an exit seal, which may be a stepped labyrinth type. Von Pragenau (MSFC) has modeled labyrinth seals as a series of plain annular seals for leakage and dynamic coefficient prediction. These multi-tooth components increase the total number of 'flow coupled' components in the ILP. Childs developed an analysis for an ILP consisting of a single, constant clearance shroud with an exit seal represented by a lumped flow-loss coefficient. This same geometry was later extended to include compressible flow. The objective of the current work is to: supply ILP leakage-force impedance-dynamic coefficient modeling software to MSFC engineers, base on incompressible/compressible bulk flow theory; design the software to model a generic geometry ILP described by a series of components lying along an arbitrarily directed path; validate the software by comparison to available test data, CFD and bulk models; and develop a hybrid CFD-bulk flow model of an ILP to improve modeling accuracy within practical run time constraints.

  2. The Influences of Arm Resist Motion on a CAR Crash Test Using Hybrid III Dummy with Human-Like Arm

    NASA Astrophysics Data System (ADS)

    Kim, Yongchul; Youm, Youngil; Bae, Hanil; Choi, Hyeonki

    Safety of the occupant during the crash is very essential design element. Many researches have been investigated in reducing the fatal injury of occupant. They are focusing on the development of a dummy in order to obtain the real human-like motion. However, they have not considered the arm resist motion during the car accident. In this study, we would like to suggest the importance of the reactive force of the arm in a car crash. The influences of reactive force acting on the human upper extremity were investigated using the impedance experimental method with lumped mass model of hand system and a Hybrid III dummy with human-like arm. Impedance parameters (e.g. inertia, spring constant and damping coefficient) of the elbow joint in maximum activation level were measured by free oscillation test using single axis robot. The results showed that without seat belt, the reactive force of human arm reduced the head, chest, and femur injury, and the flexion moment of the neck is higher than that of the conventional dummy.

  3. Interlimb Differences in Coordination of Unsupported Reaching Movements

    PubMed Central

    Schaffer, Jacob E.; Sainburg, Robert L.

    2017-01-01

    Previous research suggests that interlimb differences in coordination associated with handedness might result from specialized control mechanisms that are subserved by different cerebral hemispheres. Based largely on the results of horizontal plane reaching studies, we have proposed that the hemisphere contralateral to the dominant arm is specialized for predictive control of limb dynamics, while the non-dominant hemisphere is specialized for controlling limb impedance. The current study explores interlimb differences in control of 3-D unsupported reaching movements. While the task was presented in the horizontal plane, participant’s arms were unsupported and free to move within a range of the vertical axis, which was redundant to the task plane. Results indicated significant dominant arm advantages for both initial direction accuracy and final position accuracy. The dominant arm showed greater excursion along a redundant axis that was perpendicular to the task, and parallel to gravitational forces. In contrast, the non-dominant arm better impeded motion out of the task-plane. Nevertheless, left arm task errors varied substantially more with shoulder rotation excursion than did dominant arm task errors. These findings suggest that the dominant arm controller was able to take advantage of the redundant degrees of freedom of the task, while non-dominant task errors appeared enslaved to motion along the redundant axis. These findings are consistent with a dominant controller that is specialized for intersegmental coordination, and a non-dominant controller that is specialized for impedance control. However, the findings are inconsistent with previously documented conclusions from planar tasks, in which non-dominant control leads to greater final position accuracy. PMID:28344068

  4. Cardiac Monitor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Under contract to Johnson Space Center, the University of Minnesota developed the concept of impedance cardiography as an alternative to thermodilution to access astronaut heart function in flight. NASA then contracted Space Labs, Inc. to construct miniature space units based on this technology. Several companies then launched their own impedance cardiography, including Renaissance Technologies, which manufactures the IQ System. The IQ System is 5 to 17 times cheaper than thermodilution, and features the signal processing technology called TFD (Time Frequency Distribution). TFD provides three- dimensional distribution of the blood circulation force signals, allowing visualization of changes in power, frequency and time.

  5. Using FOCUS to determine the radiation impedance for square transducers

    NASA Astrophysics Data System (ADS)

    Jennings, Matthew R.; McGough, Robert J.

    2012-10-01

    The power radiated by an ultrasound transducer is calculated with the radiation resistance, which is the real part of the radiation impedance. For circular transducers, an analytical solution for the radiation impedance is known, but an analytical expression for the radiation impedance is not available for rectangular or square transducers. To determine the radiation resistance in FOCUS, the pressure on the surface of a square transducer is computed with the fast nearfield method, and then the force on the transducer face is computed by integrating the pressure. Results using this approach are numerically evaluated for a range of ka values from 0.1 to 16. The pressure on the transducer face is also computed with the Rayleigh-Sommerfeld integral, and the results are compared. The numerical value of the radiation resistance computed with FOCUS and with the Rayleigh-Sommerfeld integral converge to the same value, although FOCUS calculates the same result in about one-quarter of the time.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Tomoharu; Yamada, Hirofumi, E-mail: h-yamada@kuee.kyoto-u.ac.jp; Kobayashi, Kei

    The device performances of organic thin film transistors are often limited by the metal–organic interface because of the disordered molecular layers at the interface and the energy barriers against the carrier injection. It is important to study the local impedance at the interface without being affected by the interface morphology. We combined frequency modulation atomic force microscopy with scanning impedance microscopy (SIM) to sensitively measure the ac responses of the interface to an ac voltage applied across the interface and the dc potential drop at the interface. By using the frequency-modulation SIM (FM-SIM) technique, we characterized the interface impedance ofmore » a Pt electrode and a single pentacene grain as a parallel circuit of a contact resistance and a capacitance. We found that the reduction of the contact resistance was caused by the reduction of the energy level mismatch at the interface by the FM-SIM measurements, demonstrating the usefulness of the FM-SIM technique for investigation of the local interface impedance without being affected by its morphology.« less

  7. Magnetoacoustic tomography with magnetic induction for imaging electrical impedance of biological tissue

    NASA Astrophysics Data System (ADS)

    Li, Xu; Xu, Yuan; He, Bin

    2006-03-01

    An experimental feasibility study was conducted on magnetoacoustic tomography with magnetic induction (MAT-MI). It is demonstrated that the two-dimensional MAT-MI system can detect and image the boundaries between regions of different electrical conductivities with high spatial resolution. Utilizing a magnetic stimulation coil, MAT-MI evokes magnetically induced eddy current in an object which is placed in a static magnetic field. Because of the existence of Lorenz forces, the eddy current in turn causes acoustic vibrations, which are measured around the object in order to reconstruct the electrical impedance distribution of the object. The present experimental results from the saline and gel phantoms are promising and suggest the merits of MAT-MI in imaging electrical impedance of biological tissue with high spatial resolution.

  8. The general 2-D moments via integral transform method for acoustic radiation and scattering

    NASA Astrophysics Data System (ADS)

    Smith, Jerry R.; Mirotznik, Mark S.

    2004-05-01

    The moments via integral transform method (MITM) is a technique to analytically reduce the 2-D method of moments (MoM) impedance double integrals into single integrals. By using a special integral representation of the Green's function, the impedance integral can be analytically simplified to a single integral in terms of transformed shape and weight functions. The reduced expression requires fewer computations and reduces the fill times of the MoM impedance matrix. Furthermore, the resulting integral is analytic for nearly arbitrary shape and weight function sets. The MITM technique is developed for mixed boundary conditions and predictions with basic shape and weight function sets are presented. Comparisons of accuracy and speed between MITM and brute force are presented. [Work sponsored by ONR and NSWCCD ILIR Board.

  9. Mechanically coupled CMOS-MEMS free-free beam resonator arrays with enhanced power handling capability.

    PubMed

    Li, Ming-Huang; Chen, Wen-Chien; Li, Sheng-Shian

    2012-03-01

    Integrated CMOS-MEMS free-free beam resonator arrays operated in a standard two-port electrical configuration with low motional impedance and high power handling capability, centered at 10.5 MHz, have been demonstrated using the combination of pull-in gap reduction mechanism and mechanically coupled array design. The mechanical links (i.e., coupling elements) using short stubs connect each constituent resonator of an array to its adjacent ones at the high-velocity vibrating locations to accentuate the desired mode and reject all other spurious modes. A single second-mode free-free beam resonator with quality factor Q > 2200 and motional impedance R(m) < 150 kΩ has been used to achieve mechanically coupled resonator arrays in this work. In array design, a 9-resonator array has been experimentally characterized to have performance improvement of approximately 10× on motional impedance and power handling as compared with that of a single resonator. In addition, the two-port electrical configuration is much preferred over a one-port configuration because of its low-feedthrough and high design flexibility for future oscillator and filter implementation.

  10. Noncontact Measurement Of Sizes And Eccentricities Of Holes

    NASA Technical Reports Server (NTRS)

    Chern, Engmin J.

    1993-01-01

    Semiautomatic eddy-current-probe apparatus makes noncontact measurements of nominally round holes in electrically conductive specimens and processes measurement data into diameters and eccentricities of holes. Includes x-y translation platform, which holds specimen and moves it horizontally. Probe mounted on probe scanner, positioning probe along vertical (z) direction and rotates probe about vertical axis at preset low speed. Eddy-current sensing coil mounted in side of probe near tip. As probe rotates, impedance analyzer measures electrical impedance (Z) of coil as function of instantaneous rotation angle. Translation and rotation mechanisms and impedance analyzer controlled by computer, which also processes impedance-measurement data.

  11. Resistive and Ferroelectric-Domain Switching in Multiferroic BiFeO3 Films

    NASA Astrophysics Data System (ADS)

    Ramirez, J. G.; Arango, I. C.; Gomez, M. F.; Dominguez, C.; Sulekar, S.; Cardona, A.; Trastoy, J.; Nino, J. C.; Schuller, I. K.; Gomez, M. E.

    Resistive switching (RS) in oxides has attracted much attention due to its potential application for nonvolatile memory and neuromorphic computing devices. Here we study the voltage-induced RS mechanisms in metal/multiferroic/semiconductor (Au/BiFeO3/Nb:SrTiO3) thin film vertical devices. We found switching with RON and ROFF ratios as big as 0.16 at voltages starting at +/- 2V. Further voltage increase produced an intensification of the RS effects, until dielectric breakdown was reached. Interestingly, the voltage at which the RS effect appears coincides with the coercive voltage of the ferroelectric polarization in similar BiFeO3 films, as measured by piezoelectric force microscopy. This suggests that the primary RS mechanism is the ferroelectric switching. Impedance spectroscopy measurements show filamentary contributions after ferroelectric saturation, possible due to voltage-induced movement of charge defects across the device and therefore suggesting an additional RS mechanism. Work supported by: Univalle CI 7999; FAPA at Uniandes; Colciencias 120471250659 and 120424054303. J.T. acknowledges the support from the Fundación Areces (Spain); AFOSR and DoD for a Vannevar Bush Fellowship.

  12. Recent trends in reinforcement corrosion assessment using piezo sensors via electro mechanical impedance technique

    NASA Astrophysics Data System (ADS)

    Visalakshi, Talakokula; Bhalla, Suresh; Gupta, Ashok; Bhattacharjee, Bishwajit

    2014-03-01

    Reinforced concrete (RC) is an economical, versatile and successful construction material as it can be moulded into a variety of shapes and finishes. In most cases, it is durable and strong, performing well throughout its service life. However, in some cases, it does not perform adequately due to various reasons, one of which is the corrosion of the embedded steel bars used as reinforcement. . Although the electro-mechanical impedance (EMI) technique is well established for damage detection and quantification of civil, mechanical and aerospace structures, only limited studies have been reported of its application for rebar corrosion detection in RC structures. This paper presents the recent trends in corrosion assessment based on the model derived from the equivalent structural parameters extracted from the impedance spectrum of concrete-rebar system using the lead zirconate titanate (PZT) sensors via EMI technique.

  13. Human Aorta Is a Passive Pump

    NASA Astrophysics Data System (ADS)

    Pahlevan, Niema; Gharib, Morteza

    2012-11-01

    Impedance pump is a simple valveless pumping mechanism that operates based on the principles of wave propagation and reflection. It has been shown in a zebrafish that a similar mechanism is responsible for the pumping action in the embryonic heart during early stages before valve formation. Recent studies suggest that the cardiovascular system is designed to take advantage of wave propagation and reflection phenomena in the arterial network. Our aim in this study was to examine if the human aorta is a passive pump working like an impedance pump. A hydraulic model with different compliant models of artificial aorta was used for series of in-vitro experiments. The hydraulic model includes a piston pump that generates the waves. Our result indicates that wave propagation and reflection can create pumping mechanism in a compliant aorta. Similar to an impedance pump, the net flow and the flow direction depends on the frequency of the waves, compliance of the aorta, and the piston stroke.

  14. Adjustable impedance, force feedback and command language aids for telerobotics (parts 1-4 of an 8-part MIT progress report)

    NASA Technical Reports Server (NTRS)

    Sheridan, Thomas B.; Raju, G. Jagganath; Buzan, Forrest T.; Yared, Wael; Park, Jong

    1989-01-01

    Projects recently completed or in progress at MIT Man-Machine Systems Laboratory are summarized. (1) A 2-part impedance network model of a single degree of freedom remote manipulation system is presented in which a human operator at the master port interacts with a task object at the slave port in a remote location is presented. (2) The extension of the predictor concept to include force feedback and dynamic modeling of the manipulator and the environment is addressed. (3) A system was constructed to infer intent from the operator's commands and the teleoperation context, and generalize this information to interpret future commands. (4) A command language system is being designed that is robust, easy to learn, and has more natural man-machine communication. A general telerobot problem selected as an important command language context is finding a collision-free path for a robot.

  15. Mechatronic design of haptic forceps for robotic surgery.

    PubMed

    Rizun, P; Gunn, D; Cox, B; Sutherland, G

    2006-12-01

    Haptic feedback increases operator performance and comfort during telerobotic manipulation. Feedback of grasping pressure is critical in many microsurgical tasks, yet no haptic interface for surgical tools is commercially available. Literature on the psychophysics of touch was reviewed to define the spectrum of human touch perception and the fidelity requirements of an ideal haptic interface. Mechanical design and control literature was reviewed to translate the psychophysical requirements to engineering specification. High-fidelity haptic forceps were then developed through an iterative process between engineering and surgery. The forceps are a modular device that integrate with a haptic hand controller to add force feedback for tool actuation in telerobotic or virtual surgery. Their overall length is 153 mm and their mass is 125 g. A contact-free voice coil actuator generates force feedback at frequencies up to 800 Hz. Maximum force output is 6 N (2N continuous) and the force resolution is 4 mN. The forceps employ a contact-free magnetic position sensor as well as micro-machined accelerometers to measure opening/closing acceleration. Position resolution is 0.6 microm with 1.3 microm RMS noise. The forceps can simulate stiffness greater than 20N/mm or impedances smaller than 15 g with no noticeable haptic artifacts or friction. As telerobotic surgery evolves, haptics will play an increasingly important role. Copyright 2006 John Wiley & Sons, Ltd.

  16. Impedance study of undoped, polycrystalline diamond layers obtained by HF CVD

    NASA Astrophysics Data System (ADS)

    Paprocki, Kazimierz; Fabisiak, Kazimerz; Dychalska, Anna; Szybowicz, Mirosław; Dudkowiak, Alina; Iskaliyeva, Aizhan

    2017-04-01

    In this paper, we report results of impedance measurements in polycrystalline diamond films deposited on n-Si using HF CVD method. The temperature was changed from 170 K up to RT and the scan frequency from 42 Hz to 5 MHz. The results of impedance measurement of the real and imaginary parts were presented in the form of a Cole-Cole plot in the complex plane. In the temperatures below RT, the observed impedance response of polycrystalline diamond was in the form of a single semicircular form. In order to interpret the observed response, a double resistor-capacitor parallel circuit model was used which allow for interpretation physical mechanisms responsible for such behavior. The impedance results were correlated with Raman spectroscopy measurements.

  17. Forced sound transmission through a finite-sized single leaf panel subject to a point source excitation.

    PubMed

    Wang, Chong

    2018-03-01

    In the case of a point source in front of a panel, the wavefront of the incident wave is spherical. This paper discusses spherical sound waves transmitting through a finite sized panel. The forced sound transmission performance that predominates in the frequency range below the coincidence frequency is the focus. Given the point source located along the centerline of the panel, forced sound transmission coefficient is derived through introducing the sound radiation impedance for spherical incident waves. It is found that in addition to the panel mass, forced sound transmission loss also depends on the distance from the source to the panel as determined by the radiation impedance. Unlike the case of plane incident waves, sound transmission performance of a finite sized panel does not necessarily converge to that of an infinite panel, especially when the source is away from the panel. For practical applications, the normal incidence sound transmission loss expression of plane incident waves can be used if the distance between the source and panel d and the panel surface area S satisfy d/S>0.5. When d/S ≈0.1, the diffuse field sound transmission loss expression may be a good approximation. An empirical expression for d/S=0  is also given.

  18. Stochastic estimation of human arm impedance under nonlinear friction in robot joints: a model study.

    PubMed

    Chang, Pyung Hun; Kang, Sang Hoon

    2010-05-30

    The basic assumption of stochastic human arm impedance estimation methods is that the human arm and robot behave linearly for small perturbations. In the present work, we have identified the degree of influence of nonlinear friction in robot joints to the stochastic human arm impedance estimation. Internal model based impedance control (IMBIC) is then proposed as a means to make the estimation accurate by compensating for the nonlinear friction. From simulations with a nonlinear Lugre friction model, it is observed that the reliability and accuracy of the estimation are severely degraded with nonlinear friction: below 2 Hz, multiple and partial coherence functions are far less than unity; estimated magnitudes and phases are severely deviated from that of a real human arm throughout the frequency range of interest; and the accuracy is not enhanced with an increase of magnitude of the force perturbations. In contrast, the combined use of stochastic estimation and IMBIC provides with accurate estimation results even with large friction: the multiple coherence functions are larger than 0.9 throughout the frequency range of interest and the estimated magnitudes and phases are well matched with that of a real human arm. Furthermore, the performance of suggested method is independent of human arm and robot posture, and human arm impedance. Therefore, the IMBIC will be useful in measuring human arm impedance with conventional robot, as well as in designing a spatial impedance measuring robot, which requires gearing. (c) 2010 Elsevier B.V. All rights reserved.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kita, Shota, E-mail: happiest3.7@gmail.com; Ueno, Toshiyuki; Yamada, Sotoshi

    We develop high power magnetostrictive vibration power generator for battery-free wireless electronics. The generator is based on a cantilever of parallel beam structure consisting of coil-wound Galfenol and stainless plates with permanent magnet for bias. Oscillating force exerted on the tip bends the cantilever in vibration yields stress variation of Galfenol plate, which causes flux variation and generates voltage on coil due to the law of induction. This generator has advantages over conventional, such as piezoelectric or moving magnet types, in the point of high efficiency, highly robust, and low electrical impedance. Our concern is the improvement of energy conversionmore » efficiency dependent on the dimension. Especially, force factor, the conversion ratio of the electromotive force (voltage) on the tip velocity in vibration, has an important role in energy conversion process. First, the theoretical value of the force factor is formulated and then the validity was verified by experiments, where we compare four types of prototype with parameters of the dimension using 7.0 × 1.5 × 50 mm beams of Galfenol with 1606-turn wound coil. In addition, the energy conversion efficiency of the prototypes depending on load resistance was measured. The most efficient prototype exhibits the maximum instantaneous power of 0.73 W and energy of 4.7 mJ at a free vibration of frequency of 202 Hz in the case of applied force is 25 N. Further, it was found that energy conversion efficiency depends not only on the force factor but also on the damping (mechanical loss) of the vibration.« less

  20. Impedances of the ear estimated with intracochlear pressures in normal human temporal bones

    NASA Astrophysics Data System (ADS)

    Frear, Darcy; Guan, Xiying; Stieger, Christof; Nakajima, Hideko Heidi

    2018-05-01

    We have measured intracochlear pressures and velocities of stapes and round window (RW) evoked by air conduction (AC) stimulation in many fresh human cadaveric specimens. Our techniques have improved through the years to ensure reliable pressure sensor measurements in the scala vestibuli and scala tympani. Using these measurements, we have calculated impedances of the middle and inner ear (cochlear partition, RW, and physiological leakage impedance in scala vestibuli) to create a lumped element model. Our model simulates our data and allows us to understand the mechanisms involved in air-conducted sound transmission. In the future this model will be used as a tool to understand transmission mechanisms of various stimuli and to help create more sophisticated models of the ear.

  1. Eddy current characterization of magnetic treatment of materials

    NASA Technical Reports Server (NTRS)

    Chern, E. James

    1992-01-01

    Eddy current impedance measuring methods have been applied to study the effect that magnetically treated materials have on service life extension. Eddy current impedance measurements have been performed on Nickel 200 specimens that have been subjected to many mechanical and magnetic engineering processes: annealing, applied strain, magnetic field, shot peening, and magnetic field after peening. Experimental results have demonstrated a functional relationship between coil impedance, resistance and reactance, and specimens subjected to various engineering processes. It has shown that magnetic treatment does induce changes in a material's electromagnetic properties and does exhibit evidence of stress relief. However, further fundamental studies are necessary for a thorough understanding of the exact mechanism of the magnetic-field processing effect on machine tool service life.

  2. Research on Safety and Compliance of a New Lower Limb Rehabilitation Robot

    PubMed

    Feng, Yongfei; Wang, Hongbo; Yan, Hao; Wang, Xincheng; Jin, Zhennan; Vladareanu, Luige

    2017-01-01

    The lower limb rehabilitation robot is an application of robotic technology for stroke people with lower limb disabilities. A new applicable and effective sitting/lying lower limb rehabilitation robot (LLR-Ro) is proposed, which has the mechanical limit protection, the electrical limit protection, and the software protection to prevent the patient from the secondary damage. Meanwhile, as a new type of the rehabilitation robots, its hip joint rotation ranges are different in the patient sitting training posture and lying training posture. The mechanical leg of the robot has a variable workspace to work in both training postures. So, if the traditional mechanical limit and the electrical limit cannot be used in the hip joint mechanism design, a follow-up limit is first proposed to improve the compatibility of human-machine motion. Besides, to eliminate the accident interaction force between the patient and LLR-Ro in the process of the passive training, an amendment impedance control strategy based on the position control is proposed to improve the compliance of the LLR-Ro. A simulation experiment and an experiment with a participant show that the passive training of LLR-Ro has compliance. © 2017 Yongfei Feng et al.

  3. A graphene-based non-volatile memory

    NASA Astrophysics Data System (ADS)

    Loisel, Loïc.; Maurice, Ange; Lebental, Bérengère; Vezzoli, Stefano; Cojocaru, Costel-Sorin; Tay, Beng Kang

    2015-09-01

    We report on the development and characterization of a simple two-terminal non-volatile graphene switch. After an initial electroforming step during which Joule heating leads to the formation of a nano-gap impeding the current flow, the devices can be switched reversibly between two well-separated resistance states. To do so, either voltage sweeps or pulses can be used, with the condition that VSET < VRESET , where SET is the process decreasing the resistance and RESET the process increasing the resistance. We achieve reversible switching on more than 100 cycles with resistance ratio values of 104. This approach of graphene memory is competitive as compared to other graphene approaches such as redox of graphene oxide, or electro-mechanical switches with suspended graphene. We suggest a switching model based on a planar electro-mechanical switch, whereby electrostatic, elastic and friction forces are competing to switch devices ON and OFF, and the stability in the ON state is achieved by the formation of covalent bonds between the two stretched sides of the graphene, hence bridging the nano-gap. Developing a planar electro-mechanical switch enables to obtain the advantages of electro-mechanical switches while avoiding most of their drawbacks.

  4. Research on Safety and Compliance of a New Lower Limb Rehabilitation Robot

    PubMed Central

    Yan, Hao; Wang, Xincheng; Jin, Zhennan; Vladareanu, Luige

    2017-01-01

    The lower limb rehabilitation robot is an application of robotic technology for stroke people with lower limb disabilities. A new applicable and effective sitting/lying lower limb rehabilitation robot (LLR-Ro) is proposed, which has the mechanical limit protection, the electrical limit protection, and the software protection to prevent the patient from the secondary damage. Meanwhile, as a new type of the rehabilitation robots, its hip joint rotation ranges are different in the patient sitting training posture and lying training posture. The mechanical leg of the robot has a variable workspace to work in both training postures. So, if the traditional mechanical limit and the electrical limit cannot be used in the hip joint mechanism design, a follow-up limit is first proposed to improve the compatibility of human-machine motion. Besides, to eliminate the accident interaction force between the patient and LLR-Ro in the process of the passive training, an amendment impedance control strategy based on the position control is proposed to improve the compliance of the LLR-Ro. A simulation experiment and an experiment with a participant show that the passive training of LLR-Ro has compliance. PMID:29065571

  5. Synergistic effect of tartaric acid with 2,6-diaminopyridine on the corrosion inhibition of mild steel in 0.5 M HCl

    PubMed Central

    Qiang, Yujie; Guo, Lei; Zhang, Shengtao; Li, Wenpo; Yu, Shanshan; Tan, Jianhong

    2016-01-01

    The inhibitive ability of 2,6-diaminopyridine, tartaric acid and their synergistic effect towards mild steel corrosion in 0.5 M HCl solution was evaluated at various concentrations using potentiodynamic polarization measurements, electrochemical impedance spectroscopy (EIS), and weight loss experiments. Corresponding surfaces of mild steel were examined by atomic force microscope (AFM), field emission scanning electron microscope (FE-SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) analysis. The experimental results are in good agreement and reveal a favorable synergistic effect of 2,6-diaminopyridine with tartaric acid, which could protect mild steel from corrosion effectively. Besides, quantum chemical calculations and Monte Carlo simulation were used to clarify the inhibition mechanism of the synergistic effect. PMID:27628901

  6. Soft-coupling suspension system for an intradural spinal cord stimulator: Biophysical performance characteristics

    NASA Astrophysics Data System (ADS)

    Oya, H.; Safayi, S.; Jeffery, N. D.; Viljoen, S.; Reddy, C. G.; Dalm, B. D.; Kanwal, J. K.; Gillies, G. T.; Howard, M. A.

    2013-10-01

    We have characterized the mechanical compliance of an improved version of the suspension system used to position the electrode-bearing membrane of an intradural neuromodulator on the dorsal pial surface of the spinal cord. Over the compression span of 5 mm, it exhibited a restoring force of 2.4 μN μm-1 and a mean pressure of 0.5 mm Hg (=66 Pa) on the surface below it, well within the range of normal intrathecal pressures. We have implanted prototype devices employing this suspension and a novel device fixation technique in a chronic ovine model of spinal cord stimulation and found that it maintains stable contact at the electrode-pia interface without lead fracture, as determined by measurement of the inter-contact impedances.

  7. A resilient formin-derived cortical actin meshwork in the rear drives actomyosin-based motility in 2D confinement

    PubMed Central

    Ramalingam, Nagendran; Franke, Christof; Jaschinski, Evelin; Winterhoff, Moritz; Lu, Yao; Brühmann, Stefan; Junemann, Alexander; Meier, Helena; Noegel, Angelika A.; Weber, Igor; Zhao, Hongxia; Merkel, Rudolf; Schleicher, Michael; Faix, Jan

    2015-01-01

    Cell migration is driven by the establishment of disparity between the cortical properties of the softer front and the more rigid rear allowing front extension and actomyosin-based rear contraction. However, how the cortical actin meshwork in the rear is generated remains elusive. Here we identify the mDia1-like formin A (ForA) from Dictyostelium discoideum that generates a subset of filaments as the basis of a resilient cortical actin sheath in the rear. Mechanical resistance of this actin compartment is accomplished by actin crosslinkers and IQGAP-related proteins, and is mandatory to withstand the increased contractile forces in response to mechanical stress by impeding unproductive blebbing in the rear, allowing efficient cell migration in two-dimensional-confined environments. Consistently, ForA supresses the formation of lateral protrusions, rapidly relocalizes to new prospective ends in repolarizing cells and is required for cortical integrity. Finally, we show that ForA utilizes the phosphoinositide gradients in polarized cells for subcellular targeting. PMID:26415699

  8. Toxic mechanisms of 3-monochloropropane-1,2-diol on progesterone production in R2C rat leydig cells.

    PubMed

    Sun, Jianxia; Bai, Shun; Bai, Weibin; Zou, Feiyan; Zhang, Lei; Su, Zhijian; Zhang, Qihao; Ou, Shiyi; Huang, Yadong

    2013-10-16

    3-Monochloropropane-1,2-diol (3-MCPD) is a well-known food processing contaminant that has been shown to impede the male reproductive function. However, its mechanism of action remains to be elucidated. In this study, the effects of 3-MCPD on progesterone production were investigated using R2C Leydig cells. 3-MCPD caused concentration-dependent inhibition of cell viability at the IC25, IC50, and IC75 levels of 1.027, 1.802, and 3.160 mM, respectively. Single cell gel/comet assay and atomic force microscopy assay showed that 3-MCPD significantly induced early apoptosis. In addition, 3-MCPD significantly reduced progesterone production by reducing the expression of cytochrome P450 side-chain cleavage enzyme, steroidogenic acute regulatory protein, and 3β-hydroxysteroid dehydrogenase in R2C cells. The change in steroidogenic acute regulatory protein expression was highly consistent with progesterone production. Furthermore, the mitochondrial membrane potential and cAMP significantly decreased.

  9. Nondestructive evaluation techniques for nickel-cadmium aerospace battery cells

    NASA Technical Reports Server (NTRS)

    Haak, R.; Tench, D.

    1982-01-01

    The ac impedance characteristics of Ni-Cd cells as an in-situ, nondestructive means of determining cell lifetime, particularly with respect to the probability of premature failure were evaluated. Emphasis was on evaluating Ni-Cd cell impedance over a wide frequency range (10,000 to 0.0004 Hz) as the cells were subjected to charge/discharge cycle testing. The results indicate that cell degradation is reflected in the low frequency (Warburg) impedance characteristics associated with diffusion processes. The Warburg slope (W) was found to steadily increase as a function of cell aging for completely discharged cells. In addition, based on data for two cells, a high or rapidly increasing value for W signals imminent cell failure by one mechanism. Degradation by another mechanism is apparently reflected in a fall-off (roll-over) of W at lower frequencies. As a secondary result, the frequency dependence of the absolute cell impedance at low frequencies (5 - 500 mHz) was found to be a good indication of the cell state-of-charge.

  10. Electromagnetic scattering by impedance structures

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Griesser, Timothy

    1987-01-01

    The scattering of electromagnetic waves from impedance structures is investigated, and current work on antenna pattern calculation is presented. A general algorithm for determining radiation patterns from antennas mounted near or on polygonal plates is presented. These plates are assumed to be of a material which satisfies the Leontovich (or surface impedance) boundary condition. Calculated patterns including reflection and diffraction terms are presented for numerious geometries, and refinements are included for antennas mounted directly on impedance surfaces. For the case of a monopole mounted on a surface impedance ground plane, computed patterns are compared with experimental measurements. This work in antenna pattern prediction forms the basis of understanding of the complex scattering mechanisms from impedance surfaces. It provides the foundation for the analysis of backscattering patterns which, in general, are more problematic than calculation of antenna patterns. Further proposed study of related topics, including surface waves, corner diffractions, and multiple diffractions, is outlined.

  11. Auxin, ethylene and the regulation of root growth under mechanical impedance

    NASA Astrophysics Data System (ADS)

    Sharma, Rameshwar; Santisree, Parankusam; Nongmaithem, Sapana; Sreelakshmi, Yellamaraju

    2012-07-01

    Among the multitude functions performed by plant roots, little information is available about the mechanisms that allow roots to overcome the soil resistance, in order to grow in the soil to obtain water and nutrient. Tomato (Solanum lycopersicum) seedlings grown on horizontally placed agar plates showed a progressive decline in the root length with the increasing impedance of agar media. The incubation with 1-methylcyclopropane (1-MCP), an inhibitor of ethylene perception, led to aerial growth of roots. In contrast, in absence of 1-MCP control roots grew horizontally anchored to the agar surface. Though 1-MCP-treated and control seedlings showed differential ability to penetrate in the agar, the inhibition of root elongation was nearly similar for both treatments. While increased mechanical impedance also progressively impaired hypocotyl elongation in 1-MCP treated seedlings, it did not affect the hypocotyl length of control seedlings. The decline in root elongation was also associated with increased expression of DR5::GUS activity in the root tip signifying accumulation of auxin at the root tip. The increased expression of DR5::GUS activity in the root tip was also observed in 1-MCP treated seedlings, indicating independence of this response from ethylene signaling. Our results indicate operation of a sensing mechanism in root that likely operates independently of ethylene but involves auxin to determine the degree of impedance of the substratum.

  12. Design and Preliminary Evaluation of a Two DOFs Cable-Driven Ankle–Foot Prosthesis with Active Dorsiflexion–Plantarflexion and Inversion–Eversion

    PubMed Central

    Ficanha, Evandro Maicon; Ribeiro, Guilherme Aramizo; Dallali, Houman; Rastgaar, Mohammad

    2016-01-01

    This paper describes the design of an ankle–foot robotic prosthesis controllable in the sagittal and frontal planes. The prosthesis was designed to meet the mechanical characteristics of the human ankle including power, range of motion, and weight. To transfer the power from the motors and gearboxes to the ankle–foot mechanism, a Bowden cable system was used. The Bowden cable allows for optimal placement of the motors and gearboxes in order to improve gait biomechanics such as the metabolic energy cost and gait asymmetry during locomotion. Additionally, it allows flexibility in the customization of the device to amputees with different residual limb sizes. To control the prosthesis, impedance controllers in both sagittal and frontal planes were developed. The impedance controllers used torque feedback from strain gages installed on the foot. Preliminary evaluation was performed to verify the capability of the prosthesis to track the kinematics of the human ankle in two degrees of freedom (DOFs), the mechanical efficiency of the Bowden cable transmission, and the ability of the prosthesis to modulate the impedance of the ankle. Moreover, the system was characterized by describing the relationship between the stiffness of the impedance controllers to the actual stiffness of the ankle. Efficiency estimation showed 85.4% efficiency in the Bowden cable transmission. The prosthesis was capable of properly mimicking human ankle kinematics and changing its mechanical impedance in two DOFs in real time with a range of stiffness sufficient for normal human walking. In dorsiflexion–plantarflexion (DP), the stiffness ranged from 0 to 236 Nm/rad and in inversion–eversion (IE), the stiffness ranged from 1 to 33 Nm/rad. PMID:27200342

  13. Electrochemical layer-by-layer approach to fabricate mechanically stable platinum black microelectrodes using a mussel-inspired polydopamine adhesive.

    PubMed

    Kim, Raeyoung; Nam, Yoonkey

    2015-04-01

    Platinum black (PtBK) has long been used for microelectrode fabrication owing to its high recording performance of neural signals. The porous structure of PtBK enlarges the surface area and lowers the impedance, which results in background noise reduction. However, the brittleness of PtBK has been a problem in practice. In this work, we report mechanically stable PtBK microelectrodes using a bioinspired adhesive film, polydopamine (pDA), while maintaining the low impedance of PtBK. The pDA layer was incorporated into the PtBK structure through electrochemical layer-by-layer deposition. Varying the number of layers and the order of materials, multi-layered pDA-PtBK hybrids were fabricated and the electrical properties, both impedance and charge injection limit, were evaluated. Multilayered pDA-PtBK hybrids had electrical impedances as low as PtBK controls and charge injection limit twice larger than controls. For the 30 min-ultrasonication agitation test, impedance levels rarely changed for some of the pDA-PtBK hybrids indicating that the pDA improved the mechanical property of the PtBK structures. The pDA-PtBK hybrid microelectrodes readily recorded neural signals of cultured hippocampal neurons, where background noise levels and signal-to-noise were 2.43 ∼ 3.23 μVrms and 28.4 ∼ 69.1, respectively. The developed pDA-PtBK hybrid microelectrodes are expected to be applicable to neural sensors for neural prosthetic studies.

  14. Effect of embedded dexamethasone in cochlear implant array on insertion forces in an artificial model of scala tympani.

    PubMed

    Nguyen, Yann; Bernardeschi, Daniele; Kazmitcheff, Guillaume; Miroir, Mathieu; Vauchel, Thomas; Ferrary, Evelyne; Sterkers, Olivier

    2015-02-01

    Loading otoprotective drug into cochlear implant might change its mechanical properties, thus compromising atraumatic insertion. This study evaluated the effect of incorporation of dexamethasone (DXM) in the silicone of cochlear implant arrays on insertion forces. Local administration of DXM with embedded array can potentially reduce inflammation and fibrosis after cochlear implantation procedure to improve hearing preservation and reduce long-term impedances. Four models of arrays have been tested: 0.5-mm distal diameter array (n = 5) used as a control, drug-free 0.4-mm distal diameter array (n = 5), 0.4-mm distal diameter array with 1% eluded DXM silicone (n = 5), and 0.4-mm distal diameter array with 10% eluded DXM silicone (n = 5). Via a motorized insertion bench, each array has been inserted into an artificial scala tympani model. The forces were recorded by a 6-axis force sensor. Each array was tested seven times for a total number of 140 insertions. During the first 10-mm insertion, no difference between the four models was observed. From 10- to 24-mm insertion, the 0.5-mm distal diameter array presented higher insertion forces than the drug-free 0.4-mm distal diameter arrays, with or without DXM. Friction forces for drug-free 0.4-mm distal diameter array and 0.4-mm distal diameter DXM eluded arrays were similar on all insertion lengths. Incorporation of DXM in silicone for cochlear implant design does not change electrode array insertion forces. It does not raise the risk of trauma during array insertion, making it suitable for long-term in situ administration to the cochlea.

  15. Mussel-Inspired Conductive Polymer Binder for Si-Alloy Anode in Lithium-Ion Batteries

    DOE PAGES

    Zhao, Hui; Wei, Yang; Wang, Cheng; ...

    2018-01-15

    The excessive volume changes during cell cycling of Si-based anode in lithium ion batteries impeded its application. One major reason for the cell failure is particle isolation during volume shrinkage in delithiation process, which makes strong adhesion between polymer binder and anode active material particles a highly desirable property. Here, a biomimetic side-chain conductive polymer incorporating catechol, a key adhesive component of the mussel holdfast protein, was synthesized. Atomic force microscopy-based single-molecule force measurements of mussel-inspired conductive polymer binder contacting a silica surface revealed a similar adhesion toward substrate when compared with an effective Si anode binder, homo-poly(acrylic acid), withmore » the added benefit of being electronically conductive. Electrochemical experiments showed a very stable cycling of Si-alloy anodes realized via this biomimetic conducting polymer binder, leading to a high loading Si anode with a good rate performance. We attribute the ability of the Si-based anode to tolerate the volume changes during cycling to the excellent mechanical integrity afforded by the strong interfacial adhesion of the biomimetic conducting polymer.« less

  16. Birth control sabotage and forced sex: experiences reported by women in domestic violence shelters.

    PubMed

    Thiel de Bocanegra, Heike; Rostovtseva, Daria P; Khera, Satin; Godhwani, Nita

    2010-05-01

    Women who experience intimate partner violence often experience birth control sabotage, forced sex, and partner's unwillingness to use condoms. We interviewed 53 women at four domestic violence shelters. Participants reported that their abusive partners frequently refused to use condoms, impeded them from accessing health care, and subjected them to birth control sabotage, infidelity, and forced sex. However, women also reported strategies to counteract these actions, particularly against birth control sabotage and attempts to force them to abort or continue a pregnancy. Domestic violence counselors can focus on these successful strategies to validate coping skills and build self-esteem.

  17. Object impedance control for cooperative manipulation - Theory and experimental results

    NASA Technical Reports Server (NTRS)

    Schneider, Stanley A.; Cannon, Robert H., Jr.

    1992-01-01

    This paper presents the dynamic control module of the Dynamic and Strategic Control of Cooperating Manipulators (DASCCOM) project at Stanford University's Aerospace Robotics Laboratory. First, the cooperative manipulation problem is analyzed from a systems perspective, and the desirable features of a control system for cooperative manipulation are discussed. Next, a control policy is developed that enforces a controlled impedance not of the individual arm endpoints, but of the manipulated object itself. A parallel implementation for a multiprocessor system is presented. The controller fully compensates for the system dynamics and directly controls the object internal forces. Most importantly, it presents a simple, powerful, intuitive interface to higher level strategic control modules. Experimental results from a dual two-link-arm robotic system are used to compare the object impedance controller with other strategies, both for free-motion slews and environmental contact.

  18. Mechanical Impedance of the Non-loaded Lower Leg with Relaxed Muscles in the Transverse Plane

    PubMed Central

    Ficanha, Evandro Maicon; Ribeiro, Guilherme Aramizo; Rastgaar, Mohammad

    2015-01-01

    This paper describes the protocols and results of the experiments for the estimation of the mechanical impedance of the humans’ lower leg in the External–Internal direction in the transverse plane under non-load bearing condition and with relaxed muscles. The objectives of the estimation of the lower leg’s mechanical impedance are to facilitate the design of passive and active prostheses with mechanical characteristics similar to the humans’ lower leg, and to define a reference that can be compared to the values from the patients suffering from spasticity. The experiments were performed with 10 unimpaired male subjects using a lower extremity rehabilitation robot (Anklebot, Interactive Motion Technologies, Inc.) capable of applying torque perturbations to the foot. The subjects were in a seated position, and the Anklebot recorded the applied torques and the resulting angular movement of the lower leg. In this configuration, the recorded dynamics are due mainly to the rotations of the ankle’s talocrural and the subtalar joints, and any contribution of the tibiofibular joints and knee joint. The dynamic mechanical impedance of the lower leg was estimated in the frequency domain with an average coherence of 0.92 within the frequency range of 0–30 Hz, showing a linear correlation between the displacement and the torques within this frequency range under the conditions of the experiment. The mean magnitude of the stiffness of the lower leg (the impedance magnitude averaged in the range of 0–1 Hz) was determined as 4.9 ± 0.74 Nm/rad. The direct estimation of the quasi-static stiffness of the lower leg results in the mean value of 5.8 ± 0.81 Nm/rad. An analysis of variance shows that the estimated values for the stiffness from the two experiments are not statistically different. PMID:26697424

  19. Handedness results from Complementary Hemispheric Dominance, not Global Hemispheric Dominance: Evidence from Mechanically Coupled Bilateral Movements.

    PubMed

    Woytowicz, Elizabeth J; Westlake, Kelly P; Whitall, Jill; Sainburg, Robert L

    2018-05-09

    Two contrasting views of handedness can be described as 1) complementary dominance, in which each hemisphere is specialized for different aspects of motor control, and 2) global dominance, in which the hemisphere contralateral to the dominant arm is specialized for all aspects of motor control. The present study sought to determine which motor lateralization hypothesis best predicts motor performance during common bilateral task of stabilizing an object (e.g. bread) with one hand while applying forces to the object (e.g. slicing) using the other hand. We designed an experimental equivalent of this task, performed in a virtual environment with the unseen arms supported by frictionless air-sleds. The hands were connected by a spring, and the task was to maintain the position of one hand, while moving the other hand to a target. Thus, the reaching hand was required to take account of the spring load to make smooth and accurate trajectories, while the stabilizer hand was required to impede the spring load to keep a constant position. Right-handed subjects performed two task sessions (right hand reach and left hand stabilize; left hand reach and right hand stabilize) with the order of the sessions counterbalanced between groups. Our results indicate a hand by task-component interaction, such that the right hand showed straighter reaching performance while the left showed more stable holding performance. These findings provide support for the complementary dominance hypothesis and suggest that the specializations of each cerebral hemisphere for impedance and dynamic control mechanisms are expressed during bilateral interactive tasks.

  20. 32 CFR 516.19 - Injunctive relief.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... may attempt to force government action or restraint in important operational matters or pending personnel actions through motions for temporary restraining orders (TRO) or preliminary injunctions (PI). Because these actions can quickly impede military functions, immediate and decisive action must be taken...

  1. 32 CFR 516.19 - Injunctive relief.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... may attempt to force government action or restraint in important operational matters or pending personnel actions through motions for temporary restraining orders (TRO) or preliminary injunctions (PI). Because these actions can quickly impede military functions, immediate and decisive action must be taken...

  2. Study of electrical properties of Sc doped BaFe12O19 ceramic using dielectric, impedance, modulus spectroscopy and AC conductivity

    NASA Astrophysics Data System (ADS)

    Gupta, Surbhi; Deshpande, S. K.; Sathe, V. G.; Siruguri, V.

    2018-04-01

    We present dielectric, complex impedance, modulus spectroscopy and AC conductivity studies of the compound BaFe10Sc2O19 as a function of temperature and frequency to understand the conduction mechanism. The variation in complex dielectric constant with frequency and temperature were analyzed on the basis of Maxwell-Wagner-Koop's theory and charge hopping between ferrous and ferric ions. The complex impedance spectroscopy study shows only grain contribution whereas complex modulus plot shows two semicircular arcs which indicate both grain and grain boundary contributions in conduction mechanism. AC conductivity has also been evaluated which follows the Jonscher's law. The activation energy calculated from temperature dependence of DC conductivity comes out to be Ea˜ 0.31eV.

  3. MONITORING ANTIBODY-ANTIGEN REACTIONS AT CONDUCTING POLYMER-BASED IMMUNOSENSORS USING IMPEDANCE SPECTROSCOPY. (R825323)

    EPA Science Inventory

    Abstract

    The mechanisms of antibody¯antigen (Ab¯Ag) interactions at conducting polypyrrole electrodes have been investigated using impedance spectroscopy techniques. The effects of the variation in ion exchange, solution composition, and...

  4. A Deformable Smart Skin for Continuous Sensing Based on Electrical Impedance Tomography.

    PubMed

    Visentin, Francesco; Fiorini, Paolo; Suzuki, Kenji

    2016-11-16

    In this paper, we present a low-cost, adaptable, and flexible pressure sensor that can be applied as a smart skin over both stiff and deformable media. The sensor can be easily adapted for use in applications related to the fields of robotics, rehabilitation, or costumer electronic devices. In order to remove most of the stiff components that block the flexibility of the sensor, we based the sensing capability on the use of a tomographic technique known as Electrical Impedance Tomography. The technique allows the internal structure of the domain under study to be inferred by reconstructing its conductivity map. By applying the technique to a material that changes its resistivity according to applied forces, it is possible to identify these changes and then localise the area where the force was applied. We tested the system when applied to flat and curved surfaces. For all configurations, we evaluate the artificial skin capabilities to detect forces applied over a single point, over multiple points, and changes in the underlying geometry. The results are all promising, and open the way for the application of such sensors in different robotic contexts where deformability is the key point.

  5. A Deformable Smart Skin for Continuous Sensing Based on Electrical Impedance Tomography

    PubMed Central

    Visentin, Francesco; Fiorini, Paolo; Suzuki, Kenji

    2016-01-01

    In this paper, we present a low-cost, adaptable, and flexible pressure sensor that can be applied as a smart skin over both stiff and deformable media. The sensor can be easily adapted for use in applications related to the fields of robotics, rehabilitation, or costumer electronic devices. In order to remove most of the stiff components that block the flexibility of the sensor, we based the sensing capability on the use of a tomographic technique known as Electrical Impedance Tomography. The technique allows the internal structure of the domain under study to be inferred by reconstructing its conductivity map. By applying the technique to a material that changes its resistivity according to applied forces, it is possible to identify these changes and then localise the area where the force was applied. We tested the system when applied to flat and curved surfaces. For all configurations, we evaluate the artificial skin capabilities to detect forces applied over a single point, over multiple points, and changes in the underlying geometry. The results are all promising, and open the way for the application of such sensors in different robotic contexts where deformability is the key point. PMID:27854325

  6. Aircraft panel with sensorless active sound power reduction capabilities through virtual mechanical impedances

    NASA Astrophysics Data System (ADS)

    Boulandet, R.; Michau, M.; Micheau, P.; Berry, A.

    2016-01-01

    This paper deals with an active structural acoustic control approach to reduce the transmission of tonal noise in aircraft cabins. The focus is on the practical implementation of the virtual mechanical impedances method by using sensoriactuators instead of conventional control units composed of separate sensors and actuators. The experimental setup includes two sensoriactuators developed from the electrodynamic inertial exciter and distributed over an aircraft trim panel which is subject to a time-harmonic diffuse sound field. The target mechanical impedances are first defined by solving a linear optimization problem from sound power measurements before being applied to the test panel using a complex envelope controller. Measured data are compared to results obtained with sensor-actuator pairs consisting of an accelerometer and an inertial exciter, particularly as regards sound power reduction. It is shown that the two types of control unit provide similar performance, and that here virtual impedance control stands apart from conventional active damping. In particular, it is clear from this study that extra vibrational energy must be provided by the actuators for optimal sound power reduction, mainly due to the high structural damping in the aircraft trim panel. Concluding remarks on the benefits of using these electrodynamic sensoriactuators to control tonal disturbances are also provided.

  7. Ability of Impedance-Based Health Monitoring To Detect Structural Damage of Propulsion System Components Assessed

    NASA Technical Reports Server (NTRS)

    Martin, Richard E.; Gyekenyesi, Andrew L.; Sawicki, Jerzy T.; Baaklini, George Y.

    2005-01-01

    Impedance-based structural-health-monitoring uses piezoelectric (PZT) patches that are bonded onto or embedded in a structure. Each individual patch behaves as both an actuator of the surrounding structural area as well as a sensor of the structural response. The size of the excited area varies with the geometry and material composition of the structure, and an active patch is driven by a sinusoidal voltage sweep. When a PZT patch is subjected to an electric field, it produces a mechanical strain; and when it is stressed, it produces an electric charge. Since the patch is bonded to the structure, driving a patch deforms and vibrates the structure. The structure then produces a localized dynamic response. This structural system response is transferred back to the PZT patch, which in turn produces an electrical response. The electromechanical impedance method is based on the principle of electromechanical coupling between the active sensor and the structure, which allows researchers to assess local structural dynamics directly by interrogating a distributed sensor array. Because of mechanical coupling between the sensor and the host structure, this mechanical effect is picked up by the sensor and, through electromechanical coupling inside the active element, is reflected in electrical impedance measured at the sensor s terminals.

