Sample records for mechanical milling method

  1. System and method of forming nanostructured ferritic alloy

    DOEpatents

    Dial, Laura Cerully; DiDomizio, Richard; Alinger, Matthew Joseph; Huang, Shenyan

    2016-07-26

    A system for mechanical milling and a method of mechanical milling are disclosed. The system includes a container, a feedstock, and milling media. The container encloses a processing volume. The feedstock and the milling media are disposed in the processing volume of the container. The feedstock includes metal or alloy powder and a ceramic compound. The feedstock is mechanically milled in the processing volume using metallic milling media that includes a surface portion that has a carbon content less than about 0.4 weight percent.

  2. Numerical simulation of unmanned aerial vehicle under centrifugal load and optimization of milling and planing

    NASA Astrophysics Data System (ADS)

    Chen, Yunsheng; Lu, Xinghua

    2018-05-01

    The mechanical parts of the fuselage surface of the UAV are easily fractured by the action of the centrifugal load. In order to improve the compressive strength of UAV and guide the milling and planing of mechanical parts, a numerical simulation method of UAV fuselage compression under centrifugal load based on discrete element analysis method is proposed. The three-dimensional discrete element method is used to establish the splitting tensile force analysis model of the UAV fuselage under centrifugal loading. The micro-contact connection parameters of the UAV fuselage are calculated, and the yield tensile model of the mechanical components is established. The dynamic and static mechanical model of the aircraft fuselage milling is analyzed by the axial amplitude vibration frequency combined method. The correlation parameters of the cutting depth on the tool wear are obtained. The centrifugal load stress spectrum of the surface of the UAV is calculated. The meshing and finite element simulation of the rotor blade of the unmanned aerial vehicle is carried out to optimize the milling process. The test results show that the accuracy of the anti - compression numerical test of the UAV is higher by adopting the method, and the anti - fatigue damage capability of the unmanned aerial vehicle body is improved through the milling and processing optimization, and the mechanical strength of the unmanned aerial vehicle can be effectively improved.

  3. Micro structrual characterization and analysis of ball milled silicon carbide

    NASA Astrophysics Data System (ADS)

    Madhusudan, B. M.; Raju, H. P.; Ghanaraja., S.

    2018-04-01

    Mechanical alloying has been one of the prominent methods of powder synthesis technique in solid state involving cyclic deformation, cold welding and fracturing of powder particles. Powder particles in this method are subjected to greater mechanical deformation due to the impact of ball-powder-ball and ball-powder-container collisions that occurs during mechanical alloying. Strain hardening and fracture of particles decreases the size of the particles and creates new surfaces. The objective of this Present work is to use ball milling of SiC powder for different duration of 5, 10, 15 and 20 hours by High energy planetary ball milling machine and to evaluate the effect of ball milling on SiC powder. Micro structural Studies using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) and EDAX has been investigated.

  4. Experimental Study in Taguchi Method on Surface Quality Predication of HSM

    NASA Astrophysics Data System (ADS)

    Ji, Yan; Li, Yueen

    2018-05-01

    Based on the study of ball milling mechanism and machining surface formation mechanism, the formation of high speed ball-end milling surface is a time-varying and cumulative Thermos-mechanical coupling process. The nature of this problem is that the uneven stress field and temperature field affect the machined surface Process, the performance of the processing parameters in the processing interaction in the elastic-plastic materials produced by the elastic recovery and plastic deformation. The surface quality of machining surface is characterized by multivariable nonlinear system. It is still an indispensable and effective method to study the surface quality of high speed ball milling by experiments.

  5. Chemical reaction of hexagonal boron nitride and graphite nanoclusters in mechanical milling systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muramatsu, Y.; Grush, M.; Callcott, T.A.

    1997-04-01

    Synthesis of boron-carbon-nitride (BCN) hybrid alloys has been attempted extensively by many researchers because the BCN alloys are considered an extremely hard material called {open_quotes}super diamond,{close_quotes} and the industrial application for wear-resistant materials is promising. A mechanical alloying (MA) method of hexagonal boron nitride (h-BN) with graphite has recently been studied to explore the industrial synthesis of the BCN alloys. To develop the MA method for the BCN alloy synthesis, it is necessary to confirm the chemical reaction processes in the mechanical milling systems and to identify the reaction products. Therefore, the authors have attempted to confirm the chemical reactionmore » process of the h-BN and graphite in mechanical milling systems using x-ray absorption near edge structure (XANES) methods.« less

  6. Structure-property relationships of iron-hydroxyapatite ceramic matrix nanocomposite fabricated using mechanosynthesis method.

    PubMed

    Nordin, Jamillah Amer; Prajitno, Djoko Hadi; Saidin, Syafiqah; Nur, Hadi; Hermawan, Hendra

    2015-06-01

    Hydroxyapatite (HAp) is an attractive bioceramics due to its similar composition to bone mineral and its ability to promote bone-implant interaction. However, its low strength has limited its application as load bearing implants. This paper presented a work focusing on the improvement of HAp mechanical property by synthesizing iron (Fe)-reinforced bovine HAp nanocomposite powders via mechanosynthesis method. The synthesis process was performed using high energy milling at varied milling time (3, 6, 9, and 12h). The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM). Its mechanical properties were investigated by micro-Vicker's hardness and compression tests. Results showed that milling time directly influenced the characteristics of the nanocomposite powders. Amorphous BHAp was formed after 9 and 12h milling in the presence of HPO4(2-) ions. Continuous milling has improved the crystallinity of Fe without changing the HAp lattice structure. The nanocomposite powders were found in spherical shape, agglomerated and dense after longer milling time. The hardness and Young's modulus of the nanocomposites were also increased at 69% and 66%, respectively, as the milling time was prolonged from 3 to 12h. Therefore, the improvement of the mechanical properties of nanocomposite was attributed to high Fe crystallinity and homogenous, dense structure produced by mechanosynthesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Nanocomposite bulk of mechanically milled Al-Pb samples consolidated pore-free by the high-energy rate forming technique.

    PubMed

    Csanády, Agnes; Sajó, István; Lábár, János L; Szalay, András; Papp, Katalin; Balaton, Géza; Kálmán, Erika

    2005-06-01

    It is shown that pore-free bulk samples were produced by the high-energy rate forming axis-symmetrical powder compaction method for different application purposes in case of the very different, immiscible Al and Pb metal pair. The starting Al-Pb nanocomposites were made by mechanical milling of atomized Al and Pb powders either in a SPEX 9000 or a Fritsch Pulverisette 4 mill. Due to the conditions that milling was carried out in air, the PbO layer, originally existing at the surface of the atomized Pb powder, ruptured and was also dispersed in the composite. The presence of the nano PbO particles was proven by XRD and TEM (BF, DF, SAED). When the energy of milling was high, the PbO crystallites became so small that they could hardly be seen by XRD technique. Local distribution of the PbO nanoparticles was still visible in a TEM, using the process diffraction method. Both XRD and SAED proved to be useful for the evaluation of the results of the milling process and compaction.

  8. Fluid mechanics of slurry flow through the grinding media in ball mills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Songfack, P.K.; Rajamani, R.K.

    1995-12-31

    The slurry transport within the ball mill greatly influences the mill holdup, residence time, breakage rate, and hence the power draw and the particle size distribution of the mill product. However, residence-time distribution and holdup in industrial mills could not be predicted a priori. Indeed, it is impossible to determine the slurry loading in continuously operating mills by direct measurement, especially in industrial mills. In this paper, the slurry transport problem is solved using the principles of fluid mechanics. First, the motion of the ball charge and its expansion are predicted by a technique called discrete element method. Then themore » slurry flow through the porous ball charge is tackled with a fluid-flow technique called the marker and cell method. This may be the only numerical technique capable of tracking the slurry free surface as it fluctuates with the motion of the ball charge. The result is a prediction of the slurry profile in both the radial and axial directions. Hence, it leads to the detailed description of slurry mass and ball charge within the mill. The model predictions are verified with pilot-scale experimental work. This novel approach based on the physics of fluid flow is devoid of any empiricism. It is shown that the holdup of industrial mills at a given feed percent solids can be predicted successfully.« less

  9. Synthesis of ZnO Nanocrystal-Graphene Composite by Mechanical Milling and Sonication-Assisted Exfoliation

    NASA Astrophysics Data System (ADS)

    Arora, Sweety; Srivastava, Chandan

    2017-02-01

    A ZnO nanocrystal-graphene composite was synthesized by a two-step method involving mechanical milling and sonication-assisted exfoliation. Zn metal powder was first ball-milled with graphite powder for 30 h in water medium. This ball-milled mixture was then subjected to exfoliation by sonication in the presence of sodium lauryl sulfate surfactant to produce graphene decorated with spherical agglomerates of ultrafine nanocrystalline ZnO. The presence of a few layers of graphene was confirmed by Raman spectroscopy and atomic force microscopy measurements. The size, phase identity and composition of the ZnO nanocrystals was determined by transmission electron microscopy measurements.

  10. Formation of an amorphous phase and its crystallization in the immiscible Nb-Zr system by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Al-Aqeeli, N.; Suryanarayana, C.; Hussein, M. A.

    2013-10-01

    Mechanical alloying of binary Nb-Zr powder mixtures was carried out to evaluate the formation of metastable phases in this immiscible system. The milled powders were characterized for their constitution and structure by X-ray diffraction and transmission electron microscopy methods. It was shown that an amorphous phase had formed on milling the binary powder mixture for about 10 h and that it had crystallized on subsequent milling up to 50-70 h, referred to as mechanical crystallization. Thermodynamic and structural arguments have been presented to explain the formation of the amorphous phase and its subsequent crystallization.

  11. Effect of milling time on microstructure and mechanical properties of Cu-Ni-graphite composites

    NASA Astrophysics Data System (ADS)

    Wang, Yiran; Gao, Yimin; Li, Yefei; Zhang, Chao; Huang, Xiaoyu; Zhai, Wenyan

    2017-09-01

    Cu-Ni-graphite composites are intended for application in switch slide baseplate materials. The microstructure of the composites depends strongly on the ball milling time, and a suitable time can significantly improve the properties of the Cu-Ni-graphite composites. In this study, a two-step milling method was employed. The morphology evolution and microstructural features of the powder was characterized at different milling times. Afterwards, the Cu-Ni-graphite composites were prepared in the process of cold pressing, sintering, re-pressing and re-sintering as a function of the different milling times. Finally, both the microstructure and mechanical properties of the Cu-Ni-graphite composites are discussed. The results show that no new phase was generated during the milling process. The morphology evolution of the mixture of Cu/Ni powder changed from spherical-like to cubic-like, plate-like and flake-like with an increasing milling time. The microstructure of the composites consisted of α-phase and graphite. The boundary area and quantity of pores changed as the milling time increased. The relative density, hardness and flexural strength reached maximum values at 15 h of milling time.

  12. Mechanical alloying of a hydrogenation catalyst used for the remediation of contaminated compounds

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline W. (Inventor); Geiger, Cherie L. (Inventor); Aitken, Brian S. (Inventor); Clausen, Christian A. (Inventor)

    2012-01-01

    A hydrogenation catalyst including a base material coated with a catalytic metal is made using mechanical milling techniques. The hydrogenation catalysts are used as an excellent catalyst for the dehalogenation of contaminated compounds and the remediation of other industrial compounds. Preferably, the hydrogenation catalyst is a bimetallic particle including zero-valent metal particles coated with a catalytic material. The mechanical milling technique is simpler and cheaper than previously used methods for producing hydrogenation catalysts.

  13. Mechanical alloying of a hydrogenation catalyst used for the remediation of contaminated compounds

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline W. (Inventor); Aitken, Brian S. (Inventor); Clausen, Christian A. (Inventor); Geiger, Cherie L. (Inventor)

    2010-01-01

    A hydrogenation catalyst including a base material coated with a catalytic metal is made using mechanical milling techniques. The hydrogenation catalysts are used as an excellent catalyst for the dehalogenation of contaminated compounds and the remediation of other industrial compounds. Preferably, the hydrogenation catalyst is a bimetallic particle including zero-valent metal particles coated with a catalytic material. The mechanical milling technique is simpler and cheaper than previously used methods for producing hydrogenation catalysts.

  14. Grinding as an approach to the production of high-strength, dispersion-strengthened nickel-base alloys

    NASA Technical Reports Server (NTRS)

    Orth, N. W.; Quatinetz, M.; Weeton, J. W.

    1970-01-01

    Mechanical process produces dispersion-strengthened metal alloys. Power surface contamination during milling is removed by a cleaning method that involves heating thin shapes or partially-compacted milled powder blends in hydrogen to carefully controlled temperature schedules.

  15. Effect of combination ultrasonic and ball milling techniques of commercial fillers dispersion on mechanical properties of natural rubber (NR) latex films

    NASA Astrophysics Data System (ADS)

    Hamran, Noramirah; Rashid, Azura A.

    2017-07-01

    Commercial fillers such as silica and carbon black generally impart the reinforcing effects in dry rubber compound, but have an adverse effect on Natural rubber (NR) latex compounds. The addition of commercial fillers in NR latex has reduced the mechanical properties of NR latex films due to the destabilization effect in the NR latex compounds which govern by the dispersion quality, particle size and also the pH of the dispersion itself. The ball milling process is the conventional meth od of preparation of dispersions and ultrasonic has successfully used in preparation of nano fillers such as carbon nanotube (CNT). In this study the combination between the conventional methods; ball milling together the ultrasonic method were used to prepare the silica and carbon black dispersions. The different duration of ball milling (24, 48 and 72 hours) was compared with the ultrasonic method (30, 60, 90 and 120 minutes). The combination of ball milling and ultrasonic from the optimum individual technique was used to investigate the reduction of particle size of the fillers. The particle size analyzer, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) test were carried out to investigate the obtained particle size and the tensile and tear test were carried out to investigate the mechanical properties of the NR latex films. The reduction of filler particle size is expected to impart the properties of NR latex films.

  16. Improvement of the tool life of a micro-end mill using nano-sized SiC/Ni electroplating method.

    PubMed

    Park, Shinyoung; Kim, Kwang-Su; Roh, Ji Young; Jang, Gyu-Beom; Ahn, Sung-Hoon; Lee, Caroline Sunyong

    2012-04-01

    High mechanical properties of a tungsten carbide micro-end-mill tool was achieved by extending its tool life by electroplating nano-sized SiC particles (< 100 nm) that had a hardness similar to diamond in a nickel-based material. The co-electroplating method on the surface of the micro-end-mill tool was applied using SiC particles and Ni particles. Organic additives (saccharin and ammonium chloride) were added in a Watts bath to improve the nickel matrix density in the electroplating bath and to smooth the surface of the co-electroplating. The morphology of the coated nano-sized SiC particles and the composition were measured using Scanning Electron Microscope and Energy Dispersive Spectrometer. As the Ni/SiC co-electroplating layer was applied, the hardness and friction coefficient improved by 50%. Nano-sized SiC particles with 7 wt% were deposited on the surface of the micro-end mill while the Ni matrix was smoothed by adding organic additives. The tool life of the Ni/SiC co-electroplating coating on the micro-end mill was at least 25% longer than that of the existing micro-end mills without Ni/SiC co-electroplating. Thus, nano-sized SiC/Ni coating by electroplating significantly improves the mechanical properties of tungsten carbide micro-end mills.

  17. Structural and Morphological Evaluation of Nano-Sized MoSi2 Powder Produced by Mechanical Milling

    NASA Astrophysics Data System (ADS)

    Sameezadeh, Mahmood; Farhangi, Hassan; Emamy, Masoud

    Nano-sized intermetallic powders have received great attention owing to their property advantages over conventional micro-sized counterparts. In the present study nano-sized MoSi2 powder has been produced successfully from commercially available MoSi2 (3 μm) by a mechanical milling process carried out for a period of 100 hours. The effects of milling time on size and morphology of the powders were studied by SEM and TEM and image analyzing system. The results indicate that the as-received micrometric powder with a wide size distribution of irregular shaped morphology changes to a narrow size distribution of nearly equiaxed particles with the progress of attrition milling up to 100 h, reaching an average particle size of 71 nm. Structural evolution of milled samples was characterized by XRD to determine the crystallite size and lattice microstrain using Williamson-Hall method. According to the results, the crystallite size of the powders decreases continuously down to 23 nm with increasing milling time up to 100 h and this size refinement is more rapid at the early stages of the milling process. On the other hand, the lattice strain increases considerably with milling up to 65 h and further milling causes no significant changes of lattice strain.

  18. The Effect of High Energy Ball Milling on the Dynamic Response of Aluminum Powders

    NASA Astrophysics Data System (ADS)

    Beason, Matthew T.; Justice, Andrew W.; Gunduz, Ibrahim E.; Son, Steven F.

    2017-06-01

    Ball milling is an effective method to enhance the reactivity of intermetallic reactives by reducing characteristic diffusions distances. During this process, ductile reactants are mixed into a lamellar material with nanoscale features, resulting in significant strain hardening. Plate impact experiments using a single stage light gas gun have been performed to evaluate the effect of high energy ball milling (HEBM) on the mechanical properties and dynamic response of cold pressed aluminum compacts. The average grain size of the milled material is evaluate and suggested as a method of correlating the measured response to the properties of milled composites. This material is based upon work supported by the Department of Energy, National Nuclear Security Administration, under Award Number(s) DE-NA0002377, as well as individual funding (Beason) by the Department of Defense through the NDSEG.

  19. Casing window milling with abrasive fluid jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vestavik, O.M.; Fidtje, T.H.; Faure, A.M.

    1995-12-31

    Methods for through tubing re-entry drilling of multilateral wells has a large potential for increasing hydrocarbon production and total recovery. One of the bottle-necks of this technology is initiation of the side-track by milling a window in the casing downhole. A new approach to this problem has been investigated in a joint industry project. An experimental set-up has been built for milling a 4 inch window in a 7 inch steel casing at surface in the laboratory. A specially designed bit developed at RIF using abrasive jet cutting technology has been used for the window milling. The bit has anmore » abrasive jet beam which is always directed in the desired side-track direction, even if the bit is rotating uniformly. The bit performs the milling with a combined mechanical and hydraulic jet action. The method has been successfully demonstrated. The experiments has shown that the window milling can be performed with very low WOB and torque, and that only small side forces are required to perform the operation. Casing milling has been performed without a whipstock, a cement plug has been the only support for the tool. The tests indicate that milling operations can be performed more efficiently with less time and costs than what is required with conventional techniques. However, the method still needs some development of the downhole motor for coiled tubing applications. The method can be used both for milling and drilling giving the advantage of improved rate of penetration, improved bit life and increased horizontal reach. The method is planned to be demonstrated downhole in the near future.« less

  20. Synthesis of graphene nanoflakes by grinding natural graphite together with NaCl in a planetary ball mill

    NASA Astrophysics Data System (ADS)

    Alinejad, Babak; Mahmoodi, Korosh

    Natural graphite is a soft material that conventional milling methods fail to grind into nanoparticles. We found that adding NaCl into graphite during milling allows obtaining graphene nanoflakes of about 50×200nm2 as evidenced by Transmission Electron Microscope (TEM). NaCl particles are substantially brittle and harder than graphite, serving as milling agents by both helping to chop graphite into smaller pieces and preventing graphite particles from agglomeration. After milling, NaCl can be easily washed away by water. Probable mechanism for exfoliation of graphene during the modified ball milling may be explained by NaCl and graphene slipping or sliding against and over each other, exfoliating the graphene particles into thin layers.

  1. Discrete element method as an approach to model the wheat milling process

    USDA-ARS?s Scientific Manuscript database

    It is a well-known phenomenon that break-release, particle size, and size distribution of wheat milling are functions of machine operational parameters and grain properties. Due to the non-uniformity of characteristics and properties of wheat kernels, the kernel physical and mechanical properties af...

  2. Effect of ball milling materials and methods on powder processing of Bi2223 superconductors

    NASA Astrophysics Data System (ADS)

    Yavuz, M.; Maeda, H.; Vance, L.; Liu, H. K.; Dou, S. X.

    1998-10-01

    Various milling systems consisting of agate and polypropylene grinding containers, agate and YSZ balls, and dry and wet milling were used in planetary ball-milling and YSZ balls and YSZ container were used in wet and dry attrition milling. The differently milled powders were then evaluated by measurements of particle size, surface area, porosity, size distribution and chemical analysis of the Si, Zr and C contents. The results show that dry milling is much more efficient for particle size reduction in planetary milling than wet milling, whereas wet milling and dry milling gave quite similar results in attrition milling. Meanwhile 0953-2048/11/10/056/img6 contamination was found in powder milled with an agate container with agate balls. Some C contamination from the polypropylene container was detected after milling, but negligible Zr from YSZ balls and C from the grinding carrier (hexane). It was found that after 1 h milling in the planetary mill fracture mechanisms transform from the elastic to the plastic region. Therefore, further milling is not very effective. It was also shown that the Bi2212 phase decomposes into several non-superconducting oxides such as 0953-2048/11/10/056/img7, CuO and a main amorphous phase after extensive dry milling.

  3. Toward a better understanding of the lignin isolation process from wood.

    PubMed

    Guerra, Anderson; Filpponen, Ilari; Lucia, Lucian A; Saquing, Carl; Baumberger, Stephanie; Argyropoulos, Dimitris S

    2006-08-09

    The recently developed protocol for isolating enzymatic mild acidolysis lignins (EMAL) coupled with the novel combination of derivatization followed by reductive cleavage (DFRC) and quantitative (31)P NMR spectroscopy were used to better understand the lignin isolation process from wood. The EMAL protocol is shown to offer access at lignin samples that are more representative of the overall lignin present in milled wood. The combination of DFRC/(31)P NMR provided a detailed picture on the effects of the isolation conditions on the lignin structure. More specifically, we have used vibratory and ball milling as the two methods of wood pulverization and have compared their effects on the lignin structures and molecular weights. Vibratory-milling conditions cause substantial lignin depolymerization. Lignin depolymerization occurs via the cleavage of uncondensed beta-aryl ether linkages, while condensed beta-aryl ethers and dibenzodioxocins were found to be resistant to such mechanical action. Condensation and side chain oxidations were induced mechanochemically under vibratory-milling conditions as evidenced by the increased amounts of condensed phenolic hydroxyl and carboxylic acid groups. Alternatively, the mild mechanical treatment offered by ball milling was found not to affect the isolated lignin macromolecular structure. However, the overall lignin yields were found to be compromised when the mechanical action was less intense, necessitating longer milling times under ball-milling conditions. As compared to other lignin preparations isolated from the same batch of milled wood, the yield of EMAL was about four times greater than the corresponding milled wood lignin (MWL) and about two times greater as compared to cellulolytic enzyme lignin (CEL). Molecular weight distribution analyses also pointed out that the EMAL protocol allows the isolation of lignin fractions that are not accessed by any other lignin isolation procedures.

  4. Structural and magnetic characteristics of PVA/CoFe{sub 2}O{sub 4} nano-composites prepared via mechanical alloying method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rashidi, S.; Ataie, A., E-mail: aataie@ut.ac.ir

    Highlights: • Single phase CoFe{sub 2}O{sub 4} nano-particles synthesized in one step by mechanical alloying. • PVA/CoFe{sub 2}O{sub 4} magnetic nano-composites were fabricated via mechanical milling. • FTIR confirmed the interaction between PVA and magnetic CoFe{sub 2}O{sub 4} particles. • Increasing in milling time and PVA amount led to well dispersion of CoFe{sub 2}O{sub 4}. - Abstract: In this research, polyvinyl alcohol/cobalt ferrite nano-composites were successfully synthesized employing a two-step procedure: the spherical single-phase cobalt ferrite of 20 ± 4 nm mean particle size was synthesized via mechanical alloying method and then embedded into polymer matrix by intensive milling. Themore » results revealed that increase in polyvinyl alcohol content and milling time causes cobalt ferrite particles disperse more homogeneously in polymer matrix, while the mean particle size and shape of cobalt ferrite have not been significantly affected. Transmission electron microscope images indicated that polyvinyl alcohol chains have surrounded the cobalt ferrite nano-particles; also, the interaction between polymer and cobalt ferrite particles in nano-composite samples was confirmed. Magnetic properties evaluation showed that saturation magnetization, coercivity and anisotropy constant values decreased in nano-composite samples compared to pure cobalt ferrite. However, the coercivity values of related nano-composite samples enhanced by increasing PVA amount due to domain wall mechanism.« less

  5. Effect of processing methods on the mechanical properties of natural rubber filled with stearic acid modified soy protein particles

    USDA-ARS?s Scientific Manuscript database

    Natural rubber was reinforced with stearic acid modified soy protein particles prepared with a microfluidizing and ball milling process. Longer ball milling time tends to increase tensile strength of the rubber composites. Elastic modulus of the composites increased with the increasing filler concen...

  6. Biomechanical properties of wheat grains: the implications on milling.

    PubMed

    Hourston, James E; Ignatz, Michael; Reith, Martin; Leubner-Metzger, Gerhard; Steinbrecher, Tina

    2017-01-01

    Millennia of continuous innovation have driven ever increasing efficiency in the milling process. Mechanically characterizing wheat grains and discerning the structure and function of the wheat bran layers can contribute to continuing innovation. We present novel shear force and puncture force testing regimes to characterize different wheat grain cultivars. The forces endured by wheat grains during the milling process can be quantified, enabling us to measure the impact of commonly applied grain pretreatments, such as microwave heating, extended tempering, enzyme and hormone treatments on grains of different 'hardness'. Using these methods, we demonstrate the importance of short tempering phases prior to milling and identify ways in which our methods can detect differences in the maximum force, energy and breaking behaviours of hard and soft grain types. We also demonstrate for the first time, endosperm weakening in wheat, through hormone stratification on single bran layers. The modern milling process is highly refined, meaning that small, cultivar specific, adjustments can result in large increases in downstream profits. We believe that methods such as these, which enable rapid testing of milling pretreatments and material properties can help to drive an innovation process that has been core to our industrial efforts since prehistory. © 2017 The Authors.

  7. Biomechanical properties of wheat grains: the implications on milling

    PubMed Central

    Reith, Martin

    2017-01-01

    Millennia of continuous innovation have driven ever increasing efficiency in the milling process. Mechanically characterizing wheat grains and discerning the structure and function of the wheat bran layers can contribute to continuing innovation. We present novel shear force and puncture force testing regimes to characterize different wheat grain cultivars. The forces endured by wheat grains during the milling process can be quantified, enabling us to measure the impact of commonly applied grain pretreatments, such as microwave heating, extended tempering, enzyme and hormone treatments on grains of different ‘hardness’. Using these methods, we demonstrate the importance of short tempering phases prior to milling and identify ways in which our methods can detect differences in the maximum force, energy and breaking behaviours of hard and soft grain types. We also demonstrate for the first time, endosperm weakening in wheat, through hormone stratification on single bran layers. The modern milling process is highly refined, meaning that small, cultivar specific, adjustments can result in large increases in downstream profits. We believe that methods such as these, which enable rapid testing of milling pretreatments and material properties can help to drive an innovation process that has been core to our industrial efforts since prehistory. PMID:28100826

  8. Synthesis of Nano-Crystalline Gamma-TiAl Materials

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J.; Vasquez, Peter

    2003-01-01

    One of the principal problems with nano-crystalline materials is producing them in quantities and sizes large enough for valid mechanical property evaluation. The purpose of this study was to explore an innovative method for producing nano-crystalline gamma-TiAl bulk materials using high energy ball milling and brief secondary processes. Nano-crystalline powder feedstock was produced using a Fritsch P4(TM) vario-planetary ball mill recently installed at NASA-LaRC. The high energy ball milling process employed tungsten carbide tooling (vials and balls) and no process control agents to minimize contamination. In a collaborative effort, two approaches were investigated, namely mechanical alloying of elemental powders and attrition milling of pre-alloyed powders. The objective was to subsequently use RF plasma spray deposition and short cycle vacuum hot pressing in order to effect consolidation while retaining nano-crystalline structure in bulk material. Results and discussion of the work performed to date are presented.

  9. Downhole vacuum cleans up tough fishing, milling jobs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaLande, P.; Flanders, B.

    1996-02-01

    A unique tool developed to effect reverse circulation downhole is being used successfully in problem milling and fishing operations where conventional techniques fail to recover junk in the hole. Jointly developed by several major operators in conjunction with Baker Oil Tools, the patented Reverse Circulating Tool (RCT) acts as a downhole vacuum cleaner, catching and retaining debris circulated from the wellbore while allowing fishing, milling and washover operations to continue uninterrupted. As described in several case histories overviewed, the unique vacuuming action efficiently cleans up junk and debris in even the most difficult fishing and milling applications. Downhole operations proceedmore » normally, but without threat of damage from milled debris. Developers hold both mechanical and method patents on the RCT.« less

  10. Production of ultra-thin nano-scaled graphene platelets from meso-carbon micro-beads

    DOEpatents

    Zhamu, Aruna; Guo, Jiusheng; Jang, Bor Z

    2014-11-11

    A method of producing nano-scaled graphene platelets (NGPs) having an average thickness no greater than 50 nm, typically less than 2 nm, and, in many cases, no greater than 1 nm. The method comprises (a) intercalating a supply of meso-carbon microbeads (MCMBs) to produce intercalated MCMBs; and (b) exfoliating the intercalated MCMBs at a temperature and a pressure for a sufficient period of time to produce the desired NGPs. Optionally, the exfoliated product may be subjected to a mechanical shearing treatment, such as air milling, air jet milling, ball milling, pressurized fluid milling, rotating-blade grinding, or ultrasonicating. The NGPs are excellent reinforcement fillers for a range of matrix materials to produce nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  11. The synergistic effects of combining the high energy mechanical milling and wet milling on Si negative electrode materials for lithium ion battery

    NASA Astrophysics Data System (ADS)

    Hou, Shang-Chieh; Su, Yuh-Fan; Chang, Chia-Chin; Hu, Chih-Wei; Chen, Tsan-Yao; Yang, Shun-Min; Huang, Jow-Lay

    2017-05-01

    The submicro-sized and nanostructured Si aggregated powder is prepared by combinational routes of high energy mechanical milling (HEMM) and wet milling. Milled Si powder is investigated by particle size analyzer, SEM, TEM, XPS and XRD as well as the control ones. Its electrode is also investigated by in situ XRD and electrochemical performance. Morphology reveals that combining the high energy mechanical milling and wet milling not only fracture primary Si particles but also form submicro-sized Si aggregates constructed by amorphous and nanocrystalline phases. Moreover, XPS shows that wet milling in ethanol trigger Sisbnd Osbnd CH2CH3 bonding on Si surface might enhance the SEI formation. In situ XRD analysis shows negative electrode made of submicro-sized Si aggregated powder can effectively suppress formation of crystalline Li15Si4 during lithiation and delithiation due to amorphous and nanocrystalline construction. Thus, the submicro-sized Si powder with synergistic effects combining the high energy mechanical milling and wet milling in ethanol as negative electrode performs better capacity retention.

  12. 6. VIEW TO WEST, SAMPLING BUILDING, MECHANIC SHED, MILL WAREHOUSE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW TO WEST, SAMPLING BUILDING, MECHANIC SHED, MILL WAREHOUSE, DRYERS, AND GRINDING/ROD MILL. - Vanadium Corporation of America (VCA) Naturita Mill, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  13. Defect-induced ferromagnetism in ZnO nanoparticles prepared by mechanical milling

    NASA Astrophysics Data System (ADS)

    Phan, The-Long; Zhang, Y. D.; Yang, D. S.; Nghia, N. X.; Thanh, T. D.; Yu, S. C.

    2013-02-01

    Though ZnO is known as a diamagnetic material, recent studies have revealed that its nanostructures can be ferromagnetic (FM). The FM origin has been ascribed to intrinsic defects. This work shines light on an alternate method based on mechanical milling to induce defect-related ferromagnetism in ZnO nanoparticles (NPs) from initial diamagnetic ZnO powders. Our idea is motivated by the fact that mechanical milling introduces more defects to a ground material. We point out that the FM order increases with increasing the density of defects in ZnO NPs. The experimental results obtained from analyzing X-ray absorption, electron spin resonance, and Raman scattering spectra demonstrate that the ferromagnetism in ZnO NPs is due to intrinsic defects mainly related to oxygen and zinc vacancies. Among these, zinc vacancies play a decisive role in introducing a high FM order in ZnO NPs.

  14. Synthesis of TiCr2 intermetallic compound from mechanically activated starting powders via calcio-thermic co-reduction

    NASA Astrophysics Data System (ADS)

    Bayat, O.; Khavandi, A. R.; Ghasemzadeh, R.

    2017-05-01

    Effect of mechanical activation of TiO2 and Cr2O3 oxides as starting materials was investigated for direct synthesis of TiCr2. Differential thermal analysis (DTA) indicated that increasing the ball milling time resulted in lower exothermic reaction temperatures between molten Ca-Cr2O3 and molten Ca-TiO2. A model-free Kissinger type method was applied to DTA data to evaluate the reaction kinetics. The results reveal that the activation energy of the exothermic reactions decreased with increasing the milling time. The structure, oxygen content, and average particle sizes of the obtained TiCr2 product were affected by the ball milling time of the starting materials. Increasing the milling time from 10 to 40 h decreased the average particle size and oxygen content of the obtained TiCr2 from 10 to 2 μm and from 1690 to 1290 ppm, respectively. The X-ray diffraction (XRD) results showed that TiCr2 compounds with metastable bcc phase can be produced using nano-sized starting materials, while only a slight amount of bcc phase can be obtained in the TiCr2 compounds, using micron-sized starting materials. The TiCr2 obtained by this method had a hydrogen absorption capability of 0.63 wt % and the kinetics of the hydrogen absorption increased for the 40 h milled sample.

  15. Hydrogen Storage Characteristics of Nanocrystalline and Amorphous Nd-Mg-Ni-Based NdMg12-Type Alloys Synthesized via Mechanical Milling

    NASA Astrophysics Data System (ADS)

    Zhang, Yanghuan; Shang, Hongwei; Hou, Zhonghui; Yuan, Zeming; Yang, Tai; Qi, Yan

    2016-12-01

    In this study, Mg was partially substituted by Ni with the intent of improving the hydrogen storage kinetics performance of NdMg12-type alloy. Mechanical milling technology was adopted to fabricate the nanocrystalline and amorphous NdMg11Ni + x wt pct Ni ( x = 100, 200) alloys. The effects of Ni content and milling duration on the microstructures and hydrogen storage kinetics of as-milled alloys have been systematically investigated. The structures were characterized by XRD and HRTEM. The electrochemical hydrogen storage properties were tested by an automatic galvanostatic system. Moreover, the gaseous hydrogen storage properties were investigated by Sievert apparatus and a differential scanning calorimeter connected with a H2 detector. Hydrogen desorption activation energy of alloy hydrides was estimated by using Arrhenius and Kissinger methods. The results reveal that the increase of Ni content dramatically ameliorates the gaseous and electrochemical hydrogen storage kinetics performance of the as-milled alloys. Furthermore, high rate discharge ability (HRD) reach the maximum value with the variation of milling time. The maximum HRDs of the NdMg11Ni + x wt pct Ni ( x = 100, 200) alloys are 80.24 and 85.17 pct. The improved gaseous hydrogen storage kinetics of alloys via increasing Ni content and milling time can be attributed to a decrease in the hydrogen desorption activation energy.

  16. Understanding dental CAD/CAM for restorations - dental milling machines from a mechanical engineering viewpoint. Part A: chairside milling machines.

    PubMed

    Lebon, Nicolas; Tapie, Laurent; Duret, Francois; Attal, Jean-Pierre

    2016-01-01

    The dental milling machine is an important device in the dental CAD/CAM chain. Nowadays, dental numerical controlled (NC) milling machines are available for dental surgeries (chairside solution). This article provides a mechanical engineering approach to NC milling machines to help dentists understand the involvement of technology in digital dentistry practice. First, some technical concepts and definitions associated with NC milling machines are described from a mechanical engineering viewpoint. The technical and economic criteria of four chairside dental NC milling machines that are available on the market are then described. The technical criteria are focused on the capacities of the embedded technologies of these milling machines to mill both prosthetic materials and types of shape restorations. The economic criteria are focused on investment costs and interoperability with third-party software. The clinical relevance of the technology is assessed in terms of the accuracy and integrity of the restoration.

  17. Differences between Cheddar cheese manufactured by the milled-curd and stirred-curd methods using different commercial starters.

    PubMed

    Shakeel-ur-Rehman; Drake, M A; Farkye, N Y

    2008-01-01

    Traditionally, Cheddar cheese is made by the milled-curd method. However, because of the mechanization of cheese making and time constraints, the stirred-curd method is more commonly used by many large-scale commercial manufacturers. This study was undertaken to evaluate quality differences during ripening (at 2 and 8 degrees C) of Cheddar cheese made by the milled-curd and stirred-curd methods, using 4 different commercial starters. Twenty-four vats (4 starters x 2 methods x 3 replicates) were made, with approximately 625 kg of pasteurized (72 degrees C x 16 s) whole milk in each vat. Fat, protein, and salt contents of the cheeses were not affected by the starter. Starter cell densities in cheese were not affected by the method of manufacture. Nonstarter lactic acid bacteria counts at 90, 180, and 270 d were influenced by the manufacturing method, with a higher trend in milled-curd cheeses. Proteolysis in cheese (percentage of water-soluble N) was influenced by the starter and manufacturing method (270 d). Sensory analysis by a trained descriptive panel (n = 8) revealed differences in cooked, whey, sulfur, brothy, milk fat, umami, and bitter attributes caused by the starter, whereas only brothy flavor was influenced by storage temperature. The method of manufacture influenced diacetyl, sour, and salty flavors.

  18. Systematic comparison of mechanical and thermal sludge disintegration technologies.

    PubMed

    Wett, B; Phothilangka, P; Eladawy, A

    2010-06-01

    This study presents a systematic comparison and evaluation of sewage sludge pre-treatment by mechanical and thermal techniques. Waste activated sludge (WAS) was pre-treated by separate full scale Thermo-Pressure-Hydrolysis (TDH) and ball milling facilities. Then the sludge was processed in pilot-scale digestion experiments. The results indicated that a significant increase in soluble organic matter could be achieved. TDH and ball milling pre-treatment could offer a feasible treatment method to efficiently disintegrate sludge and enhance biogas yield of digestion. The TDH increased biogas production by ca. 75% whereas ball milling allowed for an approximately 41% increase. The mechanisms of pre-treatment were investigated by numerical modeling based on Anaerobic Digestion Model No. 1 (ADM1) in the MatLab/SIMBA environment. TDH process induced advanced COD-solubilisation (COD(soluble)/COD(total)=43%) and specifically complete destruction of cell mass which is hardly degradable in conventional digestion. While the ball mill technique achieved a lower solubilisation rate (COD(soluble)/COD(total)=28%) and only a partial destruction of microbial decay products. From a whole-plant prospective relevant release of ammonia and formation of soluble inerts have been observed especially from thermal hydrolysis. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Influence of attrition milling on nano-grain boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawers, J.; Cook, D.

    1999-03-01

    Nanostructured materials have a relatively large proportion of their atoms associated with the grain boundary, and the method used to develop the nano-grains has a strong influence on the resulting grain boundary structure. In this study, attrition milling iron powders and blends of iron powders produced micron-size particles composed of nano-size grains. Mechanical cold-working powder resulted in dislocation generation, multiplication, and congealing that produced grain refinement. As the grain size approached nano-dimensions, dislocations were no longer sustained within the grain and once generated, rapidly diffused to the grain boundary. Dislocations on the grain boundary strained the local lattice structure which,more » as the grain size decreased, became the entire grain. Mechanical alloying of substitutional aluminium atoms into iron powder resulted in the aluminium atoms substituting for iron atoms in the grain boundary cells and providing a grain boundary structure similar to that of the iron powder processed in argon. Attrition milling iron powder in nitrogen gas resulted in nitrogen atoms being adsorbed onto the particle surface. Continued mechanical milling infused the nitrogen atoms into interstitial lattice sites on the grain boundary which also contributed to expanding and straining the local lattice.« less

  20. Characteristics of the mechanical milling on the room temperature ferromagnetism and sensing properties of TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Bolokang, A. S.; Cummings, F. R.; Dhonge, B. P.; Abdallah, H. M. I.; Moyo, T.; Swart, H. C.; Arendse, C. J.; Muller, T. F. G.; Motaung, D. E.

    2015-03-01

    We report on the correlation between defect-related emissions, the magnetization and sensing of TiO2 nanoparticles (NPs) prepared by milling method. Surface morphology analyses showed that the size of the TiO2 NPs decreases with milling time. Raman and XRD studies demonstrated that the structural properties of the TiO2 transform to orthorhombic structure upon milling. Magnetization improved with an increase of a defect-related band originating from oxygen vacancies (VO), which can be ascribed to a decrease in the size of the NPs due to the milling time. Moreover, the longer-milled TiO2 exhibited enhanced gas-sensing properties to humidity in terms of sensor response, with about 12 s response time at room temperature. A combination of photoluminescence, X-ray photoelectron spectroscopy, vibrating sample magnetometer and sensing analyses demonstrated that a direct relation exists between the magnetization, sensing and the relative occupancy of the VO present on the surface of TiO2 NPs.

  1. The MillSOT-A Spiral Orbit Tribometer on a Milling Machine

    NASA Technical Reports Server (NTRS)

    Pepper, Stephen V.

    2014-01-01

    A spiral orbit tribometer (SOT) intended to characterize friction and wear phenomena has been constructed on a milling machine. The instrument, essentially a retainerless thrust bearing with one ball and flat races, is exceedingly simple and inexpensive to construct. The capabilities of the tribometer to measure both the coefficient of friction and contact electrical resistance are demonstrated with clean specimens as well as with well known lubricants such as molybdenum disulphide and Krytox oil. Operation in a purged environment of inert gas is also demonstrated. The results with these lubricants are quite close to what is obtained by other methods. Suggestions for extending the capabilities of the tribometer are given. This arrangement may find use in university mechanical engineering laboratories to introduce and study rolling contact motion as well as for research in contact mechanics and tribology.

  2. Effect of ball milling and heat treatment process on MnBi powders magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Wei; Polikarpov, Evgueni; Choi, Jung-Pyung

    The metallic compound MnBi has high intrinsic coercivity with large positive temperature coefficient. The coercivity of MnBi exceeds 12 kOe and 26 kOe at 300 K and 523 K, respectively. Hence MnBi is a good candidate for the hard phase in exchange coupled nanocomposite magnets. In order to maximize the loading of the soft phase, the size of the MnBi particle has to be close to 500 nm, the size of single magnetic domain. Low energy milling is the common method to reduce MnBi particle size. However, only 3-7 mu m size particle can be achieved without significant decomposition. Here,more » we report our effort on preparing submicron MnBi powders using traditional powder metallurgy methods. Mn55Bi45 magnetic powders were prepared using arc melting method, followed by a series of thermal-mechanical treatment to improve purity, and finished with low energy ball milling at cryogenic temperature to achieve submicron particle size. The Mn55Bi45 powders were decomposed during ball milling process and recovered during 24 h 290 degrees C annealing process. With increasing ball-milling time, the saturation magnetization of MnBi decreases, while the coercivity increases. Annealing after ball milling recovers some of the magnetization, indicating the decomposition occurred during the ball-milling process can be reversed. The coercivity of Mn55Bi45 powders are also improved as a result of the heat treatment at 290 degrees C for 24 h. The world record magnetization 71.2 emu/g measured applying a field of 23 kOe has been achieved via low energy ball mill at room temperature« less

  3. Study on the surface constitute properties of high-speed end milling aluminum alloy

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoming; Li, Hongwei; Yumeng, Ma

    2017-09-01

    The physical and mechanical properties of the metal surface will change after the metal cutting processing. The comprehensive study of the influence of machining parameters on surface constitute properties are necessary. A high-speed milling experiment by means of orthogonal method with four factors was conducted for aluminum alloy7050-T7451. The surface constitutive properties of the Al-Alloy surface were measured using SSM-B4000TM stress-strain microprobe system. Based on all the load-depth curves obtained, the characteristics parameters such as strain hardening exponent n and yield strength σy of the milling surface are calculated. The effect of cutting speed, feed rate, and width and depth of cut on n and σy was investigated using the ANOVA techniques. The affecting degree of milling parameters on n and σy was v>fz> ap < ae. The influence of milling parameters on n and σ y was described and discussed.

  4. Nanocrystalline Fe/Zr alloys: preparation by using mechanical alloying and mechanical milling processes

    NASA Astrophysics Data System (ADS)

    Rodríguez, V. A. Peña; Medina, J. Medina; Marcatoma, J. Quispe; Ayala, Ch. Rojas; Landauro, C. V.; Baggio-Saitovitch, E. M.; Passamani, E. C.

    2011-11-01

    Nanocrystalline Fe/Zr alloys have been prepared after milling for 9 h the mixture of elemental Fe and Zr powders or the arc-melting produced Fe2Zr alloy by using mechanical alloying and mechanical milling techniques, respectively. X-ray and Mössbauer results of the Fe and Zr powders, mechanically alloyed, suggest that amorphous Fe2Zr phase and \\upalpha-Fe(Zr) nanograins have been produced with relative concentrations of 91% and 9%, respectively. Conversely, the results of the mechanically milled Fe2Zr alloy indicate that nanograins of the Fe2Zr alloy have been formed, surrounded by a magnetic inter-granular phase that are simultaneously dispersed in a paramagnetic amorphous phase.

  5. Pioneering In Situ Recrystallization during Bead Milling: A Top-down Approach to Prepare Zeolite A Nanocrystals.

    PubMed

    Anand, Chokkalingam; Yamaguchi, Yudai; Liu, Zhendong; Ibe, Sayoko; Elangovan, Shanmugam P; Ishii, Toshihiro; Ishikawa, Tsuyoshi; Endo, Akira; Okubo, Tatsuya; Wakihara, Toru

    2016-07-05

    Top-down approach has been viewed as an efficient and straightforward method to prepare nanosized zeolites. Yet, the mechanical breaking of zeolite causes amorphization, which usually requires a post-milling recrystallization to obtain fully crystalline nanoparticles. Herein we present a facile methodology to prepare zeolite nanocrystals, where milling and recrystallization can be performed in situ. A milling apparatus specially designed to work under conditions of high alkalinity and temperature enables the in situ recrystallization during milling. Taking zeolite A as an example, we demonstrate its size reduction from ~3 μm to 66 nm in 30 min, which is quite faster than previous methods reported. Three functions, viz., miniaturization, amorphization and recrystallization were found to take effect concurrently during this one-pot process. The dynamic balance between these three functions was achieved by adjusting the milling period and temperature, which lead to the tuning of zeolite A particle size. Particle size and crystallinity of the zeolite A nanocrystals were confirmed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and water adsorption-desorption. This work presents a pioneering advancement in this field of nanosized zeolites, and will facilitate the mass production as well as boost the wide applications of nanosized zeolites.

  6. Pioneering In Situ Recrystallization during Bead Milling: A Top-down Approach to Prepare Zeolite A Nanocrystals

    PubMed Central

    Anand, Chokkalingam; Yamaguchi, Yudai; Liu, Zhendong; Ibe, Sayoko; Elangovan, Shanmugam P.; Ishii, Toshihiro; Ishikawa, Tsuyoshi; Endo, Akira; Okubo, Tatsuya; Wakihara, Toru

    2016-01-01

    Top-down approach has been viewed as an efficient and straightforward method to prepare nanosized zeolites. Yet, the mechanical breaking of zeolite causes amorphization, which usually requires a post-milling recrystallization to obtain fully crystalline nanoparticles. Herein we present a facile methodology to prepare zeolite nanocrystals, where milling and recrystallization can be performed in situ. A milling apparatus specially designed to work under conditions of high alkalinity and temperature enables the in situ recrystallization during milling. Taking zeolite A as an example, we demonstrate its size reduction from ~3 μm to 66 nm in 30 min, which is quite faster than previous methods reported. Three functions, viz., miniaturization, amorphization and recrystallization were found to take effect concurrently during this one-pot process. The dynamic balance between these three functions was achieved by adjusting the milling period and temperature, which lead to the tuning of zeolite A particle size. Particle size and crystallinity of the zeolite A nanocrystals were confirmed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and water adsorption-desorption. This work presents a pioneering advancement in this field of nanosized zeolites, and will facilitate the mass production as well as boost the wide applications of nanosized zeolites. PMID:27378145

  7. Preparation of a Bimetal Using Mechanical Alloying for Environmental or Industrial Use

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline; Geiger, Cherie; Clausen, Christian

    2013-01-01

    Following the 1976 Toxic Substances Control Act ban on their manufacture, PCBs remain an environmental threat. PCBs are known to bio-accumulate and concentrate in fatty tissues. Further complications arise from the potential for contamination of commercial mixtures with other more toxic chlorinated compounds such as polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Until recently, only one option was available for the treatment of PCB-contaminated materials: incineration. This may prove to be more detrimental to the environment than the PCBs themselves due to the potential for formation of PCDDs. Metals have been used for the past ten years for the remediation of halogenated solvents and other contaminants in the environment; however, zero-valent metals alone do not possess the activity required to dehalogenate PCBs. Palladium has been shown to act as an excellent catalyst for the dechlorination of PCBs with active metals. This invention is a method for the production of a palladium/magnesium bimetal capable of dechlorinating PCBs using mechanical milling/mechanical alloying. Other base metals and catalysts may also be alloyed together (e.g., nickel or zinc) to create a similarly functioning catalyst system. Several bimetal catalyst systems currently can be used for processes such as hydrogen peroxide synthesis, oxidation of ethane, selective oxidation, hydrogenation, and production of syngas for further conversion to clean fuels. The processes for making these bimetal catalysts often involve vapor deposition. This technology provides an alternative to vapor deposition that may provide equally active catalysts. A hydrogenation catalyst including a base material coated with a catalytic metal is made using mechanical milling techniques. The hydrogenation catalysts are used as an excellent catalyst for the dehalogenation of contaminated compounds and the remediation of other industrial compounds. The mechanical milling technique is simpler and cheaper than previously used methods for producing hydrogenation catalysts. Preferably, the hydrogenation catalyst is a bimetallic particle formed from a zero-valent iron or zero-valent magnesium particle coated with palladium that is impregnated onto a high-surface-area graphite support. The zero-valent metal particles should be microscale or nanoscale zero-valent magnesium or zero-valent iron particles. Other zero-valent metal particles and combinations may be used. Additionally, the base material may be selected from a variety of minerals including, but not limited to, alumina and zeolites. The catalytic metal is preferably selected from the group consisting of noble metals and transition metals, preferably palladium. The mechanical milling process includes milling the base material with a catalytic metal impregnated into a high-surface-area support to form the hydrogenation catalyst. In a preferred mechanical milling process, a zero-valent metal particle is provided as the base material, preferably having a particle size of less than about 10 microns, preferably 0.1 to 10 microns or smaller, prior to milling. The catalytic metal is supported on a conductive carbon support structure prior to milling. For example, palladium may be impregnated on a graphite support. Other support structures such as semiconductive metal oxides may also be used.

  8. 8. VIEW TO SOUTHEAST, DRYERS, GRINDING/ROD MILL, MECHANIC SHED, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW TO SOUTHEAST, DRYERS, GRINDING/ROD MILL, MECHANIC SHED, AND SKINNER SALT ROASTERS. - Vanadium Corporation of America (VCA) Naturita Mill, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  9. 3. VIEW TO NORTHEAST, MECHANIC SHED, DRYERS, GRINDING/ROD MILL, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW TO NORTHEAST, MECHANIC SHED, DRYERS, GRINDING/ROD MILL, AND SKINNER SALT ROASTERS. - Vanadium Corporation of America (VCA) Naturita Mill, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  10. Flat ion milling: a powerful tool for preparation of cross-sections of lead-silver alloys.

    PubMed

    Brodusch, Nicolas; Boisvert, Sophie; Gauvin, Raynald

    2013-06-01

    While conventional mechanical and chemical polishing results in stress, deformation and polishing particles embedded on the surface, flat milling with Ar+ ions erodes the material with no mechanical artefacts. This flat milling process is presented as an alternative method to prepare a Pb-Ag alloy cross-section for scanning electron microscopy. The resulting surface is free of scratches with very little to no stress induced, so that electron diffraction and channelling contrast are possible. The results have shown that energy dispersive spectrometer (EDS) mapping, electron channelling contrast imaging and electron backscatter diffraction can be conducted with only one sample preparation step. Electron diffraction patterns acquired at 5 keV possessed very good pattern quality, highlighting an excellent surface condition. An orientation map was acquired at 20 keV with an indexing rate of 90.1%. An EDS map was performed at 5 keV, and Pb-Ag precipitates of sizes lower than 100 nm were observed. However, the drawback of the method is the generation of a noticeable surface topography resulting from the interaction of the ion beam with a polycrystalline and biphasic sample.

  11. 7. VIEW TO EAST, MILL WAREHOUSE, DRYERS, GRINDING/ROD MILL, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW TO EAST, MILL WAREHOUSE, DRYERS, GRINDING/ROD MILL, AND MECHANIC SHED. - Vanadium Corporation of America (VCA) Naturita Mill, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  12. Structural and magnetic properties of new uniaxial nanocrystalline Pr5Co19 compound

    NASA Astrophysics Data System (ADS)

    Bouzidi, W.; Mliki, N.; Bessais, L.

    2017-11-01

    Highly-coercive nanocrystalline Pr5Co19 powders have been synthesized by mechanical milling for the first time. The structural properties are studied by X-ray diffraction and refined with Rietveld method. This analysis revealed that whatever annealing temperature, samples crystallize in the rhombohedral (3R) of Ce5Co19-type structure (space group R 3 bar m). The magnetization curve as a function of temperature shows a magnetic transition state at the Curie temperature TC = 690 K. The optimum hard magnetic properties have been obtained for Pr5Co19 milled for 5 h and annealed at 1048 K for 30 min. These alloys exhibit a coercivity of 15 kOe at room temperature. This high coercivity is attributed to the high uniaxial magnetocrystalline anisotropy, nanoscale grain size, and to the homogeneous nanostructure developed by mechanical milling process and subsequent annealing.

  13. Rapid Focused Ion Beam Milling Based Fabrication of Plasmonic Nanoparticles and Assemblies via "Sketch and Peel" Strategy.

    PubMed

    Chen, Yiqin; Bi, Kaixi; Wang, Qianjin; Zheng, Mengjie; Liu, Qing; Han, Yunxin; Yang, Junbo; Chang, Shengli; Zhang, Guanhua; Duan, Huigao

    2016-12-27

    Focused ion beam (FIB) milling is a versatile maskless and resistless patterning technique and has been widely used for the fabrication of inverse plasmonic structures such as nanoholes and nanoslits for various applications. However, due to its subtractive milling nature, it is an impractical method to fabricate isolated plasmonic nanoparticles and assemblies which are more commonly adopted in applications. In this work, we propose and demonstrate an approach to reliably and rapidly define plasmonic nanoparticles and their assemblies using FIB milling via a simple "sketch and peel" strategy. Systematic experimental investigations and mechanism studies reveal that the high reliability of this fabrication approach is enabled by a conformally formed sidewall coating due to the ion-milling-induced redeposition. Particularly, we demonstrated that this strategy is also applicable to the state-of-the-art helium ion beam milling technology, with which high-fidelity plasmonic dimers with tiny gaps could be directly and rapidly prototyped. Because the proposed approach enables rapid and reliable patterning of arbitrary plasmonic nanostructures that are not feasible to fabricate via conventional FIB milling process, our work provides the FIB milling technology an additional nanopatterning capability and thus could greatly increase its popularity for utilization in fundamental research and device prototyping.

  14. Optimal Cluster Mill Pass Scheduling With an Accurate and Rapid New Strip Crown Model

    NASA Astrophysics Data System (ADS)

    Malik, Arif S.; Grandhi, Ramana V.; Zipf, Mark E.

    2007-05-01

    Besides the requirement to roll coiled sheet at high levels of productivity, the optimal pass scheduling of cluster-type reversing cold mills presents the added challenge of assigning mill parameters that facilitate the best possible strip flatness. The pressures of intense global competition, and the requirements for increasingly thinner, higher quality specialty sheet products that are more difficult to roll, continue to force metal producers to commission innovative flatness-control technologies. This means that during the on-line computerized set-up of rolling mills, the mathematical model should not only determine the minimum total number of passes and maximum rolling speed, it should simultaneously optimize the pass-schedule so that desired flatness is assured, either by manual or automated means. In many cases today, however, on-line prediction of strip crown and corresponding flatness for the complex cluster-type rolling mills is typically addressed either by trial and error, by approximate deflection models for equivalent vertical roll-stacks, or by non-physical pattern recognition style models. The abundance of the aforementioned methods is largely due to the complexity of cluster-type mill configurations and the lack of deflection models with sufficient accuracy and speed for on-line use. Without adequate assignment of the pass-schedule set-up parameters, it may be difficult or impossible to achieve the required strip flatness. In this paper, we demonstrate optimization of cluster mill pass-schedules using a new accurate and rapid strip crown model. This pass-schedule optimization includes computations of the predicted strip thickness profile to validate mathematical constraints. In contrast to many of the existing methods for on-line prediction of strip crown and flatness on cluster mills, the demonstrated method requires minimal prior tuning and no extensive training with collected mill data. To rapidly and accurately solve the multi-contact problem and predict the strip crown, a new customized semi-analytical modeling technique that couples the Finite Element Method (FEM) with classical solid mechanics was developed to model the deflection of the rolls and strip while under load. The technique employed offers several important advantages over traditional methods to calculate strip crown, including continuity of elastic foundations, non-iterative solution when using predetermined foundation moduli, continuous third-order displacement fields, simple stress-field determination, and a comparatively faster solution time.

  15. Mechanism of solid state amorphization of glucose upon milling.

    PubMed

    Dujardin, N; Willart, J F; Dudognon, E; Danède, F; Descamps, M

    2013-02-07

    Crystalline α-glucose is known to amorphize upon milling at -15 °C while it remains structurally invariant upon milling at room temperature. We have taken advantage of this behavior to compare the microstructural evolutions of the material in both conditions in order to identify the essential microstructural features which drive the amorphization process upon milling. The investigations have been performed by differential scanning calorimetry and by powder X-ray diffraction. The results indicate that two different amorphization mechanisms occur upon milling: an amorphization at the surface of crystallites due to the mechanical shocks and a spontaneous amorphization of the crystallites as they reach a critical size, which is close to 200 Å in the particular case of α-glucose.

  16. Microstructures and mechanical properties of nanocrystalline NiTi intermetallics formed by mechanosynthesis

    NASA Astrophysics Data System (ADS)

    Arunkumar, S.; Kumaravel, P.; Velmurugan, C.; Senthilkumar, V.

    2018-01-01

    The formulation of nanocrystalline NiTi shape memory alloys has potential effects in mechanical stimulation and medical implantology. The present work elucidates the effect of milling time on the product's structural characteristics, chemical composition, and microhardness for NiTi synthesized by mechanical alloying for different milling durations. Increasing the milling duration led to the formation of a nanocrystalline NiTi intermetallic at a higher level. The formation of nanocrystalline materials was directed through cold fusion, fracturing, and the development of a steady state, which were influenced by the accumulation of strain energy. In the morphological study, uninterrupted cold diffusion and fracturing were visualized using transmission electron microscopy. Particle size analysis revealed that the mean particle size was reduced to 93 μm after 20 h of milling. The mechanical strength was enhanced by the formation of a nanocrystalline intermetallic phase at longer milling time, which was confirmed by the results of Vickers hardness analyses.

  17. 40 CFR 430.70 - Applicability; description of the mechanical pulp subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... mechanical pulp subcategory. 430.70 Section 430.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Mechanical Pulp Subcategory § 430.70 Applicability; description of the mechanical pulp subcategory. The... groundwood chemi-mechanical mills; the production of pulp and paper at groundwood mills through the...

  18. Fabrication of metal matrix composites by powder metallurgy: A review

    NASA Astrophysics Data System (ADS)

    Manohar, Guttikonda; Dey, Abhijit; Pandey, K. M.; Maity, S. R.

    2018-04-01

    Now a day's metal matrix components are used in may industries and it finds the applications in many fields so, to make it as better performable materials. So, the need to increase the mechanical properties of the composites is there. As seen from previous studies major problem faced by the MMC's are wetting, interface bonding between reinforcement and matrix material while they are prepared by conventional methods like stir casting, squeeze casting and other techniques which uses liquid molten metals. So many researchers adopt PM to eliminate these defects and to increase the mechanical properties of the composites. Powder metallurgy is one of the better ways to prepare composites and Nano composites. And the major problem faced by the conventional methods are uniform distribution of the reinforcement particles in the matrix alloy, many researchers tried to homogeneously dispersion of reinforcements in matrix but they find it difficult through conventional methods, among all they find ultrasonic dispersion is efficient. This review article is mainly concentrated on importance of powder metallurgy in homogeneous distribution of reinforcement in matrix by ball milling or mechanical milling and how powder metallurgy improves the mechanical properties of the composites.

  19. A Holistic Multi Evidence Approach to Study the Fragmentation Behaviour of Crystalline Mannitol

    PubMed Central

    Koner, Jasdip S.; Rajabi-Siahboomi, Ali; Bowen, James; Perrie, Yvonne; Kirby, Daniel; Mohammed, Afzal R.

    2015-01-01

    Mannitol is an essential excipient employed in orally disintegrating tablets due to its high palatability. However its fundamental disadvantage is its fragmentation during direct compression, producing mechanically weak tablets. The primary aim of this study was to assess the fracture behaviour of crystalline mannitol in relation to the energy input during direct compression, utilising ball milling as the method of energy input, whilst assessing tablet characteristics of post-milled powders. Results indicated that crystalline mannitol fractured at the hydrophilic (011) plane, as observed through SEM, alongside a reduction in dispersive surface energy. Disintegration times of post-milled tablets were reduced due to the exposure of the hydrophilic plane, whilst more robust tablets were produced. This was shown through higher tablet hardness and increased plastic deformation profiles of the post-milled powders, as observed with a lower yield pressure through an out-of-die Heckel analysis. Evaluation of crystal state using x-ray diffraction/differential scanning calorimetry showed that mannitol predominantly retained the β-polymorph; however x-ray diffraction provided a novel method to calculate energy input into the powders during ball milling. It can be concluded that particle size reduction is a pragmatic strategy to overcome the current limitation of mannitol fragmentation and provide improvements in tablet properties. PMID:26553127

  20. A Holistic Multi Evidence Approach to Study the Fragmentation Behaviour of Crystalline Mannitol

    NASA Astrophysics Data System (ADS)

    Koner, Jasdip S.; Rajabi-Siahboomi, Ali; Bowen, James; Perrie, Yvonne; Kirby, Daniel; Mohammed, Afzal R.

    2015-11-01

    Mannitol is an essential excipient employed in orally disintegrating tablets due to its high palatability. However its fundamental disadvantage is its fragmentation during direct compression, producing mechanically weak tablets. The primary aim of this study was to assess the fracture behaviour of crystalline mannitol in relation to the energy input during direct compression, utilising ball milling as the method of energy input, whilst assessing tablet characteristics of post-milled powders. Results indicated that crystalline mannitol fractured at the hydrophilic (011) plane, as observed through SEM, alongside a reduction in dispersive surface energy. Disintegration times of post-milled tablets were reduced due to the exposure of the hydrophilic plane, whilst more robust tablets were produced. This was shown through higher tablet hardness and increased plastic deformation profiles of the post-milled powders, as observed with a lower yield pressure through an out-of-die Heckel analysis. Evaluation of crystal state using x-ray diffraction/differential scanning calorimetry showed that mannitol predominantly retained the β-polymorph however x-ray diffraction provided a novel method to calculate energy input into the powders during ball milling. It can be concluded that particle size reduction is a pragmatic strategy to overcome the current limitation of mannitol fragmentation and provide improvements in tablet properties.

  1. 23. DETAIL VIEW OF THE CLUTCH MECHANISM FOR THE MILL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. DETAIL VIEW OF THE CLUTCH MECHANISM FOR THE MILL POWER DISTRIBUTION SYSTEM FROM LEFT TO RIGHT. TRANSFER WHEEL WITH A BELT THAT CONNECTS TO THE DRIVE WHEEL OF THE MAIN POWER SHAFT. THE CLUTCH MECHANISM, THE DRIVE WHEEL THAT RECEIVED ITS POWER FROM A BELT CONNECTED TO TRANSFER WHEEL IN THE ELECTRIC MOTOR ROOM (BEHIND CAMERA). - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA

  2. Review on recent developments on pulp and paper mill wastewater treatment.

    PubMed

    Kamali, Mohammadreza; Khodaparast, Zahra

    2015-04-01

    Economic benefits of the pulp and paper industry have led it to be one of the most important industrial sections in the world. Nevertheless, in recent years, pulp and paper mills are facing challenges with the energy efficiency mechanisms and management of the resulting pollutants, considering the environmental feedbacks and ongoing legal requirements. This study reviews and discusses the recent developments of affordable methods dealing with pulp and paper mill wastewaters. To this end, the current state of the various processes used for pulp and paper production from virgin or recovered fibers has been briefly reviewed. Also, the relevant contaminants have been investigated, considering the used raw materials and applied techniques as the subject for further discussion about the relevant suitable wastewater treatment methods. The results of the present study indicated that adopting the integrated methods, alongside a combination of biological (e.g., anaerobic digestion) and physicochemical (e.g., novel Fenton reactions) treatment methods, can be environmentally and economically preferable to minimize environmental contaminants and energy recycling. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Transformations in oxides induced by high-energy ball-milling.

    PubMed

    Šepelák, Vladimir; Bégin-Colin, Sylvie; Le Caër, Gérard

    2012-10-21

    This paper, by no means exhaustive, focuses on high-energy ball-milling of oxides, on their mechanically induced changes and on the consequences of such changes on their physical and chemical properties. High-energy ball-milling offers a fortunate combination of technical simplicity and of complexity both of physical mechanisms which act during milling and of mechanosynthesized materials. Its basic interest, which stems from the large diversity of routes it offers to prepare oxides either directly or indirectly, is illustrated with various families of oxides. The direct path is to be favoured when as-milled oxides are of interest per se because of their nanocrystalline characteristics, their defects or their modified structures which result from mechanically driven phase transformations. The indirect path consists of a sequence of steps starting with mechanically activated oxides which may be subsequently just annealed or submitted to a combination of thermal treatments, with the possible occurrence of various chemical reactions, to prepare the sought-after materials with potential gains in processing temperatures and times. High energy ball-milling of oxides is more and more currently used to activate powders and to prepare nano-oxides at moderate temperatures. The interest of an activation step is well illustrated by the broad development of doped titania powders, synthesized by heat treatment of pre-ground reactants, for photocatalytic applications or to develop antibacterial materials. Another important class of applications of high-energy ball-milling is the formation of composites. It is exemplified here with the case of oxide-dispersed strengthened alloys whose properties are considerably improved by a dispersion of ultra-stable nanosized oxides whose formation mechanisms were recently described. The basic understanding of the mechanisms by which oxides or oxide mixtures evolve by high-energy ball-milling appears to be less advanced than it is for metallic materials essentially because of the overall complexity of the oxide structures, of their surfaces, of their defects and of their mechanical behavior.

  4. Fabrication of an r-Al2Ti intermetallic matrix composite reinforced with α-Al2O3 ceramic by discontinuous mechanical milling for thermite reaction

    NASA Astrophysics Data System (ADS)

    Mosleh, A.; Ehteshamzadeh, M.; Taherzadeh Mousavian, R.

    2014-10-01

    In this study, a powder mixture with an Al/TiO2 molar ratio of 10/3 was used to form an r-Al2Ti intermetallic matrix composite (IMC) reinforced with α-Al2O3 ceramic by a novel milling technique, called discontinuous mechanical milling (DMM) instead of milling and ignition of the produced thermite. The results of energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) of samples with varying milling time indicate that this fabrication process requires considerable mechanical energy. It is shown that Al2Ti-Al2O3 IMC with small grain size was produced by DMM after 15 h of ball milling. Peaks for γ-TiAl as well as Al2Ti and Al2O3 are observed in XRD patterns after DMM followed by heat treatment. The microhardness of the DMM-treated composite produced after heat treatment was higher than Hv 700.

  5. Understanding Longitudinal Wood Fiber Ultra-structure for Producing Cellulose Nanofibrils Using Disk Milling with Diluted Acid Prehydrolysis

    NASA Astrophysics Data System (ADS)

    Qin, Yanlin; Qiu, Xueqing; Zhu, J. Y.

    2016-10-01

    Here we used dilute oxalic acid to pretreat a kraft bleached Eucalyptus pulp (BEP) fibers to facilitate mechanical fibrillation in producing cellulose nanofibrils using disk milling with substantial mechanical energy savings. We successfully applied a reaction kinetics based combined hydrolysis factor (CHFX) as a severity factor to quantitatively control xylan dissolution and BEP fibril deploymerization. More importantly, we were able to accurately predict the degree of polymerization (DP) of disk-milled fibrils using CHFX and milling time or milling energy consumption. Experimentally determined ratio of fibril DP and number mean fibril height (diameter d), DP/d, an aspect ratio measurer, were independent of the processing conditions. Therefore, we hypothesize that cellulose have a longitudinal hierarchical structure as in the lateral direction. Acid hydrolysis and milling did not substantially cut the “natural” chain length of cellulose fibrils. This cellulose longitudinal hierarchical model provides support for using weak acid hydrolysis in the production of cellulose nanofibrils with substantially reduced energy input without negatively affecting fibril mechanical strength.

  6. Development of anaerobic digestion methods for palm oil mill effluent (POME) treatment.

    PubMed

    Poh, P E; Chong, M F

    2009-01-01

    Palm oil mill effluent (POME) is a highly polluting wastewater that pollutes the environment if discharged directly due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD) concentration. Anaerobic digestion has been widely used for POME treatment with large emphasis placed on capturing the methane gas released as a product of this biodegradation treatment method. The anaerobic digestion method is recognized as a clean development mechanism (CDM) under the Kyoto protocol. Certified emission reduction (CER) can be obtained by using methane gas as a renewable energy. This review aims to discuss the various anaerobic treatments of POME and factors that influence the operation of anaerobic treatment. The POME treatment at both mesophilic and thermophilic temperature ranges are also analyzed.

  7. Structure and magnetic properties of mechanically alloyed Co and Co-Ni

    NASA Astrophysics Data System (ADS)

    Guessasma, S.; Fenineche, N.

    The influence of milling process on magnetic properties of Co and Co-Ni materials is studied. Coercivity, squareness ratio and crystallite size of mechanically alloyed Co-Ni material were related to milling time. For Co material, coercivity, cubic phase ratio and crystallite size were related to milling energy considering the vial and plateau rotation velocities. An artificial neural network (ANN) combining the parameters for both materials is used to predict magnetic and structure results versus milling conditions. Predicted results showed that milling energy is mostly dependent on the ratio vial to plateau rotation velocities and that milling times larger than 40 h do not add significant change to both structure and magnetic responses. Magnetic parameters were correlated to crystallite size and the D 6 law was only valid for small sizes.

  8. The kinetics of composite particle formation during mechanical alloying

    NASA Technical Reports Server (NTRS)

    Aikin, B. J. M.; Courtney, T. H.

    1993-01-01

    The kinetics of composite particle formation during attritor milling of insoluble binary elemental powders have been examined. The effects of processing conditions (i.e., mill power, temperature, and charge ratio) on these kinetics were studied. Particle size distributions and fractions of elemental and composite particles were determined as functions of milling time and processing conditions. This allowed the deduction of phenomenological rate constants describing the propensity for fracture and welding during processing. For the mill-operating conditions investigated, the number of particles in the mill generally decreased with milling time, indicating a greater tendency for particle welding than fracture. Moreover, a bimodal size distribution is often obtained as a result of preferential welding. Copper and chromium 'alloy' primarily by encapsulation of Cr particles within Cu. This form of alloying also occurs in Cu-Nb alloys processed at low mill power and/or for short milling times. For other conditions, however, Cu-Nb alloys develop a lamellar morphology characteristic of mechanically alloyed two-phase ductile metals. Increasing mill power or charge (ball-to-powder weight) ratio (CR) increases the rate of composite particle formation.

  9. Mechanical alloying of lanthana-bearing nanostructured ferritic steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somayeh Paseban; Indrajit Charit; Yaqiao Q. Wu

    2013-09-01

    A novel nanostructured ferritic steel powder with the nominal composition Fe–14Cr–1Ti–0.3Mo–0.5La2O3 (wt.%) was developed via high energy ball milling. La2O3 was added to this alloy instead of the traditionally used Y2O3. The effects of varying the ball milling parameters, such as milling time, steel ball size and ball to powder ratio, on the mechanical properties and micro structural characteristics of the as-milled powder were investigated. Nanocrystallites of a body-centered cubic ferritic solid solution matrix with a mean size of approximately 20 nm were observed by transmission electron microscopy. Nanoscale characterization of the as-milled powder by local electrode atom probe tomographymore » revealed the formation of Cr–Ti–La–O-enriched nanoclusters during mechanical alloying. The Cr:Ti:La:O ratio is considered “non-stoichiometric”. The average size (radius) of the nanoclusters was about 1 nm, with number density of 3.7 1024 m3. The mechanism for formation of nanoclusters in the as-milled powder is discussed. La2O3 appears to be a promising alternative rare earth oxide for future nanostructured ferritic steels.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhi-jie; Dai, Le-yang; Yang, De-zheng

    Highlights: • A novel and high efficiency synthesizing AlN powders method combining mechanical ball milling and DBDP has been developed. • The particle size, the crystallite size, the lattice distortion, the morphology of Al{sub 2}O{sub 3} powders, and the AlN conversion rate are investigated and compared under the ball milled Al{sub 2}O{sub 3} powders with DBDP and without DBDP. • The ball milled Al{sub 2}O{sub 3} powders with DBDP have small spherical structure morphology with very fine particles size and high specific surface area, which result in a higher chemical efficiency and a higher AlN conversion rate at lower thermalmore » temperature. - Abstract: In this paper, aluminum nitride (AlN) powers have been produced with a novel and high efficiency method by thermal annealing at 1100–1600 °C of alumina (Al{sub 2}O{sub 3}) powders which were previously ball milled for various time up to 40 h with and without the assistant of dielectric barrier discharge plasma (DBDP). The ball milled Al{sub 2}O{sub 3} powders with DBDP and without DBDP and the corresponding synthesized AlN powers are characterized by X-ray diffraction, scanning electron microscope, and transmission electron microscopy. From the characteristics of the ball milled Al{sub 2}O{sub 3} powders with DBDP and without DBDP, it can be seen that the ball milled Al{sub 2}O{sub 3} powders with DBDP have small spherical structure morphology with very fine particles size and high specific surface area, which result in a higher chemical efficiency and a higher AlN conversion rate at lower thermal temperature. Meanwhile, the synthesized AlN powders can be known as hexagonal AlN with fine crystal morphology and irregular lump-like structure, and have uniform distribution with the average particle size of about between 500 nm and 1000 nm. This provides an important method for fabricating ultra fine powders and synthesizing nitrogen compounds.« less

  11. Synthesis of Nano-Crystalline Cu-Cr Alloy by Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Sheibani, S.; Heshmati-Manesh, S.; Ataie, A.

