Sample records for mechanical loading modulates

  1. Addendum to the User Manual for NASGRO Elastic-Plastic Fracture Mechanics Software Module

    NASA Technical Reports Server (NTRS)

    Gregg, M. Wayne (Technical Monitor); Chell, Graham; Gardner, Brian

    2003-01-01

    The elastic-plastic fracture mechanics modules in NASGRO have been enhanced by the addition of of the following: new J-integral solutions based on the reference stress method and finite element solutions; the extension of the critical crack and critical load modules for cracks with two degrees of freedom that tear and failure by ductile instability; the addition of a proof test analysis module that includes safe life analysis, calculates proof loads, and determines the flaw screening 1 capability for a given proof load; the addition of a tear-fatigue module for ductile materials that simultaneously tear and extend by fatigue; and a multiple cycle proof test module for estimating service reliability following a proof test.

  2. Automated cassette-to-cassette substrate handling system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, Joseph Arthur; Boyer, Jeremy James; Mack, Joseph

    2014-03-18

    An automated cassette-to-cassette substrate handling system includes a cassette storage module for storing a plurality of substrates in cassettes before and after processing. A substrate carrier storage module stores a plurality of substrate carriers. A substrate carrier loading/unloading module loads substrates from the cassette storage module onto the plurality of substrate carriers and unloads substrates from the plurality of substrate carriers to the cassette storage module. A transport mechanism transports the plurality of substrates between the cassette storage module and the plurality of substrate carriers and transports the plurality of substrate carriers between the substrate carrier loading/unloading module and amore » processing chamber. A vision system recognizes recesses in the plurality of substrate carriers corresponding to empty substrate positions in the substrate carrier. A processor receives data from the vision system and instructs the transport mechanism to transport substrates to positions on the substrate carrier in response to the received data.« less

  3. Mechanical loading prevents the stimulating effect of IL-1{beta} on osteocyte-modulated osteoclastogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulkarni, Rishikesh N.; Bakker, Astrid D.; Everts, Vincent

    Highlights: Black-Right-Pointing-Pointer Osteocyte incubation with IL-1{beta} stimulated osteocyte-modulated osteoclastogenesis. Black-Right-Pointing-Pointer Conditioned medium from IL-1{beta}-treated osteocytes increased osteoclastogenesis. Black-Right-Pointing-Pointer IL-1{beta} upregulated RANKL and downregulated OPG gene expression by osteocytes. Black-Right-Pointing-Pointer CYR61 is upregulated in mechanically stimulated osteocytes. Black-Right-Pointing-Pointer Mechanical loading of osteocytes may abolish IL-1{beta}-induced osteoclastogenesis. -- Abstract: Inflammatory diseases such as rheumatoid arthritis are often accompanied by higher plasma and synovial fluid levels of interleukin-1{beta} (IL-1{beta}), and by increased bone resorption. Since osteocytes are known to regulate bone resorption in response to changes in mechanical stimuli, we investigated whether IL-1{beta} affects osteocyte-modulated osteoclastogenesis in the presence or absence of mechanicalmore » loading of osteocytes. MLO-Y4 osteocytes were pre-incubated with IL-1{beta} (0.1-1 ng/ml) for 24 h. Cells were either or not subjected to mechanical loading by 1 h pulsating fluid flow (PFF; 0.7 {+-} 0.3 Pa, 5 Hz) in the presence of IL-1{beta} (0.1-1 ng/ml). Conditioned medium was collected after 1 h PFF or static cultures. Subsequently mouse bone marrow cells were seeded on top of the IL-1{beta}-treated osteocytes to determine osteoclastogenesis. Conditioned medium from mechanically loaded or static IL-1{beta}-treated osteocytes was added to co-cultures of untreated osteocytes and mouse bone marrow cells. Gene expression of cysteine-rich protein 61 (CYR61/CCN1), receptor activator of nuclear factor kappa-B ligand (RANKL), and osteoprotegerin (OPG) by osteocytes was determined immediately after PFF. Incubation of osteocytes with IL-1{beta}, as well as conditioned medium from static IL-1{beta}-treated osteocytes increased the formation of osteoclasts. However, conditioned medium from mechanically loaded IL-1{beta}-treated osteocytes prevented osteoclast formation. Incubation with IL-1{beta} upregulated RANKL and downregulated OPG gene expression by static osteocytes. PFF upregulated CYR61, RANKL, and OPG gene expression by osteocytes. Our results suggest that IL-1{beta} increases osteocyte-modulated osteoclastogenesis, and that mechanical loading of osteocytes may abolish IL-1{beta}-induced osteoclastogenesis.« less

  4. Growth plate cartilage shows different strain patterns in response to static versus dynamic mechanical modulation.

    PubMed

    Kaviani, Rosa; Londono, Irene; Parent, Stefan; Moldovan, Florina; Villemure, Isabelle

    2016-08-01

    Longitudinal growth of long bones and vertebrae occurs in growth plate cartilage. This process is partly regulated by mechanical forces, which are one of the underlying reasons for progression of growth deformities such as idiopathic adolescent scoliosis and early-onset scoliosis. This concept of mechanical modulation of bone growth is also exploited in the development of fusionless treatments of these deformities. However, the optimal loading condition for the mechanical modulation of growth plate remains to be identified. The objective of this study was to evaluate the effects of in vitro static versus dynamic modulation and of dynamic loading parameters, such as frequency and amplitude, on the mechanical responses and histomorphology of growth plate explants. Growth plate explants from distal ulnae of 4-week-old swines were extracted and randomly distributed among six experimental groups: baseline ([Formula: see text]), control ([Formula: see text]), static ([Formula: see text]) and dynamic ([Formula: see text]). For static and dynamic groups, mechanical modulation was performed in vitro using an Indexed CartiGen bioreactor. A stress relaxation test combined with confocal microscopy and digital image correlation was used to characterize the mechanical responses of each explant in terms of peak stress, equilibrium stress, equilibrium modulus of elasticity and strain pattern. Histomorphometrical measurements were performed on toluidine blue tissue sections using a semi-automatic custom-developed MATLAB toolbox. Results suggest that compared to dynamic modulation, static modulation changes the strain pattern of the tissue and thus is more detrimental for tissue biomechanics, while the histomorphological parameters are not affected by mechanical modulation. Also, under dynamic modulation, changing the frequency or amplitude does not affect the biomechanical response of the tissue. Results of this study will be useful in finding optimal and non-damaging parameters for the mechanical modulation of growth plate in fusionless treatments.

  5. Effects of Food Texture on Three-Dimensional Loads on Implants During Mastication Based on In Vivo Measurements.

    PubMed

    Yoda, Nobuhiro; Ogawa, Toru; Gunji, Yoshinori; Vanegas, Juan R; Kawata, Tetsuo; Sasaki, Keiichi

    2016-08-01

    The mechanisms by which the loads exerted on implants that support prostheses are modulated during mastication remain unclear. The purpose of this study was to evaluate the effects of food texture on 3-dimensional loads measured at a single implant using a piezoelectric transducer. Two subjects participated in this study. The transducer and the experimental superstructure, which had been adjusted to the subject's occlusal scheme, were attached to the implant with a titanium screw. The foods tested were chewing gum and peanuts. The mean maximum load on the implant in each chewing cycle was significantly higher during peanut chewing than during gum chewing. The direction of maximum load was significantly more widely dispersed during peanut chewing than during gum chewing. The range of changes in load direction during the force-increasing phase of each chewing cycle was significantly wider during peanut chewing than during gum chewing. The load on the implant was affected by food texture in both subjects. This measurement method can be useful to investigate the mechanisms of load modulation on implants during mastication.

  6. Spacelab payload accommodation handbook. Appendix B: Structure interface definition module

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The mechanical interfaces between Spacelab and its payload are defined. The envelopes available for mounting payload hardware are specified together with the standard structural attachment interfaces. Overall load capabilities and the local load capabilities for individual attachment interfaces are defined for the standard mounting locations. The mechanical environment is defined and the mechanical interfaces between the payload and the EPDS, CDMS and ECS are included.

  7. Mathematical model of simple spalling formation during coal cutting with extracting machine

    NASA Astrophysics Data System (ADS)

    Gabov, V. V.; Zadkov, D. A.

    2018-05-01

    A single-mass model of a rotor shearer is analyzed. It is shown that rotor mining machines has large inertia moments and load dynamics. An extraction module model with selective movement of the cutting tool is represented. The peculiar feature of such extracting machines is fluid power drive cutter mechanism. They can steadily operate at large shear thickness, and locking modes are not an emergency for them. Comparing with shearers they have less inertional mass, but slower average cutting speed, and its momentary values depend on load. Basing on the equation of hydraulic fuel consumption balance the work of fluid power drive of extracting module cutter mechanism together with hydro pneumatic accumulator is analyzed. Spalling formation model during coal cutting with fluid power drive cutter mechanism and potential energy stores are suggested. Matching cutter speed with the speed of main crack expansion and amount of potential energy consumption, cutter load is determined only by ultimate stress at crack pole and friction. Tests of an extracting module cutter in real size model proved the stated theory.

  8. Three-Dimensional Mechanical Loading Modulates the Osteogenic Response of Mesenchymal Stem Cells to Tumor-Derived Soluble Signals.

    PubMed

    Lynch, Maureen E; Chiou, Aaron E; Lee, Min Joon; Marcott, Stephen C; Polamraju, Praveen V; Lee, Yeonkyung; Fischbach, Claudia

    2016-08-01

    Dynamic mechanical loading is a strong anabolic signal in the skeleton, increasing osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BM-MSCs) and increasing the bone-forming activity of osteoblasts, but its role in bone metastatic cancer is relatively unknown. In this study, we integrated a hydroxyapatite-containing three-dimensional (3D) scaffold platform with controlled mechanical stimulation to investigate the effects of cyclic compression on the interplay between breast cancer cells and BM-MSCs as it pertains to bone metastasis. BM-MSCs cultured within mineral-containing 3D poly(lactide-co-glycolide) (PLG) scaffolds differentiated into mature osteoblasts, and exposure to tumor-derived soluble factors promoted this process. When BM-MSCs undergoing osteogenic differentiation were exposed to conditioned media collected from mechanically loaded breast cancer cells, their gene expression of osteopontin was increased. This was further enhanced when mechanical compression was simultaneously applied to BM-MSCs, leading to more uniformly deposited osteopontin within scaffold pores. These results suggest that mechanical loading of 3D scaffold-based culture models may be utilized to evaluate the role of physiologically relevant physical cues on bone metastatic breast cancer. Furthermore, our data imply that cyclic mechanical stimuli within the bone microenvironment modulate interactions between tumor cells and BM-MSCs that are relevant to bone metastasis.

  9. Perceptual Load Alters Visual Excitability

    ERIC Educational Resources Information Center

    Carmel, David; Thorne, Jeremy D.; Rees, Geraint; Lavie, Nilli

    2011-01-01

    Increasing perceptual load reduces the processing of visual stimuli outside the focus of attention, but the mechanism underlying these effects remains unclear. Here we tested an account attributing the effects of perceptual load to modulations of visual cortex excitability. In contrast to stimulus competition accounts, which propose that load…

  10. Face and object encoding under perceptual load: ERP evidence.

    PubMed

    Neumann, Markus F; Mohamed, Tarik N; Schweinberger, Stefan R

    2011-02-14

    According to the perceptual load theory, processing of a task-irrelevant distractor is abolished when attentional resources are fully consumed by task-relevant material. As an exception, however, famous faces have been shown to elicit repetition modulations in event-related potentials - an N250r - despite high load at initial presentation, suggesting preserved face-encoding. Here, we recorded N250r repetition modulations by unfamiliar faces, hands, and houses, and tested face specificity of preserved encoding under high load. In an immediate (S1-S2) repetition priming paradigm, participants performed a letter identification task on S1 by indicating whether an "X" vs. "N" was among 6 different (high load condition) or 6 identical (low load condition) letters. Letter strings were superimposed on distractor faces, hands, or houses. Subsequent S2 probes were either identical repetitions of S1 distractors, non-repeated exemplars from the same category, or infrequent butterflies, to which participants responded. Independent of attentional load at S1, an occipito-temporal N250r was found for unfamiliar faces. In contrast, no repetition-related neural modulation emerged for houses or hands. This strongly suggests that a putative face-selective attention module supports encoding under high load, and that similar mechanisms are unavailable for other natural or artificial objects. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Extraordinary improvement of gas-sensing performances in SnO2 nanofibers due to creation of local p-n heterojunctions by loading reduced graphene oxide nanosheets.

    PubMed

    Lee, Jae-Hyoung; Katoch, Akash; Choi, Sun-Woo; Kim, Jae-Hun; Kim, Hyoun Woo; Kim, Sang Sub

    2015-02-11

    We propose a novel approach to improve the gas-sensing properties of n-type nanofibers (NFs) that involves creation of local p-n heterojunctions with p-type reduced graphene oxide (RGO) nanosheets (NSs). This work investigates the sensing behaviors of n-SnO2 NFs loaded with p-RGO NSs as a model system. n-SnO2 NFs demonstrated greatly improved gas-sensing performances when loaded with an optimized amount of p-RGO NSs. Loading an optimized amount of RGOs resulted in a 20-fold higher sensor response than that of pristine SnO2 NFs. The sensing mechanism of monolithic SnO2 NFs is based on the joint effects of modulation of the potential barrier at nanograin boundaries and radial modulation of the electron-depletion layer. In addition to the sensing mechanisms described above, enhanced sensing was obtained for p-RGO NS-loaded SnO2 NFs due to creation of local p-n heterojunctions, which not only provided a potential barrier, but also functioned as a local electron absorption reservoir. These mechanisms markedly increased the resistance of SnO2 NFs, and were the origin of intensified resistance modulation during interaction of analyte gases with preadsorbed oxygen species or with the surfaces and grain boundaries of NFs. The approach used in this work can be used to fabricate sensitive gas sensors based on n-type NFs.

  12. The interdependence of Ca2+ activation, sarcomere length, and power output in the heart.

    PubMed

    McDonald, Kerry S

    2011-07-01

    Myocardium generates power to perform external work on the circulation; yet, many questions regarding intermolecular mechanisms regulating power output remain unresolved. Power output equals force × shortening velocity, and some interesting new observations regarding control of these two factors have arisen. While it is well established that sarcomere length tightly controls myocyte force, sarcomere length-tension relationships also appear to be markedly modulated by PKA-mediated phosphorylation of myofibrillar proteins. Concerning loaded shortening, historical models predict independent cross-bridge mechanics; however, it seems that the mechanical state of one population of cross-bridges affects the activity of other cross-bridges by, for example, recruitment of cross-bridges from the non-cycling pool to the cycling force-generating pool during submaximal Ca(2+) activation. This is supported by the findings that Ca(2+) activation levels, myofilament phosphorylation, and sarcomere length are all modulators of loaded shortening and power output independent of their effects on force. This fine tuning of power output probably helps optimize myocardial energetics and to match ventricular supply with peripheral demand; yet, the discernment of the chemo-mechanical signals that modulate loaded shortening needs further clarification since power output may be a key convergent point and feedback regulator of cytoskeleton and cellular signals that control myocyte growth and survival.

  13. Feedback and feedforward locomotor adaptations to ankle-foot load in people with incomplete spinal cord injury.

    PubMed

    Gordon, Keith E; Wu, Ming; Kahn, Jennifer H; Schmit, Brian D

    2010-09-01

    Humans with spinal cord injury (SCI) modulate locomotor output in response to limb load. Understanding the neural control mechanisms responsible for locomotor adaptation could provide a framework for selecting effective interventions. We quantified feedback and feedforward locomotor adaptations to limb load modulations in people with incomplete SCI. While subjects airstepped (stepping performed with kinematic assistance and 100% bodyweight support), a powered-orthosis created a dorisflexor torque during the "stance phase" of select steps producing highly controlled ankle-load perturbations. When given repetitive, stance phase ankle-load, the increase in hip extension work, 0.27 J/kg above baseline (no ankle-load airstepping), was greater than the response to ankle-load applied during a single step, 0.14 J/kg (P = 0.029). This finding suggests that, at the hip, subjects produced both feedforward and feedback locomotor modulations. We estimate that, at the hip, the locomotor response to repetitive ankle-load was modulated almost equally by ongoing feedback and feedforward adaptations. The majority of subjects also showed after-effects in hip kinetic patterns that lasted 3 min in response to repetitive loading, providing additional evidence of feedforward locomotor adaptations. The magnitude of the after-effect was proportional to the response to repetitive ankle-foot load (R(2) = 0.92). In contrast, increases in soleus EMG amplitude were not different during repetitive and single-step ankle-load exposure, suggesting that ankle locomotor modulations were predominately feedback-based. Although subjects made both feedback and feedforward locomotor adaptations to changes in ankle-load, between-subject variations suggest that walking function may be related to the ability to make feedforward adaptations.

  14. Three-Dimensional Mechanical Loading Modulates the Osteogenic Response of Mesenchymal Stem Cells to Tumor-Derived Soluble Signals

    PubMed Central

    Lynch, Maureen E.; Chiou, Aaron E.; Lee, Min Joon; Marcott, Stephen C.; Polamraju, Praveen V.; Lee, Yeonkyung

    2016-01-01

    Dynamic mechanical loading is a strong anabolic signal in the skeleton, increasing osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BM-MSCs) and increasing the bone-forming activity of osteoblasts, but its role in bone metastatic cancer is relatively unknown. In this study, we integrated a hydroxyapatite-containing three-dimensional (3D) scaffold platform with controlled mechanical stimulation to investigate the effects of cyclic compression on the interplay between breast cancer cells and BM-MSCs as it pertains to bone metastasis. BM-MSCs cultured within mineral-containing 3D poly(lactide-co-glycolide) (PLG) scaffolds differentiated into mature osteoblasts, and exposure to tumor-derived soluble factors promoted this process. When BM-MSCs undergoing osteogenic differentiation were exposed to conditioned media collected from mechanically loaded breast cancer cells, their gene expression of osteopontin was increased. This was further enhanced when mechanical compression was simultaneously applied to BM-MSCs, leading to more uniformly deposited osteopontin within scaffold pores. These results suggest that mechanical loading of 3D scaffold-based culture models may be utilized to evaluate the role of physiologically relevant physical cues on bone metastatic breast cancer. Furthermore, our data imply that cyclic mechanical stimuli within the bone microenvironment modulate interactions between tumor cells and BM-MSCs that are relevant to bone metastasis. PMID:27401765

  15. Compound hydraulic shear-modulated vortex amplifiers

    NASA Technical Reports Server (NTRS)

    Goldschmied, F. R.

    1977-01-01

    A novel two-stage shear-modulated hydraulic vortex amplifier (U.S. patent 3,520,317) has been fabricated and put through preliminary steady-state testing at the 1000 psi supply pressure level with flows up to 15 gpm. The invention comprises a conventional fluidic vortex power stage and a shear-modulated pilot stage. In the absence of any mechanical moving parts, water may be used as the hydraulic medium thus opening the way to many underseas applications. At blocked load, a control input from 0 to 150 psi was required to achieve an output from 0 to 900 psi; at wide-open load, a control input of 0 to 120 psi was needed to achieve an output from 0 to 15 gpm. The power stage has been found unsuitable for the proportional control mode because of its nonlinear performance in the intermediate load range and because of strong pressure fluctuations (plus or minus 150 psi) in the intermediate control range. The addition of the shear-modulated pilot stage improves intermediate load linearity.

  16. Qualification of silicon pore optics

    NASA Astrophysics Data System (ADS)

    Wille, Eric; Bavdaz, Marcos; Fransen, Sebastiaan; Collon, Maximilien; Ackermann, Marcelo; Guenther, Ramses; Chatbi, Abdelhakim; Vacanti, Giuseppe; Vervest, Mark; van Baren, Coen; Haneveld, Jeroen; Riekerink, Mark Olde; Koelewijn, Arenda; Kampf, Dirk; Zuknik, Karl-Heinz; Reutlinger, Arnd

    2014-07-01

    Silicon Pore Optics (SPO) are the enabling technology for ESA's second large class mission in the Cosmic Vision programme. As for every space hardware, a critical qualification process is required to verify the suitability of the SPO mirror modules surviving the launch loads and maintaining their performance in the space environment. We present recent design modifications to further strengthen the mounting system (brackets and dowel pins) against mechanical loads. The progress of a formal qualification test campaign with the new mirror module design is shown. We discuss mechanical and thermal limitations of the SPO technology and provide recommendations for the mission design of the next X-ray Space Observatory.

  17. Single cardiac ventricular myosins are autonomous motors

    PubMed Central

    Wang, Yihua; Yuan, Chen-Ching; Kazmierczak, Katarzyna; Szczesna-Cordary, Danuta

    2018-01-01

    Myosin transduces ATP free energy into mechanical work in muscle. Cardiac muscle has dynamically wide-ranging power demands on the motor as the muscle changes modes in a heartbeat from relaxation, via auxotonic shortening, to isometric contraction. The cardiac power output modulation mechanism is explored in vitro by assessing single cardiac myosin step-size selection versus load. Transgenic mice express human ventricular essential light chain (ELC) in wild- type (WT), or hypertrophic cardiomyopathy-linked mutant forms, A57G or E143K, in a background of mouse α-cardiac myosin heavy chain. Ensemble motility and single myosin mechanical characteristics are consistent with an A57G that impairs ELC N-terminus actin binding and an E143K that impairs lever-arm stability, while both species down-shift average step-size with increasing load. Cardiac myosin in vivo down-shifts velocity/force ratio with increasing load by changed unitary step-size selections. Here, the loaded in vitro single myosin assay indicates quantitative complementarity with the in vivo mechanism. Both have two embedded regulatory transitions, one inhibiting ADP release and a second novel mechanism inhibiting actin detachment via strain on the actin-bound ELC N-terminus. Competing regulators filter unitary step-size selection to control force-velocity modulation without myosin integration into muscle. Cardiac myosin is muscle in a molecule. PMID:29669825

  18. Encapsulation and backsheet adhesion metrology for photovoltaic modules

    DOE PAGES

    Tracy, Jared; Bosco, Nick; Novoa, Fernando; ...

    2016-09-26

    Photovoltaic modules are designed to operate for decades in terrestrial environments. However, mechanical stress, moisture, and ultraviolet radiation eventually degrade protective materials in modules, particularly their adhesion properties, eventually leading to reduced solar cell performance. Despite the significance of interfacial adhesion to module durability, currently there is no reliable technique for characterizing module adhesion properties. We present a simple and reproducible metrology for characterizing adhesion in photovoltaic modules that is grounded in fundamental concepts of beam and fracture mechanics. Using width-tapered cantilever beam fracture specimens, interfacial adhesion was evaluated on relevant interfaces of encapsulation and backsheet structures of new andmore » 27-year-old historic modules. The adhesion energy, Gc [J/m 2], was calculated from the critical value of the strain energy release rate, G, using G = βP2, where β (a mechanical and geometric parameter of the fracture specimen) and P (the experimentally measured critical load) are constants. Under some circumstances where testing may result in cracking of brittle layers in the test specimen, measurement of the delamination length in addition to the critical load was necessary to determine G. Relative to new module materials, backsheet adhesion was 95% and 98% lower for historic modules that were exposed (operated in the field) and unexposed (stored on-site, but out of direct sunlight), respectively. Encapsulation adhesion was 87-94% lower in the exposed modules and 31% lower in the unexposed module. As a result, the metrology presented here can be used to improve module materials and assess long-term reliability.« less

  19. Working memory load modulation of parieto-frontal connections: evidence from dynamic causal modeling

    PubMed Central

    Ma, Liangsuo; Steinberg, Joel L.; Hasan, Khader M.; Narayana, Ponnada A.; Kramer, Larry A.; Moeller, F. Gerard

    2011-01-01

    Previous neuroimaging studies have shown that working memory load has marked effects on regional neural activation. However, the mechanism through which working memory load modulates brain connectivity is still unclear. In this study, this issue was addressed using dynamic causal modeling (DCM) based on functional magnetic resonance imaging (fMRI) data. Eighteen normal healthy subjects were scanned while they performed a working memory task with variable memory load, as parameterized by two levels of memory delay and three levels of digit load (number of digits presented in each visual stimulus). Eight regions of interest, i.e., bilateral middle frontal gyrus (MFG), anterior cingulate cortex (ACC), inferior frontal cortex (IFC), and posterior parietal cortex (PPC), were chosen for DCM analyses. Analysis of the behavioral data during the fMRI scan revealed that accuracy decreased as digit load increased. Bayesian inference on model structure indicated that a bilinear DCM in which memory delay was the driving input to bilateral PPC and in which digit load modulated several parieto-frontal connections was the optimal model. Analysis of model parameters showed that higher digit load enhanced connection from L PPC to L IFC, and lower digit load inhibited connection from R PPC to L ACC. These findings suggest that working memory load modulates brain connectivity in a parieto-frontal network, and may reflect altered neuronal processes, e.g., information processing or error monitoring, with the change in working memory load. PMID:21692148

  20. Optimized deformation behavior of a dielectric elastomer generator

    NASA Astrophysics Data System (ADS)

    Foerster, Florentine; Schlaak, Helmut F.

    2014-03-01

    Dielectric elastomer generators (DEGs) produce electrical energy by converting mechanical into electrical energy. Efficient operation requires an optimal deformation of the DEG during the energy harvesting cycle. However, the deformation resulting from an external load has to be applied to the DEG. The deformation behavior of the DEG is dependent on the type of the mechanical interconnection between the elastic DEG and a stiff support area. The maximization of the capacitance of the DEG in the deformed state leads to the maximum absolute energy gain. Therefore several configurations of mechanical interconnections between a single DEG module as well as multiple stacked DEG modules and stiff supports are investigated in order to find the optimal mechanical interconnection. The investigation is done with numerical simulations using the FEM software ANSYS. A DEG module consists of 50 active dielectric layers with a single layer thickness of 50 μm. The elastomer material is silicone (PDMS) while the compliant electrodes are made of graphite powder. In the simulation the real material parameters of the PDMS and the graphite electrodes are included to compare simulation results to experimental investigations in the future. The numerical simulations of the several configurations are carried out as coupled electro-mechanical simulation for the first step in an energy harvesting cycle with constant external load strain. The simulation results are discussed and an optimal mechanical interconnection between DEG modules and stiff supports is derived.

  1. Cellular and molecular mechanisms for the bone response to mechanical loading

    NASA Technical Reports Server (NTRS)

    Bloomfield, S. A.

    2001-01-01

    To define the cellular and molecular mechanisms for the osteogenic response of bone to increased loading, several key steps must be defined: sensing of the mechanical signal by cells in bone, transduction of the mechanical signal to a biochemical one, and transmission of that biochemical signal to effector cells. Osteocytes are likely to serve as sensors of loading, probably via interstitial fluid flow produced during loading. Evidence is presented for the role of integrins, the cell's actin cytoskeleton, G proteins, and various intracellular signaling pathways in transducing that mechanical signal to a biochemical one. Nitric oxide, prostaglandins, and insulin-like growth factors all play important roles in these pathways. There is growing evidence for modulation of these mechanotransduction steps by endocrine factors, particularly parathyroid hormone and estrogen. The efficiency of this process is also impaired in the aged animal, yet what remains undefined is at what step mechanotransduction is affected.

  2. Mechanical loading stimulates ecto-ATPase activity in human tendon cells.

    PubMed

    Tsuzaki, M; Bynum, D; Almekinders, L; Faber, J; Banes, A J

    2005-09-01

    Response to external stimuli such as mechanical signals is critical for normal function of cells, especially when subjected to repetitive motion. Tenocytes receive mechanical stimuli from the load-bearing matrix as tension, compression, and shear stress during tendon gliding. Overloading a tendon by high strain, shear, or repetitive motion can cause matrix damage. Injury may induce cytokine expression, matrix metalloproteinase (MMP) expression and activation resulting in loss of biomechanical properties. These changes may result in tendinosis or tendinopathy. Alternatively, an immediate effector molecule may exist that acts in a signal-dampening pathway. Adenosine 5'-triphosphate (ATP) is a candidate signal blocker of mechanical stimuli. ATP suppresses load-inducible inflammatory genes in human tendon cells in vitro. ATP and other extracellular nucleotide signaling are regulated efficiently by two distinct mechanisms: purinoceptors via specific receptor-ligand binding and ecto-nucleotidases via the hydrolysis of specific nucleotide substrates. ATP is released from tendon cells by mechanical loading or by uridine 5'-triphosphate (UTP) stimulation. We hypothesized that mechanical loading might stimulate ecto-ATPase activity. Human tendon cells of surface epitenon (TSC) and internal compartment (TIF) were cyclically stretched (1 Hz, 0.035 strain, 2 h) with or without ATP. Aliquots of the supernatant fluids were collected at various time points, and ATP concentration (ATP) was determined by a luciferin-luciferase bioluminescence assay. Total RNA was isolated from TSC and TIF (three patients) and mRNA expression for ecto-nucleotidase was analyzed by RT-PCR. Human tendon cells secreted ATP in vitro (0.5-1 nM). Exogenous ATP was hydrolyzed within minutes. Mechanical load stimulated ATPase activity. ATP was hydrolyzed in mechanically loaded cultures at a significantly greater rate compared to no load controls. Tenocytes (TSC and TIF) expressed ecto-nucleotidase mRNA (ENTPD3 and ENPP1, ENPP2). These data suggest that motion may release ATP from tendon cells in vivo, where ecto-ATPase may also be activated to hydrolyze ATP quickly. Ecto-ATPase may act as a co-modulator in ATP load-signal modulation by regulating the half-life of extracellular purine nucleotides. The extracellular ATP/ATPase system may be important for tendon homeostasis by protecting tendon cells from responding to excessive load signals and activating injurious pathways. Copyright 2005 Wiley-Liss, Inc

  3. Parathyroid hormone modulates the response of osteoblast-like cells to mechanical stimulation

    NASA Technical Reports Server (NTRS)

    Ryder, K. D.; Duncan, R. L.

    2000-01-01

    Mechanical loading stimulates many responses in bone and osteoblasts associated with osteogenesis. Since loading and parathyroid hormone (PTH) activate similar signaling pathways in osteoblasts, we postulate that PTH can potentiate the effects of mechanical stimulation. Using an in vitro four-point bending device, we found that expression of COX-2, the inducible isoform of cyclooxygenase, was dependent on fluid forces generated across the culture plate, but not physiologic levels of strain in MC3T3-E1 osteoblast-like cells. Addition of 50 nM PTH during loading increased COX-2 expression at both subthreshold and threshold levels of fluid forces compared with either stimuli alone. We also demonstrated that application of fluid shear to MC3T3-E1 cells induced a rapid increase in [Ca(2+)](i). Although PTH did not significantly change [Ca(2+)](i) levels, flow and PTH did produce a significantly greater [Ca(2+)](i) response and increased the number of responding cells than is found in fluid shear alone. The [Ca(2+)](i) response to these stimuli was significantly decreased when the mechanosensitive channel inhibitor, gadolinium, was present. These studies indicate that PTH increases the cellular responses of osteoblasts to mechanical loading. Furthermore, this response may be mediated by alterations in [Ca(2+)](i) by modulating the mechanosensitive channel.

  4. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis.

    PubMed

    Goldring, Mary B; Goldring, Steven R

    2010-03-01

    The articular surface plays an essential role in load transfer across the joint, and conditions that produce increased load transfer or altered patterns of load distribution accelerate the development of osteoarthritis (OA). Current knowledge segregates the risk factors into two fundamental mechanisms related to the adverse effects of "abnormal" loading on normal cartilage or "normal" loading on abnormal cartilage. Although chondrocytes can modulate their functional state in response to loading, their capacity to repair and modify the surrounding extracellular matrix is limited in comparison to skeletal cells in bone. This differential adaptive capacity underlies the more rapid appearance of detectable skeletal changes, especially after acute injuries that alter joint mechanics. The imbalance in the adaptation of the cartilage and bone disrupts the physiological relationship between these tissues and further contributes to OA pathology. This review focuses on the specific articular cartilage and skeletal features of OA and the putative mechanisms involved in their pathogenesis.

  5. Angiopoietin‐like 4 promotes angiogenesis in the tendon and is increased in cyclically loaded tendon fibroblasts

    PubMed Central

    Mousavizadeh, Rouhollah; Scott, Alex; Lu, Alex; Ardekani, Gholamreza S; Behzad, Hayedeh; Lundgreen, Kirsten; Ghaffari, Mazyar; McCormack, Robert G

    2016-01-01

    Key points Angiopoietin‐like 4 (ANGPTL4) modulates tendon neovascularization.Cyclic loading stimulates the activity of transforming growth factor‐β and hypoxia‐inducible factor 1α and thereby increases the expression and release of ANGPTL4 from human tendon cells.Targeting ANGPTL4 and its regulatory pathways is a potential avenue for regulating tendon vascularization to improve tendon healing or adaptation. Abstract The mechanisms that regulate angiogenic activity in injured or mechanically loaded tendons are poorly understood. The present study examined the potential role of angiopoietin‐like 4 (ANGPTL4) in the angiogenic response of tendons subjected to repetitive mechanical loading or injury. Cyclic stretching of human tendon fibroblasts stimulated the expression and release of ANGPTL4 protein via transforming growth factor‐β (TGF‐β) and hypoxia‐inducible factor 1α (HIF‐1α) signalling, and the released ANGPTL4 was pro‐angiogenic. Angiogenic activity was increased following ANGPTL4 injection into mouse patellar tendons, whereas the patellar tendons of ANGPTL4 knockout mice displayed reduced angiogenesis following injury. In human rotator cuff tendons, the expression of ANGPTL4 was correlated with the density of tendon endothelial cells. To our knowledge, this is the first study characterizing a role of ANGPTL4 in the tendon. ANGPTL4 may assist in the regulation of vascularity in the injured or mechanically loaded tendon. TGF‐β and HIF‐1α comprise two signalling pathways that modulate the expression of ANGPTL4 by mechanically stimulated tendon fibroblasts and, in the future, these could be manipulated to influence tendon healing or adaptation. PMID:26670924

  6. In vivo dynamic compression has less detrimental effect than static compression on newly formed bone of a rat caudal vertebra

    PubMed Central

    Benoit, A.; Mustafy, T.; Londono, I.; Grimard, G.; Aubin, C-E.; Villemure, I.

    2016-01-01

    Fusionless devices are currently designed to treat spinal deformities such as scoliosis by the application of a controlled mechanical loading. Growth modulation by dynamic compression was shown to preserve soft tissues. The objective of this in vivo study was to characterize the effect of static vs. dynamic loading on the bone formed during growth modulation. Controlled compression was applied during 15 days on the 7th caudal vertebra (Cd7) of rats during growth spurt. The load was sustained in the “static” group and sinusoidally oscillating in the “dynamic” group. The effect of surgery and of the device was investigated using control and sham (operated on but no load applied) groups. A high resolution CT-scan of Cd7 was acquired at days 2, 8 and 15 of compression. Growth rates, histomorphometric parameters and mineral density of the newly formed bone were quantified and compared. Static and dynamic loadings significantly reduced the growth rate by 20% compared to the sham group. Dynamic loading preserved newly formed bone histomorphometry and mineral density whereas static loading induced thicker (+31%) and more mineralized (+12%) trabeculae. A significant sham effect was observed. Growth modulation by dynamic compression constitutes a promising way to develop new treatment for skeletal deformities. PMID:27609036

  7. Strain-induced dimensionality crossover of precursor modulations in Ni2MnGa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie, Zhihua; Wang, Yandong; Shang, Shunli

    2015-01-01

    Precursor modulations often occur in functional materials like magnetic shape memory alloys, ferroelectrics, and superconductors. In this letter, we have revealed the underlying mechanism of the precursor modulations in ferromagnetic shape memory alloys Ni2MnGa by combining synchrotron-based x-ray diffraction experiments and first-principles phonon calculations. We discovered the precursor modulations along [011] direction can be eliminated with [001] uniaxial loading, while the precursor modulations or premartensite can be totally suppressed by hydrostatic pressure condition. The TA2 phonon anomaly is sensitive to stress induced lattice strain, and the entire TA2 branch is stabilized along the directions where precursor modulations are eliminated bymore » external stress. Our discovery bridges precursor modulations and phonon anomalies, and sheds light on the microscopic mechanism of the two-step superelasticity in precursor martensite.« less

  8. In-Situ Measurement of Power Loss for Crystalline Silicon Modules Undergoing Thermal Cycling and Mechanical Loading Stress Testing: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spataru, Sergiu; Hacke, Pater; Sera, Dezso

    2015-09-15

    We analyze the degradation of multi-crystalline silicon photovoltaic modules undergoing simultaneous thermal, mechanical, and humidity stress testing to develop a dark environmental chamber in-situ measurement procedure for determining module power loss. From the analysis we determine three main categories of failure modes associated with the module degradation consisting of: shunting, recombination losses, increased series resistance losses, and current mismatch losses associated with a decrease in photo-current generation by removal of some cell areas due to cell fractures. Based on the analysis, we propose an in-situ module power loss monitoring procedure that relies on dark current-voltage measurements taken during the stressmore » test, and initial and final module flash testing, to determine the power degradation characteristic of the module.« less

  9. Dead zone analysis of ECAL barrel modules under static and dynamic load

    NASA Astrophysics Data System (ADS)

    Pierre-Emile, T.; Anduze, M.

    2018-03-01

    In the context of ILD project, impact studies of environmental loads on the Electromagnetic CALorimeter (ECAL) have been initiated. The ECAL part considered is the barrel and it consists of several independent modules which are mounted on the Hadronic CALorimeter barrel (HCAL) itself mounted on the cryostat coil and the yoke. The estimate of the gap required between each ECAL modules is fundamental to define the assembly step and avoid mechanical contacts over the barrel lifetime. In the meantime, it has to be done in consideration to the dead spaces reduction and detector hermiticity optimization. Several Finite Element Analysis (FEA) with static and dynamic loads have been performed in order to define correctly the minimum values for those gaps. Due to the implantation site of the whole project in Japan, seismic analysis were carried out in addition to the static ones. This article shows results of these analysis done with the Finite Element Method (FEM) in ANSYS. First results show the impact of HCAL design on the ECAL modules motion in static load. The second study dedicated to seismic approach on a larger model (including yoke and cryostat) gives additional results on earthquake consequences.

  10. Angiopoietin-like 4 promotes angiogenesis in the tendon and is increased in cyclically loaded tendon fibroblasts.

    PubMed

    Mousavizadeh, Rouhollah; Scott, Alex; Lu, Alex; Ardekani, Gholamreza S; Behzad, Hayedeh; Lundgreen, Kirsten; Ghaffari, Mazyar; McCormack, Robert G; Duronio, Vincent

    2016-06-01

    Angiopoietin-like 4 (ANGPTL4) modulates tendon neovascularization. Cyclic loading stimulates the activity of transforming growth factor-β and hypoxia-inducible factor 1α and thereby increases the expression and release of ANGPTL4 from human tendon cells. Targeting ANGPTL4 and its regulatory pathways is a potential avenue for regulating tendon vascularization to improve tendon healing or adaptation. The mechanisms that regulate angiogenic activity in injured or mechanically loaded tendons are poorly understood. The present study examined the potential role of angiopoietin-like 4 (ANGPTL4) in the angiogenic response of tendons subjected to repetitive mechanical loading or injury. Cyclic stretching of human tendon fibroblasts stimulated the expression and release of ANGPTL4 protein via transforming growth factor-β (TGF-β) and hypoxia-inducible factor 1α (HIF-1α) signalling, and the released ANGPTL4 was pro-angiogenic. Angiogenic activity was increased following ANGPTL4 injection into mouse patellar tendons, whereas the patellar tendons of ANGPTL4 knockout mice displayed reduced angiogenesis following injury. In human rotator cuff tendons, the expression of ANGPTL4 was correlated with the density of tendon endothelial cells. To our knowledge, this is the first study characterizing a role of ANGPTL4 in the tendon. ANGPTL4 may assist in the regulation of vascularity in the injured or mechanically loaded tendon. TGF-β and HIF-1α comprise two signalling pathways that modulate the expression of ANGPTL4 by mechanically stimulated tendon fibroblasts and, in the future, these could be manipulated to influence tendon healing or adaptation. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  11. Interactivity of Question Prompts and Feedback on Secondary Students' Science Knowledge Acquisition and Cognitive Load

    ERIC Educational Resources Information Center

    Huang, Kun; Chen, Ching-Huei; Wu, Wen-Shiuan; Chen, Wei-Yu

    2015-01-01

    This study investigated how question prompts and feedback influenced knowledge acquisition and cognitive load when learning Newtonian mechanics within a web-based multimedia module. Participants were one hundred eighteen 9th grade students who were randomly assigned to one of four experimental conditions, forming a 2 x 2 factorial design with the…

  12. Potential regenerative rehabilitation technology: implications of mechanical stimuli to tissue health

    PubMed Central

    2014-01-01

    Background Mechanical loads induced through muscle contraction, vibration, or compressive forces are thought to modulate tissue plasticity. With the emergence of regenerative medicine, there is a need to understand the optimal mechanical environment (vibration, load, or muscle force) that promotes cellular health. To our knowledge no mechanical system has been proposed to deliver these isolated mechanical stimuli in human tissue. We present the design, performance, and utilization of a new technology that may be used to study localized mechanical stimuli on human tissues. A servo-controlled vibration and limb loading system were developed and integrated into a single instrument to deliver vibration, compression, or muscle contractile loads to a single limb (tibia) in humans. The accuracy, repeatability, transmissibility, and safety of the mechanical delivery system were evaluated on eight individuals with spinal cord injury (SCI). Findings The limb loading system was linear, repeatable, and accurate to less than 5, 1, and 1 percent of full scale, respectively, and transmissibility was excellent. The between session tests on individuals with spinal cord injury (SCI) showed high intra-class correlations (>0.9). Conclusions All tests supported that therapeutic loads can be delivered to a lower limb (tibia) in a safe, accurate, and measureable manner. Future collaborations between engineers and cellular physiologists will be important as research programs strive to determine the optimal mechanical environment for developing cells and tissues in humans. PMID:24894666

  13. Preserved and impaired aspects of feed-forward grip force control after chronic somatosensory deafferentation.

    PubMed

    Hermsdörfer, J; Elias, Z; Cole, J D; Quaney, B M; Nowak, D A

    2008-01-01

    Although feed-forward mechanisms of grip force control are a prerequisite for skilled object manipulation, somatosensory feedback is essential to acquire, maintain, and adapt these mechanisms. Individuals with complete peripheral deafferentation provide the unique opportunity to study the function of the motor system deprived of somatosensory feedback. Two individuals (GL and IW) with complete chronic deafferentation of the trunk and limbs were tested during cyclic vertical movements of a hand-held object. Such movements induce oscillating loads that are typically anticipated by parallel modulations of the grip force. Load magnitude was altered by varying either the movement frequency or object weight. GL and IW employed excessive grip forces probably reflecting a compensatory mechanism. Despite this overall force increase, both deafferented participants adjusted their grip force level according to the load magnitude, indicating preserved scaling of the background grip force to physical demands. The dynamic modulation of the grip force with the load force was largely absent in GL, whereas in IW only slower movements were clearly affected. The authors hypothesize that the deafferented patients may have utilized visual and vestibular cues and/or an efferent copy of the motor command of the arm movement to scale the grip force level. Severely impaired grip force-load coupling in GL suggests that sensory information is important for maintaining a precise internal model of dynamic grip force control. However, comparably better performance in IW argues for the possibility that alternative cues can be used to trigger a residual internal model.

  14. Oculomotor capture during real-world scene viewing depends on cognitive load.

    PubMed

    Matsukura, Michi; Brockmole, James R; Boot, Walter R; Henderson, John M

    2011-03-25

    It has been claimed that gaze control during scene viewing is largely governed by stimulus-driven, bottom-up selection mechanisms. Recent research, however, has strongly suggested that observers' top-down control plays a dominant role in attentional prioritization in scenes. A notable exception to this strong top-down control is oculomotor capture, where visual transients in a scene draw the eyes. One way to test whether oculomotor capture during scene viewing is independent of an observer's top-down goal setting is to reduce observers' cognitive resource availability. In the present study, we examined whether increasing observers' cognitive load influences the frequency and speed of oculomotor capture during scene viewing. In Experiment 1, we tested whether increasing observers' cognitive load modulates the degree of oculomotor capture by a new object suddenly appeared in a scene. Similarly, in Experiment 2, we tested whether increasing observers' cognitive load modulates the degree of oculomotor capture by an object's color change. In both experiments, the degree of oculomotor capture decreased as observers' cognitive resources were reduced. These results suggest that oculomotor capture during scene viewing is dependent on observers' top-down selection mechanisms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Load Adaptation of Lamellipodial Actin Networks.

    PubMed

    Mueller, Jan; Szep, Gregory; Nemethova, Maria; de Vries, Ingrid; Lieber, Arnon D; Winkler, Christoph; Kruse, Karsten; Small, J Victor; Schmeiser, Christian; Keren, Kinneret; Hauschild, Robert; Sixt, Michael

    2017-09-21

    Actin filaments polymerizing against membranes power endocytosis, vesicular traffic, and cell motility. In vitro reconstitution studies suggest that the structure and the dynamics of actin networks respond to mechanical forces. We demonstrate that lamellipodial actin of migrating cells responds to mechanical load when membrane tension is modulated. In a steady state, migrating cell filaments assume the canonical dendritic geometry, defined by Arp2/3-generated 70° branch points. Increased tension triggers a dense network with a broadened range of angles, whereas decreased tension causes a shift to a sparse configuration dominated by filaments growing perpendicularly to the plasma membrane. We show that these responses emerge from the geometry of branched actin: when load per filament decreases, elongation speed increases and perpendicular filaments gradually outcompete others because they polymerize the shortest distance to the membrane, where they are protected from capping. This network-intrinsic geometrical adaptation mechanism tunes protrusive force in response to mechanical load. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Development and application of computer assisted optimal method for treatment of femoral neck fracture.

    PubMed

    Wang, Monan; Zhang, Kai; Yang, Ning

    2018-04-09

    To help doctors decide their treatment from the aspect of mechanical analysis, the work built a computer assisted optimal system for treatment of femoral neck fracture oriented to clinical application. The whole system encompassed the following three parts: Preprocessing module, finite element mechanical analysis module, post processing module. Preprocessing module included parametric modeling of bone, parametric modeling of fracture face, parametric modeling of fixed screw and fixed position and input and transmission of model parameters. Finite element mechanical analysis module included grid division, element type setting, material property setting, contact setting, constraint and load setting, analysis method setting and batch processing operation. Post processing module included extraction and display of batch processing operation results, image generation of batch processing operation, optimal program operation and optimal result display. The system implemented the whole operations from input of fracture parameters to output of the optimal fixed plan according to specific patient real fracture parameter and optimal rules, which demonstrated the effectiveness of the system. Meanwhile, the system had a friendly interface, simple operation and could improve the system function quickly through modifying single module.

  17. Attentional Modulation of Brain Responses to Primary Appetitive and Aversive Stimuli

    PubMed Central

    Field, Brent A.; Buck, Cara L.; McClure, Samuel M.; Nystrom, Leigh E.; Kahneman, Daniel; Cohen, Jonathan D.

    2015-01-01

    Studies of subjective well-being have conventionally relied upon self-report, which directs subjects’ attention to their emotional experiences. This method presumes that attention itself does not influence emotional processes, which could bias sampling. We tested whether attention influences experienced utility (the moment-by-moment experience of pleasure) by using functional magnetic resonance imaging (fMRI) to measure the activity of brain systems thought to represent hedonic value while manipulating attentional load. Subjects received appetitive or aversive solutions orally while alternatively executing a low or high attentional load task. Brain regions associated with hedonic processing, including the ventral striatum, showed a response to both juice and quinine. This response decreased during the high-load task relative to the low-load task. Thus, attentional allocation may influence experienced utility by modulating (either directly or indirectly) the activity of brain mechanisms thought to represent hedonic value. PMID:26158468

  18. Servicers system demonstration plan and capability development

    NASA Technical Reports Server (NTRS)

    Bulboaca, M. A.; Cuseo, J. A.; Derocher, W. L., Jr.; Maples, R. W.; Reynolds, P. C.; Sterrett, R. A.

    1985-01-01

    A plan for the demonstration of the exchange of Multi-Mission Modular Spacecraft (MMS) modules using the servicer mechanism Engineering Test Unit (ETU) was prepared and executed. The plan included: establishment of requirements, conceptual design, selection of MMS spacecraft mockup configuration, selection of MMS module mockup configuration, evaluation of adequacy of ETU load capability, and selection of a stowage rack arrangement. The MMS module exchange demonstration mockup equipment was designed, fabricated, checked out, shipped, installed, and demonstrated.

  19. Stroop proactive control and task conflict are modulated by concurrent working memory load.

    PubMed

    Kalanthroff, Eyal; Avnit, Amir; Henik, Avishai; Davelaar, Eddy J; Usher, Marius

    2015-06-01

    Performance on the Stroop task reflects two types of conflict-informational (between the incongruent word and font color) and task (between the contextually relevant color-naming task and the irrelevant, but automatic, word-reading task). According to the dual mechanisms of control theory (DMC; Braver, 2012), variability in Stroop performance can result from variability in the deployment of a proactive task-demand control mechanism. Previous research has shown that when proactive control (PC) is diminished, both increased Stroop interference and a reversed Stroop facilitation (RF) are observed. Although the current DMC model accounts for the former effect, it does not predict the observed RF, which is considered to be behavioral evidence for task conflict in the Stroop task. Here we expanded the DMC model to account for Stroop RF. Assuming that a concurrent working memory (WM) task reduces PC, we predicted both increased interference and an RF. Nineteen participants performed a standard Stroop task combined with a concurrent n-back task, which was aimed at reducing available WM resources, and thus overloading PC. Although the results indicated common Stroop interference and facilitation in the low-load condition (zero-back), in the high-load condition (two-back), both increased Stroop interference and RF were observed, consistent with the model's prediction. These findings indicate that PC is modulated by concurrent WM load and serves as a common control mechanism for both informational and task Stroop conflicts.

  20. Attention and Working Memory in Adolescents with Autism Spectrum Disorder: A Functional MRI Study.

    PubMed

    Rahko, Jukka S; Vuontela, Virve A; Carlson, Synnöve; Nikkinen, Juha; Hurtig, Tuula M; Kuusikko-Gauffin, Sanna; Mattila, Marja-Leena; Jussila, Katja K; Remes, Jukka J; Jansson-Verkasalo, Eira M; Aronen, Eeva T; Pauls, David L; Ebeling, Hanna E; Tervonen, Osmo; Moilanen, Irma K; Kiviniemi, Vesa J

    2016-06-01

    The present study examined attention and memory load-dependent differences in the brain activation and deactivation patterns between adolescents with autism spectrum disorders (ASDs) and typically developing (TD) controls using functional magnetic resonance imaging. Attentional (0-back) and working memory (WM; 2-back) processing and load differences (0 vs. 2-back) were analysed. WM-related areas activated and default mode network deactivated normally in ASDs as a function of task load. ASDs performed the attentional 0-back task similarly to TD controls but showed increased deactivation in cerebellum and right temporal cortical areas and weaker activation in other cerebellar areas. Increasing task load resulted in multiple responses in ASDs compared to TD and in inadequate modulation of brain activity in right insula, primary somatosensory, motor and auditory cortices. The changes during attentional task may reflect compensatory mechanisms enabling normal behavioral performance. The inadequate memory load-dependent modulation of activity suggests diminished compensatory potential in ASD.

  1. Strain-induced dimensionality crossover of precursor modulations in Ni{sub 2}MnGa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie, Zhihua, E-mail: zhihua-nie@yahoo.com, E-mail: ydwang@neu.edu.cn; Wang, Yandong, E-mail: zhihua-nie@yahoo.com, E-mail: ydwang@neu.edu.cn; Shang, Shunli

    2015-01-12

    Precursor modulations often occur in functional materials like magnetic shape memory alloys, ferroelectrics, and superconductors. In this letter, we have revealed the underlying mechanism of the precursor modulations in ferromagnetic shape memory alloys Ni{sub 2}MnGa by combining synchrotron-based x-ray diffraction experiments and first-principles phonon calculations. We discovered the precursor modulations along [011] direction can be eliminated with [001] uniaxial loading, while the precursor modulations or premartensite can be totally suppressed by hydrostatic pressure condition. The TA{sub 2} phonon anomaly is sensitive to stress induced lattice strain, and the entire TA{sub 2} branch is stabilized along the directions where precursor modulationsmore » are eliminated by external stress. Our discovery bridges precursor modulations and phonon anomalies, and sheds light on the microscopic mechanism of the two-step superelasticity in precursor martensite.« less

  2. Working memory capacity and visual-verbal cognitive load modulate auditory-sensory gating in the brainstem: toward a unified view of attention.

    PubMed

    Sörqvist, Patrik; Stenfelt, Stefan; Rönnberg, Jerker

    2012-11-01

    Two fundamental research questions have driven attention research in the past: One concerns whether selection of relevant information among competing, irrelevant, information takes place at an early or at a late processing stage; the other concerns whether the capacity of attention is limited by a central, domain-general pool of resources or by independent, modality-specific pools. In this article, we contribute to these debates by showing that the auditory-evoked brainstem response (an early stage of auditory processing) to task-irrelevant sound decreases as a function of central working memory load (manipulated with a visual-verbal version of the n-back task). Furthermore, individual differences in central/domain-general working memory capacity modulated the magnitude of the auditory-evoked brainstem response, but only in the high working memory load condition. The results support a unified view of attention whereby the capacity of a late/central mechanism (working memory) modulates early precortical sensory processing.

  3. Dynamic Tensile Loading Improves the Functional Properties of Mesenchymal Stem Cell-Laden Nanofiber-Based Fibrocartilage

    PubMed Central

    Baker, Brendon M.; Shah, Roshan P.; Huang, Alice H.

    2011-01-01

    Fibrocartilaginous tissues such as the meniscus serve critical load-bearing roles, relying on arrays of collagen fibers to resist tensile loads experienced with normal activity. As these structures are frequently injured and possess limited healing capacity, there exists great demand for tissue-engineered replacements. Toward recreating the structural features of these anisotropic tissues in vitro, we employ scaffolds composed of co-aligned nanofibers that direct mesenchymal stem cell (MSC) orientation and the formation of organized extracellular matrix (ECM). Concomitant with ECM synthesis, the mechanical properties of constructs increase with free-swelling culture, but ultimately failed to achieve equivalence with meniscal fibrocartilage. As mechanical forces are essential to the development and maintenance of musculoskeletal tissues, this work examined the effect of cyclic tensile loading on MSC-laden nanofibrous constructs. We hypothesized that loading would modulate the transcriptional behavior of MSCs, spur the deposition of ECM, and lead to enhancements in construct mechanical properties compared to free-swelling controls. Fiber-aligned scaffolds were seeded with MSCs and dynamically loaded daily in tension or maintained as nonloaded controls for 4 weeks. With mechanical stimulation, fibrous gene expression increased, collagen deposition increased, and the tensile modulus increased by 16% relative to controls. These results show that dynamic tensile loading enhances the maturation of MSC-laden aligned nanofibrous constructs, suggesting that recapitulation of the structural and mechanical environment of load-bearing tissues results in increases in functional properties that can be exploited for tissue engineering applications. PMID:21247342

  4. Dynamic tensile loading improves the functional properties of mesenchymal stem cell-laden nanofiber-based fibrocartilage.

    PubMed

    Baker, Brendon M; Shah, Roshan P; Huang, Alice H; Mauck, Robert L

    2011-05-01

    Fibrocartilaginous tissues such as the meniscus serve critical load-bearing roles, relying on arrays of collagen fibers to resist tensile loads experienced with normal activity. As these structures are frequently injured and possess limited healing capacity, there exists great demand for tissue-engineered replacements. Toward recreating the structural features of these anisotropic tissues in vitro, we employ scaffolds composed of co-aligned nanofibers that direct mesenchymal stem cell (MSC) orientation and the formation of organized extracellular matrix (ECM). Concomitant with ECM synthesis, the mechanical properties of constructs increase with free-swelling culture, but ultimately failed to achieve equivalence with meniscal fibrocartilage. As mechanical forces are essential to the development and maintenance of musculoskeletal tissues, this work examined the effect of cyclic tensile loading on MSC-laden nanofibrous constructs. We hypothesized that loading would modulate the transcriptional behavior of MSCs, spur the deposition of ECM, and lead to enhancements in construct mechanical properties compared to free-swelling controls. Fiber-aligned scaffolds were seeded with MSCs and dynamically loaded daily in tension or maintained as nonloaded controls for 4 weeks. With mechanical stimulation, fibrous gene expression increased, collagen deposition increased, and the tensile modulus increased by 16% relative to controls. These results show that dynamic tensile loading enhances the maturation of MSC-laden aligned nanofibrous constructs, suggesting that recapitulation of the structural and mechanical environment of load-bearing tissues results in increases in functional properties that can be exploited for tissue engineering applications.

  5. Real-Time Measurement of Solute Transport Within the Lacunar-Canalicular System of Mechanically Loaded Bone: Direct Evidence for Load-Induced Fluid Flow

    PubMed Central

    Price, Christopher; Zhou, Xiaozhou; Li, Wen; Wang, Liyun

    2011-01-01

    Since proposed by Piekarski and Munro in 1977, load-induced fluid flow through the bone lacunar-canalicular system (LCS) has been accepted as critical for bone metabolism, mechanotransduction, and adaptation. However, direct unequivocal observation and quantification of load-induced fluid and solute convection through the LCS have been lacking due to technical difficulties. Using a novel experimental approach based on fluorescence recovery after photobleaching (FRAP) and synchronized mechanical loading and imaging, we successfully quantified the diffusive and convective transport of a small fluorescent tracer (sodium fluorescein, 376 Da) in the bone LCS of adult male C57BL/6J mice. We demonstrated that cyclic end-compression of the mouse tibia with a moderate loading magnitude (–3 N peak load or 400 µɛ surface strain at 0.5 Hz) and a 4-second rest/imaging window inserted between adjacent load cycles significantly enhanced (+31%) the transport of sodium fluorescein through the LCS compared with diffusion alone. Using an anatomically based three-compartment transport model, the peak canalicular fluid velocity in the loaded bone was predicted (60 µm/s), and the resulting peak shear stress at the osteocyte process membrane was estimated (∼5 Pa). This study convincingly demonstrated the presence of load-induced convection in mechanically loaded bone. The combined experimental and mathematical approach presented herein represents an important advance in quantifying the microfluidic environment experienced by osteocytes in situ and provides a foundation for further studying the mechanisms by which mechanical stimulation modulates osteocytic cellular responses, which will inform basic bone biology, clinical understanding of osteoporosis and bone loss, and the rational engineering of their treatments. © 2011 American Society for Bone and Mineral Research. PMID:20715178

  6. High-performance flexible energy storage and harvesting system for wearable electronics

    NASA Astrophysics Data System (ADS)

    Ostfeld, Aminy E.; Gaikwad, Abhinav M.; Khan, Yasser; Arias, Ana C.

    2016-05-01

    This paper reports on the design and operation of a flexible power source integrating a lithium ion battery and amorphous silicon solar module, optimized to supply power to a wearable health monitoring device. The battery consists of printed anode and cathode layers based on graphite and lithium cobalt oxide, respectively, on thin flexible current collectors. It displays energy density of 6.98 mWh/cm2 and demonstrates capacity retention of 90% at 3C discharge rate and ~99% under 100 charge/discharge cycles and 600 cycles of mechanical flexing. A solar module with appropriate voltage and dimensions is used to charge the battery under both full sun and indoor illumination conditions, and the addition of the solar module is shown to extend the battery lifetime between charging cycles while powering a load. Furthermore, we show that by selecting the appropriate load duty cycle, the average load current can be matched to the solar module current and the battery can be maintained at a constant state of charge. Finally, the battery is used to power a pulse oximeter, demonstrating its effectiveness as a power source for wearable medical devices.

  7. High-performance flexible energy storage and harvesting system for wearable electronics.

    PubMed

    Ostfeld, Aminy E; Gaikwad, Abhinav M; Khan, Yasser; Arias, Ana C

    2016-05-17

    This paper reports on the design and operation of a flexible power source integrating a lithium ion battery and amorphous silicon solar module, optimized to supply power to a wearable health monitoring device. The battery consists of printed anode and cathode layers based on graphite and lithium cobalt oxide, respectively, on thin flexible current collectors. It displays energy density of 6.98 mWh/cm(2) and demonstrates capacity retention of 90% at 3C discharge rate and ~99% under 100 charge/discharge cycles and 600 cycles of mechanical flexing. A solar module with appropriate voltage and dimensions is used to charge the battery under both full sun and indoor illumination conditions, and the addition of the solar module is shown to extend the battery lifetime between charging cycles while powering a load. Furthermore, we show that by selecting the appropriate load duty cycle, the average load current can be matched to the solar module current and the battery can be maintained at a constant state of charge. Finally, the battery is used to power a pulse oximeter, demonstrating its effectiveness as a power source for wearable medical devices.

  8. High-performance flexible energy storage and harvesting system for wearable electronics

    PubMed Central

    Ostfeld, Aminy E.; Gaikwad, Abhinav M.; Khan, Yasser; Arias, Ana C.

    2016-01-01

    This paper reports on the design and operation of a flexible power source integrating a lithium ion battery and amorphous silicon solar module, optimized to supply power to a wearable health monitoring device. The battery consists of printed anode and cathode layers based on graphite and lithium cobalt oxide, respectively, on thin flexible current collectors. It displays energy density of 6.98 mWh/cm2 and demonstrates capacity retention of 90% at 3C discharge rate and ~99% under 100 charge/discharge cycles and 600 cycles of mechanical flexing. A solar module with appropriate voltage and dimensions is used to charge the battery under both full sun and indoor illumination conditions, and the addition of the solar module is shown to extend the battery lifetime between charging cycles while powering a load. Furthermore, we show that by selecting the appropriate load duty cycle, the average load current can be matched to the solar module current and the battery can be maintained at a constant state of charge. Finally, the battery is used to power a pulse oximeter, demonstrating its effectiveness as a power source for wearable medical devices. PMID:27184194

  9. Influence of lactose addition to gentamicin-loaded acrylic bone cement on the kinetics of release of the antibiotic and the cement properties.

    PubMed

    Frutos, Gloria; Pastor, José Ygnacio; Martínez, Noelia; Virto, María Rosa; Torrado, Susana

    2010-03-01

    The purpose of this study was to characterize a poly(methyl methacrylate) bone cement that was loaded with the antibiotic gentamicin sulphate (GS) and lactose, which served to modulate the release of GS from cement specimens. The release of GS when the cement specimens were immersed in phosphate-buffered saline at 37 degrees Celsius was determined spectrophotometrically. The microstructure, porosity, density, tensile properties and flexural properties of the cements were determined before and after release of GS. A kinetics model of the release of GS from the cement that involved a coupled mechanism based on dissolution/diffusion processes and an initial burst effect was proposed. Dissolution assay results showed that drug elution was controlled by a diffusion mechanism which can be modulated by lactose addition. Density values and mechanical properties (tensile strength, flexural strength, elastic modulus and fracture toughness) were reduced by the increased porosity resulting from lactose addition, but maintained acceptable values for the structural functions of bone cement. The present results suggest that lactose-modified, gentamicin-loaded acrylic bone cements are potential candidates for use in various orthopaedic and dental applications. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. i RadMat: A thermo-mechanical testing system for in situ high-energy X-ray characterization of radioactive specimens

    DOE PAGES

    Zhang, Xuan; Xu, Chi; Wang, Leyun; ...

    2017-01-27

    Here, we present an in situ Radiated Materials (iRadMat) experimental module designed to interface with a servo-hydraulic load frame for X-ray measurements at beamline 1-ID at the Advanced Photon Source. This new capability allows in situ studies of radioactive specimens subject to thermo-mechanical loading using a suite of high-energy X-ray scattering and imaging techniques. The iRadMat is a radiation-shielded vacuum heating system with the sample rotation-under-load capability. We describe the design features and performances of the iRadMat and present a dataset from a 300 °C uniaxial tensile test of a neutron-irradiated pure Fe specimen to demonstrate its capabilities.

  11. Two dimensional modeling of elastic wave propagation in solids containing cracks with rough surfaces and friction - Part I: Theoretical background.

    PubMed

    Aleshin, Vladislav; Delrue, Steven; Trifonov, Andrey; Bou Matar, Olivier; Van Den Abeele, Koen

    2018-01-01

    Our study aims at the creation of a numerical toolbox that describes wave propagation in samples containing internal contacts (e.g. cracks, delaminations, debondings, imperfect intergranular joints) of known geometry with postulated contact interaction laws including friction. The code consists of two entities: the contact model and the solid mechanics module. Part I of the paper concerns the modeling of internal contacts (called cracks for brevity), while part II is related to the integration of the developed contact model into a solid mechanics module that allows the description of wave propagation processes. The contact model is used to produce normal and tangential load-displacement relationships, which in turn are used by the solid mechanics module as boundary conditions at the internal contacts. Due to friction, the tangential reaction curve is hysteretic and memory-dependent. In addition, it depends on the normal reaction curve. An essential feature of the proposed contact model is that it takes into account the roughness of the contact faces. On one hand, accounting for roughness makes the contact model more complicated since it gives rise to a partial slip regime when some parts on the contact area experience slip and some do not. On the other hand, as we will show, the concept of contact surfaces covered by asperities receding under load makes it possible to formulate a consistent contact model that provides nonlinear load-displacement relationships for any value of the drive displacements and their histories. This is a strong advantage, since this way, the displacement-driven model allows for a simple explicit procedure of data exchange with the solid mechanics module, while more traditional flat-surface contacts driven by loads generate a complex iterative procedure. More specifically, the proposed contact model is based on the previously developed method of memory diagrams that allows one to automatically obtain memory-dependent solutions to frictional contact problems in the particular case of partial slip. Here we extend the solution onto cases of total sliding and contact loss which is possible while using the displacement-driven formulation. The method requires the knowledge of the normal contact response obtained in our case as a result of statistical consideration of roughness of contact faces. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effects of in vivo static compressive loading on aggrecan and type II and X collagens in the rat growth plate extracellular matrix.

    PubMed

    Cancel, Mathilde; Grimard, Guy; Thuillard-Crisinel, Delphine; Moldovan, Florina; Villemure, Isabelle

    2009-02-01

    Mechanical loads are essential to normal bone growth, but excessive loads can lead to progressive deformities. In addition, growth plate extracellular matrix remodelling is essential to regulate the normal longitudinal bone growth process and to ensure physiological bone mineralization. In order to investigate the effects of static compression on growth plate extracellular matrix using an in vivo animal model, a loading device was used to precisely apply a compressive stress of 0.2 MPa for two weeks on the seventh caudal vertebra (Cd7) of rats during the pubertal growth spurt. Control, sham and loaded groups were studied. Growth modulation was quantified based on calcein labelling, and three matrix components (type II and X collagens, and aggrecan) were assessed using immunohistochemistry/safranin-O staining. As well, extracellular matrix components and enzymes (MMP-3 and -13, ADAMTS-4 and -5) were studied by qRT-PCR. Loading reduced Cd7 growth by 29% (p<0.05) and 15% (p=0.07) when compared to controls and shams respectively. No significant change could be observed in the mRNA expression of collagens and the proteolytic enzyme MMP-13. However, MMP-3 was significantly increased in the loaded group as compared to the control group (p<0.05). No change was observed in aggrecan and ADAMTS-4 and -5 expression. Low immunostaining for type II and X collagens was observed in 83% of the loaded rats as compared to the control rats. This in vivo study shows that, during pubertal growth spurt, two-week static compression reduced caudal vertebrae growth rates; this mechanical growth modulation occurred with decreased type II and X collagen proteins in the growth plate.

  13. Selected Contribution: Skeletal muscle focal adhesion kinase, paxillin, and serum response factor are loading dependent

    NASA Technical Reports Server (NTRS)

    Gordon, S. E.; Fluck, M.; Booth, F. W.

    2001-01-01

    This investigation examined the effect of mechanical loading state on focal adhesion kinase (FAK), paxillin, and serum response factor (SRF) in rat skeletal muscle. We found that FAK concentration and tyrosine phosphorylation, paxillin concentration, and SRF concentration are all lower in the lesser load-bearing fast-twitch plantaris and gastrocnemius muscles compared with the greater load-bearing slow-twitch soleus muscle. Of these three muscles, 7 days of mechanical unloading via tail suspension elicited a decrease in FAK tyrosine phosphorylation only in the soleus muscle and decreases in FAK and paxillin concentrations only in the plantaris and gastrocnemius muscles. Unloading decreased SRF concentration in all three muscles. Mechanical overloading (via bilateral gastrocnemius ablation) for 1 or 8 days increased FAK and paxillin concentrations in the soleus and plantaris muscles. Additionally, whereas FAK tyrosine phosphorylation and SRF concentration were increased by < or =1 day of overloading in the soleus muscle, these increases did not occur until somewhere between 1 and 8 days of overloading in the plantaris muscle. These data indicate that, in the skeletal muscles of rats, the focal adhesion complex proteins FAK and paxillin and the transcription factor SRF are generally modulated in association with the mechanical loading state of the muscle. However, the somewhat different patterns of adaptation of these proteins to altered loading in slow- vs. fast-twitch skeletal muscles indicate that the mechanisms and time course of adaptation may partly depend on the prior loading state of the muscle.

  14. Effects of Zoledronate and Mechanical Loading during Simulated Weightlessness on Bone Structure and Mechanical Properties

    NASA Technical Reports Server (NTRS)

    Scott, R. T.; Nalavadi, M. O.; Shirazi-Fard, Y.; Castillo, A. B.; Alwood, J. S.

    2016-01-01

    Space flight modulates bone remodeling to favor bone resorption. Current countermeasures include an anti-resorptive drug class, bisphosphonates (BP), and high-force loading regimens. Does the combination of anti-resorptives and high-force exercise during weightlessness have negative effects on the mechanical and structural properties of bone? In this study, we implemented an integrated model to mimic mechanical strain of exercise via cyclical loading (CL) in mice treated with the BP Zoledronate (ZOL) combined with hindlimb unloading (HU). Our working hypothesis is that CL combined with ZOL in the HU model induces additive structural and mechanical changes. Thirty-two C57BL6 mice (male,16 weeks old, n8group) were exposed to 3 weeks of either HU or normal ambulation (NA). Cohorts of mice received one subcutaneous injection of ZOL (45gkg), or saline vehicle, prior to experiment. The right tibia was axially loaded in vivo, 60xday to 9N in compression, repeated 3xweek during HU. During the application of compression, secant stiffness (SEC), a linear estimate of slope of the force displacement curve from rest (0.5N) to max load (9.0N), was calculated for each cycle once per week. Ex vivo CT was conducted on all subjects. For ex vivo mechanical properties, non-CL left femurs underwent 3-point bending. In the proximal tibial metaphysis, HU decreased, CL increased, and ZOL increased the cancellous bone volume to total volume ratio by -26, +21, and +33, respectively. Similar trends held for trabecular thickness and number. Ex vivo left femur mechanical properties revealed HU decreased stiffness (-37),and ZOL mitigated the HU stiffness losses (+78). Data on the ex vivo Ultimate Force followed similar trends. After 3 weeks, HU decreased in vivo SEC (-16). The combination of CL+HU appeared additive in bone structure and mechanical properties. However, when HU + CL + ZOL were combined, ZOL had no additional effect (p0.05) on in vivo SEC. Structural data followed this trend with ZOL not modulating trabecular thickness in CL + NAHU mice. In summary, our integrated model simulates the combination of weightlessness, exercise-induced mechanical strain, and anti-resorptive treatment that astronauts experience during space missions. Based on these results, we conclude that, at the structural and stiffness level, zoledronate treatment during simulated spaceflight does not impede the skeletal response to axial compression. In contrast to our hypothesis, our data show that zoledronate confers no additional mechanical or structural benefit beyond those gained from cyclical loading.

  15. Thermo-mechanical actuator-based miniature tagging module for localization in capsule endoscopy

    NASA Astrophysics Data System (ADS)

    Chandrappan, Jayakrishnan; Ruiqi, Lim; Su, Nandar; Yen Yi, Germaine Hoe; Vaidyanathan, Kripesh

    2011-04-01

    Capsule endoscopy is a frontline medical diagnostic tool for the gastro intestinal tract disorders. During diagnosis, efficient localization techniques are essential to specify a pathological area that may require further diagnosis or treatment. This paper presents the development of a miniature tagging module that relies on a novel concept to label the region of interest and has the potential to integrate with a capsule endoscope. The tagging module is a compact thermo-mechanical actuator loaded with a biocompatible micro tag. A low power microheater attached to the module serves as the thermal igniter for the mechanical actuator. At optimum temperature, the actuator releases the micro tag instantly and penetrates the mucosa layer of a GI tract, region of interest. Ex vivo animal trials are conducted to verify the feasibility of the tagging module concept. X-ray imaging is used to detect the location of the micro tag embedded in the GI tract wall. The method is successful, and radiopaque micro tags can provide valuable pre-operative position information on the infected area to facilitate further clinical procedures.

  16. Chain registry and load-dependent conformational dynamics of collagen.

    PubMed

    Teng, Xiaojing; Hwang, Wonmuk

    2014-08-11

    Degradation of fibrillar collagen is critical for tissue maintenance. Yet, understanding collagen catabolism has been challenging partly due to a lack of atomistic picture for its load-dependent conformational dynamics, as both mechanical load and local unfolding of collagen affect its cleavage by matrix metalloproteinase (MMP). We use molecular dynamics simulation to find the most cleavage-prone arrangement of α chains in a collagen triple helix and find amino acids that modulate stability of the MMP cleavage domain depending on the chain registry within the molecule. The native-like state is mechanically inhomogeneous, where the cleavage site interfaces a stiff region and a locally unfolded and flexible region along the molecule. In contrast, a triple helix made of the stable glycine-proline-hydroxyproline motif is uniformly flexible and is dynamically stabilized by short-lived, low-occupancy hydrogen bonds. These results provide an atomistic basis for the mechanics, conformation, and stability of collagen that affect catabolism.

  17. Reference-free fatigue crack detection using nonlinear ultrasonic modulation under various temperature and loading conditions

    NASA Astrophysics Data System (ADS)

    Lim, Hyung Jin; Sohn, Hoon; DeSimio, Martin P.; Brown, Kevin

    2014-04-01

    This study presents a reference-free fatigue crack detection technique using nonlinear ultrasonic modulation. When low frequency (LF) and high frequency (HF) inputs generated by two surface-mounted lead zirconate titanate (PZT) transducers are applied to a structure, the presence of a fatigue crack can provide a mechanism for nonlinear ultrasonic modulation and create spectral sidebands around the frequency of the HF signal. The crack-induced spectral sidebands are isolated using a combination of linear response subtraction (LRS), synchronous demodulation (SD) and continuous wavelet transform (CWT) filtering. Then, a sequential outlier analysis is performed on the extracted sidebands to identify the crack presence without referring any baseline data obtained from the intact condition of the structure. Finally, the robustness of the proposed technique is demonstrated using actual test data obtained from simple aluminum plate and complex aircraft fitting-lug specimens under varying temperature and loading variations.

  18. Gravitational force modulates muscle activity during mechanical oscillation of the tibia in humans

    PubMed Central

    Chang, Shuo-Hsiu; Dudley-Javoroski, Shauna; Shields, Richard K.

    2012-01-01

    Mechanical oscillation (vibration) is an osteogenic stimulus for bone in animal models and may hold promise as an anti-osteoporosis measure in humans with spinal cord injury (SCI). However, the level of reflex induced muscle contractions associated with various loads (g force) during limb segment oscillation is uncertain. The purpose of this study was to determine whether certain gravitational loads (g forces) at a fixed oscillation frequency (30 Hz) increases muscle reflex activity in individuals with and without SCI. Nine healthy subjects and two individuals with SCI sat with their hip and knee joints at 90° and the foot secured on an oscillation platform. Vertical mechanical oscillations were introduced at 0.3, 0.6, 1.2, 3 and 5g force for 20 seconds at 30 Hz. Non-SCI subjects received the oscillation with and without a 5% MVC background contraction. Peak soleus and tibialis anterior (TA) EMG were normalized to M-max. Soleus and TA EMG were < 2.5% of M-max in both SCI and non-SCI subjects. The greatest EMG occurred at the highest acceleration (5g). Low magnitude mechanical oscillation, shown to enhance bone anabolism in animal models, did not elicit high levels of reflex muscle activity in individuals with and without SCI. These findings support the g force modulated background muscle activity during fixed frequency vibration. The magnitude of muscle activity was low and likely does not influence the load during fixed frequency oscillation of the tibia. PMID:21708472

  19. Effects of Mechanical Loading on the Dynamics of Hair-Cell Stereociliary Bundles

    NASA Astrophysics Data System (ADS)

    Fredrickson, Lea

    Hearing is remarkably sensitive and still not entirely understood. Hair cells of the inner ear are the mechano-electrical transducers of sound and understanding how they function is essential to the understanding of hearing in general. Spontaneous oscillations exhibited by stereociliary bundles of the bullfrog sacculus provide a useful probe for the study of the hair cells' internal dynamic state. In this work we study the effects of mechanical loading on these hair-cell bundles in order to study their dynamics. When applying stiffness loads, we find that the spontaneous oscillation profile changes from multimode to single mode with light loading, and decreases in amplitude and increases in frequency with stiffer loads. We also find that tuning decreases with increasing load such that at loads comparable to in vivo conditions the tuning is flat. We further explore loading via deflections to hair cell bundles, both in the form of steady-state offsets and slow ramps. We find that steady state offsets lead to significant modulation of the characteristic frequency of response, decreasing the frequency in the channels closed direction (negative) and increasing it in the channels open direction (positive). Attachment to the overlying membrane was found, in vitro, to affect bundle offset position in hair cells of the bullfrog sacculus. Application of similar offsets on free-standing, spontaneously oscillating hair bundles shows modulation of their dynamic state, i.e. oscillation profile, characteristic frequency, and response to stimulus. Large offsets are found to arrest spontaneous oscillations, which recover upon reversal of the stimulus. The dynamical state of the hair bundle is dependent on both the history and direction of the offset stimulus. Oscillation suppression occurs much more readily in the negative direction and the bundle behavior approaching quiescence is distinct from that in the positive direction. With the change in spontaneous oscillation frequency and profile comes a change in the phase-locked response amplitude, dependent on bundle offset, winch extends the range of detection frequencies of the hair cell. We explore the broadband phase-locked response of spontaneously oscillating saccular hair cell bundles subject to time-dependent mechanical deflections. The experimental phase-locked amplitude shows an Arnold Tongue, consistent with theoretically predicted dynamical behavior. An offset that steadily increases in time, imposed on the position of the bundle to explore its dynamics at the zero frequency limit, is observed to progressively suppress spontaneous oscillations in a transition that displays strong frequency modulation, with the frequency vanishing at the critical point. When deflected at a faster rate and when allowed to recover to the oscillatory regime, the bundles also displayed a modulation in the amplitude of oscillation. We propose the dynamics of this transition to be dominated by a multi-critical region such that slight variations of a control parameter can produce either an infinite-period, supercritical Hopf, or Bogdanov-Takens bifurcation.