  8. Development on electromagnetic impedance function modeling and its estimation

    NASA Astrophysics Data System (ADS)

    Sutarno, D.

    2015-09-01

    Today the Electromagnetic methods such as magnetotellurics (MT) and controlled sources audio MT (CSAMT) is used in a broad variety of applications. Its usefulness in poor seismic areas and its negligible environmental impact are integral parts of effective exploration at minimum cost. As exploration was forced into more difficult areas, the importance of MT and CSAMT, in conjunction with other techniques, has tended to grow continuously. However, there are obviously important and difficult problems remaining to be solved concerning our ability to collect process and interpret MT as well as CSAMT in complex 3D structural environments. This talk aim at reviewing and discussing the recent development on MT as well as CSAMT impedance functions modeling, and also some improvements on estimation procedures for the corresponding impedance functions. In MT impedance modeling, research efforts focus on developing numerical method for computing the impedance functions of three dimensionally (3-D) earth resistivity models. On that reason, 3-D finite elements numerical modeling for the impedances is developed based on edge element method. Whereas, in the CSAMT case, the efforts were focused to accomplish the non-plane wave problem in the corresponding impedance functions. Concerning estimation of MT and CSAMT impedance functions, researches were focused on improving quality of the estimates. On that objective, non-linear regression approach based on the robust M-estimators and the Hilbert transform operating on the causal transfer functions, were used to dealing with outliers (abnormal data) which are frequently superimposed on a normal ambient MT as well as CSAMT noise fields. As validated, the proposed MT impedance modeling method gives acceptable results for standard three dimensional resistivity models. Whilst, the full solution based modeling that accommodate the non-plane wave effect for CSAMT impedances is applied for all measurement zones, including near-, transition-as well as the far-field zones, and consequently the plane wave correction is no longer needed for the impedances. In the resulting robust impedance estimates, outlier contamination is removed and the self consistency between the real and imaginary parts of the impedance estimates is guaranteed. Using synthetic and real MT data, it is shown that the proposed robust estimation methods always yield impedance estimates which are better than the conventional least square (LS) estimation, even under condition of severe noise contamination. A recent development on the constrained robust CSAMT impedance estimation is also discussed. By using synthetic CSAMT data it is demonstrated that the proposed methods can produce usable CSAMT transfer functions for all measurement zones.

  9. Development on electromagnetic impedance function modeling and its estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutarno, D., E-mail: Sutarno@fi.itb.ac.id

    2015-09-30

    Today the Electromagnetic methods such as magnetotellurics (MT) and controlled sources audio MT (CSAMT) is used in a broad variety of applications. Its usefulness in poor seismic areas and its negligible environmental impact are integral parts of effective exploration at minimum cost. As exploration was forced into more difficult areas, the importance of MT and CSAMT, in conjunction with other techniques, has tended to grow continuously. However, there are obviously important and difficult problems remaining to be solved concerning our ability to collect process and interpret MT as well as CSAMT in complex 3D structural environments. This talk aim atmore » reviewing and discussing the recent development on MT as well as CSAMT impedance functions modeling, and also some improvements on estimation procedures for the corresponding impedance functions. In MT impedance modeling, research efforts focus on developing numerical method for computing the impedance functions of three dimensionally (3-D) earth resistivity models. On that reason, 3-D finite elements numerical modeling for the impedances is developed based on edge element method. Whereas, in the CSAMT case, the efforts were focused to accomplish the non-plane wave problem in the corresponding impedance functions. Concerning estimation of MT and CSAMT impedance functions, researches were focused on improving quality of the estimates. On that objective, non-linear regression approach based on the robust M-estimators and the Hilbert transform operating on the causal transfer functions, were used to dealing with outliers (abnormal data) which are frequently superimposed on a normal ambient MT as well as CSAMT noise fields. As validated, the proposed MT impedance modeling method gives acceptable results for standard three dimensional resistivity models. Whilst, the full solution based modeling that accommodate the non-plane wave effect for CSAMT impedances is applied for all measurement zones, including near-, transition-as well as the far-field zones, and consequently the plane wave correction is no longer needed for the impedances. In the resulting robust impedance estimates, outlier contamination is removed and the self consistency between the real and imaginary parts of the impedance estimates is guaranteed. Using synthetic and real MT data, it is shown that the proposed robust estimation methods always yield impedance estimates which are better than the conventional least square (LS) estimation, even under condition of severe noise contamination. A recent development on the constrained robust CSAMT impedance estimation is also discussed. By using synthetic CSAMT data it is demonstrated that the proposed methods can produce usable CSAMT transfer functions for all measurement zones.« less

  10. New insight into the discharge mechanism of silicon-air batteries using electrochemical impedance spectroscopy.

    PubMed

    Cohn, Gil; Eichel, Rüdiger A; Ein-Eli, Yair

    2013-03-07

    The mechanism of discharge termination in silicon-air batteries, employing a silicon wafer anode, a room-temperature fluorohydrogenate ionic liquid electrolyte and an air cathode membrane, is investigated using a wide range of tools. EIS studies indicate that the interfacial impedance between the electrolyte and the silicon wafer increases upon continuous discharge. In addition, it is shown that the impedance of the air cathode-electrolyte interface is several orders of magnitude lower than that of the anode. Equivalent circuit fitting parameters indicate the difference in the anode-electrolyte interface characteristics for different types of silicon wafers. Evolution of porous silicon surfaces at the anode and their properties, by means of estimated circuit parameters, is also presented. Moreover, it is found that the silicon anode potential has the highest negative impact on the battery discharge voltage, while the air cathode potential is actually stable and invariable along the whole discharge period. The discharge capacity of the battery can be increased significantly by mechanically replacing the silicon anode.

  11. Model tests and numerical analyses on horizontal impedance functions of inclined single piles embedded in cohesionless soil

    NASA Astrophysics Data System (ADS)

    Goit, Chandra Shekhar; Saitoh, Masato

    2013-03-01

    Horizontal impedance functions of inclined single piles are measured experimentally for model soil-pile systems with both the effects of local soil nonlinearity and resonant characteristics. Two practical pile inclinations of 5° and 10° in addition to a vertical pile embedded in cohesionless soil and subjected to lateral harmonic pile head loadings for a wide range of frequencies are considered. Results obtained with low-to-high amplitude of lateral loadings on model soil-pile systems encased in a laminar shear box show that the local nonlinearities have a profound impact on the horizontal impedance functions of piles. Horizontal impedance functions of inclined piles are found to be smaller than the vertical pile and the values decrease as the angle of pile inclination increases. Distinct values of horizontal impedance functions are obtained for the `positive' and `negative' cycles of harmonic loadings, leading to asymmetric force-displacement relationships for the inclined piles. Validation of these experimental results is carried out through three-dimensional nonlinear finite element analyses, and the results from the numerical models are in good agreement with the experimental data. Sensitivity analyses conducted on the numerical models suggest that the consideration of local nonlinearity at the vicinity of the soil-pile interface influence the response of the soil-pile systems.

  12. ELECTRIC IMPEDANCE OF NITELLA DURING ACTIVITY

    PubMed Central

    Cole, Kenneth S.; Curtis, Howard J.

    1938-01-01

    The changes in the alternating current impedance which occur during activity of cells of the fresh water plant Nitella have been measured with the current flow normal to the cell axis, at eight frequencies from 0.05 to 20 kilocycles per second, and with simultaneous records of the action potential under the impedance electrodes. At each frequency the resting cell was balanced in a Wheatstone bridge with a cathode ray oscillograph, and after electrical stimulation at one end of the cell, the changes in the complex impedance were determined from the bridge unbalance recorded by motion pictures of the oscillograph figure. An extension of the previous technique of interpretation of the transverse impedance shows that the normal membrane capacity of 0.9 µf./cm.2 decreases about 15 per cent without change of phase angle, while the membrane resistance decreases from 105 ohm cm.2 to about 500 ohm cm.2 during the passage of the excitation wave. This membrane change occurs during the latter part of the rising phase of the action potential, and it is shown that the membrane electromotive force remains unchanged until nearly the same time. The part of the action potential preceding these membrane changes is probably a passive fall of potential ahead of a partial short circuit. PMID:19873091

  13. Equivalent circuit models for interpreting impedance perturbation spectroscopy data

    NASA Astrophysics Data System (ADS)

    Smith, R. Lowell

    2004-07-01

    As in-situ structural integrity monitoring disciplines mature, there is a growing need to process sensor/actuator data efficiently in real time. Although smaller, faster embedded processors will contribute to this, it is also important to develop straightforward, robust methods to reduce the overall computational burden for practical applications of interest. This paper addresses the use of equivalent circuit modeling techniques for inferring structure attributes monitored using impedance perturbation spectroscopy. In pioneering work about ten years ago significant progress was associated with the development of simple impedance models derived from the piezoelectric equations. Using mathematical modeling tools currently available from research in ultrasonics and impedance spectroscopy is expected to provide additional synergistic benefits. For purposes of structural health monitoring the objective is to use impedance spectroscopy data to infer the physical condition of structures to which small piezoelectric actuators are bonded. Features of interest include stiffness changes, mass loading, and damping or mechanical losses. Equivalent circuit models are typically simple enough to facilitate the development of practical analytical models of the actuator-structure interaction. This type of parametric structure model allows raw impedance/admittance data to be interpreted optimally using standard multiple, nonlinear regression analysis. One potential long-term outcome is the possibility of cataloging measured viscoelastic properties of the mechanical subsystems of interest as simple lists of attributes and their statistical uncertainties, whose evolution can be followed in time. Equivalent circuit models are well suited for addressing calibration and self-consistency issues such as temperature corrections, Poisson mode coupling, and distributed relaxation processes.

  14. Lipid Bilayer Membrane in a Silicon Based Micron Sized Cavity Accessed by Atomic Force Microscopy and Electrochemical Impedance Spectroscopy

    PubMed Central

    Dosoky, Noura Sayed; Patel, Darayas; Weimer, Jeffrey; Williams, John Dalton

    2017-01-01

    Supported lipid bilayers (SLBs) are widely used in biophysical research to probe the functionality of biological membranes and to provide diagnoses in high throughput drug screening. Formation of SLBs at below phase transition temperature (Tm) has applications in nano-medicine research where low temperature profiles are required. Herein, we report the successful production of SLBs at above—as well as below—the Tm of the lipids in an anisotropically etched, silicon-based micro-cavity. The Si-based cavity walls exhibit controlled temperature which assist in the quick and stable formation of lipid bilayer membranes. Fusion of large unilamellar vesicles was monitored in real time in an aqueous environment inside the Si cavity using atomic force microscopy (AFM), and the lateral organization of the lipid molecules was characterized until the formation of the SLBs. The stability of SLBs produced was also characterized by recording the electrical resistance and the capacitance using electrochemical impedance spectroscopy (EIS). Analysis was done in the frequency regime of 10−2–105 Hz at a signal voltage of 100 mV and giga-ohm sealed impedance was obtained continuously over four days. Finally, the cantilever tip in AFM was utilized to estimate the bilayer thickness and to calculate the rupture force at the interface of the tip and the SLB. We anticipate that a silicon-based, micron-sized cavity has the potential to produce highly-stable SLBs below their Tm. The membranes inside the Si cavity could last for several days and allow robust characterization using AFM or EIS. This could be an excellent platform for nanomedicine experiments that require low operating temperatures. PMID:28678160

  15. Lipid Bilayer Membrane in a Silicon Based Micron Sized Cavity Accessed by Atomic Force Microscopy and Electrochemical Impedance Spectroscopy.

    PubMed

    Khan, Muhammad Shuja; Dosoky, Noura Sayed; Patel, Darayas; Weimer, Jeffrey; Williams, John Dalton

    2017-07-05

    Supported lipid bilayers (SLBs) are widely used in biophysical research to probe the functionality of biological membranes and to provide diagnoses in high throughput drug screening. Formation of SLBs at below phase transition temperature ( Tm ) has applications in nano-medicine research where low temperature profiles are required. Herein, we report the successful production of SLBs at above-as well as below-the Tm of the lipids in an anisotropically etched, silicon-based micro-cavity. The Si-based cavity walls exhibit controlled temperature which assist in the quick and stable formation of lipid bilayer membranes. Fusion of large unilamellar vesicles was monitored in real time in an aqueous environment inside the Si cavity using atomic force microscopy (AFM), and the lateral organization of the lipid molecules was characterized until the formation of the SLBs. The stability of SLBs produced was also characterized by recording the electrical resistance and the capacitance using electrochemical impedance spectroscopy (EIS). Analysis was done in the frequency regime of 10 -2 -10⁵ Hz at a signal voltage of 100 mV and giga-ohm sealed impedance was obtained continuously over four days. Finally, the cantilever tip in AFM was utilized to estimate the bilayer thickness and to calculate the rupture force at the interface of the tip and the SLB. We anticipate that a silicon-based, micron-sized cavity has the potential to produce highly-stable SLBs below their Tm . The membranes inside the Si cavity could last for several days and allow robust characterization using AFM or EIS. This could be an excellent platform for nanomedicine experiments that require low operating temperatures.

  16. Association between respiratory impedance measured by forced oscillation technique and exacerbations in patients with COPD.

    PubMed

    Yamagami, Hitomi; Tanaka, Akihiko; Kishino, Yasunari; Mikuni, Hatsuko; Kawahara, Tomoko; Ohta, Shin; Yamamoto, Mayumi; Suzuki, Shintaro; Ohnishi, Tsukasa; Sagara, Hironori

    2018-01-01

    It is well known that increased airflow limitation as measured by spirometry is associated with the risk of exacerbation in patients with COPD. The forced oscillation technique (FOT) is a noninvasive method used to assess respiratory impedance (resistance and reactance) with minimal patient cooperation required. The clinical utility of the FOT in assessing the risk of exacerbations of COPD is yet to be determined. We examined the relationship between respiratory impedance as measured by FOT and exacerbations in patients with COPD. Among 310 patients with COPD (Global Initiative for Chronic Obstructive Lung Disease stages I-IV) who presented at the outpatient clinic of the Showa University Hospital from September 2014 through January 2015, 119 were collected and assigned into 2 groups according to their history of exacerbation: exacerbators and nonexacerbators. Respiratory resistance components and respiratory reactance components, as measured by FOT, were compared between the two groups. Exacerbators were significantly older and had a higher white blood cell count than nonexacerbators. Resistance at 20 Hz, reactance at 5 Hz (X5), resonant frequency (Fres), and area of low reactance (ALX) differed significantly between the two groups. In addition, among patients with stage II COPD, there were significant differences in X5, Fres, and ALX between the two groups despite no significant differences in respiratory function as assessed by spirometry. Finally, receiver operating characteristic curve analysis revealed that the reactance components rather than the resistance components were associated with the risk of exacerbation. There were significant differences in respiratory impedance between exacerbators and nonexacerbators in patients with moderate COPD. FOT is a promising tool for assessing future exacerbations in patients with COPD.

  17. Electrochemical layer-by-layer approach to fabricate mechanically stable platinum black microelectrodes using a mussel-inspired polydopamine adhesive

    NASA Astrophysics Data System (ADS)

    Kim, Raeyoung; Nam, Yoonkey

    2015-04-01

    Objective. Platinum black (PtBK) has long been used for microelectrode fabrication owing to its high recording performance of neural signals. The porous structure of PtBK enlarges the surface area and lowers the impedance, which results in background noise reduction. However, the brittleness of PtBK has been a problem in practice. In this work, we report mechanically stable PtBK microelectrodes using a bioinspired adhesive film, polydopamine (pDA), while maintaining the low impedance of PtBK. Approach. The pDA layer was incorporated into the PtBK structure through electrochemical layer-by-layer deposition. Varying the number of layers and the order of materials, multi-layered pDA-PtBK hybrids were fabricated and the electrical properties, both impedance and charge injection limit, were evaluated. Main results. Multilayered pDA-PtBK hybrids had electrical impedances as low as PtBK controls and charge injection limit twice larger than controls. For the 30 min-ultrasonication agitation test, impedance levels rarely changed for some of the pDA-PtBK hybrids indicating that the pDA improved the mechanical property of the PtBK structures. The pDA-PtBK hybrid microelectrodes readily recorded neural signals of cultured hippocampal neurons, where background noise levels and signal-to-noise were 2.43 ∼ 3.23 μVrms and 28.4 ∼ 69.1, respectively. Significance. The developed pDA-PtBK hybrid microelectrodes are expected to be applicable to neural sensors for neural prosthetic studies.

  18. Effect of trap states and microstructure on charge carrier conduction mechanism through semicrystalline poly(vinyl alcohol) granular film

    NASA Astrophysics Data System (ADS)

    Das, A. K.; Bhowmik, R. N.; Meikap, A. K.

    2018-05-01

    We report a comprehensive study on hysteresis behaviour of current-voltage characteristic and impedance spectroscopy of granular semicrystalline poly(vinyl alcohol) (PVA) film. The charge carrier conduction mechanism and charge traps of granular PVA film by measuring and analyzing the temperature dependent current-voltage characteristic indicate a bi-stable electronic state in the film. A sharp transformation of charge carrier conduction mechanism from Poole-Frenkel emission to space charge limited current mechanism has been observed. An anomalous oscillatory behaviour of current has been observed due to electric pulse effect on the molecular chain of the polymer. Effect of microstructure on charge transport mechanism has been investigated from impedance spectroscopy analysis. An equivalent circuit model has been proposed to explain the result.

  19. Design of a phased array for the generation of adaptive radiation force along a path surrounding a breast lesion for dynamic ultrasound elastography imaging.

    PubMed

    Ekeom, Didace; Hadj Henni, Anis; Cloutier, Guy

    2013-03-01

    This work demonstrates, with numerical simulations, the potential of an octagonal probe for the generation of radiation forces in a set of points following a path surrounding a breast lesion in the context of dynamic ultrasound elastography imaging. Because of the in-going wave adaptive focusing strategy, the proposed method is adapted to induce shear wave fronts to interact optimally with complex lesions. Transducer elements were based on 1-3 piezocomposite material. Three-dimensional simulations combining the finite element method and boundary element method with periodic boundary conditions in the elevation direction were used to predict acoustic wave radiation in a targeted region of interest. The coupling factor of the piezocomposite material and the radiated power of the transducer were optimized. The transducer's electrical impedance was targeted to 50 Ω. The probe was simulated by assembling the designed transducer elements to build an octagonal phased-array with 256 elements on each edge (for a total of 2048 elements). The central frequency is 4.54 MHz; simulated transducer elements are able to deliver enough power and can generate the radiation force with a relatively low level of voltage excitation. Using dynamic transmitter beamforming techniques, the radiation force along a path and resulting acoustic pattern in the breast were simulated assuming a linear isotropic medium. Magnitude and orientation of the acoustic intensity (radiation force) at any point of a generation path could be controlled for the case of an example representing a heterogeneous medium with an embedded soft mechanical inclusion.

  20. Tubular Heart Pumping Mechanisms in Ciona Intestinalis

    NASA Astrophysics Data System (ADS)

    Battista, Nicholas; Miller, Laura

    2015-11-01

    In vertebrate embryogenesis, the first organ to form is the heart, beginning as a primitive heart tube. However, many invertebrates have tubular hearts from infancy through adulthood. Heart tubes have been described as peristaltic and impedance pumps. Impedance pumping assumes a single actuation point of contraction, while traditional peristalsis assumes a traveling wave of actuation. In addition to differences in flow, this inherently implies differences in the conduction system. It is possible to transition from pumping mechanism to the other with a change in the diffusivity of the action potential. In this work we consider the coupling between the fluid dynamics and electrophysiology of both mechanisms, within a basal chordate, the tunicate. Using CFD with a neuro-mechanical model of tubular pumping, we discuss implications of the both mechanisms. Furthermore, we discuss the implications of the pumping mechanism on evolution and development.

  1. Quantitative impedance measurements for eddy current model validation

    NASA Astrophysics Data System (ADS)

    Khan, T. A.; Nakagawa, N.

    2000-05-01

    This paper reports on a series of laboratory-based impedance measurement data, collected by the use of a quantitatively accurate, mechanically controlled measurement station. The purpose of the measurement is to validate a BEM-based eddy current model against experiment. We have therefore selected two "validation probes," which are both split-D differential probes. Their internal structures and dimensions are extracted from x-ray CT scan data, and thus known within the measurement tolerance. A series of measurements was carried out, using the validation probes and two Ti-6Al-4V block specimens, one containing two 1-mm long fatigue cracks, and the other containing six EDM notches of a range of sizes. Motor-controlled XY scanner performed raster scans over the cracks, with the probe riding on the surface with a spring-loaded mechanism to maintain the lift off. Both an impedance analyzer and a commercial EC instrument were used in the measurement. The probes were driven in both differential and single-coil modes for the specific purpose of model validation. The differential measurements were done exclusively by the eddyscope, while the single-coil data were taken with both the impedance analyzer and the eddyscope. From the single-coil measurements, we obtained the transfer function to translate the voltage output of the eddyscope into impedance values, and then used it to translate the differential measurement data into impedance results. The presentation will highlight the schematics of the measurement procedure, a representative of raw data, explanation of the post data-processing procedure, and then a series of resulting 2D flaw impedance results. A noise estimation will be given also, in order to quantify the accuracy of these measurements, and to be used in probability-of-detection estimation.—This work was supported by the NSF Industry/University Cooperative Research Program.

  2. Using impedance cardiography with postural change to stratify patients with hypertension.

    PubMed

    DeMarzo, Arthur P

    2011-06-01

    Early detection of cardiovascular disease in patients with hypertension could initiate appropriate treatment to control blood pressure and prevent the progression of cardiovascular disease. The goal of this study was to show how impedance cardiography waveform analysis with postural change can be used to detect subclinical cardiovascular disease in patients with high blood pressure. Patients with high blood pressure had impedance cardiography data obtained in two positions, standing upright and supine. In 50 adults, impedance cardiography indicated that all patients had abnormal data, with 44 (88%) having multiple abnormalities. Impedance cardiography showed 32 (64%) had ventricular dysfunction, 48 (96%) had vascular load abnormalities, 34 (68%) had hemodynamic abnormalities, 2 (4%) had hypovolemia, and 3 (6%) had hypervolemia. Hypertensive patients have diverse cardiovascular abnormalities that can be quantified by impedance cardiography. By stratifying patients with ventricular, vascular, and hemodynamic abnormalities, treatment could be customized based on the abnormal underlying mechanisms with the potential to rapidly control blood pressure, prevent progression of cardiovascular disease, and possibly reverse remodeling.

  3. Biomechanics of the incudo-malleolar-joint - Experimental investigations for quasi-static loads.

    PubMed

    Ihrle, S; Gerig, R; Dobrev, I; Röösli, C; Sim, J H; Huber, A M; Eiber, A

    2016-10-01

    Under large quasi-static loads, the incudo-malleolar joint (IMJ), connecting the malleus and the incus, is highly mobile. It can be classified as a mechanical filter decoupling large quasi-static motions while transferring small dynamic excitations. This is presumed to be due to the complex geometry of the joint inducing a spatial decoupling between the malleus and incus under large quasi-static loads. Spatial Laser Doppler Vibrometer (LDV) displacement measurements on isolated malleus-incus-complexes (MICs) were performed. With the malleus firmly attached to a probe holder, the incus was excited by applying quasi-static forces at different points. For each force application point the resulting displacement was measured subsequently at different points on the incus. The location of the force application point and the LDV measurement points were calculated in a post-processing step combining the position of the LDV points with geometric data of the MIC. The rigid body motion of the incus was then calculated from the multiple displacement measurements for each force application point. The contact regions of the articular surfaces for different load configurations were calculated by applying the reconstructed motion to the geometry model of the MIC and calculate the minimal distance of the articular surfaces. The reconstructed motion has a complex spatial characteristic and varies for different force application points. The motion changed with increasing load caused by the kinematic guidance of the articular surfaces of the joint. The IMJ permits a relative large rotation around the anterior-posterior axis through the joint when a force is applied at the lenticularis in lateral direction before impeding the motion. This is part of the decoupling of the malleus motion from the incus motion in case of large quasi-static loads. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Performance analysis of ultrasono-therapy transducer with contact detection.

    PubMed

    Moreno, Eduardo; González, Gilberto; Leija, Lorenzo; Rodríguez, Orlando; Castillo, Martha; Fuentes, Martín

    2003-06-01

    The performance of ultrasono-therapy transducer with contact detection by using the impedance phase change is described. Usually a therapy transducer is designed with a lambda/2 frontal plate glued to a PZT-4 piezoceramic. This plate ensures a good mechanical protection of the piezoceramic with a corresponding high-transmission energy. Normally this transducer is operated at the minimum at the frequency of the impedance module of its input electric impedance, but this operation point is affected by the shift caused by the expected temperature increase. This shift could be higher than the narrow bandwidth presented. As a result we obtain a decrease in the power level for medical treatment. Usually it is designed electronic drivers with automatic control that follow the frequency change, but the relatively narrow bandwidth introduces difficulty in the design. Another frequency operation point is presented here and analyzed using the criteria of the maximum of the impedance phase with a wider bandwidth than in the previous case. Simulation with mechanical losses are presented with experimental results that show the convenience of this criteria for practical application.

  5. Analysis of an infinite array of rectangular microstrip patches with idealized probe feeds

    NASA Technical Reports Server (NTRS)

    Pozar, D. M.; Schaubert, D. H.

    1984-01-01

    A solution is presented to the problem of an infinite array of microstrip patches fed by idealized current probes. The input reflection coefficient is calculated versus scan angle in an arbitrary scan plane, and the effects of substrate parameters and grid spacing are considered. It is pointed out that even when a Galerkin method is used the impedance matrix is not symmetric due to phasing through a unit cell, as required for scanning. The mechanism by which scan blindness can occur is discussed. Measurement results are presented for the reflection coefficient magnitude variation with angle for E-plane, H-plane, and D-plane scans, for various substrate parameters. Measured results from waveguide simulators are also presented, and the scan blindness phenomenon is observed and discussed in terms of forced surface waves and a modified grating lobe diagram.

  6. Series elastic actuation of an elbow rehabilitation exoskeleton with axis misalignment adaptation.

    PubMed

    Wu, Kuan-Yi; Su, Yin-Yu; Yu, Ying-Lung; Lin, Kuei-You; Lan, Chao-Chieh

    2017-07-01

    Powered exoskeletons can facilitate rehabilitation of patients with upper limb disabilities. Designs using rotary motors usually result in bulky exoskeletons to reduce the problem of moving inertia. This paper presents a new linearly actuated elbow exoskeleton that consists of a slider crank mechanism and a linear motor. The linear motor is placed beside the upper arm and closer to shoulder joint. Thus better inertia properties can be achieved while lightweight and compactness are maintained. A passive joint is introduced to compensate for the exoskeleton-elbow misalignment and intersubject size variation. A linear series elastic actuator (SEA) is proposed to obtain accurate force and impedance control at the exoskeleton-elbow interface. Bidirectional actuation between exoskeleton and forearm is verified, which is required for various rehabilitation processes. We expect this exoskeleton can provide a means of robot-aided elbow rehabilitation.

  7. Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters

    NASA Astrophysics Data System (ADS)

    Ralević, Uroš; Isić, Goran; Anicijević, Dragana Vasić; Laban, Bojana; Bogdanović, Una; Lazović, Vladimir M.; Vodnik, Vesna; Gajić, Radoš

    2018-03-01

    The adsorption of thiacyanine dye molecules on citrate-stabilized silver nanoparticle clusters drop-cast onto freshly cleaved mica or highly oriented pyrolytic graphite surfaces is examined using colocalized surface-enhanced Raman spectroscopy and atomic force microscopy. The incidence of dye Raman signatures in photoluminescence hotspots identified around nanoparticle clusters is considered for both citrate- and borate-capped silver nanoparticles and found to be substantially lower in the former case, suggesting that the citrate anions impede the efficient dye adsorption. Rigorous numerical simulations of light scattering on random nanoparticle clusters are used for estimating the electromagnetic enhancement and elucidating the hotspot formation mechanism. The majority of the enhanced Raman signal, estimated to be more than 90%, is found to originate from the nanogaps between adjacent nanoparticles in the cluster, regardless of the cluster size and geometry.

  8. Method and apparatus for automatic control of a humanoid robot

    NASA Technical Reports Server (NTRS)

    Abdallah, Muhammad E (Inventor); Platt, Robert (Inventor); Wampler, II, Charles W. (Inventor); Sanders, Adam M (Inventor); Reiland, Matthew J (Inventor)

    2013-01-01

    A robotic system includes a humanoid robot having a plurality of joints adapted for force control with respect to an object acted upon by the robot, a graphical user interface (GUI) for receiving an input signal from a user, and a controller. The GUI provides the user with intuitive programming access to the controller. The controller controls the joints using an impedance-based control framework, which provides object level, end-effector level, and/or joint space-level control of the robot in response to the input signal. A method for controlling the robotic system includes receiving the input signal via the GUI, e.g., a desired force, and then processing the input signal using a host machine to control the joints via an impedance-based control framework. The framework provides object level, end-effector level, and/or joint space-level control of the robot, and allows for functional-based GUI to simplify implementation of a myriad of operating modes.

  9. Can we Relate Basal Ice Mechanics to Seismic Observations of the Bed?

    NASA Astrophysics Data System (ADS)

    Kyrke-Smith, T.; Gudmundsson, G. H.; Farrell, P. E.

    2017-12-01

    We compare results from two different methods of quanitfying basal ice conditions, by investigating correlations between seismically-derived estimates of basal acoustic impedance and basal slipperiness values obtained from a surface-to-bed inversion of a Stokes ice flow model. Using high-resolution measurements taken along several seismic profiles on Pine Island Glacier (PIG), we find no correlation between acoustic impedance and retrieved basal slipperiness wihtin each individual profile. However, there is a correlation when comparing averaged values across each distinct profile. Nevertheless, there is no clear way of incorporating seismic measurements of bed properties on ice streams into ice flow models. We conclude that more theoretical work needs done before constraints on mechanical conditions at the ice-bed interface from acoustic impedance measurements can be of direct use to ice sheet models.

  10. The new criterion for cardiac resynchronization therapy treatment assessed by two channels impedance cardiography

    NASA Astrophysics Data System (ADS)

    Peczalski, K.; Palko, T.; Wojciechowski, D.; Dunajski, Z.; Kowalewski, M.

    2013-04-01

    The cardiac resynchronization therapy is an effective treatment for systolic failure patients. Independent electrical stimulation of left and right ventricle corrects mechanical ventricular dyssynchrony. About 30-40% treated patients do not respond to therapy. In order to improve clinical outcome authors propose the two channels impedance cardiography for assessment of ventricular dyssynchrony. The proposed method is intended for validation of patients diagnosis and optimization of pacemaker settings for cardiac resynchronization therapy. The preliminary study has showed that bichannel impedance cardiography is a promising tool for assessment of ventricular dyssynchrony.

  11. Preparation and mechanical properties of layers made of recombinant spider silk proteins and silk from silk worm

    NASA Astrophysics Data System (ADS)

    Junghans, F.; Morawietz, M.; Conrad, U.; Scheibel, T.; Heilmann, A.; Spohn, U.

    2006-02-01

    Layers of recombinant spider silks and native silks from silk worms were prepared by spin-coating and casting of various solutions. FT-IR spectra were recorded to investigate the influence of the different mechanical stress occurring during the preparation of the silk layers. The solubility of the recombinant spider silk proteins SO1-ELP, C16, AQ24NR3, and of the silk fibroin from Bombyx mori were investigated in hexafluorisopropanol, ionic liquids and concentrated salt solutions. The morphology and thickness of the layers were determined by Atomic Force Microscopy (AFM) or with a profilometer. The mechanical behaviour was investigated by acoustic impedance analysis by using a quartz crystal microbalance (QCMB) as well as by microindentation. The density of silk layers (d<300 nm) was determined based on AFM and QCMB measurements. At silk layers thicker than 300 nm significant changes of the half-band-half width can be correlated with increasing energy dissipation. Microhardness measurements demonstrate that recombinant spider silk and sericine-free Bombyx mori silk layers achieve higher elastic penetration modules EEP and Martens hardness values HM than those of polyethylenterephthalate (PET) and polyetherimide (PEI) foils.

  12. Identification of vortexes obstructing the dynamo mechanism in laboratory experiments

    NASA Astrophysics Data System (ADS)

    Limone, A.; Hatch, D. R.; Forest, C. B.; Jenko, F.

    2013-06-01

    The magnetohydrodynamic dynamo effect explains the generation of self-sustained magnetic fields in electrically conducting flows, especially in geo- and astrophysical environments. Yet the details of this mechanism are still unknown, e.g., how and to which extent the geometry, the fluid topology, the forcing mechanism, and the turbulence can have a negative effect on this process. We report on numerical simulations carried out in spherical geometry, analyzing the predicted velocity flow with the so-called singular value decomposition, a powerful technique that allows us to precisely identify vortexes in the flow which would be difficult to characterize with conventional spectral methods. We then quantify the contribution of these vortexes to the growth rate of the magnetic energy in the system. We identify an axisymmetric vortex, whose rotational direction changes periodically in time, and whose dynamics are decoupled from those of the large scale background flow, that is detrimental for the dynamo effect. A comparison with experiments is carried out, showing that similar dynamics were observed in cylindrical geometry. These previously unexpected eddies, which impede the dynamo effect, offer an explanation for the experimental difficulties in attaining a dynamo in spherical geometry.

  13. Application of the Semi-Empirical Force-Limiting Approach for the CoNNeCT SCAN Testbed

    NASA Technical Reports Server (NTRS)

    Staab, Lucas D.; McNelis, Mark E.; Akers, James C.; Suarez, Vicente J.; Jones, Trevor M.

    2012-01-01

    The semi-empirical force-limiting vibration method was developed and implemented for payload testing to limit the structural impedance mismatch (high force) that occurs during shaker vibration testing. The method has since been extended for use in analytical models. The Space Communications and Navigation Testbed (SCAN Testbed), known at NASA as, the Communications, Navigation, and Networking re-Configurable Testbed (CoNNeCT), project utilized force-limiting testing and analysis following the semi-empirical approach. This paper presents the steps in performing a force-limiting analysis and then compares the results to test data recovered during the CoNNeCT force-limiting random vibration qualification test that took place at NASA Glenn Research Center (GRC) in the Structural Dynamics Laboratory (SDL) December 19, 2010 to January 7, 2011. A compilation of lessons learned and considerations for future force-limiting tests is also included.

  14. Development of a mechatronic platform and validation of methods for estimating ankle stiffness during the stance phase of walking.

    PubMed

    Rouse, Elliott J; Hargrove, Levi J; Perreault, Eric J; Peshkin, Michael A; Kuiken, Todd A

    2013-08-01

    The mechanical properties of human joints (i.e., impedance) are constantly modulated to precisely govern human interaction with the environment. The estimation of these properties requires the displacement of the joint from its intended motion and a subsequent analysis to determine the relationship between the imposed perturbation and the resultant joint torque. There has been much investigation into the estimation of upper-extremity joint impedance during dynamic activities, yet the estimation of ankle impedance during walking has remained a challenge. This estimation is important for understanding how the mechanical properties of the human ankle are modulated during locomotion, and how those properties can be replicated in artificial prostheses designed to restore natural movement control. Here, we introduce a mechatronic platform designed to address the challenge of estimating the stiffness component of ankle impedance during walking, where stiffness denotes the static component of impedance. The system consists of a single degree of freedom mechatronic platform that is capable of perturbing the ankle during the stance phase of walking and measuring the response torque. Additionally, we estimate the platform's intrinsic inertial impedance using parallel linear filters and present a set of methods for estimating the impedance of the ankle from walking data. The methods were validated by comparing the experimentally determined estimates for the stiffness of a prosthetic foot to those measured from an independent testing machine. The parallel filters accurately estimated the mechatronic platform's inertial impedance, accounting for 96% of the variance, when averaged across channels and trials. Furthermore, our measurement system was found to yield reliable estimates of stiffness, which had an average error of only 5.4% (standard deviation: 0.7%) when measured at three time points within the stance phase of locomotion, and compared to the independently determined stiffness values of the prosthetic foot. The mechatronic system and methods proposed in this study are capable of accurately estimating ankle stiffness during the foot-flat region of stance phase. Future work will focus on the implementation of this validated system in estimating human ankle impedance during the stance phase of walking.

  15. Dynamic Modeling and Interactive Performance of PARM: A Parallel Upper-Limb Rehabilitation Robot Using Impedance Control for Patients after Stroke.

    PubMed

    Guang, Hui; Ji, Linhong; Shi, Yingying; Misgeld, Berno J E

    2018-01-01

    The robot-assisted therapy has been demonstrated to be effective in the improvements of limb function and even activities of daily living for patients after stroke. This paper presents an interactive upper-limb rehabilitation robot with a parallel mechanism and an isometric screen embedded in the platform to display trajectories. In the dynamic modeling for impedance control, the effects of friction and inertia are reduced by introducing the principle of virtual work and derivative of Jacobian matrix. To achieve the assist-as-needed impedance control for arbitrary trajectories, the strategy based on orthogonal deviations is proposed. Simulations and experiments were performed to validate the dynamic modeling and impedance control. Besides, to investigate the influence of the impedance in practice, a subject participated in experiments and performed two types of movements with the robot, that is, rectilinear and circular movements, under four conditions, that is, with/without resistance or impedance, respectively. The results showed that the impedance and resistance affected both mean absolute error and standard deviation of movements and also demonstrated the significant differences between movements with/without impedance and resistance ( p < 0.001). Furthermore, the error patterns were discussed, which suggested that the impedance environment was capable of alleviating movement deviations by compensating the synergetic inadequacy between the shoulder and elbow joints.

  16. Dynamic Modeling and Interactive Performance of PARM: A Parallel Upper-Limb Rehabilitation Robot Using Impedance Control for Patients after Stroke

    PubMed Central

    Shi, Yingying; Misgeld, Berno J. E.

    2018-01-01

    The robot-assisted therapy has been demonstrated to be effective in the improvements of limb function and even activities of daily living for patients after stroke. This paper presents an interactive upper-limb rehabilitation robot with a parallel mechanism and an isometric screen embedded in the platform to display trajectories. In the dynamic modeling for impedance control, the effects of friction and inertia are reduced by introducing the principle of virtual work and derivative of Jacobian matrix. To achieve the assist-as-needed impedance control for arbitrary trajectories, the strategy based on orthogonal deviations is proposed. Simulations and experiments were performed to validate the dynamic modeling and impedance control. Besides, to investigate the influence of the impedance in practice, a subject participated in experiments and performed two types of movements with the robot, that is, rectilinear and circular movements, under four conditions, that is, with/without resistance or impedance, respectively. The results showed that the impedance and resistance affected both mean absolute error and standard deviation of movements and also demonstrated the significant differences between movements with/without impedance and resistance (p < 0.001). Furthermore, the error patterns were discussed, which suggested that the impedance environment was capable of alleviating movement deviations by compensating the synergetic inadequacy between the shoulder and elbow joints. PMID:29850004

  17. Comparison of five different defibrillators using recommended energy protocols.

    PubMed

    Zelinka, M; Buić, D; Zelinka, I

    2007-09-01

    Biphasic defibrillators represent a great step ahead in defibrillation. The manufacturers claim that biphasic defibrillators are able to compensate for differences in transthoracic impedance. That should mean that all patients should be defibrillated with approximately the same amount of current, regardless of their transthoracic impedance. We assessed one monophasic and four biphasic defibrillators. The defibrillators were discharged into resistive loads of 50, 90 and 130 Omega, simulating transthoracic impedance. For each waveform we used energy protocols recommended by the manufacturers and guidelines 2005. Waveforms were observed with on a digitising oscilloscope on a current sensing resistor. We compared the electrical properties of different waveforms and two defibrillators with the same type of waveform. The influence of different impedance on shape, duration and amplitude of current flow were also observed for each waveform. Measurements showed a significant difference in current flow at different impedance loads. At low impedance the mean current is well above expectations for all the defibrillators studied and at high impedance load we observed a big reduction of current amplitude. We can conclude that the compensating mechanisms of biphasic defibrillators are, from electrical point of view, negligible. From the laws of physics it is practically impossible to keep same level of current at given time with same energy at higher impedance. That is why we should reconsider the use of different energy equivalents between patients with different transthoracic impedance and not between different defibrillation impulses.

  18. 32 CFR 228.13 - Disturbances on protected property.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 2 2014-07-01 2014-07-01 false Disturbances on protected property. 228.13... (CONTINUED) MISCELLANEOUS SECURITY PROTECTIVE FORCE § 228.13 Disturbances on protected property. Any conduct which impedes or threatens the security of protected property, or any buildings or persons thereon, or...

  19. 32 CFR 228.13 - Disturbances on protected property.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 2 2013-07-01 2013-07-01 false Disturbances on protected property. 228.13... (CONTINUED) MISCELLANEOUS SECURITY PROTECTIVE FORCE § 228.13 Disturbances on protected property. Any conduct which impedes or threatens the security of protected property, or any buildings or persons thereon, or...

  20. 32 CFR 228.13 - Disturbances on protected property.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false Disturbances on protected property. 228.13... (CONTINUED) MISCELLANEOUS SECURITY PROTECTIVE FORCE § 228.13 Disturbances on protected property. Any conduct which impedes or threatens the security of protected property, or any buildings or persons thereon, or...

  1. 32 CFR 228.13 - Disturbances on protected property.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Disturbances on protected property. 228.13... (CONTINUED) MISCELLANEOUS SECURITY PROTECTIVE FORCE § 228.13 Disturbances on protected property. Any conduct which impedes or threatens the security of protected property, or any buildings or persons thereon, or...

  2. 32 CFR 228.13 - Disturbances on protected property.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Disturbances on protected property. 228.13... (CONTINUED) MISCELLANEOUS SECURITY PROTECTIVE FORCE § 228.13 Disturbances on protected property. Any conduct which impedes or threatens the security of protected property, or any buildings or persons thereon, or...

  3. Design of a compliantly actuated exo-skeleton for an impedance controlled gait trainer robot.

    PubMed

    van der Kooij, Herman; Veneman, Jan; Ekkelenkamp, Ralf

    2006-01-01

    We have designed and built a lower extremity powered exo-skeleton (LOPES) for the training of post-stroke patients. This paper describes the philosophy behind the design of LOPES, motivates the choices that have been made and gives some exemplary results of the ranges of mechanical impedances that can be achieved.

  4. Compliant Tactile Sensors

    NASA Technical Reports Server (NTRS)

    Torres-Jara, Eduardo R.

    2011-01-01

    Tactile sensors are currently being designed to sense interactions with human hands or pen-like interfaces. They are generally embedded in screens, keyboards, mousepads, and pushbuttons. However, they are not well fitted to sense interactions with all kinds of objects. A novel sensor was originally designed to investigate robotics manipulation where not only the contact with an object needs to be detected, but also where the object needs to be held and manipulated. This tactile sensor has been designed with features that allow it to sense a large variety of objects in human environments. The sensor is capable of detecting forces coming from any direction. As a result, this sensor delivers a force vector with three components. In contrast to most of the tactile sensors that are flat, this one sticks out from the surface so that it is likely to come in contact with objects. The sensor conforms to the object with which it interacts. This augments the contact's surface, consequently reducing the stress applied to the object. This feature makes the sensor ideal for grabbing objects and other applications that require compliance with objects. The operational range of the sensor allows it to operate well with objects found in peoples' daily life. The fabrication of this sensor is simple and inexpensive because of its compact mechanical configuration and reduced electronics. These features are convenient for mass production of individual sensors as well as dense arrays. The biologically inspired tactile sensor is sensitive to both normal and lateral forces, providing better feedback to the host robot about the object to be grabbed. It has a high sensitivity, enabling its use in manipulation fingers, which typically have low mechanical impedance in order to be very compliant. The construction of the sensor is simple, using inexpensive technologies like silicon rubber molding and standard stock electronics.

  5. Molecularly resolved protein electromechanical properties.

    PubMed

    Axford, Daniel; Davis, Jason J; Wang, Nan; Wang, Dongxu; Zhang, Tiantian; Zhao, Jianwei; Peters, Ben

    2007-08-02

    Previous work has shown that protein molecules can be trapped between the conductive surfaces presented by a metal-coated AFM probe and an underlying planar substrate where their molecule-specific conductance characteristics can be assayed. Herein, we demonstrate that transport across such a derived metal-protein-electrode junction falls within three, pressure-dependent, regimes and, further, that pressure-dependent conductance can be utilized in analyzing temporal variations of protein fold. Specifically, the electronic and mechanical properties of the metalloprotein azurin have been characterized under conditions of anisotropic vertical compression through the use of a conducting atomic force microscope (CP-AFM). By utilizing the ability of azurin to chemically self-assemble on the gold surface presented either by the apex of a suitably coated AFM probe or a planar metallic surface, molecular-level transport characteristics are assayable. Under conditions of low force, typically less than 2 nN, the weak physical and electronic coupling between the protein and the conducting contacts impedes tunneling and leads to charge buildup followed by dielectric breakdown. At slightly increased force, 3-5 nN, the copper protein exhibits temporal electron occupation with observable negative differential resistance, while the redox-inactive zinc mutant does not. At imposed loads greater than 5 nN, appreciable electron tunneling can be detected even at low bias for both the redox-active and -inactive species. Dynamic current-voltage characteristics have been recorded and are well-described by a modified Simmons tunneling model. Subsequent analyses enable the electron tunneling barrier height and barrier length to be determined under conditions of quantified vertical stress. The variance observed describes, in essence, the protein's mechanical properties within the confines of the tunnel junction.

  6. Force control compensation method with variable load stiffness and damping of the hydraulic drive unit force control system

    NASA Astrophysics Data System (ADS)

    Kong, Xiangdong; Ba, Kaixian; Yu, Bin; Cao, Yuan; Zhu, Qixin; Zhao, Hualong

    2016-05-01

    Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit (HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.

  7. Novel platinum black electroplating technique improving mechanical stability.

    PubMed

    Kim, Raeyoung; Nam, Yoonkey

    2013-01-01

    Platinum black microelectrodes are widely used as an effective neural signal recording sensor. The simple fabrication process, high quality signal recording and proper biocompatibility are the main advantages of platinum black microelectrodes. When microelectrodes are exposed to actual biological system, various physical stimuli are applied. However, the porous structure of platinum black is vulnerable to external stimuli and destroyed easily. The impedance level of the microelectrode increases when the microelectrodes are damaged resulting in decreased recording performance. In this study, we developed mechanically stable platinum black microelectrodes by adding polydopamine. The polydopamine layer was added between the platinum black structures by electrodeposition method. The initial impedance level of platinum black only microelectrodes and polydopamine added microelectrodes were similar but after applying ultrasonication the impedance value dramatically increased for platinum black only microelectrodes, whereas polydopamine added microelectrodes showed little increase which were nearly retained initial values. Polydopamine added platinum black microelectrodes are expected to extend the availability as neural sensors.

  8. Electrical impedance tomography

    PubMed Central

    Lobo, Beatriz; Hermosa, Cecilia; Abella, Ana

    2018-01-01

    Continuous assessment of respiratory status is one of the cornerstones of modern intensive care unit (ICU) monitoring systems. Electrical impedance tomography (EIT), although with some constraints, may play the lead as a new diagnostic and guiding tool for an adequate optimization of mechanical ventilation in critically ill patients. EIT may assist in defining mechanical ventilation settings, assess distribution of tidal volume and of end-expiratory lung volume (EELV) and contribute to titrate positive end-expiratory pressure (PEEP)/tidal volume combinations. It may also quantify gains (recruitment) and losses (overdistention or derecruitment), granting a more realistic evaluation of different ventilator modes or recruitment maneuvers, and helping in the identification of responders and non-responders to such maneuvers. Moreover, EIT also contributes to the management of life-threatening lung diseases such as pneumothorax, and aids in guiding fluid management in the critical care setting. Lastly, assessment of cardiac function and lung perfusion through electrical impedance is on the way. PMID:29430443

  9. Dielectric relaxation and conduction mechanism studies of BNT-BT-BKT ceramics

    NASA Astrophysics Data System (ADS)

    Chandrasekhar, M.; Khatua, Dipak Kumar; Pattanayak, Ranjit; Kumar, P.

    2017-12-01

    Electrical properties of 0.884Bi0.5Na0.5TiO3-0.036BaTiO3-0.08Bi0.5K0.5TiO3 ceramic samples were investigated in 100Hz to 1 MHz frequency range and in 200-450 °C temperature range using impedance spectroscopy technique. Real part of impedance versus frequency plots in lower frequency region revealed its PTCR behavior and NTCR behaviors in higher frequency region. Impedance study also suggested the presence of non-Debye type relaxation mechanism. Cole-Cole plots suggested two relaxation regions, in which grain and grain, grain boundary effects were prominent in lower and high temperature regions, respectively. DC conductivity followed Arrhenius law with an activation energy of ∼0.79 and 1.2 eV, which suggested that the charge carrier were cation vacancies in lower temperature region whereas cation vacancies and oxygen vacancies in higher temperature region.

  10. Tracheo-bronchial soft tissue and cartilage resonances in the subglottal acoustic input impedance.

    PubMed

    Lulich, Steven M; Arsikere, Harish

    2015-06-01

    This paper offers a re-evaluation of the mechanical properties of the tracheo-bronchial soft tissues and cartilage and uses a model to examine their effects on the subglottal acoustic input impedance. It is shown that the values for soft tissue elastance and cartilage viscosity typically used in models of subglottal acoustics during phonation are not accurate, and corrected values are proposed. The calculated subglottal acoustic input impedance using these corrected values reveals clusters of weak resonances due to soft tissues (SgT) and cartilage (SgC) lining the walls of the trachea and large bronchi, which can be observed empirically in subglottal acoustic spectra. The model predicts that individuals may exhibit SgT and SgC resonances to variable degrees, depending on a number of factors including tissue mechanical properties and the dimensions of the trachea and large bronchi. Potential implications for voice production and large pulmonary airway tissue diseases are also discussed.