    In this paper, the influence of toluene as the process control agent (PCA) and pre-milling on the extension of solid solubility of 7 wt.% Cr in Cu by mechanical alloying in a high energy ball mill was investigated. The structural evolution and microstructure were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques, respectively. The solid solution formation at different conditions was analyzed by copper lattice parameter change during the milling process. It was found that both the presence of PCA and pre-milling of Cr powder lead to faster dissolution of Cr. The mean crystallite size was also calculated and showed to be about 10 nm after 80 hours of milling.

  12. Mechanical Properties of β-Ti-35Nb-2.5Sn Alloy Synthesized by Mechanical Alloying and Pulsed Current Activated Sintering

    NASA Astrophysics Data System (ADS)

    Omran, Abdel-Nasser; Woo, Kee-Do; Lee, Hyun Bom

    2012-12-01

    A developed Ti-35 pct Nb-2.5 pct Sn (wt pct) alloy was synthesized by mechanical alloying using high-energy ball-milled powders, and the powder consolidation was done by pulsed current activated sintering (PCAS). The starting powder materials were mixed for 24 hours and then milled by high-energy ball milling (HEBM) for 1, 4, and 12 hours. The bulk solid samples were fabricated by PCAS at 1073 K to 1373 K (800 °C to 1100 °C) for a short time, followed by rapid cooling to 773 K (500 °C). The relative density of the sintered samples was about 93 pct. The Ti was completely transformed from α to β-Ti phase after milling for 12 hours in powder state, and the specimen sintered at 1546 K (1273 °C) was almost transformed to β-Ti phase. The homogeneity of the sintered specimen increased with increasing milling time and sintering temperature, as did its hardness, reaching 400 HV after 12 hours of milling. The Young's modulus was almost constant for all sintered Ti-35 pct Nb-2.5 pct Sn specimens at different milling times. The Young's modulus was low (63.55 to 65.3 GPa) compared to that of the standard alloy of Ti-6Al-4V (100 GPa). The wear resistance of the sintered specimen increased with increasing milling time. The 12-hour milled powder exhibited the best wear resistance.

  13. Hot pressing titanium metal matrix composites reinforced with graphene nanoplatelets through an in-situ reactive method

    NASA Astrophysics Data System (ADS)

    Mu, X. N.; Zhang, H. M.; Cai, H. N.; Fan, Q. B.; Wu, Y.; Fu, Z. J.; Wang, Q. X.

    2017-05-01

    This study proposed an in-situ reactive method that uses graphene as a reinforcement to fabricate titanium metal matrix composites (TiMMCs) through powder metallurgy processing route. The volume fraction of graphene nanoplatelets was 1.8%vol, and the pure titanium was used as a matrix. The Archimedes density, hardness, microstructure and mechanical properties of specimens were compared under different ball milling times (20 min and 2.5 h) and hot pressing temperatures (900°C, 1150°C, and 1300°C,). The ultimate tensile strength of 630 MPa, which demonstrated a 27.3% increase compared with pure Ti, was achieved under a ball milling time of 20 min. Elongation increased with increasing temperature. When the ball milling time and hot pressing temperature were increased to 2.5 h and 1300 °C, respectively, the ultimate tensile strength of the composites reached 750 MPa, showing an increase of 51.5% compared with pure Ti.

  14. Fenton-like degradation of Methylene Blue using paper mill sludge-derived magnetically separable heterogeneous catalyst: Characterization and mechanism.

    PubMed

    Zhou, Guoqiang; Chen, Ziwen; Fang, Fei; He, Yuefeng; Sun, Haili; Shi, Huixiang

    2015-09-01

    For the paper industry, the disposal and management of the yielded sludge are a considerable challenge. In our work, the paper mill sludge-derived magnetically separable heterogeneous catalyst (PMS-Fe-380) was prepared easily through a facile synthesis method. The morphology and structure of PMS-Fe-380 were fully characterized by means of X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and Brunauer-Emmet-Teller analysis. The catalytic activity of PMS-Fe-380 was evaluated by degradation of Methylene Blue (MB). The reusability and stability of PMS-Fe-380 were evaluated in five repeated runs, which suggested that PMS-Fe-380 manifested excellent stability of catalytic activity. Moreover, leaching tests indicated that the leached iron is negligible (<0.5mg/L). This study provides an alternative environmentally friendly reuse method for paper mill sludge and a novel catalyst PMS-Fe-380 that can be considered as a promising heterogeneous Fenton-like catalyst. Copyright © 2015. Published by Elsevier B.V.

  15. Microstructure and phase analysis of Zirconia-ODS (Oxide Dispersion Strengthen) alloy sintered by APS with milling time variation

    NASA Astrophysics Data System (ADS)

    Sugeng, Bambang; Bandriyana, B.; Sugeng, Bambang; Salam, Rohmad; Sumariyo; Sujatno, Agus; Dimyati, Arbi

    2018-03-01

    Investigation on the relationship between the process conditions of milling time and the microstructure on the synthesis of the zirconia-ODS steel alloy has been performed. The elemental composition of the alloy was determined on 20 wt% Cr and zirconia dispersoid of 0.50 wt%. The synthesis was carried out by powder metallurgy method with milling time of 3, 5 and 7 hours, static compression of 20 Ton and sintering process for 4 minutes using the APS (Arc Plasma Sintering) equipment. SEM-EDX and XRD test was carried out to characterize the phase and morphology of the alloy and the effect to the mechanical properties was evaluated by the Vickers Hardness testing. The synthesis produced sample of ODS steel with good dense and very little porous with the Fe-Cr phase that clearly observed in the XRD peak pattern. In addition milling time increased the homogeneously of Fe-Cr phase formulation, enhanced the grain refinement of the structure and increase the hardness of the alloy.

  16. Investigation of the milling capabilities of the F10 Fine Grind mill using Box-Behnken designs.

    PubMed

    Tan, Bernice Mei Jin; Tay, Justin Yong Soon; Wong, Poh Mun; Chan, Lai Wah; Heng, Paul Wan Sia

    2015-01-01

    Size reduction or milling of the active is often the first processing step in the design of a dosage form. The ability of a mill to convert coarse crystals into the target size and size distribution efficiently is highly desirable as the quality of the final pharmaceutical product after processing is often still dependent on the dimensional attributes of its component constituents. The F10 Fine Grind mill is a mechanical impact mill designed to produce unimodal mid-size particles by utilizing a single-pass two-stage size reduction process for fine grinding of raw materials needed in secondary processing. Box-Behnken designs were used to investigate the effects of various mill variables (impeller, blower and feeder speeds and screen aperture size) on the milling of coarse crystals. Response variables included the particle size parameters (D10, D50 and D90), span and milling rate. Milled particles in the size range of 5-200 μm, with D50 ranging from 15 to 60 μm, were produced. The impeller and feeder speeds were the most critical factors influencing the particle size and milling rate, respectively. Size distributions of milled particles were better described by their goodness-of-fit to a log-normal distribution (i.e. unimodality) rather than span. Milled particles with symmetrical unimodal distributions were obtained when the screen aperture size was close to the median diameter of coarse particles employed. The capacity for high throughput milling of particles to a mid-size range, which is intermediate between conventional mechanical impact mills and air jet mills, was demonstrated in the F10 mill. Prediction models from the Box-Behnken designs will aid in providing a better guide to the milling process and milled product characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Effect of Milling Time on the Microstructure, Physical and Mechanical Properties of Al-Al₂O₃ Nanocomposite Synthesized by Ball Milling and Powder Metallurgy.

    PubMed

    Toozandehjani, Meysam; Matori, Khamirul Amin; Ostovan, Farhad; Abdul Aziz, Sidek; Mamat, Md Shuhazlly

    2017-10-26

    The effect of milling time on the morphology, microstructure, physical and mechanical properties of pure Al-5 wt % Al₂O₃ (Al-5Al₂O₃) has been investigated. Al-5Al₂O₃ nanocomposites were fabricated using ball milling in a powder metallurgy route. The increase in the milling time resulted in the homogenous dispersion of 5 wt % Al₂O₃ nanoparticles, the reduction of particle clustering, and the reduction of distances between the composite particles. The significant grain refining during milling was revealed which showed as a reduction of particle size resulting from longer milling time. X-Ray diffraction (XRD) analysis of the nanocomposite powders also showed that designated ball milling contributes to the crystalline refining and accumulation of internal stress due to induced severe plastic deformation of the particles. It can be argued that these morphological and microstructural variations of nanocomposite powders induced by designated ball milling time was found to contribute to an improvement in the density, densification, micro-hardness ( HV ), nano-hardness ( HN ), and Young's modulus ( E ) of Al-5Al₂O₃ nanocomposites. HV , HN , and E values of nanocomposites were increased by ~48%, 46%, and 40%, after 12 h of milling, respectively.

  18. Effect of milling on DSC thermogram of excipient adipic acid.

    PubMed

    Ng, Wai Kiong; Kwek, Jin Wang; Yuen, Aaron; Tan, Chin Lee; Tan, Reginald

    2010-03-01

    The purpose of this research was to investigate why and how mechanical milling results in an unexpected shift in differential scanning calorimetry (DSC) measured fusion enthalpy (Delta(fus)H) and melting point (T(m)) of adipic acid, a pharmaceutical excipient. Hyper differential scanning calorimetry (hyper-DSC) was used to characterize adipic acid before and after ball-milling. An experimental study was conducted to evaluate previous postulations such as electrostatic charging using the Faraday cage method, crystallinity loss using powder X-ray diffraction (PXRD), thermal annealing using DSC, impurities removal using thermal gravimetric analysis (TGA) and Karl Fischer titration. DSC thermograms showed that after milling, the values of Delta(fus)H and T(m) were increased by approximately 9% and 5 K, respectively. Previous suggestions of increased electrostatic attraction, change in particle size distribution, and thermal annealing during measurements did not explain the differences. Instead, theoretical analysis and experimental findings suggested that the residual solvent (water) plays a key role. Water entrapped as inclusions inside adipic acid during solution crystallization was partially evaporated by localized heating at the cleaved surfaces during milling. The correlation between the removal of water and melting properties measured was shown via drying and crystallization experiments. These findings show that milling can reduce residual solvent content and causes a shift in DSC results.

  19. Matrix Structure Evolution and Nanoreinforcement Distribution in Mechanically Milled and Spark Plasma Sintered Al-SiC Nanocomposites.

    PubMed

    Saheb, Nouari; Aliyu, Ismaila Kayode; Hassan, Syed Fida; Al-Aqeeli, Nasser

    2014-09-19

    Development of homogenous metal matrix nanocomposites with uniform distribution of nanoreinforcement, preserved matrix nanostructure features, and improved properties, was possible by means of innovative processing techniques. In this work, Al-SiC nanocomposites were synthesized by mechanical milling and consolidated through spark plasma sintering. Field Emission Scanning Electron Microscope (FE-SEM) with Energy Dispersive X-ray Spectroscopy (EDS) facility was used for the characterization of the extent of SiC particles' distribution in the mechanically milled powders and spark plasma sintered samples. The change of the matrix crystallite size and lattice strain during milling and sintering was followed through X-ray diffraction (XRD). The density and hardness of the developed materials were evaluated as function of SiC content at fixed sintering conditions using a densimeter and a digital microhardness tester, respectively. It was found that milling for 24 h led to uniform distribution of SiC nanoreinforcement, reduced particle size and crystallite size of the aluminum matrix, and increased lattice strain. The presence and amount of SiC reinforcement enhanced the milling effect. The uniform distribution of SiC achieved by mechanical milling was maintained in sintered samples. Sintering led to the increase in the crystallite size of the aluminum matrix; however, it remained less than 100 nm in the composite containing 10 wt.% SiC. Density and hardness of sintered nanocomposites were reported and compared with those published in the literature.

  20. An efficient and cost-effective method for preparing transmission electron microscopy samples from powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Haiming; Lin, Yaojun; Seidman, David N.

    The preparation of transmission electron microcopy (TEM) samples from powders with particle sizes larger than ~100 nm poses a challenge. The existing methods are complicated and expensive, or have a low probability of success. Herein, we report a modified methodology for preparation of TEM samples from powders, which is efficient, cost-effective, and easy to perform. This method involves mixing powders with an epoxy on a piece of weighing paper, curing the powder–epoxy mixture to form a bulk material, grinding the bulk to obtain a thin foil, punching TEM discs from the foil, dimpling the discs, and ion milling the dimpledmore » discs to electron transparency. Compared with the well established and robust grinding–dimpling–ion-milling method for TEM sample preparation for bulk materials, our modified approach for preparing TEM samples from powders only requires two additional simple steps. In this article, step-by-step procedures for our methodology are described in detail, and important strategies to ensure success are elucidated. Furthermore, our methodology has been applied successfully for preparing TEM samples with large thin areas and high quality for many different mechanically milled metallic powders.« less

  1. An efficient and cost-effective method for preparing transmission electron microscopy samples from powders

    DOE PAGES

    Wen, Haiming; Lin, Yaojun; Seidman, David N.; ...

    2015-09-09

    The preparation of transmission electron microcopy (TEM) samples from powders with particle sizes larger than ~100 nm poses a challenge. The existing methods are complicated and expensive, or have a low probability of success. Herein, we report a modified methodology for preparation of TEM samples from powders, which is efficient, cost-effective, and easy to perform. This method involves mixing powders with an epoxy on a piece of weighing paper, curing the powder–epoxy mixture to form a bulk material, grinding the bulk to obtain a thin foil, punching TEM discs from the foil, dimpling the discs, and ion milling the dimpledmore » discs to electron transparency. Compared with the well established and robust grinding–dimpling–ion-milling method for TEM sample preparation for bulk materials, our modified approach for preparing TEM samples from powders only requires two additional simple steps. In this article, step-by-step procedures for our methodology are described in detail, and important strategies to ensure success are elucidated. Furthermore, our methodology has been applied successfully for preparing TEM samples with large thin areas and high quality for many different mechanically milled metallic powders.« less

  2. 29. VIEW OF MILL FROM WEST. SHOWS SECONDARY THICKENER No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. VIEW OF MILL FROM WEST. SHOWS SECONDARY THICKENER No. 7 TANK FLOOR FRAMING AND CENTRAL MECHANISM AT CENTER. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  3. Effect of milling on particle shape and surface energy heterogeneity of needle-shaped crystals.

    PubMed

    Ho, Raimundo; Naderi, Majid; Heng, Jerry Y Y; Williams, Daryl R; Thielmann, Frank; Bouza, Peter; Keith, Adam R; Thiele, Greg; Burnett, Daniel J

    2012-10-01

    Milling and micronization of particles are routinely employed in the pharmaceutical industry to obtain small particles with desired particle size characteristics. The aim of this study is to demonstrate that particle shape is an important factor affecting the fracture mechanism in milling. Needle-shaped crystals of the β polymorph of D-mannitol were prepared from recrystallization in water. A portion of the recrystallized materials was ball-milled. Unmilled and milled sieved fractions of recrystallized D-mannitol were analyzed by dynamic image analysis (DIA) and inverse gas chromatography (IGC) at finite concentration to explain the breakage/fracture behavior. In the process of ball-milling, D-mannitol preferentially fractured along their shortest axis, exposing (011) plane with increased hydrophilicity and increased bounding rectangular aspect ratio. This is in contrary to attachment energy modeling which predicts a fracture mechanism across the (010) plane with increased hydrophobicity, and small change in particle shape. Crystal size, and more importantly, crystal shape and facet-specific mechanical properties, can dictate the fracture/cleavage behavior of organic crystalline materials. Thorough understanding of the crystal slip systems, combining attachment energy prediction with particle shape and surface characterization using DIA and IGC, are important in understanding fracture behavior of organic crystalline solids in milling and micronization.

  4. Size and morphology controlled NiSe nanoparticles as efficient catalyst for the reduction reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subbarao, Udumula; Marakatti, Vijaykumar S.; Amshumali, Mungalimane K.

    Facile and efficient ball milling and polyol methods were employed for the synthesis of nickel selenide (NiSe) nanoparticle. The particle size of the NiSe nanoparticle has been controlled mechanically by varying the ball size in the milling process. The role of the surfactants in the formation of various morphologies was studied. The compounds were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray energy dispersive spectroscopy (EDS). The efficiency of the NiSe nanoparticle as a catalyst was tested for the reduction of para-nitroaniline (PNA) to para-phenyldiamine (PPD) and para-nitrophenol (PNP) to para-aminophenol (PAP)more » using NaBH{sub 4} as the reducing agent. Particle size, morphology and the presence of surfactant played a crucial role in the reduction process. - Graphical abstract: NiSe nanoparticles in different size and morphology were synthesized using facile ball milling and polyol methods. Particle size, morphology and the presence of surfactant in these materials played a crucial role in the hydrogenation of PNA and PNP. - Highlights: • NiSe nanoparticles synthesized using ball milling and solution phase methods. • NiSe nanoparticle is an efficient catalyst for the reduction of PNA and PNP. • NiSe is found to be better than the best reported noble metal catalysts.« less

  5. Compact Process for the Preparation of Microfine Spherical High-Niobium-Containing TiAl Alloy Powders

    NASA Astrophysics Data System (ADS)

    Tong, J. B.; Lu, X.; Liu, C. C.; Wang, L. N.; Qu, X. H.

    2015-03-01

    High-Nb-containing TiAl alloys are a new generation of materials for high-temperature structural applications because of their superior high-temperature mechanical properties. The alloy powders can be widely used for additive manufacturing, thermal spraying, and powder metallurgy. Because of the difficulty of making microfine spherical alloy powders in quantity by conventional techniques, a compact method was proposed, which consisted of two-step ball milling of elemental powders and subsequent radio frequency (RF) argon plasma spheroidization. In comparison with conventional mechanical alloying techniques, the two-step milling process can be used to prepare alloy powders with uniform scale in a short milling time with no addition of process control agent. This makes the process effective and less contaminating. After RF argon plasma spheroidization, the powders produced exhibit good sphericity, and the number-average diameter is about 8.2 μm with a symmetric unimodal particle size distribution. The powders perform high composition homogeneity and contain predominately supersaturated α 2-Ti3Al phase. The oxygen and carbon contents of the spheroidized powder are 0.47% and 0.050%, respectively.

  6. 1. Photocopy of sketch showing water power drive mechanism for ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Photocopy of sketch showing water power drive mechanism for up-and-down saw mill; delineated by Charles G. Poor, Bob Levy and Janet Hochuli, 1977. - Grant's Grist & Saw Mill, Wrentham Road, Cumberland, Providence County, RI

  7. Powder processing and mechanical properties of Silver0.86Lead19Antimony telluride20 (LAST) and Lead0.95Tin0.05Tellurium - Lead sulfide 8% (Lead telluride -Lead sulfide) thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Ni, Jennifer Elisabeth

    Thermoelectric (TE) materials convert between thermal and electrical energy and when used with existing processes will increase the efficiency via waste heat recovery. Ag0.86Pb19SbTe20 (LAST) and Pb0.95Sn0.05Te - PbS 8% (PbTe-PbS) materials exhibit good thermoelectric (TE) properties and have potential applications as thermoelectric generators in waste heat recovery. However, to fully characterize the thermo-mechanical behavior of LAST and PbTe-PbS materials under in-service conditions, knowledge is needed of the mechanical and thermal properties at room and high temperature. As fracture strength is inversely proportional to the square root of grain size, cast ingots were powder processed to reduce powder particle size. Three different powder processing methods were used (1) dry milling only, (2) wet milling only, or (3) dry milling and wet milling The specimens were fabricated using hot pressing or pulsed electric current sintering (PECS) from planetary ball milled powders. In this study, elastic moduli, including Young's modulus, shear modulus, and Poisson's ratio, were measured dynamically using resonant ultrasound spectroscopy (RUS) at room temperature and as a function of temperature up to 663 K. The room temperature porosity dependence for Young's modulus followed the empirical exponential relationships common for brittle materials, with a material dependent constant bPE of 3.5 and 1.3 for LAST and PbTe-PbS, respectively. The room temperature Young's modulus for a theoretically dense specimen was 58.4 +/- 0.6 GPa and 56.2 +/- 0.4 GPa for for LAST and PbTe-PbS, respectively. For hot pressed PbTe-PbS specimens, the Vickers indentations mean hardness and fracture toughness was 1.18 + 0.09 GPa and 0.35 +/- 0.04 MPa·m 1/2. The coefficient of thermal expansion is important for understanding the mechanical response of a material to a thermal gradient or a thermal transient. For PbTe-PbS the coefficient of thermal expansion measured using dilatometry and high temperature x-ray diffraction was 21.5 x 10-6 K -1. Bloating during post-densification annealing was measured indirectly using resonant ultrasound spectroscopy and dilatometry and directly using scanning electron microscopy. Dry milled only PECS-processed PbTe-PbS specimens did not bloat during post-densification anneals up to 936 K. Hot pressed and PECS-processed specimens processed from wet milled and dry and wet milled powder bloated during densification anneals at temperatures over 603 K.

  8. A study of processing parameters in thermal-sprayed alumina and zircon mixtures

    NASA Astrophysics Data System (ADS)

    Li, Y.; Khor, K. A.

    2002-06-01

    A method of plasma spraying of alumina and zircon mixtures to form ZrO2-mullite composites has been proposed and developed. The feedstock is prepared by a combination of mechanical alloying, which allows formation of fine-grained, homogeneous solid-solution mixtures, followed by plasma spheroidization that yields rapid solidified microstructures and enhanced compositional homogeneity. The effects of ball-milling duration and milling media were studied. It was found that zirconia is a more efficient milling media and that increasing milling duration enhanced the dissociation of zircon. Flame spray and plasma spray processes were used to spheroidize the spray-dried powders. The temperature of the flame spray was found to be insufficient to melt the powders completely. The processing parameters of the plasma spray played an important role in zircon decomposition and mullite formation. Increasing the arc current or reducing secondary gas pressure caused more zircon to decompose and more mullite to form after heat treatment at 1200 °C for 3 h. Dissociation of zircon and the amount of mullite for med can be enhanced significantly when using the more efficient, computerized plasma-spraying system and increasing the ball-milling duration from 4 to 8 h.

  9. Preparation of Cu2ZnSnS4 nano-crystalline powder by mechano-chemical method

    NASA Astrophysics Data System (ADS)

    Alirezazadeh, Farzaneh; Sheibani, Saeed; Rashchi, Fereshteh

    2018-01-01

    Copper zinc tin sulfide (Cu2ZnSnS4, CZTS) is one of the most promising ceramic materials as an absorber layer in solar cells due to its suitable band gap, high absorption coefficient and non-toxic and environmental friendly constituent elements. In this work, nano-crystalline CZTS powder was synthesized by mechanical milling. Elemental powders of Cu, Zn, Sn and were mixed in atomic ratio of 2:1:1:4 according to the stoichiometry of Cu2ZnSnS4 and then milled in a planetary high energy ball mill under argon atmosphere. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and diffusion reflectance spectroscopy (DRS). XRD results confirm the formation of single-phase CZTS with kesterite structure after 20 h of milling. Also, the mean crystallite size was about 35 nm. SEM results show that after 20 h of milling, the product has a relatively uniform particle size distribution. Optical properties of the product indicate that the band gap of prepared CZTS is 1.6 eV which is near to the optimum value for photovoltaic solar cells showing as a light absorber material in solar energy applications.

  10. Investigation of Carbon Fiber Reinforced Plastics Machining Using 355 nm Picosecond Pulsed Laser

    NASA Astrophysics Data System (ADS)

    Hu, Jun; Zhu, Dezhi

    2018-06-01

    Carbon fiber reinforced plastics (CFRP) has been widely used in the aircraft industry and automobile industry owing to its superior properties. In this paper, a Nd:YVO4 picosecond pulsed system emitting at 355 nm has been used for CFRP machining experiments to determine optimum milling conditions. Milling parameters including laser power, milling speed and hatch distance were optimized by using box-behnken design of response surface methodology (RSM). Material removal rate was influenced by laser beam overlap ratio which affects mechanical denudation. The results in heat affected zones (HAZ) and milling quality were discussed through the machined surface observed with scanning electron microscope. A re-focusing technique based on the experiment with different focal planes was proposed and milling mechanism was also analyzed in details.

  11. Structural changes during milling of aluminum oxide powders

    NASA Technical Reports Server (NTRS)

    Ziepler, G.

    1984-01-01

    The mechanical activation of four fused corundum powders and a calcined Al2O3 powder was studied. The milled powders were characterized by their structural properties, crystallite size, and lattice distortions. Structural changes during milling, detected by X-ray line broadening analysis, gave information about the enhanced activity of the powders caused by the lattice distortions and by the decreasing crystallite size during milling. The structural changes during milling, under the same milling conditions, can be quite different for the same ceramic material, but with different characteristics in the as received state.

  12. Molecular implications of drug-polymer solubility in understanding the destabilization of solid dispersions by milling.

    PubMed

    Yang, Ziyi; Nollenberger, Kathrin; Albers, Jessica; Qi, Sheng

    2014-07-07

    The solubility of drugs in polymer matrixes has been recognized as one of the key factors governing the physical stability of solid dispersions. This study has explored the implications of drug solubility on the destabilization that occurs on milling, which is often used as an additional process for hot melt extruded (HME) solid dispersions. The theoretical drug solubility in the polymer was first predicted using various theoretical and experimental approaches. The destabilization effects of high-energy mechanical milling on the solid dispersions with drug loadings below and above the predicted solubility were then investigated using a range of thermal, microscopic, and spectroscopic techniques. Four model drug-polymer combinations were studied. The HME formulations with drug loading below the predicted solid solubility (undersaturated and true molecular dispersion) showed good stability against milling. In contrast, milling destabilized supersaturated HME dispersions via increasing molecular mobility and creating phase-separated, amorphous, drug-rich domains. However, these additional amorphous drug-rich domains created by milling show good stability under ambient conditions, though crystallization can be accelerated by additional heating. These results highlighted that the processing method used to prepare the solid dispersions may play a role in facilitating the stabilization of amorphous drug in supersaturated solid dispersions. The degree of supersaturation of the drug in the polymer showed significant impact on the destabilization behavior of milling on solid dispersions. An improved understanding of the destabilization behavior of solid dispersions upon milling can provide new insights into the processing related apparent solubility of drugs in polymers.

  13. 21. FOREBAY; GATE MECHANISM VISIBLE IN LOWER LEFT; HEADRACE ARCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. FOREBAY; GATE MECHANISM VISIBLE IN LOWER LEFT; HEADRACE ARCH IS IN NORTH WALL OF FOREBAY, BEHIND MASONRY ARCH IN CENTER; LOOKING NORTHEAST - Crown Roller Mill, 105 Fifth Avenue, South, West Side Milling District, Minneapolis, Hennepin County, MN

  14. Drawing Sensors with Ball-Milled Blends of Metal-Organic Frameworks and Graphite

    PubMed Central

    Ko, Michael; Aykanat, Aylin; Smith, Merry K.

    2017-01-01

    The synthetically tunable properties and intrinsic porosity of conductive metal-organic frameworks (MOFs) make them promising materials for transducing selective interactions with gaseous analytes in an electrically addressable platform. Consequently, conductive MOFs are valuable functional materials with high potential utility in chemical detection. The implementation of these materials, however, is limited by the available methods for device incorporation due to their poor solubility and moderate electrical conductivity. This manuscript describes a straightforward method for the integration of moderately conductive MOFs into chemiresistive sensors by mechanical abrasion. To improve electrical contacts, blends of MOFs with graphite were generated using a solvent-free ball-milling procedure. While most bulk powders of pure conductive MOFs were difficult to integrate into devices directly via mechanical abrasion, the compressed solid-state MOF/graphite blends were easily abraded onto the surface of paper substrates equipped with gold electrodes to generate functional sensors. This method was used to prepare an array of chemiresistors, from four conductive MOFs, capable of detecting and differentiating NH3, H2S and NO at parts-per-million concentrations. PMID:28946624

  15. Effect of Milling Time on the Microstructure, Physical and Mechanical Properties of Al-Al2O3 Nanocomposite Synthesized by Ball Milling and Powder Metallurgy

    PubMed Central

    Matori, Khamirul Amin; Ostovan, Farhad; Abdul Aziz, Sidek; Mamat, Md Shuhazlly

    2017-01-01

    The effect of milling time on the morphology, microstructure, physical and mechanical properties of pure Al-5 wt % Al2O3 (Al-5Al2O3) has been investigated. Al-5Al2O3 nanocomposites were fabricated using ball milling in a powder metallurgy route. The increase in the milling time resulted in the homogenous dispersion of 5 wt % Al2O3 nanoparticles, the reduction of particle clustering, and the reduction of distances between the composite particles. The significant grain refining during milling was revealed which showed as a reduction of particle size resulting from longer milling time. X-Ray diffraction (XRD) analysis of the nanocomposite powders also showed that designated ball milling contributes to the crystalline refining and accumulation of internal stress due to induced severe plastic deformation of the particles. It can be argued that these morphological and microstructural variations of nanocomposite powders induced by designated ball milling time was found to contribute to an improvement in the density, densification, micro-hardness (HV), nano-hardness (HN), and Young’s modulus (E) of Al-5Al2O3 nanocomposites. HV, HN, and E values of nanocomposites were increased by ~48%, 46%, and 40%, after 12 h of milling, respectively. PMID:29072632

  16. Valorization of solid waste products from olive oil industry as potential adsorbents for water pollution control--a review.

    PubMed

    Bhatnagar, Amit; Kaczala, Fabio; Hogland, William; Marques, Marcia; Paraskeva, Christakis A; Papadakis, Vagelis G; Sillanpää, Mika

    2014-01-01

    The global olive oil production for 2010 is estimated to be 2,881,500 metric tons. The European Union countries produce 78.5% of the total olive oil, which stands for an average production of 2,136,000 tons. The worldwide consumption of olive oil increased of 78% between 1990 and 2010. The increase in olive oil production implies a proportional increase in olive mill wastes. As a consequence of such increasing trend, olive mills are facing severe environmental problems due to lack of feasible and/or cost-effective solutions to olive-mill waste management. Therefore, immediate attention is required to find a proper way of management to deal with olive mill waste materials in order to minimize environmental pollution and associated health risks. One of the interesting uses of solid wastes generated from olive mills is to convert them as inexpensive adsorbents for water pollution control. In this review paper, an extensive list of adsorbents (prepared by utilizing different types of olive mill solid waste materials) from vast literature has been compiled, and their adsorption capacities for various aquatic pollutants removal are presented. Different physicochemical methods that have been used to convert olive mill solid wastes into efficient adsorbents have also been discussed. Characterization of olive-based adsorbents and adsorption mechanisms of various aquatic pollutants on these developed olive-based adsorbents have also been discussed in detail. Conclusions have been drawn from the literature reviewed, and suggestions for future research are proposed.

  17. Mechanically Milled Irregular Zinc Nanoparticles for Printable Bioresorbable Electronics.

    PubMed

    Mahajan, Bikram K; Yu, Xiaowei; Shou, Wan; Pan, Heng; Huang, Xian

    2017-05-01

    Bioresorbable electronics is predominantly realized by complex and time-consuming anhydrous fabrication processes. New technology explores printable methods using inks containing micro- or nano-bioresorbable particles (e.g., Zn and Mg). However, these particles have seldom been obtained in the context of bioresorbable electronics using cheap, reliable, and effective approaches with limited study on properties essential to printable electronics. Here, irregular nanocrystalline Zn with controllable sizes and optimized electrical performance is obtained through ball milling approach using polyvinylpyrrolidone (PVP) as a process control agent to stabilize Zn particles and prevent cold welding. Time and PVP dependence of the ball milled particles are studied with systematic characterizations of morphology and composition of the nanoparticles. The results reveal crystallized Zn nanoparticles with a size of ≈34.834 ± 1.76 nm and low surface oxidation. The resulting Zn nanoparticles can be readily printed onto bioresorbable substrates and sintered at room temperature using a photonic sintering approach, leading to a high conductivity of 44 643 S m -1 for printable zinc nanoparticles. The techniques to obtain Zn nanoparticles through ball milling and processing them through photonic sintering may potentially lead to a mass fabrication method for bioresorbable electronics and promote its applications in healthcare, environmental protection, and consumer electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. X-ray peak broadening analysis of AA 6061{sub 100-x} - x wt.% Al{sub 2}O{sub 3} nanocomposite prepared by mechanical alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivasankaran, S., E-mail: sivasankarangs1979@gmail.com; Sivaprasad, K., E-mail: ksp@nitt.edu; Narayanasamy, R., E-mail: narayan@nitt.edu

    2011-07-15

    Nanocrystalline AA 6061 alloy reinforced with alumina (0, 4, 8, and 12 wt.%) in amorphized state composite powder was synthesized by mechanical alloying and consolidated by conventional powder metallurgy route. The as-milled and as-sintered (573 K and 673 K) nanocomposites were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The peaks corresponding to fine alumina was not observed by XRD patterns due to amorphization. Using high-resolution transmission electron microscope, it is confirmed that the presence of amorphized alumina observed in Al lattice fringes. The crystallite size, lattice strain, deformation stress, and strain energy density of AA 6061 matrixmore » were determined precisely from the first five most intensive reflection of XRD using simple Williamson-Hall models; uniform deformation model, uniform stress deformation model, and uniform energy density deformation model. Among the developed models, uniform energy density deformation model was observed to be the best fit and realistic model for mechanically alloyed powders. This model evidenced the more anisotropic nature of the ball milled powders. The XRD peaks of as-milled powder samples demonstrated a considerable broadening with percentage of reinforcement due to grain refinement and lattice distortions during same milling time (40 h). The as-sintered (673 K) unreinforced AA 6061 matrix crystallite size from well fitted uniform energy density deformation model was 98 nm. The as-milled and as-sintered (673 K) nanocrystallite matrix sizes for 12 wt.% Al{sub 2}O{sub 3} well fitted by uniform energy density deformation model were 38 nm and 77 nm respectively, which indicate that the fine Al{sub 2}O{sub 3} pinned the matrix grain boundary and prevented the grain growth during sintering. Finally, the lattice parameter of Al matrix in as-milled and as-sintered conditions was also investigated in this paper. Research highlights: {yields} Integral breadth methods using various Williamson-Hall models were investigated for line profile analysis. {yields} Uniform energy density deformation model is observed to the best realistic model. {yields} The present analysis is used for understanding the stress and the strain present in the nanocomposites.« less

  19. The Mechanical Properties and In Vitro Biocompatibility of PM-Fabricated Ti-28Nb-35.4Zr Alloy for Orthopedic Implant Applications.

    PubMed

    Xu, Wei; Li, Ming; Wen, Cuie; Lv, Shaomin; Liu, Chengcheng; Lu, Xin; Qu, Xuanhui

    2018-03-30

    A biocompatible Ti-28Nb-35.4Zr alloy used as bone implant was fabricated through the powder metallurgy process. The effects of mechanical milling and sintering temperatures on the microstructure and mechanical properties were investigated systematically, before in vitro biocompatibility of full dense Ti-28Nb-35.4Zr alloy was evaluated by cytotoxicity tests. The results show that the mechanical milling and sintering temperatures have significantly effects on the density and mechanical properties of the alloys. The relative density of the alloy fabricated by the atomized powders at 1500 °C is only 83 ± 1.8%, while the relative density of the alloy fabricated by the ball-milled powders can rapidly reach at 96.4 ± 1.3% at 1500 °C. When the temperature was increased to 1550 °C, the alloy fabricated by ball-milled powders achieve full density (relative density is 98.1 ± 1.2%). The PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C can achieve a wide range of mechanical properties, with a compressive yield strength of 1058 ± 35.1 MPa, elastic modulus of 50.8 ± 3.9 GPa, and hardness of 65.8 ± 1.5 HRA. The in vitro cytotoxicity test suggests that the PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C has no adverse effects on MC3T3-E1 cells with cytotoxicity ranking of 0 grade, which is nearly close to ELI Ti-6Al-4V or CP Ti. These properties and the net-shape manufacturability makes PM-fabricated Ti-28Nb-35.4Zr alloy a low-cost, highly-biocompatible, Ti-based biomedical alloy.

  20. Effects of milling on functional properties of rice flour.

    PubMed

    Kadan, R S; Bryant, R J; Miller, J A

    2008-05-01

    A commercial long-grain rice flour (CRF) and the flours made by using a pin mill and the Udy mill from the same batch of broken second-head white long-grain rice were evaluated for their particle size and functional properties. The purpose of this study was to compare the commercial rice flour milling method to the pin and Udy milling methods used in our laboratory and pilot plant. The results showed that pin milled flour had more uniform particle size than the other 2 milled flours. The chalky kernels found in broken white milled rice were pulverized more into fines in both Udy milled flour and CRF than in the pin milled flour. The excessive amount of fines in flours affected their functional properties, for example, WSI and their potential usage in the novel foods such as rice breads (RB). The RB made from CRF collapsed more than loaves made from pin milled Cypress long-grain flours.

  1. Synthesis of Nanostructured Carbides of Titanium and Vanadium from Metal Oxides and Ferroalloys Through High-energy Mechanical Milling and Heat Treatment

    NASA Astrophysics Data System (ADS)

    Basu, P.; Jian, P. F.; Seong, K. Y.; Seng, G. S.; Masrom, A. K.; Hussain, Z.; Aziz, A.

    2010-03-01

    Carbides of Ti and V have been synthesized directly from their oxides and ferroalloys through mechanical milling and heat treatment. The powder mixtures are milled in a planetary ball mill from 15-80 hours and subsequently heat treated at 1000-1300° C for TiO2-C mixtures, at 500-550° C for V2O5-C mixtures and at 600-1000° C for (Fe-V)-C mixtures. The milled and heat treated powders are characterized by SEM, EDAX, XRD, and BET techniques. Nanostructured TiC has been successfully synthesized under suitable processing conditions. However, carbides of vanadium is unidentified even though possibilities of V2O5-C reaction are indicated with an extent of induced amorphism in the powder mixture. Density, specific surface area and particle size of the milled and heat treated mixtures are correlated with heat treatment temperatures. Similar attempts are also made to synthesize vanadium carbides from industrial grade Fe-V.

  2. Milling of rice grains. The degradation on three structural levels of starch in rice flour can be independently controlled during grinding.

    PubMed

    Tran, Thuy T B; Shelat, Kinnari J; Tang, Daniel; Li, Enpeng; Gilbert, Robert G; Hasjim, Jovin

    2011-04-27

    Whole polished rice grains were ground using cryogenic and hammer milling to understand the mechanisms of degradation of starch granule structure, whole (branched) molecular structure, and individual branches of the molecules during particle size reduction (grinding). Hammer milling caused greater degradation to starch granules than cryogenic milling when the grains were ground to a similar volume-median diameter. Molecular degradation of starch was not evident in the cryogenically milled flours, but it was observed in the hammer-milled flours with preferential cleavage of longer (amylose) branches. This can be attributed to the increased grain brittleness and fracturability at cryogenic temperatures, reducing the mechanical energy required to diminish the grain size and thus reducing the probability of chain scission. The results indicate, for the first time, that branching, whole molecule, and granule structures of starch can be independently altered by varying grinding conditions, such as grinding force and temperature.

  3. Effects of SiO2 nano-particles on tribological and mechanical properties of aluminum matrix composites by different dispersion methods

    NASA Astrophysics Data System (ADS)

    Azadi, Mahboobeh; Zolfaghari, Mehrdad; Rezanezhad, Saeid; Azadi, Mohammad

    2018-05-01

    This study has been presented with mechanical properties of aluminum matrix composites, reinforced by SiO2 nano-particles. The stir casting method was employed to produce various aluminum matrix composites. Different composites by varying the SiO2 nano-particle content (including 0.5 and 1 weight percents) and two dispersion methods (including ball-milling and pre-heating) were made. Then, the density, the hardness, the compression strength, the wear resistance and the microstructure of nano-composites have been studied in this research. Besides, the distribution of nano-particles in the aluminum matrix for all composites has been also evaluated by the field emission scanning electron microscopy (FESEM). Obtained results showed that the density, the elongation and the ultimate compressive strength of various nano-composites decreased by the presence of SiO2 nano-particles; however, the hardness, the wear resistance, the yield strength and the elastic modulus of composites increased by auditioning of nano-particles to the aluminum alloy. FESEM images indicated better wetting of the SiO2 reinforcement in the aluminum matrix, prepared by the pre-heating dispersion method, comparing to ball-milling. When SiO2 nano-particles were added to the aluminum alloy, the morphology of the Si phase and intermetallic phases changed, which enhanced mechanical properties. In addition, the wear mechanism plus the friction coefficient value were changed for various nano-composites with respect to the aluminum alloy.

  4. Characterization of water based nanofluid for quench medium

    NASA Astrophysics Data System (ADS)

    Kresnodrianto; Harjanto, S.; Putra, W. N.; Ramahdita, G.; Yahya, S. S.; Mahiswara, E. P.

    2018-04-01

    Quenching has been a valuable method in steel hardening method especially in industrial scale. The hardenability of the metal alloys, the thickness of the component, and the geometry is some factors that can affect the choice of quench medium. Improper quench media can cause the material to become too brittle, suffers some geometric distortion, and undesirable residual stress that will cause some effect on the mechanical property and fracture mechanism of a component. Recently, nanofluid as a quench medium has been used for better quenching performance and has been studied using several different fluids and nanoparticles. Some of frequently used solvents include polymers, vegetable oils, and mineral oil, and nanoparticles frequently used include CuO, ZnO, and Alumina. In this research, laboratory-grade carbon powder were used as nanoparticle. Water was used as the fluid base in this research as the main observation focus. Carbon particles were obtain using a top-down method, whereas planetary ball mill was used to ground laboratory grade carbon powder to decrease the particle size. Milling speed and duration were set at 500 rpm and 15 hours. Field Emission Scanning Electron Microscope (FE-SEM), and Energy Dispersive X-Ray (EDX) measurement were carried out to determine the particle size, material identification, particle morphology, and surface change of samples. Nanofluid was created by mixing percentage of carbon nanoparticles with water using ultrasonic vibration for 280s. The carbon nanoparticle content in nanofluid quench mediums for this research were varied at 0.1%, 0.2%, 0.3%, 0.4, and 0.5 % volume. Furthermore, these mediums were used to quench JIS S45C or AISI 1045 carbon steel samples which austenized at 1000°C. Hardness testing and metallography observation were then conducted to further check the effect of different quench medium in steel samples. Preliminary characterizations showed that carbon particles dimension after milling was still in sub-micron stage, hundreds of nanometres to be precise. Therefore, the milling process parameters are needed to be optimized further.

  5. Synthesis and magnetization studies of nanopowder Fe₇₀Ni₂₀Cr₁₀ alloys prepared by high energy milling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chater, R., E-mail: chatersamy@yahoo.fr; Bououdina, M., E-mail: mboudina@gmail.com; Department of Physics, College of Science, University of Bahrain, PO Box 32038, Kingdom of Bahrain

    2013-05-01

    Nanocrystalline Fe{sub 1–x–y}Ni xCr y (x=20, y=10% in Wt)) alloy samples were prepared by mechanical alloying process. Fe, Ni and Cr elemental powders have been ball milled in a planetary mill for various periods of time, up to 27 h. XRD analysis allowed the determination of the structure of the mixture, the average crystallite size and the lattice parameter as a function of milling time. The complete formation of FeNiCr is observed after 27 h milling. With increasing milling time from 0 to 27 h, it is observed that the lattice parameter increases from 0.3515 to 0.3593 nm as wellmore » as an increase of microstrain from 0.15 to 0.40%, whereas the grain size decreases from 48 to 13 nm. Grain morphology of the powders at different formation stages was examined using SEM. Saturation magnetization and coercive fields derived from the hysteresis curves are discussed as a function of milling time. - Graphical abstract: Fe₇₀Ni₂₀Cr₁₀ nanopowders were prepared using a planetary ball mill. The structure and microstructure vary with milling time; thereby important modifications of the magnetic properties were observed and discussed. Highlights: • Nanocrystalline Fe₇₀Ni₂₀Cr₁₀ alloy were prepared by the mechanical alloying process. • The complete formation of Fe₇₀Ni₂₀Cr₁₀ is observed after 24 h milling. • With increasing milling time, the grain size decreases, while the strain increases. • The SEM images allowed following the morphology of the materials at different stages. • M s and H C derived from the hysteresis are discussed as a function of milling time.« less

  6. Nanocrystalline Al7075 + 1 wt % Zr Alloy Prepared Using Mechanical Milling and Spark Plasma Sintering

    PubMed Central

    Málek, Přemysl; Minárik, Peter; Chráska, Tomáš; Novák, Pavel; Průša, Filip

    2017-01-01

    The microstructure, phase composition, and microhardness of both gas-atomized and mechanically milled powders of the Al7075 + 1 wt % Zr alloy were investigated. The gas-atomized powder exhibited a cellular microstructure (grain size of a few µm) with layers of intermetallic phases along the cell boundaries. Mechanical milling (400 revolutions per minute (RPM)/8 h) resulted in a grain size reduction to the nanocrystalline range (20 to 100 nm) along with the dissolution of the intermetallic phases. Milling led to an increase in the powder’s microhardness from 97 to 343 HV. Compacts prepared by spark plasma sintering (SPS) exhibited negligible porosity. The grain size of the originally gas-atomized material was retained, but the continuous layers of intermetallic phases were replaced by individual particles. Recrystallization led to a grain size increase to 365 nm in the SPS compact prepared from the originally milled powder. Small precipitates of the Al3Zr phase were observed in the SPS compacts, and they are believed to be responsible for the retainment of the sub-microcrystalline microstructure during SPS. A more intensive precipitation in this SPS compact can be attributed to a faster diffusion due to a high density of dislocations and grain boundaries in the milled powder. PMID:28930192

  7. The Effect of Powder Ball Milling on the Microstructure and Mechanical Properties of Sintered Fe-Cr-Mo-Mn-(Cu) Steel

    NASA Astrophysics Data System (ADS)

    Kulecki, P.; Lichańska, E.

    2017-12-01

    The effect of ball milling powder mixtures of Höganäs pre-alloyed iron Astaloy CrM, low-carbon ferromanganese Elkem, elemental electrolytic Cu and C-UF graphite on the sintered structure and mechanical properties was evaluated. The mixing was conducted using Turbula mixer for 30 minutes and CDI-EM60 frequency inverter for 1 and 2 hours. Milling was performed on 150 g mixtures with (in weight %) CrM + 1% Mn, CrM + 2% Mn, CrM + 1% Mn + 1% Cu and CrM + 2% Mn + 1% Cu, all with 0.6%C. The green compacts were single pressed at 660 MPa according to PN-EN ISO 2740. Sintering was carried out in a laboratory horizontal furnace Carbolite STF 15/450 at 1250°C for 60 minutes in 5%H2 - 95%N2 atmosphere with a heating rate of 75°C/min, followed by sintering hardening at 60°C/min cooling rate. All the steels were characterized by martensitic structures. Mechanical testing revealed that steels based on milled powders have slightly higher mechanical properties compared to those only mixed and sintered. The best combination of mechanical properties, for ball milled CrM + 1% Mn + 1% Cu was UTS 1046 MPa, TRS 1336 MPa and A 1.94%.

  8. Study of Initial Stages of Ball-Milling of Cu Powder Using X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Gayathri, N.; Mukherjee, Paramita

    2018-04-01

    The initial stage of size refinement of Cu powder is studied using detailed X-ray diffraction (XRD) analysis to understand the mechanism of formation of nanomaterials during the ball-milling process. The study was restricted to samples obtained for milling time up to 240 min to understand the deformation mechanism at the early stages of ball milling. Various model based approaches for the analysis of the XRD were used to study the evolution of the microstructural parameters such as domain size and microstrain along the different crystallographic planes. It was seen that the domain size saturates at a low value along the (311) plane whereas the size along the (220) and (200) plane is still higher. The r.m.s microstrain showed a non-monotonic change along the different crystallographic directions up to the milling time of 240 min.

  9. Use of near infared spectroscopy to predict the mechanical properties of six softwoods

    Treesearch

    Stephen S. Jelley; Timothy G. Rials; Leslie H. Groom; Chi-Leung So

    2004-01-01

    The visible and near infrared (NIR)(500-2400 nm) spectra and mechanical properties of almost 1000 small clear-wood samples from six softwood species: Pinus taeda L. (loblolly pine), Pinus palustris, Mill. (longleaf pine), Pinus elliottii Engelm. (slash pine), Pinus echinata Mill. (shortleaf...

  10. Physical and mechanical properties of extruded poly(lactic acid)-based Paulownia elongata biocomposites

    USDA-ARS?s Scientific Manuscript database

    Paulownia wood flour (PWF), a byproduct of milling lumber, was tested as bio-filler with polylactic acid (PLA). Paulownia wood (PW) shavings were milled and separated into particle fractions and then blended with PLA with a single screw extruder. Mechanical and thermal properties were tested. Dif...

  11. Influence of Sintering Temperature on Mechanical and Physical properties of Mill Scale based Bipolar Plates for PEMFC

    NASA Astrophysics Data System (ADS)

    Khaerudini, Deni S.; Berliana, Rina; Prakoso, Gatra B.; Insiyanda, Dita R.; Alva, Sagir

    2018-03-01

    This work concerns the utilization of mill scale, a by-product of iron and steel formed during the hot rolling of steel, as a potential material for use as bipolar plates in proton exchange membrane fuel cells (PEMFCs). On the other hand, mill scale is considered a very rich in iron source having characteristic required such as for current collector in bipolar plate and would significantly contribute to lower the overall cost of PEMFC based fuel cell systems. In this study, the iron reach source of mill scale powder, after sieving of 150 mesh, was mechanically alloyed with the aluminium source containing 30 wt.% using a shaker mill for 3 h. The mixed powders were then pressed at 300 MPa and sintered at various temperatures of 400, 450 and 500 °C for 1 h under inert gas atmosphere. The structural changes of powder particles during mechanical alloying and after sintering were studied by x-ray diffractometry, scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX), microhardness measurement, and density - porosity analysis. The details of the performance variation of three different sintering conditions can be preliminary explained by the metallographic and crystallographic structure and phase analysis as well as sufficient mechanical strength of the sintered materials was presented in this report.

  12. Synthesis and characterization of nanocrystalline Al 2024-B4C composite powders by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Varol, T.; Canakci, A.

    2013-06-01

    In the present work, the effect of milling parameters on the morphology and microstructure of nanostructure Al2024-B4C composite powders obtained by mechanical alloying (MA) was studied. The effects of milling time and B4C content on the morphology, microstructure and particle size of nanostructure Al2024-B4C composite powders have been investigated. Different amounts of B4C particles (0, 5, 10 and 20 wt.%) were mixed with Al2024 powders and milled in a planetary ball mill for 30, 60, 120, 300, 420 and 600 min. Al 2024-B4C composite powders were characterized using a scanning electron microscope (SEM), laser particle-size analyzer, X-ray diffraction analysis (XRD) and the Vickers microhardness test. The results showed that the nanostructure Al2024-B4C composite powders were produced when they were milled for 600 min. The size of composite powder in the milled powder mixture was affected by the milling time and content of B4C particles. Moreover, it was observed that when MA reached a steady state, the properties of composite powders were stabilized.

  13. Finite-action solutions of Yang-Mills equations on de Sitter dS4 and anti-de Sitter AdS4 spaces

    NASA Astrophysics Data System (ADS)

    Ivanova, Tatiana A.; Lechtenfeld, Olaf; Popov, Alexander D.

    2017-11-01

    We consider pure SU(2) Yang-Mills theory on four-dimensional de Sitter dS4 and anti-de Sitter AdS4 spaces and construct various solutions to the Yang-Mills equations. On de Sitter space we reduce the Yang-Mills equations via an SU(2)-equivariant ansatz to Newtonian mechanics of a particle moving in R^3 under the influence of a quartic potential. Then we describe magnetic and electric-magnetic solutions, both Abelian and non-Abelian, all having finite energy and finite action. A similar reduction on anti-de Sitter space also yields Yang-Mills solutions with finite energy and action. We propose a lower bound for the action on both backgrounds. Employing another metric on AdS4, the SU(2) Yang-Mills equations are reduced to an analytic continuation of the above particle mechanics from R^3 to R^{2,1} . We discuss analytical solutions to these equations, which produce infinite-action configurations. After a Euclidean continuation of dS4 and AdS4 we also present self-dual (instanton-type) Yang-Mills solutions on these backgrounds.

  14. Preparation, characterization and optoelectronic properties of nanodiamonds doped zinc oxide nanomaterials by a ball milling technique

    NASA Astrophysics Data System (ADS)

    Ullah, Hameed; Sohail, Muhammad; Malik, Uzma; Ali, Naveed; Bangash, Masroor Ahmad; Nawaz, Mohsan

    2016-07-01

    Zinc oxide (ZnO) is one of the very important metal oxides (MOs) for applications in optoelectronic devices which work in the blue and UV regions. However, to meet the challenges of obtaining ZnO nanomaterials suitable for practical applications, various modifications in physico-chemical properties are highly desirable. One of the ways adopted for altering the properties is to synthesize composite(s) of ZnO with various reinforcements. Here we report on the tuning of optoelectronic properties of ZnO upon doping by nanodiamonds (NDs) using the ball milling technique. A varying weight percent (wt.%) of NDs were ball milled for 2 h with ZnO nanoparticles prepared by a simple precipitation method. The effects of different parameters, the calcination temperature of ZnO, wt.% of NDs and mechanical milling upon the optoelectronic properties of the resulting ZnO-NDs nanocomposites have been investigated. The ZnO-NDs nanocomposites were characterized by IR spectroscopy, powder x-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX). The UV-vis spectroscopy revealed the alteration in the bandgap energy (Eg ) of ZnO as a function of the calcination temperature of ZnO, changing the concentration of NDs, and mechanical milling of the resulting nanocomposites. The photoluminescence (PL) spectroscopy showed a decrease in the deep level emission (DLE) peaks and an increase in near-band-edge transition peaks as a result of the increasing concentration of NDs. The decrease in DLE and increase in band to band transition peaks were due to the strong interaction between the NDs and the Zn+; consequently, the Zn+ concentration decreased on the interstitial sites.

  15. Microstructures and Hardness of the High Chromium Oxide Dispersion Strengthened Alloy Fe-25Cr-Y2O3Sintered by the Arc Plasma Sintering (APS)

    NASA Astrophysics Data System (ADS)

    Bandriyana; Dimyati, Arbi; Sujatno, Agus; Salam, Rohmad; Sumaryo; Untoro, Pudji; Suharno, Bambang

    2018-03-01

    High chromium ODS alloy has been developed for application as structural material in high temperature nuclear reactor. In the present study, Fe-25Cr-Y2O3 with dispersed 0.5 wt.% Ytria (Y2O3) were synthesized and characterized by means of various techniques as a function of milling time 1, 2 and 3 hours. The alloy synthesis was carried out by the Mechanical Alloying (MA) process and subsequent sintering by means the new plasma technique using the APS apparatus. Scaning Electron Microscopy (SEM) and X-ray diffraction (XRD) were conducted for morphology and phase analysis. Evaluation of the mechanical properties was studied based on the Vickers hardness measurement. SEM examination revealed that the sample after sintering by APS method at different milling duration exhibited some particle aglomeration and homogenized oxide dispersion that obviously strengthened the alloy. The XRD test, however, proved the formation of the main phase Fe-Cr. The alloy showed exceptionally high hardness of 193 VHR which is mainly due to the grain refining that increase by the increasing of the milling time.

  16. Modifications of Graphite and Multiwall Carbon Nanotubes in the Presence of Urea

    NASA Astrophysics Data System (ADS)

    Duraia, El-Shazly M.; Fahami, Abbas; Beall, Gary W.

    2018-02-01

    The effect of high-energy ball milling on two carbon allotropes, graphite and multiwall carbon nanotubes (MWCNT) in the presence of urea has been studied. Samples were investigated using Raman spectroscopy, x-ray diffraction, scanning electron microscope (SEM) and x-ray photoelectron spectroscopy (XPS). Nitrogen-doped graphene has been successfully synthesized via a simple scalable mechanochemistry method using urea and graphite powder precursors. XPS results revealed the existence of the different nitrogen atoms configurations including pyridine, pyrrodic and graphitic N. SEM observations showed that the graphene nanosheets morphology become more wrinkles folded and crumbled as the milling time increased. The ID/IG ratio also increased as the milling time rose. The presence of both D' and G + D bands at 1621 cm-1 and 2940 cm-1, respectively, demonstrated the nitrogen incorporation in the graphene lattice Two factors contribute to the used urea: first it helps to exfoliate graphite into graphene, and second it preserves the graphitic structure from damage during the milling process as well as acting as a solid-state nitrogen source. Based on the phase analysis, the d-spacing of MWCNT samples in the presence of urea decreased due to the mechanical force in the milling process as the milling time increased. On the other hand, in the graphite case, due to its open flat surface, the graphite (002) peak shifts toward lower two theta as the milling time increase. Such findings are important and could be used for large-scale production of N-doped graphene, diminishing the use of either dangerous chemicals or sophisticated equipment.

  17. Effects of opening size and site preparation method on vegetation development after implementing group selection in a pine-hardwood stand

    Treesearch

    M.D. Cain; M.G. Shelton

    2001-01-01

    Three opening sizes (0.25, 0.625, and 1.0 ac) and three site preparation methods (herbicides, mechanical, and an untreated control) were tested in a pine-hardwood stand dominated by loblolly and shortleaf pines (Pinus taeda L. and P. echinata Mill.) and mixed oaks (Quercus spp.) that was being converted to uneven...

  18. Mechanical properties of cobalt-chromium 3-unit fixed dental prostheses fabricated by casting, milling, and additive manufacturing.

    PubMed

    Øilo, Marit; Nesse, Harald; Lundberg, Odd Johan; Gjerdet, Nils Roar

    2018-04-25

    New additive manufacturing techniques for nonprecious alloys have made the fabrication of metal-ceramic fixed partial dentures (FPDs) less expensive and less time-consuming. However, whether the mechanical properties produced by these techniques are comparable is unclear. The purpose of this in vitro study was to evaluate the mechanical properties of cobalt-chromium frameworks for FPDs fabricated by 3 different techniques. Thirty frameworks for 3-unit FPDs were fabricated by traditional casting, computer-aided design and computer-aided manufacturing (CAD-CAM) milling, and selective laser melting (SLM), with n=10 in each group. The frameworks were weighed, and distal and mesial connector areas measured. The frameworks were cemented and loaded centrally (0.5 mm/s) until deformation above 1 mm occurred. Stiffness was measured as the slope of the axis between 500 and 2000 N. Microhardness was measured on sectioned specimens by Vickers indentation. The microstructure was also analyzed by scanning electron microscopy. One-way ANOVA with Tukey post hoc analysis was used to compare the groups (α=.05). The framework design differed among the groups, making a comparison of strength impossible. The milled frameworks appeared bulky, while the cast and SLM frameworks were more slender. Statistically significant differences were found in microhardness, stiffness, wall thickness, weight, and connector size (P<.05), and a significant correlation was found between hardness and stiffness (-0.4, P<.005). Fabrication method affects the design, stiffness, microhardness, and microstructure of cobalt-chromium FPD frameworks. The SLM frameworks were stiffer and harder than the cast and milled specimens. Copyright © 2018 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  19. Confinement, holonomy, and correlated instanton-dyon ensemble: SU(2) Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Lopez-Ruiz, Miguel Angel; Jiang, Yin; Liao, Jinfeng

    2018-03-01

    The mechanism of confinement in Yang-Mills theories remains a challenge to our understanding of nonperturbative gauge dynamics. While it is widely perceived that confinement may arise from chromomagnetically charged gauge configurations with nontrivial topology, it is not clear what types of configurations could do that and how, in pure Yang-Mills and QCD-like (nonsupersymmetric) theories. Recently, a promising approach has emerged, based on statistical ensembles of dyons/anti-dyons that are constituents of instanton/anti-instanton solutions with nontrivial holonomy where the holonomy plays a vital role as an effective "Higgsing" mechanism. We report a thorough numerical investigation of the confinement dynamics in S U (2 ) Yang-Mills theory by constructing such a statistical ensemble of correlated instanton-dyons.

  20. Low energy milling method, low crystallinity alloy, and negative electrode composition

    DOEpatents

    Le, Dihn B; Obrovac, Mark N; Kube, Robert Y; Landucci, James R

    2012-10-16

    A method of making nanostructured alloy particles includes milling a millbase in a pebble mill containing milling media. The millbase comprises: (i) silicon, and (ii) at least one of carbon or a transition metal, and wherein the nanostructured alloy particles are substantially free of crystalline domains greater than 50 nanometers in size. A method of making a negative electrode composition for a lithium ion battery including the nanostructured alloy particles is also disclosed.

  1. Structural and morphological characterization of Mg{sub 0.8}Al{sub 0.2}(OH){sub 2}Cl{sub 0.2} hydrotalcite produced by mechanochemistry method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fahami, Abbas, E-mail: fahami@txstate.edu; Beall, Gary W., E-mail: gb11@txstate.edu; Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589

    2016-01-15

    Chlorine intercalated Mg–Al layered double hydroxides (Mg–Al–Cl–LDH) with a chemical formula Mg{sub 0.8}Al{sub 0.2}(OH){sub 2}Cl{sub 0.2} were successfully produced by the one-step mechanochemistry method and subsequent water washing followed by drying in oven for 1 h at 80 °C. The samples were characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FT–IR), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), elemental mapping analysis, transmission electron microscopy (TEM), X-ray fluorescence (XRF), and the differential thermogravimetric analysis (DTGA). Results revealed that the structural characteristics of Mg–Al–Cl–LDH were affected strongly by milling time. At the beginning of milling (up to 1more » h), Hydrotalcite (HT) and Brucite were the dominant phases, while the progressive mechanical activation was completed as milling time increased, which resulted in the formation of nanostructured Mg–Al–Cl–LDH. Based on XRD and FTIR data, Mg{sub 0.8}Al{sub 0.2}(OH){sub 2}Cl{sub 0.2} with high purity was obtained at 5 h milling. The interlayer spacing of LDH is also strongly influenced by milling time so that it escalated from 7.737±0.001 to 8.005±0.002 (1–15 h) and then decreased to 7.937±0.001 for 20 h milled sample. Electron microscopic observation displayed that the final product had hexagonal platelet structure with lateral dimension of 20–100 nm. Therefore, the synthesis of Mg{sub 0.8}Al{sub 0.2}(OH){sub 2}Cl{sub 0.2} via mechanochemistry owing to simplicity and versatility can be a promising candidate for use in catalyst carriers, drug delivery, and gene delivery. - Graphical Abstract: TEM image of milled sample (Mg–Al–Cl–LDH). - Highlights: • Chlorine intercalated LDH was synthesized by a facile solid-state process. • Structural features of products were influenced strongly by the milling time. • XRD and FTIR spectra suggested predominant Mg–Al–Cl–LDH after 5 h milling. • Products showed hexagonal platelet structure with lateral dimension of 20–100 nm.« less

  2. In-situ catalyzation approach for enhancing the hydrogenation/dehydrogenation kinetics of MgH2 powders with Ni particles

    NASA Astrophysics Data System (ADS)

    El-Eskandarany, M. Sherif; Shaban, Ehab; Ali, Naser; Aldakheel, Fahad; Alkandary, Abdullah

    2016-11-01

    One practical solution for utilizing hydrogen in vehicles with proton-exchange fuel cells membranes is storing hydrogen in metal hydrides nanocrystalline powders. According to its high hydrogen capacity and low cost of production, magnesium hydride (MgH2) is a desired hydrogen storage system. Its slow hydrogenation/dehydrogenation kinetics and high thermal stability are the major barriers restricting its usage in real applications. Amongst the several methods used for enhancing the kinetics behaviors of MgH2 powders, mechanically milling the powders with one or more catalyst species has shown obvious advantages. Here we are proposing a new approach for gradual doping MgH2 powders with Ni particles upon ball milling the powders with Ni-balls milling media. This proposed is-situ method showed mutually beneficial for overcoming the agglomeration of catalysts and the formation of undesired Mg2NiH4 phase. Moreover, the decomposition temperature and the corresponding activation energy showed low values of 218 °C and 75 kJ/mol, respectively. The hydrogenation/dehydrogenation kinetics examined at 275 °C of the powders milled for 25 h took place within 2.5 min and 8 min, respectively. These powders containing 5.5 wt.% Ni performed 100-continuous cycle-life time of hydrogen charging/discharging at 275 °C within 56 h without failure or degradation.

  3. Effects of Milling on the Fibrous Structure and Mechanical Behaviors of a Collagen Material--Leather

    USDA-ARS?s Scientific Manuscript database

    Leather, a fibrous collagen material, is a high value coproduct of the meat industry. Milling is being practiced in the tannery to mechanically tumble and therefore soften leather for adequate stiffness and feel. However, there is no report regarding its effects on the structure change and physica...

  4. Leaching behavior of U, Mn, Sr, and Pb from different particle-size fractions of uranium mill tailings.

    PubMed

    Liu, Bo; Peng, Tongjiang; Sun, Hongjuan

    2017-06-01

    Pollution by the release of heavy metals from tailings constitutes a potential threat to the environment. To characterize the processes governing the release of Mn, Sr, Pb, and U from the uranium mill tailings, a dynamic leaching test was applied for different size of uranium mill tailings samples. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS) were performed to determine the content of Mn, Sr, Pb, and U in the leachates. The release of mobile Mn, Sr, Pb, and U fraction was slow, being faster in the initial stage and then attained a near steady-state condition. The experimental results demonstrate that the release of Mn, Sr, Pb, and U from uranium mill tailings with different size fractions is controlled by a variety of mechanisms. Surface wash-off is the release mechanism for Mn. The main release mechanism of Sr and Pb is the dissolution in the initial leaching stage. For U, a mixed process of wash-off and diffusion is the controlling mechanism.

  5. Understanding dental CAD/CAM for restorations--dental milling machines from a mechanical engineering viewpoint. Part B: labside milling machines.

    PubMed

    Lebon, Nicolas; Tapie, Laurent; Duret, Francois; Attal, Jean-Pierre

    2016-01-01

    Nowadays, dental numerical controlled (NC) milling machines are available for dental laboratories (labside solution) and dental production centers. This article provides a mechanical engineering approach to NC milling machines to help dental technicians understand the involvement of technology in digital dentistry practice. The technical and economic criteria are described for four labside and two production center dental NC milling machines available on the market. The technical criteria are focused on the capacities of the embedded technologies of milling machines to mill prosthetic materials and various restoration shapes. The economic criteria are focused on investment cost and interoperability with third-party software. The clinical relevance of the technology is discussed through the accuracy and integrity of the restoration. It can be asserted that dental production center milling machines offer a wider range of materials and types of restoration shapes than labside solutions, while labside solutions offer a wider range than chairside solutions. The accuracy and integrity of restorations may be improved as a function of the embedded technologies provided. However, the more complex the technical solutions available, the more skilled the user must be. Investment cost and interoperability with third-party software increase according to the quality of the embedded technologies implemented. Each private dental practice may decide which fabrication option to use depending on the scope of the practice.

  6. The Mechanical Properties and In Vitro Biocompatibility of PM-Fabricated Ti-28Nb-35.4Zr Alloy for Orthopedic Implant Applications

    PubMed Central

    Xu, Wei; Li, Ming; Wen, Cuie; Lv, Shaomin; Liu, Chengcheng; Lu, Xin

    2018-01-01

    A biocompatible Ti-28Nb-35.4Zr alloy used as bone implant was fabricated through the powder metallurgy process. The effects of mechanical milling and sintering temperatures on the microstructure and mechanical properties were investigated systematically, before in vitro biocompatibility of full dense Ti-28Nb-35.4Zr alloy was evaluated by cytotoxicity tests. The results show that the mechanical milling and sintering temperatures have significantly effects on the density and mechanical properties of the alloys. The relative density of the alloy fabricated by the atomized powders at 1500 °C is only 83 ± 1.8%, while the relative density of the alloy fabricated by the ball-milled powders can rapidly reach at 96.4 ± 1.3% at 1500 °C. When the temperature was increased to 1550 °C, the alloy fabricated by ball-milled powders achieve full density (relative density is 98.1 ± 1.2%). The PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C can achieve a wide range of mechanical properties, with a compressive yield strength of 1058 ± 35.1 MPa, elastic modulus of 50.8 ± 3.9 GPa, and hardness of 65.8 ± 1.5 HRA. The in vitro cytotoxicity test suggests that the PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C has no adverse effects on MC3T3-E1 cells with cytotoxicity ranking of 0 grade, which is nearly close to ELI Ti-6Al-4V or CP Ti. These properties and the net-shape manufacturability makes PM-fabricated Ti-28Nb-35.4Zr alloy a low-cost, highly-biocompatible, Ti-based biomedical alloy. PMID:29601517

  7. Surface integrity and fatigue behaviour of electric discharged machined and milled austenitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundberg, Mattias, E-mail: mattias.lundberg@liu.se

    Machining of austenitic stainless steels can result in different surface integrities and different machining process parameters will have a great impact on the component fatigue life. Understanding how machining processes affect the cyclic behaviour and microstructure are of outmost importance in order to improve existing and new life estimation models. Milling and electrical discharge machining (EDM) have been used to manufacture rectangular four-point bend fatigue test samples; subjected to high cycle fatigue. Before fatigue testing, surface integrity characterisation of the two surface conditions was conducted using scanning electron microscopy, surface roughness, residual stress profiles, and hardness profiles. Differences in cyclicmore » behaviour were observed between the two surface conditions by the fatigue testing. The milled samples exhibited a fatigue limit. EDM samples did not show the same behaviour due to ratcheting. Recrystallized nano sized grains were identified at the severely plastically deformed surface of the milled samples. Large amounts of bent mechanical twins were observed ~ 5 μm below the surface. Grain shearing and subsequent grain rotation from milling bent the mechanical twins. EDM samples showed much less plastic deformation at the surface. Surface tensile residual stresses of ~ 500 MPa and ~ 200 MPa for the milled and EDM samples respectively were measured. - Highlights: •Milled samples exhibit fatigue behaviour, but not EDM samples. •Four-point bending is not suitable for materials exhibiting pronounced ratcheting. •LAGB density can be used to quantitatively measure plastic deformation. •Grain shearing and rotation result in bent mechanical twins. •Nano sized grains evolve due to the heat of the operation.« less

  8. Effect of olive mill waste addition on the properties of porous fired clay bricks using Taguchi method.

    PubMed

    Sutcu, Mucahit; Ozturk, Savas; Yalamac, Emre; Gencel, Osman

    2016-10-01

    Production of porous clay bricks lightened by adding olive mill waste as a pore making additive was investigated. Factors influencing the brick manufacturing process were analyzed by an experimental design, Taguchi method, to find out the most favorable conditions for the production of bricks. The optimum process conditions for brick preparation were investigated by studying the effects of mixture ratios (0, 5 and 10 wt%) and firing temperatures (850, 950 and 1050 °C) on the physical, thermal and mechanical properties of the bricks. Apparent density, bulk density, apparent porosity, water absorption, compressive strength, thermal conductivity, microstructure and crystalline phase formations of the fired brick samples were measured. It was found that the use of 10% waste addition reduced the bulk density of the samples up to 1.45 g/cm(3). As the porosities increased from 30.8 to 47.0%, the compressive strengths decreased from 36.9 to 10.26 MPa at firing temperature of 950 °C. The thermal conductivities of samples fired at the same temperature showed a decrease of 31% from 0.638 to 0.436 W/mK, which is hopeful for heat insulation in the buildings. Increasing of the firing temperature also affected their mechanical and physical properties. This study showed that the olive mill waste could be used as a pore maker in brick production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Fabrication and Characterization of novel W80Ni10Nb10 alloy produced by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Saxena, R.; Patra, A.; Karak, S. K.; Pattanaik, A.; Mishra, S. C.