  20. Common drive to the upper airway muscle genioglossus during inspiratory loading

    PubMed Central

    Woods, Michael J.; Nicholas, Christian L.; Semmler, John G.; Chan, Julia K. M.; Jordan, Amy S.

    2015-01-01

    Common drive is thought to constitute a central mechanism by which the efficiency of a motor neuron pool is increased. This study tested the hypothesis that common drive to the upper airway muscle genioglossus (GG) would increase with increased respiratory drive in response to an inspiratory load. Respiration, GG electromyographic (EMG) activity, single-motor unit activity, and coherence in the 0–5 Hz range between pairs of GG motor units were assessed for the 30 s before an inspiratory load, the first and second 30 s of the load, and the 30 s after the load. Twelve of twenty young, healthy male subjects provided usable data, yielding 77 pairs of motor units: 2 Inspiratory Phasic, 39 Inspiratory Tonic, 15 Expiratory Tonic, and 21 Tonic. Respiratory and GG inspiratory activity significantly increased during the loads and returned to preload levels during the postload periods (all showed significant quadratic functions over load trials, P < 0.05). As hypothesized, common drive increased during the load in inspiratory modulated motor units to a greater extent than in expiratory/tonic motor units (significant load × discharge pattern interaction, P < 0.05). Furthermore, this effect persisted during the postload period. In conclusion, common drive to inspiratory modulated motor units was elevated in response to increased respiratory drive. The postload elevation in common drive was suggestive of a poststimulus activation effect. PMID:26378207

  1. myo-Inositol 1,4,5-trisphosphate and Ca(2+)/calmodulin-dependent factors mediate transduction of compression-induced signals in bovine articular chondrocytes.

    PubMed Central

    Valhmu, Wilmot B; Raia, Frank J

    2002-01-01

    Although the effects of mechanical loading on chondrocyte metabolic activities have been extensively characterized, the sequence of events through which extracellular mechanical signals are transduced into chondrocytes and ultimately modulate cell activities is not well understood. Here, studies were performed to map out the sequential intracellular signalling pathways through which compression-induced signals modulate aggrecan mRNA levels in bovine articular chondrocytes. Bovine articular cartilage explants were subjected to a compressive stress of 0.1 MPa for 1 h in the presence or absence of inhibitors or antagonists of the phosphoinositol and Ca(2+)/calmodulin signalling pathways in order to determine the roles of second messengers and effector molecules of these pathways in transducing the compression-induced signals. In the absence of the inhibitors, aggrecan mRNA levels were stimulated by compression 2-4-fold relative to levels in tare-loaded (see below) explants. Treatment of the explants with graded levels of the protein kinase C inhibitor chelerythrine or bisindolylmaleimide I, followed by 1 h compressive loading, did not significantly alter the load-induced elevation of aggrecan mRNA levels. In contrast, thapsigargin, which depletes the Ins(1,4,5)P3-sensitive intracellular Ca(2+) stores, completely blocked the load response without significantly altering aggrecan mRNA levels in tare-loaded explants. Similarly, antagonists of the Ca(2+)/calmodulin signalling pathway dose-dependently or completely blocked the load-response. The results obtained demonstrate that transduction of the compression-induced aggrecan mRNA-regulating signals requires Ins(1,4,5)P3- and Ca(2+)/calmodulin-dependent signalling processes in bovine articular chondrocytes. PMID:11802800

  2. Methodologies for Combined Loads Tests Using a Multi-Actuator Test Machine

    NASA Technical Reports Server (NTRS)

    Rouse, Marshall

    2013-01-01

    The NASA Langley COmbined Loads Test System (COLTS) Facility was designed to accommodate a range of fuselage structures and wing sections and subject them to both quasistatic and cyclic loading conditions. Structural tests have been conducted in COLTS that address structural integrity issues of metallic and fiber reinforced composite aerospace structures in support of NASA Programs (i.e. the Aircraft Structural Integrity (ASIP) Program, High-Speed-Research program and the Supersonic Project, NASA Engineering and Safety Center (NESC) Composite Crew Module Project, and the Environmentally Responsible Aviation Program),. This paper presents experimental results for curved panels subjected to mechanical and internal pressure loads using a D-box test fixture. Also, results are presented that describe use of a checkout beam for development of testing procedures for a combined mechanical and pressure loading test of a Multi-bay box. The Multi-bay box test will be used to experimentally verify the structural performance of the Multi-bay box in support of the Environmentally Responsible Aviation Project at NASA Langley.

  3. Load control system. [for space shuttle external tank ground tests

    NASA Technical Reports Server (NTRS)

    Grosse, J. C.

    1977-01-01

    The load control system developed for the shuttle external structural tests is described. The system consists of a load programming/display module, and a load control module along with the following hydraulic system components: servo valves, dump valves, hydraulic system components, and servo valve manifold blocks. One load programming/display subsystem can support multiple load control subsystem modules.

  4. Novel instrument for characterizing comprehensive physical properties under multi-mechanical loads and multi-physical field coupling conditions

    NASA Astrophysics Data System (ADS)

    Liu, Changyi; Zhao, Hongwei; Ma, Zhichao; Qiao, Yuansen; Hong, Kun; Ren, Zhuang; Zhang, Jianhai; Pei, Yongmao; Ren, Luquan

    2018-02-01

    Functional materials represented by ferromagnetics and ferroelectrics are widely used in advanced sensor and precision actuation due to their special characterization under coupling interactions of complex loads and external physical fields. However, the conventional devices for material characterization can only provide a limited type of loads and physical fields and cannot simulate the actual service conditions of materials. A multi-field coupling instrument for characterization has been designed and implemented to overcome this barrier and measure the comprehensive physical properties under complex service conditions. The testing forms include tension, compression, bending, torsion, and fatigue in mechanical loads, as well as different external physical fields, including electric, magnetic, and thermal fields. In order to offer a variety of information to reveal mechanical damage or deformation forms, a series of measurement methods at the microscale are integrated with the instrument including an indentation unit and in situ microimaging module. Finally, several coupling experiments which cover all the loading and measurement functions of the instrument have been implemented. The results illustrate the functions and characteristics of the instrument and then reveal the variety in mechanical and electromagnetic properties of the piezoelectric transducer ceramic, TbDyFe alloy, and carbon fiber reinforced polymer under coupling conditions.

  5. Neural Representations of Sensorimotor Memory- and Digit Position-Based Load Force Adjustments Before the Onset of Dexterous Object Manipulation.

    PubMed

    Marneweck, Michelle; Barany, Deborah A; Santello, Marco; Grafton, Scott T

    2018-05-16

    Anticipatory load forces for dexterous object manipulation in humans are modulated based on visual object property cues, sensorimotor memories of previous experiences with the object, and, when digit positioning varies from trial to trial, the integrating of this sensed variability with force modulation. Studies of the neural representations encoding these anticipatory mechanisms have not considered these mechanisms separately from each other or from feedback mechanisms emerging after lift onset. Here, representational similarity analyses of fMRI data were used to identify neural representations of sensorimotor memories and the sensing and integration of digit position. Cortical activity and movement kinematics were measured as 20 human subjects (11 women) minimized tilt of a symmetrically shaped object with a concealed asymmetric center of mass (CoM, left and right sided). This task required generating compensatory torques in opposite directions, which, without helpful visual CoM cues, relied primarily on sensorimotor memories of the same object and CoM. Digit position was constrained or unconstrained, the latter of which required modulating forces beyond what can be recalled from sensorimotor memories to compensate for digit position variability. Ventral premotor (PMv), somatosensory, and cerebellar lobule regions (CrusII, VIIIa) were sensitive to anticipatory behaviors that reflect sensorimotor memory content, as shown by larger voxel pattern differences for unmatched than matched CoM conditions. Cerebellar lobule I-IV, Broca area 44, and PMv showed greater voxel pattern differences for unconstrained than constrained grasping, which suggests their sensitivity to monitor the online coincidence of planned and actual digit positions and correct for a mismatch by force modulation. SIGNIFICANCE STATEMENT To pick up a water glass without slipping, tipping, or spilling requires anticipatory planning of fingertip load forces before the lift commences. This anticipation relies on object visual properties (e.g., mass/mass distribution), sensorimotor memories built from previous experiences (especially when object properties cannot be inferred visually), and online sensing of where the digits are positioned. There is limited understanding of how the brain represents each of these anticipatory mechanisms. We used fMRI measures of regional brain patterns and digit position kinematics before lift onset of an object with nonsalient visual cues specifically to isolate sensorimotor memories and integration of sensed digit position with force modulation. In doing so, we localized neural representations encoding these anticipatory mechanisms for dexterous object manipulation. Copyright © 2018 the authors 0270-6474/18/384724-14$15.00/0.

  6. Modulation of mechanical and muscular load by footwear during catering.

    PubMed

    Kersting, U G; Janshen, L; Böhm, H; Morey-Klapsing, G M; Brüggemann, G-P

    2005-03-15

    The BGN (Berufsgenossenschaft Nahrungsmithl und Gaststätten) reports 70% of job induced days off work to be connected with traumas of the ankle joint or overloading of the leg, knee and lower back, with an increased incidence in service areas outdoors (R. Grieshaber, personal communication). Workspace environments usually contain narrow passages, slopes or stairs and sudden changes between different surfaces. The aim of this study was to investigate the biomechanical load on the lower extremity and the low back during catering service when wearing different types of footwear. Thus, the potential for altering mechanical stress experienced during catering by variations in footwear was explored. Sixteen experienced waiters followed a course typical for a combined indoor-outdoor service area. Three different types of footwear were investigated using pressure distribution measurements, rearfoot goniometry and electromyography. A discriminant analysis revealed that the factors subject, shoe and surface affect rear foot movement or pressure distribution in different ways. A MANOVA demonstrated significant differences in loading parameters between footwear types. In general, these differences increased in magnitude in critical situations, such as climbing stairs or crossing slippery surfaces. The results of this study demonstrate that manipulations to footwear offer a great potential for modulating loads experienced during catering. Based on the results, the effects of constructional features are discussed. The method proposed can be applied to evaluate shoe modifications under realistic workplace conditions.

  7. Development of a Portable Knee Rehabilitation Device That Uses Mechanical Loading.

    PubMed

    Fitzwater, Daric; Dodge, Todd; Chien, Stanley; Yokota, Hiroki; Anwar, Sohel

    2013-12-01

    Joint loading is a recently developed mechanical modality, which potentially provides a therapeutic regimen to activate bone formation and prevent degradation of joint tissues. To our knowledge, however, few joint loading devices are available for clinical or point-of-care applications. Using a voice-coil actuator, we developed an electromechanical loading system appropriate for human studies and preclinical trials that should prove both safe and effective. Two specific tasks for this loading system were development of loading conditions (magnitude and frequency) suitable for humans, and provision of a convenient and portable joint loading apparatus. Desktop devices have been previously designed to evaluate the effects of various loading conditions using small and large animals. However, a portable knee loading device is more desirable from a usability point of view. In this paper, we present such a device that is designed to be portable, providing a compact, user-friendly loader. The portable device was employed to evaluate its capabilities using a human knee model. The portable device was characterized for force-pulse width modulation duty cycle and loading frequency properties. The results demonstrate that the device is capable of producing the necessary magnitude of forces at appropriate frequencies to promote the stimulation of bone growth and which can be used in clinical studies for further evaluations.

  8. Quantifying Solar Cell Cracks in Photovoltaic Modules by Electroluminescence Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    2015-06-14

    This article proposes a method for quantifying the percentage of partially and totally disconnected solar cell cracks by analyzing electroluminescence images of the photovoltaic module taken under high- and low-current forward bias. The method is based on the analysis of the module's electroluminescence intensity distribution, applied at module and cell level. These concepts are demonstrated on a crystalline silicon photovoltaic module that was subjected to several rounds of mechanical loading and humidity-freeze cycling, causing increasing levels of solar cell cracks. The proposed method can be used as a diagnostic tool to rate cell damage or quality of modules after transportation.more » Moreover, the method can be automated and used in quality control for module manufacturers, installers, or as a diagnostic tool by plant operators and diagnostic service providers.« less

  9. Impact of aerosols on ice crystal size

    NASA Astrophysics Data System (ADS)

    Zhao, Bin; Liou, Kuo-Nan; Gu, Yu; Jiang, Jonathan H.; Li, Qinbin; Fu, Rong; Huang, Lei; Liu, Xiaohong; Shi, Xiangjun; Su, Hui; He, Cenlin

    2018-01-01

    The interactions between aerosols and ice clouds represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. In particular, the impact of aerosols on ice crystal effective radius (Rei), which is a key parameter determining ice clouds' net radiative effect, is highly uncertain due to limited and conflicting observational evidence. Here we investigate the effects of aerosols on Rei under different meteorological conditions using 9-year satellite observations. We find that the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters. While there is a significant negative correlation between Rei and aerosol loading in moist conditions, consistent with the "Twomey effect" for liquid clouds, a strong positive correlation between the two occurs in dry conditions. Simulations based on a cloud parcel model suggest that water vapor modulates the relative importance of different ice nucleation modes, leading to the opposite aerosol impacts between moist and dry conditions. When ice clouds are decomposed into those generated from deep convection and formed in situ, the water vapor modulation remains in effect for both ice cloud types, although the sensitivities of Rei to aerosols differ noticeably between them due to distinct formation mechanisms. The water vapor modulation can largely explain the difference in the responses of Rei to aerosol loadings in various seasons. A proper representation of the water vapor modulation is essential for an accurate estimate of aerosol-cloud radiative forcing produced by ice clouds.

  10. When loading working memory reduces distraction: behavioral and electrophysiological evidence from an auditory-visual distraction paradigm.

    PubMed

    SanMiguel, Iria; Corral, María-José; Escera, Carles

    2008-07-01

    The sensitivity of involuntary attention to top-down modulation was tested using an auditory-visual distraction task and a working memory (WM) load manipulation in subjects performing a simple visual classification task while ignoring contingent auditory stimulation. The sounds were repetitive standard tones (80%) and environmental novel sounds (20%). Distraction caused by the novel sounds was compared across a 1-back WM condition and a no-memory control condition, both involving the comparison of two digits. Event-related brain potentials (ERPs) to the sounds were recorded, and the N1/MMN (mismatch negativity), novelty-P3, and RON components were identified in the novel minus standard difference waveforms. Distraction was reduced in the WM condition, both behaviorally and as indexed by an attenuation of the late phase of the novelty-P3. The transient/change detection mechanism indexed by MMN was not affected by the WM manipulation. Sustained slow frontal and parietal waveforms related to WM processes were found on the standard ERPs. The present results indicate that distraction caused by irrelevant novel sounds is reduced when a WM component is involved in the task, and that this modulation by WM load takes place at a late state of the orienting response, all in all confirming that involuntary attention is under the control of top-down mechanisms. Moreover, as these results contradict predictions of the load theory of selective attention and cognitive control, it is suggested that the WM load effects on distraction depend on the nature of the distractor-target relationships.

  11. Influence of Mechanical Loading on the Integrity and Performance of Energy Harvesting and Storage Materials at the Micron and Submicron Scales

    DTIC Science & Technology

    2016-04-01

    the failure process of photovoltaic ( PV ) amorphous Si thin film solar cells using commercial solar cell modules PT15-300 manufactured by Iowa Thin...this research project and the results and conclusions. This research program focused on the mechanics of materials employed in thin film solar cells...experimental results and references are provided to publications for further details. 1. MECHANICAL DURABILITY OF THIN FILM SI SOLAR CELLS We investigated

  12. Mechanical activation of mammalian target of rapamycin pathway is required for cartilage development

    PubMed Central

    Guan, Yingjie; Yang, Xu; Yang, Wentian; Charbonneau, Cherie; Chen, Qian

    2014-01-01

    Mechanical stress regulates development by modulating cell signaling and gene expression. However, the cytoplasmic components mediating mechanotransduction remain unclear. In this study, elimination of muscle contraction during chicken embryonic development resulted in a reduction in the activity of mammalian target of rapamycin (mTOR) in the cartilaginous growth plate. Inhibition of mTOR activity led to significant inhibition of chondrocyte proliferation, cartilage tissue growth, and expression of chondrogenic genes, including Indian hedgehog (Ihh), a critical mediator of mechanotransduction. Conversely, cyclic loading (1 Hz, 5% matrix deformation) of embryonic chicken growth plate chondrocytes in 3-dimensional (3D) collagen scaffolding induced sustained activation of mTOR. Mechanical activation of mTOR occurred in serum-free medium, indicating that it is independent of growth factor or nutrients. Treatment of chondrocytes with Rapa abolished mechanical activation of cell proliferation and Ihh gene expression. Cyclic loading of chondroprogenitor cells deficient in SH2-containing protein tyrosine phosphatase 2 (Shp2) further enhanced mechanical activation of mTOR, cell proliferation, and chondrogenic gene expression. This result suggests that Shp2 is an antagonist of mechanotransduction through inhibition of mTOR activity. Our data demonstrate that mechanical activation of mTOR is necessary for cell proliferation, chondrogenesis, and cartilage growth during bone development, and that mTOR is an essential mechanotransduction component modulated by Shp2 in the cytoplasm.—Guan, Y., Yang, X., Yang, W., Charbonneau, C., Chen, Q. Mechanical activation of mammalian target of rapamycin pathway is required for cartilage development. PMID:25002119

  13. Laboratory triggering of stick-slip events by oscillatory loading in the presence of pore fluid with implications for physics of tectonic tremor

    USGS Publications Warehouse

    Bartlow, Noel M.; Lockner, David A.; Beeler, Nicholas M.

    2012-01-01

    The physical mechanism by which the low-frequency earthquakes (LFEs) that make up portions of tectonic (also called non-volcanic) tremor are created is poorly understood. In many areas of the world, tectonic tremor and LFEs appear to be strongly tidally modulated, whereas ordinary earthquakes are not. Anomalous seismic wave speeds, interpreted as high pore fluid pressure, have been observed in regions that generate tremor. Here we build upon previous laboratory studies that investigated the response of stick-slip on artificial faults to oscillatory, tide-like loading. These previous experiments were carried out using room-dry samples of Westerly granite, at one effective stress. Here we augment these results with new experiments on Westerly granite, with the addition of varying effective stress using pore fluid at two pressures. We find that raising pore pressure, thereby lowering effective stress can significantly increase the degree of correlation of stick-slip to oscillatory loading. We also find other pore fluid effects that become important at higher frequencies, when the period of oscillation is comparable to the diffusion time of pore fluid into the fault. These results help constrain the conditions at depth that give rise to tidally modulated LFEs, providing confirmation of the effective pressure law for triggering and insights into why tremor is tidally modulated while earthquakes are at best only weakly modulated.

  14. Role of differential physical properties in the collective mechanics and dynamics of tissues

    NASA Astrophysics Data System (ADS)

    Das, Moumita

    Living cells and tissues are highly mechanically sensitive and active. Mechanical stimuli influence the shape, motility, and functions of cells, modulate the behavior of tissues, and play a key role in several diseases. In this talk I will discuss how collective biophysical properties of tissues emerge from the interplay between differential mechanical properties and statistical physics of underlying components, focusing on two complementary tissue types whose properties are primarily determined by (1) the extracellular matrix (ECM), and (2) individual and collective cell properties. I will start with the structure-mechanics-function relationships in articular cartilage (AC), a soft tissue that has very few cells, and its mechanical response is primarily due to its ECM. AC is a remarkable tissue: it can support loads exceeding ten times our body weight and bear 60+ years of daily mechanical loading despite having minimal regenerative capacity. I will discuss the biophysical principles underlying this exceptional mechanical response using the framework of rigidity percolation theory, and compare our predictions with experiments done by our collaborators. Next I will discuss ongoing theoretical work on how the differences in cell mechanics, motility, adhesion, and proliferation in a co-culture of breast cancer cells and healthy breast epithelial cells may modulate experimentally observed differential migration and segregation. Our results may provide insights into the mechanobiology of tissues with cell populations with different physical properties present together such as during the formation of embryos or the initiation of tumors. This work was partially supported by a Cottrell College Science Award.

  15. Development of a Practical Methodology for Elastic-Plastic and Fully Plastic Fatigue Crack Growth

    NASA Technical Reports Server (NTRS)

    McClung, R. C.; Chell, G. G.; Lee, Y. -D.; Russell, D. A.; Orient, G. E.

    1999-01-01

    A practical engineering methodology has been developed to analyze and predict fatigue crack growth rates under elastic-plastic and fully plastic conditions. The methodology employs the closure-corrected effective range of the J-integral, delta J(sub eff) as the governing parameter. The methodology contains original and literature J and delta J solutions for specific geometries, along with general methods for estimating J for other geometries and other loading conditions, including combined mechanical loading and combined primary and secondary loading. The methodology also contains specific practical algorithms that translate a J solution into a prediction of fatigue crack growth rate or life, including methods for determining crack opening levels, crack instability conditions, and material properties. A critical core subset of the J solutions and the practical algorithms has been implemented into independent elastic-plastic NASGRO modules. All components of the entire methodology, including the NASGRO modules, have been verified through analysis and experiment, and limits of applicability have been identified.

  16. Development of a Practical Methodology for Elastic-Plastic and Fully Plastic Fatigue Crack Growth

    NASA Technical Reports Server (NTRS)

    McClung, R. C.; Chell, G. G.; Lee, Y.-D.; Russell, D. A.; Orient, G. E.

    1999-01-01

    A practical engineering methodology has been developed to analyze and predict fatigue crack growth rates under elastic-plastic and fully plastic conditions. The methodology employs the closure-corrected effective range of the J-integral, (Delta)J(sub eff), as the governing parameter. The methodology contains original and literature J and (Delta)J solutions for specific geometries, along with general methods for estimating J for other geometries and other loading conditions, including combined mechanical loading and combined primary and secondary loading. The methodology also contains specific practical algorithms that translate a J solution into a prediction of fatigue crack growth rate or life, including methods for determining crack opening levels, crack instability conditions, and material properties. A critical core subset of the J solutions and the practical algorithms has been implemented into independent elastic-plastic NASGRO modules. All components of the entire methodology, including the NASGRO modules, have been verified through analysis and experiment, and limits of applicability have been identified.

  17. Vibrations and structureborne noise in space station

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.

    1985-01-01

    Theoretical models were developed capable of predicting structural response and noise transmission to random point mechanical loads. Fiber reinforced composite and aluminum materials were considered. Cylindrical shells and circular plates were taken as typical representatives of structural components for space station habitability modules. Analytical formulations include double wall and single wall constructions. Pressurized and unpressurized models were considered. Parametric studies were conducted to determine the effect on structural response and noise transmission due to fiber orientation, point load location, damping in the core and the main load carrying structure, pressurization, interior acoustic absorption, etc. These analytical models could serve as preliminary tools for assessing noise related problems, for space station applications.

  18. Concentration-dependent protein loading of extracellular vesicles released by Histoplasma capsulatum after antibody treatment and its modulatory action upon macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baltazar, Ludmila Matos; Zamith-Miranda, Daniel; Burnet, Meagan C.

    Here, diverse pathogenic fungi secrete extracellular vesicles (EV) that contain macromolecules, including virulence factors that can modulate the host immune response. We recently demonstrated that the binding of monoclonal antibodies (mAb) modulates how Histoplasma capsulatum load and releases its extracellular vesicles (EV). In the present paper, we addressed a concentration-dependent impact on the fungus’ EV loading and release with different mAb, as well as the pathophysiological role of these EV during the host-pathogen interaction. We found that the mAbs differentially regulate EV content in concentration-dependent and independent manners. Enzymatic assays demonstrated that laccase activity in EV from H. capsulatum opsonizedmore » with 6B7 was reduced, but urease activity was not altered. The uptake of H. capsulatum by macrophages pre-treated with EV, presented an antibody concentration-dependent phenotype. The intracellular killing of yeast cells was potently inhibited in macrophages pre-treated with EV from 7B6 (non-protective) mAb-opsonized H. capsulatum and this inhibition was associated with a decrease in the reactive-oxygen species generated by these macrophages. In summary, our findings show that opsonization quantitatively and qualitatively modifies H. capsulatum EV load and secretion leading to distinct effects on the host’s immune effector mechanisms, supporting the hypothesis that EV sorting and secretion are dynamic mechanisms for a fine-tuned response by fungal cells.« less

  19. Concentration-dependent protein loading of extracellular vesicles released by Histoplasma capsulatum after antibody treatment and its modulatory action upon macrophages

    DOE PAGES

    Baltazar, Ludmila Matos; Zamith-Miranda, Daniel; Burnet, Meagan C.; ...

    2018-05-23

    Here, diverse pathogenic fungi secrete extracellular vesicles (EV) that contain macromolecules, including virulence factors that can modulate the host immune response. We recently demonstrated that the binding of monoclonal antibodies (mAb) modulates how Histoplasma capsulatum load and releases its extracellular vesicles (EV). In the present paper, we addressed a concentration-dependent impact on the fungus’ EV loading and release with different mAb, as well as the pathophysiological role of these EV during the host-pathogen interaction. We found that the mAbs differentially regulate EV content in concentration-dependent and independent manners. Enzymatic assays demonstrated that laccase activity in EV from H. capsulatum opsonizedmore » with 6B7 was reduced, but urease activity was not altered. The uptake of H. capsulatum by macrophages pre-treated with EV, presented an antibody concentration-dependent phenotype. The intracellular killing of yeast cells was potently inhibited in macrophages pre-treated with EV from 7B6 (non-protective) mAb-opsonized H. capsulatum and this inhibition was associated with a decrease in the reactive-oxygen species generated by these macrophages. In summary, our findings show that opsonization quantitatively and qualitatively modifies H. capsulatum EV load and secretion leading to distinct effects on the host’s immune effector mechanisms, supporting the hypothesis that EV sorting and secretion are dynamic mechanisms for a fine-tuned response by fungal cells.« less

  20. Ethylene-Vinyl Acetate Potential Problems for Photovoltaic Packaging: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempe, M. D.; Jorgensen, G. J.; Terwilliger, K. M.

    2006-05-01

    Photovoltaic (PV) devices are typically encapsulated using ethylene-vinyl acetate (EVA) to provide mechanical support, optical coupling, electrical isolation, and protection against environmental exposure. Under exposure to atmospheric water and/or ultraviolet radiation, EVA will decompose to produce acetic acid, lowering the pH and increasing the surface corrosion rates of embedded devices. Even though acetic acid is produced at a very slow rate, it may not take much to catalyze reactions that lead to rapid module deterioration. Another consideration is that the glass transition of EVA, as measured using dynamic mechanical analysis, begins at temperatures of about ?15 C. Temperatures lower thanmore » this can be reached for extended periods of time in some climates. Because of increased moduli below the glass transition temperature, a module may be more vulnerable to damage if a mechanical load is applied by snow or wind at low temperatures. Modules using EVA should not be rated for use at such low temperatures without additional low-temperature mechanical testing beyond the scope of UL 1703.« less

  1. Ethylene-Vinyl Acetate Potential Problems for Photovoltaic Packaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempe, M. D.; Jorgensen, G. J.; Terwilliger, K. M.

    2006-01-01

    Photovoltaic (PV) devices are typically encapsulated using ethylene-vinyl acetate (EVA) to provide mechanical support, optical coupling, electrical isolation, and protection against environmental exposure. Under exposure to atmospheric water and/or ultraviolet radiation, EVA will decompose to produce acetic acid, lowering the pH and increasing the surface corrosion rates of embedded devices. Even though acetic acid is produced at a very slow rate, it may not take much to catalyze reactions that lead to rapid module deterioration. Another consideration is that the glass transition of EVA, as measured using dynamic mechanical analysis, begins at temperatures of about -15 degC. Temperatures lower thanmore » this can be reached for extended periods of time in some climates. Because of increased moduli below the glass transition temperature, a module may be more vulnerable to damage if a mechanical load is applied by snow or wind at low temperatures. Modules using EVA should not be rated for use at such low temperatures without additional low-temperature mechanical testing beyond the scope of UL1703.« less

  2. Potential Problems with Ethylene-Vinyl Acetate for Photovoltaic Packaging (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempe, M. D.; Jorgensen, G. J.; Terwilliger, K, M.

    2006-05-01

    Photovoltaic (PV) devices are typically encapsulated using ethylene-vinyl acetate (EVA) to provide mechanical support electrical isolation, optical coupling, and protection against environmental exposure. Under exposure to atmospheric water and/or ultraviolet radiation, EVA will decompose to produce acetic acid, lowering the pH and increasing the surface corrosion rates of embedded devices. Even though acetic acid is produced at a very slow rate it may not take much to catalyze reactions that lead to rapid module deterioration. Another consideration is that the glass transition of EVA, as measured using dynamic mechanical analysis, begins at temperatures of about -15 C. Temperatures lower thanmore » this can be reached for extended periods of time in some climates. Due to increased moduli below the glass transition temperature, a module may be more vulnerable to damage if a mechanical load is applied by snow or wind at low temperatures. Modules using EVA should not be rated for use at such low temperatures without additional low-temperature mechanical testing beyond the scope of UL 1703.« less

  3. Alkali vapor pressure modulation on the 100 ms scale in a single-cell vacuum system for cold atom experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dugrain, Vincent; Reichel, Jakob; Rosenbusch, Peter

    2014-08-15

    We describe and characterize a device for alkali vapor pressure modulation on the 100 ms timescale in a single-cell cold atom experiment. Its mechanism is based on optimized heat conduction between a current-modulated alkali dispenser and a heat sink at room temperature. We have studied both the short-term behavior during individual pulses and the long-term pressure evolution in the cell. The device combines fast trap loading and relatively long trap lifetime, enabling high repetition rates in a very simple setup. These features make it particularly suitable for portable atomic sensors.

  4. Primary Cilia Modulate IHH Signal Transduction in Response to Hydrostatic Loading of Growth Plate Chondrocytes

    PubMed Central

    Shao, Y, Yvonne Y.; Wang, Lai; Welter, J, Jean F.; Ballock, R. Tracy

    2011-01-01

    Indian Hedgehog (Ihh) is a key component of the regulatory apparatus governing chondrocyte proliferation and differentiation in the growth plate. Recent studies have demonstrated that the primary cilium is the site of Ihh signaling within the cell, and that primary cilia are essential for bone and cartilage formation. Primary cilia are also postulated to act as mechanosensory organelles that transduce mechanical forces acting on the cell into biological signals. In this study, we used a hydrostatic compression system to examine Ihh signal transduction under the influence of mechanical load. Our results demonstrate that hydrostatic compression increased both Ihh gene expression and Ihh-responsive Gli-luciferase activity. These increases were aborted by disrupting the primary cilia structure with chloral hydrate. These results suggest that growth plate chondrocytes respond to hydrostatic loading by increasing Ihh signaling, and that the primary cilium is required for this mechano-biological signal transduction to occur. PMID:21930256

  5. Strongly Modulated Friction of a Film-Terminated Ridge-Channel Structure.

    PubMed

    He, Zhenping; Hui, Chung-Yuen; Levrard, Benjamin; Bai, Ying; Jagota, Anand

    2016-05-26

    Natural contacting surfaces have remarkable surface mechanical properties, which has led to the development of bioinspired surface structures using rubbery materials with strongly enhanced adhesion and static friction. However, sliding friction of structured rubbery surfaces is almost always significantly lower than that of a flat control, often due to significant loss of contact. Here we show that a film-terminated ridge-channel structure can strongly enhance sliding friction. We show that with properly chosen materials and geometrical parameters the near surface structure undergoes mechanical instabilities along with complex folding and sliding of internal interfaces, which is responsible for the enhancement of sliding friction. Because this structure shows no enhancement of adhesion under normal indentation by a sphere, it breaks the connection between energy loss during normal and shear loading. This makes it potentially interesting in many applications, for instance in tires, where one wishes to minimize rolling resistance (normal loading) while maximizing sliding friction (shear loading).

  6. Seasonal water storage, stress modulation and California seismicity

    NASA Astrophysics Data System (ADS)

    Johnson, C. W.; Burgmann, R.; Fu, Y.

    2017-12-01

    Establishing what controls the timing of earthquakes is fundamental to understanding the nature of the earthquake cycle and critical to determining time-dependent earthquake hazard. Seasonal loading provides a natural laboratory to explore the crustal response to a quantifiable transient force. In California, the accumulation of winter snowpack in the Sierra Nevada, surface water in lakes and reservoirs, and groundwater in sedimentary basins follow the annual cycle of wet winters and dry summers. The surface loads resulting from the seasonal changes in water storage produce elastic deformation of the Earth's crust. We used 9 years of global positioning system (GPS) vertical deformation time series to constrain models of monthly hydrospheric loading and the resulting stress changes on fault planes of small earthquakes. Previous studies posit that temperature, atmospheric pressure, or hydrologic changes may strain the lithosphere and promote additional earthquakes above background levels. Depending on fault geometry, the addition or removal of water increases the Coulomb failure stress. The largest stress amplitudes are occurring on dipping reverse faults in the Coast Ranges and along the eastern Sierra Nevada range front. We analyze 9 years of M≥2.0 earthquakes with known focal mechanisms in northern and central California to resolve fault-normal and fault-shear stresses for the focal geometry. Our results reveal 10% more earthquakes occurring during slip-encouraging fault-shear stress conditions and suggest that earthquake populations are modulated at periods of natural loading cycles, which promote failure by stress changes on the order of 1-5 kPa. We infer that California seismicity rates are modestly modulated by natural hydrological loading cycles.

  7. Conversion efficiency of skutterudite-based thermoelectric modules.

    PubMed

    Salvador, James R; Cho, Jung Y; Ye, Zuxin; Moczygemba, Joshua E; Thompson, Alan J; Sharp, Jeffrey W; Koenig, Jan D; Maloney, Ryan; Thompson, Travis; Sakamoto, Jeffrey; Wang, Hsin; Wereszczak, Andrew A

    2014-06-28

    Presently, the only commercially available power generating thermoelectric (TE) modules are based on bismuth telluride (Bi2Te3) alloys and are limited to a hot side temperature of 250 °C due to the melting point of the solder interconnects and/or generally poor power generation performance above this point. For the purposes of demonstrating a TE generator or TEG with higher temperature capability, we selected skutterudite based materials to carry forward with module fabrication because these materials have adequate TE performance and are mechanically robust. We have previously reported the electrical power output for a 32 couple skutterudite TE module, a module that is type identical to ones used in a high temperature capable TEG prototype. The purpose of this previous work was to establish the expected power output of the modules as a function of varying hot and cold side temperatures. Recent upgrades to the TE module measurement system built at the Fraunhofer Institute for Physical Measurement Techniques allow for the assessment of not only the power output, as previously described, but also the thermal to electrical energy conversion efficiency. Here we report the power output and conversion efficiency of a 32 couple, high temperature skutterudite module at varying applied loading pressures and with different interface materials between the module and the heat source and sink of the test system. We demonstrate a 7% conversion efficiency at the module level when a temperature difference of 460 °C is established. Extrapolated values indicate that 7.5% is achievable when proper thermal interfaces and loading pressures are used.

  8. Effects of Predictability of Load Magnitude on the Response of the Flexor Digitorum Superficialis to a Sudden Fingers Extension

    PubMed Central

    Aimola, Ettore; Valle, Maria Stella; Casabona, Antonino

    2014-01-01

    Muscle reflexes, evoked by opposing a sudden joint displacement, may be modulated by several factors associated with the features of the mechanical perturbation. We investigated the variations of muscle reflex response in relation to the predictability of load magnitude during a reactive grasping task. Subjects were instructed to flex the fingers 2–5 very quickly after a stretching was exerted by a handle pulled by loads of 750 or 1250 g. Two blocks of trials, one for each load (predictable condition), and one block of trials with a randomized distribution of the loads (unpredictable condition) were performed. Kinematic data were collected by an electrogoniometer attached to the middle phalanx of the digit III while the electromyography of the Flexor Digitorum Superficialis muscle was recorded by surface electrodes. For each trial we measured the kinematics of the finger angular rotation, the latency of muscle response and the level of muscle activation recorded below 50 ms (short-latency reflex), between 50 and 100 ms (long-latency reflex) and between 100 and 140 ms (initial portion of voluntary response) from the movement onset. We found that the latency of the muscle response lengthened from predictable (35.5±1.3 ms for 750 g and 35.5±2.5 ms for 1250 g) to unpredictable condition (43.6±1.3 ms for 750 g and 40.9±2.1 ms for 1250 g) and the level of muscle activation increased with load magnitude. The parallel increasing of muscle activation and load magnitude occurred within the window of the long-latency reflex during the predictable condition, and later, at the earliest portion of the voluntary response, in the unpredictable condition. Therefore, these results indicate that when the amount of an upcoming perturbation is known in advance, the muscle response improves, shortening the latency and modulating the muscle activity in relation to the mechanical demand. PMID:25271638

  9. Dynamic Mechanical Compression of Chondrocytes for Tissue Engineering: A Critical Review.

    PubMed

    Anderson, Devon E; Johnstone, Brian

    2017-01-01

    Articular cartilage functions to transmit and translate loads. In a classical structure-function relationship, the tissue resides in a dynamic mechanical environment that drives the formation of a highly organized tissue architecture suited to its biomechanical role. The dynamic mechanical environment includes multiaxial compressive and shear strains as well as hydrostatic and osmotic pressures. As the mechanical environment is known to modulate cell fate and influence tissue development toward a defined architecture in situ , dynamic mechanical loading has been hypothesized to induce the structure-function relationship during attempts at in vitro regeneration of articular cartilage. Researchers have designed increasingly sophisticated bioreactors with dynamic mechanical regimes, but the response of chondrocytes to dynamic compression and shear loading remains poorly characterized due to wide variation in study design, system variables, and outcome measurements. We assessed the literature pertaining to the use of dynamic compressive bioreactors for in vitro generation of cartilaginous tissue from primary and expanded chondrocytes. We used specific search terms to identify relevant publications from the PubMed database and manually sorted the data. It was very challenging to find consensus between studies because of species, age, cell source, and culture differences, coupled with the many loading regimes and the types of analyses used. Early studies that evaluated the response of primary bovine chondrocytes within hydrogels, and that employed dynamic single-axis compression with physiologic loading parameters, reported consistently favorable responses at the tissue level, with upregulation of biochemical synthesis and biomechanical properties. However, they rarely assessed the cellular response with gene expression or mechanotransduction pathway analyses. Later studies that employed increasingly sophisticated biomaterial-based systems, cells derived from different species, and complex loading regimes, did not necessarily corroborate prior positive results. These studies report positive results with respect to very specific conditions for cellular responses to dynamic load but fail to consistently achieve significant positive changes in relevant tissue engineering parameters, particularly collagen content and stiffness. There is a need for standardized methods and analyses of dynamic mechanical loading systems to guide the field of tissue engineering toward building cartilaginous implants that meet the goal of regenerating articular cartilage.

  10. Strains in trussed spine interbody fusion implants are modulated by load and design.

    PubMed

    Caffrey, Jason P; Alonso, Eloy; Masuda, Koichi; Hunt, Jessee P; Carmody, Cameron N; Ganey, Timothy M; Sah, Robert L

    2018-04-01

    Titanium cages with 3-D printed trussed open-space architectures may provide an opportunity to deliver targeted mechanical behavior in spine interbody fusion devices. The ability to control mechanical strain, at levels known to stimulate an osteogenic response, to the fusion site could lead to development of optimized therapeutic implants that improve clinical outcomes. In this study, cages of varying design (1.00 mm or 0.75 mm diameter struts) were mechanically characterized and compared for multiple compressive load magnitudes in order to determine what impact certain design variables had on localized strain. Each cage was instrumented with small fiducial sphere markers (88 total) at each strut vertex of the truss structure, which comprised of 260 individual struts. Cages were subjected to a 50 N control, 1000 N, or 2000 N compressive load between contoured loading platens in a simulated vertebral fusion condition, during which the cages were imaged using high-resolution micro-CT. The cage was analyzed as a mechanical truss structure, with each strut defined as the connection of two vertex fiducials. The deformation and strain of each strut was determined from 50 N control to 1000 N or 2000 N load by tracking the change in distance between each fiducial marker. As in a truss system, the number of struts in tension (positive strain) and compression (negative strain) were roughly equal, with increased loads resulting in a widened distribution (SD) compared with that at 50 N tare load indicating increased strain magnitudes. Strain distribution increased from 1000 N (+156 ± 415 με) to 2000 N (+180 ± 605 με) in 1.00 mm cages, which was similar to 0.75 mm cages (+132 ± 622 με) at 1000 N load. Strain amplitudes increased 42%, from 346με at 1000 N to 492με at 2000 N, for 1.00 mm cages. At 1000 N, strain amplitude in 0.75 mm cages (481με) was higher by 39% than that in 1.00 mm cages. These amplitudes corresponded to the mechanobiological range of bone homeostasis+formation, with 63 ± 2% (p < .05 vs other groups), 72 ± 3%, and 73 ± 1% of struts within that range for 1.00 mm at 1000 N, 1.00 mm at 2000 N, and 0.75 mm at 1000 N, respectively. The effective compressive modulus for both cage designs was also dependent on strut diameter, with modulus decreasing from 12.1 ± 2.3 GPa (1.25 mm) to 9.2 ± 7.5 GPa (1.00 mm) and 3.8 ± 0.6 GPa (0.75 mm). This study extended past micro-scale mechanical characterization of trussed cages to compare the effects of design on cage mechanical behavior at moderate (1000 N) and strenuous (2000 N) load levels. The findings suggest that future cage designs may be modulated to target desired mechanical strain regimes at physiological loads. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. High-Precision Coupling Mechanism Operable By Robots

    NASA Technical Reports Server (NTRS)

    Voellmer, George

    1992-01-01

    Coupling mechanism has features making it easily operable by hand and suitable for operation by robots: tolerates some initial misalignment, imposes precise final alignment, and protects itself against overtightening. Typically used to mount equipment module on structure. Mechanism includes kinematic mounts, which tolerate small initial misalignment and enforce precise final alignment as two assemblies brought together. Clamping force applied to kinematic mounts via two flexible plates. Bolt and nut tightened on flexible plates to impose spring clamping load. Repeatability of interface tested and found to be better than forty-millionths of inch.

  12. Enthesis fibrocartilage cells originate from a population of Hedgehog-responsive cells modulated by the loading environment.

    PubMed

    Schwartz, Andrea G; Long, Fanxin; Thomopoulos, Stavros

    2015-01-01

    Tendon attaches to bone across a specialized tissue called the enthesis. This tissue modulates the transfer of muscle forces between two materials, i.e. tendon and bone, with vastly different mechanical properties. The enthesis for many tendons consists of a mineralized graded fibrocartilage that develops postnatally, concurrent with epiphyseal mineralization. Although it is well described that the mineralization and development of functional maturity requires muscle loading, the biological factors that modulate enthesis development are poorly understood. By genetically demarcating cells expressing Gli1 in response to Hedgehog (Hh) signaling, we discovered a unique population of Hh-responsive cells in the developing murine enthesis that were distinct from tendon fibroblasts and epiphyseal chondrocytes. Lineage-tracing experiments revealed that the Gli1 lineage cells that originate in utero eventually populate the entire mature enthesis. Muscle paralysis increased the number of Hh-responsive cells in the enthesis, demonstrating that responsiveness to Hh is modulated in part by muscle loading. Ablation of the Hh-responsive cells during the first week of postnatal development resulted in a loss of mineralized fibrocartilage, with very little tissue remodeling 5 weeks after cell ablation. Conditional deletion of smoothened, a molecule necessary for responsiveness to Ihh, from the developing tendon and enthesis altered the differentiation of enthesis progenitor cells, resulting in significantly reduced fibrocartilage mineralization and decreased biomechanical function. Taken together, these results demonstrate that Hh signaling within developing enthesis fibrocartilage cells is required for enthesis formation. © 2015. Published by The Company of Biologists Ltd.

  13. Enthesis fibrocartilage cells originate from a population of Hedgehog-responsive cells modulated by the loading environment

    PubMed Central

    Schwartz, Andrea G.; Long, Fanxin; Thomopoulos, Stavros

    2015-01-01

    Tendon attaches to bone across a specialized tissue called the enthesis. This tissue modulates the transfer of muscle forces between two materials, i.e. tendon and bone, with vastly different mechanical properties. The enthesis for many tendons consists of a mineralized graded fibrocartilage that develops postnatally, concurrent with epiphyseal mineralization. Although it is well described that the mineralization and development of functional maturity requires muscle loading, the biological factors that modulate enthesis development are poorly understood. By genetically demarcating cells expressing Gli1 in response to Hedgehog (Hh) signaling, we discovered a unique population of Hh-responsive cells in the developing murine enthesis that were distinct from tendon fibroblasts and epiphyseal chondrocytes. Lineage-tracing experiments revealed that the Gli1 lineage cells that originate in utero eventually populate the entire mature enthesis. Muscle paralysis increased the number of Hh-responsive cells in the enthesis, demonstrating that responsiveness to Hh is modulated in part by muscle loading. Ablation of the Hh-responsive cells during the first week of postnatal development resulted in a loss of mineralized fibrocartilage, with very little tissue remodeling 5 weeks after cell ablation. Conditional deletion of smoothened, a molecule necessary for responsiveness to Ihh, from the developing tendon and enthesis altered the differentiation of enthesis progenitor cells, resulting in significantly reduced fibrocartilage mineralization and decreased biomechanical function. Taken together, these results demonstrate that Hh signaling within developing enthesis fibrocartilage cells is required for enthesis formation. PMID:25516975

  14. Cross-modal attention influences auditory contrast sensitivity: Decreasing visual load improves auditory thresholds for amplitude- and frequency-modulated sounds.

    PubMed

    Ciaramitaro, Vivian M; Chow, Hiu Mei; Eglington, Luke G

    2017-03-01

    We used a cross-modal dual task to examine how changing visual-task demands influenced auditory processing, namely auditory thresholds for amplitude- and frequency-modulated sounds. Observers had to attend to two consecutive intervals of sounds and report which interval contained the auditory stimulus that was modulated in amplitude (Experiment 1) or frequency (Experiment 2). During auditory-stimulus presentation, observers simultaneously attended to a rapid sequential visual presentation-two consecutive intervals of streams of visual letters-and had to report which interval contained a particular color (low load, demanding less attentional resources) or, in separate blocks of trials, which interval contained more of a target letter (high load, demanding more attentional resources). We hypothesized that if attention is a shared resource across vision and audition, an easier visual task should free up more attentional resources for auditory processing on an unrelated task, hence improving auditory thresholds. Auditory detection thresholds were lower-that is, auditory sensitivity was improved-for both amplitude- and frequency-modulated sounds when observers engaged in a less demanding (compared to a more demanding) visual task. In accord with previous work, our findings suggest that visual-task demands can influence the processing of auditory information on an unrelated concurrent task, providing support for shared attentional resources. More importantly, our results suggest that attending to information in a different modality, cross-modal attention, can influence basic auditory contrast sensitivity functions, highlighting potential similarities between basic mechanisms for visual and auditory attention.

  15. Development and testing of shingle-type solar cell modules. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepard, N.F.

    1979-02-28

    The design, development, fabrication and testing of a shingle-type terrestrial solar cell module which produces 98 watts/m/sup 2/ of exposed module area at 1 kW/m/sup 2/ insolation and 61/sup 0/C are reported. These modules make it possible to easily incorporate photovoltaic power generation into the sloping roofs of residential or commercial buildings by simply nailing the modules to the plywood roof sheathing. This design consists of nineteen series-connected 53 mm diameter solar cells arranged in a closely packaged hexagon configuration. These cells are individually bonded to the embossed surface of a 3 mm thick thermally tempered hexagon-shaped piece of ASGmore » SUNADEX glass. Monsanto SAFLEX polyvinyl butyral is used as the laminating adhesive. RTVII functions as the encapsulant between the underside of the glass superstrate and a rear protective sheet of 0.8 mm thick TEXTOLITE. The semi-flexible portion of each shingle module is a composite laminate construction consisting of outer layers of B.F. Goodrich FLEXSEAL and an epichlorohydrin closed cell foam core. The module design has satisfactorily survived the JPL-defined qualification testing program which includes 50 thermal cycles between -40 and +90/sup 0/C, a seven-day temperature-humidity exposure test and a mechanical integrity test consisting of a bidirectional cyclic loading at 2390 Pa (50 lb/ft/sup 2/) which is intended to simulate loads due to a 45 m/s (100 mph) wind.« less

  16. Influences of load characteristics on impaired control of grip forces in patients with cerebellar damage.

    PubMed

    Brandauer, B; Timmann, D; Häusler, A; Hermsdörfer, J

    2010-02-01

    Various studies showed a clear impairment of cerebellar patients to modulate grip force in anticipation of the loads resulting from movements with a grasped object. This failure corroborated the theory of internal feedforward models in the cerebellum. Cerebellar damage also impairs the coordination of multiple-joint movements and this has been related to deficient prediction and compensation of movement-induced torques. To study the effects of disturbed torque control on feedforward grip-force control, two self-generated load conditions with different demands on torque control-one with movement-induced and the other with isometrically generated load changes-were directly compared in patients with cerebellar degeneration. Furthermore the cerebellum is thought to be more involved in grip-force adjustment to self-generated loads than to externally generated loads. Consequently, an additional condition with externally generated loads was introduced to further test this hypothesis. Analysis of 23 patients with degenerative cerebellar damage revealed clear impairments in predictive feedforward mechanisms in the control of both self-generated load types. Besides feedforward control, the cerebellar damage also affected more reactive responses when the externally generated load destabilized the grip, although this impairment may vary with the type of load as suggested by control experiments. The present findings provide further support that the cerebellum plays a major role in predictive control mechanisms. However, this impact of the cerebellum does not strongly depend on the nature of the load and the specific internal forward model. Contributions to reactive (grip force) control are not negligible, but seem to be dependent on the physical characteristics of an externally generated load.

  17. Erosion simulation of first wall beryllium armour under ITER transient heat loads

    NASA Astrophysics Data System (ADS)

    Bazylev, B.; Janeschitz, G.; Landman, I.; Pestchanyi, S.; Loarte, A.

    2009-04-01

    The beryllium is foreseen as plasma facing armour for the first wall in the ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. Melting thresholds and melt layer depth of the Be armour under transient loads are estimated for different temperatures of the bulk Be and different shapes of transient loads. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the Lorentz force are analyzed for bulk Be and different sizes of Be-brushes. The damage of FW under radiative loads arising during mitigated disruptions is numerically simulated.

  18. Describing the interplay between anxiety and cognition: From impaired performance under low cognitive load to reduced anxiety under high load

    PubMed Central

    Vytal, Katherine; Cornwell, Brian; Arkin, Nicole; Grillon, Christian

    2012-01-01

    Anxiety impairs the ability to think and concentrate, suggesting that the interaction between emotion and cognition may elucidate the debilitating nature of pathological anxiety. Using a verbal n-back task that parametrically modulated cognitive load, we explored the effect of experimentally-induced anxiety on task performance and the startle reflex. Findings suggest there is a crucial inflection point between moderate and high cognitive load, where resources shift from anxious apprehension to focus on task demands. Specifically, we demonstrate that anxiety impairs performance under low-load, but is reduced when subjects engage in a difficult task that occupies executive resources. We propose a two-component model of anxiety that describes a cognitive mechanism behind performance impairment and an automatic response that supports sustained anxiety-potentiated startle. Implications for therapeutic interventions and emotional pathology are discussed. PMID:22332819

  19. Ruggedizing vibration sensitive components of electro-optical module using wideband dynamic absorber

    NASA Astrophysics Data System (ADS)

    Veprik, Alexander; Openhaim, Yaki; Babitsky, Vladimir; Tuito, Avi

    2018-05-01

    In the modern design approach, the cold portion of Integrated Dewar-Detector-Cooler-Assembly (substrate, infrared focal plane array, cold shield and cold filter) is directly mounted upon the distal end of a cold finger of a cryogenic cooler with no mechanical contact with the warm Dewar shroud. This concept allows for essential reduction of parasitic (conductive) heat load. The penalty, however, is that resulting tip-mass cantilever is lightly damped and, therefore, prone to vibrational extremes typical of the modern battlefield. Without sufficient ruggedizing, vibration induced structural resonances may affect image quality and even may cause mechanical failures due to material fatigue. Use of additional front supports or thickening the cold finger walls results in increased parasitic conductive heat load, power consumption and mechanical complexity. The authors explore the concept of wideband dynamic absorber in application to ruggedizing the Integrated Dewar-Detector-Cooler Assembly.

  20. Load-dependent ADP binding to myosins V and VI: Implications for subunit coordination and function

    PubMed Central

    Oguchi, Yusuke; Mikhailenko, Sergey V.; Ohki, Takashi; Olivares, Adrian O.; De La Cruz, Enrique M.; Ishiwata, Shin'ichi

    2008-01-01

    Dimeric myosins V and VI travel long distances in opposite directions along actin filaments in cells, taking multiple steps in a “hand-over-hand” fashion. The catalytic cycles of both myosins are limited by ADP dissociation, which is considered a key step in the walking mechanism of these motors. Here, we demonstrate that external loads applied to individual actomyosin V or VI bonds asymmetrically affect ADP affinity, such that ADP binds weaker under loads assisting motility. Model-based analysis reveals that forward and backward loads modulate the kinetics of ADP binding to both myosins, although the effect is less pronounced for myosin VI. ADP dissociation is modestly accelerated by forward loads and inhibited by backward loads. Loads applied in either direction slow ADP binding to myosin V but accelerate binding to myosin VI. We calculate that the intramolecular load generated during processive stepping is ≈2 pN for both myosin V and myosin VI. The distinct load dependence of ADP binding allows these motors to perform different cellular functions. PMID:18509050

  1. The composite load spectra project

    NASA Technical Reports Server (NTRS)

    Newell, J. F.; Ho, H.; Kurth, R. E.

    1990-01-01

    Probabilistic methods and generic load models capable of simulating the load spectra that are induced in space propulsion system components are being developed. Four engine component types (the transfer ducts, the turbine blades, the liquid oxygen posts and the turbopump oxidizer discharge duct) were selected as representative hardware examples. The composite load spectra that simulate the probabilistic loads for these components are typically used as the input loads for a probabilistic structural analysis. The knowledge-based system approach used for the composite load spectra project provides an ideal environment for incremental development. The intelligent database paradigm employed in developing the expert system provides a smooth coupling between the numerical processing and the symbolic (information) processing. Large volumes of engine load information and engineering data are stored in database format and managed by a database management system. Numerical procedures for probabilistic load simulation and database management functions are controlled by rule modules. Rules were hard-wired as decision trees into rule modules to perform process control tasks. There are modules to retrieve load information and models. There are modules to select loads and models to carry out quick load calculations or make an input file for full duty-cycle time dependent load simulation. The composite load spectra load expert system implemented today is capable of performing intelligent rocket engine load spectra simulation. Further development of the expert system will provide tutorial capability for users to learn from it.

  2. Autocrine and/or paracrine insulin-like growth factor-I activity in skeletal muscle

    NASA Technical Reports Server (NTRS)

    Adams, Gregory R.

    2002-01-01

    Similar to bone, skeletal muscle responds and adapts to changes in loading state via mechanisms that appear to be intrinsic to the muscle. One of the mechanisms modulating skeletal muscle adaptation it thought to involve the autocrine and/or paracrine production of insulinlike growth factor-I. This brief review outlines components of the insulinlike growth factor-I system as it relates to skeletal muscle and provides the rationale for the theory that insulinlike growth factor-I is involved with muscle adaptation.

  3. Efficacy of phosphatidylcholine in the modulation of motion sickness susceptibility

    NASA Technical Reports Server (NTRS)

    Kohl, R. L.; Ryan, P.; Homick, J. L.

    1985-01-01

    This study evaluated the efficacy of pharmacological doses of phosphatidylcholine (lecithin) in the modulation of motion sickness induced by exposure to coriolis stimulation in a rotating chair. Subjects received daily dietary supplements of 25 grams of lecithin (90 percent phosphatidylcholine) and were tested for their susceptibility to motion sickness after 4 h, 2 d, and 21 d. A small but statistically significant increase in susceptibility (+15 percent) was noted 4 h after supplemental phosphatidylcholine, with four of nine subjects demonstrating a marked increase in susceptibility. This finding was attributed to choline's stimulatory action on cholinergic systems, an action which opposes that of the classical antimotion sickness drug scopolamine. Chronic lecithin loading revealed a trend towards reduced susceptibility, possibly indicating the occurrence of adaptive mechanisms such as receptor down-regulation. Withdrawal from lecithin loading, perhaps coupled with anticholinergic treatment, might prove to be a potent prophylactic regimen and ought to be tested.

  4. Mechanisms of Bone Mineralization and Effects of Mechanical Loading

    NASA Technical Reports Server (NTRS)

    Babich, Michael

    1996-01-01

    The data suggest that PTH and PKC inhibit nodule formation, and that alternative energy sources are utilized by osteoblasts in the process of mineralization. The conditions and techniques to grow, fix, photograph, and measure bone mineralization in vitro were defined. The results are presently in preliminary form and require further assessment as follows; quantitate the surface area of nodules + treatments via computer-aided image analysis; use PTH + inhibitors of signaling pathways to determine the mechanism of nodule formation; determine how protein kinase C is involved as a promotor of nodule formation; cell proliferation vs. cell death affected by modulation of signal transduction (i.e., PTH, enzyme inhibitors and activators); identify mRNA induced or decreased in response to PTH and signaling modulators that encode proteins that regulate cell morphology, proliferation, and nodule formation. Therefore, several follow-up studies between the laboratories at NASA-Ames Research Center and my laboratory at the University of Illinois have been initiated.

  5. Reconfigurable vision system for real-time applications

    NASA Astrophysics Data System (ADS)

    Torres-Huitzil, Cesar; Arias-Estrada, Miguel

    2002-03-01

    Recently, a growing community of researchers has used reconfigurable systems to solve computationally intensive problems. Reconfigurability provides optimized processors for systems on chip designs, and makes easy to import technology to a new system through reusable modules. The main objective of this work is the investigation of a reconfigurable computer system targeted for computer vision and real-time applications. The system is intended to circumvent the inherent computational load of most window-based computer vision algorithms. It aims to build a system for such tasks by providing an FPGA-based hardware architecture for task specific vision applications with enough processing power, using the minimum amount of hardware resources as possible, and a mechanism for building systems using this architecture. Regarding the software part of the system, a library of pre-designed and general-purpose modules that implement common window-based computer vision operations is being investigated. A common generic interface is established for these modules in order to define hardware/software components. These components can be interconnected to develop more complex applications, providing an efficient mechanism for transferring image and result data among modules. Some preliminary results are presented and discussed.

  6. The impact of skeletal unloading on bone formation

    NASA Technical Reports Server (NTRS)

    Bikle, Daniel D.; Sakata, Takeshi; Halloran, Bernard P.

    2003-01-01

    Skeletal unloading leads to decreased bone formation and decreased bone mass. Bone resorption is uncoupled from bone formation, contributing to the bone loss. During space flight bone is lost principally from the bones most loaded in the 1 g environment. Determining the mechanism(s) by which loading of bone is sensed and translated into a signal(s) controlling bone formation remains the holy grail in this field. It seems likely that matrix/cell interactions will underlie much of the mechanocoupling. Integrins are a prime mediator of such interactions. The role for systemic hormones such as PTH, GH and 1,25(OH)2D compared to locally produced factors such as IGF-I, PTHrP, BMPs and TGF beta in modulating the cellular response to load remains unclear. Our studies demonstrate that skeletal unloading leads to resistance to the anabolic actions of IGF-I on bone as a result of failure of IGF-I to activate its own signaling pathways. This is associated with a reduction in integrin expression, suggesting crosstalk between these two pathways. As the mechanism(s) by which bone responds to changes in mechanical load with changes in bone formation is further elucidated, applications of this knowledge to other etiologies of osteoporosis are likely to develop. Skeletal unloading provides a perturbation in bone mineral homeostasis that can be used to understand the mechanisms by which bone mineral homeostasis is maintained, and that such understanding will lead to effective treatment for disuse osteoporosis in addition to preventive measures for the bone loss that accompanies space travel.

  7. Primary cilia modulate Ihh signal transduction in response to hydrostatic loading of growth plate chondrocytes.

    PubMed

    Shao, Yvonne Y; Wang, Lai; Welter, Jean F; Ballock, R Tracy

    2012-01-01

    Indian hedgehog (Ihh) is a key component of the regulatory apparatus governing chondrocyte proliferation and differentiation in the growth plate. Recent studies have demonstrated that the primary cilium is the site of Ihh signaling within the cell, and that primary cilia are essential for bone and cartilage formation. Primary cilia are also postulated to act as mechanosensory organelles that transduce mechanical forces acting on the cell into biological signals. In this study, we used a hydrostatic compression system to examine Ihh signal transduction under the influence of mechanical load. Our results demonstrate that hydrostatic compression increased both Ihh gene expression and Ihh-responsive Gli-luciferase activity. These increases were aborted by disrupting the primary cilia structure with chloral hydrate. These results suggest that growth plate chondrocytes respond to hydrostatic loading by increasing Ihh signaling, and that the primary cilium is required for this mechano-biological signal transduction to occur. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Environmental and Geotechnical Assessment of the Steel Slags as a Material for Road Structure.

    PubMed

    Sas, Wojciech; Głuchowski, Andrzej; Radziemska, Maja; Dzięcioł, Justyna; Szymański, Alojzy

    2015-07-30

    Slags are the final solid wastes from the steel industry. Their production from waste and associated materials is a proper implementation of the basic objectives and principles of the waste management. This study aims to investigate the chemical and selected significant geotechnical parameters of steel slag as the alternative materials used in road construction. These investigations are strongly desired for successful application in engineering. Young's modules E , and resilient modules M r showed that their values corresponding with requirements for subbase (principal or auxiliary) and riding surface as well. Tested mechanical properties were conducted in soaked and un-soaked (optimal moisture content) conditions. The designated high content of chromium and zinc are strongly associated with the internal crystal structure of steel slag. The results do not lead to threats when they are applied in roads' structures. Mechanical characterization was obtained by performing California bearing ratio (CBR) tests for steel slag in fixed compaction and moisture content conditions. Moreover, cyclic loading of steel slag was conducted with the application of cyclic California bearing ratio (cCBR) apparatus to characterization of this material as a controlled low-strength material. Finally, field studies that consist of static load plate VSS tests were presented.

  9. Analysis of Ares Crew Launch Vehicle Transonic Alternating Flow Phenomenon

    NASA Technical Reports Server (NTRS)

    Sekula, Martin K.; Piatak, David J.; Rausch, Russ D.

    2012-01-01

    A transonic wind tunnel test of the Ares I-X Rigid Buffet Model (RBM) identified a Mach number regime where unusually large buffet loads are present. A subsequent investigation identified the cause of these loads to be an alternating flow phenomenon at the Crew Module-Service Module junction. The conical design of the Ares I-X Crew Module and the cylindrical design of the Service Module exposes the vehicle to unsteady pressure loads due to the sudden transition between a subsonic separated and a supersonic attached flow about the cone-cylinder junction as the local flow randomly fluctuates back and forth between the two flow states. These fluctuations produce a square-wave like pattern in the pressure time histories resulting in large amplitude, impulsive buffet loads. Subsequent testing of the Ares I RBM found much lower buffet loads since the evolved Ares I design includes an ogive fairing that covers the Crew Module-Service Module junction, thereby making the vehicle less susceptible to the onset of alternating flow. An analysis of the alternating flow separation and attachment phenomenon indicates that the phenomenon is most severe at low angles of attack and exacerbated by the presence of vehicle protuberances. A launch vehicle may experience either a single or, at most, a few impulsive loads since it is constantly accelerating during ascent rather than dwelling at constant flow conditions in a wind tunnel. A comparison of a windtunnel- test-data-derived impulsive load to flight-test-data-derived load indicates a significant over-prediction in the magnitude and duration of the buffet load. I. Introduction One

  10. High-Resolution Gas Metering and Nonintrusive Appliance Load Monitoring System

    NASA Astrophysics Data System (ADS)

    Tewolde, Mahder

    This thesis deals with design and implementation of a high-resolution metering system for residential natural gas meters. Detailed experimental measurements are performed on the meter to characterize and understand its measurement properties. Results from these experiments are used to develop a simple, fast and accurate technique to non-intrusively monitor the gas consumption of individual appliances in homes by resolving small amounts of gas usage. The technique is applied on an existing meter retrofitted with a module that includes a high-resolution encoder to collect gas flow data and a microprocessor to analyze and identify appliance load profiles. This approach provides a number of appealing features including low cost, easy installation and integration with automated meter reading (AMR) systems. The application of this method to residential gas meters currently deployed is also given. This is done by performing a load simulation on realistic gas loads with the aim of identifying the necessary parameters that minimize the cost and complexity of the mechanical encoder module. The primary benefits of the system are efficiency analysis, appliance health monitoring and real-time customer feedback of gas usage. Additional benefits of include the ability to detect very small leaks and theft. This system has the potential for wide scale market adoption.

  11. Working memory load affects repetitive behaviour but not cognitive flexibility in adolescent autism spectrum disorder.

    PubMed

    Wolff, Nicole; Chmielewski, Witold X; Beste, Christian; Roessner, Veit

    2017-03-16

    Autism spectrum disorder (ASD) is associated with repetitive and stereotyped behaviour, suggesting that cognitive flexibility may be deficient in ASD. A central, yet not examined aspect to understand possible deficits in flexible behaviour in ASD relates (i) to the role of working memory and (ii) to neurophysiological mechanisms underlying behavioural modulations. We analysed behavioural and neurophysiological (EEG) correlates of cognitive flexibility using a task-switching paradigm with and without working memory load in adolescents with ASD and typically developing controls (TD). Adolescents with ASD versus TD show similar performance in task switching with no memory load, indicating that 'pure' cognitive flexibility is not in deficit in adolescent ASD. However performance during task repetition decreases with increasing memory load. Neurophysiological data reflect the pattern of behavioural effects, showing modulations in P2 and P3 event-related potentials. Working memory demands affect repetitive behaviour while processes of cognitive flexibility are unaffected. Effects emerge due to deficits in preparatory attentional processes and deficits in task rule activation, organisation and implementation of task sets when repetitive behaviour is concerned. It may be speculated that the habitual response mode in ASD (i.e. repetitive behaviour) is particularly vulnerable to additional demands on executive control processes.

  12. Analyzing the Energy Performance, Wind Loading, and Costs of Photovoltaic Slat Modules on Commercial Rooftops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Geet, Otto D.; Fu, Ran; Horowitz, Kelsey A.

    NREL studied a new type of photovoltaic (PV) module configuration wherein multiple narrow, tilted slats are mounted in a single frame. Each slat of the PV slat module contains a single row of cells and is made using ordinary crystalline silicon PV module materials and processes, including a glass front sheet and weatherproof polymer encapsulation. Compared to a conventional ballasted system, a system using slat modules offer higher energy production and lower weight at lower LCOE. The key benefits of slat modules are reduced wind loading, improved capacity factor and reduced installation cost. First, the individual slats allow air tomore » flow through, which reduce wind loading. Using PV performance modeling software, we compared the performance of an optimized installation of slats modules to a typical installation of conventional modules in a ballasted rack mounting system. Based on the results of the performance modeling two different row tilt and spacing were tested in a wind tunnel. Scaled models of the PV Slat modules were wind tunnel tested to quantify the wind loading of a slat module system on a commercial rooftop, comparing the results to conventional ballasted rack mounted PV modules. Some commercial roofs do not have sufficient reserve dead load capacity to accommodate a ballasted system. A reduced ballast system design could make PV system installation on these roofs feasible for the first time without accepting the disadvantages of penetrating mounts. Finally, technoeconomic analysis was conducted to enable an economic comparison between a conventional commercial rooftop system and a reduced-ballast slat module installation.« less

  13. Research on virtual network load balancing based on OpenFlow

    NASA Astrophysics Data System (ADS)

    Peng, Rong; Ding, Lei

    2017-08-01

    The Network based on OpenFlow technology separate the control module and data forwarding module. Global deployment of load balancing strategy through network view of control plane is fast and of high efficiency. This paper proposes a Weighted Round-Robin Scheduling algorithm for virtual network and a load balancing plan for server load based on OpenFlow. Load of service nodes and load balancing tasks distribution algorithm will be taken into account.

  14. The effect of non-visual working memory load on top-down modulation of visual processing

    PubMed Central

    Rissman, Jesse; Gazzaley, Adam; D'Esposito, Mark

    2009-01-01

    While a core function of the working memory (WM) system is the active maintenance of behaviorally relevant sensory representations, it is also critical that distracting stimuli are appropriately ignored. We used functional magnetic resonance imaging to examine the role of domain-general WM resources in the top-down attentional modulation of task-relevant and irrelevant visual representations. In our dual-task paradigm, each trial began with the auditory presentation of six random (high load) or sequentially-ordered (low load) digits. Next, two relevant visual stimuli (e.g., faces), presented amongst two temporally interspersed visual distractors (e.g., scenes), were to be encoded and maintained across a 7-sec delay interval, after which memory for the relevant images and digits was probed. When taxed by high load digit maintenance, participants exhibited impaired performance on the visual WM task and a selective failure to attenuate the neural processing of task-irrelevant scene stimuli. The over-processing of distractor scenes under high load was indexed by elevated encoding activity in a scene-selective region-of-interest relative to low load and passive viewing control conditions, as well as by improved long-term recognition memory for these items. In contrast, the load manipulation did not affect participants' ability to upregulate activity in this region when scenes were task-relevant. These results highlight the critical role of domain-general WM resources in the goal-directed regulation of distractor processing. Moreover, the consequences of increased WM load in young adults closely resemble the effects of cognitive aging on distractor filtering [Gazzaley et al., (2005) Nature Neuroscience 8, 1298-1300], suggesting the possibility of a common underlying mechanism. PMID:19397858

  15. Prefrontal inhibition of threat processing reduces working memory interference

    PubMed Central

    Clarke, Robert; Johnstone, Tom

    2013-01-01

    Bottom-up processes can interrupt ongoing cognitive processing in order to adaptively respond to emotional stimuli of high potential significance, such as those that threaten wellbeing. However it is vital that this interference can be modulated in certain contexts to focus on current tasks. Deficits in the ability to maintain the appropriate balance between cognitive and emotional demands can severely impact on day-to-day activities. This fMRI study examined this interaction between threat processing and cognition; 18 adult participants performed a visuospatial working memory (WM) task with two load conditions, in the presence and absence of anxiety induction by threat of electric shock. Threat of shock interfered with performance in the low cognitive load condition; however interference was eradicated under high load, consistent with engagement of emotion regulation mechanisms. Under low load the amygdala showed significant activation to threat of shock that was modulated by high cognitive load. A directed top-down control contrast identified two regions associated with top-down control; ventrolateral PFC and dorsal ACC. Dynamic causal modeling provided further evidence that under high cognitive load, top-down inhibition is exerted on the amygdala and its outputs to prefrontal regions. Additionally, we hypothesized that individual differences in a separate, non-emotional top-down control task would predict the recruitment of dorsal ACC and ventrolateral PFC during top-down control of threat. Consistent with this, performance on a separate dichotic listening task predicted dorsal ACC and ventrolateral PFC activation during high WM load under threat of shock, though activation in these regions did not directly correlate with WM performance. Together, the findings suggest that under high cognitive load and threat, top-down control is exerted by dACC and vlPFC to inhibit threat processing, thus enabling WM performance without threat-related interference. PMID:23750133

  16. Shaping of Rack Cutter Original Profile for Fine-module Ratchet Teeth Cutting

    NASA Astrophysics Data System (ADS)

    Sharkov, O. V.; Koryagin, S. I.; Velikanov, N. L.

    2018-05-01

    The design models and the process of shaping the cutting edges of the rack cutter for cutting fine-module ratchet teeth are considered in the article. The use of fine-module ratchet teeth can reduce the noise and impact loads during operation of the freewheel mechanisms. Mathematical dependencies for calculating the coordinates determining the geometric position of the points of the front and back edges of the cutting profile of the rack cutter, the workpiece angle of rotation during cutting the ratchet teeth were obtained. When applying the developed method, the initial data are: the radii of the workpiece circumferences passing through the dedendum of the external and internal cut teeth; gradient angles of the front and back edges of the rail.

  17. Annual modulation of seismicity along the San Andreas Fault near Parkfield, CA

    USGS Publications Warehouse

    Christiansen, L.B.; Hurwitz, S.; Ingebritsen, S.E.

    2007-01-01

    We analyze seismic data from the San Andreas Fault (SAF) near Parkfield, California, to test for annual modulation in seismicity rates. We use statistical analyses to show that seismicity is modulated with an annual period in the creeping section of the fault and a semiannual period in the locked section of the fault. Although the exact mechanism for seasonal triggering is undetermined, it appears that stresses associated with the hydrologic cycle are sufficient to fracture critically stressed rocks either through pore-pressure diffusion or crustal loading/ unloading. These results shed additional light on the state of stress along the SAF, indicating that hydrologically induced stress perturbations of ???2 kPa may be sufficient to trigger earthquakes.

  18. Linear transformer driver for pulse generation with fifth harmonic

    DOEpatents

    Mazarakis, Michael G.; Kim, Alexander A.; Sinebryukhov, Vadim A.; Volkov, Sergey N.; Kondratiev, Sergey S.; Alexeenko, Vitaly M.; Bayol, Frederic; Demol, Gauthier; Stygar, William A.; Leckbee, Joshua; Oliver, Bryan V.; Kiefer, Mark L.

    2017-03-21

    A linear transformer driver includes at least one ferrite ring positioned to accept a load. The linear transformer driver also includes a first, second, and third power delivery module. The first power delivery module sends a first energy in the form of a first pulse to the load. The second power delivery module sends a second energy in the form of a second pulse to the load. The third power delivery module sends a third energy in the form of a third pulse to the load. The linear transformer driver is configured to form a flat-top pulse by the superposition of the first, second, and third pulses. The first, second, and third pulses have different frequencies.

  19. The response of bone to unloading

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Halloran, B. P.

    1999-01-01

    Skeletal unloading leads to decreased bone formation and decreased bone mass. Bone resorption is uncoupled from bone formation, contributing to the bone loss. During spaceflight bone is lost principally from the bones most loaded in the 1-g environment, and some redistribution of bone from the lower extremities to the head appears to take place. Although changes in calcitropic hormones have been demonstrated during skeletal unloading (PTH and 1,25(OH)2D decrease), it remains unclear whether such changes account for or are in response to the changes in bone formation and resorption. Bed rest studies with human volunteers and hindlimb elevation studies with rats have provided useful data to help explain the changes in bone formation during spaceflight. These models of skeletal unloading reproduce a number of the conditions associated with microgravity, and the findings from such studies confirm many of the observations made during spaceflight. Determining the mechanism(s) by which loading of bone is sensed and translated into a signal(s) controlling bone formation remains the holy grail in this field. Such investigations couple biophysics to biochemistry to cell and molecular biology. Although studies with cell cultures have revealed biochemical responses to mechanical loads comparable to that seen in intact bone, it seems likely that matrix-cell interactions underlie much of the mechanocoupling. The role for systemic hormones such as PTH, GH, and 1,25(OH)2D compared to locally produced factors such as IGF-I, PTHrP, BMPs, and TGF-beta in modulating the cellular response to load remains unclear. As the mechanism(s) by which bone responds to mechanical load with increased bone formation are further elucidated, applications of this knowledge to other etiologies of osteoporosis are likely to develop. Skeletal unloading provides a perturbation in bone mineral homeostasis that can be used to understand the mechanisms by which bone mineral homeostasis is maintained, with the expectation that such understanding will lead to effective treatment for disuse osteoporosis.