  11. Relaxation processes and conduction mechanism in bismuth ferrite lead titanate composites

    NASA Astrophysics Data System (ADS)

    Sahu, Truptimayee; Behera, Banarji

    2018-02-01

    In this study, samarium (Sm)-doped multiferroic composites of 0.8BiSmxFe1-xO3-0.2PbTiO3 where x = 0.05, 0.10, 0.15, and 0.20 were prepared via the conventional solid state reaction route. The electrical properties of these composites were analyzed using an impedance analyzer over a wide range of temperatures and frequencies (102-106 Hz). The impedance and modulus analyses confirmed the presence of both bulk and grain boundary effects in the materials. The temperature dependence of impedance and modulus spectrum indicated the negative temperature coefficient of resistance behavior. The dielectric relaxation exhibited non-Debye type behavior and it was temperature dependent. The relaxation time (τ) and DC conductivity followed an Arrhenius type behavior. The frequency-dependent AC conductivity obeyed Jonscher's power law. The correlated barrier hopping model was appropriate to understand the conduction mechanism in the composites considered.

  12. Periscopic Spine Surgery

    DTIC Science & Technology

    2008-06-01

    and H. Seraji , “Kinematic analysis of 7 DOF manipulators,” Int. Journal of Robotics Research, vol. 11, no. 5, pp. 469–481, 1992. [9] D. Lawrence...Force/torque Sensor Read joint Angle Forward kinematics Impedance controller Patient Fe Fs ix∆ Xd Xc diθ ciθ riθ P&O Proc. of SPIE Vol

  13. Crack in the Foundation Defense Transformation and the Underlying Assumption of Dominant Knowledge in Future War

    DTIC Science & Technology

    2003-04-07

    network-centric warfare, however, emboldened by the booming economy, displayed irrational exuberance in connection with the degree of certainty that...education. In addition to creating an imbalance of forces and impeding joint integration, the irrational faith in certainty threatens to waste

  14. Experiments with a Loudspeaker

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2009-01-01

    A common moving-coil loudspeaker is useful for learning harmonic motion. A simple optical method is used to observe free and forced oscillations of the diaphragm of a loudspeaker. With a lock-in amplifier and data-acquisition system, the frequency response of the loudspeaker and its electrical impedance are automatically recorded versus frequency.…

  15. Design framework of a teleoperating system for a magnetically levitated robot with force feedback

    NASA Astrophysics Data System (ADS)

    Tsuda, Naoaki; Kato, Norihiko; Nomura, Yoshihiko; Matsui, Hirokazu

    2002-02-01

    Precise works and manipulating micro objects are tough jobs for operators both mentally and physically. To execute these jobs smoothly without feeling wrongness, use of master-slave system is preferable because position and force are able to be scaled up and down as well under the system. In this study we develop a master-slave system where the size of a slave robot is very small and the slave robot is levitated by magnetic forces. In distinction from ordinary master- slave systems, the levitated robot does not get any other contact forces from outside. Thus we introduce a method using an impedance model for constructing the master-slave system. We confirmed the effectiveness of the positioning control algorithm through experiments.

  16. Two-Dimensional Lorentz Force Image Reconstruction for Magnetoacoustic Tomography with Magnetic Induction

    NASA Astrophysics Data System (ADS)

    Li, Yi-Ling; Liu, Zhen-Bo; Ma, Qing-Yu; Guo, Xia-Sheng; Zhang, Dong

    2010-08-01

    Magnetoacoustic tomography with magnetic induction has shown potential applications in imaging the electrical impedance for biological tissues. We present a novel methodology for the inverse problem solution of the 2-D Lorentz force distribution reconstruction based on the acoustic straight line propagation theory. The magnetic induction and acoustic generation as well as acoustic detection are theoretically provided as explicit formulae and also validated by the numerical simulations for a multilayered cylindrical phantom model. The reconstructed 2-D Lorentz force distribution reveals not only the conductivity configuration in terms of shape and size but also the amplitude value of the Lorentz force in the examined layer. This study provides a basis for further study of conductivity distribution reconstruction of MAT-MI in medical imaging.

  17. Linear analysis of a force reflective teleoperator

    NASA Technical Reports Server (NTRS)

    Biggers, Klaus B.; Jacobsen, Stephen C.; Davis, Clark C.

    1989-01-01

    Complex force reflective teleoperation systems are often very difficult to analyze due to the large number of components and control loops involved. One mode of a force reflective teleoperator is described. An analysis of the performance of the system based on a linear analysis of the general full order model is presented. Reduced order models are derived and correlated with the full order models. Basic effects of force feedback and position feedback are examined and the effects of time delays between the master and slave are studied. The results show that with symmetrical position-position control of teleoperators, a basic trade off must be made between the intersystem stiffness of the teleoperator, and the impedance felt by the operator in free space.

  18. Stress-Dependent Voltage Offsets From Polymer Insulators Used in Rock Mechanics and Material Testing

    NASA Technical Reports Server (NTRS)

    Carlson, G. G.; Dahlgren, Robert; Gray, Amber; Vanderbilt, V. C.; Freund, F.; Johnston, M. J.; Dunson, C.

    2013-01-01

    Dielectric insulators are used in a variety of laboratory settings when performing experiments in rock mechanics, petrology, and electromagnetic studies of rocks in the fields of geophysics,material science, and civil engineering. These components may be used to electrically isolate geological samples from the experimental equipment, to perform a mechanical compliance function between brittle samples and the loading equipment, to match ultrasonic transducers, or perform other functions. In manyexperimental configurations the insulators bear the full brunt of force applied to the sample but do not need to withstand high voltages, therefore the insulators are often thin sheets of mechanically tough polymers. From an instrument perspective, transduction from various types of mechanical perturbation has beenqualitatively compared for a number of polymers [1, 2] and these error sources are readily apparent duringhigh-impedance measurements if not mitigated. However even when following best practices, a force dependent voltage signal still remains and its behavior is explored in this presentation. In this experimenttwo thin sheets (0.25 mm) of high-density polyethylene (HDPE) were set up in a stack, held alternatelybetween three aluminum bars; this stack was placed on the platen of a 60T capacity hydraulic testingmachine. The surface area, A, over which the force is applied to the PE sheets in this sandwich is roughly 40 square cm, each sheet forming a parallel-plate capacitor having roughly 320 pF [3], assuming therelative dielectric permittivity of PE is approximately 2.3. The outer two aluminum bars were connected to the LO input ofthe electrometer and the central aluminum bar was connected to the HI input of a Keithley model 617 electrometer. Once the stack is mechanically well-seated with no air gaps, the voltage offset is observed tobe a linear function of the baseline voltage for a given change in applied force. For a periodically appliedforce of 66.7 kN the voltage offsets were measured as a function of initial voltage, and these data were fitwith a linear function that was constrained to pass through the origin. The best fit solution had a correlation coefficient of R=0.85 and a slope of approximately -0.0228 volts/volt. The voltage offset when normalizedis demonstrated to be constant -2.28% for both positive and negative polarities over nearly 3 orders ofbaseline voltage magnitude. From this, the voltage-force coefficient is derived to be -0.34 ppm/N. Thiscorrelates well to a first-order parallel plate capacitor model that assumes constant area, and smalldeformation such that the polymer may be mechanically modeled by a spring that obeys Hookes law. Thissimple model predicts that the coefficient of proportionality is a function of Youngs modulus E= 0.8 GPaand surface area of the insulator, theoretically -1EA= -0.31 ppm/N. The outcome of this work is animproved insulator made from ultra-high molecular weight (UHMW) polyethylene and other approachestoward the minimization of and compensation for these experimental artifacts.

  19. Relating surface roughness and magnetic domain structure to giant magneto-impedance of Co-rich melt-extracted microwires

    DOE PAGES

    Jiang, S. D.; Eggers, T.; Thiabgoh, O.; ...

    2017-04-11

    Understanding the relationship between the surface conditions and giant magneto-impedance (GMI) in Co-rich melt-extracted microwires is key to optimizing their magnetic responses for magnetic sensor applications. The surface magnetic domain structure (SMDS) parameters of ~45 μm diameter Co 69.25Fe 4.25Si 13B 13.5-xZr x (x = 0, 1, 2, 3) microwires, including the magnetic domain period (d) and surface roughness (Rq) as extracted from the magnetic force microscopy (MFM) images, have been correlated with GMI in the range 1–1000 MHz. It was found that substitution of B with 1 at. % Zr increased d of the base alloy from 729 tomore » 740 nm while retaining Rq from ~1 nm to ~3 nm. A tremendous impact on the GMI ratio was found, increasing the ratio from ~360% to ~490% at an operating frequency of 40 MHz. Further substitution with Zr decreased the high frequency GMI ratio, which can be understood by the significant increase in surface roughness evident by force microscopy. Lastly, this study demonstrates the application of the domain period and surface roughness found by force microscopy to the interpretation of the GMI in Co-rich microwires.« less

  20. Self-healing bolted joint employing a shape memory actuator

    NASA Astrophysics Data System (ADS)

    Muntges, Daniel E.; Park, Gyuhae; Inman, Daniel J.

    2001-08-01

    This paper is a report of an initial investigation into the active control of preload in the joint using a shape memory actuator around the axis of the bolt shaft. Specifically, the actuator is a cylindrical Nitinol washer that expands axially when heated, according to the shape memory effect. The washer is actuated in response to an artificial decrease in torque. Upon actuation, the stress generated by its axial strain compresses the bolted members and creates a frictional force that has the effect of generating a preload and restoring lost torque. In addition to torque wrenches, the system in question was monitored in all stages of testing using piezoelectric impedance analysis. Impedance analysis drew upon research techniques developed at Center for Intelligent Material Systems and Structures, in which phase changes in the impedance of a self-sensing piezoceramic actuator correspond to changes in joint stiffness. Through experimentation, we have documented a successful actuation of the shape memory element. Due to complexity of constitutive modeling, qualitative analysis by the impedance method is used to illustrate the success. Additional considerations encountered in this initial investigation are made to guide further thorough research required for the successful commercial application of this promising technique.

  1. Interdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimurium.

    PubMed

    Yang, Liju; Li, Yanbin; Griffis, Carl L; Johnson, Michael G

    2004-05-15

    Interdigitated microelectrodes (IMEs) were used as impedance sensors for rapid detection of viable Salmonella typhimurium in a selective medium and milk samples. The impedance growth curves, impedance against bacterial growth time, were recorded at four frequencies (10Hz, 100Hz, 1kHz, and 10kHz) during the growth of S. typhimurium. The impedance did not change until the cell number reached 10(5)-10(6) CFUml(-1). The greatest change in impedance was observed at 10Hz. To better understand the mechanism of the IME impedance sensor, an equivalent electrical circuit, consisting of double layer capacitors, a dielectric capacitor, and a medium resistor, was introduced and used for interpreting the change in impedance during bacterial growth. Bacterial attachment to the electrode surface was observed with scanning electron microscopy, and it had effect on the impedance measurement. The detection time, t(D), defined as the time for the impedance to start change, was obtained from the impedance growth curve at 10Hz and had a linear relationship with the logarithmic value of the initial cell number of S. typhimurium in the medium and milk samples. The regression equations for the cell numbers between 4.8 and 5.4 x 10(5) CFUml(-1) were t(D) = -1.38 log N + 10.18 with R(2) = 0.99 in the pure medium and t(D) = -1.54 log N + 11.33 with R(2) = 0.98 in milk samples, respectively. The detection times for 4.8 and 5.4 x 10(5) CFUml(-1) initial cell numbers were 9.3 and 2.2 h, respectively, and the detection limit could be as low as 1 cell in a sample.

  2. AC impedance and conductivity study of alkali salt form [of] perfluorosulfonate ionomer membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaluski, C.S.; Xu, G.

    1994-02-01

    AC impedance studies were performed on Na+ and K+ alkali salt forms of the short sidechain perfluorosulfonate ionomer (PFSI) membrane films. With impressive performances of 4 A/cm[sup 2] current density and power densities near 2.5 W/cm[sup 2], the acid forms of these short sidechain PFSI are very promising candidates for use in fuel cells for future electric vehicles. Since, at present, little is known about the exact transport mechanisms for the ionic species within PFSIs, an ac impedance study of the Na+ and K+ forms has been performed. It is hoped that this will provide some insight and understanding ofmore » the transport mechanisms in the PFSI and thus will aid in the development and optimization of fuel cells. Results suggest that there are marked differences with respect to host environments within the Dow membrane as compared to Nafion[reg sign] long sidechain PFSI membrane films. Impedance spectra of the Dow salt form membranes displaying two distinct relaxation peaks while the spectra for all forms of Nafion reveal only a single peak. This second low temperature peak in the Dow membrane has been attributed to a much larger [OH[sup [minus

  3. Bond-slip detection of concrete-encased composite structure using electro-mechanical impedance technique

    NASA Astrophysics Data System (ADS)

    Liang, Yabin; Li, Dongsheng; Parvasi, Seyed Mohammad; Kong, Qingzhao; Lim, Ing; Song, Gangbing

    2016-09-01

    Concrete-encased composite structure is a type of structure that takes the advantages of both steel and concrete materials, showing improved strength, ductility, and fire resistance compared to traditional reinforced concrete structures. The interface between concrete and steel profiles governs the interaction between these two materials under loading, however, debonding damage between these two materials may lead to severe degradation of the load transferring capacity which will affect the structural performance significantly. In this paper, the electro-mechanical impedance (EMI) technique using piezoceramic transducers was experimentally investigated to detect the bond-slip occurrence of the concrete-encased composite structure. The root-mean-square deviation is used to quantify the variations of the impedance signatures due to the presence of the bond-slip damage. In order to verify the validity of the proposed method, finite element model analysis was performed to simulate the behavior of concrete-steel debonding based on a 3D finite element concrete-steel bond model. The computed impedance signatures from the numerical results are compared with the results obtained from the experimental study, and both the numerical and experimental studies verify the proposed EMI method to detect bond slip of a concrete-encased composite structure.

  4. Consideration of impedance matching techniques for efficient piezoelectric energy harvesting.

    PubMed

    Kim, Hyeoungwoo; Priya, Shashank; Stephanou, Harry; Uchino, Kenji

    2007-09-01

    This study investigates multiple levels of impedance-matching methods for piezoelectric energy harvesting in order to enhance the conversion of mechanical to electrical energy. First, the transduction rate was improved by using a high piezoelectric voltage constant (g) ceramic material having a magnitude of g33 = 40 x 10(-3) V m/N. Second, a transducer structure, cymbal, was optimized and fabricated to match the mechanical impedance of vibration source to that of the piezoelectric transducer. The cymbal transducer was found to exhibit approximately 40 times higher effective strain coefficient than the piezoelectric ceramics. Third, the electrical impedance matching for the energy harvesting circuit was considered to allow the transfer of generated power to a storage media. It was found that, by using the 10-layer ceramics instead of the single layer, the output current can be increased by 10 times, and the output load can be reduced by 40 times. Furthermore, by using the multilayer ceramics the output power was found to increase by 100%. A direct current (DC)-DC buck converter was fabricated to transfer the accumulated electrical energy in a capacitor to a lower output load. The converter was optimized such that it required less than 5 mW for operation.

  5. A pre-therapeutic coating for medical devices that prevents the attachment of Candida albicans.

    PubMed

    Vargas-Blanco, Diego; Lynn, Aung; Rosch, Jonah; Noreldin, Rony; Salerni, Anthony; Lambert, Christopher; Rao, Reeta P

    2017-05-19

    Hospital acquired fungal infections are defined as "never events"-medical errors that should never have happened. Systemic Candida albicans infections results in 30-50% mortality rates. Typically, adhesion to abiotic medical devices and implants initiates such infections. Efficient adhesion initiates formation of aggressive biofilms that are difficult to treat. Therefore, inhibitors of adhesion are important for drug development and likely to have a broad spectrum efficacy against many fungal pathogens. In this study we further the development of a small molecule, Filastatin, capable of preventing C. albicans adhesion. We explored the potential of Filastatin as a pre-therapeutic coating of a diverse range of biomaterials. Filastatin was applied on various biomaterials, specifically bioactive glass (cochlear implants, subcutaneous drug delivery devices and prosthetics); silicone (catheters and other implanted devices) and dental resin (dentures and dental implants). Adhesion to biomaterials was evaluated by direct visualization of wild type C. albicans or a non-adherent mutant edt1 -/- that were stained or fluorescently tagged. Strains grown overnight at 30 °C were harvested, allowed to attach to surfaces for 4 h and washed prior to visualization. The adhesion force of C. albicans cells attached to surfaces treated with Filastatin was measured using Atomic Force Microscopy. Effectiveness of Filastatin was also demonstrated under dynamic conditions using a flow cell bioreactor. The effect of Filastatin under microfluidic flow conditions was quantified using electrochemical impedance spectroscopy. Experiments were typically performed in triplicate. Treatment with Filastatin significantly inhibited the ability of C. albicans to adhere to bioactive glass (by 99.06%), silicone (by 77.27%), and dental resin (by 60.43%). Atomic force microcopy indicated that treatment with Filastatin decreased the adhesion force of C. albicans from 0.23 to 0.017 nN. Electrochemical Impedance Spectroscopy in a microfluidic device that mimic physiological flow conditions in vivo showed lower impedance for C. albicans when treated with Filastatin as compared to untreated control cells, suggesting decreased attachment. The anti-adhesive properties were maintained when Filastatin was included in the preparation of silicone materials. We demonstrate that Filastatin treated medical devices prevented adhesion of Candida, thereby reducing nosocomial infections.

  6. Enhanced model of gear transmission dynamics for condition monitoring applications: Effects of torque, friction and bearing clearance

    NASA Astrophysics Data System (ADS)

    Fernandez-del-Rincon, A.; Garcia, P.; Diez-Ibarbia, A.; de-Juan, A.; Iglesias, M.; Viadero, F.

    2017-02-01

    Gear transmissions remain as one of the most complex mechanical systems from the point of view of noise and vibration behavior. Research on gear modeling leading to the obtaining of models capable of accurately reproduce the dynamic behavior of real gear transmissions has spread out the last decades. Most of these models, although useful for design stages, often include simplifications that impede their application for condition monitoring purposes. Trying to filling this gap, the model presented in this paper allows us to simulate gear transmission dynamics including most of these features usually neglected by the state of the art models. This work presents a model capable of considering simultaneously the internal excitations due to the variable meshing stiffness (including the coupling among successive tooth pairs in contact, the non-linearity linked with the contacts between surfaces and the dissipative effects), and those excitations consequence of the bearing variable compliance (including clearances or pre-loads). The model can also simulate gear dynamics in a realistic torque dependent scenario. The proposed model combines a hybrid formulation for calculation of meshing forces with a non-linear variable compliance approach for bearings. Meshing forces are obtained by means of a double approach which combines numerical and analytical aspects. The methodology used provides a detailed description of the meshing forces, allowing their calculation even when gear center distance is modified due to shaft and bearing flexibilities, which are unavoidable in real transmissions. On the other hand, forces at bearing level were obtained considering a variable number of supporting rolling elements, depending on the applied load and clearances. Both formulations have been developed and applied to the simulation of the vibration of a sample transmission, focusing the attention on the transmitted load, friction meshing forces and bearing preloads.

  7. Structural assurance testing for post-shipping satellite inspection

    NASA Astrophysics Data System (ADS)

    Reynolds, Whitney D.; Doyle, Derek; Arritt, Brandon

    2012-04-01

    Current satellite transportation sensors can provide a binary indication of the acceleration or shock that a satellite has experienced during the shipping process but do little to identify if significant structural change has occurred in the satellite and where it may be located. When a sensor indicates that the satellite has experienced shock during transit, an extensive testing process begins to evaluate the satellite functionality. If errors occur during the functional checkout, extensive physical inspection of the structure follows. In this work an alternate method for inspecting satellites for structural defects after shipping is presented. Electro- Mechanical Impedance measurements are used as an indication of the structural state. In partnership with the Air Force Research Laboratory University Nanosatellite Program, Cornell's CUSat mass model was instrumented with piezoelectric transducers and tested under several structural damage scenarios. A method for detecting and locating changes in the structure using EMI data is presented.

  8. Aquaporin-4 Functionality and Virchow-Robin Space Water Dynamics: Physiological Model for Neurovascular Coupling and Glymphatic Flow

    PubMed Central

    Kwee, Ingrid L.

    2017-01-01

    The unique properties of brain capillary endothelium, critical in maintaining the blood-brain barrier (BBB) and restricting water permeability across the BBB, have important consequences on fluid hydrodynamics inside the BBB hereto inadequately recognized. Recent studies indicate that the mechanisms underlying brain water dynamics are distinct from systemic tissue water dynamics. Hydrostatic pressure created by the systolic force of the heart, essential for interstitial circulation and lymphatic flow in systemic circulation, is effectively impeded from propagating into the interstitial fluid inside the BBB by the tightly sealed endothelium of brain capillaries. Instead, fluid dynamics inside the BBB is realized by aquaporin-4 (AQP-4), the water channel that connects astrocyte cytoplasm and extracellular (interstitial) fluid. Brain interstitial fluid dynamics, and therefore AQP-4, are now recognized as essential for two unique functions, namely, neurovascular coupling and glymphatic flow, the brain equivalent of systemic lymphatics. PMID:28820467

  9. Aquaporin-4 Functionality and Virchow-Robin Space Water Dynamics: Physiological Model for Neurovascular Coupling and Glymphatic Flow.

    PubMed

    Nakada, Tsutomu; Kwee, Ingrid L; Igarashi, Hironaka; Suzuki, Yuji

    2017-08-18

    The unique properties of brain capillary endothelium, critical in maintaining the blood-brain barrier (BBB) and restricting water permeability across the BBB, have important consequences on fluid hydrodynamics inside the BBB hereto inadequately recognized. Recent studies indicate that the mechanisms underlying brain water dynamics are distinct from systemic tissue water dynamics. Hydrostatic pressure created by the systolic force of the heart, essential for interstitial circulation and lymphatic flow in systemic circulation, is effectively impeded from propagating into the interstitial fluid inside the BBB by the tightly sealed endothelium of brain capillaries. Instead, fluid dynamics inside the BBB is realized by aquaporin-4 (AQP-4), the water channel that connects astrocyte cytoplasm and extracellular (interstitial) fluid. Brain interstitial fluid dynamics, and therefore AQP-4, are now recognized as essential for two unique functions, namely, neurovascular coupling and glymphatic flow, the brain equivalent of systemic lymphatics.

  10. Impedance spectroscopy for the detection and identification of unknown toxins

    NASA Astrophysics Data System (ADS)

    Riggs, B. C.; Plopper, G. E.; Paluh, J. L.; Phamduy, T. B.; Corr, D. T.; Chrisey, D. B.

    2012-06-01

    Advancements in biological and chemical warfare has allowed for the creation of novel toxins necessitating a universal, real-time sensor. We have used a function-based biosensor employing impedance spectroscopy using a low current density AC signal over a range of frequencies (62.5 Hz-64 kHz) to measure the electrical impedance of a confluent epithelial cell monolayer at 120 sec intervals. Madin Darby canine kidney (MDCK) epithelial cells were grown to confluence on thin film interdigitated gold electrodes. A stable impedance measurement of 2200 Ω was found after 24 hrs of growth. After exposure to cytotoxins anthrax lethal toxin and etoposide, the impedance decreased in a linear fashion resulting in a 50% drop in impedance over 50hrs showing significant difference from the control sample (~20% decrease). Immunofluorescent imaging showed that apoptosis was induced through the addition of toxins. Similarities of the impedance signal shows that the mechanism of cellular death was the same between ALT and etoposide. A revised equivalent circuit model was employed in order to quantify morphological changes in the cell monolayer such as tight junction integrity and cell surface area coverage. This model showed a faster response to cytotoxin (2 hrs) compared to raw measurements (20 hrs). We demonstrate that herein that impedance spectroscopy of epithelial monolayers serves as a real-time non-destructive sensor for unknown pathogens.

  11. In-situ comprehensive calibration of a tri-port nano-electro-mechanical device.

    PubMed

    Collin, E; Defoort, M; Lulla, K; Moutonet, T; Heron, J-S; Bourgeois, O; Bunkov, Yu M; Godfrin, H

    2012-04-01

    We report on experiments performed in vacuum and at cryogenic temperatures on a tri-port nano-electro-mechanical (NEMS) device. One port is a very nonlinear capacitive actuation, while the two others implement the magnetomotive scheme with a linear input force port and a (quasi-linear) output velocity port. We present an experimental method enabling a full characterization of the nanomechanical device harmonic response: the nonlinear capacitance function C(x) is derived, and the normal parameters k and m (spring constant and mass) of the mode under study are measured through a careful definition of the motion (in meters) and of the applied forces (in Newtons). These results are obtained with a series of purely electric measurements performed without disconnecting/reconnecting the device, and rely only on known dc properties of the circuit, making use of a thermometric property of the oscillator itself: we use the Young modulus of the coating metal as a thermometer, and the resistivity for Joule heating. The setup requires only three connecting lines without any particular matching, enabling the preservation of a high impedance NEMS environment even at MHz frequencies. The experimental data are fit to a detailed electrical and thermal model of the NEMS device, demonstrating a complete understanding of its dynamics. These methods are quite general and can be adapted (as a whole, or in parts) to a large variety of electromechanical devices. © 2012 American Institute of Physics

  12. Exploratory study on the methodology of fast imaging of unilateral stroke lesions by electrical impedance asymmetry in human heads.

    PubMed

    Ma, Jieshi; Xu, Canhua; Dai, Meng; You, Fusheng; Shi, Xuetao; Dong, Xiuzhen; Fu, Feng

    2014-01-01

    Stroke has a high mortality and disability rate and should be rapidly diagnosed to improve prognosis. Diagnosing stroke is not a problem for hospitals with CT, MRI, and other imaging devices but is difficult for community hospitals without these devices. Based on the mechanism that the electrical impedance of the two hemispheres of a normal human head is basically symmetrical and a stroke can alter this symmetry, a fast electrical impedance imaging method called symmetrical electrical impedance tomography (SEIT) is proposed. In this technique, electrical impedance tomography (EIT) data measured from the undamaged craniocerebral hemisphere (CCH) is regarded as reference data for the remaining EIT data measured from the other CCH for difference imaging to identify the differences in resistivity distribution between the two CCHs. The results of SEIT imaging based on simulation data from the 2D human head finite element model and that from the physical phantom of human head verified this method in detection of unilateral stroke.

  13. Exploratory Study on the Methodology of Fast Imaging of Unilateral Stroke Lesions by Electrical Impedance Asymmetry in Human Heads

    PubMed Central

    Xu, Canhua; Dai, Meng; You, Fusheng; Shi, Xuetao

    2014-01-01

    Stroke has a high mortality and disability rate and should be rapidly diagnosed to improve prognosis. Diagnosing stroke is not a problem for hospitals with CT, MRI, and other imaging devices but is difficult for community hospitals without these devices. Based on the mechanism that the electrical impedance of the two hemispheres of a normal human head is basically symmetrical and a stroke can alter this symmetry, a fast electrical impedance imaging method called symmetrical electrical impedance tomography (SEIT) is proposed. In this technique, electrical impedance tomography (EIT) data measured from the undamaged craniocerebral hemisphere (CCH) is regarded as reference data for the remaining EIT data measured from the other CCH for difference imaging to identify the differences in resistivity distribution between the two CCHs. The results of SEIT imaging based on simulation data from the 2D human head finite element model and that from the physical phantom of human head verified this method in detection of unilateral stroke. PMID:25006594

  14. Stress-dependent voltage offsets from polymer insulators used in rock mechanics and material testing

    NASA Astrophysics Data System (ADS)

    Carlson, G. G.; Dahlgren, R.; Vanderbilt, V. C.; Johnston, M. J.; Dunson, C.; Gray, A.; Freund, F.

    2013-12-01

    Dielectric insulators are used in a variety of laboratory settings when performing experiments in rock mechanics, petrology, and electromagnetic studies of rocks in the fields of geophysics, material science, and civil engineering. These components may be used to electrically isolate geological samples from the experimental equipment, to perform a mechanical compliance function between brittle samples and the loading equipment, to match ultrasonic transducers, or perform other functions. In many experimental configurations the insulators bear the full brunt of force applied to the sample but do not need to withstand high voltages, therefore the insulators are often thin sheets of mechanically tough polymers. From an instrument perspective, transduction from various types of mechanical perturbation has been qualitatively compared for a number of polymers [1, 2] and these error sources are readily apparent during high-impedance measurements if not mitigated. However even when following best practices, a force-dependent voltage signal still remains and its behavior is explored in this presentation. In this experiment two thin sheets (0.25 mm) of high-density polyethylene (HDPE) were set up in a stack, held alternately between three aluminum bars; this stack was placed on the platen of a 60T capacity hydraulic testing machine. The surface area, A, over which the force is applied to the PE sheets in this sandwich is roughly 40 square cm, each sheet forming a parallel-plate capacitor having roughly 320 pF [3], assuming the relative dielectric permittivity of PE is ~2.3. The outer two aluminum bars were connected to the LO input of the electrometer and the central aluminum bar was connected to the HI input of a Keithley model 617 electrometer. Once the stack is mechanically well-seated with no air gaps, the voltage offset is observed to be a linear function of the baseline voltage for a given change in applied force. For a periodically applied force of 66.7 kN the voltage offsets were measured as a function of initial voltage, and these data were fit with a linear function that was constrained to pass through the origin. The best fit solution had a correlation coefficient of R = 0.85 and a slope of approximately -0.0228 volts/volt. The voltage offset when normalized is demonstrated to be constant -2.28 % for both positive and negative polarities over nearly 3 orders of baseline voltage magnitude. From this, the voltage-force coefficient is derived to be -0.34 ppm/N. This correlates well to a first-order parallel plate capacitor model that assumes constant area, and small deformation such that the polymer may be mechanically modeled by a spring that obeys Hooke's law. This simple model predicts that the coefficient of proportionality is a function of Young's modulus E = 0.8 GPa and surface area of the insulator, theoretically -1/EA = -0.31 ppm/N. The outcome of this work is an improved insulator made from ultra-high molecular weight (UHMW) polyethylene and other approaches toward the minimization of and compensation for these experimental artifacts. References: [1] Keithley Instruments, Low level measurements handbook, 'Choosing the best insulator,' 2-11 (2004). [2] Ibid., 2-26. [3] A. Skumiel, 'How to transform mechanical work into electrical energy using a capacitor,' European Journal of Physics 32, 625-630 (2011).

  15. Sensitivity of PZT Impedance Sensors for Damage Detection of Concrete Structures.

    PubMed

    Yang, Yaowen; Hu, Yuhang; Lu, Yong

    2008-01-21

    Piezoelectric ceramic Lead Zirconate Titanate (PZT) based electro-mechanicalimpedance (EMI) technique for structural health monitoring (SHM) has been successfullyapplied to various engineering systems. However, fundamental research work on thesensitivity of the PZT impedance sensors for damage detection is still in need. In thetraditional EMI method, the PZT electro-mechanical (EM) admittance (inverse of theimpedance) is used as damage indicator, which is difficult to specify the effect of damage onstructural properties. This paper uses the structural mechanical impedance (SMI) extractedfrom the PZT EM admittance signature as the damage indicator. A comparison study on thesensitivity of the EM admittance and the structural mechanical impedance to the damages ina concrete structure is conducted. Results show that the SMI is more sensitive to the damagethan the EM admittance thus a better indicator for damage detection. Furthermore, this paperproposes a dynamic system consisting of a number of single-degree-of-freedom elementswith mass, spring and damper components to model the SMI. A genetic algorithm isemployed to search for the optimal value of the unknown parameters in the dynamic system.An experiment is carried out on a two-storey concrete frame subjected to base vibrations thatsimulate earthquake. A number of PZT sensors are regularly arrayed and bonded to the framestructure to acquire PZT EM admittance signatures. The relationship between the damageindex and the distance of the PZT sensor from the damage is studied. Consequently, thesensitivity of the PZT sensors is discussed and their sensing region in concrete is derived.

  16. Impedance magnitude optimization of the regenerator in Stirling pulse tube cryocoolers working at liquid-helium temperatures

    NASA Astrophysics Data System (ADS)

    Cao, Q.; Qiu, L. M.; Zhi, X. Q.; Han, L.; Gan, Z. H.; Zhang, X. B.; Zhang, X. J.; Sun, D. M.

    2013-12-01

    The impedance magnitude is important for the design and operation of a Stirling pulse tube cryocooler (SPTC). However, the influence of the impedance magnitude on the SPTC working at liquid-helium temperatures is still not clear due to the complexity of refrigeration mechanism at this temperature range. In this study, the influence of the impedance magnitude on the viscous and thermal losses has been investigated, which contributes to the overall refrigeration efficiency. Different from the previous study at liquid nitrogen temperatures, it has been found and verified experimentally that a higher impedance magnitude may result in a larger mass flow rate accompanied with larger losses in the warmer region, hence the refrigeration efficiency is lowered. Numerical simulation is carried out in SPTCs of different geometry dimensions and working parameters, and the experimental study is carried out in a three-stage SPTC. A minimum no-load refrigeration temperature is achieved with an appropriate impedance magnitude that is determined by the combination of frequency and precooling temperature. A lowest temperature of 4.76 K is achieved at 28 Hz and a precooling temperature of 22.6 K, which is the lowest temperature ever achieved with He-4 for SPTCs. Impedance magnitude optimization is clearly an important consideration for the design of a 4 K SPTC.

  17. Toward Communal Child Rearing

    ERIC Educational Resources Information Center

    Sands, Rosalind M.

    1973-01-01

    Social work's preoccupation with the preservation of the nuclear family has blinded it to the necessity of finding new ways to care for children. This myopia has impeded recognition of the forces in American life that are bringing social change and new forms of child rearing. This article describes some of these phenomena and concludes that…

  18. Sex Equity in the Eighties: A Study of Post-Secondary Vocational Institutional Practices.

    ERIC Educational Resources Information Center

    Eliason, Carol

    This literature review examines financial, administrative, and attitudinal problems that impede the expansion of sex equity opportunities in post-secondary vocational programs. After discussing the decreased willingness of the government to fund sex equity programs, the paper notes the forces that have increased the participation of women in…

  19. Effects of Social Environment on Japanese and American Communication.

    ERIC Educational Resources Information Center

    Kitao, Kenji; Kitao, S. Kathleen

    The social backgrounds of Japanese and Americans differ in ways that impede complete communication. The Japanese people, historically controlled by the forces of nature, have formed groups as the minimum functioning social units. The individual is only part of the group, and individual rights and obligations have not been clearly developed.…

  20. New Media Literacy: From Classroom to Community.

    ERIC Educational Resources Information Center

    Carstarphen, Meta G.

    Each new media revolution forces adjustments for both the producers of messages and the receivers of those messages. Integral to the communication process is an understanding of what it means to be literate in an eclectic communication environment and of how the new media may enhance or impede literacy. An important premise for this discussion is…

  1. 78 FR 29519 - Physical Protection of Irradiated Reactor Fuel in Transit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-20

    ... to the appropriate response forces of any sabotage events, and (3) impede attempts at radiological... personnel so that they could properly respond to a safety or safeguards event. The State of Nevada concluded... destination, and must immediately notify the appropriate agencies in the event of a safeguards event under the...

  2. Closing the Gap: Meeting the Small Business Training Challenge in Connecticut.

    ERIC Educational Resources Information Center

    Harwood, Richard C.

    The training needs of Connecticut's small businesses and their employees are not being adequately met. Small businesses face an economy placing increasing demands on them: a worsening labor shortage, an aging work force, and changing skills in the workplace. Gaps in private and public sector training programs impede small businesses from meeting…

  3. How Substance-Based Ontologies for Gravity Can Be Productive: A Case Study

    ERIC Educational Resources Information Center

    Gupta, Ayush; Elby, Andrew; Conlin, Luke D.

    2014-01-01

    Many science education researchers have argued that learners' commitment to a substance (matter-based) ontology impedes the learning of scientific concepts that scientists typically conceptualize as processes or interactions, such as force, electric current, and heat. By this account, students' tendency to classify these entities as…

  4. Facing Financial Difficulties, African Virtual U. Revamps Itself

    ERIC Educational Resources Information Center

    Kigotho, Wachira

    2006-01-01

    This article talks about serious financial problems faced by the African Virtual University, the continent's largest online institution, forcing it to accelerate a major restructuring. The university was established in 1997 by the World Bank as a link between foreign and African institutions, and has been impeded by insufficient funds. As a…

  5. Fabrication of a Micro-Needle Array Electrode by Thermal Drawing for Bio-Signals Monitoring

    PubMed Central

    Ren, Lei; Jiang, Qing; Chen, Keyun; Chen, Zhipeng; Pan, Chengfeng; Jiang, Lelun

    2016-01-01

    A novel micro-needle array electrode (MAE) fabricated by thermal drawing and coated with Ti/Au film was proposed for bio-signals monitoring. A simple and effective setup was employed to form glassy-state poly (lactic-co-glycolic acid) (PLGA) into a micro-needle array (MA) by the thermal drawing method. The MA was composed of 6 × 6 micro-needles with an average height of about 500 μm. Electrode-skin interface impedance (EII) was recorded as the insertion force was applied on the MAE. The insertion process of the MAE was also simulated by the finite element method. Results showed that MAE could insert into skin with a relatively low compression force and maintain stable contact impedance between the MAE and skin. Bio-signals, including electromyography (EMG), electrocardiography (ECG), and electroencephalograph (EEG) were also collected. Test results showed that the MAE could record EMG, ECG, and EEG signals with good fidelity in shape and amplitude in comparison with the commercial Ag/AgCl electrodes, which proves that MAE is an alternative electrode for bio-signals monitoring. PMID:27322278

  6. Fabrication of a Micro-Needle Array Electrode by Thermal Drawing for Bio-Signals Monitoring.

    PubMed

    Ren, Lei; Jiang, Qing; Chen, Keyun; Chen, Zhipeng; Pan, Chengfeng; Jiang, Lelun

    2016-06-17

    A novel micro-needle array electrode (MAE) fabricated by thermal drawing and coated with Ti/Au film was proposed for bio-signals monitoring. A simple and effective setup was employed to form glassy-state poly (lactic-co-glycolic acid) (PLGA) into a micro-needle array (MA) by the thermal drawing method. The MA was composed of 6 × 6 micro-needles with an average height of about 500 μm. Electrode-skin interface impedance (EII) was recorded as the insertion force was applied on the MAE. The insertion process of the MAE was also simulated by the finite element method. Results showed that MAE could insert into skin with a relatively low compression force and maintain stable contact impedance between the MAE and skin. Bio-signals, including electromyography (EMG), electrocardiography (ECG), and electroencephalograph (EEG) were also collected. Test results showed that the MAE could record EMG, ECG, and EEG signals with good fidelity in shape and amplitude in comparison with the commercial Ag/AgCl electrodes, which proves that MAE is an alternative electrode for bio-signals monitoring.

  7. Formation of a pinched electron beam and an intense x-ray source in radial foil rod-pinch diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorokin, S. A.

    2016-04-15

    Low-impedance rod-pinch diode experiments were performed on the MIG generator at Institute of High Current Electronics using an aluminum foil placed between concentric electrodes of a rod-pinch diode. The J × B force accelerates the foil plasma in the axial and radial directions. After the foil plasma is pushed beyond the tip of the rod, a vacuum gap and a pinched electron beam form. The anode and cathode plasmas expansion and the following plasmas sweeping up by the J × B force can result in repetitive gap formations and closures, which are evident in the several successive intense x-ray pulses. A 0.7-mm-size point-like x-raymore » source was realized using a 1-mm-diameter tungsten rod, tapered to a point over the last 10 mm. The results of experiments show that the foil-shorted rod-pinch diode configuration has the potential to form low-impedance diodes, to shorten x-ray pulse duration and to realize submillimeter spot-size x-ray sources.« less

  8. Impedance-based structural health monitoring of wind turbine blades

    NASA Astrophysics Data System (ADS)

    Pitchford, Corey; Grisso, Benjamin L.; Inman, Daniel J.

    2007-04-01

    Wind power is a fast-growing source of non-polluting, renewable energy with vast potential. However, current wind turbine technology must be improved before the potential of wind power can be fully realized. Wind turbine blades are one of the key components in improving this technology. Blade failure is very costly because it can damage other blades, the wind turbine itself, and possibly other wind turbines. A successful damage detection system incorporated into wind turbines could extend blade life and allow for less conservative designs. A damage detection method which has shown promise on a wide variety of structures is impedance-based structural health monitoring. The technique utilizes small piezoceramic (PZT) patches attached to a structure as self-sensing actuators to both excite the structure with high-frequency excitations, and monitor any changes in structural mechanical impedance. By monitoring the electrical impedance of the PZT, assessments can be made about the integrity of the mechanical structure. Recently, advances in hardware systems with onboard computing, including actuation and sensing, computational algorithms, and wireless telemetry, have improved the accessibility of the impedance method for in-field measurements. This paper investigates the feasibility of implementing such an onboard system inside of turbine blades as an in-field method of damage detection. Viability of onboard detection is accomplished by running a series of tests to verify the capability of the method on an actual wind turbine blade section from an experimental carbon/glass/balsa composite blade developed at Sandia National Laboratories.

  9. Matching Condition of Direct THz-Signal Detection from On-Chip Resonating Antennas with CMOS Transistors in Non-resonant Plasma Wave Mode

    NASA Astrophysics Data System (ADS)

    Chai, S.; Lim, S.; Kim, C.-Y.; Hong, S.

    2018-06-01

    This paper presents matching condition for detector at THz frequencies, which directly read signals from an integrated antenna. We use direct THz-signal detections with CMOS transistors in non-resonant plasma wave mode, which are embedded in on-chip resonating antennas. The detector detects THz envelope signals directly from the side edges of the on-chip patch antennas. The signal detection mechanism is studied in the view of the impedance conditions of the antenna and the detector. The detectors are implemented with stacked transistors structures to achieve high responsivity. The measured responsivities of the detectors with antenna impedances that were simulated to be 599.7, 912.3, 1565, and 3190.6 Ω agree well with the calculated values. Moreover, the responsivity dependence on the detector impedance is shown with two different input impedances of the detectors. Since CMOS circuit models from foundry are not accurate at frequencies higher than f t , the matching guideline between the antenna and the detector is very useful in designing high responsivity detectors. This study found that a detector has to have a large input impedance conjugately matched to the antenna's impedance to have high responsivity.

  10. Use of a small overpotential approximation to analyze Geobacter sulfurreducens biofilm impedance

    NASA Astrophysics Data System (ADS)

    Babauta, Jerome T.; Beyenal, Haluk

    2017-07-01

    The electrochemical impedance of Geobacter sulfurreducens biofilms reflects the extracellular electron transfer mechanisms determining the rate of current output. Binned into two characteristic parameters, conductance and capacitance, biofilm impedance has received significant attention. The goal of this study was to evaluate a small overpotential approximation for extracellular electron transfer in G. sulfurreducens biofilms. Our motivation was to determine whether conductance over biofilm growth behaved linearly with respect to limiting current. Biofilm impedance was tracked during growth using electrochemical impedance spectroscopy (EIS) and electrochemical quartz crystal microbalance (eQCM). We showed that normalization of the biofilm impedance is useful for characterizing the changes during growth. When the conductance and capacitance were compared to the biofilm current, we found that: 1) conductance had a linear response and 2) constant phase elements (CPE) had a saturating response that coincided with the limiting current. We provided a framework using a simple iV relationship that predicted the conductance-current slope to be 9.57 V-1. CPEs showed more variability across biofilm replicates than conductance values. Although G. sulfurreducens biofilms were used here, other electrochemically active biofilms exhibiting catalytic waves could be studied using the same methods.

  11. Matching Condition of Direct THz-Signal Detection from On-Chip Resonating Antennas with CMOS Transistors in Non-resonant Plasma Wave Mode

    NASA Astrophysics Data System (ADS)

    Chai, S.; Lim, S.; Kim, C.-Y.; Hong, S.

    2018-04-01

    This paper presents matching condition for detector at THz frequencies, which directly read signals from an integrated antenna. We use direct THz-signal detections with CMOS transistors in non-resonant plasma wave mode, which are embedded in on-chip resonating antennas. The detector detects THz envelope signals directly from the side edges of the on-chip patch antennas. The signal detection mechanism is studied in the view of the impedance conditions of the antenna and the detector. The detectors are implemented with stacked transistors structures to achieve high responsivity. The measured responsivities of the detectors with antenna impedances that were simulated to be 599.7, 912.3, 1565, and 3190.6 Ω agree well with the calculated values. Moreover, the responsivity dependence on the detector impedance is shown with two different input impedances of the detectors. Since CMOS circuit models from foundry are not accurate at frequencies higher than f t , the matching guideline between the antenna and the detector is very useful in designing high responsivity detectors. This study found that a detector has to have a large input impedance conjugately matched to the antenna's impedance to have high responsivity.

  12. Measurement of lung function using Electrical Impedance Tomography (EIT) during mechanical ventilation

    NASA Astrophysics Data System (ADS)

    Nebuya, Satoru; Koike, Tomotaka; Imai, Hiroshi; Noshiro, Makoto; Brown, Brian H.; Soma, Kazui

    2010-04-01

    The consistency of regional lung density measurements as estimated by Electrical Impedance Tomography (EIT), in eleven patients supported by a mechanical ventilator, was validated to verify the feasibility of its use in intensive care medicine. There were significant differences in regional lung densities between the normal lung and diseased lungs associated with pneumonia, atelectasis and pleural effusion (Steel-Dwass test, p < 0.05). Temporal changes in regional lung density of patients with atelectasis were observed to be in good agreement with the results of clinical diagnosis. These results indicate that it is feasible to obtain a quantitative value for regional lung density using EIT.

  13. Response of capacitive micromachined ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Ge, Lifeng

    2008-10-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have been developed for airborne ultrasonic applications, acoustic imaging, and chemical and biological detections. Much attention is also paid how to optimize their performance, so that the accurate simulation of the transmitting response of the CMUTs becomes extremely significant. This paper focuses on determining the total input mechanical impedance accountings for damping, and its resistance part is obtained by the calculated natural frequency and equivalent lumped parameters, and the typical 3-dB bandwidth. Thus, the transmitting response can be calculated by using the input mechanical impedance. Moreover, the equivalent electrical circuit can be also established by the determined lumped parameters.

  14. New methods for probing and exploring magnetoelastic properties of amorphous ferromagnetic alloys

    NASA Astrophysics Data System (ADS)

    Gray, Lindsey J.; Nowak, Kamil; Sydoryk, Ihor; Martin, Catalin; Anderson, Philip M.

    2018-05-01

    We describe two new methods for investigating and exploring magnetoelastic properties of ribbons of amorphous magnetic alloys. One consists of exciting the ribbon mechanically while detecting the electromagnetic response, and the second method involves the use of a radiofrequency resonator as a contactless technique for measuring magneto-impedance [C. A. Grimes, S. C. Roy, S. Rani, and Q. Cai, Sensors 11, 2809-2844 (2011)]. The electromagnetic response to mechanical vibration is discussed in connection with the possibility of observing Fano resonance in a classical system, and the magneto-impedance is found to be highly sensitive to magnetic domains formation and their dynamics.

  15. Contact-force distribution optimization and control for quadruped robots using both gradient and adaptive neural networks.

    PubMed

    Li, Zhijun; Ge, Shuzhi Sam; Liu, Sibang

    2014-08-01

    This paper investigates optimal feet forces' distribution and control of quadruped robots under external disturbance forces. First, we formulate a constrained dynamics of quadruped robots and derive a reduced-order dynamical model of motion/force. Consider an external wrench on quadruped robots; the distribution of required forces and moments on the supporting legs of a quadruped robot is handled as a tip-point force distribution and used to equilibrate the external wrench. Then, a gradient neural network is adopted to deal with the optimized objective function formulated as to minimize this quadratic objective function subjected to linear equality and inequality constraints. For the obtained optimized tip-point force and the motion of legs, we propose the hybrid motion/force control based on an adaptive neural network to compensate for the perturbations in the environment and approximate feedforward force and impedance of the leg joints. The proposed control can confront the uncertainties including approximation error and external perturbation. The verification of the proposed control is conducted using a simulation.

  16. Determination of acoustic impedances of multi matching layers for narrowband ultrasonic airborne transducers at frequencies <2.5 MHz - Application of a genetic algorithm.

    PubMed

    Saffar, Saber; Abdullah, Amir

    2012-01-01

    The effective ultrasonic energy radiation into the air of piezoelectric transducers requires using multilayer matching systems with accurately selected acoustic impedances and the thickness of particular layers. One major problem of ultrasonic transducers, radiating acoustic energy into air, is to find the proper acoustic impedances of one or more matching layers. This work aims at developing an original solution to the acoustic impedance mismatch between transducer and air. If the acoustic impedance defences between transducer and air be more, then finding best matching layer(s) is harder. Therefore we consider PZT (lead zirconate titanate piezo electric) transducer and air that has huge acoustic impedance deference. The vibration source energy (PZT), which is used to generate the incident wave, consumes a part of the mechanical energy and converts it to an electrical one in theoretical calculation. After calculating matching layers, we consider the energy source as layer to design a transducer. However, this part of the mechanical energy will be neglected during the mathematical work. This approximation is correct only if the transducer is open-circuit. Since the possibilities of choosing material with required acoustic impedance are limited (the counted values cannot always be realized and applied in practice) it is necessary to correct the differences between theoretical values and the possibilities of practical application of given acoustic impedances. Such a correction can be done by manipulating other parameters of matching layers (e.g. by changing their thickness). The efficiency of the energy transmission from the piezoceramic transducer through different layers with different thickness and different attenuation enabling a compensation of non-ideal real values by changing their thickness was computer analyzed (base on genetic algorithm). Firstly, three theoretical solutions were investigated. Namely, Chebyshev, Desilets and Souquet theories. However, the obtained acoustic impedances do not necessarily correspond to a nowadays available material. Consequently, the values of the acoustic impedances are switched to the nearest values in a large material database. The switched values of the acoustic impedances do not generally give efficient transmission coefficients. Therefore, we proposed, in a second step, the use of a genetic algorithm (GA) to select the best acoustic impedances for matching layers from the material database for a narrow band ultrasonic transducer that work at frequency below the 2.5MHz by considering attenuation. However this bank is rich, the results get better. So the accuracy of the propose method increase by using a lot of materials with exact data for acoustic impedance and their attenuation, especially in high frequency. This yields highly more efficient transmission coefficient. In fact by using increasing number of layer we can increase our chance to find the best sets of materials with valuable both in acoustic impedance and low attenuation. Precisely, the transmission coefficient is almost equal to unity for the all studied cases. Finally the effect of thickness on transmission coefficient is investigated for different layers. The results showed that the transmission coefficient for air media is a function of thickness and sensitive to it even for small variation in thickness. In fact, the sensitivity increases when the differences of acoustic impedances to be high (difference between PZT and air). Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Rotor damage detection by using piezoelectric impedance

    NASA Astrophysics Data System (ADS)

    Qin, Y.; Tao, Y.; Mao, Y. F.