    2016-02-01

    Nanostructured tungsten (W) based alloy with nominal composition of W80Ni10Nb10 (in wt. %) was synthesized by mechanical alloying of elemental powders of tungsten (W), nickel (Ni), niobium (Nb) in a high energy planetary ball-mill for 20 h using chrome steel as grinding media and toluene as process control agent followed by compaction at 500 MPa pressure for 5 mins and sintering at 1500°C for 2 h in Ar atmosphere. The phase evolution and the microstructure of the milled powder and consolidated product were investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The crystallite size of W in W80Ni10Nb10 powder was reduced from 100 μm at 0 h to 45.6 nm at 10 h and 34.1 nm at 20 h of milling whereas lattice strain increases to 35% at 20 h of milling. The dislocation density shows sharp increase up to 5 h of milling and the rate of increase drops beyond 5 to 20 h of milling. The lattice parameter of tungsten in W80Ni10Nb10 expanded upto 0.04% at 10 h of milling and contracted upto 0.02% at 20 h of milling. The SEM micrograph revealed the presence of spherical and elongated particles in W80Ni10Nb10 powders at 20 h of milling. The particle size decreases from 100 μm to 2 μm with an increase in the milling time from 0 to 20 hours. The crystallite size of W in milled W80Ni10Nb10 alloy as evident from bright field TEM image was in well agreement with the measured crystallite size from XRD. Structure of W in 20 h milled W80Ni10Nb10 alloy was identified by indexing of selected area diffraction (SAD) pattern. Formation of NbNi intermetallic was evident from XRD pattern and SEM micrograph of sintered alloy. Maximum sinterability of 90.8% was achieved in 20 h milled sintered alloy. Hardness and wear study was also conducted to investigate the mechanical behaviour of the sintered product. Hardness of W80Ni10Nb10 alloy reduces with increasing load whereas wear rate increases with increasing load. The evaluated hardness value in the present study for all loads is lower than the literature reported hardness of nanostructured W.

  10. Effect of graphite addition into mill scale waste as a potential bipolar plates material of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Khaerudini, D. S.; Prakoso, G. B.; Insiyanda, D. R.; Widodo, H.; Destyorini, F.; Indayaningsih, N.

    2018-03-01

    Bipolar plates (BPP) is a vital component of proton exchange membrane fuel cells (PEMFC), which supplies fuel and oxidant to reactive sites, remove reaction products, collects produced current and provide mechanical support for the cells in the stack. This work concerns the utilization of mill scale, a by-product of iron and steel formed during the hot rolling of steel, as a potential material for use as BPP in PEMFC. On the other hand, mill scale is considered a very rich in iron source having characteristic required such as for current collector in BPP and would significantly contribute to lower the overall cost of PEMFC based fuel cell systems. In this study, the iron reach source of mill scale powder, after sieving of 150 mesh, was mechanically alloyed with the carbon source containing 5, 10, and 15 wt.% graphite using a shaker mill for 3 h. The mixed powders were then pressed at 300 MPa and sintered at 900 °C for 1 h under inert gas atmosphere. The structural changes of powder particles during mechanical alloying and after sintering were studied by X-ray diffractometry, optical microscopy, scanning electron microscopy, and microhardness measurement. The details of the presence of iron, carbon, and iron carbide (Fe-C) as the products of reactions as well as sufficient mechanical strength of the sintered materials were presented in this report.

  11. Preparation and characterization of Fe50Co50 nanostructured alloy

    NASA Astrophysics Data System (ADS)

    Yepes, N.; Orozco, J.; Caamaño, Z.; Mass, J.; Pérez, G.

    2014-04-01

    Nanostructured Fe50Co50 alloy was prepared by mechanical alloying of Fe and Co powders in a planetary high energy ball milling. The microstructure and structural evolution of the alloy have been investigated as a function of milling time (0 h, 8 h, 20 h and 35 h) by scanning electron microscopy (SEM) and X-Ray diffraction (XRD) characterization techniques. SEM micrographs showed different powder particles morphologies during the mechanical alloying stages. By XRD analysis it could be identified the structural phases of the alloy and the crystallite size was calculated as a function of the milling time.

  12. Understanding longitudinal wood fiber ultra-structure for producing cellulose nanofibrils using disk milling with diluted acid prehydrolysis

    Treesearch

    Yanlin Qin; Xueqing Qiu; Junyong Zhu

    2016-01-01

    Here we used dilute oxalic acid to pretreat a kraft bleached Eucalyptus pulp (BEP) fibers to facilitate mechanical fibrillation in producing cellulose nanofibrils using disk milling with substantial mechanical energy savings. We successfully applied a reaction kinetics based combined hydrolysis factor (CHFx) as a severity factor to quantitatively...

  13. Influence of jet milling and particle size on the composition, physicochemical and mechanical properties of barley and rye flours.

    PubMed

    Drakos, Antonios; Kyriakakis, Georgios; Evageliou, Vasiliki; Protonotariou, Styliani; Mandala, Ioanna; Ritzoulis, Christos

    2017-01-15

    Finer barley and rye flours were produced by jet milling at two feed rates. The effect of reduced particle size on composition and several physicochemical and mechanical properties of all flours were evaluated. Moisture content decreased as the size of the granules decreased. Differences on ash and protein contents were observed. Jet milling increased the amount of damaged starch in both rye and barley flours. True density increased with decreased particle size whereas porosity and bulk density increased. The solvent retention capacity profile was also affected by jet milling. Barley was richer in phenolics and had greater antioxidant activity than rye. Regarding colour, both rye and barley flours when subjected to jet milling became brighter, whereas their yellowness was not altered significantly. The minimum gelation concentration for all flours was 16%w/v. Barley flour gels were stronger, firmer and more elastic than the rye ones. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Thermochemical properties of nanometer CL-20 and PETN fabricated using a mechanical milling method

    NASA Astrophysics Data System (ADS)

    Song, Xiaolan; Wang, Yi; An, Chongwei

    2018-06-01

    2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and pentaerythritol tetranitrate (PETN), with mean sizes of 73.8 nm and 267.7 nm, respectively, were fabricated on a high-energy ball-mill. Scanning electron microscope (SEM) analysis was used to image the micron-scale morphology of nano-explosives, and the particle size distribution was calculated using the statistics of individual particle sizes obtained from the SEM images. Analyses, such as X-ray diffractometer (XRD), infrared spectroscopy (IR), and X-ray photoelectron spectroscopy (XPS), were also used to confirm whether the crystal phase, molecular structure, and surface elements changed after a long-term milling process. The results were as expected. Thermal analysis was performed at different heating rates. Parameters, such as the activation energy (ES), activation enthalpy (ΔH≠), activation free energy (ΔG≠), activation entropy (ΔS≠), and critical temperature of thermal explosion (Tb), were calculated to determine the decomposition courses of the explosives. Moreover, the thermal decomposition mechanisms of nano CL-20 and nano PETN were investigated using thermal-infrared spectrometry online (DSC-IR) analysis, by which their gas products were also detected. The results indicated that nano CL-20 decomposed to CO2 and N2O and that nano PETN decayed to NO2, which implied a remarkable difference between the decomposition mechanisms of the two explosives. In addition, the mechanical sensitivities of CL-20 and PETN were tested, and the results revealed that nano-explosives were more insensitive than raw ones, and the possible mechanism for this was discussed. Thermal sensitivity was also investigated with a 5 s bursting point test, from which the 5 s bursting point (T5s) and the activation of the deflagration were obtained.

  15. Research of the chemical activity of microgrinding coals of various metamorphism degree

    NASA Astrophysics Data System (ADS)

    Burdukov, A. P.; Butakov, E. B.; Kuznetsov, A. V.

    2017-09-01

    In this paper, we investigate the effect of mechanically activating grinding of coals of various degrees of metamorphism by two different methods - determination of the flash time in a vertical tubular furnace and thermogravimetric analysis. In the experiments, the coals that had been processed on a vibrating centrifugal mill and a disintegrator, aged for some time, were compared. The experiments showed a decrease in the ignition temperature of mechanically activated coals - deactivation of fuel, as well as the effect of mechanical activation on the further process of thermal-oxidative degradation.

  16. Preparation and Reactivity of Gasless Nanostructured Energetic Materials

    PubMed Central

    Manukyan, Khachatur V.; Shuck, Christopher E.; Rogachev, Alexander S.; Mukasyan, Alexander S.

    2015-01-01

    High-Energy Ball Milling (HEBM) is a ball milling process where a powder mixture placed in the ball mill is subjected to high-energy collisions from the balls. Among other applications, it is a versatile technique that allows for effective preparation of gasless reactive nanostructured materials with high energy density per volume (Ni+Al, Ta+C, Ti+C). The structural transformations of reactive media, which take place during HEBM, define the reaction mechanism in the produced energetic composites. Varying the processing conditions permits fine tuning of the milling-induced microstructures of the fabricated composite particles. In turn, the reactivity, i.e., self-ignition temperature, ignition delay time, as well as reaction kinetics, of high energy density materials depends on its microstructure. Analysis of the milling-induced microstructures suggests that the formation of fresh oxygen-free intimate high surface area contacts between the reagents is responsible for the enhancement of their reactivity. This manifests itself in a reduction of ignition temperature and delay time, an increased rate of chemical reaction, and an overall decrease of the effective activation energy of the reaction. The protocol provides a detailed description for the preparation of reactive nanocomposites with tailored microstructure using short-term HEBM method. It also describes a high-speed thermal imaging technique to determine the ignition/combustion characteristics of the energetic materials. The protocol can be adapted to preparation and characterization of a variety of nanostructured energetic composites. PMID:25868065

  17. N-type nano-silicon powders with ultra-low electrical resistivity as anode materials in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Yue, Zhihao; Zhou, Lang; Jin, Chenxin; Xu, Guojun; Liu, Liekai; Tang, Hao; Li, Xiaomin; Sun, Fugen; Huang, Haibin; Yuan, Jiren

    2017-06-01

    N-type silicon wafers with electrical resistivity of 0.001 Ω cm were ball-milled to powders and part of them was further mechanically crushed by sand-milling to smaller particles of nano-size. Both the sand-milled and ball-milled silicon powders were, respectively, mixed with graphite powder (silicon:graphite = 5:95, weight ratio) as anode materials for lithium ion batteries. Electrochemical measurements, including cycle and rate tests, present that anode using sand-milled silicon powder performed much better. The first discharge capacity of sand-milled silicon anode is 549.7 mAh/g and it is still up to 420.4 mAh/g after 100 cycles. Besides, the D50 of sand-milled silicon powder shows ten times smaller in particle size than that of ball-milled silicon powder, and they are 276 nm and 2.6 μm, respectively. In addition, there exist some amorphous silicon components in the sand-milled silicon powder excepting the multi-crystalline silicon, which is very different from the ball-milled silicon powder made up of multi-crystalline silicon only.

  18. The effect of milling time on the synthesis of Cu{sub 54}Mg{sub 22}Ti{sub 18}Ni{sub 6} alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kursun, C., E-mail: celalkursun@ksu.edu.tr; Gogebakan, M., E-mail: gogebakan@ksu.edu.tr

    In the present work, nanocrystalline Cu{sub 54}Mg{sub 22}Ti{sub 18}Ni{sub 6} alloy was produced by mechanical alloying from mixtures of pure crystalline Cu, Mg, Ti and Ni powders using a Fritsch planetary ball mill with a ball to powder ratio of 10:1. Morphological changes, microstructural evolution and thermal behaviour of the Cu-Mg-Ti-Ni powders at different stages of milling were characterised by X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray detection (SEM/EDX) and differential thermal analysis (DTA). This alloy resulted in formation of single phase solid solution with FCC structure α-Cu (Mg, Ti, Ni) after 80 h of milling. In the initialmore » stage of milling different sized and shaped elemental powders became uniform during mechanical alloying. The homogeneity of the Cu{sub 54}Mg{sub 22}Ti{sub 18}Ni{sub 6} alloy increased with increasing milling time. The EDX result also confirmed the compositional homogeneity of the powder alloy. The crystallite size of alloy was calculated below 10 nm from XRD data.« less

  19. Synthesis of nanostructured vanadium powder by high-energy ball milling: X-ray diffraction and high-resolution electron microscopy characterization

    NASA Astrophysics Data System (ADS)

    Krishnan, Vinoadh Kumar; Sinnaeruvadi, Kumaran

    2016-10-01

    Vanadium metal powders, ball milled with different surfactants viz., stearic acid, KCl and NaCl, have been studied by X-ray diffraction and transmission electron microscopy. The surfactants alter the microstructural and morphological characteristics of the powders. Ball milling with stearic acid results in solid-state amorphization, while powders milled with KCl yield vanadium-tungsten carbide nanocomposite mixtures. NaCl proved to be an excellent surfactant for obtaining nanostructured fusion-grade vanadium powders. In order to understand the reaction mechanism behind any interstitial addition in the ball-milled powders, CHNOS analysis was performed.

  20. Oxide dispersion strengthened nickel produced by nonreactive milling

    NASA Technical Reports Server (NTRS)

    Arias, A.

    1976-01-01

    It is shown that oxide dispersion strengthened alloys can be produced by a postulated nonreactive milling mechanism whereby the dispersoid is trapped at the interface between welding metal powder particles. This interparticle welding is possible because, without a suitable and sufficiently vigorous chemical reaction between the metal powder particles and the milling fluid, no protective, weld-preventing reaction coating is formed on these particles. Using water as the nonreactive milling fluid, Ni - 1.8-vol % thoria and Ni - 1.8-vol % yttria alloys with 1093 C tensile strengths ranging from 122.3 to 141.5 MN/sq m (17,900 to 20,500 psi) were produced by nonreactive milling.

  1. On the phase evolution of AlCoCrCuFeMnSix high entropy alloys prepared by mechanical alloying and arc melting route

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Chopkar, Manoj

    2018-05-01

    Effect of Si addition on phase formation of AlCoCrCuFeMnSix (x=0, 0.3, 0.6 and 0.9) high entropy alloy have been investigated in this work. The alloys are prepared by mechanical alloying and vacuum arc melting technique. The X-ray diffraction results reveals the formation of mixture of face centered and body centered cubic solid solution phases in milled powders. The addition of Si favours body centered cubic structure formation during milling process. Whereas, after melting the milled powders, body centered phases formed during milling is partial transformed into sigma phases. XRD results were also correlated with the SEM elemental mapping of as casted samples. Addition of Si favours σ phase formation in the as cast samples.

  2. The Effect of Milling Time on the Microstructural Characteristics and Strengthening Mechanisms of NiMo-SiC Alloys Prepared via Powder Metallurgy.

    PubMed

    Yang, Chao; Muránsky, Ondrej; Zhu, Hanliang; Thorogood, Gordon J; Avdeev, Maxim; Huang, Hefei; Zhou, Xingtai

    2017-04-06

    A new generation of alloys, which rely on a combination of various strengthening mechanisms, has been developed for application in molten salt nuclear reactors. In the current study, a battery of dispersion and precipitation-strengthened (DPS) NiMo-based alloys containing varying amounts of SiC (0.5-2.5 wt %) were prepared from Ni-Mo-SiC powder mixture via a mechanical alloying (MA) route followed by spark plasma sintering (SPS) and rapid cooling. Neutron Powder Diffraction (NPD), Electron Back Scattering Diffraction (EBSD), and Transmission Electron Microscopy (TEM) were employed in the characterization of the microstructural properties of these in-house prepared NiMo-SiC DPS alloys. The study showed that uniformly-dispersed SiC particles provide dispersion strengthening, the precipitation of nano-scale Ni₃Si particles provides precipitation strengthening, and the solid-solution of Mo in the Ni matrix provides solid-solution strengthening. It was further shown that the milling time has significant effects on the microstructural characteristics of these alloys. Increased milling time seems to limit the grain growth of the NiMo matrix by producing well-dispersed Mo₂C particles during sintering. The amount of grain boundaries greatly increases the Hall-Petch strengthening, resulting in significantly higher strength in the case of 48-h-milled NiMo-SiC DPS alloys compared with the 8-h-milled alloys. However, it was also shown that the total elongation is considerably reduced in the 48-h-milled NiMo-SiC DPS alloy due to high porosity. The porosity is a result of cold welding of the powder mixture during the extended milling process.

  3. The Effect of Milling Time on the Microstructural Characteristics and Strengthening Mechanisms of NiMo-SiC Alloys Prepared via Powder Metallurgy

    PubMed Central

    Yang, Chao; Muránsky, Ondrej; Zhu, Hanliang; Thorogood, Gordon J.; Avdeev, Maxim; Huang, Hefei; Zhou, Xingtai

    2017-01-01

    A new generation of alloys, which rely on a combination of various strengthening mechanisms, has been developed for application in molten salt nuclear reactors. In the current study, a battery of dispersion and precipitation-strengthened (DPS) NiMo-based alloys containing varying amounts of SiC (0.5–2.5 wt %) were prepared from Ni-Mo-SiC powder mixture via a mechanical alloying (MA) route followed by spark plasma sintering (SPS) and rapid cooling. Neutron Powder Diffraction (NPD), Electron Back Scattering Diffraction (EBSD), and Transmission Electron Microscopy (TEM) were employed in the characterization of the microstructural properties of these in-house prepared NiMo-SiC DPS alloys. The study showed that uniformly-dispersed SiC particles provide dispersion strengthening, the precipitation of nano-scale Ni3Si particles provides precipitation strengthening, and the solid-solution of Mo in the Ni matrix provides solid-solution strengthening. It was further shown that the milling time has significant effects on the microstructural characteristics of these alloys. Increased milling time seems to limit the grain growth of the NiMo matrix by producing well-dispersed Mo2C particles during sintering. The amount of grain boundaries greatly increases the Hall–Petch strengthening, resulting in significantly higher strength in the case of 48-h-milled NiMo-SiC DPS alloys compared with the 8-h-milled alloys. However, it was also shown that the total elongation is considerably reduced in the 48-h-milled NiMo-SiC DPS alloy due to high porosity. The porosity is a result of cold welding of the powder mixture during the extended milling process. PMID:28772747

  4. Synthesis and characterization of magnetite-maghemite nanoparticles obtained by the high-energy ball milling method

    NASA Astrophysics Data System (ADS)

    Velásquez, A. A.; Marín, C. C.; Urquijo, J. P.

    2018-03-01

    We present the process of synthesis and characterization of magnetite-maghemite nanoparticles by the ball milling method. The particles were synthesized in a planetary ball mill equipped with vials and balls of tempered steel, employing dry and wet conditions. For dry milling, we employed microstructured analytical-grade hematite (α-Fe2O3), while for wet milling, we mixed hematite and deionized water. Milling products were characterized by X-ray diffraction, transmission electron microscopy, room temperature Mössbauer spectroscopy, vibrating sample magnetometry, and atomic absorption spectroscopy. The Mössbauer spectrum of the dry milling product was well fitted with two sextets of hematite, while the spectrum of the wet milling product was well fitted with three sextets of spinel phase. X-ray measurements confirmed the phases identified by Mössbauer spectroscopy in both milling conditions and a reduction in the crystallinity of the dry milling product. TEM measurements showed that the products of dry milling for 100 h and wet milling for 24 h consist of aggregates of nanoparticles distributed in size, with mean particle size of 10 and 15 nm, respectively. Magnetization measurements of the wet milling product showed little coercivity and a saturation magnetization around 69 emu g-1, characteristic of a nano-spinel system. Atomic absorption measurements showed that the chromium contamination in the wet milling product is approximately two orders of magnitude greater than that found in the dry milling product for 24 h, indicating that the material of the milling bodies, liberated more widely in wet conditions, plays an important role in the conversion hematite-spinel phase.

  5. Diverse rheological properties, mechanical characteristics and microstructures of corn fiber gum/soy protein isolate hydrogels prepared by laccase and heat treatment

    USDA-ARS?s Scientific Manuscript database

    Two types of corn fiber gum (CFGs) were extracted from corn fibers (CFs) obtained from wet or dry corn milling processing. Both CFGs could form hydrogels when induced via laccase, but CFGs isolated from wet milled CFs exhibited higher storage modulus (G') and better mechanical strength as obtained f...

  6. Microstructure transformation of Cr-Al coating on carbon steel prepared by ball milling method as a function of tungsten doping

    NASA Astrophysics Data System (ADS)

    Wismogroho, A. S.; Sudiro, T.; Didik, A.; Ciswandi

    2018-03-01

    In present work, Cr-Al coatings containing 0, 1, 2, 3, and 5% W have been prepared on the surface of low carbon steel by mechanical alloying technique. The composition of each powder was milled for 2 hour in a stainless steel crucible with a ball to powder ratio of 10:1. Afterward, the Cr-Al-W powder and substrate were mechanically alloyed in air for 1 hour. The heat treatment of coated samples was carried out at 800 °C in a vacuum furnace for 2 hour. In order to characterize the phase composition and microstructure of the coating before and after heat treatment, XRD and SEM-EDX were used. The analysis results reveal that the ball milling process induces the formation of homogeneous Cr-Al-W coating structure with a thickness of about 80 μm. The phase observation shows individual peaks of each starting elements, along with the occurrence of powder refinement and solid solution formation. After heat treatment, AlCr2 and Al8Cr5 phases were formed. The addition of W accelerates the formation of AlCr2, but inhibits the formation of Al8Cr5. The detail of the results was presented in this paper.

  7. Study on Finite Element Method of Stress Field in Aluminum Alloy High-Speed Milling Process

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Li, Shunming; Wu, Qijun; An, Zenghui

    2017-11-01

    Three-dimensional numerical simulation model has been built by means of Advantage FEM. Perform simulation the stress fields of 7050-T7451 aluminum alloy in high speed milling process at the speed range of 628 m/min∼5946 m/min. The dynamic change and speed’s influence of stress fields and residual stress in machined layer is systematically analyzed. Some conclusions were drawn. With the cutting process development, the stress field converts to the stress state that crushing stress occupies a leading position. The magnitudes of crushing stress in all directions reduce with milling processes as the effect of Thermal-Mechanical-Coupled weakens; With the cutting speed increasing the magnitudes of crushing stress in all directions fluctuate near -950Mpa first, and then increase at the speed of 3000m/min; The residual pulling stress beneath the surface 0.03mm has been found and the magnitude increases with the cutting speed. A good agreement was obtained between predictions and experiments.

  8. Characterization of milled solid residue from cypress liquefaction in sub- and super ethanol.

    PubMed

    Liu, Hua-Min; Liu, Yu-Lan

    2014-01-01

    Cypress liquefaction in sub- and super ethanol was carried out in an autoclave at various temperatures. Milled solid residue (MSR) was isolated from solid residue remaining from the liquefaction process, and its chemical characteristics was comparatively investigated with milled wood lignin (MWL) of cypress by sugar analysis, elemental analysis, FT-IR analysis, gel permeation chromatography, and NMR analysis. Results showed that there were two reactions (de-polymerization and re-polymerization) during the cypress liquefaction in sub- and super ethanol and the re-polymerization reactions were the main reaction at 220-260°C. Considering the stability of side-chain, the stability of lignin side-chain in cypress during liquefaction process in ethanol could be sequenced as follows: β-5>β-β'>β-O-4'. The MSR were mainly from the decomposition and re-polymerization of lignin. This study suggests that characterization of MSR provides a promising method to investigate the mechanisms of cypress liquefaction in ethanol. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  9. Discrete element method based scale-up model for material synthesis using ball milling

    NASA Astrophysics Data System (ADS)

    Santhanam, Priya Radhi

    Mechanical milling is a widely used technique for powder processing in various areas. In this work, a scale-up model for describing this ball milling process is developed. The thesis is a combination of experimental and modeling efforts. Initially, Discrete Element Model (DEM) is used to describe energy transfer from milling tools to the milled powder for shaker, planetary, and attritor mills. The rolling and static friction coefficients are determined experimentally. Computations predict a quasisteady rate of energy dissipation, E d, for each experimental configuration. It is proposed that the milling dose defined as a product of Ed and milling time, t, divided by the mass of milled powder, mp characterizes the milling progress independently of the milling device or milling conditions used. Once the milling dose is determined for one experimental configuration, it can be used to predict the milling time required to prepare the same material in any milling configuration, for which Ed is calculated. The concept is validated experimentally for DEM describing planetary and shaker mills. For attritor, the predicted Ed includes substantial contribution from milling tool interaction events with abnormally high forces (>103 N). The energy in such events is likely dissipated to heat or plastically deform milling tools rather than refine material. Indeed, DEM predictions for the attritor correlate with experiments when such events are ignored in the analysis. With an objective of obtaining real-time indicators of milling progress, power, torque, and rotation speed of the impeller of an attritor mill are measured during preparation of metal matrix composite powders in the subsequent portion of this thesis. Two material systems are selected and comparisons made between in-situ parameters and experimental milling progress indicators. It is established that real-time measurements can certainly be used to describe milling progress. However, they need to be interpreted carefully depending on hardness of brittle component relative to milling media. To improve the DEM model of the attritor mill, it is desired to avoid the removal of unrealistic, high-force events using an approach that would not predict such events in the first place. It is observed that during experiments in attritor, balls may jam causing an increased resistance to the impeller's rotation. The impeller may instantaneously slow down, quickly returning to its pre-set rotation rate. Previous DEM models did not account for such rapid changes in the impeller's rotation. In this work, this relationship between impeller's torque and rotation rate is obtained experimentally and introduced in DEM. As a result, predicted Ed, are shown to correlate well with the experimental data. Finally, a methodology is proposed combining an experiment and its DEM description enabling one to identify the appropriate interaction parameters for powder systems. The experiment uses a miniature vibrating hopper and can be applied to characterize the powder flow for variety of materials. The hopper is designed to hold up to 20,000 particles of 50-mum diameter, which can be directly described in DEM. Based on comparison of discharge rate from experiments and model, all 6 interaction parameters were analyzed and the ideal conditions identified for Zirconia beads. The values of these parameters for powders are generally not the same as those established for macroscopic bodies. In addition, effects of some other experimental parameters such as particle size distribution and amplitude of vibration are also investigated.

  10. Mechanochemical stabilization and sintering of nanocrystalline the (ZrO2)0.97 (Y2O3)0.03 solid solution from pure oxides

    NASA Astrophysics Data System (ADS)

    Rendtorff, N. M.; Suárez, G.; Sakka, Y.; Aglietti, E. F.

    2011-10-01

    The mechanochemical activation processing has proved to be an effective technique to enhance a solid-state reaction at relatively low temperatures. In such a process, the mechanical effects of milling, such as reduction of particle size and mixture homogenization, are accompanied by chemical effects, such as partial decomposition of salts or hydroxides resulting in very active reactants. The objective of the present work is to obtain (ZrO2)0.97(Y2O3)0.03 nanocrystalline tetragonal solid solution powders directly using a high energy milling on a mixture of the pure oxides. A second objective is to evaluate the efficiency of the processing proposed and to characterize both textural and structural evolution of the mixtures during the milling processes and throughout posterior low temperature treatments. The Textural and structural evolution were studied by XRD analysis, specific area measurements (BET) and SEM. Firstly a decrease of the crystallinity of the reactants was observed, followed by the disappearance of Y2O3 diffraction peaks and the partial appearance of the tetragonal phase at room temperature. The solid solution proportion was increased with the high energy milling time, obtaining complete stabilization of the tetragonal solid solution with long milling treatments (60 min).The obtained powders were uniaxially pressed and sintered at different temperatures (600-1400°C) the influence of the milling time was correlated with the sinterization degree and final crystalline composition of the materials. Finally, fully stabilized nanocrystalline zirconia materials were obtained satisfactorily by the proposed method.

  11. An environmentally friendly ball milling process for recovery of valuable metals from e-waste scraps.

    PubMed

    Zhang, Zhi-Yuan; Zhang, Fu-Shen; Yao, TianQi

    2017-10-01

    The present study reports a mechanochemical (MC) process for effective recovery of copper (Cu) and precious metals (i.e. Pd and Ag) from e-waste scraps. Results indicated that the mixture of K 2 S 2 O 8 and NaCl (abbreviated as K 2 S 2 O 8 /NaCl hereafter) was the most effective co-milling reagents in terms of high recovery rate. After co-milling with K 2 S 2 O 8 /NaCl, soluble metallic compounds were produced and consequently benefit the subsequent leaching process. 99.9% of Cu and 95.5% of Pd in the e-waste particles could be recovered in 0.5mol/L diluted HCl in 15min. Ag was concentrated in the leaching residue as AgCl and then recovered in 1mol/L NH 3 solution. XRD and XPS analysis indicated that elemental metals in the raw materials were transformed into their corresponding oxidation state during ball milling process at low temperature, implying that solid-solid phase reactions is the reaction mechanism. Based on the results and thermodynamic parameters of the probable reactions, possible reaction pathways during ball milling were proposed. Suggestion on category of e-waste for ball milling process was put forward according to the experiment results. The designed metal recovery process of this study has the advantages of highly recovery rate and quick leaching speed. Thus, this study offers a promising and environmentally friendly method for recovering valuable metals from e-waste. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Effects of ball-milling on lithium insertion into multi-walled carbon nanotubes synthesized by thermal chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Eom, JiYong; Kim, DongYung; Kwon, HyukSang

    The effects of ball-milling on Li insertion into multi-walled carbon nanotubes (MWNTs) are presented. The MWNTs are synthesized on supported catalysts by thermal chemical vapour deposition, purified, and mechanically ball-milled by the high energy ball-milling. The purified MWNTs and the ball-milled MWNTs were electrochemically inserted with Li. Structural and chemical modifications in the ball-milled MWNTs change the insertion-extraction properties of Li ions into/from the ball-milled MWNTs. The reversible capacity (C rev) increases with increasing ball-milling time, namely, from 351 mAh g -1 (Li 0.9C 6) for the purified MWNTs to 641 mAh g -1 (Li 1.7C 6) for the ball-milled MWNTs. The undesirable irreversible capacity (C irr) decreases continuously with increase in the ball-milling time, namely, from 1012 mAh g -1 (Li 2.7C 6) for the purified MWNTs to 518 mAh g -1 (Li 1.4C 6) for the ball-milled MWNTs. The decrease in C irr of the ball-milled samples results in an increase in the coulombic efficiency from 25% for the purified samples to 50% for the ball-milled samples. In addition, the ball-milled samples maintain a more stable capacity than the purified samples during charge-discharge cycling.

  13. Wheat mill stream properties for discrete element method modeling

    USDA-ARS?s Scientific Manuscript database

    A discrete phase approach based on individual wheat kernel characteristics is needed to overcome the limitations of previous statistical models and accurately predict the milling behavior of wheat. As a first step to develop a discrete element method (DEM) model for the wheat milling process, this s...

  14. In-situ catalyzation approach for enhancing the hydrogenation/dehydrogenation kinetics of MgH2 powders with Ni particles

    PubMed Central

    El-Eskandarany, M. Sherif; Shaban, Ehab; Ali, Naser; Aldakheel, Fahad; Alkandary, Abdullah

    2016-01-01

    One practical solution for utilizing hydrogen in vehicles with proton-exchange fuel cells membranes is storing hydrogen in metal hydrides nanocrystalline powders. According to its high hydrogen capacity and low cost of production, magnesium hydride (MgH2) is a desired hydrogen storage system. Its slow hydrogenation/dehydrogenation kinetics and high thermal stability are the major barriers restricting its usage in real applications. Amongst the several methods used for enhancing the kinetics behaviors of MgH2 powders, mechanically milling the powders with one or more catalyst species has shown obvious advantages. Here we are proposing a new approach for gradual doping MgH2 powders with Ni particles upon ball milling the powders with Ni-balls milling media. This proposed is-situ method showed mutually beneficial for overcoming the agglomeration of catalysts and the formation of undesired Mg2NiH4 phase. Moreover, the decomposition temperature and the corresponding activation energy showed low values of 218 °C and 75 kJ/mol, respectively. The hydrogenation/dehydrogenation kinetics examined at 275 °C of the powders milled for 25 h took place within 2.5 min and 8 min, respectively. These powders containing 5.5 wt.% Ni performed 100-continuous cycle-life time of hydrogen charging/discharging at 275 °C within 56 h without failure or degradation. PMID:27849033

  15. Scalable Preparation of Ternary Hierarchical Silicon Oxide-Nickel-Graphite Composites for Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang , Jing; Bao, Wurigumula; Ma, Lu

    2015-11-09

    Silicon monoxide is a promising anode candidate because of its high theoretical capacity and good cycle performance. To solve the problems associated with this material, including large volume changes during charge-discharge processes, we report a ternary hierarchical silicon oxide–nickel–graphite composite prepared by a facile two-step ball-milling method. The composite consists of nano-Si dispersed silicon oxides embedded in nano-Ni/graphite matrices (Si@SiOx/Ni/graphite). In the composite, crystalline nano-Si particles are generated by the mechanochemical reduction of SiO by ball milling with Ni. These nano-Si dispersed oxides have abundant electrochemical activity and can provide high Li-ion storage capacity. Furthermore, the milled nano-Ni/graphite matrices stickmore » well to active materials and interconnect to form a crosslinked framework, which functions as an electrical highway and a mechanical backbone so that all silicon oxide particles become electrochemically active. Owing to these advanced structural and electrochemical characteristics, the composite enhances the utilization efficiency of SiO, accommodates its large volume expansion upon cycling, and has good ionic and electronic conductivity. The composite electrodes thus exhibit substantial improvements in electrochemical performance. This ternary hierarchical Si@SiOx/Ni/graphite composite is a promising candidate anode material for high-energy lithium-ion batteries. Additionally, the mechanochemical ball-milling method is low cost and easy to reproduce, indicating potential for the commercial production of the composite materials.« less

  16. Scalable Preparation of Ternary Hierarchical Silicon Oxide-Nickel-Graphite Composites for Lithium-Ion Batteries.

    PubMed

    Wang, Jing; Bao, Wurigumula; Ma, Lu; Tan, Guoqiang; Su, Yuefeng; Chen, Shi; Wu, Feng; Lu, Jun; Amine, Khalil

    2015-12-07

    Silicon monoxide is a promising anode candidate because of its high theoretical capacity and good cycle performance. To solve the problems associated with this material, including large volume changes during charge-discharge processes, we report a ternary hierarchical silicon oxide-nickel-graphite composite prepared by a facile two-step ball-milling method. The composite consists of nano-Si dispersed silicon oxides embedded in nano-Ni/graphite matrices (Si@SiOx /Ni/graphite). In the composite, crystalline nano-Si particles are generated by the mechanochemical reduction of SiO by ball milling with Ni. These nano-Si dispersed oxides have abundant electrochemical activity and can provide high Li-ion storage capacity. Furthermore, the milled nano-Ni/graphite matrices stick well to active materials and interconnect to form a crosslinked framework, which functions as an electrical highway and a mechanical backbone so that all silicon oxide particles become electrochemically active. Owing to these advanced structural and electrochemical characteristics, the composite enhances the utilization efficiency of SiO, accommodates its large volume expansion upon cycling, and has good ionic and electronic conductivity. The composite electrodes thus exhibit substantial improvements in electrochemical performance. This ternary hierarchical Si@SiOx /Ni/graphite composite is a promising candidate anode material for high-energy lithium-ion batteries. Additionally, the mechanochemical ball-milling method is low cost and easy to reproduce, indicating potential for the commercial production of the composite materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Phase transformations in the hematite-metal system during mechanical alloying

    NASA Astrophysics Data System (ADS)

    Kozlov, K. A.; Shabashov, V. A.; Litvinov, A. V.; Sagaradze, V. V.

    2009-04-01

    Mössbauer spectroscopy and X-ray diffraction are used to show that the phase transformations in hematite α-Fe2O3-metal ( M = Fe, Ni, Ti, Zr) powder mixtures induced by severe cold plastic deformation in ball mills occur via the formation of M-Fe-O solid solutions, redox reactions with the reduction of metallic iron, and the formation of secondary M x O y oxides and M x Fe y intermetallics. Mechanical activation in a ball mill is compared to that under high-pressure shear in Bridgman anvils. The transformations that take place in a ball mill are found to have several stages and to be accelerated.

  18. An Attachable Electromagnetic Energy Harvester Driven Wireless Sensing System Demonstrating Milling-Processes and Cutter-Wear/Breakage-Condition Monitoring.

    PubMed

    Chung, Tien-Kan; Yeh, Po-Chen; Lee, Hao; Lin, Cheng-Mao; Tseng, Chia-Yung; Lo, Wen-Tuan; Wang, Chieh-Min; Wang, Wen-Chin; Tu, Chi-Jen; Tasi, Pei-Yuan; Chang, Jui-Wen

    2016-02-23

    An attachable electromagnetic-energy-harvester driven wireless vibration-sensing system for monitoring milling-processes and cutter-wear/breakage-conditions is demonstrated. The system includes an electromagnetic energy harvester, three single-axis Micro Electro-Mechanical Systems (MEMS) accelerometers, a wireless chip module, and corresponding circuits. The harvester consisting of magnets with a coil uses electromagnetic induction to harness mechanical energy produced by the rotating spindle in milling processes and consequently convert the harnessed energy to electrical output. The electrical output is rectified by the rectification circuit to power the accelerometers and wireless chip module. The harvester, circuits, accelerometer, and wireless chip are integrated as an energy-harvester driven wireless vibration-sensing system. Therefore, this completes a self-powered wireless vibration sensing system. For system testing, a numerical-controlled machining tool with various milling processes is used. According to the test results, the system is fully self-powered and able to successfully sense vibration in the milling processes. Furthermore, by analyzing the vibration signals (i.e., through analyzing the electrical outputs of the accelerometers), criteria are successfully established for the system for real-time accurate simulations of the milling-processes and cutter-conditions (such as cutter-wear conditions and cutter-breaking occurrence). Due to these results, our approach can be applied to most milling and other machining machines in factories to realize more smart machining technologies.

  19. An Attachable Electromagnetic Energy Harvester Driven Wireless Sensing System Demonstrating Milling-Processes and Cutter-Wear/Breakage-Condition Monitoring

    PubMed Central

    Chung, Tien-Kan; Yeh, Po-Chen; Lee, Hao; Lin, Cheng-Mao; Tseng, Chia-Yung; Lo, Wen-Tuan; Wang, Chieh-Min; Wang, Wen-Chin; Tu, Chi-Jen; Tasi, Pei-Yuan; Chang, Jui-Wen

    2016-01-01

    An attachable electromagnetic-energy-harvester driven wireless vibration-sensing system for monitoring milling-processes and cutter-wear/breakage-conditions is demonstrated. The system includes an electromagnetic energy harvester, three single-axis Micro Electro-Mechanical Systems (MEMS) accelerometers, a wireless chip module, and corresponding circuits. The harvester consisting of magnets with a coil uses electromagnetic induction to harness mechanical energy produced by the rotating spindle in milling processes and consequently convert the harnessed energy to electrical output. The electrical output is rectified by the rectification circuit to power the accelerometers and wireless chip module. The harvester, circuits, accelerometer, and wireless chip are integrated as an energy-harvester driven wireless vibration-sensing system. Therefore, this completes a self-powered wireless vibration sensing system. For system testing, a numerical-controlled machining tool with various milling processes is used. According to the test results, the system is fully self-powered and able to successfully sense vibration in the milling processes. Furthermore, by analyzing the vibration signals (i.e., through analyzing the electrical outputs of the accelerometers), criteria are successfully established for the system for real-time accurate simulations of the milling-processes and cutter-conditions (such as cutter-wear conditions and cutter-breaking occurrence). Due to these results, our approach can be applied to most milling and other machining machines in factories to realize more smart machining technologies. PMID:26907297

  20. Facile Fabrication of 100% Bio-Based and Degradable Ternary Cellulose/PHBV/PLA Composites

    PubMed Central

    Wang, Jinwu

    2018-01-01

    Modifying bio-based degradable polymers such as polylactide (PLA) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) with non-degradable agents will compromise the 100% degradability of their resultant composites. This work developed a facile and solvent-free route in order to fabricate 100% bio-based and degradable ternary cellulose/PHBV/PLA composite materials. The effects of ball milling on the physicochemical properties of pulp cellulose fibers, and the ball-milled cellulose particles on the morphology and mechanical properties of PHBV/PLA blends, were investigated experimentally and statistically. The results showed that more ball-milling time resulted in a smaller particle size and lower crystallinity by way of mechanical disintegration. Filling PHBV/PLA blends with the ball-milled celluloses dramatically increased the stiffness at all of the levels of particle size and filling content, and improved their elongation at the break and fracture work at certain levels of particle size and filling content. It was also found that the high filling content of the ball-milled cellulose particles was detrimental to the mechanical properties for the resultant composite materials. The ternary cellulose/PHBV/PLA composite materials have some potential applications, such as in packaging materials and automobile inner decoration parts. Furthermore, filling content contributes more to the variations of their mechanical properties than particle size does. Statistical analysis combined with experimental tests provide a new pathway to quantitatively evaluate the effects of multiple variables on a specific property, and figure out the dominant one for the resultant composite materials. PMID:29495315

  1. Comparison of control and quality of bone cutting by using optical topographical imaging guided mechanical drill and 1070 nm laser with in-line coherent imaging

    NASA Astrophysics Data System (ADS)

    Razani, Marjan; Soudagar, Yasaman; Yu, Karen; Galbraith, Christopher M.; Webster, Paul J. L.; Van Vlack, Cole; Sun, Cuiru; Mariampillai, Adrian; Leung, Michael K. K.; Standish, Beau; Kiehl, Tim-Rasmus; Fraser, James M.; Yang, Victor X. D.

    2013-03-01

    Precision depth control of bone resection is necessary for safe surgical procedures in the spine. In this paper, we compare the control and quality of cutting bovine tail bone, as an ex vivo model of laminectomy and bony resection simulating spinal surgery, planned with micro-CT data and executed using two approaches: (a) mechanical milling guided by optical topographical imaging (OTI) and (b) optical milling using closed-loop inline coherent imaging (ICI) to monitor and control the incision depth of a high-power 1070 nm fiber laser in situ. OTI provides the in situ topology of the 2-dimensional surface of the bone orientation in the mechanical mill which is registered with the treatment plan derived from the micro-CT data. The coregistration allows the plan to be programmed into the mill which is then used as a benchmark of current surgical techniques. For laser cutting, 3D optical land marking with coaxial camera vision and the ICI system is used to coregister the treatment plan. The unstable, carbonization-mediated ablation behaviour of 1070 nm light and the unknown initial geometry of bone leads to unpredictable ablation which substantially limits the depth accuracy of open-loop cutting. However, even with such a non-ideal cutting laser, we demonstrate that ICI provides in situ high-speed feedback that automatically and accurately limits the laser's cut depth to effectively create an all-optical analogue to the mechanical mill.

  2. 6. View of the end of the lower raceway showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. View of the end of the lower raceway showing the gates and controlling mechanisms for channeling water into the Industry Mill. - Industry Mill, Van Houten & Prospect Street, Paterson, Passaic County, NJ

  3. IN SITU Deposition of Fe-TiC Nanocomposite on Steel by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Razavi, Mansour; Rahimipour, Mohammad Reza; Ganji, Mojdeh; Ganjali, Mansoreh; Gangali, Monireh

    The possibility of deposition of Fe-TiC nanocomposite on the surface of carbon steel substrate with the laser coating method had been investigated. Mechanical milling was used for the preparation of raw materials. The mixture of milled powders was used as a coating material on the substrate steel surface and a CO2 laser was used in continuous mode for coating. Microstructural studies were performed by scanning electron microscopy. Determinations of produced phases, crystallite size and mean strain have been done by X-ray diffraction. The hardness and wear resistance of coated samples were measured. The results showed that the in situ formation of Fe-TiC nanocomposite coating using laser method is possible. This coating has been successfully used to improve the hardness and wear resistance of the substrate so that the hardness increased by about six times. Coated iron and titanium carbide crystallite sizes were in the nanometer scale.

  4. Decontamination effect of milling by a jet mill on bacteria in rice flour.

    PubMed

    Sotome, Itaru; Nei, Daisuke; Tsuda, Masuko; Mohammed, Sharif Hossen; Takenaka, Makiko; Okadome, Hiroshi; Isobe, Seiichiro

    2011-06-01

    The decontamination effect of milling by a jet mill was investigated by counting the number of bacteria in brown and white rice flour with mean particle diameters of 3, 20, and 40µm prepared by the jet mill. In the jet mill, the particles are crushed and reduced in size by the mechanical impact caused by their collision. Although the brown and white rice grains were contaminated with approximately 10(6) and 10(5) CFU/g bacteria, the microbial load of the rice flour decreased as the mean particle diameter decreased, ultimately decreasing to approximately 104 and 103 CFU/g in the brown and white rice flour. The temperature and pressure changes of the sample were not considered to have an effect on reducing the bacterial count during the milling. Hence, it was thought that the rice flour was decontaminated by other effects.

  5. Optimization of Parameters for Manufacture Nanopowder Bioceramics at Machine Pulverisette 6 by Taguchi and ANOVA Method

    NASA Astrophysics Data System (ADS)

    Van Hoten, Hendri; Gunawarman; Mulyadi, Ismet Hari; Kurniawan Mainil, Afdhal; Putra, Bismantoloa dan

    2018-02-01

    This research is about manufacture nanopowder Bioceramics from local materials used Ball Milling for biomedical applications. Source materials for the manufacture of medicines are plants, animal tissues, microbial structures and engineering biomaterial. The form of raw material medicines is a powder before mixed. In the case of medicines, research is to find sources of biomedical materials that will be in the nanoscale powders can be used as raw material for medicine. One of the biomedical materials that can be used as raw material for medicine is of the type of bioceramics is chicken eggshells. This research will develop methods for manufacture nanopowder material from chicken eggshells with Ball Milling using the Taguchi method and ANOVA. Eggshell milled using a variation of Milling rate on 150, 200 and 250 rpm, the time variation of 1, 2 and 3 hours and variations the grinding balls to eggshell powder weight ratio (BPR) 1: 6, 1: 8, 1: 10. Before milled with Ball Milling crushed eggshells in advance and calcinate to a temperature of 900°C. After the milled material characterization of the fine powder of eggshell using SEM to see its size. The result of this research is optimum parameter of Taguchi Design analysis that is 250 rpm milling rate, 3 hours milling time and BPR is 1: 6 with the average eggshell powder size is 1.305 μm. Milling speed, milling time and ball to powder weight of ratio have contribution successively equal to 60.82%, 30.76% and 6.64% by error equal to 1.78%.

  6. Mechanochemically Reduced SiO2 by Ti Incorporation as Lithium Storage Materials.

    PubMed

    Kim, Kyungbae; Moon, Janghyuk; Lee, Jaewoo; Yu, Ji-Sang; Cho, Maenghyo; Cho, Kyeongjae; Park, Min-Sik; Kim, Jae-Hun; Kim, Young-Jun

    2015-09-21

    This study presents a simple and effective method of reducing amorphous silica (a-SiO2 ) with Ti metal through high-energy mechanical milling for improving its reactivity when used as an anode material in lithium-ion batteries. Through thermodynamic calculations, it is determined that Ti metal can easily take oxygen atoms from a-SiO2 by forming a thermodynamically stable SiO2-x /TiOx composite, meaning that electrochemically inactive a-SiO2 is partially reduced by the addition of Ti metal powder during milling. This mechanically reduced SiO2-x /TiOx composite anode exhibits a greatly improved electrochemical reactivity, with a reversible capacity of more than 700 mAh g(-1) and excellent cycle performance over 100 cycles. Furthermore, an enhancement in the mechanical and thermal stability of the composite during cycling can be mainly attributed to the in situ formation of the SiO2-x /TiOx phase. These findings provide new insight into the rational design of robust, high-capacity, Si-based anode materials, as well as their reaction mechanism. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Purification of Tronoh Silica Sand via preliminary process of mechanical milling

    NASA Astrophysics Data System (ADS)

    H, Nazratulhuda; M, Othman

    2016-02-01

    The purification of Tronoh silica sand is an important step in expanding technical applications of this silica sand. However no research on purifying of Tronoh silica sand has been reported. This study is focused on ball milling technique as a preliminary technique for Tronoh silica sand purification. The objectives are to study the effect of ball milling to the purification of the silica sand and to analyze its characteristics after the ball milling process. The samples before and after milling process were analyzed by using XRF, XRD, SEM and TEM. Results showed that the purity of SiO2 was increased, the size of the particles has been reduced and the surface area has increased. The crystalline phases for the silica before and after 4 hour milling time were remained constant.

  8. Accuracy evaluation of dental models manufactured by CAD/CAM milling method and 3D printing method.

    PubMed

    Jeong, Yoo-Geum; Lee, Wan-Sun; Lee, Kyu-Bok

    2018-06-01

    To evaluate the accuracy of a model made using the computer-aided design/computer-aided manufacture (CAD/CAM) milling method and 3D printing method and to confirm its applicability as a work model for dental prosthesis production. First, a natural tooth model (ANA-4, Frasaco, Germany) was scanned using an oral scanner. The obtained scan data were then used as a CAD reference model (CRM), to produce a total of 10 models each, either using the milling method or the 3D printing method. The 20 models were then scanned using a desktop scanner and the CAD test model was formed. The accuracy of the two groups was compared using dedicated software to calculate the root mean square (RMS) value after superimposing CRM and CAD test model (CTM). The RMS value (152±52 µm) of the model manufactured by the milling method was significantly higher than the RMS value (52±9 µm) of the model produced by the 3D printing method. The accuracy of the 3D printing method is superior to that of the milling method, but at present, both methods are limited in their application as a work model for prosthesis manufacture.

  9. A flexible method for the preparation of thin film samples for in situ TEM characterization combining shadow-FIB milling and electron-beam-assisted etching.

    PubMed

    Liebig, J P; Göken, M; Richter, G; Mačković, M; Przybilla, T; Spiecker, E; Pierron, O N; Merle, B

    2016-12-01

    A new method for the preparation of freestanding thin film samples for mechanical testing in transmission electron microscopes is presented. It is based on a combination of focused ion beam (FIB) milling and electron-beam-assisted etching with xenon difluoride (XeF 2 ) precursor gas. The use of the FIB allows for the target preparation of microstructural defects and enables well-defined sample geometries which can be easily adapted in order to meet the requirements of various testing setups. In contrast to existing FIB-based preparation approaches, the area of interest is never exposed to ion beam irradiation which preserves a pristine microstructure. The method can be applied to a wide range of thin film material systems compatible with XeF 2 etching. Its feasibility is demonstrated for gold and alloyed copper thin films and its practical application is discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Solid state amorphization in the Al-Fe binary system during high energy milling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urban, P., E-mail: purban@us.es; Montes, J. M.; Cintas, J.

    2013-12-16

    In the present study, mechanical alloying (MA) of Al75Fe25 elemental powders mixture was carried out in argon atmosphere, using a high energy attritor ball mill. The microstructure of the milled products at different stages of milling was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The results showed that the amorphous phase content increased by increasing the milling time, and after 50 hours the amorphization process became complete. Heating the samples resulted in the crystallization of the synthesized amorphous alloys and the appearance of the equilibrium intermetallic compounds Al{sub 5}Fe{submore » 2}.« less

  11. Triaxial X-Ray Diffraction Method and its Application to Monitor Residual Stress in Surface Layers after High-Feed Milling

    NASA Astrophysics Data System (ADS)

    Zaušková, Lucia; Czán, Andrej; Šajgalík, Michal; Pobijak, Jozef; Mikloš, Matej

    2017-10-01

    High-feed milling is a milling method characteristic with shallow depth of cut and high feed rate to maximize the amount of removed metal from a part, generating residual stresses in the surface and subsurface layers of the machined parts. The residual stress has a large influence on the functional properties of the components. The article is focused on the application of triaxial x-ray diffraction method to monitor residual stresses after high feed milling. Significance of triaxial measuring method is the capability of measuring in different angles so it is possible to acquire stress tensor containing normal and shear stress components.

  12. Estimation of Asphalt Pavement Life

    DOT National Transportation Integrated Search

    2002-01-01

    The milling of asphalt concrete (AC) pavement surface refers to the mechanical removal of a part of the pavement surface. The Kansas Department of Transportation (KDOT) and the Kansas Turnpike Authority (KTA) routinely mill the surfaces of some AC pa...

  13. 40 CFR 430.00 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... semi-chemical mills using an ammonia base or a sodium base (Ba). G Mechanical Pulp Pulp and paper at... nonintegrated mills (Za). a This subpart is contained in the 40 CFR parts 425 through 699, edition revised as of...

  14. 40 CFR 430.00 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... semi-chemical mills using an ammonia base or a sodium base (Ba). G Mechanical Pulp Pulp and paper at... nonintegrated mills (Za). a This subpart is contained in the 40 CFR parts 425 through 699, edition revised as of...

  15. Synthesis of Multimetal-Graphene Composite by Mechanical Milling

    NASA Astrophysics Data System (ADS)

    Saiphaneendra, Bachu; Srivastava, Avi Krishna; Srivastava, Chandan

    2016-10-01

    Multimetal-graphene composites were synthesized using the ball milling technique. To prepare the composite, graphite powder was mixed with Fe, Cr, Co, Cu and Mg powders. This mixture was then mechanically milled for 35 h in toluene medium. After milling, the multimetal-graphite mixture was mixed with sodium lauryl sulfate and sonicated for 2 h. Sonication led to the exfoliation of graphene sheets. Formation of graphene was confirmed from x-ray diffraction and Raman spectroscopy. Transmission electron microscopy-based analysis revealed the formation of multimetal deposits over the graphene surface. Compositional analysis of the multimetal deposits revealed fairly uniform distribution of all the five component metal atoms over the graphene sheet. The average composition of the multimetal deposit was determined to be 11.4 ± 4 at.% Mg, 33.8 ± 19 at.% Cr, 21.8 ± 16 at.% Fe, 9.4 ± 5.7 at.% Co and 23.6 ± 12 at.% Cu.

  16. Morphological and XPS study of ball milled Fe1-xAlx (0.3≤x≤0.6) alloys

    NASA Astrophysics Data System (ADS)

    Rajan, Sandeep; Kumar, Anil; Vyas, Anupam; Brajpuriya, Ranjeet

    2018-05-01

    The paper presents mechanical and XPS study of ball milled Fe1-xAlx (0.3≤x≤0.6) alloys. The author prepared the solid solution of Fe(Al) with different composition of Al by using mechanical alloying (MA) technique. The MA process induces a progressive dissolution of Al into Fe, resulted in the formation of an extended Fe(Al) solid solution with the bcc structure after 5 hr of milling. The SEM Images shows that the initial shape of particles disappeared completely, and their structure became a mixture of small and large angular-shaped crystallites with different sizes. The TEM micrograph also confirms the reduction in crystallite size and alloy formation. XPS study shows the shift in the binding energy position of both Fe and Al Peaks provide strong evidence of Fe(Al) phase formation after milling.

  17. Properties and rapid low-temperature consolidation of nanocrystalline Fe-ZrO2 composite by pulsed current activated sintering

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Su; Ko, In-Yong; Yoon, Jin-Kook; Doh, Jung-Mann; Hong, Kyung-Tae; Shon, In-Jin

    2011-02-01

    Nanopowders of Fe and ZrO2 were synthesized from Fe2O3 and Zr by high-energy ball milling. The powder sizes of Fe and ZrO2 were 70 nm and 12 nm, respectively. Highly dense nanostructured 4/3Fe-ZrO2 composite was consolidated by a pulsed current activated sintering method within 1 minute from the mechanically synthesized powders (Fe-ZrO2) and horizontal milled Fe2O3+Zr powders under the 1 GPa pressure. The grain sizes of Fe and ZrO2 in the composite were calculated. The average hardness and fracture toughness values of nanostuctured 4/3Fe-ZrO2 composite were investigated.

  18. Evaluation of a Freezer Mill for Bone Pulverization prior to DNA Extraction: An Improved Workflow for STR Analysis.

    PubMed

    Morales Colón, Emely; Hernández, Mireya; Candelario, Mariel; Meléndez, María; Dawson Cruz, Tracey

    2018-03-01

    Traditional methods for bone pulverization typically generate heat, risking stability of DNA sample. SPEX™ has developed cryogenic grinders which introduce liquid nitrogen to cool the sample and aid in the grinding process. In this study, the Freezer Mill 6970 EFM was used with two DNA extraction methods and routine downstream STR analysis procedures. DNA from as little as 0.1 g of bone powder was used to develop full STR profiles after freezer mill pulverization, and the method was reproducible. Further, no contamination was detected upon cleaning/reuse of the sample vials. There were no significant differences in DNA yield, STR alleles detected, or peak heights using the freezer mill as compared to traditional grinding, and successful DNA profiles were achieved from as low as 0.1 g of bone powder with this method. Overall, this work indicates that this cryogenic mill method may be used as a viable alternative to traditional tissue grinders. © 2017 American Academy of Forensic Sciences.

  19. Surface topography and roughness of high-speed milled AlMn1Cu

    NASA Astrophysics Data System (ADS)

    Wang, Zhenhua; Yuan, Juntang; Yin, Zengbin; Hu, Xiaoqiu

    2016-10-01

    The aluminum alloy AlMn1Cu has been broadly applied for functional parts production because of its good properties. But few researches about the machining mechanism and the surface roughness were reported. The high-speed milling experiments are carried out in order to improve the machining quality and reveal the machining mechanism. The typical topography features of machined surface are observed by scan electron microscope(SEM). The results show that the milled surface topography is mainly characterized by the plastic shearing deformation surface and material piling zone. The material flows plastically along the end cutting edge of the flat-end milling tool and meanwhile is extruded by the end cutting edge, resulting in that materials partly adhere to the machined surface and form the material piling zone. As the depth of cut and the feed per tooth increase, the plastic flow of materials is strengthened and the machined surface becomes rougher. However, as the cutting speed increases, the plastic flow of materials is weakened and the milled surface becomes smoother. The cutting parameters (e.g. cutting speed, feed per tooth and depth of cut) influencing the surface roughness are analyzed. It can be concluded that the roughness of the machined surface formed by the end cutting edge is less than that by the cylindrical cutting edge when a cylindrical flat-end mill tool is used for milling. The proposed research provides the typical topography features of machined surface of the anti-rust aluminum alloy AlMn1Cu in high speed milling.

  20. Evolution of Microstructure and Mechanical Properties of Oxide Dispersion Strengthened Steels Made from Water-Atomized Ferritic Powder

    NASA Astrophysics Data System (ADS)

    Arkhurst, Barton Mensah; Kim, Jeoung Han

    2018-05-01

    Nano-structured oxide dispersion strengthened (ODS) steels produced from a 410L stainless steel powder prepared by water-atomization was studied. The influences of Ti content and milling time on the microstructure and the mechanical properties were analysed. It was found that the ODS steels made from the Si bearing 410L powder contained Y-Ti-O, Y-Ti-Si-O, Y-Si-O, and TiO2 oxides. Most nanoparticles produced after 80 h of milling were aggregated nanoparticles; however, after 160 h of milling, most aggregated nanoparticles dissociated into smaller individual nanoparticles. Perfect mixing of Y and Ti was not achieved even after the longer milling time of 160 h; instead, the longer hours of milling rather resulted in Si incorporation into the Y-Ti-O rich nanoparticles and a change in the matrix morphology from an equiaxed microstructure to a tempered martensite-like microstructure. The overall micro-hardness of the ODS steel increased with the increase of milling time. After 80 and 160 h, the microhardnesses were over 400 HV, which primarily resulted from the finer dispersed nanoparticles and in part to the formation of martensitic phases. Tensile strength of the 410L ODS steels was comparable with that of ODS steel produced from gas-atomized powder.

  1. Solid State Reduction of MoO3 with Carbon via Mechanical Alloying to Synthesize Nano-Crystaline MoO2

    NASA Astrophysics Data System (ADS)

    Saghafi, M.; Ataie, A.; Heshmati-Manesh, S.

    In this research, effect of milling time on solid state reduction of MoO3 with carbon has been investigated. It was found that mechanical activation of a mixture of MoO3 and carbon at ambient temperature by high energy ball milling was not able to reduce MoO3 to metallic molybdenum. MoO3 was converted to MoO2 at the first stage of reduction and peaks of the latter phase in X-ray diffraction patterns were detected when the milling time exceeded from 50 hours. The main effect of increased milling time at this stage was decreasing of MoO3 peak intensities and significant peak broadening due to decrease in size of crystallites. After prolonged milling, MoO3 was fully reduced to nano-crystalline MoO2 and its mean crystallite size was calculated using Williamson-Hall technique and found to be 17.5 nm. Thermodynamic investigations also confirm the possibility of reduction of MoO3 to MoO2 during the milling operation at room temperature. But, further reduction to metallic molybdenum requires thermal activation at higher temperature near 1100 K. XRD and SEM techniques were employed to evaluate the powder particles characteristics.

  2. Nano-sized crystalline drug production by milling technology.

    PubMed

    Moribe, Kunikazu; Ueda, Keisuke; Limwikrant, Waree; Higashi, Kenjirou; Yamamoto, Keiji

    2013-01-01

    Nano-formulation of poorly water-soluble drugs has been developed to enhance drug dissolution. In this review, we introduce nano-milling technology described in recently published papers. Factors affecting the size of drug crystals are compared based on the preparation methods and drug and excipient types. A top-down approach using the comminution process is a method conventionally used to prepare crystalline drug nanoparticles. Wet milling using media is well studied and several wet-milled drug formulations are now on the market. Several trials on drug nanosuspension preparation using different apparatuses, materials, and conditions have been reported. Wet milling using a high-pressure homogenizer is another alternative to preparing production-scale drug nanosuspensions. Dry milling is a simple method of preparing a solid-state drug nano-formulation. The effect of size on the dissolution of a drug from nanoparticles is an area of fundamental research, but it is sometimes incorrectly evaluated. Here, we discuss evaluation procedures and the associated problems. Lastly, the importance of quality control, process optimization, and physicochemical characterization are briefly discussed.

  3. Effect of milling time on microstructure and properties of Nano-titanium polymer by high-energy ball milling

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Wei, Shicheng; Wang, Yujiang; Liang, Yi; Guo, Lei; Xue, Junfeng; Pan, Fusheng; Tang, Aitao; Chen, Xianhua; Xu, Binshi

    2018-03-01

    Nano-titanium (Nano-Ti) was prepared by high-energy ball milling from pure Ti power and grinding agents (Epoxy resin) at room temperature. The effect of milling time on structure and properties of Nano-Ti polymer were investigated systematically. The results show that high-energy ball milling is an effective way to produce Nano-Ti polymer. The dispersion stability and compatibility between Ti power and grinding agents are improved by prolonging the milling time at a certain degree, that is to say, the optimization milling time is 240 min. The particle size of Ti powder and the diffraction peaks intensity of Ti decrease obviously as the milling time increases due to the compression stress, shear friction and other mechanical forces are formed during ball milling. FT-IR result displays that the wavenumber of all the bands move to lower wavenumber after ball milling, and the epoxy ring is open. The system internal energy rises owing to the broken epoxy group and much more Nano-Ti is formed to promote the grafting reaction between Nano-Ti and epoxy resin. The results from TEM and XPS also prove that. And the grafting ration is maximum as the milling time is 240 min, the mass loss ratio is 17.53%.

  4. Angular approach combined to mechanical model for tool breakage detection by eddy current sensors

    NASA Astrophysics Data System (ADS)

    Ritou, M.; Garnier, S.; Furet, B.; Hascoet, J. Y.

    2014-02-01

    The paper presents a new complete approach for Tool Condition Monitoring (TCM) in milling. The aim is the early detection of small damages so that catastrophic tool failures are prevented. A versatile in-process monitoring system is introduced for reliability concerns. The tool condition is determined by estimates of the radial eccentricity of the teeth. An adequate criterion is proposed combining mechanical model of milling and angular approach.Then, a new solution is proposed for the estimate of cutting force using eddy current sensors implemented close to spindle nose. Signals are analysed in the angular domain, notably by synchronous averaging technique. Phase shifts induced by changes of machining direction are compensated. Results are compared with cutting forces measured with a dynamometer table.The proposed method is implemented in an industrial case of pocket machining operation. One of the cutting edges has been slightly damaged during the machining, as shown by a direct measurement of the tool. A control chart is established with the estimates of cutter eccentricity obtained during the machining from the eddy current sensors signals. Efficiency and reliability of the method is demonstrated by a successful detection of the damage.

  5. Tensile Properties and Fracture Characteristics of Nanostructured Copper and Cu-SiC Nanocomposite Produced by Mechanical Milling and Spark Plasma Sintering Process

    NASA Astrophysics Data System (ADS)

    Akbarpour, M. R.

    2018-03-01

    The presence of large grains within nanometric and ultrafine grain matrix is an effective method in order to enhance strength while keeping the high ductility of metals. For this purpose, in this research, spark plasma sintering (SPS) was used to consolidate milled Cu and Cu-SiC powders. In SPS process, local sparks with high temperature between particles take place and locally lead to intense grain growth, and therefore, this method has the ability to produce bimodal grain structures in copper and copper-based composites. Microstructural and mechanical studies showed ≈ 185 and ≈ 437 nm matrix grain sizes, high tensile yield strength values of ≈ 188.4 and ≈ 296.9 MPa, and fracture strain values of 15.1 and 6.7% for sintered Cu and Cu-4 vol.% SiC nanocomposite materials, respectively. The presence of nanoparticles promoted the occurrence of static recrystallization and decreased the fraction of coarse grains in microstructure. The high tensile properties of the produced materials are attributed to fine grain size, homogenous dispersion of nanoparticles and retarded grain boundary migration during sintering.

  6. Absorption property of C@CIPs composites by the mechanical milling process

    NASA Astrophysics Data System (ADS)

    Liu, Ting; Zhou, Li; Zheng, Dianliang; Xu, Yonggang

    2017-09-01

    The C@CIPs absorbents were fabricated by the mechanical milling method. The particle morphology and crystal grain structure were characterized by the scanning electron microscopy and the X-ray diffraction patterns, respectively. The complex permittivity and permeability of the absorbing composites added the hybrid particles were tested in 2-18 GHz. The reflection loss (RL) and shielding effectiveness were calculated using the tested parameters. It was found that the MWCNTs were bonded to the CIPs surface. The permittivity and permeability of the C@CIPs were increased as the MWCNTs coated on the CIPs. It was attributed to the dielectric property of MWCNTs, particle shape and the interactions of the two particles according to the Debye equation and the Maxwell-Garnett mixing rule. The C@CIPs composites had a better absorbing property as RL < -4 dB in 4.6-17 GHz with thickness 0.6 mm as well as shielding property (maximum 12.7 dB) in 2-18 GHz. It indicated that C@CIPs might be an effective absorbing/shielding absorbent.

  7. Processing of oil palm empty fruit bunch as filler material of polymer recycles

    NASA Astrophysics Data System (ADS)

    Saepulloh, D. R.; Nikmatin, S.; Hardhienata, H.

    2017-05-01

    Oil palm empty fruit bunches (OPEFB) is waste from crude palm oil (CPO) processing plants. This research aims to process OPEFB to be a reinforcement polymer recycle with the mechanical milling method and identify each establishment molecular with the orbital hybridization theory. OPEFB fibers were synthesized using a mechanical milling until the size shortfiber and microfiber. Then do the biocomposite granular synthesis with single screw extruder. TAPPI chemical test shows levels of α-cellulose fibers amounted 41.68%. Based on density, the most optimum composition contained in the filler amounted 15% with the size is the microfiber. The test results of morphology with SEM showed deployment of filler OPEFB fiber is fairly equitable distributed. Regarding the molecular interaction between matrix with OPEFB fiber, described by the theory of orbital hybridization. But the explanation establishment of the bond for more complex molecules likes this from the side of the molecular orbital theory is necessary complete information of the hybrid levels.

  8. Fabrication of stable electrode/diffusion barrier layers for thermoelectric filled skutterudite devices

    DOEpatents

    Jie, Qing; Ren, Zhifeng; Chen, Gang

    2015-12-08

    Disclosed are methods for the manufacture of n-type and p-type filled skutterudite thermoelectric legs of an electrical contact. A first material of CoSi.sub.2 and a dopant are ball-milled to form a first powder which is thermo-mechanically processed with a second powder of n-type skutterudite to form a n-type skutterudite layer disposed between a first layer and a third layer of the doped-CoSi.sub.2. In addition, a plurality of components such as iron, and nickel, and at least one of cobalt or chromium are ball-milled form a first powder that is thermo-mechanically processed with a p-type skutterudite layer to form a p-type skutterudite layer "second layer" disposed between a first and a third layer of the first powder. The specific contact resistance between the first layer and the skutterudite layer for both the n-type and the p-type skutterudites subsequent to hot-pressing is less than about 10.0 .mu..OMEGA.cm.sup.2.

  9. Fabrication of stable electrode/diffusion barrier layers for thermoelectric filled skutterudite devices

    DOEpatents

    Jie, Qing; Ren, Zhifeng; Chen, Gang

    2017-08-01

    Disclosed are methods for the manufacture of n-type and p-type filled skutterudite thermoelectric legs of an electrical contact. A first material of CoSi.sub.2 and a dopant are ball-milled to form a first powder which is thermo-mechanically processed with a second powder of n-type skutterudite to form a n-type skutterudite layer disposed between a first layer and a third layer of the doped-CoSi.sub.2. In addition, a plurality of components such as iron, and nickel, and at least one of cobalt or chromium are ball-milled form a first powder that is thermo-mechanically processed with a p-type skutterudite layer to form a p-type skutterudite layer "second layer" disposed between a first and a third layer of the first powder. The specific contact resistance between the first layer and the skutterudite layer for both the n-type and the p-type skutterudites subsequent to hot-pressing is less than about 10.0 .mu..OMEGA.cm.sup.2.

  10. Fabrication of nano ZrO2 dispersed novel W79Ni10Ti5Nb5 alloy by mechanical alloying and pressureless sintering

    NASA Astrophysics Data System (ADS)

    Sahoo, R. R.; Patra, A.; Karak, S. K.

    2017-02-01

    A high energy planetary ball-mill was employed to synthesize tungsten (W) based alloy with nominal composition of W79Ni10Ti5Nb5(ZrO2)1 (in wt. %) for 20 h with chrome steel as grinding media, toluene as process control agent (PCA) along with compaction at 500 MPa pressure for 5 mins and sintering at 1500°C for 2 h using Ar atmosphere. X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS), elemental mapping and Transmission electron microscopy (TEM) was used to study the phase formation, microstructure of both milled powder and consolidated alloy. The crystallite size of W in W79Ni10Ti5Nb5(ZrO2)1 powder was 37 nm, 14.7 nm at 10 h and 20 h of milling respectively and lattice strain enhances to 0.54% at 20 h of milling. The crystallite size reduction is more at 10 h of milling and the rate drop beyond 10 to 20 h of milling. The intense improvement in dislocation density was evident upto 10 h of milling and the rate decreases between 10 to 20 h of milling. Increase in the lattice parameter of tungsten in W79Ni10Ti5Nb5(ZrO2)1 alloy upto 0.09% was observed at 10 h of milling owing to severe stress assisted deformation followed by contraction upto 0.07% at 20 h of milling due to formation of solid solution. The large spherical particles at 0 h of milling transformed to elongated shape at 10 h of milling and finer morphology at 20 h of milling. The average particle size reduced from 100 µm to 4.5 µm with the progress of milling from 0 to 20 h. Formation of fine polycrystallites of W was revealed by bright field TEM analysis and the observed crystallite size from TEM study was well supported by the evaluated crystallite size from XRD. XRD pattern and SEM micrograph of sintered alloy revealed the formation of NbNi, Ni3Ti intermetallic phases. Densification of 91.5% was attained in the 20 h milled and sintered alloy. Mechanical behaviour of the sintered product was evaluated by hardness and wear study. W79Ni10Ti5Nb5(ZrO2)1 alloy showed increase in hardness with decreasing load. The wear rate increases with increasing load due to higher abrasion effect at higher load.

  11. Matrix model of the grinding process of cement clinker in the ball mill

    NASA Astrophysics Data System (ADS)

    Sharapov, Rashid R.

    2018-02-01

    In the article attention is paid to improving the efficiency of production of fine powders, in particular Portland cement clinker. The questions of Portland cement clinker grinding in closed circuit ball mills. Noted that the main task of modeling the grinding process is predicting the granulometric composition of the finished product taking into account constructive and technological parameters used ball mill and separator. It is shown that the most complete and informative characterization of the grinding process in a ball mill is a grinding matrix taking into account the transformation of grain composition inside the mill drum. Shows how the relative mass fraction of the particles of crushed material, get to corresponding fraction. Noted, that the actual task of reconstruction of the matrix of grinding on the experimental data obtained in the real operating installations. On the basis of experimental data obtained on industrial installations, using matrix method to determine the kinetics of the grinding process in closed circuit ball mills. The calculation method of the conversion of the grain composition of the crushed material along the mill drum developed. Taking into account the proposed approach can be optimized processing methods to improve the manufacturing process of Portland cement clinker.

  12. Accuracy evaluation of metal copings fabricated by computer-aided milling and direct metal laser sintering systems

    PubMed Central

    Lee, Wan-Sun; Kim, Woong-Chul

    2015-01-01

    PURPOSE To assess the marginal and internal gaps of the copings fabricated by computer-aided milling and direct metal laser sintering (DMLS) systems in comparison to casting method. MATERIALS AND METHODS Ten metal copings were fabricated by casting, computer-aided milling, and DMLS. Seven mesiodistal and labiolingual positions were then measured, and each of these were divided into the categories; marginal gap (MG), cervical gap (CG), axial wall at internal gap (AG), and incisal edge at internal gap (IG). Evaluation was performed by a silicone replica technique. A digital microscope was used for measurement of silicone layer. Statistical analyses included one-way and repeated measure ANOVA to test the difference between the fabrication methods and categories of measured points (α=.05), respectively. RESULTS The mean gap differed significantly with fabrication methods (P<.001). Casting produced the narrowest gap in each of the four measured positions, whereas CG, AG, and IG proved narrower in computer-aided milling than in DMLS. Thus, with the exception of MG, all positions exhibited a significant difference between computer-aided milling and DMLS (P<.05). CONCLUSION Although the gap was found to vary with fabrication methods, the marginal and internal gaps of the copings fabricated by computer-aided milling and DMLS fell within the range of clinical acceptance (<120 µm). However, the statistically significant difference to conventional casting indicates that the gaps in computer-aided milling and DMLS fabricated restorations still need to be further reduced. PMID:25932310

  13. Nanosecond multi-pulse laser milling for certain area removal of metal coating on plastics surface

    NASA Astrophysics Data System (ADS)

    Zhao, Kai; Jia, Zhenyuan; Ma, Jianwei; Liu, Wei; Wang, Ling

    2014-12-01

    Metal coating with functional pattern on engineering plastics surface plays an important role in industry applications; it can be obtained by adding or removing certain area of metal coating on engineering plastics surface. However, the manufacturing requirements are improved continuously and the plastic substrate presents three-dimensional (3D) structure-many of these parts cannot be fabricated by conventional processing methods, and a new manufacturing method is urgently needed. As the laser-processing technology has many advantages like high machining accuracy and constraints free substrate structure, the machining of the parts is studied through removing certain area of metal coating based on the nanosecond multi-pulse laser milling. To improve the edge quality of the functional pattern, generation mechanism and corresponding avoidance strategy of the processing defects are studied. Additionally, a prediction model for the laser ablation depth is proposed, which can effectively avoid the existence of residual metal coating and reduces the damage of substrate. With the optimal machining parameters, an equiangular spiral pattern on copper-clad polyimide (CCPI) is machined based on the laser milling at last. The experimental results indicate that the edge of the pattern is smooth and consistent, the substrate is flat and without damage. The achievements in this study could be applied in industrial production.