  20. Cocaine modulates HIV-1 integration in primary CD4+ T cells: implications in HIV-1 pathogenesis in drug-abusing patients

    PubMed Central

    Addai, Amma B.; Pandhare, Jui; Paromov, Victor; Mantri, Chinmay K.; Pratap, Siddharth; Dash, Chandravanu

    2015-01-01

    Epidemiologic studies suggest that cocaine abuse worsens HIV-1 disease progression. Increased viral load has been suggested to play a key role for the accelerated HIV disease among cocaine-abusing patients. The goal of this study was to investigate whether cocaine enhances proviral DNA integration as a mechanism to increase viral load. We infected CD4+ T cells that are the primary targets of HIV-1 in vivo and treated the cells with physiologically relevant concentrations of cocaine (1 µM–100 µM). Proviral DNA integration in the host genome was measured by nested qPCR. Our results illustrated that cocaine from 1 µM through 50 µM increased HIV-1 integration in CD4+ T cells in a dose-dependent manner. As integration can be modulated by several early postentry steps of HIV-1 infection, we examined the direct effects of cocaine on viral integration by in vitro integration assays by use of HIV-1 PICs. Our data illustrated that cocaine directly increases viral DNA integration. Furthermore, our MS analysis showed that cocaine is able to enter CD4+ T cells and localize to the nucleus-. In summary, our data provide strong evidence that cocaine can increase HIV-1 integration in CD4+ T cells. Therefore, we hypothesize that increased HIV-1 integration is a novel mechanism by which cocaine enhances viral load and worsens disease progression in drug-abusing HIV-1 patients. PMID:25691383

  1. Electrically heated particulate matter filter soot control system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    A regeneration system includes a particulate matter (PM) filter with an upstream end for receiving exhaust gas and a downstream end. A control module determines a current soot loading level of the PM filter and compares the current soot loading level to a predetermined soot loading level. The control module permits regeneration of the PM filter when the current soot loading level is less than the predetermined soot loading level.

  2. Short bursts of cyclic mechanical compression modulate tissue formation in a 3D hybrid scaffold.

    PubMed

    Brunelli, M; Perrault, C M; Lacroix, D

    2017-07-01

    Among the cues affecting cells behaviour, mechanical stimuli are known to have a key role in tissue formation and mineralization of bone cells. While soft scaffolds are better at mimicking the extracellular environment, they cannot withstand the high loads required to be efficient substitutes for bone in vivo. We propose a 3D hybrid scaffold combining the load-bearing capabilities of polycaprolactone (PCL) and the ECM-like chemistry of collagen gel to support the dynamic mechanical differentiation of human embryonic mesodermal progenitor cells (hES-MPs). In this study, hES-MPs were cultured in vitro and a BOSE Bioreactor was employed to induce cells differentiation by mechanical stimulation. From day 6, samples were compressed by applying a 5% strain ramp followed by peak-to-peak 1% strain sinewaves at 1Hz for 15min. Three different conditions were tested: unloaded (U), loaded from day 6 to day 10 (L1) and loaded as L1 and from day 16 to day 20 (L2). Cell viability, DNA content and osteocalcin expression were tested. Samples were further stained with 1% osmium tetroxide in order to investigate tissue growth and mineral deposition by micro-computed tomography (µCT). Tissue growth involved volumes either inside or outside samples at day 21 for L1, suggesting cyclic stimulation is a trigger for delayed proliferative response of cells. Cyclic load also had a role in the mineralization process preventing mineral deposition when applied at the early stage of culture. Conversely, cyclic load during the late stage of culture on pre-compressed samples induced mineral formation. This study shows that short bursts of compression applied at different stages of culture have contrasting effects on the ability of hES-MPs to induce tissue formation and mineral deposition. The results pave the way for a new approach using mechanical stimulation in the development of engineered in vitro tissue as replacement for large bone fractures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Superficial Collagen Fibril Modulus and Pericellular Fixed Charge Density Modulate Chondrocyte Volumetric Behaviour in Early Osteoarthritis

    PubMed Central

    Turunen, Siru M.; Han, Sang Kuy; Herzog, Walter; Korhonen, Rami K.

    2013-01-01

    The aim of this study was to investigate if the experimentally detected altered chondrocyte volumetric behavior in early osteoarthritis can be explained by changes in the extracellular and pericellular matrix properties of cartilage. Based on our own experimental tests and the literature, the structural and mechanical parameters for normal and osteoarthritic cartilage were implemented into a multiscale fibril-reinforced poroelastic swelling model. Model simulations were compared with experimentally observed cell volume changes in mechanically loaded cartilage, obtained from anterior cruciate ligament transected rabbit knees. We found that the cell volume increased by 7% in the osteoarthritic cartilage model following mechanical loading of the tissue. In contrast, the cell volume decreased by 4% in normal cartilage model. These findings were consistent with the experimental results. Increased local transversal tissue strain due to the reduced collagen fibril stiffness accompanied with the reduced fixed charge density of the pericellular matrix could increase the cell volume up to 12%. These findings suggest that the increase in the cell volume in mechanically loaded osteoarthritic cartilage is primarily explained by the reduction in the pericellular fixed charge density, while the superficial collagen fibril stiffness is suggested to contribute secondarily to the cell volume behavior. PMID:23634175

  4. Estrogen regulates the rate of bone turnover but bone balance in ovariectomized rats is modulated by prevailing mechanical strain

    NASA Technical Reports Server (NTRS)

    Westerlind, K. C.; Wronski, T. J.; Ritman, E. L.; Luo, Z. P.; An, K. N.; Bell, N. H.; Turner, R. T.

    1997-01-01

    Estrogen deficiency induced bone loss is associated with increased bone turnover in rats and humans. The respective roles of increased bone turnover and altered balance between bone formation and bone resorption in mediating estrogen deficiency-induced cancellous bone loss was investigated in ovariectomized rats. Ovariectomy resulted in increased bone turnover in the distal femur. However, cancellous bone was preferentially lost in the metaphysis, a site that normally experiences low strain energy. No bone loss was observed in the epiphysis, a site experiencing higher strain energy. The role of mechanical strain in maintaining bone balance was investigated by altering the strain history. Mechanical strain was increased and decreased in long bones of ovariectomized rats by treadmill exercise and functional unloading, respectively. Functional unloading was achieved during orbital spaceflight and following unilateral sciatic neurotomy. Increasing mechanical loading reduced bone loss in the metaphysis. In contrast, decreasing loading accentuated bone loss in the metaphysis and resulted in bone loss in the epiphysis. Finally, administration of estrogen to ovariectomized rats reduced bone loss in the unloaded and prevented loss in the loaded limb following unilateral sciatic neurotomy in part by reducing indices of bone turnover. These results suggest that estrogen regulates the rate of bone turnover, but the overall balance between bone formation and bone resorption is influenced by prevailing levels of mechanical strain.

  5. Definition of large components assembled on-orbit and robot compatible mechanical joints

    NASA Technical Reports Server (NTRS)

    Williamsen, J.; Thomas, F.; Finckenor, J.; Spiegel, B.

    1990-01-01

    One of four major areas of project Pathfinder is in-space assembly and construction. The task of in-space assembly and construction is to develop the requirements and the technology needed to build elements in space. A 120-ft diameter tetrahedral aerobrake truss is identified as the focus element. A heavily loaded mechanical joint is designed to robotically assemble the defined aerobrake element. Also, typical large components such as habitation modules, storage tanks, etc., are defined, and attachment concepts of these components to the tetrahedral truss are developed.

  6. Failure in lithium-ion batteries under transverse indentation loading

    NASA Astrophysics Data System (ADS)

    Chung, Seung Hyun; Tancogne-Dejean, Thomas; Zhu, Juner; Luo, Hailing; Wierzbicki, Tomasz

    2018-06-01

    Deformation and failure of constrained cells and modules in the battery pack under transverse loading is one of the most common conditions in batteries subjected to mechanical impacts. A combined experimental, numerical and analytical approach was undertaken to reveal the underlying mechanism and develop a new cell failure model. When large format pouch cells were subjected to local indentation all the way to failure, the post-mortem examination of the failure zones beneath the punches indicates a consistent slant fracture surface angle to the battery plane. This type of behavior can be described by the critical fracture plane theory in which fracture is caused by the shear stress modified by the normal stress. The Mohr-Coulomb fracture criterion is then postulated and it is shown how the two material constants can be determined from just one indentation test. The orientation of the fracture plane is invariant with respect to the type of loading and can be considered as a property of the cell stack. In addition, closed-form solutions are derived for the load-displacement relation for both plane-strain and axisymmetric cases. The results are in good agreement with the numerical simulation of the homogenized model and experimentally measured responses.

  7. Effects of expectation congruency on event-related potentials (ERPs) to facial expressions depend on cognitive load during the expectation phase.

    PubMed

    Lin, Huiyan; Schulz, Claudia; Straube, Thomas

    2016-10-01

    Previous studies have shown that event-related potentials (ERPs) to facial expressions are modulated by expectation (congruency) and that the ERP effects of expectation congruency are altered by cognitive tasks during the expectation phase. However, it is as yet unknown whether the congruency ERP effects can be modulated by the amount of cognitive load during the expectation phase. To address this question, electroencephalogram (EEG) was acquired when participants viewed fearful and neutral facial expressions. Before the presentation of facial expressions, a cue indicating the expression of a face and subsequently, an expectation interval without any cues were presented. Facial expressions were congruent with the cues in 75% of all trials. During the expectation interval, participants had to solve a cognitive task, in which several letters were presented for target letter detection. The letters were all the same under low load, but differed under high load. Event-related potential (ERP) results showed that the amount of cognitive load during the expectation phase altered the congruency effect in N2 and EPN amplitudes for fearful faces. Congruent as compared to incongruent fearful expressions elicited larger N2 and smaller EPN amplitudes under low load, but these congruency effects were not observed under high load. For neutral faces, a congruency effect in late positive potential (LPP) amplitudes was modulated by cognitive load during the expectation phase. The LPP was more positive for incongruent as compared to congruent faces under low load, but the congruency effect was not evident under high load. The findings indicate that congruency effects on ERPs are modulated by the amount of cognitive load the expectation phase and that this modulation is altered by facial expression. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Lateral Load Testing of the Advanced Stirling Convertor (ASC-E2) Heater Head

    NASA Technical Reports Server (NTRS)

    Cornell, Peggy A.; Krause, David L.; Davis, Glen; Robbie, Malcolm G.; Gubics, David A.

    2010-01-01

    Free-piston Stirling convertors are fundamental to the development of NASA s next generation of radioisotope power system, the Advanced Stirling Radioisotope Generator (ASRG). The ASRG will use General Purpose Heat Source (GPHS) modules as the energy source and Advanced Stirling Convertors (ASCs) to convert heat into electrical energy, and is being developed by Lockheed Martin under contract to the Department of Energy. Achieving flight status mandates that the ASCs satisfy design as well as flight requirements to ensure reliable operation during launch. To meet these launch requirements, GRC performed a series of quasi-static mechanical tests simulating the pressure, thermal, and external loading conditions that will be experienced by an ASC-E2 heater head assembly. These mechanical tests were collectively referred to as "lateral load tests" since a primary external load lateral to the heater head longitudinal axis was applied in combination with the other loading conditions. The heater head was subjected to the operational pressure, axial mounting force, thermal conditions, and axial and lateral launch vehicle acceleration loadings. To permit reliable prediction of the heater head s structural performance, GRC completed Finite Element Analysis (FEA) computer modeling for the stress, strain, and deformation that will result during launch. The heater head lateral load test directly supported evaluation of the analysis and validation of the design to meet launch requirements. This paper provides an overview of each element within the test and presents assessment of the modeling as well as experimental results of this task.

  9. Lateral Load Testing of the Advanced Stirling Convertor (ASC-E2) Heater Head

    NASA Technical Reports Server (NTRS)

    Cornell, Peggy A.; Krause, David L.; Davis, Glen; Robbie, Malcolm G.; Gubics, David A.

    2011-01-01

    Free-piston Stirling convertors are fundamental to the development of NASA s next generation of radioisotope power system, the Advanced Stirling Radioisotope Generator (ASRG). The ASRG will use General Purpose Heat Source (GPHS) modules as the energy source and Advanced Stirling Convertors (ASCs) to convert heat into electrical energy, and is being developed by Lockheed Martin under contract to the Department of Energy. Achieving flight status mandates that the ASCs satisfy design as well as flight requirements to ensure reliable operation during launch. To meet these launch requirements, GRC performed a series of quasi-static mechanical tests simulating the pressure, thermal, and external loading conditions that will be experienced by an ASC-E2 heater head assembly. These mechanical tests were collectively referred to as "lateral load tests" since a primary external load lateral to the heater head longitudinal axis was applied in combination with the other loading conditions. The heater head was subjected to the operational pressure, axial mounting force, thermal conditions, and axial and lateral launch vehicle acceleration loadings. To permit reliable prediction of the heater head s structural performance, GRC completed Finite Element Analysis (FEA) computer modeling for the stress, strain, and deformation that will result during launch. The heater head lateral load test directly supported evaluation of the analysis and validation of the design to meet launch requirements. This paper provides an overview of each element within the test and presents assessment of the modeling as well as experimental results of this task.

  10. Lateral Load Testing of the Advanced Stirling Convertor (ASC-E2) Heater Head

    NASA Technical Reports Server (NTRS)

    Cornell, Peggy A.; Krause, David L.; Davis, Glen; Robbie, Malcolm G.; Gubics, David A.

    2010-01-01

    Free-piston Stirling convertors are fundamental to the development of NASA s next generation of radioisotope power system, the Advanced Stirling Radioisotope Generator (ASRG). The ASRG will use General Purpose Heat Source (GPHS) modules as the energy source and Advanced Stirling Convertors (ASCs) to convert heat into electrical energy, and is being developed by Lockheed Martin under contract to the Department of Energy. Achieving flight status mandates that the ASCs satisfy design as well as flight requirements to ensure reliable operation during launch. To meet these launch requirements, GRC performed a series of quasi-static mechanical tests simulating the pressure, thermal, and external loading conditions that will be experienced by an ASC E2 heater head assembly. These mechanical tests were collectively referred to as lateral load tests since a primary external load lateral to the heater head longitudinal axis was applied in combination with the other loading conditions. The heater head was subjected to the operational pressure, axial mounting force, thermal conditions, and axial and lateral launch vehicle acceleration loadings. To permit reliable prediction of the heater head s structural performance, GRC completed Finite Element Analysis (FEA) computer modeling for the stress, strain, and deformation that will result during launch. The heater head lateral load test directly supported evaluation of the analysis and validation of the design to meet launch requirements. This paper provides an overview of each element within the test and presents assessment of the modeling as well as experimental results of this task.

  11. Seasonal variations in shallow Alaska seismicity and stress modulation from GRACE derived hydrological loading

    NASA Astrophysics Data System (ADS)

    Johnson, C. W.; Fu, Y.; Burgmann, R.

    2017-12-01

    Shallow (≤50 km), low magnitude (M≥2.0) seismicity in southern Alaska is examined for seasonal variations during the annual hydrological cycle. The seismicity is declustered with a spatio-temporal epidemic type aftershock sequence (ETAS) model. The removal of aftershock sequences allows detailed investigation of seismicity rate changes, as water and ice loads modulate crustal stresses throughout the year. The GRACE surface loads are obtained from the JPL mass concentration blocks (mascons) global land and ocean solutions. The data product is smoothed with a 9˚ Gaussian filter and interpolated on a 25 km grid. To inform the surface loading model, the global solutions are limited to the region from -160˚ to -120˚ and 50˚ to 70˚. The stress changes are calculated using a 1D spherical layered earth model at depth intervals of 10 km from 10 - 50 km in the study region. To evaluate the induced seasonal stresses, we use >30 years of earthquake focal mechanisms to constrain the background stress field orientation and assess the stress change with respect to the principal stress orientation. The background stress field is assumed to control the preferred orientation of faulting, and stress field perturbations are expected to increase or decrease seismicity. The number of excess earthquakes is calculated with respect to the background seismicity rates. Here, we present preliminary results for the shallow seismicity variations and quantify the seasonal stresses associated with changes in hydrological loading.

  12. Accurate expectancies diminish perceptual distraction during visual search

    PubMed Central

    Sy, Jocelyn L.; Guerin, Scott A.; Stegman, Anna; Giesbrecht, Barry

    2014-01-01

    The load theory of visual attention proposes that efficient selective perceptual processing of task-relevant information during search is determined automatically by the perceptual demands of the display. If the perceptual demands required to process task-relevant information are not enough to consume all available capacity, then the remaining capacity automatically and exhaustively “spills-over” to task-irrelevant information. The spill-over of perceptual processing capacity increases the likelihood that task-irrelevant information will impair performance. In two visual search experiments, we tested the automaticity of the allocation of perceptual processing resources by measuring the extent to which the processing of task-irrelevant distracting stimuli was modulated by both perceptual load and top-down expectations using behavior, functional magnetic resonance imaging, and electrophysiology. Expectations were generated using a trial-by-trial cue that provided information about the likely load of the upcoming visual search task. When the cues were valid, behavioral interference was eliminated and the influence of load on frontoparietal and visual cortical responses was attenuated relative to when the cues were invalid. In conditions in which task-irrelevant information interfered with performance and modulated visual activity, individual differences in mean blood oxygenation level dependent responses measured from the left intraparietal sulcus were negatively correlated with individual differences in the severity of distraction. These results are consistent with the interpretation that a top-down biasing mechanism interacts with perceptual load to support filtering of task-irrelevant information. PMID:24904374

  13. Microfluidic enhancement of intramedullary pressure increases interstitial fluid flow and inhibits bone loss in hindlimb suspended mice.

    PubMed

    Kwon, Ronald Y; Meays, Diana R; Tang, W Joyce; Frangos, John A

    2010-08-01

    Interstitial fluid flow (IFF) has been widely hypothesized to mediate skeletal adaptation to mechanical loading. Although a large body of in vitro evidence has demonstrated that fluid flow stimulates osteogenic and antiresorptive responses in bone cells, there is much less in vivo evidence that IFF mediates loading-induced skeletal adaptation. This is due in large part to the challenges associated with decoupling IFF from matrix strain. In this study we describe a novel microfluidic system for generating dynamic intramedullary pressure (ImP) and IFF within the femurs of alert mice. By quantifying fluorescence recovery after photobleaching (FRAP) within individual lacunae, we show that microfluidic generation of dynamic ImP significantly increases IFF within the lacunocanalicular system. In addition, we demonstrate that dynamic pressure loading of the intramedullary compartment for 3 minutes per day significantly eliminates losses in trabecular and cortical bone mineral density in hindlimb suspended mice, enhances trabecular and cortical structural integrity, and increases endosteal bone formation rate. Unlike previously developed modalities for enhancing IFF in vivo, this is the first model that allows direct and dynamic modulation of ImP and skeletal IFF within mice. Given the large number of genetic tools for manipulating the mouse genome, this model is expected to serve as a powerful investigative tool in elucidating the role of IFF in skeletal adaptation to mechanical loading and molecular mechanisms mediating this process.

  14. Indoor modeling of the wind pressure in solar installations with flat and step-like frames for HCPV modules

    NASA Astrophysics Data System (ADS)

    Rumyantsev, Valery D.; Ashcheulov, Yury V.; Chekalin, Alexander V.; Chumakov, Yury S.; Shvarts, Maxim Z.; Timofeev, Vladimir V.

    2014-09-01

    As a rule, the HCPV modules are mounted on solar trackers in a form of a flat panel. Wind pressure is one of the key factors limiting the operation capabilities of such type solar installations. At the PV Lab of the Ioffe Institute, the sun-trackers with step-like frame for modules have been proposed and developed, which have a potential for significant reduction of wind pressure. Such a reduction is realized in a wide range of the frame tilt angles the most typical for day-light operation of solar installations. In the present work, theoretical consideration and indoor experiments with mechanical models of installation frames have been carried out. A wind tunnel has been used as an experimental instrument for quantitative comparison in conventional units of expected wind loads on module frames of different designs.

  15. Opto-box: Optical modules and mini-crate for ATLAS pixel and IBL detectors

    NASA Astrophysics Data System (ADS)

    Bertsche, David

    2016-11-01

    The opto-box is a custom mini-crate for housing optical modules which process and transfer optoelectronic data. Many novel solutions were developed for the custom design and manufacturing. The system tightly integrates electrical, mechanical, and thermal functionality into a small package of size 35×10x8 cm3. Special attention was given to ensure proper shielding, grounding, cooling, high reliability, and environmental tolerance. The custom modules, which incorporate Application Specific Integrated Circuits, were developed through a cycle of rigorous testing and redesign. In total, fourteen opto-boxes have been installed and loaded with modules on the ATLAS detector. They are currently in operation as part of the LHC run 2 data read-out chain. This conference proceeding is in support of the poster presented at the International Conference on New Frontiers in Physics (ICNFP) 2015 [1].

  16. Poromicromechanics reveals that physiological bone strains induce osteocyte-stimulating lacunar pressure.

    PubMed

    Scheiner, Stefan; Pivonka, Peter; Hellmich, Christian

    2016-02-01

    Mechanical loads which are macroscopically acting onto bony organs, are known to influence the activities of biological cells located in the pore spaces of bone, in particular so the signaling and production processes mediated by osteocytes. The exact mechanisms by which osteocytes are actually able to "feel" the mechanical loading and changes thereof, has been the subject of numerous studies, and, while several hypotheses have been brought forth over time, this topic has remained a matter of debate. Relaxation times reported in a recent experimental study of Gardinier et al. (Bone 46(4):1075-1081, 2010) strongly suggest that the lacunar pores are likely to experience, during typical physiological load cycles, not only fluid transport, but also undrained conditions. The latter entail the buildup of lacunar pore pressures, which we here quantify by means of a thorough multiscale modeling approach. In particular, the proposed model is based on classical poroelasticity theory, and able to account for multiple pore spaces. First, the model reveals distinct nonlinear dependencies of the resulting lacunar (and vascular) pore pressures on the underlying bone composition, highlighting the importance of a rigorous multiscale approach for appropriate computation of the aforementioned pore pressures. Then, the derived equations are evaluated for macroscopic (uniaxial as well as hydrostatic) mechanical loading of physiological magnitude. The resulting model-predicted pore pressures agree very well with the pressures that have been revealed, by means of in vitro studies, to be of adequate magnitude for modulating the responses of biological cells, including osteocytes. This underlines that osteocytes may respond to many types of loading stimuli at the same time, in particular so to fluid flow and hydrostatic pressure.

  17. A compact roller-gear pitch-yaw joint module: Design and control issues

    NASA Technical Reports Server (NTRS)

    Dohring, Mark E.; Anderson, William J.; Newman, Wyatt S.; Rohn, Douglas A.

    1993-01-01

    Robotic systems have been proposed as a means of accomplishing assembly and maintenance tasks in space. The desirable characteristics of these systems include compact size, low mass, high load capacity, and programmable compliance to improve assembly performance. In addition, the mechanical system must transmit power in such a way as to allow high performance control of the system. Efficiency, linearity, low backlash, low torque ripple, and low friction are all desirable characteristics. This work presents a pitch-yaw joint module designed and built to address these issues. Its effectiveness as a two degree-of-freedom manipulator using natural admittance control, a method of force control, is demonstrated.

  18. Development of an Optically Modulated Scatterer Probe for a Near-Field Measurement System

    DTIC Science & Technology

    2016-09-08

    loaded with a photodiode. The modulation scheme separates scattering off of the probe from background reflections. We present the design and...dipole antenna loaded with a photodiode. The modulation scheme separates scattering off of the probe from background reflections. We present the design

  19. Dynamic modulation of the perceptual load on microsaccades during a selective spatial attention task.

    PubMed

    Xue, Linyan; Huang, Dan; Wang, Tong; Hu, Qiyi; Chai, Xinyu; Li, Liming; Chen, Yao

    2017-11-28

    Selective spatial attention enhances task performance at restricted regions within the visual field. The magnitude of this effect depends on the level of attentional load, which determines the efficiency of distractor rejection. Mechanisms of attentional load include perceptual selection and/or cognitive control involving working memory. Recent studies have provided evidence that microsaccades are influenced by spatial attention. Therefore, microsaccade activities may be exploited to help understand the dynamic control of selective attention under different load levels. However, previous reports in humans on the effect of attentional load on microsaccades are inconsistent, and it is not clear to what extent these results and the dynamic changes of microsaccade activities are similar in monkeys. We trained monkeys to perform a color detection task in which the perceptual load was manipulated by task difficulty with limited involvement of working memory. Our results indicate that during the task with high perceptual load, the rate and amplitude of microsaccades immediately before the target color change were significantly suppressed. We also found that the occurrence of microsaccades before the monkeys' detection response deteriorated their performance, especially in the hard task. We propose that the activity of microsaccades might be an efficacious indicator of the perceptual load.

  20. Utilizing Photogrammetry and Strain Gage Measurement to Characterize Pressurization of Inflatable Modules

    NASA Technical Reports Server (NTRS)

    Mohammed, Anil

    2011-01-01

    This paper focuses on integrating a large hatch penetration into inflatable modules of various constructions. This paper also compares load predictions with test measurements. The strain was measured by utilizing photogrammetric methods and strain gages mounted to select clevises that interface with the structural webbings. Bench testing showed good correlation between strain data collected from an extensometer and photogrammetric measurements, even when the material transitioned from the low load to high load strain region of the curve. The full-scale torus design module showed mixed results as well in the lower load and high strain regions. After thorough analysis of photogrammetric measurements, strain gage measurements, and predicted load, the photogrammetric measurements seem to be off by a factor of two.

  1. Optical design of a color film recorder with PLZT modulators

    NASA Astrophysics Data System (ADS)

    Carson, John F.

    1990-08-01

    A continuous tone colour film recorder was constructed that exposes 8 x 10 inch ISO 100 daylight-balanced sheet film in ten minutes at a resolution of 1000 pixels/inch. A rotating drum is used for line scan and a leadscrew driven by a stepper motor for page scan. Film loading and unloading is automatic. Light from a stationary xenon arc lamp is split into red green and blue channel components and conducted to a translating optical system by multimode optical fiber cables. Each colour component is then modulated by a small-area PLZT light valve. An annular portion of the modulated light beam is reflected to a photodetector whose signal is used for closed-loop modulator control. The central transmitted portion of the modulated beam is combined with the other colour components into a single beam. This beam illuminates an aperture that is imaged onto the film. An overview of the mechanical electrical and optical concepts will be presented with emphasis on the optical design. 1.

  2. Biomechanical responses due to discitis infection of a juvenile thoracolumbar spine using finite element modeling.

    PubMed

    Davidson Jebaseelan, D; Jebaraj, C; Yoganandan, N; Rajasekaran, S; Yerramshetty, J

    2014-07-01

    Growth modulation changes occur in pediatric spines and lead to kyphotic deformity during discitis infection from mechanical forces. The present study was done to understand the consequences of discitis by simulating inflammatory puss at the T12/L1 disc space using a validated eight-year-old thoracolumbar spine finite element model. Changes in the biomechanical responses of the bone, disc and ligaments were determined under physiological compression and flexion loads in the intact and discitis models. During flexion, the angular-displacement increased by 3.33 times the intact spine and localized at the infected junction (IJ). The IJ became a virtual hinge. During compression loading, higher stresses occurred in the growth plate superior to the IJ. The components of the principal stresses in the growth plates at the T12/L1 junction indicated differential stresses. The strain increased by 143% during flexion loading in the posterior ligaments. The study indicates that the flexible pediatric spine increases the motion of the infected spine during physiological loadings. Understanding intrinsic responses around growth plates is important within the context of growth modulation in children. These results are clinically relevant as it might help surgeons to come up with better decisions while developing treatment protocols or performing surgeries. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. Structural cost optimization of photovoltaic central power station modules and support structure

    NASA Technical Reports Server (NTRS)

    Sutton, P. D.; Stolte, W. J.; Marsh, R. O.

    1979-01-01

    The results of a comprehensive study of photovoltaic module structural support concepts for photovoltaic central power stations and their associated costs are presented. The objective of the study has been the identification of structural cost drivers. Parametric structural design and cost analyses of complete array systems consisting of modules, primary support structures, and foundations were performed. Area related module cost was found to be constant with design, size, and loading. A curved glass module concept was evaluated and found to have the potential to significantly reduce panel structural costs. Conclusions of the study are: array costs do not vary greatly among the designs evaluated; panel and array costs are strongly dependent on design loading; and the best support configuration is load dependent

  4. Instantaneous angular speed monitoring of gearboxes under non-cyclic stationary load conditions

    NASA Astrophysics Data System (ADS)

    Stander, C. J.; Heyns, P. S.

    2005-07-01

    Recent developments in the condition monitoring and asset management market have led to the commercialisation of online vibration-monitoring systems. These systems are primarily utilised to monitor large mineral mining equipment such as draglines, continuous miners and hydraulic shovels. Online monitoring systems make diagnostic information continuously available for asset management, production outsourcing and maintenance alliances with equipment manufacturers. However, most online vibration-monitoring systems are based on conventional vibration-monitoring technologies, which are prone to giving false equipment deterioration warnings on gears that operate under fluctuating load conditions. A simplified mathematical model of a gear system was developed to illustrate the feasibility of monitoring the instantaneous angular speed (IAS) as a means of monitoring the condition of gears that are subjected to fluctuating load conditions. A distinction is made between cyclic stationary load modulation and non-cyclic stationary load modulation. It is shown that rotation domain averaging will suppress the modulation caused by non-cyclic stationary load conditions but will not suppress the modulation caused by cyclic stationary load conditions. An experimental investigation on a test rig indicated that the IAS of a gear shaft could be monitored with a conventional shaft encoder to indicate a deteriorating gear fault condition.

  5. KSC00pp1164

    NASA Image and Video Library

    2000-08-16

    KENNEDY SPACE CENTER, FLA. -- The STS-106 payload within the SPACEHAB Module is shown after being loaded onto Atlantis on Launch Pad 39-B using the Payload Ground Handling Mechanism (PGHM). The PGHM (pronounced pigem) is located inside the Payload Changeout Room (PCR) of each shuttle launch pad’s Rotating Service Structure. The PGHM removes payloads from a transportation canister and installs them into the orbiter. It is essentially NASA’s largest fork-lift

  6. KSC-00pp1164

    NASA Image and Video Library

    2000-08-16

    KENNEDY SPACE CENTER, FLA. -- The STS-106 payload within the SPACEHAB Module is shown after being loaded onto Atlantis on Launch Pad 39-B using the Payload Ground Handling Mechanism (PGHM). The PGHM (pronounced pigem) is located inside the Payload Changeout Room (PCR) of each shuttle launch pad’s Rotating Service Structure. The PGHM removes payloads from a transportation canister and installs them into the orbiter. It is essentially NASA’s largest fork-lift

  7. Loglines. March-April 2014

    DTIC Science & Technology

    2014-04-01

    engine mechanic, selects a compressor blade to install in the core module of an F-16 jet engine. DLA Aviation has partnered with Air Force customers to...Support 9 Supporting the Fleet 14 Air Force Support 18 Beyond the Military Services 22 SERVICE TEAMS Side-by-Side Support Chemical Management Services...Marine Corps ordnance technicians load a missile at Kunsan Air Base, South Korea. Service members from the different military branches often work

  8. Piezoelectric energy harvester under parquet floor

    NASA Astrophysics Data System (ADS)

    Bischur, E.; Schwesinger, N.

    2011-03-01

    The design, fabrication and testing of piezoelectric energy harvesting modules for floors is described. These modules are used beneath a parquet floor to harvest the energy of people walking over it. The harvesting modules consist of monoaxial stretched PVDF-foils. Multilayer modules are built up as roller-type capacitors. The fabrication process of the harvesting modules is simple and very suitable for mass production. Due to the use of organic polymers, the modules are characterized by a great flexibility and the possibility to create them in almost any geometrical size. The energy yield was determined depending on the dynamic loading force, the thickness of piezoelectric active material, the size of the piezoelectric modules, their alignment in the walking direction and their position on the floor. An increase of the energy yield at higher loading forces and higher thicknesses of the modules was observed. It was possible to generate up to 2.1mWs of electric energy with dynamic loads of 70kg using a specific module design. Furthermore a test floor was assembled to determine the influence of the size, alignment and position of the modules on the energy yield.

  9. Spatial Scaling of the Profile of Selective Attention in the Visual Field.

    PubMed

    Gannon, Matthew A; Knapp, Ashley A; Adams, Thomas G; Long, Stephanie M; Parks, Nathan A

    2016-01-01

    Neural mechanisms of selective attention must be capable of adapting to variation in the absolute size of an attended stimulus in the ever-changing visual environment. To date, little is known regarding how attentional selection interacts with fluctuations in the spatial expanse of an attended object. Here, we use event-related potentials (ERPs) to investigate the scaling of attentional enhancement and suppression across the visual field. We measured ERPs while participants performed a task at fixation that varied in its attentional demands (attentional load) and visual angle (1.0° or 2.5°). Observers were presented with a stream of task-relevant stimuli while foveal, parafoveal, and peripheral visual locations were probed by irrelevant distractor stimuli. We found two important effects in the N1 component of visual ERPs. First, N1 modulations to task-relevant stimuli indexed attentional selection of stimuli during the load task and further correlated with task performance. Second, with increased task size, attentional modulation of the N1 to distractor stimuli showed a differential pattern that was consistent with a scaling of attentional selection. Together, these results demonstrate that the size of an attended stimulus scales the profile of attentional selection across the visual field and provides insights into the attentional mechanisms associated with such spatial scaling.

  10. Environmental and Geotechnical Assessment of the Steel Slags as a Material for Road Structure

    PubMed Central

    Sas, Wojciech; Głuchowski, Andrzej; Radziemska, Maja; Dzięcioł, Justyna; Szymański, Alojzy

    2015-01-01

    Slags are the final solid wastes from the steel industry. Their production from waste and associated materials is a proper implementation of the basic objectives and principles of the waste management. This study aims to investigate the chemical and selected significant geotechnical parameters of steel slag as the alternative materials used in road construction. These investigations are strongly desired for successful application in engineering. Young’s modules E, and resilient modules Mr showed that their values corresponding with requirements for subbase (principal or auxiliary) and riding surface as well. Tested mechanical properties were conducted in soaked and un-soaked (optimal moisture content) conditions. The designated high content of chromium and zinc are strongly associated with the internal crystal structure of steel slag. The results do not lead to threats when they are applied in roads’ structures. Mechanical characterization was obtained by performing California bearing ratio (CBR) tests for steel slag in fixed compaction and moisture content conditions. Moreover, cyclic loading of steel slag was conducted with the application of cyclic California bearing ratio (cCBR) apparatus to characterization of this material as a controlled low-strength material. Finally, field studies that consist of static load plate VSS tests were presented. PMID:28793477

  11. Probabilistic load simulation: Code development status

    NASA Astrophysics Data System (ADS)

    Newell, J. F.; Ho, H.

    1991-05-01

    The objective of the Composite Load Spectra (CLS) project is to develop generic load models to simulate the composite load spectra that are included in space propulsion system components. The probabilistic loads thus generated are part of the probabilistic design analysis (PDA) of a space propulsion system that also includes probabilistic structural analyses, reliability, and risk evaluations. Probabilistic load simulation for space propulsion systems demands sophisticated probabilistic methodology and requires large amounts of load information and engineering data. The CLS approach is to implement a knowledge based system coupled with a probabilistic load simulation module. The knowledge base manages and furnishes load information and expertise and sets up the simulation runs. The load simulation module performs the numerical computation to generate the probabilistic loads with load information supplied from the CLS knowledge base.

  12. Design and development of line type modulators for high impedance electron gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixit, Kavita P.; Tillu, Abhijit; Chavan, Ramchandra

    Conventional line type modulators are routinely used for powering pulsed power microwave devices such as magnetrons and klystrons used for radar, medical and scientific applications. The load impedance (operating point) is fairly well defined in these cases, and makes the design of the discharging circuit of the modulator straight forward. This paper describes the Line type modulators that have been developed and being routinely used for powering the Triode Electron Gun of industrial electron linacs. The beam parameters of such guns are user defined and the pulse current varies from few mA to 800mA (typ). The beam energies requirement variesmore » from 40 keV to 80 keV. Hence the impedance offered by the electron gun to the power source (modulator) is not well defined. The load capacitance which is inclusive of the various stray capacitances along with the intrinsic gun capacitance is ∼ 200-400 pF. This capacitance, which depends on the configuration, shunts the load and makes the effective load highly capacitive with the resistive part varying over a wide range. The paper describes the design and development of conventional line type modulators for powering Electron gun load of the type described above. (author)« less

  13. Intermediate load modules for test and evaluation

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Photovoltaic modules were tested for qualification. Tests involved the following: (1) delivery of 20 solar cells for use as reference cells; (2) module documentation and inspection plans specifying the 10 Group I modules; (3) design review of module documentation from Group I modules; (4) revise module documentation to overcome any problems of deficiencies associated with the Group I modules; (5) delivery of 10 Group II modules built to revised specifications; (6) testing of Group II modules to the criteria as outlined in qualification specification. It is found that the solarvolt MSP43E40B satisfies the design criteria of qualification specification for intermediate load modules. Design changes were made in the Group I modules to overcome the deficiencies which allowed Group II modules to pass the qualification tests.

  14. Sost, independent of the non-coding enhancer ECR5, is required for bone mechanoadaptation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robling, Alexander G.; Kang, Kyung Shin; Bullock, Whitney A.

    Here, sclerostin ( Sost) is a negative regulator of bone formation that acts upon the Wnt signaling pathway. Sost is mechanically regulated at both mRNA and protein level such that loading represses and unloading enhances Sost expression, in osteocytes and in circulation. The non-coding evolutionarily conserved enhancer ECR5 has been previously reported as a transcriptional regulatory element required for modulating Sost expression in osteocytes. Here we explored the mechanisms by which ECR5, or several other putative transcriptional enhancers regulate Sost expression, in response to mechanical stimulation. We found that in vivo ulna loading is equally osteoanabolic in wildtype and Sostmore » –/– mice, although Sost is required for proper distribution of load-induced bone formation to regions of high strain. Using Luciferase reporters carrying the ECR5 non-coding enhancer and heterologous or homologous h SOST promoters, we found that ECR5 is mechanosensitive in vitro and that ECR5-driven Luciferase activity decreases in osteoblasts exposed to oscillatory fluid flow. Yet, ECR5–/– mice showed similar magnitude of load-induced bone formation and similar periosteal distribution of bone formation to high-strain regions compared to wildtype mice. Further, we found that in contrast to Sost–/– mice, which are resistant to disuse-induced bone loss, ECR5–/– mice lose bone upon unloading to a degree similar to wildtype control mice. ECR5 deletion did not abrogate positive effects of unloading on Sost, suggesting that additional transcriptional regulators and regulatory elements contribute to load-induced regulation of Sost.« less

  15. Sost, independent of the non-coding enhancer ECR5, is required for bone mechanoadaptation

    DOE PAGES

    Robling, Alexander G.; Kang, Kyung Shin; Bullock, Whitney A.; ...

    2016-09-04

    Here, sclerostin ( Sost) is a negative regulator of bone formation that acts upon the Wnt signaling pathway. Sost is mechanically regulated at both mRNA and protein level such that loading represses and unloading enhances Sost expression, in osteocytes and in circulation. The non-coding evolutionarily conserved enhancer ECR5 has been previously reported as a transcriptional regulatory element required for modulating Sost expression in osteocytes. Here we explored the mechanisms by which ECR5, or several other putative transcriptional enhancers regulate Sost expression, in response to mechanical stimulation. We found that in vivo ulna loading is equally osteoanabolic in wildtype and Sostmore » –/– mice, although Sost is required for proper distribution of load-induced bone formation to regions of high strain. Using Luciferase reporters carrying the ECR5 non-coding enhancer and heterologous or homologous h SOST promoters, we found that ECR5 is mechanosensitive in vitro and that ECR5-driven Luciferase activity decreases in osteoblasts exposed to oscillatory fluid flow. Yet, ECR5–/– mice showed similar magnitude of load-induced bone formation and similar periosteal distribution of bone formation to high-strain regions compared to wildtype mice. Further, we found that in contrast to Sost–/– mice, which are resistant to disuse-induced bone loss, ECR5–/– mice lose bone upon unloading to a degree similar to wildtype control mice. ECR5 deletion did not abrogate positive effects of unloading on Sost, suggesting that additional transcriptional regulators and regulatory elements contribute to load-induced regulation of Sost.« less

  16. Investigation of structural behavior of candidate Space Station structure

    NASA Technical Reports Server (NTRS)

    Hedgepeth, John M.; Miller, Richard K.

    1989-01-01

    Quantitative evaluations of the structural loads, stiffness and deflections of an example Space Station truss due to a variety of influences, including manufacturing tolerances, assembly operations, and operational loading are reported. The example truss is a dual-keel design composed of 5-meter-cube modules. The truss is 21 modules high and 9 modules wide, with a transverse beam 15 modules long. One problem of concern is the amount of mismatch which will be expected when the truss is being erected on orbit. Worst-case thermal loading results in less than 0.5 inch of mismatch. The stiffness of the interface is shown to be less than 100 pounds per inch. Thus, only moderate loads will be required to overcome the mismatch. The problem of manufacturing imperfections is analyzed by the Monte Carlo approach. Deformations and internal loads are obtained for ensembles of 100 example trusses. All analyses are performed on a personal computer. The necessary routines required to supplement commercially available programs are described.

  17. Memory load modulates graded changes in distracter filtering

    PubMed Central

    Shimi, Andria; Woolrich, Mark W.; Mantini, Dante; Astle, Duncan E.

    2015-01-01

    Our ability to maintain small amounts of information in mind is critical for successful performance on a wide range of tasks. However, it remains unclear exactly how this maintenance is achieved. One possibility is that it is brought about using mechanisms that overlap with those used for attentional control. That is, the same mechanisms that we use to regulate and optimize our sensory processing may be recruited when we maintain information in visual short-term memory (VSTM). We aimed to test this hypothesis by exploring how distracter filtering is modified by concurrent VSTM load. We presented participants with sequences of target items, the order and location of which had to be maintained in VSTM. We also presented distracter items alongside the targets, and these distracters were graded such that they could be either very similar or dissimilar to the targets. We analyzed scalp potentials using a novel multiple regression approach, which enabled us to explore the neural mechanisms by which the participants accommodated these variable distracters on a trial-to-trial basis. Critically, the effect of distracter filtering interacted with VSTM load; the same graded changes in perceptual similarity exerted effects of a different magnitude depending upon how many items participants were already maintaining in VSTM. These data provide compelling evidence that maintaining information in VSTM recruits an overlapping set of attentional control mechanisms that are otherwise used for distracter filtering. PMID:25610387

  18. Design, analysis, and test verification of advanced encapsulation systems

    NASA Technical Reports Server (NTRS)

    Garcia, A.; Minning, C.

    1981-01-01

    Thermal, optical, structural, and electrical isolation analyses are decribed. Major factors in the design of terrestrial photovoltaic modules are discussed. Mechanical defects in the different layers of an encapsulation system, it was found, would strongly influence the minimum pottant thickness required for electrical isolation. Structural, optical, and electrical properties, a literature survey indicated, are hevily influenced by the presence of moisture. These items, identified as technology voids, are discussed. Analyses were based upon a 1.2 meter square module using 10.2 cm (4-inch) square cells placed 1.3 mm apart as shown in Figure 2-2. Sizing of the structural support member of a module was determined for a uniform, normal pressure load of 50 psf, corresponding to the pressure difference generated between the front and back surface of a module by a 100 mph wind. Thermal and optical calculations were performed for a wind velocity of 1 meter/sec parallel to the ground and for module tilt (relative to the local horizontal) of 37 deg. Placement of a module in a typical array field is illustrated.

  19. Design, analysis, and test verification of advanced encapsulation systems

    NASA Astrophysics Data System (ADS)

    Garcia, A.; Minning, C.

    1981-11-01

    Thermal, optical, structural, and electrical isolation analyses are decribed. Major factors in the design of terrestrial photovoltaic modules are discussed. Mechanical defects in the different layers of an encapsulation system, it was found, would strongly influence the minimum pottant thickness required for electrical isolation. Structural, optical, and electrical properties, a literature survey indicated, are hevily influenced by the presence of moisture. These items, identified as technology voids, are discussed. Analyses were based upon a 1.2 meter square module using 10.2 cm (4-inch) square cells placed 1.3 mm apart as shown in Figure 2-2. Sizing of the structural support member of a module was determined for a uniform, normal pressure load of 50 psf, corresponding to the pressure difference generated between the front and back surface of a module by a 100 mph wind. Thermal and optical calculations were performed for a wind velocity of 1 meter/sec parallel to the ground and for module tilt (relative to the local horizontal) of 37 deg. Placement of a module in a typical array field is illustrated.

  20. The European Robotic Arm: A High-performance Mechanism Finally on Its Way to Space

    NASA Technical Reports Server (NTRS)

    Cruijssen, H. J.; Ellenbroek, M.; Henderson, M.; Petersen, H.; Verzijden, P.; Visser, M.

    2014-01-01

    This paper describes the design and qualification of the European Robotic Arm (ERA), which is planned to be launched by the end of 2015. After years of changes, a shift of launcher and new loads, launch preparation is underway. The European Robotic Arm ERA has been designed and manufactured by Dutch Space and its subcontractors such as Astrium, SABCA and Stork with key roles for the mechanical aspects. The arm was originally designed to be launched by the STS (mounted on a Russian module for the ISS) in 2001. However, due to delays and the STS disaster, a shift was made to the Russian Proton rocket. ERA will be launched on the Multipurpose Laboratory Module (MLM). This module, which is now planned for launch to the ISS in 2015, will carry the ERA. The symmetrical design of the arm with a complete 3 degree-of-freedom wrist and general-purpose end effector on both sides, allows ERA to relocate on the station by grappling a new base point and releasing the old one, and move to different working locations.

  1. Development Testing and Subsequent Failure Investigation of a Spring Strut Mechanism

    NASA Technical Reports Server (NTRS)

    Dervan, Jared; Robertson, Brandon; Staab, Lucas; Culberson, Michael

    2014-01-01

    Commodities are transferred between the Multi-Purpose Crew Vehicle (MPCV) crew module (CM) and service module (SM) via an external umbilical that is driven apart with spring-loaded struts after the structural connection is severed. The spring struts must operate correctly for the modules to separate safely. There was no vibration testing of strut development units scoped in the MPCV Program Plan; therefore, any design problems discovered as a result of vibration testing would not have been found until the component qualification. The NASA Engineering and Safety Center (NESC) and Lockheed Martin (LM) performed random vibration testing on a single spring strut development unit to assess its ability to withstand qualification level random vibration environments. Failure of the strut while exposed to random vibration resulted in a follow-on failure investigation, design changes, and additional development tests. This paper focuses on the results of the failure investigations including identified lessons learned and best practices to aid in future design iterations of the spring strut and to help other mechanism developers avoid similar pitfalls.

  2. Self-Instructional Module Based on Cognitive Load Theory: A Study on Information Retention among Trainee Teachers

    ERIC Educational Resources Information Center

    Ong, Chiek Pin; Tasir, Zaidatun

    2015-01-01

    The aim of the research is to study the information retention among trainee teachers using a self-instructional printed module based on Cognitive Load Theory for learning spreadsheet software. Effective pedagogical considerations integrating the theoretical concepts related to cognitive load are reflected in the design and development of the…

  3. Macromolecular crystal growing system

    NASA Technical Reports Server (NTRS)

    Snyder, Robert S. (Inventor); Herren, Blair J. (Inventor); Carter, Daniel C. (Inventor); Yost, Vaughn H. (Inventor); Bugg, Charles E. (Inventor); Delucas, Lawrence J. (Inventor); Suddath, Fred L. (Inventor)

    1991-01-01

    A macromolecular crystal growing system especially designed for growing crystals in the low gravity of space as well as the gravity of earth includes at least one tray assembly, a carrier assembly which receives the tray, and a refrigeration-incubation module in which the carrier assembly is received. The tray assembly includes a plurality of sealed chambers with a plastic syringe and a plug means for the double tip of the syringe provided therein. Ganging mechanisms operate the syringes and plugs simultaneously in a precise and smooth operation. Preferably, the tray assemblies are mounted on ball bearing slides for smooth operation in inserting and removing the tray assemblies into the carrier assembly. The plugging mechanism also includes a loading control mechanism. A mechanism for leaving a syringe unplugged is also provided.

  4. Suppression of no-longer relevant information in Working Memory: An alpha-power related mechanism?

    PubMed

    Poch, Claudia; Valdivia, María; Capilla, Almudena; Hinojosa, José Antonio; Campo, Pablo

    2018-03-27

    Selective attention can enhance Working Memory (WM) performance by selecting relevant information, while preventing distracting items from encoding or from further maintenance. Alpha oscillatory modulations are a correlate of visuospatial attention. Specifically, an enhancement of alpha power is observed in the ipsilateral posterior cortex to the locus of attention, along with a suppression in the contralateral hemisphere. An influential model proposes that the alpha enhancement is functionally related to the suppression of information. However, whether ipsilateral alpha power represents a mechanism through which no longer relevant WM representations are inhibited has yet not been explored. Here we examined whether the amount of distractors to be suppressed during WM maintenance is functionally related to alpha power lateralized activity. We measure EEG activity while participants (N = 36) performed a retro-cue task in which the WM load was varied across the relevant/irrelevant post-cue hemifield. We found that alpha activity was lateralized respect to the locus of attention, but did not track post-cue irrelevant load. Additionally, non-lateralized alpha activity increased with post-cue relevant load. We propose that alpha lateralization associated to retro-cuing might be related to a general orienting mechanism toward relevant representation. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Application of electrically invisible antennas to the modulated scatterer technique

    NASA Astrophysics Data System (ADS)

    Crocker, Dylan Andrew

    The Modulated Scatterer Technique (MST) has shown promise for applications in microwave imaging, electric field mapping, and materials characterization. Traditionally, MST scatterers consist of dipole antennas centrally loaded with a lumped element capable of modulation (commonly a PIN diode). By modulating the load element, the signal scattered from the MST scatterer is also modulated. However, due to the small size of such scatterers, it can be difficult to reliably detect the modulated signal. Increasing the modulation depth (a parameter related to how well the scatterer modulates the scattered signal) may improve the detectability of the scattered signal. In an effort to improve the modulation depth of scatterers commonly used in MST, the concept of electrically invisible antennas is applied to the design of these scatterers and is the focus of this work. Electrical invisibility of linear antennas, such as loaded dipoles, can be achieved by loading a scatterer in such a way that, when illuminated by an electromagnetic wave, the integral of the current induced along the length of the scatterer (and hence the scattered field as well) approaches zero. By designing a scatterer to be capable of modulation between visible (scattering) and invisible (minimum scattering) states, the modulation depth may be improved. This thesis presents simulations and measurements of new MST scatterers that have been designed to be electrically invisible during the reverse bias state of the modulated element (i.e., a PIN diode). Further, the scattering during the forward bias state remains the same as that of a traditional MST scatterer, resulting in an increase in modulation depth. This new MST scatterer design technique may also have application in improving the performance of similar sensors such as radio frequency identification (RFID) tags.

  6. Effect of particle momentum transfer on an oblique-shock-wave/laminar-boundary-layer interaction

    NASA Astrophysics Data System (ADS)

    Teh, E.-J.; Johansen, C. T.

    2016-11-01

    Numerical simulations of solid particles seeded into a supersonic flow containing an oblique shock wave reflection were performed. The momentum transfer mechanism between solid and gas phases in the shock-wave/boundary-layer interaction was studied by varying the particle size and mass loading. It was discovered that solid particles were capable of significant modulation of the flow field, including suppression of flow separation. The particle size controlled the rate of momentum transfer while the particle mass loading controlled the magnitude of momentum transfer. The seeding of micro- and nano-sized particles upstream of a supersonic/hypersonic air-breathing propulsion system is proposed as a flow control concept.

  7. Real power regulation for the utility power grid via responsive loads

    DOEpatents

    McIntyre, Timothy J [Knoxville, TN; Kirby, Brendan J [Knoxville, TN; Kisner, Roger A

    2009-05-19

    A system for dynamically managing an electrical power system that determines measures of performance and control criteria for the electric power system, collects at least one automatic generation control (AGC) input parameter to at least one AGC module and at least one automatic load control (ALC) input parameter to at least one ALC module, calculates AGC control signals and loads as resources (LAR) control signals in response to said measures of performance and control criteria, propagates AGC control signals to power generating units in response to control logic in AGC modules, and propagates LAR control signals to at least one LAR in response to control logic in ALC modules.

  8. High-frequency electrical stimulation reveals a p38-mTOR signaling module correlated with force-time integral.

    PubMed

    Rahnert, Jill A; Burkholder, Thomas J

    2013-07-15

    High-frequency electrical stimulation (HFES) leads to muscle hypertrophy, and attention has been drawn to the high forces involved. However, both mechanical and metabolic stresses occur simultaneously, and both stimuli influence signaling cascades related to protein synthesis. This study aimed to identify the immediate signaling correlates of contraction-induced force and metabolic stresses under the hypothesis that HFES induces growth-related signaling through mechanical stimulation. Force-time integral (FTI) signaling in mouse tibialis anterior muscle was examined by separately manipulating the time of contraction to emphasize the metabolic aspect or the force of contraction to emphasize the mechanical aspect. When FTI was manipulated by changing the total time of activation, phosphorylation of p54 JNK, ERK and p70S6k(T421/S424) was independent of FTI, while phosphorylation of acetyl-CoA carboxylase and p38 correlated with FTI. When FTI was manipulated by changing the force of contraction, p54 JNK, ERK and p70S6k(T421/S424) were again independent of FTI, while phosphorylation of p38 and FAK correlated with FTI. Factor analysis identified a p38-mTOR signaling module that correlated with FTI in both experiments. The consistent link among p38, mTOR and FTI suggests that they form a connected signaling module sensitive to the mechanical aspects of FTI, separate from markers of metabolic load.

  9. Performance testing and module monitoring at the EC Necessary steps to develop cost-effective PV modules

    NASA Astrophysics Data System (ADS)

    Krebs, K.

    Testing programs carried out by the European Communities to establish testing techniques and standards for verifying the reliability and integrity of solar cells intended for the marketplace are described. The efforts are being expended to assure quality control and certification for photovoltaic (PV) products manufactured in any of the member nations. The failure rate for PV modules was lowered to 0.5 pct/year by 1981, and single cell failures are projected to be lowered to 0.00001/yr, connectors to 0.001/yr, and batteries to 0.01/yr. Day/night thermal cycling causes the most dominant type of failures, i.e., cracked cells and interconnect defects. Tests have been standardized for inspection, verification, performance, mechanical loading, hail impact, damp heat, high temperature long exposure, hot-spot heating, thermal cycling, and humidity-freezing tolerance.

  10. Instrument for controlling the application of mechanical loads to biological and bicompatible test subjects

    DOEpatents

    Lintilhac, Phillip M.; Vesecky, Thompson B.

    1995-01-01

    Apparatus and methods are disclosed facilitating the application of forces and measurement of dimensions of a test subject. In one arrangement the test subject is coupled to a forcing frame and controlled forces applied thereto. Force applied to the test subject is measured and controlled. A dimensional characteristic of the test subject, such as growth, is measured by a linear variable differential transformer. The growth measurement data can be used to control the force applied. The transducer module receives force and dimensional data from the forcing frame. The transducer module is a separate, microprocessor-based unit that communicates the test data to a controller unit that controls the application of force to the test subject and receives the test data from the transducer module for force control, storage, and/or communication to the user.

  11. Instrument for controlling the application of mechanical loads to biological and bicompatible test subjects

    DOEpatents

    Lintilhac, P.M.; Vesecky, T.B.

    1995-09-19

    An apparatus and methods are disclosed facilitating the application of forces and measurement of dimensions of a test subject. In one arrangement the test subject is coupled to a forcing frame and controlled forces applied thereto. Force applied to the test subject is measured and controlled. A dimensional characteristic of the test subject, such as growth, is measured by a linear variable differential transformer. The growth measurement data can be used to control the force applied. The transducer module receives force and dimensional data from the forcing frame. The transducer module is a separate, microprocessor-based unit that communicates the test data to a controller unit that controls the application of force to the test subject and receives the test data from the transducer module for force control, storage, and/or communication to the user. 8 figs.

  12. Linear transformer driver for pulse generation

    DOEpatents

    Kim, Alexander A; Mazarakis, Michael G; Sinebryukhov, Vadim A; Volkov, Sergey N; Kondratiev, Sergey S; Alexeenko, Vitaly M; Bayol, Frederic; Demol, Gauthier; Stygar, William A

    2015-04-07

    A linear transformer driver includes at least one ferrite ring positioned to accept a load. The linear transformer driver also includes a first power delivery module that includes a first charge storage devices and a first switch. The first power delivery module sends a first energy in the form of a first pulse to the load. The linear transformer driver also includes a second power delivery module including a second charge storage device and a second switch. The second power delivery module sends a second energy in the form of a second pulse to the load. The second pulse has a frequency that is approximately three times the frequency of the first pulse. The at least one ferrite ring is positioned to force the first pulse and the second pulse to the load by temporarily isolating the first pulse and the second pulse from an electrical ground.

  13. Tumor-derived exosomes modulate T cell function through transfer of RNA.

    PubMed

    House, Imran G; Petley, Emma V; Beavis, Paul A

    2018-03-01

    Tumor cells can develop a variety of mechanisms to evade and subvert the immune system for their survival. Bland et al., in this edition of The FEBS Journal, make the novel finding that the tumor line B16F0 can deliver mRNA/miRNA loaded exosomes to cytotoxic T lymphocytes and alter their metabolic function and interferon gamma production. © 2018 Federation of European Biochemical Societies.

  14. Microfluidic Enhancement of Intramedullary Pressure Increases Interstitial Fluid Flow and Inhibits Bone Loss in Hindlimb Suspended Mice

    PubMed Central

    Kwon, Ronald Y; Meays, Diana R; Tang, W Joyce; Frangos, John A

    2010-01-01

    Interstitial fluid flow (IFF) has been widely hypothesized to mediate skeletal adaptation to mechanical loading. Although a large body of in vitro evidence has demonstrated that fluid flow stimulates osteogenic and antiresorptive responses in bone cells, there is much less in vivo evidence that IFF mediates loading-induced skeletal adaptation. This is due in large part to the challenges associated with decoupling IFF from matrix strain. In this study we describe a novel microfluidic system for generating dynamic intramedullary pressure (ImP) and IFF within the femurs of alert mice. By quantifying fluorescence recovery after photobleaching (FRAP) within individual lacunae, we show that microfluidic generation of dynamic ImP significantly increases IFF within the lacunocanalicular system. In addition, we demonstrate that dynamic pressure loading of the intramedullary compartment for 3 minutes per day significantly eliminates losses in trabecular and cortical bone mineral density in hindlimb suspended mice, enhances trabecular and cortical structural integrity, and increases endosteal bone formation rate. Unlike previously developed modalities for enhancing IFF in vivo, this is the first model that allows direct and dynamic modulation of ImP and skeletal IFF within mice. Given the large number of genetic tools for manipulating the mouse genome, this model is expected to serve as a powerful investigative tool in elucidating the role of IFF in skeletal adaptation to mechanical loading and molecular mechanisms mediating this process. © 2010 American Society for Bone and Mineral Research. PMID:20200992

  15. Thermal-structural design study of an airframe-integrated Scramjet

    NASA Technical Reports Server (NTRS)

    Killackey, J. J.; Katinsky, E. A.; Tepper, S.; Vuigner, A. A.

    1978-01-01

    Design concepts are developed and evaluated for a cooled structures assembly for the Scramjet engine, for engine subsystems mass, volume, and operating requirements, and for the aircraft/engine interface. A thermal protection system was defined that makes it possible to attain a life of 100 hours and 1000 cycles. The coolant equivalence ratio at the Mach 10 maximum thermal loading condition is 0.6, indicating a capacity for airframe cooling. The mechanical design is feasible for manufacture using conventional materials. For the cooled structures in a six-module engine, the mass per unit capture area is 12.4 KN/sq m. The total weight of a six-module engine assembly including the fuel system is 14.73 KN.

  16. Automation in the Space Station module power management and distribution Breadboard

    NASA Technical Reports Server (NTRS)

    Walls, Bryan; Lollar, Louis F.

    1990-01-01

    The Space Station Module Power Management and Distribution (SSM/PMAD) Breadboard, located at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, models the power distribution within a Space Station Freedom Habitation or Laboratory module. Originally designed for 20 kHz ac power, the system is now being converted to high voltage dc power with power levels on a par with those expected for a space station module. In addition to the power distribution hardware, the system includes computer control through a hierarchy of processes. The lowest level process consists of fast, simple (from a computing standpoint) switchgear, capable of quickly safing the system. The next level consists of local load center processors called Lowest Level Processors (LLP's). These LLP's execute load scheduling, perform redundant switching, and shed loads which use more than scheduled power. The level above the LLP's contains a Communication and Algorithmic Controller (CAC) which coordinates communications with the highest level. Finally, at this highest level, three cooperating Artificial Intelligence (AI) systems manage load prioritization, load scheduling, load shedding, and fault recovery and management. The system provides an excellent venue for developing and examining advanced automation techniques. The current system and the plans for its future are examined.

  17. A Multiscale Material Testing System for In Situ Optical and Electron Microscopes and Its Application

    PubMed Central

    Ye, Xuan; Cui, Zhiguo; Fang, Huajun; Li, Xide

    2017-01-01

    We report a novel material testing system (MTS) that uses hierarchical designs for in-situ mechanical characterization of multiscale materials. This MTS is adaptable for use in optical microscopes (OMs) and scanning electron microscopes (SEMs). The system consists of a microscale material testing module (m-MTM) and a nanoscale material testing module (n-MTM). The MTS can measure mechanical properties of materials with characteristic lengths ranging from millimeters to tens of nanometers, while load capacity can vary from several hundred micronewtons to several nanonewtons. The m-MTM is integrated using piezoelectric motors and piezoelectric stacks/tubes to form coarse and fine testing modules, with specimen length from millimeters to several micrometers, and displacement distances of 12 mm with 0.2 µm resolution for coarse level and 8 µm with 1 nm resolution for fine level. The n-MTM is fabricated using microelectromechanical system technology to form active and passive components and realizes material testing for specimen lengths ranging from several hundred micrometers to tens of nanometers. The system’s capabilities are demonstrated by in-situ OM and SEM testing of the system’s performance and mechanical properties measurements of carbon fibers and metallic microwires. In-situ multiscale deformation tests of Bacillus subtilis filaments are also presented. PMID:28777341

  18. Evaluating the Performance of a Battery Using Temperature and Voltage Profiles and a Battery-Resistor Circuit Module

    ERIC Educational Resources Information Center

    Sawyer, Bryan; Ji, Michelle; Gordon, Michael J.; Suppes, Galen J.

    2010-01-01

    An experimental learning module has been developed to study the mass and energy balance involved with operation of an AA Alkaline battery under a load current. An extension of the module allows evaluation of laboratory-assembled batteries using granular anodic/cathodic materials. The system allows load resistance to be varied and measures voltage…

  19. Mechanisms of load dependency of myocardial ischemia reperfusion injury

    PubMed Central

    Mozaffari, Mahmood S; Liu, Jun Yao; Abebe, Worku; Baban, Babak

    2013-01-01

    Coronary artery disease and associated ischemic heart disease are prevalent disorders worldwide. Further, systemic hypertension is common and markedly increases the risk for heart disease. A common denominator of systemic hypertension of various etiologies is increased myocardial load/mechanical stress. Thus, it is likely that high pressure/mechanical stress attenuates the contribution of cardioprotective but accentuates the contribution of cardiotoxic pathways thereby exacerbating the outcome of an ischemia reperfusion insult to the heart. Critical events which contribute to cardiomyocyte injury in the ischemic-reperfused heart include cellular calcium overload and generation of reactive oxygen/nitrogen species which, in turn, promote the opening of the mitochondrial permeability transition pore, an important event in cell death. Increasing evidence also indicates that the myocardium is capable of mounting a robust inflammatory response which contributes importantly to tissue injury. On the other hand, cardioprotective maneuvers of ischemic preconditioning and postconditioning have led to identification of complex web of signaling pathways (e.g., reperfusion injury salvage kinase) which ultimately converge on the mitochondria to exert cytoprotection. The present review is intended to briefly describe mechanisms of cardiac ischemia reperfusion injury followed by a discussion of our work focused on how pressure/mechanical stress modulates endogenous cardiotoxic and cardioprotective mechanisms to ultimately exacerbate ischemia reperfusion injury. PMID:24224132

  20. Design and Testing of CPAS Main Deployment Bag Energy Modulator

    NASA Technical Reports Server (NTRS)

    Mollmann, Catherine

    2017-01-01

    During the developmental testing program for CPAS (Capsule Parachute Assembly System), the parachute system for the NASA Orion Crew Module, simulation revealed that high loads may be experienced by the pilot risers during the most devere deployment conditions. As the role of the pilot parachutes is to deploy the main parachutes, these high loads introduced the possibility of main deployment failure. In order to mitigate these high loads, a set of energy modulators was incorporated between the pilot riser and the main deployment bag. An extensive developmental program was implemented to ensure the adequacy of these energy modulators. After initial design comparisons, the energy modulator design was validated through slow-speed joint tests as well as through high-speed bungee tests. This paper documents the design, development, and results of multiple tests completed on the final design.

  1. Attentional capture under high perceptual load.

    PubMed

    Cosman, Joshua D; Vecera, Shaun P

    2010-12-01

    Attentional capture by abrupt onsets can be modulated by several factors, including the complexity, or perceptual load, of a scene. We have recently demonstrated that observers are less likely to be captured by abruptly appearing, task-irrelevant stimuli when they perform a search that is high, as opposed to low, in perceptual load (Cosman & Vecera, 2009), consistent with perceptual load theory. However, recent results indicate that onset frequency can influence stimulus-driven capture, with infrequent onsets capturing attention more often than did frequent onsets. Importantly, in our previous task, an abrupt onset was present on every trial, and consequently, attentional capture might have been affected by both onset frequency and perceptual load. In the present experiment, we examined whether onset frequency influences attentional capture under conditions of high perceptual load. When onsets were presented frequently, we replicated our earlier results; attentional capture by onsets was modulated under conditions of high perceptual load. Importantly, however, when onsets were presented infrequently, we observed robust capture effects. These results conflict with a strong form of load theory and, instead, suggest that exposure to the elements of a task (e.g., abrupt onsets) combines with high perceptual load to modulate attentional capture by task-irrelevant information.

  2. The Role of Adaptation in Body Load-Regulating Mechanisms During Locomotion

    NASA Technical Reports Server (NTRS)

    Ruttley, Tara; Holt, Christopher; Mulavara, Ajitkumar; Bloomberg, Jacob

    2010-01-01

    Body loading is a fundamental parameter that modulates motor output during locomotion, and is especially important for controlling the generation of stepping patterns, dynamic balance, and termination of locomotion. Load receptors that regulate and control posture and stance in locomotion include the Golgi tendon organs and muscle spindles at the hip, knee, and ankle joints, and the Ruffini endings and the Pacinian corpuscles in the soles of the feet. Increased body weight support (BWS) during locomotion results in an immediate reorganization of locomotor control, such as a reduction in stance and double support duration and decreased hip, ankle, and knee angles during the gait cycle. Previous studies on the effect during exposure to increased BWS while walking showed a reduction in lower limb joint angles and gait cycle timing that represents a reorganization of locomotor control. Until now, no studies have investigated how locomotor control responds after a period of exposure to adaptive modification in the body load sensing system. The goal of this research was to determine the adaptive properties of body load-regulating mechanisms in locomotor control during locomotion. We hypothesized that body load-regulating mechanisms contribute to locomotor control, and adaptive changes in these load-regulating mechanisms require reorganization to maintain forward locomotion. Head-torso coordination, lower limb movement patterns, and gait cycle timing were evaluated before and after a 30-minute adaptation session during which subjects walked on a treadmill at 5.4 km/hr with 40% body weight support (BWS). Before and after the adaptation period, head-torso and lower limb 3D kinematic data were obtained while performing a goal directed task during locomotion with 0% BWS using a video-based motion analysis system, and gait cycle timing parameters were collected by foot switches positioned under the heel and toe of the subjects shoes. Subjects showed adaptive modification in the body load-regulating mechanisms that included increased head movement amplitude, increased knee and ankle flexion, and increased stance, stride, and double support time, with no change in the performance of the task with respect to that measured before exposure to BWS. These changes in locomotor control are opposite to that reported during 40% BWS exposure and indicative of an after-effect after removal of the adaptive stimulus. Therefore, it is evident that just 30 minutes of 40% BWS during locomotion was sufficient to induce adaptive modifications in the body load sensing systems that contribute to reorganization of sensory contributions to stable locomotor control.

  3. Module failure isolation circuit for paralleled inverters. [preventing system failure during power conditioning for spacecraft applications

    NASA Technical Reports Server (NTRS)

    Nagano, S. (Inventor)

    1979-01-01

    A module failure isolation circuit is described which senses and averages the collector current of each paralled inverter power transistor and compares the collector current of each power transistor the average collector current of all power transistors to determine when the sensed collector current of a power transistor in any one inverter falls below a predetermined ratio of the average collector current. The module associated with any transistor that fails to maintain a current level above the predetermined radio of the average collector current is then shut off. A separate circuit detects when there is no load, or a light load, to inhibit operation of the isolation circuit during no load or light load conditions.

  4. The relationships between deformation mechanisms and mechanical properties of additively manufactured porous biomaterials.

    PubMed

    Kadkhodapour, J; Montazerian, H; Darabi, A Ch; Zargarian, A; Schmauder, S

    2017-06-01

    Modulating deformation mechanism through manipulating morphological parameters of scaffold internal pore architecture provides potential to tailor the overall mechanical properties under physiological loadings. Whereas cells sense local strains, cell differentiation is also impressed by the elastic deformations. In this paper, structure-property relations were developed for Ti6-Al-4V scaffolds designed based on triply periodic minimal surfaces. 10mm cubic scaffolds composed of 5×5×5 unit cells formed of F-RD (bending dominated) and I-WP (stretching dominated) architectures were additively manufactured at different volume fractions and subjected to compressive tests. The first stages of deformation for stretching dominated structure, was accompanied by bilateral layer-by-layer failure of unit cells owing to the buckling of micro-struts, while for bending dominated structure, namely F-RD, global shearing bands appeared since the shearing failure of struts in the internal architecture. Promoted mechanical properties were found for stretching dominated structure since the global orientation of struts were parallel to loading direction while inclination of struts diminished specific properties for bending dominated structure. Moreover, elastic-plastic deformation was computationally studied by applying Johnson-Cook damage model to the voxel-based models in FE analysis. Scaling analysis was performed for mechanical properties with respect to the relative density thereby failure mechanism was correlated to the constants of power law describing mechanical properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Intelligent Load Manager (LOADMAN): Application of Expert System Technology to Load Management Problems in Power Generation and Distribution Systems

    DTIC Science & Technology

    1988-08-10

    addrsesed to it, the wall-receptacle module energizes a relay. Modules can be built to use a triac instead and have the capacity to increase or decrease... modulated by other constraints for a safe, functional ana effective power distribution system. 2.2.3 BackuR Equipment Alternate power sources are...environments have limited sensor capability and no remote control capability. However, future enhancements to current equipment, such as frequency- modulated

  6. Minocycline modulates NFκB phosphorylation and enhances antimicrobial activity against Staphylococcus aureus in mesenchymal stromal/stem cells.

    PubMed

    Guerra, Alberto Daniel; Rose, Warren E; Hematti, Peiman; Kao, W John

    2017-07-21

    Mesenchymal stromal/stem cells (MSCs) have demonstrated pro-healing properties due to their anti-inflammatory, angiogenic, and even antibacterial properties. We have shown previously that minocycline enhances the wound healing phenotype of MSCs, and MSCs encapsulated in poly(ethylene glycol) and gelatin-based hydrogels with minocycline have antibacterial properties against Staphylococcus aureus (SA). Here, we investigated the signaling pathway that minocycline modulates in MSCs which results in their enhanced wound healing phenotype and determined whether preconditioning MSCs with minocycline has an effect on antimicrobial activity. We further investigated the in-vivo antimicrobial efficacy of MSC and antibiotic-loaded hydrogels in inoculated full-thickness cutaneous wounds. Modulation of cell signaling pathways in MSCs with minocycline was analyzed via western blot, immunofluorescence, and ELISA. Antimicrobial efficacy of MSCs pretreated with minocycline was determined by direct and transwell coculture with SA. MSC viability after SA coculture was determined via a LIVE/DEAD® stain. Internalization of SA by MSCs pretreated with minocycline was determined via confocal imaging. All protein and cytokine analysis was done via ELISA. The in-vivo antimicrobial efficacy of MSC and antibiotic-loaded hydrogels was determined in Sprague-Dawley rats inoculated with SA. Two-way ANOVA for multiple comparisons was used with Bonferroni test assessment and an unpaired two-tailed Student's t test was used to determine p values for all assays with multiple or two conditions, respectively. Minocycline leads to the phosphorylation of transcriptional nuclear factor-κB (NFκB), but not c-Jun NH 2 -terminal kinase (JNK) or mitogen-activated protein kinase (ERK). Inhibition of NFκB activation prevented the minocycline-induced increase in VEGF secretion. Preconditioning of MSCs with minocycline led to a reduced production of the antimicrobial peptide LL-37, but enhanced antimicrobial activity against SA via an increased production of IL-6 and SA internalization. MSC and antibiotic-loaded hydrogels reduced SA bioburden in inoculated wounds over 3 days and accelerated reepithelialization. Minocycline modulates the NFκB pathway in MSCs that leads to an enhanced production of IL-6 and internalization of SA. This mechanism may have contributed to the in-vivo antibacterial efficacy of MSC and antibiotic-loaded hydrogels.

  7. Live dynamic analysis of mouse embryonic cardiogenesis with functional optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lopez, Andrew L.; Wang, Shang; Larina, Irina V.

    2018-02-01

    Hemodynamic load, contractile forces, and tissue elasticity are regulators of cardiac development and contribute to the mechanical homeostasis of the developing vertebrate heart. Congenital heart disease (CHD) is a prevalent condition in the United States that affects 8 in 1000 live births[1], and has been linked to disrupted cardiac biomechanics[2-4]. Therefore, it is important to understand how these forces integrate and regulate vertebrate cardiac development to inform clinical strategies to treat CHD early on by reintroducing proper mechanical load or modulating downstream factors that rely on mechanical signalling. Toward investigation of biomechanical regulation of mammalian cardiovascular dynamics and development, our methodology combines live mouse embryo culture protocols, state-of-the-art structural and functional Optical Coherence Tomography (OCT), second harmonic generation (SHG) microscopy, and computational analysis. Using these approaches, we assess functional aspects of the developing heart and characterize how they coincide with a determinant of tissue stiffness and main constituent of the extracellular matrix (ECM)—type I collagen. This work is bringing us closer to understanding how cardiac biomechanics change temporally and spatially during normal development, and how it regulates ECM to maintain mechanical homeostasis for proper function.

  8. Gear wear monitoring by modulation signal bispectrum based on motor current signal analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Ruiliang; Gu, Fengshou; Mansaf, Haram; Wang, Tie; Ball, Andrew D.

    2017-09-01

    Gears are important mechanical components for power transmissions. Tooth wear is one of the most common failure modes, which can present throughout a gear's lifetime. It is significant to accurately monitor gear wear progression in order to take timely predictive maintenances. Motor current signature analysis (MCSA) is an effective and non-intrusive approach which is able to monitor faults from both electrical and mechanical systems. However, little research has been reported in monitoring the gear wear and estimating its severity based on MCSA. This paper presents a novel gear wear monitoring method through a modulation signal bispectrum based motor current signal analysis (MSB-MCSA). For a steady gear transmission, it is inevitable to exist load and speed oscillations due to various errors including wears. These oscillations can induce small modulations in the current signals of the driving motor. MSB is particularly effective in characterising such small modulation signals. Based on these understandings, the monitoring process was implemented based on the current signals from a run-to-failure test of an industrial two stages helical gearbox under a moderate accelerated fatigue process. At the initial operation of the test, MSB analysis results showed that the peak values at the bifrequencies of gear rotations and the power supply can be effective monitoring features for identifying faulty gears and wear severity as they exhibit agreeable changes with gear loads. A monotonically increasing trend established by these features allows a clear indication of the gear wear progression. The dismantle inspection at 477 h of operation, made when one of the monitored features is about 123% higher than its baseline, has found that there are severe scuffing wear marks on a number of tooth surfaces on the driving gear, showing that the gear endures a gradual wear process during its long test operation. Therefore, it is affirmed that the MSB-MSCA approach proposed is reliable and accurate for monitoring gear wear deterioration.