    2016-04-01

    Rotor is a core component of rotary machinery. Once the rotor has the damage, it may lead to a major accident. Thus the quantitative rotor damage detection method based on piezoelectric impedance is studied in this paper. With the governing equation of piezoelectric transducer (PZT) in a cylindrical coordinate, the displacement along the radius direction is derived. The charge of PZT is calculated by the electric displacement. Then, by the use of the obtained displacement and charge, an analytic piezoelectric impedance model of the rotor is built. Given the circular boundary condition of a rotor, annular elements are used as the analyzed objects and spectral element method is used to set up the damage detection model. The Electro-Mechanical (E/M) coupled impedance expression of an undamaged rotor is deduced with the application of a low-cost impedance test circuit. A Taylor expansion method is used to obtain the approximate E/M coupled impedance expression for the damaged rotor. After obtaining the difference between the undamaged and damaged rotor impedance, a rotor damage detection method is proposed. This method can directly calculate the change of bending stiffness of the structural elements, it follows that the rotor damage can be effectively detected. Finally, a preset damage configuration is used for the numerical simulation. The result shows that the quantitative damage detection algorithm based on spectral element method and piezoelectric impedance proposed in this paper can identify the location and the severity of the damaged rotor accurately.

  18. Dissection of the Mechanical Impedance Components of the Outer Hair Cell Using a Chloride-Channel Blocker

    NASA Astrophysics Data System (ADS)

    Harasztosi, Csaba; Gummer, Anthony W.

    2011-11-01

    The voltage-dependent chloride-channel blocker anthracene-9-carboxylic acid (9AC) has been found to reduce the imaginary but not the real part of the mechanical impedance of the organ of Corti, suggesting that the effective stiffness of outer hair cells (OHCs) is reduced by 9AC. To examine whether 9AC interacts directly with the motor protein prestin to reduce the membrane component of the impedance, the patch-clamp technique in whole-cell configuration was used to measure the nonlinear capacitance (NLC) of isolated OHCs and, as control, prestin-transfected human embryonic kidney 293 (HEK293) cells. Extracellular application of 9AC significantly reduced the NLC of both OHCs and HEK293 cells. Intracellular 9AC did not influence the blocking effect of the extracellular applied drug. These results suggest that 9AC interacts directly with prestin, reducing the effective stiffness of the motor, and that the interaction is extracellular.

  19. Production and Precipitation Hardening of Beta-Type Ti-35Nb-10Cu Alloy Foam for Implant Applications

    NASA Astrophysics Data System (ADS)

    Mutlu, Ilven; Yeniyol, Sinem; Oktay, Enver

    2016-04-01

    In this study, beta-type Ti-35Nb-10Cu alloy foams were produced by powder metallurgy method for dental implant applications. 35% Nb was added to stabilize the beta-Ti phase with low Young's modulus. Cu addition enhanced sinterability and gave precipitation hardening capacity to the alloy. Sintered specimens were precipitation hardened in order to enhance the mechanical properties. Electrochemical corrosion behavior of the specimens was examined by electrochemical impedance spectroscopy in artificial saliva. Electrochemical impedance spectroscopy results indicated that the oxide film on the surface of foam is a bi-layer structure consisting of outer porous layer and inner barrier layer. Impedance values of barrier layer were higher than porous layer. Corrosion resistance of specimens decreased at high fluoride concentrations and at low pH of artificial saliva. Corrosion resistance of alloys was slightly decreased with aging. Mechanical properties, microstructure, and surface roughness of the specimens were also examined.

  20. Sound propagation and absorption in foam - A distributed parameter model.

    NASA Technical Reports Server (NTRS)

    Manson, L.; Lieberman, S.

    1971-01-01

    Liquid-base foams are highly effective sound absorbers. A better understanding of the mechanisms of sound absorption in foams was sought by exploration of a mathematical model of bubble pulsation and coupling and the development of a distributed-parameter mechanical analog. A solution by electric-circuit analogy was thus obtained and transmission-line theory was used to relate the physical properties of the foams to the characteristic impedance and propagation constants of the analog transmission line. Comparison of measured physical properties of the foam with values obtained from measured acoustic impedance and propagation constants and the transmission-line theory showed good agreement. We may therefore conclude that the sound propagation and absorption mechanisms in foam are accurately described by the resonant response of individual bubbles coupled to neighboring bubbles.

  1. Methodological considerations of task and shoe wear on joint energetics during landing.

    PubMed

    Shultz, Sandra J; Schmitz, Randy J; Tritsch, Amanda J; Montgomery, Melissa M

    2012-02-01

    To better understand methodological factors that alter landings strategies, we compared sagittal plane joint energetics during the initial landing phase of drop jumps (DJ) vs. drop landings (DL), and when shod vs. barefoot. Surface electromyography, kinematic and kinetic data were obtained on 10 males and 10 females during five consecutive drop landings and five consecutive drop jumps (0.45m) when shod and when barefoot. Energy absorption was greater in the DJ vs. DL (P=.002), due to increased energy absorption at the hip during the DJ. Joint stiffness/impedance was more affected by shoe condition, where overall stiffness/impedance was greater in shod compared to barefoot conditions (P=.036). Further, hip impedance was greater in shod vs. barefoot for the DL only (via increased peak hip extensor moment in DL), while ankle stiffness was greater in the barefoot vs. shod condition for the DJ only (via decreased joint excursion and increased peak joint moment in DJ vs. DL) (P=.011). DJ and DL place different neuromechanical demands upon the lower extremities, and shoe wear may alter impact forces that modulate stiffness/impedance strategies. The impact of these methodological differences should be considered when comparing landing biomechanics across studies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Male penile propulsion into spiraled spermathecal ducts of female chrysomelid beetles: A numerical simulation approach.

    PubMed

    Filippov, Alexander; Kovalev, Alexander; Matsumura, Yoko; Gorb, Stanislav N

    2015-11-07

    Genital diversification in animals is an interesting evolutionary phenomenon. Sexual selection is the main driving force behind the diversification. However, evolutionary mechanisms that have established and maintained variations in genitalia shape parameters observed in related species are not well understood. Here, for the first time, we used numerical simulations to test the hypothesis that variations in female spermathecal duct shapes among related beetle species mechanically interfere with penile propulsion in varying ways. Our numerical simulations showed that high curvature of the spiraled spermathecal ducts of the female have effects with a threshold-based interaction on male penile insertion. The relative size of spirals observed in the beetle, Cassida rubiginosa, studied here is not small enough to interfere with penile propulsion. But the model revealed that propulsion is impeded by the presence of reverse turns in spermathecal ducts. This type of morphology leads to an increase in the velocity of the propulsion but also to an increase in the propulsion energy cost for males. Our results showed that quantitative differences in spermathecal duct shape can mediate qualitative differences in penile motion. This explains, in part, the mechanism behind origin and maintenance of genital divergence among closely related species in general. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Unraveling the contribution of pancreatic beta-cell suicide in autoimmune type 1 diabetes✩

    PubMed Central

    Jaberi-Douraki, Majid; Schnell, Santiago; Pietropaolo, Massimo; Khadra, Anmar

    2014-01-01

    In type 1 diabetes, an autoimmune disease mediated by autoreactive T-cells that attack insulin-secreting pancreatic beta-cells, it has been suggested that disease progression may additionally require protective mechanisms in the target tissue to impede such auto-destructive mechanisms. We hypothesize that the autoimmune attack against beta-cells causes endoplasmic reticulum stress by forcing the remaining beta-cells to synthesize and secrete defective insulin. To rescue beta-cell from the endoplasmic reticulum stress, beta-cells activate the unfolded protein response to restore protein homeostasis and normal insulin synthesis. Here we investigate the compensatory role of unfolded protein response by developing a multi-state model of type 1 diabetes that takes into account beta-cell destruction caused by pathogenic autoreactive T-cells and apoptosis triggered by endoplasmic reticulum stress. We discuss the mechanism of unfolded protein response activation and how it counters beta-cell extinction caused by an autoimmune attack and/or irreversible damage by endoplasmic reticulum stress. Our results reveal important insights about the balance between beta-cell destruction by autoimmune attack (beta-cell homicide) and beta-cell apoptosis by endoplasmic reticulum stress (beta-cell suicide). It also provides an explanation as to why the unfolded protein response may not be a successful therapeutic target to treat type 1 diabetes. PMID:24831415

  4. On-Command Force and Torque Impeding Devices (OC-FTID) Using ERF

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Badescu, Mircea; Sherrit, Stewart

    2014-01-01

    Various machines have been developed to address the need for countermeasures of bone and muscle deterioration when humans operate over extended time in space. Even though these machines are in use, each of them has many limitations that need to be addressed in an effort to prepare for human missions to distant bodies in the solar system. An exercise exoskeleton was conceived that performs on-demand resistivity by inducing force and torque impedance via ElectroRheological Fluid (ERF). The resistive elements consist of pistons that are moving inside ERF-filled cylinders or a donut-shaped cavity, and the fluid flows through the piston when the piston is moved. Tests of the operation of ERF against load showed the feasibility of this approach. ERF properties of high yield stress, low current density, and fast response (less than one millisecond) offer essential characteristics for the construction of the exoskeleton. ERFs can apply very high electrically controlled resistive forces or torque while their size (weight and geometric parameters) can be very small. Their long life and ability to function in a wide temperature range (from -40 to 200 C) allows for their use in extreme environments. ERFs are also nonabrasive, non-toxic, and nonpolluting (meet health and safety regulations). The technology is applicable as a compact exercise machine for astronauts' countermeasure of microgravity, an exercise machine for sport, or as a device for rehabilitation of patients with limb issues.

  5. Transition operators in acoustic-wave diffraction theory. I - General theory. II - Short-wavelength behavior, dominant singularities of Zk0 and Zk0 exp -1

    NASA Technical Reports Server (NTRS)

    Hahne, G. E.

    1991-01-01

    A formal theory of the scattering of time-harmonic acoustic scalar waves from impenetrable, immobile obstacles is established. The time-independent formal scattering theory of nonrelativistic quantum mechanics, in particular the theory of the complete Green's function and the transition (T) operator, provides the model. The quantum-mechanical approach is modified to allow the treatment of acoustic-wave scattering with imposed boundary conditions of impedance type on the surface (delta-Omega) of an impenetrable obstacle. With k0 as the free-space wavenumber of the signal, a simplified expression is obtained for the k0-dependent T operator for a general case of homogeneous impedance boundary conditions for the acoustic wave on delta-Omega. All the nonelementary operators entering the expression for the T operator are formally simple rational algebraic functions of a certain invertible linear radiation impedance operator which maps any sufficiently well-behaved complex-valued function on delta-Omega into another such function on delta-Omega. In the subsequent study, the short-wavelength and the long-wavelength behavior of the radiation impedance operator and its inverse (the 'radiation admittance' operator) as two-point kernels on a smooth delta-Omega are studied for pairs of points that are close together.

  6. Variable versus conventional lung protective mechanical ventilation during open abdominal surgery: study protocol for a randomized controlled trial.

    PubMed

    Spieth, Peter M; Güldner, Andreas; Uhlig, Christopher; Bluth, Thomas; Kiss, Thomas; Schultz, Marcus J; Pelosi, Paolo; Koch, Thea; Gama de Abreu, Marcelo

    2014-05-02

    General anesthesia usually requires mechanical ventilation, which is traditionally accomplished with constant tidal volumes in volume- or pressure-controlled modes. Experimental studies suggest that the use of variable tidal volumes (variable ventilation) recruits lung tissue, improves pulmonary function and reduces systemic inflammatory response. However, it is currently not known whether patients undergoing open abdominal surgery might benefit from intraoperative variable ventilation. The PROtective VARiable ventilation trial ('PROVAR') is a single center, randomized controlled trial enrolling 50 patients who are planning for open abdominal surgery expected to last longer than 3 hours. PROVAR compares conventional (non-variable) lung protective ventilation (CV) with variable lung protective ventilation (VV) regarding pulmonary function and inflammatory response. The primary endpoint of the study is the forced vital capacity on the first postoperative day. Secondary endpoints include further lung function tests, plasma cytokine levels, spatial distribution of ventilation assessed by means of electrical impedance tomography and postoperative pulmonary complications. We hypothesize that VV improves lung function and reduces systemic inflammatory response compared to CV in patients receiving mechanical ventilation during general anesthesia for open abdominal surgery longer than 3 hours. PROVAR is the first randomized controlled trial aiming at intra- and postoperative effects of VV on lung function. This study may help to define the role of VV during general anesthesia requiring mechanical ventilation. Clinicaltrials.gov NCT01683578 (registered on September 3 3012).

  7. Explosive Pulsed Power Experiments At The Phillips Laboratory

    DTIC Science & Technology

    1997-06-01

    Weapons and Survivability Directorate Phillips Laboratory Kirtland AFB, NM 87117 J. Graham, W. Sornrnars Albuquerque Division Maxwell Technologies... Phillips Laboratory Kirtland AFB, NM 87117 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10...pulse shaping/impedance matching systems are discussed. Introduction Air Force missions utilizing pulsed power technology increasingly require the

  8. Transient Intervals of Hyper-Gravity Enhance Endothelial Barrier Integrity: Impact of Mechanical and Gravitational Forces Measured Electrically

    PubMed Central

    Szulcek, Robert; van Bezu, Jan; Boonstra, Johannes; van Loon, Jack J. W. A.; van Nieuw Amerongen, Geerten P.

    2015-01-01

    Background Endothelial cells (EC) guard vascular functions by forming a dynamic barrier throughout the vascular system that sensitively adapts to ‘classical’ biomechanical forces, such as fluid shear stress and hydrostatic pressure. Alterations in gravitational forces might similarly affect EC integrity, but remain insufficiently studied. Methods In an unique approach, we utilized Electric Cell-substrate Impedance Sensing (ECIS) in the gravity-simulators at the European Space Agency (ESA) to study dynamic responses of human EC to simulated micro- and hyper-gravity as well as to classical forces. Results Short intervals of micro- or hyper-gravity evoked distinct endothelial responses. Stimulated micro-gravity led to decreased endothelial barrier integrity, whereas hyper-gravity caused sustained barrier enhancement by rapid improvement of cell-cell integrity, evidenced by a significant junctional accumulation of VE-cadherin (p = 0.011), significant enforcement of peripheral F-actin (p = 0.008) and accompanied by a slower enhancement of cell-matrix interactions. The hyper-gravity triggered EC responses were force dependent and nitric-oxide (NO) mediated showing a maximal resistance increase of 29.2±4.8 ohms at 2g and 60.9±6.2 ohms at 4g vs. baseline values that was significantly suppressed by NO blockage (p = 0.011). Conclusion In conclusion, short-term application of hyper-gravity caused a sustained improvement of endothelial barrier integrity, whereas simulated micro-gravity weakened the endothelium. In clear contrast, classical forces of shear stress and hydrostatic pressure induced either short-lived or no changes to the EC barrier. Here, ECIS has proven a powerful tool to characterize subtle and distinct EC gravity-responses due to its high temporal resolution, wherefore ECIS has a great potential for the study of gravity-responses such as in real space flights providing quantitative assessment of a variety of cell biological characteristics of any adherent growing cell type in an automated and continuous fashion. PMID:26637177

  9. Middle ear myoclonus associated with forced eyelid closure in children: diagnosis and treatment outcome.

    PubMed

    Lee, Guen-Ho; Bae, Seong-Cheon; Jin, Sang-Gyun; Park, Kyoung-Ho; Yeo, Sang-Won; Park, Shi-Nae

    2012-09-01

    Forceful eyelid closure syndrome (FECS) was first reported at the Proceedings of the Second International Tinnitus Seminar in 1983. The main symptom of this syndrome is a spontaneous muscular tinnitus related only to forced eye closure, specifically the voluntary contraction of the periorbital muscles. Although investigation of the syndrome was initiated >100 years ago, only four cases have been published in the past 20 years. We report six cases of middle ear myoclonus tinnitus diagnosed as FECS in children and discuss issues surrounding the diagnosis and treatment of this syndrome. Retrospective case series. From 2009 to 2011, six children complaining of clicking or crackling sounds in their ears presented at Seoul St. Mary's Hospital. Endoscopic examination and recording of the tympanic membrane were performed while the patients were asked to close their eyes forcefully. Audiologic studies including acoustic reflex decay and static compliance were performed for documentation of the movement of the tympanic membrane. Triggering factors of FECS in the children were carefully evaluated. Synchronous movement of the tympanic membrane in response to forced eye closure on endoscopic examination was the most reliable finding to diagnose FECS. Acoustic reflex decay and other impedance audiogram findings showed irregular perturbations during forced eye closure, which led to diagnosis of the tinnitus as middle ear myoclonus. Most of the patients had triggering factors for FECS. Reassurance and removal of the triggering or causal factors with or without medication improved clicking sounds coming from middle ear myoclonus. FECS is a rare clinical entity and can be easily missed in routine clinical examination. We suggest that patients, especially children, with clicking or crackling tinnitus should be evaluated for FECS using proper diagnostic tools. A possible mechanism of FECS in children postulated from our case review is suggested. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  10. Impedance characteristics of nanoparticle-LiCoO{sub 2}+PVDF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panjaitan, Elman, E-mail: elmanp@batan.go.id; Kartini, Evvy, E-mail: kartini@batan.go.id; Honggowiranto, Wagiyo

    2016-02-08

    The impendance of np-LiCoO{sub 2}+xPVDF, as a cathode material candidate for lithium-ion battery (LIB), has been characterized using impedance spectroscopy for x = 0, 5, 10, 15 and 20 volume percentage (%v/v) and for frequencies in the 42 Hz to 5 MHz range. Both real and imaginary components of the impedance were found to be frequency dependent, and both tend to increase for increasing PVDF (polyvinyilidene fluoride) concentration, except that for 10% PVDF both real and imaginary components of impedance are smaller than for 5%. The mechanism for relaxation time for each addition of PVDF was analyzed using Cole-Cole plots. The analysismore » showed that the relaxation times of the nanostructured LiCoO{sub 2} with PVDF additive is relatively constant. Further, PVDF addition increases the bulk resistance and decreases the bulk capacitance of the nanostructured LiCoO{sub 2}.« less

  11. Broadband metamaterial for nonresonant matching of acoustic waves

    PubMed Central

    D’Aguanno, G.; Le, K. Q.; Trimm, R.; Alù, A.; Mattiucci, N.; Mathias, A. D.; Aközbek, N.; Bloemer, M. J.

    2012-01-01

    Unity transmittance at an interface between bulk media is quite common for polarized electromagnetic waves incident at the Brewster angle, but it is rarely observed for sound waves at any angle of incidence. In the following, we theoretically and experimentally demonstrate an acoustic metamaterial possessing a Brewster-like angle that is completely transparent to sound waves over an ultra-broadband frequency range with >100% bandwidth. The metamaterial, consisting of a hard metal with subwavelength apertures, provides a surface impedance matching mechanism that can be arbitrarily tailored to specific media. The nonresonant nature of the impedance matching effectively decouples the front and back surfaces of the metamaterial allowing one to independently tailor the acoustic impedance at each interface. On the contrary, traditional methods for acoustic impedance matching, for example in medical imaging, rely on resonant tunneling through a thin antireflection layer, which is inherently narrowband and angle specific. PMID:22468227

  12. Theoretical modeling and equivalent electric circuit of a bimorph piezoelectric micromachined ultrasonic transducer.

    PubMed

    Sammoura, Firas; Kim, Sang-Gook

    2012-05-01

    An electric circuit model for a circular bimorph piezoelectric micromachined ultrasonic transducer (PMUT) was developed for the first time. The model was made up of an electric mesh, which was coupled to a mechanical mesh via a transformer element. The bimorph PMUT consisted of two piezoelectric layers of the same material, having equal thicknesses, and sandwiched between three thin electrodes. The piezoelectric layers, having the same poling axis, were biased with electric potentials of the same magnitude but opposite polarity. The strain mismatches between the two layers created by the converse piezoelectric effect caused the membrane to vibrate and, hence, transmit a pressure wave. Upon receiving the echo of the acoustic wave, the membrane deformation led to the generation of electric charges as a result of the direct piezoelectric phenomenon. The membrane angular velocity and electric current were related to the applied electric field, the impinging acoustic pressure, and the moment at the edge of the membrane using two canonical equations. The transduction coefficients from the electrical to the mechanical domain and vice-versa were shown to be bilateral and the system was shown to be reversible. The circuit parameters of the derived model were extracted, including the transformer ratio, the clamped electric impedance, the spring-softening impedance, and the open-circuit mechanical impedance. The theoretical model was fully examined by generating the electrical input impedance and average plate displacement curves versus frequency under both air and water loading conditions. A PMUT composed of piezoelectric material with a lossy dielectric was also investigated and the maximum possible electroacoustical conversion efficiency was calculated.

  13. The forces generated at the human elbow joint in response to imposed sinusoidal movements of the forearm

    PubMed Central

    Joyce, G. C.; Rack, Peter M. H.; Ross, H. F.

    1974-01-01

    1. The mechanical resistance of the human forearm has been measured during imposed sinusoidal flexion-extension movements of the elbow joint. 2. The force required to move the limb can be divided into components required to move the mass, and components required to overcome the resistance offered by elastic and frictional properties of the muscles and other soft tissues. 3. When during a vigorous flexing effort the limb was subjected to a small amplitude sinusoidal movement each extension was followed by a considerable reflex contraction of the flexor muscles. At low frequencies of movement this reflex provided an added resistance to extension, but at 8-12 Hz the delay in the reflex pathway was such that the reflex response to extension occurred after the extension phase of the movement was over and during the subsequent flexion movement. The reflex activity then assisted the movement whereas at other frequencies it impeded it. 4. The reflex response to movement increased as the subject exerted a greater flexing force. 5. Small movements generated a relatively larger reflex response than big ones. 6. Even with large amplitudes of movement when the reflex activity was relatively small, the limb resisted extension with a high level of stiffness; this was comparable with the short range stiffness of muscles in experimental animals. 7. The fact that at some frequencies the reflex response assisted the movement implies that with appropriate loading the limb could undergo a self-sustaining oscillation at those frequencies. PMID:4420490

  14. Vibration Control via Stiffness Switching of Magnetostrictive Transducers

    NASA Technical Reports Server (NTRS)

    Scheidler, Justin J.; Asnani, Vivake M.; Dapino, Marcelo J.

    2016-01-01

    In this paper, a computational study is presented of structural vibration control that is realized by switching a magnetostrictive transducer between high and low stiffness states. Switching is accomplished by either changing the applied magnetic field with a voltage excitation or changing the shunt impedance on the transducer's coil (i.e., the magnetostrictive material's magnetic boundary condition). Switched-stiffness vibration control is simulated using a lumped mass supported by a damper and the magnetostrictive transducer (mount), which is represented by a nonlinear, electromechanical model. Free vibration of the mass is calculated while varying the mount's stiffness according to a reference switched-stiffness vibration control law. The results reveal that switching the magnetic field produces the desired change in stiffness, but also an undesired actuation force that can significantly degrade the vibration control. Hence, a modified switched-stiffness control law that accounts for the actuation force is proposed and implemented for voltage-controlled stiffness switching. The influence of the magneto-mechanical bias condition is also discussed. Voltage-controlled stiffness switching is found to introduce damping equivalent to a viscous damping factor up to about 0.13; this is shown to primarily result from active vibration reduction caused by the actuation force. The merit of magnetostrictive switched-stiffness vibration control is then quantified by comparing the results of voltage- and shunt-controlled stiffness switching to the performance of optimal magnetostrictive shunt damping. For the cases considered, optimal resistive shunt damping performed considerably better than both voltage- and shunt-controlled stiffness switching.

  15. Motor Inhibition Affects the Speed But Not Accuracy of Aimed Limb Movements in an Insect

    PubMed Central

    Calas-List, Delphine; Clare, Anthony J.; Komissarova, Alexandra; Nielsen, Thomas A.

    2014-01-01

    When reaching toward a target, human subjects use slower movements to achieve higher accuracy, and this can be accompanied by increased limb impedance (stiffness, viscosity) that stabilizes movements against motor noise and external perturbation. In arthropods, the activity of common inhibitory motor neurons influences limb impedance, so we hypothesized that this might provide a mechanism for speed and accuracy control of aimed movements in insects. We recorded simultaneously from excitatory leg motor neurons and from an identified common inhibitory motor neuron (CI1) in locusts that performed natural aimed scratching movements. We related limb movement kinematics to recorded motor activity and demonstrate that imposed alterations in the activity of CI1 influenced these kinematics. We manipulated the activity of CI1 by injecting depolarizing or hyperpolarizing current or killing the cell using laser photoablation. Naturally higher levels of inhibitory activity accompanied faster movements. Experimentally biasing the firing rate downward, or stopping firing completely, led to slower movements mediated by changes at several joints of the limb. Despite this, we found no effect on overall movement accuracy. We conclude that inhibitory modulation of joint stiffness has effects across most of the working range of the insect limb, with a pronounced effect on the overall velocity of natural movements independent of their accuracy. Passive joint forces that are greatest at extreme joint angles may enhance accuracy and are not affected by motor inhibition. PMID:24872556

  16. Programmable ion-sensitive transistor interfaces. II. Biomolecular sensing and manipulation.

    PubMed

    Jayant, Krishna; Auluck, Kshitij; Funke, Mary; Anwar, Sharlin; Phelps, Joshua B; Gordon, Philip H; Rajwade, Shantanu R; Kan, Edwin C

    2013-07-01

    The chemoreceptive neuron metal-oxide-semiconductor transistor described in the preceding paper is further used to monitor the adsorption and interaction of DNA molecules and subsequently manipulate the adsorbed biomolecules with injected static charge. Adsorption of DNA molecules onto poly-L-lysine-coated sensing gates (SGs) modulates the floating gate (FG) potential ψ(O), which is reflected as a threshold voltage shift measured from the control gate (CG) V(th_CG). The asymmetric capacitive coupling between the CG and SG to the FG results in V(th_CG) amplification. The electric field in the SG oxide E(SG_ox) is fundamentally different when we drive the current readout with V(CG) and V(ref) (i.e., the potential applied to the CG and reference electrode, respectively). The V(CG)-driven readout induces a larger E(SG_ox), leading to a larger V(th_CG) shift when DNA is present. Simulation studies indicate that the counterion screening within the DNA membrane is responsible for this effect. The DNA manipulation mechanism is enabled by tunneling electrons (program) or holes (erase) onto FGs to produce repulsive or attractive forces. Programming leads to repulsion and eventual desorption of DNA, while erasing reestablishes adsorption. We further show that injected holes or electrons prior to DNA addition either aids or disrupts the immobilization process, which can be used for addressable sensor interfaces. To further substantiate DNA manipulation, we used impedance spectroscopy with a split ac-dc technique to reveal the net interface impedance before and after charge injection.

  17. Computational Validation of a Two-Dimensional Semi-Empirical Model for Inductive Coupling in a Conical Pulsed Inductive Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.

    2011-01-01

    A two-dimensional semi-empirical model of pulsed inductive thrust efficiency is developed to predict the effect of such a geometry on thrust efficiency. The model includes electromagnetic and gas-dynamic forces but excludes energy conversion from radial motion to axial motion, with the intention of characterizing thrust efficiency loss mechanisms that result from a conical versus a at inductive coil geometry. The range of conical pulsed inductive thruster geometries to which this model can be applied is explored with the use of finite element analysis. A semi-empirical relation for inductance as a function of current sheet radial and axial position is the limiting feature of the model, restricting the applicability as a function of half cone angle to a range from ten degrees to about 60 degrees. The model is nondimensionalized, yielding a set of dimensionless performance scaling parameters. Results of the model indicate that radial current sheet motion changes the axial dynamic impedance parameter at which thrust efficiency is maximized. This shift indicates that when radial current sheet motion is permitted in the model longer characteristic circuit timescales are more efficient, which can be attributed to a lower current sheet axial velocity as the plasma more rapidly decouples from the coil through radial motion. Thrust efficiency is shown to increase monotonically for decreasing values of the radial dynamic impedance parameter. This trend indicates that to maximize the radial decoupling timescale should be long compared to the characteristic circuit timescale.

  18. Dielectric relaxation and electrical conduction mechanism in A2HoSbO6 (A=Ba, Sr, Ca) Double Perovskite Ceramics: An impedance spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Halder, Saswata; Dutta, Alo; Sinha, T. P.

    2017-03-01

    The AC electrical properties of polycrystalline double perovskite oxides A2HoSbO6 (A=Ba, Sr, Ca; AHS) synthesized by solid state reaction technique has been explored by using impedance spectroscopic studies. The Rietveld refinement of the room temperature X-ray diffraction data show that Ba2HoSbO6 (BHS) has cubic phase and Sr2HoSbO6 (SHS) and Ca2HoSbO6 (CHS) crystallize in monoclinic phase. The samples show significant frequency dispersion in their dielectric properties. The polydispersive nature of the relaxation mechanism is explained by the modified Cole-Cole model. The scaling behavior of dielectric loss indicate the temperature independence of the relaxation mechanism. The magnitude of the activation energy indicates that the hopping mechanism is responsible for carrier transport in AHS. The frequency dependent conductivity spectra follow the double power law. Impedance spectroscopic data presented in the Nyquist plot (Z" versus Z‧) are used to identify an equivalent circuit along with to know the grain, grain boundary and interface contributions. The constant phase element (CPE) is used to analyze the experimental response of BHS, SHS and CHS comprehending the contribution of different microstructural features to the conduction process. The temperature dependent electrical conductivity shows a semiconducting behavior.

  19. Effect of Mechanical Stresses and Annealing on the Magnetic Structure and the Magnetic Impedance of Amorphous CoFeSiBCr Microwires

    NASA Astrophysics Data System (ADS)

    Nematov, M. G.; Salem, M. M.; Azim, U.; Akhmat, M.; Morchenko, A. T.; Yudanov, N. A.; Panina, L. V.

    2018-02-01

    The structural and magnetic properties of amorphous ferromagnetic microwires can undergo significant measurements under the action of external mechanical stresses and heat treatment. The study of transformations occurring in this case is important for designing various sensors of mechanical stresses, loading, and temperature and also for inducing in the wires a certain type of magnetic anisotropy that plays a significant role in the realization of various effects in them. In this work, the influence of external stresses and annealing on the processes of the magnetization and the magnetic impedance of Co71Fe5B11Si10Cr3 microwires having a low positive magnetostriction ( 10-8) in amorphous state has been studied. The influence of external stresses leads to a sharp change in the character of the magnetization reversal curve, which was due to the change in the sign of the magnetostriction and the type of magnetic anisotropy. The amplitude of higher harmonics and the value of the magnetic impedance, respectively, are sensitive to mechanical stresses. Elastic stresses in the wires with a partial crystallization do not lead to a marked change in the magnetic properties; however, annealing can lead to a substantial increase in the axial magnetic anisotropy of the wires existing in the stressed state. The experimental results are analyzed in the framework of a magnetostriction model of induced magnetic anisotropy.

  20. Miniature Piezoelectric Macro-Mass Balance

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Trebi-Ollennu, Ashitey; Bonitz, Robert G.; Bar-Cohen, Yoseph

    2010-01-01

    Mass balances usually use a strain gauge that requires an impedance measurement and is susceptible to noise and thermal drift. A piezoelectric balance can be used to measure mass directly by monitoring the voltage developed across the piezoelectric balance, which is linear with weight or it can be used in resonance to produce a frequency change proportional to the mass change (see figure). The piezoelectric actuator/balance is swept in frequency through its fundamental resonance. If a small mass is added to the balance, the resonance frequency shifts down in proportion to the mass. By monitoring the frequency shift, the mass can be determined. This design allows for two independent measurements of mass. Additionally, more than one sample can be verified because this invention allows for each sample to be transported away from the measuring device upon completion of the measurement, if required. A piezoelectric actuator, or many piezoelectric actuators, was placed between the collection plate of the sampling system and the support structure. As the sample mass is added to the plate, the piezoelectrics are stressed, causing them to produce a voltage that is proportional to the mass and acceleration. In addition, a change in mass delta m produces a change in the resonance frequency with delta f proportional to delta m. In a microgravity environment, the spacecraft could be accelerated to produce a force on the piezoelectric actuator that would produce a voltage proportional to the mass and acceleration. Alternatively, the acceleration could be used to force the mass on the plate, and the inertial effects of the mass on the plate would produce a shift in the resonance frequency with the change in frequency related to the mass change. Three prototypes of the mass balance mechanism were developed. These macro-mass balances each consist of a solid base and an APA 60 Cedrat flextensional piezoelectric actuator supporting a measuring plate. A similar structure with 3 APA 120 Cedrat flextensional piezoelectric actuators spaced equidistantly at 120 degrees supporting the plate and a softer macro balance with an APA 150 actuator/sensor were developed. These flextensional actuators were chosen because they increase the sensitivity of the actuator to stress, allow the piezoelectric to be pre-stressed, and the piezoelectric element is a stacked multilayer actuator, which has a considerably lower input impedance than a monolithic element that allows for common instruments (e.g., input impedance of 10 megohms) to measure the voltage without rapidly discharging the charge/voltage on the piezoelectric actuator.

  1. Acoustic Treatment Design Scaling Methods. Phase 2

    NASA Technical Reports Server (NTRS)

    Clark, L. (Technical Monitor); Parrott, T. (Technical Monitor); Jones, M. (Technical Monitor); Kraft, R. E.; Yu, J.; Kwan, H. W.; Beer, B.; Seybert, A. F.; Tathavadekar, P.

    2003-01-01

    The ability to design, build and test miniaturized acoustic treatment panels on scale model fan rigs representative of full scale engines provides not only cost-savings, but also an opportunity to optimize the treatment by allowing multiple tests. To use scale model treatment as a design tool, the impedance of the sub-scale liner must be known with confidence. This study was aimed at developing impedance measurement methods for high frequencies. A normal incidence impedance tube method that extends the upper frequency range to 25,000 Hz. without grazing flow effects was evaluated. The free field method was investigated as a potential high frequency technique. The potential of the two-microphone in-situ impedance measurement method was evaluated in the presence of grazing flow. Difficulties in achieving the high frequency goals were encountered in all methods. Results of developing a time-domain finite difference resonator impedance model indicated that a re-interpretation of the empirical fluid mechanical models used in the frequency domain model for nonlinear resistance and mass reactance may be required. A scale model treatment design that could be tested on the Universal Propulsion Simulator vehicle was proposed.

  2. Optical Mass Displacement Tracking: A simplified field calibration method for the electro-mechanical seismometer.

    NASA Astrophysics Data System (ADS)

    Burk, D. R.; Mackey, K. G.; Hartse, H. E.

    2016-12-01

    We have developed a simplified field calibration method for use in seismic networks that still employ the classical electro-mechanical seismometer. Smaller networks may not always have the financial capability to purchase and operate modern, state of the art equipment. Therefore these networks generally operate a modern, low-cost digitizer that is paired to an existing electro-mechanical seismometer. These systems are typically poorly calibrated. Calibration of the station is difficult to estimate because coil loading, digitizer input impedance, and amplifier gain differences vary by station and digitizer model. Therefore, it is necessary to calibrate the station channel as a complete system to take into account all components from instrument, to amplifier, to even the digitizer. Routine calibrations at the smaller networks are not always consistent, because existing calibration techniques require either specialized equipment or significant technical expertise. To improve station data quality at the small network, we developed a calibration method that utilizes open source software and a commonly available laser position sensor. Using a signal generator and a small excitation coil, we force the mass of the instrument to oscillate at various frequencies across its operating range. We then compare the channel voltage output to the laser-measured mass displacement to determine the instrument voltage sensitivity at each frequency point. Using the standard equations of forced motion, a representation of the calibration curve as a function of voltage per unit of ground velocity is calculated. A computer algorithm optimizes the curve and then translates the instrument response into a Seismic Analysis Code (SAC) poles & zeros format. Results have been demonstrated to fall within a few percent of a standard laboratory calibration. This method is an effective and affordable option for networks that employ electro-mechanical seismometers, and it is currently being deployed in regional networks throughout Russia and in Central Asia.

  3. Wave impedance selection for passivity-based bilateral teleoperation

    NASA Astrophysics Data System (ADS)

    D'Amore, Nicholas John

    When a task must be executed in a remote or dangerous environment, teleoperation systems may be employed to extend the influence of the human operator. In the case of manipulation tasks, haptic feedback of the forces experienced by the remote (slave) system is often highly useful in improving an operator's ability to perform effectively. In many of these cases (especially teleoperation over the internet and ground-to-space teleoperation), substantial communication latency exists in the control loop and has the strong tendency to cause instability of the system. The first viable solution to this problem in the literature was based on a scattering/wave transformation from transmission line theory. This wave transformation requires the designer to select a wave impedance parameter appropriate to the teleoperation system. It is widely recognized that a small value of wave impedance is well suited to free motion and a large value is preferable for contact tasks. Beyond this basic observation, however, very little guidance exists in the literature regarding the selection of an appropriate value. Moreover, prior research on impedance selection generally fails to account for the fact that in any realistic contact task there will simultaneously exist contact considerations (perpendicular to the surface of contact) and quasi-free-motion considerations (parallel to the surface of contact). The primary contribution of the present work is to introduce an approximate linearized optimum for the choice of wave impedance and to apply this quasi-optimal choice to the Cartesian reality of such a contact task, in which it cannot be expected that a given joint will be either perfectly normal to or perfectly parallel to the motion constraint. The proposed scheme selects a wave impedance matrix that is appropriate to the conditions encountered by the manipulator. This choice may be implemented as a static wave impedance value or as a time-varying choice updated according to the instantaneous conditions encountered. A Lyapunov-like analysis is presented demonstrating that time variation in wave impedance will not violate the passivity of the system. Experimental trials, both in simulation and on a haptic feedback device, are presented validating the technique. Consideration is also given to the case of an uncertain environment, in which an a priori impedance choice may not be possible.

  4. Anatomically informed mesoscale electrical impedance spectroscopy in southern pine and the electric field distribution for pin-type electric moisture metres

    Treesearch

    Samuel L. Zelinka; Alex C. Wiedenhoeft; Samuel V. Glass; Flavio Ruffinatto

    2015-01-01

    Electrical impedance spectra of wood taken at macroscopic scales below the fibre saturation point have led to inferences that the mechanism of charge conduction involves a percolation phenomenon. The pathways responsible for charge conduction would necessarily be influenced by wood structure at a variety of sub-macroscopic scales – at a mesoscale – but these questions...

  5. Performance limitations of bilateral force reflection imposed by operator dynamic characteristics

    NASA Technical Reports Server (NTRS)

    Chapel, Jim D.

    1989-01-01

    A linearized, single-axis model is presented for bilateral force reflection which facilitates investigation into the effects of manipulator, operator, and task dynamics, as well as time delay and gain scaling. Structural similarities are noted between this model and impedance control. Stability results based upon this model impose requirements upon operator dynamic characteristics as functions of system time delay and environmental stiffness. An experimental characterization reveals the limited capabilities of the human operator to meet these requirements. A procedure is presented for determining the force reflection gain scaling required to provide stability and acceptable operator workload. This procedure is applied to a system with dynamics typical of a space manipulator, and the required gain scaling is presented as a function of environmental stiffness.

  6. Specific methodology for capacitance imaging by atomic force microscopy: A breakthrough towards an elimination of parasitic effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estevez, Ivan; Concept Scientific Instruments, ZA de Courtaboeuf, 2 rue de la Terre de Feu, 91940 Les Ulis; Chrétien, Pascal

    2014-02-24

    On the basis of a home-made nanoscale impedance measurement device associated with a commercial atomic force microscope, a specific operating process is proposed in order to improve absolute (in sense of “nonrelative”) capacitance imaging by drastically reducing the parasitic effects due to stray capacitance, surface topography, and sample tilt. The method, combining a two-pass image acquisition with the exploitation of approach curves, has been validated on sets of calibration samples consisting in square parallel plate capacitors for which theoretical capacitance values were numerically calculated.

  7. Is optimal paddle force applied during paediatric external defibrillation?

    PubMed

    Bennetts, Sarah H; Deakin, Charles D; Petley, Graham W; Clewlow, Frank

    2004-01-01

    Optimal paddle force minimises transthoracic impedance; a factor associated with increased defibrillation success. Optimal force for the defibrillation of children < or =10 kg using paediatric paddles has previously been shown to be 2.9 kgf, and for children >10 kg using adult paddles is 5.1 kgf. We compared defibrillation paddle force applied during simulated paediatric defibrillation with these optimal values. 72 medical and nursing staff who would be expected to perform paediatric defibrillation were recruited from a University teaching hospital. Participants, blinded to the nature of the study, were asked to simulate defibrillation of an infant manikin (9 months of age) and a child manikin (6 years of age) using paediatric or adult paddles, respectively, according to guidelines. Paddle force (kgf) was measured at the time of simulated shock and compared with known optimal values. Median paddle force applied to the infant manikin was 2.8 kgf (max 9.6, min 0.6), with only 47% operators attaining optimal force. Median paddle force applied to the child manikin was 3.8 kgf (max 10.2, min 1.0), with only 24% of operators attaining optimal force. Defibrillation paddle force applied during paediatric defibrillation often falls below optimal values.

  8. The clarinet: how blowing pressure, lip force, lip position and reed "hardness" affect pitch, sound level, and spectrum.

    PubMed

    Almeida, Andre; George, David; Smith, John; Wolfe, Joe

    2013-09-01

    Using an automated clarinet playing system, the frequency f, sound level L, and spectral characteristics are measured as functions of blowing pressure P and the force F applied by the mechanical lip at different places on the reed. The playing regime on the (P,F) plane lies below an extinction line F(P) with a negative slope of a few square centimeters and above a pressure threshold with a more negative slope. Lower values of F and P can produce squeaks. Over much of the playing regime, lines of equal frequency have negative slope. This is qualitatively consistent with passive reed behavior: Increasing F or P gradually closes the reed, reducing its equivalent acoustic compliance, which increases the frequency of the peaks of the parallel impedance of bore and reed. High P and low F produce the highest sound levels and stronger higher harmonics. At low P, sound level can be increased at constant frequency by increasing P while simultaneously decreasing F. At high P, where lines of equal f and of equal L are nearly parallel, this compensation is less effective. Applying F further from the mouthpiece tip moves the playing regime to higher F and P, as does a stiffer reed.

  9. Frequency dispersions of human skin dielectrics.

    PubMed Central

    Poon, C S; Choy, T T

    1981-01-01

    The electrical properties of many biological materials are known to exhibit frequency dispersions. In the human skin, the impedance measured at various frequencies closely describes a circular locus of the Cole-Cole type in the complex impedance plane. In this report, the formative mechanisms responsible for the anomalous circular-arc behavior of skin impedance were investigated, using data from impedance measurements taken after successive strippings of the skin. The data were analyzed with respect to changes in the parameters of the equivalent Cole-Cole model after each stripping. For an exponential resistivity profile (Tregear, 1966, Physical Functions of Skin; Yamamoto and Yamamoto, 1976, Med. Biol. Eng., 14:151--158), the profile of the dielectric constant was shown to be uniform across the epidermis. Based on these results, a structural model has been formulated in terms of the relaxation theory of Maxwell and Wagner for inhomogeneous dielectric materials. The impedance locus obtained from the model approximates a circular are with phase constant alpha = 0.82, which compares favorably with experimental data. At higher frequencies a constant-phase, frequency-dependent component having the same phase constant alpha is also demonstrated. It is suggested that an approximately rectangular distribution of the relaxation time over the epidermal dielectric sheath is adequate to account for the anomalous frequency characteristics of human skin impedance. PMID:7213928

  10. The Passive Film Growth Mechanism of New Corrosion-Resistant Steel Rebar in Simulated Concrete Pore Solution: Nanometer Structure and Electrochemical Study

    PubMed Central

    Jiang, Jin-yang; Wang, Danqian; Chu, Hong-yan; Ma, Han; Liu, Yao; Gao, Yun; Shi, Jinjie; Sun, Wei

    2017-01-01

    An elaborative study was carried out on the growth mechanism and properties of the passive film for a new kind of alloyed corrosion-resistant steel (CR steel). The passive film naturally formed in simulated concrete pore solutions (pH = 13.3). The corrosion resistance was evaluated by various methods including open circuit potential (OCP), linear polarization resistance (LPR) measurements, and electrochemical impedance spectroscopy (EIS). Meanwhile, the 2205 duplex stainless steel (SS steel) was evaluated for comparison. Moreover, the passive film with CR steel was studied by means of X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Atomic Force Microscope (AFM), and the Mott‑Schottky approach. The results showed that the excellent passivity of CR steel could be detected in a high alkaline environment. The grain boundaries between the fine passive film particles lead to increasing Cr oxide content in the later passivation stage. The filling of cation vacancies in the later passivation stage as well as the orderly crystalized inner layer contributed to the excellent corrosion resistance of CR steel. A passive film growth model for CR steel was proposed. PMID:28772772

  11. The gating mechanism of the large mechanosensitive channel MscL

    NASA Technical Reports Server (NTRS)

    Sukharev, S.; Betanzos, M.; Chiang, C. S.; Guy, H. R.

    2001-01-01

    The mechanosensitive channel of large conductance, MscL, is a ubiquitous membrane-embedded valve involved in turgor regulation in bacteria. The crystal structure of MscL from Mycobacterium tuberculosis provides a starting point for analysing molecular mechanisms of tension-dependent channel gating. Here we develop structural models in which a cytoplasmic gate is formed by a bundle of five amino-terminal helices (S1), previously unresolved in the crystal structure. When membrane tension is applied, the transmembrane barrel expands and pulls the gate apart through the S1-M1 linker. We tested these models by substituting cysteines for residues predicted to be near each other only in either the closed or open conformation. Our results demonstrate that S1 segments form the bundle when the channel is closed, and crosslinking between S1 segments prevents opening. S1 segments interact with M2 when the channel is open, and crosslinking of S1 to M2 impedes channel closing. Gating is affected by the length of the S1-M1 linker in a manner consistent with the model, revealing critical spatial relationships between the domains that transmit force from the lipid bilayer to the channel gate.

  12. The Passive Film Growth Mechanism of New Corrosion-Resistant Steel Rebar in Simulated Concrete Pore Solution: Nanometer Structure and Electrochemical Study.

    PubMed

    Jiang, Jin-Yang; Wang, Danqian; Chu, Hong-Yan; Ma, Han; Liu, Yao; Gao, Yun; Shi, Jinjie; Sun, Wei

    2017-04-14

    An elaborative study was carried out on the growth mechanism and properties of the passive film for a new kind of alloyed corrosion-resistant steel (CR steel). The passive film naturally formed in simulated concrete pore solutions (pH = 13.3). The corrosion resistance was evaluated by various methods including open circuit potential (OCP), linear polarization resistance (LPR) measurements, and electrochemical impedance spectroscopy (EIS). Meanwhile, the 2205 duplex stainless steel (SS steel) was evaluated for comparison. Moreover, the passive film with CR steel was studied by means of X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Atomic Force Microscope (AFM), and the Mott‑Schottky approach. The results showed that the excellent passivity of CR steel could be detected in a high alkaline environment. The grain boundaries between the fine passive film particles lead to increasing Cr oxide content in the later passivation stage. The filling of cation vacancies in the later passivation stage as well as the orderly crystalized inner layer contributed to the excellent corrosion resistance of CR steel. A passive film growth model for CR steel was proposed.

  13. Nerve cuff electrode using embedded magnets and its application to hypoglossal nerve stimulation.

    PubMed

    Seo, Jungmin; Wee, Jee Hye; Park, Jeong Hoan; Park, Pona; Kim, Jeong-Whun; Kim, Sung June

    2016-12-01

    A novel nerve cuff electrode with embedded magnets was fabricated and developed. In this study, a pair of magnets was fully embedded and encapsulated in a liquid crystal polymer (LCP) substrate to utilize magnetic force in order to replace the conventional installing techniques of cuff electrodes. In vitro and in vivo experiments were conducted to evaluate the feasibility of the magnet-embedded nerve cuff electrode (MENCE). Lastly, several issues pertaining to the MENCE such as the cuff-to-nerve diameter ratio, the force of the magnets, and possible concerns were discussed in the discussion section. Electrochemical impedance spectrum and cyclic voltammetry assessments were conducted to measure the impedance and charge storage capacity of the cathodal phase (CSC c ). The MENCE was installed onto the hypoglossal nerve (HN) of a rabbit and the movement of the genioglossus was recorded through C-arm fluoroscopy while the HN was stimulated by a pulsed current. The measured impedance was 0.638 ∠ -67.8° kΩ at 1 kHz and 5.27 ∠ -82.1° kΩ at 100 Hz. The average values of access resistance and cut-off frequency were 0.145 kΩ and 3.98 kHz, respectively. The CSC c of the electrode was measured as 1.69 mC cm -2 at the scan rate of 1 mV s -1 . The movement of the genioglossus contraction was observed under a pulsed current with an amplitude level of 0.106 mA, a rate of 0.635 kHz, and a duration of 0.375 ms applied through the MENCE. A few methods to close and secure cuff electrodes have been researched, but they are associated with several drawbacks. To overcome these, we used magnetic force as a closing method of the cuff electrode. The MENCE can be precisely installed on a target nerve without any surgical techniques such as suturing or molding. Furthermore, it is convenient to remove the installed MENCE because it requires little force to detach one magnet from the other, enabling repeatable installation and removal. We anticipate that the MENCE will become a very useful tool given its unique properties as a cuff electrode for neural engineering.