  14. Evaluation of internal fit of interim crown fabricated with CAD/CAM milling and 3D printing system.

    PubMed

    Lee, Wan-Sun; Lee, Du-Hyeong; Lee, Kyu-Bok

    2017-08-01

    This study is to evaluate the internal fit of the crown manufactured by CAD/CAM milling method and 3D printing method. The master model was fabricated with stainless steel by using CNC machine and the work model was created from the vinyl-polysiloxane impression. After scanning the working model, the design software is used to design the crown. The saved STL file is used on the CAD/CAM milling method and two types of 3D printing method to produce 10 interim crowns per group. Internal discrepancy measurement uses the silicon replica method and the measured data are analyzed with One-way ANOVA to verify the statistic significance. The discrepancy means (standard deviation) of the 3 groups are 171.6 (97.4) µm for the crown manufactured by the milling system and 149.1 (65.9) and 91.1 (36.4) µm, respectively, for the crowns manufactured with the two types of 3D printing system. There was a statistically significant difference and the 3D printing system group showed more outstanding value than the milling system group. The marginal and internal fit of the interim restoration has more outstanding 3D printing method than the CAD/CAM milling method. Therefore, the 3D printing method is considered as applicable for not only the interim restoration production, but also in the dental prosthesis production with a higher level of completion.

  15. Direct measures of mechanical energy for knife mill size reduction of switchgrass, wheat straw, and corn stover.

    PubMed

    Bitra, Venkata S P; Womac, Alvin R; Igathinathane, C; Miu, Petre I; Yang, Yuechuan T; Smith, David R; Chevanan, Nehru; Sokhansanj, Shahab

    2009-12-01

    Lengthy straw/stalk of biomass may not be directly fed into grinders such as hammer mills and disc refiners. Hence, biomass needs to be preprocessed using coarse grinders like a knife mill to allow for efficient feeding in refiner mills without bridging and choking. Size reduction mechanical energy was directly measured for switchgrass (Panicum virgatum L.), wheat straw (Triticum aestivum L.), and corn stover (Zea mays L.) in an instrumented knife mill. Direct power inputs were determined for different knife mill screen openings from 12.7 to 50.8 mm, rotor speeds between 250 and 500 rpm, and mass feed rates from 1 to 11 kg/min. Overall accuracy of power measurement was calculated to be +/-0.003 kW. Total specific energy (kWh/Mg) was defined as size reduction energy to operate mill with biomass. Effective specific energy was defined as the energy that can be assumed to reach the biomass. The difference is parasitic or no-load energy of mill. Total specific energy for switchgrass, wheat straw, and corn stover chopping increased with knife mill speed, whereas, effective specific energy decreased marginally for switchgrass and increased for wheat straw and corn stover. Total and effective specific energy decreased with an increase in screen size for all the crops studied. Total specific energy decreased with increase in mass feed rate, but effective specific energy increased for switchgrass and wheat straw, and decreased for corn stover at increased feed rate. For knife mill screen size of 25.4 mm and optimum speed of 250 rpm, optimum feed rates were 7.6, 5.8, and 4.5 kg/min for switchgrass, wheat straw, and corn stover, respectively, and the corresponding total specific energies were 7.57, 10.53, and 8.87 kWh/Mg and effective specific energies were 1.27, 1.50, and 0.24 kWh/Mg for switchgrass, wheat straw, and corn stover, respectively. Energy utilization ratios were calculated as 16.8%, 14.3%, and 2.8% for switchgrass, wheat straw, and corn stover, respectively. These data will be useful for preparing the feed material for subsequent fine grinding operations and designing new mills.

  16. Effet de l'usinage sur les proprietes mecaniques en tension et controle non-destructif des materiaux composites

    NASA Astrophysics Data System (ADS)

    Genereux, Louis-Alexandre

    The main goal of this work is to evaluate the impact of milling operations on the integrity of unidirectional carbon/epoxy laminate. Milling, often used for finishing composite structures, cause some damage in the form of craters, cracks and thermal damage to the matrix. Here, two approaches are used to qualify and quantify the amount of damage. First, two nondestructive testing methods, namely immersion ultrasonic inspection and pulsed thermography, are evaluated on samples with artificial defects. These techniques are then used on machined samples with realistic machining damages. Only ultrasounds allowed the detection and quantification of the machining damages, but only if the damages are at the surface of the laminate. The depth of damage depends primarily on the fiber orientation of the first ply with respect to the cutting direction. The ultrasonic inspections are also accompanied by scanning electron microscope observations. The second approach is to check whether the presence of the machining damage will affect the mechanical properties of the laminate. To do this, static tensile tests are performed on samples prepared by three different methods, namely, by abrasive diamond saw, by saw cut followed by sanding and finally by milling. The results show that the damages caused by the milling operation are not important enough to affect the ultimate stress and elastic modulus. Despite this, it would be interesting, for future works, to investigate this aspect in fatigue rather than with static tests. The presence of damages on the edge might promote delamination during cyclic loads.

  17. Hybrid ABC Optimized MARS-Based Modeling of the Milling Tool Wear from Milling Run Experimental Data

    PubMed Central

    García Nieto, Paulino José; García-Gonzalo, Esperanza; Ordóñez Galán, Celestino; Bernardo Sánchez, Antonio

    2016-01-01

    Milling cutters are important cutting tools used in milling machines to perform milling operations, which are prone to wear and subsequent failure. In this paper, a practical new hybrid model to predict the milling tool wear in a regular cut, as well as entry cut and exit cut, of a milling tool is proposed. The model was based on the optimization tool termed artificial bee colony (ABC) in combination with multivariate adaptive regression splines (MARS) technique. This optimization mechanism involved the parameter setting in the MARS training procedure, which significantly influences the regression accuracy. Therefore, an ABC–MARS-based model was successfully used here to predict the milling tool flank wear (output variable) as a function of the following input variables: the time duration of experiment, depth of cut, feed, type of material, etc. Regression with optimal hyperparameters was performed and a determination coefficient of 0.94 was obtained. The ABC–MARS-based model's goodness of fit to experimental data confirmed the good performance of this model. This new model also allowed us to ascertain the most influential parameters on the milling tool flank wear with a view to proposing milling machine's improvements. Finally, conclusions of this study are exposed. PMID:28787882

  18. Hybrid ABC Optimized MARS-Based Modeling of the Milling Tool Wear from Milling Run Experimental Data.

    PubMed

    García Nieto, Paulino José; García-Gonzalo, Esperanza; Ordóñez Galán, Celestino; Bernardo Sánchez, Antonio

    2016-01-28

    Milling cutters are important cutting tools used in milling machines to perform milling operations, which are prone to wear and subsequent failure. In this paper, a practical new hybrid model to predict the milling tool wear in a regular cut, as well as entry cut and exit cut, of a milling tool is proposed. The model was based on the optimization tool termed artificial bee colony (ABC) in combination with multivariate adaptive regression splines (MARS) technique. This optimization mechanism involved the parameter setting in the MARS training procedure, which significantly influences the regression accuracy. Therefore, an ABC-MARS-based model was successfully used here to predict the milling tool flank wear (output variable) as a function of the following input variables: the time duration of experiment, depth of cut, feed, type of material, etc . Regression with optimal hyperparameters was performed and a determination coefficient of 0.94 was obtained. The ABC-MARS-based model's goodness of fit to experimental data confirmed the good performance of this model. This new model also allowed us to ascertain the most influential parameters on the milling tool flank wear with a view to proposing milling machine's improvements. Finally, conclusions of this study are exposed.

  19. Assessing mechanical deconstruction of softwood cell wall for cellulosic biofuels production

    NASA Astrophysics Data System (ADS)

    Jiang, Jinxue

    Mechanical deconstruction offers a promising strategy to overcome biomass recalcitrance for facilitating enzymatic hydrolysis of pretreated substrates with zero chemicals input and presence of inhibitors. The goal of this dissertation research is to gain a more fundamental understanding on the impact of mechanical pretreatment on generating digestible micronized-wood and how the physicochemical characteristics influence the subsequent enzymatic hydrolysis of micronized wood. The initial moisture content of feedstock was found to be the key factor affecting the development of physical features and enzymatic hydrolysis of micronized wood. Lower moisture content resulted in much rounder particles with lower crystallinity, while higher moisture content resulted in the milled particles with larger aspect ratio and crystallinity. The enzymatic hydrolysis of micronized wood was improved as collectively increasing surface area (i.e., reducing particle size and aspect ratio) and decreasing crystallinity during mechanical milling pretreatment. Energy efficiency analysis demonstrated that low-moisture content feedstock with multi-step milling process would contribute to cost-effectiveness of mechanical pretreatment for achieving more than 70% of total sugars conversion. In the early stage of mechanical pretreatment, the types of cell fractures were distinguished by the initial moisture contents of wood, leading to interwall fracture at the middle lamella region for low moisture content samples and intrawall fracture at the inner cell wall for high moisture content samples. The changes in cell wall fractures also resulted in difference in the distribution of surface chemical composition and energy required for milling process. In an effort to exploit the underlying mechanism associated with the reduced recalcitrance in micronized wood, we reported the increased enzymatic sugar yield and correspondingly structural and accessible properties of micronized feedstock. Electronic microscopy analysis detailed the structural alternation of cell wall during mechanical process, including cell fracture and delamination, ultrastructure disintegration, and cell wall fragments amorphization, as coincident with the particle size reduction. It was confirmed with Simons' staining that longer milling time resulted in increased substrate accessibility and porosity. The changes in cellulose molecular structure with respect to degree of polymerization (DP) and crystallinity index (CrI) also benefited to decreasing recalcitrance and facilitating enzymatic hydrolysis of micronized wood.

  20. Thermomechanical means to improve the critical current density of BSCCO tapes

    DOEpatents

    Balachandran, Uthamalingam; Poeppel, Roger; Haldar, Pradeep; Motowidlo, Leszek

    2001-01-01

    A method of preparing wires or tapes including Bi-2223 superconductor material by providing oxide and carbonate sources of Bi, Sr, Ca, Cu and Pb, milling the material for a time not to exceed about 30 minutes but preferably not greater than 20 minutes to produce a homogeneous mixture. Then heat treating by calcining the milled mixture at a temperature of at least about 830.degree. C. for a time not less than about 12 hours, followed by at least one additional milling for a time not to exceed about 20 minutes and one additional heat treatment, to produce an oxide powder having an average diameter in the 4 to 5 micron range. Then a silver or silver alloy tube is filled with the oxide powder, and shape formed into a rectangular tape. Then alternately thermally treating and mechanically working the tube filled with oxide powder by heating the filled tube to an elevated temperature of about 835.degree. C. to 840.degree. C. and reducing the diameter of the tube, repeating the thermal and mechanical treatment. The filled tube is held at the elevated temperature for a total time in the range of from about 48 hours to about 350 hours to provide Pb.sub.0.4, Bi.sub.1.8 Sr.sub.2.0 Ca.sub.2.2 Cu.sub.3 O.sub.x where x is between 10 and 11.

  1. Synthesis and characterization of nanocrystalline Co-Fe-Nb-Ta-B alloy

    NASA Astrophysics Data System (ADS)

    Raanaei, Hossein; Fakhraee, Morteza

    2017-09-01

    In this research work, structural and magnetic evolution of Co57Fe13Nb8Ta4B18 alloy, during mechanical alloying process, have been investigated by using, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, electron dispersive X-ray spectroscopy, differential thermal analysis and also vibrating sample magnetometer. It is observed that at 120 milling time, the crystallite size reaches to about 7.8 nm. Structural analyses show that, the solid solution of the initial powder mixture occurs at160 h milling time. The coercivity behavior demonstrates a rise, up to 70 h followed by decreasing tendency up to final stage of milling process. Thermal analysis of 160 h milling time sample reveals two endothermic peaks. The characterization of annealed milled sample for 160 h milling time at 427 °C shows crystallite size growth accompanied by increasing in saturation magnetization.

  2. In vitro-in vivo correlation for wet-milled tablet of poorly water-soluble cilostazol.

    PubMed

    Jinno, Jun-ichi; Kamada, Naoki; Miyake, Masateru; Yamada, Keigo; Mukai, Tadashi; Odomi, Masaaki; Toguchi, Hajime; Liversidge, Gary G; Higaki, Kazutaka; Kimura, Toshikiro

    2008-08-25

    The purpose of the present study was to investigate oral bioavailability of an immediate release tablet containing wet-milled crystals of a poorly water-soluble drug, cilostazol, and to establish in vitro-in vivo correlation. Sub-micron sized cilostazol (median diameter: 0.26 microm) was successfully prepared using a beads-mill in water in the presence of a hydrophilic polymer and an anionic surfactant. The milled suspension was solidified with a sugar alcohol as a water-soluble carrier by spray-drying method. The co-precipitate was compressed into an immediate release tablet with common excipients. Oral bioavailability of the wet-milled cilostazol tablet in male beagle dogs was 13-fold higher than the hammer-milled commercial tablet in fasted condition. Food did not increase the oral bioavailability of the wet-milled tablet, while 4-fold increase was found for the commercial tablet. Irrespective to the bioavailability enhancement, in vitro dissolution rate of the wet-milled tablet was even slower than the commercial tablet by the compendial method (USP Apparatus 2). On the other hand, a good correlation was found between the dissolution profiles obtained by a flow-through cell method (USP Apparatus 4, closed-loop system without outlet filter) using a large volume of water and sodium lauryl sulfate (SLS) solution at the concentration lower than the critical micellar concentration (cmc) as dissolution media corresponding to the fasted and fed conditions, respectively.

  3. Mechanically induced self-propagating reaction and consequent consolidation for the production of fully dense nanocrystalline Ti{sub 55}C{sub 45} bulk material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherif El-Eskandarany, M., E-mail: msherif@kisr.edu.kw; Al-Hazza, Abdulsalam

    2014-11-15

    We employed a high-energy ball mill for the synthesis of nanograined Ti{sub 55}C{sub 45} powders starting from elemental Ti and C powders. The mechanically induced self-propagating reaction that occurred between the reactant materials was monitored via a gas atmosphere gas-temperature-monitoring system. A single phase of NaCl-type TiC was obtained after 5 h of ball milling. To decrease the powder and grain sizes, the material was subjected to further ball milling time. The powders obtained after 200 h of milling possessed spherical-like morphology with average particle and grain sizes of 45 μm and 4.2 nm, respectively. The end-products obtained after 200more » h of ball milling time, were then consolidated into full dense compacts, using hot pressing and spark plasma sintering at 1500 and 34.5 MPa, with heating rates of 20 °C/min and 500 °C/min, respectively. Whereas hot pressing of the powders led to severe grain growth (∼ 436 nm in diameter), the as-spark plasma sintered powders maintained their nanograined characteristics (∼ 28 nm in diameter). The as-synthesized and as-consolidated powders were characterized, using X-ray diffraction, high-resolution electron microscopy, and scanning electron microscopy. The mechanical properties of the consolidated samples obtained via the hot pressing and spark plasma sintering techniques were characterized, using Vickers microhardness and non-destructive testing techniques. The Vickers hardness, Young's modulus, shear modulus and fracture toughness of as-spark plasma sintered samples were 32 GPa, 358 GPa, 151 GPa and 6.4 MPa·m{sup 1/2}, respectively. The effects of the consolidation approach on the grain size and mechanical properties were investigated and are discussed. - Highlights: • Room-temperature synthesizing of NaCl-type TiC • Dependence on the grain size on the ball milling time • Fabrication of equiaxed nanocrystalline grains with a diameter of 4.2 nm • Fabrication of nanocrystalline bulk TiC material by SPS with minimal grain growth • Dependence of improved mechanical properties on the consolidation techniques.« less

  4. Sustained Water Quality Impacts in Marine Environments Due to Mechanical Milling of Volcanic Deposits

    NASA Astrophysics Data System (ADS)

    Genareau, K. D.; Cronin, S. J.; Stewart, C.; Back, E.

    2015-12-01

    Explosive volcanic eruptions are known to be a significant geohazard, but post- or inter-eruptive processes (such as lahars, landslides, and debris avalanches) can be equally damaging to local and regional areas by remobilizing deposits. Numerous studies have found that soluble salts bound to ash grain surfaces may be quickly released into exposed waters, often lowering pH and adding trace metals with both beneficial and deleterious effects on marine flora and fauna (e.g., Fe influx initiating blooms of marine phytoplankton). Most of the cation content of pyroclastic deposits is released slowly into the environment through weathering and alteration processes. However, other pathways exist through the physical comminution of pyroclasts in fluvial and marine settings. In this case, mechanical fracturing of pyroclasts during progressive stages of disaggregation will lead to exposure of reactive particle surfaces. This study evaluates the potential, ongoing effects on water quality by experimental, mechanical milling of pyroclasts and the evaluation of released metals into exposed waters using the pyroclastic density current deposits of both the 2010 eruption of Merapi and the 2014 eruption of Kelud (Java, Indonesia), which have a bulk basaltic andesite/andesite composition (60-65 wt% SiO2). The electrical conductivity (EC) of water samples positively correlates with Ca and Sr concentrations in the case of bulk ash, whole, and crushed lapilli, but correlates with Na for the milled samples. Compared to other stages of pyroclast disaggregation, milled lapilli have the greatest effect on the concentration of alkali elements and produce a significant increase in Ca, Na, K, and Si. Mechanical milling of pyroclasts grinds down minerals and glass, resulting in an increased EC, pH, and Na concentration of exposed waters. Similar experiments are currently being conducted using basalt (50 wt% SiO2) and rhyolite (70 wt% SiO2) deposits, and these results will be presented. Mechanical milling of volcanic deposits may occur during transport of lahars, submarine landslides, or debris avalanches, sometimes decades or centuries after the initial eruptive activity, providing a sudden input of elements into marine environments that can affect a range of flora and fauna.

  5. Study on dissolution mechanism of cortisol and cortisone from hair matrix with liquid chromatography-tandem mass spectrometry.

    PubMed

    Xing, Xue; Chen, Zheng; Li, Jifeng; Zhang, Jing; Deng, Huihua; Lu, Zuhong

    2013-06-05

    Hair cortisol has been used as a biomarker of chronic stress. The detected contents of hair cortisol might depend on the incubation duration in solvents for no-milled hair samples with 3-layer structure. However, there was no research on the dissolution mechanism of hair analytes. After uniform mixture, no-milled hair samples were incubated in methanol and water for the 12 different durations and milled hair was done as comparison. Hair cortisol and cortisone were determined with high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). The measured concentrations of hair cortisol and cortisone showed ≥2 maxima during the entire incubation in methanol and water from 5 min to 72 h for no-milled hair. Hair cortisol concentration measured by LC-MS/MS was increased with the incubation duration. Conversely, it was not held when hair was powdered prior to the incubation in methanol. Hair cortisol and cortisone were dissolved from hair matrix through the 2-stage or multistage mechanism, which might depend on the hair 3-layer structure and its degree of damage. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Powder metallurgy preparation of Mg-Ca alloy for biodegradable implant application

    NASA Astrophysics Data System (ADS)

    Annur, D.; Suhardi, A.; Amal, M. I.; Anwar, M. S.; Kartika, I.

    2017-04-01

    Magnesium and its alloys is a promising candidate for implant application especially due to its biodegradability. In this study, Mg-7Ca alloys (in weight %) were processed by powder metallurgy from pure magnesium powder and calcium granule. Milling process was done in a shaker mill using stainless steel balls in various milling time (3, 5, and 8 hours) followed by compaction and sintering process. Different sintering temperatures were used (450°C and 550°C) to examine the effect of sintering temperature on mechanical properties and corrosion resistance. Microstructure evaluation was characterized by X-ray diffraction, scanning electron microscope and energy dispersive X-ray spectroscopy. Mechanical properties and corrosion behavior were examined through hardness testing and electrochemical testing in Hank’s solution (simulation body fluid). In this report, a prolonged milling time reduced particle size and later affected mechanical properties of Mg alloy. Meanwhile, the phase analysis showed that α Mg, Mg2Ca, MgO phases were formed after the sintering process. Further, this study showed that Mg-Ca alloy with different powder metallurgy process would have different corrosion rate although there were no difference of Ca content in the alloy.

  7. Toward the complete utilization of rice straw: Methane fermentation and lignin recovery by a combinational process involving mechanical milling, supporting material and nanofiltration.

    PubMed

    Sasaki, Kengo; Okamoto, Mami; Shirai, Tomokazu; Tsuge, Yota; Fujino, Ayami; Sasaki, Daisuke; Morita, Masahiko; Matsuda, Fumio; Kikuchi, Jun; Kondo, Akihiko

    2016-09-01

    Rice straw was mechanically milled using a process consuming 1.9MJ/kg-biomass, and 10g/L of unmilled or milled rice straw was used as the carbon source for methane fermentation in a digester containing carbon fiber textile as the supporting material. Milling increased methane production from 226 to 419mL/L/day at an organic loading rate of 2180mg-dichromate chemical oxygen demand/L/day, corresponding to 260mLCH4/gVS. Storage of the fermentation effluent at room temperature decreased the weight of the milled rice straw residue from 3.81 to 1.00g/L. The supernatant of the effluent was subjected to nanofiltration. The black concentrates deposited on the nanofiltration membranes contained 53.0-57.9% lignin. Solution nuclear magnetic resonance showed that lignin aromatic components such as p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) were retained primarily, and major lignin interunit structures such as the β-O-4-H/G unit were absent. This combinational process will aid the complete utilization of rice straw. Copyright © 2016. Published by Elsevier Ltd.

  8. Development of MoSi2 coating with Al doping by using high energy milling method

    NASA Astrophysics Data System (ADS)

    Simanjuntak, C. M. S.; Hastuty, S.; Izzuddin, H.; Sundawa, R.; Sudiro, T.; Sukarto, A.; Thosin, K. A. Z.

    2018-03-01

    MoSi2 is well known as a material for high temperature application because it has high oxidation and corrosion resistance. The aim of this research is to develop MoSi2 coating with Al doping on Stainless Steel 316 (SS316) substrate using High-Energy Milling method. Aluminium is added to the coating as a dopant to increase formation of MoSi2 coating layer on the substrate. The variations used here based on the concentrations of doping Al (at.%) and duration of milling. Results show that the MoSi2 coatings with variations of 30 and 50 at.% of Al doping and 3 and 6 hours of milling times were successfully coated on the surface of SS 316 using the high-energy milling method. The most optimum coating result after oxidation test at 1100 °C for 100 hours is shown by MoSi2-30%Al with 3 hours of milling times. From the oxidation results, the Al doping into MoSi2 coating was able to increase the oxidation resistance of the SS 316 substrate.

  9. A PFI mill can be used to predict biomechanical pulp strength properties

    Treesearch

    Gary F. Leatham; Gary C. Myers

    1990-01-01

    Recently, we showed that a biomechanical pulping process in which aspen chips are pretreated with a white-rot fungus can give energy savings and can increase paper sheet strength. To optimize this process, we need more efficient ways to evaluate the fungal treatments. Here, we examine a method that consists of treating coarse refiner mechanical pulp, refining in a PFI...

  10. Effect of milling atmosphere on structural and magnetic properties of Ni-Zn ferrite nanocrystalline

    NASA Astrophysics Data System (ADS)

    Hajalilou, Abdollah; Hashim, Mansor; Ebrahimi-Kahrizsangi, Reza; Masoudi Mohamad, Taghi

    2015-04-01

    Powder mixtures of Zn, NiO, and Fe2O3 are mechanically alloyed by high energy ball milling to produce Ni-Zn ferrite with a nominal composition of Ni0.36Zn0.64Fe2O4. The effects of milling atmospheres (argon, air, and oxygen), milling time (from 0 to 30 h) and heat treatment are studied. The products are characterized using x-ray diffractometry, field emission scanning electron microscopy equipped with energy-dispersive x-ray spectroscopy, and transmitted electron microscopy. The results indicate that the desired ferrite is not produced during the milling in the samples milled under either air or oxygen atmospheres. In those samples milled under argon, however, Zn/NiO/Fe2O3 reacts with a solid-state diffusion mode to produce Ni-Zn ferrite nanocrystalline in a size of 8 nm after 30-h-milling. The average crystallite sizes decrease to 9 nm and 10 nm in 30-h-milling samples under air and oxygen atmospheres, respectively. Annealing the 30-h-milling samples at 600 °C for 2 h leads to the formation of a single phase of Ni-Zn ferrite, an increase of crystallite size, and a reduction of internal lattice strain. Finally, the effects of the milling atmosphere and heating temperature on the magnetic properties of the 30-h-milling samples are investigated. Project supported by the University Putra Malaysia Graduate Research Fellowship Section.

  11. Si@SiOx/Graphene nanosheet anode materials for lithium-ion batteries synthesized by ball milling process

    NASA Astrophysics Data System (ADS)

    Tie, Xiaoyong; Han, Qianyan; Liang, Chunyan; Li, Bo; Zai, Jiantao; Qian, Xuefeng

    2017-12-01

    Si@SiOx/Graphene nanosheet (GNS) nanocomposites as high performance anode materials for lithium-ion batteries are synthesized by mechanically blending the mixture of expanded graphite with Si nanoparticles, and characterized by X-ray diffraction, Raman spectrum, field emission scanning electron microscopy and transmission electron microscopy. During the ball milling process, the size of Si nanoparticles will decrease, and the layer of expanded graphite can be peeled off to thin multilayers. Electrochemical performances reveal that the obtained Si@SiOx/GNS nanocomposites exhibit improved cycling stability, high reversible lithium storage capacity and superior rate capability, e.g. the discharge capacity is kept as high as 1055 mAh g-1 within 50 cycles at a current density of 200 mA g-1, retaining 63.6% of the initial value. The high performance of the obtained nanocomposites can be ascribed to GNS prepared through heat-treat and ball-milling methods, the decrease in the size of Si nanoparticles and SiOx layer on Si surface, which enhance the interactions between Si and GNS.

  12. Superhydrophobic surface prepared by micro-milling and WEDM on aluminum alloy

    NASA Astrophysics Data System (ADS)

    Yanling, Wan; Jian, Yang; Huadong, Yu

    2018-06-01

    To simulate the hydrophobic microstructure of rice leaf surface, high-speed precision micro-milling machine was used to fabricate micro groove array structure on the surface of aluminum alloy. The micro-and nanostructure was constructed on the surface of the grooved convex platform by Wire Cut Electrical Discharge Machining (WEDM). The surface morphology and hydrophobic properties of the aluminum alloy microstructures fabricated by two processing methods were observed respectively, and the hydrophobic mechanism was analyzed. The results show that the contact angle was effectively improved from 49° up to 158.4° in the vertical direction, and 146.7° in the parallel direction. The change of surface wettability from hydrophilic to hydrophobic was realized. By comparison, the micro-and nanostructure fabricated by WEDM had improved the hydrophobic stability of the aluminum alloy surface while enlarging the contact Angle, and the micro-milling groove structure further amplified the contact angle and greatly reduced the contact area of the water droplet, it was also observed that the drop took longer to completely spread on the sample after WEDM.

  13. Influence of high-energy milling on structure and microstructure of asbestos-cement materials

    NASA Astrophysics Data System (ADS)

    Iwaszko, Józef; Zawada, Anna; Lubas, Małgorzata

    2018-03-01

    Asbestos-Containing Waste (ACW) in the form of a fragment from an asbestos-cement board was subjected to high-energy milling in a planetary mill at a constant rotational speed of 650 rpm and for variable milling times: 1, 2, and 3 h. The initial and the milled materials were subjected to infrared spectroscopic examination to identify the asbestos variety and to evaluate changes in the structure caused by high-energy milling. FT-IR (Fourier Transform Infrared Spectroscopy) examinations followed optical microscopy and SEM (Scanning Electron Microscopy) studies as well as X-ray analysis of the phase composition. It was found that the asbestos fibres present in the asbestos-cement board were respirable fibres with pathogenic properties. Identifying asbestos using the spectroscopic method showed that chrysotile asbestos was present in the as-received ACW while no characteristics of absorption bands from crocidolite or amosite were found. The results of the spectroscopic examinations were confirmed by the X-ray phase analysis. During SEM investigations of the milled ACW, complete loss of the fibrous structure of chrysotile was observed. The FT-IR examinations of the milled material showed that with an increased milling time, the characteristic absorption bands characteristic for chrysotile diminished and already after 2 h of milling their almost complete decay was observed. Thereby, it was confirmed that high-energy milling results in destruction of the crystalline structure of the asbestos phase. The conducted studies have shown that the treatment of asbestos-cement materials using high-energy milling is an effective method for asbestos disposal, capable of competing with other technologies and solutions. Moreover, FT-IR spectroscopy was found to be useful to identify asbestos phases and to assess changes caused by high-energy milling.

  14. The effect of milling frequency on a mechanochemical organic reaction monitored by in situ Raman spectroscopy

    PubMed Central

    Julien, Patrick A; Malvestiti, Ivani

    2017-01-01

    We provide the first in situ and real-time study of the effect of milling frequency on the course of a mechanochemical organic reaction conducted using a vibratory shaker (mixer) ball mill. The use of in situ Raman spectroscopy for real-time monitoring of the mechanochemical synthesis of a 2,3-diphenylquinoxaline derivative revealed a pronounced dependence of chemical reactivity on small variations in milling frequency. In particular, in situ measurements revealed the establishment of two different regimes of reaction kinetics at different frequencies, providing tentative insight into processes of mechanical activation in organic mechanochemical synthesis. PMID:29114323

  15. Nanocrystalline Nb-Al-Ge mixtures fabricated using wet mechanical milling

    NASA Astrophysics Data System (ADS)

    Pusceddu, E.; Charlton, S.; Hampshire, D. P.

    2008-02-01

    An investigation into Nb-Al-Ge mixtures is presented with special attention to the superconducting compounds Nb3(Al1-xGex) with x = 0, 0.3 and 1, which are reported to provide the highest upper critical field values for Nb-based compounds. Wet mechanical milling using copper milling media and distilled water as a process control agent (PCA) was used with the intention of improving the yield, properties and the performance of these materials. Very high yields of nanocrystalline material were achieved but significant copper contamination occurred - confirmed using inductively-coupled-plasma atomic-emission-spectroscopy. Simultaneous thermogravimetric measurements and differential scanning calorimetry were performed on powders milled for up to 20 h with different PCA content, to quantify the work done on the powders. A typical grain size of a few nm was obtained for the Nb-Al-Ge mixtures after several hours milling. Powder ground for 20 h with 5% PCA was processed using a hot isostatic press (HIP) operating at 2000 atm and temperatures up to 750 °C. The room temperature resistivity decreased as the temperature of the HIPing increased. Unfortunately, despite the nanocrystalline microstructure of the powders and the high HIP temperatures, if superconducting material was formed it was below the detection level of resistivity, Ac. susceptibility and SQUID measurements. We conclude that during milling there was widespread contamination of the powders by the PCA so that milling with distilled water as a PCA is not to be recommended for fabricating nanocrystalline Nb3(Al1-xGex) A15 superconducting compounds.

  16. Ball Milling Assisted Solvent and Catalyst Free Synthesis of Benzimidazoles and Their Derivatives.

    PubMed

    El-Sayed, Taghreed H; Aboelnaga, Asmaa; Hagar, Mohamed

    2016-08-24

    Benzoic acid and o-phenylenediamine efficiently reacted under the green solvent-free Ball Milling method. Several reaction parameters were investigated such as rotation frequency; milling balls weight and milling time. The optimum reaction condition was milling with 56.6 g weight of balls at 20 Hz frequency for one hour milling time. The study was extended for synthesis of a series of benzimidazol-2-one or benzimidazol-2-thione using different aldehydes; carboxylic acids; urea; thiourea or ammonium thiocyanate with o-phenylenediamine. Moreover; the alkylation of benzimidazolone or benzimidazolthione using ethyl chloroacetate was also studied.

  17. Optical properties of hydroxyapatite obtained by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Silva, C. C.; Thomazini, D.; Pinheiro, A. G.; Lanciotti, F.; Sasaki, J. M.; Góes, J. C.; Sombra, A. S. B.

    2002-09-01

    Calcium phosphate based bioceramics, mainly in the form of hydroxyapatite (HA), have been in use in medicine and dentistry for the last 20 years. Applications include coatings of orthopaedic and dental implants, alveolar ridge augmentation, maxillofacial surgery, otolaryngology, and scaffolds for bone growth and as powders in total hip and knee surgery. These materials exhibit several problems of handling and fabrication, which can be overcome by mixing with a suitable binder. In this paper, mechanical alloying has been used successfully to produce nanocrystalline powders of HA using five different experimental procedures. The milled HA were studied by X-ray powder diffraction, infrared and Raman scattering spectroscopy. For four different procedures, HA was obtained after a couple of hours of milling (on an average, 20 h of milling depending on the reaction procedure). The XRD patterns indicate that the grain size is within the range of 29-103 nm. This milling process, used to produce HA, presents the advantage that melting is not necessary and the powder obtained is nanocrystalline with extraordinary mechanical properties. The material can be compacted and transformed in solid ceramic samples. The high efficiency of the process opens a way to produce commercial amount of nanocrystalline HA. Due to the nanocrystalline character of this powder, their mechanical properties have changed and for this reason a pressure of 1 GPa is enough to shape the sample into any geometry.

  18. 11. VIEW TO NORTH, STEELSKINNER SALT ROASTER AND BRICK SKINNER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW TO NORTH, STEEL-SKINNER SALT ROASTER AND BRICK SKINNER SALT ROASTER (FOREGROUND), AND MECHANIC SHED, MILL WAREHOUSE AND DRYERS (BACKGROUND). - Vanadium Corporation of America (VCA) Naturita Mill, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  19. Aerosol insecticide distribution inside a flour mill: Assessment using droplet measurements and bioassays

    USDA-ARS?s Scientific Manuscript database

    The distribution of aerosol applications of pyrethrin+methoprene, generated from a mechanical fogger, and pyrethrin+pyriproxyfen, dispensed from a pressurized cylinder, were characterized inside a pilot-scale flour mill using measurements of particle size and concentration and effects on adult confu...

  20. Accuracy evaluation of metal copings fabricated by computer-aided milling and direct metal laser sintering systems.

    PubMed

    Park, Jong-Kyoung; Lee, Wan-Sun; Kim, Hae-Young; Kim, Woong-Chul; Kim, Ji-Hwan

    2015-04-01

    To assess the marginal and internal gaps of the copings fabricated by computer-aided milling and direct metal laser sintering (DMLS) systems in comparison to casting method. Ten metal copings were fabricated by casting, computer-aided milling, and DMLS. Seven mesiodistal and labiolingual positions were then measured, and each of these were divided into the categories; marginal gap (MG), cervical gap (CG), axial wall at internal gap (AG), and incisal edge at internal gap (IG). Evaluation was performed by a silicone replica technique. A digital microscope was used for measurement of silicone layer. Statistical analyses included one-way and repeated measure ANOVA to test the difference between the fabrication methods and categories of measured points (α=.05), respectively. The mean gap differed significantly with fabrication methods (P<.001). Casting produced the narrowest gap in each of the four measured positions, whereas CG, AG, and IG proved narrower in computer-aided milling than in DMLS. Thus, with the exception of MG, all positions exhibited a significant difference between computer-aided milling and DMLS (P<.05). Although the gap was found to vary with fabrication methods, the marginal and internal gaps of the copings fabricated by computer-aided milling and DMLS fell within the range of clinical acceptance (<120 µm). However, the statistically significant difference to conventional casting indicates that the gaps in computer-aided milling and DMLS fabricated restorations still need to be further reduced.

  1. Microfabrication of microchannels for fuel cell plates.

    PubMed

    Jang, Ho Su; Park, Dong Sam

    2010-01-01

    Portable electronic devices such as notebook computers, PDAs, cellular phones, etc., are being widely used, and they increasingly need cheap, efficient, and lightweight power sources. Fuel cells have been proposed as possible power sources to address issues that involve energy production and the environment. In particular, a small type of fuel-cell system is known to be suitable for portable electronic devices. The development of micro fuel cell systems can be achieved by the application of microchannel technology. In this study, the conventional method of chemical etching and the mechanical machining method of micro end milling were used for the microfabrication of microchannel for fuel cell separators. The two methods were compared in terms of their performance in the fabrication with regards to dimensional errors, flatness, straightness, and surface roughness. Following microchannel fabrication, the powder blasting technique is introduced to improve the coating performance of the catalyst on the surface of the microchannel. Experimental results show that end milling can remarkably increase the fabrication performance and that surface treatment by powder blasting can improve the performance of catalyst coating.

  2. Microfabrication of Microchannels for Fuel Cell Plates

    PubMed Central

    Jang, Ho Su; Park, Dong Sam

    2010-01-01

    Portable electronic devices such as notebook computers, PDAs, cellular phones, etc., are being widely used, and they increasingly need cheap, efficient, and lightweight power sources. Fuel cells have been proposed as possible power sources to address issues that involve energy production and the environment. In particular, a small type of fuel-cell system is known to be suitable for portable electronic devices. The development of micro fuel cell systems can be achieved by the application of microchannel technology. In this study, the conventional method of chemical etching and the mechanical machining method of micro end milling were used for the microfabrication of microchannel for fuel cell separators. The two methods were compared in terms of their performance in the fabrication with regards to dimensional errors, flatness, straightness, and surface roughness. Following microchannel fabrication, the powder blasting technique is introduced to improve the coating performance of the catalyst on the surface of the microchannel. Experimental results show that end milling can remarkably increase the fabrication performance and that surface treatment by powder blasting can improve the performance of catalyst coating. PMID:22315533

  3. Influence of ball milling on atomic structure and magnetic properties of Co{sub 40}Fe{sub 22}Ta{sub 8}B{sub 30} glassy alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taghvaei, Amir Hossein, E-mail: Amirtaghvaei@gmail.com; Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz; Stoica, Mihai

    2014-06-01

    The influence of ball milling on the atomic structure and magnetic properties of the Co{sub 40}Fe{sub 22}Ta{sub 8}B{sub 30} metallic glass with a high thermal stability and excellent soft magnetic properties has been investigated. After 14 h of milling, the obtained powders were found to consist mainly of an amorphous phase and a small fraction of the (Co,Fe){sub 21}Ta{sub 2}B{sub 6} nanocrystals. The changes in the reduced pair correlation functions suggest noticeable changes in the atomic structure of the amorphous upon ball milling. Furthermore, it has been shown that milling is accompanied by introduction of compressive and dilatational sites inmore » the glassy phase and increasing the fluctuation of the atomic-level hydrostatic stress without affecting the coordination number of the nearest neighbors. Ball milling has decreased the thermal stability and significantly affected the magnetic properties through increasing the saturation magnetization, Curie temperature of the amorphous phase and coercivity. - Highlights: • Ball milling affected the atomic structure of Co{sub 40}Fe{sub 22}Ta{sub 8}B{sub 30} metallic glass. • Mechanically-induced crystallization started after 4 h milling. • Milling increased the fluctuation of the atomic-level hydrostatic stress in glass. • Ball milling influenced the thermal stability and magnetic properties.« less

  4. Comparison of high pressure homogenization and stirred bead milling for the production of nano-crystalline suspensions.

    PubMed

    Nakach, Mostafa; Authelin, Jean-René; Perrin, Marc-Antoine; Lakkireddy, Harivardhan Reddy

    2018-05-19

    Currently, the two technologies primarily used for the manufacturing of nano-crystalline suspensions using top down process (i.e. wet milling) are high pressure homogenization (HPH) and stirred bead milling (SBM). These two technologies are based upon different mechanisms, i.e., cavitation forces for HPH and shear forces for stirred bead milling. In this article, the HPH and SBM technologies are compared in terms of the impact of the suspension composition the process parameters and the technological configuration on milling performances and physical quality of the suspensions produced. The data suggested that both HPH and SBM are suitable for producing nano-crystalline suspensions, although SBM appeared more efficient than HPH, since the limit of milling (d 50 ) for SBM was found to be lower than that obtained with HPH (100 nm vs 200 nm). For both these technologies, regardless of the process parameters used for milling and the scale of manufacturing, the relationship of d 90 versus d 50 could be described by a unique master curve (technology signature of milling pathway) outlining that the HPH leads to more uniform particle size distribution as compared to SBM. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Microalloying of transition metal silicides by mechanical activation and field-activated reaction

    DOEpatents

    Munir, Zuhair A [Davis, CA; Woolman, Joseph N [Davis, CA; Petrovic, John J [Los Alamos, NM

    2003-09-02

    Alloys of transition metal suicides that contain one or more alloying elements are fabricated by a two-stage process involving mechanical activation as the first stage and densification and field-activated reaction as the second stage. Mechanical activation, preferably performed by high-energy planetary milling, results in the incorporation of atoms of the alloying element(s) into the crystal lattice of the transition metal, while the densification and field-activated reaction, preferably performed by spark plasma sintering, result in the formation of the alloyed transition metal silicide. Among the many advantages of the process are its ability to accommodate materials that are incompatible in other alloying methods.

  6. Modification of Pseudobrookite Fe2-XMnxTiO5 with Solid State Reaction Method using a Mechanical Milling

    NASA Astrophysics Data System (ADS)

    Sarwanto, Y.; Adi, W. A.

    2017-05-01

    Modification of pseudobrookite Fe2-xMnxTiO5 with solid state reaction method using a mechanical milling has been synthesized. Raw materials used to prepare these samples were Fe2O3, MnCO3, and TiO2. Fe2O3 and TiO2 powders (ratio of 1:1) were mixed with MnCO3 powder at various composition of x = 0; 0.1; 0.2; 0.3; 0.4; 0.5; and 1, which each composition was added with 50 ml ethanol and then milled for 5 hours through high energy milling, after that sintered at 1000 °C for 5 hours by using box furnace. The phases of Fe2-xMnxTiO5 were measured by using X-ray diffraction (XRD) and then identified by using Match program. The crystal structure was analyzed by using the program of General Structure Analysis System (GSAS). Quality fitting of Rwp and χ2 (chi-squared) are relatively good because based on the curve of normalized error distribution looks just left background and its normal probability plot shows the value of comparable between observation and expectation. The refinement analyses of X-ray diffraction patterns showed that the samples formed single phase for x ≤ 0.3. However, the samples of x > 0.3 were multi-phases. The single phase of sample had composition of pseudobrookite Fe2TiO5 with orthorhombic structure, space group of C m c m (63), the lattice parameters of a = 3.7390 Å, b = 9.7790 Å, and c = 9.9780 Å, α = β = γ = 90°, V = 364.83 Å3, and ρ = 4.360 g.cm-3. Meanwhile, the other phase analysis for the composition of x > 0.3 is bixbyite (FeMnO3). The bixbyite has a cubic structure, under the space group of I a - 3 (206), the lattice parameters of a = b = c = 9.40 Å, α = β = γ = 90°, V = 830.58 Å3, and ρ = 5.078 g.cm-3.

  7. On the influence of Ti-Al intermetallic coating architecture on mechanical properties and wear resistance of end mills

    NASA Astrophysics Data System (ADS)

    Vardanyan, E. L.; Budilov, V. V.; Ramazanov, K. N.; Ataullin, Z. R.

    2017-07-01

    Thin-film wear-resistant coatings are widely used to increase life and efficiency of metal cutting tools. This paper shows the results of a study on the influence of architecture (number, sequence and thickness of layers) of wear-resistant coatings on physical, mechanical and operational properties of end mills. Coatings consisting of alternating Ti-Al/Ti-Al-N layers of equal thickness demonstrated the best physical and mechanical properties. Durability of coated tools when processing materials from chromium-vanadium steel increased twice as compared to uncoated tools.

  8. Effect of reinforcing particle type on morphology and age-hardening behavior of Al–4.5 wt.% Cu based nanocomposites synthesized through mechanical milling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mostaed, A., E-mail: alimostaed@yahoo.com; Saghafian, H.; Mostaed, E.

    2013-02-15

    The effects of reinforcing particle type (SiC and TiC) on morphology and precipitation hardening behavior of Al–4.5%Cu based nanocomposites synthesized via mechanical milling were investigated in the current work. In order to study the microstructure and morphology of mechanically milled powder, X-ray diffraction technique, scanning electron microscopy and high resolution transmission electron microscopy were utilized. Results revealed that at the early stages of mechanical milling, when reinforcing particles are polycrystal, the alloying process is enhanced more in the case of using the TiC particles as reinforcement. But, at the final stages of mechanical milling, when reinforcing particles are single crystal,more » the alloying process is enhanced more in the case of using the SiC ones. Transmission electron microscopy results demonstrated that Al–4.5 wt.%Cu based nanocomposite powders were synthesized and confirmed that the mutual diffusion of aluminum and copper occurs through the interfacial plane of (200). The hardness results showed that not only does introducing 4 vol.% of reinforcing particles (SiC or TiC) considerably decrease the porosity of the bulk composite samples, but also it approximately doubles the hardness of Al–4.5 wt.%Cu alloy (53.4 HB). Finally, apart from TEM and scanning electron microscopy observation which are localized, a decline in hardness in the TiC and SiC contained samples, respectively, after 1.5 and 2 h aging time at 473 K proves the fact that the size of SiC particles is smaller than the size of the TiC ones. - Highlights: ► HRTEM results show mutual diffusion of Al and Cu occurs through the (200) planes. ► TiC particles enhance alloying process more than the SiC ones at the early stages of MM. ► SiC particles enhance alloying process more than the TiC ones at the final stages of MM.« less

  9. Effect of milling methods on performance of Ni-Y 2O 3-stabilized ZrO 2 anode for solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Cho, Hyoup Je; Choi, Gyeong Man

    A Ni-YSZ (Y 2O 3-stabilized ZrO 2) composite is commonly used as a solid oxide fuel cell anode. The composite powders are usually synthesized by mixing NiO and YSZ powders. The particle size and distribution of the two phases generally determine the performance of the anode. Two different milling methods are used to prepare the composite anode powders, namely, high-energy milling and ball-milling that reduce the particle size. The particle size and the Ni distribution of the two composite powders are examined. The effects of milling on the performance are evaluated by using both an electrolyte-supported, symmetric Ni-YSZ/YSZ/Ni-YSZ cell and an anode-supported, asymmetric cell. The performance is examined at 800 °C by impedance analysis and current-voltage measurements. Pellets made by using high-energy milled NiO-YSZ powders have much smaller particle sizes and a more uniform distribution of Ni particles than pellets made from ball-milled powder, and thus the polarization resistance of the electrode is also smaller. The maximum power density of the anode-supported cell prepared by using the high-energy milled powder is ∼850 mW cm -2 at 800 °C compared with ∼500 mW cm -2 for the cell with ball-milled powder. Thus, high-energy milling is found to be more effective in reducing particle size and obtaining a uniform distribution of Ni particles.

  10. Effect of different milling methods on glycaemic response of foods made with finger millet (Eucenea coracana) flour.

    PubMed

    Jayasinghe, M A; Ekanayake, S; Nugegoda, D B

    2013-12-01

    Compare glycaemic response of foods prepared with finger millet flour, using traditional stone grinding and industrial milling. Crossover study. Healthy volunteers (n=11) consisting of five males and six females), aged between 20 and 30 years, with a body mass index of 18.5-23.5 Kgm-2. Blood glucose concentration was measured at fasting and 30, 45, 60, 90, 120 minutes after ingestion of roti and pittu made with stone ground or industrially milled finger millet flour, containing 50 g of available carbohydrates. Glycaemic Index (GI) values were expressed as the average value of the 11 subjects. Significant differences (p<0.05) in GI between similar food types made of flour milled using different methods were observed. GI for roti made of stone ground flour was 44±5 and that of roti made of industrially milled flour was 59±7. Pittu made of stone ground flour had a GI of 67±5 and GI of pittu made of industrially milled flour was 79±5. Microscopic analysis of flour samples and a sieving process using different sieve sizes showed larger particle size distribution in stone ground flour compared to industrially milled flour. Larger particle sizes in the stone ground flour compared with industrially milled flour was established as the only factor affecting the difference in GI of same type of food prepared with flour milled using different methods. There were no significant differences (p>0.05) in proximate compositions of the different foods or raw flours. Foods prepared with finger millet (kurakkan) flour with a larger particle size distribution resulted in a lower glycaemic response.

  11. Numerical simulation study on rolling-chemical milling process of aluminum-lithium alloy skin panel

    NASA Astrophysics Data System (ADS)

    Huang, Z. B.; Sun, Z. G.; Sun, X. F.; Li, X. Q.

    2017-09-01

    Single curvature parts such as aircraft fuselage skin panels are usually manufactured by rolling-chemical milling process, which is usually faced with the problem of geometric accuracy caused by springback. In most cases, the methods of manual adjustment and multiple roll bending are used to control or eliminate the springback. However, these methods can cause the increase of product cost and cycle, and lead to material performance degradation. Therefore, it is of significance to precisely control the springback of rolling-chemical milling process. In this paper, using the method of experiment and numerical simulation on rolling-chemical milling process, the simulation model for rolling-chemical milling process of 2060-T8 aluminum-lithium alloy skin was established and testified by the comparison between numerical simulation and experiment results for the validity. Then, based on the numerical simulation model, the relative technological parameters which influence on the curvature of the skin panel were analyzed. Finally, the prediction of springback and the compensation can be realized by controlling the process parameters.

  12. Solvent-free mechanochemical preparation of phosphonium salts, phosphorus ylides, and olefins

    DOEpatents

    Pecharsky, Vitalij K.; Balema, Viktor P.; Wiench, Jerzy W.; Pruski, Marek

    2004-05-04

    The present invention provides a method of preparing a phosphonium salt of the formula [R.sup.1 R.sup.2 R.sup.3 P--CR.sup.4 R.sup.5 R.sup.6 ]X, comprising ball-milling a phosphine of the formula R.sup.1 R.sup.2 R.sup.3 P with a compound of the formula XCR.sup.4 R.sup.5 R.sup.6 ; a method of preparing a phosphorus ylide of the formula R.sup.1 R.sup.2 R.sup.3 P.dbd.CR.sup.4 R.sup.5, comprising ball-milling a phosphonium salt of the formula [R.sup.1 R.sup.2 R.sup.3 P--HCR.sup.4 R.sup.5 ]X in the presence of a base; and a method of preparing an olefin of the formula R.sup.4 R.sup.5 C.dbd.CR.sup.7 H or R.sup.4 R.sup.5 C.dbd.CR.sup.7 R.sup.8, comprising ball-milling a phosphorus ylide of the formula R.sup.1 R.sup.2 R.sup.3 P.dbd.CR.sup.4 R.sup.5 with a compound of the formula R.sup.7 C(O)H or R.sup.7 C(O)R.sup.8. The inventive method produces phosphonium salts and phosphorus ylides by mechanical processing solid reagents under solvent-free conditions. The advantages of the present invention over conventional solution methods, include: (1) extremely high selectivity; (2) high yields; (3) low processing temperatures; (4) simple and scalable reactions using commercially available equipment; and (5) the complete elimination of solvents from the reaction.

  13. Facile Synthesis of Layer Structured GeP3/C with Stable Chemical Bonding for Enhanced Lithium-Ion Storage

    NASA Astrophysics Data System (ADS)

    Qi, Wen; Zhao, Haihua; Wu, Ying; Zeng, Hong; Tao, Tao; Chen, Chao; Kuang, Chunjiang; Zhou, Shaoxiong; Huang, Yunhui

    2017-02-01

    Recently, metal phosphides have been investigated as potential anode materials because of higher specific capacity compared with those of carbonaceous materials. However, the rapid capacity fade upon cycling leads to poor durability and short cycle life, which cannot meet the need of lithium-ion batteries with high energy density. Herein, we report a layer-structured GeP3/C nanocomposite anode material with high performance prepared by a facial and large-scale ball milling method via in-situ mechanical reaction. The P-O-C bonds are formed in the composite, leading to close contact between GeP3 and carbon. As a result, the GeP3/C anode displays excellent lithium storage performance with a high reversible capacity up to 1109 mA h g-1 after 130 cycles at a current density of 0.1 A g-1. Even at high current densities of 2 and 5 A g-1, the reversible capacities are still as high as 590 and 425 mA h g-1, respectively. This suggests that the GeP3/C composite is promising to achieve high-energy lithium-ion batteries and the mechanical milling is an efficient method to fabricate such composite electrode materials especially for large-scale application.

  14. National Program for Inspection of Non-Federal Dams. Knox Mill Dam (ME 00276), Megunticook River Basin, Camden, Maine. Phase I Inspection Report.

    DTIC Science & Technology

    1978-08-01

    been furnished the owner, Camden Water & Power Co., 33 Mechanic Street, ..... a ine 0,-43. Co-ies of this report will be made available to the public...gn Branch Engineering Division SAUL CO ER, Member Chief, Water Control Branch Engineering Division APPROVAL RECOMMENDED: JOE B. FRYAR Chief...Camden Water & Power Co. 33 Mechanic Street Camden, Maine 04843 Tne Camden Water and Power Company is an affiliate of Knox Woolen Mills Company. f

  15. An analytical method for prediction of stability lobes diagram of milling of large-size thin-walled workpiece

    NASA Astrophysics Data System (ADS)

    Yao, Jiming; Lin, Bin; Guo, Yu

    2017-01-01

    Different from common thin-walled workpiece, in the process of milling of large-size thin-walled workpiece chatter in the axial direction along the spindle is also likely to happen because of the low stiffness of the workpiece in this direction. An analytical method for prediction of stability lobes of milling of large-size thin-walled workpiece is presented in this paper. In the method, not only frequency response function of the tool point but also frequency response function of the workpiece is considered.

  16. Milling dynamics. I - Attritor dynamics: Results of a cinematographic study

    NASA Technical Reports Server (NTRS)

    Rydin, R. W.; Maurice, D.; Courtney, T. H.

    1993-01-01

    The motions of grinding media and powder in an attritor canister were studied by means of filming the agitated charge and frame-by-frame scrutiny of the footage. In conjunction with auxiliary experiments, this permitted semiquantitative analysis of the milling action. In particular, the mill can be divided into several regions characterized by different balances between direct impacts and rolling/sliding of the grinding media. Simple calculations suggest that impacts are more capable of effecting mechanical alloying (MA) than are rolling or sliding events in an attritor. Powder circulation within an operating mill was also investigated. Based on the results and the accompanying analysis, concepts for improved attritor design are presented.

  17. Influencing Factors and Workpiece's Microstructure in Laser-Assisted Milling of Titanium

    NASA Astrophysics Data System (ADS)

    Wiedenmann, R.; Liebl, S.; Zaeh, M. F.

    Today's lightweight components have to withstand increasing mechanical and thermal loads. Therefore, advanced materials substitute conventional materials like steel or aluminum alloys. Using these high-performance materials the associated costs become prohibitively high. This paper presents the newest fundamental investigations on the hybrid process 'laser-assisted milling' which is an innovative technique to process such materials. The focus is on the validation of a numerical database for a CAD/CAM process control unit which is calculated by using simulation. Prior to that, the influencing factors on a laser-assisted milling process are systematically investigated using Design of Experiments (DoE) to identify the main influencing parameters coming from the laser and the milling operation.

  18. Analysis of Particle Distribution in Milled Al-Based Composites Reinforced by B4C Nanoparticles

    NASA Astrophysics Data System (ADS)

    Alihosseini, Hamid; Dehghani, Kamran

    2017-04-01

    In the present work, high-energy ball milling was employed to synthesize Al-(5-10 wt.%)B4C nanocomposite. To do this, two sizes of particles of 50 nm as nanoparticles (NPs) and 50 μm as coarse particles (CPs) were used. The morphology and microstructure of the milled powders were characterized using particle size analyzer, SEM, TEM and EDX techniques. It was found that milling time, B4C particles size and their content strongly affect the characteristics of powders during milling process. The breaking and cold welding of powders was recognized as two main competitive actions during the milling process that influence the microstructural evolutions. It was found that the presence of CPs led to the formation of microcracks which promote the fracture process of Al powders. The dominated mechanisms during the fabrication of composites and nanocomposites were discussed. Also, the theoretical issues regarding the changes in morphology and distribution of B4C particles in CPs and NPs are clarified.

  19. Elevated Temperature Compressive Strength Properties of Oxide Dispersion Strengthened NiAl After Cryo-milling and Roasting in Nitrogen

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Grahle, Peter; Arzt, Eduard; Hebsur, Mohan

    1998-01-01

    In an effort to superimpose two different elevated temperature strengthening mechanisms in NiAl, several lots of oxide dispersion strengthened (ODS) NiAl powder have been cryo-milled in liquid nitrogen to introduce AlN particles at the grain boundaries. As an alternative to cryo-milling, one lot of ODS NiAl was roasted in nitrogen to produce AlN. Both techniques resulted in hot extruded AlN-strengthened, ODS NiAl alloys which were stronger than the base ODS NiAl between 1200 and 1400 K. However, neither the cryo-milled nor the N2-roasted ODS NiAl alloys were as strong as cryo-milled binary NiAl containing like amounts of AlN. The reason(s) for the relative weakness of cryo-milled ODS NiAl is not certain; however the lack of superior strength in N2-roasted ODS NiAl is probably due to its relatively large AlN particles.

  20. Bioaccumulation and detoxification mechanisms for lead uptake identified in Rhus chinensis Mill. seedlings.

    PubMed

    Zhou, Chuifan; Huang, Meiying; Ren, Huijun; Yu, Jiaoda; Wu, Jiamei; Ma, Xiangqing

    2017-08-01

    A greenhouse experiment was conducted to assay the bioaccumulation and tolerance characteristics of Rhus chinensis Mill. to lead (Pb). The effects of exposing R. chinensis Mill seedlings to increasing Pb concentrations (0, 250, 500, 100mgkg-1) in the soil were assessed by measuring Pb accumulation, subcellular distribution, ultrastructure, photosynthetic characteristics, antioxidative enzyme activity, malondialdehyde content, and phytochelatin content. The majority of Pb taken up by R. chinensis Mill was associated with the cell wall fraction in the roots, where the absorption of Ca increased to maintain cell wall stability, and Pb deposits were found in the intercellular space or in the cell wall structures. In leaves, Pb was primarily stored in the cell wall, while it was compartmentalized into the vacuolar structures in the stem. Pb concentrations adversely affected the morphology of Rhus chinensis Mill cellular substructures. Furthermore, increased Peroxidase (POD) and catalase (CAT) activity was observed in plants grown in Pb-amended soil, and this may have led to reduced ROS to maintain the function of the membrane. Changes in phytochelatin levels (PCs) that were observed in Pb treated plants suggest that PCs formed complexes with Pb in the cytoplasm to reduce Pb 2+ toxicity in the metabolically active cellular compartment. This mechanism may allow for the plant to accumulate higher concentrations of toxic Pb and survive for a longer period of time. Our study provides a better understanding of how Rhus chinensis Mill detoxifies Pb. Copyright © 2017. Published by Elsevier Inc.

  1. Impact Ignition of Low Density Mechanically Activated and Multilayer Foil Ni/Al

    NASA Astrophysics Data System (ADS)

    Beason, Matthew; Mason, B.; Son, Steven; Groven, Lori

    2013-06-01

    Mechanical activation (MA) via milling of reactive materials provides a means of lowering the ignition threshold of shock initiated reactions. This treatment provides a finely mixed microstructure with wide variation in the resulting scales of the intraparticle microstructure that makes model validation difficult. In this work we consider nanofoils produced through vapor deposition with well defined periodicity and a similar degree of fine scale mixing. This allows experiments that may be easier to compare with computational models. To achieve this, both equimolar Ni/Al powder that has undergone MA using high energy ball milling and nanofoils milled into a powder using low energy ball milling were used. The Asay Shear impact experiment was conducted on both MA Ni/Al and Ni/Al nanofoil-based powders at low densities (<60%) to examine their impact response and reaction behavior. Scanning electron microscopy and energy-dispersive x-ray spectroscopy were used to verify the microstructure of the materials. The materials' mechanical properties were evaluated using nano-indentation. Onset temperatures were evaluated using differential thermal analysis/differential scanning calorimetry. Impact ignition thresholds, burning rates, temperature field, and ignition delays are reported. Funding from the Defense Threat Reduction Agency (DTRA) Grant Number HDTRA1-10-1-0119. Counter-WMD basic research program, Dr. Suhithi M. Peiris, program director is gratefully acknowledged.

  2. Magnetic properties of mechanically alloyed Mn-Al-C powders

    NASA Astrophysics Data System (ADS)

    Kohmoto, O.; Kageyama, N.; Kageyama, Y.; Haji, H.; Uchida, M.; Matsushima, Y.

    2011-01-01

    We have prepared supersaturated-solution Mn-Al-C alloy powders by mechanical alloying using a planetary high-energy mill. The starting materials were pure Mn, Al and C powers. The mechanically-alloyed powders were subjected to a two-step heating. Although starting particles are Al and Mn with additive C, the Al peak disappears with MA time. With increasing MA time, transition from α-Mn to β-Mn does not occur; the α-Mn structure maintains. At 100 h, a single phase of supersaturated-solution α-Mn is obtained. The lattice constant of α-Mn decreases with increasing MA time. From the Scherrer formula, the crystallite size at 500 h is obtained as 200Å, which does not mean amorphous state. By two-step heating, high magnetization (66 emu/g) was obtained from short-time-milled powders (t=10 h). The precursor of the as-milled powder is not a single phase α-Mn but contains small amount of fcc Al. After two-step heating, the powder changes to τ-phase. Although the saturation magnetization increases, the value is less than that by conventional bulk MnAl (88 emu/g). Meanwhile, long-time-milled powder of single α-Mn phase results in low magnetization (5.2 emu/g) after two-step heating.

  3. Mechanical Alloying of W-Mo-V-Cr-Ta High Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Das, Sujit; Robi, P. S.

    2018-04-01

    Recent years have seen the emergence of high-entropy alloys (HEAs) consisting of five or more elements in equi-atomic or near equi-atomic ratios. These alloys in single phase solid solution exhibit exceptional mechanical properties viz., high strength at room and elevated temperatures, reasonable ductility and stable microstructure over a wide range of temperatures making it suitable for high temperature structural materials. In spite of the attractive properties, processing of these materials remains a challenge. Reports regarding fabrication and characterisation of a few refractory HEA systems are available. The processing of these alloys have been carried out by arc melting of small button sized materials. The present paper discusses the development of a novel refractory W-Mo-V-Cr-Ta HEA powder based on a new alloy design concept. The powder mixture was milled for time periods up to 64 hours. Single phase alloy powder having body centred cubic structure was processed by mechanical alloying. The milling characteristics and extent of alloying during the ball milling were characterized using X-ray diffractiometre (XRD), field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). A single phase solid solution alloy powder having body-centred cubic (BCC) structure with a lattice parameter of 3.15486 Å was obtained after milling for 32 hours.

  4. Development of a Novel Ni-Fe-Cr-B-Si Interlayer Material for Transient Liquid Phase Bonding of Inconel 718

    NASA Astrophysics Data System (ADS)

    Tarai, U. K.; Robi, P. S.; Pal, Sukhomay

    2018-04-01

    A Ni-Cr-Fe-Si-B based interlayer material was developed by mechanical alloying (MA) process in a high-energy planetary ball mill. Equiaxed alloy powders of size 12 µm was obtained after milling for 50 hours. X-ray diffraction analysis of the milled powder revealed that milling of elemental powders initially resulted in microcrystalline alloy powder having face centered cubic structure, which on subsequent milling resulted in nano-crystallice alloy powder with a crystallite size of 3.2 nm. XRD analysis also reveals formation of metastable eutectic alloys resulting in lowering of the melting point of the interlayer material to 1025 °C. IN 718 superalloy samples were joined at 1050°C using the developed interlayer. A homogeneous joint was formed by the newly developed interlayer material. Three different zones were observed at the bond (i) isothermally solidified zone, (ii) diffusion affected zone and (iii) unaffected base metal. In the diffusion-affected zone, boron was present at the grain boundaries of Ni γ matrix in bulky metal borides form. The diffusion of boron from interlayer material into the base material was mechanism of isothermal solidification and bond formation in transient liquid phase bonding of IN 718.

  5. Fracture, roughness and phase transformation in CAD/CAM milling and subsequent surface treatments of lithium metasilicate/disilicate glass-ceramics.

    PubMed

    Alao, Abdur-Rasheed; Stoll, Richard; Song, Xiao-Fei; Abbott, John R; Zhang, Yu; Abduo, Jaafar; Yin, Ling

    2017-10-01

    This paper studied surface fracture, roughness and morphology, phase transformations, and material removal mechanisms of lithium metasilicate/disilicate glass ceramics (LMGC/LDGC) in CAD/CAM-milling and subsequent surface treatments. LMGC (IPS e.max CAD) blocks were milled using a chairside dental CAD/CAM milling unit and then treated in sintering, polishing and glazing processes. X-ray diffraction was performed on all processed surfaces. Scanning electron microscopy (SEM) was applied to analyse surface fracture and morphology. Surface roughness was quantitatively characterized by the arithmetic average surface roughness R a and the maximum roughness R z using desktop SEM-assisted morphology analytical software. The CAD/CAM milling induced extensive brittle cracks and crystal pulverization on LMGC surfaces, which indicate that the dominant removal mechanism was the fracture mode. Polishing and sintering of the milled LMGC lowered the surface roughness (ANOVA, p < 0.05), respectively, while sintering also fully transformed the weak LMGC to the strong LDGC. However, polishing and glazing of LDGC did not significantly improve the roughness (ANOVA, p > 0.05). In comparison of all applied fabrication process routes, it is found that CAD/CAM milling followed by polishing and sintering produced the smoothest surface with R a = 0.12 ± 0.08µm and R z = 0.89 ± 0.26µm. Thus , it is proposed as the optimized process route for LMGC/LDGC in dental restorations. This route enables to manufacture LMGC/LDGC restorations with cost effectiveness, time efficiency, and improved surface quality for better occlusal functions and reduced bacterial plaque accumulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Interfacial Reaction During High Energy Ball Milling Dispersion of Carbon Nanotubes into Ti6Al4V

    NASA Astrophysics Data System (ADS)

    Adegbenjo, A. O.; Olubambi, P. A.; Potgieter, J. H.; Nsiah-Baafi, E.; Shongwe, M. B.

    2017-12-01

    The unique thermal and mechanical properties of carbon nanotubes (CNTs) have made them choice reinforcements for metal matrix composites (MMCs). However, there still remains a critical challenge in achieving homogeneous dispersion of CNTs in metallic matrices. Although high energy ball milling (HEBM) has been reported as an effective method of dispersing CNTs into metal matrices, a careful selection of the milling parameters is important not to compromise the structural integrity of CNTs which may cause interfacial reactions with the matrix. In this study, multi-walled carbon nanotubes (MWCNTs) were purified by annealing in argon and vacuum atmospheres at 1000 and 1800 °C, respectively, for 5 h to remove possible metallic catalyst impurities. Subsequently, 1, 2 and 3 wt.% MWCNTs were dispersed by adapted HEBM into Ti6Al4V alloy metal matrix. Raman spectroscopy (RS), x-ray diffraction, scanning electron microscopy, energy-dispersive x-ray spectrometry and transmission electron microscopy techniques were used to characterize the as-received and annealed MWCNTs, as well as the admixed MWCNT/Ti6Al4V nanocomposite powders. The experimental results showed that vacuum annealing successfully eliminated retained nickel (Ni) catalysts from MWCNTs, while the adapted HEBM method achieved a relative homogeneous dispersion of MWCNTs into the Ti6Al4V matrix and helped to control interfacial reactions between defective MWCNTs and the metal matrix.

  7. Study of novel mechano-chemical activation process of red mud to optimize nitrate removal from water.

    PubMed

    Alighardashi, A; Gharibi, H R; Raygan, Sh; Akbarzadeh, A

    2016-01-01

    Red mud (RM) is the industrial waste of alumina production and causes serious environmental risks. In this paper, a novel activation procedure for RM (mechano-chemical processing) is proposed in order to improve the nitrate adsorption from water. High-energy milling and acidification were selected as mechanical and chemical activation methods, respectively. Synthesized samples of adsorbent were produced considering two parameters of activation: acid concentrations and acidification time in two selected milling times. Optimization of the activation process was based on nitrate removal from a stock solution. Experimental data were analyzed with two-way analysis of variance and Kruskal-Wallis methods to verify and discover the accuracy and probable errors. Best conditions (acceptable removal percentage > 75) were 17.6% w/w for acid concentrate and 19.9 minutes for acidification time in 8 hours for milling time. A direct relationship between increase in nitrate removal and increasing the acid concentration and acidification time was observed. The adsorption isotherms were studied and compared with other nitrate adsorbents. Characterization tests (X-ray fluorescence, X-ray diffraction, Fourier transform infrared spectrophotometry, dynamic light scattering, surface area analysis and scanning electron microscopy) were conducted for both raw and activated adsorbents. Results showed noticeable superiority in characteristics after activation: higher specific area and porosity, lower particle size and lower agglomeration in structure.

  8. [Study on two preparation methods for beta-CD inclusion compound of four traditional Chinese medicine volatile oils].

    PubMed

    Li, Hailiang; Cui, Xiaoli; Tong, Yan; Gong, Muxin

    2012-04-01

    To compare inclusion effects and process conditions of two preparation methods-colloid mill and saturated solution-for beta-CD inclusion compound of four traditional Chinese medicine volatile oils and study the relationship between each process condition and volatile oil physical properties and the regularity of selective inclusion of volatile oil components. Volatile oils from Nardostachyos Radix et Rhizoma, Amomi Fructus, Zingiberis Rhizoma and Angelicaesinensis Radix were prepared using two methods in the orthogonal test. These inclusion compounds by optimized processes were assessed and compared by such methods as TLC, IR and scanning electron microscope. Inclusion oils were extracted by steam distillation, and the components found before and after inclusion were analyzed by GC-MS. Analysis showed that new inclusion compounds, but inclusion compounds prepared by the two processes had differences to some extent. The colloid mill method showed a better inclusion effect than the saturated solution method, indicating that their process conditions had relations with volatile oil physical properties. There were differences in the inclusion selectivity of components between each other. The colloid mill method for inclusion preparation is more suitable for industrial requirements. To prepare volatile oil inclusion compounds with heavy gravity and high refractive index, the colloid mill method needs longer time and more water, while the saturated solution method requires higher temperature and more beta-cyclodextrin. The inclusion complex prepared with the colloid mill method contains extended molecular weight chemical composition, but the kinds of components are reduced.

  9. Fractography and Mechanical Properties of Urethane Dimethacrylate Dental Composites Reinforced with Glass Nanoparticles

    PubMed Central

    M*, Monfared; ME, Bahrololoom

    2016-01-01

    Statement of Problem: Dental resin composites are becoming prevalent in restorative dentistry and have almost replaced amalgam nowadays. Consequently, their mechanical properties and durability are critical. Objectives: The aim of this study was to produce Pyrex glass nano-particles by wet milling process and use them as reinforcement in dental resins for anterior restorations and then examination of fractographic properties of these composites. Materials and Methods: The glass nano-particles were achieved via wet milling. The surface of the particles was modified with 3-(Trimethoxysilyl) propyl methacrylate (γ-MPTMS) silane in order to improve their surface. Fourier transform infra-red (FTIR) analysis showed that the silane groups provided double bonds to the surface of the particles and prevented agglomeration. Then, the composite resins were made with different weight percentages of Pyrex glass. The mechanical properties of samples flexural test were evaluated. The required energy for fracture of the specimens was achieved via this test. The fracture surfaces of the samples were analyzed using a scanning electron microscope (SEM) in order to explain the mechanisms of fracture. Results: The results and analysis showed that increasing the glass nano-particles mass fraction had a great effect on mechanical properties of the composites due to the mechanisms of crack propagation and crack deflection as well as preventing void formation. The effective energy dissipation mechanisms such as crack pinning and deflection, was observed in SEM micrographs. Conclusions: Void formation in the low filler content composite is one of the mechanisms to decrease the energy required for fracture of these composites and eventually weaken them. PMID:28959761

  10. Fabricating the spherical and flake silver powder used for the optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Ju, Wei; Ma, Wangjing; Zhang, Fangzhi; Chen, Yixiang; Xie, Jinpeng

    2018-01-01

    The spherical and flake silver powder with different particle size for the optoelectronic devices was partly prepared by using chemical reduction and ball milling method, and charactered by scanning electron microscope (SEM), X-ray diffraction (XRD), laser particle size analyzer and thermo-gravimetric(TG) analyzer. The particle size of three series of spherical silver powder fabricated by chemical reduction is about 1.5μm, 1μm and 0.6μm, respectively; after being mechanical milling, the particle size of flake silver powder with high flaky rate is about 10μm, 6μm and 2μm respectively. Thermo gravimetric (TG) and XRD analyses showed that the silver powders have high purity and crystalline, and then the laser particle size and SEM analyses showed that the silver powders has good uniformity.