  9. Imbalances in the Development of Muscle and Tendon as Risk Factor for Tendinopathies in Youth Athletes: A Review of Current Evidence and Concepts of Prevention

    PubMed Central

    Mersmann, Falk; Bohm, Sebastian; Arampatzis, Adamantios

    2017-01-01

    Tendons feature the crucial role to transmit the forces exerted by the muscles to the skeleton. Thus, an increase of the force generating capacity of a muscle needs to go in line with a corresponding modulation of the mechanical properties of the associated tendon to avoid potential harm to the integrity of the tendinous tissue. However, as summarized in the present narrative review, muscle and tendon differ with regard to both the time course of adaptation to mechanical loading as well as the responsiveness to certain types of mechanical stimulation. Plyometric loading, for example, seems to be a more potent stimulus for muscle compared to tendon adaptation. In growing athletes, the increased levels of circulating sex hormones might additionally augment an imbalanced development of muscle strength and tendon mechanical properties, which could potentially relate to the increasing incidence of tendon overload injuries that has been indicated for adolescence. In fact, increased tendon stress and strain due to a non-uniform musculotendinous development has been observed recently in adolescent volleyball athletes, a high-risk group for tendinopathy. These findings highlight the importance to deepen the current understanding of the interaction of loading and maturation and demonstrate the need for the development of preventive strategies. Therefore, this review concludes with an evidence-based concept for a specific loading program for increasing tendon stiffness, which could be implemented in the training regimen of young athletes at risk for tendinopathy. This program incorporates five sets of four contractions with an intensity of 85–90% of the isometric voluntary maximum and a movement/contraction duration that provides 3 s of high magnitude tendon strain. PMID:29249987

  10. Staging of the Acoustic Response at Laboratory Modelling of Tidal Influence upon Seismicity

    NASA Astrophysics Data System (ADS)

    Saltykov, Vadim; Patonin, Andrey; Kugaenko, Yulia

    2010-05-01

    INTRODUCTION The seismic radiation is varied through the wide range of seismic energy from seismic emission (high-frequency seismic noise, HFSN) to earthquakes. Some features of external influence response on the different scales allow to consider the medium as a single whole seismoactive object. Earth tide is a bright example of external excited field. Tidal topic has long history in seismology. Results obtained by different scientists are contradictory and ambiguous often. We denoted instability of tidal effect manifestation as possible reason of this situation. In view of the aforesaid it is significant, that tidal effects in weak seismicity and HFSN prove more strongly in the stage of large earthquake preparation [Rykunov et al., 1998, Saltykov et al., 2004, 2007]. It is presumed that the metastable medium has more high tidal sensitivity. For example, sources of prepared earthquakes and extensive near-surface zones of micro-fissuring and dilatancy, which appear during source formation and stretch far enough. [Alekseev et all., 2001, Goldin, 2004, 2005]. Common features of observed effects allow to suggest existence of tidal modulation mechanism, which is similar (may be single) for different seismic scales. Modelling of these processes can improve our understanding of tidal effect nature. LABORATORY EXPERIMENT Results of rock sample destruction experiments under controlling are presented. Acoustic emission (AE) pulses act as analogue of seismic events. Tides are simulated by weak long-period variations added to quasi-stationary subcritical loading. The results of tidal modeling confirmed AE intensity synchronization with external periodic influence with large (5-10%) variations of loading are known [Lockner, Beeler, 1999, Ponomarev et al., 2007]. But real (in nature) tidal strain&stress variations are much less and equal to splits of percent. Therefore, investigation of weak modulation influence upon deformed rock is one of main proposed purposes. Used software-programmable electro-hydraulic system INOVA [Patonin, 2006], can provide various procedures of experiment, among them programmable modulatory action. Axial deformation with stable strain rate and additional action of meander with specified period and amplitude was chosen as mode of operation. The relation between background and periodic strains reaches three orders, which corresponds to real relation between maximal tectonic and tidal strains. RESULTS For detection of periodic loading modulation of AE we used procedure based on Rayleigh criteria of uniformity and considered uniformity of AE impulses distribution on time interval, multiple to period of loading. Moreover, the predominant phase of periodical loading, corresponding to maximal AE activity, was calculated in sliding time window. In all experiments we observed instability of modulation effects. So the following stages were distinguished: - synchronization of AE and periodic loading at the initial part of test; - absence of synchronization at the elastic stage; - resumption of synchronization during plastic deformation. Stability of phase corresponding to maximal AE activity was discovered within the initial part and plastic deformation stage. Absolute values of phase for initial loading and during plastic deformation are different. CONCLUSION Now we regard revealed staging of AE response to weak periodical loading as our main result of these experiments. Different stages of AE response are connected with different state of rock samples during loading and destruction. Observed effects of synchronization can be considered as analogue of tidal modulation of HFSN and appearance of "tidal" seismicity in source zone of prepared large earthquake. This investigation was supported by RFBR, grant 08-05-00692.

  11. Apparatus and method for compensating for clock drift in downhole drilling components

    DOEpatents

    Hall, David R [Provo, UT; Pixton, David S [Lehi, UT; Johnson, Monte L [Orem, UT; Bartholomew, David B [Springville, UT; Hall, Jr., H. Tracy

    2007-08-07

    A precise downhole clock that compensates for drift includes a prescaler configured to receive electrical pulses from an oscillator. The prescaler is configured to output a series of clock pulses. The prescaler outputs each clock pulse after counting a preloaded number of electrical pulses from the oscillator. The prescaler is operably connected to a compensator module for adjusting the number loaded into the prescaler. By adjusting the number that is loaded into the prescaler, the timing may be advanced or retarded to more accurately synchronize the clock pulses with a reference time source. The compensator module is controlled by a counter-based trigger module configured to trigger the compensator module to load a value into the prescaler. Finally, a time-base logic module is configured to calculate the drift of the downhole clock by comparing the time of the downhole clock with a reference time source.

  12. The heart as a self-regulating system: integration of homeodynamic mechanisms.

    PubMed

    Kresh, J Y; Armour, J A

    1997-04-01

    In the past the study of mechanical and electrical properties of the heart has been disjointed with minimal overlap and unification. The fact remains that these features are tightly coupled and central to the functioning heart. The maintenance of adequate cardiac output relies upon the highly integrated autoregulatory mechanisms and modulation of cardiac myocyte function. Regional ventricular mechanics and energetics are dependent upon muscle fiber stress-strain rate, the passive properties of myocardial collagen matrix, adequate vascular perfusion, transcapillary transport and electrical activation pattern. Intramural hydraulic "loading" is regulated by coronary arterial and venous dynamics. All of these components are under the constant influence of intrinsic cardiac and extracardiac autonomic neurons, as well as circulating hormones. A brief overview of the putative regulation of these various components is presented in this paper.

  13. Multiphysics Engineering Analysis for an Integrated Design of ITER Diagnostic First Wall and Diagnostic Shield Module Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Y.; Loesser, G.; Smith, M.

    ITER diagnostic first walls (DFWs) and diagnostic shield modules (DSMs) inside the port plugs (PPs) are designed to protect diagnostic instrument and components from a harsh plasma environment and provide structural support while allowing for diagnostic access to the plasma. The design of DFWs and DSMs are driven by 1) plasma radiation and nuclear heating during normal operation 2) electromagnetic loads during plasma events and associate component structural responses. A multi-physics engineering analysis protocol for the design has been established at Princeton Plasma Physics Laboratory and it was used for the design of ITER DFWs and DSMs. The analyses weremore » performed to address challenging design issues based on resultant stresses and deflections of the DFW-DSM-PP assembly for the main load cases. ITER Structural Design Criteria for In-Vessel Components (SDC-IC) required for design by analysis and three major issues driving the mechanical design of ITER DFWs are discussed. The general guidelines for the DSM design have been established as a result of design parametric studies.« less

  14. Modulation of gut-specific mechanisms by chronic δ(9)-tetrahydrocannabinol administration in male rhesus macaques infected with simian immunodeficiency virus: a systems biology analysis.

    PubMed

    Molina, Patricia E; Amedee, Angela M; LeCapitaine, Nicole J; Zabaleta, Jovanny; Mohan, Mahesh; Winsauer, Peter J; Vande Stouwe, Curtis; McGoey, Robin R; Auten, Matthew W; LaMotte, Lynn; Chandra, Lawrance C; Birke, Leslie L

    2014-06-01

    Our studies have demonstrated that chronic Δ(9)-tetrahydrocannabinol (THC) administration results in a generalized attenuation of viral load and tissue inflammation in simian immunodeficiency virus (SIV)-infected male rhesus macaques. Gut-associated lymphoid tissue is an important site for HIV replication and inflammation that can impact disease progression. We used a systems approach to examine the duodenal immune environment in 4- to 6-year-old male rhesus monkeys inoculated intravenously with SIVMAC251 after 17 months of chronic THC administration (0.18-0.32 mg/kg, intramuscularly, twice daily). Duodenal tissue samples excised from chronic THC- (N=4) and vehicle (VEH)-treated (N=4) subjects at ∼5 months postinoculation showed lower viral load, increased duodenal integrin beta 7(+)(β7) CD4(+) and CD8(+) central memory T cells, and a significant preferential increase in Th2 cytokine expression. Gene array analysis identified six genes that were differentially expressed in intestinal samples of the THC/SIV animals when compared to those differentially expressed between VEH/SIV and uninfected controls. These genes were identified as having significant participation in (1) apoptosis, (2) cell survival, proliferation, and morphogenesis, and (3) energy and substrate metabolic processes. Additional analysis comparing the duodenal gene expression in THC/SIV vs. VEH/SIV animals identified 93 differentially expressed genes that participate in processes involved in muscle contraction, protein folding, cytoskeleton remodeling, cell adhesion, and cell signaling. Immunohistochemical staining showed attenuated apoptosis in epithelial crypt cells of THC/SIV subjects. Our results indicate that chronic THC administration modulated duodenal T cell populations, favored a pro-Th2 cytokine balance, and decreased intestinal apoptosis. These findings reveal novel mechanisms that may potentially contribute to cannabinoid-mediated disease modulation.

  15. Mission-Based Analyses of Armor Training Requirements. Volume 7. Training Objectives for the XM1 Loader

    DTIC Science & Technology

    1982-04-01

    the gas particulate filter system MODULE L: OPERATE THE M250 BRENADE LAUNCHER 1L. Load the grenade launcher 2L. Unload the grenade launcher MODULE M...k Initia~ng Stimulus: Thei (11rdLr from the T.C. to load the M250 .p grenade launcher. J ACTION Loader will: 1L. Load the grenade launcher. 2L. Unload

  16. Driver and front seat passenger fatalities associated with air bag deployment. Part 2: A review of injury patterns and investigative issues.

    PubMed

    Shkrum, Michael J; McClafferty, Kevin J; Nowak, Edwin S; German, Alan

    2002-09-01

    Assessment of the role of air bag deployment in injury causation in a crash of any severity requires analysis of occupant, vehicle, and impact data. The potential injurious role of an air bag is independent of crash severity and is more obvious in minor collisions, particularly those involving "out-of-position" occupants. Factors such as occupant height and other constitutional and medical factors, intoxication, age, type, and proper use of other restraint systems, pre-impact braking and multiple impacts can contribute to an occupant being "out-of-position." Two injury mechanisms are described in out-of-position occupants: "punch-out" when the individual covers the air bag module before deployment and "membrane-force" when the occupant contacts a partly deployed air bag. Each mechanism is associated with injury patterns. In adults, "punch-out" can cause thoraco-abdominal trauma and "membrane-force" loading can lead to craniocervical injury. This can also occur in short-statured occupants including children subjected to both types of loading. In more severe collisions, other factors, e.g., intrusion, steering column and seatbelt loading and other occupant compartment contacts, can contribute to trauma.

  17. Load-induced modulation of signal transduction networks.

    PubMed

    Jiang, Peng; Ventura, Alejandra C; Sontag, Eduardo D; Merajver, Sofia D; Ninfa, Alexander J; Del Vecchio, Domitilla

    2011-10-11

    Biological signal transduction networks are commonly viewed as circuits that pass along information--in the process amplifying signals, enhancing sensitivity, or performing other signal-processing tasks--to transcriptional and other components. Here, we report on a "reverse-causality" phenomenon, which we call load-induced modulation. Through a combination of analytical and experimental tools, we discovered that signaling was modulated, in a surprising way, by downstream targets that receive the signal and, in doing so, apply what in physics is called a load. Specifically, we found that non-intuitive changes in response dynamics occurred for a covalent modification cycle when load was present. Loading altered the response time of a system, depending on whether the activity of one of the enzymes was maximal and the other was operating at its minimal rate or whether both enzymes were operating at submaximal rates. These two conditions, which we call "limit regime" and "intermediate regime," were associated with increased or decreased response times, respectively. The bandwidth, the range of frequency in which the system can process information, decreased in the presence of load, suggesting that downstream targets participate in establishing a balance between noise-filtering capabilities and a circuit's ability to process high-frequency stimulation. Nodes in a signaling network are not independent relay devices, but rather are modulated by their downstream targets.

  18. The synergistic effects of shear stress and cyclic hydrostatic pressure modulate chondrogenic induction of human mesenchymal stem cells.

    PubMed

    Hosseini, Motahare-Sadat; Tafazzoli-Shadpour, Mohammad; Haghighipour, Nooshin; Aghdami, Naser; Goodarzi, Alireza

    2015-10-01

    In this study, we examined chondrogenic regulation of 2 types of mesenchymal stem cells seeded on the bioengineered substrate in monolayer cultures under mechanically defined conditions to mimic the in vivo microenvironment of chondrocytes within articular cartilage tissues. Human adipose-derived mesenchymal stem cells (ASCs) and bone marrow mesenchymal stem cells (BSCs) were exposed to 0.2 Pa shear stress, 3 MPa cyclic hydrostatic pressure, and combined loading with different sequences on chemically designed medical-grade silicone rubber, while no soluble growth factors were added to the culture medium. The expression levels of chondrogenic-specific genes of SOX9, aggrecan, and type II collagen (Col II) were measured. Results were compared to those of cells treated by biological growth factor. Gene expression patterns were dependent on the loading regime. Moreover, the source of mesenchymal stem cells (adipose or bone marrow) was influential in gene expression. Overall, enhanced expression of chondrogenic markers was found through application of mechanical stimuli. The response was generally found to be significantly promoted when the 2 loading regimes were superimposed. Differentiation of ASCs was shown by a modest increase in gene expression profiles. In general, BSCs expressed higher levels of chondrogenic gene expression than ASCs after 3 weeks. A greater effect on Col II and SOX9 mRNA expression was observed when combined loadings were applied. Results may be applied in determining the proper loading sequence for obtaining functional target cells in cartilage engineering applications.

  19. Spaceflight and the skeleton: lessons for the earthbound

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Halloran, B. P.; Morey-Holton, E.

    1997-01-01

    Loss of bone during extended space flight has long been a concern that could limit the ability of humans to explore the universe. Surprisingly the available data do not support the concept that weightlessness leads inexorably to a depleted skeleton unable to withstand the stress of a return to a 1g environment. Nevertheless, some bone loss does occur especially in those bones most stressed by gravity prior to flight, providing confirmation of the proposal formulated over a century ago by Julius Wolff that mechanical stress determines the form and function of bone. Although the phenomenon of bone loss with skeletal unloading, whether by space flight or immobilization or just taking a load off your feet (literally) is well established, the mechanisms by which bone senses load and adjusts to it are not so clear. What actually is the stimulus and what are the sensors? What are the target cells? How do the sensors communicate the message into the cells, and by what pathways do the cells respond? What is the role of endocrine factors versus paracrine or autocrine factors in mediating or modulating the response? None of these questions has been answered with certainty, but as will become apparent in this review, we have some clues directing us to the answers. Although the focus of this review concerns space flight, it seems highly likely that the mechanisms mediating the transmission of mechanical load to changes in bone formation and resorption apply equally well to all forms of disuse osteoporosis, and are likely to be the same mechanisms affected by other etiologies of osteoporosis.

  20. Space flight and the skeleton: lessons for the earthbound

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Halloran, B. P.; Morey-Holton, E.

    1997-01-01

    Loss of bone during extended space flight has long been a concern that could limit the ability of humans to explore the universe. Surprisingly, the available data do not support the concept that weightlessness leads inexorably to a depleted skeleton unable to withstand the stress of a return to a 1-g environment. Nevertheless, some bone loss does occur, especially in those bones most stressed by gravity prior to flight, which provides confirmation of the proposal formulated over a century ago by Julius Wolff that mechanical stress determines the form and function of bone. Although the phenomenon of bone loss with skeletal unloading, whether by space flight or immobilization or just taking a load off your feet (literally) is well established, the mechanisms by which bone senses load and adjusts to it are not so clear. What actually is the stimulus, and what are the sensors? What are the target cells? How do the sensors communicate the message into the cells, and by what pathways do the cells respond? What is the role of endocrine, factors vs. paracrine or autocrine factors in mediating or modulating the response? None of these questions has been answered with certainty, but, as will become apparent in this review, we have some clues directing us to the answers. Although the focus of this review concerns space flight, it seems highly likely that the mechanisms mediating the transmission of mechanical load to changes in bone formation and resorption apply equally well to all forms of disuse osteoporosis and are likely to be the same mechanisms affected by other etiologies of osteoporosis.

  1. Technical Feasibility Evaluation on The Use of A Peltier Thermoelectric Module to Recover Automobile Exhaust Heat

    NASA Astrophysics Data System (ADS)

    Sugiartha, N.; Sastra Negara, P.

    2018-01-01

    A thermoelectric module composes of integrated p-n semiconductors as hot and cold side junctions and uses Seebeck effect between them to function as a thermoelectric generator (TEG) to directly convert heat into electrical power. Exhaust heat from engines as otherwise wasted to the atmosphere is one of the heat sources freely available to drive the TEG. This paper evaluates technical feasibility on the use of a Peltier thermoelectric module for energy recovery application of such kind of waste heat. An experimental apparatus has been setup to simulate real conditions of automobile engine exhaust piping system. It includes a square section aluminium ducting, an aluminium fin heat sink and a TEC1 12706 thermoelectric module. A heater and a cooling fan are employed to simulate hot exhaust gas and ambient air flows, respectively. Electrical loading is controlled by resistors. Dependent variables measured during the test are cold and hot side temperatures, open and loaded circuit output voltages and electrical current. The test results revealed a promising application of the Peltier thermoelectric module for the engine exhaust heat recovery, though the loaded output power produced and loaded output voltage are still far lower than the commercially thermoelectric module originally purposed for the TEG application.

  2. Harmonic force spectroscopy reveals a force-velocity curve from a single human beta cardiac myosin motor

    NASA Astrophysics Data System (ADS)

    Sung, Jongmin; Nag, Suman; Vestergaard, Christian; Mortensen, Kim; Flyvbjerg, Henrik; Spudich, James

    2014-03-01

    A muscle contracts rapidly under low load, but slowly under high load. Its molecular mechanisms remain to be elucidated, however. During contraction, myosins in thick filaments interact with actin in thin filaments in the sarcomere, cycling between a strongly bound (force producing) state and a weakly bound (relaxed) state. Huxley et al. have previously proposed that the transition from the strong to the weak interaction can be modulated by a load. We use a new method we call ``harmonic force spectroscopy'' to extract a load-velocity curve from a single human beta cardiac myosin II motor. With a dual-beam optical trap, we hold an actin dumbbell over a myosin molecule anchored to the microscope stage that oscillates sinusoidally. Upon binding, the motor experiences an oscillatory load with a mean that is directed forward or backward, depending on binding location We find that the bound time at saturating [ATP] is exponentially correlated with the mean load, which is explained by Arrhenius transition theory. With a stroke size measurement, we obtained a load-velocity curve from a single myosin. We compare the curves for wild-type motors with mutants that cause hypertrophic cardiomyopathies, to understand the effects on the contractile cycle

  3. Rationally designed synthetic protein hydrogels with predictable mechanical properties.

    PubMed

    Wu, Junhua; Li, Pengfei; Dong, Chenling; Jiang, Heting; Bin Xue; Gao, Xiang; Qin, Meng; Wang, Wei; Bin Chen; Cao, Yi

    2018-02-12

    Designing synthetic protein hydrogels with tailored mechanical properties similar to naturally occurring tissues is an eternal pursuit in tissue engineering and stem cell and cancer research. However, it remains challenging to correlate the mechanical properties of protein hydrogels with the nanomechanics of individual building blocks. Here we use single-molecule force spectroscopy, protein engineering and theoretical modeling to prove that the mechanical properties of protein hydrogels are predictable based on the mechanical hierarchy of the cross-linkers and the load-bearing modules at the molecular level. These findings provide a framework for rationally designing protein hydrogels with independently tunable elasticity, extensibility, toughness and self-healing. Using this principle, we demonstrate the engineering of self-healable muscle-mimicking hydrogels that can significantly dissipate energy through protein unfolding. We expect that this principle can be generalized for the construction of protein hydrogels with customized mechanical properties for biomedical applications.

  4. High-frequency electrical stimulation reveals a p38–mTOR signaling module correlated with force–time integral

    PubMed Central

    Rahnert, Jill A.; Burkholder, Thomas J.

    2013-01-01

    SUMMARY High-frequency electrical stimulation (HFES) leads to muscle hypertrophy, and attention has been drawn to the high forces involved. However, both mechanical and metabolic stresses occur simultaneously, and both stimuli influence signaling cascades related to protein synthesis. This study aimed to identify the immediate signaling correlates of contraction-induced force and metabolic stresses under the hypothesis that HFES induces growth-related signaling through mechanical stimulation. Force–time integral (FTI) signaling in mouse tibialis anterior muscle was examined by separately manipulating the time of contraction to emphasize the metabolic aspect or the force of contraction to emphasize the mechanical aspect. When FTI was manipulated by changing the total time of activation, phosphorylation of p54 JNK, ERK and p70S6kT421/S424 was independent of FTI, while phosphorylation of acetyl-CoA carboxylase and p38 correlated with FTI. When FTI was manipulated by changing the force of contraction, p54 JNK, ERK and p70S6kT421/S424 were again independent of FTI, while phosphorylation of p38 and FAK correlated with FTI. Factor analysis identified a p38–mTOR signaling module that correlated with FTI in both experiments. The consistent link among p38, mTOR and FTI suggests that they form a connected signaling module sensitive to the mechanical aspects of FTI, separate from markers of metabolic load. PMID:23531822

  5. MEMS-based Force-clamp Analysis of the Role of Body Stiffness in C. elegans Touch Sensation

    PubMed Central

    Petzold, Bryan C.; Park, Sung-Jin; Mazzochette, Eileen A.; Goodman, Miriam B.; Pruitt, Beth L.

    2013-01-01

    Touch is enabled by mechanoreceptor neurons in the skin and plays an essential role in our everyday lives, but is among the least understood of our five basic senses. Force applied to the skin deforms these neurons and activates ion channels within them. Despite the importance of the mechanics of the skin in determining mechanoreceptor neuron deformation and ultimately touch sensation, the role of mechanics in touch sensitivity is poorly understood. Here, we use the model organism Caenorhabditis elegans to directly test the hypothesis that body mechanics modulate touch sensitivity. We demonstrate a microelectromechanical system (MEMS)-based force clamp that can apply calibrated forces to freely crawling C. elegans worms and measure touch-evoked avoidance responses. This approach reveals that wild-type animals sense forces < 1 μN and indentation depths < 1 μm. We use both genetic manipulation of the skin and optogenetic modulation of body wall muscles to alter body mechanics. We find that small changes in body stiffness dramatically affect force sensitivity, while having only modest effects on indentation sensitivity. We investigate the theoretical body deformation predicted under applied force and conclude that local mechanical loads induce inward bending deformation of the skin to drive touch sensation in C. elegans. PMID:23598612

  6. Application of electrically invisible antennas to the Modulated Scatterer Technique

    DOE PAGES

    Crocker, Dylan A.; Donnell, Kristen M.

    2015-09-16

    The modulated scatterer technique (MST) has shown promise for applications in microwave imaging, electric field mapping, and materials characterization. Traditionally, MST scatterers are dipoles centrally loaded with an element capable of modulation (e.g., a p-i-n diode). By modulating the load element, signals scattered from the MST scatterer are also modulated. However, due to the small size of such scatterers, it can be difficult to reliably detect the modulated signal. Increasing the modulation depth (MD; a parameter related to how well the scatterer modulates the scattered signal) may improve the detectability of the scattered signal. In an effort to improve themore » MD, the concept of electrically invisible antennas is applied to the design of MST scatterers. Our paper presents simulations and measurements of MST scatterers that have been designed to be electrically invisible during the reverse bias state of the modulated element (a p-i-n diode in this case), while producing detectable scattering during the forward bias state (i.e., operate in an electrically visible state). Furthermore, the results using the new design show significant improvement to the MD of the scattered signal as compared with a traditional MST scatterer (i.e., dipole centrally loaded with a p-i-n diode).« less

  7. Resonant-type Smooth Impact Drive Mechanism (SIDM) actuator using a bolt-clamped Langevin transducer.

    PubMed

    Nishimura, Takuma; Hosaka, Hiroshi; Morita, Takeshi

    2012-01-01

    The Smooth Impact Drive Mechanism (SIDM) is a linear piezoelectric actuator that has seen practically applied to camera lens modules. Although previous SIDM actuators are easily miniaturized and enable accurate positioning, these actuators cannot actuate at high speed and cannot provide powerful driving because they are driven at an off-resonant frequency using a soft-type PZT. In the present study, we propose a resonant-type SIDM using a bolt-clamped Langevin transducer (BLT) with a hard-type PZT. The resonant-type SIDM overcomes the above-mentioned problems and high-power operation becomes possible with a very simple structure. As a result, we confirmed the operation of resonant-type SIDM by designing a bolt-clamped Langevin transducer. The properties of no-load maximum speed was 0.28m/s at driving voltages of 80V(p-p) for 44.9kHz and 48V(p-p) for 22.45kHz with a pre-load of 3.1N. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. The radiation of sound from a propeller at angle of attack

    NASA Technical Reports Server (NTRS)

    Mani, Ramani

    1990-01-01

    The mechanism by which the noise generated at the blade passing frequency by a propeller is altered when the propeller axis is at an angle of attack to the freestream is examined. The measured noise field is distinctly non axially symmetric under such conditions with far field sound pressure levels both diminished and increased relative to the axially symmetric values produced with the propeller at zero angle of attack. Attempts have been made to explain this non axially symmetric sound field based on the unsteady (once per rev) loading experienced by the propeller blades when the propeller axis is at non zero angle of attack. A calculation based on this notion appears to greatly underestimate the measured azimuthal asymmetry of noise for high tip speed, highly loaded propellers. A new mechanism is proposed; namely, that at angle of attack, there is a non axially symmetric modulation of the radiative efficiency of the steady loading and thickness noise which is the primary cause of the non axially symmetric sound field at angle of attack for high tip speed, heavily loaded propellers with a large number of blades. A calculation of this effect to first order in the crossflow Mach number (component of freestream Mach number normal to the propeller axis) is carried out and shows much better agreement with measured noise data on the angle of attack effect.

  9. A process chain for integrating piezoelectric transducers into aluminum die castings to generate smart lightweight structures

    NASA Astrophysics Data System (ADS)

    Stein, Stefan; Wedler, Jonathan; Rhein, Sebastian; Schmidt, Michael; Körner, Carolin; Michaelis, Alexander; Gebhardt, Sylvia

    The application of piezoelectric transducers to structural body parts of machines or vehicles enables the combination of passive mechanical components with sensor and actuator functions in one single structure. According to Herold et al. [1] and Staeves [2] this approach indicates significant potential regarding smart lightweight construction. To obtain the highest yield, the piezoelectric transducers need to be integrated into the flux of forces (load path) of load bearing structures. Application in a downstream process reduces yield and process efficiency during manufacturing and operation, due to the necessity of a subsequent process step of sensor/actuator application. The die casting process offers the possibility for integration of piezoelectric transducers into metal structures. Aluminum castings are particularly favorable due to their high quality and feasibility for high unit production at low cost (Brunhuber [3], Nogowizin [4]). Such molded aluminum parts with integrated piezoelectric transducers enable functions like active vibration damping, structural health monitoring or energy harvesting resulting in significant possibilities of weight reduction, which is an increasingly important driving force of automotive and aerospace industry (Klein [5], Siebenpfeiffer [6]) due to increasingly stringent environmental protection laws. In the scope of those developments, this paper focuses on the entire process chain enabling the generation of lightweight metal structures with sensor and actuator function, starting from the manufacturing of piezoelectric modules over electrical and mechanical bonding to the integration of such modules into aluminum (Al) matrices by die casting. To achieve this challenging goal, piezoceramic sensors/actuator modules, so-called LTCC/PZT modules (LPM) were developed, since ceramic based piezoelectric modules are more likely to withstand the thermal stress of about 700 °C introduced by the casting process (Flössel et al., [7]). The modules are made of low temperature cofired ceramic (LTCC) tapes with an embedded lead zirconate titanate (PZT) plate and are manufactured in multilayer technique. For joining conducting copper (Cu) wires with the electrode structure of the LPM, a novel laser drop on demand wire bonding method (LDB) is applied, which is based on the melting of a spherical CuSn12 braze preform with a liquidus temperature Tliquid of 989.9 °C (Deutsches Kupfer-Institut Düsseldorf, [8]) providing sufficient thermal stability for a subsequent casting process.

  10. Statistics concerning the Apollo command module water landing, including the probability of occurrence of various impact conditions, sucessful impact, and body X-axis loads

    NASA Technical Reports Server (NTRS)

    Whitnah, A. M.; Howes, D. B.

    1971-01-01

    Statistical information for the Apollo command module water landings is presented. This information includes the probability of occurrence of various impact conditions, a successful impact, and body X-axis loads of various magnitudes.

  11. KSC-00pp1163

    NASA Image and Video Library

    2000-08-16

    KENNEDY SPACE CENTER, FLA. -- Technicians facilitate the transfer the STS-106 payload to Atlantis on Launch Pad 39-B using the Payload Ground Handling Mechanism (PGHM). The payload within the SPACEHAB module is shown just after being loaded in the payload bay of Atlantis. The PGHM (pronounced pigem) is located inside the Payload Changeout Room (PCR) of each shuttle launch pad Rotating Service Structure. The PGHM removes payloads from a transportation canister and installs them into the orbiter. It is essentially NASA’s largest fork-lift

  12. KSC00pp1163

    NASA Image and Video Library

    2000-08-16

    KENNEDY SPACE CENTER, FLA. -- Technicians facilitate the transfer the STS-106 payload to Atlantis on Launch Pad 39-B using the Payload Ground Handling Mechanism (PGHM). The payload within the SPACEHAB module is shown just after being loaded in the payload bay of Atlantis. The PGHM (pronounced pigem) is located inside the Payload Changeout Room (PCR) of each shuttle launch pad Rotating Service Structure. The PGHM removes payloads from a transportation canister and installs them into the orbiter. It is essentially NASA’s largest fork-lift

  13. Flutter Generator Control and Force Computer.

    DTIC Science & Technology

    1985-07-01

    exciter module 2. Mechanical load 3. Rectifier and triac 4. Overall system 5. Velocity control 6. Microprocessor 7. Operation in 1 ’g’ environment 8...amplifier Output voltage from the rectifier/ triac circuit (figure 3) is a function of the conduction angle of each triac . In a 400 Hz 3-phase system...3IIGCICI FIRING CIRCUIT FIRING CIRCUIT TO MOTOR Figure 3. Rectifier and triac _____ -=low AEL-0242-TNI Figure 4 DEMAND(V V49 -9 APIFE M O T OR

  14. Vibro-acoustics for Space Station applications

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.; Bofilios, D. A.

    1986-01-01

    An analytical procedure has been developed to study noise generation in a double wall and single wall cylindrical shell due to mechanical point loads. The objective of this study is to develop theoretical procedures for parametetric evaluation of noise generation andd noise transmission for the habitability modules of the proposed Space Station operation. The solutions of the governing acoustic-structural equations are obtained utilizing modal decomposition. The numerical results include modal frequencies, deflection response spectral densities and interior noise sound pressure levels.

  15. Field-programmable beam reconfiguring based on digitally-controlled coding metasurface

    NASA Astrophysics Data System (ADS)

    Wan, Xiang; Qi, Mei Qing; Chen, Tian Yi; Cui, Tie Jun

    2016-02-01

    Digital phase shifters have been applied in traditional phased array antennas to realize beam steering. However, the phase shifter deals with the phase of the induced current; hence, it has to be in the path of each element of the antenna array, making the phased array antennas very expensive. Metamaterials and/or metasurfaces enable the direct modulation of electromagnetic waves by designing subwavelength structures, which opens a new way to control the beam scanning. Here, we present a direct digital mechanism to control the scattered electromagnetic waves using coding metasurface, in which each unit cell loads a pin diode to produce binary coding states of “1” and “0”. Through data lines, the instant communications are established between the coding metasurface and the internal memory of field-programmable gate arrays (FPGA). Thus, we realize the digital modulation of electromagnetic waves, from which we present the field-programmable reflective antenna with good measurement performance. The proposed mechanism and functional device have great application potential in new-concept radar and communication systems.

  16. The Waukesha Turbocharger Control Module: A tool for improved engine efficiency and response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zurlo, J.R.; Reinbold, E.O.; Mueller, J.

    1996-12-31

    The Waukesha Turbocharger Control Module allows optimum control of turbochargers on lean burn gaseous fueled engines. The Turbocharger Control Module is user programmed to provide either maximum engine efficiency or best engine response to load changes. In addition, the Turbocharger Control Module prevents undesirable turbocharger surge. The Turbocharger Control Module consists of an electronic control box, engine speed, intake manifold pressure, ambient temperature sensors, and electric actuators driving compressor bypass and wastegate valves. The Turbocharger Control Module expands the steady state operational environment of the Waukesha AT27GL natural gas engine from sea level to 1,525 m altitude with one turbochargermore » match and improves the engine speed turn down by 80 RPM. Finally, the Turbocharger Control Module improves engine response to load changes.« less

  17. Augmentation of the space station module power management and distribution breadboard

    NASA Technical Reports Server (NTRS)

    Walls, Bryan; Hall, David K.; Lollar, Louis F.

    1991-01-01

    The space station module power management and distribution (SSM/PMAD) breadboard models power distribution and management, including scheduling, load prioritization, and a fault detection, identification, and recovery (FDIR) system within a Space Station Freedom habitation or laboratory module. This 120 VDC system is capable of distributing up to 30 kW of power among more than 25 loads. In addition to the power distribution hardware, the system includes computer control through a hierarchy of processes. The lowest level consists of fast, simple (from a computing standpoint) switchgear that is capable of quickly safing the system. At the next level are local load center processors, (LLP's) which execute load scheduling, perform redundant switching, and shed loads which use more than scheduled power. Above the LLP's are three cooperating artificial intelligence (AI) systems which manage load prioritizations, load scheduling, load shedding, and fault recovery and management. Recent upgrades to hardware and modifications to software at both the LLP and AI system levels promise a drastic increase in speed, a significant increase in functionality and reliability, and potential for further examination of advanced automation techniques. The background, SSM/PMAD, interface to the Lewis Research Center test bed, the large autonomous spacecraft electrical power system, and future plans are discussed.

  18. Speed And Power Control Of An Engine By Modulation Of The Load Torque

    DOEpatents

    Ziph, Benjamin; Strodtman, Scott; Rose, Thomas K

    1999-01-26

    A system and method of speed and power control for an engine in which speed and power of the engine is controlled by modulation of the load torque. The load torque is manipulated in order to cause engine speed, and hence power to be changed. To accomplish such control, the load torque undergoes a temporary excursion in the opposite direction of the desired speed and power change. The engine and the driven equipment will accelerate or decelerate accordingly as the load torque is decreased or increased, relative to the essentially fixed or constant engine torque. As the engine accelerates or decelerates, its power increases or decreases in proportion.

  19. Using the intrinsic properties of silicon micro-ring modulators for characterization of RF termination

    NASA Astrophysics Data System (ADS)

    Wang, Zhao; Knights, Andrew P.

    2017-02-01

    We describe a direct experimental method to determine the effective driving voltage (Vpp) applied to a silicon photonic modulator possessing an impedance mismatch between the unterminated capacitive load and input source. This method thus permits subsequent estimation of the power consumption of an imperfectly terminated device as well as a deduction of load impedance for optimization of termination design. The capacitive load in this paper is a silicon micro-ring modulator with an integrated p-n junction acting as a phase shifter. The RF reflection under high-speed drive is directly determined from observation of the eye-diagram following measurement of the power transfer function for various junction bias.

  20. Power system security enhancement through direct non-disruptive load control

    NASA Astrophysics Data System (ADS)

    Ramanathan, Badri Narayanan

    The transition to a competitive market structure raises significant concerns regarding reliability of the power grid. A need to build tools for security assessment that produce operating limit boundaries for both static and dynamic contingencies is recognized. Besides, an increase in overall uncertainty in operating conditions makes corrective actions at times ineffective leaving the system vulnerable to instability. The tools that are in place for stability enhancement are mostly corrective and suffer from lack of robustness to operating condition changes. They often pose serious coordination challenges. With deregulation, there have also been ownership and responsibility issues associated with stability controls. However, the changing utility business model and the developments in enabling technologies such as two-way communication, metering, and control open up several new possibilities for power system security enhancement. This research proposes preventive modulation of selected loads through direct control for power system security enhancement. Two main contributions of this research are the following: development of an analysis framework and two conceptually different analysis approaches for load modulation to enhance oscillatory stability, and the development and study of algorithms for real-time modulation of thermostatic loads. The underlying analysis framework is based on the Structured Singular Value (SSV or mu) theory. Based on the above framework, two fundamentally different approaches towards analysis of the amount of load modulation for desired stability performance have been developed. Both the approaches have been tested on two different test systems: CIGRE Nordic test system and an equivalent of the Western Electric Coordinating Council test system. This research also develops algorithms for real-time modulation of thermostatic loads that use the results of the analysis. In line with some recent load management programs executed by utilities, two different algorithms based on dynamic programming are proposed for air-conditioner loads, while a decision-tree based algorithm is proposed for water-heater loads. An optimization framework has been developed employing the above algorithms. Monte Carlo simulations have been performed using this framework with the objective of studying the impact of different parameters and constraints on the effectiveness as well as the effect of control. The conclusions drawn from this research strongly advocate direct load control for stability enhancement from the perspectives of robustness and coordination, as well as economic viability and the developments towards availability of the institutional framework for load participation in providing system reliability services.

  1. Dynamic range in BOLD modulation: lifespan aging trajectories and association with performance.

    PubMed

    Kennedy, Kristen M; Boylan, Maria A; Rieck, Jenny R; Foster, Chris M; Rodrigue, Karen M

    2017-12-01

    Alteration of dynamic range of modulation to cognitive difficulty has been proposed as a salient predictor of cognitive aging. Here, we examine in 171 adults (aged 20-94 years) the effects of age on dynamic modulation of blood oxygenation-level dependent activation to difficulty in parametrically increasing working memory (WM) load (0-, 2-, 3-, and 4-back conditions). First, we examined parametric increases and decreases in activation to increasing WM load (positive modulation effect and negative modulation effect). Second, we examined the effect of age on modulation to difficulty (WM load) to identify regions that differed with age as difficulty increased (age-related positive and negative modulation effects). Weakened modulation to difficulty with age was found in both the positive modulation (middle frontal, superior/inferior parietal) and negative modulation effect (deactivated) regions (insula, cingulate, medial superior frontal, fusiform, and parahippocampal gyri, hippocampus, and lateral occipital cortex). Age-related alterations to positive modulation emerged later in the lifespan than negative modulation. Furthermore, these effects were significantly coupled in that greater upmodulation was associated with lesser downmodulation. Importantly, greater fronto-parietal upmodulation to difficulty and greater downmodulation of deactivated regions were associated with better task accuracy and upmodulation with better WM span measured outside the scanner. These findings suggest that greater dynamic range of modulation of activation to cognitive challenge is in service of current task performance, as well as generalizing to cognitive ability beyond the scanner task, lending support to its utility as a marker of successful cognitive aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Neurotensin-loaded PLGA/CNC composite nanofiber membranes accelerate diabetic wound healing.

    PubMed

    Zheng, Zhifang; Liu, Yishu; Huang, Wenhua; Mo, Yunfei; Lan, Yong; Guo, Rui; Cheng, Biao

    2018-04-13

    Diabetic foot ulcers (DFUs) are a threat to human health and can lead to amputation and even death. Recently neurotensin (NT), an inflammatory modulator in wound healing, was found to be beneficial for diabetic wound healing. As we demonstrated previously, polylactide-polyglycolide (PLGA) and cellulose nanocrystals (CNCs) (PLGA/CNC) nanofiber membranes show good cytocompatibility and facilitate fibroblast adhesion, spreading and proliferation. PLGA/CNC nanofiber membranes are novel materials that have not been used previously as NT carriers in diabetic wounds. This study aims to explore the therapeutic efficacy and possible mechanisms of NT-loaded PLGA/CNC nanofiber membranes in full-thickness skin wounds in spontaneously diabetic mice. The results showed that NT could be sustained released from NT-loaded PLGA/CNC composite nanofiber membranes for 2 weeks. NT-loaded PLGA/CNC composite nanofiber membranes induced more rapid healing than other control groups. After NT exposure, the histological scores of the epidermal and dermal regeneration and the ratios of the fibrotic area to the whole area were increased. NT-loaded PLGA/CNC composite nanofiber membranes also decreased the expressions of the inflammatory cytokines IL-1β and IL-6. These results suggest that NT-loaded PLGA/CNC composite nanofiber membranes for sustained delivery of NT should effectively promote tissue regeneration for the treatment of DFUs.

  3. Design, fabrication and test of block 4 design solar cell modules. Part 2: Residential module

    NASA Technical Reports Server (NTRS)

    Jester, T. L.

    1982-01-01

    Design, fabrication and test of the Block IV residential load module are reported. Design changes from the proposed module design through three iterations to the discontinuance of testing are outlined.

  4. Evaluating transient performance of servo mechanisms by analysing stator current of PMSM

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Tan, Luyao; Xu, Guanghua

    2018-02-01

    Smooth running and rapid response are the desired performance goals for the transient motions of servo mechanisms. Because of the uncertain and unobservable transient behaviour of servo mechanisms, it is difficult to evaluate their transient performance. Under the effects of electromechanical coupling, the stator current signals of a permanent-magnet synchronous motor (PMSM) potentially contain the performance information regarding servo mechanisms in use. In this paper, a novel method based on analysing the stator current of the PMSM is proposed for quantifying the transient performance. First, a vector control model is constructed to simulate the stator current behaviour in the transient processes of consecutive speed changes, consecutive load changes, and intermittent start-stops. It is discovered that the amplitude and frequency of the stator current are modulated by the transient load torque and motor speed, respectively. The stator currents under different performance conditions are also simulated and compared. Then, the stator current is processed using a local means decomposition (LMD) algorithm to extract the instantaneous amplitude and instantaneous frequency. The sample entropy of the instantaneous amplitude, which reflects the complexity of the load torque variation, is calculated as a performance indicator of smooth running. The peak-to-peak value of the instantaneous frequency, which defines the range of the motor speed variation, is set as a performance indicator of rapid response. The proposed method is applied to both simulated data in an intermittent start-stops process and experimental data measured for a batch of servo turrets for turning lathes. The results show that the performance evaluations agree with the actual performance.

  5. Design of an Input-Parallel Output-Parallel LLC Resonant DC-DC Converter System for DC Microgrids

    NASA Astrophysics Data System (ADS)

    Juan, Y. L.; Chen, T. R.; Chang, H. M.; Wei, S. E.

    2017-11-01

    Compared with the centralized power system, the distributed modularized power system is composed of several power modules with lower power capacity to provide a totally enough power capacity for the load demand. Therefore, the current stress of the power components in each module can then be reduced, and the flexibility of system setup is also enhanced. However, the parallel-connected power modules in the conventional system are usually controlled to equally share the power flow which would result in lower efficiency in low loading condition. In this study, a modular power conversion system for DC micro grid is developed with 48 V dc low voltage input and 380 V dc high voltage output. However, in the developed system control strategy, the numbers of power modules enabled to share the power flow is decided according to the output power at lower load demand. Finally, three 350 W power modules are constructed and parallel-connected to setup a modular power conversion system. From the experimental results, compared with the conventional system, the efficiency of the developed power system in the light loading condition is greatly improved. The modularized design of the power system can also decrease the power loss ratio to the system capacity.

  6. Steady-state signatures of visual perceptual load, multimodal distractor filtering, and neural competition.

    PubMed

    Parks, Nathan A; Hilimire, Matthew R; Corballis, Paul M

    2011-05-01

    The perceptual load theory of attention posits that attentional selection occurs early in processing when a task is perceptually demanding but occurs late in processing otherwise. We used a frequency-tagged steady-state evoked potential paradigm to investigate the modality specificity of perceptual load-induced distractor filtering and the nature of neural-competitive interactions between task and distractor stimuli. EEG data were recorded while participants monitored a stream of stimuli occurring in rapid serial visual presentation (RSVP) for the appearance of previously assigned targets. Perceptual load was manipulated by assigning targets that were identifiable by color alone (low load) or by the conjunction of color and orientation (high load). The RSVP task was performed alone and in the presence of task-irrelevant visual and auditory distractors. The RSVP stimuli, visual distractors, and auditory distractors were "tagged" by modulating each at a unique frequency (2.5, 8.5, and 40.0 Hz, respectively), which allowed each to be analyzed separately in the frequency domain. We report three important findings regarding the neural mechanisms of perceptual load. First, we replicated previous findings of within-modality distractor filtering and demonstrated a reduction in visual distractor signals with high perceptual load. Second, auditory steady-state distractor signals were unaffected by manipulations of visual perceptual load, consistent with the idea that perceptual load-induced distractor filtering is modality specific. Third, analysis of task-related signals revealed that visual distractors competed with task stimuli for representation and that increased perceptual load appeared to resolve this competition in favor of the task stimulus.

  7. In-situ neutron diffraction study of martensitic variant redistribution in polycrystalline Ni-Mn-Ga alloy under cyclic thermo-mechanical treatment

    NASA Astrophysics Data System (ADS)

    Li, Zongbin; Zhang, Yudong; Esling, Claude; Gan, Weimin; Zou, Naifu; Zhao, Xiang; Zuo, Liang

    2014-07-01

    The influences of uniaxial compressive stress on martensitic transformation were studied on a polycrystalline Ni-Mn-Ga bulk alloy prepared by directional solidification. Based upon the integrated in-situ neutron diffraction measurements, direct experimental evidence was obtained on the variant redistribution of seven-layered modulated (7M) martensite, triggered by external uniaxial compression during martensitic transformation. Large anisotropic lattice strain, induced by the cyclic thermo-mechanical treatment, has led to the microstructure modification by forming martensitic variants with a strong ⟨0 1 0⟩7M preferential orientation along the loading axis. As a result, the saturation of magnetization became easier to be reached.

  8. In-situ neutron diffraction study of martensitic variant redistribution in polycrystalline Ni-Mn-Ga alloy under cyclic thermo-mechanical treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zongbin; Zou, Naifu; Zhao, Xiang

    2014-07-14

    The influences of uniaxial compressive stress on martensitic transformation were studied on a polycrystalline Ni-Mn-Ga bulk alloy prepared by directional solidification. Based upon the integrated in-situ neutron diffraction measurements, direct experimental evidence was obtained on the variant redistribution of seven-layered modulated (7M) martensite, triggered by external uniaxial compression during martensitic transformation. Large anisotropic lattice strain, induced by the cyclic thermo-mechanical treatment, has led to the microstructure modification by forming martensitic variants with a strong 〈0 1 0〉{sub 7M} preferential orientation along the loading axis. As a result, the saturation of magnetization became easier to be reached.

  9. Magnetic actuation of hair cells

    NASA Astrophysics Data System (ADS)

    Rowland, David; Roongthumskul, Yuttana; Lee, Jae-Hyun; Cheon, Jinwoo; Bozovic, Dolores

    2011-11-01

    The bullfrog sacculus contains mechanically sensitive hair cells whose stereociliary bundles oscillate spontaneously when decoupled from the overlying membrane. Steady-state offsets on the resting position of a hair bundle can suppress or modulate this native motility. To probe the dynamics of spontaneous oscillation in the proximity of the critical point, we describe here a method for mechanical actuation that avoids loading the bundles or contributing to the viscous drag. Magnetite beads were attached to the tips of the stereocilia, and a magnetic probe was used to impose deflections. This technique allowed us to observe the transition from multi-mode to single-mode state in freely oscillating bundles, as well as the crossover from the oscillatory to the quiescent state.

  10. Perceptual load, voluntary attention, and aging: an event-related potential study

    PubMed Central

    Wang, Yan; Fu, Shimin; Greenwood, Pamela; Luo, Yuejia; Parasuraman, Raja

    2012-01-01

    The locus of attentional selection is known to vary with perceptual load (Lavie et al., 2004). Under voluntary attention, perceptual load modulates selective visual processing at an early cortical stage, as reflected in the posterior P1 and N1 components of the event-related potentials (ERPs). Adult aging also affects both behavioral and ERP signs of attentional selection. However, it is not known whether perceptual load modulates this relationship. Accordingly, in the present study ERPs were recorded in a voluntary attention task. Young and old participants were asked to discriminate the direction of a target line embedded within a display of four lines that appeared in the left or right visual field. Participants responded faster and more accurately to valid relative to invalid trials and to low-load relative to high-load condition. Older participants responded more slowly and with lower accuracy than young participants in all conditions. The amplitudes of the posterior contralateral P1 and N1 components in valid trials were larger than that in invalid trials in all conditions. N1 amplitude was larger under the high load condition than that in the low load condition. Moreover, in the high perceptual load condition, the old group had a larger N1 than the young group at contralateral sites. The findings suggest that under voluntary attention, perceptual load and aging modulates attentional selection at an early but not the earliest stage, during the N1 (120–200ms) time range. Increased N1 amplitude in older adults may reflect increased demands on target discrimination in high perceptual load. PMID:22248536

  11. Lunar surface structural concepts and construction studies

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin

    1991-01-01

    The topics are presented in viewgraph form and include the following: lunar surface structures construction research areas; lunar crane related disciplines; shortcomings of typical mobile crane in lunar base applications; candidate crane cable suspension systems; NIST six-cable suspension crane; numerical example of natural frequency; the incorporation of two new features for improved performance of the counter-balanced actively-controlled lunar crane; lunar crane pendulum mechanics; simulation results; 1/6 scale lunar crane testbed using GE robot for global manipulation; basic deployable truss approaches; bi-pantograph elevator platform; comparison of elevator platforms; perspective of bi-pantograph beam; bi-pantograph synchronously deployable tower/beam; lunar module off-loading concept; module off-loader concept packaged; starburst deployable precision reflector; 3-ring reflector deployment scheme; cross-section of packaged starburst reflector; and focal point and thickness packaging considerations.

  12. TD-LTE Wireless Private Network QoS Transmission Protection

    NASA Astrophysics Data System (ADS)

    Zhang, Jianming; Cheng, Chao; Wu, Zanhong

    With the commencement of construction of the smart grid, the demand power business for reliability and security continues to improve, the reliability transmission of power TD-LTE Wireless Private Network are more and more attention. For TD-LTE power private network, it can provide different QoS services according to the user's business type, to protect the reliable transmission of business. This article describes in detail the AF module of PCC in the EPC network, specifically introduces set up AF module station and QoS mechanisms in the EPS load, fully considers the business characteristics of the special power network, establishing a suitable architecture for mapping QoS parameters, ensuring the implementation of each QoS business. Through using radio bearer management, we can achieve the reliable transmission of each business on physical channel.

  13. Mini Treadmill for Musculoskeletal Health

    NASA Technical Reports Server (NTRS)

    Humphreys, Bradley

    2015-01-01

    Because NASA's approach to space exploration calls for long-term extended missions, there is a pressing need to equip astronauts with effective exercise regimens that will maintain musculoskeletal and cardiovascular health. ZIN Technologies, Inc., has developed an innovative miniature treadmill for use in both zero-gravity and terrestrial environments. The treadmill offers excellent periodic impact exercise to stimulate cardiovascular activity and bone remodeling as well as resistive capability to encourage full-body muscle maintenance. A novel speed-control algorithm allows users to modulate treadmill speed by adjusting stride, and a new subject load device provides a more Earth-like gravity replacement load. This new and compact treadmill offers a unique approach to managing astronaut health while addressing the inherent and stringent challenges of space flight. The innovation also has the potential to offer numerous terrestrial applications, as a real-time daily load stimulus (DLS) measurement feature provides an effective mechanism to combat or manage osteoporosis, a major public health threat for 55 percent of Americans over the age of 50.

  14. Integration of the response to a dietary potassium load: a paleolithic perspective.

    PubMed

    Kamel, Kamel S; Schreiber, Martin; Halperin, Mitchell L

    2014-05-01

    Our purpose is to integrate new insights in potassium (K(+)) physiology to understand K(+) homeostasis and illustrate some of their clinical implications. Since control mechanisms that are essential for survival were likely developed in Paleolithic times, we think the physiology of K(+) homeostasis can be better revealed when viewed from what was required to avoid threats and achieve balance in Paleolithic times. Three issues will be highlighted. First, we shall consider the integrative physiology of the gastrointestinal tract and the role of lactic acid released from enterocytes following absorption of sugars (fruit and berries) to cause a shift of this K(+) load into the liver. Second, we shall discuss the integrative physiology of WNK kinases and modulation of delivery of bicarbonate to the distal nephron to switch the aldosterone response from sodium chloride retention to K(+) secretion when faced with a K(+) load. Third, we shall emphasize the role of intra-renal recycling of urea in achieving K(+) homeostasis when the diet contains protein and K(+).

  15. Effects of load and maintenance duration on the time course of information encoding and retrieval in working memory: from perceptual analysis to post-categorization processes.

    PubMed

    Pinal, Diego; Zurrón, Montserrat; Díaz, Fernando

    2014-01-01

    information encoding, maintenance, and retrieval; these are supported by brain activity in a network of frontal, parietal and temporal regions. Manipulation of WM load and duration of the maintenance period can modulate this activity. Although such modulations have been widely studied using the event-related potentials (ERP) technique, a precise description of the time course of brain activity during encoding and retrieval is still required. Here, we used this technique and principal component analysis to assess the time course of brain activity during encoding and retrieval in a delayed match to sample task. We also investigated the effects of memory load and duration of the maintenance period on ERP activity. Brain activity was similar during information encoding and retrieval and comprised six temporal factors, which closely matched the latency and scalp distribution of some ERP components: P1, N1, P2, N2, P300, and a slow wave. Changes in memory load modulated task performance and yielded variations in frontal lobe activation. Moreover, the P300 amplitude was smaller in the high than in the low load condition during encoding and retrieval. Conversely, the slow wave amplitude was higher in the high than in the low load condition during encoding, and the same was true for the N2 amplitude during retrieval. Thus, during encoding, memory load appears to modulate the processing resources for context updating and post-categorization processes, and during retrieval it modulates resources for stimulus classification and context updating. Besides, despite the lack of differences in task performance related to duration of the maintenance period, larger N2 amplitude and stronger activation of the left temporal lobe after long than after short maintenance periods were found during information retrieval. Thus, results regarding the duration of maintenance period were complex, and future work is required to test the time-based decay theory predictions.

  16. Leukotriene B4-loaded microspheres: a new therapeutic strategy to modulate cell activation

    PubMed Central

    Nicolete, Roberto; Rius, Cristina; Piqueras, Laura; Jose, Peter J; Sorgi, Carlos A; Soares, Edson G; Sanz, Maria J; Faccioli, Lúcia H

    2008-01-01

    Background Leukotriene B4 (LTB4) is a potent inflammatory mediator that also stimulates the immune response. In addition, it promotes polymorphonuclear leukocyte phagocytosis, chemotaxis, chemokinesis and modulates cytokines release. Regarding chemical instability of the leukotriene molecule, in the present study we assessed the immunomodulatory activities conferred by LTB4 released from microspheres (MS). A previous oil-in-water emulsion solvent extraction-evaporation method was chosen to prepare LTB4-loaded MS. Results In the mice cremasteric microcirculation, intraescrotal injection of 0.1 ml of LTB4-loaded MS provoked significant increases in leukocyte rolling flux, adhesion and emigration besides significant decreases in the leukocyte rolling velocity. LTB4-loaded MS also increase peroxisome proliferator-activated receptor-α (PPARα) expression by murine peritoneal macrophages and stimulate them to generate nitrite levels. Monocyte chemoattractant protein-1 (MCP-1) and nitric oxide (NO) productions were also increased when human umbilical vein and artery endothelial cells (HUVECs and HUAECs, respectively) were stimulated with LTB4-loaded MS. Conclusion LTB4-loaded MS preserve the biological activity of the encapsulated mediator indicating their use as a new strategy to modulate cell activation, especially in the innate immune response. PMID:18627613

  17. A benchtop biorobotic platform for in vitro observation of muscle-tendon dynamics with parallel mechanical assistance from an elastic exoskeleton.

    PubMed

    Robertson, Benjamin D; Vadakkeveedu, Siddarth; Sawicki, Gregory S

    2017-05-24

    We present a novel biorobotic framework comprised of a biological muscle-tendon unit (MTU) mechanically coupled to a feedback controlled robotic environment simulation that mimics in vivo inertial/gravitational loading and mechanical assistance from a parallel elastic exoskeleton. Using this system, we applied select combinations of biological muscle activation (modulated with rate-coded direct neural stimulation) and parallel elastic assistance (applied via closed-loop mechanical environment simulation) hypothesized to mimic human behavior based on previously published modeling studies. These conditions resulted in constant system-level force-length dynamics (i.e., stiffness), reduced biological loads, increased muscle excursion, and constant muscle average positive power output-all consistent with laboratory experiments on intact humans during exoskeleton assisted hopping. Mechanical assistance led to reduced estimated metabolic cost and MTU apparent efficiency, but increased apparent efficiency for the MTU+Exo system as a whole. Findings from this study suggest that the increased natural resonant frequency of the artificially stiffened MTU+Exo system, along with invariant movement frequencies, may underlie observed limits on the benefits of exoskeleton assistance. Our novel approach demonstrates that it is possible to capture the salient features of human locomotion with exoskeleton assistance in an isolated muscle-tendon preparation, and introduces a powerful new tool for detailed, direct examination of how assistive devices affect muscle-level neuromechanics and energetics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Running STAR-CCM+ Software on the Peregrine System | High-Performance

    Science.gov Websites

    /bin/lmutil lmstat -c 1999@wind-lms.nrel.gov -a module load star-ccm export TMPDIR="/scratch/$USER + -power -rsh "ssh -oStrictHostKeyChecking=no" -machinefile nodelist -np $(($nodes*$cores , type the commands from the SLURM script and make sure the job runs: module load star-ccm export TMPDIR

  19. Mechanical design and qualification of IR filter mounts and filter wheel of INSAT-3D sounder for low temperature

    NASA Astrophysics Data System (ADS)

    Vora, A. P.; Rami, J. B.; Hait, A. K.; Dewan, C. P.; Subrahmanyam, D.; Kirankumar, A. S.

    2017-11-01

    Next generation Indian Meteorological Satellite will carry Sounder instrument having subsystem of filter wheel measuring Ø260mm and carrying 18 filters arranged in three concentric rings. These filters made from Germanium, are used to separate spectral channels in IR band. Filter wheel is required to be cooled to 214K and rotated at 600 rpm. This Paper discusses the challenges faced in mechanical design of the filter wheel, mainly filter mount design to protect brittle germanium filters from failure under stresses due to very low temperature, compactness of the wheel and casings for improved thermal efficiency, survival under vibration loads and material selection to keep it lighter in weight. Properties of Titanium, Kovar, Invar and Aluminium materials are considered for design. The mount has been designed to accommodate both thermal and dynamic loadings without introducing significant aberrations into the optics or incurring permanent alignment shifts. Detailed finite element analysis of mounts was carried out for stress verification. Results of the qualification tests are discussed for given temperature range of 100K and vibration loads of 12g in Sine and 11.8grms in Random at mount level. Results of the filter wheel qualification as mounted in Electro Optics Module (EOM) are also presented.

  20. Dynamic Compression of Chondrocyte-Agarose Constructs Reveals New Candidate Mechanosensitive Genes

    PubMed Central

    Bougault, Carole; Aubert-Foucher, Elisabeth; Paumier, Anne; Perrier-Groult, Emeline; Huot, Ludovic; Hot, David; Duterque-Coquillaud, Martine; Mallein-Gerin, Frédéric

    2012-01-01

    Articular cartilage is physiologically exposed to repeated loads. The mechanical properties of cartilage are due to its extracellular matrix, and homeostasis is maintained by the sole cell type found in cartilage, the chondrocyte. Although mechanical forces clearly control the functions of articular chondrocytes, the biochemical pathways that mediate cellular responses to mechanical stress have not been fully characterised. The aim of our study was to examine early molecular events triggered by dynamic compression in chondrocytes. We used an experimental system consisting of primary mouse chondrocytes embedded within an agarose hydrogel; embedded cells were pre-cultured for one week and subjected to short-term compression experiments. Using Western blots, we demonstrated that chondrocytes maintain a differentiated phenotype in this model system and reproduce typical chondrocyte-cartilage matrix interactions. We investigated the impact of dynamic compression on the phosphorylation state of signalling molecules and genome-wide gene expression. After 15 min of dynamic compression, we observed transient activation of ERK1/2 and p38 (members of the mitogen-activated protein kinase (MAPK) pathways) and Smad2/3 (members of the canonical transforming growth factor (TGF)-β pathways). A microarray analysis performed on chondrocytes compressed for 30 min revealed that only 20 transcripts were modulated more than 2-fold. A less conservative list of 325 modulated genes included genes related to the MAPK and TGF-β pathways and/or known to be mechanosensitive in other biological contexts. Of these candidate mechanosensitive genes, 85% were down-regulated. Down-regulation may therefore represent a general control mechanism for a rapid response to dynamic compression. Furthermore, modulation of transcripts corresponding to different aspects of cellular physiology was observed, such as non-coding RNAs or primary cilium. This study provides new insight into how chondrocytes respond to mechanical forces. PMID:22615857

  1. The all-optical modulator in dielectric-loaded waveguide with graphene-silicon heterojunction structure

    NASA Astrophysics Data System (ADS)

    Sun, Feiying; Xia, Liangping; Nie, Changbin; Shen, Jun; Zou, Yixuan; Cheng, Guiyu; Wu, Hao; Zhang, Yong; Wei, Dongshan; Yin, Shaoyun; Du, Chunlei

    2018-04-01

    All-optical modulators based on graphene show great promise for on-chip optical interconnects. However, the modulation performance of all-optical modulators is usually based on the interaction between graphene and the fiber, limiting their potential in high integration. Based on this point, an all-optical modulator in a dielectric-loaded waveguide (DLW) with a graphene-silicon heterojunction structure (GSH) is proposed. The DLW raises the waveguide mode, which provides a strong light-graphene interaction. Sufficient tuning of the graphene Fermi energy beyond the Pauli blocking effect is obtained with the presented GSH structure. Under the modulation light with a wavelength of 532 nm and a power of 60 mW, a modulation efficiency of 0.0275 dB µm-1 is achieved for light with a communication wavelength of 1.55 µm in the experiment. This modulator has the advantage of having a compact footprint, which may make it a candidate for achieving a highly integrated all-optical modulator.

  2. Progress on ITER Diagnostic Integration

    NASA Astrophysics Data System (ADS)

    Johnson, David; Feder, Russ; Klabacha, Jonathan; Loesser, Doug; Messineo, Mike; Stratton, Brentley; Wood, Rick; Zhai, Yuhu; Andrew, Phillip; Barnsley, Robin; Bertschinger, Guenter; Debock, Maarten; Reichle, Roger; Udintsev, Victor; Vayakis, George; Watts, Christopher; Walsh, Michael

    2013-10-01

    On ITER, front-end components must operate reliably in a hostile environment. Many will be housed in massive port plugs, which also shield the machine from radiation. Multiple diagnostics reside in a single plug, presenting new challenges for developers. Front-end components must tolerate thermally-induced stresses, disruption-induced mechanical loads, stray ECH radiation, displacement damage, and degradation due to plasma-induced coatings. The impact of failures is amplified due to the difficulty in performing robotic maintenance on these large structures. Motivated by needs to minimize disruption loads on the plugs, standardize the handling of shield modules, and decouple the parallel efforts of the many parties, the packaging strategy for diagnostics has recently focused on the use of 3 vertical shield modules inserted from the plasma side into each equatorial plug structure. At the front of each is a detachable first wall element with customized apertures. Progress on US equatorial and upper plugs will be used as examples, including the layout of components in the interspace and port cell regions. Supported by PPPL under contract DE-AC02-09CH11466 and UT-Battelle, LLC under contract DE-AC05-00OR22725 with the U.S. DOE.

  3. Method for thermoelectric cooler utilization using manufacturer's technical information

    NASA Astrophysics Data System (ADS)

    Ajiwiguna, Tri Ayodha; Nugroho, Rio; Ismardi, Abrar

    2018-03-01

    Thermoelectric cooler (TEC) module has been widely used for many applications. In this study, a procedure to use TEC module for specific requirement is developed based on manufacturer's technical data. For study case, the cooling system using TEC module is designed and tested to maintain 6.6 liter of water at 24 °C while surrounding temperature is 26 °C. First, cooling load estimation is performed empirically by observing the temperature change when cold water is inside the container. Second, the working temperature on hot side and cold side of TEC are determined. Third, the parameters of Seebeck coefficient, thermal resistance and electrical resistance are predicted by using information from the manufacturer. Fourth, the operating current is determined by the assumption the voltage across the TEC is 12V. Fifth, cooling capacity of TEC module is calculated by using energy balance equation of TEC. Sixth, the cooling load and cooling capacity are compared to determine the number of TEC module needed. The result of these calculations showed that one TEC module is enough for cooling system since the cooling load is 17.5 W while the cooling capacity is 18.87 W. From the experimental result, the set point temperature was achieved using one TEC module as predicted in calculations steps.

  4. Climate Considerations Of The Electricity Supply Systems In Industries

    NASA Astrophysics Data System (ADS)

    Asset, Khabdullin; Zauresh, Khabdullina

    2014-12-01

    The study is focused on analysis of climate considerations of electricity supply systems in a pellet industry. The developed analysis model consists of two modules: statistical data of active power losses evaluation module and climate aspects evaluation module. The statistical data module is presented as a universal mathematical model of electrical systems and components of industrial load. It forms a basis for detailed accounting of power loss from the voltage levels. On the basis of the universal model, a set of programs is designed to perform the calculation and experimental research. It helps to obtain the statistical characteristics of the power losses and loads of the electricity supply systems and to define the nature of changes in these characteristics. Within the module, several methods and algorithms for calculating parameters of equivalent circuits of low- and high-voltage ADC and SD with a massive smooth rotor with laminated poles are developed. The climate aspects module includes an analysis of the experimental data of power supply system in pellet production. It allows identification of GHG emission reduction parameters: operation hours, type of electrical motors, values of load factor and deviation of standard value of voltage.

  5. Musculoskeletal stiffness changes linearly in response to increasing load during walking gait.

    PubMed

    Caron, Robert R; Lewis, Cara L; Saltzman, Elliot; Wagenaar, Robert C; Holt, Kenneth G

    2015-04-13

    Development of biologically inspired exoskeletons to assist soldiers in carrying load is a rapidly expanding field. Understanding how the body modulates stiffness in response to changing loads may inform the development of these exoskeletons and is the purpose of the present study. Seventeen subjects walked on a treadmill at a constant preferred walking velocity while nine different backpack loading conditions ranging from 12.5% to 40% bodyweight (BW) were introduced in an ascending and then descending order. Kinematic data were collected using Optotrak, a 3D motion analysis system, and used to estimate the position of the center of mass (COM). Two different estimates of stiffness were computed for the stance phase of gait. Both measures of stiffness were positively and linearly related to load magnitudes, with the slopes of the relationships being larger for the descending than the ascending conditions. These results indicate that changes in mechanical stiffness brought about in the musculoskeletal system vary systematically during increases in load to ensure that critical kinematic variables measured in a previous publication remain invariant (Caron et al., 2013). Changes in stiffness and other kinematics measured at the 40% BW condition suggest a boundary in which gait stiffness control limit is reached and a new gait pattern is required. Since soldiers are now carrying up to 96% of body weight, the need for research with even heavier loads is warranted. These findings have implications on the development of exoskeletons to assist in carrying loads. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Skeletal adaptation to intramedullary pressure-induced interstitial fluid flow is enhanced in mice subjected to targeted osteocyte ablation.

    PubMed

    Kwon, Ronald Y; Meays, Diana R; Meilan, Alexander S; Jones, Jeremiah; Miramontes, Rosa; Kardos, Natalie; Yeh, Jiunn-Chern; Frangos, John A

    2012-01-01

    Interstitial fluid flow (IFF) is a potent regulatory signal in bone. During mechanical loading, IFF is generated through two distinct mechanisms that result in spatially distinct flow profiles: poroelastic interactions within the lacunar-canalicular system, and intramedullary pressurization. While the former generates IFF primarily within the lacunar-canalicular network, the latter generates significant flow at the endosteal surface as well as within the tissue. This gives rise to the intriguing possibility that loading-induced IFF may differentially activate osteocytes or surface-residing cells depending on the generating mechanism, and that sensation of IFF generated via intramedullary pressurization may be mediated by a non-osteocytic bone cell population. To begin to explore this possibility, we used the Dmp1-HBEGF inducible osteocyte ablation mouse model and a microfluidic system for modulating intramedullary pressure (ImP) to assess whether structural adaptation to ImP-driven IFF is altered by partial osteocyte depletion. Canalicular convective velocities during pressurization were estimated through the use of fluorescence recovery after photobleaching and computational modeling. Following osteocyte ablation, transgenic mice exhibited severe losses in bone structure and altered responses to hindlimb suspension in a compartment-specific manner. In pressure-loaded limbs, transgenic mice displayed similar or significantly enhanced structural adaptation to Imp-driven IFF, particularly in the trabecular compartment, despite up to ∼50% of trabecular lacunae being uninhabited following ablation. Interestingly, regression analysis revealed relative gains in bone structure in pressure-loaded limbs were correlated with reductions in bone structure in unpressurized control limbs, suggesting that adaptation to ImP-driven IFF was potentiated by increases in osteoclastic activity and/or reductions in osteoblastic activity incurred independently of pressure loading. Collectively, these studies indicate that structural adaptation to ImP-driven IFF can proceed unimpeded following a significant depletion in osteocytes, consistent with the potential existence of a non-osteocytic bone cell population that senses ImP-driven IFF independently and potentially parallel to osteocytic sensation of poroelasticity-derived IFF.

  7. Context Modulates Congruency Effects in Selective Attention to Social Cues.

    PubMed

    Ravagli, Andrea; Marini, Francesco; Marino, Barbara F M; Ricciardelli, Paola

    2018-01-01

    Head and gaze directions are used during social interactions as essential cues to infer where someone attends. When head and gaze are oriented toward opposite directions, we need to extract socially meaningful information despite stimulus conflict. Recently, a cognitive and neural mechanism for filtering-out conflicting stimuli has been identified while performing non-social attention tasks. This mechanism is engaged proactively when conflict is anticipated in a high proportion of trials and reactively when conflict occurs infrequently. Here, we investigated whether a similar mechanism is at play for limiting distraction from conflicting social cues during gaze or head direction discrimination tasks in contexts with different probabilities of conflict. Results showed that, for the gaze direction task only (Experiment 1), inverse efficiency (IE) scores for distractor-absent trials (i.e., faces with averted gaze and centrally oriented head) were larger (indicating worse performance) when these trials were intermixed with congruent/incongruent distractor-present trials (i.e., faces with averted gaze and tilted head in the same/opposite direction) relative to when the same distractor-absent trials were shown in isolation. Moreover, on distractor-present trials, IE scores for congruent (vs. incongruent) head-gaze pairs in blocks with rare conflict were larger than in blocks with frequent conflict, suggesting that adaptation to conflict was more efficient than adaptation to infrequent events. However, when the task required discrimination of head orientation while ignoring gaze direction, performance was not impacted by both block-level and current trial congruency (Experiment 2), unless the cognitive load of the task was increased by adding a concurrent task (Experiment 3). Overall, our study demonstrates that during attention to social cues proactive cognitive control mechanisms are modulated by the expectation of conflicting stimulus information at both the block- and trial-sequence level, and by the type of task and cognitive load. This helps to clarify the inherent differences in the distracting potential of head and gaze cues during speeded social attention tasks.

  8. Offgassing Characterization of the Columbus Laboratory Module

    NASA Technical Reports Server (NTRS)

    Rampini, riccardo; Lobascio, Cesare; Perry, Jay L.; Hinderer, Stephan

    2005-01-01

    Trace gaseous contamination in the cabin environment is a major concern for manned spacecraft, especially those designed for long duration missions, such as the International Space Station (ISS). During the design phase, predicting the European-built Columbus laboratory module s contribution to the ISS s overall trace contaminant load relied on "trace gas budgeting" based on material level and assembled article tests data. In support of the Qualification Review, a final offgassing test has been performed on the complete Columbus module to gain cumulative system offgassing data. Comparison between the results of the predicted offgassing load based on the budgeted material/assembled article-level offgassing rates and the module-level offgassing test is presented. The Columbus module offgassing test results are also compared to results from similar tests conducted for Node 1, U.S. Laboratory, and Airlock modules.

  9. Evaluation of the microclimate in poultry transport module drawers during the marketing process of end-of-lay hens from farm to slaughter.

    PubMed

    Richards, G J; Wilkins, L J; Weeks, C A; Knowles, T G; Brown, S N

    2012-11-10

    Changes in module drawer temperature and relative humidity were monitored for 24 commercial loads of hens. Mathematical models revealed significant differences in predicted drawer temperature depending on their location and the outside environmental temperature. Higher predicted temperatures were found in uppermost drawers of the top modules at the front of the lorry, and lower temperatures in drawers on the outer sides of modules and in those drawers in modules next to the back of the lorry in both the upper and lower modules during transport. In the lairage, drawer temperature generally decreased, except in drawers at the top of modules where temperatures increased. Temperature increases were most often recorded in modules which had been located at the rear of the lorry, which were generally cooler during transport. End-of-lay hens would appear to be exposed to a greater risk of cold stress rather than heat stress in the UK. Inspection of birds during transport, or upon arrival, should be directed to the bottom and side drawers of a load when looking for cold stress, and the top row of drawers (centre) of the top modules when looking for heat stress. The frequency of inspections should increase at times of high ambient temperature while the birds are being held in lairages. Adjusting the numbers of birds loaded per drawer according to bird condition and weather appears to be an effective mitigation strategy which is already in use commercially.

  10. Ultralow-Carbon Nanotube-Toughened Epoxy: The Critical Role of a Double-Layer Interface.

    PubMed

    Liu, Jingwei; Chen, Chao; Feng, Yuezhan; Liao, Yonggui; Ye, Yunsheng; Xie, Xiaolin; Mai, Yiu-Wing

    2018-01-10

    Understanding the chemistry and structure of interfaces within epoxy resins is important for studying the mechanical properties of nanofiller-filled nanocomposites as well as for developing high-performance polymer nanocomposites. Despite the intensive efforts to construct nanofiller/matrix interfaces, few studies have demonstrated an enhanced stress-transferring efficiency while avoiding unfavorable deformation due to undesirable interface fractures. Here, we report an optimized method to prepare epoxy-based nanocomposites whose interfaces are chemically modulated by poly(glycidyl methacrylate)-block-poly(hexyl methacrylate) (PGMA-b-PHMA)-functionalized multiwalled carbon nanotubes (bc@fMWNTs) and also offer a fundamental explanation of crack growth behavior and the toughening mechanism of the resulting nanocomposites. The presence of block copolymers on the surface of the MWNT results in a promising double-layered interface, in which (1) the outer-layered PGMA segment provides good dispersion in and strong interface bonding with the epoxy matrix, which enhances load transfer efficiency and debonding stress, and (2) the interlayered rubbery PHMA segment around the MWNT provides the maximum removable space for nanotubes as well as triggering cavitation while promoting local plastic matrix deformation, for example, shear banding to dissipate fracture energy. An outstanding toughening effect is achieved with only a 0.05 wt % carbon nanotube loading with the bc@fMWNT, that is, needing only a 20-times lower loading to obtain improvements in fracture toughness comparable to epoxy-based nanocomposites. The enhancements of their corresponding ultimate mode-I fracture toughnesses and fracture energies are 4 times higher than those of pristine MWNT-filled epoxy. These results demonstrate that a MWNT/epoxy interface could be optimized by changing the component structure of grafted modifiers, thereby facilitating the transfer of both mechanical load and energy dissipation across the nanofiller/matrix interface. This work provides a new route for the rational design and development of polymer nanocomposites with exceptional mechanical performance.

  11. E-beam high voltage switching power supply

    DOEpatents

    Shimer, Daniel W.; Lange, Arnold C.

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360.degree./n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load.

  12. E-beam high voltage switching power supply

    DOEpatents

    Shimer, D.W.; Lange, A.C.

    1997-03-11

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360{degree}/n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load. 7 figs.

  13. The dynamics of certain indicators of nuclein metabolism during hypokinesia in rats of different ages under the influence of sinusoidal modulated currents and measured physical load

    NASA Technical Reports Server (NTRS)

    Sokolova, Z. A.

    1980-01-01

    The influence of sinusoidal modulated currents was studied and physical loads on the nucleic acid content and the nucleotide composition of the total RNA in muscles of rats of various ages under conditions of hypodynamia were measured. Methodology utilized is described and conclusions are presented.