  14. Impedance Analysis of Ion Transport Through Supported Lipid Membranes Doped with Ionophores: A New Kinetic Approach

    PubMed Central

    Alvarez, P. E.; Vallejo, A. E.

    2008-01-01

    Kinetics of facilitated ion transport through planar bilayer membranes are normally analyzed by electrical conductance methods. The additional use of electrical relaxation techniques, such as voltage jump, is necessary to evaluate individual rate constants. Although electrochemical impedance spectroscopy is recognized as the most powerful of the available electric relaxation techniques, it has rarely been used in connection with these kinetic studies. According to the new approach presented in this work, three steps were followed. First, a kinetic model was proposed that has the distinct quality of being general, i.e., it properly describes both carrier and channel mechanisms of ion transport. Second, the state equations for steady-state and for impedance experiments were derived, exhibiting the input–output representation pertaining to the model’s structure. With the application of a method based on the similarity transformation approach, it was possible to check that the proposed mechanism is distinguishable, i.e., no other model with a different structure exhibits the same input–output behavior for any input as the original. Additionally, the method allowed us to check whether the proposed model is globally identifiable (i.e., whether there is a single set of fit parameters for the model) when analyzed in terms of its impedance response. Thus, our model does not represent a theoretical interpretation of the experimental impedance but rather constitutes the prerequisite to select this type of experiment in order to obtain optimal kinetic identification of the system. Finally, impedance measurements were performed and the results were fitted to the proposed theoretical model in order to obtain the kinetic parameters of the system. The successful application of this approach is exemplified with results obtained for valinomycin–K+ in lipid bilayers supported onto gold substrates, i.e., an arrangement capable of emulating biological membranes. PMID:19669528

  15. Impedance-based structural health monitoring of additive manufactured structures with embedded piezoelectric wafers

    NASA Astrophysics Data System (ADS)

    Scheyer, Austin G.; Anton, Steven R.

    2017-04-01

    Embedding sensors within additive manufactured (AM) structures gives the ability to develop smart structures that are capable of monitoring the mechanical health of a system. AM provides an opportunity to embed sensors within a structure during the manufacturing process. One major limitation of AM technology is the ability to verify the geometric and material properties of fabricated structures. Over the past several years, the electromechanical impedance (EMI) method for structural health monitoring (SHM) has been proven to be an effective method for sensing damage in structurers. The EMI method utilizes the coupling between the electrical and mechanical properties of a piezoelectric transducer to detect a change in the dynamic response of a structure. A piezoelectric device, usually a lead zirconate titanate (PZT) ceramic wafer, is bonded to a structure and the electrical impedance is measured across as range of frequencies. A change in the electrical impedance is directly correlated to changes made to the mechanical condition of the structure. In this work, the EMI method is employed on piezoelectric transducers embedded inside AM parts to evaluate the feasibility of performing SHM on parts fabricated using additive manufacturing. The fused deposition modeling (FDM) method is used to print specimens for this feasibility study. The specimens are printed from polylactic acid (PLA) in the shape of a beam with an embedded monolithic piezoelectric ceramic disc. The specimen is mounted as a cantilever while impedance measurements are taken using an HP 4194A impedance analyzer. Both destructive and nondestructive damage is simulated in the specimens by adding an end mass and drilling a hole near the free end of the cantilever, respectively. The Root Mean Square Deviation (RMSD) method is utilized as a metric for quantifying damage to the system. In an effort to determine a threshold for RMSD, the values are calculated for the variation associated with taking multiple measurements and with re-clamping the cantilever, and determined to be 0.154, and 3.125 respectively. The RMSD value of the cantilever with a 400 g end mass is 11.39, and the RMSD value of the cantilever with a 4 mm hole near the end is 12.15. From these results, it can be determined that the damaged cases have much higher RMSD values than the RMSD values associated with measurements and set up variability of the healthy structure.

  16. Dynamics of fluidic devices with applications to rotor pitch links

    NASA Astrophysics Data System (ADS)

    Scarborough, Lloyd H., III

    Coupling a Fluidic Flexible Matrix Composite (F2MC) to an air-pressurized fluid port produces a fundamentally new class of tunable vibration isolator. This fluidlastic device provides significant vibration reduction at an isolation frequency that can be tuned over a broad frequency range. The material properties and geometry of the F2MC element, as well as the port inertance, determine the isolation frequency. A unique feature of this device is that the port inertance depends on pressure so the isolation frequency can be adjusted by changing the air pressure. For constant port inertance, the isolation frequency is largely independent of the isolated mass so the device is robust to changes in load. A nonlinear model is developed to predict isolator length and port inertance. The model is linearized and the frequency response calculated. Experiments agree with theory, demonstrating a tunable isolation range from 9 Hz to 36 Hz and transmitted force reductions of up to 60 dB at the isolation frequency. Replacing rigid pitch links on rotorcraft with coupled fluidic devices has the potential to reduce the aerodynamic blade loads transmitted through the pitch links to the swashplate. Analytical models of two fluidic devices coupled with three different fluidic circuits are derived. These passive fluidlastic systems are tuned, by varying the fluid inertances and capacitances of each fluidic circuit, to reduce the transmitted pitch-link loads. The different circuit designs result in transmitted pitch link loads reduction at up to three main rotor harmonics. The simulation results show loads reduction at the targeted out-of-phase and in-phase harmonics of up to 88% and 93%, respectively. Experimental validation of two of the fluidic circuits demonstrates loads reduction of up to 89% at the out-of-phase isolation frequencies and up to 81% at the in-phase isolation frequencies. Replacing rigid pitch links on rotorcraft with fluidic pitch links changes the blade torsional impedance. At low frequency, the pitch link must have high impedance to pass through the pilot's collective and cyclic commands to control the aircraft. At higher frequencies, however, the pitch-link impedance can be tuned to change the blade pitching response to higher harmonic loads. Active blade control to produce higher harmonic pitch motions has been shown to reduce hub loads and increase rotor efficiency. This work investigates whether fluidic pitch links can passively provide these benefits. An analytical model of a fluidic pitch link is derived and incorporated into a rotor aeroelastic simulation for a rotor similar to that of the UH-60. Eighty-one simulations with varied fluidic pitch link parameters demonstrate that their impedance can be tailored to reduce rotor power and all six hub forces and moments. While no impedance was found that simultaneously reduced all components, the results include cases with reductions in the lateral 4/rev hub force of up to 91% and 4/rev hub pitching moment of up to 67%, and main rotor power of up to 5%.

  17. Smooth muscle-dependent changes in aortic wall dynamics during intra-aortic counterpulsation in an animal model of acute heart failure.

    PubMed

    Cabrera Fischer, Edmundo I; Bia, Daniel; Zócalo, Yanina; Armentano, Ricardo L

    2009-06-01

    Intra-aortic balloon pumping (IABP) may modify arterial biomechanics; however, its effects on arterial wall properties during acute cardio-depression have not yet been fully explored. This dynamical study was designed to characterize the effects of IABP on aortic wall mechanics in an in vivo animal model of acute heart failure. Aortic pressure, diameter and blood flow were measured in six anesthetized sheep with acute cardio-depression by halothane (4%), before and during IABP (1:2). Aortic characteristic impedance and aortic wall stiffness indexes were calculated. acute experimental cardio-depression resulted in a reduction in mean aortic pressure (p<0.05) and an increase in the characteristic impedance (p<0.005), incremental elastic modulus (p<0.05), stiffness index (p<0.05) and Peterson elastic modulus (p<0.05). IABP caused an increase in the cardiac output (p<0.005) and a reduction in the systemic vascular resistances (p<0.05). In addition, the aortic impedance, incremental elastic modulus, stiffness index and Peterson modulus were significantly reduced during IABP (p<0.05). Our findings show that IABP caused changes in aortic wall impedance and intrinsic wall properties, improving the arterial functional capability and the left ventricular afterload by a reduction in both. Systemic vascular resistances and aortic stiffness were also improved by means of smooth muscle-dependent mechanisms.

  18. No Neuromuscular Side-Effects of Scopolamine in Sensorimotor Control and Force-Generating Capacity Among Parabolic Fliers

    NASA Astrophysics Data System (ADS)

    Ritzmann, Ramona; Freyler, Kathrin; Krause, Anne; Gollhofer, Albert

    2016-10-01

    Scopolamine is used to counteract motion sickness in parabolic flight (PF) experiments. Although the drug's anticholinergic properties effectively impede vomiting, recent studies document other sensory side-effects in the central nervous system that may considerably influence sensorimotor performance. This study aimed to quantify such effects in order to determine if they are of methodological and operational significance for sensorimotor control. Ten subjects of a PF campaign received a weight-sex-based dose of a subcutaneous scopolamine injection. Sensorimotor performance was recorded before medication, 20min, 2h and 4h after injection in four space-relevant paradigms: balance control in one-leg stance with eyes open (protocol 1) and closed as well as force-generating capacity in countermovement jumps and hops (protocol 2). Postural sway, forces and joint angles were recorded. Neuromuscular control was assessed by electromyography and peripheral nerve stimulation; H-reflexes and M-waves were used to monitor spinal excitability of the Ia afferent reflex circuitry and maximal motor output. (1) H-reflex amplitudes, latencies and functional reflexes remained unchanged after scopolamine injection. (2) M-waves, neuromuscular activation intensities and antagonistic muscle coordination did not change with scopolamine administration. (3) Balance performance and force-generating capacity were not impeded by scopolamine. We found no evidence for changes in sensorimotor control in response to scopolamine injection. Sensory processing of daily relevant reflexes, spinal excitability, maximal motor output and performance parameters were not sensitive to the medication. We conclude that scopolamine administration can be used to counteract motion sickness in PF without methodological and operational concerns or interference regarding sensorimotor skills associated with neuromuscular control.

  19. Hierarchical Assembly of Tungsten Spheres and Epoxy Composites in Three-Dimensional Graphene Foam and Its Enhanced Acoustic Performance as a Backing Material.

    PubMed

    Qiu, Yunfeng; Liu, Jingjing; Lu, Yue; Zhang, Rui; Cao, Wenwu; Hu, PingAn

    2016-07-20

    Backing materials play important role in enhancing the acoustic performance of an ultrasonic transducer. Most backing materials prepared by conventional methods failed to show both high acoustic impedance and attenuation, which however determine the bandwidth and axial resolution of acoustic transducer, respectively. In the present work, taking advantage of the structural feature of 3D graphene foam as a confined space for dense packing of tungsten spheres with the assistance of centrifugal force, the desired structural requirement for high impedance is obtained. Meanwhile, superior thermal conductivity of graphene contributes to the acoustic attenuation via the conversion of acoustic waves to thermal energy. The tight contact between tungstate spheres, epoxy matrix, or graphene makes the acoustic wave depleted easily for the absence of air barrier. The as-prepared 3DG/W80 wt %/epoxy film in 1 mm, prepared using ∼41 μm W spheres in diameter, not only displays acoustic impedance of 13.05 ± 0.11 MRayl but also illustrates acoustic attenuation of 110.15 ± 1.23 dB/cm MHz. Additionally, the composite film exhibits a high acoustic absorption coefficient, which is 94.4% at 1 MHz and 100% at 3 MHz, respectively. Present composite film outperforms most of the reported backing materials consisting of metal fillers/polymer blending in terms of the acoustic impedance and attenuation.

  20. Fluid mechanical model of the Helmholtz resonator

    NASA Technical Reports Server (NTRS)

    Hersh, A. S.; Walker, B.

    1977-01-01

    A semi-empirical fluid mechanical model of the acoustic behavior of Helmholtz resonators is presented which predicts impedance as a function of the amplitude and frequency of the incident sound pressure field and resonator geometry. The model assumes that the particle velocity approaches the orifice in a spherical manner. The incident and cavity sound fields are connected by solving the governing oscillating mass and momentum conservation equations. The model is in agreement with the Rayleigh slug-mass model at low values of incident sound pressure level. At high values, resistance is predicted to be independent of frequency, proportional to the square root of the amplitude of the incident sound pressure field, and virtually independent of resonator geometry. Reactance is predicted to depend in a very complicated way upon resonator geometry, incident sound pressure level, and frequency. Nondimensional parameters are defined that divide resonator impedance into three categories corresponding to low, moderately low, and intense incident sound pressure amplitudes. The two-microphone method was used to measure the impedance of a variety of resonators. The data were used to refine and verify the model.

  1. Monitoring of pipelines in nuclear power plants by measuring laser-based mechanical impedance

    NASA Astrophysics Data System (ADS)

    Lee, Hyeonseok; Sohn, Hoon; Yang, Suyoung; Yang, Jinyeol

    2014-06-01

    Using laser-based mechanical impedance (LMI) measurement, this study proposes a damage detection technique that enables structural health monitoring of pipelines under the high temperature and radioactive environments of nuclear power plants (NPPs). The applications of conventional electromechanical impedance (EMI) based techniques to NPPs have been limited, mainly due to the contact nature of piezoelectric transducers, which cannot survive under the high temperature and high radiation environments of NPPs. The proposed LMI measurement technique aims to tackle the limitations of the EMI techniques by utilizing noncontact laser beams for both ultrasound generation and sensing. An Nd:Yag pulse laser is used for ultrasound generation, and a laser Doppler vibrometer is employed for the measurement of the corresponding ultrasound responses. For the monitoring of pipes covered by insulation layers, this study utilizes optical fibers to guide the laser beams to specific target locations. Then, an outlier analysis is adopted for autonomous damage diagnosis. Validation of the proposed LMI technique is carried out on a carbon steel pipe elbow under varying temperatures. A corrosion defect chemically engraved in the specimen is successfully detected.

  2. Infrared laser optogalvanic spectroscopy of molecules

    NASA Technical Reports Server (NTRS)

    Webster, C. R.; Menzies, R. T.

    1983-01-01

    Infrared laser optogalvanic spectra of portions of the NH3 nu3 band at 9.5 microns and the NO2 nu3 band at 6.2 microns have been recorded using CW tunable diode lasers to probe dc electrical discharges in pure NH3 and an NO2/He gas mixture. Two contributions to the optogalvanic signal are identified: one which corresponds to an increase in discharge impedance and is seen only for irradiation of the negative glow region; and a second which corresponds to a decrease in discharge impedance and is seen for irradiation of all other discharge regions and the volume outside the interelectrode region. Mechanisms by which infrared laser irradiation may cause impedance changes in the discharge are proposed.

  3. Determination of in vivo mechanical properties of long bones from their impedance response curves

    NASA Technical Reports Server (NTRS)

    Borders, S. G.

    1981-01-01

    A mathematical model consisting of a uniform, linear, visco-elastic, Euler-Bernoulli beam to represent the ulna or tibia of the vibrating forearm or leg system is developed. The skin and tissue compressed between the probe and bone is represented by a spring in series with the beam. The remaining skin and tissue surrounding the bone is represented by a visco-elastic foundation with mass. An extensive parametric study is carried out to determine the effect of each parameter of the mathematical model on its impedance response. A system identification algorithm is developed and programmed on a digital computer to determine the parametric values of the model which best simulate the data obtained from an impedance test.

  4. Influence of Samarium Substitution on Impedance Dielectric and Electromechanical Properties of Pb(1-x)K2xNb2O6

    NASA Astrophysics Data System (ADS)

    Sambasiva Rao, K.; Murali Krishna, P.; Madhava Prasad, D.; Lee, Joon Hyung

    Ferroelectric, hysteresis, impedance spectroscopy parameters, AC conductivity, and piezoelectric properties in the ceramics of Pb0.74K0.52Nb2O6 and Pb0.74K0.13Sm0.13Nb2O6 have been studied. X-ray diffraction study reveals single phase with the orthorhombic structure. The samples were characterized for ferroelectric and impedance spectroscopy properties from room temperature to 600°C. Cole-Cole plots (Z″ versus Z‧) are drawn at different temperatures. The results obtained are analyzed to understand the conductivity mechanism in both the samples. The piezoelectric constant d33 has been found to be 96 × 10-12 C/N in PKN.

  5. Near DC force measurement using PVDF sensors

    NASA Astrophysics Data System (ADS)

    Ramanathan, Arun Kumar; Headings, Leon M.; Dapino, Marcelo J.

    2018-03-01

    There is a need for high-performance force sensors capable of operating at frequencies near DC while producing a minimal mass penalty. Example application areas include steering wheel sensors, powertrain torque sensors, robotic arms, and minimally invasive surgery. The beta crystallographic phase polyvinylidene fluoride (PVDF) films are suitable for this purpose owing to their large piezoelectric constant. Unlike conventional capacitive sensors, beta crystallographic phase PVDF films exhibit a broad linear range and can potentially be designed to operate without complex electronics or signal processing. A fundamental challenge that prevents the implementation of PVDF in certain high-performance applications is their inability to measure static signals, which results from their first-order electrical impedance. Charge readout algorithms have been implemented which address this issue only partially, as they often require integration of the output signal to obtain the applied force profile, resulting in signal drift and signal processing complexities. In this paper, we propose a straightforward real time drift compensation strategy that is applicable to high output impedance PVDF films. This strategy makes it possible to utilize long sample times with a minimal loss of accuracy; our measurements show that the static output remains within 5% of the original value during half-hour measurements. The sensitivity and full-scale range are shown to be determined by the feedback capacitance of the charge amplifier. A linear model of the PVDF sensor system is developed and validated against experimental measurements, along with benchmark tests against a commercial load cell.

  6. Melanin as an active layer in biosensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piacenti da Silva, Marina, E-mail: marinaness@yahoo.com; Congiu, Mirko, E-mail: congiumat@gmail.com; Oliveira Graeff, Carlos Frederico de, E-mail: graeff@fc.unesp.br

    2014-03-15

    The development of pH sensors is of great interest due to its extensive application in several areas such as industrial processes, biochemistry and particularly medical diagnostics. In this study, the pH sensing properties of an extended gate field effect transistor (EGFET) based on melanin thin films as active layer are investigated and the physical mechanisms related to the device operation are discussed. Thin films were produced from different melanin precursors on indium tin oxide (ITO) and gold substrates and were investigated by Atomic Force Microscopy and Electrochemical Impedance Spectroscopy. Experiments were performed in the pH range from 2 to 12.more » EGFETs with melanin deposited on ITO and on gold substrates showed sensitivities ranging from 31.3 mV/pH to 48.9 mV/pH, depending on the melanin precursor and the substrate used. The pH detection is associated with specific binding sites in its structure, hydroxyl groups and quinone imine.« less

  7. Electrochemical behavior and biological response of Mesenchymal Stem Cells on cp-Ti after N-ions implantation

    NASA Astrophysics Data System (ADS)

    Rizwan, M.; Ahmad, A.; Deen, K. M.; Haider, W.

    2014-11-01

    Titanium and its alloys are most widely used as implant materials due to their excellent biocompatibility, mechanical properties and chemical stability. In this study Nitrogen ions of known dosage were implanted over cp-Ti by Pelletron accelerator with beam energy of 0.25 MeV.The atomic force microscopy of bare and nitrogen implanted specimens confirmed increase in surface roughness with increase in nitrogen ions concentration. X-ray diffraction patterns of ions implanted surfaces validated the formation of TiN0.3 and Ti3N2-xnitride phases. The tendency to form passive film and electrochemical behavior of these surfaces in ringer lactate (RL) solution was evaluated by Potentiodynamic polarization and electrochemical impedance spectroscopy respectively. It is proved that nitrogen ions implantation was beneficial to reduce corrosion rate and stabilizing passive film by increasing charge transfer resistance in RL. It was concluded that morphology and proliferation of Mesenchymal Stem Cells on nitrogen ions implanted surfaces strongly depends on surface roughness and nitride phases.

  8. Method and apparatus for determination of material residual stress

    NASA Technical Reports Server (NTRS)

    Chern, Engmin J. (Inventor); Flom, Yury (Inventor)

    1993-01-01

    A device for the determination of residual stress in a material sample consisting of a sensor coil, adjacent to the material sample, whose resistance varies according to the amount of stress within the material sample, a mechanical push-pull machine for imparting a gradually increasing compressional and tensional force on the material sample, and an impedance gain/phase analyzer and personal computer (PC) for sending an input signal to and receiving an input signal from the sensor coil is presented. The PC will measure and record the change in resistance of the sensor coil and the corresponding amount of strain of the sample. The PC will then determine, from the measurements of change of resistance and corresponding strain of the sample, the point at which the resistance of the sensor coil is at a minimum and the corresponding value and type of strain of the sample at that minimum resistance point, thereby, enabling a calculation of the residual stress in the sample.

  9. Modeling NDT piezoelectric ultrasonic transmitters.

    PubMed

    San Emeterio, J L; Ramos, A; Sanz, P T; Ruíz, A; Azbaid, A

    2004-04-01

    Ultrasonic NDT applications are frequently based on the spike excitation of piezoelectric transducers by means of efficient pulsers which usually include a power switching device (e.g. SCR or MOS-FET) and some rectifier components. In this paper we present an approximate frequency domain electro-acoustic model for pulsed piezoelectric ultrasonic transmitters which, by integrating partial models of the different stages (driving electronics, tuning/matching networks and broadband piezoelectric transducer), allows the computation of the emission transfer function and output force temporal waveform. An approximate frequency domain model is used for the evaluation of the electrical driving pulse from the spike generator. Tuning circuits, interconnecting cable and mechanical impedance matching layers are modeled by means of transmission lines and the classical quadripole approach. The KLM model is used for the piezoelectric transducer. In addition, a PSPICE scheme is used for an alternative simulation of the broadband driving spike, including the accurate evaluation of non-linear driving effects. Several examples illustrate the capabilities of the specifically developed software.

  10. A new link between the retrograde actin flow and focal adhesions.

    PubMed

    Yamashiro, Sawako; Watanabe, Naoki

    2014-11-01

    The retrograde actin flow, continuous centripetal movement of the cell peripheral actin networks, is widely observed in adherent cells. The retrograde flow is believed to facilitate cell migration when linked to cell adhesion molecules. In this review, we summarize our current knowledge regarding the functional relationship between the retrograde actin flow and focal adhesions (FAs). We also introduce our recent study in which single-molecule speckle (SiMS) microscopy dissected the complex interactions between FAs and the local actin flow. FAs do not simply impede the actin flow, but actively attract and remodel the local actin network. Our findings provide a new insight into the mechanisms for protrusion and traction force generation at the cell leading edge. Furthermore, we discuss possible roles of the actin flow-FA interaction based on the accumulated knowledge and our SiMS study. © The Authors 2014. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  11. Damage Detection Based on Power Dissipation Measured with PZT Sensors through the Combination of Electro-Mechanical Impedances and Guided Waves

    PubMed Central

    Sevillano, Enrique; Sun, Rui; Perera, Ricardo

    2016-01-01

    The use of piezoelectric ceramic transducers (such as Lead-Zirconate-Titanate—PZT) has become more and more widespread for Structural Health Monitoring (SHM) applications. Among all the techniques that are based on this smart sensing solution, guided waves and electro-mechanical impedance techniques have found wider acceptance, and so more studies and experimental works can be found containing these applications. However, even though these two techniques can be considered as complementary to each other, little work can be found focused on the combination of them in order to define a new and integrated damage detection procedure. In this work, this combination of techniques has been studied by proposing a new integrated damage indicator based on Electro-Mechanical Power Dissipation (EMPD). The applicability of this proposed technique has been tested through different experimental tests, with both lab-scale and real-scale structures. PMID:27164104

  12. Operating Mechanisms of Mesoscopic Perovskite Solar Cells through Impedance Spectroscopy and J-V Modeling.

    PubMed

    Zarazúa, Isaac; Sidhik, Siraj; Lopéz-Luke, Tzarara; Esparza, Diego; De la Rosa, Elder; Reyes-Gomez, Juan; Mora-Seró, Iván; Garcia-Belmonte, Germà

    2017-12-21

    The performance of perovskite solar cell (PSC) is highly sensitive to deposition conditions, the substrate, humidity, and the efficiency of solvent extraction. However, the physical mechanism involved in the observed changes of efficiency with different deposition conditions has not been elucidated yet. In this work, PSCs were fabricated by the antisolvent deposition (AD) and recently proposed air-extraction antisolvent (AAD) process. Impedance analysis and J-V curve fitting were used to analyze the photogeneration, charge transportation, recombination, and leakage properties of PSCs. It can be elucidated that the improvement in morphology of perovskite film promoted by AAD method leads to increase in light absorption, reduction in recombination sites, and interstitial defects, thus enhancing the short-circuit current density, open-circuit voltage, and fill factor. This study will open up doors for further improvement of device and help in understanding its physical mechanism and its relation to the deposition methods.

  13. Damage Detection Based on Power Dissipation Measured with PZT Sensors through the Combination of Electro-Mechanical Impedances and Guided Waves.

    PubMed

    Sevillano, Enrique; Sun, Rui; Perera, Ricardo

    2016-05-05

    The use of piezoelectric ceramic transducers (such as Lead-Zirconate-Titanate-PZT) has become more and more widespread for Structural Health Monitoring (SHM) applications. Among all the techniques that are based on this smart sensing solution, guided waves and electro-mechanical impedance techniques have found wider acceptance, and so more studies and experimental works can be found containing these applications. However, even though these two techniques can be considered as complementary to each other, little work can be found focused on the combination of them in order to define a new and integrated damage detection procedure. In this work, this combination of techniques has been studied by proposing a new integrated damage indicator based on Electro-Mechanical Power Dissipation (EMPD). The applicability of this proposed technique has been tested through different experimental tests, with both lab-scale and real-scale structures.

  14. Mechanical impedance measurements for improved cost-effective process monitoring

    NASA Astrophysics Data System (ADS)

    Clopet, Caroline R.; Pullen, Deborah A.; Badcock, Rodney A.; Ralph, Brian; Fernando, Gerard F.; Mahon, Steve W.

    1999-06-01

    The aerospace industry has seen a considerably growth in composite usage over the past ten years, especially with the development of cost effective manufacturing techniques such as Resin Transfer Molding and Resin Infusion under Flexible Tooling. The relatively high cost of raw material and conservative processing schedules has limited their growth further in non-aerospace technologies. In-situ process monitoring has been explored for some time as a means to improving the cost efficiency of manufacturing with dielectric spectroscopy and optical fiber sensors being the two primary techniques developed to date. A new emerging technique is discussed here making use of piezoelectric wafers with the ability to sense not only aspects of resin flow but also to detect the change in properties of the resin as it cures. Experimental investigations to date have shown a correlation between mechanical impedance measurements and the mechanical properties of cured epoxy systems with potential for full process monitoring.

  15. Manipulator Performance Evaluation Using Fitts' Taping Task

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draper, J.V.; Jared, B.C.; Noakes, M.W.

    1999-04-25

    Metaphorically, a teleoperator with master controllers projects the user's arms and hands into a re- mote area, Therefore, human users interact with teleoperators at a more fundamental level than they do with most human-machine systems. Instead of inputting decisions about how the system should func- tion, teleoperator users input the movements they might make if they were truly in the remote area and the remote machine must recreate their trajectories and impedance. This intense human-machine inter- action requires displays and controls more carefully attuned to human motor capabilities than is neces- sary with most systems. It is important for teleoperatedmore » manipulators to be able to recreate human trajectories and impedance in real time. One method for assessing manipulator performance is to observe how well a system be- haves while a human user completes human dexterity tasks with it. Fitts' tapping task has been, used many times in the past for this purpose. This report describes such a performance assessment. The International Submarine Engineering (ISE) Autonomous/Teleoperated Operations Manipulator (ATOM) servomanipulator system was evalu- ated using a generic positioning accuracy task. The task is a simple one but has the merits of (1) pro- ducing a performance function estimate rather than a point estimate and (2) being widely used in the past for human and servomanipulator dexterity tests. Results of testing using this task may, therefore, allow comparison with other manipulators, and is generically representative of a broad class of tasks. Results of the testing indicate that the ATOM manipulator is capable of performing the task. Force reflection had a negative impact on task efficiency in these data. This was most likely caused by the high resistance to movement the master controller exhibited with the force reflection engaged. Measurements of exerted forces were not made, so it is not possible to say whether the force reflection helped partici- pants control force during testing.« less

  16. System-on-chip integration of a new electromechanical impedance calculation method for aircraft structure health monitoring.

    PubMed

    Boukabache, Hamza; Escriba, Christophe; Zedek, Sabeha; Medale, Daniel; Rolet, Sebastien; Fourniols, Jean Yves

    2012-10-11

    The work reported on this paper describes a new methodology implementation for active structural health monitoring of recent aircraft parts made from carbon-fiber-reinforced polymer. This diagnosis is based on a new embedded method that is capable of measuring the local high frequency impedance spectrum of the structure through the calculation of the electro-mechanical impedance of a piezoelectric patch pasted non-permanently onto its surface. This paper involves both the laboratory based E/M impedance method development, its implementation into a CPU with limited resources as well as a comparison with experimental testing data needed to demonstrate the feasibility of flaw detection on composite materials and answer the question of the method reliability. The different development steps are presented and the integration issues are discussed. Furthermore, we present the unique advantages that the reconfigurable electronics through System-on-Chip (SoC) technology brings to the system scaling and flexibility. At the end of this article, we demonstrate the capability of a basic network of sensors mounted onto a real composite aircraft part specimen to capture its local impedance spectrum signature and to diagnosis different delamination sizes using a comparison with a baseline.

  17. Characterization of damaged skin by impedance spectroscopy: chemical damage by dimethyl sulfoxide.

    PubMed

    White, Erick A; Orazem, Mark E; Bunge, Annette L

    2013-10-01

    To relate changes in the electrochemical impedance spectra to the progression and mechanism of skin damage arising from exposure to dimethyl sulfoxide (DMSO). Electrochemical impedance spectra measured before and after human cadaver skin was treated with neat DMSO or phosphate buffered saline (control) for 1 h or less were compared with electrical circuit models representing two contrasting theories describing the progression of DMSO damage. Flux of a model lipophilic compound (p-chloronitrobenzene) was also measured. The impedance spectra collected before and after 1 h treatment with DMSO were consistent with a single circuit model; whereas, the spectra collected after DMSO exposure for 0.25 h were consistent with the model circuits observed before and after DMSO treatment for 1 h combined in series. DMSO treatments did not significantly change the flux of p-chloronitrobenzene compared to control. Impedance measurements of human skin exposed to DMSO for less than about 0.5 h were consistent with the presence of two layers: one damaged irreversibly and one unchanged. The thickness of the damaged layer increased proportional to the square-root of treatment time until about 0.5 h, when DMSO affected the entire stratum corneum. Irreversible DMSO damage altered the lipophilic permeation pathway minimally.

  18. Non-Contact EDDY Current Hole Eccentricity and Diameter Measurement

    NASA Technical Reports Server (NTRS)

    Chern, E. James

    1998-01-01

    Precision holes are among the most critical features of a mechanical component. Deviations from permissible tolerances can impede operation and result in unexpected failure. We have developed an automated non-contact eddy current hole diameter and eccentricity measuring system. The operating principle is based on the eddy current lift-off effect, which is the coil impedance as a function of the distance between the coil and the test object. An absolute eddy current probe rotates in the hole. The impedance of each angular position is acquired and input to the computer for integration and analysis. The eccentricity of the hole is the profile of the impedance as a function of angular position as compared to a straight line, an ideal hole. The diameter of the hole is the sum of the diameter of the probe and twice the distance-calibrated impedance. An eddy current image is generated by integrating angular scans for a plurality of depths between the top and bottom to display the eccentricity profile. This system can also detect and image defects in the hole. The method for non-contact eddy current hole diameter and eccentricity measurement has been granted a patent by the U.S. Patent and Trademark Office.

  19. System-on-Chip Integration of a New Electromechanical Impedance Calculation Method for Aircraft Structure Health Monitoring

    PubMed Central

    Boukabache, Hamza; Escriba, Christophe; Zedek, Sabeha; Medale, Daniel; Rolet, Sebastien; Fourniols, Jean Yves

    2012-01-01

    The work reported on this paper describes a new methodology implementation for active structural health monitoring of recent aircraft parts made from carbon-fiber-reinforced polymer. This diagnosis is based on a new embedded method that is capable of measuring the local high frequency impedance spectrum of the structure through the calculation of the electro-mechanical impedance of a piezoelectric patch pasted non-permanently onto its surface. This paper involves both the laboratory based E/M impedance method development, its implementation into a CPU with limited resources as well as a comparison with experimental testing data needed to demonstrate the feasibility of flaw detection on composite materials and answer the question of the method reliability. The different development steps are presented and the integration issues are discussed. Furthermore, we present the unique advantages that the reconfigurable electronics through System-on-Chip (SoC) technology brings to the system scaling and flexibility. At the end of this article, we demonstrate the capability of a basic network of sensors mounted onto a real composite aircraft part specimen to capture its local impedance spectrum signature and to diagnosis different delamination sizes using a comparison with a baseline. PMID:23202013

  20. Impedance matched thin metamaterials make metals absorbing.

    PubMed

    Mattiucci, N; Bloemer, M J; Aközbek, N; D'Aguanno, G

    2013-11-13

    Metals are generally considered good reflectors over the entire electromagnetic spectrum up to their plasma frequency. Here we demonstrate an approach to tailor their absorbing characteristics based on the effective metamaterial properties of thin, periodic metallo-dielectric multilayers by exploiting a broadband, inherently non-resonant, surface impedance matching mechanism. Based on this mechanism, we design, fabricate and test omnidirectional, thin (<1 micron), polarization independent, extremely efficient absorbers (in principle being capable to reach A > 99%) over a frequency range spanning from the UV to the IR. Our approach opens new venues to design cost effective materials for many applications such as thermo-photovoltaic energy conversion devices, light harvesting for solar cells, flat panel display, infrared detectors, stray light reduction, stealth and others.

  1. Eddy current characterization of magnetic treatment of nickel 200

    NASA Technical Reports Server (NTRS)

    Chern, E. J.

    1993-01-01

    Eddy current methods have been applied to characterize the effect of magnetic treatments on component service-life extension. Coil impedance measurements were acquired and analyzed on nickel 200 specimens that have been subjected to many mechanical and magnetic engineering processes: annealing, applied strain, magnetic field, shot peening, and magnetic field after peening. Experimental results have demonstrated a functional relationship between coil impedance, resistance and reactance, and specimens subjected to various engineering processes. It has shown that magnetic treatment does induce changes in electromagnetic properties of nickel 200 that then exhibit evidence of stress relief. However, further fundamental studies are necessary for a thorough understanding of the exact mechanism of the magnetic field processing effect on machine-tool service life.

  2. Comparison of respiratory system impedance in asthma and COPD: A prospective observational study.

    PubMed

    Kamada, Takahiro; Kaneko, Masahiro; Tomioka, Hiromi

    2018-05-01

    A single assessment of within-breath variations of respiratory system reactance (Xrs) at 5 Hz (ΔX5) measured by the forced oscillation technique (FOT) has been reported to be useful for the detection of pathophysiological changes in chronic obstructive pulmonary disease (COPD) and asthma. We examined longitudinal changes in respiratory system resistance (Rrs) and Xrs during tidal breathing between stable asthma and COPD patients in order to clarify the features of changes of respiratory system impedance and airflow limitation for these conditions. Between April 2013 and September 2013, outpatients with a COPD or asthma diagnosis were recruited. We examined forced expiratory volume in 1 s (FEV 1 ) and FOT every 6 months until September 2015. Annual changes were estimated from the linear regression curve slope. We included 57 and 93 subjects with COPD and asthma, respectively. The median follow-up period was 26 months (range: 24-29 months). Within-breath analysis showed that the difference between mean Rrs at 5 Hz and 20 Hz was significantly lower, and ΔX5 more negative, in COPD than in asthma patients. With regard to annual changes, only ΔX5 was significantly different, more negative, in COPD than in asthma patients. Comparing between COPD subjects of Global Initiative Chronic Obstructive Lung Disease (GOLD) stage I/II and those with asthma, there were no significant differences in respiratory system impedance at enrolment, while annual change in ΔX5 was significantly more negative in mild COPD than in asthma patients. ΔX5 may be useful for long-term assessment of airflow limitation in COPD. © 2018 Asian Pacific Society of Respirology.

  3. How do clarinet players adjust the resonances of their vocal tracts for different playing effects?

    NASA Astrophysics Data System (ADS)

    Fritz, Claudia; Wolfe, Joe

    2005-11-01

    In a simple model, the reed of the clarinet is mechanically loaded by the series combination of the acoustical impedances of the instrument itself and of the player's airway. Here we measure the complex impedance spectrum of players' airways using an impedance head adapted to fit inside a clarinet mouthpiece. A direct current shunt with high acoustical resistance allows players to blow normally, so the players can simulate the tract condition under playing conditions. The reproducibility of the results suggest that the players' ``muscle memory'' is reliable for this task. Most players use a single, highly stable vocal tract configuration over most of the playing range, except for the altissimo register. However, this ``normal'' configuration varies substantially among musicians. All musicians change the configuration, often drastically for ``special effects'' such as glissandi and slurs: the tongue is lowered and the impedance magnitude reduced when the player intends to lower the pitch or to slur downwards, and vice versa.

  4. Monitoring early hydration of reinforced concrete structures using structural parameters identified by piezo sensors via electromechanical impedance technique

    NASA Astrophysics Data System (ADS)

    Talakokula, Visalakshi; Bhalla, Suresh; Gupta, Ashok

    2018-01-01

    Concrete is the most widely used material in civil engineering construction. Its life begins when the hydration process is activated after mixing the cement granulates with water. In this paper, a non-dimensional hydration parameter, obtained from piezoelectric ceramic (PZT) patches bonded to rebars embedded inside concrete, is employed to monitor the early age hydration of concrete. The non-dimensional hydration parameter is derived from the equivalent stiffness determined from the piezo-impedance transducers using the electro-mechanical impedance (EMI) technique. The focus of the study is to monitor the hydration process of cementitious materials commencing from the early hours and continue till 28 days using single non-dimensional parameter. The experimental results show that the proposed piezo-based non-dimensional hydration parameter is very effective in monitoring the early age hydration, as it has been derived from the refined structural impedance parameters, obtained by eliminating the PZT contribution, and using both the real and imaginary components of the admittance signature.

  5. X-ray absorption spectroscopy investigations on oxidized Ni/Au contacts to p-GaN.

    PubMed

    Jan, J C; Asokan, K; Chiou, J W; Pong, W F; Tseng, P K; Chen, L C; Chen, F R; Lee, J F; Wu, J S; Lin, H J; Chen, C T

    2001-03-01

    X-ray absorption spectroscopy was used to investigate the electronic structure of as-deposited and oxidized Ni/Au contacts to p-GaN and to elucidate the mechanism responsible for low impedance. X-ray absorption near edge spectra of Ni K- and L3,2-edges clearly indicate formation of NiO on the sample surface after annealing. The reason for low impedance may be attributed to increase in hole concentration and existence of p-NiO layer on the surface.

  6. Long-term characterization of neural electrodes based on parylene-caulked polydimethylsiloxane substrate.

    PubMed

    Jeong, Jinmo; Chou, Namsun; Kim, Sohee

    2016-06-01

    This study investigates the mechanical and long-term electrical properties of parylene-caulked polydimethylsiloxane (PDMS) as a substrate for implantable electrodes. The parylene-caulked PDMS is a structure where particles of parylene fill the porous surface of PDMS. This material is expected to have low water absorption and desirable mechanical properties such as flexibility and elasticity that are beneficial in many biomedical applications. To evaluate the mechanical property and electrical stability of parylene-caulked PDMS for potential in-vivo uses, tensile tests were conducted firstly, which results showed that the mechanical strength of parylene-caulked PDMS was comparable to that of native PDMS. Next, surface electrodes based on parylene-caulked PDMS were fabricated and their impedance was measured in phosphate-buffered saline (PBS) solution at 36.5 °C over seven months. The electrodes based on parylene-caulked PDMS exhibited the improved stability in impedance over time than native PDMS. Thus, with improved electrical stability in wet environment and preserved mechanical properties of PDMS, the electrodes based on parylene-caulked PDMS are expected to be suitable for long-term in-vivo applications.

  7. Respiratory system dynamical mechanical properties: modeling in time and frequency domain.

    PubMed

    Carvalho, Alysson Roncally; Zin, Walter Araujo

    2011-06-01

    The mechanical properties of the respiratory system are important determinants of its function and can be severely compromised in disease. The assessment of respiratory system mechanical properties is thus essential in the management of some disorders as well as in the evaluation of respiratory system adaptations in response to an acute or chronic process. Most often, lungs and chest wall are treated as a linear dynamic system that can be expressed with differential equations, allowing determination of the system's parameters, which will reflect the mechanical properties. However, different models that encompass nonlinear characteristics and also multicompartments have been used in several approaches and most specifically in mechanically ventilated patients with acute lung injury. Additionally, the input impedance over a range of frequencies can be assessed with a convenient excitation method allowing the identification of the mechanical characteristics of the central and peripheral airways as well as lung periphery impedance. With the evolution of computational power, the airway pressure and flow can be recorded and stored for hours, and hence continuous monitoring of the respiratory system mechanical properties is already available in some mechanical ventilators. This review aims to describe some of the most frequently used models for the assessment of the respiratory system mechanical properties in both time and frequency domain.

  8. Can feedback analysis be used to uncover the physical origin of climate sensitivity and efficacy differences?

    NASA Astrophysics Data System (ADS)

    Rieger, Vanessa S.; Dietmüller, Simone; Ponater, Michael

    2017-10-01

    Different strengths and types of radiative forcings cause variations in the climate sensitivities and efficacies. To relate these changes to their physical origin, this study tests whether a feedback analysis is a suitable approach. For this end, we apply the partial radiative perturbation method. Combining the forward and backward calculation turns out to be indispensable to ensure the additivity of feedbacks and to yield a closed forcing-feedback-balance at top of the atmosphere. For a set of CO2-forced simulations, the climate sensitivity changes with increasing forcing. The albedo, cloud and combined water vapour and lapse rate feedback are found to be responsible for the variations in the climate sensitivity. An O3-forced simulation (induced by enhanced NOx and CO surface emissions) causes a smaller efficacy than a CO2-forced simulation with a similar magnitude of forcing. We find that the Planck, albedo and most likely the cloud feedback are responsible for this effect. Reducing the radiative forcing impedes the statistical separability of feedbacks. We additionally discuss formal inconsistencies between the common ways of comparing climate sensitivities and feedbacks. Moreover, methodical recommendations for future work are given.

  9. Non-contact multi-frequency magnetic induction spectroscopy system for industrial-scale bio-impedance measurement

    NASA Astrophysics Data System (ADS)

    O'Toole, M. D.; Marsh, L. A.; Davidson, J. L.; Tan, Y. M.; Armitage, D. W.; Peyton, A. J.

    2015-03-01

    Biological tissues have a complex impedance, or bio-impedance, profile which changes with respect to frequency. This is caused by dispersion mechanisms which govern how the electromagnetic field interacts with the tissue at the cellular and molecular level. Measuring the bio-impedance spectra of a biological sample can potentially provide insight into the sample’s properties and its cellular structure. This has obvious applications in the medical, pharmaceutical and food-based industrial domains. However, measuring the bio-impedance spectra non-destructively and in a way which is practical at an industrial scale presents substantial challenges. The low conductivity of the sample requires a highly sensitive instrument, while the demands of industrial-scale operation require a fast high-throughput sensor of rugged design. In this paper, we describe a multi-frequency magnetic induction spectroscopy (MIS) system suitable for industrial-scale, non-contact, spectroscopic bio-impedance measurement over a bandwidth of 156 kHz-2.5 MHz. The system sensitivity and performance are investigated using calibration and known reference samples. It is shown to yield rapid and consistently sensitive results with good long-term stability. The system is then used to obtain conductivity spectra of a number of biological test samples, including yeast suspensions of varying concentration and a range of agricultural produce, such as apples, pears, nectarines, kiwis, potatoes, oranges and tomatoes.

  10. Giant magneto-impedance and magneto-inductive effects in amorphous alloys

    NASA Astrophysics Data System (ADS)

    Panina, L. V.; Mohri, K.; Bushida, K.; Noda, M.

    1994-11-01

    Recent experiments have discovered giant and sensitive magneto-impedance and magneto-inductive effects in FeCoSiB amorphous wires. These effects include a sensitive change in an ac wire voltage with the application of a small dc longitudinal magnetic field. At low frequencies (1-10 kHz) the inductive voltage drops by 50% for a field of 2 Oe (25%/Oe) reflecting a strong field dependence of the circumferential permeability. At higher frequencies (0.1-10 MHz) when the skin effect is essential, the amplitude of the total wire voltage decreases by 40%-60% for fields of 3-10 Oe (about 10%/Oe). These effects exhibit no hysteresis for the variation of an applied field and can be obtained even in wires of 1 mm length and a few micrometer diameter. These characteristics are very useful to constitute a highly sensitive microsensor head to detect local fields of the order of 10(exp -5) Oe. In this paper, we review recently obtained experimental results on magneto-inductive and magneto-impedance effects and present a detailed discussion for their mechanism, developing a general approach in terms of ac complex impedance in a magnetic conductor. In the case of a strong skin effect the total wire impedance depends on the circumferential permeability through the penetration depth, resulting in the giant magneto-impedance effect.

  11. Sensory-motor responses to mechanical stimulation of the esophagus after sensitization with acid.

    PubMed

    Drewes, Asbjørn-Mohr; Reddy, Hariprasad; Staahl, Camilla; Pedersen, Jan; Funch-Jensen, Peter; Arendt-Nielsen, Lars; Gregersen, Hans

    2005-07-28

    Sensitization most likely plays an important role in chronic pain disorders, and such sensitization can be mimicked by experimental acid perfusion of the esophagus. The current study systematically investigated the sensory and motor responses of the esophagus to controlled mechanical stimuli before and after sensitization. Thirty healthy subjects were included. Distension of the distal esophagus with a balloon was performed before and after perfusion with 0.1 mol/L hydrochloric acid for 30 min. An impedance planimetry system was used to measure cross-sectional area, volume, pressure, and tension during the distensions. A new model allowed evaluation of the phasic contractions by the tension during contractions as a function of the initial muscle length before the contraction (comparable to the Frank-Starling law for the heart). Length-tension diagrams were used to evaluate the muscle tone before and after relaxation of the smooth muscle with butylscopolamine. The sensitization resulted in allodynia and hyperalgesia to the distension volumes, and the degree of sensitization was related to the infused volume of acid. Furthermore, a nearly 50% increase in the evoked referred pain was seen after sensitization. The mechanical analysis demonstrated hyper-reactivity of the esophagus following acid perfusion, with an increased number and force of the phasic contractions, but the muscle tone did not change. Acid perfusion of the esophagus sensitizes the sensory pathways and facilitates secondary contractions. The new model can be used to study abnormal sensory-motor mechanisms in visceral organs.

  12. Sensory-motor responses to mechanical stimulation of the esophagus after sensitization with acid

    PubMed Central

    Drewes, Asbjorn Mohr; Reddy, Hariprasad; Staahl, Camilla; Pedersen, Jan; Funch-Jensen, Peter; Arendt-Nielsen, Lars; Gregersen, Hans

    2005-01-01

    AIM: Sensitization most likely plays an important role in chronic pain disorders, and such sensitization can be mimicked by experimental acid perfusion of the esophagus. The current study systematically investigated the sensory and motor responses of the esophagus to controlled mechanical stimuli before and after sensitization. METHODS: Thirty healthy subjects were included. Distension of the distal esophagus with a balloon was performed before and after perfusion with 0.1 mol/L hydrochloric acid for 30 min. An impedance planimetry system was used to measure cross-sectional area, volume, pressure, and tension during the distensions. A new model allowed evaluation of the phasic contractions by the tension during contractions as a function of the initial muscle length before the contraction (comparable to the Frank-Starling law for the heart). Length-tension diagrams were used to evaluate the muscle tone before and after relaxation of the smooth muscle with butylscopolamine. RESULTS: The sensitization resulted in allodynia and hyperalgesia to the distension volumes, and the degree of sensitization was related to the infused volume of acid. Furthermore, a nearly 50% increase in the evoked referred pain was seen after sensitization. The mechanical analysis demonstrated hyper-reactivity of the esophagus following acid perfusion, with an increased number and force of the phasic contractions, but the muscle tone did not change. CONCLUSION: Acid perfusion of the esophagus sensitizes the sensory pathways and facilitates secondary contractions. The new model can be used to study abnormal sensory-motor mechanisms in visceral organs. PMID:16038036

  13. The Positive Role of Negative Emotions: Fear, Anxiety, Conflict and Resistance as Productive Experiences in Academic Study and in the Emergence of Learner Autonomy

    ERIC Educational Resources Information Center

    Kannan, Jaya; Miller, John Laurence

    2009-01-01

    Although affect is widely recognized as a powerful force in determining students' academic success, researchers and practitioners have paid little attention to emotional barriers that often impede college success or how instructors may respond constructively when such barriers arise. The purpose of this paper is to initiate discussion of this…

  14. REPORT OF THE NIH TASK FORCE ON RESEARCH STANDARDS FOR CHRONIC LOW BACK PAIN

    PubMed Central

    Deyo, Richard A.; Dworkin, Samuel F.; Amtmann, Dagmar; Andersson, Gunnar; Borenstein, David; Carragee, Eugene; Carrino, John; Chou, Roger; Cook, Karon; DeLitto, Anthony; Goertz, Christine; Khalsa, Partap; Loeser, John; Mackey, Sean; Panagis, James; Rainville, James; Tosteson, Tor; Turk, Dennis; Von Korff, Michael; Weiner, Debra K.