  11. Size and morphology controlled NiSe nanoparticles as efficient catalyst for the reduction reactions

    NASA Astrophysics Data System (ADS)

    Subbarao, Udumula; Marakatti, Vijaykumar S.; Amshumali, Mungalimane K.; Loukya, B.; Singh, Dheeraj Kumar; Datta, Ranjan; Peter, Sebastian C.

    2016-12-01

    Facile and efficient ball milling and polyol methods were employed for the synthesis of nickel selenide (NiSe) nanoparticle. The particle size of the NiSe nanoparticle has been controlled mechanically by varying the ball size in the milling process. The role of the surfactants in the formation of various morphologies was studied. The compounds were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray energy dispersive spectroscopy (EDS). The efficiency of the NiSe nanoparticle as a catalyst was tested for the reduction of para-nitroaniline (PNA) to para-phenyldiamine (PPD) and para-nitrophenol (PNP) to para-aminophenol (PAP) using NaBH4 as the reducing agent. Particle size, morphology and the presence of surfactant played a crucial role in the reduction process.

  12. Preparation of plutonium-bearing ceramics via mechanically activated precursor

    NASA Astrophysics Data System (ADS)

    Chizhevskaya, S. V.; Stefanovsky, S. V.

    2000-07-01

    The problem of excess weapons plutonium disposition is suggested to be solved by means of its incorporation in stable ceramics with high chemical durability and radiation resistivity. The most promising host phases for plutonium as well as uranium and neutron poisons (gadolinium, hafnium) are zirconolite, pyrochlore, zircon, zirconia [1,2], and murataite [3]. Their production requires high temperatures and a fine-grained homogeneous precursor to reach final waste form with high quality and low leachability. Currently various routes to homogeneous products preparation such as sol-gel technology, wet-milling, and grinding in a ball or planetary mill are used. The best result demonstrates sol-gel technology but this route is very complicated. An alternative technology for preparation of ceramic precursors is the treatment of the oxide batch with high mechanical energy [4]. Such a treatment produces combination of mechanical (fine milling with formation of various defects, homogenization) and chemical (split bonds with formation of active centers—free radicals, ion-radicals, etc.) effects resulting in higher reactivity of the activated batch.

  13. Microstructural characterization of low and high carbon CoCrMo alloy nanoparticles produced by mechanical milling

    NASA Astrophysics Data System (ADS)

    Simoes, T. A.; Goode, A. E.; Porter, A. E.; Ryan, M. P.; Milne, S. J.; Brown, A. P.; Brydson, R. M. D.

    2014-06-01

    CoCrMo alloys are utilised as the main material in hip prostheses. The link between this type of hip prosthesis and chronic pain remains unclear. Studies suggest that wear debris generated in-vivo may be related to post-operative complications such as inflammation. These alloys can contain different amounts of carbon, which improves the mechanical properties of the alloy. However, the formation of carbides could become sites that initiate corrosion, releasing ions and/or particles into the human body. This study analysed the mechanical milling of alloys containing both high and low carbon levels in relevant biological media, as an alternative route to generate wear debris. The results show that low carbon alloys produce significantly more nanoparticles than high carbon alloys. During the milling process, strain induces an fcc to hcp phase transformation. Evidence for cobalt and molybdenum dissolution in the presence of serum was confirmed by ICP-MS and TEM EDX techniques.

  14. Design of experiment (DOE) study of biodegradable magnesium alloy synthesized by mechanical alloying using fractional factorial design

    NASA Astrophysics Data System (ADS)

    Salleh, Emee Marina; Ramakrishnan, Sivakumar; Hussain, Zuhailawati

    2014-06-01

    The biodegradable nature of magnesium (Mg) makes it a most highlighted and attractive to be used as implant materials. However, rapid corrosion rate of Mg alloys especially in electrolytic aqueous environment limits its performance. In this study, Mg alloy was mechanically milled by incorporating manganese (Mn) as alloying element. An attempt was made to study both effect of mechanical alloying and subsequent consolidation processes on the bulk properties of Mg-Mn alloys. 2k-2 factorial design was employed to determine the significant factors in producing Mg alloy which has properties closes to that of human bones. The design considered six factors (i.e. milling time, milling speed, weight percentage of Mn, compaction pressure, sintering temperature and sintering time). Density and hardness were chosen as the responses for assessing the most significant parameters that affected the bulk properties of Mg-Mn alloys. The experimental variables were evaluated using ANOVA and regression model. The main parameter investigated was compaction pressure.

  15. Effect of structural phase transformation in FeGaO{sub 3} on its magnetic and ferroelectric properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lone, A. G., E-mail: agl221986@gmail.com; Bhowmik, R. N.

    2015-06-24

    We investigate the structural phase transformation from orthorhombic to rhombohedral structure in FeGaO{sub 3} by adopting a combined effect of mechanical alloying/milling and solid state sintering techniques. The structural phase formation of the FeGaO{sub 3} compound has been characterized by X-ray diffraction pattern. Mechanical milling played a significant role on the stabilization of rhombohedral phase in FeGaO{sub 3}, where as high temperature sintering stabilized the system in orthorhombic phase. A considerable difference has been observed in magnetic and ferroelectric properties of the system in two phases. The system in rhombohedral (R-3c) phase exhibited better ferromagnetic and of ferroelectric properties atmore » room temperature in comparison to orthorhombic (Pc2{sub 1}n) phase. The rhombohedral phase appears to be good for developing metal doped hematite system for spintronics applications and in that process mechanical milling played an important role.« less

  16. An integrated condition-monitoring method for a milling process using reduced decomposition features

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Wu, Bo; Wang, Yan; Hu, Youmin

    2017-08-01

    Complex and non-stationary cutting chatter affects productivity and quality in the milling process. Developing an effective condition-monitoring approach is critical to accurately identify cutting chatter. In this paper, an integrated condition-monitoring method is proposed, where reduced features are used to efficiently recognize and classify machine states in the milling process. In the proposed method, vibration signals are decomposed into multiple modes with variational mode decomposition, and Shannon power spectral entropy is calculated to extract features from the decomposed signals. Principal component analysis is adopted to reduce feature size and computational cost. With the extracted feature information, the probabilistic neural network model is used to recognize and classify the machine states, including stable, transition, and chatter states. Experimental studies are conducted, and results show that the proposed method can effectively detect cutting chatter during different milling operation conditions. This monitoring method is also efficient enough to satisfy fast machine state recognition and classification.

  17. A field-based approach for assessing the impact of paper pulp mill effluent on the metbolite profile of fathead minnows (Pimephales promelas)

    EPA Science Inventory

    Although evidence indicates that exposure to effluent from paper pulp mills (PME) can alter the body condition, secondary sexual characteristics, and reproductive success of aquatic organisms, there is currently little understanding of the biochemical mechanisms for these effects...

  18. Mechanically Induced Graphite-Nanodiamonds-Phase Transformations During High-Energy Ball Milling

    NASA Astrophysics Data System (ADS)

    El-Eskandarany, M. Sherif

    2017-05-01

    Due to their unusual mechanical, chemical, physical, optical, and biological properties, nearly spherical-like nanodiamonds have received much attention as desirable advanced nanomaterials for use in a wide spectrum of applications. Although, nanodiamonds can be successfully synthesized by several approaches, applications of high temperature and/or high pressure may restrict the real applications of such strategic nanomaterials. Distinct from the current preparation approaches used for nanodiamonds preparation, here we show a new process for preparing ultrafine nanodiamonds (3-5 nm) embedded in a homogeneous amorphous-carbon matrix. Our process started from high-energy ball milling of commercial graphite powders at ambient temperature under normal atmospheric helium gas pressure. The results have demonstrated graphite-single wall carbon nanotubes-amorphous-carbon-nanodiamonds phase transformations carried out through three subsequent stages of ball milling. Based on XRD and RAMAN analyses, the percentage of nanodiamond phase + C60 (crystalline phase) produced by ball milling was approximately 81%, while the amorphous phase amount was 19%. The pressure generated on the powder together the with temperature increase upon the ball-powder-ball collision is responsible for the phase transformations occurring in graphite powders.

  19. Benefits of clean development mechanism application on the life cycle assessment perspective: a case study in the palm oil industry.

    PubMed

    Chuen, Onn Chiu; Yusoff, Sumiani

    2012-03-01

    This study performed an assessment on the beneficial of the Clean Development Mechanism (CDM) application on waste treatment system in a local palm oil industry in Malaysia. Life cycle assessment (LCA) was conducted to assess the environmental impacts of the greenhouse gas (GHG) reduction from the CDM application. Calculations on the emission reduction used the methodology based on AM002 (Avoided Wastewater and On-site Energy Use Emissions in the Industrial Sector) Version 4 published by United Nations Framework Convention on Climate Change (UNFCC). The results from the studies showed that the introduction of CDM in the palm oil mill through conversion of the captured biogas from palm oil mill effluent (POME) treatment into power generation were able to reduce approximate 0.12 tonnes CO2 equivalent concentration (tCO2e) emission and 30 kW x hr power generation per 1 tonne of fresh fruit bunch processed. Thus, the application of CDM methodology on palm oil mill wastewater treatment was able to reduce up to 1/4 of the overall environment impact generated in palm oil mill.

  20. Development of an electromechanical principle for wet and dry milling

    NASA Astrophysics Data System (ADS)

    Halbedel, Bernd; Kazak, Oleg

    2018-05-01

    The paper presents a novel electromechanical principle for wet and dry milling of different materials, in which the milling beads are moved under a time- and local-variable magnetic field. A possibility to optimize the milling process in such a milling machine by simulation of the vector gradient distribution of the electromagnetic field in the process room is presented. The mathematical model and simulation methods based on standard software packages are worked out. The results of numerical simulations and experimental measurements of the electromagnetic field in the working chamber of a developed and manufactured laboratory plant correlate well with each other. Using the obtained operating parameters, dry milling experiments with crushed cement clinker and wet milling experiments of organic agents in the laboratory plant are performed and the results are discussed here.

  1. Reactive Fusion Welding for Ultra-High Temperature Ceramic Composite Joining

    DTIC Science & Technology

    2015-03-16

    Titanium diboride TiC-Titanium carbide C-Carbon SiC - Silicon carbide B4C-Boron carbide 67 W-Tungsten WC-Tungsten carbide ZrB2-20ZrC-ZrB2...ceramics with a nominal carbide content of 20 vol% were prepared. Starting powders were mechanically mixed by ball milling ZrB2 (H.C. Starck; Grade B...0.50 wt%, or ~1.5 vol%. Milling was carried out in acetone for 2 hours using tungsten carbide media. After milling, the powder slurry was dried

  2. Boron Nanoparticles with High Hydrogen Loading: Mechanism for B-H Binding, Size Reduction, and Potential for Improved Combustibility and Specific Impulse

    DTIC Science & Technology

    2014-05-01

    particles in the sample. Mass spectrometry was, therefore, used to look for the signature of boranes in the milling jar headspace gas , and also in gases... headspace gas collected from the jar after milling in H2. For this experiment, argon was added to the initial gas mixture at a 12:1 H2:Ar ratio, in...Distribution A: approved for public release; distribution unlimited. 29    Mass spectrometry analysis. After milling selected samples, headspace gas

  3. Milling assisted synthesis of calcium zirconate СаZrО3

    NASA Astrophysics Data System (ADS)

    Kalinkin, A. M.; Nevedomskii, V. N.; Kalinkina, E. V.; Balyakin, K. V.

    2014-08-01

    Monophase calcium zirconate (CaZrO3) has been prepared from the equimolar ZrO2 + CaCO3 mixture by two-step synthesis process. In the first step, mechanical treatment of the mixture is performed in an AGO-2 planetary ball mill. In the second step, the milled mixture is annealed to form calcium zirconate. High-energy ball milling of the (ZrO2+CaCO3) mixture results in decrease in the temperature of CaZrO3 formation during annealing at 950 °C. The enhancement of CaZrO3 synthesis is due to accumulation of excess energy by the reagents, decreasing the particle size and notable increase in the interphase area because of “smearing” of CaCO3 on ZrO2 particles during milling. Nanocrystalline calcium zirconate has been produced by controlling the annealing temperature and time.

  4. Effect of mechanical milling on barium titanate (BaTiO3) perovskite

    NASA Astrophysics Data System (ADS)

    Singh, Rajan Kumar; Sanodia, Sagar; Jain, Neha; Kumar, Ranveer

    2018-05-01

    Commercial Barium Titanate BaTiO3 (BT) is milled by planetary ball mill in acetone medium using stainless steel bowl & ball for different hours. BT is an important perovskite oxide with structure ABO3. BT has applications in electro-optic devices, energy storing devices such as photovoltaic cells, thermistors, multiceramic capacitors & DRAMs etc. BT is non-toxic & environment friendly ceramic with high dielectric and piezoelectric property so it can be used as the substitute of PZT & PbTiO3. Here, we have investigated the effect of milling time and temperature on particle size and phase transition of BT powder. We used use Raman spectroscopy for studying the spectra of BT; XRD is used for structural study. Intensity (height) of Raman spectra and XRD spectra continuously decrease with increasing the milling hours and width if these spectra increases which indicates, decrease in BT size.

  5. Solid-state reactions to synthesize nanostructured lead selenide semiconductor powders by high-energy milling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rojas-Chavez, H., E-mail: uu_gg_oo@yahoo.com.mx; Reyes-Carmona, F.; Jaramillo-Vigueras, D.

    2011-10-15

    Highlights: {yields} PbSe synthesized from PbO instead of Pb powder do not require an inert atmosphere. {yields} During high-energy milling oxygen has to be chemically reduced from the lead oxide. {yields} Solid-state and solid-gas chemical reactions promote both solid and gaseous products. -- Abstract: Both solid-solid and gas-solid reactions have been traced during high-energy milling of Se and PbO powders under vial (P, T) conditions in order to synthesize the PbSe phase. Chemical and thermodynamic arguments are postulated to discern the high-energy milling mechanism to transform PbO-Se micropowders onto PbSe-nanocrystals. A set of reactions were evaluated at around room temperature.more » Therefore an experimental campaign was designed to test the nature of reactions in the PbO-Se system during high-energy milling.« less

  6. New nanostructured ceramics from baddeleyite with improved mechanical properties for biomedical applications

    NASA Astrophysics Data System (ADS)

    Tyurin, Alexander I.; Zhigachev, Andrey O.; Umrikhin, Alexey V.; Rodaev, Vyacheslav V.; Korenkov, Viktor V.; Pirozhkova, Tatyana S.

    2017-12-01

    A method for the preparation of novel nanostructured zirconia ceramics from natural zirconia mineral—baddeleyite—using CaO as the stabilizer is described in the present work. Optimal synthesis conditions, including calcia content, planetary mill treatment regime, sintering time and temperature, corresponding to the highest values of hardness H, Young modulus E, and fracture toughness KC are found. The values of the mechanical properties H = 10.8 GPa, E = 200 GPa, and KC = 13.3 MPa m1/2 are comparable with or exceed the corresponding properties of commercial yttria-stabilized ceramics prepared from chemically precipitated zirconia.

  7. Colorimetric protein determination in microalgae (Chlorophyta): association of milling and SDS treatment for total protein extraction.

    PubMed

    Mota, Maria Fernanda S; Souza, Marcella F; Bon, Elba P S; Rodrigues, Marcoaurelio A; Freitas, Suely Pereira

    2018-05-24

    The use of colorimetric methods for protein quantification in microalgae is hindered by their elevated amounts of membrane-embedded intracellular proteins. In this work, the protein content of three species of microalgae was determined by the Lowry method after the cells were dried, ball-milled, and treated with the detergent sodium dodecyl sulfate (SDS). Results demonstrated that the association of milling and SDS treatment resulted in a 3- to 7-fold increase in protein quantification. Milling promoted microalgal disaggregation and cell wall disruption enabling access of the SDS detergent to the microalgal intracellular membrane proteins and their efficient solubilization and quantification. © 2018 Phycological Society of America.

  8. Milling induced amorphisation and recrystallization of α-lactose monohydrate.

    PubMed

    Badal Tejedor, Maria; Pazesh, Samaneh; Nordgren, Niklas; Schuleit, Michael; Rutland, Mark W; Alderborn, Göran; Millqvist-Fureby, Anna

    2018-02-15

    Preprocessing of pharmaceutical powders is a common procedure to condition the materials for a better manufacturing performance. However, such operations may induce undesired material properties modifications when conditioning particle size through milling, for example. Modification of both surface and bulk material structure will change the material properties, thus affecting the processability of the powder. Hence it is essential to control the material transformations that occur during milling. Topographical and mechanical changes in surface properties can be a preliminary indication of further material transformations. Therefore a surface evaluation of the α-lactose monohydrate after short and prolonged milling times has been performed. Unprocessed α-lactose monohydrate and spray dried lactose were evaluated in parallel to the milled samples as reference examples of the crystalline and amorphous lactose structure. Morphological differences between unprocessed α-lactose, 1 h and 20 h milled lactose and spray dried lactose were detected from SEM and AFM images. Additionally, AFM was used to simultaneously characterize particle surface amorphicity by measuring energy dissipation. Extensive surface amorphicity was detected after 1 h of milling while prolonged milling times showed only a moderate particle surface amorphisation. Bulk material characterization performed with DSC indicated a partial amorphicity for the 1 h milled lactose and a fully amorphous thermal profile for the 20 h milled lactose. The temperature profiles however, were shifted somewhat in the comparison to the amorphous reference, particularly after extended milling, suggesting a different amorphous state compared to the spray-dried material. Water loss during milling was measured with TGA, showing lower water content for the lactose amorphized through milling compared to spray dried amorphous lactose. The combined results suggest a surface-bulk propagation of the amorphicity during milling in combination with a different amorphous structural conformation to that of the amorphous spray dried lactose. The hardened surface may be due to either surface crystallization of lactose or to formation of a low-water glass transition. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. High-resolution stress measurements for microsystem and semiconductor applications

    NASA Astrophysics Data System (ADS)

    Vogel, Dietmar; Keller, Juergen; Michel, Bernd

    2006-04-01

    Research results obtained for local stress determination on micro and nanotechnology components are summarized. It meets the concern of controlling stresses introduced to sensors, MEMS and electronics devices during different micromachining processes. The method bases on deformation measurement options made available inside focused ion beam equipment. Removing locally material by ion beam milling existing stresses / residual stresses lead to deformation fields around the milled feature. Digital image correlation techniques are used to extract deformation values from micrographs captured before and after milling. In the paper, two main milling features have been analyzed - through hole and through slit milling. Analytical solutions for stress release fields of in-plane stresses have been derived and compared to respective experimental findings. Their good agreement allows to settle a method for determination of residual stress values, which is demonstrated for thin membranes manufactured by silicon micro technology. Some emphasis is made on the elimination of main error sources for stress determination, like rigid body object displacements and rotations due to drifts of experimental conditions under FIB imaging. In order to illustrate potential application areas of the method residual stress suppression by ion implantation is evaluated by the method and reported here.

  10. FIB-based measurement of local residual stresses on microsystems

    NASA Astrophysics Data System (ADS)

    Vogel, Dietmar; Sabate, Neus; Gollhardt, Astrid; Keller, Juergen; Auersperg, Juergen; Michel, Bernd

    2006-03-01

    The paper comprises research results obtained for stress determination on micro and nanotechnology components. It meets the concern of controlling stresses introduced to sensors, MEMS and electronics devices during different micromachining processes. The method bases on deformation measurement options made available inside focused ion beam equipment. Removing locally material by ion beam milling existing stresses / residual stresses lead to deformation fields around the milled feature. Digital image correlation techniques are used to extract deformation values from micrographs captured before and after milling. In the paper, two main milling features have been analyzed - through hole and through slit milling. Analytical solutions for stress release fields of in-plane stresses have been derived and compared to respective experimental findings. Their good agreement allows to settle a method for determination of residual stress values, which is demonstrated for thin membranes manufactured by silicon micro technology. Some emphasis is made on the elimination of main error sources for stress determination, like rigid body object displacements and rotations due to drifts of experimental conditions under FIB imaging. In order to illustrate potential application areas of the method residual stress suppression by ion implantation is evaluated by the method and reported here.

  11. Mechanical alloying, characterization and consolidation of Ti-Al-Ni alloys

    NASA Technical Reports Server (NTRS)

    Nash, P.; Higgins, G. T.; Dillinger, N.; Hwang, S. J.; Kim, H.

    1989-01-01

    Mechanical alloying is being investigated as a processing route for the production of aluminide intermetallics. This program involves powder production and characterization, consolidation and thermal treatments and determination of microstructure-property relationships. An attritor mill is being used to produce powder in lots up to 1000 grams and the processing parameters are being systematically varied to establish the optimum milling conditions. The mill is being instrumented to generate data related to the processing to provide a basis for theoretical modeling. Powder is being characterized using thermal analysis, optical and electron microscopy and X-ray diffraction. Particle size distributions and powder density are being determined. Consolidation of the powder is being approached in several different ways including, cold isostatic pressing, sintering, extrusion and hot pressing. The results of the program so far will be presented and future directions discussed.

  12. Two-component end mills with multilayer composite nano-structured coatings as a viable alternative to monolithic carbide end mills

    NASA Astrophysics Data System (ADS)

    Vereschaka, Alexey; Mokritskii, Boris; Mokritskaya, Elena; Sharipov, Oleg; Oganyan, Maksim

    2018-03-01

    The paper deals with the challenges of the application of two-component end mills, which represent a combination of a carbide cutting part and a shank made of cheaper structural material. The calculations of strains and deformations of composite mills were carried out in comparison with solid carbide mills, with the use of the finite element method. The study also involved the comparative analysis of accuracy parameters of machining with monolithic mills and two-component mills with various shank materials. As a result of the conducted cutting tests in milling aluminum alloy with monolithic and two-component end mills with specially developed multilayer composite nano-structured coatings, it has been found that the use of such coatings can reduce strains and, correspondingly, deformations, which can improve the accuracy of machining. Thus, the application of two-component end mills with multilayer composite nano-structured coatings can provide a reduction in the cost of machining while maintaining or even improving the tool life and machining accuracy parameters.

  13. Methods to improve efficiency of production technology of the innovative composite cementing materials

    NASA Astrophysics Data System (ADS)

    Babaevsky, A. N.; Romanovich, A. A.; Glagolev, E. S.

    2018-03-01

    The article describes the energy-saving technology and equipment for production of composite binding material with up to a 50% reduction in energy consumption of the process due to a synergistic effect in mechanical activation of the raw mix where a clinker component is substituted with an active mineral supplement. The impact of the gap between the rollers on the final performance of the press roller mill was studied.

  14. Effect of milling on the plastic and the elastic stiffness of lactose particles.

    PubMed

    Pazesh, Samaneh; Persson, Ann-Sofie; Berggren, Jonas; Alderborn, Göran

    2018-03-01

    The purpose of this study was to investigate the effect of degree of disorder of a series of α-lactose monohydrate powders, prepared by milling for different time periods, on the plastic and the elastic stiffness of the particles. As references, a series of physical mixtures consisting of original crystalline particles and amorphous particles obtained by spray-drying was used. In addition, the effect of powder pre-storage humidity on the mechanical properties was investigated. For milled particles of a low degree of disorder, a decreased particle size increased the particle plastic stiffness. For milled particles of constant particle size, the plastic stiffness decreased with an increased degree of disorder while the elastic stiffness seemed nearly independent of the degree of disorder. The presence of moisture caused a recrystallisation of milled particles with low degree of disorder which increased their plastic stiffness. For the physical mixtures of crystalline and amorphous particles, similar relationships between plastic stiffness and amorphous content as for the milled powders were obtained. A reasonable explanation is that the nature of the milled particles is represented by a two-state system with crystalline and amorphous domains. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Investigation of the effects of cadmium by micro analytical methods on Lycopersicon esculentum Mill. roots.

    PubMed

    Colak, G; Baykul, M C; Gürler, R; Catak, E; Caner, N

    2014-09-01

    The interactions between cadmium stress and plant nutritional elements have been investigated on complete plant or at the level of organs. This study was undertaken to contribute to the exploration of the physiological basis of cadmium phytotoxicity. We examined the changes in the nutritional element compositions of the root epidermal cells of the seedlings of Lycopersicon esculentum Mill. at the initial growth stages that is known as the most sensitive stage to the stress. Effects of cadmium stress on the seedlings of Lycopersicon esculentum Mill. were examined by EDX (Energy Dispersive X-Ray Microanalysis) assay performed with using low vacuum (∼ 24 Pascal) Scanning Electron Microscopy. In the analysis performed at the level of root epidermal cells, some of the macro- and micronutrient contents of the cells (carbon, oxygen, nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, iron, copper, and zinc levels) were found to change when the applying toxic concentrations of cadmium. There was no change in the manganese and sodium content of the epidermal cells. It was concluded that the changes in nutritional element composition of the cells can be considered as an effective parameter in explaining the physiological mechanisms of cadmium-induced growth inhibition.

  16. Wear of carbide inserts with complex surface treatment when milling nickel alloy

    NASA Astrophysics Data System (ADS)

    Fedorov, Sergey; Swe, Min Htet; Kapitanov, Alexey; Egorov, Sergey

    2018-03-01

    One of the effective ways of strengthening hard alloys is the creating structure layers on their surface with the gradient distribution of physical and mechanical properties between the wear-resistant coating and the base material. The article discusses the influence of the near-surface layer which is modified by low-energy high-current electron-beam alloying and the upper anti-friction layer in a multi-component coating on the wear mechanism of the replaceable multifaceted plates in the dry milling of the difficult to machine nickel alloys.

  17. Predicting site locations for biomass using facilities with Bayesian methods

    Treesearch

    Timothy M. Young; James H. Perdue; Xia Huang

    2017-01-01

    Logistic regression models combined with Bayesian inference were developed to predict locations and quantify factors that influence the siting of biomass-using facilities that use woody biomass in the Southeastern United States. Predictions were developed for two groups of mills, one representing larger capacity mills similar to pulp and paper mills (Group II...

  18. Impact of planetary ball milling parameters on the microstructure and pinning properties of polycrystalline superconductor Y3Ba5Cu8Oy

    NASA Astrophysics Data System (ADS)

    Slimani, Y.; Hannachi, E.; Azzouz, F. Ben; Salem, M. Ben

    2018-06-01

    We have reported the influence of planetary high energy ball milling parameters on morphology, microstructure and flux pinning capability of polycrystalline Y3Ba5Cu8Oy. Samples were prepared through the standard solid-state reaction by using two different milling methods, ball milling in a planetary crusher and hand grinding in a mortar. Phase analysis by X-ray diffraction (XRD) method, microstructural examination by scanning electron microscope (SEM), electrical resistivity, the global and intra-granular critical current densities measurements are done to characterize the samples. The processing parameters of the planetary milling have a considerable impact on the final product properties. SEM observations show the presence of nanoscale entities submerged within the Y3Ba5Cu8Oy crystallites. The results show that the fine grain microstructure of the Y3Ba5Cu8Oy bulk induced by ball milling process contributes to critical currents density enhancement in the magnetic field and promotes an optimized flux pinning ability.

  19. Evaluation of marginal fit of single implant-supported metal-ceramic crowns prepared by using presintered metal blocks.

    PubMed

    Pasali, Baris; Sarac, Duygu; Kaleli, Necati; Sarac, Yakup Sinasi

    2018-02-01

    Recently, presintered metal blocks for nonprecious and precious metal implant-supported restorations have gained popularity in computer-aided design and computer-aided manufacturing (CAD-CAM) systems. However, few studies have evaluated the marginal discrepancy of implant-supported restorations made with these new alloy systems. The purpose of this in vitro study was to compare the milling-sintering method with the lost-wax and milling methods in terms of the marginal fit of implant-supported metal-ceramic restorations. Thirty implant abutments screwed to implant analogs were embedded into acrylic resin to investigate marginal fit and then divided according to fabrication methods into the following 3 groups (n=10): lost-wax (LW; control group), milling (M), and milling-sintering (MS). Porcelain material was applied to all specimens after completion of the fabrication process. Subsequently, all specimens were cemented to implant abutments for the measurement of marginal discrepancies. Twelve marginal discrepancy measurements were recorded on each implant abutment by using a stereomicroscope. The arithmetic mean of these 12 measurements was considered the mean marginal discrepancy value of each abutment. Data were statistically analyzed by using 1-way ANOVA and Tukey honest significant difference tests (α=.05). The lowest mean marginal discrepancy values (81 ±2 μm) were observed in the M group, which was significantly different (P<.001) from the other methods. The highest mean marginal discrepancy values (99 ±2 μm) were observed in the MS group. The results revealed that restorations prepared by the milling-sintering method provided clinically acceptable results (<120 μm); however, this new technique was not found to be as precise as the milling method in terms of marginal fit. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. Non-Abelian clouds around Reissner-Nordström black holes: The existence line

    NASA Astrophysics Data System (ADS)

    Radu, Eugen; Tchrakian, D. H.; Yang, Yisong

    2016-06-01

    A known feature of electrically charged Reissner-Nordström-anti-de Sitter planar black holes is that they can become unstable when considered as solutions of Einstein-Yang-Mills theory. The mechanism for this is that the linearized Yang-Mills equations in the background of the Reissner-Nordström (RN) black holes possess a normalizable zero mode, resulting in non-Abelian (nA) magnetic clouds near the horizon. In this work we show that the same pattern may occur also for asymptotically flat RN black holes. Different from the anti-de Sitter case, in the Minkowskian background the prerequisites for the existence of the nA clouds are (i) a large enough gauge group, and (ii) the presence of some extra interaction terms in the matter Lagrangian. To illustrate this mechanism we present two specific examples, one in four- and the other in five-dimensional asymptotically flat spacetime. In the first case, we augment the usual S U (3 ) Yang-Mills Lagrangian with a higher-order (quartic) curvature term, while for the second one we add the Chern-Simons density to the S O (6 ) Yang-Mills system. In both cases, an Abelian gauge symmetry is spontaneously broken near a RN black hole horizon with the appearance of a condensate of nA gauge fields. In addition to these two examples, we review the corresponding picture for anti-de Sitter black holes. All these solutions are studied both analytically and numerically, existence proofs being provided for nA clouds in the background of RN black holes. The proofs use shooting techniques which are suggested by and in turn offer insights for our numerical methods. They indicate that, for a black hole of given mass, appropriate electric charge values are required to ensure the existence of solutions interpolating desired boundary behavior at the horizons and spatial infinity.

  1. Synthesis of metal-polymer nanocomposites for fuel applications

    NASA Astrophysics Data System (ADS)

    Pontes Lima, Ricardo Jose

    Metal particles have long been of interest as fuel and fuel additives for propellants and explosives because their high-density energy. In general, their volumetric energy density is higher as compared to conventional hydrocarbon-based fuel. This advantage is clearly beneficial for volume-limited rocket propulsion systems, in which the most important parameter is the density-based specific impulse. It is widely known that the reactivity of metal particles increases when particle size decreases. Significant improvements in combustion behaviors of propellant have been attributed to the use of nanosize metal particles, for example faster burning rates and shorter ignition delay time. For this reason the application of nanosize particles as fuel could be preferable than large particles. However, several difficulties limit the use of ultrafine particles in fuel applications and propellants. Most of them are attributed to the oxide layer formation on the particles that prevents good combustion performance. In boron applications, practical difficulties such as poor ignition and combustion performance, have so far limited extensive use of boron for fuel applications. Indications are that application of non-oxide coatings on particles protects them against premature oxidation and enhances their combustion properties. A number of methods have been proposed to coat metal particles with a variety of organic compounds or other metals. Common applications provides coatings of saturated hydrocarbons or fatty acids, such as oleic acid as a means to passivation the particles. Recently, high-energy ball milling, in combination with chemical reactions, was applied to fabricate nanostructured metal particles coated with organic compounds. One of the advantages of this technique is that the passivation be integrated into the production of particles as a single step. For example, the reactive milling of boron in oleic acid solution showed an improved reactivity of as-milled powders. However, the versatility of the mechanical milling technique suggests that a vast range of organic compounds could be applied to the capping of particles. Thus, developing a new method to obtain metal nanosized particles coated with chemical substances that can further improve the properties of particles is a great challenge. The first contribution of this work is to investigate the reactive milling process of metal powders, such as boron and aluminum, to better understand the experimental methodology as a means to obtain energetic-capped metal particles. To this end, a comparative experimental study was performed to evaluate two variations of the mechanical milling. In a typical procedure, metal powders and the reagents are poured into the mill vial at the start of milling. The organic reactions occur simultaneously in the milling process. In the alternative procedure, the powders are milled prior the addition of the organic reagent, thus a stepwise process is done. For both methods, an organic functionalized compound was grafted onto the particles, followed by their incorporation into an energetic polymer matrix to create a metal-polymer composite. The results highlight the differences in shape in size of particles, identifying some drawbacks for both applications, as well as analyzing the effects on combustion properties of the organic-capped powders and the binder composites. The analysis of the first results of the reactive milling showed that this way might lead to by-products and self-polymerization of organic coatings. That is the main drawback for the simultaneous milling process, preventing a better performance of as-milled powders. Considering this problem, it was necessary to modify the milling procedure to further improve the capping of metal particle. Thus, the second part of experiments applies an energetic polymer direct grafted onto particles as a means to further improvements in the energetic properties of powders. Glycidyl azide polymer (GAP) was chosen as candidate to coat the particles because of its good energetic properties. Since the mixture viscosity increases as the size of particles decreases, low-viscosity reagents are recommended to avoid very high viscosity. The molecular weight of GAP can range from 700 to 5500 and the number of hydroxyl end groups from 0 (GAP plasticizer) to 3. Among these polymers, the GAP plasticizer (700 g mol-1, low viscosity) has good properties to be applied in reactive milling. However, some functionalized groups are necessary to graft the polymer onto metal particles and the GAP plasticizer does not carry telechelic hydroxyl groups. To achieve a better reactivity of this polymer and the fresh metal surface, the GAP plasticizer was chemically modified to make some additional acid-functionalized branches in the main chain of the polymer. The direct method for coating the metal particles with the modified GAP was more effective in forming the energetic layer, which has influenced the dispersion of powders into polymers and increased the total energy release by the combustion of metal-polymer composites. The last phase of this research addressed the production of boron-polymer composites for combustion purposes. Boron has a very high gravimetric (58 kJ/g) and volumetric (136 kJ/cc) heating value. This clearly exceeds other metal or other conventional hydrocarbon fuels in both mass and volumetric energy production. Despite of this great potential energy, boron has rarely achieved its potential in propulsion systems, whereas the aluminum is the most common metal employed in the preparation of composite solid propellants. A number of studies addressed to the boron combustion attribute its reduced performance to a certain combustion property of the metal. The boron oxide (B2O3) layer, normally found on the particles is highly stable and leads to long ignition delay times. Therefore, the elemental boron ignites in a two-stage process. The first stage corresponds to the burning of boron covered with an oxide layer, and the second stage involves the completion of the combustion of the bare boron particle. The use of light metals, such as magnesium and aluminum as additives in boron formulations, has been indicated as a means to enhance its combustion efficiency. Recently, improvements of the combustion efficiency of boron were associated with the use of magnesium and aluminum as additives. The mechanism proposed for these improvements was boron oxide removal by reaction with aluminum and the additional heat release by the easy ignition of magnesium. In this work, it was proposed to apply of a layer of energetic polymer on the boron particles, which, in addition to releasing a significant amount of energy, brings other benefits in terms of the final application of the particles as fuel (i.e., the dispersion of particles into a polymer binder).

  2. Swept Mechanism of Micro-Milling Tool Geometry Effect on Machined Oxygen Free High Conductivity Copper (OFHC) Surface Roughness

    PubMed Central

    Shi, Zhenyu; Liu, Zhanqiang; Li, Yuchao; Qiao, Yang

    2017-01-01

    Cutting tool geometry should be very much considered in micro-cutting because it has a significant effect on the topography and accuracy of the machined surface, particularly considering the uncut chip thickness is comparable to the cutting edge radius. The objective of this paper was to clarify the influence of the mechanism of the cutting tool geometry on the surface topography in the micro-milling process. Four different cutting tools including two two-fluted end milling tools with different helix angles of 15° and 30° cutting tools, as well as two three-fluted end milling tools with different helix angles of 15° and 30° were investigated by combining theoretical modeling analysis with experimental research. The tool geometry was mathematically modeled through coordinate translation and transformation to make all three cutting edges at the cutting tool tip into the same coordinate system. Swept mechanisms, minimum uncut chip thickness, and cutting tool run-out were considered on modeling surface roughness parameters (the height of surface roughness Rz and average surface roughness Ra) based on the established mathematical model. A set of cutting experiments was carried out using four different shaped cutting tools. It was found that the sweeping volume of the cutting tool increases with the decrease of both the cutting tool helix angle and the flute number. Great coarse machined surface roughness and more non-uniform surface topography are generated when the sweeping volume increases. The outcome of this research should bring about new methodologies for micro-end milling tool design and manufacturing. The machined surface roughness can be improved by appropriately selecting the tool geometrical parameters. PMID:28772479

  3. Fractal and Chaos Analysis for Dynamics of Radon Exhalation from Uranium Mill Tailings

    NASA Astrophysics Data System (ADS)

    Li, Yongmei; Tan, Wanyu; Tan, Kaixuan; Liu, Zehua; Xie, Yanshi

    2016-08-01

    Tailings from mining and milling of uranium ores potentially are large volumes of low-level radioactive materials. A typical environmental problem associated with uranium tailings is radon exhalation, which can significantly pose risks to environment and human health. In order to reduce these risks, it is essential to study the dynamical nature and underlying mechanism of radon exhalation from uranium mill tailings. This motivates the conduction of this study, which is based on the fractal and chaotic methods (e.g. calculating the Hurst exponent, Lyapunov exponent and correlation dimension) and laboratory experiments of the radon exhalation rates. The experimental results show that the radon exhalation rate from uranium mill tailings is highly oscillated. In addition, the nonlinear analyses of the time series of radon exhalation rate demonstrate the following points: (1) the value of Hurst exponent much larger than 0.5 indicates non-random behavior of the radon time series; (2) the positive Lyapunov exponent and non-integer correlation dimension of the time series imply that the radon exhalation from uranium tailings is a chaotic dynamical process; (3) the required minimum number of variables should be five to describe the time evolution of radon exhalation. Therefore, it can be concluded that the internal factors, including heterogeneous distribution of radium, and randomness of radium decay, as well as the fractal characteristics of the tailings, can result in the chaotic evolution of radon exhalation from the tailings.

  4. Vanadium dioxide-based materials for potential thermal switching applications

    NASA Astrophysics Data System (ADS)

    Jeong, Minyoung

    One of the materials able to exhibit a transition from insulators to metals (IMT materials) is vanadium dioxide (VO2). Through IMT, VO2 shows a drop of resistivity of five orders of magnitude at a picosecond timescale. In this work, the feasibility of using VO2 as an efficient thermal switching device is discussed. Several synthesis methods (sol-gel, hot press and spark plasma sintering) were attempted to obtain VO2 sample in pellet form. From the X-ray diffraction results, it was found that spark plasma sintering (SPS) yielded the highest phase purity. Several sintering parameters such as temperature or sintering time were tested to determine the optimal sintering conditions. For better thermal switching behavior, high-energy ball milling was used to reduce lattice thermal conductivity (klat.) in the insulator phase. Ball-milling time was varied from 30 minutes to 2 hours. It was found that with increasing milling time, the k lat. was reduced. Thus, it was demonstrated that thermal switching behavior was most efficient with 2 hour-milling. To improve electronic thermal conductivity ( kelec.) in the metallic state, nano-sized copper particles were added to the VO2 system with a subtle amount variation ranging from 3at % to 5 at%. Results show that a composite with 5 at% Cu (copper) addition exhibited the largest increase in thermal conductivity ( k) in the metallic state. In addition to this, a basic mechanism behind IMT and some of the exemplary IMT-based applications were introduced.

  5. Toolpath strategy for cutter life improvement in plunge milling of AISI H13 tool steel

    NASA Astrophysics Data System (ADS)

    Adesta, E. Y. T.; Avicenna; hilmy, I.; Daud, M. R. H. C.

    2018-01-01

    Machinability of AISI H13 tool steel is a prominent issue since the material has the characteristics of high hardenability, excellent wear resistance, and hot toughness. A method of improving cutter life of AISI H13 tool steel plunge milling by alternating the toolpath and cutting conditions is proposed. Taguchi orthogonal array with L9 (3^4) resolution will be employed with one categorical factor of toolpath strategy (TS) and three numeric factors of cutting speed (Vc), radial depth of cut (ae ), and chip load (fz ). It is expected that there are significant differences for each application of toolpath strategy and each cutting condition factor toward the cutting force and tool wear mechanism of the machining process, and medial axis transform toolpath could provide a better tool life improvement by a reduction of cutting force during machining.

  6. Tribo-Mechanical Properties of HVOF Deposited Fe3Al Coatings Reinforced with TiB2 Particles for Wear-Resistant Applications

    PubMed Central

    Amiriyan, Mahdi; Blais, Carl; Savoie, Sylvio; Schulz, Robert; Gariépy, Mario; Alamdari, Houshang

    2016-01-01

    This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. PMID:28787917

  7. Effects of Processing Parameters on the Synthesis of (K0.5Na0.5)NbO3 Nanopowders by Reactive High-Energy Ball Milling Method

    PubMed Central

    Duc Van, Nguyen

    2014-01-01

    The effects of ball milling parameters, namely, the ball-to-powder mass ratio and milling speed, on the synthesis of (K0.5Na0.5)NbO3 nanopowders by high-energy ball milling method from a stoichiometric mixture containing Na2CO3, K2CO3, and Nb2O5 were investigated in this paper. The results indicated that the single crystalline phase of (K0.5Na0.5)NbO3 was received in as-milled samples synthesized using optimized ball-to-powder mass ratio of 35 : 1 and at a milling speed of 600 rpm for 5 h. In the optimized as-milled samples, no remaining alkali carbonates that can provide the volatilizable potassium-containing species were found and (K0.5Na0.5)NbO3 nanopowders were readily obtained via the formation of an intermediate carbonato complex. This complex was mostly transformed into (K0.5Na0.5)NbO3 at temperature as low as 350°C and its existence was no longer detected at spectroscopic level when calcination temperature crossed over 700°C. PMID:24592146

  8. Effects of processing parameters on the synthesis of (K0.5Na0.5)NbO3 nanopowders by reactive high-energy ball milling method.

    PubMed

    Nguyen, Duc Van

    2014-01-01

    The effects of ball milling parameters, namely, the ball-to-powder mass ratio and milling speed, on the synthesis of (K0.5Na0.5)NbO3 nanopowders by high-energy ball milling method from a stoichiometric mixture containing Na2CO3, K2CO3, and Nb2O5 were investigated in this paper. The results indicated that the single crystalline phase of (K0.5Na0.5)NbO3 was received in as-milled samples synthesized using optimized ball-to-powder mass ratio of 35 : 1 and at a milling speed of 600 rpm for 5 h. In the optimized as-milled samples, no remaining alkali carbonates that can provide the volatilizable potassium-containing species were found and (K0.5Na0.5)NbO3 nanopowders were readily obtained via the formation of an intermediate carbonato complex. This complex was mostly transformed into (K0.5Na0.5)NbO3 at temperature as low as 350°C and its existence was no longer detected at spectroscopic level when calcination temperature crossed over 700°C.

  9. Numerical approach in defining milling force taking into account curved cutting-edge of applied mills

    NASA Astrophysics Data System (ADS)

    Bondarenko, I. R.

    2018-03-01

    The paper tackles the task of applying the numerical approach to determine the cutting forces of carbon steel machining with curved cutting edge mill. To solve the abovementioned task the curved surface of the cutting edge was subject to step approximation, and the chips section was split into discrete elements. As a result, the cutting force was defined as the sum of elementary forces observed during the cut of every element. Comparison and analysis of calculations with regard to the proposed method and the method with Kienzle dependence showed its sufficient accuracy, which makes it possible to apply the method in practice.

  10. Fluid mechanics relevant to flow through pretreatment of cellulosic biomass.

    PubMed

    Archambault-Léger, Véronique; Lynd, Lee R

    2014-04-01

    The present study investigates fluid mechanical properties of cellulosic feedstocks relevant to flow through (FT) pretreatment for biological conversion of cellulosic biomass. The results inform identifying conditions for which FT pretreatment can be implemented in a practical context. Measurements of pressure drop across packed beds, viscous compaction and water absorption are reported for milled and not milled sugarcane bagasse, switchgrass and poplar, and important factors impacting viscous flow are deduced. Using biomass knife-milled to pass through a 2mm sieve, the observed pressure drop was highest for bagasse, intermediate for switchgrass and lowest for poplar. The highest pressure drop was associated with the presence of more fine particles, greater viscous compaction and the degree of water absorption. Using bagasse without particle size reduction, the instability of the reactor during pretreatment above 140kg/m(3) sets an upper bound on the allowable concentration for continuous stable flow. Copyright © 2014. Published by Elsevier Ltd.

  11. Structure and magnetic properties of nanostructured MnNi alloys fabricated by mechanical alloying and annealing treatments

    NASA Astrophysics Data System (ADS)

    Jalal, T.; Hossein Nedjad, S.; Khalili Molan, S.

    2013-05-01

    A nearly equiatomic MnNi alloy was fabricated from the elemental powders by means of mechanical alloying in a planetary ball milling apparatus. X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and measurements of magnetization were conducted to identify the structural states and properties of the prepared alloys. After ball milling for 20 h, a disordered face-centered cubic (f.c.c.) solid solution was formed which increased in lattice parameter by further milling up to 50 h. An exothermic reaction took place at around 300-400°C during continuous heating of the disordered f.c.c. solid solution. This reaction is attributed to a structural ordering leading to the formation of a face-centered tetragonal (f.c.t.) phase with L10 type ordering. Examination of the magnetic properties indicated that the structural ordering increases remnant magnetization and decreases coerecivity.

  12. Retention Load of Telescopic Crowns with Different Taper Angles between Cobalt-Chromium and Polyetheretherketone Made with Three Different Manufacturing Processes Examined by Pull-Off Test.

    PubMed

    Wagner, Christina; Stock, Veronika; Merk, Susanne; Schmidlin, Patrick R; Roos, Malgorzata; Eichberger, Marlis; Stawarczyk, Bogna

    2018-02-01

    To investigate the retention loads of differently fabricated secondary telescopic polyetheretherketone (PEEK) crowns on cobalt-chromium primary crowns with different tapers. Cobalt-chromium primary crowns with 0°, 1°, and 2° tapers were constructed, milled, and sintered. Corresponding secondary crowns were fabricated by milling, pressing from pellets, and pressing from granules. For these nine test groups, the pull-off tests of each crown combination were performed 20 times, and the retention loads were measured (Zwick 1445, 50 mm/min). Data were analyzed using linear regression, covariance analysis, mixed models, Kruskal-Wallis, and Mann-Whitney U-test, together with the Benferroni-Holm correction. The mixed models covariance analysis reinforced stable retention load values (p = 0.162) for each single test sequence. There was no interaction between the groups and the separation cycles (p = 0.179). Milled secondary crowns with 0° showed the lowest mean retention load values compared to all tested groups (p = 0.003) followed by those pressed form pellets with 1°. Regarding the different tapers, no effect of manufacturing method on the results was observed within 1° and 2° groups (p = 0.540; p = 0.052); however, among the 0° groups, the milled ones showed significantly the lowest retention load values (p = 0.002). Among the manufacturing methods, both pressed groups showed no impact of taper on the retention load values (p > 0.324 and p > 0.123, respectively), whereas among the milled secondary crowns, the 0° taper showed significantly lower retention load values than the 1° and 2° taper (p < 0.002). Based on these results, telescopic crowns made of PEEK seem to show stable retention load values for each test sequence; however, data with thermo-mechanical aging are still required. In addition, further developments in CAD/CAM manufacturing of PEEK materials for telescopic crowns are warranted, especially for 0°. © 2016 by the American College of Prosthodontists.

  13. A static model of a Sendzimir mill for use in shape control

    NASA Astrophysics Data System (ADS)

    Gunawardene, G. W. D. M.

    The design of shape control systems is an area of current interest in the steel industry. Shape is defined as the internal stress distribution resulting from a transverse variation in the reduction of the strip thickness. The object of shape control is to adjust the mill so that the rolled strip is free from internal stresses. Both static and dynamic models of the mill are required for the control system design.The subject of this thesis is the static model of the Sendzimir cold rolling mill, which is a 1-2-3-4 type cluster mill. The static model derived enables shape profiles to be calculated for a given set of actuator positions, and is used to generate the steady state mill gains. The method of calculation of these shape profiles is discussed. The shape profiles obtained for different mill schedules are plotted against the distance across the strip. The corresponding mill gains are calculated and these relate the shape changes to the actuator changes. These mill gains are presented in the form of a square matrix, obtained by measuring shape at eight points across the strip.

  14. 26. RW Meyer Sugar Mill: 18761889. Centrifugals, 1879, 1881. Manufacturer, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. RW Meyer Sugar Mill: 1876-1889. Centrifugals, 1879, 1881. Manufacturer, unknown. Supplied by Honolulu Ironworks, Honolulu, Hawaii, 1879, 1881. View: Historical view, 1934, from T. T. Waterman collection, Hawaiian Sugar Planters' Association. Once the molasses was separated from the sugar crystals it flowed through the spouts in the base of the centrifugals. The centrifugals' pulleys can be seen underneath the centrifugal. The centrifugal on the right has been reinforced with seven metal bands. The handles for the clutch mechanism are located above the centrifugal. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  15. A Study of Mechanical Alloying of Metal Powders

    DTIC Science & Technology

    1981-05-01

    UYON STAYt~ENT (d ida .... Approved for public release, distribution unlimited -𔄁. "’ I’ T PJIu TIO N IT A T EMT• ( ofe~ • e ao . m .. M•A 2-9, If...RELATIVE INTENSITY OF TIlE (1i1) BRAGG REFLECTION, 316 STAINLESS STEEL ,. 2.5 w/o Ti02 POWDER MILLED 98 HOURS AT 300 RPM...micrograph. 316.2.5 w/o Ti02 milled at 󈨋 300 RPM. Annealed 1.5 hours at 11000C. 30. Micrographs, iron - 10 w/o TiO2 milled 64 hours 72 at 300 RIh

  16. Synthesizing Aluminum alloys by double mechanical alloying

    NASA Astrophysics Data System (ADS)

    Froyen, L.; Delaey, L.; Niu, X. P.; Le Brun, P.; Peytour, C.

    1995-03-01

    A new synthesis technique, namely double mechanical alloying (dMA), has been developed to fabricate aluminum alloys containing the finely distributed intermetallic compounds and inert dispersoids Al4C3 and Al2O3 The technique consists mainly of three steps: a primary milling stage of elemental powders (MAI) followed by a heat treatment to promote the formation of intermetallic phases, a secondary milling stage (MA2) to refine the microstructure, and consolidation of the produced powders. The results of mechanical and tribological properties of the resulting materials indicate that the dMA is a promising technique for the fabrication of aluminum alloys for applications requiring wear resistance and high-temperature performance.

  17. A Novel Hybrid Error Criterion-Based Active Control Method for on-Line Milling Vibration Suppression with Piezoelectric Actuators and Sensors

    PubMed Central

    Zhang, Xingwu; Wang, Chenxi; Gao, Robert X.; Yan, Ruqiang; Chen, Xuefeng; Wang, Shibin

    2016-01-01

    Milling vibration is one of the most serious factors affecting machining quality and precision. In this paper a novel hybrid error criterion-based frequency-domain LMS active control method is constructed and used for vibration suppression of milling processes by piezoelectric actuators and sensors, in which only one Fast Fourier Transform (FFT) is used and no Inverse Fast Fourier Transform (IFFT) is involved. The correction formulas are derived by a steepest descent procedure and the control parameters are analyzed and optimized. Then, a novel hybrid error criterion is constructed to improve the adaptability, reliability and anti-interference ability of the constructed control algorithm. Finally, based on piezoelectric actuators and acceleration sensors, a simulation of a spindle and a milling process experiment are presented to verify the proposed method. Besides, a protection program is added in the control flow to enhance the reliability of the control method in applications. The simulation and experiment results indicate that the proposed method is an effective and reliable way for on-line vibration suppression, and the machining quality can be obviously improved. PMID:26751448

  18. ILLUMINATING THE ROLE OF AGGLOMERATES ON CRITICAL PHYSICOCHEMICAL PROPERTIES OF AMORPHOUS CALCIUM PHOSPHATE COMPOSITES

    PubMed Central

    O’Donnell, J.N.R.; Antonucci, J.M.; Skrtic, D.

    2009-01-01

    Water sorption (WS), mechanical strength, and ion release of polymeric composites formulated with 40 % as-made or milled amorphous calcium phosphate (ACP) are compared after 1, 2 and 3 months of aqueous exposure. Ethoxylated bisphenol A dimethacrylate, triethylene glycol dimethacrylate, 2-hydroxyethyl methacrylate and methacryloxyethyl phthalate comprised the resin. The WS (mass %) peaked at 3 months. WS of as-made ACP composites was significantly higher than WS of milled ACP composites and copolymers. Both composite groups experienced decreases in biaxial flexural strength (BFS) with water aging, with milled ACP composites retaining a significantly higher BFS throughout immersion. Ion release was moderately reduced in milled ACP composites, though they remained superior to as-made ACP composites due to significantly lower WS and higher BFS after prolonged aqueous exposure. PMID:19774100

  19. Process engineering with planetary ball mills.

    PubMed

    Burmeister, Christine Friederike; Kwade, Arno

    2013-09-21

    Planetary ball mills are well known and used for particle size reduction on laboratory and pilot scales for decades while during the last few years the application of planetary ball mills has extended to mechanochemical approaches. Processes inside planetary ball mills are complex and strongly depend on the processed material and synthesis and, thus, the optimum milling conditions have to be assessed for each individual system. The present review focuses on the insight into several parameters like properties of grinding balls, the filling ratio or revolution speed. It gives examples of the aspects of grinding and illustrates some general guidelines to follow for modelling processes in planetary ball mills in terms of refinement, synthesis' yield and contamination from wear. The amount of energy transferred from the milling tools to the powder is significant and hardly measurable for processes in planetary ball mills. Thus numerical simulations based on a discrete-element-method are used to describe the energy transfer to give an adequate description of the process by correlation with experiments. The simulations illustrate the effect of the geometry of planetary ball mills on the energy entry. In addition the imaging of motion patterns inside a planetary ball mill from simulations and video recordings is shown.

  20. Point Defects in Quenched and Mechanically-Milled Intermetallic Compounds

    NASA Astrophysics Data System (ADS)

    Sinha, Praveen

    Investigations were made of structural and thermal point defects in the highly-ordered B2 compound PdIn and deformation-induced defects in PdIn and NiAl. The defects were detected through the quadrupole interactions they induce at nearby ^{111}In/Cd probe atoms using the technique of perturbed gamma-gamma angular correlations (PAC). Measurements on annealed PdIn on both sides of stoichiometry show structural defects that are the Pd vacancies on the Pd-poor side of the stoichiometry and Pd antisite atoms on the Pd-rich side. Signals were attributed to various defect configurations near the In/Cd probes. In addition to the first-shell Pd vacancy and second-shell Pd antisite atom configurations previously observed by Hahn and Muller, we observed two Pd-divacancy configurations in the first shell, a fourth-shell Pd vacancy, a second-shell In vacancy and the combination of a first -shell Pd vacancy and fourth-shell Pd vacancy. Vacancies on both the Pd and In sublattices were detected after quenching. Fractions of probe atoms having each type of neighboring vacancy defect were observed to increase monotonically with quenching temperature over the range 825-1500 K. For compositions very close to 50.15 at.% Pd, nearly equal site fractions were observed for Pd and In vacancies, indicating that the Schottky vacancy-pair defect is the thermal defect at high temperature. The formation enthalpy of the Schottky defect was determined from measurements of the Pd-vacancy site fraction to be 1.30(18) eV from analysis of quenching data in the range 825-1200 K, using the law of mass action and assuming a random distribution. Above 1200 K, the Pd-vacancy concentration was observed to be saturated at a value of 1.3(2) atomic percent. For more Pd-rich compositions, evidence was also obtained for a defect reaction in which a Pd antisite atom and Pd vacancy react to form an In vacancy, thereby increasing the In vacancy concentration and decreasing the Pd vacancy concentration. Analysis of defect concentrations allowed the conclusion that the In vacancy signal was due to second-shell and not third-shell defects. PAC spectroscopy was applied to study deformation -induced defects in PdIn and NiAl after mechanically milling in a SPEX 8000 vibrator mill for periods of up to four hours. For PdIn, the Pd vacancy concentration increased rapidly for short milling times and was observed to saturate at a value of 3.5(5) at.% after 10 minutes of milling when milling was carried out using a WC vial to avoid sample contamination. Such a large vacancy concentration accounts for 4.41(63) kJ mol-1 excess-stored energy in milled PdIn and implies a high density of "broken bonds" which may lead to mechanical instability of the lattice. Milling also produced In antisite atoms on the Pd sublattice. The antisite-atom concentration increased linearly with milling time, reaching a value of 4.0(7) at.% after 2 hours of milling. The Ni vacancy concentration in NiAl was also observed to increase with milling and to saturate after two hours of milling. Here, the "local" Ni vacancy concentration in the first-neighbor shell of the probe, deduced from the vacancy site fraction, was in excess of values that should occur if defects were located at random. This is attributed to binding between the Ni vacancy and the In/Cd probe, which is known from other work to be 0.22 eV.

  1. Manufacturing techniques for titanium aluminide based alloys and metal matrix composites

    NASA Astrophysics Data System (ADS)

    Kothari, Kunal B.

    Dual phase titanium aluminides composed vastly of gamma phase (TiAl) with moderate amount of alpha2 phase (Ti3Al) have been considered for several high temperature aerospace and automobile applications. High specific strength coupled with good high temperature performance in the areas of creep and oxidation resistance makes titanium aluminides "materials of choice" for next generation propulsion systems. Titanium alumnides are primarily being considered as potential replacements for Ni-based superalloys in gas turbine engine components with aim of developing more efficient and leaner engines exhibiting high thrust-to-weight ratio. Thermo-mechanical treatments have shown to enhance the mechanical performance of titanium aluminides. Additionally, small additions of interstitial elements have shown further and significant improvement in the mechanical performance of titanium alumnide alloys. However, titanium aluminides lack considerably in room temperature ductility and as a result manufacturing processes of these aluminides have greatly suffered. Traditional ingot metallurgy and investment casting based methods to produce titanium aluminide parts in addition to being expensive, have also been unsuccessful in producing titanium aluminides with the desired mechanical properties. Hence, the manufacturing costs associated with these methods have completely outweighed the benefits offered by titanium aluminides. Over the last two decades, several powder metallurgy based manufacturing techniques have been studied to produce titanium aluminide parts. These techniques have been successful in producing titanium aluminide parts with a homogeneous and refined microstructure. These powder metallurgy techniques also hold the potential of significant cost reduction depending on the wide market acceptance of titanium aluminides. In the present study, a powder metallurgy based rapid consolidation technique has been used to produce near-net shape parts of titanium aluminides. Micron-sized titanium aluminide powders were rapidly consolidated to form near-net shape titanium aluminide parts in form of small discs and tiles. The rapidly consolidated titanium aluminide parts were found to be fully dense. The microstructure morphology was found to vary with consolidation conditions. The mechanical properties were found to be significantly dependent on microstructure morphology and grain size. Due to rapid consolidation, grain growth during consolidation was limited, which in turn led to enhanced mechanical properties. The high temperature mechanical properties for the consolidated titanium aluminide samples were characterized and were found to retain good mechanical performance up to 700°C. Micron-sized titanium aluminide powders with slightly less Aluminum and small Nb, and Cr additions were rapidly consolidated into near-net shape parts. The consolidated parts were found to exhibit enhanced mechanical performance in terms of ductility and yield strength. The negative effect of Oxygen on the flexural strength at high temperatures was found to be reduced with the addition of Nb. In an effort to further reduce the grain size of the consolidated titanium aluminide samples, the as-received titanium aluminide powders were milled in an attrition mill. The average powder particle size of the powders was reduced by 60% after milling. The milled powders were then rapidly consolidated. The grain size of the consolidated parts was found to be in the sub-micrometer range. The mechanical properties were found to be significantly enhanced due to reduction of grain size in the sub-micrometer range. In order to develop a metal matrix composite based on titanium aluminide matrix reinforced with titanium boride, an experiment to study the effect of rapid consolidation on titanium diboride powders was conducted. Micron-sized titanium diboride powders were consolidated and were found to be 93% dense and exhibited minimal grain growth. The low density of the consolidated part was attributed to low consolidation temperature. Titanium aluminide and titanium diboride powders were blended together in an attrition mill and rapidly consolidated. A metal matrix composite with titanium aluminide matrix reinforced with titanium monoboride plates was formed. The titanium diboride in the powder form was found to be transformed to titanium monoboroide plates during consolidation due to the thermodynamic equilibrium between titanium and titanium monoboride. The metal matrix composite was found to be 90% dense. The low density was due to particle size mismatch between the matrix and reinforcement powders and low consolidation temperature. An increase in the volume of titanium monoboride plates in the metal matrix composite was accompanied by an increase in the elastic modulus of the metal matrix composite.

  2. Considerations on the quantitative analysis of apparent amorphicity of milled lactose by Raman spectroscopy.

    PubMed

    Pazesh, Samaneh; Lazorova, Lucia; Berggren, Jonas; Alderborn, Göran; Gråsjö, Johan

    2016-09-10

    The main purpose of the study was to evaluate various pre-processing and quantification approaches of Raman spectrum to quantify low level of amorphous content in milled lactose powder. To improve the quantification analysis, several spectral pre-processing methods were used to adjust background effects. The effects of spectral noise on the variation of determined amorphous content were also investigated theoretically by propagation of error analysis and were compared to the experimentally obtained values. Additionally, the applicability of calibration method with crystalline or amorphous domains in the estimation of amorphous content in milled lactose powder was discussed. Two straight baseline pre-processing methods gave the best and almost equal performance. By the succeeding quantification methods, PCA performed best, although the classical least square analysis (CLS) gave comparable results, while peak parameter analysis displayed to be inferior. The standard deviations of experimental determined percentage amorphous content were 0.94% and 0.25% for pure crystalline and pure amorphous samples respectively, which was very close to the standard deviation values from propagated spectral noise. The reasonable conformity between the milled samples spectra and synthesized spectra indicated representativeness of physical mixtures with crystalline or amorphous domains in the estimation of apparent amorphous content in milled lactose. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  3. Synthesis of Nano-Size AlN Powders by Carbothermal Reduction from Plasma-Assisted Ball Milling Precursor

    NASA Astrophysics Data System (ADS)

    Liu, Zhijie; Wang, Wenchun; Yang, Dezheng; Wang, Sen; Dai, Leyang

    2016-07-01

    Nano-size aluminum nitride (AlN) powders have been successfully synthesized with a high efficiency method through annealing from milling assisted by discharge plasma (p-milling) alumina (Al2O3) precursors. The characterization of the p-milling Al2O3 powders and the synthesized AlN are investigated. Compared to conventional ball milling (c-milling), it can be found that the precursors by p-milling have a finer grain size with a higher specific surface area, which lead to a faster reaction efficiency and higher conversion to AlN at lower temperatures. The activation energy of p-milling Al2O3 is found to be 371.5 kJ/mol, a value that is much less than the reported value of the unmilled and the conventional milled Al2O3. Meanwhile, the synthesized AlN powders have unique features, such as an irregular lamp-like morphology with uniform particle distribution and fine average particle size. The results are attributed to the unique synergistic effect of p-milling, which is the effect of deformation, fracture, and cold welding of Al2O3 powders resulting from ball milling, that will be enhanced due to the introduction of discharge plasma. supported by National Natural Science Foundation of China (No. 51177008)

  4. Mechanisms of the inhibition of enzymatic hydrolysis of waste pulp fibers by calcium carbonate and the influence of nonionic surfactant for mitigation.

    PubMed

    Min, Byeong Cheol; Ramarao, Bandaru V

    2017-06-01

    Recycled paper mills produce large quantities of fibrous rejects and fines which are usually sent to landfills as solid waste. These cellulosic materials can be enzymatically hydrolyzed into sugars for the production of biofuels and biomaterials. Paper mill wastes also contain large amounts of calcium carbonate which inhibits cellulase activity. The calcium carbonate (30%, w/w) decreased 40-60% of sugar yield of unbleached softwood kraft pulp. The prime mechanisms for this are by pH variation, competitive and non-productive binding, and aggregation effect. Addition of acetic acid (pH adjustment) increased the sugar production from 19 to 22 g/L of paper mill waste fibers. Strong affinity of enzyme-calcium carbonate decreased free enzyme in solution and hindered sugar production. Electrostatic and hydrogen bond interactions are mainly possible mechanism of enzyme-calcium carbonate adsorption. The application of the nonionic surfactant Tween 80 alleviated the non-productive binding of enzyme with the higher affinity on calcium carbonate. Dissociated calcium ion also inhibited the hydrolysis by aggregation of enzyme.

  5. Biocompatible nanocrystalline natural bonelike carbonated hydroxyapatite synthesized by mechanical alloying in a record minimum time.

    PubMed

    Lala, S; Brahmachari, S; Das, P K; Das, D; Kar, T; Pradhan, S K

    2014-09-01

    Single phase nanocrystalline biocompatible A-type carbonated hydroxyapatite (A-cHAp) powder has been synthesized by mechanical alloying the stoichiometric mixture of CaCO3 and CaHPO4.2H2O powders in open air at room temperature within 2h of milling. The A-type carbonation in HAp is confirmed by FTIR analysis. Structural and microstructure parameters of as-milled powders are obtained from both Rietveld's powder structure refinement analysis and transmission electron microscopy. Size and lattice strain of nanocrystalline HAp particles are found to be anisotropic in nature. Mechanical alloying causes amorphization of a part of crystalline A-cHAp which is analogous to native bone mineral. Some primary bond lengths of as-milled samples are critically measured. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay test reveals high percentage of cell viability and hence confirms the biocompatibility of the sample. The overall results indicate that the processed A-cHAp has a chemical composition very close to that of biological apatite. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. High temperature tensile behavior and microstructure of Al-SiC nanocomposite fabricated by mechanical milling and hot extrusion technique

    NASA Astrophysics Data System (ADS)

    Soltani, Mohammadreza; Atrian, Amir

    2018-02-01

    This paper investigates the high-temperature tensile behavior of Al-SiC nanocomposite reinforced with 0, 1.5, and 3 vol% SiC nano particles. To fabricate the samples, SiC nano reinforcements and aluminum (Al) powders were milled using an attritor milling and then were cold pressed and hot extruded at 500 °C. Afterward, mechanical and microstructural characteristics were studied in different temperatures. To this end, tensile and compressive tests, micro-hardness test, microscopic examinations, and XRD analysis were performed. The results showed significant improvement of mechanical properties of Al-SiC nanocomposite in room temperature including 40% of ultimate tensile strength (UTS), 36% of ultimate compressive strength (UCS), and 44% of micro-hardness. Moreover, performing tensile tests at elevated temperatures (up to 270 °C) decreased the tensile strength by about 53%, 46%, and 45% for Al-0 vol% SiC, Al-1.5 vol% SiC, and Al-3 vol% SiC, respectively. This temperature rise also enhanced the elongation by about 11% and 133% for non-reinforced Al and Al-3 vol% SiC, respectively.

  7. Study of morphology and magnetic properties of the HoNi{sub 3} crystalline and ball-milled compound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bajorek, Anna, E-mail: anna.bajorek@us.edu.pl; Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów; Skornia, Paweł

    2015-03-15

    The morphology and magnetic properties of the HoNi{sub 3} crystalline and ball-milled intermetallic compounds are presented. The polycrystalline HoNi{sub 3} bulk compound crystallizes in the rhombohedral PuNi{sub 3} — type of crystal structure and indicates ferrimagnetic arrangement with the Curie temperature of T{sub C} = 57 ± 2 K, the helimagnetic temperature T{sub h} = 23 ± 2 K with the total saturation magnetic moment of 6.84 μ{sub B}/f.u. at 2 K. The use of the ball-milling method leads to the formation of HoNi{sub 3} nanoflakes with typical thickness of less than 100 nm prone to agglomeration upon milling. Themore » increase of grinding duration leads to the reduction in crystallite size, which was confirmed by various complementary microscopical and diffraction studies. Moreover, the increase in milling duration results in the emergence of the relatively small coercivity (H{sub C}), remanence (M{sub r}) and a variation of the saturation magnetization (M{sub S}). - Graphical abstract: Display Omitted - Highlights: • The ball-milling method exhibits significant potential for producing RT{sub 3} nanopowders. • The AFM method was used for the first time in analysis of R–T nanoflakes morphology. • HoNi{sub 3} compound forms polycrystalline and textured nanoflakes evolving upon milling. • The decrease in crystallite size via grinding is confirmed by XRD, TEM and AFM. • The magnetic parameters were sensitive to the extension of pulverization b.« less

  8. Structural studies of degradation process of zirconium dioxide tetragonal phase induced by grinding with dental bur

    NASA Astrophysics Data System (ADS)

    Piosik, A.; Żurowski, K.; Pietralik, Z.; Hędzelek, W.; Kozak, M.

    2017-11-01

    Zirconium dioxide has been widely used in dental prosthetics. However, the improper mechanical treatment can induce changes in the microstructure of zirconium dioxide. From the viewpoint of mechanical properties and performance, the phase transitions of ZrO2 from the tetragonal to the monoclinic phase induced by mechanical processing, are particularly undesirable. In this study, the phase transitions of yttrium stabilized zirconium dioxide (Y-TZP) induced by mechanical treatment are investigated by the scanning electron microscopy (SEM), atomic force microscopy (AFM) and powder diffraction (XRD). Mechanical stress was induced by different types of drills used presently in dentistry. At the same time the surface temperature was monitored during milling using a thermal imaging camera. Diffraction analysis allowed determination of the effect of temperature and mechanical processing on the scale of induced changes. The observed phase transition to the monoclinic phase was correlated with the methods of mechanical processing.

  9. A comparative evaluation of explosion hazards in chemical and mechanical pulp bleaching systems

    Treesearch

    Peter W. Hart; Alan W. Rudie

    2010-01-01

    Over the past several years, at least three pulp mills in North America have experienced catastrophic events that resulted in the explosion of pumps, mixers, and tanks. All these mills were using 50% concentration hydrogen peroxide at the site of the explosions. In at least two instances, alkali catalyzed decomposition of peroxide is implicated in the explosion....

  10. 10. Historic American Buildings Survey, PHOTOCOPY OF PLAN PORTION OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Historic American Buildings Survey, PHOTOCOPY OF PLAN PORTION OF J.M. WHITAKER'S SURVEY OF THE LIPPITT MILL, SHEET NO. 15912 DATED MARCH 22, 1913. Blue line ozalid print in the collection of the Department of Civil and Mechanical Engineering, Museum of History and Technology, the Smithsonian Institution. - Lippitt Mill, 825 Main Street, West Warwick, Kent County, RI

  11. 11. Historic American Buildings Survey, PHOTOCOPY OF ISOMETRIC PORTION OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Historic American Buildings Survey, PHOTOCOPY OF ISOMETRIC PORTION OF J.M. WHITAKER'S SURVEY OF THE LIPPITT MILL, SHEET NO. 15912 DATED MARCH 22, 1913. Blue line ozalid print in the collection of the Department of Civil and Mechanical Engineering, Museum of History and Technology, the Smithsonian Institution. - Lippitt Mill, 825 Main Street, West Warwick, Kent County, RI

  12. Grain characterization and milling behaviour of near-isogenic lines differing by hardness.

    PubMed

    Greffeuille, V; Abecassis, J; Rousset, M; Oury, F-X; Faye, A; L'Helgouac'h, C Bar; Lullien-Pellerin, V

    2006-12-01

    Wheat grain hardness is a major factor affecting the milling behaviour and end-product quality although its exact structural and biochemical basis is still not understood. This study describes the development of new near-isogenic lines selected on hardness. Hard and soft sister lines were characterised by near infrared reflectance (NIR) and particle size index (PSI) hardness index, grain protein content, thousand kernel weight and vitreousness. The milling behaviour of these wheat lines was evaluated on an instrumented micromill which also measures the grinding energy and flour particle size distribution was investigated by laser diffraction. Endosperm mechanical properties were measured using compression tests. Results pointed out the respective effect of hardness and vitreousness on those characteristics. Hardness was shown to influence both the mode of fracture and the mechanical properties of the whole grain and endosperm. Thus, this parameter also acts on milling behaviour. On the other hand, vitreousness was found to mainly play a role on the energy required to break the grain. This study allows us to distinguish between consequences of hardness and vitreousness. Hardness is suggested to influence the adhesion forces between starch granules and protein matrix whereas vitreousness would rather be related to the endosperm microstructure.

  13. Effect of process control agent on the porous structure and mechanical properties of a biomedical Ti-Sn-Nb alloy produced by powder metallurgy.

    PubMed

    Nouri, A; Hodgson, P D; Wen, C E

    2010-04-01

    The influence of different amounts and types of process control agent (PCA), i.e., stearic acid and ethylene bis-stearamide, on the porous structure and mechanical properties of a biomedical Ti-16Sn-4Nb (wt.%) alloy was investigated. Alloy synthesis was performed on elemental metal powders using high-energy ball milling for 5h. Results indicated that varying the PCA content during ball milling led to a drastic change in morphology and particle-size distribution of the ball-milled powders. Porous titanium alloy samples sintered from the powders ball milled with the addition of various amounts of PCA also revealed different pore morphology and porosity. The Vickers hardness of the sintered titanium alloy samples exhibited a considerable increase with increasing PCA content. Moreover, the addition of larger amounts of PCA in the powder mixture resulted in a significant increase in the elastic modulus and peak stress for the sintered porous titanium alloy samples under compression. It should also be mentioned that the addition of PCA introduced contamination (mainly carbon and oxygen) into the sintered porous product. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.