  14. Mechanical characterization of human brain tissue.

    PubMed

    Budday, S; Sommer, G; Birkl, C; Langkammer, C; Haybaeck, J; Kohnert, J; Bauer, M; Paulsen, F; Steinmann, P; Kuhl, E; Holzapfel, G A

    2017-01-15

    Mechanics are increasingly recognized to play an important role in modulating brain form and function. Computational simulations are a powerful tool to predict the mechanical behavior of the human brain in health and disease. The success of these simulations depends critically on the underlying constitutive model and on the reliable identification of its material parameters. Thus, there is an urgent need to thoroughly characterize the mechanical behavior of brain tissue and to identify mathematical models that capture the tissue response under arbitrary loading conditions. However, most constitutive models have only been calibrated for a single loading mode. Here, we perform a sequence of multiple loading modes on the same human brain specimen - simple shear in two orthogonal directions, compression, and tension - and characterize the loading-mode specific regional and directional behavior. We complement these three individual tests by combined multiaxial compression/tension-shear tests and discuss effects of conditioning and hysteresis. To explore to which extent the macrostructural response is a result of the underlying microstructural architecture, we supplement our biomechanical tests with diffusion tensor imaging and histology. We show that the heterogeneous microstructure leads to a regional but not directional dependence of the mechanical properties. Our experiments confirm that human brain tissue is nonlinear and viscoelastic, with a pronounced compression-tension asymmetry. Using our measurements, we compare the performance of five common constitutive models, neo-Hookean, Mooney-Rivlin, Demiray, Gent, and Ogden, and show that only the isotropic modified one-term Ogden model is capable of representing the hyperelastic behavior under combined shear, compression, and tension loadings: with a shear modulus of 0.4-1.4kPa and a negative nonlinearity parameter it captures the compression-tension asymmetry and the increase in shear stress under superimposed compression but not tension. Our results demonstrate that material parameters identified for a single loading mode fail to predict the response under arbitrary loading conditions. Our systematic characterization of human brain tissue will lead to more accurate computational simulations, which will allow us to determine criteria for injury, to develop smart protection systems, and to predict brain development and disease progression. There is a pressing need to characterize the mechanical behavior of human brain tissue under multiple loading conditions, and to identify constitutive models that are able to capture the tissue response under these conditions. We perform a sequence of experimental tests on the same brain specimen to characterize the regional and directional behavior, and we supplement our tests with DTI and histology to explore to which extent the macrostructural response is a result of the underlying microstructure. Results demonstrate that human brain tissue is nonlinear and viscoelastic, with a pronounced compression-tension asymmetry, and we show that the multiaxial data can best be captured by a modified version of the one-term Ogden model. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Dedicated EGR engine with dynamic load control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayman, Alan W.; McAlpine, Robert S.; Keating, Edward J.

    An internal combustion engine comprises a first engine bank and a second engine bank. A first intake valve is disposed in an intake port of a cylinder of the first engine bank, and is configured for metering the first flow of combustion air by periodically opening and closing according to a first intake valve lift and duration characteristic. A variable valve train control mechanism is configured for affecting the first intake valve lift and duration characteristic. Either a lift or duration of the first intake valve is modulated so as to satisfy an EGR control criterion.

  16. Working memory load-dependent spatio-temporal activity of single-trial P3 response detected with an adaptive wavelet denoiser.

    PubMed

    Zhang, Qiushi; Yang, Xueqian; Yao, Li; Zhao, Xiaojie

    2017-03-27

    Working memory (WM) refers to the holding and manipulation of information during cognitive tasks. Its underlying neural mechanisms have been explored through both functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). Trial-by-trial coupling of simultaneously collected EEG and fMRI signals has become an important and promising approach to study the spatio-temporal dynamics of such cognitive processes. Previous studies have demonstrated a modulation effect of the WM load on both the BOLD response in certain brain areas and the amplitude of P3. However, much remains to be explored regarding the WM load-dependent relationship between the amplitude of ERP components and cortical activities, and the low signal-to-noise ratio (SNR) of the EEG signal still poses a challenge to performing single-trial analyses. In this paper, we investigated the spatio-temporal activities of P3 during an n-back verbal WM task by introducing an adaptive wavelet denoiser into the extraction of single-trial P3 features and using general linear model (GLM) to integrate simultaneously collected EEG and fMRI data. Our results replicated the modulation effect of the WM load on the P3 amplitude. Additionally, the activation of single-trial P3 amplitudes was detected in multiple brain regions, including the insula, the cuneus, the lingual gyrus (LG), and the middle occipital gyrus (MOG). Moreover, we found significant correlations between P3 features and behavioral performance. These findings suggest that the single-trial integration of simultaneous EEG and fMRI signals may provide new insights into classical cognitive functions. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Long Term Displacement Data of Woven Fabric Webbings Under Constant Load for Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Kenner, Winfred S.; Jones, Thomas C.; Doggett, William R.; Lucy, Melvin H.; Grondin, Trevor A.; Whitley, Karen S.; Duncan, Quinton; Plant, James V.

    2014-01-01

    Inflatable modules for space applications offer weight and launch volume savings relative to current metallic modules. Limited data exist on the creep behavior of the restraint layer of inflatable modules. Long-term displacement and strain data of two high strength woven fabric webbings, Kevlar and Vectran, under constant load is presented. The creep behavior of webbings is required by designers to help determine service life parameters of inflatable modules. Four groups of different webbings with different loads were defined for this study. Group 1 consisted of 4K Kevlar webbings loaded to 33% ultimate tensile strength and 6K Vectran webbings loaded to 27% ultimate tensile strength, group 2 consisted of 6K Kevlar webbings loaded to 40% and 43% ultimate tensile strength, and 6K Vectran webbings loaded to 50% ultimate tensile strength, group 3 consisted of 6K Kevlar webbings loaded to 52% ultimate tensile strength and 6K Vectran webbings loaded to 60% ultimate tensile strength, and group 4 consisted of 12.5K Kevlar webbings loaded to 22% ultimate tensile strength, and 12.5K Vectran webbings loaded to 22% ultimate tensile strength. The uniquely designed test facility, hardware, displacement measuring devices, and test data are presented. Test data indicate that immediately after loading all webbings stretch an inch or more, however as time increases displacement values significantly decrease to fall within a range of several hundredth of an inch over the remainder of test period. Webbings in group 1 exhibit near constant displacements and strains over a 17-month period. Data acquisition was suspended after the 17th month, however webbings continue to sustain load without any local webbing damage as of the 21st month of testing. Webbings in group 2 exhibit a combination of initial constant displacement and subsequent increases in displacement rates over a 16-month period. Webbings in group 3 exhibit steady increases in displacement rates leading to webbing failure over a 3-month period. Five of six webbings experienced local damage and subsequent failure in group 3. Data from group 4 indicates increasing webbing displacements over a 7-month period. All webbings in groups 1, 2, and 4 remain suspended without any local damage as of the writing of this paper. Variations in facility temperatures over test period seem to have had limited effect on long-term webbing displacement data.

  18. Cognitive load effects on early visual perceptual processing.

    PubMed

    Liu, Ping; Forte, Jason; Sewell, David; Carter, Olivia

    2018-05-01

    Contrast-based early visual processing has largely been considered to involve autonomous processes that do not need the support of cognitive resources. However, as spatial attention is known to modulate early visual perceptual processing, we explored whether cognitive load could similarly impact contrast-based perception. We used a dual-task paradigm to assess the impact of a concurrent working memory task on the performance of three different early visual tasks. The results from Experiment 1 suggest that cognitive load can modulate early visual processing. No effects of cognitive load were seen in Experiments 2 or 3. Together, the findings provide evidence that under some circumstances cognitive load effects can penetrate the early stages of visual processing and that higher cognitive function and early perceptual processing may not be as independent as was once thought.

  19. System design and operation of a 100 kilovolt, 2 kilohertz pulse modulator for plasma source ion implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reass, W.A.

    1994-07-01

    This paper describes the electrical design and operation of a high power modulator system implemented for the Los Alamos Plasma Source Ion Implantation (PSII) facility. To test the viability of the PSII process for various automotive components, the modulator must accept wide variations of load impedance. Components have varying area and composition which must be processed with different plasmas. Additionally, the load impedance may change by large factors during the typical 20 uS pulse, due to plasma displacement currents and sheath growth. As a preliminary design to test the system viability for automotive component implantation, suitable for a manufacturing environment,more » circuit topology must be able to directly scale to high power versions, for increased component through-put. We have chosen an evolutionary design approach with component families of characterized performance, which should Ion result in a reliable modulator system with component lifetimes. The modulator utilizes a pair of Litton L-3408 hollow beam amplifier tubes as switching elements in a ``hot-deck`` configuration. Internal to the main of planar triode hot deck, an additional pair decks, configured in a totem pole circuit, provide input drive to the L-3408 mod-anodes. The modulator can output over 2 amps average current (at 100 kV) with 1 kW of modanode drive. Diagnostic electronics monitor the load and stops pulses for 100 mS when a load arcs occur. This paper, in addition to providing detailed engineering design information, will provide operational characteristics and reliability data that direct the design to the higher power, mass production line capable modulators.« less

  20. Intracellular stress tomography reveals stress focusing and structural anisotropy in cytoskeleton of living cells

    NASA Technical Reports Server (NTRS)

    Hu, Shaohua; Chen, Jianxin; Fabry, Ben; Numaguchi, Yasushi; Gouldstone, Andrew; Ingber, Donald E.; Fredberg, Jeffrey J.; Butler, James P.; Wang, Ning

    2003-01-01

    We describe a novel synchronous detection approach to map the transmission of mechanical stresses within the cytoplasm of an adherent cell. Using fluorescent protein-labeled mitochondria or cytoskeletal components as fiducial markers, we measured displacements and computed stresses in the cytoskeleton of a living cell plated on extracellular matrix molecules that arise in response to a small, external localized oscillatory load applied to transmembrane receptors on the apical cell surface. Induced synchronous displacements, stresses, and phase lags were found to be concentrated at sites quite remote from the localized load and were modulated by the preexisting tensile stress (prestress) in the cytoskeleton. Stresses applied at the apical surface also resulted in displacements of focal adhesion sites at the cell base. Cytoskeletal anisotropy was revealed by differential phase lags in X vs. Y directions. Displacements and stresses in the cytoskeleton of a cell plated on poly-L-lysine decayed quickly and were not concentrated at remote sites. These data indicate that mechanical forces are transferred across discrete cytoskeletal elements over long distances through the cytoplasm in the living adherent cell.

  1. Research and Development for Off-Road Fuel Cell Applications U.S. Department of Energy Grant DE-FG36-04GO14303 - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, Michael; Erickson, Paul; Lawrence, Richard

    Off-road concerns are related to the effects of shock and vibration and air quality on fuel cell power requirements. Mechanical stresses on differing material makeup and mass distribution within the system may render some components susceptible to impulse trauma while others may show adverse effects from harmonic disturbances or broad band mechanical agitation. One of the recognized challenges in fuel cell systems air purification is in providing a highly efficient particulate and chemical filter with minimal pressure drop. PEM integrators do not want additional parasitic loads added to the system as compensation for a highly efficient yet highly restrictive filter.more » Additionally, there is challenge in integrating multiple functions into a single air intake module tasked with effectively filtering high dust loads, diesel soot, pesticides, ammonias, and other anticipated off-road contaminants. This project has investigated both off-road associated issues cumulating in the prototype build and testing of two light duty off-road vehicles with integrated fuel cell power plant systems.« less

  2. Low-impact mating system

    NASA Technical Reports Server (NTRS)

    Lewis, James L. (Inventor); Carroll, Monty B. (Inventor); Le, Thang D. (Inventor); Morales, Ray H. (Inventor); Robertson, Brandan R. (Inventor)

    2009-01-01

    An androgynous mating system for mating two exoatmospheric space modules comprising a first mating assembly capable of mating with a second mating assembly; a second mating assembly structurally identical to said first mating assembly, said first mating assembly comprising; a load ring; a plurality of load cell subassemblies; a plurality of actuators; a base ring; a tunnel; a closed loop control system; one or more electromagnets; and one or more striker plates, wherein said one or more electomagnets on said second mating assembly are capable of mating with said one or more striker plates on said first mating assembly, and wherein said one or more striker plates is comprised of a plate of predetermined shape and a 5-DOF mechanism capable of maintaining predetermined contact requirements during said mating of said one or more electromagnets and said one or more striker plates.

  3. Experience with high performance V/STOL fighter projects at MBB

    NASA Technical Reports Server (NTRS)

    Aulehla, F.; Kissel, G. K.

    1981-01-01

    Flight control systems and aerodynamic aspects of experimental V/STOL aircraft are discussed. The VJ 101 C featured tilting engines for increased thrust, reheat for takeoff, simple translation, triangular decentralization of the engines for thrust modulation, and moderate ground effects. Two experimental aircraft were built, with and without reheat, capable of Mach 2 and Mach 1.04, respectively. The mechanical flight control system and tests are outlined, both for hover rig and flight configurations. Ground suction, acoustic and thermal loading, sodium silicate coatings to avoid ground corrosion, and recirculation are considered. Results of the follow-on project to the VJ 101 C, the AVS, which was developed by NASA, are reviewed, and it is noted that trends toward thrust-to-weight ratios exceeding one, in concert with low wing loading, favor the development of V/STOL aircraft.

  4. Voltage Preconditioning Allows Modulated Gene Expression in Neurons Using PEI-complexed siRNA

    PubMed Central

    Sridharan, Arati; Patel, Chetan; Muthuswamy, Jit

    2013-01-01

    We present here a high efficiency, high viability siRNA-delivery method using a voltage-controlled chemical transfection strategy to achieve modulated delivery of polyethylenimine (PEI) complexed with siRNA in an in vitro culture of neuro2A cells and neurons. Low voltage pulses were applied to adherent cells before the administration of PEI-siRNA complexes. Live assays of neuro2a cells transfected with fluorescently tagged siRNA showed an increase in transfection efficiency from 62 ± 14% to 98 ± 3.8% (after −1 V). In primary hippocampal neurons, transfection efficiencies were increased from 30 ± 18% to 76 ± 18% (after −1 V). Negligible or low-level transfection was observed after preconditioning at higher voltages, suggesting an inverse relationship with applied voltage. Experiments with propidium iodide ruled out the role of electroporation in the transfection of siRNAs suggesting an alternate electro-endocytotic mechanism. In addition, image analysis of preconditioned and transfected cells demonstrates siRNA uptake and loading that is tuned to preconditioning voltage levels. There is approximately a fourfold increase in siRNA loading after preconditioning at −1 V compared with the same at ±2–3 V. Modulated gene expression is demonstrated in a functional knockdown of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in neuro2A cells using siRNA. Cell density and dendritic morphological changes are also demonstrated in modulated knockdown of brain derived neurotrophic factor (BDNF) in primary hippocampal neurons. The method reported here has potential applications in the development of high-throughput screening systems for large libraries of siRNA molecules involving difficult-to-transfect cells like neurons. PMID:23531602

  5. Voltage Preconditioning Allows Modulated Gene Expression in Neurons Using PEI-complexed siRNA.

    PubMed

    Sridharan, Arati; Patel, Chetan; Muthuswamy, Jit

    2013-03-26

    We present here a high efficiency, high viability siRNA-delivery method using a voltage-controlled chemical transfection strategy to achieve modulated delivery of polyethylenimine (PEI) complexed with siRNA in an in vitro culture of neuro2A cells and neurons. Low voltage pulses were applied to adherent cells before the administration of PEI-siRNA complexes. Live assays of neuro2a cells transfected with fluorescently tagged siRNA showed an increase in transfection efficiency from 62 ± 14% to 98 ± 3.8% (after -1 V). In primary hippocampal neurons, transfection efficiencies were increased from 30 ± 18% to 76 ± 18% (after -1 V). Negligible or low-level transfection was observed after preconditioning at higher voltages, suggesting an inverse relationship with applied voltage. Experiments with propidium iodide ruled out the role of electroporation in the transfection of siRNAs suggesting an alternate electro-endocytotic mechanism. In addition, image analysis of preconditioned and transfected cells demonstrates siRNA uptake and loading that is tuned to preconditioning voltage levels. There is approximately a fourfold increase in siRNA loading after preconditioning at -1 V compared with the same at ±2-3 V. Modulated gene expression is demonstrated in a functional knockdown of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in neuro2A cells using siRNA. Cell density and dendritic morphological changes are also demonstrated in modulated knockdown of brain derived neurotrophic factor (BDNF) in primary hippocampal neurons. The method reported here has potential applications in the development of high-throughput screening systems for large libraries of siRNA molecules involving difficult-to-transfect cells like neurons.Molecular Therapy-Nucleic Acids (2013) 2, e82; doi:10.1038/mtna.2013.10; published online 26 March 2013.

  6. Progressive Fracture of Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Minnetyan, Levon

    2008-01-01

    A new approach is described for evaluating fracture in composite structures. This approach is independent of classical fracture mechanics parameters like fracture toughness. It relies on computational simulation and is programmed in a stand-alone integrated computer code. It is multiscale, multifunctional because it includes composite mechanics for the composite behavior and finite element analysis for predicting the structural response. It contains seven modules; layered composite mechanics (micro, macro, laminate), finite element, updating scheme, local fracture, global fracture, stress based failure modes, and fracture progression. The computer code is called CODSTRAN (Composite Durability Structural ANalysis). It is used in the present paper to evaluate the global fracture of four composite shell problems and one composite built-up structure. Results show that the composite shells and the built-up composite structure global fracture are enhanced when internal pressure is combined with shear loads.

  7. Electro-mechanical response of a 3D nerve bundle model to mechanical loads leading to axonal injury.

    PubMed

    Cinelli, I; Destrade, M; Duffy, M; McHugh, P

    2017-07-01

    Axonal damage is one of the most common pathological features of traumatic brain injury, leading to abnormalities in signal propagation for nervous systems. We present a 3D fully coupled electro-mechanical model of a nerve bundle, made with the finite element software Abaqus 6.13-3. The model includes a real-time coupling, modulated threshold for spiking activation and independent alteration of the electrical properties for each 3-layer fibre within the bundle. Compression and tension are simulated to induce damage at the nerve membrane. Changes in strain, stress distribution and neural activity are investigated for myelinated and unmyelinated nerve fibres, by considering the cases of an intact and of a traumatized nerve membrane. Results show greater changes in transmitting action potential in the myelinated fibre.

  8. Research of Modulation of Bilateral Frequency Difference Based on Load Mode

    NASA Astrophysics Data System (ADS)

    Lin, Shenghong; Mao, Chizu; Zhu, Jianquan; Lu, Junyu

    2017-05-01

    Owning to high reliability, simple operation and easy acquirement of signals, modulation of bilateral frequency difference (MBFD) in HVDC is worthy for application in practical engineering. With the example of an AC/DC hybrid network and the software PSD-BPA, this paper analyses the effect of MBFD to DC block. The modulators parameters are setting by means of simulation. Two types of loads modes are considered to research the impact of them on simulation. The results indicate that in cooperation with operation modes adjusting at AC system, MBFD will effectively release the impact from DC block and shortage of reactive power caused by rapid variation of DC power owning to modulation. To achieve the best effect, only modulators of some HVDC systems instead of all of them are opened.

  9. Aircraft Noise Prediction Program theoretical manual: Propeller aerodynamics and noise

    NASA Technical Reports Server (NTRS)

    Zorumski, W. E. (Editor); Weir, D. S. (Editor)

    1986-01-01

    The prediction sequence used in the aircraft noise prediction program (ANOPP) is described. The elements of the sequence are called program modules. The first group of modules analyzes the propeller geometry, the aerodynamics, including both potential and boundary-layer flow, the propeller performance, and the surface loading distribution. This group of modules is based entirely on aerodynamic strip theory. The next group of modules deals with the first group. Predictions of periodic thickness and loading noise are determined with time-domain methods. Broadband noise is predicted by a semiempirical method. Near-field predictions of fuselage surface pressrues include the effects of boundary layer refraction and scattering. Far-field predictions include atmospheric and ground effects.

  10. Dynamic loading and stress life analysis of permanent space station modules

    NASA Astrophysics Data System (ADS)

    Anisimov, A. V.; Krokhin, I. A.; Likhoded, A. I.; Malinin, A. A.; Panichkin, N. G.; Sidorov, V. V.; Titov, V. A.

    2016-11-01

    Some methodological approaches to solving several key problems of dynamic loading and structural strength analysis of Permanent Space Station (PSS)modules developed on the basis of the working experience of Soviet and Russian PSS and the International Space station (ISS) are presented. The solutions of the direct and semi-inverse problems of PSS structure dynamics are mathematically stated. Special attention is paid to the use of the results of ground structural strength tests of space station modules and the data on the actual flight actions on the station and its dynamic responses in the orbital operation regime. The procedure of determining the dynamics and operation life parameters of elements of the PSS modules is described.

  11. New extension software modules to enhance searching and display of transcriptome data in Tripal databases

    PubMed Central

    Chen, Ming; Henry, Nathan; Almsaeed, Abdullah; Zhou, Xiao; Wegrzyn, Jill; Ficklin, Stephen

    2017-01-01

    Abstract Tripal is an open source software package for developing biological databases with a focus on genetic and genomic data. It consists of a set of core modules that deliver essential functions for loading and displaying data records and associated attributes including organisms, sequence features and genetic markers. Beyond the core modules, community members are encouraged to contribute extension modules to build on the Tripal core and to customize Tripal for individual community needs. To expand the utility of the Tripal software system, particularly for RNASeq data, we developed two new extension modules. Tripal Elasticsearch enables fast, scalable searching of the entire content of a Tripal site as well as the construction of customized advanced searches of specific data types. We demonstrate the use of this module for searching assembled transcripts by functional annotation. A second module, Tripal Analysis Expression, houses and displays records from gene expression assays such as RNA sequencing. This includes biological source materials (biomaterials), gene expression values and protocols used to generate the data. In the case of an RNASeq experiment, this would reflect the individual organisms and tissues used to produce sequencing libraries, the normalized gene expression values derived from the RNASeq data analysis and a description of the software or code used to generate the expression values. The module will load data from common flat file formats including standard NCBI Biosample XML. Data loading, display options and other configurations can be controlled by authorized users in the Drupal administrative backend. Both modules are open source, include usage documentation, and can be found in the Tripal organization’s GitHub repository. Database URL: Tripal Elasticsearch module: https://github.com/tripal/tripal_elasticsearch Tripal Analysis Expression module: https://github.com/tripal/tripal_analysis_expression PMID:29220446

  12. Spatial variation of fixed charge density in knee joint cartilage from sodium MRI - Implication on knee joint mechanics under static loading.

    PubMed

    Räsänen, Lasse P; Tanska, Petri; Mononen, Mika E; Lammentausta, Eveliina; Zbýň, Štefan; Venäläinen, Mikko S; Szomolanyi, Pavol; van Donkelaar, Corrinus C; Jurvelin, Jukka S; Trattnig, Siegfried; Nieminen, Miika T; Korhonen, Rami K

    2016-10-03

    The effects of fixed charge density (FCD) and cartilage swelling have not been demonstrated on cartilage mechanics on knee joint level before. In this study, we present how the spatial and local variations of FCD affects the mechanical response of the knee joint cartilage during standing (half of the body weight, 13 minutes) using finite element (FE) modeling. The FCD distribution of tibial cartilage of an asymptomatic subject was determined using sodium ( 23 Na) MRI at 7T and implemented into a 3-D FE-model of the knee joint (Subject-specific model, FCD: 0.18±0.08 mEq/ml). Tissue deformation in the Subject-specific model was validated against experimental, in vivo loading of the joint conducted with a MR-compatible compression device. For comparison, models with homogeneous FCD distribution (homogeneous model) and FCD distribution obtained from literature (literature model) were created. Immediately after application of the load (dynamic response), the variations in FCD had minor effects on cartilage stresses and strains. After 13 minutes of standing, the spatial and local variations in FCD had most influence on axial strains. In the superficial tibial cartilage in the Subject-specific model, axial strains were increased up to +13% due to smaller FCD (mean -11%), as compared to the homogeneous model. Compared to the literature model, those were decreased up to -18% due to greater FCD (mean +7%). The findings demonstrate that the spatial and local FCD variations in cartilage modulates strains in knee joint cartilage. Thereby, the results highlight the mechanical importance of site-specific content of proteoglycans in cartilage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Running VisIt Software on the Peregrine System | High-Performance Computing

    Science.gov Websites

    kilobyte range. VisIt features a robust remote visualization capability. VisIt can be started on a local machine and used to visualize data on a remote compute cluster.The remote machine must be able to send VisIt module must be loaded as part of this process. To enable remote visualization the 'module load

  14. Role of age and injury mechanism on cervical spine injury tolerance from head contact loading.

    PubMed

    Yoganandan, Narayan; Chirvi, Sajal; Voo, Liming; Pintar, Frank A; Banerjee, Anjishnu

    2018-02-17

    The objective of this study was to determine the influence of age and injury mechanism on cervical spine tolerance to injury from head contact loading using survival analysis. This study analyzed data from previously conducted experiments using post mortem human subjects (PMHS). Group A tests used the upright intact head-cervical column experimental model. The inferior end of the specimen was fixed, the head was balanced by a mechanical system, and natural lordosis was removed. Specimens were placed on a testing device via a load cell. The piston applied loading at the vertex region. Spinal injuries were identified using medical images. Group B tests used the inverted head-cervical column experimental model. In one study, head-T1 specimens were fixed distally, and C7-T1 joints were oriented anteriorly, preserving lordosis. Torso mass of 16 kg was added to the specimen. In another inverted head-cervical column study, occiput-T2 columns were obtained, an artificial head was attached, T1-T2 was fixed, C4-C5 disc was maintained horizontal in the lordosis posture, and C7-T1 was unconstrained. The specimens were attached to the drop test carriage carrying a torso mass of 15 kg. A load cell at the inferior end measured neck loads in both studies. Axial neck force and age were used as the primary response variable and covariate to derive injury probability curves using survival analysis. Group A tests showed that age is a significant (P < .05) and negative covariate; that is, increasing age resulted in decreasing force for the same risk. Injuries were mainly vertebral body fractures and concentrated at one level, mid-to-lower cervical spine, and were attributed to compression-related mechanisms. However, age was not a significant covariate for the combined data from group B tests. Both group B tests produced many soft tissue injuries, at all levels, from C1 to T1. The injury mechanism was attributed to mainly extension. Multiple and noncontiguous injuries occurred. Injury probability curves, ±95% confidence intervals, and normalized confidence interval sizes representing the quality of the mean curve are given for different data sets. For compression-related injuries, specimen age should be used as a covariate or individual specimen data may be prescaled to derive risk curves. For distraction- or extension-related injuries, however, specimen age need not be used as a covariate in the statistical analysis. The findings from these tests and survival analysis indicate that the age factor modulates human cervical spine tolerance to impact injury.

  15. Oral hesperidin-Amorphization and improved dissolution properties by controlled loading onto porous silica.

    PubMed

    Wei, Qionghua; Keck, Cornelia M; Müller, Rainer H

    2017-02-25

    The oral bioavailability of poorly soluble drugs can be improved by amorphization generated by loading into the pores of mesoporous particles (pore size 2-50nm). The main mechanisms are increased kinetic saturation solubility and dissolution velocity due to the amorphous drug state and the nano-size of the drug (=increased dissolution pressure). In this study, the maximum achievable drug loading compared to the theoretical drug loading, and the effect of drug loading degree on the dissolution properties (solubility, dissolution velocity) were investigated. Hesperidin was used as the model active (having also practical relevance for e.g. nutraceutical products), loading was performed onto AEROPERL ® 300 Pharma. Degree of successful drug loading could be easily followed by simple light microscopy (=useful tool for formulation optimization), and was in agreement with scanning electron microscopy. Amorphous versus crystalline state was followed by X-ray diffraction and differential scanning calorimetry. Loadings prepared were 28.6wt.%, 54.5wt.% and 60.0wt.%, the maximum theoretical loading was 72.5wt.%. Obviously the maximum drug loading is not achievable, the 54.5wt.% drug loading was the practical maximum with already some minor crystalline hesperidin on the surface. Interestingly, the maximum kinetic saturation solubility was obtained for the 54.5wt.% drug loading (941.74μg/ml in pH 6.8 PBS), versus 408.80μg/ml for the 60.0wt.% drug loading (=overloaded system). The raw drug powder had a thermodynamic solubility of only 18.40μg/ml. The fastest in vitro release was obtained with the 28.6wt.% loaded system, followed by the 54.5wt.% and 60.0wt.% loadings. The dissolution properties (solubility, dissolution velocity) can obviously be influenced by a "controlled loading". This is a simple, cost-effective technological alternative to modulating this property by chemical modification of silica, requiring a new costly regulatory approval of these chemically modified materials. Copyright © 2016. Published by Elsevier B.V.

  16. Working memory load modulates microsaccadic rate.

    PubMed

    Dalmaso, Mario; Castelli, Luigi; Scatturin, Pietro; Galfano, Giovanni

    2017-03-01

    Microsaccades are tiny eye movements that individuals perform unconsciously during fixation. Despite that the nature and the functions of microsaccades are still lively debated, recent evidence has shown an association between these micro eye movements and higher order cognitive processes. Here, in two experiments, we specifically focused on working memory and addressed whether differential memory load could be reflected in a modulation of microsaccade dynamics. In Experiment 1, participants memorized a numerical sequence composed of either two (low-load condition) or five digits (high-load condition), appearing at fixation. The results showed a reduction in the microsaccadic rate in the high-load compared to the low-load condition. In Experiment 2, five red or green digits were always presented at fixation. Participants either memorized the color (low-load condition) or the five digits (high-load condition). Hence, visual stimuli were exactly the same in both conditions. Consistent with Experiment 1, microsaccadic rate was lower in the high-load than in the low-load condition. Overall, these findings reveal that an engagement of working memory can have an impact on microsaccadic rate, consistent with the view that microsaccade generation is pervious to top-down processes.

  17. Mechano-responsive hydrogels crosslinked by reactive block copolymer micelles

    NASA Astrophysics Data System (ADS)

    Xiao, Longxi

    Hydrogels are crosslinked polymeric networks that can swell in water without dissolution. Owing to their structural similarity to the native extracelluar matrices, hydrogels have been widely used in biomedical applications. Synthetic hydrogels have been designed to respond to various stimuli, but mechanical signals have not incorporated into hydrogel matrices. Because most tissues in the body are subjected to various types of mechanical forces, and cells within these tissues have sophisticated mechano-transduction machinery, this thesis is focused on developing hydrogel materials with built-in mechano-sensing mechanisms for use as tissue engineering scaffolds or drug release devices. Self-assembled block copolymer micelles (BCMs) with reactive handles were employed as the nanoscopic crosslinkers for the construction of covalently crosslinked networks. BCMs were assembled from amphiphilic diblock copolymers of poly(n-butyl acrylate) and poly(acrylic acid) partially modified with acrylate. Radical polymerization of acrylamide in the presence of micellar crosslinkers gave rise to elastomeric hydrogels whose mechanical properties can be tuned by varying the BCM composition and concentration. TEM imaging revealed that the covalently integrated BCMs underwent strain-dependent reversible deformation. A model hydrophobic drug, pyrene, loaded into the core of BCMs prior to the hydrogel formation, was dynamically released in response to externally applied mechanical forces, through force-induced reversible micelle deformation and the penetration of water molecules into the micelle core. The mechano-responsive hydrogel has been studied for tissue repair and regeneration purposes. Glycidyl methacrylate (GMA)-modified hyaluronic acid (HA) was photochemically crosslinked in the presence of dexamethasone (DEX)-loaded crosslinkable BCMs. The resultant HA gels (HAxBCM) contain covalently integrated micellar compartments with DEX being sequestered in the hydrophobic core. Compared to the traditional HA gels prepared by radical crosslinking of HAGMA, HAxBCM gels exhibited improved drug loading and release capacity. Moreover, compressive forces exerted on the gels were transmitted to the crosslinked BCMs, resulting in a force-modulated DEX release on demand. Micelle mobility in the crosslinked networks was analyzed by fluorescence correlation spectroscopy using nile red loaded BCMs. The anti-inflammatory activities of DEX-releasing HAxBCM gels were evaluated via the in vitro culture of lipopolysaccharide-activated macrophages.

  18. The effect of force feedback delay on stiffness perception and grip force modulation during tool-mediated interaction with elastic force fields

    PubMed Central

    Karniel, Amir; Nisky, Ilana

    2015-01-01

    During interaction with objects, we form an internal representation of their mechanical properties. This representation is used for perception and for guiding actions, such as in precision grip, where grip force is modulated with the predicted load forces. In this study, we explored the relationship between grip force adjustment and perception of stiffness during interaction with linear elastic force fields. In a forced-choice paradigm, participants probed pairs of virtual force fields while grasping a force sensor that was attached to a haptic device. For each pair, they were asked which field had higher level of stiffness. In half of the pairs, the force feedback of one of the fields was delayed. Participants underestimated the stiffness of the delayed field relatively to the nondelayed, but their grip force characteristics were similar in both conditions. We analyzed the magnitude of the grip force and the lag between the grip force and the load force in the exploratory probing movements within each trial. Right before answering which force field had higher level of stiffness, both magnitude and lag were similar between delayed and nondelayed force fields. These results suggest that an accurate internal representation of environment stiffness and time delay was used for adjusting the grip force. However, this representation did not help in eliminating the bias in stiffness perception. We argue that during performance of a perceptual task that is based on proprioceptive feedback, separate neural mechanisms are responsible for perception and action-related computations in the brain. PMID:25717155

  19. Neural mechanisms of oxytocin receptor gene mediating anxiety-related temperament.

    PubMed

    Wang, Junping; Qin, Wen; Liu, Bing; Zhou, Yuan; Wang, Dawei; Zhang, Yunting; Jiang, Tianzi; Yu, Chunshui

    2014-09-01

    A common variant (rs53576) of the OXTR gene has been implicated in a number of socio-emotional phenotypes, such as anxiety-related behavior. Previous studies have demonstrated that A-allele carriers have higher levels of physiological and dispositional stress reactivity and depressive symptomatology compared to those with the GG genotype, but the mediating neural mechanisms remain poorly understood. We combined voxel-based morphometry and resting-state functional connectivity analyses in a large cohort of healthy young Chinese Han individuals to test the hypothesis that the OXTR gene polymorphism influences an anxiety-related temperamental trait, as assessed by the harm avoidance subscale from the Tridimensional Personality Questionnaire via modulating the gray matter volume and resting-state functional connectivity of the brain, especially the limbic system. We revealed that female subjects with the AA genotype showed increased harm avoidance scores relative to G-carrier females. We also found that, compared to female individuals with the GG/GA genotype, female individuals with the AA genotype exhibited significantly smaller amygdala volumes bilaterally (especially the centromedial subregion), with a trend of allele-load-dependence. Compared to female individuals with the GG/GA genotype, female subjects with the AA genotype demonstrated reduced resting-state functional coupling between the prefrontal cortex and amygdala bilaterally, also with an allele-load-dependent trend. Furthermore, the magnitude of prefrontal-amygdala coupling in the left hemisphere was positively correlated with harm avoidance scores in female subjects. Our findings highlight a possible neural pathway by which a naturally occurring variation of the OXTR gene may affect an anxiety-related temperamental trait in female subjects by modulating prefrontal-amygdala functional connectivity.

  20. The effect of force feedback delay on stiffness perception and grip force modulation during tool-mediated interaction with elastic force fields.

    PubMed

    Leib, Raz; Karniel, Amir; Nisky, Ilana

    2015-05-01

    During interaction with objects, we form an internal representation of their mechanical properties. This representation is used for perception and for guiding actions, such as in precision grip, where grip force is modulated with the predicted load forces. In this study, we explored the relationship between grip force adjustment and perception of stiffness during interaction with linear elastic force fields. In a forced-choice paradigm, participants probed pairs of virtual force fields while grasping a force sensor that was attached to a haptic device. For each pair, they were asked which field had higher level of stiffness. In half of the pairs, the force feedback of one of the fields was delayed. Participants underestimated the stiffness of the delayed field relatively to the nondelayed, but their grip force characteristics were similar in both conditions. We analyzed the magnitude of the grip force and the lag between the grip force and the load force in the exploratory probing movements within each trial. Right before answering which force field had higher level of stiffness, both magnitude and lag were similar between delayed and nondelayed force fields. These results suggest that an accurate internal representation of environment stiffness and time delay was used for adjusting the grip force. However, this representation did not help in eliminating the bias in stiffness perception. We argue that during performance of a perceptual task that is based on proprioceptive feedback, separate neural mechanisms are responsible for perception and action-related computations in the brain. Copyright © 2015 the American Physiological Society.

  1. Design and control of a decoupled two degree of freedom translational parallel micro-positioning stage.

    PubMed

    Lai, Lei-Jie; Gu, Guo-Ying; Zhu, Li-Min

    2012-04-01

    This paper presents a novel decoupled two degrees of freedom (2-DOF) translational parallel micro-positioning stage. The stage consists of a monolithic compliant mechanism driven by two piezoelectric actuators. The end-effector of the stage is connected to the base by four independent kinematic limbs. Two types of compound flexure module are serially connected to provide 2-DOF for each limb. The compound flexure modules and mirror symmetric distribution of the four limbs significantly reduce the input and output cross couplings and the parasitic motions. Based on the stiffness matrix method, static and dynamic models are constructed and optimal design is performed under certain constraints. The finite element analysis results are then given to validate the design model and a prototype of the XY stage is fabricated for performance tests. Open-loop tests show that maximum static and dynamic cross couplings between the two linear motions are below 0.5% and -45 dB, which are low enough to utilize the single-input-single-out control strategies. Finally, according to the identified dynamic model, an inversion-based feedforward controller in conjunction with a proportional-integral-derivative controller is applied to compensate for the nonlinearities and uncertainties. The experimental results show that good positioning and tracking performances are achieved, which verifies the effectiveness of the proposed mechanism and controller design. The resonant frequencies of the loaded stage at 2 kg and 5 kg are 105 Hz and 68 Hz, respectively. Therefore, the performance of the stage is reasonably good in term of a 200 N load capacity. © 2012 American Institute of Physics

  2. Directing bone marrow-derived stromal cell function with mechanics.

    PubMed

    Potier, E; Noailly, J; Ito, K

    2010-03-22

    Because bone marrow-derived stromal cells (BMSCs) are able to generate many cell types, they are envisioned as source of regenerative cells to repair numerous tissues, including bone, cartilage, and ligaments. Success of BMSC-based therapies, however, relies on a number of methodological improvements, among which better understanding and control of the BMSC differentiation pathways. Since many years, the biochemical environment is known to govern BMSC differentiation, but more recent evidences show that the biomechanical environment is also directing cell functions. Using in vitro systems that aim to reproduce selected components of the in vivo mechanical environment, it was demonstrated that mechanical loadings can affect BMSC proliferation and improve the osteogenic, chondrogenic, or myogenic phenotype of BMSCs. These effects, however, seem to be modulated by parameters other than mechanics, such as substrate nature or soluble biochemical environment. This paper reviews and discusses recent experimental data showing that despite some knowledge limitation, mechanical stimulation already constitutes an additional and efficient tool to drive BMSC differentiation. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  3. Physics Based Model for Cryogenic Chilldown and Loading. Part IV: Code Structure

    NASA Technical Reports Server (NTRS)

    Luchinsky, D. G.; Smelyanskiy, V. N.; Brown, B.

    2014-01-01

    This is the fourth report in a series of technical reports that describe separated two-phase flow model application to the cryogenic loading operation. In this report we present the structure of the code. The code consists of five major modules: (1) geometry module; (2) solver; (3) material properties; (4) correlations; and finally (5) stability control module. The two key modules - solver and correlations - are further divided into a number of submodules. Most of the physics and knowledge databases related to the properties of cryogenic two-phase flow are included into the cryogenic correlations module. The functional form of those correlations is not well established and is a subject of extensive research. Multiple parametric forms for various correlations are currently available. Some of them are included into correlations module as will be described in details in a separate technical report. Here we describe the overall structure of the code and focus on the details of the solver and stability control modules.

  4. The application of the Luus-Jaakola direct search method to the optimization of a hybrid renewable energy system

    NASA Astrophysics Data System (ADS)

    Jatzeck, Bernhard Michael

    2000-10-01

    The application of the Luus-Jaakola direct search method to the optimization of stand-alone hybrid energy systems consisting of wind turbine generators (WTG's), photovoltaic (PV) modules, batteries, and an auxiliary generator was examined. The loads for these systems were for agricultural applications, with the optimization conducted on the basis of minimum capital, operating, and maintenance costs. Five systems were considered: two near Edmonton, Alberta, and one each near Lethbridge, Alberta, Victoria, British Columbia, and Delta, British Columbia. The optimization algorithm used hourly data for the load demand, WTG output power/area, and PV module output power. These hourly data were in two sets: seasonal (summer and winter values separated) and total (summer and winter values combined). The costs for the WTG's, PV modules, batteries, and auxiliary generator fuel were full market values. To examine the effects of price discounts or tax incentives, these values were lowered to 25% of the full costs for the energy sources and two-thirds of the full cost for agricultural fuel. Annual costs for a renewable energy system depended upon the load, location, component costs, and which data set (seasonal or total) was used. For one Edmonton load, the cost for a renewable energy system consisting of 27.01 m2 of WTG area, 14 PV modules, and 18 batteries (full price, total data set) was 6873/year. For Lethbridge, a system with 22.85 m2 of WTG area, 47 PV modules, and 5 batteries (reduced prices, seasonal data set) cost 2913/year. The performance of renewable energy systems based on the obtained results was tested in a simulation using load and weather data for selected days. Test results for one Edmonton load showed that the simulations for most of the systems examined ran for at least 17 hours per day before failing due to either an excessive load on the auxiliary generator or a battery constraint being violated. Additional testing indicated that increasing the generator capacity and reducing the maximum allowed battery charge current during the time of the day at which these failures occurred allowed the simulation to successfully operate.

  5. Image matrix processor for fast multi-dimensional computations

    DOEpatents

    Roberson, George P.; Skeate, Michael F.

    1996-01-01

    An apparatus for multi-dimensional computation which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination.

  6. Advanced Structural and Inflatable Hybrid Spacecraft Module

    NASA Technical Reports Server (NTRS)

    Schneider, William C. (Inventor); delaFuente, Horacio M. (Inventor); Edeen, Gregg A. (Inventor); Kennedy, Kriss J. (Inventor); Lester, James D. (Inventor); Gupta, Shalini (Inventor); Hess, Linda F. (Inventor); Lin, Chin H. (Inventor); Malecki, Richard H. (Inventor); Raboin, Jasen L. (Inventor)

    2001-01-01

    An inflatable module comprising a structural core and an inflatable shell, wherein the inflatable shell is sealingly attached to the structural core. In its launch configuration, the wall thickness of the inflatable shell is collapsed by vacuum. Also in this configuration, the inflatable shell is collapsed and efficiently folded around the structural core. Upon deployment, the wall thickness of the inflatable shell is inflated; whereby the inflatable shell itself, is thereby inflated around the structural core, defining therein a large enclosed volume. A plurality of removable shelves are arranged interior to the structural core in the launch configuration. The structural core also includes at least one longeron that, in conjunction with the shelves, primarily constitute the rigid, strong, and lightweight load-bearing structure of the module during launch. The removable shelves are detachable from their arrangement in the launch configuration so that, when the module is in its deployed configuration and launch loads no longer exist, the shelves can be rearranged to provide a module interior arrangement suitable for human habitation and work. In the preferred embodiment, to provide efficiency in structural load paths and attachments, the shape of the inflatable shell is a cylinder with semi-toroidal ends.

  7. Attention to pain! A neurocognitive perspective on attentional modulation of pain in neuroimaging studies.

    PubMed

    Torta, D M; Legrain, V; Mouraux, A; Valentini, E

    2017-04-01

    Several studies have used neuroimaging techniques to investigate brain correlates of the attentional modulation of pain. Although these studies have advanced the knowledge in the field, important confounding factors such as imprecise theoretical definitions of attention, incomplete operationalization of the construct under exam, and limitations of techniques relying on measuring regional changes in cerebral blood flow have hampered the potential relevance of the conclusions. Here, we first provide an overview of the major theories of attention and of attention in the study of pain to bridge theory and experimental results. We conclude that load and motivational/affective theories are particularly relevant to study the attentional modulation of pain and should be carefully integrated in functional neuroimaging studies. Then, we summarize previous findings and discuss the possible neural correlates of the attentional modulation of pain. We discuss whether classical functional neuroimaging techniques are suitable to measure the effect of a fluctuating process like attention, and in which circumstances functional neuroimaging can be reliably used to measure the attentional modulation of pain. Finally, we argue that the analysis of brain networks and spontaneous oscillations may be a crucial future development in the study of attentional modulation of pain, and why the interplay between attention and pain, as examined so far, may rely on neural mechanisms shared with other sensory modalities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Pre-irradiation testing of actively cooled Be-Cu divertor modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linke, J.; Duwe, R.; Kuehnlein, W.

    1995-09-01

    A set of neutron irradiation tests is prepared on different plasma facing materials (PFM) candidates and miniaturized components for ITER. Beside beryllium the irradiation program which will be performed in the High Flux Reactor (HFR) in Petten, includes different carbon fiber composites (CFQ) and tungsten alloys. The target values for the neutron irradiation will be 0.5 dpa at temperatures of 350{degrees}C and 700{degrees}C, resp.. The post irradiation examination (PIE) will cover a wide range of mechanical tests; in addition the degradation of thermal conductivity will be investigated. To determine the high heat flux (HHF) performance of actively cooled divertor modules,more » electron beam tests which simulate the expected heat loads during the operation of ITER, are scheduled in the hot cell electron beam facility JUDITH. These tests on a selection of different actively cooled beryllium-copper and CFC-copper divertor modules are performed before and after neutron irradiation; the pre-irradiation testing is an essential part of the program to quantify the zero-fluence high heat flux performance and to detect defects in the modules, in particular in the brazed joints.« less

  9. Adaptation to a cortex controlled robot attached at the pelvis and engaged during locomotion in rats

    PubMed Central

    Song, Weiguo; Giszter, Simon F.

    2011-01-01

    Brain Machine Interfaces (BMIs) should ideally show robust adaptation of the BMI across different tasks and daily activities. Most BMIs have used over-practiced tasks. Little is known about BMIs in dynamic environments. How are mechanically body-coupled BMIs integrated into ongoing rhythmic dynamics, e.g., in locomotion? To examine this we designed a novel BMI using neural discharge in the hindlimb/trunk motor cortex in rats during locomotion to control a robot attached at the pelvis. We tested neural adaptation when rats experienced (a) control locomotion, (b) ‘simple elastic load’ (a robot load on locomotion without any BMI neural control) and (c) ‘BMI with elastic load’ (in which the robot loaded locomotion and a BMI neural control could counter this load). Rats significantly offset applied loads with the BMI while preserving more normal pelvic height compared to load alone. Adaptation occurred over about 100–200 step cycles in a trial. Firing rates increased in both the loaded conditions compared to baseline. Mean phases of cells’ discharge in the step cycle shifted significantly between BMI and the simple load condition. Over time more BMI cells became positively correlated with the external force and modulated more deeply, and neurons’ network correlations on a 100ms timescale increased. Loading alone showed none of these effects. The BMI neural changes of rate and force correlations persisted or increased over repeated trials. Our results show that rats have the capacity to use motor adaptation and motor learning to fairly rapidly engage hindlimb/trunk coupled BMIs in their locomotion. PMID:21414932

  10. Stress Models of the Annual Hydrospheric, Atmospheric, Thermal, and Tidal Loading Cycles on California Faults: Perturbation of Background Stress and Changes in Seismicity

    NASA Astrophysics Data System (ADS)

    Johnson, Christopher W.; Fu, Yuning; Bürgmann, Roland

    2017-12-01

    Stresses in the lithosphere arise from multiple natural loading sources that include both surface and body forces. The largest surface loads include near-surface water storage, snow and ice, atmosphere pressure, ocean loading, and temperature changes. The solid Earth also deforms from celestial body interactions and variations in Earth's rotation. We model the seasonal stress changes in California from 2006 through 2014 for seven different loading sources with annual periods to produce an aggregate stressing history for faults in the study area. Our modeling shows that the annual water loading, atmosphere, temperature, and Earth pole tides are the largest loading sources and should each be evaluated to fully describe seasonal stress changes. In California we find that the hydrological loads are the largest source of seasonal stresses. We explore the seasonal stresses with respect to the background principal stress orientation constrained with regional focal mechanisms and analyze the modulation of seismicity. Our results do not suggest a resolvable seasonal variation for the ambient stress orientation in the shallow crust. When projecting the seasonal stresses into the background stress orientation we find that the timing of microseismicity modestly increases from an 8 kPa seasonal mean-normal-stress perturbation. The results suggest that faults in California are optimally oriented with the background stress field and respond to subsurface pressure changes, possibly due to processes we have not considered in this study. At any time a population of faults are near failure as evident from earthquakes triggered by these slight seasonal stress perturbations.

  11. Structural and mechanical heterogeneity of the erythrocyte membrane reveals hallmarks of membrane stability.

    PubMed

    Picas, Laura; Rico, Félix; Deforet, Maxime; Scheuring, Simon

    2013-02-26

    The erythrocyte membrane, a metabolically regulated active structure that comprises lipid molecules, junctional complexes, and the spectrin network, enables the cell to undergo large passive deformations when passing through the microvascular system. Here we use atomic force microscopy (AFM) imaging and quantitative mechanical mapping at nanometer resolution to correlate structure and mechanics of key components of the erythrocyte membrane, crucial for cell integrity and function. Our data reveal structural and mechanical heterogeneity modulated by the metabolic state at unprecedented nanometer resolution. ATP-depletion, reducing skeletal junction phosphorylation in RBC cells, leads to membrane stiffening. Analysis of ghosts and shear-force opened erythrocytes show that, in the absence of cytosolic kinases, spectrin phosphorylation results in membrane stiffening at the extracellular face and a reduced junction remodeling in response to loading forces. Topography and mechanical mapping of single components at the cytoplasmic face reveal that, surprisingly, spectrin phosphorylation by ATP softens individual filaments. Our findings suggest that, besides the mechanical signature of each component, the RBC membrane mechanics is regulated by the metabolic state and the assembly of its structural elements.

  12. Lower Body Stiffness Modulation Strategies in Well Trained Female Athletes.

    PubMed

    Millett, Emma L; Moresi, Mark P; Watsford, Mark L; Taylor, Paul G; Greene, David A

    2016-10-01

    Millett, EL, Moresi, MP, Watsford, ML, Taylor, PG, and Greene, DA. Lower body stiffness modulation strategies in well trained female athletes. J Strength Cond Res 30(10): 2845-2856, 2016-Lower extremity stiffness quantifies the relationship between the amount of leg compression and the external load to which the limb are subjected. This study aimed to assess differences in leg and joint stiffness and the subsequent kinematic and kinetic control mechanisms between athletes from various training backgrounds. Forty-seven female participants (20 nationally identified netballers, 13 high level endurance athletes and 14 age and gender matched controls) completed a maximal unilateral countermovement jump, drop jump and horizontal jump to assess stiffness. Leg stiffness, joint stiffness and associated mechanical parameters were assessed with a 10 camera motion analysis system and force plate. No significant differences were evident for leg stiffness measures between athletic groups for any of the tasks (p = 0.321-0.849). However, differences in joint stiffness and its contribution to leg stiffness, jump performance outcome measures and stiffness control mechanisms were evident between all groups. Practitioners should consider the appropriateness of the task utilised in leg stiffness screening. Inclusion of mechanistic and/or more sports specific tasks may be more appropriate for athletic groups.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J. P.; Wang, Y. D.; Hao, Y. L.

    Two main explanations exist for the deformation mechanisms in Ti-Nb-based gum metals, i.e. the formation of reversible nanodisturbance and reversible stress-induced martensitic transformation. In this work, we used the in situ synchrotron-based high-energy X-ray diffuse-scattering technique to reveal the existence of a specific deformation mechanism, i.e. deformation-induced spatially confined martensitic transformations, in Ti-24Nb-4Zr-8Sn-0.10O single crystals with cubic 13 parent phase, which explains well some anomalous mechanical properties of the alloy such as low elastic modulus and nonlinear superelasticity. Two kinds of nanosized martensites with different crystal structures were found during uniaxial tensile loading along the [11 0](beta) axis at roommore » temperature and 190 K, respectively. The detailed changes in the martensitic phase transformation characteristics and the transformation kinetics were experimentally observed at different temperatures. The domain switch from non-modulated martensite to a modulated one occurred at 190 K, with its physical origin attributed to the heterogeneity of local phonon softening depending on temperature and inhomogeneous composition in the parent phase. An in-depth understanding of the formation of stress-induced spatially confined nanosized martensites with a large gradient in chemical composition may benefit designs of high-strength and high-ductility alloys. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.« less

  14. Towards a sustainable modular robot system for planetary exploration

    NASA Astrophysics Data System (ADS)

    Hossain, S. G. M.

    This thesis investigates multiple perspectives of developing an unmanned robotic system suited for planetary terrains. In this case, the unmanned system consists of unit-modular robots. This type of robot has potential to be developed and maintained as a sustainable multi-robot system while located far from direct human intervention. Some characteristics that make this possible are: the cooperation, communication and connectivity among the robot modules, flexibility of individual robot modules, capability of self-healing in the case of a failed module and the ability to generate multiple gaits by means of reconfiguration. To demonstrate the effects of high flexibility of an individual robot module, multiple modules of a four-degree-of-freedom unit-modular robot were developed. The robot was equipped with a novel connector mechanism that made self-healing possible. Also, design strategies included the use of series elastic actuators for better robot-terrain interaction. In addition, various locomotion gaits were generated and explored using the robot modules, which is essential for a modular robot system to achieve robustness and thus successfully navigate and function in a planetary environment. To investigate multi-robot task completion, a biomimetic cooperative load transportation algorithm was developed and simulated. Also, a liquid motion-inspired theory was developed consisting of a large number of robot modules. This can be used to traverse obstacles that inevitably occur in maneuvering over rough terrains such as in a planetary exploration. Keywords: Modular robot, cooperative robots, biomimetics, planetary exploration, sustainability.

  15. Carbon nanotubes (CNTs) based advanced dermal therapeutics: current trends and future potential.

    PubMed

    Kuche, Kaushik; Maheshwari, Rahul; Tambe, Vishakha; Mak, Kit-Kay; Jogi, Hardi; Raval, Nidhi; Pichika, Mallikarjuna Rao; Kumar Tekade, Rakesh

    2018-05-17

    The search for effective and non-invasive delivery modules to transport therapeutic molecules across skin has led to the discovery of a number of nanocarriers (viz.: liposomes, ethosomes, dendrimers, etc.) in the last few decades. However, available literature suggests that these delivery modules face several issues including poor stability, low encapsulation efficiency, and scale-up hurdles. Recently, carbon nanotubes (CNTs) emerged as a versatile tool to deliver therapeutics across skin. Superior stability, high loading capacity, well-developed synthesis protocol as well as ease of scale-up are some of the reason for growing interest in CNTs. CNTs have a unique physical architecture and a large surface area with unique surface chemistry that can be tailored for vivid biomedical applications. CNTs have been thus largely engaged in the development of transdermal systems such as tuneable hydrogels, programmable nonporous membranes, electroresponsive skin modalities, protein channel mimetic platforms, reverse iontophoresis, microneedles, and dermal buckypapers. In addition, CNTs were also employed in the development of RNA interference (RNAi) based therapeutics for correcting defective dermal genes. This review expounds the state-of-art synthesis methodologies, skin penetration mechanism, drug liberation profile, loading potential, characterization techniques, and transdermal applications along with a summary on patent/regulatory status and future scope of CNT based skin therapeutics.

  16. Development and coupling analysis of active skin antenna

    NASA Astrophysics Data System (ADS)

    Zhou, Jinzhu; Huang, Jin; He, Qingqang; Tang, Baofu; Song, Liwei

    2017-02-01

    An active skin antenna is a multifunctional composite structure that can provide load-bearing structure and steerable beam pointing functions, and is usually installed in the structural surface of aircraft, warships, and armored vehicles. This paper presents an innovative design of the active skin antenna, which consists of a package layer, control and signal processing layer, and RF (radio frequency) layer. The RF layer is fabricated by low temperature co-fired ceramics, with 64 microstrip antenna elements, tile transmitting and receiving modules, microchannel heat sinks, and feeding networks integrated into a functional block 2.8 mm thick. In this paper, a full-sized prototype of an active skin antenna was designed, fabricated, and tested. Moreover, a coupling analysis method was presented to evaluate the mechanical and electromagnetic performance of the active skin antenna subjected to aerodynamic loads. A deformed experimental system was built to validate the effectiveness of the coupling analysis method, which was also implemented to evaluate the performance of the active skin antenna when subjected to aerodynamic pressure. The fabricated specimen demonstrated structural configuration feasibility, and superior environmental load resistance.

  17. Emotion Unchained: Facial Expression Modulates Gaze Cueing under Cognitive Load.

    PubMed

    Pecchinenda, Anna; Petrucci, Manuel

    2016-01-01

    Direction of eye gaze cues spatial attention, and typically this cueing effect is not modulated by the expression of a face unless top-down processes are explicitly or implicitly involved. To investigate the role of cognitive control on gaze cueing by emotional faces, participants performed a gaze cueing task with happy, angry, or neutral faces under high (i.e., counting backward by 7) or low cognitive load (i.e., counting forward by 2). Results show that high cognitive load enhances gaze cueing effects for angry facial expressions. In addition, cognitive load reduces gaze cueing for neutral faces, whereas happy facial expressions and gaze affected object preferences regardless of load. This evidence clearly indicates a differential role of cognitive control in processing gaze direction and facial expression, suggesting that under typical conditions, when we shift attention based on social cues from another person, cognitive control processes are used to reduce interference from emotional information.

  18. Emotion Unchained: Facial Expression Modulates Gaze Cueing under Cognitive Load

    PubMed Central

    Petrucci, Manuel

    2016-01-01

    Direction of eye gaze cues spatial attention, and typically this cueing effect is not modulated by the expression of a face unless top-down processes are explicitly or implicitly involved. To investigate the role of cognitive control on gaze cueing by emotional faces, participants performed a gaze cueing task with happy, angry, or neutral faces under high (i.e., counting backward by 7) or low cognitive load (i.e., counting forward by 2). Results show that high cognitive load enhances gaze cueing effects for angry facial expressions. In addition, cognitive load reduces gaze cueing for neutral faces, whereas happy facial expressions and gaze affected object preferences regardless of load. This evidence clearly indicates a differential role of cognitive control in processing gaze direction and facial expression, suggesting that under typical conditions, when we shift attention based on social cues from another person, cognitive control processes are used to reduce interference from emotional information. PMID:27959925

  19. Analysis of a Temperature-Controlled Exhaust Thermoelectric Generator During a Driving Cycle

    NASA Astrophysics Data System (ADS)

    Brito, F. P.; Alves, A.; Pires, J. M.; Martins, L. B.; Martins, J.; Oliveira, J.; Teixeira, J.; Goncalves, L. M.; Hall, M. J.

    2016-03-01

    Thermoelectric generators can be used in automotive exhaust energy recovery. As car engines operate under wide variable loads, it is a challenge to design a system for operating efficiently under these variable conditions. This means being able to avoid excessive thermal dilution under low engine loads and being able to operate under high load, high temperature events without the need to deflect the exhaust gases with bypass systems. The authors have previously proposed a thermoelectric generator (TEG) concept with temperature control based on the operating principle of the variable conductance heat pipe/thermosiphon. This strategy allows the TEG modules’ hot face to work under constant, optimized temperature. The variable engine load will only affect the number of modules exposed to the heat source, not the heat transfer temperature. This prevents module overheating under high engine loads and avoids thermal dilution under low engine loads. The present work assesses the merit of the aforementioned approach by analysing the generator output during driving cycles simulated with an energy model of a light vehicle. For the baseline evaporator and condenser configuration, the driving cycle averaged electrical power outputs were approximately 320 W and 550 W for the type-approval Worldwide harmonized light vehicles test procedure Class 3 driving cycle and for a real-world highway driving cycle, respectively.

  20. Perceptual load modulates anterior cingulate cortex response to threat distractors in generalized social anxiety disorder.

    PubMed

    Wheaton, Michael G; Fitzgerald, Daniel A; Phan, K Luan; Klumpp, Heide

    2014-09-01

    Generalized social anxiety disorder (gSAD) is associated with impoverished anterior cingulate cortex (ACC) engagement during attentional control. Attentional Control Theory proposes such deficiencies may be offset when demands on resources are increased to execute goals. To test the hypothesis attentional demands affect ACC response 23 patients with gSAD and 24 matched controls performed an fMRI task involving a target letter in a string of identical targets (low load) or a target letter in a mixed letter string (high load) superimposed on fearful, angry, and neutral face distractors. Regardless of load condition, groups were similar in accuracy and reaction time. Under low load gSAD patients showed deficient rostral ACC recruitment to fearful (vs. neutral) distractors. For high load, increased activation to fearful (vs. neutral) distractors was observed in gSAD suggesting a compensatory function. Results remained after controlling for group differences in depression level. Findings indicate perceptual demand modulates ACC in gSAD. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Mechanical load induces sarcoplasmic wounding and FGF release in differentiated human skeletal muscle cultures

    NASA Technical Reports Server (NTRS)

    Clarke, M. S.; Feeback, D. L.

    1996-01-01

    The transduction mechanism (or mechanisms) responsible for converting a mechanical load into a skeletal muscle growth response are unclear. In this study we have used a mechanically active tissue culture model of differentiated human skeletal muscle cells to investigate the relationship between mechanical load, sarcolemma wounding, fibroblast growth factor release, and skeletal muscle cell growth. Using the Flexcell Strain Unit we demonstrate that as mechanical load increases, so too does the amount of sarcolemma wounding. A similar relationship was also observed between the level of mechanical load inflicted on the cells and the amount of bFGF (FGF2) released into the surrounding medium. In addition, we demonstrate that the muscle cell growth response induced by chronic mechanical loading in culture can be inhibited by the presence of an antibody capable of neutralizing the biological activity of FGF. This study provides direct evidence that mechanically induced, sarcolemma wound-mediated FGF release is an important autocrine mechanism for transducing the stimulus of mechanical load into a skeletal muscle growth response.

  2. Multiscale Multifunctional Progressive Fracture of Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Minnetyan, L.

    2012-01-01

    A new approach is described for evaluating fracture in composite structures. This approach is independent of classical fracture mechanics parameters like fracture toughness. It relies on computational simulation and is programmed in a stand-alone integrated computer code. It is multiscale, multifunctional because it includes composite mechanics for the composite behavior and finite element analysis for predicting the structural response. It contains seven modules; layered composite mechanics (micro, macro, laminate), finite element, updating scheme, local fracture, global fracture, stress based failure modes, and fracture progression. The computer code is called CODSTRAN (Composite Durability Structural ANalysis). It is used in the present paper to evaluate the global fracture of four composite shell problems and one composite built-up structure. Results show that the composite shells. Global fracture is enhanced when internal pressure is combined with shear loads. The old reference denotes that nothing has been added to this comprehensive report since then.

  3. Overview of the Acoustic Testing of the European Service Module Structural Test Article (E-STA)

    NASA Technical Reports Server (NTRS)

    Hughes, William; Fogt, Vince; Le Plenier, Cyprien; Duval, Francois; Durand, Jean-Francois; Staab, Lucas D.; Hozman, Aron; Mcnelis, Anne; Bittinger, Samantha; Thirkettle, Anthony; hide

    2017-01-01

    The European Space Agency (ESA) and their prime contractor Airbus Defense Space (ADS) are developing the European Service Module (ESM) for integration and utilization with other modules of NASAs Orion Multi-Purpose Crew Vehicle. As part of this development, ESA, ADS, NASA and the Lockheed Martin Company performed a series of reverberant acoustic tests in April-May 2016 on the ESM Structural Test Article (E-STA), the mechanical mock-up of the ESM designated for mechanical tests. Testing the E-STA under acoustic qualification loads verifies whether it can successfully withstand the medium and high frequency mechanical environment occurring during the vehicles lift-off and atmospheric phases of flight. The testing occurred at the Reverberant Acoustic Test Facility (RATF) at the NASA Glenn Research Centers Plum Brook Station site in Sandusky, OH, USA. This highly successful acoustic test campaign excited the E-STA to acoustic test levels as high as 149.4 dB Overall Sound Pressure Level. This acoustic testing met all the ESA and ADSs test objectives, including establishingverifying the random vibration qualification test levels for numerous hardware components of the ESM, and qualifying the ESMs Solar Array Wing electrical power system. This paper will address the test objectives, the test articles configuration, the test instrumentation and excitation levels, the RATF site and capabilities, the series of acoustic tests performed, and the technical issues faced and overcome to result in a successful acoustic test campaign for the ESM. A discussion of several test results is also included.

  4. Overview of the Acoustic Testing of the European Service Module Structural Test Article (E-STA)

    NASA Technical Reports Server (NTRS)

    Hughes, William; Le Plenier, Cyprien; Duval, Francois; Staab, Lucas; Hozman, Aron; Thirkettle, Anthony; Fogt, Vincent; Durand, Jean-Francois; McNelis, Anne; Bittinger, Samantha; hide

    2017-01-01

    The European Space Agency (ESA) and their prime contractor Airbus Defense Space (ADS) are developing the European Service Module (ESM) for integration and utilization with other modules of NASAs Orion Multi-Purpose Crew Vehicle. As part of this development, ESA, ADS, NASA and the Lockheed Martin Company performed a series of reverberant acoustic tests in April-May 2016 on the ESM Structural Test Article (E-STA), the mechanical mock-up of the ESM designated for mechanical tests. Testing the E-STA under acoustic qualification loads verifies whether it can successfully withstand the medium and high frequency mechanical environment occurring during the vehicles lift-off and atmospheric phases of flight. The testing occurred at the Reverberant Acoustic Test Facility (RATF) at the NASA Glenn Research Centers Plum Brook Station site in Sandusky, OH, USA. This highly successful acoustic test campaign excited the E-STA to acoustic test levels as high as 149.4 dB Overall Sound Pressure Level. This acoustic testing met all the ESA and ADSs test objectives, including establishing/verifying the random vibration qualification test levels for numerous hardware components of the ESM, and qualifying the ESMs Solar Array Wing electrical power system. This paper will address the test objectives, the test articles configuration, the test instrumentation and excitation levels, the RATF site and capabilities, the series of acoustic tests performed, and the technical issues faced and overcome to result in a successful acoustic test campaign for the ESM. A discussion of several test results is also included.

  5. Attentional load and sensory competition in human vision: modulation of fMRI responses by load at fixation during task-irrelevant stimulation in the peripheral visual field.

    PubMed

    Schwartz, Sophie; Vuilleumier, Patrik; Hutton, Chloe; Maravita, Angelo; Dolan, Raymond J; Driver, Jon

    2005-06-01

    Perceptual suppression of distractors may depend on both endogenous and exogenous factors, such as attentional load of the current task and sensory competition among simultaneous stimuli, respectively. We used functional magnetic resonance imaging (fMRI) to compare these two types of attentional effects and examine how they may interact in the human brain. We varied the attentional load of a visual monitoring task performed on a rapid stream at central fixation without altering the central stimuli themselves, while measuring the impact on fMRI responses to task-irrelevant peripheral checkerboards presented either unilaterally or bilaterally. Activations in visual cortex for irrelevant peripheral stimulation decreased with increasing attentional load at fixation. This relative decrease was present even in V1, but became larger for successive visual areas through to V4. Decreases in activation for contralateral peripheral checkerboards due to higher central load were more pronounced within retinotopic cortex corresponding to 'inner' peripheral locations relatively near the central targets than for more eccentric 'outer' locations, demonstrating a predominant suppression of nearby surround rather than strict 'tunnel vision' during higher task load at central fixation. Contralateral activations for peripheral stimulation in one hemifield were reduced by competition with concurrent stimulation in the other hemifield only in inferior parietal cortex, not in retinotopic areas of occipital visual cortex. In addition, central attentional load interacted with competition due to bilateral versus unilateral peripheral stimuli specifically in posterior parietal and fusiform regions. These results reveal that task-dependent attentional load, and interhemifield stimulus-competition, can produce distinct influences on the neural responses to peripheral visual stimuli within the human visual system. These distinct mechanisms in selective visual processing may be integrated within posterior parietal areas, rather than earlier occipital cortex.

  6. Metabolic activity, experiment M171. [space flight effects on human metabolism

    NASA Technical Reports Server (NTRS)

    Michel, E. L.; Rummel, J. A.

    1973-01-01

    The Skylab metabolic activity experiment determines if man's metabolic effectiveness in doing mechanical work is progressively altered by a simulated Skylab environment, including environmental factors such as slightly increased pCO2. This test identified several hardware/procedural anomalies. The most important of these were: (1) the metabolic analyzer measured carbon dioxide production and expired water too high; (2) the ergometer load module failed under continuous high workload conditions; (3) a higher than desirable number of erroneous blood pressure measurements were recorded; (4) vital capacity measurements were unreliable; and (5) anticipated crew personal exercise needs to be more structured.

  7. Design optimization of first wall and breeder unit module size for the Indian HCCB blanket module

    NASA Astrophysics Data System (ADS)

    Deepak, SHARMA; Paritosh, CHAUDHURI

    2018-04-01

    The Indian test blanket module (TBM) program in ITER is one of the major steps in the Indian fusion reactor program for carrying out the R&D activities in the critical areas like design of tritium breeding blankets relevant to future Indian fusion devices (ITER relevant and DEMO). The Indian Lead–Lithium Cooled Ceramic Breeder (LLCB) blanket concept is one of the Indian DEMO relevant TBM, to be tested in ITER as a part of the TBM program. Helium-Cooled Ceramic Breeder (HCCB) is an alternative blanket concept that consists of lithium titanate (Li2TiO3) as ceramic breeder (CB) material in the form of packed pebble beds and beryllium as the neutron multiplier. Specifically, attentions are given to the optimization of first wall coolant channel design and size of breeder unit module considering coolant pressure and thermal loads for the proposed Indian HCCB blanket based on ITER relevant TBM and loading conditions. These analyses will help proceeding further in designing blankets for loads relevant to the future fusion device.

  8. A Multi-Cycle Q-Modulation for Dynamic Optimization of Inductive Links.

    PubMed

    Lee, Byunghun; Yeon, Pyungwoo; Ghovanloo, Maysam

    2016-08-01

    This paper presents a new method, called multi-cycle Q-modulation, which can be used in wireless power transmission (WPT) to modulate the quality factor (Q) of the receiver (Rx) coil and dynamically optimize the load impedance to maximize the power transfer efficiency (PTE) in two-coil links. A key advantage of the proposed method is that it can be easily implemented using off-the-shelf components without requiring fast switching at or above the carrier frequency, which is more suitable for integrated circuit design. Moreover, the proposed technique does not need any sophisticated synchronization between the power carrier and Q-modulation switching pulses. The multi-cycle Q-modulation is analyzed theoretically by a lumped circuit model, and verified in simulation and measurement using an off-the-shelf prototype. Automatic resonance tuning (ART) in the Rx, combined with multi-cycle Q-modulation helped maximizing PTE of the inductive link dynamically in the presence of environmental and loading variations, which can otherwise significantly degrade the PTE in multi-coil settings. In the prototype conventional 2-coil link, the proposed method increased the power amplifier (PA) plus inductive link efficiency from 4.8% to 16.5% at ( R L = 1 kΩ, d 23 = 3 cm), and from 23% to 28.2% at ( R L = 100 Ω, d 23 = 3 cm) after 11% change in the resonance capacitance, while delivering 168.1 mW to the load (PDL).

  9. Application for managing model-based material properties for simulation-based engineering

    DOEpatents

    Hoffman, Edward L [Alameda, CA

    2009-03-03

    An application for generating a property set associated with a constitutive model of a material includes a first program module adapted to receive test data associated with the material and to extract loading conditions from the test data. A material model driver is adapted to receive the loading conditions and a property set and operable in response to the loading conditions and the property set to generate a model response for the material. A numerical optimization module is adapted to receive the test data and the model response and operable in response to the test data and the model response to generate the property set.

  10. Utilizing Photogrammetry and Strain Gage Measurement to Characterize Pressurization of an Inflatable Module

    NASA Technical Reports Server (NTRS)

    Valle, Gerard D.; Selig, Molly; Litteken, Doug; Oliveras, Ovidio

    2012-01-01

    This paper documents the integration of a large hatch penetration into an inflatable module. This paper also documents the comparison of analytical load predictions with measured results utilizing strain measurement. Strain was measured by utilizing photogrammetric measurement and through measurement obtained from strain gages mounted to selected clevises that interface with the structural webbings. Bench testing showed good correlation between strain measurement obtained from an extensometer and photogrammetric measurement especially after the fabric has transitioned through the low load/high strain region of the curve. Test results for the full-scale torus showed mixed results in the lower load and thus lower strain regions. Overall strain, and thus load, measured by strain gages and photogrammetry tracked fairly well with analytical predictions. Methods and areas of improvements are discussed.

  11. Seasonal water storage, stress modulation, and California seismicity.

    PubMed

    Johnson, Christopher W; Fu, Yuning; Bürgmann, Roland

    2017-06-16

    Establishing what controls the timing of earthquakes is fundamental to understanding the nature of the earthquake cycle and critical to determining time-dependent earthquake hazard. Seasonal loading provides a natural laboratory to explore the crustal response to a quantifiable transient force. In California, water storage deforms the crust as snow and water accumulates during the wet winter months. We used 9 years of global positioning system (GPS) vertical deformation time series to constrain models of monthly hydrospheric loading and the resulting stress changes on fault planes of small earthquakes. The seasonal loading analysis reveals earthquakes occurring more frequently during stress conditions that favor earthquake rupture. We infer that California seismicity rates are modestly modulated by natural hydrological loading cycles. Copyright © 2017, American Association for the Advancement of Science.

  12. NREL`s variable speed test bed: Preliminary results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlin, P.W.; Fingersh, L.J.; Fuchs, E.F.

    1996-10-01

    Under an NREL subcontract, the Electrical and Computer Engineering Department of the University of Colorado (CU) designed a 20-kilowatt, 12-pole, permanent-magnet, electric generator and associated custom power electronics modules. This system can supply power over a generator speed range from 60 to 120 RPM. The generator was fabricated and assembled by the Denver electric-motor manufacturer, Unique Mobility, and the power electronics modules were designed and fabricated at the University. The generator was installed on a 56-foot tower in the modified nacelle of a Grumman Windstream 33 wind turbine in early October 1995. For checkout it was immediately loaded directly intomore » a three-phase resistive load in which it produced 3.5 kilowatts of power. Abstract only included. The ten-meter Grumman host wind machine is equipped with untwisted, untapered, NREL series S809 blades. The machine was instrumented to record both mechanical hub power and electrical power delivered to the utility. Initial tests are focusing on validating the calculated power surface. This mathematical surface shows the wind machine power as a function of both wind speed and turbine rotor speed. Upon the completion of this task, maximum effort will be directed toward filling a test matrix in which variable-speed operation will be contrasted with constant-speed mode by switching the variable speed control algorithm with the baseline constant speed control algorithm at 10 minutes time intervals. Other quantities in the test matrix will be analyzed to detect variable speed-effects on structural loads and power quality.« less

  13. Gravity-dependent estimates of object mass underlie the generation of motor commands for horizontal limb movements.

    PubMed

    Crevecoeur, F; McIntyre, J; Thonnard, J-L; Lefèvre, P

    2014-07-15

    Moving requires handling gravitational and inertial constraints pulling on our body and on the objects that we manipulate. Although previous work emphasized that the brain uses internal models of each type of mechanical load, little is known about their interaction during motor planning and execution. In this report, we examine visually guided reaching movements in the horizontal plane performed by naive participants exposed to changes in gravity during parabolic flight. This approach allowed us to isolate the effect of gravity because the environmental dynamics along the horizontal axis remained unchanged. We show that gravity has a direct effect on movement kinematics, with faster movements observed after transitions from normal gravity to hypergravity (1.8g), followed by significant movement slowing after the transition from hypergravity to zero gravity. We recorded finger forces applied on an object held in precision grip and found that the coupling between grip force and inertial loads displayed a similar effect, with an increase in grip force modulation gain under hypergravity followed by a reduction of modulation gain after entering the zero-gravity environment. We present a computational model to illustrate that these effects are compatible with the hypothesis that participants partially attribute changes in weight to changes in mass and scale incorrectly their motor commands with changes in gravity. These results highlight a rather direct internal mapping between the force generated during stationary holding against gravity and the estimation of inertial loads that limb and hand motor commands must overcome. Copyright © 2014 the American Physiological Society.

  14. Module/array interface study

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Several aspects of module design are evaluated, including glass superstrate and metal substrate module configurations, the potential for hail damage, light absorption in glass superstrates, the economics of glass selection, and electrical design. Also, three alternate glass superstrate module configurations are evaluated by means of finite element computer analyses. Two panel sizes, 1.2 by 2.4 m (4 by 8 ft) and 2.4 by 4.8 m are used to support three module sizes, 0.6 by 1.2 m, 1.2 by 1.2 m, and 1.2 by 2.4 m, for design loadings of + or - 1.7 kPa, + or - 2.4 kPa, and + or - 3.6 kPa. Designs and cost estimates are presented for twenty panel types and nine array configurations at each of the three design loadings. Structural cost sensitivities of combined array configurations and panel cases are presented.