    2014-01-01

    Despite rapidly increasing intervention, functional disability due to chronic low back pain (cLBP) has increased in recent decades. We often cannot identify mechanisms to explain the major negative impact cLBP has on patients’ lives. Such cLBP is often termed non-specific, and may be due to multiple biologic and behavioral etiologies. Researchers use varied inclusion criteria, definitions, baseline assessments, and outcome measures, which impede comparisons and consensus. The NIH Pain Consortium therefore charged a Research Task Force (RTF) to draft standards for research on cLBP. The resulting multidisciplinary panel recommended using 2 questions to define cLBP; classifying cLBP by its impact (defined by pain intensity, pain interference, and physical function); use of a minimal data set to describe research participants (drawing heavily on the PROMIS methodology); reporting “responder analyses” in addition to mean outcome scores; and suggestions for future research and dissemination. The Pain Consortium has approved the recommendations, which investigators should incorporate into NIH grant proposals. The RTF believes these recommendations will advance the field, help to resolve controversies, and facilitate future research addressing the genomic, neurologic, and other mechanistic substrates of chronic low back pain. We expect the RTF recommendations will become a dynamic document, and undergo continual improvement. Perspective A Task Force was convened by the NIH Pain Consortium, with the goal of developing research standards for chronic low back pain. The results included recommendations for definitions, a minimal dataset, reporting outcomes, and future research. Greater consistency in reporting should facilitate comparisons among studies and the development of phenotypes. PMID:24787228

  15. Advanced Maintenance Simulation by Means of Hand-Based Haptic Interfaces

    NASA Astrophysics Data System (ADS)

    Nappi, Michele; Paolino, Luca; Ricciardi, Stefano; Sebillo, Monica; Vitiello, Giuliana

    Aerospace industry has been involved in virtual simulation for design and testing since the birth of virtual reality. Today this industry is showing a growing interest in the development of haptic-based maintenance training applications, which represent the most advanced way to simulate maintenance and repair tasks within a virtual environment by means of a visual-haptic approach. The goal is to allow the trainee to experiment the service procedures not only as a workflow reproduced at a visual level but also in terms of the kinaesthetic feedback involved with the manipulation of tools and components. This study, conducted in collaboration with aerospace industry specialists, is aimed to the development of an immersive virtual capable of immerging the trainees into a virtual environment where mechanics and technicians can perform maintenance simulation or training tasks by directly manipulating 3D virtual models of aircraft parts while perceiving force feedback through the haptic interface. The proposed system is based on ViRstperson, a virtual reality engine under development at the Italian Center for Aerospace Research (CIRA) to support engineering and technical activities such as design-time maintenance procedure validation, and maintenance training. This engine has been extended to support haptic-based interaction, enabling a more complete level of interaction, also in terms of impedance control, and thus fostering the development of haptic knowledge in the user. The user’s “sense of touch” within the immersive virtual environment is simulated through an Immersion CyberForce® hand-based force-feedback device. Preliminary testing of the proposed system seems encouraging.

  16. Human balancing of an inverted pendulum: is sway size controlled by ankle impedance?

    PubMed Central

    Loram, Ian D; Kelly, Sue M; Lakie, Martin

    2001-01-01

    Using the ankle musculature, subjects balanced a large inverted pendulum. The equilibrium of the pendulum is unstable and quasi-regular sway was observed like that in quiet standing. Two main questions were addressed. Can subjects systematically change sway size in response to instruction and availability of visual feedback? If so, do subjects decrease sway size by increasing ankle impedance or by some alternative mechanism? The position of the pendulum, the torque generated at each ankle and the soleus and tibialis anterior EMG were recorded. Results showed that subjects could significantly reduce the mean sway size of the pendulum by giving full attention to that goal. With visual feedback sway size could be minimised significantly more than without visual feedback. In changing sway size, the frequency of the sways was not changed. Results also revealed that ankle impedance and muscle co-contraction were not significantly changed when the sway size was decreased. As the ankle impedance and sway frequency do not change when the sway size is decreased, this implies no change in ankle stiffness or viscosity. Increasing ankle impedance, stiffness or viscosity are not the only methods by which sway size could be reduced. A reduction in torque noise or torque inaccuracy via a predictive process which provides active damping could reduce sway size without changing ankle impedance and is plausible given the data. Such a strategy involving motion recognition and generation of an accurate motor response may require higher levels of control than changing ankle impedance by altering reflex or feedforward gain. PMID:11313453

  17. Evaluation of impulse oscillometry during bronchial challenge testing in children.

    PubMed

    Bailly, Carole; Crenesse, Dominique; Albertini, Marc

    2011-12-01

    The impulse oscillation system (IOS) allows easy measurement of respiratory system impedance (Zrs). The aim of this retrospective study was to evaluate the accuracy of IOS parameters obtained during methacholine challenge by comparison with "the gold standard" forced expiratory volume in the first second (FEV1). Measurements of FEV1 and resistances at 5 and 20 Hz, reactance at 5 Hz, impedance at 5 Hz and resonant frequency were performed in 227 children with suspected asthma, before and during methacholine challenge. Data were analyzed in the overall population and in three subgroups according to the final diagnosis: asthma (n = 72), chronic cough and nonspecific respiratory symptoms (n = 122), allergic rhinitis (n = 33). All IOS parameters changed significantly during the tests but only changes in X5 were significantly different between responders and nonresponders. Moreover, changes in IOS parameters were not correlated with changes in FEV1 apart from a weak correlation for X5. The receiver operating characteristic (ROC) curve for changes in X5 (to predict a 20% decrease in FEV1 showed a best decision level for a 50% decrease in X5 with a sensitivity of 36% and a specificity of 85%. Results were not different in the asthma group. The accuracy of measurements by IOS during methacholine bronchial challenge in children was not suitable when compared with FEV1 . It could be assumed that spirometry and IOS, while both providing indirect indices of airway patency, are exploring different mechanisms, each with its own methodological potentials and limitations. Copyright © 2011 Wiley Periodicals, Inc.

  18. Parental Denial: A Supportive and Productive Mechanism Following Traumatic Brain Injury of a Child.

    ERIC Educational Resources Information Center

    Williams, Dennis

    Although denial is usually viewed as a mechanism which impedes a family's adjusting to a child's permanent disability, the mechanism may also be viewed as a family ally which contributes to recovery and positive outcomes in brain-injured children. This paper reviews several types of denial seen in clinical settings and provides examples of both…

  19. A new impedance accounting for short- and long-range effects in mixed substructured formulations of nonlinear problems

    NASA Astrophysics Data System (ADS)

    Negrello, Camille; Gosselet, Pierre; Rey, Christian

    2018-05-01

    An efficient method for solving large nonlinear problems combines Newton solvers and Domain Decomposition Methods (DDM). In the DDM framework, the boundary conditions can be chosen to be primal, dual or mixed. The mixed approach presents the advantage to be eligible for the research of an optimal interface parameter (often called impedance) which can increase the convergence rate. The optimal value for this parameter is often too expensive to be computed exactly in practice: an approximate version has to be sought for, along with a compromise between efficiency and computational cost. In the context of parallel algorithms for solving nonlinear structural mechanical problems, we propose a new heuristic for the impedance which combines short and long range effects at a low computational cost.

  20. Effects of posture on the respiratory mechanics of the chick embryo.

    PubMed

    Menna, Tara M; Mortola, Jacopo P

    2002-10-01

    In the chicken embryo, pulmonary ventilation and pulmonary gas exchange begin approximately one day before the completion of hatching. We asked to what extent the posture inside the egg, and the presence of the eggshell and membranes, may alter the mechanical behaviour of the respiratory system. The passive mechanical properties of the respiratory system were studied in chicken embryos during the internal pipping phase (rupture of the air cell) or the external pipping phase (hole in the eggshell). Tracheal pressure and changes in lung volume were recorded during mechanical ventilation, first, with the embryo curled up inside the egg, then again after exteriorization from the eggshell. In the internal pippers, respiratory system compliance increased and expiratory resistance decreased after exteriorization, whereas the mean inspiratory impedance did not change. In the external pippers, exteriorization had no significant effects on respiratory compliance, resistance, or impedance, and the values were similar to those of newly hatched chicks. We conclude that, in the chicken embryo, at a time when pulmonary ventilation becomes an important mechanism for gas exchange, the curled up posture inside the egg does not provide any significant mechanical constraint to breathing.

  1. The fragile elderly hip: Mechanisms associated with age-related loss of strength and toughness☆

    PubMed Central

    Reeve, Jonathan; Loveridge, Nigel

    2014-01-01

    Every hip fracture begins with a microscopic crack, which enlarges explosively over microseconds. Most hip fractures in the elderly occur on falling from standing height, usually sideways or backwards. The typically moderate level of trauma very rarely causes fracture in younger people. Here, this paradox is traced to the decline of multiple protective mechanisms at many length scales from nanometres to that of the whole femur. With normal ageing, the femoral neck asymmetrically and progressively loses bone tissue precisely where the cortex is already thinnest and is also compressed in a sideways fall. At the microscopic scale of the basic remodelling unit (BMU) that renews bone tissue, increased numbers of actively remodelling BMUs associated with the reduced mechanical loading in a typically inactive old age augments the numbers of mechanical flaws in the structure potentially capable of initiating cracking. Menopause and over-deep osteoclastic resorption are associated with incomplete BMU refilling leading to excessive porosity, cortical thinning and disconnection of trabeculae. In the femoral cortex, replacement of damaged bone or bone containing dead osteocytes is inefficient, impeding the homeostatic mechanisms that match strength to habitual mechanical usage. In consequence the participation of healthy osteocytes in crack-impeding mechanisms is impaired. Observational studies demonstrate that protective crack deflection in the elderly is reduced. At the most microscopic levels attention now centres on the role of tissue ageing, which may alter the relationship between mineral and matrix that optimises the inhibition of crack progression and on the role of osteocyte ageing and death that impedes tissue maintenance and repair. This review examines recent developments in the understanding of why the elderly hip becomes fragile. This growing understanding is suggesting novel testable approaches for reducing risk of hip fracture that might translate into control of the growing worldwide impact of hip fractures on our ageing populations. PMID:24412288

  2. Physical Forces Shape Group Identity of Swimming Pseudomonas putida Cells.

    PubMed

    Espeso, David R; Martínez-García, Esteban; de Lorenzo, Víctor; Goñi-Moreno, Ángel

    2016-01-01

    The often striking macroscopic patterns developed by motile bacterial populations on agar plates are a consequence of the environmental conditions where the cells grow and spread. Parameters such as medium stiffness and nutrient concentration have been reported to alter cell swimming behavior, while mutual interactions among populations shape collective patterns. One commonly observed occurrence is the mutual inhibition of clonal bacteria when moving toward each other, which results in a distinct halt at a finite distance on the agar matrix before having direct contact. The dynamics behind this phenomenon (i.e., intolerance to mix in time and space with otherwise identical others) has been traditionally explained in terms of cell-to-cell competition/cooperation regarding nutrient availability. In this work, the same scenario has been revisited from an alternative perspective: the effect of the physical mechanics that frame the process, in particular the consequences of collisions between moving bacteria and the semi-solid matrix of the swimming medium. To this end, we set up a simple experimental system in which the swimming patterns of Pseudomonas putida were tested with different geometries and agar concentrations. A computational analysis framework that highlights cell-to-medium interactions was developed to fit experimental observations. Simulated outputs suggested that the medium is compressed in the direction of the bacterial front motion. This phenomenon generates what was termed a compression wave that goes through the medium preceding the swimming population and that determines the visible high-level pattern. Taken together, the data suggested that the mechanical effects of the bacteria moving through the medium created a factual barrier that impedes to merge with neighboring cells swimming from a different site. The resulting divide between otherwise clonal bacteria is thus brought about by physical forces-not genetic or metabolic programs.

  3. Electrokinetic framework of dielectrophoretic deposition devices

    NASA Astrophysics Data System (ADS)

    Burg, Brian R.; Bianco, Vincenzo; Schneider, Julian; Poulikakos, Dimos

    2010-06-01

    Numerical modeling and experiments are performed investigating the properties of a dielectrophoresis-based deposition device, in order to establish the electrokinetic framework required to understand the effects of applied inhomogeneous electric fields while moving particles to desired locations. By capacitively coupling electrodes to a conductive substrate, the controlled large-scale parallel dielectrophoretic assembly of nanostructures in individually accessible devices at a high integration density is accomplished. Thermal gradients in the solution, which give rise to local permittivity and conductivity changes, and velocity fields are solved by coupling electric, thermal, and fluid-mechanical equations. The induced electrothermal flow (ETF) causes vortices above the electrode gap, attracting particles, such as single-walled carbon nanotubes (SWNTs), before they are trapped by the dielectrophoretic force and deposit across the electrodes. Long-range carbon nanotube transport is governed by hydrodynamic effects, while local trapping is dominated by dielectrophoretic forces in low concentration SWNT dispersions. Results show that by decreasing the ac frequency ac electroosmosis on the metallic electrodes occurs due to the emergence of an electric double layer, disturbing the initial flow pattern of the system. By superimposing a dc potential offset, a generated tangential electroosmotic fluid flow in the dielectric electrode gap also disrupts the ETF. Capacitive coupling is most efficient in the high frequency regime where it is the dominating impedance contribution. Understanding the occurrence and interaction of these different effects, including a self-limiting integration mechanism for individual nanostructures, allows an increased deposition yield at overall lower electric field strengths through a prudent choice of electric field parameters. The findings provide important avenues toward gentler particle handling, without direct current throughput, a relevant aspect for limiting process effects during device fabrication, all while increasing dielectrophoretic deposition efficiency in nanostructured networks.

  4. A physicochemical mechanism of chemical gas sensors using an AC analysis.

    PubMed

    Moon, Jaehyun; Park, Jin-Ah; Lee, Su-Jae; Lee, Jeong-Ik; Zyung, Taehyong; Shin, Eui-Chol; Lee, Jong-Sook

    2013-06-21

    Electrical modeling of the chemical gas sensors was successfully applied to TiO2 nanofiber gas sensors by developing an equivalent circuit model where the junction capacitance as well as the resistance can be separated from the comparable stray capacitance. The Schottky junction impedance exhibited a characteristic skewed arc described by a Cole-Davidson function, and the variation of the fit and derived parameters with temperature, bias, and NO2 gas concentration indicated definitely a physicochemical sensing mechanism based on the Pt|TiO2 Schottky junctions against the conventional supposition of the enhanced sensitivity in nanostructured gas sensors with high grain boundary/surface area. Analysis on a model Pt|TiO2|Pt structure also confirmed the characteristic impedance response of TiO2 nanofiber sensors.

  5. Measurement of changes in respiratory mechanics during partial liquid ventilation using jet pulses.

    PubMed

    Schmalisch, Gerd; Schmidt, Mario; Proquitté, Hans; Foitzik, Bertram; Rüdiger, Mario; Wauer, Roland R

    2003-05-01

    To compare the changes in respiratory mechanics within the breathing cycle in healthy lungs between gas ventilation and partial liquid ventilation using a special forced-oscillation technique. Prospective animal trial. Animal laboratory in a university setting. A total of 12 newborn piglets (age, <12 hrs; mean weight, 725 g). After intubation and instrumentation, lung mechanics of the anesthetized piglets were measured by forced-oscillation technique at the end of inspiration and the end of expiration. The measurements were performed during gas ventilation and 80 mins after instillation of 30 mL/kg perfluorocarbon PF 5080. Brief flow pulses (width, 10 msec; peak flow, 16 L/min) were generated by a jet generator to measure the end-inspiratory and the end-expiratory respiratory input impedance in the frequency range of 4-32 Hz. The mechanical variables resistance, inertance, and compliance were determined by model fitting, using the method of least squares. At least in the lower frequency range, respiratory mechanics could be described adequately by an RIC single-compartment model in all piglets. During gas ventilation, the respiratory variables resistance and inertance did not differ significantly between end-inspiratory and end-expiratory measurements (mean [sd]: 4.2 [0.7] vs. 4.1 [0.6] kPa x L(-1) x sec, 30.0 [3.2] vs. 30.7 [3.1] Pa x L(-1) x sec2, respectively), whereas compliance decreased during inspiration from 14.8 (2.0) to 10.2 (2.4) mL x kPa(-1) x kg(-1) due to a slight lung overdistension. During partial liquid ventilation, the end-inspiratory respiratory mechanics was not different from the end-inspiratory respiratory mechanics measured during gas ventilation. However, in contrast to gas ventilation during partial liquid ventilation, compliance rose from 8.2 (1.0) to 13.0 (3.0) mL x kPa(-1) x kg(-1) during inspiration. During expiration, when perfluorocarbon came into the upper airways, both resistance and inertance increased considerably (mean with 95% confidence interval) by 34.3% (23.1%-45.8%) and 104.1% (96.0%-112.1%), respectively. The changes in the respiratory mechanics within the breathing cycle are considerably higher during partial liquid ventilation compared with gas ventilation. This dependence of lung mechanics from the pulmonary gas volume hampers the comparability of dynamic measurements during partial liquid ventilation, and the magnitude of these changes cannot be detected by conventional respiratory-mechanical analysis using time-averaged variables.

  6. Hints for cyclical recruitment of atelectasis during ongoing mechanical ventilation in lavage and oleic acid lung injury detected by SpO₂ oscillations and electrical impedance tomography.

    PubMed

    Bodenstein, Marc; Boehme, Stefan; Wang, Hemei; Duenges, Bastian; Markstaller, Klaus

    2014-11-01

    Detection of cyclical recruitment of atelectasis after induction of lavage (LAV) or oleic acid injury (OAI) in mechanically ventilated pigs. Primary hypothesis is that oxygen oscillations within the respiratory cycle can be detected by SpO₂ recordings (direct hint). SpO₂ oscillations reflect shunt oscillations that can only be explained by cyclical recruitment of atelectasis. Secondary hypothesis is that electrical impedance tomography (EIT) depicts specific regional changes of lung aeration and of pulmonary mechanical properties (indirect hint). Three groups (each n = 7) of mechanically ventilated pigs were investigated applying above mentioned methods before and repeatedly after induction of lung injury: (1) sham treated animals (SHAM), (2) LAV, and (3) OAI. Early oxygen oscillations occurred in the LAV group (mean calculated amplitude: 73.8 mmHg reflecting shunt oscillation of 11.2% in mean). In the OAI group oxygen oscillations occurred hours after induction of lung injury (mean calculated amplitude: 57.1 mmHg reflecting shunt oscillations of 8.4% in mean). The SHAM group had no relevant oxygen oscillations (<30 mmHg, shunt oscillations < 1.5%). Synchronously to oxygen oscillations, EIT depicted (1) a decrease of ventilation in dorsal areas, (2) an increase in ventral areas, (3) a decrease of especially dependent expiratory impedance, 3) an increase in late inspiratory flow especially in the dependant areas, (4) an increase in the speed of peak expiratory flow (PEF), and (5) a decrease of dorsal late expiratory flow. SpO2 and EIT recordings detect events that are interpreted as cyclical recruitment of atelectasis.

  7. Secure RFID tag or sensor with self-destruction mechanism upon tampering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nekoogar, Faranak; Dowla, Farid; Twogood, Richard

    A circuit board anti-tamper mechanism comprises a circuit board having a frangible portion, a trigger having a trigger spring, a trigger arming mechanism actuated by the trigger wherein the trigger arming mechanism is initially non-actuated, a force producing mechanism, a latch providing mechanical communication between the trigger arming mechanism and the force producing mechanism, wherein the latch initially retains the force producing mechanism in a refracted position. Arming pressure applied to the trigger sufficient to overcome the trigger spring force will actuate the trigger arming mechanism, causing the anti-tamper mechanism to be armed. Subsequent tampering with the anti-tamper mechanism resultsmore » in a decrease of pressure on the trigger below the trigger spring force, thereby causing the trigger arming mechanism to actuate the latch, thereby releasing the force producing mechanism to apply force to the frangible portion of the circuit board, thereby breaking the circuit board.« less

  8. Ultrasonic Attenuation in Normal and Superconducting Indium.

    DTIC Science & Technology

    1980-05-22

    dimension x space coordinate, dislocation displacement dislocation displacement y space coordinate.1z space coordinate x ACKNOWLEDGMENTS The author...The driving force on the dislocation is given by: F=bO (2.7) In general, the dislocation displacement will be a function of three space coordinates...mm diameter, 50 Q impedance coaxial conductors 47 * made of stainless steel and teflon . The cavity button is soldered * directly to the rigid

  9. Thermal Powered Reciprocating-Force Motor

    NASA Technical Reports Server (NTRS)

    Tatum, III, Paul F. (Inventor); McDow Elliott, Amelia (Inventor)

    2015-01-01

    A thermal-powered reciprocating-force motor includes a shutter switchable between a first position that passes solar energy and a second position that blocks solar energy. A shape memory alloy (SMA) actuator is coupled to the shutter to control switching thereof between the shutter's first and second position. The actuator is positioned with respect to the shutter such that (1) solar energy impinges on the SMA when the shutter is in its first position so that the SMA experiences contraction in length until the shutter is switched to its second position, and (2) solar energy is impeded from impingement on the SMA when the shutter is in its second position so that the SMA experiences extension in length. Elastic members coupled to the actuator apply a force to the SMA that aids in its extension in length until the shutter is switched to its first position.

  10. Cellular responses to endogenous electrochemical gradients in morphological development

    NASA Technical Reports Server (NTRS)

    Desrosiers, M. F.

    1996-01-01

    Endogenous electric fields give vectorial direction to morphological development in Zea mays (sweet corn) in response to gravity. Endogenous electrical fields are important because of their ability to influence: (1) intercellular organization and development through their effects on the membrane potential, (2) direct effects such as electrophoresis of membrane components, and (3) both intracellular and extracellular transport of charged compounds. Their primary influence is in providing a vectorial dimension to the progression of one physiological state to another. Gravity perception and transduction in the mesocotyl of vascular plants is a complex interplay of electrical and chemical gradients which ultimately provide the driving force for the resulting growth curvature called gravitropism. Among the earliest events in gravitropism are changes in impedance, voltage, and conductance between the vascular stele and the growth tissues, the cortex, in the mesocotyl of corn shoots. In response to gravistimulation: (1) a potential develops which is vectorial and of sufficient magnitude to be a driving force for transport between the vascular stele and cortex, (2) the ionic conductance changes within seconds showing altered transport between the tissues, and (3) the impedance shows a transient biphasic response which indicates that the mobility of charges is altered following gravistimulation and is possibly the triggering event for the cascade of actions which leads to growth curvature.

  11. Permalloy-Based Thin Film Structures: Magnetic Properties and the Giant Magnetoimpedance Effect in the Temperature Range Important for Biomedical Applications

    PubMed Central

    Chlenova, Anna A.; Moiseev, Alexey A.; Derevyanko, Mikhail S.; Semirov, Aleksandr V.; Lepalovsky, Vladimir N.

    2017-01-01

    Permalloy-based thin film structures are excellent materials for sensor applications. Temperature dependencies of the magnetic properties and giant magneto-impedance (GMI) were studied for Fe19Ni81-based multilayered structures obtained by the ion-plasma sputtering technique. Selected temperature interval of 25 °C to 50 °C corresponds to the temperature range of functionality of many devices, including magnetic biosensors. A (Cu/FeNi)5/Cu/(Cu/FeNi)5 multilayered structure with well-defined traverse magnetic anisotropy showed an increase in the GMI ratio for the total impedance and its real part with temperature increased. The maximum of the GMI of the total impedance ratio ΔZ/Z = 56% was observed at a frequency of 80 MHz, with a sensitivity of 18%/Oe, and the maximum GMI of the real part ΔR/R = 170% at a frequency of 10 MHz, with a sensitivity of 46%/Oe. As the magnetization and direct current electrical resistance vary very little with the temperature, the most probable mechanism of the unexpected increase of the GMI sensitivity is the stress relaxation mechanism associated with magnetoelastic anisotropy. PMID:28817084

  12. Axial force measurement for esophageal function testing

    PubMed Central

    Gravesen, Flemming H; Funch-Jensen, Peter; Gregersen, Hans; Drewes, Asbjørn Mohr

    2009-01-01

    The esophagus serves to transport food and fluid from the pharynx to the stomach. Manometry has been the “golden standard” for the diagnosis of esophageal motility diseases for many decades. Hence, esophageal function is normally evaluated by means of manometry even though it reflects the squeeze force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure of esophageal transport function. The technique used to record axial force has developed from external force transducers over in-vivo strain gauges of various sizes to electrical impedance based measurements. The amplitude and duration of the axial force has been shown to be as reliable as manometry. Normal, as well as abnormal, manometric recordings occur with normal bolus transit, which have been documented using imaging modalities such as radiography and scintigraphy. This inconsistency using manometry has also been documented by axial force recordings. This underlines the lack of information when diagnostics are based on manometry alone. Increasing the volume of a bag mounted on a probe with combined axial force and manometry recordings showed that axial force amplitude increased by 130% in contrast to an increase of 30% using manometry. Using axial force in combination with manometry provides a more complete picture of esophageal motility, and the current paper outlines the advantages of using this method. PMID:19132762

  13. Original implementation of Electrochemical Impedance Spectroscopy (EIS) in symmetric cells: Evaluation of post-mortem protocols applied to characterize electrode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Gordon, Isabel Jiménez; Genies, Sylvie; Si Larbi, Gregory; Boulineau, Adrien; Daniel, Lise; Alias, Mélanie

    2016-03-01

    Understanding ageing mechanisms of Li-ion batteries is essential for further optimizations. To determine performance loss causes, post-mortem analyses are commonly applied. For each type of post-mortem test, different sample preparation protocols are adopted. However, reports on the reliability of these protocols are rare. Herein, Li-ion pouch cells with LiNi1/3Mn1/3Co1/3O2 - polyvinylidene fluoride positive electrode, graphite-carboxymethyl cellulose-styrene rubber negative electrode and LiPF6 - carbonate solvents mixture electrolyte, are opened and electrodes are recovered following a specified protocol. Negative and positive symmetric cells are assembled and their impedances are recorded. A signal analysis is applied to reconstruct the Li-ion pouch cell impedance from the symmetric cells, then comparison against the pouch cell true impedance allows the evaluation of the sample preparation protocols. The results are endorsed by Transmission Electronic Microscopy (TEM) and Gas Chromatography - Mass Spectrometry (GC-MS) analyses. Carbonate solvents used to remove the salt impacts slightly the surface properties of both electrodes. Drying electrodes under vacuum at 25 °C produces an impedance increase, particularly very marked for the positive electrode. Drying at 50 °C under vacuum or/and exposition to the anhydrous room atmosphere is very detrimental.

  14. Characterisation of CFRP adhesive bonds by electromechanical impedance

    NASA Astrophysics Data System (ADS)

    Malinowski, Pawel H.; Wandowski, Tomasz; Ostachowicz, Wieslaw M.

    2014-03-01

    In aircraft industry the Carbon Fiber Reinforced Polymer (CFRP) elements are joint using rivets and adhesive bonding. The reliability of the bonding limits the use of adhesive bonding for primary aircraft structures, therefore it is important to assess the bond quality. The performance of adhesive bonds depends on the physico-chemical properties of the adhered surfaces. The contamination leading to weak bonds may have various origin and be caused by moisture, release agent, hydraulic fluid, fuel, poor curing of adhesive and so on. In this research three different causes of possible weak bonds were selected for the investigation: 1. Weak bond due to release agent contamination, 2. Weak bond due to moisture contamination, 3. Weak bond due to poor curing of the adhesive. In order to assess the bond quality electromechanical impedance (EMI) technique was selected and investigation was focused on the influence of bond quality on electrical impedance of piezoelectric transducer. The piezoelectric transducer was mounted at the middle of each sample surface. Measurements were conducted using HIOKI Impedance Analyzer IM3570. Using the impedance analyzer the electrical parameters were measured for wide frequency band. Due to piezoelectric effect the electrical response of a piezoelectric transducer is related to mechanical response of the sample to which the transducers is attached. The impedance spectra were investigated in order to find indication of the weak bonds. These spectra were compared with measurements for reference sample using indexes proposed in order to assess the bond quality.

  15. Analysis of the Impedance Resonance of Piezoelectric Multi-Fiber Composite Stacks

    NASA Technical Reports Server (NTRS)

    Sherrit, S.; Djrbashian, A.; Bradford, S C

    2013-01-01

    Multi-Fiber CompositesTM (MFC's) produced by Smart Materials Corp behave essentially like thin planar stacks where each piezoelectric layer is composed of a multitude of fibers. We investigate the suitability of using previously published inversion techniques for the impedance resonances of monolithic co-fired piezoelectric stacks to the MFCTM to determine the complex material constants from the impedance data. The impedance equations examined in this paper are those based on the derivation. The utility of resonance techniques to invert the impedance data to determine the small signal complex material constants are presented for a series of MFC's. The technique was applied to actuators with different geometries and the real coefficients were determined to be similar within changes of the boundary conditions due to change of geometry. The scatter in the imaginary coefficient was found to be larger. The technique was also applied to the same actuator type but manufactured in different batches with some design changes in the non active portion of the actuator and differences in the dielectric and the electromechanical coupling between the two batches were easily measureable. It is interesting to note that strain predicted by small signal impedance analysis is much lower than high field stains. Since the model is based on material properties rather than circuit constants, it could be used for the direct evaluation of specific aging or degradation mechanisms in the actuator as well as batch sorting and adjustment of manufacturing processes.

  16. Shoes alter the spring-like function of the human foot during running

    PubMed Central

    Kelly, Luke A.; Lichtwark, Glen A.; Farris, Dominic J.; Cresswell, Andrew

    2016-01-01

    The capacity to store and return energy in legs and feet that behave like springs is crucial to human running economy. Recent comparisons of shod and barefoot running have led to suggestions that modern running shoes may actually impede leg and foot-spring function by reducing the contributions from the leg and foot musculature. Here we examined the effect of running shoes on foot longitudinal arch (LA) motion and activation of the intrinsic foot muscles. Participants ran on a force-instrumented treadmill with and without running shoes. We recorded foot kinematics and muscle activation of the intrinsic foot muscles using intramuscular electromyography. In contrast to previous assertions, we observed an increase in both the peak (flexor digitorum brevis +60%) and total stance muscle activation (flexor digitorum brevis +70% and abductor hallucis +53%) of the intrinsic foot muscles when running with shoes. Increased intrinsic muscle activation corresponded with a reduction in LA compression (−25%). We confirm that running shoes do indeed influence the mechanical function of the foot. However, our findings suggest that these mechanical adjustments are likely to have occurred as a result of increased neuromuscular output, rather than impaired control as previously speculated. We propose a theoretical model for foot–shoe interaction to explain these novel findings. PMID:27307512

  17. Shoes alter the spring-like function of the human foot during running.

    PubMed

    Kelly, Luke A; Lichtwark, Glen A; Farris, Dominic J; Cresswell, Andrew

    2016-06-01

    The capacity to store and return energy in legs and feet that behave like springs is crucial to human running economy. Recent comparisons of shod and barefoot running have led to suggestions that modern running shoes may actually impede leg and foot-spring function by reducing the contributions from the leg and foot musculature. Here we examined the effect of running shoes on foot longitudinal arch (LA) motion and activation of the intrinsic foot muscles. Participants ran on a force-instrumented treadmill with and without running shoes. We recorded foot kinematics and muscle activation of the intrinsic foot muscles using intramuscular electromyography. In contrast to previous assertions, we observed an increase in both the peak (flexor digitorum brevis +60%) and total stance muscle activation (flexor digitorum brevis +70% and abductor hallucis +53%) of the intrinsic foot muscles when running with shoes. Increased intrinsic muscle activation corresponded with a reduction in LA compression (-25%). We confirm that running shoes do indeed influence the mechanical function of the foot. However, our findings suggest that these mechanical adjustments are likely to have occurred as a result of increased neuromuscular output, rather than impaired control as previously speculated. We propose a theoretical model for foot-shoe interaction to explain these novel findings. © 2016 The Author(s).

  18. Miniaturizing RFID for magnamosis.

    PubMed

    Jiang, Hao; Chen, Shijie; Kish, Shad; Loh, Lokkee; Zhang, Junmin; Zhang, Xiaorong; Kwiat, Dillon; Harrison, Michael; Roy, Shuvo

    2014-01-01

    Anastomosis is a common surgical procedure using staples or sutures in an open or laparoscopic surgery. A more effective and much less invasive alternative is to apply the mechanical pressure on the tissue over a few days [1]. Since the pressure is produced by the attractive force between two permanent magnets, the procedure is called magnamosis[1]. To ensure the two magnets are perfectly aligned during the surgery, a miniaturized batteryless Radio Frequency IDentification (RFID) tag is developed to wirelessly telemeter the status of a pressure sensitive mechanical switch. Using the multi-layer circular spiral coil design, the diameter of the RFID tag is shrunk to 10, 15, 19 and 27 mm to support the magnamosis for children as well as adults. With the impedance matching network, the operating distance of these four RFID tags are longer than 10 cm in a 20 × 22 cm(2) area, even when the tag's normal direction is 45° off the antenna's normal direction. Measurement results also indicate that there is no noticeable degradation on the operating distance when the tag is immersed in saline or placed next to the rare-earth magnet. The miniaturized RFID tag presented in this paper is able to support the magnamosis and other medical applications that require the miniaturized RFID tag.

  19. Component-/structure-dependent elasticity of solid electrolyte interphase layer in Li-ion batteries: Experimental and computational studies

    NASA Astrophysics Data System (ADS)

    Shin, Hosop; Park, Jonghyun; Han, Sangwoo; Sastry, Ann Marie; Lu, Wei

    2015-03-01

    The mechanical instability of the Solid Electrolyte Interphase (SEI) layer in lithium ion (Li-ion) batteries causes significant side reactions resulting in Li-ion consumption and cell impedance rise by forming further SEI layers, which eventually leads to battery capacity fade and power fade. In this paper, the composition-/structure-dependent elasticity of the SEI layer is investigated via Atomic Force Microscopy (AFM) measurements coupled with X-ray Photoelectron Spectroscopy (XPS) analysis, and atomistic calculations. It is observed that the inner layer is stiffer than the outer layer. The measured Young's moduli are mostly in the range of 0.2-4.5 GPa, while some values above 80 GPa are also observed. This wide variation of the observed elastic modulus is elucidated by atomistic calculations with a focus on chemical and structural analysis. The numerical analysis shows the Young's moduli range from 2.4 GPa to 58.1 GPa in the order of the polymeric, organic, and amorphous inorganic components. The crystalline inorganic component (LiF) shows the highest value (135.3 GPa) among the SEI species. This quantitative observation on the elasticity of individual components of the SEI layer must be essential to analyzing the mechanical behavior of the SEI layer and to optimizing and controlling it.

  20. Experimental and theoretical studies on inhibition of mild steel corrosion by some synthesized polyurethane tri-block co-polymers

    PubMed Central

    Kumar, Sudershan; Vashisht, Hemlata; Olasunkanmi, Lukman O.; Bahadur, Indra; Verma, Hemant; Singh, Gurmeet; Obot, Ime B.; Ebenso, Eno E.

    2016-01-01

    Polyurethane based tri-block copolymers namely poly(N-vinylpyrrolidone)-b-polyurethane-b-poly(N-vinylpyrrolidone) (PNVP-PU) and poly(dimethylaminoethylmethacrylate)-b-polyurethane-b-poly(dimethylaminoethylmethacrylate) (PDMAEMA-PU) were synthesized through atom transfer radical polymerization (ATRP) mechanism. The synthesized polymers were characterized using nuclear magnetic resonance (NMR) spectroscopy and gel permeation chromatography (GPC) methods. The corrosion inhibition performances of the compounds were investigated on mild steel (MS) in 0.5 M H2SO4 medium using electrochemical measurements, surface analysis, quantum chemical calculations and molecular dynamic simulations (MDS). Potentiodynamic polarization (PDP) measurements revealed that the polymers are mixed-type corrosion inhibitors. Electrochemical impedance spectroscopy (EIS) measurements showed that the polymers inhibit MS corrosion by adsorbing on MS surface to form pseudo-capacitive interface. The inhibitive effects of the polymers increase with increasing concentration and decrease with increasing temperature. The adsorption of both the polymers on MS surface obey the Langmuir adsorption isotherm and involves both physisorption and chemisorption mechanisms. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses showed that the polymers formed protective film on MS surface and shield it from direct acid attack. Quantum chemical calculations and molecular dynamic simulations studies corroborate experimental results. PMID:27515383

  1. Probing of barrier induced deviations in current-voltage characteristics of polymer devices by impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Khan, Motiur Rahman; Rao, K. S. R. Koteswara; Menon, R.

    2017-05-01

    Temperature dependent current-voltage measurements have been performed on poly(3-methylthiophene) based devices in metal/polymer/metal geometry in temperature range 90-300 K. Space charge limited current (SCLC) controlled by exponentially distributed traps is observed at all the measured temperatures at intermediate voltage range. At higher voltages, trap-free SCLC is observed at 90 K only while slope less than 2 is observed at higher temperatures which is quiet unusual in polymer devices. Impedance measurements were performed at different bias voltages. The unusual behavior observed in current-voltage characteristics is explained by Cole-Cole plot which gives the signature of interface dipole on electrode/polymer interface. Two relaxation mechanisms are obtained from the real part of impedance vs frequency spectra which confirms the interface related phenomena in the device

  2. Carbon Nanotube Embedded Nanostructure for Biometrics.

    PubMed

    Park, Juhyuk; Youn, Jae Ryoun; Song, Young Seok

    2017-12-27

    Low electric energy loss is a very important problem to minimize the decay of transferred energy intensity due to impedance mismatch. This issue has been dealt with by adding an impedance matching layer at the interface between two media. A strategy was proposed to improve the charge transfer from the human body to a biometric device by using an impedance matching nanostructure. Nanocomposite pattern arrays were fabricated with shape memory polymer and carbon nanotubes. The shape recovery ability of the nanopatterns enhanced durability and sustainability of the structure. It was found that the composite nanopatterns improved the current transfer by two times compared with the nonpatterned composite sample. The underlying mechanism of the enhanced charge transport was understood by carrying out a numerical simulation. We anticipate that this study can provide a new pathway for developing advanced biometric devices with high sensitivity to biological information.

  3. Adhesive Defect Monitoring of Glass Fiber Epoxy Plate Using an Impedance-Based Non-Destructive Testing Method for Multiple Structures

    PubMed Central

    Na, Wongi S.; Baek, Jongdae

    2017-01-01

    The emergence of composite materials has revolutionized the approach to building engineering structures. With the number of applications for composites increasing every day, maintaining structural integrity is of utmost importance. For composites, adhesive bonding is usually the preferred choice over the mechanical fastening method, and monitoring for delamination is an essential factor in the field of composite materials. In this study, a non-destructive method known as the electromechanical impedance method is used with an approach of monitoring multiple areas by specifying certain frequency ranges to correspond to a certain test specimen. Experiments are conducted using various numbers of stacks created by attaching glass fiber epoxy composite plates onto one another, and two different debonding damage types are introduced to evaluate the performance of the multiple monitoring electromechanical impedance method. PMID:28629194

  4. Dielectric and impedance studies of Ba0.50(Na0.25Bi0.25)(Fe0.25Nb0.25)Ti0.50O3 ceramic

    NASA Astrophysics Data System (ADS)

    Yadav, Anjana; Chandra, K. P.; Kulkarni, A. R.; Prasad, K.

    2018-05-01

    Lead-free perovskite Ba0.50(Na0.25Bi0.25)(Fe0.25Nb0.25)Ti0.50O3 was prepared using conventional ceramic technique at 1130°C/4h in air atmosphere and characterized by X-ray diffraction, scanning electron microscopy, dielectric and impedance studies. XRD analysis of the compound indicated the formation of a single-phase cubic structure. SEM study was carried out to study the quality and purity of the compound. Compound showed very high dielectric constant (33700). Impedance analysis indicated the negative temperature coefficient of resistance character of the compound. Ac conductivity data followed Jonscher's law and correlated barrier hopping successfully explained the charge carrier transport mechanism in the system.

  5. High performance bilateral telerobot control.

    PubMed

    Kline-Schoder, Robert; Finger, William; Hogan, Neville

    2002-01-01

    Telerobotic systems are used when the environment that requires manipulation is not easily accessible to humans, as in space, remote, hazardous, or microscopic applications or to extend the capabilities of an operator by scaling motions and forces. The Creare control algorithm and software is an enabling technology that makes possible guaranteed stability and high performance for force-feedback telerobots. We have developed the necessary theory, structure, and software design required to implement high performance telerobot systems with time delay. This includes controllers for the master and slave manipulators, the manipulator servo levels, the communication link, and impedance shaping modules. We verified the performance using both bench top hardware as well as a commercial microsurgery system.

  6. Multifunctional structural lithium ion batteries for electrical energy storage applications

    NASA Astrophysics Data System (ADS)

    Javaid, Atif; Zeshan Ali, Muhammad

    2018-05-01

    Multifunctional structural batteries based on carbon fiber-reinforced polymer composites are fabricated that can bear mechanical loads and act as electrochemical energy storage devices simultaneously. Structural batteries, containing woven carbon fabric anode; lithium cobalt oxide/graphene nanoplatelets coated aluminum cathode; filter paper separator and cross-linked polymer electrolyte, were fabricated through resin infusion under flexible tooling (RIFT) technique. Compression tests, dynamic mechanical thermal analysis, thermogravimetric analysis and impedance spectroscopy were done on the cross-linked polymer electrolytes while cyclic voltammetry, impedance spectroscopy, dynamic mechanical thermal analysis and in-plane shear tests were conducted on the fabricated structural batteries. A range of solid polymer electrolytes with increasing concentrations of lithium perchlorate salt in crosslinked polymer epoxies were formulated. Increased concentrations of electrolyte salt in cross-linked epoxy increased the ionic conductivity, although the compressive properties were compromised. A structural battery, exhibiting simultaneously a capacity of 0.16 mAh L‑1, an energy density of 0.32 Wh L‑1 and a shear modulus of 0.75 GPa have been reported.

  7. Phosphorylation of the NFAR proteins by the dsRNA-dependent protein kinase PKR constitutes a novel mechanism of translational regulation and cellular defense.

    PubMed

    Harashima, Ai; Guettouche, Toumy; Barber, Glen N

    2010-12-01

    Here, we describe a new mechanism of host defense that involves the nuclear factors associated with dsRNA (NFAR1 [90 kDa] and NFAR2 [110 kDa]), which constitute part of the shuttling ribonuclear protein (RNP) complex. Activation of the dsRNA-activated protein kinase PKR by viral RNA enabled phosphorylation of NFAR1 and NFAR2 on Thr 188 and Thr 315, an event found to be evolutionarily conserved in Xenopus. Phosphorylated NFAR1 and NFAR2 became dissociated from nuclear factor 45 (NF45), which was requisite for NFAR reshuttling, causing the NFARs to be retained on ribosomes, associate with viral transcripts, and impede viral replication. Cre-loxP animals with depletion of the NFARs in the thymus were exquisitely sensitive to the cytoplasmic replicating virus VSV (vesicular stomatitis virus). Thus, the NFARs constitute a novel, conserved mechanism of host defense used by the cell to detect and impede aberrant translation events.

  8. Real-time augmented feedback benefits robotic laparoscopic training.

    PubMed

    Judkins, Timothy N; Oleynikov, Dmitry; Stergiou, Nick

    2006-01-01

    Robotic laparoscopic surgery has revolutionized minimally invasive surgery for treatment of abdominal pathologies. However, current training techniques rely on subjective evaluation. There is a lack of research on the type of tasks that should be used for training. Robotic surgical systems also do not currently have the ability to provide feedback to the surgeon regarding success of performing tasks. We trained medical students on three laparoscopic tasks and provided real-time feedback of performance during training. We found that real-time feedback can benefit training if the feedback provides information that is not available through other means (grip force). Subjects that received grip force feedback applied less force when the feedback was removed. Other forms of feedback (speed and relative phase) did not aid or impede training. Secondly, a relatively short training period (10 trials for each task) significantly improved most objective measures of performance. We also showed that robotic surgical performance can be quantitatively measured and evaluated. Providing grip force feedback can make the surgeon more aware of the forces being applied to delicate tissue during surgery.

  9. Response localization of the pharmacological agents histamine and salbutamol along the respiratory system by forced oscillations in asthmatic subjects.

    PubMed

    Wouters, E F; Polko, A H; Visser, B F

    1989-01-01

    The bronchodilating effect of 1 mg and 0.4 mg salbutamol on the impedance of the respiratory system was studied in 25 asthmatic subjects after histamine-induced bronchoconstriction. Histamine caused an increase of respiratory resistance (Rrs) at lower frequencies and a frequency dependence of Rrs. Respiratory reactance (Xrs) decreased at all frequencies after histamine challenge. These changes can be explained by peripheral airway obstruction. Impedance measurements performed 5 min after inhalation of 1 mg and 0.4 mg salbutamol showed a decrease of Rrs values at lower frequencies, a disappearance of the frequency dependence of Rrs, and a significant increase of Xrs values. No significant differences in absolute changes of Rrs and Xrs are observed between the salbutamol regimens. These changes after inhalation of salbutamol can be explained by supposing a predominant action on the peripheral airways.

  10. A new approach of active compliance control via fuzzy logic control for multifingered robot hand

    NASA Astrophysics Data System (ADS)

    Jamil, M. F. A.; Jalani, J.; Ahmad, A.

    2016-07-01

    Safety is a vital issue in Human-Robot Interaction (HRI). In order to guarantee safety in HRI, a model reference impedance control can be a very useful approach introducing a compliant control. In particular, this paper establishes a fuzzy logic compliance control (i.e. active compliance control) to reduce impact and forces during physical interaction between humans/objects and robots. Exploiting a virtual mass-spring-damper system allows us to determine a desired compliant level by understanding the behavior of the model reference impedance control. The performance of fuzzy logic compliant control is tested in simulation for a robotic hand known as the RED Hand. The results show that the fuzzy logic is a feasible control approach, particularly to control position and to provide compliant control. In addition, the fuzzy logic control allows us to simplify the controller design process (i.e. avoid complex computation) when dealing with nonlinearities and uncertainties.

  11. Method and apparatus for minimizing multiple degree of freedom vibration transmission between two regions of a structure

    NASA Technical Reports Server (NTRS)

    Silcox, Richard J. (Inventor); Fuller, Chris R. (Inventor); Gibbs, Gary P. (Inventor)

    1992-01-01

    Arrays of actuators are affixed to structural elements to impede the transmission of vibrational energy. A single pair is used to provide control of bending and extensional waves and two pairs are used to control torsional motion. The arrays are applied to a wide variety of structural elements such as a beam structure that is part of a larger framework that may or may not support a rigid or non-rigid skin. Electrical excitation is applied to the actuators that generate forces on the structure. These electrical inputs may be adjusted in their amplitude and phase by a controller in communication with appropriate vibrational wave sensors to impede the flow of vibrational power in all of the above mentioned wave forms beyond the actuator location. Additional sensor elements can be used to monitor the performance and adjust the electrical inputs to maximize the attenuation of vibrational energy.

  12. Comparison of Norethindrone-Containing OCPs to Desogestrel OCPs and Depo-Provera in Women

    DTIC Science & Technology

    2000-10-01

    induces amenorrhea (12,20-26). To date, however, no study has directly compared continuation rates among these different methods of contraception. The...height physical standards unique to their branch of the armed forces after long term use. Although consistent exercise may help control this weight gain...a willingness to exercise may be impeded by DMPA use as preliminary studies suggest that this method results in increased fatigue (32). Other issues

  13. Aircraft turbofan noise

    NASA Astrophysics Data System (ADS)

    Groeneweg, J. F.; Rice, E. J.

    1987-01-01

    Turbofan noise generation and suppression in aircraft engines are reviewed. The chain of physical processes which connect unsteady flow interactions with fan blades to far field noise is addressed. Mechanism identification and description, duct propagation, radiation, and acoustic suppression are discussed. The experimental techniques of fan inflow static tests are discussed. Rotor blade surface pressure and wake velocity measurements aid in the determination of the types and strengths of the generation mechanisms. Approaches to predicting or measuring acoustic mode content, optimizing treatment impedance to maximize attenuation, translating impedance into porous wall structure, and interpreting far field directivity patterns are illustrated by comparisons of analytical and experimental results. The interdependence of source and acoustic treatment design to minimize far field noise is emphasized. Areas requiring further research are discussed, and the relevance of aircraft turbofan results to quieting other turbomachinery installation is addressed.

  14. Aircraft turbofan noise

    NASA Astrophysics Data System (ADS)

    Groeneweg, J. F.; Rice, E. J.

    1983-03-01

    Turbofan noise generation and suppression in aircraft engines are reviewed. The chain of physical processes which connect unsteady flow interactions with fan blades to far field noise is addressed. Mechanism identification and description, duct propagation, radiation and acoustic suppression are discussed. The experimental technique of fan inflow static tests are discussed. Rotor blade surface pressure and wake velocity measurements aid in the determination of the types and strengths of the generation mechanisms. Approaches to predicting or measuring acoustic mode content, optimizing treatment impedance to maximize attenuation, translating impedance into porous wall structure and interpreting far field directivity patterns are illustrated by comparisons of analytical and experimental results. The interdependence of source and acoustic treatment design to minimize far field noise is emphasized. Area requiring further research are discussed and the relevance of aircraft turbofan results to quieting other turbomachinery installations is addressed.