  14. Characterization and Thermal Decomposition of Nanometer 2,2', 4,4', 6,6'-Hexanitro-Stilbene and 1,3,5-Triamino-2,4,6-Trinitrobenzene Fabricated by a Mechanical Milling Method

    NASA Astrophysics Data System (ADS)

    Song, Xiaolan; Wang, Yi; Zhao, Shanshan; An, Chongwei; Wang, Jingyu; Zhang, Jinglin

    2018-04-01

    Nanometer 2,2', 4,4', 6,6'-hexanitro-stilbene (HNS) and 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) were fabricated on a high-energy ball mill. The particle sizes of nano-HNS and nano-TATB were 98.4 and 57.8 nm, respectively. An SEM analysis was employed to image the micron morphology of nano-explosives. The particle size distribution was calculated by measuring the size of 300 particles in SEM images. XRD, IR, and XPS analyses were used to confirm whether the crystal phase, molecule structure, and surface elements were changed by the milling process. Thermal decomposition of nano-HNS and nano-TATB was investigated by differential scanning calorimetry (DSC) and thermal-infrared spectrometry online (DSC-IR) analyses. Using DSC traces collected from different heating rates, the kinetic and thermodynamic parameters of thermolysis of raw and nano-explosives were calculated (activation energy (EK), pre-exponential factor (lnAK), rate constant (k), activation heat (ΔH≠), activation free energy (ΔG≠), activation entropy (ΔS≠), critical temperature of thermal explosion (Tb), and critical heating rate of thermal explosion (dT/dt)Tb). The results indicated that nano-explosives were of different kinetic and thermodynamic properties from starting explosives. In addition, the gas products for thermal decomposition of nano-HNS and nano-TATB were detected. Although HNS and TATB are both nitro explosives, the decomposition products of the two were different. A mechanism to explain the difference is proposed.

  15. 77 FR 2669 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-19

    ... methods and would inspect additional areas, and corrective actions if necessary. This proposed AD would... and 11.45, by any of the following methods: Federal eRulemaking Portal: Go to http://www.regulations...-mill cracking in the shear wrinkle areas Inspecting for vertical chem-mill cracking at specified...

  16. Comparison of mechanical and friction properties of composite materials based on AlMg2 containing nano-dimensional particles of crystalline graphite and nanofibers of gamma oxide of aluminum

    NASA Astrophysics Data System (ADS)

    Aborkin, A. V.; Babin, D. M.; Soboĺkov, A. V.

    2018-04-01

    The method of mechanical synthesis in a planetary ball mill was used for production of composite powders based on the AlMg2 alloy containing 1 wt. % of nanosized particles of crystalline graphite or γ-Al2O3. The resulting powders are consolidated by the sintering under pressure. Using the methods of X-ray diffraction analysis, scanning and transmission electron microscopy, the structural-phase composition of bulk composite materials was studied. Comparative analysis of the microhardness, the conditional yield stress at compression, and the friction coefficient of bulk composite materials is carried out. It has been found out that the mechanical properties of composites reinforced with γ-Al2O3 nanofibers are higher than when reinforcing with nanoscale particles of crystalline graphite.

  17. Microstructural Evolution of Dy2O3-TiO2 Powder Mixtures during Ball Milling and Post-Milled Annealing

    PubMed Central

    Huang, Jinhua; Ran, Guang; Lin, Jianxin; Shen, Qiang; Lei, Penghui; Wang, Xina; Li, Ning

    2016-01-01

    The microstructural evolution of Dy2O3-TiO2 powder mixtures during ball milling and post-milled annealing was investigated using XRD, SEM, TEM, and DSC. At high ball-milling rotation speeds, the mixtures were fined, homogenized, nanocrystallized, and later completely amorphized, and the transformation of Dy2O3 from the cubic to the monoclinic crystal structure was observed. The amorphous transformation resulted from monoclinic Dy2O3, not from cubic Dy2O3. However, at low ball-milling rotation speeds, the mixtures were only fined and homogenized. An intermediate phase with a similar crystal structure to that of cubic Dy2TiO5 was detected in the amorphous mixtures annealed from 800 to 1000 °C, which was a metastable phase that transformed to orthorhombic Dy2TiO5 when the annealing temperature was above 1050 °C. However, at the same annealing temperatures, pyrochlore Dy2Ti2O7 initially formed and subsequently reacted with the remaining Dy2O3 to form orthorhombic Dy2TiO5 in the homogenous mixtures. The evolutionary mechanism of powder mixtures during ball milling and subsequent annealing was analyzed. PMID:28772375

  18. Nouvelle methode d'integration energetique pour la retro-installation des procedes industriels et la transformation des usines papetieres

    NASA Astrophysics Data System (ADS)

    Bonhivers, Jean-Christophe

    The increase in production of goods over the last decades has led to the need for improving the management of natural resources management and the efficiency of processes. As a consequence, heat integration methods for industry have been developed. These have been successful for the design of new plants: the integration principles are largely employed, and energy intensity has dramatically decreased in many processes. Although progress has also been achieved in integration methods for retrofit, these methods still need further conceptual development. Furthermore, methodological difficulties increase when trying to retrofit heat exchange networks that are closely interrelated to water networks, such as the case of pulp and paper mills. The pulp and paper industry seeks to increase its profitability by reducing production costs and optimizing supply chains. Recent process developments in forestry biorefining give this industry the opportunity for diversification into bio-products, increasing potential profit margins, and at the same time modernizing its energy systems. Identification of energy strategies for a mill in a changing environment, including the possibility of adding a biorefinery process on the industrial site, requires better integration methods for retrofit situations. The objective of this thesis is to develop an energy integration method for the retrofit of industrial systems and the transformation of pulp and paper mills, ant to demonstrate the method in case studies. Energy is conserved and degraded in a process. Heat can be converted into electricity, stored as chemical energy, or rejected to the environment. A systematic analysis of successive degradations of energy between the hot utilities until the environment, through process operations and existing heat exchangers, is essential in order to reduce the heat consumption. In this thesis, the "Bridge Method" for energy integration by heat exchanger network retrofit has been developed. This method is the first that considers the analysis of these degradations. The fundamental mechanism to reduce the heat consumption in an existing network has been made explicit; it is the basis of the developed method. The Bridge Method includes the definition of "a bridge", which is a set of modifications leading to heat reduction in a heat exchanger network. It is proven that, for a given set of streams, only bridges can lead to heat savings. The Bridge Method also includes (1) a global procedure for heat exchanger network retrofit, (2) a procedure to enumerate systematically the bridges, (3) "a network table" to easily evaluate them, and (4) an "energy transfer diagram" showing the effect of the two first principles of thermodynamics of energy conservation and degradation in industrial processes in order to identify energy savings opportunities. The Bridge Method can be used for the analysis of networks including several types of heat transfer, and site-wide analysis. The Bridge Method has been applied in case studies for retrofitting networks composed of indirect-contact heat exchangers, including the network of a kraft pulp mill, and also networks of direct-contact heat exchangers, including the hot water production system of a pulp mill. The method has finally been applied for the evaluation of a biorefinery process, alone or hosted in a kraft pulp mill. Results show that the use of the method significantly reduces the search space and leads to identification of the relevant solutions. The necessity of a bridge to reduce the inputs and outputs of a process is a consequence of the two first thermodynamics principles of energy conservation and increase in entropy. The concept of bridge alone can also be used as a tool for process analysis, and in numerical optimization-based approaches for energy integration.

  19. Atomic disorder, phase transformation, and phase restoration in Co3Sn2

    NASA Astrophysics Data System (ADS)

    di, L. M.; Zhou, G. F.; Bakker, H.

    1993-03-01

    The behavior of the intermetallic compound Co3Sn2 upon ball milling was studied by x-ray diffraction, high-field-magnetization measurements, and subsequently by differential scanning calorimetry. It turns out that starting from the stoichiometric-ordered compound, mechanical attrition of Co3Sn2 generates atomic disorder in the early stage of milling. The nonequilibrium phase transformation from the low-temperature phase with orthorhombic structure to the high-temperature phase with a hexagonal structure was observed in the intermediate stage of milling. It was accompanied by the creation of increasing atomic disorder. After long milling periods, the phase transformation was completed and the atomic disordering became saturated. All the physical parameters measured in the present work remained constant during this period. The above outcome was confirmed by comparison with the high-temperature phase thermally induced by quenching. The good agreement of the results obtained by different techniques proves that the ball milling generates well-defined metastable states in Co3Sn2.

  20. Flank wear analysing of high speed end milling for hardened steel D2 using Taguchi Method

    NASA Astrophysics Data System (ADS)

    Hazza Faizi Al-Hazza, Muataz; Ibrahim, Nur Asmawiyah bt; Adesta, Erry T. Y.; Khan, Ahsan Ali; Abdullah Sidek, Atiah Bt.

    2017-03-01

    One of the main challenges for any manufacturer is how to decrease the machining cost without affecting the final quality of the product. One of the new advanced machining processes in industry is the high speed hard end milling process that merges three advanced machining processes: high speed milling, hard milling and dry milling. However, one of the most important challenges in this process is to control the flank wear rate. Therefore a analyzing the flank wear rate during machining should be investigated in order to determine the best cutting levels that will not affect the final quality of the product. In this research Taguchi method has been used to investigate the effect of cutting speed, feed rate and depth of cut and determine the best level s to minimize the flank wear rate up to total length of 0.3mm based on the ISO standard to maintain the finishing requirements.

  1. Disposal of olive mill wastewater with DC arc plasma method.

    PubMed

    Ibrahimoglu, Beycan; Yilmazoglu, M Zeki

    2018-07-01

    Olive mill wastewater is an industrial waste, generated as a byproduct of olive oil production process and generally contains components such as organic matter, suspended solids, oil, and grease. Although various methods have been developed to achieve the disposal of this industrial wastewater, due to the low cost, the most common disposal application is the passive storage in the lagoons. The main objective of this study is to reduce pollution parameters in olive mill wastewater and draw water to discharge limits by using plasma technology. Plasma-assisted disposal of olive mill wastewater method could be an alternative disposal technique when considering potential utilization of treated water in agricultural areas and economic value of flammable plasma gas which is the byproduct of disposal process. According to the experimental results, the rates of COD (chemical oxygen demand) and BOD (biological oxygen demand) of olive mill wastewater are decreased by 94.42% and 95.37%, respectively. The dissolved oxygen amount is increased from 0.36 to 6.97 mg/l. In addition, plasma gas with high H 2 content and treated water that can be used in agricultural areas for irrigation are obtained from non-dischargeable wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Influence of in situ and ex situ ZrO2 addition on the properties of MgB2

    NASA Astrophysics Data System (ADS)

    Chen, S. K.; Glowacki, B. A.; MacManus-Driscoll, J. L.; Vickers, M. E.; Majoros, M.

    2004-02-01

    The effect of ZrO2 addition on the properties of MgB2 has been studied using in situ and ex situ processes. The in situ process was performed by introducing ZrO2 from the milling tools into MgB2 throughout the planetary ball milling, whereas the ex situ process was accomplished by mixing ZrO2 from the milling tools with MgB2 by hand grinding in a mortar. A detectable amount of ZrO2 was present in MgB2 after 4 h of milling during the in situ process and its content increased with milling time as expected. The 400 h milled powder was partially amorphized and showed the formation of a minority ZrB2 phase. For milling up to 100 h, diamagnetism of MgB2 was significantly reduced while Tc remained unchanged. Superconductivity was totally destroyed after 148 h of milling. The loss of superconductivity is attributed to the effect of disordering induced by mechanical milling. As a result of in situ ZrO2 addition, the initial Tc and crystal structure of MgB2 could not be restored upon annealing. With increasing milling time, the expansion of lattice parameters in both the a-axis and c-axis may be due to possible substitution of Mg or B by Zr. The result from the magnetic measurement shows that Jc of MgB2 is deteriorated by in situ ZrO2 addition. On the other hand, ex situ ZrO2 addition with annealing did not degrade the Tc of MgB2.

  3. Energy use pattern in rice milling industries-a critical appraisal.

    PubMed

    Goyal, S K; Jogdand, S V; Agrawal, A K

    2014-11-01

    Rice milling industry is one of the most energy consuming industries. Like capital, labour and material, energy is one of the production factors which used to produce final product. In economical term, energy is demand-derived goods and can be regarded as intermediate good whose demand depends on the demand of final product. This paper deals with various types of energy pattern used in rice milling industries viz., thermal energy, mechanical energy, electrical energy and human energy. The important utilities in a rice mill are water, air, steam, electricity and labour. In a rice mill some of the operations are done manually namely, cleaning, sun drying, feeding paddy to the bucket elevators, weighing and packaging, etc. So the man-hours are also included in energy accounting. Water is used for soaking and steam generation. Electricity is the main energy source for these rice mills and is imported form the state electricity board grids. Electricity is used to run motors, pumps, blowers, conveyors, fans, lights, etc. The variations in the consumption rate of energy through the use of utilities during processing must also accounted for final cost of the finished product. The paddy milling consumes significant quantity of fuels and electricity. The major energy consuming equipments in the rice milling units are; boilers and steam distribution, blowers, pumps, conveyers, elevators, motors, transmission systems, weighing, etc. Though, wide variety of technologies has been evolved for efficient use of energy for various equipments of rice mills, so far, only a few have improved their energy efficiency levels. Most of the rice mills use old and locally available technologies and are also completely dependent on locally available technical personnel.

  4. Observation of martensitic transformation in Ni50Mn41Cu4Sn5 Heusler alloy prepared by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Saini, Dinesh; Singh, Satyavir; Banerjee, M. K.; Sachdev, K.

    2017-05-01

    Mechanical alloying route has been employed for preparation of a single phase Ni50Mn41Cu4Sn5 (atomic %) Heusler alloy. Use of high energy planetary ball mill enables successful preparation of the same as authenticated by detailed X-ray diffraction (XRD) study. Microstructural study is carried out by optical and scanning electron microscopic techniques. XRD results reveal that increasing milling time leads to reduction in crystallite size and concurrent increase in lattice strain. Microstructural results indicate formation of self-assembled martensite twins.

  5. Glancing-incidence focussed ion beam milling: A coherent X-ray diffraction study of 3D nano-scale lattice strains and crystal defects

    DOE PAGES

    Hofmann, Felix; Harder, Ross J.; Liu, Wenjun; ...

    2018-05-11

    Here, this study presents a detailed examination of the lattice distortions introduced by glancing incidence Focussed Ion Beam (FIB) milling. Using non-destructive multi-reflection Bragg coherent X-ray diffraction we probe damage formation in an initially pristine gold micro-crystal following several stages of FIB milling. These experiments allow access to the full lattice strain tensor in the micro-crystal with ~25 nm 3D spatial resolution, enabling a nano-scale analysis of residual lattice strains and defects formed. Our results show that 30 keV glancing incidence milling produces fewer large defects than normal incidence milling at the same energy. However the resulting residual lattice strainsmore » have similar magnitude and extend up to ~50 nm into the sample. At the edges of the milled surface, where the ion-beam tails impact the sample at near-normal incidence, large dislocation loops with a range of Burgers vectors are formed. Further glancing incidence FIB polishing with 5 keV ion energy removes these dislocation loops and reduces the lattice strains caused by higher energy FIB milling. However, even at the lower ion energy, damage-induced lattice strains are present within a ~20 nm thick surface layer. These results highlight the need for careful consideration and management of FIB damage. They also show that low-energy FIB-milling is an effective tool for removing FIB-milling induced lattice strains. This is important for the preparation of micro-mechanical test specimens and strain microscopy samples.« less

  6. Glancing-incidence focussed ion beam milling: A coherent X-ray diffraction study of 3D nano-scale lattice strains and crystal defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofmann, Felix; Harder, Ross J.; Liu, Wenjun

    Here, this study presents a detailed examination of the lattice distortions introduced by glancing incidence Focussed Ion Beam (FIB) milling. Using non-destructive multi-reflection Bragg coherent X-ray diffraction we probe damage formation in an initially pristine gold micro-crystal following several stages of FIB milling. These experiments allow access to the full lattice strain tensor in the micro-crystal with ~25 nm 3D spatial resolution, enabling a nano-scale analysis of residual lattice strains and defects formed. Our results show that 30 keV glancing incidence milling produces fewer large defects than normal incidence milling at the same energy. However the resulting residual lattice strainsmore » have similar magnitude and extend up to ~50 nm into the sample. At the edges of the milled surface, where the ion-beam tails impact the sample at near-normal incidence, large dislocation loops with a range of Burgers vectors are formed. Further glancing incidence FIB polishing with 5 keV ion energy removes these dislocation loops and reduces the lattice strains caused by higher energy FIB milling. However, even at the lower ion energy, damage-induced lattice strains are present within a ~20 nm thick surface layer. These results highlight the need for careful consideration and management of FIB damage. They also show that low-energy FIB-milling is an effective tool for removing FIB-milling induced lattice strains. This is important for the preparation of micro-mechanical test specimens and strain microscopy samples.« less

  7. On the formation and stability of nanometer scale precipitates in ferritic alloys during processing and high temperature service

    NASA Astrophysics Data System (ADS)

    Alinger, Matthew J.

    Iron powders containing ≈14wt%Cr and smaller amounts of W and Ti were mechanically alloyed (MA) by ball milling with Y2O3 and subsequently either hot consolidated by hot extrusion or isostatic pressing, or powder annealed, producing very high densities of nm-scale coherent transition phase precipitates, or Y-Ti-O nano-clusters (NCs), along with fine-scale grains. These so-called nanostructured ferritic alloys (NFAs) manifest very high strength (static and creep) and corrosion-oxidation resistance up to temperatures in excess of 800°C. We used a carefully designed matrix of model MA powders and consolidated alloys to systematically assess the NC evolutions during each processing step, and to explore the combined effects of alloy composition and a number of processing variables, including the milling energy, consolidation method and the time and temperature of annealing of the as-milled powders. The stability of the NCs was also characterized during high-temperate post-consolidation annealing of a commercial NFA, MA957. The micro-nanostructural evolutions, and their effects on the alloy strength, were characterized by a combination of techniques, including XRD, TEM, atom-probe tomography (APT) and positron annihilation spectroscopy (PAS). However, small angle neutron scattering (SANS) was the primary tool used to characterize the nm-scale precipitates. The effect of the micro-nanostructure on the alloy strength was assessed by microhardness measurements. The studies revealed the critical sequence-of-events in forming the NCs, involves dissolution of Y, Ti and O during ball milling. The supersaturated solutes then precipitate during hot consolidation or powder annealing. The precipitate volume fraction increases with both the milling energy and Ti additions at lower consolidation and annealing temperatures (850°C), and at higher processing temperatures (1150°C) both are needed to produce NCs. The non-equilibrium kinetics of NC formation are nucleation controlled and independent of time with an effective activation energy of ≈60 kJ/mole. High temperature precipitate coarsening and transformations to oxide phases show a high effective activation energy (≈880 kJ/mole) and have a time dependence characteristic of a dislocation pipe diffusion mechanism. The NCs act as weak to moderately strong (alpha = 0.1 to 0.5) obstacles that can be sheared by dislocations, where the obstacle strength increases with alpha ≈0.37log(r/2b).

  8. 40 CFR 430.76 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Mechanical Pulp... mechanical pulp facilities where pulp and paper at groundwood mills are produced through the application of the thermo-mechanical process; mechanical pulp facilities where the integrated production of pulp and...

  9. Structural and Mössbauer characterization of the ball milled Fe x(Cr 2O 3) 1- x system

    NASA Astrophysics Data System (ADS)

    Biondo, Valdecir; de Medeiros, Suzana Nóbrega; Paesano, Andrea, Jr.; Ghivelder, Luis; Hallouche, Bachir; da Cunha, João Batista Marimon

    2009-08-01

    The Fe x(Cr 2O 3) 1- x system, with 0.10 ≤ X ≤ 0.80, was mechanically processed for 24 h in a high-energy ball-mill. In order to examine the possible formation of iron-chromium oxides and alloys, the milled samples were, later, thermally annealed in inert (argon) and reducing (hydrogen) atmospheres. The as-milled and annealed products were characterized by X-ray diffraction, Mössbauer spectroscopy, transmission electron microscopy and magnetization. The as-milled samples showed the formation of an Fe 1+ YCr 2- YO 4- δ nanostructured and disordered spinel phase, the α 1-Fe(Cr) and α 2-Cr(Fe) solid solutions and the presence of non-exhausted precursors. For the samples annealed in inert atmosphere, the chromite (FeCr 2O 4) formation and the recrystallization of the precursors were verified. The hydrogen treated samples revealed the reduction of the spinel phase, with the phase separation of the chromia phase and retention of the Fe-Cr solid solutions. All the samples, either as-milled or annealed, presented the magnetization versus applied field curves typical for superparamagnetic systems.

  10. Production, microstructure and mechanical properties of two different austenitic ODS steels

    NASA Astrophysics Data System (ADS)

    Gräning, T.; Rieth, M.; Hoffmann, J.; Möslang, A.

    2017-04-01

    This article is to summarize and examine processing parameters of novel developed austenitic oxide dispersed strengthened (ODS) steels. Comparing hot-rolled and extruded conditions after the same degree of deformation after and before annealing, are just some examples to give insights into the complex processing of austenitic ODS steels. One of the major drawbacks of the material is the more sophisticated production process. Due to a ductile matrix material with an increased stickiness during milling, a two-step milling procedure with the use of ZrO2 milling balls was applied to raise the production yield and to use the abrasion of the ZrO2 as an additional element to facilitate the formation of nano-sized precipitates. To get a better understanding how the different powder particle sizes after milling affect final properties, sieving was applied and revealed a serious effect in terms of precipitate size, distribution and mechanical properties. Grain sizes in relation to the precipitate size, annealing time and processing parameters were determined and compared to the mechanical properties. Hardness and tensile test have pointed out, that the precipitate size and number are more important in respect to the ultimate tensile strength than the grain size and that in this study hot-rolled material exhibited the better properties. The investigation of the microstructure illustrated the stability of precipitates during annealing at 1100 °C for 40 h. These heat treatments also led to a consistent grain size, due to the pinning effect of the grain boundaries, caused by precipitates.

  11. Targeting Biological Sensing with Commercial SERS Substrates

    DTIC Science & Technology

    2012-09-01

    ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army Research Laboratory ATTN: RDRL-SEE-E 2800 Powder Mill Road Adelphi, MD 20783-1197 8. PERFORMING...Pellegrino* *U.S. Army Research Laboratories, RDRL-SEE-E, 2800 Powder Mill Road, Adelphi, Maryland 20783 Department of Mechanical Engineering and...demonstrated typical RSDs ranging from 10-15% under drop and dry conditions. While these standard Klarite substrates do demonstrate a high

  12. Grinding and cooking dry-mill germ to optimize aqueous enzymatic oil extraction

    USDA-ARS?s Scientific Manuscript database

    The many recent dry grind plants that convert corn to ethanol are potential sources of substantial amounts of corn oil. This report describes an aqueous enzymatic extraction (AEE) method to separate oil from dry-mill corn germ (DMG). The method is an extension of AEE previously developed for wet...

  13. Effect of ball milling on structures and properties of dispersed-type dental amalgam.

    PubMed

    Chern Lin, Jiin-Huey; Chen, Fred Ying-Yi; Chiang, Hui-Ju; Ju, Chien-Ping

    2011-04-01

    The purpose of the present study was to investigate the effect of ball milling on the initial mercury vapor release rate and mechanical properties such as compressive strength, diametral tensile strength and creep value, of the dispersed-type dental amalgam, and comparison was made with respect to two commercial amalgam alloys. Ball milling was employed to modify the configuration of the originally spherical-shaped Ag-Cu-Pd dispersant alloy particles. Improvement in mechanical properties while maintaining a low early-stage mercury vapor release rate of the amalgam is attempted. The experimental results show that the amalgam (AmB10) which was made from Ag-Cu-Pd dispersant alloy particles that were ball-milled for 10 min and heat-treated at 300 °C for 2 days exhibited a low initial mercury vapor release rate of 69 pg/mm(2)/s, which was comparable with that of commercial amalgam alloy Tytin (68 pg/mm(2)/s), and was lower than that of Dispersalloy (73 pg/mm(2)/s). As for mechanical properties, amalgam AmB10 exhibited the highest 1h compressive strength (228 MPa), which was higher than that of commercial amalgam alloy Dispersalloy by 72%; while its 24h diametral tensile strength was also the highest (177 MPa), and was higher than that of Dispersalloy by 55%. Furthermore, the creep value of the amalgams made from Ag-Cu-Pd alloy particles with 10 min ball-milling and heat treatment at 300 °C for 2 days was measured to be 0.12%, which was about 20% that of Dispersalloy. It is found that ball milling of the dispersant Ag-Cu-Pd alloy particles for 10 min was able to modify the configuration of the alloy particles into irregular-shapes. Subsequently, heat treatment at 300 °C significantly lowered the initial mercury vapor release rate, increased its 1h compressive strength and 1h diametral tensile strength, and lowered its creep value. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. One step conversion of wheat straw to sugars by simultaneous ball milling, mild acid, and fungus Penicillium simplicissimum treatment.

    PubMed

    Yuan, Li; Chen, Zhenhua; Zhu, Yonghua; Liu, Xuanming; Liao, Hongdong; Chen, Ding

    2012-05-01

    Wheat straw is one of the major lignocellulosic plant residues in many countries including China. An attractive alternative is the utilization of wheat straw for bioethanol production. This article mainly studies a simple one-step wet milling with Penicillium simplicissimum and weak acid to hydrolysis of wheat straw. The optimal condition for hydrolysis was ball milling 48 h in citrate solvent (pH = 4) with P. simplicissimum H5 at the speed of 500 rpm and the yield of sugar increased with increased milling time. Corresponding structure transformations before and after milling analyzed by X-ray diffraction, transmission Fourier transform infrared spectroscopy, and environmental scanning electron microscopy clearly indicated that this combined treatment could be attributed to the crystalline and chemical structure changes of cellulose in wheat straw during ball milling. This combined treatment of ball milling, mild acid, and fungus hydrolysis enabled the conversion of the wheat straw. Compared with traditional method of ball milling, this work showed a more simple, novel, and environmentally friendly way in mechanochemical treatment of wheat straw.

  15. Methods for making lithium vanadium oxide electrode materials

    DOEpatents

    Schutts, Scott M.; Kinney, Robert J.

    2000-01-01

    A method of making vanadium oxide formulations is presented. In one method of preparing lithium vanadium oxide for use as an electrode material, the method involves: admixing a particulate form of a lithium compound and a particulate form of a vanadium compound; jet milling the particulate admixture of the lithium and vanadium compounds; and heating the jet milled particulate admixture at a temperature below the melting temperature of the admixture to form lithium vanadium oxide.

  16. Mechanism of drug release from polymethacrylate-based extrudates and milled strands prepared by hot-melt extrusion.

    PubMed

    Albers, Jessica; Alles, Rainer; Matthée, Karin; Knop, Klaus; Nahrup, Julia Schulze; Kleinebudde, Peter

    2009-02-01

    The aim of the study was the formulation of solid dispersions of the poorly water-soluble drug celecoxib and a polymethacrylate carrier by hot-melt extrusion. The objectives were to elucidate the mechanism of drug release from obtained extrudates and milled strands addicted to the solid-state properties of the solid dispersions and to examine and eliminate stability problems occurring under storage, exposure of mechanical stress, and in vitro dissolution. Transparent extrudates containing up to 60% drug could be prepared with a temperature setting below the melting point of celecoxib. XRPD and DSC measurements indicated the formation of a glassy solid solution, where the drug is molecularly dispersed in the carrier. The amorphous state of the glassy solid solution could be maintained during the exposure of mechanical stress in a milling process, and was stable under storage for at least 6 months. Solid-state properties and SEM images of extrudates after dissolution indicated a carrier-controlled dissolution, whereby the drug is molecularly dispersed within the concentrated carrier layer. The glassy solid solution showed a 58-fold supersaturation in 0.1 N HCl within the first 10 min, which was followed by a recrystallization process. Recrystallization could be inhibited by an external addition of HPMC.

  17. On a phase transformation produced by mechanical activation in iron pyrite

    NASA Astrophysics Data System (ADS)

    Eymery, J.-P.

    1999-02-01

    The behaviour of pyrite in the process of mechanical milling in air has been examined. Milled powders were characterized by scanning electron microscopy, Mössbauer spectroscopy working in transmission geometry and X-ray diffraction. In the presence of oxygen, pyrite can readily be transformed to ferrous sulphate monohydrate, which indicates that the Fe(II) goes from a low-spin state to to a high-spin state. The transformation mechanism is saturated after about 60hours milling, but however it can be markedly prolonged by further ageing at room temperature. The results also indicate that mechanical milling is a useful room temperature process of material production. On a étudié le comportement de la pyrite au cours de broyages mécaniques réalisés à l'air. Les poudres broyées ont été analysées par microscopie électronique à balayage, spectroscopie Mössbauer fonctionnant en géométrie de transmission et diffraction des rayonsX. En présence d'oxygène, la pyrite se transforme immédiatement en sulfate de fer monohydraté, ce qui correspond pour Fe(II) au passage de l'état bas spin à l'état haut spin. Le mécanisme de la transformation est saturé après 60heures de broyage environ, mais cependant il peut être notablement prolongé par un vieillissement ultérieur à la température ambiante. Les résultats montrent aussi que le broyage mécanique constitue un processus utile de fabrication des matériaux à l'ambiante.

  18. The FEM Simulation on End Mill of Plastic Doors and Windows Corner Cleaning Based on Deform-3D

    NASA Astrophysics Data System (ADS)

    Li, Guoping; Huang, Zhenyong; Wang, Xiaohui

    2017-12-01

    In the plastic doors and windows corner cleaning process, the rotating speed, the feed rate and the milling cutter diameter are the main factors that affect the efficiency and quality of the of corner cleaning. In this paper, SolidWorks will be used to establish the 3D model of end mills, and use Deform-3D to research the end mill milling process. And using orthogonal experiment design method to analyze the effect of rotating speed, the feed rate and the milling cutter diameter on the axial force variation, and to get the overall trend of axial force and the selection of various parameters according to the influence of axial force change. Finally, simulate milling experiment used to get the actual axial force data to verify the reliability of the FEM simulation model. And the conclusion obtained in this paper has important theoretical value in improving the plastic doors and windows corner cleaning efficiency and quality.

  19. The Influence of Milling and Spark Plasma Sintering on the Microstructure and Properties of the Al7075 Alloy

    PubMed Central

    Málek, Přemysl; Minárik, Peter; Novák, Pavel; Průša, Filip

    2018-01-01

    The compact samples of an Al7075 alloy were prepared by a combination of gas atomization, high energy milling, and spark plasma sintering. The predominantly cellular morphology observed in gas atomized powder particles was completely changed by mechanical milling. The continuous-like intermetallic phases present along intercellular boundaries were destroyed; nevertheless, a small amount of Mg(Zn,Cu,Al)2 phase was observed also in the milled powder. Milling resulted in a severe plastic deformation of the material and led to a reduction of grain size from several µm into the nanocrystalline region. The combination of these microstructural characteristics resulted in abnormally high microhardness values exceeding 300 HV. Consolidation through spark plasma sintering (SPS) resulted in bulk samples with negligible porosity. The heat exposition during SPS led to precipitation of intermetallic phases from the non-equilibrium microstructure of both gas atomized and milled powders. SPS of the milled powder resulted in a recrystallization of the severely deformed structure. An ultra-fine grained structure (grain size close to 500 nm) with grains divided primarily by high-angle boundaries was formed. A simultaneous release of stored deformation energy and an increase in the grain size caused a drop of microhardness to values close to 150 HV. This value was retained even after annealing at 425 °C. PMID:29614046

  20. The dispersion of fine chitosan particles by beads-milling

    NASA Astrophysics Data System (ADS)

    Rochima, Emma; Utami, Safira; Hamdani, Herman; Azhary, Sundoro Yoga; Praseptiangga, Danar; Joni, I. Made; Panatarani, Camellia

    2018-02-01

    This research aimed to produce fine chitosan particles from a crab shell waste by beads-milling method by two different concentration of PEG as dispersing agent (150 and 300 wt. %). The characterization was performed to obtain the size and size distribution, the characteristics of functional groups and the degree of deacetylation. The results showed that the chitosan fine particles was obtained with a milling time 120 minutes with the best concentration of PEG 400 150 wt. %. The average particle size of the as-prepared suspension is 584 nm after addition of acetic acid solution (1%, v/v). Beads milling process did not change the glucosamine and N-acetylglucosamine content on chitosan structure which is indicated by degree of deacetylation higher than 70%. It was concluded that beads milling process can be applied to prepare chitosan fineparticles by proper adjustment in the milling time, pH and dosage of dispersing agent.

  1. Hydrogen storage materials and method of making by dry homogenation

    DOEpatents

    Jensen, Craig M.; Zidan, Ragaiy A.

    2002-01-01

    Dry homogenized metal hydrides, in particular aluminum hydride compounds, as a material for reversible hydrogen storage is provided. The reversible hydrogen storage material comprises a dry homogenized material having transition metal catalytic sites on a metal aluminum hydride compound, or mixtures of metal aluminum hydride compounds. A method of making such reversible hydrogen storage materials by dry doping is also provided and comprises the steps of dry homogenizing metal hydrides by mechanical mixing, such as be crushing or ball milling a powder, of a metal aluminum hydride with a transition metal catalyst. In another aspect of the invention, a method of powering a vehicle apparatus with the reversible hydrogen storage material is provided.

  2. Sampling estimators of total mill receipts for use in timber product output studies

    Treesearch

    John P. Brown; Richard G. Oderwald

    2012-01-01

    Data from the 2001 timber product output study for Georgia was explored to determine new methods for stratifying mills and finding suitable sampling estimators. Estimators for roundwood receipts totals comprised several types: simple random sample, ratio, stratified sample, and combined ratio. Two stratification methods were examined: the Dalenius-Hodges (DH) square...

  3. Regeneration Methods Affect Genetic Variation and Structure in Shortleaf Pine (Pinus Echinata Mill.)

    Treesearch

    Rajiv G. Raja; Charles G. Tauer; Robert F. Wittwer; Yinghua Huang

    1998-01-01

    The effects of regene ration methods on genetic diversity and structure in shortleaf pine (Pinus echinata Mill.) were examined by quantifying the changes in genetic composition of shortleaf pine stands following harvest by monitoring changes in allele number and frequency at heterozygous loci over time. The results were also compared to the genetic...

  4. Feasibility investigations on multi-cutter milling process: A novel fabrication method for microreactors with multiple microchannels

    NASA Astrophysics Data System (ADS)

    Pan, Minqiang; Zeng, Dehuai; Tang, Yong

    A novel multi-cutter milling process for multiple parallel microchannels with manifolds is proposed to address the challenge of mass manufacture as required for cost-effective commercial applications. Several slotting cutters are stacked together to form a composite tool for machining microchannels simultaneously. The feasibility of this new fabrication process is experimentally investigated under different machining conditions and reaction characteristics of methanol steam reforming for hydrogen production. The influences of cutting parameters and the composite tool on the microchannel qualities and burr formation are analyzed. Experimental results indicate that larger cutting speed, smaller feed rate and cutting depth are in favor of obtaining relatively good microchannel qualities and small burrs. Of all the cutting parameters considered in these experiments, 94.2 m min -1 cutting speed, 23.5 mm min -1 feed rate and 0.5 mm cutting depth are found to be the optimum value. According to the comparisons of experimental results of multi-cutter milling process and estimated one of other alternative methods, it is found that multi-cutter milling process shows much shorter machining time and higher work removal rate than that of other alternative methods. Reaction characteristics of methanol steam reforming in microchannels also indicate that multi-cutter milling process is probably suitable for a commercial application.

  5. Magnesium Nanocomposites: Current Status and Prospects for Army Applications

    DTIC Science & Technology

    2011-09-01

    and reinforcement that cannot be produced through melt-based processing . In mechanical alloying , the powder and milling media are placed into...mixing vessels that are agitated in a high-energy milling machine. During the mixing process , the powder particles undergo repeated cycles of cold ...welding and fracturing of interparticle bonds. At the end of the process , the powder has been alloyed to the desired composition. Although typically used

  6. IMPROVED MAGNESIUM OXIDE SLIP CASTING METHOD

    DOEpatents

    Stoddard, S.D.; Nuckolls, D.E.

    1963-12-31

    A process for making an aqueous magnesium oxide slip casting slurry comprising the steps of mixing finely ground fused magnesium oxide with water, milling the slurry for at least 30 hours at a temperature of 2-10 deg C (the low temperature during milling inhibiting the formation of hydrated magnesium oxide), discharging the slurry from the mill, adding hydrochloric acid as a deflocculent, and adding a scum inhibitor is presented. (AEC)

  7. Mechanochemical Ring-Opening Polymerization of Lactide: Liquid-Assisted Grinding for the Green Synthesis of Poly(lactic acid) with High Molecular Weight.

    PubMed

    Ohn, Nuri; Shin, Jihoon; Kim, Sung Sik; Kim, Jeung Gon

    2017-09-22

    Mechanochemical polymerization of lactide is carried out by using ball milling. Mechanical energy from collisions between the balls and the vessel efficiently promotes an organic-base-mediated metal- and solvent-free solid-state polymerization. Investigation of the parameters of the ball-milling synthesis revealed that the degree of lactide ring-opening polymerization could be modulated by the ball-milling time, vibration frequency, mass of the ball media, and liquid-assisted grinding. Liquid-assisted grinding was found to be an especially important factor for achieving a high degree of mechanochemical polymerization. Although polymer-chain scission from the strong collision energy prevented mechanical-force-driven high-molecular-weight polymer synthesis, the addition of only a small amount of liquid enabled sufficient energy dissipation and poly(lactic acid) was thereby obtained with a molecular weight of over 1×10 5  g mol -1 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The effect of harvest time, dry matter content and mechanical pretreatments on anaerobic digestion and enzymatic hydrolysis of miscanthus.

    PubMed

    Frydendal-Nielsen, Susanne; Hjorth, Maibritt; Baby, Sanmohan; Felby, Claus; Jørgensen, Uffe; Gislum, René

    2016-10-01

    Miscanthus x giganteus was harvested as both green and mature biomass and the dry matter content of the driest harvest was artificially decreased by adding water in two subsamples, giving a total of five dry matter contents. All five biomass types were mechanically pretreated by roller-milling, extrusion or grinding and accumulated methane production and enzymatically-accessible sugars were measured. Accumulated methane production was studied using sigmoid curves that allowed comparison among the treatments of the rate of the methane production and ultimate methane yield. The green biomass gave the highest methane yield and highest levels of enzymatically-accessible cellulose. The driest biomass gave the best effect from extrusion but with the highest energy consumption, whereas roller-milling was most efficient on wet biomass. The addition of water to the last harvest improved the effect of roller-milling and equalled extrusion of the samples in efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. [CHROMATOSPECTROPHOTOMETRIC METHOD OF QUANTITATIVE ANALYSIS OF LAPPACONITINE IN THE UNDERGROUND PARTS OF ACONITUM ORIENTALE MILL, GROWING IN GEORGIA].

    PubMed

    Kintsurashvili, L

    2016-05-01

    Aconitum orientale Mill (family Helleboraceae) is a perennial herb. It is spread in forests of the west and the east Georgia and in the subalpine zone. The research objects were underground parts of Aconitum orientale Mill, which were picked in the phase of fruiting in Borjomi in 2014. We had received alkaloids sum from the air-dry underground parts (1.5 kg) with chloroform extract which was alkalined by 5% sodium carbonate. We received the alkaloids sum of 16.5 g and determined that predominant is pharmacologically active diterpenic alkaloid - Lappaconitine, which is an acting initial part of the antiarrhythmic drug "Allapinin". The chromatospectrophotometrical method of quantitative analysis of Lappaconitine is elaborated for the detection of productivity of the underground parts of Aconitum orientale Mill. It was determined that maximal absorption wave length in ultra-violet spectrum (λmax) is 308 nm; It is established that relative error is norm (4%) from statical processing of quantitative analysis results. We determined that the content of Lappaconitine in the underground parts of Aconitum orientale Mill is 0.11-0.13% in the phase of fruiting. In consequence of experimental data Aconitum orientale Mill is approved as the raw material to receive pharmacologically active Lappaconitine.

  10. Physical characteristics and magnetic properties of BaFe{sub 12}O{sub 19}/SrTiO{sub 3} based composites derived from mechanical alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widodo, Rahmat Doni, E-mail: rahmat-doni@yahoo.com; Manaf, Azwar

    2016-04-19

    A composite system BaFe{sub 12}O{sub 19}/SrTiO{sub 3} with ferrimagnetic BaFe{sub 12}O{sub 19} phase (BHF) and ferroelectric SrTiO{sub 3} phase (STO) have been prepared by mechanical alloying and subsequent heat treatment. The composite powders were studied by Particle Size Analyze, X-ray diffraction and magnetic measurement. It was found that the particle size of composite powders initially increased due to laminated layers formation of a composite and then decreased to an asymptotic value of ∼8 µm as the milling time extended even to a relatively longer time. However, based on results of line broadening analysis the mean grain size of the particles wasmore » found in the nanometer scale. We thus believed that mechanical blending and milling of mixture components for the composite materials has promoted heterogeneous nucleation and only after successive sintering at 1100°C the milled powder transformed into particles of nanograin. In this report, microstructure as well as magnetic properties for the composite is also briefly discussed.« less

  11. Line profile analysis of ODS steels Fe20Cr5AlTiY milled powders at different Y2O3 concentrations

    NASA Astrophysics Data System (ADS)

    Afandi, A.; Nisa, R.; Thosin, K. A. Z.

    2017-04-01

    Mechanical properties of material are largely dictated by constituent microstructure parameters such as dislocation density, lattice microstrain, crystallite size and its distribution. To develop ultra-fine grain alloys such as Oxide Dispersion Strengthened (ODS) alloys, mechanical alloying is crucial step to introduce crystal defects, and refining the crystallite size. In this research the ODS sample powders were mechanically alloyed with different Y2O3 concentration respectively of 0.5, 1, 3, and 5 wt%. MA process was conducted with High Energy Milling (HEM) with the ball to powder ratio of 15:1. The vial and the ball were made of alumina, and the milling condition is set 200 r.p.m constant. The ODS powders were investigated by X-Ray Diffractions (XRD), Bragg-Brentano setup of SmartLab Rigaku with 40 KV, and 30 mA, step size using 0.02°, with scanning speed of 4°min-1. Line Profile Analysis (LPA) of classical Williamson-Hall was carried out, with the aim to investigate the different crystallite size, and microstrain due to the selection of the full wide at half maximum (FWHM) and integral breadth.

  12. Sintering behavior of Lanthana-bearing nanostructured ferritic steel consolidated via spark plasma sintering

    DOE PAGES

    Pasebani, Somayeh; Charit, Indrajit; Butt, Darryl P.; ...

    2015-08-03

    Elemental powder mixture of Fe–14Cr–1Ti–0.3Mo–0.5La 2O 3 (wt%) composition is mechanically alloyed for different milling durations (5, 10 and 20 h) and subsequently consolidated via spark plasma sintering under vacuum at 950 °C for 7 min. The effects of milling time on the densification behavior and density/microhardness are studied. The sintering activation energy is found to be close to that of grain boundary diffusion. The bimodal grain structure created in the milled and sintered material is found to be a result of milling and not of sintering alone. The oxide particle diameter varies between 2 and 70 nm. As amore » result, faceted precipitates smaller than 10 nm in diameter are found to be mostly La–Ti–Cr-enriched complex oxides that restrict further recrystallization and related phenomena.« less

  13. Bulk superhard B-C-N nanocomposite compact and method for preparing thereof

    DOEpatents

    Zhao, Yusheng; He, Duanwei

    2004-07-06

    Bulk, superhard, B-C-N nanocomposite compact and method for preparing thereof. The bulk, superhard, nanocomposite compact is a well-sintered compact and includes nanocrystalline grains of at least one high-pressure phase of B-C-N surrounded by amorphous diamond-like carbon grain boundaries. The bulk compact has a Vicker's hardness of about 41-68 GPa. It is prepared by ball milling a mixture of graphite and hexagonal boron nitride, encapsulating the ball-milled mixture, and sintering the encapsulated ball-milled mixture at a pressure of about 5-25 GPa and at a temperature of about 1000-2500 K.

  14. Retrieving Storm Electric Fields from Aircraft Field Mill Data. Part 1; Theory

    NASA Technical Reports Server (NTRS)

    Koshak, W. J.

    2006-01-01

    It is shown that the problem of retrieving storm electric fields from an aircraft instrumented with several electric field mill sensors can be expressed in terms of a standard Lagrange multiplier optimization problem. The method naturally removes aircraft charge from the retrieval process without having to use a high voltage stinger and linearly combined mill data values. It allows a variety of user-supplied physical constraints (the so-called side constraints in the theory of Lagrange multipliers) and also helps improve absolute calibration. Additionally, this paper introduces an alternate way of performing the absolute calibration of an aircraft that has some benefits over conventional analyses. It is accomplished by using the time derivatives of mill and pitch data for a pitch down maneuver performed at high (greater than 1 km) altitude. In Part II of this study, the above methods are tested and then applied to complete a full calibration of a Citation aircraft.

  15. Retrieving Storm Electric Fields From Aircraft Field Mill Data. Part I: Theory

    NASA Technical Reports Server (NTRS)

    Koshak, W. J.

    2005-01-01

    It is shown that the problem of retrieving storm electric fields from an aircraft instrumented with several electric field mill sensors can be expressed in terms of a standard Lagrange multiplier optimization problem. The method naturally removes aircraft charge from the retrieval process without having to use a high voltage stinger and linearly combined mill data values. It also allows a variety of user-supplied physical constraints (the so-called side constraints in the theory of Lagrange multipliers). Additionally, this paper introduces a novel way of performing the absolute calibration of an aircraft that has several benefits over conventional analyses. In the new approach, absolute calibration is completed by inspecting the time derivatives of mill and pitch data for a pitch down maneuver performed at high (greater than 1 km) altitude. In Part II of this study, the above methods are tested and then applied to complete a full calibration of a Citation aircraft.

  16. Relationship between the dough quality and content of specific glutenin proteins in wheat mill streams, and its application to making flour suitable for instant Chinese noodles.

    PubMed

    Yahata, Eriko; Maruyama-Funatsuki, Wakako; Nishio, Zenta; Yamamoto, Yoshihiko; Hanaoka, Akihiro; Sugiyama, Hisashi; Tanida, Masatoshi; Saruyama, Haruo

    2006-04-01

    The content of specific proteins such as high-molecular-weight glutenin subunits HMW-GS 5+10 and low-molecular-weight glutenin subunits LMW-GS KS2 in wheat mill streams of extra-strong Kachikei 33 wheat was quantified by SDS-PAGE and 2D-PAGE. The mill streams showed varied quantities of HMW-GS 5+10 (0.077 to 2.007 mg/g of mill stream), LMW-GS KS2 (0.018 to 0.586 mg/g of mill stream) and total protein (9.42% to 18.98%). The contents of these specific proteins in the mill streams were significantly correlated with the SDS sedimentation volume and the mixing properties, which are respective indices of specific loaf volume and dough strength. The contents of these specific glutenin proteins in the mill streams were therefore found to be significantly important for improving the dough quality suitable for bread and Chinese noodles. Accordingly, we present here the application of this information to the development of an effective method for producing mill streams with high quality and yield that are suitable for instant Chinese noodles.

  17. Determination of the boundary conditions of the grinding load in ball mills

    NASA Astrophysics Data System (ADS)

    Sharapov, Rashid R.

    2018-02-01

    The prospects of application in ball mills for grinding cement clinker with inclined partitions are shown. It is noted that ball mills with inclined partitions are more effective. An algorithm is proposed for calculating the power consumed by a ball mill with inclined inter-chamber partitions in which an axial movement of the ball load takes place. The boundary conditions in which the ball load is located are determined. The equations of bounding the grinding load are determined. The behavior of a grinding load is considered in view of the characteristic cross sections. The coordinates of the centers of gravity of the grinding load with a definite step and the shape of the cross sections are determined. It is theoretically shown that grinding load in some parts of the ball mill not only consumes, but also helps to rotate the ball mill. Methods for calculating complex analytical expressions for determining the coordinates of the centers of gravity of the grinding load under the conditions of its longitudinal motion have developed. The carried out researches allow to approach from the general positions to research of behavior of a grinding load in the ball mills equipped with various in-mill devices.

  18. Influence of pin and hammer mill on grinding characteristics, thermal and antioxidant properties of coriander powder.

    PubMed

    Barnwal, P; Singh, K K; Sharma, Alka; Choudhary, A K; Saxena, S N

    2015-12-01

    In present study, influence of grinding (hammer and pin mills) and moisture content (range: 6.4-13.6 % dry basis) on the quality traits of coriander powder were investigated. These include grinding parameters, colour parameters, specific heat, thermal conductivity, thermal diffusivity, glass transition temperature, essential oil, total phenolic content, total flavonoid content and DPPH scavenging (%) of coriander powder. For coriander seed, the geometric properties such as major, medium, minor dimensions, geometric mean diameter, arithmetic mean diameter, sphericity, surface area and volume of coriander seeds increased significantly with increasing moisture (6.4-13.6 % db). For coriander powder, the grinding parameters such as average particle size, volume surface mean diameter and volume mean diameter increased significantly with increasing moisture (6.4-13.6 % db). With the grinding method, the colour attributes of coriander powder such as L-value, a-value, b-value, hue angle and browning index varied significantly. It was observed that the specific heat followed second order polynomial relationship with temperature and moisture whereas thermal conductivity varied linearly with temperature and moisture content. The variation of glass transition temperature with moisture can be best represented in quadratic manner. Total flavonoid content (mg QE/g crude seed extract) and DPPH scavenging % activity of coriander powder is significantly affected by grinding methods. A lower value of specific heat was observed for hammer ground coriander powder as compared to pin mill ground coriander powder. The thermal conductivity of hammer mill ground coriander powder was higher as compared to pin mill ground coriander. It was observed that hammer mill yields more fine coriander powder in comparison to pin mill. The browning index was more in hammer mill ground coriander powder.

  19. Fracture behavior of metal-ceramic fixed dental prostheses with frameworks from cast or a newly developed sintered cobalt-chromium alloy.

    PubMed

    Krug, Klaus-Peter; Knauber, Andreas W; Nothdurft, Frank P

    2015-03-01

    The aim of this study was to investigate the fracture behavior of metal-ceramic bridges with frameworks from cobalt-chromium-molybdenum (CoCrMo), which are manufactured using conventional casting or a new computer-aided design/computer-aided manufacturing (CAD/CAM) milling and sintering technique. A total of 32 metal-ceramic fixed dental prostheses (FDPs), which are based on a nonprecious metal framework, was produced using a conventional casting process (n = 16) or a new CAD/CAM milling and sintering process (n = 16). Eight unveneered frameworks were manufactured using each of the techniques. After thermal and mechanical aging of half of the restorations, all samples were subjected to a static loading test in a universal testing machine, in which acoustic emission monitoring was performed. Three different critical forces were revealed: the fracture force (F max), the force at the first reduction in force (F decr1), and the force at the critical acoustic event (F acoust1). With the exception of the veneered restorations with cast or sintered metal frameworks without artificial aging, which presented a statistically significant but slightly different F max, no statistically significant differences between cast and CAD/CAM sintered and milled FDPs were detected. Thermal and mechanical loading did not significantly affect the resulting forces. Cast and CAD/CAM milled and sintered metal-ceramic bridges were determined to be comparable with respect to the fracture behavior. FDPs based on CAD/CAM milled and sintered frameworks may be an applicable and less technique-sensitive alternative to frameworks that are based on conventionally cast frameworks.

  20. Effect of powder reactivity on fabrication and properties of NiAl/Al2O3 composite coated on cast iron using spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Beyhaghi, Maryam; Kiani-Rashid, Ali-Reza; Kashefi, Mehrdad; Khaki, Jalil Vahdati; Jonsson, Stefan

    2015-07-01

    Powder mixtures of Ni, NiO and Al are ball milled for 1 and 10 h. X-ray diffractometry and differential thermal analysis show that while ball milling for 1 h produced mechanically activated powder; 10 h ball milling produced NiAl and Al2O3 phases. Dense NiAl/Al2O3 composite coatings are formed on gray cast iron substrate by spark plasma sintering (SPS) technique. The effect of powder reactivity on microstructure, hardness and scratch hardness of NiAl/Al2O3 coatings after SPS is discussed. Results show that in the coating sample made of mechanically activated powder in situ synthesis of NiAl/Al2O3 composite coating is fulfilled and a thicker well-formed diffusion bond layer at the interface between coating and substrate is observed. The diffusion of elements across the bond layers and phase evolution in the bond layers were investigated. No pores or cracks were observed at the interface between coating layer and substrate in any of samples. Higher Vickers hardness and scratch hardness values in coating made of 10 h ball milled powder than in coating fabricated from 1 h ball milled powder are attributed to better dispersion of Al2O3 reinforcement particles in NiAl matrix and nano-crystalline structure of NiAl matrix. Scratched surface of coatings did not reveal any cracking or spallation at coating-substrate interface indicating their good adherence at test conditions.

  1. 40 CFR 430.74 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Mechanical Pulp... mechanical pulp facilities where pulp and paper at groundwood mills are produced through the application of the thermo-mechanical process; mechanical pulp facilities where the integrated production of pulp and...

  2. 40 CFR 430.72 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mechanical Pulp Subcategory § 430.72 Effluent limitations representing the degree of effluent reduction... limitations for mechanical pulp facilities where pulp and paper at groundwood chemi-mechanical mills are... times. Subpart G [BPT effluent limitations for mechanical pulp facilities where pulp and paper at...

  3. 40 CFR 430.74 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Mechanical Pulp... mechanical pulp facilities where pulp and paper at groundwood mills are produced through the application of the thermo-mechanical process; mechanical pulp facilities where the integrated production of pulp and...

  4. HYM-flation: Yang-Mills cosmology with Horndeski coupling

    NASA Astrophysics Data System (ADS)

    Davydov, E.; Gal'tsov, D.

    2016-02-01

    We propose new mechanism for inflation using classical SU (2) Yang-Mills (YM) homogeneous and isotropic field non-minimally coupled to gravity via Horndeski prescription. This is the unique generally and gauge covariant ghost-free YM theory with the curvature-dependent action leading to second-order gravity and Yang-Mills field equations. We show that its solution space contains de Sitter boundary to which the trajectories are attracted for some finite time, ensuring the robust inflation with a graceful exit. The theory can be generalized to include the Higgs field leading to two-steps inflationary scenario, in which the Planck-scale YM-generated inflation naturally prepares the desired initial conditions for the GUT-scale Higgs inflation.

  5. 6. VIEW NORTHWEST OF TRANSMISSION MECHANISMS; TURBINE BAYS AT LEFT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW NORTHWEST OF TRANSMISSION MECHANISMS; TURBINE BAYS AT LEFT, GENERATOR AT EXTREME REAR - Willimantic Linen Company, Mill No. 2, South Main Street opposite Durham Street, North bank Willimantic River, Windham, Windham County, CT

  6. 40 CFR 430.76 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... through the application of the thermo-mechanical process] Pollutant or pollutant property Maximum for any...) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Mechanical Pulp... mechanical pulp facilities where pulp and paper at groundwood mills are produced through the application of...

  7. Controlling exfoliation in order to minimize damage during dispersion of long SWCNTs for advanced composites

    PubMed Central

    Yoon, Howon; Yamashita, Motoi; Ata, Seisuke; Futaba, Don N.; Yamada, Takeo; Hata, Kenji

    2014-01-01

    We propose an approach to disperse long single-wall carbon nanotubes (SWCNTs) in a manner that is most suitable for the fabrication of high-performance composites. We compare three general classes of dispersion mechanisms, which encompass 11 different dispersion methods, and we have dispersed long SWCNTs, short multi-wall carbon nanotubes, and short SWCNTs in order to understand the most appropriate dispersion methods for the different types of CNTs. From this study, we have found that the turbulent flow methods, as represented by the Nanomizer and high-pressure jet mill methods, produced unique and superior dispersibility of long SWCNTs, which was advantageous for the fabrication of highly conductive composites. The results were interpreted to imply that the biaxial shearing force caused an exfoliation effect to disperse the long SWCNTs homogeneously while suppressing damage. A conceptual model was developed to explain this dispersion mechanism, which is important for future work on advanced CNT composites. PMID:24469607

  8. Effect of ball milling time on thermoelectric properties of bismuth telluride nanomaterials

    NASA Astrophysics Data System (ADS)

    Khade, Poonam; Bagwaiya, Toshi; Bhattacharaya, Shovit; Singh, Ajay; Jha, Purushottam; Shelke, Vilas

    2018-04-01

    The effect of different milling time on thermoelectric properties of bismuth telluride (Bi2Te3) was investigated. The nanomaterial was prepared by varying the ball milling time and followed by hot press sintering. The crystal structure and phase formation were verified by X-ray diffraction and Raman Spectroscopy. The experimental results show that electrical conductivity increases whereas thermal conductivity decreases with increasing milling time. The negative sign of seebeck coefficient indicate the n-type nature with majority charge carriers of electrons. A maximum figure of merit about 0.55 is achieved for l5hr ball milled Bi2Te3 sample. The present study demonstrates the simple and cost-effective method for synthesis of Bi2Te3 thermoelectric material at large scale thermoelectric applications.

  9. Preparation of Mo-Re-C samples containing Mo7Re13C with the β-Mn-type structure by solid state reaction of planetary-ball-milled powder mixtures of Mo, Re and C, and their crystal structures and superconductivity

    NASA Astrophysics Data System (ADS)

    Oh-ishi, Katsuyoshi; Nagumo, Kenta; Tateishi, Kazuya; Takafumi, Ohnishi; Yoshikane, Kenta; Sugiyama, Machiko; Oka, Kengo; Kobayashi, Ryota

    2017-01-01

    Mo-Re-C compounds containing Mo7Re13C with the β-Mn structure were synthesized with high-melting-temperature metals Mo, Re, and C powders using a conventional solid state method with a planetary ball milling machine instead of the arc melting method. Use of the ball milling machine was necessary to obtain Mo7Re13C with the β-Mn structure using the solid state method. Almost single-phase Mo7Re13C with a trace of impurity were obtained using the synthesis method. By XRF and lattice parameter measurements on the samples, Fe element existed in the compound synthesized using the planetary ball milling machine with a pot and balls made of steel, though Fe element was not detected in the compound synthesized using a pot and balls made of tungsten carbide. The former compound containg the Fe atom did not show superconductivity but the latter compound without the Fe atom showed superconductivity at 6.1 K.

  10. (Bi, Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} superconductor and method of making same utilizing sinter-forging

    DOEpatents

    Chen, N.; Goretta, K.C.; Lanagan, M.T.

    1998-10-13

    A (BiPb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x}(Bi223) superconductor with high J{sub c}, phase purity, density and mechanical strength is formed from Bi2223 powder which is synthesized from a mixture of Bi{sub 2}O{sub 3}, PbO, SrCO{sub 3}, CaCo{sub 3} and CuO. The mixture is milled, then dried and calcined to synthesize the Bi2223 powder with the desired phase purity. The calcination is performed by heating the dried mixture for 50 hours at 840 C. The partially synthesized powder is then milled for 1--4 hours before calcining further for another 50 hours at 855 C to complete the synthesis. After calcination, the Bi2223 powder is cold pressed to a predetermined density and sinter forged under controlled temperature and time to form a Bi2223 superconductor with the desired superconducting properties. 5 figs.

  11. (Bi, Pb).sub.2, Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.x superconductor and method of making same utilizing sinter-forging

    DOEpatents

    Chen, Nan; Goretta, Kenneth C.; Lanagan, Michael T.

    1998-01-01

    A (BiPb).sub.2 Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.x (Bi223) superconductor with high J.sub.c, phase purity, density and mechanical strength is formed from Bi2223 powder which is synthesized from a mixture of Bi.sub.2 O.sub.3, PbO, SrCO.sub.3, CaCo.sub.3 and CuO. The mixture is milled, then dried and calcined to synthesize the Bi2223 powder with the desired phase purity. The calcination is performed by heating the dried mixture for 50 hours at 840.degree. C. The partially synthesized powder is then milled for 1-4 hours before calcining further for another 50 hours at 855.degree. C. to complete the synthesis. After calcination, the Bi2223 powder is cold pressed to a predetermined density and sinter forged under controlled temperature and time to form a Bi2223 superconductor with the desired superconducting properties.

  12. Innovative Application of Mechanical Activation for Rare Earth Elements Recovering: Process Optimization and Mechanism Exploration

    PubMed Central

    Tan, Quanyin; Deng, Chao; Li, Jinhui

    2016-01-01

    With the rapidly expanding use of fluorescent lamps (FLs) and increasing interest in conservation and sustainable utilization of critical metals such as rare earth elements (REEs), the recovering of REEs from phosphors in waste FLs is becoming a critical environmental and economic issue. To effectively recycle REEs with metallurgical methods, mechanical activation by ball milling was introduced to pretreat the waste phosphors. This current study put the emphasis on the mechanical activation and leaching processes for REEs, and explored the feasibility of the method from both theoretical and practical standpoints. Results showed physicochemical changes of structural destruction and particle size reduction after mechanical activation, leading to the easy dissolution of REEs in the activated samples. Under optimal conditions, dissolution yields of 89.4%, 93.1% and 94.6% for Tb, Eu and Y, respectively, were achieved from activated waste phosphors using hydrochloric acid as the dissolution agent. The shrinking core model proved to be the most applicable for the leaching procedure, with an apparent activation energy of 10.96 ± 2.79 kJ/mol. This novel process indicates that mechanical activation is an efficient method for recovering REEs from waste phosphors, and it has promising potential for REE recovery with low cost and high efficiency. PMID:26819083

  13. Innovative Application of Mechanical Activation for Rare Earth Elements Recovering: Process Optimization and Mechanism Exploration.

    PubMed

    Tan, Quanyin; Deng, Chao; Li, Jinhui

    2016-01-28

    With the rapidly expanding use of fluorescent lamps (FLs) and increasing interest in conservation and sustainable utilization of critical metals such as rare earth elements (REEs), the recovering of REEs from phosphors in waste FLs is becoming a critical environmental and economic issue. To effectively recycle REEs with metallurgical methods, mechanical activation by ball milling was introduced to pretreat the waste phosphors. This current study put the emphasis on the mechanical activation and leaching processes for REEs, and explored the feasibility of the method from both theoretical and practical standpoints. Results showed physicochemical changes of structural destruction and particle size reduction after mechanical activation, leading to the easy dissolution of REEs in the activated samples. Under optimal conditions, dissolution yields of 89.4%, 93.1% and 94.6% for Tb, Eu and Y, respectively, were achieved from activated waste phosphors using hydrochloric acid as the dissolution agent. The shrinking core model proved to be the most applicable for the leaching procedure, with an apparent activation energy of 10.96 ± 2.79 kJ/mol. This novel process indicates that mechanical activation is an efficient method for recovering REEs from waste phosphors, and it has promising potential for REE recovery with low cost and high efficiency.

  14. Innovative Application of Mechanical Activation for Rare Earth Elements Recovering: Process Optimization and Mechanism Exploration

    NASA Astrophysics Data System (ADS)

    Tan, Quanyin; Deng, Chao; Li, Jinhui

    2016-01-01

    With the rapidly expanding use of fluorescent lamps (FLs) and increasing interest in conservation and sustainable utilization of critical metals such as rare earth elements (REEs), the recovering of REEs from phosphors in waste FLs is becoming a critical environmental and economic issue. To effectively recycle REEs with metallurgical methods, mechanical activation by ball milling was introduced to pretreat the waste phosphors. This current study put the emphasis on the mechanical activation and leaching processes for REEs, and explored the feasibility of the method from both theoretical and practical standpoints. Results showed physicochemical changes of structural destruction and particle size reduction after mechanical activation, leading to the easy dissolution of REEs in the activated samples. Under optimal conditions, dissolution yields of 89.4%, 93.1% and 94.6% for Tb, Eu and Y, respectively, were achieved from activated waste phosphors using hydrochloric acid as the dissolution agent. The shrinking core model proved to be the most applicable for the leaching procedure, with an apparent activation energy of 10.96 ± 2.79 kJ/mol. This novel process indicates that mechanical activation is an efficient method for recovering REEs from waste phosphors, and it has promising potential for REE recovery with low cost and high efficiency.

  15. Study the effect of mechanical alloying parameters on synthesis of Cr{sub 2}Nb–Al{sub 2}O{sub 3} nanocomposite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shayesteh, Payam, E-mail: shayesteh.payam@gmail.com; Mirdamadi, Shamseddin; Razavi, Hossein

    2014-01-01

    Graphical abstract: - Highlights: • Cr{sub 2}Nb–Al{sub 2}O{sub 3} nanocomposite synthesized through MA. • Effect of BPR, rotating speed, milling time and PCA concentration investigated. • After annealing at 1100 °C crystalline phase were appeared. • Williamson–Hall analysis was used in order to study the grain size of nano composite. - Abstract: In this study, Cr{sub 2}Nb–20 vol.% Al{sub 2}O{sub 3} nanocomposite was prepared successfully by mechanochemical reaction between Al, Nb and Cr{sub 2}O{sub 3} powders. Amorphization of powder occurred during mechanical alloying because of high energy collisions between powders and steel balls in milling container which transfer high degreemore » of energy to powders. Therefore, annealing was needed to form crystalline phases. The influence of different mechanical alloying parameters such as BPR, rotating speed, milling time and PCA concentration on synthesis of composite material were investigated. After mechanical alloying, the powder was encapsulated in quartz and then annealed at 1100 °C for 3 h. After annealing, 3 different phases were appeared (Cr{sub 2}Nb (cubic), Cr{sub 2}Nb (hexagonal) and α-Al{sub 2}O{sub 3}). The structural changes of powder particles during mechanical alloying were studied by X-ray diffractometry (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM)« less

  16. Reduction of metal oxides through mechanochemical processing

    DOEpatents

    Froes, Francis H.; Eranezhuth, Baburaj G.; Senkov, Oleg N.

    2000-01-01

    The low temperature reduction of a metal oxide using mechanochemical processing techniques. The reduction reactions are induced mechanically by milling the reactants. In one embodiment of the invention, titanium oxide TiO.sub.2 is milled with CaH.sub.2 to produce TiH.sub.2. Low temperature heat treating, in the range of 400.degree. C. to 700.degree. C., can be used to remove the hydrogen in the titanium hydride.

  17. Microstructure Engineering in Hot Strip Mills, Part 1 of 2: Integrated mathematical Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.K. Brimacombe; I.V. Samaraseker; E.B. Hawbolt

    1998-09-30

    This report describes the work of developing an integrated model used to predict the thermal history, deformation, roll forces, microstructural evaluation and mechanical properties of steel strip in a hot-strip mill. This achievement results from a join research effort that is part of the American Iron and Steel Institute's (AISI) Advanced Process Control Program, a collaboration between the U.S. DOE and fifteen North American steel makers.

  18. 40 CFR 430.73 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mechanical Pulp Subcategory § 430.73 Effluent limitations guidelines representing the degree of effluent...) The following applies to: mechanical pulp facilities where the integrated production of pulp and coarse paper, molded pulp products, and newsprint at groundwood mills occurs; and mechanical pulp...

  19. Mechanical properties and superficial characterization of a milled CAD-CAM glass fiber post.

    PubMed

    Ruschel, George Hebert; Gomes, Érica Alves; Silva-Sousa, Yara Terezinha; Pinelli, Rafaela Giedra Pirondi; Sousa-Neto, Manoel Damião; Pereira, Gabriel Kalil Rocha; Spazzin, Aloísio Oro

    2018-06-01

    Computer-aided design and computer-aided manufacturing (CAD-CAM) technology may be used to produce custom intraradicular posts, but studies are lacking. The purpose of this in vitro study was to evaluate the flexural properties (strength and modulus), failure mode, superficial morphology, and roughness of two CAD-CAM glass fiber posts (milled at different angulations) compared with a commercially available prefabricated glass fiber post. Three groups were tested (n = 10): PF (control group)- prefabricated glass fiber post; C-Cd-diagonally milled post; and C-Cv-vertically milled post. A 3-dimensional virtual image was obtained from a prefabricated post, which guided the posterior milling of posts from a glass fiber disk (Trilor Blanks; Bioloren). Surface roughness and morphology were evaluated using confocal laser microscopy. Flexural strength and modulus were evaluated with the 3-point bend test. Data were submitted to one-way analysis of variance followed by the Student-Newman-Keuls post hoc test (α = 0.05). The fractured surfaces were evaluated with scanning electron microscopy. The superficial roughness was highest for PF and similar for the experimental groups. Morphological analysis shows different sizes and directions of the glass fibers along the post. The flexural strength was highest for PF (900.1 ± 30.4 > C-Cd - 357.2 ± 30.7 > C-Cv 101.8 ± 4.3 MPa) as was the flexural modulus (PF 19.3 ± 2.0 GPa > C-Cv 10.1 ± 1.9 GPa > C-Cd 7.8 ± 1.3 GPa). A CAD-CAM milled post seems a promising development, but processing requires optimizing, as the prefabricated post still shows better mechanical properties and superficial characteristics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. [Application of three control banding tools to occupational health risk assessment of titanium dioxide manufacturing factory].

    PubMed

    Xu, H D; Zhao, L; Tang, S C; Zhang, J; Kong, F L; Jia, G

    2016-12-20

    Objective: To explore and validate suitable risk assessment methods for titanium dioxide though applying three risk assessment tools for nanomaterials based on the control banding (CB) approach. Methods: A factory manufacturing titanium dioxide in Jinan city, Shandong province, was assessed using a quantitative exposure method and qualitative risk assessment methods in September, 2014. A condensation particle counter equipment was used to monitor the number concentration of particles at packaging workshop and jet milling workshop. We employed three control banding tools, including CB nanotool, Stoffenmanager nano and the Guidance on working safely with nanomaterials and nanoproducts (GWSNN) to evaluate the two workshops, then compared the evaluation results. Results: The increases of particle concentrations were generated directly by packaging and jet milling processes, the number concentration from (3.52±1.46) ×10(4)/cm(3) to (14.70±8.86) ×10(4)/cm(3) at packaging workshop and from (0.97±0.25) ×10(4)/cm(3) to (1.26±0.35) ×10(4)/cm(3) at milling workshop (both P <0.05) . The number concentrations at packaging workshop were higher than those at jet milling workshop during both manufacturing and break times (both P <0.05) . The results of CB nanotool showed that the risk level of the packaging workshop was classified as high and the risk level of the jet milling workshop was classified asmedium. The results of Stoffenmanager nano showed that the risk level of the packaging workshop was classified as medium and the risk level of the jet milling workshop was classified as low. The results of GWSNN showed that the risk level of packaging workshop was classified as high and the risk level of jet milling workshop was classified as low. Conclusion: The results of evaluation based on the three control banding tools are related and aligned with the results of quantitative monitoring, so they are all suitable to perform occupational health risk assessment on industrial scale production of titanium dioxideto some extent.

  1. Few-Layer MXenes Delaminated via High-Energy Mechanical Milling for Enhanced Sodium-Ion Batteries Performance.

    PubMed

    Wu, Yuting; Nie, Ping; Wang, Jiang; Dou, Hui; Zhang, Xiaogang

    2017-11-15

    The global availability of sodium makes the exploration of superior sodium-ion batteries attractive for energy storage application. MXenes, as one of the most promising anodes for sodium-ion batteries, have been reported to have many advantages, such as high electronic conductivity and a hydrophilic surface. However, the compact multilayer structure and deficient delamination significantly inhibits their application, requiring high energy and showing decreased storage capacity and poor rate capabilities. Few-layer MXene has been proved to benefit superior electrochemical properties with a better ionic conductivity and two-dimensional layer structure. Herein, we report scale delamination of few-layer MXene nanosheets as anodes for sodium-ion batteries, which are prepared via an organic solvent assist high-energy mechanical-milling method. This approach efficiently prevents the oxidation of MXene and produces few-layer nanosheets structure, facilitating fast electron transport and Na + diffusion. Electrochemical tests demonstrate that the few-layer MXenes show high specific capacity, excellent cycle stability, and good rate performance. Specifically, few-layer MXene nanosheets deliver a high reversible capacity of 267 mA h g -1 at a current density of 0.1 A g -1 . After cycling 1500 cycles at a high rate of 1 A g -1 , a reversible capacity of 76 mA h g -1 could be maintained.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Häusler, I., E-mail: ines.haeusler@bam.de; Dörfel, I., E-mail: Ilona.doerfel@bam.de; Peplinski, B., E-mail: Burkhard.peplinski@bam.de

    A model system was used to simulate the properties of tribofilms which form during automotive braking. The model system was prepared by ball milling of a blend of 70 vol.% iron oxides, 15 vol.% molybdenum disulfide and 15 vol.% graphite. The resulting mixture was characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and various transmission electron microscopic (TEM) methods, including energy dispersive X-ray spectroscopy (EDXS), high resolution investigations (HRTEM) with corresponding simulation of the HRTEM images, diffraction methods such as scanning nano-beam electron diffraction (SNBED) and selected area electron diffraction (SAED). It could be shown that the ballmore » milling caused a reduction of the grain size of the initial components to the nanometer range. Sometimes even amorphization or partial break-down of the crystal structure was observed for MoS{sub 2} and graphite. Moreover, chemical reactions lead to a formation of surface coverings of the nanoparticles by amorphous material, molybdenum oxides, and iron sulfates as derived from XPS. - Highlights: • Ball milling of iron oxides, MoS{sub 2}, and graphite to simulate a tribofilm • Increasing coefficient of friction after ball milling of the model blend • Drastically change of the diffraction pattern of the powder mixture • TEM & XPS showed the components of the milled mixture and the process during milling. • MoS{sub 2} and graphite suffered a loss in translation symmetry or became amorphous.« less

  3. Process parameter dependent growth phenomena of naproxen nanosuspension manufactured by wet media milling.

    PubMed

    Bitterlich, A; Laabs, C; Krautstrunk, I; Dengler, M; Juhnke, M; Grandeury, A; Bunjes, H; Kwade, A

    2015-05-01

    The production of nanosuspensions has proved to be an effective method for overcoming bioavailability challenges of poorly water soluble drugs. Wet milling in stirred media mills and planetary ball mills has become an established top-down-method for producing such drug nanosuspensions. The quality of the resulting nanosuspension is determined by the stability against agglomeration on the one hand, and the process parameters of the mill on the other hand. In order to understand the occurring dependencies, a detailed screening study, not only on adequate stabilizers, but also on their optimum concentration was carried out for the active pharmaceutical ingredient (API) naproxen in a planetary ball mill. The type and concentration of the stabilizer had a pronounced influence on the minimum particle size obtained. With the best formulation the influence of the relevant process parameters on product quality was investigated to determine the grinding limit of naproxen. Besides the well known phenomenon of particle agglomeration, actual naproxen crystal growth and morphology alterations occurred during the process which has not been observed before. It was shown that, by adjusting the process parameters, those effects could be reduced or eliminated. Thus, besides real grinding and agglomeration a process parameter dependent ripening of the naproxen particles was identified to be a concurrent effect during the naproxen fine grinding process. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Influence of residual basal area on longleaf pine (Pinus palustris Mill.) first year germination and establishment under selection silviculture

    Treesearch

    Ferhat Kara; Edward F. Loewenstein

    2015-01-01

    Even-aged silvicultural methods have been successfully used to manage longleaf pine (Pinus palustris Mill.) forests for wood production; however, successful use of uneven-aged methods to manage this ecosystem is less well documented. In this study, the effects of varying levels of residual basal area (RBA) (9.2, 13.8, and 18.4 m2...