  15. Magnetoplasmonic RF mixing and nonlinear frequency generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Firby, C. J., E-mail: firby@ualberta.ca; Elezzabi, A. Y.

    2016-07-04

    We present the design of a magnetoplasmonic Mach-Zehnder interferometer (MZI) modulator facilitating radio-frequency (RF) mixing and nonlinear frequency generation. This is achieved by forming the MZI arms from long-range dielectric-loaded plasmonic waveguides containing bismuth-substituted yttrium iron garnet (Bi:YIG). The magnetization of the Bi:YIG can be driven in the nonlinear regime by RF magnetic fields produced around adjacent transmission lines. Correspondingly, the nonlinear temporal dynamics of the transverse magnetization component are mapped onto the nonreciprocal phase shift in the MZI arms, and onto the output optical intensity signal. We show that this tunable mechanism can generate harmonics, frequency splitting, and frequencymore » down-conversion with a single RF excitation, as well as RF mixing when driven by two RF signals. This magnetoplasmonic component can reduce the number of electrical sources required to generate distinct optical modulation frequencies and is anticipated to satisfy important applications in integrated optics.« less

  16. Nongenomic Glucocorticoid Suppression of a Postsynaptic Potassium Current via Emergent Autocrine Endocannabinoid Signaling in Hypothalamic Neuroendocrine Cells following Chronic Dehydration

    PubMed Central

    Wu, Ning

    2017-01-01

    Glucocorticoids rapidly stimulate endocannabinoid synthesis and modulation of synaptic transmission in hypothalamic neuroendocrine cells via a nongenomic signaling mechanism. The endocannabinoid actions are synapse-constrained by astrocyte restriction of extracellular spatial domains. Exogenous cannabinoids have been shown to modulate postsynaptic potassium currents, including the A-type potassium current (IA), in different cell types. The activity of magnocellular neuroendocrine cells is shaped by a prominent IA. We tested for a rapid glucocorticoid modulation of the postsynaptic IK and IA in magnocellular neuroendocrine cells of the hypothalamic paraventricular nucleus (PVN) using whole-cell recordings in rat brain slices. Application of the synthetic glucocorticoid dexamethasone (Dex) had no rapid effect on the IK or IA amplitude, voltage dependence, or kinetics in magnocellular neurons in slices from untreated rats. In magnocellular neurons from salt-loaded rats, however, Dex application caused a rapid suppression of the IA and a depolarizing shift in IA voltage dependence. Exogenously applied endocannabinoids mimicked the rapid Dex modulation of the IA, and CB1 receptor antagonists and agonists blocked and occluded the Dex-induced changes in the IA, respectively, suggesting an endocannabinoid dependence of the rapid glucocorticoid effect. Preincubation of control slices in a gliotoxin resulted in the partial recapitulation of the glucocorticoid-induced rapid suppression of the IA. These findings demonstrate a glucocorticoid suppression of the postsynaptic IA in PVN magnocellular neurons via an autocrine endocannabinoid-dependent mechanism following chronic dehydration, and suggest a possible role for astrocytes in the control of the autocrine endocannabinoid actions. PMID:28966975

  17. Verification and Validation of the New Dynamic Mooring Modules Available in FAST v8: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Fabian; Robertson, Amy; Jonkman, Jason

    2016-08-01

    The open-source aero-hydro-servo-elastic wind turbine simulation software, FAST v8, was recently coupled to two newly developed mooring dynamics modules: MoorDyn and FEAMooring. MoorDyn is a lumped-mass-based mooring dynamics module developed by the University of Maine, and FEAMooring is a finite-element-based mooring dynamics module developed by Texas A&M University. This paper summarizes the work performed to verify and validate these modules against other mooring models and measured test data to assess their reliability and accuracy. The quality of the fairlead load predictions by the open-source mooring modules MoorDyn and FEAMooring appear to be largely equivalent to what is predicted by themore » commercial tool OrcaFlex. Both mooring dynamic model predictions agree well with the experimental data, considering the given limitations in the accuracy of the platform hydrodynamic load calculation and the quality of the measurement data.« less

  18. Verification and Validation of the New Dynamic Mooring Modules Available in FAST v8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Fabian F.; Andersen, Morten T.; Robertson, Amy N.

    2016-07-01

    The open-source aero-hydro-servo-elastic wind turbine simulation software, FAST v8, was recently coupled to two newly developed mooring dynamics modules: MoorDyn and FEAMooring. MoorDyn is a lumped-mass-based mooring dynamics module developed by the University of Maine, and FEAMooring is a finite-element-based mooring dynamics module developed by Texas A&M University. This paper summarizes the work performed to verify and validate these modules against other mooring models and measured test data to assess their reliability and accuracy. The quality of the fairlead load predictions by the open-source mooring modules MoorDyn and FEAMooring appear to be largely equivalent to what is predicted by themore » commercial tool OrcaFlex. Both mooring dynamic model predictions agree well with the experimental data, considering the given limitations in the accuracy of the platform hydrodynamic load calculation and the quality of the measurement data.« less

  19. Design, fabrication, test qualification and price analysis of a third generation solar cell module

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The design, fabrication, test, and qualification of a third generation intermediate load solar cell module are presented. A technical discussion of the detailed module design, preliminary design review, design modifications, and environmental testing are included. A standardized pricing system is utilized to establish the cost competitiveness of this module design.

  20. Development of the Orion Crew-Service Module Umbilical Retention and Release Mechanism

    NASA Technical Reports Server (NTRS)

    Delap, Damon C.; Glidden, Joel Micah; Lamoreaux, Christopher

    2013-01-01

    The Orion CSM umbilical retention and release mechanism supports and protects all of the cross-module commodities between the spacecrafts crew and service modules. These commodities include explosive transfer lines, wiring for power and data, and flexible hoses for ground purge and life support systems. The mechanism employs a single separation interface which is retained with pyrotechnically actuated separation bolts and supports roughly two dozen electrical and fluid connectors. When module separation is commanded, either for nominal on-orbit CONOPS or in the event of an abort, the mechanism must release the separation interface and sever all commodity connections within milliseconds of command receipt. There are a number of unique and novel aspects of the design solution developed by the Orion mechanisms team. The design is highly modular and can easily be adapted to other vehiclesmodules and alternate commodity sets. It will be flight tested during Orions Exploration Flight Test 1 (EFT-1) in 2014, and the Orion team anticipates reuse of the design for all future missions. The design packages fluid, electrical, and ordnance disconnects in a single separation interface. It supports abort separations even in cases where aerodynamic loading prevents the deployment of the umbilical arm. Unlike the Apollo CSM umbilical which was a destructive separation device, the Orion design is resettable and flight units can be tested for separation performance prior to flight.Initial development testing of the mechanisms separation interface resulted in binding failures due to connector misalignments. The separation interface was redesigned with a robust linear guide system, and the connector separation and boom deployment were separated into two discretely sequenced events. These changes addressed the root cause of the binding failure by providing better control of connector alignment. The new design was tuned and validated analytically via Monte Carlo simulation. The analytical validation was followed by a repeat of the initial test suite plus test cases at thermal extremes and test cases with imposed mechanical failures demonstrating fault tolerance. The mechanism was then exposed to the qualification vibration environment. Finally, separation testing was performed at full speed with live ordnance.All tests of the redesigned mechanism resulted in successful separation of the umbilical interface with adequate force margins and timing. The test data showed good agreement with the predictions of the Monte Carlo simulation. The simulation proved invaluable due to the number of variables affecting the separation and the uncertainty associated with each. The simulation allowed for rapid assessment of numerous trades and contingency scenarios, and can be easily reconfigured for varying commodity sets and connector layouts.

  1. Exploring the Impact of Prior Knowledge and Appropriate Feedback on Students' Perceived Cognitive Load and Learning Outcomes: Animation-based earthquakes instruction

    NASA Astrophysics Data System (ADS)

    Yeh, Ting-Kuang; Tseng, Kuan-Yun; Cho, Chung-Wen; Barufaldi, James P.; Lin, Mei-Shin; Chang, Chun-Yen

    2012-07-01

    The aim of this study was to develop an animation-based curriculum and to evaluate the effectiveness of animation-based instruction; the report involved the assessment of prior knowledge and the appropriate feedback approach, for the purpose of reducing perceived cognitive load and improving learning. The curriculum was comprised of five subunits designed to teach the 'Principles of Earthquakes.' Each subunit consisted of three modules: evaluation of prior knowledge with/without in-time feedback; animation-based instruction; and evaluation of learning outcomes with feedback. The 153 participants consisted of 10th grade high-school students. Seventy-eight students participated in the animation-based instruction, involving assessment of prior knowledge and appropriate feedback mechanism (APA group). A total of 75 students participated in animation-based learning that did not take into account their prior knowledge (ANPA group). The effectiveness of the instruction was then evaluated by using a Science Conception Test (SCT), a self-rating cognitive load questionnaire (CLQ), as well as a structured interview. The results indicated that: (1) Students' perceived cognitive load was reduced effectively through improving their prior knowledge by providing appropriate feedback. (2) When students perceived lower levels of cognitive load, they showed better learning outcome. The result of this study revealed that students of the APA group showed better performance than those of the ANPA group in an open-ended question. Furthermore, students' perceived cognitive load was negatively associated with their learning outcomes.

  2. Rapid feedback responses correlate with reach adaptation and properties of novel upper limb loads.

    PubMed

    Cluff, Tyler; Scott, Stephen H

    2013-10-02

    A hallmark of voluntary motor control is the ability to adjust motor patterns for novel mechanical or visuomotor contexts. Recent work has also highlighted the importance of feedback for voluntary control, leading to the hypothesis that feedback responses should adapt when we learn new motor skills. We tested this prediction with a novel paradigm requiring that human subjects adapt to a viscous elbow load while reaching to three targets. Target 1 required combined shoulder and elbow motion, target 2 required only elbow motion, and target 3 (probe target) required shoulder but no elbow motion. This simple approach controlled muscle activity at the probe target before, during, and after the application of novel elbow loads. Our paradigm allowed us to perturb the elbow during reaching movements to the probe target and identify several key properties of adapted stretch responses. Adapted long-latency responses expressed (de-) adaptation similar to reaching errors observed when we introduced (removed) the elbow load. Moreover, reaching errors during learning correlated with changes in the long-latency response, showing subjects who adapted more to the elbow load displayed greater modulation of their stretch responses. These adapted responses were sensitive to the size and direction of the viscous training load. Our results highlight an important link between the adaptation of feedforward and feedback control and suggest a key part of motor adaptation is to adjust feedback responses to the requirements of novel motor skills.

  3. Targeting mechanotransduction pathways in osteoarthritis: a focus on the pericellular matrix.

    PubMed

    Vincent, Tonia L

    2013-06-01

    Mechanical joint loading is an essential factor in joint homeostasis but it is also the most important aetiological factor in the development of osteoarthritis (OA). Although OA has long been regarded a disease of 'wear and tear', data arising from studies over the past 10 years have put pay to a mechanical 'attrition' theory of OA and place the induction and activation of specific matrix degrading enzymes centrally in the disease process. The finding that these enzymes are induced in vivo in a mechanosensitive manner provides a clear and sensible unifying hypothesis for disease pathogenesis; namely that mechanical 'wear' actively drives the enzymes that produce 'tear'. This review focuses on recent advances in our knowledge of the molecular mechanisms by which chondrocytes (and most likely other cells of the joint) sense and respond to changes in their mechanical environment. As mechanical signals drive both beneficial responses as well as those that drive disease, modulation of specific pathways provides a choice of strategies for treating OA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Reduced Nucleus Pulposus Glycosaminoglycan Content Alters Intervertebral Disc Dynamic Viscoelastic Mechanics

    PubMed Central

    Boxberger, John I.; Orlansky, Amy S.; Sen, Sounok; Elliott, Dawn M.

    2009-01-01

    The intervertebral disc functions over a range of dynamic loading regimes including axial loads applied across a spectrum of frequencies at varying compressive loads. Biochemical changes occurring in early degeneration, including reduced nucleus pulposus glycosaminoglycan content, may alter disc mechanical behavior and thus may contribute to the progression of degeneration. The objective of this study was to determine disc dynamic viscoelastic properties under several equilibrium loads and loading frequencies, and further, to determine how reduced nucleus glycosaminglycan content alters dynamic mechanics. We hypothesized (1) that dynamic stiffness would be elevated with increasing equilibrium load and increasing frequency, (2) that the disc would behave more elastically at higher frequencies, and finally, (3) that dynamic stiffness would be reduced at low equilibrium loads under all frequencies due to nucleus glycosaminoglycan loss. We mechanically tested control and chondroitinase-ABC injected rat lumbar motion segments at several equilibrium loads using oscillatory loading at frequencies ranging from 0.05 to 5 Hz. The rat lumbar disc behaved non-linearly with higher dynamic stiffness at elevated compressive loads irrespective of frequency. Phase angle was not affected by equilibrium load, although it decreased as frequency was increased. Reduced glycosaminoglycan decreased dynamic stiffness at low loads but not at high equilibrium loads and led to increased phase angle at all loads and frequencies. The findings of this study demonstrate the effect of equilibrium load and loading frequencies on dynamic disc mechanics and indicate possible mechanical mechanisms through which disc degeneration can progress. PMID:19539936

  5. A novel mechatronic system for measuring end-point stiffness: mechanical design and preliminary tests.

    PubMed

    Masia, L; Sandini, G; Morasso, P G

    2011-01-01

    Measuring arm stiffness is of great interest for many disciplines from biomechanics to medicine especially because modulation of impedance represents one of the main mechanism underlying control of movement and interaction with external environment. Previous works have proposed different methods to identify multijoint hand stiffness by using planar or even tridimensional haptic devices, but the associated computational burden makes them not easy to implement. We present a novel mechanism conceived for measuring multijoint planar stiffness by a single measurement and in a reduced execution time. A novel mechanical rotary device applies cyclic radial perturbation to human arm of a known displacement and the force is acquired by means of a 6-axes commercial load cell. The outcomes suggest that the system is not only reliable but allows obtaining a bi-dimensional estimation of arm stiffness in reduced amount of time and the results are comparable with those reported in previous researches. © 2011 IEEE

  6. Image matrix processor for fast multi-dimensional computations

    DOEpatents

    Roberson, G.P.; Skeate, M.F.

    1996-10-15

    An apparatus for multi-dimensional computation is disclosed which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination. 10 figs.

  7. A platform for actively loading cargo RNA to elucidate limiting steps in EV-mediated delivery.

    PubMed

    Hung, Michelle E; Leonard, Joshua N

    2016-01-01

    Extracellular vesicles (EVs) mediate intercellular communication through transfer of RNA and protein between cells. Thus, understanding how cargo molecules are loaded and delivered by EVs is of central importance for elucidating the biological roles of EVs and developing EV-based therapeutics. While some motifs modulating the loading of biomolecular cargo into EVs have been elucidated, the general rules governing cargo loading and delivery remain poorly understood. To investigate how general biophysical properties impact loading and delivery of RNA by EVs, we developed a platform for actively loading engineered cargo RNAs into EVs. In our system, the MS2 bacteriophage coat protein was fused to EV-associated proteins, and the cognate MS2 stem loop was engineered into cargo RNAs. Using this Targeted and Modular EV Loading (TAMEL) approach, we identified a configuration that substantially enhanced cargo RNA loading (up to 6-fold) into EVs. When applied to vesicles expressing the vesicular stomatitis virus glycoprotein (VSVG) - gesicles - we observed a 40-fold enrichment in cargo RNA loading. While active loading of mRNA-length (>1.5 kb) cargo molecules was possible, active loading was much more efficient for smaller (~0.5 kb) RNA molecules. We next leveraged the TAMEL platform to elucidate the limiting steps in EV-mediated delivery of mRNA and protein to prostate cancer cells, as a model system. Overall, most cargo was rapidly degraded in recipient cells, despite high EV-loading efficiencies and substantial EV uptake by recipient cells. While gesicles were efficiently internalized via a VSVG-mediated mechanism, most cargo molecules were rapidly degraded. Thus, in this model system, inefficient endosomal fusion or escape likely represents a limiting barrier to EV-mediated transfer. Altogether, the TAMEL platform enabled a comparative analysis elucidating a key opportunity for enhancing EV-mediated delivery to prostate cancer cells, and this technology should be of general utility for investigations and applications of EV-mediated transfer in other systems.

  8. The impact of luminance on tonic and phasic pupillary responses to sustained cognitive load.

    PubMed

    Peysakhovich, Vsevolod; Vachon, François; Dehais, Frédéric

    2017-02-01

    Pupillary reactions independent of light conditions have been linked to cognition for a long time. However, the light conditions can impact the cognitive pupillary reaction. Previous studies underlined the impact of luminance on pupillary reaction, but it is still unclear how luminance modulates the sustained and transient components of pupillary reaction - tonic pupil diameter and phasic pupil response. In the present study, we investigated the impact of the luminance on these two components under sustained cognitive load. Fourteen participants performed a novel working memory task combining mathematical computations with a classic n-back task. We studied both tonic pupil diameter and phasic pupil response under low (1-back) and high (2-back) working memory load and two luminance levels (gray and white). We found that the impact of working memory load on the tonic pupil diameter was modulated by the level of luminance, the increase in tonic pupil diameter with the load being larger under lower luminance. In contrast, the smaller phasic pupil response found under high load remained unaffected by luminance. These results showed that luminance impacts the cognitive pupillary reaction - tonic pupil diameter (phasic pupil response) being modulated under sustained (respectively, transient) cognitive load. These findings also support the relationship between the locus-coeruleus system, presumably functioning in two firing modes - tonic and phasic - and the pupil diameter. We suggest that the tonic pupil diameter tracks the tonic activity of the locus-coeruleus while phasic pupil response reflects its phasic activity. Besides, the designed novel cognitive paradigm allows the simultaneous manipulation of sustained and transient components of the cognitive load and is useful for dissociating the effects on the tonic pupil diameter and phasic pupil response. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. OA-7 Cargo Module Loading

    NASA Image and Video Library

    2017-02-07

    In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, thousands of pounds of supplies, equipment and scientific research materials are prepared for loading aboard a Cygnus spacecraft's pressurized cargo module (PCM) for the Orbital ATK CRS-7 mission to the International Space Station. Scheduled to launch on March 19, 2017, the commercial resupply services mission will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station.

  10. A Pulse Code Modulated Fiber Optic Link Design for Quinault Under-Water Tracking Range.

    DTIC Science & Technology

    1980-09-01

    invented and patented a light-wave communications device, the Photophone . The light beam was acoustically modulated, transmitted through the atmosphere and...a load resistor or feedback resistor. This voltage can be cal- culated by multiplying the received power, the respcnsiv ity and the effective load...frequency is not real critical since the clock, in effect , is synchronized after every eight bits by the timing pulse. The more interesting part of the

  11. Current status of final design and R&D for ITER blanket shield blocks in Korea

    NASA Astrophysics Data System (ADS)

    Ha, M. S.; Kim, S. W.; Jung, H. C.; Hwang, H. S.; Heo, Y. G.; Kim, D. H.; Ahn, H. J.; Lee, H. G.; Jung, K. J.

    2015-07-01

    The main function of the ITER blanket shield block (SB) is to provide nuclear shielding and support the first wall (FW) panel. It needs to accommodate all the components located on the vacuum vessel (in particular the in-vessel coils, blanket manifolds and the diagnostics). The conceptual, preliminary and final design reviews have been completed in the framework of the Blanket Integrated Product Team. The Korean Domestic Agency has successfully completed not only the final design activities, including thermo-hydraulic and thermo-mechanical analyses for SBs #2, #6, #8 and #16, but also the SB full scale prototype (FSP) pre-qualification program prior to issuing of the procurement agreement. SBs #2 and #6 are located at the in-board region of the tokamak. The pressure drop was less than 0.3 MPa and fully satisfied the design criteria. The thermo-mechanical stresses were also allowable even though the peak stresses occurred at nearby radial slit end holes, and their fatigue lives were evaluated over many more than 30 000 cycles. SB #8 is one of the most difficult modules to design, since this module will endure severe thermal loading not only from nuclear heating but also from plasma heat flux at uncovered regions by the FW. In order to resolve this design issue, the neutral beam shine-through module concept was applied to the FW uncovered region and it has been successfully verified as a possible design solution. SB #16 is located at the out-board central region of the tokamak. This module is under much higher nuclear loading than other modules and is covered by an enhanced heat flux FW panel. In the early design stage, many cooling headers on the front region were inserted to mitigate peak stresses near the access hole and radial slit end hole. However, the cooling headers on the front region needed to be removed in order to reduce the risk from cover welding during manufacturing. A few cooling headers now remain after efforts through several iterations to remove them and to optimize the cooling channels. The SB #8 FSP was manufactured and tested in accordance with the pre-qualification program based on the preliminary design, and related R&D activities were implemented to resolve the fabrication issues. This paper provides the current status of the final design and relevant R&D activities of the blanket SB.

  12. Skeletal Adaptation to Intramedullary Pressure-Induced Interstitial Fluid Flow Is Enhanced in Mice Subjected to Targeted Osteocyte Ablation

    PubMed Central

    Kwon, Ronald Y.; Meays, Diana R.; Meilan, Alexander S.; Jones, Jeremiah; Miramontes, Rosa; Kardos, Natalie; Yeh, Jiunn-Chern; Frangos, John A.

    2012-01-01

    Interstitial fluid flow (IFF) is a potent regulatory signal in bone. During mechanical loading, IFF is generated through two distinct mechanisms that result in spatially distinct flow profiles: poroelastic interactions within the lacunar-canalicular system, and intramedullary pressurization. While the former generates IFF primarily within the lacunar-canalicular network, the latter generates significant flow at the endosteal surface as well as within the tissue. This gives rise to the intriguing possibility that loading-induced IFF may differentially activate osteocytes or surface-residing cells depending on the generating mechanism, and that sensation of IFF generated via intramedullary pressurization may be mediated by a non-osteocytic bone cell population. To begin to explore this possibility, we used the Dmp1-HBEGF inducible osteocyte ablation mouse model and a microfluidic system for modulating intramedullary pressure (ImP) to assess whether structural adaptation to ImP-driven IFF is altered by partial osteocyte depletion. Canalicular convective velocities during pressurization were estimated through the use of fluorescence recovery after photobleaching and computational modeling. Following osteocyte ablation, transgenic mice exhibited severe losses in bone structure and altered responses to hindlimb suspension in a compartment-specific manner. In pressure-loaded limbs, transgenic mice displayed similar or significantly enhanced structural adaptation to Imp-driven IFF, particularly in the trabecular compartment, despite up to ∼50% of trabecular lacunae being uninhabited following ablation. Interestingly, regression analysis revealed relative gains in bone structure in pressure-loaded limbs were correlated with reductions in bone structure in unpressurized control limbs, suggesting that adaptation to ImP-driven IFF was potentiated by increases in osteoclastic activity and/or reductions in osteoblastic activity incurred independently of pressure loading. Collectively, these studies indicate that structural adaptation to ImP-driven IFF can proceed unimpeded following a significant depletion in osteocytes, consistent with the potential existence of a non-osteocytic bone cell population that senses ImP-driven IFF independently and potentially parallel to osteocytic sensation of poroelasticity-derived IFF. PMID:22413015

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayakumar, R.; Martovetsky, N.N.; Perfect, S.A.

    A glass-polyimide insulation system has been proposed by the US team for use in the Central Solenoid (CS) coil of the international Thermonuclear Experimental Reactor (ITER) machine and it is planned to use this system in the CS model coil inner module. The turn insulation will consist of 2 layers of combined prepreg and Kapton. Each layer is 50% overlapped with a butt wrap of prepreg and an overwrap of S glass. The coil layers will be separated by a glass-resin composite and impregnated in a VPI process. Small scale tests on the various components of the insulation are complete.more » It is planned to fabricate and test the insulation in a 4 x 4 insulated CS conductor array which will include the layer insulation and be vacuum impregnated. The conductor array will be subjected to 20 thermal cycles and 100000 mechanical load cycles in a Liquid Nitrogen environment. These loads are similar to those seen in the CS coil design. The insulation will be electrically tested at several stages during mechanical testing. This paper will describe the array configuration, fabrication: process, instrumentation, testing configuration, and supporting analyses used in selecting the array and test configurations.« less

  14. Novel role of transient receptor potential vanilloid 2 in the regulation of cardiac performance

    PubMed Central

    Lasko, Valerie M.; Koch, Sheryl E.; Singh, Vivek P.; Carreira, Vinicius; Robbins, Nathan; Patel, Amit R.; Jiang, Min; Bidwell, Philip; Kranias, Evangelia G.; Jones, W. Keith; Lorenz, John N.

    2013-01-01

    Transient receptor potential cation channels have been implicated in the regulation of cardiovascular function, but only recently has our laboratory described the vanilloid-2 subtype (TRPV2) in the cardiomyocyte, though its exact mechanism of action has not yet been established. This study tests the hypothesis that TRPV2 plays an important role in regulating myocyte contractility under physiological conditions. Therefore, we measured cardiac and vascular function in wild-type and TRPV2−/− mice in vitro and in vivo and found that TRPV2 deletion resulted in a decrease in basal systolic and diastolic function without affecting loading conditions or vascular tone. TRPV2 stimulation with probenecid, a relatively selective TRPV2 agonist, caused an increase in both inotropy and lusitropy in wild-type mice that was blunted in TRPV2−/− mice. We examined the mechanism of TRPV2 inotropy/lusitropy in isolated myocytes and found that it modulates Ca2+ transients and sarcoplasmic reticulum Ca2+ loading. We show that the activity of this channel is necessary for normal cardiac function and that there is increased contractility in response to agonism of TRPV2 with probenecid. PMID:24322617

  15. The effect of perceptual load on tactile spatial attention: Evidence from event-related potentials.

    PubMed

    Gherri, Elena; Berreby, Fiona

    2017-10-15

    To investigate whether tactile spatial attention is modulated by perceptual load, behavioural and electrophysiological measures were recorded during two spatial cuing tasks in which the difficulty of the target/non-target discrimination was varied (High and Low load tasks). Moreover, to study whether attentional modulations by load are sensitive to the availability of visual information, the High and Low load tasks were carried out under both illuminated and darkness conditions. ERPs to cued and uncued non-targets were compared as a function of task (High vs. Low load) and illumination condition (Light vs. Darkness). Results revealed that the locus of tactile spatial attention was determined by a complex interaction between perceptual load and illumination conditions during sensory-specific stages of processing. In the Darkness, earlier effects of attention were present in the High load than in the Low load task, while no difference between tasks emerged in the Light. By contrast, increased load was associated with stronger attention effects during later post-perceptual processing stages regardless of illumination conditions. These findings demonstrate that ERP correlates of tactile spatial attention are strongly affected by the perceptual load of the target/non-target discrimination. However, differences between illumination conditions show that the impact of load on tactile attention depends on the presence of visual information. Perceptual load is one of the many factors that contribute to determine the effects of spatial selectivity in touch. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Relationship between Ni(II) and Zn(II) Coordination and Nucleotide Binding by the Helicobacter pylori [NiFe]-Hydrogenase and Urease Maturation Factor HypB*

    PubMed Central

    Sydor, Andrew M.; Lebrette, Hugo; Ariyakumaran, Rishikesh; Cavazza, Christine; Zamble, Deborah B.

    2014-01-01

    The pathogen Helicobacter pylori requires two nickel-containing enzymes, urease and [NiFe]-hydrogenase, for efficient colonization of the human gastric mucosa. These enzymes possess complex metallocenters that are assembled by teams of proteins in multistep pathways. One essential accessory protein is the GTPase HypB, which is required for Ni(II) delivery to [NiFe]-hydrogenase and participates in urease maturation. Ni(II) or Zn(II) binding to a site embedded in the GTPase domain of HypB modulates the enzymatic activity, suggesting a mechanism of regulation. In this study, biochemical and structural analyses of H. pylori HypB (HpHypB) revealed an intricate link between nucleotide and metal binding. HpHypB nickel coordination, stoichiometry, and affinity were modulated by GTP and GDP, an effect not observed for zinc, and biochemical evidence suggests that His-107 coordination to nickel toggles on and off in a nucleotide-dependent manner. These results are consistent with the crystal structure of HpHypB loaded with Ni(II), GDP, and Pi, which reveals a nickel site distinct from that of zinc-loaded Methanocaldococcus jannaschii HypB as well as subtle changes to the protein structure. Furthermore, Cys-142, a metal ligand from the Switch II GTPase motif, was identified as a key component of the signal transduction between metal binding and the enzymatic activity. Finally, potassium accelerated the enzymatic activity of HpHypB but had no effect on the other biochemical properties of the protein. Altogether, this molecular level information about HpHypB provides insight into its cellular function and illuminates a possible mechanism of metal ion discrimination. PMID:24338018

  17. ATHENA: system studies and optics accommodation

    NASA Astrophysics Data System (ADS)

    Ayre, M.; Bavdaz, M.; Ferreira, I.; Wille, E.; Fransen, S.; Stefanescu, A.; Linder, M.

    2016-07-01

    ATHENA is currently in Phase A, with a view to adoption upon a successful Mission Adoption Review in 2019/2020. After a brief presentation of the reference spacecraft (SC) design, this paper will focus on the functional and environmental requirements, the thermo-mechanical design and the Assembly, Integration, Verification & Test (AIVT) considerations related to housing the Silicon Pore Optics (SPO) Mirror Modules (MM) in the very large Mirror Assembly Module (MAM). Initially functional requirements on the MM accommodation are presented, with the Effective Area and Half Energy Width (HEW) requirements leading to a MAM comprising (depending on final mirror size selected) between 700-1000 MMs, co-aligned with exquisite accuracy to provide a common focus. A preliminary HEW budget allocated across the main error-contributors is presented, and this is then used as a reference to derive subsequent requirements and engineering considerations, including: The procedures and technologies for MM-integration into the Mirror Structure (MS) to achieve the required alignment accuracies in a timely manner; stiffness requirements and handling scheme required to constrain deformation under gravity during x-ray testing; temperature control to constrain thermo-elastic deformation during flight; and the role of the Instrument Switching Mechanism (ISM) in constraining HEW and Effective Area errors. Next, we present the key environmental requirements of the MMs, and the need to minimise shock-loading of the MMs is stressed. Methods to achieve this Ø are presented, including: Selection of a large clamp-band launch vehicle interface (LV I/F); lengthening of the shock-path from the LV I/F to the MAM I/F; modal-tuning of the MAM to act as a low-pass filter during launch shock events; use of low-shock HDRMs for the MAM; and the possibility to deploy a passive vibration solution at the LV I/F to reduce loads.

  18. Anion exchanger 2 is critical for CD8(+) T cells to maintain pHi homeostasis and modulate immune responses.

    PubMed

    Concepcion, Axel R; Salas, January T; Sarvide, Sarai; Sáez, Elena; Ferrer, Alex; López, María; Portu, Ainhoa; Banales, Jesús M; Hervás-Stubbs, Sandra; Oude Elferink, Ronald P J; Prieto, Jesús; Medina, Juan F

    2014-05-01

    Mitogenic stimulation of lymphocytes involves alkalinization of intracellular pH (pHi ). Subsequent pHi regulation may involve HCO3 (-) extrusion through Cl(-) /HCO3 (-) exchangers and/or Na(+) -HCO3 (-) co-transporters with acid-loading capability. Abnormalities in these mechanisms could result in immune dysfunctions, as suggested by the CD8(+) T-cell expansion encountered in mice lacking Ae2 (a widely expressed acid loader with electroneutral and Na(+) -independent Cl(-) /HCO3 (-) anion-exchange activity). Here we report that CD8(+) T cells but not CD4(+) T cells or other lymphocyte populations, are crucially dependent on Ae2 for pHi regulation. While total lymphocytes (including isolated CD4(+) T cells) exhibit Ae1 expression and Na(+) -HCO3 (-) co-transport with acidifying potential, CD8(+) T cells lack these acid-loading mechanisms. In Ae2-KO mice, CD4(+) but not CD8(+) T cells upregulate these potential Ae2 surrogates. As a consequence, Ae2-KO CD8(+) T cells exhibit alkalinized pHi , and dramatically increase their pHi upon CD3 stimulation. Moreover, stimulated Ae2-deficient CD8(+) T cells show enhanced intracellular production of IL-2 and membrane expression of its receptor IL-2Rα, together with increased cell proliferation and activation. These findings demonstrate that CD8(+) T cells are critically dependent on Ae2 for pHi homeostasis and tuning of cell proliferation and activation. Ae2 thus constitutes a novel target to modulate CD8(+) T-cell responses. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Relationship between Ni(II) and Zn(II) coordination and nucleotide binding by the Helicobacter pylori [NiFe]-hydrogenase and urease maturation factor HypB.

    PubMed

    Sydor, Andrew M; Lebrette, Hugo; Ariyakumaran, Rishikesh; Cavazza, Christine; Zamble, Deborah B

    2014-02-14

    The pathogen Helicobacter pylori requires two nickel-containing enzymes, urease and [NiFe]-hydrogenase, for efficient colonization of the human gastric mucosa. These enzymes possess complex metallocenters that are assembled by teams of proteins in multistep pathways. One essential accessory protein is the GTPase HypB, which is required for Ni(II) delivery to [NiFe]-hydrogenase and participates in urease maturation. Ni(II) or Zn(II) binding to a site embedded in the GTPase domain of HypB modulates the enzymatic activity, suggesting a mechanism of regulation. In this study, biochemical and structural analyses of H. pylori HypB (HpHypB) revealed an intricate link between nucleotide and metal binding. HpHypB nickel coordination, stoichiometry, and affinity were modulated by GTP and GDP, an effect not observed for zinc, and biochemical evidence suggests that His-107 coordination to nickel toggles on and off in a nucleotide-dependent manner. These results are consistent with the crystal structure of HpHypB loaded with Ni(II), GDP, and Pi, which reveals a nickel site distinct from that of zinc-loaded Methanocaldococcus jannaschii HypB as well as subtle changes to the protein structure. Furthermore, Cys-142, a metal ligand from the Switch II GTPase motif, was identified as a key component of the signal transduction between metal binding and the enzymatic activity. Finally, potassium accelerated the enzymatic activity of HpHypB but had no effect on the other biochemical properties of the protein. Altogether, this molecular level information about HpHypB provides insight into its cellular function and illuminates a possible mechanism of metal ion discrimination.

  20. Evaluating Changes in Tendon Crimp with Fatigue Loading as an ex vivo Structural Assessment of Tendon Damage

    PubMed Central

    Freedman, Benjamin R.; Zuskov, Andrey; Sarver, Joseph J.; Buckley, Mark R.; Soslowsky, Louis J.

    2015-01-01

    The complex structure of tendons relates to their mechanical properties. Previous research has associated the waviness of collagen fibers (crimp) during quasi-static tensile loading to tensile mechanics, but less is known about the role of fatigue loading on crimp properties. In this study (IACUC approved), mouse patellar tendons were fatigue loaded while an integrated plane polariscope simultaneously assessed crimp properties. We demonstrate a novel structural mechanism whereby tendon crimp amplitude and frequency are altered with fatigue loading. In particular, fatigue loading increased the crimp amplitude across the tendon width and length, and these structural alterations were shown to be both region and load dependent. The change in crimp amplitude was strongly correlated to mechanical tissue laxity (defined as the ratio of displacement and gauge length relative to the first cycle of fatigue loading assessed at constant load throughout testing), at all loads and regions evaluated. Together, this study highlights the role of fatigue loading on tendon crimp properties as a function of load applied and region evaluated, and offers an additional structural mechanism for mechanical alterations that may lead to ultimate tendon failure. PMID:25773654

  1. High voltage dc--dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    DOEpatents

    Shimer, D.W.; Lange, A.C.

    1995-05-23

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 Figs.

  2. High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    DOEpatents

    Shimer, Daniel W.; Lange, Arnold C.

    1995-01-01

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  3. NK Cells and Their Ability to Modulate T Cells during Virus Infections

    PubMed Central

    Cook, Kevin D.; Waggoner, Stephen N.; Whitmire, Jason K.

    2014-01-01

    Natural killer (NK) cells are important in protection against virus infections, and many viruses have evolved mechanisms to thwart NK cell activity. NK cells respond to inflammatory signals at an early stage of virus infection, resulting in proliferation, cytokine production, and cytolytic activity that can reduce virus loads. Moreover, the rapid kinetics of the NK cell response enables NK cells to influence other populations of innate immune cells, affect the inflammatory milieu, and guide adaptive immune responses to infection. Early NK cell interactions with other leukocytes can have long-lasting effects on the number and quality of memory T cells, as well as impact the exhaustion of T cells during chronic infections. The ability of NK cells to modulate T cell responses can be mediated through direct T-NK interactions, cytokine production, or indirectly through dendritic cells and other cell types. Herein, we summarize our current understanding of how NK cells interact with T cells, dendritic cells, B cells, and other cell types involved in adaptive immune responses to virus infection. We outline several mechanisms by which NK cells enhance or suppress adaptive immune response and long-lived immunological memory. PMID:25404045

  4. Nanostructured ultra-thin patches for ultrasound-modulated delivery of anti-restenotic drug

    PubMed Central

    Vannozzi, Lorenzo; Ricotti, Leonardo; Filippeschi, Carlo; Sartini, Stefania; Coviello, Vito; Piazza, Vincenzo; Pingue, Pasqualantonio; La Motta, Concettina; Dario, Paolo; Menciassi, Arianna

    2016-01-01

    This work aims to demonstrate the possibility to fabricate ultra-thin polymeric films loaded with an anti-restenotic drug and capable of tunable drug release kinetics for the local treatment of restenosis. Vascular nanopatches are composed of a poly(lactic acid) supporting membrane (thickness: ~250 nm) on which 20 polyelectrolyte bilayers (overall thickness: ~70 nm) are alternatively deposited. The anti-restenotic drug is embedded in the middle of the polyelectrolyte structure, and released by diffusion mechanisms. Nanofilm fabrication procedure and detailed morphological characterization are reported here. Barium titanate nanoparticles (showing piezoelectric properties) are included in the polymeric support and their role is investigated in terms of influence on nanofilm morphology, drug release kinetics, and cell response. Results show an efficient drug release from the polyelectrolyte structure in phosphate-buffered saline, and a clear antiproliferative effect on human smooth muscle cells, which are responsible for restenosis. In addition, preliminary evidences of ultrasound-mediated modulation of drug release kinetics are reported, thus evaluating the influence of barium titanate nanoparticles on the release mechanism. Such data were integrated with quantitative piezoelectric and thermal measurements. These results open new avenues for a fine control of local therapies based on smart responsive materials. PMID:26730191

  5. Stress modulation of earthquakes: A study of long and short period stress perturbations and the crustal response

    NASA Astrophysics Data System (ADS)

    Johnson, Christopher W.

    Decomposing fault mechanical processes advances our understanding of active fault systems and properties of the lithosphere, thereby increasing the effectiveness of seismic hazard assessment and preventative measures implemented in urban centers. Along plate boundaries earthquakes are inevitable as tectonic forces reshape the Earth's surface. Earthquakes, faulting, and surface displacements are related systems that require multidisciplinary approaches to characterize deformation in the lithosphere. Modern geodetic instrumentation can resolve displacements to millimeter precision and provide valuable insight into secular deformation in near real-time. The expansion of permanent seismic networks as well as temporary deployments allow unprecedented detection of microseismic events that image fault interfaces and fracture networks in the crust. The research presented in this dissertation is at the intersection of seismology and geodesy to study the Earth's response to transient deformation and explores research questions focusing on earthquake triggering, induced seismicity, and seasonal loading while utilizing seismic data, geodetic data, and modeling tools. The focus is to quantify stress changes in the crust, explore seismicity rate variations and migration patterns, and model crustal deformation in order to characterize the evolving state of stress on faults and the migration of fluids in the crust. The collection of problems investigated all investigate the question: Why do earthquakes nucleate following a low magnitude stress perturbation? Answers to this question are fundamental to understanding the time dependent failure processes of the lithosphere. Dynamic triggering is the interaction of faults and triggering of earthquakes represents stress transferring from one system to another, at both local and remote distances [Freed, 2005]. The passage of teleseismic surface waves from the largest earthquakes produce dynamic stress fields and provides a natural laboratory to explore the causal relationship between low-amplitude stress changes and dynamically triggered events. Interestingly, observations of dynamically triggered M≥5.5 earthquakes are absent in the seismic records [Johnson et al., 2015; Parsons and Velasco, 2011], which invokes questions regarding whether or not large magnitude events can be dynamically triggered. Emerging results in the literature indicate undocumented M≥5.5 events at near to intermediate distances are dynamically triggered during the passage of surface waves but are undetected by automated networks [Fan and Shearer, 2016]. This raises new questions about the amplitude and duration of dynamic stressing for large magnitude events. I used 35-years of global seismicity and find that large event rate increases only occur following a delay from the transient load, suggesting aseismic processes are associated with large magnitude triggered events. To extend this finding I investigated three cases of large magnitude delayed dynamic triggering following the M8.6 2012 Indian Ocean earthquake [Pollitz et al., 2012] by producing microseismicity catalogs and modeling the transient stresses. The results indicate immediate triggering of microseismic events that hours later culminate into a large magnitude event and support the notion that large magnitude events are triggerable by transient loading, but seismic and aseismic processes (e.g. induced creep or fluid mobilization) are contributing to the nucleation process. Open questions remain concerning the source of a nucleation delay period following a stress perturbation that require both geodetic and seismic observations to constrain the source of delayed dynamic triggering and possibly provide insight into a precursory nucleation phase. Induced seismicity has gained much attention in the past 5 years as earthquake rates in regions of low tectonic strain accumulation accelerate to unprecedented levels [Ellsworth, 2013]. The source of the seismicity is attributed to shallow fluid injection associated with energy production. As hydrocarbon extraction continues to increase in the U.S. the deformation and induced seismicity from wastewater injection is providing new avenues to explore crustal properties. The large magnitude events associated with regions of high rate injection support the notion that the crust is critically stressed. Seismic data in these areas provides the opportunity to delineate fault structures in the crust using precise earthquake locations. To augment the studies of transient loading cycles I investigated induced seismicity at The Geysers geothermal field in northern California. Using high-resolution hypocenter data I implement an epidemic type aftershock sequence (ETAS) model to develop seismicity rate time series in the active geothermal field and characterize the migration of fluids from high volume water injection. Subtle stress changes induced by thermo- and poroelastic strains trigger seismicity for 5 months after peak injection at depths 3 km below the main injection interval. This suggests vertical migration paths are maintained in the geothermal field that allows fluid propagation on annual time scales. Fully describing the migration pattern of fluids in the crust and the associated stresses are applicable to tectonic related faulting and triggered seismic activity. Seasonal hydrological loading is a source of annual periodic transient deformation that is ideal for investigating the modulation of seismicity. The initial step in exploring the modulation of seismicity is to validate that a significant annual period does exist in California earthquake records. The periodicity results [Dutilleul et al., 2015] motivate continued investigation of seismically active regions that experience significant seasonal mass loading, i.e. high precipitation and snowfall rates, to quantify the magnitude of seasonal stress changes and possible correlation with seismicity modulation. The implication of this research addresses questions concerning the strength and state of stress on faults. High-resolution water storage time series throughout California are developed using continuous GPS records. The results allow an estimation of the stress changes induced by hydrological loading, which is combined with a detailed focal mechanism analysis to characterize the modulation of seismicity. The hydrologic loading is augmented with the contribution of additional deformation sources (e.g. tidal, atmosphere, and temperature) and find that annual stress changes of 5 kPa are modulating seismicity, most notably on dip-slip structures. These observations suggest that mechanical differences exist between the vertically dipping strike-slip faults and the shallowly dipping oblique structures in California. When comparing all the annual loading cycles it is evident that future studies incorporate all the sources of solid Earth deformation to fully describe the stresses realized on fault systems that respond to seasonal loads.

  6. Adaptively loaded IM/DD optical OFDM based on set-partitioned QAM formats.

    PubMed

    Zhao, Jian; Chen, Lian-Kuan

    2017-04-17

    We investigate the constellation design and symbol error rate (SER) of set-partitioned (SP) quadrature amplitude modulation (QAM) formats. Based on the SER analysis, we derive the adaptive bit and power loading algorithm for SP QAM based intensity-modulation direct-detection (IM/DD) orthogonal frequency division multiplexing (OFDM). We experimentally show that the proposed system significantly outperforms the conventional adaptively-loaded IM/DD OFDM and can increase the data rate from 36 Gbit/s to 42 Gbit/s in the presence of severe dispersion-induced spectral nulls after 40-km single-mode fiber. It is also shown that the adaptive algorithm greatly enhances the tolerance to fiber nonlinearity and allows for more power budget.

  7. Regulation of adult cardiocyte growth: effects of active and passive mechanical loading

    NASA Technical Reports Server (NTRS)

    Decker, M. L.; Janes, D. M.; Barclay, M. M.; Harger, L.; Decker, R. S.

    1997-01-01

    Fluctuations in hemodynamic load have been documented to modulate contractile protein turnover and myofibrillar structure in the heart; however, the relative importance of active and passive loading in regulating adult cardiocyte growth remains unresolved. To address this issue at the cellular level, adult feline cardiocytes were cultured either on Silastic membranes or plastic surfaces. Cardiocyte-laden membranes were stretched 10% of their rest length to enhance passive loading, whereas heart cells cultured on plastic or Silastic were field stimulated at 1 Hz to mimic active loading. Turnover of contractile proteins and structural integrity of the contractile-cytoskeletal apparatus were monitored for periods ranging from 4 to 72 h. Active and passive loading elevated contractile protein synthesis nearly equally (approximately 50%) and promoted the attachment of remodeled myofibrils to vinculin-positive focal contacts and/or costameres during the first 24 h of loading. Thereafter, rates of contractile protein synthesis returned to control values in passively stretched heart cells but remained elevated in field-stimulated cultures. The fractional rate of growth was increased significantly (approximately 8%/day) in electrically paced cells, whereas in passively stretched cardiocytes the growth rate rose only modestly (approximately 2%/day). Changes in the rate of myocyte growth appeared more closely correlated with the development of focal contacts and myofibril remodeling than with changes in myofibrillar protein turnover per se. 2,3-Butanedione monoxime, nifedipine, and, to a lesser extent, ryanodine blocked field-stimulated contractile protein synthesis and myofibrillar remodeling but had no impact on protein turnover or myofibril reassembly in passively loaded cardiocytes. The results of these experiments imply that both active and passive loading stimulate contractile protein turnover and myofibril remodeling, but the generation of active tension accelerates cardiocyte growth to a greater extent than passive loading. Furthermore, pharmacological interventions suggest that unique pathways may mediate these cellular events in actively and passively loaded adult cardiocytes.

  8. Regulation of adult cardiocyte growth: effects of active and passive mechanical loading.

    PubMed

    Decker, M L; Janes, D M; Barclay, M M; Harger, L; Decker, R S

    1997-06-01

    Fluctuations in hemodynamic load have been documented to modulate contractile protein turnover and myofibrillar structure in the heart; however, the relative importance of active and passive loading in regulating adult cardiocyte growth remains unresolved. To address this issue at the cellular level, adult feline cardiocytes were cultured either on Silastic membranes or plastic surfaces. Cardiocyte-laden membranes were stretched 10% of their rest length to enhance passive loading, whereas heart cells cultured on plastic or Silastic were field stimulated at 1 Hz to mimic active loading. Turnover of contractile proteins and structural integrity of the contractile-cytoskeletal apparatus were monitored for periods ranging from 4 to 72 h. Active and passive loading elevated contractile protein synthesis nearly equally (approximately 50%) and promoted the attachment of remodeled myofibrils to vinculin-positive focal contacts and/or costameres during the first 24 h of loading. Thereafter, rates of contractile protein synthesis returned to control values in passively stretched heart cells but remained elevated in field-stimulated cultures. The fractional rate of growth was increased significantly (approximately 8%/day) in electrically paced cells, whereas in passively stretched cardiocytes the growth rate rose only modestly (approximately 2%/day). Changes in the rate of myocyte growth appeared more closely correlated with the development of focal contacts and myofibril remodeling than with changes in myofibrillar protein turnover per se. 2,3-Butanedione monoxime, nifedipine, and, to a lesser extent, ryanodine blocked field-stimulated contractile protein synthesis and myofibrillar remodeling but had no impact on protein turnover or myofibril reassembly in passively loaded cardiocytes. The results of these experiments imply that both active and passive loading stimulate contractile protein turnover and myofibril remodeling, but the generation of active tension accelerates cardiocyte growth to a greater extent than passive loading. Furthermore, pharmacological interventions suggest that unique pathways may mediate these cellular events in actively and passively loaded adult cardiocytes.

  9. Mechanoelectric feedback in a model of the passively inflated left ventricle.

    PubMed

    Vetter, F J; McCulloch, A D

    2001-05-01

    Mechanoelectric feedback has been described in isolated cells and intact ventricular myocardium, but the mechanical stimulus that governs mechanosensitive channel activity in intact tissue is unknown. To study the interaction of myocardial mechanics and electrophysiology in multiple dimensions, we used a finite element model of the rabbit ventricles to simulate electrical propagation through passively loaded myocardium. Electrical propagation was simulated using the collocation-Galerkin finite element method. A stretch-dependent current was added in parallel to the ionic currents in the Beeler-Reuter ventricular action potential model. We investigated different mechanical coupling parameters to simulate stretch-dependent conductance modulated by either fiber strain, cross-fiber strain, or a combination of the two. In response to pressure loading, the conductance model governed by fiber strain alone reproduced the epicardial decrease in action potential amplitude as observed in experimental preparations of the passively loaded rabbit heart. The model governed by only cross-fiber strain reproduced the transmural gradient in action potential amplitude as observed in working canine heart experiments, but failed to predict a sufficient decrease in amplitude at the epicardium. Only the model governed by both fiber and cross-fiber strain reproduced the epicardial and transmural changes in action potential amplitude similar to experimental observations. In addition, dispersion of action potential duration nearly doubled with the same model. These results suggest that changes in action potential characteristics may be due not only to length changes along the long axis direction of the myofiber, but also due to deformation in the plane transverse to the fiber axis. The model provides a framework for investigating how cellular biophysics affect the function of the intact ventricles.

  10. Killing mechanism of stable N-halamine cross-linked polymethacrylamide nanoparticles that selectively target bacteria.

    PubMed

    Natan, Michal; Gutman, Ori; Lavi, Ronit; Margel, Shlomo; Banin, Ehud

    2015-02-24

    Increased resistance of bacteria to disinfection and antimicrobial treatment poses a serious public health threat worldwide. This has prompted the search for agents that can inhibit both bacterial growth and withstand harsh conditions (e.g., high organic loads). In the current study, N-halamine-derivatized cross-linked polymethacrylamide nanoparticles (NPs) were synthesized by copolymerization of the monomer methacrylamide (MAA) and the cross-linker monomer N,N-methylenebis(acrylamide) (MBAA) and were subsequently loaded with oxidative chlorine using sodium hypochlorite (NaOCl). The chlorinated NPs demonstrated remarkable stability and durability to organic reagents and to repetitive bacterial loading cycles as compared with the common disinfectant NaOCl (bleach), which was extremely labile under these conditions. The antibacterial mechanism of the cross-linked P(MAA-MBAA)-Cl NPs was found to involve generation of reactive oxygen species (ROS) only upon exposure to organic media. Importantly, ROS were not generated upon suspension in water, revealing that the mode of action is target-specific. Further, a unique and specific interaction of the chlorinated NPs with Staphylococcus aureus was discovered, whereby these microorganisms were all specifically targeted and marked for destruction. This bacterial encircling was achieved without using a targeting module (e.g., an antibody or a ligand) and represents a highly beneficial, natural property of the P(MAA-MBAA)-Cl nanostructures. Our findings provide insights into the mechanism of action of P(MAA-MBAA)-Cl NPs and demonstrate the superior efficacy of the NPs over bleach (i.e., stability, specificity, and targeting). This work underscores the potential of developing sustainable P(MAA-MBAA)-Cl NP-based devices for inhibiting bacterial colonization and growth.

  11. Use of the Frank-Starling mechanism during exercise is linked to exercise-induced changes in arterial load

    PubMed Central

    Chantler, Paul D.; Melenovsky, Vojtech; Schulman, Steven P.; Gerstenblith, Gary; Becker, Lewis C.; Ferrucci, Luigi; Fleg, Jerome L.; Najjar, Samer S.

    2012-01-01

    Effective arterial elastance(EA) is a measure of the net arterial load imposed on the heart that integrates the effects of heart rate(HR), peripheral vascular resistance(PVR), and total arterial compliance(TAC) and is a modulator of cardiac performance. To what extent the change in EA during exercise impacts on cardiac performance and aerobic capacity is unknown. We examined EA and its relationship with cardiovascular performance in 352 healthy subjects. Subjects underwent rest and exercise gated scans to measure cardiac volumes and to derive EA[end-systolic pressure/stroke volume index(SV)], PVR[MAP/(SV*HR)], and TAC(SV/pulse pressure). EA varied with exercise intensity: the ΔEA between rest and peak exercise along with its determinants, differed among individuals and ranged from −44% to +149%, and was independent of age and sex. Individuals were separated into 3 groups based on their ΔEAI. Individuals with the largest increase in ΔEA(group 3;ΔEA≥0.98 mmHg.m2/ml) had the smallest reduction in PVR, the greatest reduction in TAC and a similar increase in HR vs. group 1(ΔEA<0.22 mmHg.m2/ml). Furthermore, group 3 had a reduction in end-diastolic volume, and a blunted increase in SV(80%), and cardiac output(27%), during exercise vs. group 1. Despite limitations in the Frank-Starling mechanism and cardiac function, peak aerobic capacity did not differ by group because arterial-venous oxygen difference was greater in group 3 vs. 1. Thus the change in arterial load during exercise has important effects on the Frank-Starling mechanism and cardiac performance but not on exercise capacity. These findings provide interesting insights into the dynamic cardiovascular alterations during exercise. PMID:22003052

  12. Proceedings of the 16th Project Integration Meeting

    NASA Technical Reports Server (NTRS)

    Mcdonald, R. R.

    1980-01-01

    The principal achievement of the Low Cost Solar Array Project in 1980 was the attainment of $2.80/Wp Technical Readiness, and that processes and equipment now commercially available can make possible a deliverable product in 1982. A prototype array for intermediate load applications was demonstrated using frameless modules. It was proof tested to 40 lb/sq ft loading, and priced at $24/sq m, including array fabrication, module installation, shipping to the site and site installation for quantities of 20 MW.

  13. Optimization of thermoelectric cooling regimes for heat-loaded elements taking into account the thermal resistance of the heat-spreading system

    NASA Astrophysics Data System (ADS)

    Vasil'ev, E. N.

    2017-09-01

    A mathematical model has been proposed for analyzing and optimizing thermoelectric cooling regimes for heat-loaded elements of engineering and electronic devices. The model based on analytic relations employs the working characteristics of thermoelectric modules as the initial data and makes it possible to determine the temperature regime and the optimal values of the feed current for the modules taking into account the thermal resistance of the heat-spreading system.

  14. Analysis and performance of paralleling circuits for modular inverter-converter systems

    NASA Technical Reports Server (NTRS)

    Birchenough, A. G.; Gourash, F.

    1972-01-01

    As part of a modular inverter-converter development program, control techniques were developed to provide load sharing among paralleled inverters or converters. An analysis of the requirements of paralleling circuits and a discussion of the circuits developed and their performance are included in this report. The current sharing was within 5.6 percent of rated-load current for the ac modules and 7.4 percent for the dc modules for an initial output voltage unbalance of 5 volts.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karr, Dale G.; Yu, Bingbin; Sirnivas, Senu

    To create long-term solutions for offshore wind turbines in a variety of environmental conditions, CAE tools are needed to model the design-driving loads that interact with an offshore wind turbine system during operation. This report describes our efforts in augmenting existing CAE tools used for offshore wind turbine analysis with a new module that can provide simulation capabilities for ice loading on the system. This augmentation was accomplished by creating an ice-loading module coupled to FAST8, the CAE tool maintained by the NREL for simulating land-based and offshore wind turbine dynamics. The new module includes both static and dynamic icemore » loading that can be applied during a dynamic simulation of the response of an offshore wind turbine. The ice forces can be prescribed, or influenced by the structure’s compliant response, or by the dynamics of both the structure and the ice floe. The new module covers ice failure modes of spalling, buckling, crushing, splitting, and bending. The supporting structure of wind turbines can be modeled as a vertical or sloping form at the waterline. The Inward Battered Guide Structure (IBGS) foundation designed by Keystone Engineering for the Great Lakes was used to study the ice models coupled to FAST8. The IBGS foundation ice loading simulations in FAST8 were compared to the baseline simulation case without ice loading. The ice conditions reflecting those from Lake Huron at Port Huron and Lake Michigan at North Manitou were studied under near rated wind speed of 12 m/s for the NREL 5-MW reference turbine. Simulations were performed on ice loading models 1 through 4 and ice model 6 with their respective sub-models. The purpose of ice model 5 is to investigate ice loading on sloping structures such as ice-cones on a monopile and is not suitable for multi-membered jacketed structures like the IBGS foundation. The key response parameters from the simulations, shear forces and moments from the tower base and IBGS foundation base, were compared. Ice models 1 and 6 do not significantly affect the tower fore-aft shear and moment. However, ice model 2 (dynamic analyses), model 3 (random ice loading), and model 4 (multiple ice failure zone loading) show increased effect on the tower fore-aft shear and moment with significant effect from ice model 3.1. In general ice loading creates large reaction forces and moments at the base of the IBGS foundation; the largest occurred in model 1.1 (steady creep ice indentation loading) followed by model 3.1 (random creep ice indentation loading). In general the power production from the ice loading cases had little deviation from the baseline case without ice loading. For ultimate limit state (ULS), ice model 1.1 ice and 3.1 appear to be the ice most critical models to consider at an early stage of design. Ice model 4 is an important tool for assessing structural fatigue.« less

  16. Acoustic field modulation in regenerators

    NASA Astrophysics Data System (ADS)

    Hu, J. Y.; Wang, W.; Luo, E. C.; Chen, Y. Y.

    2016-12-01

    The regenerator is a key component that transfers energy between heat and work. The conversion efficiency is significantly influenced by the acoustic field in the regenerator. Much effort has been spent to quantitatively determine this influence, but few comprehensive experimental verifications have been performed because of difficulties in modulating and measuring the acoustic field. In this paper, a method requiring two compressors is introduced and theoretically investigated that achieves acoustic field modulation in the regenerator. One compressor outputs the acoustic power for the regenerator; the other acts as a phase shifter. A RC load dissipates the acoustic power out of both the regenerator and the latter compressor. The acoustic field can be modulated by adjusting the current in the two compressors and opening the RC load. The acoustic field is measured with pressure sensors instead of flow-field imaging equipment, thereby greatly simplifying the experiment.

  17. The SSM/PMAD automated test bed project

    NASA Technical Reports Server (NTRS)

    Lollar, Louis F.

    1991-01-01

    The Space Station Module/Power Management and Distribution (SSM/PMAD) autonomous subsystem project was initiated in 1984. The project's goal has been to design and develop an autonomous, user-supportive PMAD test bed simulating the SSF Hab/Lab module(s). An eighteen kilowatt SSM/PMAD test bed model with a high degree of automated operation has been developed. This advanced automation test bed contains three expert/knowledge based systems that interact with one another and with other more conventional software residing in up to eight distributed 386-based microcomputers to perform the necessary tasks of real-time and near real-time load scheduling, dynamic load prioritizing, and fault detection, isolation, and recovery (FDIR).

  18. Object-Based Attention Overrides Perceptual Load to Modulate Visual Distraction

    ERIC Educational Resources Information Center

    Cosman, Joshua D.; Vecera, Shaun P.

    2012-01-01

    The ability to ignore task-irrelevant information and overcome distraction is central to our ability to efficiently carry out a number of tasks. One factor shown to strongly influence distraction is the perceptual load of the task being performed; as the perceptual load of task-relevant information processing increases, the likelihood that…

  19. Load and Academic Attainment in Two Business Schools

    ERIC Educational Resources Information Center

    Donnelly, Mike; Mccormack, Darcy; Rimmer, Russell

    2007-01-01

    In this paper the relationship between academic load (the number of modules attempted) and academic performance is investigated in a Scottish and an Australian university. An engagement approach to academic integration is employed, in which there is feedback between load and performance, and in which there is scope for diminishing returns to the…

  20. Strain Modulations as a Mechanism to Reduce Stress Relaxation in Laryngeal Tissues

    PubMed Central

    Hunter, Eric J.; Siegmund, Thomas; Chan, Roger W.

    2014-01-01

    Vocal fold tissues in animal and human species undergo deformation processes at several types of loading rates: a slow strain involved in vocal fold posturing (on the order of 1 Hz or so), cyclic and faster posturing often found in speech tasks or vocal embellishment (1–10 Hz), and shear strain associated with vocal fold vibration during phonation (100 Hz and higher). Relevant to these deformation patterns are the viscous properties of laryngeal tissues, which exhibit non-linear stress relaxation and recovery. In the current study, a large strain time-dependent constitutive model of human vocal fold tissue is used to investigate effects of phonatory posturing cyclic strain in the range of 1 Hz to 10 Hz. Tissue data for two subjects are considered and used to contrast the potential effects of age. Results suggest that modulation frequency and extent (amplitude), as well as the amount of vocal fold overall strain, all affect the change in stress relaxation with modulation added. Generally, the vocal fold cover reduces the rate of relaxation while the opposite is true for the vocal ligament. Further, higher modulation frequencies appear to reduce the rate of relaxation, primarily affecting the ligament. The potential benefits of cyclic strain, often found in vibrato (around 5 Hz modulation) and intonational inflection, are discussed in terms of vocal effort and vocal pitch maintenance. Additionally, elderly tissue appears to not exhibit these benefits to modulation. The exacerbating effect such modulations may have on certain voice disorders, such as muscle tension dysphonia, are explored. PMID:24614616

  1. Strain modulations as a mechanism to reduce stress relaxation in laryngeal tissues.

    PubMed

    Hunter, Eric J; Siegmund, Thomas; Chan, Roger W

    2014-01-01

    Vocal fold tissues in animal and human species undergo deformation processes at several types of loading rates: a slow strain involved in vocal fold posturing (on the order of 1 Hz or so), cyclic and faster posturing often found in speech tasks or vocal embellishment (1-10 Hz), and shear strain associated with vocal fold vibration during phonation (100 Hz and higher). Relevant to these deformation patterns are the viscous properties of laryngeal tissues, which exhibit non-linear stress relaxation and recovery. In the current study, a large strain time-dependent constitutive model of human vocal fold tissue is used to investigate effects of phonatory posturing cyclic strain in the range of 1 Hz to 10 Hz. Tissue data for two subjects are considered and used to contrast the potential effects of age. Results suggest that modulation frequency and extent (amplitude), as well as the amount of vocal fold overall strain, all affect the change in stress relaxation with modulation added. Generally, the vocal fold cover reduces the rate of relaxation while the opposite is true for the vocal ligament. Further, higher modulation frequencies appear to reduce the rate of relaxation, primarily affecting the ligament. The potential benefits of cyclic strain, often found in vibrato (around 5 Hz modulation) and intonational inflection, are discussed in terms of vocal effort and vocal pitch maintenance. Additionally, elderly tissue appears to not exhibit these benefits to modulation. The exacerbating effect such modulations may have on certain voice disorders, such as muscle tension dysphonia, are explored.

  2. The effect of mechanical loads on the degradation of aliphatic biodegradable polyesters.

    PubMed

    Li, Ying; Chu, Zhaowei; Li, Xiaoming; Ding, Xili; Guo, Meng; Zhao, Haoran; Yao, Jie; Wang, Lizhen; Cai, Qiang; Fan, Yubo

    2017-06-01

    Aliphatic biodegradable polyesters have been the most widely used synthetic polymers for developing biodegradable devices as alternatives for the currently used permanent medical devices. The performances during biodegradation process play crucial roles for final realization of their functions. Because physiological and biochemical environment in vivo significantly affects biodegradation process, large numbers of studies on effects of mechanical loads on the degradation of aliphatic biodegradable polyesters have been launched during last decades. In this review article, we discussed the mechanism of biodegradation and several different mechanical loads that have been reported to affect the biodegradation process. Other physiological and biochemical factors related to mechanical loads were also discussed. The mechanical load could change the conformational strain energy and morphology to weaken the stability of the polymer. Besides, the load and pattern could accelerate the loss of intrinsic mechanical properties of polymers. This indicated that investigations into effects of mechanical loads on the degradation should be indispensable. More combination condition of mechanical loads and multiple factors should be considered in order to keep the degradation rate controllable and evaluate the degradation process in vivo accurately. Only then can the degradable devise achieve the desired effects and further expand the special applications of aliphatic biodegradable polyesters.

  3. Prediction of glycosaminoglycan synthesis in intervertebral disc under mechanical loading.

    PubMed

    Gao, Xin; Zhu, Qiaoqiao; Gu, Weiyong

    2016-09-06

    The loss of glycosaminoglycan (GAG) content is a major biochemical change during intervertebral disc (IVD) degeneration. Abnormal mechanical loading is one of the major factors causing disc degeneration. In this study, a multiscale mathematical model was developed to quantify the effect of mechanical loading on GAG synthesis. This model was based on a recently developed cell volume dependent GAG synthesis theory that predicts the variation of GAG synthesis rate of a cell under the influence of mechanical stimuli, and the biphasic theory that describes the deformation of IVD under mechanical loading. The GAG synthesis (at the cell level) was coupled with the mechanical loading (at the tissue level) via a cell-matrix unit approach which established a relationship between the variation of cell dilatation and the local tissue dilatation. This multiscale mathematical model was used to predict the effect of static load (creep load) on GAG synthesis in bovine tail discs. The predicted results are in the range of experimental results. This model was also used to investigate the effect of static (0.2MPa) and diurnal loads (0.1/0.3MPa and 0.15/0.25MPa in 12/12 hours shift with an average of 0.2MPa over a cycle) on GAG synthesis. It was found that static load and diurnal loads have different effects on GAG synthesis in a diurnal cycle, and the diurnal load effects depend on the amplitude of the load. The model is important to understand the effect of mechanical loading at the tissue level on GAG synthesis at the cellular level, as well as to optimize the mechanical loading in growing engineered tissue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS Inner Detector

    NASA Astrophysics Data System (ADS)

    Poley, L.; Bloch, I.; Edwards, S.; Friedrich, C.; Gregor, I.-M.; Jones, T.; Lacker, H.; Pyatt, S.; Rehnisch, L.; Sperlich, D.; Wilson, J.

    2016-05-01

    The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive used initially between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). However, this glue has several disadvantages, which motivated the search for an alternative. This paper presents a study of six ultra-violet (UV) cure glues and a glue pad for possible use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, thermal conduction and shear strength. Samples were thermally cycled, radiation hardness and corrosion resistance were also determined. These investigations led to the exclusion of three UV cure glues as well as the glue pad. Three UV cure glues were found to be possible better alternatives than silver loaded glue. Results from electrical tests of first prototype modules constructed using these glues are presented.

  5. Finite element method for analysis of stresses arising in the skull after external loading in cranio-orbital fractures.

    PubMed

    Wanyura, Hubert; Kowalczyk, Piotr; Bossak, Maciej; Samolczyk-Wanyura, Danuta; Stopa, Zygmunt

    2012-01-01

    The craniofacial skeleton remains not fully recognised as far as its mechanical resistance properties are concerned. Heretofore, the only available information on the mechanism of cranial bone fractures came from clinical observations, since the clinical evaluation in a living individual is practically impossible. It seems crucial to implement computer methods of virtual research into clinical practice. Such methods, which have long been used in the technical sciences, may either confirm or disprove previous observations. The aim of the study was to identify the areas of stress concentrations caused by external loads, which can lead to cranio-orbital fractures (COF), by the finite element method (FEM). For numerical analysis, a three-dimensional commercially available geometrical model of the skull was used which was imported into software of FEM. Computations were performed with ANSYS 12.1 Static Structural module. The loads were applied laterally to the frontal squama, the zygomatic process and partly to the upper orbital rim to locate dangerous concentration of stresses potentially resulting in COF. Changes in the area of force application revealed differences in values, quality and the extent of the stress distribution. Depending on the area of force application the following parameters would change: the value and area of stresses characteristic of COF. The distribution of stresses obtained in this study allowed definition of both the locations most vulnerable to fracture and sites from which fractures may originate or propagate.

  6. Natural roller bearing fault detection by angular measurement of true instantaneous angular speed

    NASA Astrophysics Data System (ADS)

    Renaudin, L.; Bonnardot, F.; Musy, O.; Doray, J. B.; Rémond, D.

    2010-10-01

    The challenge in many production activities involving large mechanical devices like power transmissions consists in reducing the machine downtime, in managing repairs and in improving operating time. Most online monitoring systems are based on conventional vibration measurement devices for gear transmissions or bearings in mechanical components. In this paper, we propose an alternative way of bearing condition monitoring based on the instantaneous angular speed measurement. By the help of a large experimental investigation on two different applications, we prove that localized faults like pitting in bearing generate small angular speed fluctuations which are measurable with optical or magnetic encoders. We also emphasize the benefits of measuring instantaneous angular speed with the pulse timing method through an implicit angular sampling which ensures insensitivity to speed fluctuation. A wide range of operating conditions have been tested for the two applications with varying speed, load, external excitations, gear ratio, etc. The tests performed on an automotive gearbox or on actual operating vehicle wheels also establish the robustness of the proposed methodology. By the means of a conventional Fourier transform, angular frequency channels kinematically related to the fault periodicity show significant magnitude differences related to the damage severity. Sideband effects are evidently seen when the fault is located on rotating parts of the bearing due to load modulation. Additionally, slip effects are also suspected to be at the origin of enlargement of spectrum peaks in the case of double row bearings loaded in a pure radial direction.

  7. Inflatable Vessel and Method

    NASA Technical Reports Server (NTRS)

    Raboin, Jasen L. (Inventor); Valle, Gerard D. (Inventor); Edeen, Gregg A. (Inventor); delaFuente, Horacio M. (Inventor); Schneider, William C. (Inventor); Spexarth, Gary R. (Inventor); Pandya, Shalini Gupta (Inventor); Johnson, Christopher J. (Inventor)

    2003-01-01

    An inflatable module comprising a structural core and an inflatable shell, wherein the inflatable shell is sealingly attached to the structural core. In its launch or pre-deployed configuration, the wall thickness of the inflatable shell is collapsed by vacuum. Also in this configuration, the inflatable shell is collapsed and efficiently folded around the structural core. Upon deployment, the wall thickness of the inflatable shell is inflated; whereby the inflatable shell itself, is thereby inflated around the structural core, defining therein a large enclosed volume. A plurality of removable shelves are arranged interior to the structural core in the launch configuration. The structural core also includes at least one longeron that, in conjunction with the shelves, primarily constitute the rigid, strong, and lightweight load-bearing structure of the module during launch. The removable shelves are detachable from their arrangement in the launch configuration so that, when the module is in its deployed configuration and launch loads no longer exist, the shelves can be rearranged to provide a module interior arrangement suitable for human habitation and work. In the preferred embodiment, to provide efficiency in structural load paths and attachments, the shape of the inflatable shell is a cylinder with semi-toroidal ends.

  8. Dynamic Fluid Flow Mechanical Stimulation Modulates Bone Marrow Mesenchymal Stem Cells.

    PubMed

    Hu, Minyi; Yeh, Robbin; Lien, Michelle; Teeratananon, Morgan; Agarwal, Kunal; Qin, Yi-Xian

    2013-03-01

    Osteoblasts are derived from mesenchymal stem cells (MSCs), which initiate and regulate bone formation. New strategies for osteoporosis treatments have aimed to control the fate of MSCs. While functional disuse decreases MSC growth and osteogenic potentials, mechanical signals enhance MSC quantity and bias their differentiation toward osteoblastogenesis. Through a non-invasive dynamic hydraulic stimulation (DHS), we have found that DHS can mitigate trabecular bone loss in a functional disuse model via rat hindlimb suspension (HLS). To further elucidate the downstream cellular effect of DHS and its potential mechanism underlying the bone quality enhancement, a longitudinal in vivo study was designed to evaluate the MSC populations in response to DHS over 3, 7, 14, and 21 days. Five-month old female Sprague Dawley rats were divided into three groups for each time point: age-matched control, HLS, and HLS+DHS. DHS was delivered to the right mid-tibiae with a daily "10 min on-5 min off-10 min on" loading regime for five days/week. At each sacrifice time point, bone marrow MSCs of the stimulated and control tibiae were isolated through specific cell surface markers and quantified by flow cytometry analysis. A strong time-dependent manner of bone marrow MSC induction was observed in response to DHS, which peaked on day 14. After 21 days, this effect of DHS was diminished. This study indicates that the MSC pool is positively influenced by the mechanical signals driven by DHS. Coinciding with our previous findings of mitigation of disuse bone loss, DHS induced changes in MSC number may bias the differentiation of the MSC population towards osteoblastogenesis, thereby promoting bone formation under disuse conditions. This study provides insights into the mechanism of time-sensitive MSC induction in response to mechanical loading, and for the optimal design of osteoporosis treatments.

  9. STS-40 MS Seddon, wearing blindfold, sleeps in SLS-1 module

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-40 Mission Specialist (MS) M. Rhea Seddon, wearing light mask (blindfold) and tucked inside a sleep restraint, rests in Spacelab Life Sciences 1 (SLS-1) module. The module is loaded inside Columbia's, Orbiter Vehicle (OV) 102's, payload bay and connected to the middeck via a spacelab (SL) tunnel.

  10. Design, fabrication, test, qualification and price analysis of third generation design solar cell modules. Part 1: Intermediate load module

    NASA Technical Reports Server (NTRS)

    Bottenberg, W. R.

    1981-01-01

    The updated program plan and narrative reflects the design and development work done and progress made in establishing a viable design for these modules. Design alterations from the preproduction plan are discussed based on experience gained during the preproduction phase of the program.

  11. Rugged microelectronic module package supports circuitry on heat sink

    NASA Technical Reports Server (NTRS)

    Johnson, A. L.

    1966-01-01

    Rugged module package for thin film hybrid microcircuits incorporated a rigid, thermally conductive support structure, which serves as a heat sink, and a lead wire block in which T-shaped electrical connectors are potted. It protects the circuitry from shock and vibration loads, dissipates internal heat, and simplifies electrical connections between adjacent modules.

  12. Augmenting static and dynamic mechanical strength of carbon nanotube/epoxy soft nanocomposites via modulation of purification and functionalization routes.

    PubMed

    Billing, Beant Kaur; Dhar, Purbarun; Singh, Narinder; Agnihotri, Prabhat K

    2018-01-03

    A detailed experimental investigation was carried out to establish the relationship between CNT purification and functionalization routes and the average response of CNT/epoxy nanocomposites under static and dynamic loading. It was shown that the relative improvement in the mechanical properties of the epoxy matrix due to the addition of CNTs depends on the choice of purification and functionalization steps. A better dispersion of CNTs was recorded for the functionalized CNTs as compared to the oxidized and CVD grown CNTs. Moreover, tensile, 3-point bending and nanoDMA testing performed on nanocomposites processed with CVD-grown, oxidized and functionalized CNTs revealed that COOH functionalization after the oxidation of CNTs at 350 °C is the optimized processing route to harness the excellent properties of CNTs in CNT/epoxy nanocomposites.

  13. Glass breaking strength: The role of surface flaws and treatments

    NASA Technical Reports Server (NTRS)

    Moore, D.

    1985-01-01

    Although the intrinsic strength of silicon dioxide glass is of the order of 10 to the 6th power lb/sq in, the practical strength is roughly two orders of magnitude below this theoretical limit, and depends almost entirely on the surface condition of the glass, that is, the number and size of flaws and the residual surface compression (temper) in the glass. Glass parts always fail in tension when these flaws grow under sustained loading to some critical size. Research associated with glass encapsulated crystalline-Si photovoltaic (PV) modules has greatly expanded our knowledge of glass breaking strength and developed sizeable data base for commercially available glass types. A detailed design algorithm is developed for thickness sizing of rectangular glass plates subject to pressure loads. Additional studies examine the strength of glass under impact loading conditions such as that caused by hail. Although the fundamentals of glass breakage are directly applicable to thin film modules, the fracture strength of typical numerical glass must be replaced with data that reflect the high temperature tin oxide processing, laser scribing, and edge processing peculiar to thin film modules. The fundamentals of glass breakage applicable to thin film modules and preliminary fracture strength data for a variety of 1 ft square glass specimens representing preprocessed and post processed sheets from current amorphous-Si module manufacturers are presented.