  15. Impedance and self-discharge mechanism studies of nickel metal hydride batteries for energy storage applications

    NASA Astrophysics Data System (ADS)

    Zhu, Wenhua; Zhu, Ying; Tatarchuk, Bruce

    2013-04-01

    Nickel metal hydride battery packs have been found wide applications in the HEVs (hybrid electric vehicles) through the on-board rapid energy conservation and efficient storage to decrease the fossil fuel consumption rate and reduce CO2 emissions as well as other harmful exhaust gases. In comparison to the conventional Ni-Cd battery, the Ni-MH battery exhibits a relatively higher self-discharge rate. In general, there are quite a few factors that speed up the self-discharge of the electrodes in the sealed nickel metal hydride batteries. This disadvantage eventually reduces the overall efficiency of the energy conversion and storage system. In this work, ac impedance data were collected from the nickel metal hydride batteries. The self-discharge mechanism and battery capacity degradation were analyzed and discussed for further performance improvement.

  16. Aircraft turbofan noise

    NASA Technical Reports Server (NTRS)

    Groeneweg, J. F.; Rice, E. J.

    1983-01-01

    Turbofan noise generation and suppression in aircraft engines are reviewed. The chain of physical processes which connect unsteady flow interactions with fan blades to far field noise is addressed. Mechanism identification and description, duct propagation, radiation and acoustic suppression are discussed. The experimental technique of fan inflow static tests are discussed. Rotor blade surface pressure and wake velocity measurements aid in the determination of the types and strengths of the generation mechanisms. Approaches to predicting or measuring acoustic mode content, optimizing treatment impedance to maximize attenuation, translating impedance into porous wall structure and interpreting far field directivity patterns are illustrated by comparisons of analytical and experimental results. The interdependence of source and acoustic treatment design to minimize far field noise is emphasized. Area requiring further research are discussed and the relevance of aircraft turbofan results to quieting other turbomachinery installations is addressed.

  17. Fluid mechanics of Windkessel effect.

    PubMed

    Mei, C C; Zhang, J; Jing, H X

    2018-01-08

    We describe a mechanistic model of Windkessel phenomenon based on the linear dynamics of fluid-structure interactions. The phenomenon has its origin in an old-fashioned fire-fighting equipment where an air chamber serves to transform the intermittent influx from a pump to a more steady stream out of the hose. A similar mechanism exists in the cardiovascular system where blood injected intermittantly from the heart becomes rather smooth after passing through an elastic aorta. In existing haeodynamics literature, this mechanism is explained on the basis of electric circuit analogy with empirical impedances. We present a mechanistic theory based on the principles of fluid/structure interactions. Using a simple one-dimensional model, wave motion in the elastic aorta is coupled to the viscous flow in the rigid peripheral artery. Explicit formulas are derived that exhibit the role of material properties such as the blood density, viscosity, wall elasticity, and radii and lengths of the vessels. The current two-element model in haemodynamics is shown to be the limit of short aorta and low injection frequency and the impedance coefficients are derived theoretically. Numerical results for different aorta lengths and radii are discussed to demonstrate their effects on the time variations of blood pressure, wall shear stress, and discharge. Graphical Abstract A mechanistic analysis of Windkessel Effect is described which confirms theoretically the well-known feature that intermittent influx becomes continuous outflow. The theory depends only on the density and viscosity of the blood, the elasticity and dimensions of the vessel. Empirical impedence parameters are avoided.

  18. Active elastohydrodynamics of vesicles in narrow blind constrictions

    NASA Astrophysics Data System (ADS)

    Fai, T. G.; Kusters, R.; Harting, J.; Rycroft, C. H.; Mahadevan, L.

    2017-11-01

    Fluid-resistance limited transport of vesicles through narrow constrictions is a recurring theme in many biological and engineering applications. Inspired by the motor-driven movement of soft membrane-bound vesicles into closed neuronal dendritic spines, here we study this problem using a combination of passive three-dimensional simulations and a simplified semianalytical theory for the active transport of vesicles forced through constrictions by molecular motors. We show that the motion of these objects is characterized by two dimensionless quantities related to the geometry and to the strength of forcing relative to the vesicle elasticity. We use numerical simulations to characterize the transit time for a vesicle forced by fluid pressure through a constriction in a channel and find that relative to an open channel, transport into a blind end leads to the formation of a smaller forward-flowing lubrication layer that strongly impedes motion. When the fluid pressure forcing is complemented by forces due to molecular motors that are responsible for vesicle trafficking into dendritic spines, we find that the competition between motor forcing and fluid drag results in multistable dynamics reminiscent of the real system. Our study highlights the role of nonlocal hydrodynamic effects in determining the kinetics of vesicular transport in constricted geometries.

  19. A linear induction motor with a coated conductor superconducting secondary

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Zheng, Shijun; Li, Jing; Ma, Guang Tong; Yen, Fei

    2018-07-01

    A linear induction motor system composed of a high-Tc superconducting secondary with close-ended coils made of REBCO coated conductor wire was designed and tested experimentally. The measured thrust, normal force and power loss are presented and explained by combining the flux dynamics inside superconductors with existing linear drive theory. It is found that an inherent capacitive component associated to the flux motion of vortices in the Type-II superconductor reduces the impedance of the coils; from such, the associated Lorentz forces are drastically increased. The resulting breakout thrust of the designed linear motor system was found to be extremely high (up to 4.7 kN/m2) while the associated normal forces only a fraction of the thrust. Compared to its conventional counterparts, high-Tc superconducting secondaries appear to be more feasible for use in maglev propulsion and electromagnetic launchers.

  20. Impedance measurements of the human cochlear partition

    NASA Astrophysics Data System (ADS)

    Raufer, Stefan; Nakajima, Hideko H.

    2018-05-01

    The cochlea is a mechanical frequency analyzer, owing its characteristics to the impedance of the cochlear partition. In humans, the impedance of the partition has not been measured directly, and estimates of the stiffness (a principal component of the impedance) are based on loose assumptions. In this study, we examine not only the stiffness of the basilar membrane (BM), but also the osseous spiral lamina (OSL), which, in human, vibrates substantially. We hypothesize that the OSL contributes significantly to the volume stiffness of the cochlear partition (CP). We measured velocities of the BM and OSL at different radial locations 1 mm from the base of the cochlea in a fresh human cadaveric specimen. Simultaneously, we measured intracochlear pressures on the other side of the partition, in scala vestibuli. With the velocity and pressure measurements we can estimate the specific acoustic impedance of the BM and OSL (Z = p/v). At frequencies well below the resonant frequency, the stiffness of these structures can be extracted by multiplying the impedance by the radian frequency. The specific acoustic stiffness was found to be 1.2 GPa/m on the BM, 6 GPa/m at the juncture where the BM attaches to the OSL, and 10 GPa/m at the midpoint of the OSL. A beam model, appropriate to model the radial motion of the BM in guinea pig or gerbil, cannot describe the displacement of the human CP in the base. Instead, we find that the OSL is hinged near the modiolus and vibrates significantly near the connection to the more compliant BM, contributing greatly the volume compliance of the CP.

  1. Clinical Evidence for the Relationship between Nail Configuration and Mechanical Forces

    PubMed Central

    Ogawa, Rei

    2014-01-01

    Summary: Mechanobiology is an emerging field of science that focuses on the way physical forces and changes in cell or tissue mechanics contribute to development, physiology, and disease. As nails are always exposed to physical stimulation, mechanical forces may have a particularly pronounced effect on nail configuration and could be involved in the development of nail deformities. However, the role of mechanobiology in nail configuration and deformities has rarely been assessed. This review describes what is currently understood regarding the effect of mechanical force on nail configuration and deformities. On the basis of these observations, we hypothesize that nails have an automatic curvature function that allows them to adapt to the daily upward mechanical forces. Under normal conditions, the upward daily mechanical force and the automatic curvature force are well balanced. However, an imbalance between these 2 forces may cause nail deformation. For example, pincer nails may be caused by the absence of upward mechanical forces or a genetic propensity increase in the automatic curvature force, whereas koilonychias may occur when the upward mechanical force exceeds the automatic curvature force, thereby causing the nail to curve outward. This hypothesis is a new concept that could aid the development of innovative methods to prevent and treat nail deformities. PMID:25289309

  2. Opto-acoustic microscopy reveals adhesion mechanics of single cells

    NASA Astrophysics Data System (ADS)

    Abi Ghanem, Maroun; Dehoux, Thomas; Liu, Liwang; Le Saux, Guillaume; Plawinski, Laurent; Durrieu, Marie-Christine; Audoin, Bertrand

    2018-01-01

    Laser-generated GHz-ultrasonic-based technologies have shown the ability to image single cell adhesion and stiffness simultaneously. Using this new modality, we here demonstrate quantitative indicators to investigate contact mechanics and adhesion processes of the cell. We cultured human cells on a rigid substrate, and we used an inverted pulsed opto-acoustic microscope to generate acoustic pulses containing frequencies up to 100 GHz in the substrate. We map the reflection of the acoustic pulses at the cell-substrate interface to obtain images of the acoustic impedance of the cell, Zc, as well as of the stiffness of the interface, K, with 1 μm lateral resolution. Our results show that the standard deviation ΔZc reveals differences between different cell types arising from the multiplicity of local conformations within the nucleus. From the distribution of K-values within the nuclear region, we extract a mean interfacial stiffness, Km, that quantifies the average contact force in areas of the cell displaying weak bonding. By analogy with classical contact mechanics, we also define the ratio of the real to nominal contact areas, Sr/St. We show that Km can be interpreted as a quantitative indicator of passive contact at metal-cell interfaces, while Sr/St is sensitive to active adhesive processes in the nuclear region. The ability to separate the contributions of passive and active adhesion processes should allow gaining insight into cell-substrate interactions, with important applications in tissue engineering.

  3. Opto-acoustic microscopy reveals adhesion mechanics of single cells.

    PubMed

    Abi Ghanem, Maroun; Dehoux, Thomas; Liu, Liwang; Le Saux, Guillaume; Plawinski, Laurent; Durrieu, Marie-Christine; Audoin, Bertrand

    2018-01-01

    Laser-generated GHz-ultrasonic-based technologies have shown the ability to image single cell adhesion and stiffness simultaneously. Using this new modality, we here demonstrate quantitative indicators to investigate contact mechanics and adhesion processes of the cell. We cultured human cells on a rigid substrate, and we used an inverted pulsed opto-acoustic microscope to generate acoustic pulses containing frequencies up to 100 GHz in the substrate. We map the reflection of the acoustic pulses at the cell-substrate interface to obtain images of the acoustic impedance of the cell, Z c , as well as of the stiffness of the interface, K, with 1 μm lateral resolution. Our results show that the standard deviation ΔZ c reveals differences between different cell types arising from the multiplicity of local conformations within the nucleus. From the distribution of K-values within the nuclear region, we extract a mean interfacial stiffness, K m , that quantifies the average contact force in areas of the cell displaying weak bonding. By analogy with classical contact mechanics, we also define the ratio of the real to nominal contact areas, S r /S t . We show that K m can be interpreted as a quantitative indicator of passive contact at metal-cell interfaces, while S r /S t is sensitive to active adhesive processes in the nuclear region. The ability to separate the contributions of passive and active adhesion processes should allow gaining insight into cell-substrate interactions, with important applications in tissue engineering.

  4. Dielectric and impedance spectral characteristics of bulk ZnIn2Se4

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Attia, A. A.; Salem, G. F.; Ali, H. A. M.; Ismail, M. I.

    2014-02-01

    The frequency and temperature dependence of ac conductivity, dielectric constant and dielectric loss of ZnIn2Se4 in a pellet form were investigated in the frequency range of 102-106 Hz and temperature range of 293-356 K. The behavior of ac conductivity was interpreted by the correlated barrier hopping (CBH) model. Temperature dependence of ac conductivity indicates that ac conduction is a thermally activated process. The density of localized states N(EF) and ac activation energy were estimated for various frequencies. Dielectric constant and dielectric loss showed a decrease with increasing frequency and an increase with increasing in temperature. The frequency dependence of real and imaginary parts of the complex impedance was investigated. The relaxation time decreases with the increase in temperature. The impedance spectrum exhibits the appearance of the single semicircular arc. The radius of semicircular arcs decreases with increasing temperature which suggests a mechanism of temperature-dependent on relaxation.

  5. Understanding a reference-free impedance method using collocated piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Kim, Eun Jin; Kim, Min Koo; Sohn, Hoon; Park, Hyun Woo

    2010-03-01

    A new concept of a reference-free impedance method, which does not require direct comparison with a baseline impedance signal, is proposed for damage detection in a plate-like structure. A single pair of piezoelectric (PZT) wafers collocated on both surfaces of a plate are utilized for extracting electro-mechanical signatures (EMS) associated with mode conversion due to damage. A numerical simulation is conducted to investigate the EMS of collocated PZT wafers in the frequency domain at the presence of damage through spectral element analysis. Then, the EMS due to mode conversion induced by damage are extracted using the signal decomposition technique based on the polarization characteristics of the collocated PZT wafers. The effects of the size and the location of damage on the decomposed EMS are investigated as well. Finally, the applicability of the decomposed EMS to the reference-free damage diagnosis is discussed.

  6. Difference in electrodynamic transduction between speaker and alternator in thermoacoustic applications.

    PubMed

    Gonen, Eran; Grossman, Gershon

    2015-09-01

    Conventional reciprocating pistons, normally found in thermoacoustic engines, tend to introduce complex impedance characteristics, including acoustic, mechanical, and electrical portions. System behavior and performance usually rely on proper tuning processes and selection of an optimal point of operation, affected substantially by complementary hardware, typically adjusted for the specific application. The present study proposes an alternative perspective on the alternator behavior, by considering the relative motion between gas and piston during the engine mode of operation. Direct analytical derivation of the velocity distribution inside a tight seal gap and the associated impedance is employed to estimate the electro-acoustic conversion efficiency, thus indicating how to improve the system performance. The influence of acoustic phase, gap dimensions, and working conditions is examined, suggesting the need to develop tighter and longer seal gaps, having increased impedance, to allow optimization for use in upcoming sustainable power generation solutions and smart grids.

  7. Adaptive microwave impedance memory effect in a ferromagnetic insulator.

    PubMed

    Lee, Hanju; Friedman, Barry; Lee, Kiejin

    2016-12-14

    Adaptive electronics, which are often referred to as memristive systems as they often rely on a memristor (memory resistor), are an emerging technology inspired by adaptive biological systems. Dissipative systems may provide a proper platform to implement an adaptive system due to its inherent adaptive property that parameters describing the system are optimized to maximize the entropy production for a given environment. Here, we report that a non-volatile and reversible adaptive microwave impedance memory device can be realized through the adaptive property of the dissipative structure of the driven ferromagnetic system. Like the memristive device, the microwave impedance of the device is modulated as a function of excitation microwave passing through the device. This kind of new device may not only helpful to implement adaptive information processing technologies, but also may be useful to investigate and understand the underlying mechanism of spontaneous formation of complex and ordered structures.

  8. Adaptive microwave impedance memory effect in a ferromagnetic insulator

    PubMed Central

    Lee, Hanju; Friedman, Barry; Lee, Kiejin

    2016-01-01

    Adaptive electronics, which are often referred to as memristive systems as they often rely on a memristor (memory resistor), are an emerging technology inspired by adaptive biological systems. Dissipative systems may provide a proper platform to implement an adaptive system due to its inherent adaptive property that parameters describing the system are optimized to maximize the entropy production for a given environment. Here, we report that a non-volatile and reversible adaptive microwave impedance memory device can be realized through the adaptive property of the dissipative structure of the driven ferromagnetic system. Like the memristive device, the microwave impedance of the device is modulated as a function of excitation microwave passing through the device. This kind of new device may not only helpful to implement adaptive information processing technologies, but also may be useful to investigate and understand the underlying mechanism of spontaneous formation of complex and ordered structures. PMID:27966536

  9. An equivalent network representation of a clamped bimorph piezoelectric micromachined ultrasonic transducer with circular and annular electrodes using matrix manipulation techniques.

    PubMed

    Sammoura, Firas; Smyth, Katherine; Kim, Sang-Gook

    2013-09-01

    An electric circuit model for a clamped circular bimorph piezoelectric micromachined ultrasonic transducer (pMUT) was developed for the first time. The pMUT consisted of two piezoelectric layers sandwiched between three thin electrodes. The top and bottom electrodes were separated into central and annular electrodes by a small gap. While the middle electrode was grounded, the central and annular electrodes were biased with two independent voltage sources. The strain mismatch between the piezoelectric layers caused the plate to vibrate and transmit a pressure wave, whereas the received echo generated electric charges resulting from plate deformation. The clamped pMUT plate was separated into a circular and an annular plate, and the respective electromechanical transformation matrices were derived. The force and velocity vectors were properly selected using Hamilton's principle and the necessary boundary conditions were invoked. The electromechanical transformation matrix for the clamped circular pMUT was deduced using simple matrix manipulation techniques. The pMUT performance under three biasing schemes was elaborated: 1) central electrode only, 2) central and annular electrodes with voltages of the same magnitude and polarity, and 3) central and annular electrodes with voltages of the same magnitude and opposite polarity. The circuit parameters of the pMUT were extracted for each biasing scheme, including the transformer ratio, the clamped electric impedance, and the open-circuit mechanical impedance. Each pMUT scheme was characterized under different acoustic loadings using the theoretically developed model, which was verified with finite element modeling (FEM) simulation. The electrode size was optimized to maximize the electromechanical transformer ratio. As such, the developed model could provide more insight into the design, optimization, and characterization of pMUTs and allow for performance comparison with their cMUT counterparts.

  10. Combined electromechanical impedance and fiber optic diagnosis of aerospace structures

    NASA Astrophysics Data System (ADS)

    Schlavin, Jon; Zagrai, Andrei; Clemens, Rebecca; Black, Richard J.; Costa, Joey; Moslehi, Behzad; Patel, Ronak; Sotoudeh, Vahid; Faridian, Fereydoun

    2014-03-01

    Electromechanical impedance is a popular diagnostic method for assessing structural conditions at high frequencies. It has been utilized, and shown utility, in aeronautic, space, naval, civil, mechanical, and other types of structures. By contrast, fiber optic sensing initially found its niche in static strain measurement and low frequency structural dynamic testing. Any low frequency limitations of the fiber optic sensing, however, are mainly governed by its hardware elements. As hardware improves, so does the bandwidth (frequency range * number of sensors) provided by the appropriate enabling fiber optic sensor interrogation system. In this contribution we demonstrate simultaneous high frequency measurements using fiber optic and electromechanical impedance structural health monitoring technologies. A laboratory specimen imitating an aircraft wing structure, incorporating surfaces with adjustable boundary conditions, was instrumented with piezoelectric and fiber optic sensors. Experiments were conducted at different structural boundary conditions associated with deterioration of structural health. High frequency dynamic responses were collected at multiple locations on a laboratory wing specimen and conclusions were drawn about correspondence between structural damage and dynamic signatures as well as correlation between electromechanical impedance and fiber optic sensors spectra. Theoretical investigation of the effect of boundary conditions on electromechanical impedance spectra is presented and connection to low frequency structural dynamics is suggested. It is envisioned that acquisition of high frequency structural dynamic responses with multiple fiber optic sensors may open new diagnostic capabilities for fiber optic sensing technologies.

  11. Lowered pH Alters Decay but Not Speed of Tectorial Membrane Waves

    NASA Astrophysics Data System (ADS)

    Farrahi, Shirin; Ghaffari, Roozbeh; Freeman, Dennis M.

    2011-11-01

    Tectorial membrane (TM) traveling waves and mechanical shear impedances were measured in artificial endolymph baths at neutral and acidic pHs. Lowering pH from 7 to 4 significantly decreases the spatial extent of TM waves but has a relatively minor effect on wave speed. At pH 4, the imaginary component of TM shear impedance, which relates to the shear modulus, drops significantly; whereas, the real component, which relates to viscosity, is reduced less. These results suggest that shear modulus, and not viscosity, controls the extent of TM waves at lower pH.

  12. Design and calibration of a high-frequency oscillatory ventilator.

    PubMed

    Simon, B A; Mitzner, W

    1991-02-01

    High-frequency ventilation (HFV) is a modality of mechanical ventilation which presents difficult technical demands to the clinical or laboratory investigator. The essential features of an ideal HFV system are described, including wide frequency range, control of tidal volume and mean airway pressure, minimal dead space, and high effective internal impedance. The design and performance of a high-frequency oscillatory ventilation system is described which approaches these requirements. The ventilator utilizes a linear motor regulated by a closed loop controller and driving a novel frictionless double-diaphragm piston pump. Finally, the ventilator performance is tested using the impedance model of Venegas [1].

  13. Dispersive electron transport in tris(8-hydroxyquinoline) aluminum (Alq3) probed by impedance spectroscopy.

    PubMed

    Berleb, Stefan; Brütting, Wolfgang

    2002-12-31

    Electron transport in tris(8-hydroxyquinoline) aluminum (Alq3) is investigated by impedance spectroscopy under conditions of space-charge limited conduction (SCLC). Existing SCLC models are extended to include the field dependence of the charge carrier mobility and energetically distributed trap states. The dispersive nature of electron transport is revealed by a frequency-dependent mobility with a dispersion parameter alpha in the range 0.4-0.5, independent of temperature. This indicates that positional rather than energetic disorder is the dominant mechanism for the dispersive transport of electrons in Alq3.

  14. Eddy-Current Monitoring Of Composite Layups

    NASA Technical Reports Server (NTRS)

    Fox, Robert L.; Buckley, John D.

    1993-01-01

    Eddy-current-probe apparatus used to determine predominant orientations of fibers in fiber/matrix composite materials. Apparatus nondestructive, noninvasive means for monitoring composite prepregs and layups during fabrication to ensure predictable and repeatable mechanical properties of finished composite panels. Consists essentially of electromagnet coil wrapped around horseshoe-shaped powdered-iron or ferrite ore. Optionally, capacitor included in series or parallel with coil to form resonant circuit. Impedance monitor excites radio-frequency current in coil and measures impedance of probe circuit. Affected by whatever material placed near ends of core, where material intercepts alternating magnetic field excited in core by current in coil.

  15. Impedance control in a wave-based teleoperator for rehabilitation motor therapies assisted by robots.

    PubMed

    Mendoza, Marco; Bonilla, Isela; González-Galván, Emilio; Reyes, Fernando

    2016-01-01

    This paper presents an improved wave-based bilateral teleoperation scheme for rehabilitation therapies assisted by robot manipulators. The main feature of this bilateral teleoperator is that both robot manipulators, master and slave, are controlled by impedance. Thus, a pair of motion-based adaptive impedance controllers are integrated into a wave-based configuration, in order to guarantee a stable human-robot interaction and to compensate the position drift, characteristic of the available schemes of bilateral teleoperation. Moreover, the teleoperator stability, in the presence of time delays in the communication channel, is guaranteed because the wave-variable approach is included to encode the force and velocity signals. It should be noted that the proposed structure enables the implementation of several teleoperator schemes, from passive therapies, without the intervention of a human operator on the master side, to fully active therapies where both manipulators interact with humans in a stable manner. The suitable performance of the proposed teleoperator is verified through some results obtained from the simulation of the passive and active-constrained modes, by considering typical tasks in motor-therapy rehabilitation, where an improved behavior is observed when compared to implementations of the classical wave-based approach. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Magnetoacoustic tomography with magnetic induction (MAT-MI)

    NASA Astrophysics Data System (ADS)

    Xu, Yuan; He, Bin

    2005-11-01

    We report our theoretical and experimental investigations on a new imaging modality, magnetoacoustic tomography with magnetic induction (MAT-MI). In MAT-MI, the sample is located in a static magnetic field and a time-varying (µs) magnetic field. The time-varying magnetic field induces an eddy current in the sample. Consequently, the sample will emit ultrasonic waves by the Lorentz force. The ultrasonic signals are collected around the object to reconstruct images related to the electrical impedance distribution in the sample. MAT-MI combines the good contrast of electrical impedance tomography with the good spatial resolution of sonography. MAT-MI has two unique features due to the solenoid nature of the induced electrical field. Firstly, MAT-MI could provide an explicit or simple quantitative reconstruction algorithm for the electrical impedance distribution. Secondly, it promises to eliminate the shielding effects of other imaging modalities in which the current is applied directly with electrodes. In the theoretical part, we provide formulae for both the forward and inverse problems of MAT-MI and estimate the signal amplitude in biological tissues. In the experimental part, the experimental setup and methods are introduced and the signals and the image of a metal object by means of MAT-MI are presented. The promising pilot experimental results suggest the feasibility of the proposed MAT-MI approach.

  17. Remotely adjustable fishing jar and method for using same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyatt, W.B.

    1992-10-20

    This patent describes a method for providing a jarring force to dislodge objects stuck in well bores, the method it comprises: connecting a jarring tool between an operating string and an object in a well bore; selecting a jarring force to be applied to the object; setting the selected reference jarring force into a mechanical memory mechanism by progressively engaging a first latch body and a second latch body; retaining the reference jarring force in the mechanical memory mechanism during diminution of tensional force applied by the operating string; and initiating an upwardly directed impact force within the jarring toolmore » by increasing tensional force on the operating string to a value greater than the tensional force corresponding with the selected jarring force. This patent also describes a remotely adjustable downhole fishing jar apparatus comprising: an operating mandrel; an impact release spring; a mechanical memory mechanism; and releasable latching means.« less

  18. Bias Voltage-Dependent Impedance Spectroscopy Analysis of Hydrothermally Synthesized ZnS Nanoparticles

    NASA Astrophysics Data System (ADS)

    Dey, Arka; Dhar, Joydeep; Sil, Sayantan; Jana, Rajkumar; Ray, Partha Pratim

    2018-04-01

    In this report, bias voltage-dependent dielectric and electron transport properties of ZnS nanoparticles were discussed. ZnS nanoparticles were synthesized by introducing a modified hydrothermal process. The powder XRD pattern indicates the phase purity, and field emission scanning electron microscope image demonstrates the morphology of the synthesized sample. The optical band gap energy (E g = 4.2 eV) from UV measurement explores semiconductor behavior of the synthesized material. The electrical properties were performed at room temperature using complex impedance spectroscopy (CIS) technique as a function of frequency (40 Hz-10 MHz) under different forward dc bias voltages (0-1 V). The CIS analysis demonstrates the contribution of bulk resistance in conduction mechanism and its dependency on forward dc bias voltages. The imaginary part of the impedance versus frequency curve exhibits the existence of relaxation peak which shifts with increasing dc forward bias voltages. The dc bias voltage-dependent ac and dc conductivity of the synthesized ZnS was studied on thin film structure. A possible hopping mechanism for electrical transport processes in the system was investigated. Finally, it is worth to mention that this analysis of bias voltage-dependent dielectric and transport properties of as-synthesized ZnS showed excellent properties for emerging energy applications.

  19. Attenuation in invasive blood pressure measurement systems.

    PubMed

    Ercole, A

    2006-05-01

    Poor fidelity invasive arterial blood pressure (IABP) traces are a frequent practical problem. It is common practice to describe any such trace as being 'damped'; the resonance behaviour of IABP measurement systems having been extensively described in the literature. However, as poor quality arterial blood pressure signals are seen even with optimal pressure transduction circuits, this cannot be the sole mechanism. In this commentary the classical lumped-parameter Windkessel model is extended by postulating an additional impedance proximal to the site of IABP measurement. This impedance represents any mechanical obstruction to laminar flow. Equations are presented relating measured and actual arterial blood pressures in terms of the model impedances. The reactive properties of such a partial obstruction may lead to an IABP trace that is superficially similar in appearance to the case of an over-damped measurement system. However, this phenomenon should be termed 'attenuation' rather than 'damping' and is probably more common. The distinction is of practical importance as the behaviour of the measured systolic and diastolic pressures is different -- both are systematically underestimated and the mean arterial pressure is thus not preserved. Furthermore, this error varies inversely with the peripheral vascular resistance of the tissues distal to the measurement point, therefore apparently magnifying the effect of vasodilatation on blood pressure or derived quantities.

  20. What can we learn from AC impedance study about the bipolar resistive switching effect in LaAlO3/Nb:SrTiO3 heterostructures

    NASA Astrophysics Data System (ADS)

    Jiang, Xingli; Zhao, Yonggang; Zhang, Xin; Zhu, Meihong; Zhang, Huiyun; Shang, Dashan; Sun, Jirong

    2013-03-01

    Recently, resistive switching (RS) effect has attracted much attention due to its importance in potential applications in resistance random access memory. It has been shown that traps play an important role in RS effect. However, a direct and in-depth study on the characteristics of traps is still lacking so far, including the spatial and energy distribution of traps, relaxation of trapped carriers and transport of carriers via traps, especially the effect of historical process on the transport of carriers, which are important for understanding the mechanism of RS effect and also essential for optimizing devices. We studied the RS effect in heterostructures composed of LaAlO3 (LAO) and Nb:SrTiO3 (NSTO) from 80 to 300 K by using AC impedance technique. It was demonstrated that the bipolar RS effect originates from the LAO/NSTO interface and the resistance states are controlled by the filling status of traps via the trapping/detrapping of electrons. Moreover, the spatial and energy distributions of traps and the effect of history on the transport of carriers were obtained. A model was proposed to explain the experimental results. This work demonstrates that AC impedance technique is powerful for uncovering the mechanism of RS effect.

  1. Spatiotemporally and Mechanically Controlled Triggering of Mast Cells using Atomic Force Microscopy

    PubMed Central

    Hu, Kenneth K.; Bruce, Marc A.; Butte, Manish J.

    2014-01-01

    Mast cells are thought to be sensitive to mechanical forces, for example, coughing in asthma or pressure in “physical urticarias”. Conversion of mechanical forces to biochemical signals could potentially augment antigenic signaling. Studying the combined effects of mechanical and antigenic cues on mast cells and other hematopoietic cells has been elusive. Here, we present an approach using a modified atomic force microscope cantilever to deliver antigenic signals to mast cells while simultaneously applying mechanical forces. We developed a strategy to concurrently record degranulation events by fluorescence microscopy during antigenic triggering. Finally, we also measured the mechanical forces generated by mast cells while antigen receptors are ligated. We showed that mast cells respond to antigen delivered by the AFM cantilever with prompt degranulation and the generation of strong pushing and pulling forces. We did not discern any relationship between applied mechanical forces and the kinetics of degranulation. These experiments present a new method for dissecting the interactions of mechanical and biochemical cues in signaling responses of immune cells. PMID:24777418

  2. Elasticity of the eye's crystalline lens: A Brillouin light scattering study.

    NASA Astrophysics Data System (ADS)

    Bailey, S.; Gump, J.; Sooryakumar, R.; Jayaprakash, C.; Venkiteshwar, M. S.; Bullimore, M.; Twa, M.

    2009-03-01

    Focusing the eye on a near object results in an increase in its optical power brought about by contraction of the ciliary muscles and an increase in the lens surface curvature. Distant vision occurs when the muscular force flattens the lens. Central to the ability of the lens to alter shape are its mechanical properties. Thus, given that hardening of the lens would impede deformation and reduce its ability to undergo the changes required for accommodation, a noninvasive approach to measure the elastic properties of the lens is valuable. We present results of Brillouin scattering from bovine and human lenses (from the organ donor program at The Ohio State University) that measure their high frequency acoustic response. These measurements are conducted with a few milli-watts of laser power and, in the case of bovine lenses, from entire intact eye globes, allow the stiffness of the lens to be mapped across its cross-section. The results will be compared to values of the shear- and bulk-moduli determined from other techniques and the implications of differences in these moduli discussed.

  3. Nanostructured tin oxide films: Physical synthesis, characterization, and gas sensing properties.

    PubMed

    Ingole, S M; Navale, S T; Navale, Y H; Bandgar, D K; Stadler, F J; Mane, R S; Ramgir, N S; Gupta, S K; Aswal, D K; Patil, V B

    2017-05-01

    Nanostructured tin oxide (SnO 2 ) films are synthesized using physical method i.e. thermal evaporation and are further characterized with X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy measurement techniques for confirming its structure and morphology. The chemiresistive properties of SnO 2 films are studied towards different oxidizing and reducing gases where these films have demonstrated considerable selectivity towards oxidizing nitrogen dioxide (NO 2 ) gas with a maximum response of 403% to 100ppm @200°C, and fast response and recovery times of 4s and 210s, respectively, than other test gases. In addition, SnO 2 films are enabling to detect as low as 1ppm NO 2 gas concentration @200°C with 23% response enhancement. Chemiresistive performances of SnO 2 films are carried out in the range of 1-100ppm and reported. Finally, plausible adsorption and desorption reaction mechanism of NO 2 gas molecules with SnO 2 film surface has been thoroughly discussed by means of an impedance spectroscopy analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. South-American plate advance and forced Andean trench retreat as drivers for transient flat subduction episodes.

    PubMed

    Schepers, Gerben; van Hinsbergen, Douwe J J; Spakman, Wim; Kosters, Martha E; Boschman, Lydian M; McQuarrie, Nadine

    2017-05-16

    At two trench segments below the Andes, the Nazca Plate is subducting sub-horizontally over ∼200-300 km, thought to result from a combination of buoyant oceanic-plateau subduction and hydrodynamic mantle-wedge suction. Whether the actual conditions for both processes to work in concert existed is uncertain. Here we infer from a tectonic reconstruction of the Andes constructed in a mantle reference frame that the Nazca slab has retreated at ∼2 cm per year since ∼50 Ma. In the flat slab portions, no rollback has occurred since their formation at ∼12 Ma, generating 'horse-shoe' slab geometries. We propose that, in concert with other drivers, an overpressured sub-slab mantle supporting the weight of the slab in an advancing upper plate-motion setting can locally impede rollback and maintain flat slabs until slab tearing releases the overpressure. Tear subduction re-establishes a continuous slab and allows the process to recur, providing a mechanism for the transient character of flat slabs.

  5. A microelectrode array electrodeposited with reduced graphene oxide and Pt nanoparticles for norepinephrine and electrophysiological recordings

    NASA Astrophysics Data System (ADS)

    Wang, Li; Song, Yilin; Zhang, Yu; Xu, Shengwei; Xu, Huiren; Wang, Mixia; Wang, Yang; Cai, Xinxia

    2017-11-01

    Norepinephrine (NE), a common neurotransmitter released by locus coeruleus neurons, plays an essential role in the communication mechanism of the mammalian nervous system. In this work, a microelectrode array (MEA) was fabricated by micro-electromechanical system (MEMS) technology to provide a rapid, sensitive and reliable method for the direct determination in NE dynamic secretion. To improve the electrical performance, the MEA was electrodeposited with the reduced graphene oxide and Pt nanoparticles (rGOPNps). rGOPNps-MEA was investigated using scanning electron microscopy, atomic force microscopy and electrochemical impedance spectroscopy, differential pulse voltammetry exhibited remarkably electrocatalytic properties towards NE. Calibration results showed a sensitivity of 1.03 nA µM-1 to NE with a detection limit of 0.08 µM. In Particular, the MEA was successfully used for measuring dynamic extracellular NE secretion from the locus coeruleus brain slice, as well as monitoring spike firing from the hippocampal brain slice. This fabricated device has potential in studies of spatially resolved delivery of trace neurochemicals and electrophysiological activities of a variety of biological tissues in vitro.

  6. Graphene by one-step chemical vapor deposition from ferrocene vapors: Properties and electrochemical evaluation

    NASA Astrophysics Data System (ADS)

    Pilatos, George; Perdikaki, Anna V.; Sapalidis, Andreas; Pappas, George S.; Giannakopoulou, Tatiana; Tsoutsou, Dimitra; Xenogiannopoulou, Evangelia; Boukos, Nikos; Dimoulas, Athanasios; Trapalis, Christos; Kanellopoulos, Nick K.; Karanikolos, Georgios N.

    2016-02-01

    Growth of few-layer graphene using ferrocene as precursor by chemical vapor deposition is reported. The growth did not involve any additional carbon or catalyst source or external hydrocarbon gases. Parametric investigation was performed using different conditions, namely, varying growth temperature from 600 to1000 °C, and growth duration from 5 min to 3 h, as well as using fast quenching or gradual cooling after the thermal treatment, in order to examine the effect on the quality of the produced graphene. The growth took place on silicon wafers and resulted, under optimal conditions, in formation of graphene with 2-3 layers and high graphitic quality, as evidenced by Raman spectroscopy, with characteristic full width at half maximum of the 2D band of 49.46 cm-1, and I2D/IG and ID/IG intensity ratios of 1.15 and 0.26, respectively. Atomic force microscopy and X-ray photoelectron spectroscopy were employed to further evaluate graphene characteristics and enlighten growth mechanism. Electrochemical evaluation of the developed material was performed using cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge-discharge measurements.

  7. SELF ALIGNED TIP DEINSULATION OF ATOMIC LAYER DEPOSITED AL2O3 AND PARYLENE C COATED UTAH ELECTRODE ARRAY BASED NEURAL INTERFACES

    PubMed Central

    Xie, Xianzong; Rieth, Loren; Negi, Sandeep; Bhandari, Rajmohan; Caldwell, Ryan; Sharma, Rohit; Tathireddy, Prashant; Solzbacher, Florian

    2014-01-01

    The recently developed alumina and Parylene C bi-layer encapsulation improved the lifetime of neural interfaces. Tip deinsulation of Utah electrode array based neural interfaces is challenging due to the complex 3D geometries and high aspect ratios of the devices. A three-step self-aligned process was developed for tip deinsulation of bilayer encapsulated arrays. The deinsulation process utilizes laser ablation to remove Parylene C, O2 reactive ion etching to remove carbon and Parylene residues, and buffered oxide etch to remove alumina deposited by atomic layer deposition, and expose the IrOx tip metallization. The deinsulated iridium oxide area was characterized by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy to determine the morphology, surface morphology, composition, and electrical properties of the deposited layers and deinsulated tips. The alumina layer was found to prevent the formation of micro cracks on iridium oxide during the laser ablation process, which has been previously reported as a challenge for laser deinsulation of Parylene films. The charge injection capacity, charge storage capacity, and impedance of deinsulated iridium oxide were characterized to determine the deinsulation efficacy compared to Parylene-only insulation. Deinsulated iridium oxide with bilayer encapsulation had higher charge injection capacity (240 vs 320 nC) and similar electrochemical impedance (2.5 vs 2.5 kΩ) compared to deinsulated iridium oxide with only Parylene coating for an area of 2 × 10−4 cm2. Tip impedances were in the ranges of 20 to 50 kΩ, with median of 32 KΩ and standard deviation of 30 kΩ, showing the effectiveness of the self-aligned deinsulation process for alumina and Parylene C bi-layer encapsulation. The relatively uniform tip impedance values demonstrated the consistency of tip exposures. PMID:24771981

  8. Strain hardening in startup shear of long-chain branched polymer solutions.

    PubMed

    Liu, Gengxin; Cheng, Shiwang; Lee, Hyojoon; Ma, Hongwei; Xu, Hongde; Chang, Taihyun; Quirk, Roderic P; Wang, Shi-Qing

    2013-08-09

    We show for the first time that entangled polymeric liquids containing long-chain branching can exhibit strain hardening upon startup shear. As the significant long-chain branching impedes chain disentanglement, Gaussian coils between entanglements can deform to reach the finite extensibility limit where the intrachain retraction force exceeds the value expected from the usual conformational entropy loss evaluated based on Gaussian chain statistics. The phenomenon is expected to lead to further theoretical understanding.

  9. On the vibration properties of composite materials and structures

    NASA Astrophysics Data System (ADS)

    Lu, Y. P.; Neilson, H. C.; Roscoe, A. J.

    1993-01-01

    In recent years, there has been a widespread assumption that composite materials and structures offer enhanced vibration and acoustic properties. This assumption has to be evaluated or validated. The objective of this article is to address the subject of vibration characteristics and the related force transmissibility properties of composite structures. For a given composite beam made of Hercules AS4/3501-6 graphite/epoxy with a layered structure sequence of (0,0,30,-30)(sub 6S), resonance frequencies, structural damping, responses, impedances, and force transmissibility properties are determined, discussed, and compared with those of a steel beam. This article proposes a procedure to evaluate the vibration properties of individual composites. The criterion defined for performance comparison between composite materials and conventional materials is also discussed.

  10. Fluid assisted installation of electrical cable accessories

    DOEpatents

    Mayer, Robert W.; Silva, Frank A.

    1977-01-01

    An electrical cable accessory includes a generally tubular member of elastomeric material which is to be installed by placement over a cylindrical surface to grip the cylindrical surface, when in appropriate assembled relation therewith, with a predetermined gripping force established by dilation of the tubular member, the installation being facilitated by introducing fluid under pressure, through means provided in the tubular member, between the tubular member and the cylindrical surface, and simultaneously impeding the escape of the fluid under pressure from between the tubular member and the cylindrical surface by means adjacent one of the ends of the tubular member to cause dilation of the tubular member and establish a fluid layer between the tubular member and the cylindrical surface, thereby reducing the gripping force during installation.

  11. Electrical Properties Assessed by Bioelectrical Impedance Spectroscopy as Biomarkers of Age-related Loss of Skeletal Muscle Quantity and Quality.

    PubMed

    Yamada, Yosuke; Buehring, Bjoern; Krueger, Diane; Anderson, Rozalyn M; Schoeller, Dale A; Binkley, Neil

    2017-09-01

    Skeletal muscle, in addition to being comprised of a heterogeneous muscle fiber population, also includes extracellular components that do not contribute to positive tensional force production. Here we test segmental bioelectrical impedance spectroscopy (S-BIS) to assess muscle intracellular mass and composition. S-BIS can evaluate electrical properties that may be related to muscle force production. Muscle fiber membranes separate the intracellular components from the extracellular environment and consist of lipid bilayers which act as an electrical capacitor. We found that S-BIS measures accounted for ~85% of the age-related decrease in appendicular muscle power compared with only ~49% for dual-energy x-ray absorptiometry (DXA) measures. Indices of extracellular (noncontractile) and cellular (contractile) compartments in skeletal muscle tissues were determined using the Cole-Cole plot from S-BIS measures. Characteristic frequency, membrane capacitance, and phase angle determined by Cole-Cole analysis together presented a S-BIS complex model that explained ~79% of interindividual variance of leg muscle power. This finding underscores the value of S-BIS to measure muscle composition rather than lean mass as measured by DXA and suggests that S-BIS should be highly informative in skeletal muscle physiology. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. A Sit-to-Stand Training Robot and Its Performance Evaluation: Dynamic Analysis in Lower Limb Rehabilitation Activities

    NASA Astrophysics Data System (ADS)

    Cao, Enguo; Inoue, Yoshio; Liu, Tao; Shibata, Kyoko

    In many countries in which the phenomenon of population aging is being experienced, motor function recovery activities have aroused much interest. In this paper, a sit-to-stand rehabilitation robot utilizing a double-rope system was developed, and the performance of the robot was evaluated by analyzing the dynamic parameters of human lower limbs. For the robot control program, an impedance control method with a training game was developed to increase the effectiveness and frequency of rehabilitation activities, and a calculation method was developed for evaluating the joint moments of hip, knee, and ankle. Test experiments were designed, and four subjects were requested to stand up from a chair with assistance from the rehabilitation robot. In the experiments, body segment rotational angles, trunk movement trajectories, rope tensile forces, ground reaction forces (GRF) and centers of pressure (COP) were measured by sensors, and the moments of ankle, knee and hip joint were real-time calculated using the sensor-measured data. The experiment results showed that the sit-to-stand rehabilitation robot with impedance control method could maintain the comfortable training postures of users, decrease the moments of limb joints, and enhance training effectiveness. Furthermore, the game control method could encourage collaboration between the brain and limbs, and allow for an increase in the frequency and intensity of rehabilitation activities.

  13. Corrosion mechanism and model of pulsed DC microarc oxidation treated AZ31 alloy in simulated body fluid

    NASA Astrophysics Data System (ADS)

    Gu, Yanhong; Chen, Cheng-fu; Bandopadhyay, Sukumar; Ning, Chengyun; Zhang, Yongjun; Guo, Yuanjun

    2012-06-01

    This paper addresses the effect of pulse frequency on the corrosion behavior of microarc oxidation (MAO) coatings on AZ31 Mg alloys in simulated body fluid (SBF). The MAO coatings were deposited by a pulsed DC mode at four different pulse frequencies of 300 Hz, 500 Hz, 1000 Hz and 3000 Hz with a constant pulse ratio. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests were used for corrosion rate and electrochemical impedance evaluation. The corroded surfaces were examined by X-ray diffraction (XRD), X-ray fluorescence (XRF) and optical microscopy. All the results exhibited that the corrosion resistance of MAO coating produced at 3000 Hz is superior among the four frequencies used. The XRD spectra showed that the corrosion products contain hydroxyapatite, brucite and quintinite. A model for corrosion mechanism and corrosion process of the MAO coating on AZ31 Mg alloy in the SBF is proposed.

  14. Dielectric and ac ionic conductivity investigation of Li2SrP2O7

    NASA Astrophysics Data System (ADS)

    Ajili, O.; Louati, B.; Guidara, K.

    2018-07-01

    The pyrophosphate Li2SrP2O7 compound has been synthesized by the classic ceramic method and characterized by X-ray diffraction, IR, Raman and electrical impedance spectroscopy. Detailed electrical properties of the compound were analyzed as a function of frequency (209 Hz-1 MHz) and temperature (519-628) K. Impedance analysis exhibits the grain and grain boundary contribution to the electrical response of the sample. The temperature dependence of these contribution obey the Arrhenius law with activation energies (1.03 ± 0.05) and (1.25 ± 0.05) eV, respectively. The ac conductivity for grain contribution was interpreted using the universal Jonscher's power law. The temperature dependence of frequency exponent s was investigated to understand the conduction mechanism. The correlated barrier hopping model was found to be the best model describing the conduction mechanism.

  15. Dielectric and ac ionic conductivity investigation of Li2SrP2O7

    NASA Astrophysics Data System (ADS)

    Ajili, O.; Louati, B.; Guidara, K.

    2018-02-01

    The pyrophosphate Li2SrP2O7 compound has been synthesized by the classic ceramic method and characterized by X-ray diffraction, IR, Raman and electrical impedance spectroscopy. Detailed electrical properties of the compound were analyzed as a function of frequency (209 Hz-1 MHz) and temperature (519-628) K. Impedance analysis exhibits the grain and grain boundary contribution to the electrical response of the sample. The temperature dependence of these contribution obey the Arrhenius law with activation energies (1.03 ± 0.05) and (1.25 ± 0.05) eV, respectively. The ac conductivity for grain contribution was interpreted using the universal Jonscher's power law. The temperature dependence of frequency exponent s was investigated to understand the conduction mechanism. The correlated barrier hopping model was found to be the best model describing the conduction mechanism.

  16. Structure, Raman, dielectric behavior and electrical conduction mechanism of strontium titanate

    NASA Astrophysics Data System (ADS)

    Trabelsi, H.; Bejar, M.; Dhahri, E.; Graça, M. P. F.; Valente, M. A.; Khirouni, K.

    2018-05-01

    Strontium titanate was prepared by solid-state reaction method. According to the XRD, it was single phase and has a cubic perovskite structure. The Raman spectroscopic investigation was carried out at room-temperature, and the second-order Raman modes were observed. By employing impedance spectroscopy, the dielectric relaxation and electrical properties were investigated over the temperature range of 500-700 K at various frequencies. The activation energies evaluated from dielectric and modulus studies are in good agreement and these values are attributed to the bulk relaxation. The impedance data were well fitted to an (R1//C1)-(R2//CPE1) equivalent electrical circuit. It could be concluded that the grain boundaries are more resistive and capacitive than the grains. The ac conductivity was found to follow the Jonscher's universal dynamic law ωS and the correlated barrier hopping model (CBH) has been proposed to describe the conduction mechanism.

  17. AC and DC electrical properties of graphene nanoplatelets reinforced epoxy syntactic foam

    NASA Astrophysics Data System (ADS)

    Zegeye, Ephraim; Wicker, Scott; Woldesenbet, Eyassu

    2018-04-01

    Benefits of employing graphene nanopletlates (GNPLs) in composite structures include mechanical as well as multifunctional properties. Understanding the impedance behavior of GNPLs reinforced syntactic foams may open new applications for syntactic foam composites. In this work, GNPLs reinforced syntactic foams were fabricated and tested for DC and AC electrical properties. Four sets of syntactic foam samples containing 0, 0.1, 0.3, and 0.5 vol% of GNPLs were fabricated and tested. Significant increase in conductivity of syntactic foams due to the addition of GNPLs was noted. AC impedance measurements indicated that the GNPLs syntactic foams become frequency dependent as the volume fraction of GNPLs increases. With addition of GNPLs, the characteristic of the syntactic foams are also observed to transition from dominant capacitive to dominant resistive behavior. This work was carried out at Southern University, Mechanical Engineering Department, Baton Rouge, LA 70802, United States of America.

  18. Multifunctional Antenna Techniques

    DTIC Science & Technology

    2015-11-25

    the planar structure that can be sufficiently isolated from the radiation mechanism of the antenna and transformed into a TEM transmission line feed...an equivalent transmission line structure, and isolate the physical 5 | P a g e mechanisms responsible for impedance and radiation behavior...gap-fed Archimedean spiral antenna in free space with non-negligible metal width, insertion PMC boundaries to isolate the radiation and propagation

  19. In-field implementation of impedance-based structural health monitoring for insulated rail joints

    NASA Astrophysics Data System (ADS)

    Albakri, Mohammad I.; Malladi, V. V. N. Sriram; Woolard, Americo G.; Tarazaga, Pablo A.

    2017-04-01

    Track defects are a major safety concern for the railroad industry. Among different track components, insulated rail joints, which are widely used for signaling purposes, are considered a weak link in the railroad track. Several joint-related defects have been identified by the railroad community, including rail wear, torque loss, and joint bar breakage. Current track inspection techniques rely on manual and visual inspection or on specially equipped testing carts, which are costly, timeconsuming, traffic disturbing, and prone to human error. To overcome the aforementioned limitations, the feasibility of utilizing impedance-based structural health monitoring for insulated rail joints is investigated in this work. For this purpose, an insulated joint, provided by Koppers Inc., is instrumented with piezoelectric transducers and assembled with 136 AREA rail plugs. The instrumented joint is then installed and tested at the Facility for Accelerated Service Testing, Transportation Technology Center Inc. The effects of environmental and operating conditions on the measured impedance signatures are investigated through a set of experiments conducted at different temperatures and loading conditions. The capabilities of impedance-based SHM to detect several joint-related damage types are also studied by introducing reversible mechanical defects to different joint components.