  5. Artifacts introduced by ion milling in Al-Li-Cu alloys.

    PubMed

    Singh, A K; Imam, M A; Sadananda, K

    1988-04-01

    Ion milling is commonly used to prepare specimens for observation under transmission electron microscope (TEM). This technique sometimes introduces artifacts in specimens contributing to misleading interpretation of TEM results as observed in the present investigation of Al-Li-Cu alloys. This type of alloy, in general, contains several kinds of precipitates, namely delta', T1, and theta'. It is found that ion milling even for a short time produces drastic changes in the precipitate characteristics as compared to standard electropolishing methods of specimen preparation for TEM. Careful analysis of selected area diffraction patterns and micrographs shows that after ion milling delta' precipitates are very irregular, whereas other precipitates coarsen and they are surrounded by misfit dislocations. In situ hot-stage TEM experiments were performed to relate the microstructure to that observed in the ion-milled specimen. Results and causes of ion milling effects on the microstructure are discussed in relation to standard electropolishing techniques and in situ hot-stage experiment.

  6. Modeling of Surface Geometric Structure State After Integratedformed Milling and Finish Burnishing

    NASA Astrophysics Data System (ADS)

    Berczyński, Stefan; Grochała, Daniel; Grządziel, Zenon

    2017-06-01

    The article deals with computer-based modeling of burnishing a surface previously milled with a spherical cutter. This method of milling leaves traces, mainly asperities caused by the cutting crossfeed and cutter diameter. The burnishing process - surface plastic treatment - is accompanied by phenomena that take place right in the burnishing ball-milled surface contact zone. The authors present the method for preparing a finite element model and the methodology of tests for the assessment of height parameters of a surface geometrical structure (SGS). In the physical model the workpieces had a cuboidal shape and these dimensions: (width × height × length) 2×1×4.5 mm. As in the process of burnishing a cuboidal workpiece is affected by plastic deformations, the nonlinearities of the milled item were taken into account. The physical model of the process assumed that the burnishing ball would be rolled perpendicularly to milling cutter linear traces. The model tests included the application of three different burnishing forces: 250 N, 500 N and 1000 N. The process modeling featured the contact and pressing of a ball into the workpiece surface till the desired force was attained, then the burnishing ball was rolled along the surface section of 2 mm, and the burnishing force was gradually reduced till the ball left the contact zone. While rolling, the burnishing ball turned by a 23° angle. The cumulative diagrams depict plastic deformations of the modeled surfaces after milling and burnishing with defined force values. The roughness of idealized milled surface was calculated for the physical model under consideration, i.e. in an elementary section between profile peaks spaced at intervals of crossfeed passes, where the milling feed fwm = 0.5 mm. Also, asperities after burnishing were calculated for the same section. The differences of the obtained values fall below 20% of mean values recorded during empirical experiments. The adopted simplification in after-milling SGS modeling enables substantial acceleration of the computing process. There is a visible reduction of the Ra parameter value for milled and burnished surfaces as the burnishing force rises. The tests determined an optimal burnishing force at a level of 500 N (lowest Ra = 0.24 μm). Further increase in the value of burnishing force turned out not to affect the surface roughness, which is consistent with the results obtained from experimental studies.

  7. Geochemical investigation of UMTRAP designated site at Durango, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markos, G.; Bush, K.J.

    1983-09-01

    This report is the result of a geochemical investigation of the former uranium mill and tailings site at Durango, Colorado. This is one in a series of site specific geochemical investigations performed on the inactive uranium mill tailings included in the UMTRA Project. The objectives of the investigation are to characterize the geochemistry, to determine the contaminant distribution resulting from the former milling activities and tailings, and to infer chemical pathways and transport mechanisms from the contaminant distribution. The results will be used to model contaminant migration and to develop criteria for long-term containment media such as a cover systemmore » which is impermeable to contaminant migration. This report assumes a familiarity with the hydrologic conditions of the site and the geochemical concepts underlying the investigation. The results reported are based on a one-time sampling of waters and solid material from the background, the area adjacent to the site, and the site. The solid samples are water extracted remove easily soluble salts and acids extracted to remove cabonates and hydroxides. The water extracts and solid samples were analyzed for the major and trace elements. A limited number of samples were analyzed for radiological components. The report includes the methods of sampling, sample processing, analysis, and data interpretation. Three major conclusions are: (1) carbonate salts and low TDS characterize the tailings; (2) the adjacent area and raffinate ponds contain contaminants deposited by a single event of fluid permeation of the soils; and (3) the Animas River adjacent to the site has elevated gross alpha activity attributed to /sup 226/Ra in the sediments derived from the tailings or milling activities.« less

  8. Multifunctional Structural Composite Batteries for U.S. Army Applications

    DTIC Science & Technology

    2007-09-01

    rechargeability, and mechanical integrity. LiCoO2 and LiFePO4 are the cathode materials under evaluation. The former is currently used in a large...methods for circumventing or otherwise handling its known limitations. LiFePO4 , a recent material with less established knowledge, has a...Mesh (3 Days, 1 Sided) Milled On Disk (5 days) Ideal A ve ra ge C ap ac ity (m A h/ g LiFePO4 LiCoO2 Figure 4. Average capacity at third cycle

  9. Effects of ball milling on the physicochemical and sorptive properties of biochar: Experimental observations and governing mechanisms.

    PubMed

    Lyu, Honghong; Gao, Bin; He, Feng; Zimmerman, Andrew R; Ding, Cheng; Huang, Hua; Tang, Jingchun

    2018-02-01

    With the goal of combining the advantages of ball-milling and biochar technologies, a variety of ball-milled biochars (BM-biochars) were synthesized, characterized, and tested for nickel (Ni(II)) removal from aqueous solution. Ball milling increased only the external surface area of low temperature biochars, but still dramatically enhanced their ability to sorb aqueous Ni(II). For higher temperature biochars with relatively low surface area, ball milling increased both external and internal surface area. Measurements of pH, zeta potential, stability, and Boehm titration demonstrated that ball milling also added oxygen-containing functional groups (e.g., carboxyl, lactonic, and hydroxyl) to biochar's surface. With these changed, all the BM-biochars showed much better Ni(II) removal efficiency than unmilled biochars. Ball-milled 600 °C bagasse biochar (BMBG600) showed the greatest Ni(II) adsorption capacity (230-650 compared to 26-110 mmol/kg for unmilled biochar) and the adsorption was dosage and pH dependent. Compared with the unmilled biochar, BMBG600 also displayed faster adsorption kinetics, likely due to an increase in rates of intra-particle diffusion in the latter. Experimental and modeling results suggest that the increase in BM-biochar's external and internal surface areas exposed its graphitic structure, thus enhancing Ni(II) adsorption via strong cation-π interaction. In addition, the increase in acidic surface functional groups enhanced Ni(II) adsorption by BM-biochar via electrostatic interaction and surface complexation. Ball milling thus has great potential to increase the efficiency of environmentally friendly biochar for various environmental applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effect of ball milling on the physicochemical properties of atorvastatin calcium sesquihydrate: the dissolution kinetic behaviours of milled amorphous solids.

    PubMed

    Kobayashi, Makiko; Hattori, Yusuke; Sasaki, Tetsuo; Otsuka, Makoto

    2017-01-01

    The purposes of this study were to clarify the amorphization by ball milling of atorvastatin calcium sesquihydrate (AT) and to analyse the change in dissolution kinetics. The amorphous AT was prepared from crystal AT by ball milling and analysed in terms of the changes of its physicochemical properties by powder X-ray diffraction analysis (XRD), thermal analysis and infrared spectroscopy (IR). Moreover, to evaluate the usefulness of the amorphous form for pharmaceutical development, intrinsic solubility of the ground product was evaluated using a dissolution kinetic method. The XRD results indicated that crystalline AT was transformed into amorphous solids by more than 30-min milling. The thermal analysis result suggested that chemical potential of the ground AT are changed significantly by milling. The IR spectra of the AT showed the band shift from the amide group at 3406 cm -1 with an intermolecular hydrogen bond to a free amide group at 3365 cm -1 by milling. The dissolution of amorphous AT follows a dissolution kinetic model involving phase transformation. The initial dissolution rate of the ground product increased with the increase in milling time to reflect the increase in the intrinsic solubility based on the amorphous state. © 2016 Royal Pharmaceutical Society.

  11. A Novel Role of Eruca sativa Mill. (Rocket) Extract: Antiplatelet (NF-κB Inhibition) and Antithrombotic Activities

    PubMed Central

    Fuentes, Eduardo; Alarcón, Marcelo; Fuentes, Manuel; Carrasco, Gilda; Palomo, Iván

    2014-01-01

    Background: Epidemiological studies have shown the prevention of cardiovascular diseases through the regular consumption of vegetables. Eruca sativa Mill., commonly known as rocket, is a leafy vegetable that has anti-inflammatory activity. However, its antiplatelet and antithrombotic activities have not been described. Methods: Eruca sativa Mill. aqueous extract (0.1 to 1 mg/mL), was evaluated on human platelets: (i) P-selectin expression by flow cytometry; (ii) platelet aggregation induced by ADP, collagen and arachidonic acid; (iii) IL-1β, TGF-β1, CCL5 and thromboxane B2 release; and (iv) activation of NF-κB and PKA by western blot. Furthermore, (v) antithrombotic activity (200 mg/kg) and (vi) bleeding time in murine models were evaluated. Results: Eruca sativa Mill. aqueous extract (0.1 to 1 mg/mL) inhibited P-selectin expression and platelet aggregation induced by ADP. The release of platelet inflammatory mediators (IL-1β, TGF-β1, CCL5 and thromboxane B2) induced by ADP was inhibited by Eruca sativa Mill. aqueous extract. Furthermore, Eruca sativa Mill. aqueous extract inhibited NF-κB activation. Finally, in murine models, Eruca sativa Mill. aqueous extract showed significant antithrombotic activity and a slight effect on bleeding time. Conclusion: Eruca sativa Mill. presents antiplatelet and antithrombotic activity. PMID:25514563

  12. Enhanced Magnetic Properties of Nd15Fe77B8 Alloy Powders Produced by Melt-Spinning Technique

    NASA Astrophysics Data System (ADS)

    Öztürk, Sultan; İcin, Kürşat; Öztürk, Bülent; Topal, Uğur; Odabaşı, Hülya Kaftelen; Göbülük, Metin; Cora, Ömer Necati

    2017-10-01

    Rapidly solidified Nd15Fe77B8 alloy powders were produced by means of melt-spinning method in high-vacuum atmosphere to achieve improved magnetic and thermal properties. To this goal, a vacuum milling apparatus was designed and constructed to ball-mill the melt-spun powders in a surfactant active atmosphere. Various milling times were experimented to reveal the effect of the milling time on the mean particle size and other size-dependent properties such as magnetism and Curie temperature. Grain structure, cooling rate, and phase structure of the produced powders were also investigated. The Curie points shifted to higher temperatures from the ingot condition to surfactant active ball-milling and the values for Nd15Fe77B8 ingot alloy, melt-spun powders, and surfactant active ball-milled powders were 552 K, 595 K, and 604 K (279 °C, 322 °C, and 331 °C), respectively. It was noted that the surfactant active ball-milling process improved the magnetic and thermal properties of melt-spun Nd15Fe77B8 alloy powders. Compared to relevant literature, the coercivity of powders increased significantly with increasing milling time and decreasing in powder size. The coercivity value as high as 3427 kA m-1 was obtained.

  13. Microstructure and magnetic behavior of Cu-Co-Si ternary alloy synthesized by mechanical alloying and isothermal annealing

    NASA Astrophysics Data System (ADS)

    Chabri, Sumit; Bera, S.; Mondal, B. N.; Basumallick, A.; Chattopadhyay, P. P.

    2017-03-01

    Microstructure and magnetic behavior of nanocrystalline 50Cu-40Co-10Si (at%) alloy prepared by mechanical alloying and subsequent isothermal annealing in the temperature range of 450-650 °C have been studied. Phase evolution during mechanical alloying and isothermal annealing is characterized by X-ray diffraction (XRD), differential thermal analyzer (DTA), high resolution transmission electron microscopy (HRTEM) and magnetic measurement. Addition of Si has been found to facilitate the metastable alloying of Co in Cu resulting into the formation of single phase solid solution having average grain size of 9 nm after ball milling for 50 h duration. Annealing of the ball milled alloy improves the magnetic properties significantly and best combination of magnetic properties has been obtained after annealing at 550 °C for 1 h duration.

  14. Crystal Structure Analysis of Electromagnetic Wave Absorber Material BaFe12-xTix/2Znx/2O19Based

    NASA Astrophysics Data System (ADS)

    Delina, M.; Nenni, N.; Adi, W. A.

    2018-04-01

    The optimization of BaFe12-xTix/2Znx/2O19 (x=2.2; 2.4; 2.6; 2.8)single phase composition have been performed. The materials were synthesized by solid state reaction method through mechanical milling technique.The materials were made from the mixture of oxide materials, which are BaCO3, Fe2O3, TiO2 and ZnO. The mixture was milled for five hours using a High Energy Milling (HEM), was dried at 100°C in the Oven and then was sintered at 1000°C for five hours in the Furnace. The phase identification of BaFe12-xTix/2Znx/2O19 (x=2.2; 2.4; 2.6; 2.8) were carried out by using a Match Program while the crystal structure analysis were investigated by using a General Structure Analysis System (GSAS) program. The refinement results of x-ray diffraction pattern showed that the sample of x ≤ 2.4 have a BaFe12O19 single phase while the sample of x> 2.4 have two phases, which are BaFe12O19 and ZnFe2O4 phases. The surface morphology of sample and the element of sample were identified through an analysis of Scanning Electron Microscope (SEM) and Energy Dispersive Spectroscopy (EDS) data.

  15. Investigation of formation of cut off layers and productivity of screw milling process

    NASA Astrophysics Data System (ADS)

    Ambrosimov, S. K.; Morozova, A. V.

    2018-03-01

    The article presents studies of a new method for complex milling surfaces with a screw feed motion. Using the apparatus of algebra of logic, the process of formation of cut metal layers and processing capacity is presented.

  16. The effects of processing techniques on magnesium-based composite

    NASA Astrophysics Data System (ADS)

    Rodzi, Siti Nur Hazwani Mohamad; Zuhailawati, Hussain

    2016-12-01

    The aim of this study is to investigate the effect of processing techniques on the densification, hardness and compressive strength of Mg alloy and Mg-based composite for biomaterial application. The control sample (pure Mg) and Mg-based composite (Mg-Zn/HAp) were fabricated through mechanical alloying process using high energy planetary mill, whilst another Mg-Zn/HAp composite was fabricated through double step processing (the matrix Mg-Zn alloy was fabricated by planetary mill, subsequently HAp was dispersed by roll mill). As-milled powder was then consolidated by cold press into 10 mm diameter pellet under 400 MPa compaction pressure before being sintered at 300 °C for 1 hour under the flow of argon. The densification of the sintered pellets were then determined by Archimedes principle. Mechanical properties of the sintered pellets were characterized by microhardness and compression test. The results show that the density of the pellets was significantly increased by addition of HAp, but the most optimum density was observed when the sample was fabricated through double step processing (1.8046 g/cm3). Slight increment in hardness and ultimate compressive strength were observed for Mg-Zn/HAp composite that was fabricated through double step processing (58.09 HV, 132.19 MPa), as compared to Mg-Zn/HAp produced through single step processing (47.18 HV, 122.49 MPa).

  17. Arsenic sorption by nanocrystalline magnetite: an example of environmentally promising interface with geosphere.

    PubMed

    Bujňáková, Z; Baláž, P; Zorkovská, A; Sayagués, M J; Kováč, J; Timko, M

    2013-11-15

    In this paper, the sorption of arsenic onto nanocrystalline magnetite mineral Fe3O4 was studied in a model system. Nanocrystalline magnetite was produced by mechanical activation in a planetary ball mill from natural microcrystalline magnetite. As a consequence of milling, the specific surface area increased from 0.1m(2)/g to 11.9 m(2)/g and the surface site concentration enhanced from 2.2 sites/nm(2) to 8.4 sites/nm(2). These changes in surface properties of magnetite lead to the enhancement of arsenic removal from model system. The best sorption ability was achieved with magnetite sample activated for 90 min. In this case the sample was able to absorb around 4 mg/g. The structural changes of magnetite were also observed and the new hematite phase was detected after 120 min of milling. A good correlation between the decreasing particle size, increasing specific surface area and reduction of saturation magnetization was found. In desorption study, KOH and NaOH were found as the best eluents where more than 70% of arsenic was released back into the solution. The principal novelty of the paper is that mineral magnetite, truly one nature's gift can be used after "smart" milling (mechanical activation) as an effective arsenic sorbent. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Recreation and Simulation of Preindustrial Flour Processes in the Margin of Rivers

    NASA Astrophysics Data System (ADS)

    Fernández, J. J.; José, J. I.; Martínez-Rubio, J.; Finat, J.

    2015-02-01

    Manufacture and preindustrial activities have configured infrastructures and commercial development along several centuries. Both regional economic and social environment of the present days can be seen as a consequence of the secular interaction between available physical resources and social tissue along our history. Since ancient times, the economy of Castile and Leon has been based on livestock and agriculture, predominantly represented by cattle and large cereal extensions. Thus, flour industry plays an important role which has been reflected along the Medieval and Renaissance ages in a network of preindustrial installations involving mills and "aceñas" (which are also water-powered mills but set up as larger plants containing different kinds of grinders). In this work we have performed an architectural surveying of a bunch of those large-scale abandoned installations which precede the development of the flour factories that brought the industrial era. Our case of use focuses on the aceñas placed in a strech of the Duero river, between Tordesillas and Toro (Spain). Our work includes the virtual reconstruction of mechanisms and a simulation of the processes that milling involves by using the transformation of hydrodynamical forces into mechanical power. Furthermore the architectural container, our development allows the visualization of the milling machinery running, enriched with a simulation of some aspect of the involved hydrodynamic aspects.

  19. Germanium and Tin Based Anode Materials for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Ji, Dongsheng

    The discovery of safe anode materials with high energy density for lithium-ion batteries has always been a significant topic. Group IV elements have been under intensive study for their high capability of alloying with lithium. Batteries with graphite and tin based anode material have already been applied in cell phones and vehicles. In order to apply group IV elements, their dramatic volume change during lithiation and delithiation processes is the key point to work on. Reducing the particle size is the most common method to buffer the volume expansion. This strategy has been applied on both germanium and tin based materials. Germanium based anode material has been made by two different synthesis methods. The amorphous Ge-C-Ti composite material was made by ball milling method and performed much better than other germanium alloy including Ge-Mg, Ge-Fe and Ge-Fe.Germanium sphere nano particles with diameter of around 50 nm have been made by solution method. After ball milled with graphite, the resulted product performed stable capacity over 500 mAh˙g-1 for more than 20 cycles. Ball milled graphite in the composite plays an important role of buffering volume change and stabilizing germanium. Sn-Fe alloy is one of the feasible solutions to stabilize tin. Sn 2Fe-C composite has been made by ball milling method. After optimizations of the ratio of precursors, reaction time, milling balls and electrolyte additives, the electrochemistry performance was improved. The anode performed 420 mAh˙ -1 at 1.0 mA/cm2 and maintained its structure after cycling at 2.0 mA/cm2. At 0.3 mA/cm2 cycling rate, the anode performed 978 mAh/cm3 after 500 cycles, which still exceeds the theoretical capacity of graphite.

  20. Influence of processing on the microstructure and mechanical properties of 14YWT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoelzer, D. T.; Unocic, K. A.; Sokolov, Mikhail A.

    2016-04-25

    The investigation of the mechanical alloying (MA) conditions for producing the advanced oxide dispersion strengthened (ODS) 14YWT ferritic alloy led to significant improvements in balancing the strength, ductility and fracture toughness properties while still maintaining the salient microstructural features consisting of ultra-fine grains and high concentration of Y-, Ti- and O-enriched nanoclusters. The implemented changes to the processing conditions included reducing the contamination of the powder during ball milling, applying a pre-extrusion annealing treatment on the ball milled powder and exploring different extrusion temperatures at 850 C (SM170 heat), 1000 C (SM185) and 1150 C (SM200). The microstructural studies ofmore » the three 14YWT heats showed similarities in the dispersion of nanoclusters and sub-micron size grains, indicating the microstructure was insensitive to the different extrusion conditions. Compared to past 14YWT heats, the three new heats showed lower strength, but higher ductility levels between 25 and 800 C and significantly higher fracture toughness values between 25 C and 700 C. The lower contamination levels of O, C and N achieved with improved ball milling conditions plus the slightly larger grain size were identified as important factors for improving the balance in mechanical properties of the three heats of 14YWT.« less

  1. Alloying Behavior and Properties of FeSiBAlNiCo x High Entropy Alloys Fabricated by Mechanical Alloying and Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Li, Boyu; Zhai, Sicheng; Xu, Juan; Niu, Zuozhe; Xu, Jing; Wang, Yan

    2018-02-01

    In this paper, FeSiBAlNiCo x (x = 0.2, 0.8) high-entropy alloy (HEA) powders were fabricated by mechanical alloying process, and the powders milled for 140 h were sintered by spark plasma sintering (SPS) technique. The microstructures and properties of as-milled powders and as-sintered samples were investigated. The results reveal that the final milling products (140 h) of both sample powders present the fully amorphous structure. The increased Co contents obviously enhance the glass forming ability and thermal stability of amorphous HEA powders, which are reflected by the shorter formation time of fully amorphous phase and the higher onset crystallization temperature, respectively. According to coercivity, the as-milled FeSiBAlNiCo x (x = 0.2, 0.8) powders (140 h) are the semi-hard magnetic materials. FeSiBAlNiCo0.8 HEA powders possess the highest saturation magnetization and largest remanence ratio. The SPS-ed products of both bulk HEAs are composed of body-centered cubic solid solution, and FeSi and FeB intermetallic phases. They possess the high relative density above 97% and excellent microhardness exceeding 1150 HV. The as-sintered bulks undergo the remarkable increase in saturation magnetization compared with the as-milled state. The SPS-ed FeSiBAlNiCo0.8 HEA exhibits the soft magnetic properties. The electrochemical corrosion test is carried out in 3.5% NaCl solution. The SPS-ed FeSiBAlNiCo0.2 HEA reveals the better passivity with low passive current density, and the higher pitting resistance with wide passive region.

  2. High-resolution neutron diffraction study of microstructural changes in nanocrystalline ball-milled niobium carbide NbC{sub 0.93}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balagurov, Anatoly M.; Bobrikov, Ivan A.; Bokuchava, Gizo D.

    2015-11-15

    High resolution neutron diffraction was applied for elucidating of the microstructural evolution of nanocrystalline niobium carbide NbC{sub 0.93} powders subjected to high-energy ball milling. The diffraction patterns were collected with the high resolution Fourier diffractometer HRFD by using the reverse time-of-flight (RTOF) mode of data acquisition. The traditional single diffraction line analysis, the Rietveld method and more advanced Whole Powder Pattern Modeling technique were applied for the data analysis. The comparison of these techniques was performed. It is established that short-time milling produces a non-uniform powder, in which two distinct fractions with differing microstructure can be identified. Part of themore » material is in fact milled efficiently, with a reduction in grain size, an increase in the quantity of defects, and a corresponding tendency to decarburize reaching a composition NbC{sub 0.80} after 15 h of milling. The rest of the powder is less efficiently processed and preserves its composition and lower defect content. Larger milling times should have homogenized the system by increasing the efficiently milled fraction, but the material is unable to reach a uniform and homogeneous state. It is definitely shown that RTOF neutron diffraction patterns can provide the very accurate data for microstructure analysis of nanocrystalline powders. - Highlights: • The NbC{sub 0.93} powder was processed by high-energy ball milling. • The microstrain and dislocation density increase with milling time increase. • The corresponding decrease in crystallite size with milling time was observed. • The material exhibits the presence of two fractions after ball milling. • The RTOF neutron diffraction data are suitable for accurate microstructure analysis.« less

  3. Characterization of ball-milled carbon nanotube dispersed aluminum mixed powders

    NASA Astrophysics Data System (ADS)

    Maleque, M. A.; Abdullah, U.; Yaacob, I.; Ali, Y.

    2016-04-01

    Currently, carbon nanotube (CNT) is attracting much interest as fibrous materials for reinforcing aluminum matrix composites due to unique properties, such as high strength, elastic modulus, flexibility and high aspect ratios. However, the quality of the dispersion is the major concerning factor which determines the homogeneity of the enhanced mechanical and tribological properties of the composite. This work study and characterized carbon nanotube dispersion in ballmilled CNT-aluminum mixed powders with four different formulations such as 1, 1.5, 2 and 2.5 wt% CNT under high energy planetary ball milling operations. The ball milling was performed for two hours at constant milling speed of 250 rpm under controlled atmosphere. The characterization is performed using FESEM and EDX analyzer for mapping, elemental and line analysis. The experimental results showed homogeneous dispersion of CNTs in aluminum matrix. The composite mixture showed similar pattern from mapping, elemental and line analysis. Identification of only two peaks proved that controlled atmosphere during milling prevented the formation of inter metallic compounds such as aluminum carbide in the composite mixture. Therefore, this CNT-A1 composite powder mixture can be used for new nano-composite development without any agglomeration problem.

  4. 1. VIEW LOOKING NORTHEAST AT SOUTH OR MAIN ELEVATION OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW LOOKING NORTHEAST AT SOUTH OR MAIN ELEVATION OF THE FORMER SELMA COTTON MILL. THIS STRUCTURE IS NOW USED BY THE PHILLIES CIGAR COMPANY, AND HAS BEEN USED FOR CIGAR PRODUCTION SINCE THE 1940'S. THIS BUILDING IS THE BEST SURVIVING EXAMPLE OF A COTTON MILL BUILT USING THE CHARLES A.M. PRARAY BUILDING METHOD PATENTED IN 1894. SELMA COTTON MILL WAS BUILT IN TWO PHASES, c. 1898 AND c. 1900. MOST OF THE UNUSUAL TRIANGULAR BAYS STILL CONTAIN THE ORIGINAL WINDOWS, ALTHOUGH THEY HAVE BEEN PAINTED THE LOW, HIPPED ROOF BUILDING IN FRONT OF THE WATER TOWER IS USED AS AN OFFICE. - Selma Cotton Mill, 218 Morgan Avenue, Selma, Dallas County, AL

  5. Development of Oxide Dispersion Strengthened MCrAlY Coatings

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Schläfer, T.; Richardt, K.; Brühl, M.

    2008-12-01

    MCrAlY materials are widely used as bond coats for thermal barrier coatings on turbine blades. The aim of this work is to improve mechanical properties and wear resistance of thermal sprayed NiCoCrAlY-coatings by strengthening the coating with hard phase particles. In order to retain the effect of the dispersion reinforcement at high temperatures, the use of temperature-stable oxide hard phases such as ZrO2-Y2O3 is necessary. To realize this new material structure, the high-energy ball-milling process is applied and analyzed. The mixture ratio between NiCoCrAlY and ZrO2-Y2O3 was varied between 5 and 10 wt.% ZrO2-Y2O3. The influences of the milling time of the high-energy ball-milling process on the distribution of the hard phases in the metal matrix were analyzed. After spraying with a HVOF system the mechanical properties of the coatings are measured and compared with conventional NiCoCrAlY coatings.

  6. High spatial resolution PEELS characterization of FeAl nanograins prepared by mechanical alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdre, G.; Botton, G.A.; Brown, L.M.

    The authors investigate the nanograin ``chemical`` structure in a nanostructured material of possible industrial application (Fe-Al system) prepared by conventional mechanical alloying via ball milling in argon atmosphere. They restrict themselves to the structural and nanochemical behavior of ball-milled nanocrystalline Fe-Al powders with atomic composition Fe{sub 3}Al, corresponding to a well-known intermetallic compound of the Fe-Al system. Scanning transmission electron microscopy (STEM) equipped with a parallel detection electron energy loss spectrometer (PEELS) has provided an insight on the ``chemical`` structure of both nanograins and their surface at a spatial resolution of better than 1 nm. The energy loss near edgemore » structure of the Al L loss reveals that the Al coordination is similar to a B2 compound and the oxidation of the powder during processing may play a significant role in the stabilization of the intermetallic phases. Conventional transmission electron microscopy (TEM) was used for the structural characterization of the material after the ball milling; powder X-ray diffraction (XRD) aided the investigation.« less

  7. Nano-Crystalline Thermally Evaporated Bi2Se3 Thin Films Synthesized from Mechanically Milled Powder

    NASA Astrophysics Data System (ADS)

    Amara, A.; Abdennouri, N.; Drici, A.; Abdelkader, D.; Bououdina, M.; Chaffar Akkari, F.; Khemiri, N.; Kanzari, M.; Bernède, J. C.

    2017-08-01

    Bi2Se3 powder has been successfully synthesized via mechanical ball milling of bismuth and selenium as starting materials. X-ray diffraction characterization revealed the formation of the rhombohedral and orthorhombic phases of Bi2Se3 material belonging to systems with space groups R\\bar{3}m and Pbnm, respectively. The advantageous last finding is confirmed by the Rietveld refinement of the x-ray diffraction data. Furthermore, the analysis of the x-ray data of thermally deposited thin films revealed that both orthorhombic and rhombohedral phases are coexisting in the layer. The morphology of the ball milled powder was studied by scanning electron microscopy. The phase formation of the material is confirmed by Raman spectroscopy. M-H (Magnetization versus Magnetic field) curve indicates that Bi2Se3 powder has a ferromagnetic behavior. Additionally, absorbance and transmittance measurements were carried out on the obtained thermally evaporated thin films and yielded a band gap of 1.33 eV supporting the potential application of the heterogeneous rhombohedral/orthorhombic Bi2Se3 material in photovoltaics.

  8. 40 CFR 430.72 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... through the application of the thermo-mechanical process] Pollutant or pollutant property Kg/kkg (or... where pulp and paper at groundwood chemi-mechanical mills are produced] Pollutant or pollutant property... Mechanical Pulp Subcategory § 430.72 Effluent limitations representing the degree of effluent reduction...

  9. Preparation of theophylline inhalable microcomposite particles by wet milling and spray drying: The influence of mannitol as a co-milling agent.

    PubMed

    Malamatari, Maria; Somavarapu, Satyanarayana; Kachrimanis, Kyriakos; Bloxham, Mark; Taylor, Kevin M G; Buckton, Graham

    2016-11-30

    Inhalable theophylline particles with various amounts of mannitol were prepared by combining wet milling in isopropanol followed by spray drying. The effect of mannitol as a co-milling agent on the micromeritic properties, solid state and aerosol performance of the engineered particles was investigated. Crystal morphology modelling and geometric lattice matching calculations were employed to gain insight into the intermolecular interactions that may influence the mechanical properties of theophylline and mannitol. The addition of mannitol facilitated the size reduction of the needle-like crystals of theophylline and also their assembly in microcomposites by forming a porous structure of mannitol nanocrystals wherein theophylline particles are embedded. The microcomposites were found to be in the same crystalline state as the starting material(s) ensuring their long-term physical stability upon storage. Incorporation of mannitol resulted in microcomposite particles with smaller size, more spherical shape and increased porosity. The aerosol performance of the microcomposites was markedly enhanced compared to the spray-dried suspension of theophylline wet milled without mannitol. Overall, wet co-milling with mannitol in an organic solvent followed by spray drying may be used as a formulation approach for producing respirable particles of water-soluble drugs or drugs that are prone to crystal transformation in an aqueous environment (i.e. formation of hydrates). Copyright © 2016. Published by Elsevier B.V.

  10. Mechanism of cassava tuber cell wall weakening by dilute sodium hydroxide steeping.

    PubMed

    Odoch, Martin; Buys, Elna M; Taylor, John R N

    2017-08-01

    Steeping of cassava root pieces in 0.75% NaOH in combination with wet milling was investigated to determine whether and how dilute NaOH modifies cassava cell walls. Gas chromatography data of cell wall constituent sugar composition and Fourier transform infrared (FTIR) data showed that NaOH steeping reduced the level of pectin in cassava cell walls. FTIR and wide-angle X-ray scattering spectroscopy also indicated that NaOH steeping combined with fine milling slightly reduced cellulose crystallinity. Scanning electron microscopy showed that NaOH steeping produced micropores in the cell walls and light microscopy revealed that NaOH steeping increased disaggregation of parenchyma cells. Steeping of ground cassava in NaOH resulted in a 12% decrease in large residue particles and approx. 4% greater starch yield with wet milling. Therefore dilute NaOH steeping can improve the effectiveness of wet milling in disintegrating cell walls through solubilisation of pectin, thereby reduced cell wall strength. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Solid-phase fermentation and juice expression systems for sweet sorghum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, W.L.; Monroe, G.E.; Caussariel, P.M.

    1985-01-01

    Two systems to recover fermented juice from variety M 81E sweet sorghum stalks that contained about 11% fermentable sugar were compared. (a) Stalks with leaves and tops removed were chopped and inoculated with 0.2% yeast in a forage harvester, stored under anaerobic conditions for 75 hours in insulated fermentors and pressed in a screw press to recover fermented juice (5-6% ethanol). (b) Mechanically harvested sweet sorghum billets (30 cm length) without leaves or seed heads were shredded and milled in a 3-roll mill; and bagasse was inoculated with 0.2% yeast, fermented for 100 h and pressed to recover fermented juicemore » (4 to 5% ethanol). Potential ethanol yields were 75% of theoretical for the forage harvest system and 78% for the shredder mill system, based on 95% of theoretical ethanol yield from juice expressed during milling and no loss of ethanol during fermentation, handling and pressing in the screw press. 20 references.« less

  12. Gravity flow operated small electricity generator retrofit kit to flour mill industry.

    PubMed

    Shekara, Prithivi; Kumar V, Pavan; Hosamane, Gangadharappa Gundabhakthara

    2013-10-01

    Flour milling is a grinding process to produce flour from wheat through comprehensive stages of grinding and separation. The primary energy is required to provide power used in grinding of wheat. In wheat milling, tempering is the process of adding water to wheat before milling to toughen the bran and mellow the endosperm. Gravity flow of the wheat is utilized to rotate the dampener wheel with cups to add water. Low cost gravity flow operated small electricity generator retrofit kit for dampener was designed and developed to justify low cost energy production without expensive solutions. Results of statistical analysis indicated that there was significant difference in mean values for voltage, rpm and flow rate at the 95% probability level. The resulted maximum mechanical power and measured electrical power were 5.1 W and 4.9 W respectively at wheat flow rate of 1.6 Kg/s and dampener wheel rotational velocity of 4.4 rad/s.

  13. Systems and methods for the synthesis of high thermoelectric performance doped-SnTe materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Zhifeng; Zhang, Qian; Chen, Gang

    A thermoelectric composition comprising tin (Sn), tellurium (Te) and at least one dopant that comprises a peak dimensionless figure of merit (ZT) of 1.1 and a Seebeck coefficient of at least 50 .mu.V/K and a method of manufacturing the thermoelectric composition. A plurality of components are disposed in a ball-milling vessel, wherein the plurality of components comprise tin (Sn), tellurium (Te), and at least one dopant such as indium (In). The components are subsequently mechanically and thermally processed, for example, by hot-pressing. In response to the mechanical-thermally processing, a thermoelectric composition is formed, wherein the thermoelectric composition comprises a dimensionlessmore » figure of merit (ZT) of the thermoelectric composition is at least 0.8, and wherein a Seebeck coefficient of the thermoelectric composition is at least 50 .mu.V/K at any temperature.« less

  14. The effect of milling time and sintering temperature on Mn, Ti substituted barium hexaferrite nanoparticle

    NASA Astrophysics Data System (ADS)

    Yustanti, Erlina; Manaf, Azwar

    2018-04-01

    Barium hexaferrite (BaO.6Fe2O3/BaFe12O19) is a permanent magnetic material and microwave absorbing material. The value of microwave absorption can be increased through the engineering of the material structure, while the reduction of crystallite and particle size up to nanometer results device performance improvement to be superior. In this research, the structural engineering through mechanical alloying and crystallite size reduction through high power ultrasonic irradiation will be explained. Mixing and alloying of Sigma Aldrich BaCO3, Fe2O3, MnCO3, TiO2 p.a 99% precursor material used ball mill with powder ratio of vial at 1:10. Mechanical alloying for 60 hours at 160 rpm produced amorphous material. The process of the crystalline embryo nucleation for 4 hours produced multicrystalline material at a sinter temperature of 1100°C. Phase analysis of the mechanical alloying result using x-ray diffractometer was confirmed either the formation of BaO.6Fe2-xMnx/2Tix/2O3 (x=0.5) single phase. Multicrystalline powder of BaO.6Fe2-xMnx/2Tix/2O3 (x=0.5) was obtained through 20 hours hand grinding and re-milling to bulk sample. Crystallite size reduction in the analysis was conducted through particle density variation in ultrasonic reactor and variation of the increase in ultrasonic time. Increase in milling time up to 60 hours produced fragmenting so that particle size reduction from 18.8 µm to 0.9 µm was occurred. The 12-h ultrasonic irradiation at a frequency of 20 kHz amplitude of 60 µm produced a crystallite-size reduction up to 18 nm at a 10 g/L particle density.

  15. Contamination risk of stable isotope samples during milling.

    PubMed

    Isaac-Renton, M; Schneider, L; Treydte, K

    2016-07-15

    Isotope analysis of wood is an important tool in dendrochronology and ecophysiology. Prior to mass spectrometry analysis, wood must be homogenized, and a convenient method involves a ball mill capable of milling samples directly in sample tubes. However, sample-tube plastic can contaminate wood during milling, which could lead to biological misinterpretations. We tested possible contamination of whole wood and cellulose samples during ball-mill homogenization for carbon and oxygen isotope measurements. We used a multi-factorial design with two/three steel milling balls, two sample amounts (10 mg, 40 mg), and two milling times (5 min, 10 min). We further analyzed abrasion by milling empty tubes, and measured the isotope ratios of pure contaminants. A strong risk exists for carbon isotope bias through plastic contamination: the δ(13) C value of polypropylene deviated from the control by -6.77‰. Small fibers from PTFE filter bags used during cellulose extraction also present a risk as the δ(13) C value of this plastic deviated by -5.02‰. Low sample amounts (10 mg) showed highest contamination due to increased abrasion during milling (-1.34‰), which is further concentrated by cellulose extraction (-3.38‰). Oxygen isotope measurements were unaffected. A ball mill can be used to homogenize samples within test tubes prior to oxygen isotope analysis, but not prior to carbon or radiocarbon isotope analysis. There is still a need for a fast, simple and contamination-free sample preparation procedure. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Computing Surface Coordinates Of Face-Milled Spiral-Bevel Gear Teeth

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Litvin, Faydor L.

    1995-01-01

    Surface coordinates of face-milled spiral-bevel gear teeth computed by method involving numerical solution of governing equations. Needed to generate mathematical models of tooth surfaces for use in finite-element analyses of stresses, strains, and vibrations in meshing spiral-bevel gears.

  17. Research on the Treatment of Aluminum Alloy Chemical Milling Wastewater with Fenton Process

    NASA Astrophysics Data System (ADS)

    Zong-liang, Huang; Ru, Li; Peng, Luo; Jun-li, Gu

    2018-03-01

    The aluminum alloy chemical milling wastewater was treated by Fenton method. The effect of pH value, reaction time, rotational speed, H2O2 dosage, Fe2+ dosage and the molar ratio between H2O2 and Fe2+ on the COD removal rate of aluminum alloy chemical milling wastewater were investigated by single factor experiment and orthogonal experiment. The results showed that the optimum operating conditions for Fenton oxidation were as follows: the initial pH value was 3, the rotational speed was 250r/min, the molar ratio of H2O2 and Fe2+ was 8, the reaction time was 90 min. Under the optimum conditions, the removal rate of the wastewater’s COD is about 72.36%. In the reaction kinetics that aluminum alloy chemical milling wastewater was oxidized and degraded by Fenton method under the optimum conditions, the reaction sequence of the initial COD was 0.8204.

  18. Determination of Specific Forces and Tool Deflections in Micro-milling of Ti-6Al-4V alloy using Finite Element Simulations and Analysis

    NASA Astrophysics Data System (ADS)

    Farina, Simone; Thepsonti, Thanongsak; Ceretti, Elisabetta; Özel, Tugrul

    2011-05-01

    Titanium alloys offer superb properties in strength, corrosion resistance and biocompatibility and are commonly utilized in medical devices and implants. Micro-end milling process is a direct and rapid fabrication method for manufacturing medical devices and implants in titanium alloys. Process performance and quality depend upon an understanding of the relationship between cutting parameters and forces and resultant tool deflections to avoid tool breakage. For this purpose, FE simulations of chip formation during micro-end milling of Ti-6Al-4V alloy with an ultra-fine grain solid carbide two-flute micro-end mill are investigated using DEFORM software. At first, specific forces in tangential and radial directions of cutting during micro-end milling for varying feed advance and rotational speeds have been determined using designed FE simulations for chip formation process. Later, these forces are applied to the micro-end mill geometry along the axial depth of cut in 3D analysis of ABAQUS. Consequently, 3D distributions for tool deflections & von Misses stress are determined. These analyses will yield in establishing integrated multi-physics process models for high performance micro-end milling and a leap-forward to process improvements.

  19. Effect of oxidation heat treatment on the bond strength between a ceramic and cast and milled cobalt-chromium alloys.

    PubMed

    Li, Jieyin; Ye, Xiuhua; Li, Bohua; Liao, Juankun; Zhuang, Peilin; Ye, Jiantao

    2015-08-01

    There is a dearth of dental scientific literature on the effect of different oxidation heat treatments (OHTs) (as surface pretreatments) on the bonding performance of cast and milled cobalt-chromium (CoCr) alloys. The objective of this study was to evaluate the effect of different OHTs on the bond strength between a ceramic and cast and milled CoCr alloys. Cobalt-chromium metallic specimens were prepared using either a cast or a milled method. Specimens were subjected to four different OHT methods: without OHT; OHT under normal atmospheric pressure; OHT under vacuum; and OHT under vacuum followed by sandblasting. The metal-ceramic bond strength was evaluated using a three-point bending test according to ISO9693. Scanning electron microscopy and energy-dispersive spectroscopy were used to study the specimens' microstructure and elemental composition. The bond strength was not affected by the CoCr manufacturing method. Oxidation heat treatment performed under normal atmospheric pressure resulted in the highest bond strength. The concentration of oxygen on the alloy surfaces varied with the different pretreatment methods in the following order: OHT under normal atmospheric pressure > OHT under vacuum > without OHT ≈ OHT under vacuum followed by sandblasting. © 2015 Eur J Oral Sci.

  20. Hot-stage microscopy for determination of API particles in a formulated tablet.

    PubMed

    Simek, Michal; Grünwaldová, Veronika; Kratochvíl, Bohumil

    2014-01-01

    Although methods exist to readily determine the particle size distribution (PSD) of an active pharmaceutical ingredient (API) before its formulation into a final product, the primary challenge is to develop a method to determine the PSD of APIs in a finished tablet. To address the limitations of existing PSD methods, we used hot-stage microscopy to observe tablet disintegration during temperature change and, thus, reveal the API particles in a tablet. Both mechanical and liquid disintegration were evaluated after we had identified optimum milling time for mechanical disintegration and optimum volume of water for liquid disintegration. In each case, hot-stage micrographs, taken before and after the API melting point, were compared with image analysis software to obtain the PSDs. Then, the PSDs of the APIs from the disintegrated tablets were compared with the PSDs of raw APIs. Good agreement was obtained, thereby confirming the robustness of our methodology. The availability of such a method equips pharmaceutical scientists with an in vitro assessment method that will more reliably determine the PSD of active substances in finished tablets.

  1. Data-driven mono-component feature identification via modified nonlocal means and MEWT for mechanical drivetrain fault diagnosis

    NASA Astrophysics Data System (ADS)

    Pan, Jun; Chen, Jinglong; Zi, Yanyang; Yuan, Jing; Chen, Binqiang; He, Zhengjia

    2016-12-01

    It is significant to perform condition monitoring and fault diagnosis on rolling mills in steel-making plant to ensure economic benefit. However, timely fault identification of key parts in a complicated industrial system under operating condition is still a challenging task since acquired condition signals are usually multi-modulated and inevitably mixed with strong noise. Therefore, a new data-driven mono-component identification method is proposed in this paper for diagnostic purpose. First, the modified nonlocal means algorithm (NLmeans) is proposed to reduce noise in vibration signals without destroying its original Fourier spectrum structure. During the modified NLmeans, two modifications are investigated and performed to improve denoising effect. Then, the modified empirical wavelet transform (MEWT) is applied on the de-noised signal to adaptively extract empirical mono-component modes. Finally, the modes are analyzed for mechanical fault identification based on Hilbert transform. The results show that the proposed data-driven method owns superior performance during system operation compared with the MEWT method.

  2. Design of a Computerised Flight Mill Device to Measure the Flight Potential of Different Insects.

    PubMed

    Martí-Campoy, Antonio; Ávalos, Juan Antonio; Soto, Antonia; Rodríguez-Ballester, Francisco; Martínez-Blay, Victoria; Malumbres, Manuel Pérez

    2016-04-07

    Several insect species pose a serious threat to different plant species, sometimes becoming a pest that produces significant damage to the landscape, biodiversity, and/or the economy. This is the case of Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae), Semanotus laurasii Lucas (Coleoptera: Cerambycidae), and Monochamus galloprovincialis Olivier (Coleoptera: Cerambycidae), which have become serious threats to ornamental and productive trees all over the world such as palm trees, cypresses, and pines. Knowledge about their flight potential is very important for designing and applying measures targeted to reduce the negative effects from these pests. Studying the flight capability and behaviour of some insects is difficult due to their small size and the large area wherein they can fly, so we wondered how we could obtain information about their flight capabilities in a controlled environment. The answer came with the design of flight mills. Relevant data about the flight potential of these insects may be recorded and analysed by means of a flight mill. Once an insect is attached to the flight mill, it is able to fly in a circular direction without hitting walls or objects. By adding sensors to the flight mill, it is possible to record the number of revolutions and flight time. This paper presents a full description of a computer monitored flight mill. The description covers both the mechanical and the electronic parts in detail. The mill was designed to easily adapt to the anatomy of different insects and was successfully tested with individuals from three species R. ferrugineus, S. laurasii, and M. galloprovincialis.

  3. Design of a Computerised Flight Mill Device to Measure the Flight Potential of Different Insects

    PubMed Central

    Martí-Campoy, Antonio; Ávalos, Juan Antonio; Soto, Antonia; Rodríguez-Ballester, Francisco; Martínez-Blay, Victoria; Malumbres, Manuel Pérez

    2016-01-01

    Several insect species pose a serious threat to different plant species, sometimes becoming a pest that produces significant damage to the landscape, biodiversity, and/or the economy. This is the case of Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae), Semanotus laurasii Lucas (Coleoptera: Cerambycidae), and Monochamus galloprovincialis Olivier (Coleoptera: Cerambycidae), which have become serious threats to ornamental and productive trees all over the world such as palm trees, cypresses, and pines. Knowledge about their flight potential is very important for designing and applying measures targeted to reduce the negative effects from these pests. Studying the flight capability and behaviour of some insects is difficult due to their small size and the large area wherein they can fly, so we wondered how we could obtain information about their flight capabilities in a controlled environment. The answer came with the design of flight mills. Relevant data about the flight potential of these insects may be recorded and analysed by means of a flight mill. Once an insect is attached to the flight mill, it is able to fly in a circular direction without hitting walls or objects. By adding sensors to the flight mill, it is possible to record the number of revolutions and flight time. This paper presents a full description of a computer monitored flight mill. The description covers both the mechanical and the electronic parts in detail. The mill was designed to easily adapt to the anatomy of different insects and was successfully tested with individuals from three species R. ferrugineus, S. laurasii, and M. galloprovincialis. PMID:27070600

  4. Fit of interim crowns fabricated using photopolymer-jetting 3D printing.

    PubMed

    Mai, Hang-Nga; Lee, Kyu-Bok; Lee, Du-Hyeong

    2017-08-01

    The fit of interim crowns fabricated using 3-dimensional (3D) printing is unknown. The purpose of this in vitro study was to evaluate the fit of interim crowns fabricated using photopolymer-jetting 3D printing and to compare it with that of milling and compression molding methods. Twelve study models were fabricated by making an impression of a metal master model of the mandibular first molar. On each study model, interim crowns (N=36) were fabricated using compression molding (molding group, n=12), milling (milling group, n=12), and 3D polymer-jetting methods. The crowns were prepared as follows: molding group, overimpression technique; milling group, a 5-axis dental milling machine; and polymer-jetting group using a 3D printer. The fit of interim crowns was evaluated in the proximal, marginal, internal axial, and internal occlusal regions by using the image-superimposition and silicone-replica techniques. The Mann-Whitney U test and Kruskal-Wallis tests were used to compare the results among groups (α=.05). Compared with the molding group, the milling and polymer-jetting groups showed more accurate results in the proximal and marginal regions (P<.001). In the axial regions, even though the mean discrepancy was smallest in the molding group, the data showed large deviations. In the occlusal region, the polymer-jetting group was the most accurate, and compared with the other groups, the milling group showed larger internal discrepancies (P<.001). Polymer-jet 3D printing significantly enhanced the fit of interim crowns, particularly in the occlusal region. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  5. On the amorphization behavior and hydrogenation performance of high-energy ball-milled Mg{sub 2}Ni alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kou, Hongchao; Hou, Xiaojiang; Zhang, Tiebang, E-mail: tiebangzhang@nwpu.edu.cn

    2013-06-15

    Amorphous Mg{sub 2}Ni alloy was prepared by high energy ball-milling starting with polycrystalline Mg{sub 2}Ni which was prepared with the help of a metallurgy method by using a SPEX 8000D mill. The microstructural and phase structure characterization of the prepared materials was performed via scanning electron microscopy, transition electron microscope and X-ray diffraction. The thermal stabilities were investigated by differential scanning calorimetry. The apparent activation energies were determined by means of the Kissinger method. The first and second crystallization reactions take place at ∼ 255 °C and ∼ 410 °C, and the corresponding activation energy of crystallization is E{sub a1}more » = 276.9 and E{sub a2} = 382.4 kJ/mol, respectively. At 3 MPa hydrogen pressure and 250 °C, the hydrogen absorption capacities of crystalline, partially and fully amorphous Mg{sub 2}Ni alloy are 2.0 wt.%, 3.2 wt.% and 3.5 wt.% within 30 min, respectively. - Graphical Abstract: We mainly focus on the amorphization behavior of crystalline Mg{sub 2}Ni alloy in the high energy ball-milling process and the crystallization behavior of the amorphous Mg{sub 2}Ni alloy in a follow-up heating process. The relationship of milling, microstructure and hydrogenation properties is established and explained by models. - Highlights: • Amorphous Mg{sub 2}Ni has been obtained by high energy ball milling the as-cast alloy. • The amorphization behavior of polycrystalline Mg{sub 2}Ni is presented. • The crystallization behavior of the amorphous Mg{sub 2}Ni alloy is illustrated. • Establish the relationship of milling, microstructure and hydrogenation properties.« less

  6. AISI/DOE Advanced Process Control Program Vol. 3 of 6 Microstructure Engineering in Hot Strip Mills, Part 1 of 2: Integrated Mathematical Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.K. Brimacombe; I.V. Samarasekera; E.B. Hawbolt

    1999-07-31

    This report describes the work of developing an integrated model used to predict the thermal history, deformation, roll forces, microstructural evolution and mechanical properties of steel strip in a hot-strip mill. This achievement results from a joint research effort that is part of the American Iron and Steel Institute's (AIS) Advanced Process Control Program, a collaboration between the U.S. DOE and fifteen North American Steelmakers.

  7. Nd2Fe14C-based magnet with better permanent magnetic properties prepared by a simple mechanochemical method

    NASA Astrophysics Data System (ADS)

    Geng, Hongmin; Ji, Yuan; Zhang, Jingjing; Gao, Yuchao; Yan, Yu; Wang, Wenquan; Su, Feng; Du, Xiaobo

    2017-11-01

    Nd2Fe14C-based magnet is prepared by a mechanochemical method, namely high-energy ball-milling Nd2Fe11Bx (x = 0-0.15) alloy in heptane (C7H16), followed by annealing to 850 °C in vacuum. Under the action of high-energy ball-milling, Nd2Fe11Bx react with heptane to form NdH2+δ, Fe-(CB), C, etc. H2 is released and Nd2Fe17, Nd2Fe17Cx (x = 0-3), Nd2Fe14C, Nd carbides and α-Fe are formed in the subsequent annealing. C amount depends on ball-milling time t. Long time ball milling or high C content suppresses the formation of 2:17 phase and favors the formation of 2:14:1 phase in the final products. Excessive ball-milling results in the quick increase of α-Fe. The maximum of magnetically hard Nd2Fe14C is obtained at t = 4 h. For Nd2Fe11 samples, there exists considerable quantity of Nd carbides and α-Fe phase appears earlier and increases rapidly with extending the ball-milling time t. The addition of B element shortens the ball-milling time of the formation of maximum Nd2Fe14C and prominently suppresses the formation of Nd carbide and α-Fe. The optimum magnetic properties, coercivity iHc of 1193.7 kA/m, remanence Mr of 580.9 kA/m, maximum magnetic energy product (BH)max of 91.7 kJ/m3 is approaching to its theoretic value of 99.2 kJ/m3 for isotropic Nd2Fe14C magnet, are obtained in Nd2Fe11B0.06 alloy ball milled for 3.5 h.

  8. Assessing techniques and performance of thin OGFC/PEM overlay on micro-milled surface : final report.

    DOT National Transportation Integrated Search

    2014-08-01

    The practice of placing an open-graded friction course (OGFC) or a porous European mix (PEM) : directly on top of a conventional milled surface has rarely been done in Georgia due to concerns that this : rehabilitation method could potentially cause ...

  9. Synthesis Oxide Dispersion Strengthening Stainless Steel doped with Nano Zirconia by Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Pawawoi; Widiansyah, Irfan; Hadi Prajitno, Djoko

    2017-01-01

    The oxide dispersion strengthening stainless steel of Fe-11.5wt%Cr and Fe-11.5wt%Cr-1%ZrO2 alloy by mechanical alloying method were synthesized by planetary ball milling. The methods employed for study were designing of Fe-11.5wt%Cr and Fe-11.5wt%Cr-1%ZrO2 proportion of composition alloy which is plotted to Schaffler diagram to get ferritic/martensitic stainless steel. After MA the ODS powders were compaction with pressure 80kg/mm2 and followed by sintering at the temperature of 900,1000 and 1100º C under high purity argon atmosphere for 1 hour. Characterization by XRD is used to examination phase present. Optical microscopy and SEM is used to get image microstructures. XRD analysis resulting the ferritic and martensitic is a major and minor phase respectively. There are not significant differences in the microstructure between Fe-11.5wt%Cr and Fe-11.5wt%Cr-1wt%ZrO2. An increase in the sintering temperature shift the microstructure from dendritic to equaxed. EDS examination showed that zirconia exit in the alloy Fe-11.5wt%Cr-1wt%ZrO2.The addition of 1 % nano-zirconia (ZrO2) into Fe-Cr alloy while milling process was resulted a higher Hardness Vickers Values rather than without zirconia addition. Average value of Hardness Vickers values was resulted 135.5 HV for Fe-11.5wt%Cr whereas 138.4 HV for Fe-11.5wt%Cr-1wt%ZrO2.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rounaghi, S.A., E-mail: s.a.rounaghi@gmail.com; Kiani Rashid, A.R.; Eshghi, H., E-mail: heshghi@ferdowsi.um.ac.ir

    Decomposition of melamine was studied by solid state reaction of melamine and aluminum powders during high energy ball-milling. The milling procedure performed for both pure melamine and melamine/Al mixed powders as the starting materials for various times up to 48 h under ambient atmosphere. The products were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The results revealed that Al causes melamine deammoniation at the first stages of milling and further milling process leads to the s-triazine ring degradation while nano-crystallite hexagonal aluminum nitride (h-AlN) was the main solid product. Comparison to milling process, the possibility ofmore » the reaction of melamine with Al was also investigated by thermal treatment method using differential scanning calorimeter (DSC) and thermo gravimetric analyzer (TGA). Melamine decomposition occurred by thermal treatment in the range of 270-370 Degree-Sign C, but no reaction between melamine and aluminum was observed. - Graphical Abstract: Mechanochemical reaction of melamine with Al resulted in the formation of nanocrystalline AlN after 7 h milling time Highlights: Black-Right-Pointing-Pointer High energy ball milling of melamine and aluminum results decomposition of melamine with elimination of ammonia. Black-Right-Pointing-Pointer Nano-crystalline AlN was synthesized by the mechanochemical route. Black-Right-Pointing-Pointer Milling process has no conspicuous effect on pure melamine degradation. Black-Right-Pointing-Pointer No reaction takes place by heating melamine and aluminum powder mixture in argon.« less

  11. Tungsten solution kinetics and amorphization of nickel in mechanically alloyed Ni-W alloys

    NASA Technical Reports Server (NTRS)

    Aning, A. O.; Wang, Z.; Courtney, T. H.

    1993-01-01

    The kinetics of solution of W, and the subsequent amorphization of Ni, in mechanically alloyed Ni-W alloys has been investigated. As W is a highly abrasive material in the energy intensive devices used for mechanical alloying, we studied the above reactions in different mills. One used hardened steel balls as the grinding media, and the other Al2O3. Abrasion is common to both mills, but Fe wear debris from the hardened steel enters into solution in the Ni rich phases whereas Al2O3 debris is present as small dispersoids. The kinetics of W solution and those of subsequent amorphization do not appear strongly affected by the Fe in solution or the Al2O3 dispersoid. Tungsten dissolves in crystalline Ni in amounts in excess of the equilibrium solubility during alloying. Amorphization of the Ni phase occurs if the W content in this phase exceeds ca. 28 at. pct.

  12. Processing and characterization of Al-Al3Nb prepared by mechanical alloying and equal channel angular pressing

    NASA Astrophysics Data System (ADS)

    Chandran, P.; Zafari, A.; Lui, E. W.; Xia, K.

    2017-05-01

    Mechanically alloyed Al with immiscible elements such as Nb can lead to a uniform distribution of nanoscaled precipitates which are highly stable compared to conventional alloying and with excellent interface, resulting in significant increase in strength without problems associated with nano ceramic particles in metal matrix composites. Although immiscible, Nb can be alloyed with Al through mechanical milling, forming trialuminide (Al3Nb), either directly or upon subsequent precipitation, which possesses high strength, stiffness and stability at elevated temperatures. In the present study, Al-5 at.% Nb supersaturated solid solution was achieved after prolonged ball milling and nano Al3Nb precipitates were formed during subsequent ageing at 530°C. The Al-Al3Nb powder was consolidated by equal channel angular pressing (ECAP) at 400°C, resulting in a fully dense material with a uniform distribution of nanoscaled Al3Nb precipitates in the Al matrix.

  13. Small angle neutron scattering analyses and high temperature mechanical properties of nano-structured oxide dispersion strengthened steels produced via cryomilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jeoung Han; Byun, Thak Sang; Shin, Eunjoo

    2015-08-17

    Three oxide dispersion-strengthened (ODS) steels are produced in order to investigate the effect of the mechanical alloying (MA) temperature on the microstructural evolution and high temperature mechanical properties. The microstructural evolution with different MA conditions is examined using small angle neutron scattering. As the MA temperature decreases, the density of the nanoclusters below 10 nm increases and their mean diameter decreases. A low temperature during MA leads to a high strength in the compression tests performed at 500 *C; however, this effect disappears in testing at 900 *C. The milling process at *70 *C exhibits excellent high fracture toughness, whichmore » is better than the benchmark material 14YWT-SM10. However, the *150 *C milling process results in significantly worse fracture toughness properties. The reasons for this strong temperature dependency are discussed.« less

  14. Machinability Study on Milling Kenaf Fiber Reinforced Plastic Composite Materials using Design of Experiments

    NASA Astrophysics Data System (ADS)

    Azmi, H.; Haron, C. H. C.; Ghani, J. A.; Suhaily, M.; Yuzairi, A. R.

    2018-04-01

    The surface roughness (Ra) and delamination factor (Fd) of a milled kenaf reinforced plastic composite materials are depending on the milling parameters (spindle speed, feed rate and depth of cut). Therefore, a study was carried out to investigate the relationship between the milling parameters and their effects on a kenaf reinforced plastic composite materials. The composite panels were fabricated using vacuum assisted resin transfer moulding (VARTM) method. A full factorial design of experiments was use as an initial step to screen the significance of the parameters on the defects using Analysis of Variance (ANOVA). If the curvature of the collected data shows significant, Response Surface Methodology (RSM) is then applied for obtaining a quadratic modelling equation that has more reliable in expressing the optimization. Thus, the objective of this research is obtaining an optimum setting of milling parameters and modelling equations to minimize the surface roughness (Ra) and delamination factor (Fd) of milled kenaf reinforced plastic composite materials. The spindle speed and feed rate contributed the most in affecting the surface roughness and the delamination factor of the kenaf composite materials.

  15. A new optimization tool path planning for 3-axis end milling of free-form surfaces based on efficient machining intervals

    NASA Astrophysics Data System (ADS)

    Vu, Duy-Duc; Monies, Frédéric; Rubio, Walter

    2018-05-01

    A large number of studies, based on 3-axis end milling of free-form surfaces, seek to optimize tool path planning. Approaches try to optimize the machining time by reducing the total tool path length while respecting the criterion of the maximum scallop height. Theoretically, the tool path trajectories that remove the most material follow the directions in which the machined width is the largest. The free-form surface is often considered as a single machining area. Therefore, the optimization on the entire surface is limited. Indeed, it is difficult to define tool trajectories with optimal feed directions which generate largest machined widths. Another limiting point of previous approaches for effectively reduce machining time is the inadequate choice of the tool. Researchers use generally a spherical tool on the entire surface. However, the gains proposed by these different methods developed with these tools lead to relatively small time savings. Therefore, this study proposes a new method, using toroidal milling tools, for generating toolpaths in different regions on the machining surface. The surface is divided into several regions based on machining intervals. These intervals ensure that the effective radius of the tool, at each cutter-contact points on the surface, is always greater than the radius of the tool in an optimized feed direction. A parallel plane strategy is then used on the sub-surfaces with an optimal specific feed direction for each sub-surface. This method allows one to mill the entire surface with efficiency greater than with the use of a spherical tool. The proposed method is calculated and modeled using Maple software to find optimal regions and feed directions in each region. This new method is tested on a free-form surface. A comparison is made with a spherical cutter to show the significant gains obtained with a toroidal milling cutter. Comparisons with CAM software and experimental validations are also done. The results show the efficiency of the method.

  16. Magnetic properties of Ni nanoparticles dispersed in silica prepared by high-energy ball milling

    NASA Astrophysics Data System (ADS)

    González, E. M.; Montero, M. I.; Cebollada, F.; de Julián, C.; Vicent, J. L.; González, J. M.

    1998-04-01

    We analyze the magnetic properties of mechanically ground nanosized Ni particles dispersed in a SiO2 matrix. Our magnetic characterization of the as-milled samples show the occurrence of two blocking processes and that of non-monotonic milling time evolutions of the magnetic-order temperature, the high-field magnetization and the saturation coercivity. The measured coercivities exhibit giant values and a uniaxial-type temperature dependence. Thermal treatment carried out in the as-prepared samples result in a remarkable coercivity reduction and in an increase of the high-field magnetization. We conclude, on the basis of the consideration of a core (pure Ni) and shell (Ni-Si inhomogeneous alloy) particle structure, that the magnetoelastic anisotropy plays the dominant role in determining the magnetic properties of our particles.

  17. 40 CFR 406.11 - Specialized definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Corn Wet Milling Subcategory § 406.11 Specialized definitions... and methods of analysis set forth in 40 CFR part 401 shall apply to this subpart. (b) The term corn shall mean the shelled corn delivered to a plant before processing. (c) The term standard bushel shall...

  18. Entropy-Stabilized Oxides

    DTIC Science & Technology

    2015-09-29

    discovery and exploitation. Methods Solid-state synthesis of bulk materials. MgO ( Alfa Aesar, 99.99%), NiO (Sigma Aldrich, 99%), CuO ( Alfa Aesar, 99.9...CoO ( Alfa Aesar, 99%) and ZnO ( Alfa Aesar 99.9%) are massed and combined using a shaker mill and 3-mm diameter yttrium-stabilized zirconia milling

  19. Amorphization of itraconazole by inorganic pharmaceutical excipients: comparison of excipients and processing methods.

    PubMed

    Grobelny, Pawel; Kazakevich, Irina; Zhang, Dan; Bogner, Robin

    2015-01-01

    The aim of this study was to investigate the effects of solid carriers and processing routes on the properties of amorphous solid dispersions of itraconazole. Three solid carriers with a range of surface properties were studied, (1) a mesoporous silicate, magnesium aluminum silicate (Neusilin US2), (2) a nonporous silicate of corresponding composition (Veegum) and (3) a non-silicate, inorganic excipient, calcium phosphate dibasic anhydrous (A-TAB). The drug was incorporated via either solvent-deposition or ball milling. Both the maximum drug deposited by solvent-based method that produced an amorphous composite and the time for complete amorphization by co-milling was determined by X-ray powder diffraction (XRPD). Changes in the drug and excipients were monitored by nitrogen adsorption and wettability of the powder. The ability of the excipients to amorphize the drug and enhance its dissolution was related to the powder characteristics. Neusilin provided the fastest amorphization time in the mill and highest drug loading by solvent-deposition, compared with the other two excipients. Solvent-deposition provided greater dissolution enhancement than milling, due to the reduction in Neusilin porosity during high energy milling.This study confirms that substrates as well as the processing routes have notable influence on the drug deposition, amorphization, physical stability and drug in vitro release.

  20. Effect of Synthesis Procedure on Thermoelectric Property of SiGe Alloy

    NASA Astrophysics Data System (ADS)

    Li, Jing; Han, Jun; Jiang, Tao; Luo, Lili; Xiang, Yongchun

    2018-05-01

    SiGe thermoelectric material has been synthesized by ball milling combined with hot pressing (HP) or spark plasma sintering (SPS). Effects of ball milling time, powder to ball weight ratio and sintering method on microstructure and thermoelectric properties of SiGe are studied. The results show that longer ball milling time leads to decreased density and worse electrical properties. In the sintering process, SPS results in much larger density and better electrical properties than HP. The Si0.795Ge0.2B0.005 sample prepared by 2 h ball milling combined with SPS obtains a maximum power factor of 3.0 mW m-1 K-2 at 860 K and ZT of 0.95 at 1000 K.

  1. Chatter detection in milling process based on VMD and energy entropy

    NASA Astrophysics Data System (ADS)

    Liu, Changfu; Zhu, Lida; Ni, Chenbing

    2018-05-01

    This paper presents a novel approach to detect the milling chatter based on Variational Mode Decomposition (VMD) and energy entropy. VMD has already been employed in feature extraction from non-stationary signals. The parameters like number of modes (K) and the quadratic penalty (α) need to be selected empirically when raw signal is decomposed by VMD. Aimed at solving the problem how to select K and α, the automatic selection method of VMD's based on kurtosis is proposed in this paper. When chatter occurs in the milling process, energy will be absorbed to chatter frequency bands. To detect the chatter frequency bands automatically, the chatter detection method based on energy entropy is presented. The vibration signal containing chatter frequency is simulated and three groups of experiments which represent three cutting conditions are conducted. To verify the effectiveness of method presented by this paper, chatter feather extraction has been successfully employed on simulation signals and experimental signals. The simulation and experimental results show that the proposed method can effectively detect the chatter.

  2. Methods of amorphization and investigation of the amorphous state.

    PubMed

    Einfal, Tomaž; Planinšek, Odon; Hrovat, Klemen

    2013-09-01

    The amorphous form of pharmaceutical materials represents the most energetic solid state of a material. It provides advantages in terms of dissolution rate and bioavailability. This review presents the methods of solid- -state amorphization described in literature (supercooling of liquids, milling, lyophilization, spray drying, dehydration of crystalline hydrates), with the emphasis on milling. Furthermore, we describe how amorphous state of pharmaceuticals differ depending on the method of preparation and how these differences can be screened by a variety of spectroscopic (X-ray powder diffraction, solid state nuclear magnetic resonance, atomic pairwise distribution, infrared spectroscopy, terahertz spectroscopy) and calorimetry methods.

  3. Using Check-All-That-Apply (CATA) method for determining product temperature-dependent sensory-attribute variations: A case study of cooked rice.

    PubMed

    Pramudya, Ragita C; Seo, Han-Seok

    2018-03-01

    Temperatures of most hot or cold meal items change over the period of consumption, possibly influencing sensory perception of those items. Unlike temporal variations in sensory attributes, product temperature-induced variations have not received much attention. Using a Check-All-That-Apply (CATA) method, this study aimed to characterize variations in sensory attributes over a wide range of temperatures at which hot or cold foods and beverages may be consumed. Cooked milled rice, typically consumed at temperatures between 70 and 30°C in many rice-eating countries, was used as a target sample in this study. Two brands of long-grain milled rice were cooked and randomly presented at 70, 60, 50, 40, and 30°C. Thirty-five CATA terms for cooked milled rice were generated. Eighty-eight untrained panelists were asked to quickly select all the CATA terms that they considered appropriate to characterize sensory attributes of cooked rice samples presented at each temperature. Proportions of selection by panelists for 13 attributes significantly differed among the five temperature conditions. "Product temperature-dependent sensory-attribute variations" differed with two brands of milled rice grains. Such variations in sensory attributes, resulted from both product temperature and rice brand, were more pronounced among panelists who more frequently consumed rice. In conclusion, the CATA method can be useful for characterizing "product temperature-dependent sensory attribute variations" in cooked milled-rice samples. Further study is needed to examine whether the CATA method is also effective in capturing "product temperature-dependent sensory-attribute variations" in other hot or cold foods and beverages. Published by Elsevier Ltd.

  4. NanoClusters Enhance Drug Delivery in Mechanical Ventilation

    NASA Astrophysics Data System (ADS)

    Pornputtapitak, Warangkana

    The overall goal of this thesis was to develop a dry powder delivery system for patients on mechanical ventilation. The studies were divided into two parts: the formulation development and the device design. The pulmonary system is an attractive route for drug delivery since the lungs have a large accessible surface area for treatment or drug absorption. For ventilated patients, inhaled drugs have to successfully navigate ventilator tubing and an endotracheal tube. Agglomerates of drug nanoparticles (also known as 'NanoClusters') are fine dry powder aerosols that were hypothesized to enable drug delivery through ventilator circuits. This Thesis systematically investigated formulations of NanoClusters and their aerosol performance in a conventional inhaler and a device designed for use during mechanical ventilation. These engineered powders of budesonide (NC-Bud) were delivered via a MonodoseRTM inhaler or a novel device through commercial endotracheal tubes, and analyzed by cascade impaction. NC-Bud had a higher efficiency of aerosol delivery compared to micronized stock budesonide. The delivery efficiency was independent of ventilator parameters such as inspiration patterns, inspiration volumes, and inspiration flow rates. A novel device designed to fit directly to the ventilator and endotracheal tubing connections and the MonodoseRTM inhaler showed the same efficiency of drug delivery. The new device combined with NanoCluster formulation technology, therefore, allowed convenient and efficient drug delivery through endotracheal tubes. Furthermore, itraconazole (ITZ), a triazole antifungal agent, was formulated as a NanoCluster powder via milling (top-down process) or precipitation (bottom-up process) without using any excipients. ITZ NanoClusters prepared by wet milling showed better aerosol performance compared to micronized stock ITZ and ITZ NanoClusters prepared by precipitation. ITZ NanoClusters prepared by precipitation methods also showed an amorphous state while milled ITZ NanoClusters maintained the crystalline character. Overall, NanoClusters prepared by various processes represent a potential engineered drug particle approach for inhalation therapy since they provide effective aerosol properties and stability due to the crystalline state of the drug powders. Future work will continue to explore formulation and delivery performance in vitro and in vivo..