  14. Enhancement of muscle and locomotor performance by a series compliance: A mechanistic simulation study

    PubMed Central

    2018-01-01

    The objective was to better understand how a series compliance alters contraction kinetics and power output of muscle to enhance the work done on a load. A mathematical model was created in which a gravitational point load was connected via a linear spring to a muscle (based on the contractile properties of the sartorius of leopard frogs, Rana pipiens). The model explored the effects of load mass, tendon compliance, and delay between onset of contraction and release of the load (catch) on lift height and power output as measures of performance. Series compliance resulted in increased lift height over a relatively narrow range of compliances, and the effect was quite modest without an imposed catch mechanism unless the load was unrealistically small. Peak power of the muscle-tendon complex could be augmented up to four times that produced with a muscle alone, however, lift height was not predicted by peak power. Rather, lift height was improved as a result of the compliance synchronizing the time courses of muscle force and shortening velocity, in particular by stabilizing shortening velocity such that muscle power was sustained rather than rising and immediately falling. With a catch mechanism, enhanced performance resulted largely from energy storage in the compliance during the period of catch, rather than increased time for muscle activation before movement commenced. However, series compliance introduced a trade-off between work done before versus after release of the catch. Thus, the ability of tendons to enhance locomotor performance (i.e. increase the work done by muscle) appears dependent not only on their established role in storing energy and increasing power, but also on their ability to modulate the kinetics of muscle contraction such that power is sustained over more of the contraction, and maximizing the balance of work done before versus after release of a catch. PMID:29370246

  15. Performance assessment of the antenna setup for the ITER plasma position reflectometry in-vessel systems.

    PubMed

    Varela, P; Belo, J H; Quental, P B

    2016-11-01

    The design of the in-vessel antennas for the ITER plasma position reflectometry diagnostic is very challenging due to the need to cope both with the space restrictions inside the vacuum vessel and with the high mechanical and thermal loads during ITER operation. Here, we present the work carried out to assess and optimise the design of the antenna. We show that the blanket modules surrounding the antenna strongly modify its characteristics and need to be considered from the early phases of the design. We also show that it is possible to optimise the antenna performance, within the design restrictions.

  16. Instructional Efficiency of Changing Cognitive Load in an Out-of-School Laboratory

    NASA Astrophysics Data System (ADS)

    Scharfenberg, Franz-Josef; Bogner, Franz X.

    2010-04-01

    Our research objective focused on monitoring students' mental effort and cognitive achievement to unveil potential effects of an instructional change in an out-of-school laboratory offering gene technology modules. Altogether, 231 students (12th graders) attended our day-long hands-on module. Within a quasi-experimental design, a treatment group followed the newly developed two-step approach derived from cognitive load theory while a control group applied experimentation in a conventional one-step mode. The difference consisted of additional focused discussions combined with noting students' ideas (Step 1) prior to starting any experimental procedure (Step 2). We monitored mental effort (nine times during the teaching unit) and cognitive achievement (in a pre-post-design with follow-up test). The treatment demonstrated a change in instructional efficiency (by combining mental effort and cognitive achievement data), especially for intrinsically high-loaded students. Conclusions for optimizing individual cognitive load in science teaching were drawn.

  17. The polarization modulators based on liquid crystal variable retarders for the PHI and METIS instruments for the solar orbiter mission

    NASA Astrophysics Data System (ADS)

    Alvarez-Herrero, A.; García Parejo, P.; Laguna, H.; Villanueva, J.; Barandiarán, J.; Bastide, L.; Reina, M.; Royo, M.

    2017-11-01

    A technical development activity was carried out from 2009 to 2011 under ESA supervision to validate the Liquid Crystal Variable Retarders (LCVRs) as polarization modulators for the Solar Orbiter mission. After this, the technology achieved the Technology Readiness Level 5 (TRL5) corresponding to "Component Validation in Relevant Environment". Afterwards, additional tests and characterizations were performed in order to select the final specifications of the LCVRs cells to optimize their performances under the mission environmental conditions. The LCVRs will be used to measure the complete Stokes vector of the incoming light in PHI (The Polarimetric and Helioseismic Imager for Solar Orbiter) and the linear polarization in the case of METIS (Multi Element Telescope for Imaging and Spectroscopy). PHI is an imaging spectro-polarimeter that will acquire high resolution solar magnetograms. On the other hand, METIS is a solar coronagraph that will analyze the linear polarization for observations of the visible-light K-corona. The polarization modulators are described in this work including the optical, mechanical, thermal and electrical aspects. Both modulators will consist of two identical LCVRs with a relative azimuth orientation of 45° for PHI and parallel for the METIS modulator. In the first case, the configuration allows the analysis of the full Stockes vector with maximum polarimetric efficiencies. In the second setup, wide acceptance angles (<=+/-4°) are obtained. The polarization modulators will be thermal controlled to reach a stability better than +/-0.5°C during the measurement acquisition time (<=60s) under all the operational thermal conditions. This is required to fulfill the required polarimetric accuracy (<=10-3), because the LCVRs behavior has a dependence on temperature. The mechanical design has been conceived to minimize mass, volume and the thermal conductivity as well as the mechanical stress produced by the mounts to the cells, but taking into account the vibration environment due to the launch loads that the device shall withstand. Additionally, the optical clear aperture has been maximized and the design avoids breaks due to thermo-elastic deformations produced during the thermal cycling. Finally, the electrical cables and connections have been designed to obtain a very compact, modular and robust device.

  18. Analysis of hydrological and geotechnical aspects related to landslides caused by rainfall infiltration

    NASA Astrophysics Data System (ADS)

    Capparelli, Giovanna; La Sala, Gabriella; Vena, Mirko; Donato, Antonio

    2015-04-01

    A landslide is defined as a perceptible downward and outward movement of slope-forming soil, rock, and vegetation under the influence of gravity. Landslides can be triggered by both natural and human-induced changes in the environment. However rainfall is recognized as a major precursor for many types of slope movements. As a result of rainfall events and subsequent infiltration into the subsoil, the soil moisture can be significantly changed with a decrease in matric suction in unsaturated soil layers and/or increase in pore-water pressure in saturated layers. As a consequence, in these cases, the shear strength can be reduced enough to trigger the failure. An effective way to develop such an understanding is by means of computer simulation using numerical model. As part of the project PON "Integrated Early Warning System" our main objective was just to develop a numerical models that was able to consider the relation between rainfall, pore pressure and slope stability taking into account several components, including specific site conditions, mechanical, hydraulic and physical soil properties, local seepage conditions, and the contribution of these to soil strength. In this work the mechanism behind rainfall-triggered landslides is modeled by using combined infiltration, seepage and stability analyses. This method allows the evaluation of the terrain and its response based on geological, physical, hydrogeological and mechanical characteristics. The model is based on the combined use of two modules: an hydraulic module, to analyze the subsoil water circulation due to the rainfall infiltration under transient conditions and a geotechnical module, which provides indications regarding the slope stability. With regard to hydraulic module, variably saturated porous media flows have been modeled by the classical nonlinear Richards equation; in the geotechnical module the differential equilibrium equations have been solved taking into account the linear constitutive equations (plane stress) and strain-displacement relationship. By means of the model it is possible to analyze subsoil water circulation, safety factor of the slope subjected to gravity loading and to the pore pressure calculated from hydraulic module, displacement, strain and stress under the effect of rainfall infiltration. As an application case, the analysis and the representative results obtained for the Torre Orsaia landslide (Campania region - Southern Italy) are described.

  19. Age-related decline in bottom-up processing and selective attention in the very old.

    PubMed

    Zhuravleva, Tatyana Y; Alperin, Brittany R; Haring, Anna E; Rentz, Dorene M; Holcomb, Philip J; Daffner, Kirk R

    2014-06-01

    Previous research demonstrating age-related deficits in selective attention have not included old-old adults, an increasingly important group to study. The current investigation compared event-related potentials in 15 young-old (65-79 years old) and 23 old-old (80-99 years old) subjects during a color-selective attention task. Subjects responded to target letters in a specified color (Attend) while ignoring letters in a different color (Ignore) under both low and high loads. There were no group differences in visual acuity, accuracy, reaction time, or latency of early event-related potential components. The old-old group showed a disruption in bottom-up processing, indexed by a substantially diminished posterior N1 (smaller amplitude). They also demonstrated markedly decreased modulation of bottom-up processing based on selected visual features, indexed by the posterior selection negativity (SN), with similar attenuation under both loads. In contrast, there were no group differences in frontally mediated attentional selection, measured by the anterior selection positivity (SP). There was a robust inverse relationship between the size of the SN and SP (the smaller the SN, the larger the SP), which may represent an anteriorly supported compensatory mechanism. In the absence of a decline in top-down modulation indexed by the SP, the diminished SN may reflect age-related degradation of early bottom-up visual processing in old-old adults.

  20. The irrelevant speech effect and working memory load.

    PubMed

    Gisselgård, Jens; Petersson, Karl Magnus; Ingvar, Martin

    2004-07-01

    Irrelevant speech impairs the immediate serial recall of visually presented material. Previously, we have shown that the irrelevant speech effect (ISE) was associated with a relative decrease of regional blood flow in cortical regions subserving the verbal working memory, in particular the superior temporal cortex. In this extension of the previous study, the working memory load was increased and an increased activity as a response to irrelevant speech was noted in the dorsolateral prefrontal cortex. We suggest that the two studies together provide some basic insights as to the nature of the irrelevant speech effect. Firstly, no area in the brain can be ascribed as the single locus of the irrelevant speech effect. Instead, the functional neuroanatomical substrate to the effect can be characterized in terms of changes in networks of functionally interrelated areas. Secondly, the areas that are sensitive to the irrelevant speech effect are also generically activated by the verbal working memory task itself. Finally, the impact of irrelevant speech and related brain activity depends on working memory load as indicated by the differences between the present and the previous study. From a brain perspective, the irrelevant speech effect may represent a complex phenomenon that is a composite of several underlying mechanisms, which depending on the working memory load, include top-down inhibition as well as recruitment of compensatory support and control processes. We suggest that, in the low-load condition, a selection process by an inhibitory top-down modulation is sufficient, whereas in the high-load condition, at or above working memory span, auxiliary adaptive cognitive resources are recruited as compensation. Copyright 2004 Elsevier Inc.

  1. Localized Fluctuant Oscillatory Activity by Working Memory Load: A Simultaneous EEG-fMRI Study.

    PubMed

    Zhao, Xiaojie; Li, Xiaoyun; Yao, Li

    2017-01-01

    Working memory (WM) is a resource-limited memory system for temporary storage and processing of brain information during the execution of cognitive tasks. Increased WM load will increase the amount and difficulty of memory information. Several studies have used electroencephalography (EEG) or functional magnetic resonance imaging (fMRI) to explore load-dependent cognition processing according to the time courses of electrophysiological activity or the spatial pattern of blood oxygen metabolic activity. However, the relationships between these two activities and the underlying neural mechanism are still unclear. In this study, using simultaneously collected EEG and fMRI data under an n-back verbal WM task, we modeled the spectral perturbation of EEG oscillation and fMRI activation through joint independent component analysis (JICA). Multi-channel oscillation features were also introduced into the JICA model for further analysis. The results showed that time-locked activity of theta and beta were modulated by memory load in the early stimuli evaluation stage, corresponding to the enhanced activation in the frontal and parietal lobe, which were involved in stimulus discrimination, information encoding and delay-period activity. In the late response selection stage, alpha and gamma activity changes dependent on the load correspond to enhanced activation in the areas of frontal, temporal and parietal lobes, which played important roles in attention, information extraction and memory retention. These findings suggest that the increases in memory load not only affect the intensity and time course of the EEG activities, but also lead to the enhanced activation of brain regions which plays different roles during different time periods of cognitive process of WM.

  2. Visual short-term memory load modulates the early attention and perception of task-irrelevant emotional faces

    PubMed Central

    Yang, Ping; Wang, Min; Jin, Zhenlan; Li, Ling

    2015-01-01

    The ability to focus on task-relevant information, while suppressing distraction, is critical for human cognition and behavior. Using a delayed-match-to-sample (DMS) task, we investigated the effects of emotional face distractors (positive, negative, and neutral faces) on early and late phases of visual short-term memory (VSTM) maintenance intervals, using low and high VSTM loads. Behavioral results showed decreased accuracy and delayed reaction times (RTs) for high vs. low VSTM load. Event-related potentials (ERPs) showed enhanced frontal N1 and occipital P1 amplitudes for negative faces vs. neutral or positive faces, implying rapid attentional alerting effects and early perceptual processing of negative distractors. However, high VSTM load appeared to inhibit face processing in general, showing decreased N1 amplitudes and delayed P1 latencies. An inverse correlation between the N1 activation difference (high-load minus low-load) and RT costs (high-load minus low-load) was found at left frontal areas when viewing negative distractors, suggesting that the greater the inhibition the lower the RT cost for negative faces. Emotional interference effect was not found in the late VSTM-related parietal P300, frontal positive slow wave (PSW) and occipital negative slow wave (NSW) components. In general, our findings suggest that the VSTM load modulates the early attention and perception of emotional distractors. PMID:26388763

  3. The mechanism of phloem loading in rice (Oryza sativa).

    PubMed

    Eom, Joon-Seob; Choi, Sang-Bong; Ward, John M; Jeon, Jong-Seong

    2012-05-01

    Carbohydrates, mainly sucrose, that are synthesized in source organs are transported to sink organs to support growth and development. Phloem loading of sucrose is a crucial step that drives long-distance transport by elevating hydrostatic pressure in the phloem. Three phloem loading strategies have been identified, two active mechanisms, apoplastic loading via sucrose transporters and symplastic polymer trapping, and one passive mechanism. The first two active loading mechanisms require metabolic energy, carbohydrate is loaded into the phloem against a concentration gradient. The passive process, diffusion, involves equilibration of sucrose and other metabolites between cells through plasmodesmata. Many higher plant species including Arabidopsis utilize the active loading mechanisms to increase carbohydrate in the phloem to higher concentrations than that in mesophyll cells. In contrast, recent data revealed that a large number of plants, especially woody species, load sucrose passively by maintaining a high concentration in mesophyll cells. However, it still remains to be determined how the worldwide important cereal crop, rice, loads sucrose into the phloem in source organs. Based on the literature and our results, we propose a potential strategy of phloem loading in rice. Elucidation of the phloem loading mechanism should improve our understanding of rice development and facilitate its manipulation towards the increase of crop productivity.

  4. Mechanism isolates load weighing cell during lifting of load

    NASA Technical Reports Server (NTRS)

    Haigler, J. S.

    1966-01-01

    Load weighing cell used in conjuction with a hoist is isolated during lifting and manipulation of the load. A simple mechanism, attached to a crane hook, provides a screw adjustment for engaging the load cell during weighing of the load and isolating it from lift forces during hoisting of the load.

  5. Dissecting HIV Virulence: Heritability of Setpoint Viral Load, CD4+ T-Cell Decline, and Per-Parasite Pathogenicity.

    PubMed

    Bertels, Frederic; Marzel, Alex; Leventhal, Gabriel; Mitov, Venelin; Fellay, Jacques; Günthard, Huldrych F; Böni, Jürg; Yerly, Sabine; Klimkait, Thomas; Aubert, Vincent; Battegay, Manuel; Rauch, Andri; Cavassini, Matthias; Calmy, Alexandra; Bernasconi, Enos; Schmid, Patrick; Scherrer, Alexandra U; Müller, Viktor; Bonhoeffer, Sebastian; Kouyos, Roger; Regoes, Roland R

    2018-01-01

    Pathogen strains may differ in virulence because they attain different loads in their hosts, or because they induce different disease-causing mechanisms independent of their load. In evolutionary ecology, the latter is referred to as "per-parasite pathogenicity". Using viral load and CD4+ T-cell measures from 2014 HIV-1 subtype B-infected individuals enrolled in the Swiss HIV Cohort Study, we investigated if virulence-measured as the rate of decline of CD4+ T cells-and per-parasite pathogenicity are heritable from donor to recipient. We estimated heritability by donor-recipient regressions applied to 196 previously identified transmission pairs, and by phylogenetic mixed models applied to a phylogenetic tree inferred from HIV pol sequences. Regressing the CD4+ T-cell declines and per-parasite pathogenicities of the transmission pairs did not yield heritability estimates significantly different from zero. With the phylogenetic mixed model, however, our best estimate for the heritability of the CD4+ T-cell decline is 17% (5-30%), and that of the per-parasite pathogenicity is 17% (4-29%). Further, we confirm that the set-point viral load is heritable, and estimate a heritability of 29% (12-46%). Interestingly, the pattern of evolution of all these traits differs significantly from neutrality, and is most consistent with stabilizing selection for the set-point viral load, and with directional selection for the CD4+ T-cell decline and the per-parasite pathogenicity. Our analysis shows that the viral genotype affects virulence mainly by modulating the per-parasite pathogenicity, while the indirect effect via the set-point viral load is minor. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. Dissecting HIV Virulence: Heritability of Setpoint Viral Load, CD4+ T-Cell Decline, and Per-Parasite Pathogenicity

    PubMed Central

    Bertels, Frederic; Marzel, Alex; Leventhal, Gabriel; Mitov, Venelin; Fellay, Jacques; Günthard, Huldrych F; Böni, Jürg; Yerly, Sabine; Klimkait, Thomas; Aubert, Vincent; Battegay, Manuel; Rauch, Andri; Cavassini, Matthias; Calmy, Alexandra; Bernasconi, Enos; Schmid, Patrick; Scherrer, Alexandra U; Müller, Viktor; Bonhoeffer, Sebastian; Kouyos, Roger; Regoes, Roland R

    2018-01-01

    Abstract Pathogen strains may differ in virulence because they attain different loads in their hosts, or because they induce different disease-causing mechanisms independent of their load. In evolutionary ecology, the latter is referred to as “per-parasite pathogenicity”. Using viral load and CD4+ T-cell measures from 2014 HIV-1 subtype B-infected individuals enrolled in the Swiss HIV Cohort Study, we investigated if virulence—measured as the rate of decline of CD4+ T cells—and per-parasite pathogenicity are heritable from donor to recipient. We estimated heritability by donor–recipient regressions applied to 196 previously identified transmission pairs, and by phylogenetic mixed models applied to a phylogenetic tree inferred from HIV pol sequences. Regressing the CD4+ T-cell declines and per-parasite pathogenicities of the transmission pairs did not yield heritability estimates significantly different from zero. With the phylogenetic mixed model, however, our best estimate for the heritability of the CD4+ T-cell decline is 17% (5–30%), and that of the per-parasite pathogenicity is 17% (4–29%). Further, we confirm that the set-point viral load is heritable, and estimate a heritability of 29% (12–46%). Interestingly, the pattern of evolution of all these traits differs significantly from neutrality, and is most consistent with stabilizing selection for the set-point viral load, and with directional selection for the CD4+ T-cell decline and the per-parasite pathogenicity. Our analysis shows that the viral genotype affects virulence mainly by modulating the per-parasite pathogenicity, while the indirect effect via the set-point viral load is minor. PMID:29029206

  7. Interaction of threat and verbal working memory in adolescents.

    PubMed

    Patel, Nilam; Vytal, Katherine; Pavletic, Nevia; Stoodley, Catherine; Pine, Daniel S; Grillon, Christian; Ernst, Monique

    2016-04-01

    Threat induces a state of sustained anxiety that can disrupt cognitive processing, and, reciprocally, cognitive processing can modulate an anxiety response to threat. These effects depend on the level of cognitive engagement, which itself varies as a function of task difficulty. In adults, we recently showed that induced anxiety impaired working memory accuracy at low and medium but not high load. Conversely, increasing the task load reduced the physiological correlates of anxiety (anxiety-potentiated startle). The present work examines such threat-cognition interactions as a function of age. We expected threat to more strongly impact working memory in younger individuals by virtue of putatively restricted cognitive resources and weaker emotion regulation. This was tested by examining the influence of age on the interaction of anxiety and working memory in 25 adolescents (10 to 17 years) and 25 adults (22 to 46 years). Working memory load was manipulated using a verbal n-back task. Anxiety was induced using the threat of an aversive loud scream and measured via eyeblink startle. Findings revealed that, in both age groups, accuracy was lower during threat than safe conditions at low and medium but not high load, and reaction times were faster during threat than safe conditions at high load but did not differ at other loads. Additionally, anxiety-potentiated startle was greater during low and medium than high load. Thus, the interactions of anxiety with working memory appear similar in adolescents and adults. Whether these similarities reflect common neural mechanisms would need to be assessed using functional neuroimaging. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  8. Saposins modulate human invariant Natural Killer T cells self-reactivity and facilitate lipid exchange with CD1d molecules during antigen presentation

    PubMed Central

    Salio, Mariolina; Ghadbane, Hemza; Dushek, Omer; Shepherd, Dawn; Cypen, Jeremy; Gileadi, Uzi; Aichinger, Michael C.; Napolitani, Giorgio; Qi, Xiaoyang; van der Merwe, P. Anton; Wojno, Justyna; Veerapen, Natacha; Cox, Liam R.; Besra, Gurdyal S.; Yuan, Weiming; Cresswell, Peter; Cerundolo, Vincenzo

    2013-01-01

    Lipid transfer proteins, such as molecules of the saposin family, facilitate extraction of lipids from biological membranes for their loading onto CD1d molecules. Although it has been shown that prosaposin-deficient mice fail to positively select invariant natural killer T (iNKT) cells, it remains unclear whether saposins can facilitate loading of endogenous iNKT cell agonists in the periphery during inflammatory responses. In addition, it is unclear whether saposins, in addition to loading, also promote dissociation of lipids bound to CD1d molecules. To address these questions, we used a combination of cellular assays and demonstrated that saposins influence CD1d-restricted presentation to human iNKT cells not only of exogenous lipids but also of endogenous ligands, such as the self-glycosphingolipid β-glucopyranosylceramide, up-regulated by antigen-presenting cells following bacterial infection. Furthermore, we demonstrated that in human myeloid cells CD1d-loading of endogenous lipids after bacterial infection, but not at steady state, requires trafficking of CD1d molecules through an endo-lysosomal compartment. Finally, using BIAcore assays we demonstrated that lipid-loaded saposin B increases the off-rate of lipids bound to CD1d molecules, providing important insights into the mechanisms by which it acts as a “lipid editor,” capable of fine-tuning loading and unloading of CD1d molecules. These results have important implications in understanding how to optimize lipid-loading onto antigen-presenting cells, to better harness iNKT cells central role at the interface between innate and adaptive immunity. PMID:24248359

  9. Mechanism of Selective Nickel Transfer from HypB to HypA, Escherichia coli [NiFe]-Hydrogenase Accessory Proteins.

    PubMed

    Lacasse, Michael J; Douglas, Colin D; Zamble, Deborah B

    2016-12-13

    [NiFe]-hydrogenase enzymes catalyze the reversible reduction of protons to molecular hydrogen and serve as a vital component of the metabolism of many pathogens. The synthesis of the bimetallic catalytic center requires a suite of accessory proteins, and the penultimate step, nickel insertion, is facilitated by the metallochaperones HypA and HypB. In Escherichia coli, nickel moves from a site in the GTPase domain of HypB to HypA in a process accelerated by GDP. To determine how the transfer of nickel is controlled, the impacts of HypA and nucleotides on the properties of HypB were examined. Integral to this work was His2Gln HypA, a mutant with attenuated nickel affinity that does not support hydrogenase production in E. coli. This mutation inhibits the translocation of nickel from HypB. H2Q-HypA does not modulate the apparent metal affinity of HypB, but the stoichiometry and stability of the HypB-nickel complex are modulated by the nucleotide. Furthermore, the HypA-HypB interaction was detected by gel filtration chromatography if HypB was loaded with GDP, but not a GTP analogue, and the protein complex dissociated upon binding of nickel to His2 of HypA. In contrast, a nucleotide does not modulate the binding of zinc to HypB, and loading zinc into the GTPase domain of HypB inhibits formation of the complex with HypA. These results demonstrate that GTP hydrolysis controls both metal binding and protein-protein interactions, conferring selective and directional nickel transfer during [NiFe]-hydrogenase biosynthesis.

  10. Astronaut Eugene Cernan drives the Lunar Roving Vehicle during first EVA

    NASA Image and Video Library

    1972-12-10

    AS17-147-22526 (11 Dec. 1972) --- Astronaut Eugene A. Cernan, commander, makes a short checkout of the Lunar Roving Vehicle (LRV) during the early part of the first Apollo 17 extravehicular activity (EVA) at the Taurus-Littrow landing site. This view of the "stripped down" LRV is prior to loading up. Equipment later loaded onto the LRV included the ground-controlled television assembly, the lunar communications relay unit, hi-gain antenna, low-gain antenna, aft tool pallet, lunar tools and scientific gear. This photograph was taken by scientist-astronaut Harrison H. Schmitt, lunar module pilot. The mountain in the right background is the east end of South Massif. While astronauts Cernan and Schmitt descended in the Lunar Module (LM) "Challenger" to explore the moon, astronaut Ronald E. Evans, command module pilot, remained with the Command and Service Modules (CSM) "America" in lunar orbit.

  11. A distributed control approach for power and energy management in a notional shipboard power system

    NASA Astrophysics Data System (ADS)

    Shen, Qunying

    The main goal of this thesis is to present a power control module (PCON) based approach for power and energy management and to examine its control capability in shipboard power system (SPS). The proposed control scheme is implemented in a notional medium voltage direct current (MVDC) integrated power system (IPS) for electric ship. To realize the control functions such as ship mode selection, generator launch schedule, blackout monitoring, and fault ride-through, a PCON based distributed power and energy management system (PEMS) is developed. The control scheme is proposed as two-layer hierarchical architecture with system level on the top as the supervisory control and zonal level on the bottom as the decentralized control, which is based on the zonal distribution characteristic of the notional MVDC IPS that was proposed as one of the approaches for Next Generation Integrated Power System (NGIPS) by Norbert Doerry. Several types of modules with different functionalities are used to derive the control scheme in detail for the notional MVDC IPS. Those modules include the power generation module (PGM) that controls the function of generators, the power conversion module (PCM) that controls the functions of DC/DC or DC/AC converters, etc. Among them, the power control module (PCON) plays a critical role in the PEMS. It is the core of the control process. PCONs in the PEMS interact with all the other modules, such as power propulsion module (PPM), energy storage module (ESM), load shedding module (LSHED), and human machine interface (HMI) to realize the control algorithm in PEMS. The proposed control scheme is implemented in real time using the real time digital simulator (RTDS) to verify its validity. To achieve this, a system level energy storage module (SESM) and a zonal level energy storage module (ZESM) are developed in RTDS to cooperate with PCONs to realize the control functionalities. In addition, a load shedding module which takes into account the reliability of power supply (in terms of quality of service) is developed. This module can supply uninterruptible power to the mission critical loads. In addition, a multi-agent system (MAS) based framework is proposed to implement the PCON based PEMS through a hardware setup that is composed of MAMBA boards and FPGA interface. Agents are implemented using Java Agent DEvelopment Framework (JADE). Various test scenarios were tested to validate the approach.

  12. Potential modulations of pre-monsoon aerosols during El Niño: impact on Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Fadnavis, S.; Roy, Chaitri; Sabin, T. P.; Ayantika, D. C.; Ashok, K.

    2017-10-01

    The potential role of aerosol loading on the Indian summer monsoon rainfall during the El Niño years are examined using satellite-derived observations and a state of the art fully interactive aerosol-chemistry-climate model. The Aerosol Index (AI) from TOMS (1978-2005) and Aerosol Optical Depth (AOD) from MISR spectroradiometer (2000-2010) indicate a higher-than-normal aerosol loading over the Indo-Gangetic plain (IGP) during the pre-monsoon season with a concurrent El Niño. Sensitivity experiments using ECHAM5-HAMMOZ climate model suggests that this enhanced loading of pre-monsoon absorbing aerosols over the Indo-Gangetic plain can reduce the drought during El Niño years by invoking the `Elevated-Heat-Pump' mechanism through an anomalous aerosol-induced warm core in the atmospheric column. This anomalous heating upshot the relative strengthening of the cross-equatorial moisture inflow associated with the monsoon and eventually reduces the severity of drought during El Niño years. The findings are subject to the usual limitations such as the uncertainties in observations, and limited number of El Niño years (during the study period).

  13. Block 4 solar cell module design and test specification for intermediate load center applications

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Requirements for performance of terrestrial solar cell modules intended for use in various test applications are established. During the 1979-80 time period, such applications are expected to be in the 20 to 500 kilowatt size range. A series of characterization and qualification tests necessary to certify the module design for production, and the necessary performance test for acceptance of modules are specified.

  14. Prestressing Shock Resistant Mechanical Components and Mechanisms Made from Hard, Superelastic Materials

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher (Inventor)

    2014-01-01

    A method and an apparatus confer full superelastic properties to the active surface of a mechanical component constructed of a superelastic material prior to service. A compressive load is applied to the active surface of the mechanical component followed by removing the compressive load from the active surface whereby substantially all load strain is recoverable after applying and removing of subsequent compressive loads.

  15. Reliable inverter systems

    NASA Technical Reports Server (NTRS)

    Nagano, S.

    1979-01-01

    Base driver with common-load-current feedback protects paralleled inverter systems from open or short circuits. Circuit eliminates total system oscillation that can occur in conventional inverters because of open circuit in primary transformer winding. Common feedback signal produced by functioning modules forces operating frequency of failed module to coincide with clock drive so module resumes normal operating frequency in spite of open circuit.

  16. Polygenic risk score of sporadic late-onset Alzheimer's disease reveals a shared architecture with the familial and early-onset forms.

    PubMed

    Cruchaga, Carlos; Del-Aguila, Jorge L; Saef, Benjamin; Black, Kathleen; Fernandez, Maria Victoria; Budde, John; Ibanez, Laura; Deming, Yuetiva; Kapoor, Manav; Tosto, Giuseppe; Mayeux, Richard P; Holtzman, David M; Fagan, Anne M; Morris, John C; Bateman, Randall J; Goate, Alison M; Harari, Oscar

    2018-02-01

    To determine whether the extent of overlap of the genetic architecture among the sporadic late-onset Alzheimer's Disease (sLOAD), familial late-onset AD (fLOAD), sporadic early-onset AD (sEOAD), and autosomal dominant early-onset AD (eADAD). Polygenic risk scores (PRSs) were constructed using previously identified 21 genome-wide significant loci for LOAD risk. We found that there is an overlap in the genetic architecture among sEOAD, fLOAD, and sLOAD. The highest association of the PRS and risk (odds ratio [OR] = 2.27; P = 1.29 × 10 -7 ) was observed in sEOAD, followed by fLOAD (OR = 1.75; P = 1.12 × 10 -7 ) and sLOAD (OR = 1.40; P = 1.21 × 10 -3 ). The PRS was associated with cerebrospinal fluid ptau 181 -Aβ 42 on eADAD (P = 4.36 × 10 -2 ). Our analysis confirms that the genetic factors identified for LOAD modulate risk in sLOAD and fLOAD and also sEOAD cohorts. Specifically, our results suggest that the burden of these risk variants is associated with familial clustering and earlier onset of AD. Although these variants are not associated with risk in the eADAD, they may be modulating age at onset. Copyright © 2017 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  17. Orion EM-1 Crew Module Structural Test Article Move for Transport from Kennedy Space Center to Lockheed Martin in Denver Colorado

    NASA Image and Video Library

    2017-04-24

    The Guppy aircraft arrives at the Shuttle Landing Facility (SLF) at Kennedy Space Center, to transport the Orion EM-1 Crew Module (CM) Structural Test Article (STA) to Lockheed Martin in Denver Colorado. The Orion EM-1 CM STA is loaded onto a transport truck at the Operations & Checking Building (O&C) and moved to the SLF. Following this, workers load the spacecraft hardware onto the Guppy aircraft. The Guppy takes off from the SLF, in route to Denver Colorado.

  18. PLA-poloxamer/poloxamine copolymers for ligament tissue engineering: sound macromolecular design for degradable scaffolds and MSC differentiation.

    PubMed

    Leroy, Adrien; Nottelet, Benjamin; Bony, Claire; Pinese, Coline; Charlot, Benoît; Garric, Xavier; Noël, Danièle; Coudane, Jean

    2015-04-01

    The treatment of anterior cruciate ligament (ACL) failures remains a current clinical challenge. The present study aims at providing suitable degradable scaffolds for ligament tissue engineering. First, we focus on the design and the evaluation of poly(lactide)/poloxamer or poly(lactide)/poloxamine multiblock copolymers selected and developed to have suitable degradation and mechanical properties to match ACL repair. In the second part, it is shown that the copolymers can be processed in the form of microfibers and scaffolds consisting of a combination of twisted/braided fibers to further modulate the mechanical properties and prepare scaffold prototypes suitable for ligament application. Finally, after assessment of their cytocompatibility, the polymer scaffolds are associated with mesenchymal stem cells (MSCs). MSC differentiation toward a ligament fibroblast phenotype is promoted by a dual stimulation including an inductive culture medium and cyclic mechanical loads. RT-qPCR analyses confirm the potential of our scaffolds and MSCs for ACL regeneration with upregulation of some differentiation markers including Scleraxis, Tenascin-C and Tenomodulin.

  19. Bulk Superconductors in Mobile Application

    NASA Astrophysics Data System (ADS)

    Werfel, F. N.; Delor, U. Floegel-; Rothfeld, R.; Riedel, T.; Wippich, D.; Goebel, B.; Schirrmeister, P.

    We investigate and review concepts of multi - seeded REBCO bulk superconductors in mobile application. ATZ's compact HTS bulk magnets can trap routinely 1 T@77 K. Except of magnetization, flux creep and hysteresis, industrial - like properties as compactness, power density, and robustness are of major device interest if mobility and light-weight construction is in focus. For mobile application in levitated trains or demonstrator magnets we examine the performance of on-board cryogenics either by LN2 or cryo-cooler application. The mechanical, electric and thermodynamical requirements of compact vacuum cryostats for Maglev train operation were studied systematically. More than 30 units are manufactured and tested. The attractive load to weight ratio is more than 10 and favours group module device constructions up to 5 t load on permanent magnet (PM) track. A transportable and compact YBCO bulk magnet cooled with in-situ 4 Watt Stirling cryo-cooler for 50 - 80 K operation is investigated. Low cooling power and effective HTS cold mass drives the system construction to a minimum - thermal loss and light-weight design.

  20. Space Station Freedom power supply commonality via modular design

    NASA Technical Reports Server (NTRS)

    Krauthamer, S.; Gangal, M. D.; Das, R.

    1990-01-01

    At mature operations, Space Station Freedom will need more than 2000 power supplies to feed housekeeping and user loads. Advanced technology power supplies from 20 to 250 W have been hybridized for terrestrial, aerospace, and industry applications in compact, efficient, reliable, lightweight packages compatible with electromagnetic interference requirements. The use of these hybridized packages as modules, either singly or in parallel, to satisfy the wide range of user power supply needs for all elements of the station is proposed. Proposed characteristics for the power supplies include common mechanical packaging, digital control, self-protection, high efficiency at full and partial loads, synchronization capability to reduce electromagnetic interference, redundancy, and soft-start capability. The inherent reliability is improved compared with conventional discrete component power supplies because the hybrid circuits use high-reliability components such as ceramic capacitors. Reliability is further improved over conventional supplies because the hybrid packages, which may be treated as a single part, reduce the parts count in the power supply.

  1. Emotion-attention interactions in fear conditioning: Moderation by executive load, neuroticism, and awareness.

    PubMed

    Hur, Juyoen; Iordan, Alexandru D; Berenbaum, Howard; Dolcos, Florin

    2016-12-01

    Despite increasing evidence suggesting interactive effects of emotion and attention on perceptual processing, it still remains unclear how their interplay influences affective learning, such as fear conditioning. In the present study, a conditioning procedure using threat-related conditioned stimuli (CSs) was implemented while executive load and attentional focus were manipulated. The modulation effects of neuroticism and contingency awareness were also examined. Results showed that fear conditioning depended on the available executive resources even with threat-related CSs. In addition, although individuals with high neuroticism showed an enhanced conditioning effect overall, this facilitation effect still depended on the availability of executive resources. Finally, the impact of attentional focus was most evident among individuals with high neuroticism who were aware of the contingency. Overall, the present study demonstrates interactive effects of emotion and attention in fear conditioning, while illuminating mechanisms of individual differences and clarifying the controversial role of contingency awareness in fear conditioning. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. ITER in-vessel system design and performance

    NASA Astrophysics Data System (ADS)

    Parker, R. R.

    2000-03-01

    The article reviews the design and performance of the in-vessel components of ITER as developed for the Engineering Design Activities (EDA) Final Design Report. The double walled vacuum vessel is the first confinement boundary and is designed to maintain its integrity under all normal and off-normal conditions, e.g. the most intense vertical displacement events (VDEs) and seismic events. The shielding blanket consists of modules connected to a toroidal backplate by flexible connectors which allow differential displacements due to temperature non-uniformities. Breeding blanket modules replace the shield modules for the Enhanced Performance Phase. The divertor concept is based on a cassette structure which is convenient for remote installation and removal. High heat flux (HHF) components are mechanically attached and can be removed and replaced in the hot cell. Operation of the divertor is based on achieving partially detached plasma conditions along and near the separatrix. Nominal heat loads of 5-10 MW/m2 are expected on the target. These are accommodated by HHF technology developed during the EDA. Disruptions and VDEs can lead to melting of the first wall armour but no damage to the underlying structure. Stresses in the main structural components remain within allowable ranges for all postulated disruption and seismic events.

  3. A novel compact low impedance Marx generator with quasi-rectangular pulse output

    NASA Astrophysics Data System (ADS)

    Liu, Hongwei; Jiang, Ping; Yuan, Jianqiang; Wang, Lingyun; Ma, Xun; Xie, Weiping

    2018-04-01

    In this paper, a novel low impedance compact Marx generator with near-square pulse output based on the Fourier theory is developed. Compared with the traditional Marx generator, capacitors with different capacity have been used. It can generate a high-voltage quasi-rectangular pulse with a width of 100 ns at low impedance load, and it also has high energy density and power density. The generator consists of 16 modules. Each module comprises an integrative single-ended plastic case capacitor with a nominal value of 54 nF, four ceramic capacitors with a nominal value of 1.5 nF, a gas switch, a charging inductor, a grounding inductor, and insulators which provide mechanical support for all elements. In the module, different discharge periods from different capacitors add to the main circuit to form a quasi-rectangular pulse. The design process of the generator is analyzed, and the test results are provided here. The generator achieved pulse output with a rise time of 32 ns, pulse width of 120 ns, flat-topped width (95%-95%) of 50 ns, voltage of 550 kV, and power of 20 GW.

  4. Development of a High Output Fluorescent Light Module for the Commercial Plant Biotechnology Facility

    NASA Technical Reports Server (NTRS)

    Turner, Mark; Zhou, Wei-Jia; Doty, Laura (Technical Monitor)

    2000-01-01

    To maximize the use of available resources provided onboard the International Space Station, the development of an efficient lighting 1 system is critical to the overall performance of the CPBF. Not only is it important to efficiently generate photon energy, but thermal loads on the CPBF Temperature and Humidity Control System must be minimized. By utilizing optical coatings designed to produce highly diffuse reflectance in the visible wavelengths while minimizing reflectance in the infrared region, the design of the fluorescent light module for the CPBF is optimized for maximum photon flux, spatial uniformity and energy efficiency. Since the Fluorescent Light Module must be fully enclosed to meet (ISS) requirements for containment of particulates and toxic materials, heat removal from the lights presented some unique design challenges. By using the Express Rack moderate C, temperature-cooling loop, heat is rejected by means of a liquid/air coolant manifold. Heat transfer to the manifold is performed by conduction using copper fins, by forced air convection using miniature fans, and by radiation using optically selective coatings that absorb in the infrared wavelengths. Using this combination of heat transfer mechanisms builds in redundancy to prevent thermal build up and premature bulb failure.

  5. Uni-Directional Cell Stretching Device

    NASA Technical Reports Server (NTRS)

    Feeback, Daniel L. (Inventor); Clarke, Mark S. F. (Inventor)

    2000-01-01

    The present invention relates to an apparatus and method for applying various degrees of linear, mechanical loads on mammalian tissues, and in particular, for effecting linear stretching of tissue and simulating changes in hydrostatic pressures encountered during tissue contraction in vivo. The apparatus is useful for the study of mechanical loading in human tissue, and specifically, for permitting the evaluation of the effects of mechanical loading of skeletal or cardiac tissue and of the effects of removal of mechanical loading due to inactivity or the like, and the subsequent reapplication of load to these tissues.

  6. Space Station laboratory module power loading analysis

    NASA Astrophysics Data System (ADS)

    Fu, S. J.

    1994-07-01

    The electrical power system of Space Station Freedom is an isolated electrical power generation and distribution network designed to meet the demands of a large number of electrical loads. An algorithm is developed to determine the power bus loading status under normal operating conditions to ensure the supply meets demand. The probabilities of power availability for payload operations (experiments) are also derived.

  7. Single-source mechanical loading system produces biaxial stresses in cylinders

    NASA Technical Reports Server (NTRS)

    Flower, J. F.; Stafford, R. L.

    1967-01-01

    Single-source mechanical loading system proportions axial-to-hoop tension loads applied to cylindrical specimens. The system consists of hydraulic, pneumatic, and lever arrangements which produce biaxial loading ratios.

  8. A Low-Cost Production Method of FeSi2 Power Generation Thermoelectric Modules

    NASA Astrophysics Data System (ADS)

    Inoue, Hiroyuki; Kobayashi, Takahide; Kato, Masahiko; Yoneda, Seiji

    2016-03-01

    A method is proposed to reduce the production cost of power generation thermoelectric modules. FeSi2 is employed as the thermoelectric material because of its low cost, low environmental load, and oxidation resistance. The raw materials were prepared in the composition of Fe0.96Si2.1Co0.04 for n-type and Fe0.92Si2.1Mn0.08 for p-type, which were added with 0.5 wt.% Cu as the starting materials. They were sintered without pressure at 1446 K to be formed into elements. The Seebeck coefficient and resistivity at room temperature were determined to be -182 μV/K and 0.13 mΩm for n-type, and 338 μV/K and 1.13 mΩm for p-type, respectively. The brazing conditions of the direct joining between the element and the solder were examined. Pastes of BNi-6, BNi-7 or TB-608T were tried as the solder. TB-608T was useable for metallizing of insulation substrates and joining of thermoelectric elements in order to manufacture thermoelectric modules. The joining strength was determined to be 50 MPa between the alumina plate and the elements. No mechanical failure was observed in the modules after repetition of 10 or more exposures to a heat source of 670 K. No change was found in the internal resistance. The present production method will provide modules with high durability and low production cost, which will enable high-power multi-stage cascade modules at a reasonable cost.

  9. Food load manipulation ability shapes flight morphology in females of central-place foraging Hymenoptera

    PubMed Central

    2013-01-01

    Background Ecological constraints related to foraging are expected to affect the evolution of morphological traits relevant to food capture, manipulation and transport. Females of central-place foraging Hymenoptera vary in their food load manipulation ability. Bees and social wasps modulate the amount of food taken per foraging trip (in terms of e.g. number of pollen grains or parts of prey), while solitary wasps carry exclusively entire prey items. We hypothesized that the foraging constraints acting on females of the latter species, imposed by the upper limit to the load size they are able to transport in flight, should promote the evolution of a greater load-lifting capacity and manoeuvrability, specifically in terms of greater flight muscle to body mass ratio and lower wing loading. Results Our comparative study of 28 species confirms that, accounting for shared ancestry, female flight muscle ratio was significantly higher and wing loading lower in species taking entire prey compared to those that are able to modulate load size. Body mass had no effect on flight muscle ratio, though it strongly and negatively co-varied with wing loading. Across species, flight muscle ratio and wing loading were negatively correlated, suggesting coevolution of these traits. Conclusions Natural selection has led to the coevolution of resource load manipulation ability and morphological traits affecting flying ability with additional loads in females of central-place foraging Hymenoptera. Release from load-carrying constraints related to foraging, which took place with the evolution of food load manipulation ability, has selected against the maintenance of a powerful flight apparatus. This could be the case since investment in flight muscles may have to be traded against other life-history traits, such as reproductive investment. PMID:23805850

  10. Moderate tibia axial loading promotes discordant response of bone composition parameters and mechanical properties in a hindlimb unloading rat model.

    PubMed

    Yang, Peng-Fei; Huang, Ling-Wei; Nie, Xiao-Tong; Yang, Yue; Wang, Zhe; Ren, Li; Xu, Hui-Yun; Shang, Peng

    2018-06-01

    The purpose of the present study was to characterize the dynamic alterations of bone composition parameters and mechanical properties to disuse and mechanical intervention. A tail suspension hindlimb unloading model and an in vivo axial tibia loading model in rats were used. A moderate mechanical loading that was capable of engendering 800 µε tibia strain was applied to the right tibia of rats in both control and hindlimb unloading group across 28 days of the experimental period. The contralateral tibia served as control. Hindlimb unloading led to bone loss in tibia from day 14. Bone mineral density, mineral content and mechanical properties responded differently with microstructure to disuse in timing course. Mechanical loading of 800 µε tibia strain failed to alter the bone of the control group, but minimized the detrimental effects of unloading by completely prohibiting the decrease of bone mineral content and main mechanical properties after 28 days. Less obvious influence of mechanical loading on bone microstructure was found. The moderate mechanical loading is not able to stimulate the mechanical response of healthy tibia, but indeed lead to discordant recovery of bone composition parameters and mechanical properties.

  11. Method for exciting inductive-resistive loads with high and controllable direct current

    DOEpatents

    Hill, Jr., Homer M.

    1976-01-01

    Apparatus and method for transmitting dc power to a load circuit by applying a dc voltage from a standard waveform synthesizer to duration modulate a bipolar rectangular wave generator. As the amplitude of the dc voltage increases, the widths of the rectangular wave generator output pulses increase, and as the amplitude of the dc voltage decreases, the widths of the rectangular wave generator output pulses decrease. Thus, the waveform synthesizer selectively changes the durations of the rectangular wave generator bipolar output pulses so as to produce a rectangular wave ac carrier that is duration modulated in accordance with and in direct proportion to the voltage amplitude from the synthesizer. Thereupon, by transferring the carrier to the load circuit through an amplifier and a rectifier, the load current also corresponds directly to the voltage amplitude from the synthesizer. To this end, the rectified wave at less than 100% duty factor, amounts to a doubled frequency direct voltage pulse train for applying a direct current to the load, while the current ripple is minimized by a high L/R in the load circuit. In one embodiment, a power transmitting power amplifier means having a dc power supply is matched to the load circuit through a transformer for current magnification without sacrificing load current duration capability, while negative voltage and current feedback are provided in order to insure good output fidelity.

  12. Nucleosomes influence multiple steps during replication initiation

    PubMed Central

    Azmi, Ishara F; Watanabe, Shinya; Maloney, Michael F; Kang, Sukhyun; Belsky, Jason A; MacAlpine, David M; Peterson, Craig L; Bell, Stephen P

    2017-01-01

    Eukaryotic replication origin licensing, activation and timing are influenced by chromatin but a mechanistic understanding is lacking. Using reconstituted nucleosomal DNA replication assays, we assessed the impact of nucleosomes on replication initiation. To generate distinct nucleosomal landscapes, different chromatin-remodeling enzymes (CREs) were used to remodel nucleosomes on origin-DNA templates. Nucleosomal organization influenced two steps of replication initiation: origin licensing and helicase activation. Origin licensing assays showed that local nucleosome positioning enhanced origin specificity and modulated helicase loading by influencing ORC DNA binding. Interestingly, SWI/SNF- and RSC-remodeled nucleosomes were permissive for origin licensing but showed reduced helicase activation. Specific CREs rescued replication of these templates if added prior to helicase activation, indicating a permissive chromatin state must be established during origin licensing to allow efficient origin activation. Our studies show nucleosomes directly modulate origin licensing and activation through distinct mechanisms and provide insights into the regulation of replication initiation by chromatin. DOI: http://dx.doi.org/10.7554/eLife.22512.001 PMID:28322723

  13. Dipteran wing motor-inspired flapping flight versatility and effectiveness enhancement

    PubMed Central

    Harne, R. L.; Wang, K. W.

    2015-01-01

    Insects are a prime source of inspiration towards the development of small-scale, engineered, flapping wing flight systems. To help interpret the possible energy transformation strategies observed in Diptera as inspiration for mechanical flapping flight systems, we revisit the perspective of the dipteran wing motor as a bistable click mechanism and take a new, and more flexible, outlook to the architectural composition previously considered. Using a representative structural model alongside biological insights and cues from nonlinear dynamics, our analyses and experimental results reveal that a flight mechanism able to adjust motor axial support stiffness and compression characteristics may dramatically modulate the amplitude range and type of wing stroke dynamics achievable. This corresponds to significantly more versatile aerodynamic force generation without otherwise changing flapping frequency or driving force amplitude. Whether monostable or bistable, the axial stiffness is key to enhance compressed motor load bearing ability and aerodynamic efficiency, particularly compared with uncompressed linear motors. These findings provide new foundation to guide future development of bioinspired, flapping wing mechanisms for micro air vehicle applications, and may be used to provide insight to the dipteran muscle-to-wing interface. PMID:25608517

  14. Cyclic Load Effects on Long Term Behavior of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Shah, A. R.; Chamis, C. C.

    1996-01-01

    A methodology to compute the fatigue life for different ratios, r, of applied stress to the laminate strength based on first ply failure criteria combined with thermal cyclic loads has been developed and demonstrated. Degradation effects resulting from long term environmental exposure and thermo-mechanical cyclic loads are considered in the simulation process. A unified time-stress dependent multi-factor interaction equation model developed at NASA Lewis Research Center has been used to account for the degradation of material properties caused by cyclic and aging loads. Effect of variation in the thermal cyclic load amplitude on a quasi-symmetric graphite/epoxy laminate has been studied with respect to the impending failure modes. The results show that, for the laminate under consideration, the fatigue life under combined mechanical and low thermal amplitude cyclic loads is higher than that due to mechanical loads only. However, as the thermal amplitude increases, the life also decreases. The failure mode changes from tensile under mechanical loads only to the compressive and shear at high mechanical and thermal loads. Also, implementation of the developed methodology in the design process has been discussed.

  15. Friction Stir Weld Failure Mechanisms in Aluminum-Armor Structures Under Ballistic Impact Loading Conditions

    DTIC Science & Technology

    2013-01-01

    REPORT Friction Stir Weld Failure Mechanisms in Aluminum -Armor Structures Under Ballistic Impact Loading Conditions 14. ABSTRACT 16. SECURITY...Stir Weld Failure Mechanisms in Aluminum -Armor Structures Under Ballistic Impact Loading Conditions M. Grujicic, B. Pandurangan, A. Arakere, C-F. Yen...K.O. Pedersen, Fracture Mechanisms of Aluminum Alloy AA7075-T651 Under Various Loading Conditions , Int. J. Impact Eng., 2010, 37, p 537–551 24. T

  16. Research on the Mechanical Properties of a Glass Fiber Reinforced Polymer-Steel Combined Truss Structure

    PubMed Central

    Liu, Pengfei; Zhao, Qilin; Li, Fei; Liu, Jinchun; Chen, Haosen

    2014-01-01

    An assembled plane truss structure used for vehicle loading is designed and manufactured. In the truss, the glass fiber reinforced polymer (GFRP) tube and the steel joint are connected by a new technology featuring a pretightened tooth connection. The detailed description for the rod and node design is introduced in this paper, and a typical truss panel is fabricated. Under natural conditions, the short-term load test and long-term mechanical performance test for one year are performed to analyze its performance and conduct a comparative analysis for a reasonable FEM model. The study shows that the design and fabrication for the node of an assembled truss panel are convenient, safe, and reliable; because of the creep control design of the rods, not only does the short-term structural stiffness meet the design requirement but also the long-term creep deformation tends towards stability. In addition, no significant change is found in the elastic modules, so this structure can be applied in actual engineering. Although the safety factor for the strength of the composite rods is very large, it has a lightweight advantage over the steel truss for the low density of GFRP. In the FEM model, simplifying the node as a hinge connection relatively conforms to the actual status. PMID:25247203

  17. SPALLMAP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabau, Adrian; Wright, Ian

    Boiler tubes in steam power plants experience exfoliation of oxide grown on the inner side of the tubes. In extreme cases, the exfoliation cause significant tube blockages that lead to forced power plant outages. It is thus desired to predict through modeling the propensity of exfoliation events in order to inform power plant operators of possible tube blockages. SpallMap solves for the stress-strain equations in an axisymmetric geometry, tracking the stress/strain evolution during boiler operation including outages at one-location along a boiler tube and compares it with scale damage criteria represented by Armitt diagram. The SPALLMAP code contains modules developedmore » for oxide growth, stress analysis, and classical fracture mechanics correlations by taking into account the following phenomena and features, (a) Non-uniform thermal expansion coefficient of oxides and metal substrates, (b) Plant operation schedule with periodic alternate full-load and partial-load regimes, (c) axisymmetric formulation for cylindrical tubes, (d) Multiple oxide layers, (e) oxide-growth induced stresses, and (f) damage criteria from classical fracture mechanics. The computer program is written in FORTRAN90. Its modular structure was sought for allowing the best flexibility in updating the program by implementing new constitutive equations due to availability of new material property data and/or new physical phenomena.« less

  18. Research on the mechanical properties of a glass fiber reinforced polymer-steel combined truss structure.

    PubMed

    Liu, Pengfei; Zhao, Qilin; Li, Fei; Liu, Jinchun; Chen, Haosen

    2014-01-01

    An assembled plane truss structure used for vehicle loading is designed and manufactured. In the truss, the glass fiber reinforced polymer (GFRP) tube and the steel joint are connected by a new technology featuring a pretightened tooth connection. The detailed description for the rod and node design is introduced in this paper, and a typical truss panel is fabricated. Under natural conditions, the short-term load test and long-term mechanical performance test for one year are performed to analyze its performance and conduct a comparative analysis for a reasonable FEM model. The study shows that the design and fabrication for the node of an assembled truss panel are convenient, safe, and reliable; because of the creep control design of the rods, not only does the short-term structural stiffness meet the design requirement but also the long-term creep deformation tends towards stability. In addition, no significant change is found in the elastic modules, so this structure can be applied in actual engineering. Although the safety factor for the strength of the composite rods is very large, it has a lightweight advantage over the steel truss for the low density of GFRP. In the FEM model, simplifying the node as a hinge connection relatively conforms to the actual status.

  19. Intracellular degradation of functionalized carbon nanotube/iron oxide hybrids is modulated by iron via Nrf2 pathway

    PubMed Central

    Elgrabli, Dan; Dachraoui, Walid; Marmier, Hélène de; Ménard-Moyon, Cécilia; Bégin, Dominique; Bégin-Colin, Sylvie; Bianco, Alberto; Alloyeau, Damien; Gazeau, Florence

    2017-01-01

    The in vivo fate and biodegradability of carbon nanotubes is still a matter of debate despite tremendous applications. In this paper we describe a molecular pathway by which macrophages degrade functionalized multi-walled carbon nanotubes (CNTs) designed for biomedical applications and containing, or not, iron oxide nanoparticles in their inner cavity. Electron microscopy and Raman spectroscopy show that intracellularly-induced structural damages appear more rapidly for iron-free CNTs in comparison to iron-loaded ones, suggesting a role of iron in the degradation mechanism. By comparing the molecular responses of macrophages derived from THP1 monocytes to both types of CNTs, we highlight a molecular mechanism regulated by Nrf2/Bach1 signaling pathways to induce CNT degradation via NOX2 complex activation and O2•−, H2O2 and OH• production. CNT exposure activates an oxidative stress-dependent production of iron via Nrf2 nuclear translocation, Ferritin H and Heme oxygenase 1 translation. Conversely, Bach1 was translocated to the nucleus of cells exposed to iron-loaded CNTs to recycle embedded iron. Our results provide new information on the role of oxidative stress, iron metabolism and Nrf2-mediated host defence for regulating CNT fate in macrophages. PMID:28120861

  20. E-beam high voltage switching power supply

    DOEpatents

    Shimer, D.W.; Lange, A.C.

    1996-10-15

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 figs.

  1. E-beam high voltage switching power supply

    DOEpatents

    Shimer, Daniel W.; Lange, Arnold C.

    1996-01-01

    A high-power power supply produces a controllable, constant high voltage put under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  2. Centrifugation of Cultured Osteoblasts And Macrophages as a Model To Study How Gravity Regulates The Function of Skeletal Cells

    NASA Technical Reports Server (NTRS)

    Globus, Ruth K.; Searby, Nancy D.; Almeida, Eduardo A. C.; Sutijono, Darrell; Yu, Joon-Ho; Malouvier, Alexander; Doty, Steven B.; Morey-Holton, Emily; Weinstein, Steven L.; Dalton, Bonnie P. (Technical Monitor)

    2000-01-01

    Mechanical loading helps define the architecture of weight-bearing bone via the tightly regulated process of skeletal turnover. Turnover occurs by the concerted activity of osteoblasts, responsible for bone formation. and osteoclasts, responsible for bone resorption. Osteoclasts are specialized megakaryon macrophages, which differentiate from monocytes in response to resorption stimuli, such as reduced weight-bearing. Habitation in space dramatically alters musculoskeletal loading, which modulates both cell function and bone structure. Our long-term objective is to define the molecular and cellular mechanisms that mediate skeletal adaptations to altered gravity environments. Our experimental approach is to apply hypergravity loads by centrifugation to rodents and cultured cells. As a first step, we examined the influence of centrifugation on the structure of cancellous bone in rats to test the ability of hypergravity to change skeletal architecture. Since cancellous bone undergoes rapid turnover we expected the most dramatic structural changes to occur in the shape of trabeculae of weight-bearing, cancellous bone. To define the cellular responses to hypergravity loads, we exposed cultured osteoblasts and macrophages to centrifugation. The intraosseous and intramedullary pressures within long bones in vivo reportedly range from 12-40 mm Hg, which would correspond to 18-59 gravity (g) in our cultures. We assumed that hydrostatic pressure from the medium above the cell layer is at least one major component of the mechanical load generated by centrifuging cultured cells. and therefore we exposed the cells to 10-50g. In osteoblasts, we examined the structure of their actin and microtubule networks, production of prostaglandin E2 (PGE2), and cell survival. Analysis of the shape of the cytoskeletal networks provides evidence for the ability of centrifugation to affect cell structure, while the production of PGE2 serves as a convenient marker for mechanical stimulation. We examined cell survival, reasoning that osteoblasts might mold skeletal structure in a hypergravity environment in part by regulating apoptosis and thus the duration of osteoblast productivity. Finally, we tested the influence of centrifugation on microbial activation of a macrophage cell line (RAW264.7). In response to the appropriate hormonal stimulation, this cell line is reportedly capable of undergoing differentiation to express osteoclast markers. In addition, a component of the cell wall of gram-negative bacteria, lipopolysaccaride (LPS), stimulates the formation of osteoclasts in vivo. Thus we tested the influence on centrifugation on RAW264.7 cells stimulated with LPS to provide an index of the function of osteoclast precursors.

  3. Design and implementation of quadrature bandpass sigma-delta modulator used in low-IF RF receiver

    NASA Astrophysics Data System (ADS)

    Ge, Binjie; Li, Yan; Yu, Hang; Feng, Xiaoxing

    2018-05-01

    This paper presents the design and implementation of quadrature bandpass sigma-delta modulator. A pole movement method for transforming real sigma-delta modulator to a quadrature one is proposed by detailed study of the relationship of noise-shaping center frequency and integrator pole position in sigma-delta modulator. The proposed modulator uses sampling capacitor sharing switched capacitor integrator, and achieves a very small feedback coefficient by a series capacitor network, and those two techniques can dramatically reduce capacitor area. Quantizer output-dependent dummy capacitor load for reference voltage buffer can compensate signal-dependent noise that is caused by load variation. This paper designs a quadrature bandpass Sigma-Delta modulator for 2.4 GHz low IF receivers that achieve 69 dB SNDR at 1 MHz BW and -1 MHz IF with 48 MHz clock. The chip is fabricated with SMIC 0.18 μm CMOS technology, it achieves a total power current of 2.1 mA, and the chip area is 0.48 mm2. Project supported by the National Natural Science Foundation of China (Nos. 61471245, U1201256), the Guangdong Province Foundation (No. 2014B090901031), and the Shenzhen Foundation (Nos. JCYJ20160308095019383, JSGG20150529160945187).

  4. Digital high speed programmable convolver

    NASA Astrophysics Data System (ADS)

    Rearick, T. C.

    1984-12-01

    A circuit module for rapidly calculating a discrete numerical convolution is described. A convolution such as finding the sum of the products of a 16 bit constant and a 16 bit variable is performed by a module which is programmable so that the constant may be changed for a new problem. In addition, the module may be programmed to find the sum of the products of 4 and 8 bit constants and variables. RAM (Random Access Memories) are loaded with partial products of the selected constant and all possible variables. Then, when the actual variable is loaded, it acts as an address to find the correct partial product in the particular RAM. The partial products from all of the RAMs are shifted to the appropriate numerical power position (if necessary) and then added in adder elements.

  5. Multi-Kilowatt Power Module for High-Power Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Bowers, Glen E.

    2005-01-01

    Future NASA missions will require high-performance electric propulsion systems. Hall thrusters are being developed at NASA Glenn for high-power, high-specific impulse operation. These thrusters operate at power levels up to 50 kW of power and discharge voltages in excess of 600 V. A parallel effort is being conducted to develop power electronics for these thrusters that push the technology beyond the 5kW state-of-the-art power level. A 10 kW power module was designed to produce an output of 500 V and 20 A from a nominal 100 V input. Resistive load tests revealed efficiencies in excess of 96 percent. Load current share and phase synchronization circuits were designed and tested that will allow connecting multiple modules in parallel to process higher power.

  6. An Energy Saving Green Plug Device for Nonlinear Loads

    NASA Astrophysics Data System (ADS)

    Bloul, Albe; Sharaf, Adel; El-Hawary, Mohamed

    2018-03-01

    The paper presents a low cost a FACTS Based flexible fuzzy logic based modulated/switched tuned arm filter and Green Plug compensation (SFC-GP) scheme for single-phase nonlinear loads ensuring both voltage stabilization and efficient energy utilization. The new Green Plug-Switched filter compensator SFC modulated LC-Filter PWM Switched Capacitive Compensation Devices is controlled using a fuzzy logic regulator to enhance power quality, improve power factor at the source and reduce switching transients and inrush current conditions as well harmonic contents in source current. The FACTS based SFC-GP Device is a member of family of Green Plug/Filters/Compensation Schemes used for efficient energy utilization, power quality enhancement and voltage/inrush current/soft starting control using a dynamic error driven fuzzy logic controller (FLC). The device with fuzzy logic controller is validated using the Matlab / Simulink Software Environment for enhanced power quality (PQ), improved power factor and reduced inrush currents. This is achieved using modulated PWM Switching of the Filter-Capacitive compensation scheme to cope with dynamic type nonlinear and inrush cyclical loads..

  7. Results of the 2001 JPL Balloon Flight Solar Cell Calibration Program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Mueller, R. L.

    2002-01-01

    The 2001 solar cell calibration balloon flight campaign consisted of two flights, which occurred on June 26, 2001, and July 4, 2001. Fifty-nine modules were carried to an altitude of approximately 120,000 ft (36.6 km). Full I-V curves were measured on nineteen of these modules, and output at a fixed load was measured on thirty-two modules (forty-six cells), with some modules repeated on the second flight. Nine modules were flown for temperature measurement only. The data from the fixed load cells on the first flight was not usable. The temperature dependence of the first-flight data was erratic and we were unable to find a way to extract accurate calibration values. The I-V data from the first flight was good, however, and all data from the second flight was also good. The data was corrected to 28 C and to 1 AU (1.496 x 10(exp 8)km). The calibrated cells have been returned to their owners and can now be used as reference standards in simulator testing of cells and arrays.

  8. Utilization of an agility assessment module in analysis and optimization of preliminary fighter configuration

    NASA Technical Reports Server (NTRS)

    Ngan, Angelen; Biezad, Daniel

    1996-01-01

    A study has been conducted to develop and to analyze a FORTRAN computer code for performing agility analysis on fighter aircraft configurations. This program is one of the modules of the NASA Ames ACSYNT (AirCraft SYNThesis) design code. The background of the agility research in the aircraft industry and a survey of a few agility metrics are discussed. The methodology, techniques, and models developed for the code are presented. The validity of the existing code was evaluated by comparing with existing flight test data. A FORTRAN program was developed for a specific metric, PM (Pointing Margin), as part of the agility module. Example trade studies using the agility module along with ACSYNT were conducted using a McDonnell Douglas F/A-18 Hornet aircraft model. Tile sensitivity of thrust loading, wing loading, and thrust vectoring on agility criteria were investigated. The module can compare the agility potential between different configurations and has capability to optimize agility performance in the preliminary design process. This research provides a new and useful design tool for analyzing fighter performance during air combat engagements in the preliminary design.

  9. Development of an agility assessment module for preliminary fighter design

    NASA Technical Reports Server (NTRS)

    Ngan, Angelen; Bauer, Brent; Biezad, Daniel; Hahn, Andrew

    1996-01-01

    A FORTRAN computer program is presented to perform agility analysis on fighter aircraft configurations. This code is one of the modules of the NASA Ames ACSYNT (AirCraft SYNThesis) design code. The background of the agility research in the aircraft industry and a survey of a few agility metrics are discussed. The methodology, techniques, and models developed for the code are presented. FORTRAN programs were developed for two specific metrics, CCT (Combat Cycle Time) and PM (Pointing Margin), as part of the agility module. The validity of the code was evaluated by comparing with existing flight test data. Example trade studies using the agility module along with ACSYNT were conducted using Northrop F-20 Tigershark and McDonnell Douglas F/A-18 Hornet aircraft models. The sensitivity of thrust loading and wing loading on agility criteria were investigated. The module can compare the agility potential between different configurations and has the capability to optimize agility performance in the preliminary design process. This research provides a new and useful design tool for analyzing fighter performance during air combat engagements.

  10. Investigation of efficiency of electric drive control system of excavator traction mechanism based on feedback on load

    NASA Astrophysics Data System (ADS)

    Kuznetsov, N. K.; Iov, I. A.; Iov, A. A.

    2018-05-01

    The article presents the results of a study of the efficiency of the electric drive control system of the traction mechanism of a dragline based on the use of feedback on load in the traction cable. The investigations were carried out using a refined electromechanical model of the traction mechanism, which took into account not only the elastic elements of the gearbox, the backlashes in it and the changes in the kinematic parameters of the mechanism during operation, but also the mechanical characteristics of the electric drive and the features of its control system. By mathematical modeling of the transient processes of the electromechanical system, it is shown that the introduction of feedback on the load in the elastic element allows one to reduce the dynamic loads in the traction mechanism and to limit the elastic oscillations of the actuating mechanism in comparison with the standard control system. Fixed as a general decrease in the dynamic load of the nodes of traction mechanism in the modes of loading and latching of the bucket, and a decrease the operating time of the mechanism at maximum load. At the same time, undesirable phenomena in the operation of the electric drive were also associated with the increase in the recovery time of the steady-state value of the speed of the actuating mechanism under certain operating conditions, which can lead to a decrease in the reliability of the mechanical part and the productivity of the traction mechanism.

  11. The BepiColombo Spacecraft: The Mercury Transfer Module Structure Qualification Test Campaign Description

    NASA Astrophysics Data System (ADS)

    Martin Zurdo, M. J.

    2012-07-01

    The BepiColombo is a space mission to Mercury (ESA in cooperation with Japan Aerospace Exploration Agency). The spacecraft consist of three different structures: two orbiters responsible for the scientific mission (MPO and MMO) and one service module, Mercury Transfer Module (MTM), which provides propulsion and services during the journey to Mercury. Taking into account only the MTM structure, the companies involved are ASTRIUM GERMANY acting as the prime contractor and ASTRIUM UK acting as the co- prime contractor company. EADS CASA Espacio (ECE) in Spain is the company responsible for the final design, manufacturing and qualification of the MTM structure. The test campaign specimen is the MTM core structure, which corresponds to the central cone with the structure floors, shear panels and tank support structure. This test campaign qualifies the primary load path and its primary interfaces; the rest of the MTM structure is qualified by system level vibration test. In order to qualify the MTM structure, three different kinds of qualification tests have been performed: stiffness test, global strength test and local tests in different specific areas. The most relevant test during the campaign is the global strength test case, in which several external loads are introduced (different interfaces) simulating the load introduction for a selected critical flight case. There are two important items in the qualification test campaign: 1. The instrumentation of the structure, with two main functions: to control the specimen under test loads, and to demonstrate the qualification of the structure. 2. The set-up structure, designed by ECE to allow the correct load introduction on each testing case during the whole test campaign. This paper describes the MTM structure test campaign from the definition of the loads applied in each test to the qualification of the complete structure.

  12. Analysis, design, and control of a transcutaneous power regulator for artificial hearts.

    PubMed

    Qianhong Chen; Siu Chung Wong; Tse, C K; Xinbo Ruan

    2009-02-01

    Based on a generic transcutaneous transformer model, a remote power supply using a resonant topology for use in artificial hearts is analyzed and designed for easy controllability and high efficiency. The primary and secondary windings of the transcutaneous transformer are positioned outside and inside the human body, respectively. In such a transformer, the alignment and gap may change with external positioning. As a result, the coupling coefficient of the transcutaneous transformer is also varying, and so are the two large leakage inductances and the mutual inductance. Resonant-tank circuits with varying resonant-frequency are formed from the transformer inductors and external capacitors. For a given range of coupling coefficients, an operating frequency corresponding to a particular coupling coefficient can be found, for which the voltage transfer function is insensitive to load. Prior works have used frequency modulation to regulate the output voltage under varying load and transformer coupling. The use of frequency modulation may require a wide control frequency range which may extend well above the load insensitive frequency. In this paper, study of the input-to-output voltage transfer function is carried out, and a control method is proposed to lock the switching frequency at just above the load insensitive frequency for optimized efficiency at heavy loads. Specifically, operation at above resonant of the resonant circuits is maintained under varying coupling-coefficient. Using a digital-phase-lock-loop (PLL), zero-voltage switching is achieved in a full-bridge converter which is also programmed to provide output voltage regulation via pulsewidth modulation (PWM). A prototype transcutaneous power regulator is built and found to to perform excellently with high efficiency and tight regulation under variations of the alignment or gap of the transcutaneous transformer, load and input voltage.

  13. High-pressure endurable flexible tactile actuator based on microstructured dielectric elastomer

    NASA Astrophysics Data System (ADS)

    Pyo, Dongbum; Ryu, Semin; Kyung, Ki-Uk; Yun, Sungryul; Kwon, Dong-Soo

    2018-02-01

    We demonstrate a robust flexible tactile actuator that is capable of working under high external pressures. The tactile actuator is based on a pyramidal microstructured dielectric elastomer layer inducing variation in both mechanical and dielectric properties. The vibrational performance of the actuator can be modulated by changing the geometric parameter of the microstructures. We evaluated the performance of the actuator under high-pressure loads up to 25 kPa, which is over the typical range of pressure applied when humans touch or manipulate objects. Due to the benefit of nonlinearity of the pyramidal structure, the actuator could maintain high mechanical output under various external pressures in the frequency range of 100-200 Hz, which is the most sensitive to vibration acceleration for human finger pads. The responses are not only fast, reversible, and highly durable under consecutive cyclic operations, but also large enough to impart perceivable vibrations for haptic feedback on practical wearable device applications.

  14. Cyclic compression maintains viability and induces chondrogenesis of human mesenchymal stem cells in fibrin gel scaffolds.

    PubMed

    Pelaez, Daniel; Huang, Chun-Yuh Charles; Cheung, Herman S

    2009-01-01

    Mechanical loading has long been shown to modulate cartilage-specific extracellular matrix synthesis. With joint motion, cartilage can experience mechanical loading in the form of compressive, tensile or shearing load, and hydrostatic pressure. Recent studies have demonstrated the capacity of unconfined cyclic compression to induce chondrogenic differentiation of human mesenchymal stem cell (hMSC) in agarose culture. However, the use of a nonbiodegradable material such as agarose limits the applicability of these constructs. Of the possible biocompatible materials available for tissue engineering, fibrin is a natural regenerative scaffold, which possesses several desired characteristics including a controllable degradation rate and low immunogenicity. The objective of the present study was to determine the capability of fibrin gels for supporting chondrogenesis of hMSCs under cyclic compression. To optimize the system, three concentrations of fibrin gel (40, 60, and 80 mg/mL) and three different stimulus frequencies (0.1, 0.5, and 1.0 Hz) were used to examine the effects of cyclic compression on viability, proliferation and chondrogenic differentiation of hMSCs. Our results show that cyclic compression (10% strain) at frequencies >0.5 Hz and gel concentration of 40 mg/mL fibrinogen appears to maintain cellular viability within scaffolds. Similarly, variations in gel component concentration and stimulus frequency can be modified such that a significant chondrogenic response can be achieved by hMSC in fibrin constructs after 8 h of compression spread out over 2 days. This study demonstrates the suitability of fibrin gel for supporting the cyclic compression-induced chondrogenesis of mesenchymal stem cells.

  15. Celecoxib Sensitizes Staphylococcus aureus to Antibiotics in Macrophages by Modulating SIRT1

    PubMed Central

    Annamanedi, Madhavi; Kalle, Arunasree M.

    2014-01-01

    We have previously shown that celecoxib in combination with an antibiotic, increase the bacterial sensitivity to antibiotics. However, the underlying molecular mechanism remained elusive. Efficacy of the combinatorial treatment of celecoxib and ampicillin in vitro was evaluated on macrophage-phagocytosed S aureus. To elucidate the mechanism, signaling pathway of infection and inflammation involving TLR2, JNK, SIRT1 and NF-κB was studied by FACS, Western blot, ELISA and activity assays. Combinatorial treatment of ampicillin and celecoxib reduced the bacterial load in the macrophages. Further studies clearly suggested the activation of the master regulator of oxidative stress and inflammation SIRT1,, by celecoxib when used alone and/or in combination with ampicillin. Also, the results indicated that celecoxib inhibited JNK phosphorylation thereby stabilizing and activating SIRT1 protein that inhibited the COX-2 gene transcription with a significant decrease in the levels of protein inflammatory cytokines like IL-6, MIP-1α and IL-1β via inhibition of NF-κB. SIRT1 activation by celecoxib also resulted in increase of catalase and peroxidase activity with a decrease in Nitric oxide levels. In conclusion, we demonstrate a novel role of celecoxib in controlling inflammation as an enhancer of antibiotic activity against bacteria by modulating SIRT1. PMID:24950067

  16. Celecoxib sensitizes Staphylococcus aureus to antibiotics in macrophages by modulating SIRT1.

    PubMed

    Annamanedi, Madhavi; Kalle, Arunasree M

    2014-01-01

    We have previously shown that celecoxib in combination with an antibiotic, increase the bacterial sensitivity to antibiotics. However, the underlying molecular mechanism remained elusive. Efficacy of the combinatorial treatment of celecoxib and ampicillin in vitro was evaluated on macrophage-phagocytosed S. aureus. To elucidate the mechanism, signaling pathway of infection and inflammation involving TLR2, JNK, SIRT1 and NF-κB was studied by FACS, Western blot, ELISA and activity assays. Combinatorial treatment of ampicillin and celecoxib reduced the bacterial load in the macrophages. Further studies clearly suggested the activation of the master regulator of oxidative stress and inflammation SIRT1, by celecoxib when used alone and/or in combination with ampicillin. Also, the results indicated that celecoxib inhibited JNK phosphorylation thereby stabilizing and activating SIRT1 protein that inhibited the COX-2 gene transcription with a significant decrease in the levels of protein inflammatory cytokines like IL-6, MIP-1α and IL-1β via inhibition of NF-κB. SIRT1 activation by celecoxib also resulted in increase of catalase and peroxidase activity with a decrease in Nitric oxide levels. In conclusion, we demonstrate a novel role of celecoxib in controlling inflammation as an enhancer of antibiotic activity against bacteria by modulating SIRT1.

  17. Automatic load sharing in inverter modules

    NASA Technical Reports Server (NTRS)

    Nagano, S.

    1979-01-01

    Active feedback loads transistor equally with little power loss. Circuit is suitable for balancing modular inverters in spacecraft, computer power supplies, solar-electric power generators, and electric vehicles. Current-balancing circuit senses differences between collector current for power transistor and average value of load currents for all power transistors. Principle is effective not only in fixed duty-cycle inverters but also in converters operating at variable duty cycles.

  18. Engineering study of the module/array interface for large terrestrial photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Three major areas--structural, electrical, and maintenance--were evaluated. Efforts in the structural area included establishing acceptance criteria for materials and members, determining loading criteria, and analyzing glass modules in various framing system configurations. Array support structure design was addressed briefly. Electrical considerations included evaluation of module characteristics, intermodule connectors, array wiring, converters and lightning protection. Plant maintenance features such as array cleaning, failure detection, and module installation and replacement were addressed.

  19. Incomplete Loading of Sodium Lauryl Sulfate and Fasted State Simulated Intestinal Fluid Micelles Within the Diffusion Layers of Dispersed Drug Particles During Dissolution.

    PubMed

    Galipeau, Kendra; Socki, Michael; Socia, Adam; Harmon, Paul A

    2018-01-01

    Poorly water soluble drug candidates have been common in developmental pipelines over the last several decades. This has fueled considerable research around understanding how bile salt and model micelles can improve drug particle dissolution rates and human drug exposure levels. However, in the pharmaceutical context only a single mechanism of how micelles load solute has been assumed, that being the direct loading mechanism put forth by Cussler and coworkers (Am Inst Chem Eng J. 1976;22(6):1006-1012) 40 years ago. In this model, micelles load at the particle surface and will be loaded to their equilibrium loading values. More recently, Kumar and Gandhi and coworkers (Langmuir. 2003;19:4014-4026) developed a comprehensive theory of micelle solubilization which also features an indirect loading mechanism which they argue should operate in ionic surfactant systems. In this mechanism, micelles cannot directly load at the solute particle surface and thus may not reach equilibrium loading values within the particle diffusion layer. In this work, we endeavor to understand if the indirect micelle loading mechanism represents a plausible description in the pharmaceutical context. The overall data in SLS and FaSSIF systems obtained here, as well as several other previously published datasets, can be described by the indirect micelle loading mechanism. Implications for pharmaceutical development of poorly soluble compounds are discussed. Copyright © 2018. Published by Elsevier Inc.