  20. Spinal needle force monitoring during lumbar puncture using fiber Bragg grating force device.

    PubMed

    Ambastha, Shikha; Umesh, Sharath; Dabir, Sundaresh; Asokan, Sundarrajan

    2016-11-01

    A technique for real-time dynamic monitoring of force experienced by a spinal needle during lumbar puncture using a fiber Bragg grating (FBG) sensor is presented. The proposed FBG force device (FBGFD) evaluates the compressive force on the spinal needle during lumbar puncture, particularly avoiding the bending effect on the needle. The working principle of the FBGFD is based on transduction of force experienced by the spinal needle into strain variations monitored by the FBG sensor. FBGFD facilitates external mounting of a spinal needle for its smooth insertion during lumbar puncture without any intervention. The developed FBGFD assists study and analysis of the force required for the spinal needle to penetrate various tissue layers from skin to the epidural space; this force is indicative of the varied resistance offered by different tissue layers for the spinal needle traversal. Calibration of FBGFD is performed on a micro-universal testing machine for 0 to 20 N range with an obtained resolution of 0.021 N. The experimental trials using spinal needles mounted on FBGFD are carried out on a human cadaver specimen with punctures made in the lumbar region from different directions. Distinct forces are recorded when the needle encounters skin, muscle tissue, and a bone in its traversing path. Real-time spinal needle force monitoring using FBGFD may reduce potentially serious complications during the lumbar puncture, such as overpuncturing of tissue regions, by impeding the spinal needle insertion at epidural space.

  1. Spinal needle force monitoring during lumbar puncture using fiber Bragg grating force device

    NASA Astrophysics Data System (ADS)

    Ambastha, Shikha; Umesh, Sharath; Dabir, Sundaresh; Asokan, Sundarrajan

    2016-11-01

    A technique for real-time dynamic monitoring of force experienced by a spinal needle during lumbar puncture using a fiber Bragg grating (FBG) sensor is presented. The proposed FBG force device (FBGFD) evaluates the compressive force on the spinal needle during lumbar puncture, particularly avoiding the bending effect on the needle. The working principle of the FBGFD is based on transduction of force experienced by the spinal needle into strain variations monitored by the FBG sensor. FBGFD facilitates external mounting of a spinal needle for its smooth insertion during lumbar puncture without any intervention. The developed FBGFD assists study and analysis of the force required for the spinal needle to penetrate various tissue layers from skin to the epidural space; this force is indicative of the varied resistance offered by different tissue layers for the spinal needle traversal. Calibration of FBGFD is performed on a micro-universal testing machine for 0 to 20 N range with an obtained resolution of 0.021 N. The experimental trials using spinal needles mounted on FBGFD are carried out on a human cadaver specimen with punctures made in the lumbar region from different directions. Distinct forces are recorded when the needle encounters skin, muscle tissue, and a bone in its traversing path. Real-time spinal needle force monitoring using FBGFD may reduce potentially serious complications during the lumbar puncture, such as overpuncturing of tissue regions, by impeding the spinal needle insertion at epidural space.

  2. Electrical/Mechanical Monitoring of Shape Memory Alloy Reinforcing Fibers Obtained by Pullout Tests in SMA/Cement Composite Materials.

    PubMed

    Kim, Eui-Hyun; Lee, Hyunbae; Kim, Jae-Hwan; Bae, Seung-Muk; Hwang, Heesu; Yang, Heesun; Choi, Eunsoo; Hwang, Jin-Ha

    2018-02-22

    Self-healing is an essential property of smart concrete structures. In contrast to other structural metals, shape memory alloys (SMAs) offer two unique effects: shape memory effects, and superelastic effects. Composites composed of SMA wires and conventional cements can overcome the mechanical weaknesses associated with tensile fractures in conventional concretes. Under specialized environments, the material interface between the cementitious component and the SMA materials plays an important role in achieving the enhanced mechanical performance and robustness of the SMA/cement interface. This material interface is traditionally evaluated in terms of mechanical aspects, i.e., strain-stress characteristics. However, the current work attempts to simultaneously characterize the mechanical load-displacement relationships synchronized with impedance spectroscopy as a function of displacement. Frequency-dependent impedance spectroscopy is tested as an in situ monitoring tool for structural variations in smart composites composed of non-conducting cementitious materials and conducting metals. The artificial geometry change in the SMA wires is associated with an improved anchoring action that is compatible with the smallest variation in resistance compared with prismatic SMA wires embedded into a cement matrix. The significant increase in resistance is interpreted to be associated with the slip of the SMA fibers following the elastic deformation and the debonding of the SMA fiber/matrix.

  3. Relations Between Aortic Stiffness and Left Ventricular Mechanical Function in the Community.

    PubMed

    Bell, Vanessa; McCabe, Elizabeth L; Larson, Martin G; Rong, Jian; Merz, Allison A; Osypiuk, Ewa; Lehman, Birgitta T; Stantchev, Plamen; Aragam, Jayashri; Benjamin, Emelia J; Hamburg, Naomi M; Vasan, Ramachandran S; Mitchell, Gary F; Cheng, Susan

    2017-01-09

    Aortic stiffness impairs optimal ventricular-vascular coupling and left ventricular systolic function, particularly in the long axis. Left ventricular global longitudinal strain (GLS) has recently emerged as a sensitive measure of early cardiac dysfunction. In this study, we investigated the relation between aortic stiffness and GLS in a large community-based sample. In 2495 participants (age 39-90 years, 57% women) of the Framingham Offspring and Omni cohorts, free of cardiovascular disease, we performed tonometry to measure arterial hemodynamics and echocardiography to assess cardiac function. Aortic stiffness was evaluated as carotid-femoral pulse wave velocity and as characteristic impedance, and GLS was calculated using speckle tracking-based measurements. In multivariable analyses adjusting for age, sex, height, systolic blood pressure, augmentation index, left ventricular structure, and additional cardiovascular risk factors, increased carotid-femoral pulse wave velocity (B±SE: 0.122±0.030% strain per SD, P<0.0001) and characteristic impedance (0.090±0.029, P=0.002) were both associated with worse GLS. We observed effect modification by sex on the relation between characteristic impedance and GLS (P=0.004); in sex-stratified multivariable analyses, the relation between greater characteristic impedance and worse GLS persisted in women (0.145±0.039, P=0.0003) but not in men (P=0.73). Multiple measures of increased aortic stiffness were cross-sectionally associated with worse GLS after adjusting for hemodynamic variables. Parallel reductions in left ventricular long axis shortening and proximal aortic longitudinal strain in individuals with a stiffened proximal aorta, from direct mechanical ventricular-vascular coupling, offers an alternative explanation for the observed relations. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  4. Reproducibility of axial force and manometric recordings in the oesophagus during wet and dry swallows.

    PubMed

    Gravesen, F H; Gregersen, H; Arendt-Nielsen, L; Drewes, A M

    2010-02-01

    Manometry is the golden standard to diagnose oesophageal motility disorders but it gives an indirect picture of the peristalsis by measuring radial force only. A novel probe design using electrical impedance recordings enabled axial force and manometry to be recorded simultaneously. Using this method the aims were to study the amplitude and duration of peristaltic contractions, to test the correlation between axial force and manometry, and the reproducibility of the method. Ten healthy men were included twice. The probe was positioned 5 cm proximal to the lower oesophageal sphincter after which five dry swallows and five wet swallows were done. This was repeated with 0, 2, 4 and 6 mL of water in a bag mounted distal to the axial force recording site. Duration and amplitude of contractions were measured by axial force and manometry. Both increased with the bag volume (P < 0.05), with force measurements having approximately twice the dynamic range than manometry (P < 0.05). Contraction duration and amplitude showed good reproducibility for both axial force and manometry (interclass correlation coefficients >0.6). The best association between axial force and manometry was found during wet swallows with an empty bag (r = 0.72, P < 0.001), otherwise these measurements were not associated. The system provided a more complete description of primary oesophageal peristalsis. Axial force and manometry were both reproducible but force measurements had increased dynamic range. As manometry and axial force generally are not associated, they each provide different information, and in combination they may be useful to better characterize oesophageal motor function.

  5. Force decay of elastomeric chains - a mechanical design and product comparison study.

    PubMed

    Balhoff, David A; Shuldberg, Matthew; Hagan, Joseph L; Ballard, Richard W; Armbruster, Paul C

    2011-03-01

    To evaluate the percentage force decay of elastomeric chain products utilizing three different design mechanisms simulating canine retraction; and to evaluate the percentage force decay of elastomeric chain products from four different companies. In vitro, laboratory study. LSUHSC Dental School, New Orleans, LA, USA. Closed (non-spaced), grey elastomeric chains from four companies were selected for the study. Three acrylic resin jigs were constructed to provide a framework for three simulated space closure mechanisms. The 6-5-3, the chain loop, and the 6-3 were the configuration mechanisms used in the study. An electronic force gauge was used to measure the percentage force decay associated with each elastomeric chain over 28 days at preselected times. There was a significant difference in the mean percentage force decay for the three different mechanisms (P < 0·001). For all four companies, the 6-3 mechanical design had the smallest mean percentage force decay. There was a significant difference in the mean percentage force decay for the different companies (P < 0·001). For all three mechanisms, Ormco had the smallest percentage force decay while Unitek had the highest percentage force decay. The significant difference in the mean percentage force decay for the different mechanisms suggests that the 6-3 design is a more efficient means of closing extraction spaces utilizing elastomeric chains.

  6. Decrease in coronary vascular volume in systole augments cardiac contraction.

    PubMed

    Willemsen, M J; Duncker, D J; Krams, R; Dijkman, M A; Lamberts, R R; Sipkema, P; Westerhof, N

    2001-08-01

    Coronary arterial inflow is impeded and venous outflow is increased as a result of the decrease in coronary vascular volume due to cardiac contraction. We evaluated whether cardiac contraction is influenced by interfering with the changes of the coronary vascular volume over the heart cycle. Length-tension relationships were determined in Tyrode-perfused rat papillary muscle and when coronary vascular volume changes were partly inhibited by filling it with congealed gelatin or perfusing it with a high viscosity dextran buffer. Also, myocyte thickening during contraction was reduced by placing a silicon tube around the muscle. Increasing perfusion pressure from 8 to 80 cmH2O, increased developed tension by approximately 40%. When compared with the low perfusion state, developed tension of the gelatin-filled vasculature was reduced to 43 +/- 6% at the muscle length where the muscle generates the largest developed tension (n = 5, means +/- SE). Dextran reduced developed tension to 73 +/- 6% (n = 6). The silicon tube, in low perfusion state, reduced the developed tension to 83 +/- 7% (n = 4) of control. Time-control and oxygen-lowering experiments show that the findings are based on mechanical effects. Thus interventions to prevent myocyte thickening reduce developed tension. We hypothesize that when myocyte thickening is prevented, intracellular pressure increases and counteracts the force produced by the contractile apparatus. We conclude that emptying of the coronary vasculature serves a physiological purpose by facilitating cardiomyocyte thickening thereby augmenting force development.

  7. Design and performance analysis of a rotary traveling wave ultrasonic motor with double vibrators.

    PubMed

    Dong, Zhaopeng; Yang, Ming; Chen, Zhangqi; Xu, Liang; Meng, Fan; Ou, Wenchu

    2016-09-01

    This paper presents the development of a rotary traveling wave ultrasonic motor, in which a vibrating stator and vibrating rotor are combined in one motor. The stator and rotor are designed as similar structures an elastic body and a piezoelectric ceramic ring. In exciting of the piezoelectric ceramics, the elastic body of the stator and rotor will generate respective traveling waves, which force each other forward in the contact zone. Based on the elliptical rule of particle motion and matching principle of vibration, the design rules of two vibrators are determined. The finite element method is used to design the sizes of vibrators to ensure that they operate in resonance, and the simulation is verified by measuring the vibration with an impedance analyzer. It is found out that to maintain an appropriate contact between the stator and rotor, two vibrators need to be designed with close resonance frequencies, different vibration amplitudes, and be driven by an identical driving frequency. To analyze this innovative contact mechanism, particle velocity synthesis theory and contact force analysis using Hertz contact model are carried out. Finally, a prototype is fabricated and tested to verify the theoretical results. The test results show that the output performance of the motor driven by the two vibrators is significantly improved compared to the motor driven by a sole stator or rotor, which confirms the validity of the double-vibrator motor concept. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A portable cell-based impedance sensor for toxicity testing of drinking water.

    PubMed

    Curtis, Theresa M; Widder, Mark W; Brennan, Linda M; Schwager, Steven J; van der Schalie, William H; Fey, Julien; Salazar, Noe

    2009-08-07

    A major limitation to using mammalian cell-based biosensors for field testing of drinking water samples is the difficulty of maintaining cell viability and sterility without an on-site cell culture facility. This paper describes a portable automated bench-top mammalian cell-based toxicity sensor that incorporates enclosed fluidic biochips containing endothelial cells monitored by Electric Cell-substrate Impedance Sensing (ECIS) technology. Long-term maintenance of cells on the biochips is made possible by using a compact, self-contained disposable media delivery system. The toxicity sensor monitors changes in impedance of cell monolayers on the biochips after the introduction of water samples. The fluidic biochip includes an ECIS electronic layer and a polycarbonate channel layer, which together reduce initial impedance disturbances seen in commercially available open well ECIS chips caused by the mechanics of pipetting while maintaining the ability of the cells to respond to toxicants. A curve discrimination program was developed that compares impedance values over time between the control and treatment channels on the fluidic biochip and determines if they are significantly different. Toxicant responses of bovine pulmonary artery endothelial cells grown on fluidic biochips are similar to cells on commercially-available open well chips, and these cells can be maintained in the toxicity sensor device for at least nine days using an automated media delivery system. Longer-term cell storage is possible; bovine lung microvessel endothelial cells survive for up to four months on the fluidic biochips and remain responsive to a model toxicant. This is the first demonstration of a portable bench top system capable of both supporting cell health over extended periods of time and obtaining impedance measurements from endothelial cell monolayers after toxicant exposure.

  9. Majority of symptoms in esophageal reflux PPI non-responders are not related to reflux

    PubMed Central

    Roman, Sabine; Keefer, Laurie; Imam, Hala; Korrapati, Praneet; Mogni, Benjamin; Eident, Kate; Friesen, Laurel; Kahrilas, Peter J; Martinovich, Zoran; Pandolfino, John

    2015-01-01

    Background Genesis of persistent gastro-esophageal reflux symptoms despite proton pump inhibitor (PPI) therapy is not fully understood. We aimed at determining reflux patterns on 24-h pH-impedance monitoring performed on PPI and correlating impedance patterns and symptom occurrence in PPI non-responders. Methods 78 PPI non-responder patients underwent 24-h pH-impedance monitoring on PPI. Reflux impedance characterization included gastric and supragastric belches and proximal extent of reflux. Symptoms were considered associated with reflux if occurring within 5 min after a reflux event. Patients were classified into 3 groups: persistent acid reflux (acid esophageal exposure (AET) >5% of time), reflux sensitivity (AET<5%, symptom index (SI) ≥50%), and functional symptoms (AET<5%, SI<50%). Dominant impedance pattern was determined for each patient. Key results 7 patients (9%) had persistent acid reflux, 28 (36%) reflux sensitivity and 43 (55%) functional symptoms. A total of 4,296 reflux events were identified (median per patient 45 (range 4–221)). Although liquid reflux was the most common pattern in all groups, patients with reflux sensitivity and functional symptoms had much more variability in their pattern profile with a large proportion being associated with gastric and supra-gastric belching. Only 417 reflux events (9.7%) were associated with symptoms. Reflux with a supragastric component and proximal extent were more likely to be associated with symptoms. Conclusions & Inferences The impedance reflux profile in PPI non-responders was heterogeneous and the majority of reflux events were not associated with symptoms. Thus, the treatment of PPI non-responders should focus on mechanisms beyond reflux, such as visceral hypersensitivity and hypervigilance. PMID:26337396

  10. Effects of Increased Gravity Force on Nutations of Sunflower Hypocotyls 1

    PubMed Central

    Brown, Allan H.; Chapman, David K.

    1977-01-01

    A centrifuge was used to provide sustained acceleration in order to study the hypocotyl nutation of 6-day-old Helianthus annuus L. over a range of g-forces, up to 20 times normal g. At the upper end of this g-range, nutation was impeded and at times was erratic evidently because the weight of the cotyledons exceeded the supportive abilities of the hypocotyls. Over the range 1 to 9 g, the period of nutation was independent of the resultant force vector. Over the same g-range, the amplitude of nutation was nearly independent of the chronic g-force. If nutation in sunflower seedlings is an oscillation caused by a succession of geotropic responses which continue to overshoot the equilibrium position (plumb line), we might expect its amplitude to be more sensitive to changes in magnitude of the sustained g-force. In order to preserve the geotropic model of nutation-viz. that it is a sustained oscillation driven by geotropic reactions, it is necessary to assume that geotropic response must increase with increasing g most rapidly in the region of the g-parameter below the terrestrial value of 1 g. PMID:16659909

  11. Effects of increased gravity force on nutations of sunflower hypocotyls

    NASA Technical Reports Server (NTRS)

    Brown, A. H.; Chapman, D. K.

    1977-01-01

    A centrifuge was used to provide sustained acceleration in order to study the hypocotyl nutation of 6-day-old Helianthus annuus L. over a range of g-forces, up to 20 times normal g. At the upper end of this g-range, nutation was impeded and at times was erratic evidently because the weight of the cotyledons exceeded the supportive abilities of the hypocotyls. Over the range 1 to 9 g, the period of nutation was independent of the resultant force vector. Over the same g-range, the amplitude of nutation was nearly independent of the chronic g-force. If nutation in sunflower seedlings is an oscillation caused by a succession of geotropic responses which continue to overshoot the equilibrium position (plumb line), its amplitude might be expected to be more sensitive to changes in magnitude of the sustained g-force. In order to preserve the geotropic model, in which nutation is considered to be a sustained oscillation driven by geotropic reactions, it is necessary to assume that geotropic response must increase with increasing g most rapidly in the region of the g-parameter below the terrestrial value of 1 g.

  12. Comparison of the ballistic contractile responses generated during microstimulation of single human motor axons with brief irregular and regular stimuli.

    PubMed

    Leitch, Michael; Macefield, Vaughan G

    2017-08-01

    Ballistic contractions are induced by brief, high-frequency (60-100 Hz) trains of action potentials in motor axons. During ramp voluntary contractions, human motoneurons exhibit significant discharge variability of ∼20% and have been shown to be advantageous to the neuromuscular system. We hypothesized that ballistic contractions incorporating discharge variability would generate greater isometric forces than regular trains with zero variability. High-impedance tungsten microelectrodes were inserted into human fibular nerve, and single motor axons were stimulated with both irregular and constant-frequency stimuli at mean frequencies ranging from 57.8 to 68.9 Hz. Irregular trains generated significantly greater isometric peak forces than regular trains over identical mean frequencies. The high forces generated by ballistic contractions are not based solely on high frequencies, but rather a combination of high firing rates and discharge irregularity. It appears that irregular ballistic trains take advantage of the "catchlike property" of muscle, allowing augmentation of force. Muscle Nerve 56: 292-297, 2017. © 2016 Wiley Periodicals, Inc.

  13. Flares and Their Underlying Magnetic Complexity

    NASA Astrophysics Data System (ADS)

    Engell, Alexander J.; Siarkowski, Marek; Gryciuk, Magda; Sylwester, Janusz; Sylwester, Barbara; Golub, Leon; Korreck, Kelly; Cirtain, Jonathan

    2011-01-01

    SphinX (Solar PHotometer IN X-rays), a full-disk-integrated spectrometer, observed 137 flare-like/transient events with active region (AR) 11024 being the only AR on disk. The Hinode X-Ray Telescope (XRT) and Solar Optical Telescope observe 67 of these events and identified their location from 12:00 UT on July 3 through 24:00 UT 2009 July 7. We find that the predominant mechanisms for flares observed by XRT are (1) flux cancellation and (2) the shearing of underlying magnetic elements. Point- and cusp-like flare morphologies seen by XRT all occur in a magnetic environment where one polarity is impeded by the opposite polarity and vice versa, forcing the flux cancellation process. The shearing is either caused by flux emergence at the center of the AR and separation of polarities along a neutral line or by individual magnetic elements having a rotational motion. Both mechanisms are observed to contribute to single- and multiple-loop flares. We observe that most loop flares occur along a large portion of a polarity inversion line. Point- and cusp-like flares become more infrequent as the AR becomes organized with separation of the positive and negative polarities. SphinX, which allows us to identify when these flares occur, provides us with a statistically significant temperature and emission scaling law for A and B class flares: EM = 6.1 × 1033 T 1.9±0.1.

  14. Direct detection of male quality can facilitate the evolution of female choosiness and indicators of good genes: Evolution across a continuum of indicator mechanisms.

    PubMed

    Dhole, Sumit; Stern, Caitlin A; Servedio, Maria R

    2018-04-01

    The evolution of mating displays as indicators of male quality has been the subject of extensive theoretical and empirical research for over four decades. Research has also addressed the evolution of female mate choice favoring such indicators. Yet, much debate still exists about whether displays can evolve through the indirect benefits of female mate choice. Here, we use a population genetic model to investigate how the extent to which females can directly detect male quality influences the evolution of female choosiness and male displays. We use a continuum framework that incorporates indicator mechanisms that are traditionally modeled separately. Counter to intuition, we find that intermediate levels of direct detection of male quality can facilitate, rather than impede, the evolution of female choosiness and male displays in broad regions of this continuum. We examine how this evolution is driven by selective forces on genetic quality and on the display, and find that direct detection of male quality results in stronger indirect selection favoring female choosiness. Our results imply that displays maybe more likely to evolve when female choosiness has already evolved to discriminate perceptible forms of male quality. They also highlight the importance of considering general female choosiness, as well as preference, in studies of "good genes." © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  15. The Shock and Vibration Bulletin. Part 2. Modal and Impedance Analysis, Human Response to Vibration and Shock, Isolation and Damping, Dynamic Analysis

    DTIC Science & Technology

    1979-09-01

    a " high performance fast timing" engine thrust with a mismatch between right and left SRfls...examine the dynamic behavior of a blade having a root geometry compatible with low frictional forces at high rotational speeds , somewhat like a "Christmas...Tree" root, but with a gap introduced which will close up only at high speed . Approximate non-linear equations of motion are derived and solved

  16. Supervisory Control: Problems, Theory and Experiment for Application to Human-Computer Interaction in Undersea Remote Systems

    DTIC Science & Technology

    1982-03-01

    otherwise, and changes in parameters). The TIS, insofar as it has subgoals to reach, instructions ot, how to try or what to do if it is impeded...10 and 9 without affect- ing the computer (i.e. change the location, forces, labels or other properties of the display or manual control devices...sys- mode of inter • -ing with the system tem sensors, actuators and sensors, actu.-.ors and computers is computers is fixed flexible j 4. often

  17. Field Artillery and the Combined Arms Team: A Case for the Continued Relevance of American Fire Support

    DTIC Science & Technology

    2015-05-23

    integrate with maneuver forces to meet future threats. Several former brigade combat team commanders mentioned the field artillery’s “identity crisis ” in...September 2008): 35. 5 Sean MacFarland, Michael Shields, and Jeffrey Snow, “White Paper: The King and I: The Impeding Crisis in Field Artillery’s Ability...Michael S. Coombes , “Agile Fires and Decisive Action: Achieving Pervasive Agility by Focusing On Fundamentals,” NTC Decisive Action Training

  18. Civilian Demonstrations Near the Military Installation: Restraints on Military Surveillance and Other Intelligence Activities

    DTIC Science & Technology

    1992-03-01

    violent events linked by a nationwide foreign-sponsored conspiracy . However, there was never any evidence that the disturbances were other than a series... conspiracy , either foreign or domestic. Subcommittee on Constitutional Rights, Senate Committee on the Judiciary, 93d Cong., 1st Sess., Report on Military...DoD (para. D.l.g). 127 Conspiracy to use force in impeding federal government functions is prohibited by 18 U.S.C. § 2384 (1988)(Seditious Conspiracy

  19. Elementary theory of synchronous arterio-arterial blood pumps

    NASA Technical Reports Server (NTRS)

    Jones, R. T.; Petscheck, H. E.; Kantrowitz, A. R.

    1976-01-01

    In the technique of arterio-arterial pumping, a volume of fluid is withdrawn from the aorta during systole and reinjected during diastole, thereby reducing the systolic pressure of the heart and adding energy to the systemic circulation. It is found that an upper bound for the effectiveness of such devices is given by a formula that considers stroke output of the unaided heart and the increment caused by the pump with a stroke. The division of effort of the pump between the reduction of pressure and the increase of flow depends on the physiological mechanical impedance of the heart. The total effect is, however, independent of the impedance.

  20. Role of the middle ear muscle apparatus in mechanisms of speech signal discrimination

    NASA Technical Reports Server (NTRS)

    Moroz, B. S.; Bazarov, V. G.; Sachenko, S. V.

    1980-01-01

    A method of impedance reflexometry was used to examine 101 students with hearing impairment in order to clarify the interrelation between speech discrimination and the state of the middle ear muscles. Ability to discriminate speech signals depends to some extent on the functional state of intraaural muscles. Speech discrimination was greatly impaired in the absence of stapedial muscle acoustic reflex, in the presence of low thresholds of stimulation and in very small values of reflex amplitude increase. Discrimination was not impeded in positive AR, high values of relative thresholds and normal increase of reflex amplitude in response to speech signals with augmenting intensity.

  1. Lightweight, Room-Temperature CO2 Gas Sensor Based on Rare-Earth Metal-Free Composites-An Impedance Study.

    PubMed

    Willa, Christoph; Schmid, Alexander; Briand, Danick; Yuan, Jiayin; Koziej, Dorota

    2017-08-02

    We report a light, flexible, and low-power poly(ionic liquid)/alumina composite CO 2 sensor. We monitor the direct-current resistance changes as a function of CO 2 concentration and relative humidity and demonstrate fast and reversible sensing kinetics. Moreover, on the basis of the alternating-current impedance measurements we propose a sensing mechanism related to proton conduction and gas diffusion. The findings presented herein will promote the development of organic/inorganic composite CO 2 gas sensors. In the future, such sensors will be useful for numerous practical applications ranging from indoor air quality control to the monitoring of manufacturing processes.

  2. Percentiles of body fat measured by bioelectrical impedance in children and adolescents from Bogotá (Colombia): the FUPRECOL study.

    PubMed

    Escobar-Cardozo, Germán D; Correa-Bautista, Jorge E; González-Jiménez, Emilio; Schmidt-RioValle, Jacqueline; Ramírez-Vélez, Robinson

    2016-04-01

    The analysis of body composition is a fundamental part of nutritional status assessment. The objective of this study was to establish body fat percentiles by bioelectrical impedance in children and adolescents from Bogotá (Colombia) who were part of the FUPRECOL study (Asociación de la Fuerza Prensil con Manifestaciones Tempranas de Riesgo Cardiovascular en Niños y Adolescentes Colombianos - Association between prehensile force and early signs of cardiovascular risk in Colombian children and adolescents). This was a cross-sectional study conducted among 5850 students aged 9-17.9 years old from Bogotá (Colombia). Body fat percentage was measured using foot-to-foot bioelectrical impedance (Tanita®, BF-689), by age and gender. Weight, height, waist circumference, and hip circumference were measured, and sexual maturity was self-staged. Percentiles (P3, P10, P25, P50, P75, P90 and P97) and centile curves were estimated using the LMS method (L [BoxCox curve], M [median curve] and S [variation coefficient curve]), by age and gender. Subjects included were 2526 children and 3324 adolescents. Body fat percentages and centile curves by age and gender were established. For most age groups, values resulted higher among girls than boys. Participants with values above P90 were considered to have a high cardiovascular risk due to excess fat (boys > 23.428.3, girls > 31.0-34.1). Body fat percentage percentiles measured using bioelectrical impedance by age and gender are presented here and may be used as reference to assess nutritional status and to predict cardiovascular risk due to excess fat at an early age. Sociedad Argentina de Pediatría.

  3. ELECTRIC IMPEDANCE OF THE SQUID GIANT AXON DURING ACTIVITY

    PubMed Central

    Cole, Kenneth S.; Curtis, Howard J.

    1939-01-01

    Alternating current impedance measurements have been made over a wide frequency range on the giant axon from the stellar nerve of the squid, Loligo pealii, during the passage of a nerve impulse. The transverse impedance was measured between narrow electrodes on either side of the axon with a Wheatstone bridge having an amplifier and cathode ray oscillograph for detector. When the bridge was balanced, the resting axon gave a narrow line on the oscillograph screen as a sweep circuit moved the spot across. As an impulse passed between impedance electrodes after the axon had been stimulated at one end, the oscillograph line first broadened into a band, indicating a bridge unbalance, and then narrowed down to balance during recovery. From measurements made during the passage of the impulse and appropriate analysis, it was found that the membrane phase angle was unchanged, the membrane capacity decreased about 2 per cent, while the membrane conductance fell from a resting value of 1000 ohm cm.2 to an average of 25 ohm cm.2 The onset of the resistance change occurs somewhat after the start of the monophasic action potential, but coincides quite closely with the point of inflection on the rising phase, where the membrane current reverses in direction, corresponding to a decrease in the membrane electromotive force. This E.M.F. and the conductance are closely associated properties of the membrane, and their sudden changes constitute, or are due to, the activity which is responsible for the all-or-none law and the initiation and propagation of the nerve impulse. These results correspond to those previously found for Nitella and lead us to expect similar phenomena in other nerve fibers. PMID:19873125

  4. Diversity of respiratory impedance based on quantitative computed tomography in patients with COPD.

    PubMed

    Wada, Yosuke; Kitaguchi, Yoshiaki; Yasuo, Masanori; Ueno, Fumika; Kawakami, Satoshi; Fukushima, Kiyoyasu; Fujimoto, Keisaku; Hanaoka, Masayuki

    2018-01-01

    This study was conducted in order to investigate the diversity of respiratory physiology, including the respiratory impedance and reversibility of airway obstruction, based on quantitative computed tomography (CT) in patients with COPD. Medical records of 174 stable COPD patients were retrospectively reviewed to obtain the patients' clinical data, including the pulmonary function and imaging data. According to the software-based quantification of the degree of emphysema and airway wall thickness, the patients were classified into the "normal by CT" phenotype, the airway-dominant phenotype, the emphysema-dominant phenotype, and the mixed phenotype. The pulmonary function, including the respiratory impedance evaluated by using the forced oscillation technique (FOT) and the reversibility of airway obstruction in response to inhaled short-acting β 2 -agonists, was then compared among the four phenotypes. The respiratory system resistance at 5 and 20 Hz (R5 and R20) was significantly higher, and the respiratory system reactance at 5 Hz (X5) was significantly more negative in the airway-dominant and mixed phenotypes than in the other phenotypes. The within-breath changes of X5 (ΔX5) were significantly greater in the mixed phenotype than in the "normal by CT" and emphysema-dominant phenotypes. The FOT parameters (R5, R20, and X5) were significantly correlated with indices of the degree of airway wall thickness and significantly but weakly correlated with the reversibility of airway obstruction. There was no significant correlation between the FOT parameters (R5, R20, and X5) and the degree of emphysema. There is a diversity of respiratory physiology, including the respiratory impedance and reversibility of airway obstruction, based on quantitative CT in patients with COPD. The FOT measurements may reflect the degree of airway disease and aid in detecting airway remodeling in patients with COPD.

  5. Mechanical Network in Titin Immunoglobulin from Force Distribution Analysis

    PubMed Central

    Wilmanns, Matthias; Gräter, Frauke

    2009-01-01

    The role of mechanical force in cellular processes is increasingly revealed by single molecule experiments and simulations of force-induced transitions in proteins. How the applied force propagates within proteins determines their mechanical behavior yet remains largely unknown. We present a new method based on molecular dynamics simulations to disclose the distribution of strain in protein structures, here for the newly determined high-resolution crystal structure of I27, a titin immunoglobulin (IG) domain. We obtain a sparse, spatially connected, and highly anisotropic mechanical network. This allows us to detect load-bearing motifs composed of interstrand hydrogen bonds and hydrophobic core interactions, including parts distal to the site to which force was applied. The role of the force distribution pattern for mechanical stability is tested by in silico unfolding of I27 mutants. We then compare the observed force pattern to the sparse network of coevolved residues found in this family. We find a remarkable overlap, suggesting the force distribution to reflect constraints for the evolutionary design of mechanical resistance in the IG family. The force distribution analysis provides a molecular interpretation of coevolution and opens the road to the study of the mechanism of signal propagation in proteins in general. PMID:19282960

  6. Dynamic mechanical control of local vacancies in NiO thin films

    NASA Astrophysics Data System (ADS)

    Seol, Daehee; Yang, Sang Mo; Jesse, Stephen; Choi, Minseok; Hwang, Inrok; Choi, Taekjib; Park, Bae Ho; Kalinin, Sergei V.; Kim, Yunseok

    2018-07-01

    The manipulation of local ionic behavior via external stimuli in oxide systems is of great interest because it can help in directly tuning material properties. Among external stimuli, mechanical force has attracted intriguing attention as novel stimulus for ionic modulation. Even though effectiveness of mechanical force on local ionic modulation has been validated in terms of static effect, its real-time i.e., dynamic, behavior under an application of the force is barely investigated in spite of its crucial impact on device performance such as force or pressure sensors. In this study, we explore dynamic ionic behavior modulated by mechanical force in NiO thin films using electrochemical strain microscopy (ESM). Ionically mediated ESM hysteresis loops were significantly varied under an application of mechanical force. Based on these results, we were able to investigate relative relationship between the force and voltage effects on ionic motion and, further, control effectively ionic behavior through combination of mechanical and electrical stimuli. Our results can provide comprehensive information on the effect of mechanical forces on ionic dynamics in ionic systems.

  7. Dynamic mechanical control of local vacancies in NiO thin films.

    PubMed

    Seol, Daehee; Yang, Sang Mo; Jesse, Stephen; Choi, Minseok; Hwang, Inrok; Choi, Taekjib; Park, Bae Ho; Kalinin, Sergei V; Kim, Yunseok

    2018-07-06

    The manipulation of local ionic behavior via external stimuli in oxide systems is of great interest because it can help in directly tuning material properties. Among external stimuli, mechanical force has attracted intriguing attention as novel stimulus for ionic modulation. Even though effectiveness of mechanical force on local ionic modulation has been validated in terms of static effect, its real-time i.e., dynamic, behavior under an application of the force is barely investigated in spite of its crucial impact on device performance such as force or pressure sensors. In this study, we explore dynamic ionic behavior modulated by mechanical force in NiO thin films using electrochemical strain microscopy (ESM). Ionically mediated ESM hysteresis loops were significantly varied under an application of mechanical force. Based on these results, we were able to investigate relative relationship between the force and voltage effects on ionic motion and, further, control effectively ionic behavior through combination of mechanical and electrical stimuli. Our results can provide comprehensive information on the effect of mechanical forces on ionic dynamics in ionic systems.

  8. Mechanical dynamics in live cells and fluorescence-based force/tension sensors

    PubMed Central

    Yang, Chao; Zhang, Xiaohan; Guo, Yichen; Meng, Fanjie; Sachs, Frederick; Guo, Jun

    2016-01-01

    Three signaling systems play the fundamental roles in modulating cell activities: chemical, electrical, and mechanical. While the former two are well studied, the mechanical signaling system is still elusive because of the lack of methods to measure structural forces in real time at cellular and subcellular levels. Indeed, almost all biological processes are responsive to modulation by mechanical forces that trigger dispersive downstream electrical and biochemical pathways. Communication among the three systems is essential to make cells and tissues receptive to environmental changes. Cells have evolved many sophisticated mechanisms for the generation, perception and transduction of mechanical forces, including motor proteins and mechanosensors. In this review, we introduce some background information about mechanical dynamics in live cells, including the ubiquitous mechanical activity, various types of mechanical stimuli exerted on cells and the different mechanosensors. We also summarize recent results obtained using genetically encoded FRET (fluorescence resonance energy transfer)-based force/tension sensors; a new technique used to measure mechanical forces in structural proteins. The sensors have been incorporated into many specific structural proteins and have measured the force gradients in real time within live cells, tissues, and animals. PMID:25958335

  9. Coating flexible probes with an ultra fast degrading polymer to aid in tissue insertion

    PubMed Central

    Wang, Shuwu; Singh, Sagar; Damodaran, Vinod B.; Kaplan, Hilton M.; Kohn, Joachim; Shreiber, David I.; Zahn, Jeffrey D.

    2016-01-01

    We report a fabrication process for coating neural probes with an ultrafast degrading polymer to create consistent and reproducible devices for neural tissue insertion. The rigid polymer coating acts as a probe insertion aid, but resorbs within hours post-implantation. Despite the feasibility for short term neural recordings from currently available neural prosthetic devices, most of these devices suffer from long term gliosis, which isolates the probes from adjacent neurons, increasing the recording impedance and stimulation threshold. The size and stiffness of implanted probes have been identified as critical factors that lead to this long term gliosis. Smaller, more flexible probes that match the mechanical properties of brain tissue could allow better long term integration by limiting the mechanical disruption of the surrounding tissue during and after probe insertion, while being flexible enough to deform with the tissue during brain movement. However, these small flexible probes inherently lack the mechanical strength to penetrate the brain on their own. In this work, we have developed a micromolding method for coating a non-functional miniaturized SU-8 probe with an ultrafast degrading tyrosine-derived polycarbonate (E5005(2K)). Coated, non-functionalized probes of varying dimensions were reproducibly fabricated with high yields. The polymer erosion/degradation profiles of the probes were characterized in vitro. The probes were also mechanically characterized in ex vivo brain tissue models by measuring buckling and insertion forces during probe insertion. The results demonstrate the ability to produce polymer coated probes of consistent quality for future in vivo use, for example to study the effects of different design parameters that may affect tissue response during long term chronic intra-cortical microelectrode neural recordings. PMID:25681971

  10. Coating flexible probes with an ultra fast degrading polymer to aid in tissue insertion.

    PubMed

    Lo, Meng-chen; Wang, Shuwu; Singh, Sagar; Damodaran, Vinod B; Kaplan, Hilton M; Kohn, Joachim; Shreiber, David I; Zahn, Jeffrey D

    2015-04-01

    We report a fabrication process for coating neural probes with an ultrafast degrading polymer to create consistent and reproducible devices for neural tissue insertion. The rigid polymer coating acts as a probe insertion aid, but resorbs within hours post-implantation. Despite the feasibility for short term neural recordings from currently available neural prosthetic devices, most of these devices suffer from long term gliosis, which isolates the probes from adjacent neurons, increasing the recording impedance and stimulation threshold. The size and stiffness of implanted probes have been identified as critical factors that lead to this long term gliosis. Smaller, more flexible probes that match the mechanical properties of brain tissue could allow better long term integration by limiting the mechanical disruption of the surrounding tissue during and after probe insertion, while being flexible enough to deform with the tissue during brain movement. However, these small flexible probes inherently lack the mechanical strength to penetrate the brain on their own. In this work, we have developed a micromolding method for coating a non-functional miniaturized SU-8 probe with an ultrafast degrading tyrosine-derived polycarbonate (E5005(2K)). Coated, non-functionalized probes of varying dimensions were reproducibly fabricated with high yields. The polymer erosion/degradation profiles of the probes were characterized in vitro. The probes were also mechanically characterized in ex vivo brain tissue models by measuring buckling and insertion forces during probe insertion. The results demonstrate the ability to produce polymer coated probes of consistent quality for future in vivo use, for example to study the effects of different design parameters that may affect tissue response during long term chronic intra-cortical microelectrode neural recordings.

  11. Post-procedural evaluation of catheter contact force characteristics

    NASA Astrophysics Data System (ADS)

    Koch, Martin; Brost, Alexander; Kiraly, Atilla; Strobel, Norbert; Hornegger, Joachim

    2012-03-01

    Minimally invasive catheter ablation of electric foci, performed in electrophysiology labs, is an attractive treatment option for atrial fibrillation (AF) - in particular if drug therapy is no longer effective or tolerated. There are different strategies to eliminate the electric foci inducing the arrhythmia. Independent of the particular strategy, it is essential to place transmural lesions. The impact of catheter contact force on the generated lesion quality has been investigated recently, and first results are promising. There are different approaches to measure catheter-tissue contact. Besides traditional haptic feedback, there are new technologies either relying on catheter tip-to-tissue contact force or on local impedance measurements at the tip of the catheter. In this paper, we present a novel tool for post-procedural ablation point evaluation and visualization of contact force characteristics. Our method is based on localizing ablation points set during AF ablation procedures. The 3-D point positions are stored together with lesion specific catheter contact force (CF) values recorded during the ablation. The force records are mapped to the spatial 3-D positions, where the energy has been applied. The tracked positions of the ablation points can be further used to generate a 3-D mesh model of the left atrium (LA). Since our approach facilitates visualization of different force characteristics for post-procedural evaluation and verification, it has the potential to improve outcome by highlighting areas where lesion quality may be less than desired.

  12. How pleasant sounds promote and annoying sounds impede health: a cognitive approach.

    PubMed

    Andringa, Tjeerd C; Lanser, J Jolie L

    2013-04-08

    This theoretical paper addresses the cognitive functions via which quiet and in general pleasurable sounds promote and annoying sounds impede health. The article comprises a literature analysis and an interpretation of how the bidirectional influence of appraising the environment and the feelings of the perceiver can be understood in terms of core affect and motivation. This conceptual basis allows the formulation of a detailed cognitive model describing how sonic content, related to indicators of safety and danger, either allows full freedom over mind-states or forces the activation of a vigilance function with associated arousal. The model leads to a number of detailed predictions that can be used to provide existing soundscape approaches with a solid cognitive science foundation that may lead to novel approaches to soundscape design. These will take into account that louder sounds typically contribute to distal situational awareness while subtle environmental sounds provide proximal situational awareness. The role of safety indicators, mediated by proximal situational awareness and subtle sounds, should become more important in future soundscape research.

  13. Alignment of an acoustic manipulation device with cepstral analysis of electronic impedance data.

    PubMed

    Hughes, D A; Qiu, Y; Démoré, C; Weijer, C J; Cochran, S

    2015-02-01

    Acoustic particle manipulation is an emerging technology that uses ultrasonic standing waves to position objects with pressure gradients and acoustic radiation forces. To produce strong standing waves, the transducer and the reflector must be aligned properly such that they are parallel to each other. This can be a difficult process due to the need to visualise the ultrasound waves and as higher frequencies are introduced, this alignment requires higher accuracy. In this paper, we present a method for aligning acoustic resonators with cepstral analysis. This is a simple signal processing technique that requires only the electrical impedance measurement data of the resonator, which is usually recorded during the fabrication process of the device. We first introduce the mathematical basis of cepstral analysis and then demonstrate and validate it using a computer simulation of an acoustic resonator. Finally, the technique is demonstrated experimentally to create many parallel linear traps for 10 μm fluorescent beads inside an acoustic resonator. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Electrochemical analysis of gold-coated magnetic nanoparticles for detecting immunological interaction

    NASA Astrophysics Data System (ADS)

    Pham, Thao Thi-Hien; Sim, Sang Jun

    2010-01-01

    An electrochemical impedance immunosensor was developed for detecting the immunological interaction between human immunoglobulin (IgG) and protein A from Staphylococcus aureus based on the immobilization of human IgG on the surface of modified gold-coated magnetic nanoparticles. The nanoparticles with an Au shell and Fe oxide cores were functionalized by a self-assembled monolayer of 11-mercaptoundecanoic acid. The electrochemical analysis was conducted on the modified magnetic carbon paste electrodes with the nanoparticles. The magnetic nanoparticles were attached to the surface of the magnetic carbon paste electrodes via magnetic force. The cyclic voltammetry technique and electrochemical impedance spectroscopy measurements of the magnetic carbon paste electrodes coated with magnetic nanoparticles-human IgG complex showed changes in its alternating current (AC) response both after the modification of the surface of the electrode and the addition of protein A. The immunological interaction between human IgG on the surface of the modified magnetic carbon paste electrodes and protein A in the solution could be successfully monitored.

  15. Electrical conductivity of Gd doped BiFeO3-PbZrO3 composite

    NASA Astrophysics Data System (ADS)

    Satpathy, Santosh Kumar; Mohanty, Nilaya Kumar; Behera, Ajay Kumar; Behera, Banarji; Nayak, Pratibindhya

    2013-09-01

    The composite, 0.5(BiGd0.15Fe0.85O3)-0.5(PbZrO3), was synthesized using the solid-state reaction technique. The formation of the compound was confirmed by XRD with an orthorhombic structure at room temperature. The impedance parameters were studied using an impedance analyzer in a wide range of frequency (102-106 Hz) at different temperatures. The Nyquist plot suggests the contribution of bulk effect and a slight indication of grain boundary effect and the bulk resistance decreases with a rise in temperature. The presence of temperature-dependent relaxation process occurs in the material. Electrical modulus reveals the presence of the hopping mechanism in the materials. The value of exponent n, pre-factor A and σ dc were obtained by fitting ac conductivity data with Jonscher's universal power law. The activation energies calculated from the ac conductivity were found to be 0.50, 0.46, 0.44, 0.43, 0.42 and 0.38 eV at 1, 10, 50, 100, 500 kHz and 1 MHz respectively in the temperature region of 110°C-350°C. The dc conductivity was found to increase with the rise in temperature. The activation energy calculated from complex impedance plot and from the fitted Jonscher's power law are very close, which results similar type of charge carrier exist in conduction mechanism of the material.

  16. Using Passive Two-Port Networks to Study the Forced Vibrations of Piezoceramic Transducers

    NASA Astrophysics Data System (ADS)

    Karlash, V. L.

    2017-09-01

    A generalization and subsequent development of experimental techniques, including methods of studying the phase-frequency relations between the measured components of admittance and instantaneous power are considered. The conditions of electric loading where electric currents, voltages, or instantaneous powers of constant amplitude in the piezoresonators are specified are numerically modeled. It is particularly established that the advanced Mason circuit with additional switch allows acquiring much more data on the forced vibrations of piezoceramic transducers than the classical circuit. The measured (at an arbitrary frequency) voltage drop across the piezoelement, its pull-up resistor, and at the input of the measuring circuit allow determining, with high accuracy, the current, conductivity, impedance, instantaneous power, and phase shifts when the amplitudes of electric current and voltage are given.

  17. Effects of increased G-force on the nutations of sunflower seedlings

    NASA Technical Reports Server (NTRS)

    Brown, A. H.; Chapman, D. K.; Dahl, A. O.

    1975-01-01

    A centrifuge was used to provide chronic acceleration in order to study the nutation of six-day old sunflower hypocotyls at 1 to 20 times normal gravity (g). At the upper end of the g-range nutational movement was impeded and at times erratic evidently because the weight of the cotyledons exceeded the supportive abilities of the hypocotyls. Over the range from 1 to 9 g the period of nutation was independent of the resultant g-force. That finding is interpreted as evidence that the geotropic response time -- i.e., the time needed for growth hormone transport from the region of g-sensing to the region of bending response --was not influenced significantly by substantial increments of the g-level, since geotropic response time is related to the period of nutation.

  18. Substructure program for analysis of helicopter vibrations

    NASA Technical Reports Server (NTRS)

    Sopher, R.

    1981-01-01

    A substructure vibration analysis which was developed as a design tool for predicting helicopter vibrations is described. The substructure assembly method and the composition of the transformation matrix are analyzed. The procedure for obtaining solutions to the equations of motion is illustrated for the steady-state forced response solution mode, and rotor hub load excitation and impedance are analyzed. Calculation of the mass, damping, and stiffness matrices, as well as the forcing function vectors of physical components resident in the base program code, are discussed in detail. Refinement of the model is achieved by exercising modules which interface with the external program to represent rotor induced variable inflow and fuselage induced variable inflow at the rotor. The calculation of various flow fields is discussed, and base program applications are detailed.

  19. The effect of bandwidth on telerobot system performance

    NASA Technical Reports Server (NTRS)

    Uebel, Mark; Ali, Michael S.; Minis, Ioannis

    1991-01-01

    The purpose of the experiment was to determine the effect that various slave-joint bandwidths have on telerobot system performance. The telerobot system consisted of a slave arm controlled by a master. The slave incorporated an impedance loop to provide local compliance in addition to the compliance provided by the operator via force feedback. Three joint bandwidths, 0.5, 1.0, and 2.0 Hz, were used. The performance measures were the task completion time and the sums of the squared forces and moments exerted on the environment. The task consisted of peg-in-hole insertion and removal. The results of the experiment indicate a significant performance decrease at 0.5-Hz bandwidth relative to the 1- and 2-Hz bandwidths. There was no significant change in performance between the 1- and 2-Hz bandwidths.

  20. Rotational Augmentation on a 2.3 MW Rotor Blade with Thick Flatback Airfoil Cross-Sections: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreck, S.; Fingersh, L.; Siegel, K.

    2013-01-01

    Rotational augmentation was analyzed for a 2.3 MW wind turbine, which was equipped with thick flatback airfoils at inboard radial locations and extensively instrumented for acquisition of time varying surface pressures. Mean aerodynamic force and surface pressure data were extracted from an extensive field test database, subject to stringent criteria for wind inflow and turbine operating conditions. Analyses of these data showed pronounced amplification of aerodynamic forces and significant enhancements to surface pressures in response to rotational influences, relative to two-dimensional, stationary conditions. Rotational augmentation occurrence and intensity in the current effort was found to be consistent with that observedmore » in previous research. Notably, elevated airfoil thickness and flatback design did not impede rotational augmentation.« less

Top