  5. Low-cost carbon-silicon nanocomposite anodes for lithium ion batteries.

    PubMed

    Badi, Nacer; Erra, Abhinay Reddy; Hernandez, Francisco C Robles; Okonkwo, Anderson O; Hobosyan, Mkhitar; Martirosyan, Karen S

    2014-01-01

    The specific energy of the existing lithium ion battery cells is limited because intercalation electrodes made of activated carbon (AC) materials have limited lithium ion storage capacities. Carbon nanotubes, graphene, and carbon nanofibers are the most sought alternatives to replace AC materials but their synthesis cost makes them highly prohibitive. Silicon has recently emerged as a strong candidate to replace existing graphite anodes due to its inherently large specific capacity and low working potential. However, pure silicon electrodes have shown poor mechanical integrity due to the dramatic expansion of the material during battery operation. This results in high irreversible capacity and short cycle life. We report on the synthesis and use of carbon and hybrid carbon-silicon nanostructures made by a simplified thermo-mechanical milling process to produce low-cost high-energy lithium ion battery anodes. Our work is based on an abundant, cost-effective, and easy-to-launch source of carbon soot having amorphous nature in combination with scrap silicon with crystalline nature. The carbon soot is transformed in situ into graphene and graphitic carbon during mechanical milling leading to superior elastic properties. Micro-Raman mapping shows a well-dispersed microstructure for both carbon and silicon. The fabricated composites are used for battery anodes, and the results are compared with commercial anodes from MTI Corporation. The anodes are integrated in batteries and tested; the results are compared to those seen in commercial batteries. For quick laboratory assessment, all electrochemical cells were fabricated under available environment conditions and they were tested at room temperature. Initial electrochemical analysis results on specific capacity, efficiency, and cyclability in comparison to currently available AC counterpart are promising to advance cost-effective commercial lithium ion battery technology. The electrochemical performance observed for carbon soot material is very interesting given the fact that its production cost is away cheaper than activated carbon. The cost of activated carbon is about $15/kg whereas the cost to manufacture carbon soot as a by-product from large-scale milling of abundant graphite is about $1/kg. Additionally, here, we propose a method that is environmentally friendly with strong potential for industrialization.

  6. Low-cost carbon-silicon nanocomposite anodes for lithium ion batteries

    PubMed Central

    2014-01-01

    The specific energy of the existing lithium ion battery cells is limited because intercalation electrodes made of activated carbon (AC) materials have limited lithium ion storage capacities. Carbon nanotubes, graphene, and carbon nanofibers are the most sought alternatives to replace AC materials but their synthesis cost makes them highly prohibitive. Silicon has recently emerged as a strong candidate to replace existing graphite anodes due to its inherently large specific capacity and low working potential. However, pure silicon electrodes have shown poor mechanical integrity due to the dramatic expansion of the material during battery operation. This results in high irreversible capacity and short cycle life. We report on the synthesis and use of carbon and hybrid carbon-silicon nanostructures made by a simplified thermo-mechanical milling process to produce low-cost high-energy lithium ion battery anodes. Our work is based on an abundant, cost-effective, and easy-to-launch source of carbon soot having amorphous nature in combination with scrap silicon with crystalline nature. The carbon soot is transformed in situ into graphene and graphitic carbon during mechanical milling leading to superior elastic properties. Micro-Raman mapping shows a well-dispersed microstructure for both carbon and silicon. The fabricated composites are used for battery anodes, and the results are compared with commercial anodes from MTI Corporation. The anodes are integrated in batteries and tested; the results are compared to those seen in commercial batteries. For quick laboratory assessment, all electrochemical cells were fabricated under available environment conditions and they were tested at room temperature. Initial electrochemical analysis results on specific capacity, efficiency, and cyclability in comparison to currently available AC counterpart are promising to advance cost-effective commercial lithium ion battery technology. The electrochemical performance observed for carbon soot material is very interesting given the fact that its production cost is away cheaper than activated carbon. The cost of activated carbon is about $15/kg whereas the cost to manufacture carbon soot as a by-product from large-scale milling of abundant graphite is about $1/kg. Additionally, here, we propose a method that is environmentally friendly with strong potential for industrialization. PMID:25114651

  7. Lower pressure synthesis of diamond material

    DOEpatents

    Lueking, Angela; Gutierrez, Humberto; Narayanan, Deepa; Burgess Clifford, Caroline E.; Jain, Puja

    2010-07-13

    Methods of synthesizing a diamond material, particularly nanocrystalline diamond, diamond-like carbon and bucky diamond are provided. In particular embodiments, a composition including a carbon source, such as coal, is subjected to addition of energy, such as high energy reactive milling, producing a milling product enriched in hydrogenated tetrahedral amorphous diamond-like carbon compared to the coal. A milling product is treated with heat, acid and/or base to produce nanocrystalline diamond and/or crystalline diamond-like carbon. Energy is added to produced crystalline diamond-like carbon in particular embodiments to produce bucky diamonds.

  8. Sources of Salmonella on broiler carcasses during transportation and processing: modes of contamination and methods of control.

    PubMed

    Corry, Janet E L; Allen, V M; Hudson, W R; Breslin, M F; Davies, R H

    2002-01-01

    The prevalence and types of salmonella in broiler chickens during transportation and during slaughter and dressing were studied. This was part of a comprehensive investigation of salmonellas in two UK poultry companies, which aimed to find the origins and mechanisms of salmonella contamination. Salmonellas were isolated using cultural methods. Serovars of Salmonella detected during rearing were usually also found in a small proportion of birds on the day of slaughter and on the carcasses at various points during processing. There was little evidence of salmonellas spreading to large numbers of carcasses during processing. Many serovars found in the feedmills or hatcheries were also detected in the birds during rearing and/or slaughter. Transport crates were contaminated with salmonellas after washing and disinfection. Prevalence of salmonellas fell in the two companies during this survey. A small number of serovars predominated in the processing plants of each company. These serovars originated from the feed mills. Reasons for transport crate contamination were: (1) inadequate cleaning, resulting in residual faecal soiling; (2) disinfectant concentration and temperature of disinfectant too low; (3) contaminated recycled flume water used to soak the crates. Efforts to control salmonella infection in broilers need to concentrate on crate cleaning and disinfection and hygiene in the feed mills.

  9. Maintenance measures for preservation and recovery of permeable pavement surface infiltration rate--The effects of street sweeping, vacuum cleaning, high pressure washing, and milling.

    PubMed

    Winston, Ryan J; Al-Rubaei, Ahmed M; Blecken, Godecke T; Viklander, Maria; Hunt, William F

    2016-03-15

    The surface infiltration rates (SIR) of permeable pavements decline with time as sediment and debris clog pore spaces. Effective maintenance techniques are needed to ensure the hydraulic functionality and water quality benefits of this stormwater control. Eight different small-scale and full-scale maintenance techniques aimed at recovering pavement permeability were evaluated at ten different permeable pavement sites in the USA and Sweden. Maintenance techniques included manual removal of the upper 2 cm of fill material, mechanical street sweeping, regenerative-air street sweeping, vacuum street sweeping, hand-held vacuuming, high pressure washing, and milling of porous asphalt. The removal of the upper 2 cm of clogging material did not significantly improve the SIR of concrete grid paves (CGP) and permeable interlocking concrete pavers (PICP) due to the inclusion of fines in the joint and bedding stone during construction, suggesting routine maintenance cannot overcome improper construction. For porous asphalt maintenance, industrial hand-held vacuum cleaning, pressure washing, and milling were increasingly successful at recovering the SIR. Milling to a depth of 2.5 cm nearly restored the SIR for a 21-year old porous asphalt pavement to like-new conditions. For PICP, street sweepers employing suction were shown to be preferable to mechanical sweepers; additionally, maintenance efforts may become more intensive over time to maintain a threshold SIR, as maintenance was not 100% effective at removing clogging material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Scanning Electron Microscopy Analysis of the Adaptation of Single-Unit Screw-Retained Computer-Aided Design/Computer-Aided Manufacture Abutments After Mechanical Cycling.

    PubMed

    Markarian, Roberto Adrian; Galles, Deborah Pedroso; Gomes França, Fabiana Mantovani

    To measure the microgap between dental implants and custom abutments fabricated using different computer-aided design/computer-aided manufacture (CAD/CAM) methods before and after mechanical cycling. CAD software (Dental System, 3Shape) was used to design a custom abutment for a single-unit, screw-retained crown compatible with a 4.1-mm external hexagon dental implant. The resulting stereolithography file was sent for manufacturing using four CAD/CAM methods (n = 40): milling and sintering of zirconium dioxide (ZO group), cobalt-chromium (Co-Cr) sintered via selective laser melting (SLM group), fully sintered machined Co-Cr alloy (MM group), and machined and sintered agglutinated Co-Cr alloy powder (AM group). Prefabricated titanium abutments (TI group) were used as controls. Each abutment was placed on a dental implant measuring 4.1× 11 mm (SA411, SIN) inserted into an aluminum block. Measurements were taken using scanning electron microscopy (SEM) (×4,000) on four regions of the implant-abutment interface (IAI) and at a relative distance of 90 degrees from each other. The specimens were mechanically aged (1 million cycles, 2 Hz, 100 N, 37°C) and the IAI width was measured again using the same approach. Data were analyzed using two-way analysis of variance, followed by the Tukey test. After mechanical cycling, the best adaptation results were obtained from the TI (2.29 ± 1.13 μm), AM (3.58 ± 1.80 μm), and MM (1.89 ± 0.98 μm) groups. A significantly worse adaptation outcome was observed for the SLM (18.40 ± 20.78 μm) and ZO (10.42 ± 0.80 μm) groups. Mechanical cycling had a marked effect only on the AM specimens, which significantly increased the microgap at the IAI. Custom abutments fabricated using fully sintered machined Co-Cr alloy and machined and sintered agglutinated Co-Cr alloy powder demonstrated the best adaptation results at the IAI, similar to those obtained with commercial prefabricated titanium abutments after mechanical cycling. The adaptation of custom abutments made by means of SLM or milling and sintering of zirconium dioxide were worse both before and after mechanical cycling.

  11. Effects of milling media on the fabrication of melt-derived bioactive glass powder for biomaterial application

    NASA Astrophysics Data System (ADS)

    Ibrahim, Nurul Farhana; Mohamad, Hasmaliza; Noor, Siti Noor Fazliah Mohd

    2016-12-01

    The present work aims to study the effects of using different milling media on bioactive glass produced through melt-derived method for biomaterial application. The bioactive glass powder based on SiO2-CaO-Na2O-P2O5 system was fabricated using two different types of milling media which are tungsten carbide (WC) and zirconia (ZrO2) balls. However, in this work, no P2O5 was added in the new composition. XRF analysis indicated that tungsten trioxide (WO3) was observed in glass powder milled using WC balls whereas ZrO2 was observed in glass powder milled using ZrO2 balls. Amorphous structure was detected with no crystalline peak observed through XRD analysis for both glass powders. FTIR analysis confirmed the formation of silica network with the existence of functional groups Si-O-Si (bend), Si-O-Si (tetrahedral) and Si-O-Si (stretch) for both glass powders. The results revealed that there was no significant effect of milling media on amorphous silica network glass structure which shows that WC and zirconia can be used as milling media for bioactive glass fabrication without any contamination. Therefore, the fabricated BG can be tested safely for bioactivity assessment in biological fluids environment.

  12. Analyzing the effect of tool edge radius on cutting temperature in micro-milling process

    NASA Astrophysics Data System (ADS)

    Liang, Y. C.; Yang, K.; Zheng, K. N.; Bai, Q. S.; Chen, W. Q.; Sun, G. Y.

    2010-10-01

    Cutting heat is one of the important physical subjects in the cutting process. Cutting heat together with cutting temperature produced by the cutting process will directly have effects on the tool wear and the life as well as on the workpiece processing precision and surface quality. The feature size of the workpiece is usually several microns. Thus, the tiny changes of cutting temperature will affect the workpiece on the surface quality and accuracy. Therefore, cutting heat and temperature generated in micro-milling will have significantly different effect than the one in the traditional tools cutting. In this paper, a two-dimensional coupled thermal-mechanical finite element model is adopted to determine thermal fields and cutting temperature during the Micro-milling process, by using software Deform-2D. The effect of tool edge radius on effective stress, effective strain, velocity field and cutting temperature distribution in micro-milling of aluminum alloy Al2024-T6 were investigated and analyzed. Also, the transient cutting temperature distribution was simulated dynamically. The simulation results show that the cutting temperature in Micro-milling is lower than those occurring in conventional milling processes due to the small loads and low cutting velocity. With increase of tool edge radius, the maximum temperature region gradually occurs on the contact region between finished surfaced and flank face of micro-cutter, instead of the rake face or the corner of micro-cutter. And this phenomenon shows an obvious size effect.

  13. Electrochemical corrosion and bioactivity of Ti-Nb-Sn-hydroxyapatite composites fabricated by pulse current activated sintering.

    PubMed

    Xiaopeng, Wang; Fantao, Kong; Biqing, Han; Yuyong, Chen

    2017-11-01

    Ti-Nb-Sn-hydroxyapatite (HA) composites were prepared by mechanical alloying for different times (unmilled, 4, 8 and 12h), followed by pulse current activated sintering. The effects of the milling time on the electrochemical corrosion resistance and bioactivity of the sintered Ti-35Nb-2.5Sn-15HA composites were investigated. Potentiodynamic polarization test results indicated that the sintered Ti-35Nb-2.5Sn-15HA composites exhibited higher corrosion resistance with increasing milling time. The corrosion potential and current of the Ti-35Nb-2.5Sn-15HA composite sintered by 12h milled powders were - 0.261V and 0.18μA/cm 2 , respectively, and this sintered composite showed a stable and wide passivation region. The hemolysis rate of the sintered Ti-35Nb-2.5Sn-15HA composites reduced with increasing milling time and the lowest hemolytic rate of the composites was 0.87%. In addition, the in vitro cell culture results indicated that the composite sintered by 12h milled powders had good biocompatibility. These results indicate the significant potential of Ti-35Nb-2.5Sn/xHA composites for biomedical implant applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Influence of processing on the microstructure and mechanical properties of 14YWT

    DOE PAGES

    Hoelzer, David T.; Unocic, Kinga A.; Sokolov, Mikhail A.; ...

    2015-12-15

    In this study, the investigation of the mechanical alloying (MA) conditions for producing the advanced oxide dispersion strengthened (ODS) 14YWT ferritic alloy led to significant improvements in balancing the strength, ductility and fracture toughness properties while still maintaining the salient microstructural features consisting of ultra-fine grains and high concentration of Y-, Ti- and O-enriched nanoclusters. The implemented changes to the processing conditions included reducing the contamination of the powder during ball milling, applying a pre-extrusion annealing treatment on the ball milled powder and exploring different extrusion temperatures at 850 °C (SM170 heat), 1000 °C (SM185) and 1150 °C (SM200). Themore » microstructural studies of the three 14YWT heats showed similarities in the dispersion of nanoclusters and sub-micron size grains, indicating the microstructure was insensitive to the different extrusion conditions. Compared to past 14YWT heats, the three new heats showed lower strength, but higher ductility levels between 25 and 800 °C and significantly higher fracture toughness values between 25 °C and 700 °C. The lower contamination levels of O, C and N achieved with improved ball milling conditions plus the slightly larger grain size were identified as important factors for improving the balance in mechanical properties of the three heats of 14YWT.« less

  15. CAD/CAM machining Vs pre-sintering in-lab fabrication techniques of Y-TZP ceramic specimens: Effects on their mechanical fatigue behavior.

    PubMed

    Zucuni, C P; Guilardi, L F; Fraga, S; May, L G; Pereira, G K R; Valandro, L F

    2017-07-01

    This study evaluated the effects of different pre-sintering fabrication processing techniques of Y-TZP ceramic (CAD/CAM Vs. in-lab), considering surface characteristics and mechanical performance outcomes. Pre-sintered discs of Y-TZP ceramic (IPS e.max ZirCAD, Ivoclar Vivadent) were produced using different pre-sintering fabrication processing techniques: Machined- milling with a CAD/CAM system; Polished- fabrication using a cutting device followed by polishing (600 and 1200 SiC papers); Xfine- fabrication using a cutting machine followed by grinding with extra-fine diamond bur (grit size 30 μm); Fine- fabrication using a cutting machine followed by grinding with fine diamond bur (grit size 46 μm); SiC- fabrication using a cutting machine followed by grinding with 220 SiC paper. Afterwards, the discs were sintered and submitted to roughness (n=35), surface topography (n=2), phase transformation (n=2), biaxial flexural strength (n=20), and biaxial flexural fatigue strength (fatigue limit) (n=15) analyses. No monoclinic-phase content was observed in all processing techniques. It can be observed that obtaining a surface with similar characteristics to CAD/CAM milling is essential for the observation of similar mechanical performance. On this sense, grinding with fine diamond bur before sintering (Fine group) was the best mimic protocol in comparison to the CAD/CAM milling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A modeling comparison of projection neuron- and neuromodulator-elicited oscillations in a central pattern generating network.

    PubMed

    Kintos, Nickolas; Nusbaum, Michael P; Nadim, Farzan

    2008-06-01

    Many central pattern generating networks are influenced by synaptic input from modulatory projection neurons. The network response to a projection neuron is sometimes mimicked by bath applying the neuronally-released modulator, despite the absence of network interactions with the projection neuron. One interesting example occurs in the crab stomatogastric ganglion (STG), where bath applying the neuropeptide pyrokinin (PK) elicits a gastric mill rhythm which is similar to that elicited by the projection neuron modulatory commissural neuron 1 (MCN1), despite the absence of PK in MCN1 and the fact that MCN1 is not active during the PK-elicited rhythm. MCN1 terminals have fast and slow synaptic actions on the gastric mill network and are presynaptically inhibited by this network in the STG. These local connections are inactive in the PK-elicited rhythm, and the mechanism underlying this rhythm is unknown. We use mathematical and biophysically-realistic modeling to propose potential mechanisms by which PK can elicit a gastric mill rhythm that is similar to the MCN1-elicited rhythm. We analyze slow-wave network oscillations using simplified mathematical models and, in parallel, develop biophysically-realistic models that account for fast, action potential-driven oscillations and some spatial structure of the network neurons. Our results illustrate how the actions of bath-applied neuromodulators can mimic those of descending projection neurons through mathematically similar but physiologically distinct mechanisms.

  17. Using SEM Analysis on Ion-Milled Shale Surface to Determine Shale-Fracturing Fluid Interaction

    NASA Astrophysics Data System (ADS)

    Lu, J.; Mickler, P. J.; Nicot, J. P.

    2014-12-01

    It is important to document and assess shale-fluid interaction during hydraulic fracturing (HF) in order to understand its impact on flowback water chemistry and rock property. A series of autoclave experiments were conducted to react shale samples from major oil and gas shales with synthetic HF containing various additives. To better determine mineral dissolution and precipitation at the rock-fluid interface, ion-milling technique was applied to create extremely flat rock surfaces that were examined before and after the autoclave experiments using a scanning electron microscope (SEM) coupled with energy dispersive spectroscopy (EDS) detectors. This method is able to reveal a level of detail not observable on broken surface or mechanically polished surface. It allows direct comparison of the same mineral and organic matter particles before and after the reaction experiments. Minerals undergone dissolution and newly precipitated materials are readily determined by comparing to the exact locations before reaction. The dissolution porosity and the thickness of precipitates can be quantified by tracing and measuring the geometry of the pores and precipitates. Changes in porosity and permeability were confirmed by mercury intrusion capillary tests.

  18. Extraction of rutin from Tartary buckwheat milling fractions and evaluation of its thermal stability in an instant fried noodle system.

    PubMed

    Cho, Yong Jin; Lee, Suyong

    2015-06-01

    Extraction conditions of rutin from buckwheat milling fractions were established and a rutin-enriched material (REM, 31.8g/100g of rutin) was successfully obtained by the ultrasonic-assisted ethanol method (steaming, 16-150 mesh particle size, 70% ethanol, and ultrasonication at 40°C for 30min). When REM was applied to instant fried noodles (1% and 2% by weight of wheat flour) for rutin fortification, the levels of rutin in the noodles were determined to be about 250-500mg/100g which corresponded to the recommended daily dose of rutin. While frying temperatures (150-190°C) and times (1-3min) did not negatively affect the level of rutin in the instant fried noodles, the distinct loss of rutin was observed after cooking. Furthermore, REM did not significantly affect the oil uptake and mechanical property of instant fried noodles. The strong antioxidant activity of rutin in REM contributed to retarding the oxidative deterioration of the noodles during storage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Reducing tool wear by partial cladding of critical zones in hot form tool by laser metal deposition

    NASA Astrophysics Data System (ADS)

    Vollmer, Robert; Sommitsch, Christof

    2017-10-01

    This paper points out a production method to reduce tool wear in hot stamping applications. Usually tool wear can be observed at locally strongly stressed areas superimposed with gliding movement between blank and tool surface. The shown solution is based on a partial laser cladding of the tool surface with a wear resistant coating to increase the lifespan of tool inserts. Preliminary studies showed good results applying a material combination of tungsten carbide particles embedded in a metallic matrix. Different Nickel based alloys welded on hot work tool steel (1.2343) were tested mechanically in the interface zone. The material with the best bonding characteristic is chosen and reinforced with spherical tungsten carbide particles in a second laser welding step. Since the machining of tungsten carbides is very elaborate a special manufacturing strategy is developed to reduce the milling effort as much as possible. On special test specimens milling tests are carried out to proof the machinability. As outlook a tool insert of a b-pillar is coated to perform real hot forming tests.

  20. Tensile Properties of Unsaturated Polyester and Epoxy Resin Reinforced with Recycled Carbon-Fiber-Reinforced Plastic

    NASA Astrophysics Data System (ADS)

    Okayasu, Mitsuhiro; Kondo, Yuta

    2018-06-01

    To better understand the mechanical properties of recycled carbon-fiber-reinforced plastic (rCFRP), CFRP crushed into small pieces was mixed randomly in different proportions (0-30 wt%) with two different resins: unsaturated polyester and epoxy resin. Two different sizes of crushed CFRP were used: 0.1 mm × 0.007 mm (milled CFRP) and 30 mm × 2 mm (chopped CFRP). The tensile strength of rCFRP was found to depend on both the proportion and the size of the CFRP pieces. It increased with increasing proportion of chopped CFRP, but decreased with increasing proportion of milled CFRP. There was no clear dependence of the tensile strength on the resin that was used. A low fracture strain was found for rCFRP samples made with chopped CFRP, in contrast to those made with milled CFRP. The fracture strain was found to increase with increasing content of milled CFRP up to 20 wt%, at which point, coalescence of existing microvoids occurred. However, there was a reduction in fracture strain for rCFRP with 30 wt% of milled CFRP, owing to the formation of defects (blow holes). Overall, the fracture strain was higher for rCFRPs based on epoxy resin than for those based on unsaturated polyester with the same CFRP content, because of the high ductility of the epoxy resin. The different tensile properties reflected different failure characteristics, with the use of chopped CFRP leading to a complicated rough fracture surface and with milled CFRP causing ductile failure through the presence of tiny dimple-like fractures. However, for a high content of milled CFRP (30 wt%), large blow holes were observed, leading to low ductility.

  1. Tensile Properties of Unsaturated Polyester and Epoxy Resin Reinforced with Recycled Carbon-Fiber-Reinforced Plastic

    NASA Astrophysics Data System (ADS)

    Okayasu, Mitsuhiro; Kondo, Yuta

    2017-08-01

    To better understand the mechanical properties of recycled carbon-fiber-reinforced plastic (rCFRP), CFRP crushed into small pieces was mixed randomly in different proportions (0-30 wt%) with two different resins: unsaturated polyester and epoxy resin. Two different sizes of crushed CFRP were used: 0.1 mm × 0.007 mm (milled CFRP) and 30 mm × 2 mm (chopped CFRP). The tensile strength of rCFRP was found to depend on both the proportion and the size of the CFRP pieces. It increased with increasing proportion of chopped CFRP, but decreased with increasing proportion of milled CFRP. There was no clear dependence of the tensile strength on the resin that was used. A low fracture strain was found for rCFRP samples made with chopped CFRP, in contrast to those made with milled CFRP. The fracture strain was found to increase with increasing content of milled CFRP up to 20 wt%, at which point, coalescence of existing microvoids occurred. However, there was a reduction in fracture strain for rCFRP with 30 wt% of milled CFRP, owing to the formation of defects (blow holes). Overall, the fracture strain was higher for rCFRPs based on epoxy resin than for those based on unsaturated polyester with the same CFRP content, because of the high ductility of the epoxy resin. The different tensile properties reflected different failure characteristics, with the use of chopped CFRP leading to a complicated rough fracture surface and with milled CFRP causing ductile failure through the presence of tiny dimple-like fractures. However, for a high content of milled CFRP (30 wt%), large blow holes were observed, leading to low ductility.

  2. Eco-design of low energy mechanical milling through implementation of quality function deployment and design for sustainability

    NASA Astrophysics Data System (ADS)

    Rashid, Muhammad Hanif Abd; Nor, Nik Hisyamudin Muhd; Selamat, Siti Norhana; Hassan, Mohd Fahrul; Rahim, Abd Khalil Abd; Ahmad, Mohd Fauzi; Ismail, Al Emran; Omar, Badrul; Mokhtar, Mohd Faiz; Turan, Faiz Mohd; Yokoyama, Seiji

    2017-04-01

    Malaysia as a developing country favor energy demand by years which created mainly from fossil fuel. Unfortunately, the action leads to significant increment in carbon dioxide (CO2) emission that causing the global warming. The most promising mitigation strategy is by deploying Carbon Capture and Storage (CCS) technology where mineral carbonation was identified as the safest method for permanent storage and does not require continuous monitoring. Accordingly, National Green Technology was launched in 2009 to support the growth of green technology development in Malaysia as a carbon mitigation strategy. Thus, this paper aims to propose the development of a conceptual eco-design for Low Energy Mechanical Milling (LEMM). The concept was proposed by using the Quality Function Deployment (QFD) tool with combination of sustainability determinants (DFS) namely economic, environmental and social which evaluated using Solidworks 2015 sustainability assessment. The results show the new product targets for LEMM in prior on energy consumption (MJ), selling price (MYR), material cost (MYR), carbon footprint (kg CO2) with weightage of 5.2, 4.2, 3.6 and 3.6 respectively. The implementation of DFS criteria into the QFD promote to reduce material used by 16%, 35% reduction of carbon footprint, 28% less energy consumption, 28% lower air acidification, 77% of water eutrophication declined and increased recyclability by 15%.

  3. 77 FR 57529 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-18

    ... the fuselage skin along chem- mill steps at certain crown skin and shear wrinkle areas, and repair if... the procedures found in 14 CFR 11.43 and 11.45, by any of the following methods: Federal eRulemaking... to non-chem-mill areas at antenna and door bearstrap installations, and shear wrinkle areas at...

  4. Economical drive for large tube mills by means of planetary gears

    NASA Technical Reports Server (NTRS)

    Ackle, W.

    1980-01-01

    The performance of heavy-duty planetary gear drives for ball mills used in the cement industry since 1967 is described. These gear drives transmit up to 8500 HP per installation. A reliable method for establishing gear drive efficiency is described and possible savings due to higher efficiency are indicated.

  5. Method for attaining fennel (Foeniculum vulgare Mill.) seed oil fractions with different composition and antioxidant capacity

    USDA-ARS?s Scientific Manuscript database

    Fennel (Foeniculum vulgare Mill.) is cultivated for its seeds and foliage, which contain essential oil. We hypothesized that the collection of fennel seed oil at different time points during the distillation process may result in fennel oil with distinct composition and bioactivity. We collected ess...

  6. Unique Educational Acceleration: The Dilemma of John Stuart Mill and Contemporary Gifted Youths.

    ERIC Educational Resources Information Center

    Kelly, Morgan P.

    1985-01-01

    John Stuart Mill was not allowed to decide his educational fate until his late teens, and after shedding the restrictions of his father's teaching methods, he began suffering severe emotional distress. His dilemma continues to face today's exceptionally able students' choice between unfettered intellectual development or inevitable biasing that…

  7. Minimization of energy and surface roughness of the products machined by milling

    NASA Astrophysics Data System (ADS)

    Belloufi, A.; Abdelkrim, M.; Bouakba, M.; Rezgui, I.

    2017-08-01

    Metal cutting represents a large portion in the manufacturing industries, which makes this process the largest consumer of energy. Energy consumption is an indirect source of carbon footprint, we know that CO2 emissions come from the production of energy. Therefore high energy consumption requires a large production, which leads to high cost and a large amount of CO2 emissions. At this day, a lot of researches done on the Metal cutting, but the environmental problems of the processes are rarely discussed. The right selection of cutting parameters is an effective method to reduce energy consumption because of the direct relationship between energy consumption and cutting parameters in machining processes. Therefore, one of the objectives of this research is to propose an optimization strategy suitable for machining processes (milling) to achieve the optimum cutting conditions based on the criterion of the energy consumed during the milling. In this paper the problem of energy consumed in milling is solved by an optimization method chosen. The optimization is done according to the different requirements in the process of roughing and finishing under various technological constraints.

  8. Biomechanical pulping : a mill-scale evaluation

    Treesearch

    Masood Akhtar; Gary M. Scott; Ross E. Swaney; Mike J. Lentz; Eric G. Horn; Marguerite S. Sykes; Gary C. Myers

    1999-01-01

    Mechanical pulping process is electrical energy intensive and results in low paper strength. Biomechanical pulping, defined as the fungal treatment of lignocellulosic materials prior to mechanical pulping, has shown at least 30% savings in electrical energy consumption, and significant improvements in paper strength properties compared to the control at a laboratory...

  9. Modeling the milling tool wear by using an evolutionary SVM-based model from milling runs experimental data

    NASA Astrophysics Data System (ADS)

    Nieto, Paulino José García; García-Gonzalo, Esperanza; Vilán, José Antonio Vilán; Robleda, Abraham Segade

    2015-12-01

    The main aim of this research work is to build a new practical hybrid regression model to predict the milling tool wear in a regular cut as well as entry cut and exit cut of a milling tool. The model was based on Particle Swarm Optimization (PSO) in combination with support vector machines (SVMs). This optimization mechanism involved kernel parameter setting in the SVM training procedure, which significantly influences the regression accuracy. Bearing this in mind, a PSO-SVM-based model, which is based on the statistical learning theory, was successfully used here to predict the milling tool flank wear (output variable) as a function of the following input variables: the time duration of experiment, depth of cut, feed, type of material, etc. To accomplish the objective of this study, the experimental dataset represents experiments from runs on a milling machine under various operating conditions. In this way, data sampled by three different types of sensors (acoustic emission sensor, vibration sensor and current sensor) were acquired at several positions. A second aim is to determine the factors with the greatest bearing on the milling tool flank wear with a view to proposing milling machine's improvements. Firstly, this hybrid PSO-SVM-based regression model captures the main perception of statistical learning theory in order to obtain a good prediction of the dependence among the flank wear (output variable) and input variables (time, depth of cut, feed, etc.). Indeed, regression with optimal hyperparameters was performed and a determination coefficient of 0.95 was obtained. The agreement of this model with experimental data confirmed its good performance. Secondly, the main advantages of this PSO-SVM-based model are its capacity to produce a simple, easy-to-interpret model, its ability to estimate the contributions of the input variables, and its computational efficiency. Finally, the main conclusions of this study are exposed.

  10. Hot mill process parameters impacting on hot mill tertiary scale formation

    NASA Astrophysics Data System (ADS)

    Kennedy, Jonathan Ian

    For high end steel applications surface quality is paramount to deliver a suitable product. A major cause of surface quality issues is from the formation of tertiary scale. The scale formation depends on numerous factors such as thermo-mechanical processing routes, chemical composition, thickness and rolls used. This thesis utilises a collection of data mining techniques to better understand the influence of Hot Mill process parameters on scale formation at Port Talbot Hot Strip Mill in South Wales. The dataset to which these data mining techniques were applied was carefully chosen to reduce process variation. There are several main factors that were considered to minimise this variability including time period, grade and gauge investigated. The following data mining techniques were chosen to investigate this dataset: Partial Least Squares (PLS); Logit Analysis; Principle Component Analysis (PCA); Multinomial Logistical Regression (MLR); Adaptive Neuro Inference Fuzzy Systems (ANFIS). The analysis indicated that the most significant variable for scale formation is the temperature entering the finishing mill. If the temperature is controlled on entering the finishing mill scale will not be formed. Values greater than 1070 °C for the average Roughing Mill and above 1050 °C for the average Crop Shear temperature are considered high, with values greater than this increasing the chance of scale formation. As the temperature increases more scale suppression measures are required to limit scale formation, with high temperatures more likely to generate a greater amount of scale even with fully functional scale suppression systems in place. Chemistry is also a significant factor in scale formation, with Phosphorus being the most significant of the chemistry variables. It is recommended that the chemistry specification for Phosphorus be limited to a maximum value of 0.015 % rather than 0.020 % to limit scale formation. Slabs with higher values should be treated with particular care when being processed through the Hot Mill to limit scale formation.

  11. Characterization and corrosion behaviour of CoNi alloys obtained by mechanical alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olvera, S.; Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Química-Física Aplicada, 28049 Madrid; Sánchez-Marcos, J.

    2014-07-01

    CoNi alloys including Co{sub 30}Ni{sub 70}, Co{sub 50}Ni{sub 50} and Co{sub 70}Ni{sub 30} were prepared via mechanical alloying using Co and Ni powders. The crystallinity and short-range order were studied using X-ray diffraction and X-ray absorption spectroscopy. The results show that the milling process increases the number of vacancies, especially around the Co atoms, while the milling time decreases the crystalline size and enhances the crystallinity. X-ray photoelectron spectroscopy was used to characterise the chemical composition of the samples surface. The magnetic properties were analysed using zero-field cooling, field cooling and a magnetic hysteresis loops. The magnetic saturation moment ismore » approximately 1.05 μ{sub B}/atom; this value decreases with the mechanical alloying time, and it is proportional to the cobalt concentration. The polarization and impedance curves in different media (NaCl, H{sub 2}SO{sub 4} and NaOH) showed similar corrosion resistance values. The corrosion resistance increased in the order NaCl, H{sub 2}SO{sub 4} and NaOH. A good passivation layer was formed in NaOH due to the cobalt and nickel oxides on the particle surfaces. - Highlights: • Ni{sub x}Co{sub 100-x} alloys were synthesized by mechanical alloying • Milling time decrease size and enhances crystallinity. • Oxygen is not present in a significant percentage in bulk but is detected on the surface. • Magnetic saturation moment is 1.05 mB/atom and decrease with mechanical allowing time • Corrosion resistance is higher in NaOH than in NaCl or HCl solutions.« less

  12. Mechanically Activated Combustion Synthesis of MoSi 2-Based Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafirovich, Evgeny

    2015-09-30

    The thermal efficiency of gas-turbine power plants could be dramatically increased by the development of new structural materials based on molybdenum silicides and borosilicides, which can operate at temperatures higher than 1300 °C with no need for cooling. A major challenge, however, is to simultaneously achieve high oxidation resistance and acceptable mechanical properties at high temperatures. One approach is based on the fabrication of MoSi2-Mo5Si3 composites that combine high oxidation resistance of MoSi2 and good mechanical properties of Mo5Si3. Another approach involves the addition of boron to Mo-rich silicides for improving their oxidation resistance through the formation of a borosilicatemore » surface layer. In particular, materials based on Mo5SiB2 phase are promising materials that offer favorable combinations of high temperature mechanical properties and oxidation resistance. However, the synthesis of Mo-Si-B multi-phase alloys is difficult because of their extremely high melting temperatures. Mechanical alloying has been considered as a promising method, but it requires long milling times, leading to large energy consumption and contamination of the product by grinding media. In the reported work, MoSi2-Mo5Si3 composites and several materials based on Mo5SiB2 phase have been obtained by mechanically activated self-propagating high-temperature synthesis (MASHS). Short-term milling of Mo/Si mixture in a planetary mill has enabled a self-sustained propagation of the combustion front over the mixture pellet, leading to the formation of MoSi2-T1 composites. Combustion of Mo/Si/B mixtures for the formation of T2 phase becomes possible if the composition is designed for the addition of more exothermic reactions leading to the formation of MoB, TiC, or TiB2. Upon ignition, Mo/Si/B and Mo/Si/B/Ti mixtures exhibited spin combustion, but the products were porous, contained undesired secondary phases, and had low oxidation resistance. It has been shown that use of SHS compaction (quasi-isostatic pressing after combustion) significantly improves oxidation resistance of the obtained MoSi2-Mo5Si3 composites. The “chemical oven” technique has been successfully employed to fabricate low-porous Mo5SiB2–TiC, Mo5SiB2–TiB2, and Mo–Mo5SiB2–Mo3Si materials. Among them, Mo5SiB2–TiB2 material possesses good mechanical properties and simultaneously exhibits excellent oxidation resistance at temperatures up to 1500 °C.« less

  13. Modeling of thermomechanical and metallurgical phenomena in steel strip during hot direct rolling and runout table cooling of thin-cast slabs

    NASA Astrophysics Data System (ADS)

    Muojekwu, Cornelius Anaedu

    The present research was directed at adequate prediction of the temperature, deformation behavior (roll force, flow stress, strain and strain rate) and microstructural evolution (recovery, recrystallization, grain growth, austenite and ferrite grain sizes) during rolling in the Compact Strip Production (CSP) process, as well as the final mechanical properties of the hot rolled strips. This was accomplished with the aid of integrated process modeling, involving mathematical simulation, laboratory experiments and industrial campaigns. The study covered two conventional plain carbon steel grades, the A36 (AISI 1018, 0.17C-0.74Mn) and DQSK (AISI 1005, 0.038C-0.3Mn), and a range of plain carbon steel grades (0.06-0.09 C, 0.16-0.9 Mn) produced at HYLSA's CSP mill at Monterrey, Mexico. In the laboratory, compression tests (both single and double-hits) were carried out on the Gleeble 1500 thermomechanical simulator in order to elucidate the effect of coarse austenite grain size on the flow stress and recrystallization behavior of the plain carbon steels. It was found that coarse grain size not only decreased the flow stress at a given strain but also substantially reduced the tendency toward dynamic recrystallization. An increase in grain size from 244 to 1110 mum which is typical of the first stands of a conventional finishing mill and CSP hot-strip mill respectively, resulted in up to a 30 MPa decrease in the flow stress of both A36 and DQSK steel grades at similar operating conditions of temperature, strain and strain rate. In order to validate the model and laboratory results with mill measurements from an operating CSP plant, an industrial trial was carried out at HYLSA's CSP mill in Monterrey, Mexico. During the industrial campaign, intermediate temperature measurements were made, CSP slab and coil samples were acquired, and all measured and recorded mill data and practices were obtained. Comprehensive mathematical modeling of the rolling process was carried out employing finite difference and finite element analysis. The CSP mill measurements were utilized to validate model predictions of temperature, roll force, grain size and mechanical properties. Good agreement was obtained between prediction and measurement in most of the cases. An estimate of the heat extraction from the various mill sub-units was conducted from the validated calculations. It was found that heat loss by radiation accounted for 48-51 percent of the total heat loss, the work rolls accounted for 41-44 percent, the descaling unit accounted for 4-6 percent and the interstand sprays accounted for the remaining 3-4 percent. It was found that the uniform strain model consistently predicts lower temperatures than the target exit temperature for thin gauges due to a low estimate of deformation heat. Model results captured the details of heat transfer, deformation, recrystallization and austenite decomposition in the CSP mill. The effect of various mill parameters were elucidated, and the similarities and differences between conventional cold-charge rolling and CSP rolling were highlighted. (Abstract shortened by UMI.)

  14. Retrieving Storm Electric Fields From Aircraft Field Mill Data. Part 2; Applications

    NASA Technical Reports Server (NTRS)

    Koshak, W. J.; Mach, D. M.; Christian, H. J.; Stewart, M. F.; Bateman, M. G.

    2005-01-01

    The Lagrange multiplier theory and "pitch down method" developed in Part I of this study are applied to complete the calibration of a Citation aircraft that is instrumented with six field mill sensors. When side constraints related to average fields are used, the method performs well in computer simulations. For mill measurement errors of 1 V/m and a 5 V/m error in the mean fair weather field function, the 3-D storm electric field is retrieved to within an error of about 12%. A side constraint that involves estimating the detailed structure of the fair weather field was also tested using computer simulations. For mill measurement errors of 1 V/m, the method retrieves the 3-D storm field to within an error of about 8% if the fair weather field estimate is typically within 1 V/m of the true fair weather field. Using this side constraint and data from fair weather field maneuvers taken on 29 June 2001, the Citation aircraft was calibrated. The resulting calibration matrix was then used to retrieve storm electric fields during a Citation flight on 2 June 2001. The storm field results are encouraging and agree favorably with the results obtained from earlier calibration analyses that were based on iterative techniques.

  15. Digitally Milled Metal Framework for Fixed Complete Denture with Metal Occlusal Surfaces: A Design Concept.

    PubMed

    AlBader, Bader; AlHelal, Abdulaziz; Proussaefs, Periklis; Garbacea, Antonela; Kattadiyil, Mathew T; Lozada, Jaime

    Implant-supported fixed complete dentures, often referred to as hybrid prostheses, have been associated with high implant survival rates but also with a high incidence of mechanical prosthetic complications. The most frequent of these complications have been fracture and wear of the veneering material. The proposed design concept incorporates the occlusal surfaces of the posterior teeth as part of a digital milled metal framework by designing the posterior first molars in full contour as part of the framework. The framework can be designed, scanned, and milled from a titanium blank using a milling machine. Acrylic resin teeth can then be placed on the framework by conventional protocol. The metal occlusal surfaces of the titanium-countered molars will be at centric occlusion. It is hypothesized that metal occlusal surfaces in the posterior region may reduce occlusal wear in these types of prostheses. When the proposed design protocol is followed, the connection between the metal frame and the cantilever part of the prosthesis is reinforced, which may lead to fewer fractures of the metal framework.

  16. Mechanically delaminated few layered MoS2 nanosheets based high performance wire type solid-state symmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Karthikeyan; Pazhamalai, Parthiban; Veerasubramani, Ganesh Kumar; Kim, Sang Jae

    2016-07-01

    Two dimensional nanostructures are increasingly used as electrode materials in flexible supercapacitors for portable electronic applications. Herein, we demonstrated a ball milling approach for achieving few layered molybdenum disulfide (MoS2) via exfoliation from their bulk. Physico-chemical characterizations such as X-ray diffraction, field emission scanning electron microscope, and laser Raman analyses confirmed the occurrence of exfoliated MoS2 sheets with few layers from their bulk via ball milling process. MoS2 based wire type solid state supercapacitors (WSCs) are fabricated and examined using cyclic voltammetry (CV), electrochemical impedance spectroscopy, and galvanostatic charge discharge (CD) measurements. The presence of rectangular shaped CV curves and symmetric triangular shaped CD profiles suggested the mechanism of charge storage in MoS2 WSC is due to the formation of electrochemical double layer capacitance. The MoS2 WSC device delivered a specific capacitance of 119 μF cm-1, and energy density of 8.1 nW h cm-1 with better capacitance retention of about 89.36% over 2500 cycles, which ensures the use of the ball milled MoS2 for electrochemical energy storage devices.

  17. Mechanochemical depolymerization of inulin.

    PubMed

    Xing, Haoran; Yaylayan, Varoujan A

    2018-05-02

    Although chemical reactions driven by mechanical force is emerging as a promising tool in the field of physical sciences, its applications in the area of food sciences are not reported. In this paper, we propose ball milling as an efficient tool for the controlled generation of fructooligosaccharide (FOS) mixtures from inulin with a degree of polymerization (dp) ranging between 4 and 7. The addition of catalytic amounts of AlCl 3 together with ball milling (30 min, at 30 Hz) generated mixtures rich in dehydrated disaccharides such as di-D-fructose dianhydrides. Based on anion exchange chromatography in conjunction with ESI/qTOF/MS/MS analysis, catalysis increased the overall content of mono-, di-, and tri-saccharides by around 30 fold compared to un-catalyzed milling. In addition, dialysis results of the untreated and treated samples have indicated that under catalysis the percent of depolymerization (dp < 12) reached 73.4% from the starting value of 27.6% in the untreated sample. Both processes resulted in mixtures of prebiotic value. The use of mechanical energy may be suitable for a fast, cost-efficient and green conversion of inulin to value-added food ingredients. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. The Structure and Mechanical Properties of High-Strength Bulk Ultrafine-Grained Cobalt Prepared Using High-Energy Ball Milling in Combination with Spark Plasma Sintering

    PubMed Central

    Marek, Ivo; Vojtěch, Dalibor; Michalcová, Alena; Kubatík, Tomáš František

    2016-01-01

    In this study, bulk ultrafine-grained and micro-crystalline cobalt was prepared using a combination of high-energy ball milling and subsequent spark plasma sintering. The average grain sizes of the ultrafine-grained and micro-crystalline materials were 200 nm and 1 μm, respectively. Mechanical properties such as the compressive yield strength, the ultimate compressive strength, the maximum compressive deformation and the Vickers hardness were studied and compared with those of a coarse-grained as-cast cobalt reference sample. The bulk ultrafine-grained sample showed an ultra-high compressive yield strength that was greater than 1 GPa, which is discussed with respect to the preparation technique and a structural investigation. PMID:28773514

  19. Development of seal ring carbon-graphite materials (tasks 8, 9, and 10)

    NASA Technical Reports Server (NTRS)

    Fechter, N. J.; Petrunich, P. S.

    1973-01-01

    A screening study was conducted to develop improved carbon-graphite materials for use in self-acting seals at air temperatures to 1300 F (704 C). Property measurements on materials prepared during this study have shown that: (1) The mechanical properties of a carbon-graphite material were significantly improved by using a fine milled artificial graphite filler material and including intensive mixing, warm molding, and pitch impregnation in the processing; and (2) the oxidation resistance of a carbon-graphite material was improved by including fine milled boron carbide as an oxidation-inhibiting additive. These techniques were employed to develop a material that has 10 times more oxidation resistance than that of a widely used commercial grade and mechanical properties that approach those of the commercial grade.

  20. Microscopic structure and properties changes of cassava stillage residue pretreated by mechanical activation.

    PubMed

    Liao, Zhengda; Huang, Zuqiang; Hu, Huayu; Zhang, Yanjuan; Tan, Yunfang

    2011-09-01

    This study has focused on the pretreatment of cassava stillage residue (CSR) by mechanical activation (MA) using a self-designed stirring ball mill. The changes in surface morphology, functional groups and crystalline structure of pretreated CSR were examined by using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) under reasonable conditions. The results showed that MA could significantly damage the crystal structure of CSR, resulting in the variation of surface morphology, the increase of amorphous region ratio and hydrogen bond energy, and the decrease in crystallinity and crystalline size. But no new functional groups generated during milling, and the crystal type of cellulose in CSR still belonged to cellulose I after MA. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Recycling and processing of several typical crosslinked polymer scraps with enhanced mechanical properties based on solid-state mechanochemical milling

    NASA Astrophysics Data System (ADS)

    Lu, Canhui; Zhang, Xinxing; Zhang, Wei

    2015-05-01

    The partially devulcanization or de-crosslinking of ground tire rubber (GTR), post-vulcanized fluororubber scraps and crosslinked polyethylene from cable scraps through high-shear mechanochemical milling (HSMM) was conducted by a modified solid-state mechanochemical reactor. The results indicated that the HSMM treated crosslinked polymer scraps can be reprocessed as virgin rubbers or thermoplastics to produce materials with high performance. The foamed composites of low density polyethylene/GTR and the blend of post-vulcanized flurorubber (FKM) with polyacrylate rubber (ACM) with better processability and mechanical properties were obtained. The morphology observation showed that the dispersion and compatibility between de-crosslinked polymer scraps and matrix were enhanced. The results demonstrated that HSMM is a feasible alternative technology for recycling post-vulcanized or crosslinked polymer scraps.

  2. Precision Fit of Screw-Retained Implant-Supported Fixed Dental Prostheses Fabricated by CAD/CAM, Copy-Milling, and Conventional Methods.

    PubMed

    de França, Danilo Gonzaga; Morais, Maria Helena; das Neves, Flávio D; Carreiro, Adriana Fonte; Barbosa, Gustavo As

    The aim of this study was to evaluate the effectiveness of fabrication methods (computer-aided design/computer-aided manufacture [CAD/CAM], copy-milling, and conventional casting) in the fit accuracy of three-unit, screw-retained fixed dental prostheses. Sixteen three-unit implant-supported screw-retained frameworks were fabricated to fit an in vitro model. Eight frameworks were fabricated using the CAD/CAM system, four in zirconia and four in cobalt-chromium. Four zirconia frameworks were fabricated using the copy-milled system, and four were cast in cobalt-chromium using conventional casting with premachined abutments. The vertical and horizontal misfit at the implant-framework interface was measured using scanning electron microscopy at ×250. The results for vertical misfit were analyzed using Kruskal-Wallis and Mann-Whitney tests. The horizontal misfits were categorized as underextended, equally extended, or overextended. Statistical analysis established differences between groups according to the chi-square test (α = .05). The mean vertical misfit was 5.9 ± 3.6 μm for CAD/CAM-fabricated zirconia, 1.2 ± 2.2 μm for CAD/CAM-fabricated cobalt-chromium frameworks, 7.6 ± 9.2 μm for copy-milling-fabricated zirconia frameworks, and 11.8 (9.8) μm for conventionally fabricated frameworks. The Mann-Whitney test revealed significant differences between all but the zirconia-fabricated frameworks. A significant association was observed between the horizontal misfits and the fabrication method. The percentage of horizontal misfits that were underextended and overextended was higher in milled zirconia (83.3%), CAD/CAM cobaltchromium (66.7%), cast cobalt-chromium (58.3%), and CAD/CAM zirconia (33.3%) frameworks. CAD/CAM-fabricated frameworks exhibit better vertical misfit and low variability compared with copy-milled and conventionally fabricated frameworks. The percentage of interfaces equally extended was higher when CAD/CAM and zirconia were used.

  3. MASSAHAKE whole tree harvesting method for pulp raw-material and fuel -- R&D in 1993--1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asplund, D.A.; Ahonen, M.A.

    1993-12-31

    In Finland biofuels and hydropower are the only indigenous fuels available. Peat, wood and wood derived fuels form about 18% of total primary energy requirement. The largest wood and wood fuel user in Finland is wood processing industry, paper, pulp, sawmills. Due to silvicultural activities the growth of forests has developed an instant need for first thinnings. This need is about 12% of total stem wood growth. With conventional harvesting methods this would produce about 8 mill. m{sup 3} pulp raw material and 2 mill. m{sup 3} wood fuel. By using integrated harvesting methods about 12 mill. m{sup 3} pulpmore » raw material and 8 mill. m{sup 3} (about 1, 3 mill. toe) fuel could be produced. At the moment, there is no economically profitable method for harvesting first thinning trees for industrial use or energy production. Hence, there are a few ongoing research projects aiming at solving the question of integrated harvesting. MASSAHAKE chip purification method has been under R&D since 1987. Research with continuous experimental line (capacity 5--10 loose-m{sup 3}) has been done in 1991 and 1992. The research has concentrated on pine whole tree chip treatment, but preliminary tests with birch whole tree chips has been done. The experiment line will be modified for birth whole tree chips during 1993. Based on the research results more than 60% of the whole tree chips can be separated to pulp raw material with < 1% bark content. This amount is 1.5--2 times more than with present technology. The yield of fuel fraction is 2--4 times higher compared to present methods. Fuel fraction is homogeneous and could be used in most furnaces for energy production. By replacing fossil fuels with wood fuel in energy production it is possible to reduce CO{sub 2}-emissions significantly. This paper presents the wood fuel research areas in Finland and technical potential of MASSAHAKE-method including the plant for building a demonstration plant based on this technology.« less

  4. Chemical and Biological Investigation of Olive Mill Waste Water - OMWW Secoiridoid Lactones.

    PubMed

    Vougogiannopoulou, Konstantina; Angelopoulou, Maria T; Pratsinis, Harris; Grougnet, Raphaël; Halabalaki, Maria; Kletsas, Dimitris; Deguin, Brigitte; Skaltsounis, Leandros A

    2015-08-01

    Olive mill waste water is the major byproduct of the olive oil industry containing a range of compounds related to Olea europaea and olive oil constituents. Olive mill waste water comprises an important environmental problem in olive oil producing countries, but it is also a valuable material for the isolation of high added value compounds. In this study, an attempt to investigate the secoiridoid content of olive mill waste water is described with the aid of ultrahigh-performance liquid chromatography-electrospray ionization (±)-high-resolution mass spectrometry and centrifugal partition chromatography methods. In total, seven secoiridoid lactones were isolated, four of which are new natural products. This is the first time that a conjugate of hydroxytyrosol and a secoiridoid lactone has been isolated from olive mill waste water and structurally characterized. Furthermore, the range of isolated compounds allowed for the proposal of a hypothesis for the biotransformation of olive secoiridoids during the production of olive mill waste water. Finally, the ability of the representative compounds to reduce the intracellular reactive oxygen species was assessed with the dichlorofluorescein assay in conjunction with the known antioxidant agent hydroxytyrosol. Georg Thieme Verlag KG Stuttgart · New York.

  5. Fabrication of All-SiC Fiber-Optic Pressure Sensors for High-Temperature Applications

    PubMed Central

    Jiang, Yonggang; Li, Jian; Zhou, Zhiwen; Jiang, Xinggang; Zhang, Deyuan

    2016-01-01

    Single-crystal silicon carbide (SiC)-based pressure sensors can be used in harsh environments, as they exhibit stable mechanical and electrical properties at elevated temperatures. A fiber-optic pressure sensor with an all-SiC sensor head was fabricated and is herein proposed. SiC sensor diaphragms were fabricated via an ultrasonic vibration mill-grinding (UVMG) method, which resulted in a small grinding force and low surface roughness. The sensor head was formed by hermetically bonding two layers of SiC using a nickel diffusion bonding method. The pressure sensor illustrated a good linearity in the range of 0.1–0.9 MPa, with a resolution of 0.27% F.S. (full scale) at room temperature. PMID:27763494

  6. Characterization of nanodimensional Ni-Zn ferrite prepared by mechanochemical and thermal methods

    NASA Astrophysics Data System (ADS)

    Manova, E.; Paneva, D.; Kunev, B.; Rivière, E.; Estournès, C.; Mitov, I.

    2010-03-01

    Nickel zinc ferrite nanoparticles, Ni1-xZnxFe2O4 (x = 0, 0.2, 0.5, 0.8, 1.0), with dimensions below 10 nm have been prepared by combining chemical precipitation with high-energy ball milling. For comparison, their analogues obtained by thermal synthesis have also been studied. Mössbauer spectroscopy, X-ray diffraction, and magnetic measurements are used for the characterization of the obtained materials. X-ray diffraction shows that after 3h of mechanical treatment ferrites containing zinc are formed, while 6h of treatment is needed to obtain NiFe2O4. The magnetic properties of the samples exhibit a strong dependence on the phase composition, particle size and preparation method.

  7. Fabrication of All-SiC Fiber-Optic Pressure Sensors for High-Temperature Applications.

    PubMed

    Jiang, Yonggang; Li, Jian; Zhou, Zhiwen; Jiang, Xinggang; Zhang, Deyuan

    2016-10-17

    Single-crystal silicon carbide (SiC)-based pressure sensors can be used in harsh environments, as they exhibit stable mechanical and electrical properties at elevated temperatures. A fiber-optic pressure sensor with an all-SiC sensor head was fabricated and is herein proposed. SiC sensor diaphragms were fabricated via an ultrasonic vibration mill-grinding (UVMG) method, which resulted in a small grinding force and low surface roughness. The sensor head was formed by hermetically bonding two layers of SiC using a nickel diffusion bonding method. The pressure sensor illustrated a good linearity in the range of 0.1-0.9 MPa, with a resolution of 0.27% F.S. (full scale) at room temperature.

  8. Structural, microstructural and magnetic evolution in cryo milled carbon doped MnAl.

    PubMed

    Fang, Hailiang; Cedervall, Johan; Hedlund, Daniel; Shafeie, Samrand; Deledda, Stefano; Olsson, Fredrik; von Fieandt, Linus; Bednarcik, Jozef; Svedlindh, Peter; Gunnarsson, Klas; Sahlberg, Martin

    2018-02-06

    The low cost, rare earth free τ-phase of MnAl has high potential to partially replace bonded Nd 2 Fe 14 B rare earth permanent magnets. However, the τ-phase is metastable and it is experimentally difficult to obtain powders suitable for the permanent magnet alignment process, which requires the fine powders to have an appropriate microstructure and high τ-phase purity. In this work, a new method to make high purity τ-phase fine powders is presented. A high purity τ-phase Mn 0.55 Al 0.45 C 0.02 alloy was synthesized by the drop synthesis method. The drop synthesized material was subjected to cryo milling and  followed by a flash heating process. The crystal structure and microstructure of the drop synthesized, cryo milled and flash heated samples were studied by X-ray in situ powder diffraction, scanning electron microscopy, X-ray energy dispersive spectroscopy and electron backscatter diffraction. Magnetic properties and magnetic structure of the drop synthesized, cryo milled, flash heated  samples were characterized by magnetometry and neutron powder diffraction, respectively. The results reveal that the 2 and 4 hours cryo milled and flash heated samples both exhibit high τ-phase purity and micron-sized round particle shapes. Moreover, the flash heated samples display high saturation magnetization as well as increased coercivity.

  9. Fabrication of micro-lens array on convex surface by meaning of micro-milling

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Du, Yunlong; Wang, Bo; Shan, Debin

    2014-08-01

    In order to develop the application of the micro-milling technology, and to fabricate ultra-precision optical surface with complex microstructure, in this paper, the primary experimental research on micro-milling complex microstructure array is carried out. A complex microstructure array surface with vary parameters is designed, and the mathematic model of the surface is set up and simulated. For the fabrication of the designed microstructure array surface, a micro three-axis ultra-precision milling machine tool is developed, aerostatic guideway drove directly by linear motor is adopted in order to guarantee the enough stiffness of the machine, and novel numerical control strategy with linear encoders of 5nm resolution used as the feedback of the control system is employed to ensure the extremely high motion control accuracy. With the help of CAD/CAM technology, convex micro lens array on convex spherical surface with different scales on material of polyvinyl chloride (PVC) and pure copper is fabricated using micro tungsten carbide ball end milling tool based on the ultra-precision micro-milling machine. Excellent nanometer-level micro-movement performance of the axis is proved by motion control experiment. The fabrication is nearly as the same as the design, the characteristic scale of the microstructure is less than 200μm and the accuracy is better than 1μm. It prove that ultra-precision micro-milling technology based on micro ultra-precision machine tool is a suitable and optional method for micro manufacture of microstructure array surface on different kinds of materials, and with the development of micro milling cutter, ultraprecision micro-milling complex microstructure surface will be achieved in future.

  10. 77 FR 57539 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-18

    ... cracking of the fuselage skin along chem-mill steps at certain crown skin and shear wrinkle areas, and... comments, using the procedures found in 14 CFR 11.43 and 11.45, by any of the following methods: Federal e... adjacent to non-chem-mill areas at antenna and door bearstrap installations, and shear wrinkle areas at...

  11. Through-silicon via plating void metrology using focused ion beam mill

    NASA Astrophysics Data System (ADS)

    Rudack, A. C.; Nadeau, J.; Routh, R.; Young, R. J.

    2012-03-01

    3D IC integration continues to increase in complexity, employing advanced interconnect technologies such as throughsilicon vias (TSVs), wafer-to-wafer (W2W) bonding, and multi-chip stacking. As always, the challenge with developing new processes is to get fast, effective feedback to the integration engineer. Ideally this data is provided by nondestructive in-line metrology, but this is not always possible. For example, some form of physical cross-sectioning is still the most practical way to detect and characterize TSV copper plating voids. This can be achieved by cleaving, followed by scanning electron microscope (SEM) inspection. A more effective physical cross-sectioning method has been developed using an automated dual-beam focused ion beam (FIB)-SEM system, in which multiple locations can be sectioned and imaged while leaving the wafer intact. This method has been used routinely to assess copper plating voids over the last 24 months at SEMATECH. FIB-SEM feedback has been used to evaluate new plating chemistries, plating recipes, and process tool requalification after downtime. The dualbeam FIB-SEM used for these studies employs a gallium-based liquid metal ion source (LMIS). The overall throughput of relatively large volumes being milled is limited to 3-4 hours per section due to the maximum available beam current of 20 nA. Despite the larger volumetric removal rates of other techniques (e.g., mechanical polishing, broad-ion milling, and laser ablation), the value of localized, site-specific, and artifact-free FIB milling is well appreciated. The challenge, therefore, has been to reap the desired FIB benefits, but at faster volume removal rates. This has led to several system and technology developments for improving the throughput of the FIB technique, the most recent being the introduction of FIBs based on an inductively coupled plasma (ICP) ion source. The ICP source offers much better performance than the LMIS at very high beam currents, enabling more than 1 μA of ion beam current for fast material removal. At a lower current, the LMIS outperforms the ICP source, but imaging resolution below 30 nm has been demonstrated with ICP-based systems. In addition, the ICP source allows a wide range of possible ion species, with Xe currently the milling species of choice, due to its high mass and favorable ion source performance parameters. Using a 1 μA Xe beam will have an overall milling rate for silicon some 20X higher than a Ga beam operating at 65 nA. This paper will compare the benefits already seen using the Ga-based FIB-SEM approach to TSV metrology, with the improvements in throughput and time-to-data obtained by using the faster material removal capabilities of a FIB based on an ICP ion source. Plasma FIB (PFIB) is demonstrated to be a feasible tool for TSV plating void metrology.

  12. The robust design for improving crude palm oil quality in Indonesian Mill

    NASA Astrophysics Data System (ADS)

    Maretia Benu, Siti; Sinulingga, Sukaria; Matondang, Nazaruddin; Budiman, Irwan

    2018-04-01

    This research was conducted in palm oil mill in Sumatra Utara Province, Indonesia. Currently, the main product of this mill is Crude Palm Oil (CPO) and hasn’t met the expected standard quality. CPO is the raw material for many fat derivative products. The generally stipulated quality criteria are dirt count, free fatty acid, and moisture of CPO. The aim of this study is to obtain the optimal setting for factor’s affect the quality of CPO. The optimal setting will result in an improvement of product’s quality. In this research, Experimental Design with Taguchi Method is used. Steps of this method are identified influence factors, select the orthogonal array, processed data using ANOVA test and signal to noise ratio, and confirmed the research using Quality Loss Function. The result of this study using Taguchi Method is to suggest to set fruit maturity at 75.4-86.9%, digester temperature at 95°C and press at 21 Ampere to reduce quality deviation until 42.42%.

  13. Magnetic heating characteristics of La0.7SrxCa0.3-xMnO3 nanoparticles fabricated by a high energy mechanical milling method

    NASA Astrophysics Data System (ADS)

    Do, Hung Manh; Pham, Hong Nam; Chien Nguyen, Van; Bich Hoa Phan, Thi; Tran, Dai Lam; Nguyen, Anh Tuan; Thong Phan, Quoc; Le, Van Hong; Phuc Nguyen, Xuan

    2011-09-01

    Magnetic inductive heating (MIH) of nanoparticles (NPs) attracts considerable research attention, first because of its application to hyperthermia in biological tissues. Most reports so far have dealt with magnetite NPs with a Curie temperature, TC, of as high as above 500 °C. In this paper, we present results of a MIH study in an ac field of frequency 219 and 236 kHz and strength of 40-100 Oe for several samples of La0.7SrxCa0.3-x MnO3 NPs of TC in the region of hyperthermia, that is some tens of degrees above human body temperature. The particle materials were fabricated by a high energy mechanical milling method combined with calcining at various temperatures in the range of 600-900 °C. The heating temperatures of the samples were observed to saturate at a field irradiating time of less than 10 min and at temperatures ranging from 40 to 75 °C depending on the strontium content, the NP concentration, c, and the field parameters. A sudden change in heating rate was clearly revealed in several heating curves for the case of low applied field and low c, which was considered to be related to the onset of a strong decrease in zero-field cooling (ZFC) magnetization of NPs. The initial temperature increase slope, dT/dt, and the saturation temperature, Ts will be analyzed as dependent on the NP concentration. Field dependences of the specific loss power will be analyzed and discussed for various concentrations, c. Evidence of fluid viscosity influence will also be noted.

  14. Comparative study on the removal of COD from POME by electrocoagulation and electro-Fenton methods: Process optimization

    NASA Astrophysics Data System (ADS)

    Chairunnisak, A.; Arifin, B.; Sofyan, H.; Lubis, M. R.; Darmadi

    2018-03-01

    This research focuses on the Chemical Oxygen Demand (COD) treatment in palm oil mill effluent by electrocoagulation and electro-Fenton methods to solve it. Initially, the aqueous solution precipitates in acid condition at pH of about two. This study focuses on the palm oil mill effluent degradation by Fe electrodes in a simple batch reactor. This work is conducted by using different parameters such as voltage, electrolyte concentration of NaCl, volume of H2O2 and operation time. The processing of data resulted is by using response surface method coupled with Box-Behnken design. The electrocoagulation method results in the optimum COD reduction of 94.53% from operating time of 39.28 minutes, 20 volts, and without electrolyte concentration. For electro-Fenton process, experiment points out that voltage 15.78 volts, electrolyte concentration 0.06 M and H2O2 volume 14.79 ml with time 35.92 minutes yield 99.56% degradation. The result concluded that the electro-Fenton process was more effective to degrade COD of the palm-oil-mill effluent compared to electrocoagulation process.

  15. Preparation of polypropylene/Mg–Al layered double hydroxides nanocomposites through wet pan-milling: non-isothermal crystallization behaviour

    PubMed Central

    Zheng, Yilei

    2018-01-01

    Differential scanning calorimeter was used to extensively investigate the non-isothermal crystallization of polypropylene (PP)/layered double hydroxides (LDHs) nanocomposites prepared through wet solid-state shear milling. The corresponding crystallization kinetics was further investigated by using Ozawa, modified Avrami and combined Avrami–Ozawa method, respectively. The results showed that the Ozawa method could not well describe the crystallization kinetics of pure PP and its nanocomposites. Comparatively, the modified Avrami method as well as the combined Avrami–Ozawa method gives the satisfactory results. Under the effect of pan-milling, the produced LDH nano intercalated/exfoliated particles exhibit the inhibitive effect on the PP nucleation but more remarkable promotion effect on the spherulite growth, leading to enhancement in the overall crystallization rate. This is reflected in increase of the calculated fold surface free energy σe and also the supercooling degree ΔT required for crystallization nucleation. In addition, the polarized optical microscopy observation also verifies the higher spherulite growth rate of PP/LDHs nanocomposites than that of pure PP. PMID:29410819

  16. Effect of feed grinding methods with and without expansion on prececal and total tract mineral digestibility as well as on interior and exterior egg quality in laying hens.

    PubMed

    Hafeez, A; Mader, A; Ruhnke, I; Männer, K; Zentek, J

    2016-01-01

    The grinding of cereals by various milling methods as well as thermal treatment of feed may influence mineral digestibility and egg quality. The present study investigated the effect of feed produced by disc mill (D) and wedge-shaped disc mill (WSD), as mash (M) or expandate (E) on apparent ileal absorption (AIA) and apparent total digestibility (ATD) of calcium, phosphorus, magnesium, zinc, manganese, copper and iron, as well as on egg quality in laying hens. A total of 192 hens (Lohmann Brown) aged 19 wk, were assigned using a randomized design with a 2 × 2 factorial arrangement. Four experimental diets were offered ad libitum. Eggs were analyzed for weight, shape index, area, shell weight per unit surface area, yolk color, air cell, blood spot, Haugh unit, albumen and yolk measures (index, weight, height, width and length), shell measures (surface area, stability, density, thickness and membrane weight), as well as percent contents of albumen, yolk, shell, and shell membrane. The ATD for phosphorus, manganese, and copper was higher in WSD compared with D treatment (P = 0.028, P = 0.028 and P = 0.016, respectively). The interaction between milling methods and thermal treatment influenced ATD of copper (P = 0.033), which was higher in WSD+M group (41.0 ± 20.2) compared with D+E group (-3.21 ± 25.1), whereas no differences were observed for D+M (1.90 ± 37.8) and WSD+E (8.02 ± 36.2) groups. Egg stability tended to be higher in E compared with M treatment (P = 0.055). Albumen weight, percentage albumen weight, and albumen: yolk were higher and percentage yolk weight was lower in D compared with WSD treatment (P = 0.043, P = 0.027, P = 0.024, and P = 0.041, respectively). Number of blood spots was higher in E than M treatment (P = 0.053). In conclusion, use of a wedge-shaped disc mill resulted in higher ATD for phosphorus, manganese, and copper than use of a disc mill; however, digestibility for majority of minerals as well as egg quality parameters was comparable. Therefore, feed produced by either disc mill or wedge-shaped disc mill as mash or expandate may be used for laying hens without negative effects on egg quality. © 2015 Poultry Science Association Inc.

  17. Microstructures and Mechanical Properties of Co-Cr Dental Alloys Fabricated by Three CAD/CAM-Based Processing Techniques

    PubMed Central

    Kim, Hae Ri; Jang, Seong-Ho; Kim, Young Kyung; Son, Jun Sik; Min, Bong Ki; Kim, Kyo-Han; Kwon, Tae-Yub

    2016-01-01

    The microstructures and mechanical properties of cobalt-chromium (Co-Cr) alloys produced by three CAD/CAM-based processing techniques were investigated in comparison with those produced by the traditional casting technique. Four groups of disc- (microstructures) or dumbbell- (mechanical properties) specimens made of Co-Cr alloys were prepared using casting (CS), milling (ML), selective laser melting (SLM), and milling/post-sintering (ML/PS). For each technique, the corresponding commercial alloy material was used. The microstructures of the specimens were evaluated via X-ray diffractometry, optical and scanning electron microscopy with energy-dispersive X-ray spectroscopy, and electron backscattered diffraction pattern analysis. The mechanical properties were evaluated using a tensile test according to ISO 22674 (n = 6). The microstructure of the alloys was strongly influenced by the manufacturing processes. Overall, the SLM group showed superior mechanical properties, the ML/PS group being nearly comparable. The mechanical properties of the ML group were inferior to those of the CS group. The microstructures and mechanical properties of Co-Cr alloys were greatly dependent on the manufacturing technique as well as the chemical composition. The SLM and ML/PS techniques may be considered promising alternatives to the Co-Cr alloy casting process. PMID:28773718

  18. Fabrication of silicon-based shape memory alloy micro-actuators

    NASA Technical Reports Server (NTRS)

    Johnson, A. David; Busch, John D.; Ray, Curtis A.; Sloan, Charles L.

    1992-01-01

    Thin film shape memory alloy has been integrated with silicon in a new actuation mechanism for microelectromechanical systems. This paper compares nickel-titanium film with other actuators, describes recent results of chemical milling processes developed to fabricate shape memory alloy microactuators in silicon, and describes simple actuation mechanisms which have been fabricated and tested.

  19. Comparison of five-axis milling and rapid prototyping for implant surgical templates.

    PubMed

    Park, Ji-Man; Yi, Tae-Kyoung; Koak, Jai-Young; Kim, Seong-Kyoon; Park, Eun-Jin; Heo, Seong-Joo

    2014-01-01

    This study aims to compare and evaluate the accuracy of surgical templates fabricated using coordinate synchronization processing with five-axis milling and design-related processing with rapid prototyping (RP). Master phantoms with 10 embedded gutta-percha cylinders hidden under artificial gingiva were fabricated and imaged using cone beam computed tomography. Vectors of the hidden cylinders were extracted and transferred to those of the planned implants through reverse engineering using virtual planning software. An RP-produced template was fabricated by stereolithography in photopolymer at the RP center according to planned data. Metal sleeves were bonded after holes were bored (group RP). For the milled template, milling coordinates were synchronized using the conversion process for the coordinate synchronization platform located on the model's bottom. Metal bushings were set on holes milled on the five-axis milling machine, on which the model was fixed through the coordinate synchronization plate, and the framework was constructed on the model using orthodontic resin (group CS). A computed tomography image was taken with templates firmly fixed on models using anchor pins (RP) or anchor screws (CS). The accuracy was analyzed via reverse engineering. Differences between the two groups were compared by repeated measures two-factor analysis. From the reverse-engineered image of the template on the experimental model, RP-produced templates showed significantly larger deviations than did milled surgical guides. Maximum deviations of the group RP were 1.58 mm (horizontal), 1.68 mm (vertical), and 8.51 degrees (angular); those of the group CS were 0.68 mm (horizontal), 0.41 mm (vertical), and 3.23 degrees (angular). A comparison of milling and RP template production methods showed that a vector-milled surgical guide had significantly smaller deviations than did an RP-produced template. The accuracy of computer-guided milled surgical templates was within the safety margin of previous studies.

  20. Ultra-high Strength Nanostructured Mg

    DTIC Science & Technology

    2014-03-31

    27709-2211 Nanostructured Mg and Mg alloys, Mg metallic glass, Cryomilling, Powder consolidation, Spark plasma sintering , Deformation mechanisms REPORT...mechanically milled powder and high pressure on spark plasma sintering of Mg-Cu-Gd metallic glasses; (9) microstructure and mechanical behavior of Mg-10Li-3Al...pressure on spark plasma sintering of Mg– Cu–Gd metallic glasses, Acta Materialia , (07 2013): 4414. doi: Baolong Zheng, Ying Li, Weizong Xu

Top