  20. Examination of a Junction-Box Adhesion Test for Use in Photovoltaic Module Qualification: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, D. C.; Wohlgemuth, J. H.

    2012-08-01

    Engineering robust adhesion of the junction-box (j-box) is a hurdle typically encountered by photovoltaic (PV) module manufacturers during product development. There are historical incidences of adverse effects (e.g., fires) caused when the j-box/adhesive/module system has failed in the field. The addition of a weight to the j-box during the 'damp heat' IEC qualification test is proposed to verify the basic robustness of its adhesion system. The details of the proposed test will be described, in addition to the preliminary results obtained using representative materials and components. The described discovery experiments examine moisture-cured silicone, foam tape, and hot-melt adhesives used inmore » conjunction with PET or glass module 'substrates.' To be able to interpret the results, a set of material-level characterizations was performed, including thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. PV j-boxes were adhered to a substrate, loaded with a prescribed weight, and then placed inside an environmental chamber (at 85C, 85% relative humidity). Some systems did not remain attached through the discovery experiments. Observed failure modes include delamination (at the j-box/adhesive or adhesive/substrate interface) and phase change/creep. The results are discussed in the context of the application requirements, in addition to the plan for the formal experiment supporting the proposed modification to the qualification test.« less

  1. The characterization of secondary lithium-ion battery degradation when operating complex, ultra-high power pulsed loads

    NASA Astrophysics Data System (ADS)

    Wong, Derek N.

    The US Navy is actively developing all electric fleets, raising serious questions about what is required of onboard power supplies in order to properly power the ship's electrical systems. This is especially relevant when choosing a viable power source to drive high power propulsion and electric weapon systems in addition to the conventional loads deployed aboard these types of vessels. Especially when high pulsed power loads are supplied, the issue of maintaining power quality becomes important and increasingly complex. Conventionally, a vessel's electrical power is generated using gas turbine or diesel driven motor-generator sets that are very inefficient when they are used outside of their most efficient load condition. What this means is that if the generator is not being utilized continuously at its most efficient load capacity, the quality of the output power may also be effected and fall outside of the acceptable power quality limits imposed through military standards. As a solution to this potential problem, the Navy has proposed using electrochemical storage devices since they are able to buffer conventional generators when the load is operating below the generator's most efficient power level or able to efficiently augment a generator when the load is operating in excess of the generator's most efficient power rating. Specifically, the US Navy is interested in using commercial off-the-shelf (COTS) lithium-ion batteries within an intelligently controlled energy storage module that could act as either a prime power supply for on-board pulsed power systems or as a backup generator to other shipboard power systems. Due to the unique load profile of high-rate pulsed power systems, the implementation of lithium-ion batteries within these complex systems requires them to be operated at very high rates and the effects these things have on cell degradation has been an area of focus. There is very little published research into the effects that high power transient or pulsed loading has on the degradation mechanisms of secondary lithium-ion cells. Prior to performing this work, it was unclear if the implementation of lithium-ion batteries in highly transient load conditions at high rate would accelerate cell degradation mechanisms that have been previously considered as minor issues. This work has focused on answering these previously unanswered questions. In early experiments performed here, COTS lithium-iron-phosphate (LFP) cells were studied under high-rate, transient load conditions and it was found that their capacity fade deviated from the traditional linear behavior and exponentially declined until no charge could be accepted when recharge was attempted at high rate. These findings indicated that subjecting LFP chemistries to transient, high rate charge/discharge profiles induced rapid changes in the electrode/electrolyte interface that rendered the cells useless when high rate recharge was required. These findings suggested there was more phenomena to learn about how these cells degraded under high rate pulsed conditions before they are fielded in Naval applications. Therefore, the research presented here has been focused on understanding the degradation mechanisms that are unique to LFP cells when they are cycled under pulsed load profiles at high charge and discharge rates. In particular, the work has been focused on identifying major degradation reactions that occur by studying the surface chemistry of cycled electrode materials. Efforts have been performed to map the impedance evolution of both cathode and anode half cells, respectively, using a novel three electrode technique that was developed for this research. Using this technique, the progression of degradation has been mapped using analysis of differential capacitance spectrums. In both the three electrode EIS mapping and differential capacitance analysis that has been performed, electrical component models have been developed. The results presented will show that there are unique degradation mechanisms induced through high rate pulsed loading conditions that are not normally seen in low rate continuous cycling of LFP cells.

  2. Load-bearing capacity of screw-retained CAD/CAM-produced titanium implant frameworks (I-Bridge®2) before and after cyclic mechanical loading.

    PubMed

    Dittmer, Marc Philipp; Nensa, Moritz; Stiesch, Meike; Kohorst, Philipp

    2013-01-01

    Implant-supported screw-retained fixed dental prostheses (FDPs) produced by CAD/ CAM have been introduced in recent years for the rehabilitation of partial or total endentulous jaws. However, there is a lack of data about the long-term mechanical characteristics. The aim of this study was to investigate the failure mode and the influence of extended cyclic mechanical loading on the load-bearing capacity of these frameworks. Ten five-unit FDP frameworks simulating a free-end situation in the mandibular jaw were manufactured according to the I-Bridge®2-concept (I-Bridge®2, Biomain AB, Helsingborg, Sweden) and each was screw-retained on three differently angulated Astra Tech implants (30º buccal angulation/0º angulation/30º lingual angulation). One half of the specimens was tested for static load-bearing capacity without any further treatment (control), whereas the other half underwent five million cycles of mechanical loading with 100 N as the upper load limit (test). All specimens were loaded until failure in a universal testing machine with an occlusal force applied at the pontics. Load-displacement curves were recorded and the failure mode was macro- and microscopically analyzed. The statistical analysis was performed using a t-test (p=0.05). All the specimens survived cyclic mechanical loading and no obvious failure could be observed. Due to the cyclic mechanical loading, the load-bearing capacity decreased from 8,496 N±196 N (control) to 7,592 N±901 N (test). The cyclic mechanical loading did not significantly influence the load-bearing capacity (p=0.060). The failure mode was almost identical in all specimens: large deformations of the framework at the implant connection area were obvious. The load-bearing capacity of the I-Bridge®2 frameworks is much higher than the clinically relevant occlusal forces, even with considerably angulated implants. However, the performance under functional loading in vivo depends on additional aspects. Further studies are needed to address these aspects.

  3. Load-bearing capacity of screw-retained CAD/CAM-produced titanium implant frameworks (I-Bridge®2) before and after cyclic mechanical loading

    PubMed Central

    DITTMER, Marc Philipp; NENSA, Moritz; STIESCH, Meike; KOHORST, Philipp

    2013-01-01

    Implant-supported screw-retained fixed dental prostheses (FDPs) produced by CAD/ CAM have been introduced in recent years for the rehabilitation of partial or total endentulous jaws. However, there is a lack of data about the long-term mechanical characteristics. Objective The aim of this study was to investigate the failure mode and the influence of extended cyclic mechanical loading on the load-bearing capacity of these frameworks. Material and Methods Ten five-unit FDP frameworks simulating a free-end situation in the mandibular jaw were manufactured according to the I-Bridge®2-concept (I-Bridge®2, Biomain AB, Helsingborg, Sweden) and each was screw-retained on three differently angulated Astra Tech implants (30º buccal angulation/0º angulation/30º lingual angulation). One half of the specimens was tested for static load-bearing capacity without any further treatment (control), whereas the other half underwent five million cycles of mechanical loading with 100 N as the upper load limit (test). All specimens were loaded until failure in a universal testing machine with an occlusal force applied at the pontics. Load-displacement curves were recorded and the failure mode was macro- and microscopically analyzed. The statistical analysis was performed using a t-test (p=0.05). Results All the specimens survived cyclic mechanical loading and no obvious failure could be observed. Due to the cyclic mechanical loading, the load-bearing capacity decreased from 8,496 N±196 N (control) to 7,592 N±901 N (test). The cyclic mechanical loading did not significantly influence the load-bearing capacity (p=0.060). The failure mode was almost identical in all specimens: large deformations of the framework at the implant connection area were obvious. Conclusion The load-bearing capacity of the I-Bridge®2 frameworks is much higher than the clinically relevant occlusal forces, even with considerably angulated implants. However, the performance under functional loading in vivo depends on additional aspects. Further studies are needed to address these aspects. PMID:24037068

  4. Hydrologically-driven crustal stresses and seismicity in the New Madrid Seismic Zone.

    PubMed

    Craig, Timothy J; Chanard, Kristel; Calais, Eric

    2017-12-15

    The degree to which short-term non-tectonic processes, either natural and anthropogenic, influence the occurrence of earthquakes in active tectonic settings or 'stable' plate interiors, remains a subject of debate. Recent work in plate-boundary regions demonstrates the capacity for long-wavelength changes in continental water storage to produce observable surface deformation, induce crustal stresses and modulate seismicity rates. Here we show that a significant variation in the rate of microearthquakes in the intraplate New Madrid Seismic Zone at annual and multi-annual timescales coincides with hydrological loading in the upper Mississippi embayment. We demonstrate that this loading, which results in geodetically observed surface deformation, induces stresses within the lithosphere that, although of small amplitude, modulate the ongoing seismicity of the New Madrid region. Correspondence between surface deformation, hydrological loading and seismicity rates at both annual and multi-annual timescales indicates that seismicity variations are the direct result of elastic stresses induced by the water load.

  5. Cell module and fuel conditioner

    NASA Technical Reports Server (NTRS)

    Hoover, D. Q., Jr.

    1980-01-01

    Measurements of stack height changes with temperature and cell material characteristics were made. Stack 559 was assembled and components were fabricated for 560, 561, and 562. Stack 425 was transferred from the parallel DOE program and installed in the OS/IES simulation loop for mechanical and electrical testing. Construction and preliminary checkout of the 2 kW test facility was completed and design and procurement of the 8 kW test facility was initiated. The fuel conditioning subsystem design continued to evolve and the state points for the current design were calculated at full and part load conditions. Steam reforming catalyst activity tests were essentially completed and aging tests and CO shift converter tests were initiated.

  6. Effect of single-limb inertial loading on bilateral reaching: interlimb interactions.

    PubMed

    Hatzitaki, V; McKinley, P

    2001-09-01

    This study employed the paradigm of asymmetric limb loading during bilateral arm reaching to examine the motor system's ability to independently organize the discrete movement of both upper limbs to equidistant targets when one of the limbs is loaded under specific timing constraints. The loading procedure involved attaching two different Velcro strapped weights to the right wrist, thus increasing the right arm's mass by 25% (1 kg) and 50% (2 kg). Movements were captured by a high-speed digital camera (240 Hz), while electromyographic (EMG) activity of selected elbow and shoulder muscles of both limbs was recorded (1,000 Hz) simultaneously. The results revealed that the mechanisms used by the system to compensate for unilateral limb loading were as follows: First, addition of an inertial load resulted in an increased movement time and concomitant decrease in peak velocity of both the upper arm and forearm of only the loaded limb and was scaled to the added weight. Second, for the EMG parameters, adjustments to the inertial load were primarily characterized by an increase in burst duration of all muscles, with load-specific changes in activity and onset time: the elbow antagonist (biceps) demonstrated a decrease in activity with the 50% load, and the elbow agonist (triceps) had an earlier onset with the 25% load. Concomitant adjustments on the unloaded limb consisted primarily of an increase in burst duration of the shoulder and elbow agonists (pectoralis and triceps), an earlier triceps onset solely with the 25% load, and a decrease in activity of the biceps solely with the 50% load. Third, with the exception of biceps activity, the amplitude of EMG activity was invariant across changes in load for both the loaded and unloaded limb. This lack of modulation in activity may have been related to the inability of performers to meet the time constraint of simultaneous bilateral limb arrival to the end targets. This inability can be the result of an active strategy selection process to safeguard the actions against interference or alternatively it could simply be a consequence of the biomechanical properties of the system in relation to task constraints. These issues are discussed in the light of the present findings and those of previous studies.

  7. Mechanotransduction and the functional response of bone to mechanical strain

    NASA Technical Reports Server (NTRS)

    Duncan, R. L.; Turner, C. H.

    1995-01-01

    Mechanotransduction plays a crucial role in the physiology of many tissues including bone. Mechanical loading can inhibit bone resorption and increase bone formation in vivo. In bone, the process of mechanotransduction can be divided into four distinct steps: (1) mechanocoupling, (2) biochemical coupling, (3) transmission of signal, and (4) effector cell response. In mechanocoupling, mechanical loads in vivo cause deformations in bone that stretch bone cells within and lining the bone matrix and create fluid movement within the canaliculae of bone. Dynamic loading, which is associated with extracellular fluid flow and the creation of streaming potentials within bone, is most effective for stimulating new bone formation in vivo. Bone cells in vitro are stimulated to produce second messengers when exposed to fluid flow or mechanical stretch. In biochemical coupling, the possible mechanisms for the coupling of cell-level mechanical signals into intracellular biochemical signals include force transduction through the integrin-cytoskeleton-nuclear matrix structure, stretch-activated cation channels within the cell membrane, G protein-dependent pathways, and linkage between the cytoskeleton and the phospholipase C or phospholipase A pathways. The tight interaction of each of these pathways would suggest that the entire cell is a mechanosensor and there are many different pathways available for the transduction of a mechanical signal. In the transmission of signal, osteoblasts, osteocytes, and bone lining cells may act as sensors of mechanical signals and may communicate the signal through cell processes connected by gap junctions. These cells also produce paracrine factors that may signal osteoprogenitors to differentiate into osteoblasts and attach to the bone surface. Insulin-like growth factors and prostaglandins are possible candidates for intermediaries in signal transduction. In the effector cell response, the effects of mechanical loading are dependent upon the magnitude, duration, and rate of the applied load. Longer duration, lower amplitude loading has the same effect on bone formation as loads with short duration and high amplitude. Loading must be cyclic to stimulate new bone formation. Aging greatly reduces the osteogenic effects of mechanical loading in vivo. Also, some hormones may interact with local mechanical signals to change the sensitivity of the sensor or effector cells to mechanical load.

  8. Solid state pulsed power generator

    DOEpatents

    Tao, Fengfeng; Saddoughi, Seyed Gholamali; Herbon, John Thomas

    2014-02-11

    A power generator includes one or more full bridge inverter modules coupled to a semiconductor opening switch (SOS) through an inductive resonant branch. Each module includes a plurality of switches that are switched in a fashion causing the one or more full bridge inverter modules to drive the semiconductor opening switch SOS through the resonant circuit to generate pulses to a load connected in parallel with the SOS.

  9. Propeller noise prediction

    NASA Technical Reports Server (NTRS)

    Zorumski, W. E.

    1983-01-01

    Analytic propeller noise prediction involves a sequence of computations culminating in the application of acoustic equations. The prediction sequence currently used by NASA in its ANOPP (aircraft noise prediction) program is described. The elements of the sequence are called program modules. The first group of modules analyzes the propeller geometry, the aerodynamics, including both potential and boundary layer flow, the propeller performance, and the surface loading distribution. This group of modules is based entirely on aerodynamic strip theory. The next group of modules deals with the actual noise prediction, based on data from the first group. Deterministic predictions of periodic thickness and loading noise are made using Farassat's time-domain methods. Broadband noise is predicted by the semi-empirical Schlinker-Amiet method. Near-field predictions of fuselage surface pressures include the effects of boundary layer refraction and (for a cylinder) scattering. Far-field predictions include atmospheric and ground effects. Experimental data from subsonic and transonic propellers are compared and NASA's future direction is propeller noise technology development are indicated.

  10. Experimental verification of internal parameter in magnetically coupled boost used as PV optimizer in parallel association

    NASA Astrophysics Data System (ADS)

    Sawicki, Jean-Paul; Saint-Eve, Frédéric; Petit, Pierre; Aillerie, Michel

    2017-02-01

    This paper presents results of experiments aimed to verify a formula able to compute duty cycle in the case of pulse width modulation control for a DC-DC converter designed and realized in laboratory. This converter, called Magnetically Coupled Boost (MCB) is sized to step up only one photovoltaic module voltage to supply directly grid inverters. Duty cycle formula will be checked in a first time by identifying internal parameter, auto-transformer ratio, and in a second time by checking stability of operating point on the side of photovoltaic module. Thinking on nature of generator source and load connected to converter leads to imagine additional experiments to decide if auto-transformer ratio parameter could be used with fixed value or on the contrary with adaptive value. Effects of load variations on converter behavior or impact of possible shading on photovoltaic module are also mentioned, with aim to design robust control laws, in the case of parallel association, designed to compensate unwanted effects due to output voltage coupling.

  11. Electrochemical-mechanical coupled modeling and parameterization of swelling and ionic transport in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Sauerteig, Daniel; Hanselmann, Nina; Arzberger, Arno; Reinshagen, Holger; Ivanov, Svetlozar; Bund, Andreas

    2018-02-01

    The intercalation and aging induced volume changes of lithium-ion battery electrodes lead to significant mechanical pressure or volume changes on cell and module level. As the correlation between electrochemical and mechanical performance of lithium ion batteries at nano and macro scale requires a comprehensive and multidisciplinary approach, physical modeling accounting for chemical and mechanical phenomena during operation is very useful for the battery design. Since the introduced fully-coupled physical model requires proper parameterization, this work also focuses on identifying appropriate mathematical representation of compressibility as well as the ionic transport in the porous electrodes and the separator. The ionic transport is characterized by electrochemical impedance spectroscopy (EIS) using symmetric pouch cells comprising LiNi1/3Mn1/3Co1/3O2 (NMC) cathode, graphite anode and polyethylene separator. The EIS measurements are carried out at various mechanical loads. The observed decrease of the ionic conductivity reveals a significant transport limitation at high pressures. The experimentally obtained data are applied as input to the electrochemical-mechanical model of a prismatic 10 Ah cell. Our computational approach accounts intercalation induced electrode expansion, stress generation caused by mechanical boundaries, compression of the electrodes and the separator, outer expansion of the cell and finally the influence of the ionic transport within the electrolyte.

  12. The actin cytoskeleton modulates the activation of iNKT cells by segregating CD1d nanoclusters on antigen-presenting cells

    PubMed Central

    Torreno-Pina, Juan A.; Manzo, Carlo; Salio, Mariolina; Aichinger, Michael C.; Oddone, Anna; Lakadamyali, Melike; Shepherd, Dawn; Besra, Gurdyal S.; Cerundolo, Vincenzo

    2016-01-01

    Invariant natural killer T (iNKT) cells recognize endogenous and exogenous lipid antigens presented in the context of CD1d molecules. The ability of iNKT cells to recognize endogenous antigens represents a distinct immune recognition strategy, which underscores the constitutive memory phenotype of iNKT cells and their activation during inflammatory conditions. However, the mechanisms regulating such “tonic” activation of iNKT cells remain unclear. Here, we show that the spatiotemporal distribution of CD1d molecules on the surface of antigen-presenting cells (APCs) modulates activation of iNKT cells. By using superresolution microscopy, we show that CD1d molecules form nanoclusters at the cell surface of APCs, and their size and density are constrained by the actin cytoskeleton. Dual-color single-particle tracking revealed that diffusing CD1d nanoclusters are actively arrested by the actin cytoskeleton, preventing their further coalescence. Formation of larger nanoclusters occurs in the absence of interactions between CD1d cytosolic tail and the actin cytoskeleton and correlates with enhanced iNKT cell activation. Importantly and consistently with iNKT cell activation during inflammatory conditions, exposure of APCs to the Toll-like receptor 7/8 agonist R848 increases nanocluster density and iNKT cell activation. Overall, these results define a previously unidentified mechanism that modulates iNKT cell autoreactivity based on the tight control by the APC cytoskeleton of the sizes and densities of endogenous antigen-loaded CD1d nanoclusters. PMID:26798067

  13. Self locking coupling mechanism for engaging and moving a load

    DOEpatents

    Wood, R.L.; Casamajor, A.B.; Parsons, R.E.

    1980-09-12

    A coupling mechanism for engaging and lifting a load has a housing with a guide passage for receiving a knob which is secured to the load through a neck of smaller diameter. A hollow ball in the housing has an opening which receives the knob and the ball is then turned to displace the opening from the housing passage and to cause the neck to enter a slot in the ball thereby securing the load to the coupling mechanism as elements of the housing block travel of the neck back into the opening when the ball is turned to the load holding orientation. As engagement of the load and locking of the coupling mechanism are accomplished simultaneously by the same ball motion, operation is simplified and reliability is greatly increased. The ball is preferably turned by a motor through worm gearing and the coupling mechanism may be controlled from a remote location. Among other uses, the coupling mechanism is adaptable to the handling of spent nuclear reactor fuel elements.

  14. Alpha and Beta Oscillations Index Semantic Congruency between Speech and Gestures in Clear and Degraded Speech.

    PubMed

    Drijvers, Linda; Özyürek, Asli; Jensen, Ole

    2018-06-19

    Previous work revealed that visual semantic information conveyed by gestures can enhance degraded speech comprehension, but the mechanisms underlying these integration processes under adverse listening conditions remain poorly understood. We used MEG to investigate how oscillatory dynamics support speech-gesture integration when integration load is manipulated by auditory (e.g., speech degradation) and visual semantic (e.g., gesture congruency) factors. Participants were presented with videos of an actress uttering an action verb in clear or degraded speech, accompanied by a matching (mixing gesture + "mixing") or mismatching (drinking gesture + "walking") gesture. In clear speech, alpha/beta power was more suppressed in the left inferior frontal gyrus and motor and visual cortices when integration load increased in response to mismatching versus matching gestures. In degraded speech, beta power was less suppressed over posterior STS and medial temporal lobe for mismatching compared with matching gestures, showing that integration load was lowest when speech was degraded and mismatching gestures could not be integrated and disambiguate the degraded signal. Our results thus provide novel insights on how low-frequency oscillatory modulations in different parts of the cortex support the semantic audiovisual integration of gestures in clear and degraded speech: When speech is clear, the left inferior frontal gyrus and motor and visual cortices engage because higher-level semantic information increases semantic integration load. When speech is degraded, posterior STS/middle temporal gyrus and medial temporal lobe are less engaged because integration load is lowest when visual semantic information does not aid lexical retrieval and speech and gestures cannot be integrated.

  15. Charge transport model in nanodielectric composites based on quantum tunneling mechanism and dual-level traps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Guochang; Chen, George, E-mail: gc@ecs.soton.ac.uk, E-mail: sli@mail.xjtu.edu.cn; School of Electronic and Computer Science, University of Southampton, Southampton SO17 1BJ

    Charge transport properties in nanodielectrics present different tendencies for different loading concentrations. The exact mechanisms that are responsible for charge transport in nanodielectrics are not detailed, especially for high loading concentration. A charge transport model in nanodielectrics has been proposed based on quantum tunneling mechanism and dual-level traps. In the model, the thermally assisted hopping (TAH) process for the shallow traps and the tunnelling process for the deep traps are considered. For different loading concentrations, the dominant charge transport mechanisms are different. The quantum tunneling mechanism plays a major role in determining the charge conduction in nanodielectrics with high loadingmore » concentrations. While for low loading concentrations, the thermal hopping mechanism will dominate the charge conduction process. The model can explain the observed conductivity property in nanodielectrics with different loading concentrations.« less

  16. Development and performance of pulse-width-modulated static inverter and converter modules

    NASA Technical Reports Server (NTRS)

    Pittman, P. F.; Gourash, F.; Birchenough, A. G.; Pittman, P. F.; Ravas, R. J.; Hall, W. G.

    1971-01-01

    Pulse-width-modulated inverter and converter modules are being developed for modular aerospace electrical power systems. The modules, rate 2.5 kilowatts per module and 10-minute - 150-percent overload, operate from 56 volts dc. The converter module provides two output voltages: a nominal link voltage of 200 volts dc when used with the inverter, and 150 volts dc to a load bus when used separately. The inverter module output is 400-hertz, sinusoidal, three-phase, 120/208 volts. Tests of breadboard models with standard parts and integrated circuits show rated power efficiencies of 71.4 and 85.1 percent and voltage regulation of 5 and 3.1 percent for inverter and converter modules, respectively. Sine-wave output distortion is 0.74 percent.

  17. Combined Space and Water Heating: Next Steps to Improved Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B. Schoenbauer; Bohac, D.; Huelman, P.

    2016-07-13

    A combined space- and water-heating (combi) system uses a high-efficiency direct-vent burner that eliminates safety issues associated with natural draft appliances. Past research with these systems shows that using condensing water heaters or boilers with hydronic air handling units can provide both space and water heating with efficiencies of 90% or higher. Improved controls have the potential to reduce complexity and improve upon the measured performance. This project demonstrates that controls can significantly benefit these first-generation systems. Laboratory tests and daily load/performance models showed that the set point temperature reset control produced a 2.1%–4.3% (20–40 therms/year) savings for storage andmore » hybrid water heater combi systems operated in moderate-load homes. The full modulation control showed additional savings over set point control (in high-load homes almost doubling the savings: 4%–5% over the no-control case). At the time of installation the reset control can be implemented for $200–$400, which would provide paybacks of 6–25 years for low-load houses and 3–15 years for high-load houses. Full modulation implementation costs would be similar to the outdoor reset and would provide paybacks of 5-½–20 years for low-load houses and 2-½–10 years for high-load houses.« less

  18. Auditory-Motor Control of Vocal Production during Divided Attention: Behavioral and ERP Correlates.

    PubMed

    Liu, Ying; Fan, Hao; Li, Jingting; Jones, Jeffery A; Liu, Peng; Zhang, Baofeng; Liu, Hanjun

    2018-01-01

    When people hear unexpected perturbations in auditory feedback, they produce rapid compensatory adjustments of their vocal behavior. Recent evidence has shown enhanced vocal compensations and cortical event-related potentials (ERPs) in response to attended pitch feedback perturbations, suggesting that this reflex-like behavior is influenced by selective attention. Less is known, however, about auditory-motor integration for voice control during divided attention. The present cross-modal study investigated the behavioral and ERP correlates of auditory feedback control of vocal pitch production during divided attention. During the production of sustained vowels, 32 young adults were instructed to simultaneously attend to both pitch feedback perturbations they heard and flashing red lights they saw. The presentation rate of the visual stimuli was varied to produce a low, intermediate, and high attentional load. The behavioral results showed that the low-load condition elicited significantly smaller vocal compensations for pitch perturbations than the intermediate-load and high-load conditions. As well, the cortical processing of vocal pitch feedback was also modulated as a function of divided attention. When compared to the low-load and intermediate-load conditions, the high-load condition elicited significantly larger N1 responses and smaller P2 responses to pitch perturbations. These findings provide the first neurobehavioral evidence that divided attention can modulate auditory feedback control of vocal pitch production.

  19. Modeling the impact of scaffold architecture and mechanical loading on collagen turnover in engineered cardiovascular tissues.

    PubMed

    Argento, G; de Jonge, N; Söntjens, S H M; Oomens, C W J; Bouten, C V C; Baaijens, F P T

    2015-06-01

    The anisotropic collagen architecture of an engineered cardiovascular tissue has a major impact on its in vivo mechanical performance. This evolving collagen architecture is determined by initial scaffold microstructure and mechanical loading. Here, we developed and validated a theoretical and computational microscale model to quantitatively understand the interplay between scaffold architecture and mechanical loading on collagen synthesis and degradation. Using input from experimental studies, we hypothesize that both the microstructure of the scaffold and the loading conditions influence collagen turnover. The evaluation of the mechanical and topological properties of in vitro engineered constructs reveals that the formation of extracellular matrix layers on top of the scaffold surface influences the mechanical anisotropy on the construct. Results show that the microscale model can successfully capture the collagen arrangement between the fibers of an electrospun scaffold under static and cyclic loading conditions. Contact guidance by the scaffold, and not applied load, dominates the collagen architecture. Therefore, when the collagen grows inside the pores of the scaffold, pronounced scaffold anisotropy guarantees the development of a construct that mimics the mechanical anisotropy of the native cardiovascular tissue.

  20. A Study of the Time Dependence in Fracture Processes Relating to Service Life Prediction of Adhesive Joints and Advanced Composites.

    DTIC Science & Technology

    1981-04-30

    fluid temperature should exceed 145°F. The flow control module contains all the hydraulic circuit elements necessary for both the pressure line to and...are contained in three basic modules : 1) the hydraulic power supply, 2) a flow control module containing valving, accumulators and filters, and 3) the...hydraulic transient overpressures, is located in the flow control module , as are the high and low pressure filters. The load frame (MTS Systems Corp

  1. Phase-Change Heat-Storage Module

    NASA Technical Reports Server (NTRS)

    Mulligan, James C.

    1989-01-01

    Heat-storage module accommodates momentary heating or cooling overload in pumped-liquid heat-transfer system. Large heat-storage capacity of module provided by heat of fusion of material that freezes at or near temperature desired to maintain object to be heated or cooled. Module involves relatively small penalties in weight, cost, and size and more than compensates by enabling design of rest of system to handle only average load. Latent heat of fusion of phase-change material provides large heat-storage capacity in small volume.

  2. Analyzing the effects of mechanical and osmotic loading on glycosaminoglycan synthesis rate in cartilaginous tissues.

    PubMed

    Gao, Xin; Zhu, Qiaoqiao; Gu, Weiyong

    2015-02-26

    The glycosaminoglycan (GAG) plays an important role in cartilaginous tissues to support and transmit mechanical loads. Many extracellular biophysical stimuli could affect GAG synthesis by cells. It has been hypothesized that the change of cell volume is a primary mechanism for cells to perceive the stimuli. Experimental studies have shown that the maximum synthesis rate of GAG is achieved at an optimal cell volume, larger or smaller than this level the GAG synthesis rate decreases. Based on the hypothesis and experimental findings in the literature, we proposed a mathematical model to quantitatively describe the cell volume dependent GAG synthesis rate in the cartilaginous tissues. Using this model, we investigated the effects of osmotic loading and mechanical loading on GAG synthesis rate. It is found our proposed mathematical model is able to well describe the change of GAG synthesis rate in isolated cells or in cartilage with variations of the osmotic loading or mechanical loading. This model is important for evaluating the GAG synthesis activity within cartilaginous tissues as well as understanding the role of mechanical loading in tissue growth or degeneration. It is also important for designing a bioreactor system with proper extracellular environment or mechanical loading for growing tissue at the maximum synthesis rate of the extracellular matrix. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Attentional load modulates responses of human primary visual cortex to invisible stimuli.

    PubMed

    Bahrami, Bahador; Lavie, Nilli; Rees, Geraint

    2007-03-20

    Visual neuroscience has long sought to determine the extent to which stimulus-evoked activity in visual cortex depends on attention and awareness. Some influential theories of consciousness maintain that the allocation of attention is restricted to conscious representations [1, 2]. However, in the load theory of attention [3], competition between task-relevant and task-irrelevant stimuli for limited-capacity attention does not depend on conscious perception of the irrelevant stimuli. The critical test is whether the level of attentional load in a relevant task would determine unconscious neural processing of invisible stimuli. Human participants were scanned with high-field fMRI while they performed a foveal task of low or high attentional load. Irrelevant, invisible monocular stimuli were simultaneously presented peripherally and were continuously suppressed by a flashing mask in the other eye [4]. Attentional load in the foveal task strongly modulated retinotopic activity evoked in primary visual cortex (V1) by the invisible stimuli. Contrary to traditional views [1, 2, 5, 6], we found that availability of attentional capacity determines neural representations related to unconscious processing of continuously suppressed stimuli in human primary visual cortex. Spillover of attention to cortical representations of invisible stimuli (under low load) cannot be a sufficient condition for their awareness.

  4. Gastrointestinal and renal responses to variable water intake in whitebellied sunbirds and New Holland honeyeaters.

    PubMed

    Purchase, Cromwell; Napier, Kathryn R; Nicolson, Susan W; McWhorter, Todd J; Fleming, Patricia A

    2013-05-01

    Nectarivores face a constant challenge in terms of water balance, experiencing water loading or dehydration when switching between food plants or between feeding and fasting. To understand how whitebellied sunbirds and New Holland honeyeaters meet the challenges of varying preformed water load, we used the elimination of intramuscular-injected [(14)C]-l-glucose and (3)H2O to quantify intestinal and renal water handling on diets varying in sugar concentration. Both sunbirds and honeyeaters showed significant modulation of intestinal water absorption, allowing excess water to be shunted through the intestine when on dilute diets. Despite reducing their fractional water absorption, both species showed linear increases in water flux and fractional body water turnover as water intake increased (both afternoon and morning), suggesting that the modulation of fractional water absorption was not sufficient to completely offset dietary water loads. In both species, glomerular filtration rate was independent of water gain (but was higher for the afternoon), as was renal fractional water reabsorption (measured in the afternoon). During the natural overnight fast, both sunbirds and honeyeaters arrested whole kidney function. Evaporative water loss in sunbirds was variable but correlated with water gain. Both sunbirds and honeyeaters appear to modulate intestinal water absorption as an important component of water regulation to help deal with massive preformed water loads. Shutting down glomerular filtration rate during the overnight fast is another way of saving energy for osmoregulatory function. Birds maintain osmotic balance on diets varying markedly in preformed water load by varying both intestinal water absorption and excretion through the intestine and kidneys.

  5. Rat disc torsional mechanics: effect of lumbar and caudal levels and axial compression load.

    PubMed

    Espinoza Orías, Alejandro A; Malhotra, Neil R; Elliott, Dawn M

    2009-03-01

    Rat models with altered loading are used to study disc degeneration and mechano-transduction. Given the prominent role of mechanics in disc function and degeneration, it is critical to measure mechanical behavior to evaluate changes after model interventions. Axial compression mechanics of the rat disc are representative of the human disc when normalized by geometry, and differences between the lumbar and caudal disc have been quantified in axial compression. No study has quantified rat disc torsional mechanics. Compare the torsional mechanical behavior of rat lumbar and caudal discs, determine the contribution of combined axial load on torsional mechanics, and compare the torsional properties of rat discs to human lumbar discs. Cadaveric biomechanical study. Cyclic torsion without compressive load followed by cyclic torsion with a fixed compressive load was applied to rat lumbar and caudal disc levels. The apparent torsional modulus was higher in the lumbar region than in the caudal region: 0.081+/-0.026 (MPa/degrees, mean+/-SD) for lumbar axially loaded; 0.066+/-0.028 for caudal axially loaded; 0.091+/-0.033 for lumbar in pure torsion; and 0.056+/-0.035 for caudal in pure torsion. These values were similar to human disc properties reported in the literature ranging from 0.024 to 0.21 MPa/degrees. Use of the caudal disc as a model may be appropriate if the mechanical focus is within the linear region of the loading regime. These results provide support for use of this animal model in basic science studies with respect to torsional mechanics.

  6. Oscillating load-induced acoustic emission in laboratory experiment

    USGS Publications Warehouse

    Ponomarev, Alexander; Lockner, David A.; Stroganova, S.; Stanchits, S.; Smirnov, Vladmir

    2010-01-01

    Spatial and temporal patterns of acoustic emission (AE) were studied. A pre-fractured cylinder of granite was loaded in a triaxial machine at 160 MPa confining pressure until stick-slip events occurred. The experiments were conducted at a constant strain rate of 10−7 s−1 that was modulated by small-amplitude sinusoidal oscillations with periods of 175 and 570 seconds. Amplitude of the oscillations was a few percent of the total load and was intended to simulate periodic loading observed in nature (e.g., earth tides or other sources). An ultrasonic acquisition system with 13 piezosensors recorded acoustic emissions that were generated during deformation of the sample. We observed a correlation between AE response and sinusoidal loading. The effect was more pronounced for higher frequency of the modulating force. A time-space spectral analysis for a “point” process was used to investigate details of the periodic AE components. The main result of the study was the correlation of oscillations of acoustic activity synchronized with the applied oscillating load. The intensity of the correlated AE activity was most pronounced in the “aftershock” sequences that followed large-amplitude AE events. We suggest that this is due to the higher strain-sensitivity of the failure area when the sample is in a transient, unstable mode. We also found that the synchronization of AE activity with the oscillating external load nearly disappeared in the period immediately after the stick-slip events and gradually recovered with further loading.

  7. Predictive Scheduling for Electric Vehicles Considering Uncertainty of Load and User Behaviors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bin; Huang, Rui; Wang, Yubo

    2016-05-02

    Un-coordinated Electric Vehicle (EV) charging can create unexpected load in local distribution grid, which may degrade the power quality and system reliability. The uncertainty of EV load, user behaviors and other baseload in distribution grid, is one of challenges that impedes optimal control for EV charging problem. Previous researches did not fully solve this problem due to lack of real-world EV charging data and proper stochastic model to describe these behaviors. In this paper, we propose a new predictive EV scheduling algorithm (PESA) inspired by Model Predictive Control (MPC), which includes a dynamic load estimation module and a predictive optimizationmore » module. The user-related EV load and base load are dynamically estimated based on the historical data. At each time interval, the predictive optimization program will be computed for optimal schedules given the estimated parameters. Only the first element from the algorithm outputs will be implemented according to MPC paradigm. Current-multiplexing function in each Electric Vehicle Supply Equipment (EVSE) is considered and accordingly a virtual load is modeled to handle the uncertainties of future EV energy demands. This system is validated by the real-world EV charging data collected on UCLA campus and the experimental results indicate that our proposed model not only reduces load variation up to 40% but also maintains a high level of robustness. Finally, IEC 61850 standard is utilized to standardize the data models involved, which brings significance to more reliable and large-scale implementation.« less

  8. Photovoltaic stand-alone modular systems, phase 2

    NASA Technical Reports Server (NTRS)

    Naff, G. J.; Marshall, N. A.

    1983-01-01

    The final hardware and system qualification phase of a two part stand-alone photovoltaic (PV) system development is covered. The final design incorporated modular, power blocks capable of expanding incrementally from 320 watts to twenty kilowatts (PK). The basic power unit (PU) was nominally rated 1.28 kWp. The controls units, power collection buses and main lugs, electrical protection subsystems, power switching, and load management circuits are housed in a common control enclosure. Photo-voltaic modules are electrically connected in a horizontal daisy-chain method via Amp Solarlok plugs mating with compatible connectors installed on the back side of each photovoltaic module. A pair of channel rails accommodate the mounting of the modules into a frameless panel support structure. Foundations are of a unique planter (tub-like) configuration to allow for world-wide deployment without restriction as to types of soil. One battery string capable of supplying approximately 240 ampere hours nominal of carryover power is specified for each basic power unit. Load prioritization and shedding circuits are included to protect critical loads and selectively shed and defer lower priority or noncritical power demands. The baseline system, operating at approximately 2 1/2 PUs (3.2 kW pk.) was installed and deployed. Qualification was successfully complete in March 1983; since that time, the demonstration system has logged approximately 3000 hours of continuous operation under load without major incident.

  9. Photovoltaic stand-alone modular systems, phase 2

    NASA Astrophysics Data System (ADS)

    Naff, G. J.; Marshall, N. A.

    1983-07-01

    The final hardware and system qualification phase of a two part stand-alone photovoltaic (PV) system development is covered. The final design incorporated modular, power blocks capable of expanding incrementally from 320 watts to twenty kilowatts (PK). The basic power unit (PU) was nominally rated 1.28 kWp. The controls units, power collection buses and main lugs, electrical protection subsystems, power switching, and load management circuits are housed in a common control enclosure. Photo-voltaic modules are electrically connected in a horizontal daisy-chain method via Amp Solarlok plugs mating with compatible connectors installed on the back side of each photovoltaic module. A pair of channel rails accommodate the mounting of the modules into a frameless panel support structure. Foundations are of a unique planter (tub-like) configuration to allow for world-wide deployment without restriction as to types of soil. One battery string capable of supplying approximately 240 ampere hours nominal of carryover power is specified for each basic power unit. Load prioritization and shedding circuits are included to protect critical loads and selectively shed and defer lower priority or noncritical power demands. The baseline system, operating at approximately 2 1/2 PUs (3.2 kW pk.) was installed and deployed. Qualification was successfully complete in March 1983; since that time, the demonstration system has logged approximately 3000 hours of continuous operation under load without major incident.

  10. The seating mechanics of head-neck modular tapers in vitro: Load-displacement measurements, moisture, and rate effects.

    PubMed

    Ouellette, Eric S; Shenoy, Aarti A; Gilbert, Jeremy L

    2018-04-01

    The mechanically assisted crevice corrosion performance of head-neck modular tapers is a significant concern in orthopedic biomaterials. Fretting crevice corrosion processes in modular tapers are thought to be influenced by a wide array of factors including seating mechanics of the junction, hence there is a need for in vitro test methods that can assess their performance. This study presented a test method to directly measure the load-displacement seating mechanics of modular tapers and used this method to compare the seating mechanics for different tapers, moisture, seating loads and seating rates. Seating mechanics were explored whereby the instantaneous load-displacement behavior of the head seating onto the neck is captured and used to define the mechanics of seating. Two distinct taper design/material combinations were assembled wet or dry using axially applied loads (500, 1,000, 2,000, and 4,000 N) at two loading rates of 100 and 10 4  N/s (n = 5 for each condition) using a servohydraulic test frame. The results showed that pull-off strength scaled with seating load and ranged between 43% and 68% of seating load depending on sample and wetness. Tapers seated wet had higher pull-off strengths (2,200 ± 300 N) than those seated dry (1,800 ± 200 N, p < 0.05). Seating mechanics (load-displacement plots) varied due to sample type and due to wetness with differences in seating energy, seating stiffness, and seating displacement. These results show the detailed mechanics of seating during assembly and provide significant insight into the complex interplay of factors associated with even "ideal" seating (axial, quasistatic) loading. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1164-1172, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  11. Magnetically-induced forces on a ferromagnetic HT-9 first wall/blanket module

    NASA Astrophysics Data System (ADS)

    Lechtenberg, T. A.; Dahms, C. F.; Attaya, H.

    1984-05-01

    A model of the Starfire commercial tokamak reactor was used as the basis for calculating magnetic loads induced on typical fusion reactor first wall components fabricated of ferromagnetic material. The component analyzed was the first wall/blanket module because this structure experiences the greatest neutron fluence level and is the component for which the low swelling ferromagnetic Sandvik alloy, HT-9, may have the greatest benefit. The magnitudes of the magnetic body forces calculated were consistent with analyses performed on structures within other types of reactors. The loads generated within the module structure by the magnetic forces were found to be of the same order of magnitude as those arising from other sources such as pressure differential, dead weight, temperature distribution. Only small structural design modifications would be required if the magnetic alloy, Sandvik HT-9 were utilized.

  12. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Pathway Is Induced by Mechanical Load and Reduces the Activity of Hedgehog Signaling in Chondrogenic Micromass Cell Cultures

    PubMed Central

    Juhász, Tamás; Szentléleky, Eszter; Szűcs Somogyi, Csilla; Takács, Roland; Dobrosi, Nóra; Engler, Máté; Tamás, Andrea; Reglődi, Dóra; Zákány, Róza

    2015-01-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a neurohormone exerting protective function during various stress conditions either in mature or developing tissues. Previously we proved the presence of PACAP signaling elements in chicken limb bud-derived chondrogenic cells in micromass cell cultures. Since no data can be found if PACAP signaling is playing any role during mechanical stress in any tissues, we aimed to investigate its contribution in mechanotransduction during chondrogenesis. Expressions of the mRNAs of PACAP and its major receptor, PAC1 increased, while that of other receptors, VPAC1, VPAC2 decreased upon mechanical stimulus. Mechanical load enhanced the expression of collagen type X, a marker of hypertrophic differentiation of chondrocytes and PACAP addition attenuated this elevation. Moreover, exogenous PACAP also prevented the mechanical load evoked activation of hedgehog signaling: protein levels of Sonic and Indian Hedgehogs and Gli1 transcription factor were lowered while expressions of Gli2 and Gli3 were elevated by PACAP application during mechanical load. Our results suggest that mechanical load activates PACAP signaling and exogenous PACAP acts against the hypertrophy inducing effect of mechanical load. PMID:26230691

  13. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Pathway Is Induced by Mechanical Load and Reduces the Activity of Hedgehog Signaling in Chondrogenic Micromass Cell Cultures.

    PubMed

    Juhász, Tamás; Szentléleky, Eszter; Somogyi, Csilla Szűcs; Takács, Roland; Dobrosi, Nóra; Engler, Máté; Tamás, Andrea; Reglődi, Dóra; Zákány, Róza

    2015-07-29

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a neurohormone exerting protective function during various stress conditions either in mature or developing tissues. Previously we proved the presence of PACAP signaling elements in chicken limb bud-derived chondrogenic cells in micromass cell cultures. Since no data can be found if PACAP signaling is playing any role during mechanical stress in any tissues, we aimed to investigate its contribution in mechanotransduction during chondrogenesis. Expressions of the mRNAs of PACAP and its major receptor, PAC1 increased, while that of other receptors, VPAC1, VPAC2 decreased upon mechanical stimulus. Mechanical load enhanced the expression of collagen type X, a marker of hypertrophic differentiation of chondrocytes and PACAP addition attenuated this elevation. Moreover, exogenous PACAP also prevented the mechanical load evoked activation of hedgehog signaling: protein levels of Sonic and Indian Hedgehogs and Gli1 transcription factor were lowered while expressions of Gli2 and Gli3 were elevated by PACAP application during mechanical load. Our results suggest that mechanical load activates PACAP signaling and exogenous PACAP acts against the hypertrophy inducing effect of mechanical load.

  14. DUCT RETROFIT STRATEGY TO COMPLEMENT A MODULATING FURNACE.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ANDREWS,J.W.

    2002-10-02

    Some recent work (Walker 2001, Andrews 2002) has indicated that installing a modulating furnace in a conventional duct system may, in many cases, result in a significant degradation in thermal distribution efficiency. The fundamental mechanism was pointed out nearly two decades ago (Andrews and Krajewski 1985). The problem occurs in duct systems that are less-than-perfectly insulated (e.g., R-4 duct wrap) and are located outside the conditioned space. It stems from the fact that when the airflow rate is reduced, as it will be when the modulating furnace reduces its heat output rate, the supply air will have a longer residencemore » time in the ducts and will therefore lose a greater percentage of its heat by conduction than it did at the higher airflow rate. The impact of duct leakage, on the other hand, is not expected to change very much under furnace modulation. The pressures in the duct system will be reduced when the airflow rate is reduced, thus reducing the leakage per unit time. This is balanced by the fact that the operating time will increase in order to meet the same heating load as with the conventional furnace operating at higher output and airflow rates. The balance would be exact if the exponent in the pressure vs. airflow equation were the same as that in the pressure vs. duct leakage equation. Since the pressure-airflow exponent is usually {approx}0.5 and the pressure-leakage exponent is usually {approx}0.6, the leakage loss as a fraction of the load should be slightly lower for the modulating furnace. The difference, however, is expected to be small, determined as it is by a function with an exponent equal to the difference between the above two exponents, or {approx}0.1. The negative impact of increased thermal conduction losses from the duct system may be partially offset by improved efficiency of the modulating furnace itself. Also, the modulating furnace will cycle on and off less often than a single-capacity model, and this may add a small amount (probably in the range 1%-3%) to the thermal distribution efficiency. Nevertheless, the effect of furnace modulation on thermal distribution efficiency, both as calculated and as measured in the laboratory, is quite significant. Although exact quantification of the impact will depend on factors such as climate and the location of the ducts within the structure, impacts in the 15%-25% range are to be expected for ducts located outside the conditioned space, as most residential duct systems are. This is too large a handicap to ignore.« less

  15. An Elaborate Data Set Characterizing the Mechanical Response of the Foot

    PubMed Central

    Erdemir, Ahmet; Sirimamilla, Pavana A.; Halloran, Jason P.; van den Bogert, Antonie J.

    2010-01-01

    Background Mechanical properties of the foot are responsible for its normal function and play a role in various clinical problems. Specifically, we are interested in quantification of foot mechanical properties to assist the development of computational models for movement analysis and detailed simulations of tissue deformation. Current available data are specific to a foot region and the loading scenarios are limited to a single direction. A data set that incorporates regional response, to quantify individual function of foot components, as well as overall response, to illustrate their combined operation, does not exist. Furthermore, combined three-dimensional loading scenarios while measuring the complete three-dimensional deformation response are lacking. When combined with an anatomical image data set, development of anatomically realistic and mechanically validated models becomes possible. Therefore, the goal of this study was to record and disseminate the mechanical response of a foot specimen, supported by imaging data. Method of Approach Robotic testing was conducted at the rear foot, forefoot, metatarsal heads, and the foot as a whole. Complex foot deformations were induced by single mode loading, e.g. compression, and combined loading, e.g. compression and shear. Small and large indenters were used for heel and metatarsal head loading; an elevated platform was utilized to isolate the rear foot and forefoot; and a full platform compressed the whole foot. Three-dimensional tool movements and reaction loads were recorded simultaneously. Computed tomography scans of the same specimen were collected for anatomical reconstruction a-priori. Results Three-dimensional mechanical response of the specimen was nonlinear and viscoelastic. A low stiffness region was observed starting with contact between the tool and foot regions, increasing with loading. Loading and unloading response portrayed hysteresis. Loading range ensured capturing the toe and linear regions of the load deformation curves for the dominant loading direction, with the rates approximating those of walking. Conclusion A large data set was successfully obtained to characterize the overall as well as regional mechanical response of an intact foot specimen under single and combined loads. Medical imaging complemented the mechanical testing data to establish the potential relationship between the anatomical architecture and mechanical response, and for further development of foot models that are mechanically realistic and anatomically consistent. This combined data set has been documented and disseminated in the public domain to promote future development in foot biomechanics. PMID:19725699

  16. Verification of the New FAST v8 Capabilities for the Modeling of Fixed-Bottom Offshore Wind Turbines: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barahona, B.; Jonkman, J.; Damiani, R.

    2014-12-01

    Coupled dynamic analysis has an important role in the design of offshore wind turbines because the systems are subject to complex operating conditions from the combined action of waves and wind. The aero-hydro-servo-elastic tool FAST v8 is framed in a novel modularization scheme that facilitates such analysis. Here, we present the verification of new capabilities of FAST v8 to model fixed-bottom offshore wind turbines. We analyze a series of load cases with both wind and wave loads and compare the results against those from the previous international code comparison projects-the International Energy Agency (IEA) Wind Task 23 Subtask 2 Offshoremore » Code Comparison Collaboration (OC3) and the IEA Wind Task 30 OC3 Continued (OC4) projects. The verification is performed using the NREL 5-MW reference turbine supported by monopile, tripod, and jacket substructures. The substructure structural-dynamics models are built within the new SubDyn module of FAST v8, which uses a linear finite-element beam model with Craig-Bampton dynamic system reduction. This allows the modal properties of the substructure to be synthesized and coupled to hydrodynamic loads and tower dynamics. The hydrodynamic loads are calculated using a new strip theory approach for multimember substructures in the updated HydroDyn module of FAST v8. These modules are linked to the rest of FAST through the new coupling scheme involving mapping between module-independent spatial discretizations and a numerically rigorous implicit solver. The results show that the new structural dynamics, hydrodynamics, and coupled solutions compare well to the results from the previous code comparison projects.« less

  17. Optimizing ROOT’s Performance Using C++ Modules

    NASA Astrophysics Data System (ADS)

    Vassilev, Vassil

    2017-10-01

    ROOT comes with a C++ compliant interpreter cling. Cling needs to understand the content of the libraries in order to interact with them. Exposing the full shared library descriptors to the interpreter at runtime translates into increased memory footprint. ROOT’s exploratory programming concepts allow implicit and explicit runtime shared library loading. It requires the interpreter to load the library descriptor. Re-parsing of descriptors’ content has a noticeable effect on the runtime performance. Present state-of-art lazy parsing technique brings the runtime performance to reasonable levels but proves to be fragile and can introduce correctness issues. An elegant solution is to load information from the descriptor lazily and in a non-recursive way. The LLVM community advances its C++ Modules technology providing an io-efficient, on-disk representation capable to reduce build times and peak memory usage. The feature is standardized as a C++ technical specification. C++ Modules are a flexible concept, which can be employed to match CMS and other experiments’ requirement for ROOT: to optimize both runtime memory usage and performance. Cling technically “inherits” the feature, however tweaking it to ROOT scale and beyond is a complex endeavor. The paper discusses the status of the C++ Modules in the context of ROOT, supported by few preliminary performance results. It shows a step-by-step migration plan and describes potential challenges which could appear.

  18. Commercial and Industrial Wiring.

    ERIC Educational Resources Information Center

    Kaltwasser, Stan; Flowers, Gary

    This module is the third in a series of three wiring publications, includes additional technical knowledge and applications required for job entry in the commercial and industrial wiring trade. The module contains 15 instructional units that cover the following topics: blueprint reading and load calculations; tools and equipment; service;…

  19. Microbial Source Module (MSM): Documenting the Science and Software for Discovery, Evaluation, and Integration

    EPA Science Inventory

    The Microbial Source Module (MSM) estimates microbial loading rates to land surfaces from non-point sources, and to streams from point sources for each subwatershed within a watershed. A subwatershed, the smallest modeling unit, represents the common basis for information consume...

  20. Teaching Gene Technology in an Outreach Lab: Students' Assigned Cognitive Load Clusters and the Clusters' Relationships to Learner Characteristics, Laboratory Variables, and Cognitive Achievement

    NASA Astrophysics Data System (ADS)

    Scharfenberg, Franz-Josef; Bogner, Franz X.

    2013-02-01

    This study classified students into different cognitive load (CL) groups by means of cluster analysis based on their experienced CL in a gene technology outreach lab which has instructionally been designed with regard to CL theory. The relationships of the identified student CL clusters to learner characteristics, laboratory variables, and cognitive achievement were examined using a pre-post-follow-up design. Participants of our day-long module Genetic Fingerprinting were 409 twelfth-graders. During the module instructional phases (pre-lab, theoretical, experimental, and interpretation phases), we measured the students' mental effort (ME) as an index of CL. By clustering the students' module-phase-specific ME pattern, we found three student CL clusters which were independent of the module instructional phases, labeled as low-level, average-level, and high-level loaded clusters. Additionally, we found two student CL clusters that were each particular to a specific module phase. Their members reported especially high ME invested in one phase each: within the pre-lab phase and within the interpretation phase. Differentiating the clusters, we identified uncertainty tolerance, prior experience in experimentation, epistemic interest, and prior knowledge as relevant learner characteristics. We found relationships to cognitive achievement, but no relationships to the examined laboratory variables. Our results underscore the importance of pre-lab and interpretation phases in hands-on teaching in science education and the need for teachers to pay attention to these phases, both inside and outside of outreach laboratory learning settings.

  1. Mitigating crack propagation in a highly maneuverable flight vehicle using life extending control logic

    NASA Astrophysics Data System (ADS)

    Elshabasy, Mohamed Mostafa Yousef Bassyouny

    In this research, life extending control logic is proposed to reduce the cost of treating the aging problem of military aircraft structures and to avoid catastrophic failures and fatal accidents due to undetected cracks in the airframe components. The life extending control logic is based on load tailoring to facilitate a desired stress sequence that prolongs the structural life of the cracked airframe components by exploiting certain nonlinear crack retardation phenomena. The load is tailored to include infrequent injections of a single-cycle overload or a single-cycle overload and underload. These irregular loadings have an anti-intuitive but beneficial effect, which has been experimentally validated, on the extension of the operational structural life of the aircraft. A rigid six-degree-of freedom dynamic model of a highly maneuverable air vehicle coupled with an elastic dynamic wing model is used to generate the stress history at the lower skin of the wing. A three-dimensional equivalent plate finite element model is used to calculate the stress in the cracked skin. The plate is chosen to be of uniform chord-wise and span-wise thickness where the mechanical properties are assigned using an ad-hoc approach to mimic the full scale wing model. An in-extensional 3-node triangular element is used as the gridding finite element while the aerodynamic load is calculated using the vortex-lattice method where each lattice is laid upon two triangular finite elements with common hypotenuse. The aerodynamic loads, along with the base-excitation which is due to the motion of the rigid aircraft model, are the driving forces acting on the wing finite element model. An aerodynamic control surface is modulated based on the proposed life extending control logic within an existing flight control system without requiring major modification. One of the main goals of life extending control logic is to enhance the aircraft's service life, without incurring significant loss of vehicle dynamic performance. The value of the control-surface deflection angle is modulated so that the created overstress is sufficiently below the yield stress of the panel material. The results show that extension in crack length was reduced by 40% to 75% with an absence of damage mitigation logic. Moreover, the desired structural integrity is satisfied without affecting the air vehicle dynamic performance.

  2. Strength of Gamma Rhythm Depends on Normalization

    PubMed Central

    Ray, Supratim; Ni, Amy M.; Maunsell, John H. R.

    2013-01-01

    Neuronal assemblies often exhibit stimulus-induced rhythmic activity in the gamma range (30–80 Hz), whose magnitude depends on the attentional load. This has led to the suggestion that gamma rhythms form dynamic communication channels across cortical areas processing the features of behaviorally relevant stimuli. Recently, attention has been linked to a normalization mechanism, in which the response of a neuron is suppressed (normalized) by the overall activity of a large pool of neighboring neurons. In this model, attention increases the excitatory drive received by the neuron, which in turn also increases the strength of normalization, thereby changing the balance of excitation and inhibition. Recent studies have shown that gamma power also depends on such excitatory–inhibitory interactions. Could modulation in gamma power during an attention task be a reflection of the changes in the underlying excitation–inhibition interactions? By manipulating the normalization strength independent of attentional load in macaque monkeys, we show that gamma power increases with increasing normalization, even when the attentional load is fixed. Further, manipulations of attention that increase normalization increase gamma power, even when they decrease the firing rate. Thus, gamma rhythms could be a reflection of changes in the relative strengths of excitation and normalization rather than playing a functional role in communication or control. PMID:23393427

  3. An improved method of crafting a multi-electrode spiral cuff for the selective.

    PubMed

    Rozman, Janez; Pečlin, Polona; Ribarič, Samo; Godec, Matjaž; Burja, Jaka

    2018-01-17

    This article reviews an improved methodology and technology for crafting a multi-electrode spiral cuff for the selective activation of nerve fibres in particular superficial regions of a peripheral nerve. The analysis, structural and mechanical properties of the spot welds used for the interconnections between the stimulating electrodes and stainless-steel lead wires are presented. The cuff consisted of 33 platinum electrodes embedded within a self-curling 17-mm-long silicone spiral sheet with a nominal internal diameter of 2.5 mm. The weld was analyzed using scanning electron microscopy and nanohardness tests, while the interconnection was investigated using destructive load tests. The functionality of the cuff was tested in an isolated porcine vagus nerve. The results of the scanning electron microscopy show good alloying and none of the typical welding defects that occur between the wire and the platinum foil. The results of the destructive load tests show that the breaking loads were between 3.22 and 5 N. The results of the nanohardness testing show that the hardness of the weld was different for the particular sites on the weld sample. Finally, the results of the functional testing show that for different stimulation intensities both the compound action potential deflection and the shape are modulated.

  4. Operation Compatibility: A Neglected Contribution to Dual-Task Costs

    ERIC Educational Resources Information Center

    Pannebakker, Merel M.; Band, Guido P. H.; Ridderinkhof, K. Richard

    2009-01-01

    Traditionally, dual-task interference has been attributed to the consequences of task load exceeding capacity limitations. However, the current study demonstrates that in addition to task load, the mutual compatibility of the concurrent processes modulates whether 2 tasks can be performed in parallel. In 2 psychological refractory period…

  5. Hydrostatic self-aligning axial/torsional mechanism

    DOEpatents

    O'Connor, Daniel G.; Gerth, Howard L.

    1990-01-01

    The present invention is directed to a self-aligning axial/torsional loading mechanism for testing the strength of brittle materials which are sensitive to bending moments. Disposed inside said self-aligning loading mechanism is a frictionless hydrostatic ball joint with a flexure ring to accommodate torsional loads through said ball joint.

  6. Load theory of selective attention and cognitive control.

    PubMed

    Lavie, Nilli; Hirst, Aleksandra; de Fockert, Jan W; Viding, Essi

    2004-09-01

    A load theory of attention in which distractor rejection depends on the level and type of load involved in current processing was tested. A series of experiments demonstrates that whereas high perceptual load reduces distractor interference, working memory load or dual-task coordination load increases distractor interference. These findings suggest 2 selective attention mechanisms: a perceptual selection mechanism serving to reduce distractor perception in situations of high perceptual load that exhaust perceptual capacity in processing relevant stimuli and a cognitive control mechanism that reduces interference from perceived distractors as long as cognitive control functions are available to maintain current priorities (low cognitive load). This theory resolves the long-standing early versus late selection debate and clarifies the role of cognitive control in selective attention. ((c) 2004 APA, all rights reserved)

  7. Trait susceptibility to worry modulates the effects of cognitive load on cognitive control: An ERP study.

    PubMed

    Owens, Max; Derakshan, Nazanin; Richards, Anne

    2015-10-01

    According to the predictions of attentional control theory (ACT) of anxiety (Eysenck, Derakshan, Santos, & Calvo, 2007), worry is a central feature of anxiety that interferes with the ability to inhibit distracting information necessary for successful task performance. However, it is unclear how such cognitive control deficits are modulated by task demands and by the emotionality of the distractors. A sample of 31 participants (25 female) completed a novel flanker task with emotional and neutral distractors under low- and high-cognitive-load conditions. The negative-going N2 event-related potential was measured to index participants' level of top-down resource allocation in the inhibition of distractors under high- and low-load conditions. Results showed N2 amplitudes were larger under high- compared with low-load conditions. In addition, under high but not low load, trait worry was associated with greater N2 amplitudes. Our findings support ACT predictions that trait worry adversely affects goal-directed behavior, and is associated with greater recruitment of cognitive resources to inhibit the impact of distracting information under conditions in which cognitive resources are taxed. (c) 2015 APA, all rights reserved).

  8. From cells to laminate: probing and modeling residual stress evolution in thin silicon photovoltaic modules using synchrotron X-ray micro-diffraction experiments and finite element simulations

    DOE PAGES

    Tippabhotla, Sasi Kumar; Radchenko, Ihor; Song, W. J. R.; ...

    2017-04-12

    Fracture of silicon crystalline solar cells has recently been observed in increasing percentages especially in solar photovoltaic (PV) modules involving thinner silicon solar cells (<200 μm). Many failures due to fracture have been reported from the field because of environmental loading (snow, wind, etc.) as well as mishandling of the solar PV modules (during installation, maintenance, etc.). However, a significantly higher number of failures have also been reported during module encapsulation (lamination) indicating high residual stress in the modules and thus more prone to cell cracking. Here in this paper we report through the use of synchrotron X-ray submicron diffractionmore » coupled with physics-based finite element modeling, the complete residual stress evolution in mono-crystalline silicon solar cells during PV module integration process. For the first time, we unravel the reason for the high stress and cracking of silicon cells near soldered inter-connects. Our experiments revealed a significant increase of residual stress in the silicon cell near the solder joint after lamination. Moreover, our finite element simulations show that this increase of stress during lamination is a result of highly localized bending of the cell near the soldered inter-connects. Further, the synchrotron X-ray submicron diffraction has proven to be a very effective way to quantitatively probe mechanical stress in encapsulated silicon solar cells. Thus, this technique has ultimately enabled these findings leading to the enlightening of the role of soldering and encapsulation processes on the cell residual stress. This model can be further used to suggest methodologies that could lead to lower stress in encapsulated silicon solar cells, which are the subjects of our continued investigations.« less

  9. From cells to laminate: probing and modeling residual stress evolution in thin silicon photovoltaic modules using synchrotron X-ray micro-diffraction experiments and finite element simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tippabhotla, Sasi Kumar; Radchenko, Ihor; Song, W. J. R.

    Fracture of silicon crystalline solar cells has recently been observed in increasing percentages especially in solar photovoltaic (PV) modules involving thinner silicon solar cells (<200 μm). Many failures due to fracture have been reported from the field because of environmental loading (snow, wind, etc.) as well as mishandling of the solar PV modules (during installation, maintenance, etc.). However, a significantly higher number of failures have also been reported during module encapsulation (lamination) indicating high residual stress in the modules and thus more prone to cell cracking. Here in this paper we report through the use of synchrotron X-ray submicron diffractionmore » coupled with physics-based finite element modeling, the complete residual stress evolution in mono-crystalline silicon solar cells during PV module integration process. For the first time, we unravel the reason for the high stress and cracking of silicon cells near soldered inter-connects. Our experiments revealed a significant increase of residual stress in the silicon cell near the solder joint after lamination. Moreover, our finite element simulations show that this increase of stress during lamination is a result of highly localized bending of the cell near the soldered inter-connects. Further, the synchrotron X-ray submicron diffraction has proven to be a very effective way to quantitatively probe mechanical stress in encapsulated silicon solar cells. Thus, this technique has ultimately enabled these findings leading to the enlightening of the role of soldering and encapsulation processes on the cell residual stress. This model can be further used to suggest methodologies that could lead to lower stress in encapsulated silicon solar cells, which are the subjects of our continued investigations.« less

  10. Preparation for Testing a Multi-Bay Box Subjected to Combined Loads

    NASA Technical Reports Server (NTRS)

    Rouse, Marshall; Jegley, Dawn

    2015-01-01

    The COmbined Loads Test System (COLTS) facility at NASA Langley Research Center provides a test capability to help develop validated structures technologies. The test machine was design to accommodate a range of fuselage structures and wing sections and subject them to both quasistatic and cyclic loading conditions. The COLTS facility is capable of testing fuselage barrels up to 4.6 m in diameter and 13.7 m long with combined mechanical, internal pressure, and thermal loads. The COLTS facility is currently being prepared to conduct a combined mechanical and pressure loading for a multi-bay pressure box to experimentally verify the structural performance of a composite structure which is 9.1 meters long and representative of a section of a hybrid wing body fuselage section in support of the Environmentally Responsible Aviation Project at NASA. This paper describes development of the multi-bay pressure box test using the COLTS facility. The multi-bay test article will be subjected to mechanical loads and internal pressure loads up to design ultimate load. Mechanical and pressure loads will be applied independently in some tests and simultaneously in others.

  11. The role of mechanical loading in ligament tissue engineering.

    PubMed

    Benhardt, Hugh A; Cosgriff-Hernandez, Elizabeth M

    2009-12-01

    Tissue-engineered ligaments have received growing interest as a promising alternative for ligament reconstruction when traditional transplants are unavailable or fail. Mechanical stimulation was recently identified as a critical component in engineering load-bearing tissues. It is well established that living tissue responds to altered loads through endogenous changes in cellular behavior, tissue organization, and bulk mechanical properties. Without the appropriate biomechanical cues, new tissue formation lacks the necessary collagenous organization and alignment for sufficient load-bearing capacity. Therefore, tissue engineers utilize mechanical conditioning to guide tissue remodeling and improve the performance of ligament grafts. This review provides a comparative analysis of the response of ligament and tendon fibroblasts to mechanical loading in current bioreactor studies. The differential effect of mechanical stimulation on cellular processes such as protease production, matrix protein synthesis, and cell proliferation is examined in the context of tissue engineering design.

  12. Electricity Market Module - NEMS Documentation

    EIA Publications

    2017-01-01

    Documents the Electricity Market Module as it was used for the Annual Energy Outlook. The Electricity Market Module (EMM) is the electricity supply component of the National Energy Modeling System (NEMS). The EMM represents the generation, transmission, and pricing of electricity. It consists of four submodules: the Electricity Capacity Planning (ECP) Submodule, the Electricity Fuel Dispatch (EFD) Submodule, the Electricity Finance and Pricing (EFP) Submodule, and the Electricity Load and Demand (ELD) Submodule.

  13. Modulators of the extracellular matrix and risk of anterior cruciate ligament ruptures.

    PubMed

    Rahim, Masouda; Mannion, Sasha; Klug, Blake; Hobbs, Hayden; van der Merwe, Willem; Posthumus, Michael; Collins, Malcolm; September, Alison V

    2017-02-01

    The extracellular matrix (ECM) of ligaments continuously undergoes remodelling in order to maintain tissue homeostasis. Several key mediators of ECM remodelling were chosen for investigation in the present study. It is thought that polymorphisms within genes encoding signalling molecules may contribute to inter-individual variation in the responses to mechanical loading, potentially altering risk of injury. A genetic association study was conducted on 232 asymptomatic controls (CON) and 234 participants with surgically diagnosed anterior cruciate ligament (ACL) ruptures; of which 135 participants reported a non-contact mechanism of injury (NON subgroup). All participants were genotyped for ten variants in eight genes encoding ECM remodelling proteins. Haplotypes and allele combinations were also inferred. The CASP8 rs3834129 ins allele was significantly over-represented in the male CON group compared to the male NON subgroup (p=0.047, OR: 1.46, 95% CI: 1.01-2.12). In female participants, the IL1B rs16944 TT genotype was significantly under-represented in the CON group compared to the NON subgroup (p=0.039, OR: 3.06, 95% CI: 1.09-8.64). Haplotype analysis revealed an under-representation of the CASP8 rs3834129-rs1045485 del-G haplotype in the CON group compared to both the ACL group (p=0.042; haplo.score:2.03) and the NON subgroup (p=0.037; haplo.score:2.09). Furthermore, following a pathway-based approach, genetic variants involved in the cell signalling cascade were associated with ACL injury risk. The novel independent associations and allele combinations observed implicate the apoptosis and cell signalling cascades as potential contributors to ACL injury susceptibility. Furthermore, these genetic variants may potentially modulate ECM remodelling in response to loading and ultimately contribute to ligament capacity. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  14. Mechanical loading increases detection of estrogen receptor-alpha in osteocytes and osteoblasts despite chronic energy restriction.

    PubMed

    Swift, Sibyl N; Swift, Joshua M; Bloomfield, Susan A

    2014-12-01

    Estrogen receptor-α (ER-α) is an important mediator of the bone response to mechanical loading. We sought to determine whether restricting dietary energy intake by 40% limits the bone formation rate (BFR) response to mechanical loading (LOAD) by downregulating ER-α-expressing osteocytes, or osteoblasts, or both. Female rats (n = 48, 7 mo old) were randomized to ADLIB-SHAM and ADLIB-LOAD groups fed AIN-93M purified diet ad libitum or to ER40-SHAM and ER40-LOAD groups fed modified AIN-93M with 40% less energy (100% of all other nutrients). After 12 wk, LOAD rats were subjected to a muscle contraction protocol three times every third day. ER40 produced lower proximal tibia bone volume (-22%), trabecular thickness (-14%), and higher trabecular separation (+127%) in SHAM but not LOAD rats. ER40 rats exhibited reductions in mineral apposition rate, but not percent mineralizing surface or BFR. LOAD induced similar relative increases in these kinetic measures of osteoblast activity/recruitment in both diet groups., but absolute values for ER40 LOAD rats were lower vs. ADLIB-LOAD. There were fourfold and eightfold increases in proportion of estrogen receptor-α protein-positive osteoblast and osteocytes, respectively, in LOAD vs. SHAM rats, with no effect of ER40. These data suggest that a brief period of mechanical loading significantly affects estrogen receptor-α in cancellous bone osteoblasts and osteocytes. Chronic energy restriction does result in lower absolute values in indices of osteoblast activity after mechanical loading, but not by a smaller increment relative to unloaded bones; this change is not explained by an associated downregulation of ER-α in osteoblasts or osteocytes.

  15. Sclerostin's role in bone's adaptive response to mechanical loading.

    PubMed

    Galea, Gabriel L; Lanyon, Lance E; Price, Joanna S

    2017-03-01

    Mechanical loading is the primary functional determinant of bone mass and architecture, and osteocytes play a key role in translating mechanical signals into (re)modelling responses. Although the precise mechanisms remain unclear, Wnt signalling pathway components, and the anti-osteogenic canonical Wnt inhibitor Sost/sclerostin in particular, play an important role in regulating bone's adaptive response to loading. Increases in loading-engendered strains down-regulate osteocyte sclerostin expression, whereas reduced strains, as in disuse, are associated with increased sclerostin production and bone loss. However, while sclerostin up-regulation appears to be necessary for the loss of bone with disuse, the role of sclerostin in the osteogenic response to loading is more complex. While mice unable to down-regulate sclerostin do not gain bone with loading, Sost knockout mice have an enhanced osteogenic response to loading. The molecular mechanisms by which osteocytes sense and transduce loading-related stimuli into changes in sclerostin expression remain unclear but include several, potentially interlinked, signalling cascades involving periostin/integrin, prostaglandin, estrogen receptor, calcium/NO and Igf signalling. Deciphering the mechanisms by which changes in the mechanical environment regulate sclerostin production may lead to the development of therapeutic strategies that can reverse the skeletal structural deterioration characteristic of disuse and age-related osteoporosis and enhance bones' functional adaptation to loading. By enhancing the osteogenic potential of the context in which individual therapies such as sclerostin antibodies act it may become possible to both prevent and reverse the age-related skeletal structural deterioration characteristic of osteoporosis. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Interference from familiar natural distractors is not eliminated by high perceptual load.

    PubMed

    He, Chunhong; Chen, Antao

    2010-05-01

    A crucial prediction of perceptual load theory is that high perceptual load can eliminate interference from distractors. However, Lavie et al. (Psychol Sci 14:510-515, 2003) found that high perceptual load did not eliminate interference when the distractor was a face. The current experiments examined the interaction between familiarity and perceptual load in modulating interference in a name search task. The data reveal that high perceptual load eliminated the interference effect for unfamiliar distractors that were faces or objects, but did not eliminate the interference for familiar distractors that were faces or objects. Based on these results, we proposed that the processing of familiar and natural stimuli may be immune to the effect of perceptual load.

  17. Effect of Helmet Pads on the Load Transfer to Head under Blast Loadings

    DTIC Science & Technology

    2015-06-01

    0.15 0.2 X  St re ss  (K Pa ) Time (ms) Foam  L Foam  M Foam  R 6 its much smaller acoustic impedance. The stress amplitude increases as it reflects...understood for the helmet/ foam pads. The pads between the helmet and head can not only absorb energy, but also produce more comfort to the head. The gap...to investigate the effects of foam pads on the load transmitted to the head under blast loading. The ALE module in the commercial code, LSDYNA was

  18. Determination of current loads of floating platform for special purposes

    NASA Astrophysics Data System (ADS)

    Ma, Guang-ying; Yao, Yun-long; Zhao, Chen-yao

    2017-08-01

    This article studied a new floating offshore platform for special purposes, which was assembled by standard floating modules. The environmental load calculation of the platform is an important part of the research of the ocean platform, which has always been paid attention to by engineers. In addition to wave loads, the wind loads and current loads are also important environmental factors that affect the dynamic response of the offshore platform. The current loads on the bottom structure should not be ignored. By Fluent software, the hydrostatic conditions and external current loads of the platform were calculated in this paper. The coefficient which is independent of the current velocity, namely, current force coefficient, can be fitted through current loads, which can be used for the consequent hydrodynamic and mooring analyses.

  19. Combination of Heel-strike like Mechanical Loading with Deproteinized Cancellous Bone Scaffold Implantation to Repair Segmental Bone Defects in Rabbits.

    PubMed

    Huang, Guofeng; Liu, Guojun; Zhang, Feng; Gao, Jianting; Wang, Jiangze; Chen, Qi; Wu, Benwen; Ding, Zhenqi; Cai, Taoyi

    2017-01-01

    Under physiological conditions bone defects often occur at mechanical load bearing sites and bone substitutes used for regeneration should be similarly subjected to mechanical loading stress. In this study, we investigated whether a novel heel-strike like mechanical loading method can be used as a complementary therapy to promote bone regeneration following bone substitute grafting. To test this, three groups of rabbits with segmental bone defects in the tibia were implanted with bovine deproteinized cancellous bone scaffold (DCBS), with one group also receiving heel-strike like mechanical loading generated by a rap stress stimulator. From weeks 4-12 post-operation X-ray and micro-CT scanning showed that rabbits receiving combination therapy had significantly more callus at the bone defect. Moreover, bone defects in the combination group were completely replaced with new bone at week 12, while the DCBS implantation alone group healed only partially and rabbits receiving neither DCBS nor mechanical loading developed only small calluses throughout the observation period. Analysis of micro-CT scanning results demonstrated that new bone density in the combination group was significantly higher than the DCBS only group at weeks 4 and 12 ( p <0.05). H&E staining results also indicated a significantly higher percentage of new bone in the bone defect area and a lower percentage of residual scaffold in the combination group compared to the DCBS only group ( p <0.05). Thus, this heel-strike like mechanical loading method appears to accelerate bone regeneration following substitute implantation by restoring a local mechanical loading environment in segmental bone defects.

  20. Addressing Circuitous Currents MVDC Power Systems Protection

    DTIC Science & Technology

    2017-12-31

    load . The converter modules are current-controlled buck converters. They are being controlled to provide a no - load voltage of 155V at their outputs...PAGE Form Approved 0MB No . 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response...distribution is unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The work investigates Z-source breakers in multi-zone systems with current to the load through

Top